Sample records for proxy climate records

  1. Inferring climate variability from skewed proxy records

    NASA Astrophysics Data System (ADS)

    Emile-Geay, J.; Tingley, M.

    2013-12-01

    Many paleoclimate analyses assume a linear relationship between the proxy and the target climate variable, and that both the climate quantity and the errors follow normal distributions. An ever-increasing number of proxy records, however, are better modeled using distributions that are heavy-tailed, skewed, or otherwise non-normal, on account of the proxies reflecting non-normally distributed climate variables, or having non-linear relationships with a normally distributed climate variable. The analysis of such proxies requires a different set of tools, and this work serves as a cautionary tale on the danger of making conclusions about the underlying climate from applications of classic statistical procedures to heavily skewed proxy records. Inspired by runoff proxies, we consider an idealized proxy characterized by a nonlinear, thresholded relationship with climate, and describe three approaches to using such a record to infer past climate: (i) applying standard methods commonly used in the paleoclimate literature, without considering the non-linearities inherent to the proxy record; (ii) applying a power transform prior to using these standard methods; (iii) constructing a Bayesian model to invert the mechanistic relationship between the climate and the proxy. We find that neglecting the skewness in the proxy leads to erroneous conclusions and often exaggerates changes in climate variability between different time intervals. In contrast, an explicit treatment of the skewness, using either power transforms or a Bayesian inversion of the mechanistic model for the proxy, yields significantly better estimates of past climate variations. We apply these insights in two paleoclimate settings: (1) a classical sedimentary record from Laguna Pallcacocha, Ecuador (Moy et al., 2002). Our results agree with the qualitative aspects of previous analyses of this record, but quantitative departures are evident and hold implications for how such records are interpreted, and compared to other proxy records. (2) a multiproxy reconstruction of temperature over the Common Era (Mann et al., 2009), where we find that about one third of the records display significant departures from normality. Accordingly, accounting for skewness in proxy predictors has a notable influence on both reconstructed global mean and spatial patterns of temperature change. Inferring climate variability from skewed proxy records thus requires cares, but can be done with relatively simple tools. References - Mann, M. E., Z. Zhang, S. Rutherford, R. S. Bradley, M. K. Hughes, D. Shindell, C. Ammann, G. Faluvegi, and F. Ni (2009), Global signatures and dynamical origins of the little ice age and medieval climate anomaly, Science, 326(5957), 1256-1260, doi:10.1126/science.1177303. - Moy, C., G. Seltzer, D. Rodbell, and D. Anderson (2002), Variability of El Niño/Southern Oscillation activ- ity at millennial timescales during the Holocene epoch, Nature, 420(6912), 162-165.

  2. Bayesian hierarchical models for regional climate reconstructions of the last glacial maximum

    NASA Astrophysics Data System (ADS)

    Weitzel, Nils; Hense, Andreas; Ohlwein, Christian

    2017-04-01

    Spatio-temporal reconstructions of past climate are important for the understanding of the long term behavior of the climate system and the sensitivity to forcing changes. Unfortunately, they are subject to large uncertainties, have to deal with a complex proxy-climate structure, and a physically reasonable interpolation between the sparse proxy observations is difficult. Bayesian Hierarchical Models (BHMs) are a class of statistical models that is well suited for spatio-temporal reconstructions of past climate because they permit the inclusion of multiple sources of information (e.g. records from different proxy types, uncertain age information, output from climate simulations) and quantify uncertainties in a statistically rigorous way. BHMs in paleoclimatology typically consist of three stages which are modeled individually and are combined using Bayesian inference techniques. The data stage models the proxy-climate relation (often named transfer function), the process stage models the spatio-temporal distribution of the climate variables of interest, and the prior stage consists of prior distributions of the model parameters. For our BHMs, we translate well-known proxy-climate transfer functions for pollen to a Bayesian framework. In addition, we can include Gaussian distributed local climate information from preprocessed proxy records. The process stage combines physically reasonable spatial structures from prior distributions with proxy records which leads to a multivariate posterior probability distribution for the reconstructed climate variables. The prior distributions that constrain the possible spatial structure of the climate variables are calculated from climate simulation output. We present results from pseudoproxy tests as well as new regional reconstructions of temperatures for the last glacial maximum (LGM, ˜ 21,000 years BP). These reconstructions combine proxy data syntheses with information from climate simulations for the LGM that were performed in the PMIP3 project. The proxy data syntheses consist either of raw pollen data or of normally distributed climate data from preprocessed proxy records. Future extensions of our method contain the inclusion of other proxy types (transfer functions), the implementation of other spatial interpolation techniques, the use of age uncertainties, and the extension to spatio-temporal reconstructions of the last deglaciation. Our work is part of the PalMod project funded by the German Federal Ministry of Education and Science (BMBF).

  3. Synthesizing late Holocene paleoclimate reconstructions: Lessons learned, common challenges, and implications for future research

    NASA Astrophysics Data System (ADS)

    Rodysill, J. R.

    2017-12-01

    Proxy-based reconstructions provide vital information for developing histories of environmental and climate changes. Networks of spatiotemporal paleoclimate information are powerful tools for understanding dynamical processes within the global climate system and improving model-based predictions of the patterns and magnitudes of climate changes at local- to global-scales. Compiling individual paleoclimate records and integrating reconstructed climate information in the context of an ensemble of multi-proxy records, which are fundamental for developing a spatiotemporal climate data network, are hindered by challenges related to data and information accessibility, chronological uncertainty, sampling resolution, climate proxy type, and differences between depositional environments. The U.S. Geological Survey (USGS) North American Holocene Climate Synthesis Working Group has been compiling and integrating multi-proxy paleoclimate data as part of an ongoing effort to synthesize Holocene climate records from North America. The USGS North American Holocene Climate Synthesis Working Group recently completed a late Holocene hydroclimate synthesis for the North American continent using several proxy types from a range of depositional environments, including lakes, wetlands, coastal marine, and cave speleothems. Using new age-depth relationships derived from the Bacon software package, we identified century-scale patterns of wetness and dryness for the past 2000 years with an age uncertainty-based confidence rating for each proxy record. Additionally, for highly-resolved North American lake sediment records, we computed average late Holocene sediment deposition rates and identified temporal trends in age uncertainty that are common to multiple lakes. This presentation addresses strengths and challenges of compiling and integrating data from different paleoclimate archives, with a particular focus on lake sediments, which may inform and guide future paleolimnological studies.

  4. A fresh look at the Last Glacial Maximum using Paleoclimate Data Assimilation

    NASA Astrophysics Data System (ADS)

    Malevich, S. B.; Tierney, J. E.; Hakim, G. J.; Tardif, R.

    2017-12-01

    Quantifying climate conditions during the Last Glacial Maximum ( 21ka) can help us to understand climate responses to forcing and climate states that are poorly represented in the instrumental record. Paleoclimate proxies may be used to estimate these climate conditions, but proxies are sparsely distributed and possess uncertainties from environmental and biogeochemical processes. Alternatively, climate model simulations provide a full-field view, but may predict unrealistic climate states or states not faithful to proxy records. Here, we use data assimilation - combining climate proxy records with a theoretical understanding from climate models - to produce field reconstructions of the LGM that leverage the information from both data and models. To date, data assimilation has mainly been used to produce reconstructions of climate fields through the last millennium. We expand this approach in order to produce a climate fields for the Last Glacial Maximum using an ensemble Kalman filter assimilation. Ensemble samples were formed from output from multiple models including CCSM3, CESM2.1, and HadCM3. These model simulations are combined with marine sediment proxies for upper ocean temperature (TEX86, UK'37, Mg/Ca and δ18O of foraminifera), utilizing forward models based on a newly developed suite of Bayesian proxy system models. We also incorporate age model and radiocarbon reservoir uncertainty into our reconstructions using Bayesian age modeling software. The resulting fields show familiar patterns based on comparison with previous proxy-based reconstructions, but additionally reveal novel patterns of large-scale shifts in ocean-atmosphere dynamics, as the surface temperature data inform upon atmospheric circulation and precipitation patterns.

  5. Practical experience using speleothem data in multi-proxy climate reconstructions

    NASA Astrophysics Data System (ADS)

    Graham, N.

    2009-04-01

    Speleothem records have clear potential to extend and sharpen our understanding of past climate change. Many speleothem records feature both high sample resolution and precision age models, characteristics generally available only in tree-ring records, among terrestrial climate proxies. Speleothem records also avoid some processes that add uncertainty to the interpretation of biological proxy records. At the same time, model results suggest that even if speleothems did provide long and perfect records of meteoric water isotope concentrations, it would not be always be obvious how to interpret the isotopic fluctuations unambiguously in terms of precipitation or temperature variability. Other uncertainties can arise from local hydrologic and speleothem growth processes, as well as sampling and calibration uncertainties. Similar comments apply to other sorts of speleothem-derived records, e.g., verve thickness. These issues of interpretation are especially important in cases where data availability makes calibration to local climate data problematic and when past climate conditions limit the relevance of such calibrations. The presentation will focus broadly on the use of speleothem records together with other sorts of proxy records either to get a general idea of climatic change during some period, or for more formal climate field reconstruction. Examples from few such efforts will be given. Results from simulations with models incorporating stable water isotopes will be discussed, with consideration of what the results imply about the climatic interpretation of speleothem isotope records. The views will be those a climate scientist trying to make better use of speleothem data, a perspective which will highlight 1) where climate researchers would benefit from better understanding of isotope and speleothem processes, and 2) what steps that speleothem researchers could take to tighten the physical interpretation of their records. Convergence on these points will allow us to take better take advantage of the precision and spatial distribution of speleothem records offer for the understanding of past climate.

  6. Statistical framework for evaluation of climate model simulations by use of climate proxy data from the last millennium - Part 1: Theory

    NASA Astrophysics Data System (ADS)

    Sundberg, R.; Moberg, A.; Hind, A.

    2012-08-01

    A statistical framework for comparing the output of ensemble simulations from global climate models with networks of climate proxy and instrumental records has been developed, focusing on near-surface temperatures for the last millennium. This framework includes the formulation of a joint statistical model for proxy data, instrumental data and simulation data, which is used to optimize a quadratic distance measure for ranking climate model simulations. An essential underlying assumption is that the simulations and the proxy/instrumental series have a shared component of variability that is due to temporal changes in external forcing, such as volcanic aerosol load, solar irradiance or greenhouse gas concentrations. Two statistical tests have been formulated. Firstly, a preliminary test establishes whether a significant temporal correlation exists between instrumental/proxy and simulation data. Secondly, the distance measure is expressed in the form of a test statistic of whether a forced simulation is closer to the instrumental/proxy series than unforced simulations. The proposed framework allows any number of proxy locations to be used jointly, with different seasons, record lengths and statistical precision. The goal is to objectively rank several competing climate model simulations (e.g. with alternative model parameterizations or alternative forcing histories) by means of their goodness of fit to the unobservable true past climate variations, as estimated from noisy proxy data and instrumental observations.

  7. Evaluating the Effect of Autogenic Sedimentation on the Preservation of Climate Proxy Records: Modeling and Examples from the Paleocene Eocene Thermal Maximum

    NASA Astrophysics Data System (ADS)

    Trampush, S. M.; Hajek, E. A.

    2016-12-01

    The stratigraphic record provides a vital opportunity to investigate how changes in climate can impact many different landscapes and seascapes. However, the inherent variability in sedimentation within many depositional environments may mask or remove the signature of climate change. A common solution is to use geochemical proxies - usually collected at regular stratigraphic intervals - to independently identify climate events. This approach doesn't account for the potentially significant variability in deposition and erosion time series resulting from autogenic landscape dynamics. In order to explore how geochemical proxy records could be overprinted by landscape dynamics, we use a 1D stochastic sedimentation model where we mimic fluvial, lacustrine, shallow marine, and deep marine environmental dynamics by varying the frequency-magnitude distributions of sedimentation rates. We find that even conservative estimates of the frequency and magnitude of stochastic sedimentation variability can heavily modify proxy records in characteristic ways by alternately removing, compressing, and expanding portions of the record, regardless of the magnitude or duration of the climatic event. Our model results are consistent with observations of the carbon isotope excursions of the Paleocene Eocene Thermal Maximum (PETM) preserved within both fluvial (e.g. the Bighorn Basin, Wyoming and the Piceance Basin, Colorado) and shallow marine (e.g. the New Jersey shelf) deposits. Our results suggest that we may be able to use existing geochemical proxy records within well studied, global climate events, such as the PETM, to constrain the variability in sedimentation present within different depositional environments.

  8. Coral Records of 20th Century Central Tropical Pacific SST and Salinity: Signatures of Natural and Anthropogenic Climate Change

    NASA Astrophysics Data System (ADS)

    Nurhati, I. S.; Cobb, K.; Di Lorenzo, E.

    2011-12-01

    Accurate forecasts of regional climate changes in many regions of the world largely depend on quantifying anthropogenic trends in tropical Pacific climate against its rich background of interannual to decadal-scale climate variability. However, the strong natural climate variability combined with limited instrumental climate datasets have obscured potential anthropogenic climate signals in the region. Here, we present coral-based sea-surface temperature (SST) and salinity proxy records over the 20th century (1898-1998) from the central tropical Pacific - a region sensitive to El Niño-Southern Oscillation (ENSO) whose variability strongly impacts the global climate. The SST and salinity proxy records are reconstructed via coral Sr/Ca and the oxygen isotopic composition of seawater (δ18Osw), respectively. On interannual (2-7yr) timescales, the SST proxy record tracks both eastern- and central-Pacific flavors of ENSO variability (R=0.65 and R=0.67, respectively). Interannual-scale salinity variability in our coral record highlights profound differences in precipitation and ocean advections during the two flavors of ENSO. On decadal (8yr-lowpassed) timescales, the central tropical Pacific SST and salinity proxy records are controlled by different sets of dynamics linked to the leading climate modes of North Pacific climate variability. Decadal-scale central tropical Pacific SST is highly correlated to the recently discovered North Pacific Gyre Oscillation (NPGO; R=-0.85), reflecting strong dynamical links between the central Pacific warming mode and extratropical decadal climate variability. Whereas decadal-scale salinity variations in the central tropical Pacific are significantly correlated with the Pacific Decadal Oscillation (PDO; R=0.54), providing a better understanding on low-frequency salinity variability in the region. Having characterized natural climate variability in this region, the coral record shows a +0.5°C warming trend throughout the last century. However, the most prominent feature of the new coral records is an unprecedented freshening trend since the mid-20th century, in line with global climate models (GCMs) projections of enhanced hydrological patterns (wet areas are getting wetter and vice versa) under greenhouse forcing. Taken together, the coral records provide key constraints on tropical Pacific climate trends that may improve regional climate projections in areas affected by tropical Pacific climate variability.
    Central Tropical Pacific SST and Salinity Proxy Records

  9. A preliminary study on teak tree ring cellulose δ18O from northwestern Thailand: the potential for developing multiproxy records of Thailand summer monsoon variability

    NASA Astrophysics Data System (ADS)

    Muangsong, Chotika; Cai, Binggui; Pumijumnong, Nathsuda; Lei, Guoliang; Wang, Fang

    2018-05-01

    Thailand monsoon is located in the transition zone between the Indian and western North Pacific monsoons. Assuredly, proxy climate data from this area could improve our understanding of the nature of Asian monsoon. Tree rings and stalagmites from this area are two potential materials for high-resolution paleoclimate reconstructions. However, a comprehensive understanding of these multiproxy records is still a challenge. In this study, a 76-year tree ring cellulose oxygen isotope value (δ18O) of a teak tree from northwestern Thailand was developed to test its climatic significance and potential for multiproxy climate reconstruction. The results indicate that the interannual variability of cellulose δ18O can be interpreted as a proxy of rainfall in the early monsoon season (May to July rainfall) as well as a proxy of relative humidity. Comparisons with speleothem proxies from the same locality and tree ring records from wider geographical areas provide a basis for developing a multiproxy approach. The results from a teleconnection analysis reveal that the El Niño-Southern Oscillation (ENSO) is an important climate mode that impacts monsoon rainfall in Thailand. High-quality proxy records covering recent decades are critically important not only to improve proxy data calibrations but also to provide a better understanding of teleconnections within the modern atmosphere. Preliminary findings demonstrated the potential of tree ring stable isotopes from Thai teak to develop multiproxy climate reconstruction.

  10. Climatic variability during the last deglaciation: A stalagmite-based multi-proxy record from Mawmluh cave, India

    NASA Astrophysics Data System (ADS)

    Huguet, C.; Munnuru Singamshetty, K.; Routh, J.; Fietz, S.; Mangini, A.; Ghosh, P.; Lone, M. A.; Rangarajan, R.; Eliasson, J.

    2016-12-01

    The Mawmluh cave in northeastern India, is affected by global climate patterns displaying glacial-interglacial patterns and also the Indian Summer Monsoon (ISM). Precipitation from the ISM plays a vital role for the local community and thus, understanding the driving forces of ISM fluctuations became a recent focus of a number of paleoclimate studies. Here, we used the stalagmite KM-1 from Mawmluh cave to reconstruct climate variability during the last glacial-interglacial transition from 22 to 6 ka. For the first time, molecular proxy data (TEX86 and MBT/CBT derived from isoprenoid and branched GDGTs respectively) were coupled to stable isotope records (δ13C and δ18O) and compared to other speleothem records in Asia. ISM system abruptly transition between a suppressed and active state which is associated to changes in vegetation and thus shifts in δ13C. The abrupt δ13C shift observed in our record indicate changes to wetter climate in the Holocene, which are coupled to increase in abundance of GDGTs indicating higher production and/or transfer to KM-1. The TEX86-derived temperature roughly follows the glaciation-deglaciation cycle and Holocene changes. The TEX86 results show good correspondence with the δ18O records for temperature highlighting the potential for the use of molecular proxy in speleothem based climate reconstructions. While the MBT/CBT proxy is also defined as a temperature proxy it is not coupled with δ18O patterns, and thus shows no clear temperature signal. A decoupling between MBT/CBT from soils and the connected speleothems as well as a precipitation-moisture effect on this proxy have been previously reported. In this particular case the MBT/CBT seems to be better related to precipitation-monsoon changes, and thus warrant further exploration as a complementary proxy to isotope records for monsoon strength.

  11. Gulf of Mexico Climate-History Calibration Study

    USGS Publications Warehouse

    Spear, Jessica W.; Poore, Richard Z.

    2010-01-01

    Reliable instrumental records of past climate are available for about the last 150 years only. To supplement the instrumental record, reconstructions of past climate are made from natural recorders such as trees, ice, corals, and microfossils preserved in sediments. These proxy records provide information on the rate and magnitude of past climate variability, factors that are critical to distinguishing between natural and human-induced climate change in the present. However, the value of proxy records is heavily dependent on calibration between the chemistry of the natural recorder and of the modern environmental conditions. The Gulf of Mexico Climate and Environmental History Project is currently undertaking a climate-history calibration study with material collected from an automated sediment trap. The primary focus of the calibration study is to provide a better calibration of low-latitude environmental conditions and shell chemistry of calcareous microfossils, such as planktic Foraminifera.

  12. A review of the South American monsoon history as recorded in stable isotopic proxies over the past two millennia

    NASA Astrophysics Data System (ADS)

    Vuille, M.; Burns, S. J.; Taylor, B. L.; Cruz, F. W.; Bird, B. W.; Abbott, M. B.; Kanner, L. C.; Cheng, H.; Novello, V. F.

    2012-08-01

    We review the history of the South American summer monsoon (SASM) over the past ~2000 yr based on high-resolution stable isotope proxies from speleothems, ice cores and lake sediments. Our review is complemented by an analysis of an isotope-enabled atmospheric general circulation model (GCM) for the past 130 yr. Proxy records from the monsoon belt in the tropical Andes and SE Brazil show a very coherent behavior over the past 2 millennia with significant decadal to multidecadal variability superimposed on large excursions during three key periods: the Medieval Climate Anomaly (MCA), the Little Ice Age (LIA) and the current warm period (CWP). We interpret these three periods as times when the SASM's mean state was significantly weakened (MCA and CWP) and strengthened (LIA), respectively. During the LIA each of the proxy archives considered contains the most negative δ18O values recorded during the entire record length. On the other hand, the monsoon strength is currently rather weak in a 2000-yr historical perspective, rivaled only by the low intensity during the MCA. Our climatic interpretation of these archives is consistent with our isotope-based GCM analysis, which suggests that these sites are sensitive recorders of large-scale monsoon variations. We hypothesize that these centennial-scale climate anomalies were at least partially driven by temperature changes in the Northern Hemisphere and in particular over the North Atlantic, leading to a latitudinal displacement of the ITCZ and a change in monsoon intensity (amount of rainfall upstream over the Amazon Basin). This interpretation is supported by several independent records from different proxy archives and modeling studies. Although ENSO is the main forcing for δ18O variability over tropical South America on interannual time scales, our results suggest that its influence may be significantly modulated by North Atlantic climate variability on longer time scales. Finally, our analyses indicate that isotopic proxies, because of their ability to integrate climatic information on large spatial scales, could complement more traditional proxies such as tree rings or documentary evidence. Future climate reconstruction efforts could potentially benefit from including isotopic proxies as large-scale predictors in order to better constrain past changes in the atmospheric circulation.

  13. Stability of ENSO and Its Tropical Pacific Teleconnections over the Last Millennium

    NASA Technical Reports Server (NTRS)

    Lewis, Sophie; Legrande, A. N.

    2015-01-01

    Determining past changes in the amplitude, frequency and teleconnections of the El Nio Southern Oscillation (ENSO) is important for understanding its potential sensitivity to future anthropogenic climate change. Palaeo-reconstructions from proxy records provide long-term information of ENSO interactions with the background climatic state through time. However, it remains unclear how ENSO characteristics have changed through time, and precisely which signals proxies record. Proxy interpretations are underpinned by the assumption of stationarity in relationships between local and remote climates, and often utilise archives from single locations located in the Pacific Ocean to reconstruct ENSO histories. Here, we investigate the stationarity of ENSO teleconnections using the Last Millennium experiment of CMIP5 (Coupled Model Intercomparison Project phase 5) (Taylor et al., 2012). We show that modelled ENSO characteristics vary on decadal- to centennial-scales, resulting from internal variability and external forcings, such as tropical volcanic eruptions. Furthermore, the relationship between ENSO conditions and local climates across the Pacific basin varies throughout the Last Millennium. Results show the stability of teleconnections is regionally dependent and proxies may reveal complex changes in teleconnected patterns, rather than large-scale changes in base ENSO characteristics. As such, proxy insights into ENSO likely require evidence to be synthesised over large spatial areas in order to deconvolve changes occurring in the NINO3.4 region from those pertaining to proxy-relevant local climatic variables. To obtain robust histories of the ENSO and its remote impacts, we recommend interpretations of proxy records should be considered in conjunction with palaeo-reconstructions from within the Central Pacific

  14. A Fifty-Year Coral Sr/Ca Time Series from Guam, Mariana Islands: In situ Monitoring and Comparison to Observed Pacific Climate

    NASA Astrophysics Data System (ADS)

    Lander, M.

    2016-12-01

    Located on the northern edge of the West Pacific Warm Pool, Guam is positioned to obtain uniquely valuable natural records of west Pacific maritime paleoclimate. This study is the first to evaluate the application of the coral Sr/Ca sea surface temperature (SST) proxy to the reconstruction of Guam's climate history. To help test the fidelity of the coral Sr/Ca proxy to actual climate, and how it might be affected by environmental variables—on Guam or elsewhere—the study documented monthly seawater oxygen isotope ratios (δ18O), pH, cation, and nitrate concentrations from September 2009 to December 2010 at a Porites lutea colony in Guam's Apra Harbor. The study site was chosen for its accessibility, so that environmental conditions could be readily monitored. A 50-year Sr/Ca record was carefully compared to instrumental records, the quality and reliability of which were also closely examined. Time series of seawater δ18O, pH, and cation concentrations show some evidence of freshwater input from direct rainfall or stream discharge into the harbor. The Sr/Ca proxy SST results, however, are robust, and do not appear to have been significantly affected. The Sr/Ca proxy reproduces the long-term warming trend observed in the historical records of regional SST and local air temperature. Moreover, it shows remarkable fidelity to regional ocean-atmosphere variations as represented by the indices of the El Niño/Southern Oscillation and the Pacific Decadal Oscillation. The consistency of the results with Guam's historical instrumental records, with previous δ18O results from Guam, and with previous Sr/Ca proxy results in similar environments elsewhere, demonstrate the efficacy of accessible near-shore sites for obtaining reliable Sr/Ca climate proxies, and the utility of Guam as a source for accurate coral records of western Pacific Ocean regional climate.

  15. Estimating north pacific summer sea-level pressure back to 1600 using proxy climate records from China and North America

    NASA Astrophysics Data System (ADS)

    Wu, Xiangding; Lough, J. M.

    1987-03-01

    Sea-level pressure variations over the North Pacific Ocean influence the surface climate conditions of China and western North America. Documentary records of precipitation in China data back to the mid-15th century, and a well-replicated network of tree-ring chronologies from western North America dates to the early 17th century. These proxy climate records are used separately and together to estimate sea-level pressure variations over the North Pacific back to 1600 A.D. The models are calibrated over the period 1899 to 1950 and verified over the independent period, 1951 to 1963. The best estimates, derived from predictors in China and western North America, calibrate 44.7 % of summer sea-level pressure variance. The study demonstrates the potential of combining different proxy data sources to derive estimates of past climate.

  16. Glacial-Interglacial, Orbital and Millennial-Scale Climate Variability for the Last Glacial Cycle at Shackleton Site U1385 based on Dinoflagellate Cysts

    NASA Astrophysics Data System (ADS)

    Datema, M.

    2015-12-01

    The Shackleton Site (IODP Expedition 339 Site U1385), located off the West-Portuguese Margin, preserves a continuous high-fidelity record of millennial-scale climate variability for the last several glacial cycles (~1.4 Myr) that can be correlated precisely to patterns observed in polar ice cores. In addition, rapid delivery of terrestrial material to the deep-sea environment allows the correlation of these marine records to European terrestrial climate records. This unique marine-ice-terrestrial linkage makes the Shackleton Site the ideal reference section for studying Quaternary abrupt climate change. The main objective of studying Site U1385 is to establish a marine reference section of Pleistocene climate change. We generated (sub)millennial-scale (~600 year interval) dinoflagellate cyst (dinocyst) assemblage records from Shackleton Site U1385 (IODP Expedition 339) to reconstruct sea surface temperature (SST) and productivity/upwelling over the last 152 kyrs. In addition, our approach allows for detailed land-sea correlations, because we also counted assemblages of pollen and spores from higher plants. Dinocyst SST and upwelling proxies, as well as warm/cold pollen proxies from Site U1385 show glacial-interglacial, orbital and stadial-interstadial climate variability and correlate very well to Uk'37, planktic foraminifer δ18O and Ca/Ti proxies of previously drilled Shackleton Sites and Greenland Ice Core δ18O. The palynological proxies capture (almost) all Dansgaard-Oeschger events of the last glacial cycle, also before ~70 ka, where millennial-scale variability is overprinted by precession. We compare the performance and results of the palynology of Site U1385 to proxies of previously drilled Shackleton Sites and conclude that palynology strengthens the potential of this site to form a multi-proxy reference section for millennial scale climate variability across the Pleistocene-Holocene. Finally, we will present a long-term paleoceanographic perspective down to ~150 ka.

  17. Reconstructing pre-instrumental streamflow in Eastern Australia using a water balance approach

    NASA Astrophysics Data System (ADS)

    Tozer, C. R.; Kiem, A. S.; Vance, T. R.; Roberts, J. L.; Curran, M. A. J.; Moy, A. D.

    2018-03-01

    Streamflow reconstructions based on paleoclimate proxies provide much longer records than the short instrumental period records on which water resource management plans are currently based. In Australia there is a lack of in-situ high resolution paleoclimate proxy records, but remote proxies with teleconnections to Australian climate have utility in producing streamflow reconstructions. Here we investigate, via a case study for a catchment in eastern Australia, the novel use of an Antarctic ice-core based rainfall reconstruction within a Budyko-framework to reconstruct ∼1000 years of annual streamflow. The resulting streamflow reconstruction captures interannual to decadal variability in the instrumental streamflow, validating both the use of the ice core rainfall proxy record and the Budyko-framework method. In the preinstrumental era the streamflow reconstruction shows longer wet and dry epochs and periods of streamflow variability that are higher than observed in the instrumental era. Importantly, for both the instrumental record and preinstrumental reconstructions, the wet (dry) epochs in the rainfall record are shorter (longer) in the streamflow record and this non-linearity must be considered when inferring hydroclimatic risk or historical water availability directly from rainfall proxy records alone. These insights provide a better understanding of present infrastructure vulnerability in the context of past climate variability for eastern Australia. The streamflow reconstruction presented here also provides a better understanding of the range of hydroclimatic variability possible, and therefore represents a more realistic baseline on which to quantify the potential impacts of anthropogenic climate change on water security.

  18. Plio-Pleistocene Sea Surface Temperature Variability As Measured by Different Proxies - A Cautionary Tale

    NASA Astrophysics Data System (ADS)

    Lawrence, K. T.; Woodard, S. C.; Castañeda, I. S.; deMenocal, P. B.; Peterson, L.; Rosenthal, Y.; Bochner, L.; Gorbey, D. B.; Mauriello, H.

    2016-12-01

    Conflicting interpretations from the application of different sea surface temperature (SST) proxies seeking to characterize past climate conditions of the same region have given rise to a number of controversies about key elements of Pliocene climate. Thus, a detailed look at whether or not different temperature proxies yield consistent results is warranted. Here, we examine Pliocene climate variability at the orbital scale reporting new alkenone-derived SST estimates from ODP Site 1088 (South Atlantic) and ODP Site 846 (Eastern Equatorial Pacific). Using these novel datasets and previously published records from a variety of different sites in a variety of localities, we further examine the consistency of Plio-Pleistocene SST variability and orbital signatures from faunal, Mg/Ca, and TEX86 SST records relative to Uk'37 SST records. We find that many companion SST records produce very similar mean trends and standard deviations as well as absolute temperature estimates that are generally within error of each other. Our analysis also suggests that many companion records, with a few notable exceptions, capture the same dominant Milankovitch periodicities and produce phase estimates relative to benthic oxygen isotope estimates that are within error of each other. However, marked structural differences occur between different proxy records on glacial-interglacial timescales in Uk'37 versus Mg/Ca comparisons and some Uk'37 versus TEX86 comparisons. Therefore, the temperature estimates of individual glacial-interglacial cycles may vary significantly when a specific time slice is explored. Our preliminary investigation suggests that whether or not climate records derived from different paleothermometers yield consistent results depends on the timescale being explored and the study site, which reflects key factors such as seasonality, ecology, and diagenetic regime. Additional work that explores the underlying causes of the differences observed among proxies and uses a more systematic approach to directly compare the results from different paleothermometers is required. Until we have a better and broader sense of where/when proxies perform consistently, we recommend caution in treating SST records from different proxies as interchangeable.

  19. Vegetation response to southern California drought during the Medieval Climate Anomaly and early Little Ice Age (AD 800–1600)

    USGS Publications Warehouse

    Heusser, Linda E.; Hendy, Ingrid L.; Barron, John A.

    2015-01-01

    The presence of xeric vegetation in SBB coincides with major drought events recorded in tree rings and low lake levels elsewhere in California except for the brief drought between AD 1130–1160. Correlative diatom and terrigenous sediment input proxy records from SBB are largely supportive of the pollen record predominantly linking the MCA with drought and La Niña-like conditions and the LIA with wetter (more El Niño-like) conditions. Differences between paleoclimate proxies (pollen, diatoms, and terrigenous sediment) in SBB exist, however, possibly reflecting the temporal and spatial differences in the generation of each proxy record, as well as their individual sensitivity to climate change.

  20. Climate proxy data as groundwater tracers in regional flow systems

    NASA Astrophysics Data System (ADS)

    Clark, J. F.; Morrissey, S. K.; Stute, M.

    2008-05-01

    The isotopic and chemical signatures of groundwater reflect local climate conditions. By systematically analyzing groundwater and determining their hydrologic setting, records of past climates can be constructed. Because of their chemistries and relatively uncomplicated source functions, dissolved noble gases have yielded reliable records of continental temperatures for the last 30,000 to 50,000 years. Variations in the stable isotope compositions of groundwater due to long term climate changes have also been documented over these time scales. Because glacial - interglacial climate changes are relatively well known, these climate proxies can be used as "stratigraphic" markers within flow systems and used to distinguish groundwaters that have recharged during the Holocene from those recharged during the last glacial period, important time scales for distinguishing regional and local flow systems in many aquifers. In southern Georgia, the climate proxy tracers were able to identify leakage from surface aquifers into the Upper Floridan aquifer in areas previously thought to be confined. In south Florida, the transition between Holocene and glacial signatures in the Upper Floridan aquifer occurs mid-way between the recharge area and Lake Okeechobee. Down gradient of the lake, the proxies are uniform, indicating recharge during the last glacial period. Furthermore, there is no evidence for leakage from the shallow aquifers into the Upper Floridan. In the Lower Floridan, the climate proxies indicate that the saline water entered the aquifer after sea level rose to its present level.

  1. Sensitivity of Pliocene Arctic climate to orbital forcing, atmospheric CO2 and sea ice albedo parameterisation

    USGS Publications Warehouse

    Howell, Fergus W.; Haywood, Alan M.; Dowsett, Harry J.; Pickering, Steven J.

    2016-01-01

    With varying CO2, orbit and sea ice albedo values we are able to reproduce proxy temperature records that lean towards modest levels of high latitude warming, but other proxy data showing greater warming remain beyond the reach of our model. This highlights the importance of additional proxy records at high latitudes and ongoing efforts to compare proxy signals between sites.

  2. Collaborative Project: Development of an Isotope-Enabled CESM for Testing Abrupt Climate Changes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Zhengyu

    One of the most important validations for a state-of-art Earth System Model (ESM) with respect to climate changes is the simulation of the climate evolution and abrupt climate change events in the Earth’s history of the last 21,000 years. However, one great challenge for model validation is that ESMs usually do not directly simulate geochemical variables that can be compared directly with past proxy records. In this proposal, we have met this challenge by developing the simulation capability of major isotopes in a state-of-art ESM, the Community Earth System Model (CESM), enabling us to make direct model-data comparison by comparingmore » the model directly against proxy climate records. Our isotope-enabled ESM incorporates the capability of simulating key isotopes and geotracers, notably δ 18O, δD, δ 14C, and δ 13C, Nd and Pa/Th. The isotope-enabled ESM have been used to perform some simulations for the last 21000 years. The direct comparison of these simulations with proxy records has shed light on the mechanisms of important climate change events.« less

  3. Evaluation of a chemical proxy for fire intensity: A potential tool for studying fire-climate feedbacks

    NASA Astrophysics Data System (ADS)

    Hockaday, W. C.; White, J. D.; Von Bargen, J.; Yao, J.

    2015-12-01

    The legacy of wildfire is recorded in the geologic record, due to the stability of charcoal. Well-preserved charcoal is abundant in paleo-soils and sediments, documenting paleo-fires affecting even the earliest land plants. The dominant role of fire in shaping the biosphere is evidenced by some 40% of the land surface which is occupied by fire-prone and fire-adapted biomes: boreal forest, savanna, grassland, and Mediterranean shrubland. While fire ecologists appreciate the role that fire played in the evolution of these ecosystems, and climate scientists appreciate the role of these biomes in the regulation of Earth's climate, our understanding of the system of fire-vegetation-climate feedbacks is poor. This knowledge gap exists because we lack tools for evaluating change in fire regimes of the past for which climate proxy records exist. Fire regime is a function of fire frequency and fire intensity. Although fire frequency estimates are available from laminated sediment and tree ring records, tools for estimating paleo-fire intensity are lacking. We have recently developed a chemical proxy for fire intensity that is based upon the molecular structure of charcoal, assessed using solid-state nuclear magnetic resonance (NMR) spectroscopy. The molecular dimensions of aromatic domains in charcoal increased linearly (R2 = 0.9) with the intensity (temperature x duration) of heating. Our initial field-based validation in prescribed fires shows a promising correlation (R2 = 0.7) between the proxy-based estimates and thermistor-based measurements of fire intensity. This presentation will discuss the competencies and potential limitations of this novel proxy.

  4. Abrupt Climate Change in the Atlantic Ocean During the Last 20,000 Years: Insights from Multi-Element Analyses of Benthic and Planktic Foraminifera and a Coupled OA-GCM

    DTIC Science & Technology

    2005-09-01

    paleoceanographic and terrestrial climate proxies . Greenland ice cores, in particular, provide evidence of large amplitude, very rapid climate change during...received the most attention because it is the largest Holocene excursion in the GISP2 810 record [Alley et al., 1997]. Multiple proxies in Greenland ice...latitude North Atlantic foraminiferal-based proxies such as modem analogue technique [Marchal et al., 2002; Risebrobakken et al., 2003], but

  5. Potential for tree rings to reveal spatial patterns of past drought variability across western Australia

    NASA Astrophysics Data System (ADS)

    O'Donnell, Alison J.; Cook, Edward R.; Palmer, Jonathan G.; Turney, Chris S. M.; Grierson, Pauline F.

    2018-02-01

    Proxy records have provided major insights into the variability of past climates over long timescales. However, for much of the Southern Hemisphere, the ability to identify spatial patterns of past climatic variability is constrained by the sparse distribution of proxy records. This is particularly true for mainland Australia, where relatively few proxy records are located. Here, we (1) assess the potential to use existing proxy records in the Australasian region—starting with the only two multi-century tree-ring proxies from mainland Australia—to reveal spatial patterns of past hydroclimatic variability across the western third of the continent, and (2) identify strategic locations to target for the development of new proxy records. We show that the two existing tree-ring records allow robust reconstructions of past hydroclimatic variability over spatially broad areas (i.e. > 3° × 3°) in inland north- and south-western Australia. Our results reveal synchronous periods of drought and wet conditions between the inland northern and southern regions of western Australia as well as a generally anti-phase relationship with hydroclimate in eastern Australia over the last two centuries. The inclusion of 174 tree-ring proxy records from Tasmania, New Zealand and Indonesia and a coral record from Queensland did not improve the reconstruction potential over western Australia. However, our findings suggest that the addition of relatively few new proxy records from key locations in western Australia that currently have low reconstruction skill will enable the development of a comprehensive drought atlas for the region, and provide a critical link to the drought atlases of monsoonal Asia and eastern Australia and New Zealand.

  6. Was the Little Ice Age more or less El Niño-like than the Mediaeval Climate Anomaly? Evidence from hydrological and temperature proxy data

    NASA Astrophysics Data System (ADS)

    Henke, L. M. K.; Lambert, F. H.; Charman, D. J.

    2015-11-01

    The El Niño-Southern Oscillation (ENSO), an ocean-atmosphere coupled oscillation over the equatorial Pacific, is the most important source of global climate variability on inter-annual time scales. It has substantial environmental and socio-economic consequences such as devastation of South American fish populations and increased forest fires in Indonesia. The instrumental ENSO record is too short for analysing long-term trends and variability, hence proxy data is used to extend the record. However, different proxy sources have produced varying reconstructions of ENSO, with some evidence for a temperature-precipitation divergence in ENSO trends over the past millennium, in particular during the Mediaeval Climate Anomaly (MCA; AD 800-1300) and the Little Ice Age (LIA; AD 1400-1850). This throws into question the stability of the modern ENSO system and its links to the global climate, which has implications for future projections. Here we use a new statistical approach using EOF-based weighting to create two new large-scale ENSO reconstructions derived independently from precipitation proxies and temperature proxies respectively. The method is developed and validated using pseudoproxy experiments that address the effects of proxy dating error, resolution and noise to improve uncertainty estimations. The precipitation ENSO reconstruction displays a significantly more El Niño-like state during the LIA than the MCA, while the temperature reconstruction shows no significant difference. The trends shown in the precipitation ENSO reconstruction are relatively robust to variations in the precipitation EOF pattern. However, the temperature reconstruction suffers significantly from a lack of high-quality, favourably located proxy records, which limits its ability to capture the large-scale ENSO signal. Further expansion of the palaeo-database and improvements to instrumental, satellite and model representations of ENSO are needed to fully resolve the discrepancies found among proxy records.

  7. A composite pollen-based stratotype for inter-regional evaluation of climatic events in New Zealand over the past 30,000 years (NZ-INTIMATE project)

    NASA Astrophysics Data System (ADS)

    Barrell, David J. A.; Almond, Peter C.; Vandergoes, Marcus J.; Lowe, David J.; Newnham, Rewi M.

    2013-08-01

    Our review of paleoclimate information for New Zealand pertaining to the past 30,000 years has identified a general sequence of climatic events, spanning the onset of cold conditions marking the final phase of the Last Glaciation, through to the emergence to full interglacial conditions in the early Holocene. In order to facilitate more detailed assessments of climate variability and any leads or lags in the timing of climate changes across the region, a composite stratotype is proposed for New Zealand. The stratotype is based on terrestrial stratigraphic records and is intended to provide a standard reference for the intercomparison and evaluation of climate proxy records. We nominate a specific stratigraphic type record for each climatic event, using either natural exposure or drill core stratigraphic sections. Type records were selected on the basis of having very good numerical age control and a clear proxy record. In all cases the main proxy of the type record is subfossil pollen. The type record for the period from ca 30 to ca 18 calendar kiloyears BP (cal. ka BP) is designated in lake-bed sediments from a small morainic kettle lake (Galway tarn) in western South Island. The Galway tarn type record spans a period of full glacial conditions (Last Glacial Coldest Period, LGCP) within the Otira Glaciation, and includes three cold stadials separated by two cool interstadials. The type record for the emergence from glacial conditions following the termination of the Last Glaciation (post-Termination amelioration) is in a core of lake sediments from a maar (Pukaki volcanic crater) in Auckland, northern North Island, and spans from ca 18 to 15.64 ± 0.41 cal. ka BP. The type record for the Lateglacial period is an exposure of interbedded peat and mud at montane Kaipo bog, eastern North Island. In this high-resolution type record, an initial mild period was succeeded at 13.74 ± 0.13 cal. ka BP by a cooler period, which after 12.55 ± 0.14 cal. ka BP gave way to a progressive ascent to full interglacial conditions that were achieved by 11.88 ± 0.18 cal. ka BP. Although a type section is not formally designated for the Holocene Interglacial (11.88 ± 0.18 cal. ka BP to the present day), the sedimentary record of Lake Maratoto on the Waikato lowlands, northwestern North Island, is identified as a prospective type section pending the integration and updating of existing stratigraphic and proxy datasets, and age models. The type records are interconnected by one or more dated tephra layers, the ages of which are derived from Bayesian depositional modelling and OxCal-based calibrations using the IntCal09 dataset. Along with the type sections and the Lake Maratoto record, important, well-dated terrestrial reference records are provided for each climate event. Climate proxies from these reference records include pollen flora, stable isotopes from speleothems, beetle and chironomid fauna, and glacier moraines. The regional composite stratotype provides a benchmark against which to compare other records and proxies. Based on the composite stratotype, we provide an updated climate event stratigraphic classification for the New Zealand region. The stratotype and event classification are not intended to act as definitive statements of paleoclimate history for the New Zealand region, but rather provide a firm baseline against which to compare other records including those from the marine realm.

  8. Reconstruction of spatio-temporal temperature from sparse historical records using robust probabilistic principal component regression

    USGS Publications Warehouse

    Tipton, John; Hooten, Mevin B.; Goring, Simon

    2017-01-01

    Scientific records of temperature and precipitation have been kept for several hundred years, but for many areas, only a shorter record exists. To understand climate change, there is a need for rigorous statistical reconstructions of the paleoclimate using proxy data. Paleoclimate proxy data are often sparse, noisy, indirect measurements of the climate process of interest, making each proxy uniquely challenging to model statistically. We reconstruct spatially explicit temperature surfaces from sparse and noisy measurements recorded at historical United States military forts and other observer stations from 1820 to 1894. One common method for reconstructing the paleoclimate from proxy data is principal component regression (PCR). With PCR, one learns a statistical relationship between the paleoclimate proxy data and a set of climate observations that are used as patterns for potential reconstruction scenarios. We explore PCR in a Bayesian hierarchical framework, extending classical PCR in a variety of ways. First, we model the latent principal components probabilistically, accounting for measurement error in the observational data. Next, we extend our method to better accommodate outliers that occur in the proxy data. Finally, we explore alternatives to the truncation of lower-order principal components using different regularization techniques. One fundamental challenge in paleoclimate reconstruction efforts is the lack of out-of-sample data for predictive validation. Cross-validation is of potential value, but is computationally expensive and potentially sensitive to outliers in sparse data scenarios. To overcome the limitations that a lack of out-of-sample records presents, we test our methods using a simulation study, applying proper scoring rules including a computationally efficient approximation to leave-one-out cross-validation using the log score to validate model performance. The result of our analysis is a spatially explicit reconstruction of spatio-temporal temperature from a very sparse historical record.

  9. Low-resolution Australasian palaeoclimate records of the last 2000 years

    NASA Astrophysics Data System (ADS)

    Dixon, Bronwyn C.; Tyler, Jonathan J.; Lorrey, Andrew M.; Goodwin, Ian D.; Gergis, Joëlle; Drysdale, Russell N.

    2017-10-01

    Non-annually resolved palaeoclimate records in the Australasian region were compiled to facilitate investigations of decadal to centennial climate variability over the past 2000 years. A total of 675 lake and wetland, geomorphic, marine, and speleothem records were identified. The majority of records are located near population centres in southeast Australia, in New Zealand, and across the maritime continent, and there are few records from the arid regions of central and western Australia. Each record was assessed against a set of a priori criteria based on temporal resolution, record length, dating methods, and confidence in the proxy-climate relationship over the Common Era. A subset of 22 records met the criteria and were endorsed for subsequent analyses. Chronological uncertainty was the primary reason why records did not meet the selection criteria. New chronologies based on Bayesian techniques were constructed for the high-quality subset to ensure a consistent approach to age modelling and quantification of age uncertainties. The primary reasons for differences between published and reconstructed age-depth models were the consideration of the non-singular distribution of ages in calibrated 14C dates and the use of estimated autocorrelation between sampled depths as a constraint for changes in accumulation rate. Existing proxies and reconstruction techniques that successfully capture climate variability in the region show potential to address spatial gaps and expand the range of climate variables covering the last 2000 years in the Australasian region. Future palaeoclimate research and records in Australasia could be greatly improved through three main actions: (i) greater data availability through the public archiving of published records; (ii) thorough characterisation of proxy-climate relationships through site monitoring and climate sensitivity tests; and (iii) improvement of chronologies through core-top dating, inclusion of tephra layers where possible, and increased date density during the Common Era.

  10. South American Monsoon variability during the past 2,000 years from stable isotopic proxies and model simulations

    NASA Astrophysics Data System (ADS)

    Vuille, M.; Cruz, F. W.; Abbott, M.; Bird, B. W.; Burns, S. J.; Cheng, H.; Colose, C. M.; Kanner, L. C.; LeGrande, A. N.; Novello, V. F.; Taylor, B. L.

    2012-12-01

    The rapidly growing number of high-resolution stable isotopic proxies from speleothems, ice cores and lake sediments, located in the South American summer monsoon (SASM) belt, will soon allow for a comprehensive analysis of climate variability in the South American tropics and subtropics over the past ~ 2000 years. In combination with isotope-enabled General Circulation Models (GCMs) this offers new prospects for better understanding the spatiotemporal dynamics of the South American monsoon system and for diagnosing its sensitivities to external forcing mechanisms (solar, volcanic) and modes of ocean-atmosphere variability (e.g. ENSO and AMO). In this presentation we will discuss the rationale for interpreting isotopic excursions recorded in various proxies from the Andes, northeastern and southeastern Brazil as indicative of changes in monsoon intensity. We will focus on the past 2 millenia when isotopic proxies from the SASM region show a very coherent behavior regardless of the type of archive or their location. All proxies exhibit significant decadal to multidecadal variability, superimposed on large excursions during three key periods, the Medieval Climate Anomaly (MCA), the Little Ice Age (LIA) and the Current Warm Period (CWP). We interpret these three periods as times when the SASM mean state was significantly weakened (MCA and CWP) and strengthened (LIA), respectively. During the LIA each of the proxy archives considered contains the most negative delta-18O values recorded during the entire record length. On the other hand the monsoon strength is currently rather weak in a 2000- year historical perspective, rivaled only by the low intensity during the MCA. One interpretation of these centennial-scale climate anomalies suggests that they were at least partially driven by temperature changes in the northern hemisphere and in particular over the North Atlantic, leading to a latitudinal displacement of the ITCZ and a change in monsoon intensity and degree of rainout upstream of the proxy locations, over the tropical continent. This interpretation is supported by several independent proxy archives and modeling studies. One question that remains, however, is how ENSO, arguably the main forcing factor for delta-18O variability over tropical South America on interannual time scales, interacts with and may be modulated by low-frequency North Atlantic forcing. Our analysis also implies that isotopic proxies, because of their ability to integrate climatic information on large spatial scales, are complementary to more traditional proxies such as tree rings or historical archives, which record in-situ climate variations. Future climate reconstructions therefore should make an effort to include isotopic proxies as large-scale predictors in order to better constrain past changes in the atmospheric circulation.

  11. Multiscale combination of climate model simulations and proxy records over the last millennium

    NASA Astrophysics Data System (ADS)

    Chen, Xin; Xing, Pei; Luo, Yong; Nie, Suping; Zhao, Zongci; Huang, Jianbin; Tian, Qinhua

    2018-05-01

    To highlight the compatibility of climate model simulation and proxy reconstruction at different timescales, a timescale separation merging method combining proxy records and climate model simulations is presented. Annual mean surface temperature anomalies for the last millennium (851-2005 AD) at various scales over the land of the Northern Hemisphere were reconstructed with 2° × 2° spatial resolution, using an optimal interpolation (OI) algorithm. All target series were decomposed using an ensemble empirical mode decomposition method followed by power spectral analysis. Four typical components were obtained at inter-annual, decadal, multidecadal, and centennial timescales. A total of 323 temperature-sensitive proxy chronologies were incorporated after screening for each component. By scaling the proxy components using variance matching and applying a localized OI algorithm to all four components point by point, we obtained merged surface temperatures. Independent validation indicates that the most significant improvement was for components at the inter-annual scale, but this became less evident with increasing timescales. In mid-latitude land areas, 10-30% of grids were significantly corrected at the inter-annual scale. By assimilating the proxy records, the merged results reduced the gap in response to volcanic forcing between a pure reconstruction and simulation. Difficulty remained in verifying the centennial information and quantifying corresponding uncertainties, so additional effort should be devoted to this aspect in future research.

  12. Characterizing the Response of Fluvial Systems to Extreme Global Warming During the Early Eocene Climatic Optimum: An Analysis of the Wasatch and Green River Formations, Uinta Basin, UT

    NASA Astrophysics Data System (ADS)

    Jones, E. R.; Plink-Bjorklund, P.

    2013-12-01

    The Wasatch and Green River Formations in the Uinta Basin, UT contain fluvial sandstones that record changes in terrestrial sedimentation coincident with Paleocene-Eocene Thermal Maximum (PETM) and at least six post-PETM hyperthermal climate change events. While proxies for chemical weathering rates during the PETM have been developed using the marine osmium isotope record, to date there has been little research on chemical weathering rates in proximal terrestrial depocenters. This work is one part of a multi-proxy research effort combining quantitative petrographic analysis, the stable carbon isotope record, and a high-resolution stratigraphic and sedimentologic framework across the southern margin of the Uinta Basin. Relative tectonic quiescence in the Uinta Basin during the Early Eocene suggests that climate is the forcing mechanism controlling fluvial architecture and composition, and gradual basin subsidence has preserved at least six pulses of greenhouse climate change during the Early Eocene Climatic Optimum (EECO). Terrestrial records of PETM climate do not support a humid climate with increased precipitation as previously suggested from marine proxies of climate change. Instead, terrestrial records of the PETM climate show evidence of prolonged drought punctuated by intense terrestrial flooding events in mid-latitude continental interiors. Increases in chemical weathering rates during the PETM due to increased temperature and average precipitation is cited as a key carbon sink to initiate a recovery phase where atmospheric CO2 returned to normal concentrations. If terrestrial records of chemical weathering rates differ substantially from marine proxies the carbon-cycle dynamics active during the EECO must be reconsidered. Initial results of this study show that these peak hyperthermal climate change conditions in the Uinta Basin preserve more compositionally and texturally immature sediments due to extremely high erosion and deposition rates, and subdued duration of transport. In particular the relative proportions of preserved potassium and especially plagioclase feldspar are sensitive to these pulses of greenhouse climate change. This dataset suggests that the seasonality of sediment dispersal and transport can play a more important role in the preservation potential of unstable mineral phases in the sedimentary record than just variations in global chemical weathering rates. Compositional variability in perenially wet and peaked seasonality facies in fluvial sandstones in the Wasatch Formation.

  13. Changing climate in a pre-impact world: a multi-proxy paleotemperature reconstruction across the last million years of the Cretaceous

    NASA Astrophysics Data System (ADS)

    Woelders, L.; Vellekoop, J.; Reichart, G. J.; de Nooijer, L. J.; Sluijs, A.; Peterse, F.; Claeys, P. F.; Speijer, R. P.

    2015-12-01

    Climate instability during the last million years of the Cretaceous (67-66 Ma) is still poorly documented and not well understood. One of the reasons for this is that in deep time, different proxies are likely to yield different temperatures. This is because the application of calibrations based on present day temperature proxy relationships is affected by source organism evolution, differences in ocean chemistry and non-analogue processes. Only by combining temperature estimates derived from different, independent proxies, the problems with individual proxies can be cancelled out. A quantitative, multi-proxy temperature record from the latest Cretaceous therefore may provide a better insight in climate changes across this time interval. For such a multi-proxy research, sediments are required that yield both well-preserved foraminiferal calcite as well as organic biomarkers. Very few sites are known to provide such sedimentary records, but ODP Leg 174AX Site Bass River (New Jersey Shelf) has proven to be an excellent archive for paleotemperature reconstructions for the Cretaceous and Paleogene. We here present a multi-proxy, quantitative paleotemperature reconstruction of the last million years of the Cretaceous of the Bass River core. Benthic and planktic foraminiferal Mg/Ca and δ18O were determined, as well as the organic geochemical sea surface temperature proxy TEX86. This resulted in a unique coupled surface and bottom water temperature record of the latest Cretaceous. Our data suggest a ~2-6 ˚C bottom water warming and a ~4-6 ˚C surface water warming approximately 300 kyr before the Cretaceous-Paleogene boundary, followed by a cooling trend across the boundary. This warming event appears to coincide with the main phase of the Deccan Traps eruptions and therefore probably represents a global event.

  14. Norwegian fjord sediments reveal NAO related winter temperature and precipitation changes of the past 2800 years

    NASA Astrophysics Data System (ADS)

    Faust, Johan; Fabian, Karl; Giraudeau, Jacques; Knies, Jochen

    2016-04-01

    The North Atlantic Oscillation (NAO) is the leading mode of atmospheric circulation variability in the North Atlantic region. Associated shifts of storm tracks, precipitation and temperature patterns affect energy supply and demand, fisheries and agricultural, as well as marine and terrestrial ecological dynamics. Long-term NAO reconstructions are crucial to better understand NAO variability in its response to climate forcing factors, and assess predictability and possible shifts associated with ongoing climate change. Fjord deposits have a great potential for providing high-resolution sedimentary records that reflect local terrestrial and marine processes and, therefore, offer unique opportunities for the investigation of sedimentological and geochemical climatically induced processes. A recent study of instrumental time series revealed NAO as main factor for a strong relation between winter temperature, precipitation and river discharge in central Norway over the past 50 years. Here we use the gained knowledge to establish the first high resolution NAO proxy record from marine sediments. By comparing geochemical measurements from a short sediment core with instrumental data we show that marine primary productivity proxies are sensitive to NAO changes. Conditioned on a stationary relation between our climate proxy and the NAO we establish the first high resolution NAO proxy record (NAO-TFJ) from marine sediments covering the past 2,800 years. The NAO-TFJ shows distinct co-variability with climate changes over Greenland, solar activity and Northern Hemisphere glacier dynamics as well as climatically associated paleo-demographic trends.

  15. Water Isotope Proxy-Proxy and Proxy-Model Convergence for Late Pleistocene East Asian Monsoon Rainfall Reconstructions

    NASA Astrophysics Data System (ADS)

    Clemens, S. C.; Holbourn, A.; Kubota, Y.; Lee, K. E.; Liu, Z.; Chen, G.

    2017-12-01

    Confidence in reconstruction of East Asian paleomonsoon rainfall using precipitation isotope proxies is a matter of considerable debate, largely due to the lack of correlation between precipitation amount and isotopic composition in the present climate. We present four new, very highly resolved records spanning the past 300,000 years ( 200 year sample spacing) from IODP Site U1429 in the East China Sea. We demonstrate that all the orbital- and millennial-scale variance in the onshore Yangtze River Valley speleothem δ18O record1 is also embedded in the offshore Site U1429 seawater δ18O record (derived from the planktonic foraminifer Globigerinoides ruber and sea surface temperature reconstructions). Signal replication in these two independent terrestrial and marine archives, both controlled by the same monsoon system, uniquely identifies δ18O of precipitation as the primary driver of the precession-band variance in both records. This proxy-proxy convergence also eliminates a wide array of other drivers that have been called upon as potential contaminants to the precipitation δ18O signal recorded by these proxies. We compare East Asian precipitation isotope proxy records to precipitation amount from a CCSM3 transient climate model simulation of the past 300,000 years using realistic insolation, ice volume, greenhouse gasses, and sea level boundary conditions. This model-proxy comparison suggests that both Yangtze River Valley precipitation isotope proxies (seawater and speleothem δ18O) track changes in summer-monsoon rainfall amount at orbital time scales, as do precipitation isotope records from the Pearl River Valley2 (leaf wax δ2H) and Borneo3 (speleothem δ18O). Notably, these proxy records all have significantly different spectral structure indicating strongly regional rainfall patterns that are also consistent with model results. Transient, isotope-enabled model simulations will be necessary to more thoroughly evaluate these promising results, and to evaluate potentially distinct regional mechanisms linking rainfall amount to precipitation isotopes at orbital and millennial time scales in other monsoon regions. 1 Cheng et al., 10.1038/nature18591 2 Thomas et al., 10.1130/G36289.1 3 Carolin et al., 10.1016/j.epsl.2016.01.028

  16. Understanding north-western Mediterranean climate variability: a multi-proxy and multi-sequence approach based on wavelet analysis.

    NASA Astrophysics Data System (ADS)

    Azuara, Julien; Lebreton, Vincent; Jalali, Bassem; Sicre, Marie-Alexandrine; Sabatier, Pierre; Dezileau, Laurent; Peyron, Odile; Frigola, Jaime; Combourieu-Nebout, Nathalie

    2017-04-01

    Forcings and physical mechanisms underlying Holocene climate variability still remain poorly understood. Comparison of different paleoclimatic reconstructions using spectral analysis allows to investigate their common periodicities and helps to understand the causes of past climate changes. Wavelet analysis applied on several proxy time series from the Atlantic domain already revealed the first key-issues on the origin of Holocene climate variability. However the differences in duration, resolution and variance between the time-series are important issues for comparing paleoclimatic sequences in the frequency domain. This work compiles 7 paleoclimatic proxy records from 4 time-series from the north-western Mediterranean all ranging from 7000 to 1000 yrs cal BP: -pollen and clay mineral contents from the lagoonal sediment core PB06 recovered in southern France, -Sea Surface Temperatures (SST) derived from alkenones, concentration of terrestrial alkanes and their average chain length (ACL) from core KSGC-31_GolHo-1B recovered in the Gulf of Lion inner-shelf, - δ18O record from speleothems recovered in the Asiul Cave in north-western Spain, -grain size record from the deep basin sediment drift core MD99-2343 north of Minorca island. A comparison of their frequency content is proposed using wavelet analysis and cluster analysis of wavelet power spectra. Common cyclicities are assessed using cross-wavelet analysis. In addition, a new algorithm is used in order to propagate the age model errors within wavelet power spectra. Results are consistents with a non-stationnary Holocene climate variability. The Halstatt cycles (2000-2500 years) depicted in many proxies (ACL, errestrial alkanes and SSTs) demonstrate solar activity influence in the north-western Mediterranean climate. Cluster analysis shows that pollen and ACL proxies, both indicating changes in aridity, are clearly distinct from other proxies and share significant common periodicities around 1000 and 600 years, since the mid-Holocene. The 1000 years period is also evidenced in terrestrial alkanes and Minorca sediment drift grain size, which respectively indicate changes in the Rhône hydrology and changes in the north-western Mediterranean deep water formation. These findings suggests that an original climate driver influences the Gulf of Lion area. Finally, both clay mineral content from PB06, indicative of past storminess and δ18O record from the north western Iberia, related to precipitations, record the well known 1500 years period since the middle Holocene. The presence of this period, widely encountered in the Atlantic, highlights the link between the north-western Mediterranean and the Atlantic climate variability.

  17. Late-Holocene climate and environmental change on the Antarctic Peninsula: multi-proxy palaeoclimate records from frozen moss banks

    NASA Astrophysics Data System (ADS)

    Roland, T.; Amesbury, M.; Royles, J.; Hodgson, D.; Convey, P.; Griffiths, H.; Charman, D.

    2017-12-01

    The Antarctic Peninsula (AP) has been one of the most rapidly warming regions on Earth, with air temperature increases of 3°C recorded since the mid-20th century. However, instrumental climate records are mostly limited to the late 1950s onwards and existing palaeoenvironmental data that provide a longer-term context to recent climate and biological changes are often spatially isolated and temporally fragmented. Ice-core records from the AP are not suitably located to be able to examine the spatial signature of climate changes over time. Moss banks located along the western AP are ideal archives for palaeoclimate research as they are well-preserved, have sufficiently high accumulation rates to permit decadally resolved analyses using multiple proxies over the last c. 4000 years, and are easily dated with 14C and 210Pb. Potential climate proxies (moss accumulation and growth rates, Δ13C in moss cellulose, testate amoebae concentration) are sensitive to regional temperature change, moderated by water availability and surface microclimate. Here we present multi-proxy records of biological change from these archives of late Holocene climate variability. We identified significant changepoints in six cores at three sites, across a transect spanning c. 600 km, observing that biological response to recent rapid warming on the AP is pervasive and unprecedented over the last 150 years. Longer records show that recent change is also unusual in the context of the past 4000 years and suggest that westerly wind strength linked to the Southern Annular Mode is the most likely driver of centennial-scale AP temperature variability. Widespread changes in the terrestrial biosphere of the AP in response to past temperature suggest that terrestrial ecosystems will alter rapidly under future warming scenarios, leading to major changes in the biology and landscape of this iconic region — an Antarctic greening to parallel well-established observations in the Arctic.

  18. Surface Mass Balance of the Greenland Ice Sheet Derived from Paleoclimate Reanalysis

    NASA Astrophysics Data System (ADS)

    Badgeley, J.; Steig, E. J.; Hakim, G. J.; Anderson, J.; Tardif, R.

    2017-12-01

    Modeling past ice-sheet behavior requires independent knowledge of past surface mass balance. Though models provide useful insight into ice-sheet response to climate forcing, if past climate is unknown, then ascertaining the rate and extent of past ice-sheet change is limited to geological and geophysical constraints. We use a novel data-assimilation framework developed under the Last Millennium Reanalysis Project (Hakim et al., 2016) to reconstruct past climate over ice sheets with the intent of creating an independent surface mass balance record for paleo ice-sheet modeling. Paleoclimate data assimilation combines the physics of climate models and the time series evidence of proxy records in an offline, ensemble-based approach. This framework allows for the assimilation of numerous proxy records and archive types while maintaining spatial consistency with known climate dynamics and physics captured by the models. In our reconstruction, we use the Community Climate System Model version 4, CMIP5 last millennium simulation (Taylor et al., 2012; Landrum et al., 2013) and a nearly complete database of ice core oxygen isotope records to reconstruct Holocene surface temperature and precipitation over the Greenland Ice Sheet on a decadal timescale. By applying a seasonality to this reconstruction (from the TraCE-21ka simulation; Liu et al., 2009), our reanalysis can be used in seasonally-based surface mass balance models. Here we discuss the methods behind our reanalysis and the performance of our reconstruction through prediction of unassimilated proxy records and comparison to paleoclimate reconstructions and reanalysis products.

  19. The use of Sphagnum cellulose oxygen isotope ratios in ombrotrophic peatlands as a proxy for paleoclimate.

    NASA Astrophysics Data System (ADS)

    Taylor, M.; Pendall, E.; Jackson, S.; Booth, R. K.; Nichols, J. E.; Huang, Y.

    2006-12-01

    Developing proxies for discerning paleoclimate that are independent of the pollen record can provide insight into various aspects of climate variability and improve confidence in the interpretation of climate-vegetation interactions. To date, proxies including plant macrofossils, humification indices, testate amoebae, and ratios of n-alkane abundances have been used to infer past climate variability from temperate ombrotrophic peatlands in upper Midwestern North America. These proxies are used to infer past changes in surface-moisture conditions, which in ombrotrophic peatlands is primarily a function of precipitation and temperature. This study investigates the potential uses of stable oxygen isotopes to complement hydrologic proxies. δ18O of surface water and Sphagnum moss cellulose from bogs throughout North America indicates a correlation between average growing season temperatures and δ18O-values. The existence of a modern temperature signal in moss cellulose suggests that δ18O-derived records will not only complement paleohydrological records, but also help assess relative changes in precipitation and temperature. Humification and testate amoebae data from two cores taken from Minden and Irwin Smith Bogs in central and northeastern Michigan have recorded several extreme drought events during the Holocene, including one at 1000 YBP. Comparison of δ18O-values of picked Sphagnum remains to down-core humification and testate amoebae data suggest good temporal correspondence, with the δ18O-values around 1000 YBP indicating a warmer growing season.

  20. Growth rates and geochemical proxies in Late Campanian bivalves - New insights from micro-X-ray Fluorescence mapping and numerical growth modelling

    NASA Astrophysics Data System (ADS)

    de Winter, Niels; Goderis, Steven; van Malderen, Stijn; Vanhaecke, Frank; Claeys, Philippe

    2017-04-01

    Understanding the Late Cretaceous greenhouse climate is of vital importance for understanding present and future climate change. While a lot of good work has been done to reconstruct climate in this interesting period, most paleoclimatic studies have focused on long-term climate change[1]. Alternatively, multi-proxy records from marine bivalves provide us with a unique opportunity to study past climate on a seasonal scale. However, previous fossil bivalve studies have reported ambiguous results with regard to the interpretation of trace element and stable isotope proxies in marine bivalve shells[2]. One major problem in the interpretation of such records is the bivalve's vital effect and the occurrence of disequilibrium fractionation during bivalve growth. Both these problems are linked to the annual growth cycle of marine bivalves, which introduces internal effects on the incorporation of isotopes and trace elements into the shell[3]. Understanding this growth cycle in extinct bivalves is therefore of great importance for the interpretation of seasonal proxy records in their shells. In this study, three different species of extinct Late Campanian bivalves (two rudist species and one oyster species) that were found in the same stratigraphic interval are studied. Micro-X-Ray Fluorescence line scanning and mapping of trace elements such as Mg, Sr, S and Zn, calibrated by LA-ICP-MS measurements, is combined with microdrilled stable carbon and oxygen isotope analysis on the well-preserved part of the shells. Data of this multi-proxy study is compared with results from a numerical growth model written in the open-source statistics package R[4] and based on annual growth increments observed in the shells and shell thickness. This growth model is used together with proxy data to reconstruct rates of trace element incorporation into the shell and to calculate the mass balance of stable oxygen and carbon isotopes. In order to achieve this goal, 2D mapping of bivalve shell surfaces is combined with high-precision point measurements and linescans to characterize different carbonate facies within the shell and to model changes in proxy data in three dimensions. Comparison of sub-annual variations in growth rate and shell geometry with proxy data sheds light on the degree to which observed seasonal variations in geochemical proxies are dependent on internal mechanisms of shell growth as opposed to external mechanisms such as climatic and environmental change. The use of three different species of bivalve from the same paleoenvironment allows the examination of species-specific responses to environmental change. This study attempts to determine which proxies in which species of bivalve are suitable for paleoenvironmental reconstruction and will aid future paleoseasonality studies in interpreting seasonally resolved multi-proxy records. References 1 DeConto R.M., et al. Cambridge University Press; 2000. 2 Elliot M, et al., PPP 2009. 3 Steuber T. Geology. 1996. 4 R core team, 2004, www.R-project.org

  1. Possible causes of data model discrepancy in the temperature history of the last Millennium.

    PubMed

    Neukom, Raphael; Schurer, Andrew P; Steiger, Nathan J; Hegerl, Gabriele C

    2018-05-15

    Model simulations and proxy-based reconstructions are the main tools for quantifying pre-instrumental climate variations. For some metrics such as Northern Hemisphere mean temperatures, there is remarkable agreement between models and reconstructions. For other diagnostics, such as the regional response to volcanic eruptions, or hemispheric temperature differences, substantial disagreements between data and models have been reported. Here, we assess the potential sources of these discrepancies by comparing 1000-year hemispheric temperature reconstructions based on real-world paleoclimate proxies with climate-model-based pseudoproxies. These pseudoproxy experiments (PPE) indicate that noise inherent in proxy records and the unequal spatial distribution of proxy data are the key factors in explaining the data-model differences. For example, lower inter-hemispheric correlations in reconstructions can be fully accounted for by these factors in the PPE. Noise and data sampling also partly explain the reduced amplitude of the response to external forcing in reconstructions compared to models. For other metrics, such as inter-hemispheric differences, some, although reduced, discrepancy remains. Our results suggest that improving proxy data quality and spatial coverage is the key factor to increase the quality of future climate reconstructions, while the total number of proxy records and reconstruction methodology play a smaller role.

  2. Arctic temperature and moisture trends during the past 2000 years - Progress from multiproxy-paleoclimate data compilations

    NASA Astrophysics Data System (ADS)

    Kaufman, Darrell; Routson, Cody; McKay, Nicholas; Beltrami, Hugo; Jaume-Santero, Fernando; Konecky, Bronwen; Saenger, Casey

    2017-04-01

    Instrumental climate data and climate-model projections show that Arctic-wide surface temperature and precipitation are positively correlated. Higher temperatures coincide with greater moisture by: (1) expanding the duration and source area for evaporation as sea ice retracts, (2) enhancing the poleward moisture transport, and (3) increasing the water-vapor content of the atmosphere. Higher temperature also influences evaporation rate, and therefore precipitation minus evaporation (P-E), the climate variable often sensed by paleo-hydroclimate proxies. Here, we test whether Arctic temperature and moisture also correlate on centennial timescales over the Common Era (CE). We use the new PAGES2k multiproxy-temperature dataset along with a first-pass compilation of moisture-sensitive proxy records to calculate century-scale composite timeseries, with a focus on longer records that extend back through the first millennium CE. We present a new Arctic borehole temperature reconstruction as a check on the magnitude of Little Ice Age cooling inferred from the proxy records, and we investigate the spatial pattern of centennial-scale variability. Similar to previous reconstructions, v2 of the PAGES2k proxy temperature dataset shows that, prior to the 20th century, mean annual Arctic-wide temperature decreased over the CE. The millennial-scale cooling trend is most prominent in proxy records from glacier ice, but is also registered in lake and marine sediment, and trees. In contrast, the composite of moisture-sensitive (primarily P-E) records does not exhibit a millennial-scale trend. Determining whether fluctuations in the mean state of Arctic temperature and moisture were in fact decoupled is hampered by the difficulty in detecting a significant trend within the relatively small number of spatially heterogeneous multi-proxy moisture-sensitive records. A decoupling of temperature and moisture would indicate that evaporation had a strong counterbalancing effect on precipitation and/or that shifting circulation patterns overwhelmed any multi-centennial-scale co-variability.

  3. Gradual onset and recovery of the Younger Dryas abrupt climate event in the tropics.

    PubMed

    Partin, J W; Quinn, T M; Shen, C-C; Okumura, Y; Cardenas, M B; Siringan, F P; Banner, J L; Lin, K; Hu, H-M; Taylor, F W

    2015-09-02

    Proxy records of temperature from the Atlantic clearly show that the Younger Dryas was an abrupt climate change event during the last deglaciation, but records of hydroclimate are underutilized in defining the event. Here we combine a new hydroclimate record from Palawan, Philippines, in the tropical Pacific, with previously published records to highlight a difference between hydroclimate and temperature responses to the Younger Dryas. Although the onset and termination are synchronous across the records, tropical hydroclimate changes are more gradual (>100 years) than the abrupt (10-100 years) temperature changes in the northern Atlantic Ocean. The abrupt recovery of Greenland temperatures likely reflects changes in regional sea ice extent. Proxy data and transient climate model simulations support the hypothesis that freshwater forced a reduction in the Atlantic meridional overturning circulation, thereby causing the Younger Dryas. However, changes in ocean overturning may not produce the same effects globally as in Greenland.

  4. Comparison of multi-proxy data with past1000 model output over the Terminal Classic Period (800-1000 A.D.) on the Yucatan Peninsula.

    NASA Astrophysics Data System (ADS)

    Van Pelt, S.; Kohfeld, K. E.; Allen, D. M.

    2015-12-01

    The decline of the Mayan Civilization is thought to be caused by a series of droughts that affected the Yucatan Peninsula during the Terminal Classic Period (T.C.P.) 800-1000 AD. The goals of this study are two-fold: (a) to compare paleo-model simulations of the past 1000 years with a compilation of multiple proxies of changes in moisture conditions for the Yucatan Peninsula during the T.C.P. and (b) to use this comparison to inform the modeling of groundwater recharge in this region, with a focus on generating the daily climate data series needed as input to a groundwater recharge model. To achieve the first objective, we compiled a dataset of 5 proxies from seven locations across the Yucatan Peninsula, to be compared with temperature and precipitation output from the Community Climate System Model Version 4 (CCSM4), which is part of the Coupled Model Intercomparison Project Phase 5 (CMIP5) past1000 experiment. The proxy dataset includes oxygen isotopes from speleothems and gastropod/ostrocod shells (11 records); and sediment density, mineralogy, and magnetic susceptibility records from lake sediment cores (3 records). The proxy dataset is supplemented by a compilation of reconstructed temperatures using pollen and tree ring records for North America (archived in the PAGES2k global network data). Our preliminary analysis suggests that many of these datasets show evidence of drier and warmer climate on the Yucatan Peninsula around the T.C.P. when compared to modern conditions, although the amplitude and timing of individual warming and drying events varies between sites. This comparison with modeled output will ultimately be used to inform backward shift factors that will be input to a stochastic weather generator. These shift factors will be based on monthly changes in temperature and precipitation and applied to a modern daily climate time series for the Yucatan Peninsula to produce a daily climate time series for the T.C.P.

  5. The Power of the Spectrum: Combining Numerical Proxy System Models with Analytical Error Spectra to Better Understand Timescale Dependent Proxy Uncertainty

    NASA Astrophysics Data System (ADS)

    Dolman, A. M.; Laepple, T.; Kunz, T.

    2017-12-01

    Understanding the uncertainties associated with proxy-based reconstructions of past climate is critical if they are to be used to validate climate models and contribute to a comprehensive understanding of the climate system. Here we present two related and complementary approaches to quantifying proxy uncertainty. The proxy forward model (PFM) "sedproxy" bitbucket.org/ecus/sedproxy numerically simulates the creation, archiving and observation of marine sediment archived proxies such as Mg/Ca in foraminiferal shells and the alkenone unsaturation index UK'37. It includes the effects of bioturbation, bias due to seasonality in the rate of proxy creation, aliasing of the seasonal temperature cycle into lower frequencies, and error due to cleaning, processing and measurement of samples. Numerical PFMs have the advantage of being very flexible, allowing many processes to be modelled and assessed for their importance. However, as more and more proxy-climate data become available, their use in advanced data products necessitates rapid estimates of uncertainties for both the raw reconstructions, and their smoothed/derived products, where individual measurements have been aggregated to coarser time scales or time-slices. To address this, we derive closed-form expressions for power spectral density of the various error sources. The power spectra describe both the magnitude and autocorrelation structure of the error, allowing timescale dependent proxy uncertainty to be estimated from a small number of parameters describing the nature of the proxy, and some simple assumptions about the variance of the true climate signal. We demonstrate and compare both approaches for time-series of the last millennia, Holocene, and the deglaciation. While the numerical forward model can create pseudoproxy records driven by climate model simulations, the analytical model of proxy error allows for a comprehensive exploration of parameter space and mapping of climate signal re-constructability, conditional on the climate and sampling conditions.

  6. Holocene environmental changes inferred from biological and sedimentological proxies in a high elevation Great Basin lake in the northern Ruby Mountains, Nevada, USA

    USGS Publications Warehouse

    Wahl, David B.; Starratt, Scott W.; Anderson, Lysanna; Kusler, Jennifer E.; Fuller, Christopher C.; Addison, Jason A.; Wan, Elmira

    2015-01-01

    Multi-proxy analyses were conducted on a sediment core from Favre Lake, a high elevation cirque lake in the northern Ruby Mountains, Nevada, and provide a ca. 7600 year record of local and regional environmental change. Data indicate that lake levels were lower from 7600-5750 cal yr BP, when local climate was warmer and/or drier than today. Effective moisture increased after 5750 cal yr BP and remained relatively wet, and possibly cooler, until ca. 3750 cal yr BP. Results indicate generally dry conditions but also enhanced climatic variability from 3750-1750 cal yr BP, after which effective moisture increased. The timing of major changes in the Favre Lake proxy data are roughly coeval and in phase with those recorded in several paleoclimate studies across the Great Basin, suggesting regional climatic controls on local conditions and similar responses at high and low altitudes.

  7. Palaeoclimate records 60-8 ka in the Austrian and Swiss Alps and their forelands

    NASA Astrophysics Data System (ADS)

    Heiri, Oliver; Koinig, Karin A.; Spötl, Christoph; Barrett, Sam; Brauer, Achim; Drescher-Schneider, Ruth; Gaar, Dorian; Ivy-Ochs, Susan; Kerschner, Hanns; Luetscher, Marc; Moran, Andrew; Nicolussi, Kurt; Preusser, Frank; Schmidt, Roland; Schoeneich, Philippe; Schwörer, Christoph; Sprafke, Tobias; Terhorst, Birgit; Tinner, Willy

    2014-12-01

    The European Alps and their forelands provide a range of different archives and climate proxies for developing climate records in the time interval 60-8 thousand years (ka) ago. We review quantitative and semi-quantitative approaches for reconstructing climatic variables in the Austrian and Swiss sector of the Alpine region within this time interval. Available quantitative to semi-quantitative climate records in this region are mainly based on fossil assemblages of biota such as chironomids, cladocerans, coleopterans, diatoms and pollen preserved in lake sediments and peat, the analysis of oxygen isotopes in speleothems and lake sediment records, the reconstruction of past variations in treeline altitude, the reconstruction of past equilibrium line altitude and extent of glaciers based on geomorphological evidence, and the interpretation of past soil formation processes, dust deposition and permafrost as apparent in loess-palaeosol sequences. Palaeoclimate reconstructions in the Alpine region are affected by dating uncertainties increasing with age, the fragmentary nature of most of the available records, which typically only incorporate a fraction of the time interval of interest, and the limited replication of records within and between regions. Furthermore, there have been few attempts to cross-validate different approaches across this time interval to confirm reconstructed patterns of climatic change by several independent lines of evidence. Based on our review we identify a number of developments that would provide major advances for palaeoclimate reconstruction for the period 60-8 ka in the Alps and their forelands. These include (1) the compilation of individual, fragmentary records to longer and continuous reconstructions, (2) replication of climate records and the development of regional reconstructions for different parts of the Alps, (3) the cross-validation of different proxy-types and approaches, and (4) the reconstruction of past variations in climate gradients across the Alps and their forelands. Furthermore, the development of downscaled climate model runs for the Alpine region 60-8 ka, and of forward modelling approaches for climate proxies would expand the opportunities for quantitative assessments of climatic conditions in Europe within this time-interval.

  8. Expressions of climate perturbations in western Ugandan crater lake sediment records during the last 1000 years

    NASA Astrophysics Data System (ADS)

    Mills, K.; Ryves, D. B.; Anderson, N. J.; Bryant, C. L.; Tyler, J. J.

    2014-08-01

    Equatorial East Africa has a complex regional patchwork of climate regimes, sensitive to climate fluctuations over a variety of temporal and spatial scales during the late Holocene. Understanding how these changes are recorded in and interpreted from biological and geochemical proxies in lake sedimentary records remains a key challenge to answering fundamental questions regarding the nature, spatial extent and synchroneity of climatic changes seen in East African palaeo-records. Using a paired lake approach, where neighbouring lakes share the same geology, climate and landscape, it might be expected that the systems will respond similarly to external climate forcing. Sediment cores from two crater lakes in western Uganda spanning the last ~1000 years were examined to assess diatom community responses to late Holocene climate and environmental changes, and to test responses to multiple drivers using redundancy analysis (RDA). These archives provide annual to sub-decadal records of environmental change. Lakes Nyamogusingiri and Kyasanduka appear to operate as independent systems in their recording of a similar hydrological response signal via distinct diatom records. However, whilst their fossil diatom records demonstrate an individualistic, indirect response to external (e.g. climatic) drivers, the inferred lake levels show similar overall trends and reflect the broader patterns observed in Uganda and across East Africa. The lakes appear to be sensitive to large-scale climatic perturbations, with evidence of a dry Medieval Climate Anomaly (MCA; ca. AD 1000-1200). The diatom record from Lake Nyamogusingiri suggests a drying climate during the main phase of the Little Ice Age (LIA) (ca. AD 1600-1800), whereas the diatom response from the shallower Lake Kyasanduka is more complex (with groundwater likely playing a key role), and may be driven more by changes in silica and other nutrients, rather than by lake level. The sensitivity of these two Ugandan lakes to regional climate drivers breaks down in ca. AD 1800, when major changes in the ecosystems appear to be a response to increasing cultural impacts within the lake catchments, although both proxy records appear to respond to the drought recorded across East Africa in the mid-20th century. The data highlight the complexity of diatom community responses to external drivers (climate or cultural), even in neighbouring, shallow freshwater lakes. This research also illustrates the importance of, and the need to move towards, a multi-lake, multi-proxy landscape approach to understanding regional hydrological change which will allow for rigorous testing of climate reconstructions, climate forcing and ecosystem response models.

  9. Pleistocene climate change inferred from multi-proxy analyses of a loess-paleosol sequence in China

    NASA Astrophysics Data System (ADS)

    Wu, Yi; Qiu, Shifan; Fu, Shuqing; Rao, Zhiguo; Zhu, Zhaoyu

    2018-04-01

    The aeolian loess blanketing the Chinese Loess Plateau (CLP) is sensitive to climate change in monsoonal East Asia. Here, we present a multi-proxy climatic record from a Pleistocene loess-paleosol sequence from the Lantian Basin on the southern margin of the CLP. The measurements include magnetic susceptibility and related magnetic properties, bulk median grain-size, color reflectance, and the color-inferred hematite versus goethite ratio (Hm/Gt). A long-term aridification and cooling trend during the interval from ca 2.22-0.43 Ma is indicated by two magnetic grain-size proxies, corresponding to the global climatic cooling of the late Cenozoic. In addition, at least four intervals of climatic extremes are evident in the record of Hm/Gt ratio: at 1.71-1.65 Ma, 1.26-1.24 Ma, 0.94-0.86 Ma, and 0.62-0.48 Ma. These intervals are characterized by distinct regional climates, which contrast with the global climatic conditions represented in marine sediments. For example, a relatively arid climate is documented from 1.71 to 1.65 Ma, which was rapidly succeeded by a relatively humid climate which is associated with the earliest hominin (with an age of ca 1.63 Ma) in the Lantian Basin.

  10. A review of sea ice proxy information from polar ice cores

    NASA Astrophysics Data System (ADS)

    Abram, Nerilie J.; Wolff, Eric W.; Curran, Mark A. J.

    2013-11-01

    Sea ice plays an important role in Earth's climate system. The lack of direct indications of past sea ice coverage, however, means that there is limited knowledge of the sensitivity and rate at which sea ice dynamics are involved in amplifying climate changes. As such, there is a need to develop new proxy records for reconstructing past sea ice conditions. Here we review the advances that have been made in using chemical tracers preserved in ice cores to determine past changes in sea ice cover around Antarctica. Ice core records of sea salt concentration show promise for revealing patterns of sea ice extent particularly over glacial-interglacial time scales. In the coldest climates, however, the sea salt signal appears to lose sensitivity and further work is required to determine how this proxy can be developed into a quantitative sea ice indicator. Methane sulphonic acid (MSA) in near-coastal ice cores has been used to reconstruct quantified changes and interannual variability in sea ice extent over shorter time scales spanning the last ˜160 years, and has potential to be extended to produce records of Antarctic sea ice changes throughout the Holocene. However the MSA ice core proxy also requires careful site assessment and interpretation alongside other palaeoclimate indicators to ensure reconstructions are not biased by non-sea ice factors, and we summarise some recommended strategies for the further development of sea ice histories from ice core MSA. For both proxies the limited information about the production and transfer of chemical markers from the sea ice zone to the Antarctic ice sheets remains an issue that requires further multidisciplinary study. Despite some exploratory and statistical work, the application of either proxy as an indicator of sea ice change in the Arctic also remains largely unknown. As information about these new ice core proxies builds, so too does the potential to develop a more comprehensive understanding of past changes in sea ice and its role in both long and short-term climate changes.

  11. Polar synchronization and the synchronized climatic history of Greenland and Antarctica

    NASA Astrophysics Data System (ADS)

    Oh, Jeseung; Reischmann, Elizabeth; Rial, José A.

    2014-01-01

    Stable isotope proxies from ice cores show subtle differences in the climatic fluctuations of the Arctic and Antarctic, and recent analyses have revealed evidence of polar synchronization at the millennial time scale. At this scale, we analogize the polar climates of the last ice ages to two coupled nonlinear oscillators, which adjust their natural rhythms until they synchronize at a common frequency and constant phase shift. Heat and mass transfers across the intervening ocean and atmosphere make the coupling possible. Here we statistically demonstrate the existence of this phenomenon in polar proxy records with methane-matched age models, and quantify their phase relationship. We show that the time series of representative proxy records of the last glaciation recorded in Greenland (GRIP, NGRIP) and Antarctica (Byrd, Dome C) satisfy phase synchronization conditions, independently of age, for periods ranging 1-6 ky, and can be transformed into one another by a π/2 phase shift, with Antarctica temperature variations leading Greenland's. Based on these results, we use the polar synchronization paradigm to replicate the 800 ky-long, Antarctic, EPICA time series from a theoretical model that extends Greenland's 100 ky-long GRIP record to 800 ky. Statistical analysis of the simulated and actual Antarctic records shows that the procedure is stable to change in adjustable parameters, and requires the coupling between the polar climates to be proportional mainly to the difference in heat storage between the two regions.

  12. Arctic hydroclimate variability during the last 2000 years: current understanding and research challenges

    NASA Astrophysics Data System (ADS)

    Linderholm, Hans W.; Nicolle, Marie; Francus, Pierre; Gajewski, Konrad; Helama, Samuli; Korhola, Atte; Solomina, Olga; Yu, Zicheng; Zhang, Peng; D'Andrea, William J.; Debret, Maxime; Divine, Dmitry V.; Gunnarson, Björn E.; Loader, Neil J.; Massei, Nicolas; Seftigen, Kristina; Thomas, Elizabeth K.; Werner, Johannes; Andersson, Sofia; Berntsson, Annika; Luoto, Tomi P.; Nevalainen, Liisa; Saarni, Saija; Väliranta, Minna

    2018-04-01

    Reanalysis data show an increasing trend in Arctic precipitation over the 20th century, but changes are not homogenous across seasons or space. The observed hydroclimate changes are expected to continue and possibly accelerate in the coming century, not only affecting pan-Arctic natural ecosystems and human activities, but also lower latitudes through the atmospheric and ocean circulations. However, a lack of spatiotemporal observational data makes reliable quantification of Arctic hydroclimate change difficult, especially in a long-term context. To understand Arctic hydroclimate and its variability prior to the instrumental record, climate proxy records are needed. The purpose of this review is to summarise the current understanding of Arctic hydroclimate during the past 2000 years. First, the paper reviews the main natural archives and proxies used to infer past hydroclimate variations in this remote region and outlines the difficulty of disentangling the moisture from the temperature signal in these records. Second, a comparison of two sets of hydroclimate records covering the Common Era from two data-rich regions, North America and Fennoscandia, reveals inter- and intra-regional differences. Third, building on earlier work, this paper shows the potential for providing a high-resolution hydroclimate reconstruction for the Arctic and a comparison with last-millennium simulations from fully coupled climate models. In general, hydroclimate proxies and simulations indicate that the Medieval Climate Anomaly tends to have been wetter than the Little Ice Age (LIA), but there are large regional differences. However, the regional coverage of the proxy data is inadequate, with distinct data gaps in most of Eurasia and parts of North America, making robust assessments for the whole Arctic impossible at present. To fully assess pan-Arctic hydroclimate variability for the last 2 millennia, additional proxy records are required.

  13. Linking Short and Long Term Sediment Delivery to Morphology and Seascape Evolution of Continental Margins

    DTIC Science & Technology

    1999-09-30

    history. OBJECTIVES 1) Is the variability in a river’s sediment load, observed over the last 100 years or less, adequate to provide a proxy for longer-term...experiments, small basins are able to capture in terms of textural proxies , both the natural variability associated with precipitation and temperature...as well as realistic scenarios of abrupt climate change. Open ocean basins, like the Eel River, are less likely to record the proxy record of ambient

  14. Transient coupling relationships of the Holocene Australian monsoon

    NASA Astrophysics Data System (ADS)

    McRobie, F. H.; Stemler, T.; Wyrwoll, K.-H.

    2015-08-01

    The northwest Australian summer monsoon owes a notable degree of its interannual variability to interactions with other regional monsoon systems. Therefore, changes in the nature of these relationships may contribute to variability in monsoon strength over longer time scales. Previous attempts to evaluate how proxy records from the Indonesian-Australian monsoon region correspond to other records from the Indian and East Asian monsoon regions, as well as to El Niño-related proxy records, have been qualitative, relying on 'curve-fitting' methods. Here, we seek a quantitative approach for identifying coupling relationships between paleoclimate proxy records, employing statistical techniques to compute the interdependence of two paleoclimate time series. We verify the use of complex networks to identify coupling relationships between modern climate indices. This method is then extended to a set of paleoclimate proxy records from the Asian, Australasian and South American regions spanning the past 9000 years. The resulting networks demonstrate the existence of coupling relationships between regional monsoon systems on millennial time scales, but also highlight the transient nature of teleconnections during this period. In the context of the northwest Australian summer monsoon, we recognise a shift in coupling relationships from strong interhemispheric links with East Asian and ITCZ-related proxy records in the mid-Holocene to significantly weaker coupling in the later Holocene. Although the identified links cannot explain the underlying physical processes leading to coupling between regional monsoon systems, this method provides a step towards understanding the role that changes in teleconnections play in millennial-to orbital-scale climate variability.

  15. Improved spectral comparisons of paleoclimate models and observations via proxy system modeling: Implications for multi-decadal variability

    NASA Astrophysics Data System (ADS)

    Dee, S. G.; Parsons, L. A.; Loope, G. R.; Overpeck, J. T.; Ault, T. R.; Emile-Geay, J.

    2017-10-01

    The spectral characteristics of paleoclimate observations spanning the last millennium suggest the presence of significant low-frequency (multi-decadal to centennial scale) variability in the climate system. Since this low-frequency climate variability is critical for climate predictions on societally-relevant scales, it is essential to establish whether General Circulation models (GCMs) are able to simulate it faithfully. Recent studies find large discrepancies between models and paleoclimate data at low frequencies, prompting concerns surrounding the ability of GCMs to predict long-term, high-magnitude variability under greenhouse forcing (Laepple and Huybers, 2014a, 2014b). However, efforts to ground climate model simulations directly in paleoclimate observations are impeded by fundamental differences between models and the proxy data: proxy systems often record a multivariate and/or nonlinear response to climate, precluding a direct comparison to GCM output. In this paper we bridge this gap via a forward proxy modeling approach, coupled to an isotope-enabled GCM. This allows us to disentangle the various contributions to signals embedded in ice cores, speleothem calcite, coral aragonite, tree-ring width, and tree-ring cellulose. The paper addresses the following questions: (1) do forward-modeled ;pseudoproxies; exhibit variability comparable to proxy data? (2) if not, which processes alter the shape of the spectrum of simulated climate variability, and are these processes broadly distinguishable from climate? We apply our method to representative case studies, and broaden these insights with an analysis of the PAGES2k database (PAGES2K Consortium, 2013). We find that current proxy system models (PSMs) can help resolve model-data discrepancies on interannual to decadal timescales, but cannot account for the mismatch in variance on multi-decadal to centennial timescales. We conclude that, specific to this set of PSMs and isotope-enabled model, the paleoclimate record may exhibit larger low-frequency variability than GCMs currently simulate, indicative of incomplete physics and/or forcings.

  16. Is Recent Warming Unprecedented in the Common Era? Insights from PAGES2k data and the Last Millennium Reanalysis

    NASA Astrophysics Data System (ADS)

    Erb, M. P.; Emile-Geay, J.; McKay, N.; Hakim, G. J.; Steig, E. J.; Anchukaitis, K. J.

    2017-12-01

    Paleoclimate observations provide a critical context for 20th century warming by putting recent climate change into a longer-term perspective. Previous work (e.g. IPCC AR3-5) has claimed that recent decades are exceptional in the context of past centuries, though these statements are usually accompanied by large uncertainties and little spatial detail. Here we leverage a recent multiproxy compilation (PAGES2k Consortium, 2017) to revisit this long-standing question. We do so via two complementary approaches. The first approach compares multi-decadal averages and trends in PAGES2k proxy records, which include trees, corals, ice cores, and more. Numerous proxy records reveal that late 20th century values are extreme compared to the remainder of the recorded period, although considerable variability exists in the signals preserved in individual records. The second approach uses the same PAGES2k data blended with climate model output to produce an optimal analysis: the Last Millennium Reanalysis (LMR; Hakim et al., 2016). Unlike proxy data, LMR is spatially-complete and explicitly models uncertainty in proxy records, resulting in objective error estimates. The LMR results show that for nearly every region of the world, late 20th century temperatures exceed temperatures in previous multi-decadal periods during the Common Era, and 20th century warming rates exceed rates in previous centuries. An uncertainty with the present analyses concerns the interpretation of proxy records. PAGES2k included only records that are primarily sensitive to temperature, but many proxies may be influenced by secondary non-temperature effects. Additionally, the issue of seasonality is important as, for example, many temperature-sensitive tree ring chronologies in the Northern Hemisphere respond to summer or growing season temperature rather than annual-means. These uncertainties will be further explored. References Hakim, G. J., et al., 2016: The last millennium climate reanalysis project: Framework and first results. Journal of Geophysical Research: Atmospheres, 121(12), 6745-6764. http://doi.org/10.1002/2016JD024751 PAGES2k Consortium, 2017: A global multiproxy database for temperature reconstructions of the Common Era. Scientific Data, 1-33. http://doi.org/10.1038/sdata.2017.88

  17. Advancements in the use of speleothems as climate archives

    NASA Astrophysics Data System (ADS)

    Wong, Corinne I.; Breecker, Daniel O.

    2015-11-01

    Speleothems have become a cornerstone of the approach to better understanding Earth's climatic teleconnections due to their precise absolute chronologies, their continuous or semicontinuous deposition and their global terrestrial distribution. We review the last decade of speleothem-related research, building off a similar review by McDermott (2004), in three themes - i) investigation of global teleconnections using speleothem-based climate reconstructions, ii) refinement of climate interpretations from speleothem proxies through cave monitoring, and iii) novel, technical methods of speleothem-based climate reconstructions. Speleothem records have enabled critical insight into the response of global hydroclimate to large climate changes. This includes the relevant forcings and sequence of climatic responses involved in glacial terminations and recognition of a global monsoon response to climate changes on orbital and millennial time scales. We review advancements in understanding of the processes that control speleothem δ13C values and introduce the idea of a direct atmospheric pCO2 influence. We discuss progress in understanding kinetic isotope fractionation, which, with further advances, may help quantify paleoclimate changes despite non-equilibrium formation of speleothems. This feeds into the potential of proxy system modeling to consider climatic, hydrological and biogeochemical processes with the objective of quantitatively interpreting speleothem proxies. Finally, we provide an overview of emerging speleothem proxies and novel approaches using existing proxies. Most recently, technical advancements made in the measurement of fluid inclusions are now yielding reliable determinations of paleotemperatures.

  18. The Last Millennium Reanalysis: Improvements to proxies and proxy modeling

    NASA Astrophysics Data System (ADS)

    Tardif, R.; Hakim, G. J.; Emile-Geay, J.; Noone, D.; Anderson, D. M.

    2017-12-01

    The Last Millennium Reanalysis (LMR) employs a paleoclimate data assimilation (PDA) approach to produce climate field reconstructions (CFRs). Here, we focus on two key factors in PDA generated CFRs: the set of assimilated proxy records and forward models (FMs) used to estimate proxies from climate model output. In the initial configuration of the LMR [Hakim et al., 2016], the proxy dataset of [PAGES2k Consortium, 2013] was used, along with univariate linear FMs calibrated against annually-averaged 20th century temperature datasets. In an updated configuration, proxy records from the recent dataset [PAGES2k Consortium, 2017] are used, while a hierarchy of statistical FMs are tested: (1) univariate calibrated on annual temperature as in the initial configuration, (2) univariate against temperature as in (1) but calibration performed using expert-derived seasonality for individual proxy records, (3) as in (2) but expert proxy seasonality replaced by seasonal averaging determined objectively as part of the calibration process, (4) linear objective seasonal FMs as in (3) but objectively selecting relationships calibrated either on temperature or precipitation, and (5) bivariate linear models calibrated on temperature and precipitation with objectively-derived seasonality. (4) and (5) specifically aim at better representing the physical drivers of tree ring width proxies. Reconstructions generated using the CCSM4 Last Millennium simulation as an uninformed prior are evaluated against various 20th century data products. Results show the benefits of using the new proxy collection, particularly on the detrended global mean temperature and spatial patterns. The positive impact of using proper seasonality and temperature/moisture sensitivities for tree ring width records is also notable. This updated configuration will be used for the first generation of LMR-generated CFRs to be publicly released. These also provide a benchmark for future efforts aimed at evaluating the impact of additional proxy records and/or more sophisticated physically-based forward models. References: Hakim, G. J., and co-authors (2016), J. Geophys. Res. Atmos., doi:10.1002/2016JD024751 PAGES2K Consortium (2013), Nat. Geosci., doi:10.1038/ngeo1797 PAGES2k Consortium (2017), Sci. Data. doi:10.1038/sdata.2017.88

  19. The Last Interglacial-Glacial cycle (MIS 5-2) re-examined based on long proxy records from central and northern Europe

    NASA Astrophysics Data System (ADS)

    Helmens, Karin F.

    2014-02-01

    Current multi-proxy studies on a long sediment sequence preserved at Sokli (N Finland), i.e. in the central area of Fennoscandian glaciations, are drastically changing classic ideas of glaciations, vegetation and climate in northern Europe during the Late Pleistocene. The sediments in the Sokli basin have escaped major glacial erosion due to non-typical bedrock conditions. In this review, the Sokli record is compared in great detail with other long proxy records from central, temperate and northern, boreal Europe. These comprise the classic records of La Grande Pile (E France) and Oerel (N Germany) and more recently obtained records from Horoszki Duże (E Poland) and Lake Yamozero (NW Russia). The focus of the review is on pollen, lithology and macrofossil- and insect-based temperature inferences. The long records are further compared with recent proxy data from nearby terrestrial sites as well as with the rapidly accumulating high-resolution proxy data from the ocean realm. The comparison allows a re-examination of the environmental history and climate evolution of the Last Interglacial-Glacial (LI-G) cycle (MIS 5-2). It shows that environmental and climate conditions during MIS 5 (ca 130-70 ka BP) were distinctly different from those during MIS 4-2 (ca 70-15 ka BP). MIS 5 is characterized by three long forested intervals (broadly corresponding to MIS 5e, 5c, 5a), both in temperate and northern boreal Europe. These mild periods were interrupted by two short, relatively cold and dry intervals (MIS 5d and 5b) with mountain-centered glaciation in Fennoscandia. Millennial scale climate events were superimposed upon these longer lasting climate fluctuations. The time interval encompassing MIS 4-2 shows open vegetation. It is characterized by two glacial maxima (MIS 4 and 2) with sub-continental scale glaciation over northern Europe and dry conditions in strongly continental eastern European settings. High amplitude climate oscillations of millennial duration characterized the climate variability of MIS 3. Mild climate conditions in early MIS 3 caused large-scale deglaciation of the Fennoscandian Ice Sheet, and ice-free conditions with Betula-dominated vegetation (including tree birch) persisted over large parts of Fennoscandia, possibly interrupted by glaciation, during major part of MIS 3 till ca 35 ka BP. Overall, MIS 5 was mostly mild with warmest or peak interglacial conditions at the very start during MIS 5e. MIS 4-2 was mostly cold with most extreme or peak glacial conditions in the closing phase during MIS 2. This points to a subdivision of the last climate cycle into an early, overall mild interglacial half and a late, overall cold glacial half, each with duration of ca 50 ka. This review also shows that the climate variability in central and northern Europe during the LI-G cycle was mostly in degrees of continentality with major shifts in winter temperature and precipitation values; summer temperatures, on the other hand, remained largely unchanged. It points to the waxing and waning of sea-ice over the North Atlantic Ocean as a possible characteristic feature of the Late Pleistocene. The present compilation, based on long terrestrial sequences, high-resolution multi-proxy data from the oceans, and quantified paleo-climate data, strongly favors a definition of entire Marine Oxygen Isotope Stage 5 as the Last Interglacial similar as in the original marine stratigraphy and the stratigraphy at La Grande Pile in France. The proxy-based climate data places the start of the Last Glacial at the base of MIS 4 and the northwest European Pleniglacial. It shows that the division between the Eemian (MIS 5e) and the Early Weichselian (MIS 5d-a) is not useful, as not relevant from a climate point of view.

  20. The Role of Arctic Sea Ice in Last Millennium Climate Variability: Model-Proxy Comparisons Using Ensemble Members and Novel Model Experiments.

    NASA Astrophysics Data System (ADS)

    Gertler, C. G.; Monier, E.; Prinn, R. G.

    2016-12-01

    Variability in sea ice extent is a prominent feature of forced simulations of the last millennium and reconstructions of paleoclimate using proxy records. The rapid 20th century decline in sea ice extent is most likely due to greenhouse gas forcing, but the accuracy of future projections depend on the characterization of natural variability. Declining sea ice extent affects regional climate and society, but also plays a large role in Arctic amplification, with implications for mid-latitude circulation and even large-scale climate oscillations. To characterize the effects of natural and anthropogenic climate forcing on sea ice and the related changes in large-scale atmospheric circulation, a combination of instrumental record, paleoclimate reconstructions, and general circulation models can be employed to recreate sea ice extents and the corresponding atmosphere-ocean states. Model output from the last millennium ensemble (LME) is compared to a proxy-based sea ice reconstruction and a global proxy network using a variety of statistical and data assimilation techniques. Further model runs using the Community Earth Systems Model (CESM) are performed with the same inputs as LME but forced with experimental sea ice extents, and results are contextualized within the larger ensemble by a variety of metrics.

  1. Marine sediment cores database for the Mediterranean Basin: a tool for past climatic and environmental studies

    NASA Astrophysics Data System (ADS)

    Alberico, I.; Giliberti, I.; Insinga, D. D.; Petrosino, P.; Vallefuoco, M.; Lirer, F.; Bonomo, S.; Cascella, A.; Anzalone, E.; Barra, R.; Marsella, E.; Ferraro, L.

    2017-06-01

    Paleoclimatic data are essential for fingerprinting the climate of the earth before the advent of modern recording instruments. They enable us to recognize past climatic events and predict future trends. Within this framework, a conceptual and logical model was drawn to physically implement a paleoclimatic database named WDB-Paleo that includes the paleoclimatic proxies data of marine sediment cores of the Mediterranean Basin. Twenty entities were defined to record four main categories of data: a) the features of oceanographic cruises and cores (metadata); b) the presence/absence of paleoclimatic proxies pulled from about 200 scientific papers; c) the quantitative analysis of planktonic and benthonic foraminifera, pollen, calcareous nannoplankton, magnetic susceptibility, stable isotopes, radionuclides values of about 14 cores recovered by Institute for Coastal Marine Environment (IAMC) of Italian National Research Council (CNR) in the framework of several past research projects; d) specific entities recording quantitative data on δ18O, AMS 14C (Accelerator Mass Spectrometry) and tephra layers available in scientific papers. Published data concerning paleoclimatic proxies in the Mediterranean Basin are recorded only for 400 out of 6000 cores retrieved in the area and they show a very irregular geographical distribution. Moreover, the data availability decreases when a constrained time interval is investigated or more than one proxy is required. We present three applications of WDB-Paleo for the Younger Dryas (YD) paleoclimatic event at Mediterranean scale and point out the potentiality of this tool for integrated stratigraphy studies.

  2. Climate during the Roman and early-medieval periods in North-western Europe: a review of climate reconstructions from terrestrial archives

    NASA Astrophysics Data System (ADS)

    Reichelmann, Dana F. C.; Gouw-Bouman, Marjolein T. I. J.; Hoek, Wim Z.; van Lanen, Rowin J.; Stouthamer, Esther; Jansma, Esther

    2016-04-01

    High-resolution palaeoclimate reconstructions are essential to identify possible influences of climate variability on landscape evolution and landscape-related cultural changes (e.g., shifting settlement patterns and long-distance trade relations). North-western Europe is an ideal research area for comparison between climate variability and cultural transitions given its geomorphological diversity and the significant cultural changes that took place in this region during the last two millennia (e.g., the decline of the Roman Empire and the transition to medieval kingdoms). Compared to more global climate records, such as ice cores and marine sediments, terrestrial climate proxies have the advantage of representing a relatively short response time to regional climatic change. Furthermore for this region large quantity of climate reconstructions is available covering the last millennium, whereas for the first millennium AD only few high resolution climate reconstructions are available. We compiled climate reconstructions for sites in North-western Europe from the literature and its underlying data. All these reconstructions cover the time period of AD 1 to 1000. We only selected data with an annual to decadal resolution and a minimum resolution of 50 years. This resulted in 18 climate reconstructions from different archives such as chironomids (1), pollen (4), Sphagnum cellulose (1), stalagmites (6), testate amoebae (4), and tree-rings (2). The compilation of the different temperature reconstructions shows similar trends in most of the records. Colder conditions since AD 300 for a period of approximately 400 years and warmer conditions after AD 700 become apparent. A contradicting signal is found before AD 300 with warmer conditions indicated by most of the records but not all. This is likely the result of the use of different proxies, reflecting temperatures linked to different seasons. The compilation of the different precipitation reconstructions also show similar trends. Dry periods are indicated by all records around AD 400 and 600, although precipitation records do not show the same spatial continuity as the temperature proxies. This study shows that clear climate changes occurred over North-western Europe in the period between AD 300 and 700, which are partly reflected by changes in seasonality.

  3. Linking Fossil Fish Cyclicity and Paleoenvironmental Proxies in the mid-Devonian

    NASA Astrophysics Data System (ADS)

    Grogan, D.; Whiteside, J. H.; Trewin, N. H.; Johnson, J. E.

    2009-12-01

    The significant radiation of fishes throughout the Devonian, combined with the abundance of well-preserved fossil fish assemblages from this period, provides for a high-resolution record of prevalent fish taxa in the Orcadian basin of North Scotland. In addition to their ability to serve as a lake-level and lake-chemistry proxy, the waxing and waning of dominant fish taxa exhibit a pronounced cyclicity, suggesting they respond to broader climate rhythms. Recent studies of mid-Devonian lacustrine sedimentary sequences have quantitatively demonstrated the presence of Milankovitch cyclicity in geochemical and gamma ray proxy records. Spectral analysis of gamma ray data show a strong obliquity peak usually associated with ice-house conditions; this obliquity signal is unexpected as tropical latitudes in the mid-Devonian are traditionally thought to have been in a greenhouse climate. Geochemical data include the measurement of bulk carbon and nitrogen stable isotopes, molecule-specific carbon isotopes of plant biomarkers, and depth ranks from eight sections of the Caithness Flagstone Group of the Orcadian Basin. Evidence for orbital forcing of climate change paired with the fossil fish record provides a unique opportunity to establish an astronomically calibrated timescale for the mid-Devonian, as well as to make a quantitative assessment of the validity of a greenhouse climate existing in the mid-Devonian.

  4. The Sensitivity of the North American Monsoon to Deglacial Climate Change in Proxies and Models

    NASA Astrophysics Data System (ADS)

    Bhattacharya, T.; Tierney, J. E.

    2017-12-01

    The North American Monsoon (NAM), which brings summer rainfall to the arid US Southwest and northwestern Mexico, remains one of the least understood monsoon systems. Model simulations produce divergent NAM responses to future anthropogenic warming, and many paleoclimatic records from the NAM region are more sensitive to winter rainfall than the summertime circulation. As a result, we have an incomplete understanding of NAM sensitivity to past and future global climate change. Our work seeks to improve understanding of NAM dynamics using new proxy records and model simulations. We have developed quantitative reconstructions of NAM strength since the LGM ( 21 ka BP) using leaf wax biomarkers (e.g. dD of n-acids) from marine sediment cores in the Gulf of California. We contrast these proxy records with idealized GCM simulations (i.e. CESM1.2) to diagnose the mechanisms behind NAM responses to LGM boundary conditions and abrupt deglacial climate events. Our results suggest that ice-sheet induced changes in atmospheric circulation acted in concert with local changes in Gulf of California SSTs to modulate the late glacial NAM. This work has important implications for our understanding of NAM dynamics, its relationship with other monsoon systems, and its sensitivity to past and future global climate change.

  5. Stalagmite high resolution local paleoclimatic proxies for Late Holocene in Mesoamerica: Exploring role of moisture upon the development of Mesoamerican cultures.

    NASA Astrophysics Data System (ADS)

    Martínez Izquierdo, H. B.; Bernal, J. P.; Pérez Enriquez, R.; Böhnel, H.; Morales-Malacara, J. B.; Solari, L.; Gómez-Tuena, A.

    2010-03-01

    The relationship between climate change and culture development in Mesoamerica is complex to unravel since many written archives were destroyed during natural disasters and cultural conflicts such as Spanish conquest. Local paleoclimate records offer a way to reconstruct this relationship. Stalagmites are amongst the most reliable records of past climate variability, due to their evolution in closed-system conditions, ease of dating, and inclusion of several geochemical proxies (such as calcite oxygen and carbon isotopic composition, trace element concentration and/or elemental ratios, color and grey-tone scale). Recently, stalagmites have been used as records to explore the climatic change during Holocene and its cultural relation in Mediterranean, Asian, North American and east African cultures. Only few works were made, however, for Mesoamerican cultures. We study here a banded stalagmite belonging to Jalpan, Queretaro, central Mexico. This stalagmite was found actively growing, with its base dated at 6.85 +/- 0.3 Ka B.P. A high resolution LA-ICP-MS Mg/Ca analysis as well as grey tone analysis were obtained in order to create annual resolution time series. The proxies were correlated with local and north Atlantic paleoclimate records. Such proxies also show signals associated with volcanic eruptions (Tacana, el Chichon, Popocatepetl and Ceboruco) during the Classic period. Other signals are associated with Maya civilization collapse. These results portray the relationship between the agricultural and population patterns with moisture variability for the center of Mexico (Teotihuacan influence zone) during late Formative and Classic period. Finally, we observe patterns such as the corresponding to the little ice age and the anthropogenic climate warming, the latter correlated with local precipitation data.

  6. A New Revision of the Solar Irradiance Climate Data Record Incorporates Recent Research into Proxies of Sunspot Darkening and the Sunspot Number Record

    NASA Astrophysics Data System (ADS)

    Coddington, O.; Lean, J.; Pilewskie, P.; Baranyi, T.; Snow, M. A.; Kopp, G.; Richard, E. C.; Lindholm, C.

    2017-12-01

    An operational climate data record (CDR) of total and spectral solar irradiance became available in November 2015 as part of the National Oceanographic and Atmospheric Administration's National Centers for Environmental Information Climate Data Record Program. The data record, which is updated quarterly, is available from 1610 to the present as yearly-average values and from 1882 to the present as monthly- and daily-averages, with associated time and wavelength-dependent uncertainties. It was developed jointly by the University of Colorado at Boulder's Laboratory for Atmospheric and Space Physics and the Naval Research Laboratory, and, together with the source code and supporting documentation, is available at https://www.ncdc.noaa.gov/cdr/. In the Solar Irradiance CDR, total solar irradiance (TSI) and solar spectral irradiance (SSI) are estimated from models that determine the changes from quiet Sun conditions arising from bright faculae and dark sunspots on the solar disk. The models are constructed using linear regression of proxies of solar sunspot and facular features with the approximately decade-long irradiance observations from the SOlar Radiation and Climate Experiment. A new revision of this data record was recently released in an ongoing effort to reduce solar irradiance uncertainties in two ways. First, the sunspot darkening proxy was revised using a new cross calibration of the current sunspot region observations made by the Solar Observing Optical Network with the historical records of the Royal Greenwich Observatory. This implementation affects modeled irradiances from 1882 - 1978. Second, the impact of a revised record of sunspot number by the Sunspot Index and Long-term Solar Observations center on modeled irradiances was assessed. This implementation provides two different reconstructions of historical, yearly-averaged irradiances from 1610-1881. Additionally, we show new, preliminary results that demonstrate improvements in modeled TSI by using Debrecen Photoheliographic sunspot area and location data produced by the Debrecen Heliophysical Observatory as the proxy of sunspot darkening. Our results describe comparisons of the modeled TSI and SSI with observational records and with other solar irradiance models.

  7. Annual Proxy Records from Tropical Cloud Forest Trees in the Monteverde Cloud Forest, Costa Rica

    NASA Astrophysics Data System (ADS)

    Anchukaitis, K. J.; Evans, M. N.; Wheelwright, N. T.; Schrag, D. P.

    2005-12-01

    The extinction of the Golden Toad (Bufo periglenes) from Costa Rica's Monteverde Cloud Forest prompted research into the causes of ecological change in the montane forests of Costa Rica. Subsequent analysis of meteorological data has suggested that warmer global surface and tropical Pacific sea surface temperatures contribute to an observed decrease in cloud cover at Monteverde. However, while recent studies may have concluded that climate change is already having an effect on cloud forest environments in Costa Rica, without the context provided by long-term climate records, it is difficult to confidently conclude that the observed ecological changes are the result of anthropogenic climate forcing, land clearance in the lowland rainforest, or natural variability in tropical climate. To address this, we develop high-resolution proxy paleoclimate records from trees without annual rings in the Monteverde Cloud Forest in Costa Rica. Calibration of an age model in these trees is a fundamental prerequisite for proxy paleoclimate reconstructions. Our approach exploits the isotopic seasonality in the δ18O of water sources (fog versus rainfall) used by trees over the course of a single year. Ocotea tenera individuals of known age and measured annual growth increments were sampled in long-term monitored plantation sites in order to test this proposed age model. High-resolution (200μm increments) stable isotope measurements on cellulose reveal distinct, coherent δ18O cycles of 6 to 10‰. The calculated growth rates derived from the isotope timeseries match those observed from basal growth increment measurements. Spatial fidelity in the age model and climate signal is examined by using multiple cores from multiple trees and multiple sites. These data support our hypothesis that annual isotope cycles in these trees can be used to provide chronological control in the absence of rings. The ability of trees to record interannual climate variability in local hydrometeorology and remote climate forcing is evaluated using the isotope signal from multiple trees, local meteorological observations, and climate field data for the well-observed 1997-1998 warm El Niño-Southern Oscillation (ENSO) event. The successful calibration of our age model is a necessary step toward the development of long, annually-resolved paleoclimate reconstructions from old trees, even without rings, which will be used to evaluate the cause of recent observed climate change at Monteverde and as proxies for tropical climate field reconstructions.

  8. 1,500 year quantitative reconstruction of winter precipitation in the Pacific Northwest

    PubMed Central

    Steinman, Byron A.; Abbott, Mark B.; Mann, Michael E.; Stansell, Nathan D.; Finney, Bruce P.

    2012-01-01

    Multiple paleoclimate proxies are required for robust assessment of past hydroclimatic conditions. Currently, estimates of drought variability over the past several thousand years are based largely on tree-ring records. We produced a 1,500-y record of winter precipitation in the Pacific Northwest using a physical model-based analysis of lake sediment oxygen isotope data. Our results indicate that during the Medieval Climate Anomaly (MCA) (900–1300 AD) the Pacific Northwest experienced exceptional wetness in winter and that during the Little Ice Age (LIA) (1450–1850 AD) conditions were drier, contrasting with hydroclimatic anomalies in the desert Southwest and consistent with climate dynamics related to the El Niño Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO). These findings are somewhat discordant with drought records from tree rings, suggesting that differences in seasonal sensitivity between the two proxies allow a more compete understanding of the climate system and likely explain disparities in inferred climate trends over centennial timescales. PMID:22753510

  9. Early Paleogene evolution of terrestrial climate in the SW Pacific, Southern New Zealand

    NASA Astrophysics Data System (ADS)

    Pancost, Richard D.; Taylor, Kyle W. R.; Inglis, Gordon N.; Kennedy, Elizabeth M.; Handley, Luke; Hollis, Christopher J.; Crouch, Erica M.; Pross, Jörg; Huber, Matthew; Schouten, Stefan; Pearson, Paul N.; Morgans, Hugh E. G.; Raine, J. Ian

    2013-12-01

    We present a long-term record of terrestrial climate change for the Early Paleogene of the Southern Hemisphere that complements previously reported marine temperature records. Using the MBT'-CBT proxy, based on the distribution of soil bacterial glycerol dialkyl glycerol tetraether lipids, we reconstructed mean annual air temperature (MAT) from the Middle Paleocene to Middle Eocene (62-42 Ma) for southern New Zealand. This record is consistent with temperature estimates derived from leaf fossils and palynology, as well as previously published MBT'-CBT records, which provides confidence in absolute temperature estimates. Our record indicates that through this interval, temperatures were typically 5°C warmer than those of today at such latitudes, with more pronounced warming during the Early Eocene Climate Optimum (EECO; ˜50 Ma) when MAT was ˜20°C. Moreover, the EECO MATs are similar to those determined for Antarctica, with a weak high-latitude terrestrial temperature gradient (˜5°C) developing by the Middle Eocene. We also document a short-lived cooling episode in the early Late Paleocene when MAT was comparable to present. This record corroborates the trends documented by sea surface temperature (SST) proxies, although absolute SSTs are up to 6°C warmer than MATs. Although the high-calibration error of the MBT'-CBT proxy dictates caution, the good match between our MAT results and modeled temperatures supports the suggestion that SST records suffer from a warm (summer?) bias, particularly during times of peak warming.

  10. The last Deglaciation in the Mediterranean region: a multi-archives synthesis

    NASA Astrophysics Data System (ADS)

    Bazin, Lucie; Siani, Giuseppe; Landais, Amaelle; Bassinot, Frank; Genty, Dominique; Govin, Aline; Michel, Elisabeth; Nomade, Sebastien; Waelbroeck, Claire

    2016-04-01

    Multiple proxies record past climatic changes in different climate archives. These proxies are influenced by different component of the climate system and bring complementary information on past climate variability. The major limitation when combining proxies from different archives comes from the coherency of their chronologies. Indeed, each climate archives possess their own dating methods, not necessarily coherent with each other's. Consequently, when we want to assess the latitudinal changes and mechanisms behind a climate event, we often have to rely on assumptions of synchronisation between the different archives, such as synchronous temperature changes during warming events (Austin and Hibbert 2010). Recently, a dating method originally developed to produce coherent chronologies for ice cores (Datice,Lemieux-Dudon et al., 2010) has been adapted in order to integrate different climate archives (ice cores, sediment cores and speleothems (Lemieux-Dudon et al., 2015, Bazin et al., in prep)). In this presentation we present the validation of this multi-archives dating tool with a first application covering the last Deglaciation in the Mediterranean region. For this experiment, we consider the records from Monticchio, the MD90-917, Tenaghi Philippon and Lake Orhid sediment cores as well as continuous speleothems from Sofular, Soreq and La Mine caves. Using the Datice dating tool, and with the identification of common tephra layers between the cores considered, we are able to produce a multi-archives coherent chronology for this region, independently of any climatic assumption. Using this common chronological framework, we show that the usual climatic synchronisation assumptions are not valid over this region for the last glacial-interglacial transition. Finally, we compare our coherent Mediterranean chronology with Greenland ice core records in order to discuss the sequence of events of the last Deglaciation between these two regions.

  11. Pollen and spores as biological recorders of past ultraviolet irradiance

    NASA Astrophysics Data System (ADS)

    Jardine, Phillip E.; Fraser, Wesley T.; Lomax, Barry H.; Sephton, Mark A.; Shanahan, Timothy M.; Miller, Charlotte S.; Gosling, William D.

    2016-12-01

    Solar ultraviolet (UV) irradiance is a key driver of climatic and biotic change. Ultraviolet irradiance modulates stratospheric warming and ozone production, and influences the biosphere from ecosystem-level processes through to the largest scale patterns of diversification and extinction. Yet our understanding of ultraviolet irradiance is limited because no method has been validated to reconstruct its flux over timescales relevant to climatic or biotic processes. Here, we show that a recently developed proxy for ultraviolet irradiance based on spore and pollen chemistry can be used over long (105 years) timescales. Firstly we demonstrate that spatial variations in spore and pollen chemistry correlate with known latitudinal solar irradiance gradients. Using this relationship we provide a reconstruction of past changes in solar irradiance based on the pollen record from Lake Bosumtwi in Ghana. As anticipated, variations in the chemistry of grass pollen from the Lake Bosumtwi record show a link to multiple orbital precessional cycles (19-21 thousand years). By providing a unique, local proxy for broad spectrum solar irradiance, the chemical analysis of spores and pollen offers unprecedented opportunities to decouple solar variability, climate and vegetation change through geologic time and a new proxy with which to probe the Earth system.

  12. Millennial- to century-scale variability in Gulf of Mexico Holocene climate records

    USGS Publications Warehouse

    Poore, R.Z.; Dowsett, H.J.; Verardo, S.; Quinn, T.M.

    2003-01-01

    Proxy records from two piston cores in the Gulf of Mexico (GOM) provide a detailed (50-100 year resolution) record of climate variability over the last 14,000 years. Long-term (millennial-scale) trends and changes are related to the transition from glacial to interglacial conditions and movement of the average position of the Intertropical Convergence Zone (ITCZ) related to orbital forcing. The ??18O of the surface-dwelling planktic foraminifer Globigerinoides ruber show negative excursions between 14 and 10.2 ka (radiocarbon years) that reflect influx of meltwater into the western GOM during melting of the Laurentide Ice Sheet. The relative abundance of the planktic foraminifer Globigerinoides sacculifer is related to transport of Caribbean water into the GOM. Maximum transport of Caribbean surface waters and moisture into the GOM associated with a northward migration of the average position of the ITCZ occurs between about 6.5 and 4.5 ka. In addition, abundance variations of G. sacculifer show century-scale variability throughout most of the Holocene. The GOM record is consistent with records from other areas, suggesting that century-scale variability is a pervasive feature of Holocene climate. The frequency of several cycles in the climate records is similar to cycles identified in proxy records of solar variability, indicating that at least some of the century-scale climate variability during the Holocene is due to external (solar) forcing.

  13. El Niño impact on mollusk biomineralization-implications for trace element proxy reconstructions and the paleo-archeological record.

    PubMed

    Pérez-Huerta, Alberto; Etayo-Cadavid, Miguel F; Andrus, C Fred T; Jeffries, Teresa E; Watkins, Clifton; Street, Shane C; Sandweiss, Daniel H

    2013-01-01

    Marine macroinvertebrates are ideal sentinel organisms to monitor rapid environmental changes associated with climatic phenomena. These organisms build up protective exoskeletons incrementally by biologically-controlled mineralization, which is deeply rooted in long-term evolutionary processes. Recent studies relating potential rapid environmental fluctuations to climate change, such as ocean acidification, suggest modifications on carbonate biominerals of marine invertebrates. However, the influence of known, and recurrent, climatic events on these biological processes during active mineralization is still insufficiently understood. Analysis of Peruvian cockles from the 1982-83 large magnitude El Niño event shows significant alterations of the chemico-structure of carbonate biominerals. Here, we show that bivalves modify the main biomineralization mechanism during the event to continue shell secretion. As a result, magnesium content increases to stabilize amorphous calcium carbonate (ACC), inducing a rise in Mg/Ca unrelated to the associated increase in sea-surface temperature. Analysis of variations in Sr/Ca also suggests that this proxy should not be used in these bivalves to detect the temperature anomaly, while Ba/Ca peaks are recorded in shells in response to an increase in productivity, or dissolved barium in seawater, after the event. Presented data contribute to a better understanding of the effects of abrupt climate change on shell biomineralization, while also offering an alternative view of bivalve elemental proxy reconstructions. Furthermore, biomineralization changes in mollusk shells can be used as a novel potential proxy to provide a more nuanced historical record of El Niño and similar rapid environmental change events.

  14. Quantitative Temperature Reconstructions from Holocene and Late Glacial Lake Sediments in the Tropical Andes using Chironomidae (non-biting midges)

    NASA Astrophysics Data System (ADS)

    Matthews-Bird, F.; Gosling, W. D.; Brooks, S. J.; Montoya, E.; Coe, A. L.

    2014-12-01

    Chironomidae (non-biting midges) is a family of two-winged aquatic insects of the order Diptera. They are globally distributed and one of the most diverse families within aquatic ecosystems. The insects are stenotopic, and the rapid turnover of species and their ability to colonise quickly favourable habitats means chironomids are extremely sensitive to environmental change, notably temperature. Through the development of quantitative temperature inference models chironomids have become important palaeoecological tools. Proxies capable of generating independent estimates of past climate are crucial to disentangling climate signals and ecosystem response in the palaeoecological record. This project has developed the first modern environmental calibration data set in order to use chironomids from the Tropical Andes as quantitative climate proxies. Using surface sediments from c. 60 lakes from Bolivia, Peru and Ecuador we have developed an inference model capable of reconstructing temperatures, with a prediction error of 1-2°C, from fossil assemblages. Here we present the first Lateglacial and Holocene chironomid-inferred temperature reconstructions from two sites in the tropical Andes. The first record, from a high elevation (4153 m asl) lake in the Bolivian Andes, shows persistently cool temperatures for the past 15 kyr, punctuated by warm episodes in the early Holocene (9-10 kyr BP). The chironomid-inferred Holocene temperature trends from a lake sediment record on the eastern Andean flank of Ecuador (1248 m asl) spanning the last 5 millennia are synchronous with temperature changes in the NGRIP ice core record. The temperature estimates suggest along the eastern flank of the Andes, at lower latitudes (~1°S), climate closely resemble the well-established fluctuations of the Northern Hemisphere for this time period. Late-glacial climate fluctuations across South America are still disputed with some palaeoecological records suggesting evidence for Younger Dryas like events. Estimates from quantitative climate proxies such as chironomids will help constrain these patterns and further our understanding of climate teleconnections on Quaternary timescales.

  15. A Paleoclimate Modeling Perspective on the Challenges to Quantifying Paleoelevation

    NASA Astrophysics Data System (ADS)

    Poulsen, C. J.; Aron, P.; Feng, R.; Fiorella, R.; Shen, H.; Skinner, C. B.

    2016-12-01

    Surface elevation is a fundamental characteristic of the land surface. Gradients in elevation associated with mountain ranges are a first order control on local and regional climate; weathering, erosion and nutrient transport; and the evolution and biodiversity of organisms. In addition, surface elevations are a proxy for the geodynamic processes that created them. Efforts to quantify paleoelevation have relied on reconstructions of mineralogical and fossil proxies that preserve environmental signals such as surface temperature, moist enthalpy, or surface water isotopic composition that have been observed to systematically vary with elevation. The challenge to estimating paleoelevation from proxies arises because the modern-day elevation dependence of these environmental parameters is not constant and has differed in the past in response to changes in both surface elevation and other climatic forcings, including greenhouse gas and orbital variations. For example, downward mixing of vapor that is isotopically enriched through troposphere warming under greenhouse forcing reduces the isotopic lapse rate. Without considering these factors, paleoelevation estimates for orogenic systems can be in error by hundreds of meters or more. Isotope-enabled climate models provide a tool for separating the climate response to these forcings into elevation and non-elevation components and for identifying the processes that alter the elevation dependence of environmental parameters. Our past and ongoing work has focused on the simulated climate response to surface uplift of the South American Andes, the North American Cordillera, and the Tibetan-Himalyan system during the Cenozoic, and its implication for interpreting proxy records from these regions. This work demonstrates that the climate response to uplift, and the implications for interpreting proxy records, varies tremendously by region. In this presentation, we synthesize climate responses to uplift across orogens, present new results examining the affect of orbital variations on elevation-dependent environmental parameters, and discuss the implications of our work for quantifying paleoelevations.

  16. Multi-proxies Approach of Climatic Records In Terrestrial Mollusks Shells

    NASA Astrophysics Data System (ADS)

    Labonne, M.; Rousseau, D. D.; Ben Othman, D.; Luck, J. M.; Metref, S.

    Fossil land snails shells constitute a valuable source of information for the study of Quaternary deposits as they are commonly preserved in many regions and notably in loess sequences. The use of stable isotope composition of the carbonate in the shells was previously applied to reconstruct past climate or environnements but the technic was not widely exploited and compared with other proxies from the same sequence. In this study, we have analysed stables isotopes, trace elements and Sr isotopes from both shells of land snails Vertigo modesta and the sediment from the Eustis upper Pleistocene loess sequence (Nebraska, USA). This serie developed during the last glaciation and records the last deglaciation between 18,000 and 12,000 B.P. years. We compare the paleoclimatic information obtained by different proxies, such as mag- netic susceptibility, temperature and moisture estimated by land snails assemblage with geochemical data measured on land snails shells in order to validate the climatic information obtained with this proxy. Our study demonstrates that shell carbonate reflects environmental conditions estimated by other proxies. Carbon and oxygen iso- topes show cyclic variations (millenial cycles) along the profile which correlate with stratigraphic units and could be link with the retreat of the Laurentide ice sheet. Trace element and Sr isotopes in the shells indicate various origins for the eolian dusts in the two main loess units along the sequence.

  17. Holocene melt-water variations recorded in Antarctic coastal marine benthic assemblages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berkman, P.A.

    Climate changes can influence the input of meltwater from the polar ice sheets. In Antarctica, signatures of meltwater input during the Holocene may be recorded in the benthic fossils which exist at similar altitudes above sea level in emerged beaches around the continent Interpreting the fossils as meltwater proxy records would be enhanced by understanding the modern ecology of the species in adjacent marine environments. Characteristics of an extant scallop assemblage in West McMurdo Sound, Antarctica, have been evaluated across a summer meltwater gradient to provide examples of meltwater records that may be contained in proximal scallop fossils. Integrating environmentalmore » proxies from coastal benthic assemblages around Antarctica, over ecological and geological time scales, is a necessary step in evaluating the marginal responses of the ice sheets to climate changes during the Holocene.« less

  18. A High-Resolution Record of Holocene Climate Variability from a Western Canadian Coastal Inlet

    NASA Astrophysics Data System (ADS)

    Dallimore, A.; Thomson, R. E.; Enkin, R. J.; Kulikov, E. A.; Bertram, M. A.; Wright, C. A.; Southon, J. R.; Barrie, J. V.; Baker, J.; Pienitz, R.; Calvert, S. E.; Chang, A. S.; Pedersen, T. F.

    2004-12-01

    Conditions within the Pacific Ocean have a major effect on the climate of northwestern North America. High resolution records of present and past northeast Pacific climate are revealed in our multi-disciplinary study of annually laminated marine sediments from anoxic coastal inlets of British Columbia. Past climate conditions for the entire Holocene are recorded in the sediment record contained in a 40 meter, annually laminated marine sediment core taken in Effingham Inlet, on the west coast of Vancouver Island, British Columbia, from the French ship the Marion Dufresne, as part of the international IMAGES program. By combining our eight year continuous instrument record of modern coastal ocean dynamics and climate with high-resolution analysis of depositional processes, we have been able to develop proxy measurements of past climatic and oceanographic changes on annual to millennial time scales. Results indicate that regional climate has oscillated on a variety of time scales throughout the Holocene. At times, climatic change has been dramatically rapid. We are also developing digital methods for statistical time-series analyses of physical sediment properties through the Holocene in order to obtain a more objective quantitative approach for detecting cyclicity in our data. Results of the time series analysis of lamination thickness reveals statistically significant spectral peaks of climate scale variability at established decadal to century time scales. These in turn may be related to solar cycles and quasi-cyclical ocean processes such as the Pacific Decadal Oscillation. However, the annually laminated time series are periodically interrupted by massive mud intervals which are related to bottom currents and at times paleo-seismic events, illustrating the need for a full understanding of modern oceanographic and sedimentation processes, so an accurate proxy record of past climate can be established.

  19. How Hot was Africa during the Mid-Holocene? Reexamining Africa's Thermal History via integrated Climate and Proxy System Modeling

    NASA Astrophysics Data System (ADS)

    Dee, S.; Russell, J. M.; Morrill, C.

    2017-12-01

    Climate models predict Africa will warm by up to 5°C in the coming century. Reconstructions of African temperature since the Last Glacial Maximum (LGM) have made fundamental contributions to our understanding of past, present, and future climate and can help constrain predictions from general circulation models (GCMs). However, many of these reconstructions are based on proxies of lake temperature, so the confounding influences of lacustrine processes may complicate our interpretations of past changes in tropical climate. These proxy-specific uncertainties require robust methodology for data-model comparison. We develop a new proxy system model (PSM) for paleolimnology to facilitate data-model comparison and to fully characterize uncertainties in climate reconstructions. Output from GCMs are used to force the PSM to simulate lake temperature, hydrology, and associated proxy uncertainties. We compare reconstructed East African lake and air temperatures in individual records and in a stack of 9 lake records to those predicted by our PSM forced with Paleoclimate Model Intercomparison Project (PMIP3) simulations, focusing on the mid-Holocene (6 kyr BP). We additionally employ single-forcing transient climate simulations from TraCE (10 kyr to 4 kyr B.P. and historical), as well as 200-yr time slice simulations from CESM1.0 to run the lake PSM. We test the sensitivity of African climate change during the mid-Holocene to orbital, greenhouse gas, and ice-sheet forcing in single-forcing simulations, and investigate dynamical hypotheses for these changes. Reconstructions of tropical African temperature indicate 1-2ºC warming during the mid-Holocene relative to the present, similar to changes predicted in the coming decades. However, most climate models underestimate the warming observed in these paleoclimate data (Fig. 1, 6kyr B.P.). We investigate this discrepancy using the new lake PSM and climate model simulations, with attention to the (potentially non-stationary) relationship between lake surface temperature and air temperature. The data-model comparison helps partition the impacts of lake-specific processes such as energy balance, mixing, sedimentation and bioturbation. We provide new insight into the patterns, amplitudes, sensitivity, and mechanisms of African temperature change.

  20. Holocene climate variability in Texas, USA: An integration of existing paleoclimate data and modeling with a new, high-resolution speleothem record

    NASA Astrophysics Data System (ADS)

    Wong, Corinne I.; Banner, Jay L.; Musgrove, MaryLynn

    2015-11-01

    Delineating the climate processes governing precipitation variability in drought-prone Texas is critical for predicting and mitigating climate change effects, and requires the reconstruction of past climate beyond the instrumental record. We synthesize existing paleoclimate proxy data and climate simulations to provide an overview of climate variability in Texas during the Holocene. Conditions became progressively warmer and drier transitioning from the early to mid Holocene, culminating between 7 and 3 ka (thousand years ago), and were more variable during the late Holocene. The timing and relative magnitude of Holocene climate variability, however, is poorly constrained owing to considerable variability among the different records. To help address this, we present a new speleothem (NBJ) reconstruction from a central Texas cave that comprises the highest resolution proxy record to date, spanning the mid to late Holocene. NBJ trace-element concentrations indicate variable moisture conditions with no clear temporal trend. There is a decoupling between NBJ growth rate, trace-element concentrations, and δ18O values, which indicate that (i) the often direct relation between speleothem growth rate and moisture availability is likely complicated by changes in the overlying ecosystem that affect subsurface CO2 production, and (ii) speleothem δ18O variations likely reflect changes in moisture source (i.e., proportion of Pacific-vs. Gulf of Mexico-derived moisture) that appear not to be linked to moisture amount.

  1. A Tale of Two Lakes: Catchment-Specific Responses to Late Holocene Cooling in Northwest Iceland

    NASA Astrophysics Data System (ADS)

    Crump, S. E.; Florian, C. R.; Miller, G. H.; Geirsdottir, A.; Zalzal, K.

    2015-12-01

    Lake sediments are frequently utilized for reconstructing paleoclimate in the Arctic, particularly in Iceland, where high sedimentation rates and abundant tephra layers allow for the development high-resolution, well-dated records. However, when developing climate records using biological proxies, catchment-specific processes must be understood and separated from the primary climate signal in order to develop accurate reconstructions. In this study, we compare proxy records (biogenic silica [BSi], C:N, ∂13C, and algal pigments) of the last 2 ka from two nearby lakes in northwest Iceland in order to elucidate how different catchments respond to similar climate history. Torfdalsvatn and Bæjarvötn are two coastal lakes located 60 km apart; mean summer temperatures are highly correlated between the two sites over the instrumental record, and likely for the past 2 ka as well. Consistent with other Icelandic records, both lakes record cooling as decreasing aquatic productivity (BSi) over the last 2 ka. Both sediment cores also record the onset of landscape destabilization, reflected by increased terrestrial input (C:N and ∂13C), which suggests an intensification of cooling. However, the timing and magnitude of this shift differ markedly between lakes. Biological proxies indicate gradual landscape destabilization beginning ~900 AD at Torfdalsvatn in contrast to a sharper, more intense landscape destabilization at ~1400 AD at Bæjarvötn. Because temperatures at the two lakes are well correlated, contrasting proxy responses are likely the result of catchment-specific thresholds and processes. Specifically, a steeper catchment at Bæjarvötn may allow for a more pronounced influx of terrestrial material as the critical shear stress for soil erosion is surpassed more readily. The impact of human colonization on erosion rates is also critical to assess, and recent developments in lipid biomarkers will allow for more precise reconstructions of human activity in each catchment.

  2. Possible paleohydrologic and paleoclimatic effects on hominin migration and occupation of the Levantine Middle Paleolithic.

    PubMed

    Frumkin, Amos; Bar-Yosef, Ofer; Schwarcz, Henry P

    2011-04-01

    This paper explores the impact of major glacial/interglacial paleohydrologic variations in the Middle-Paleolithic Levant on hominin migration and occupation. The climatic reconstruction is based primarily on the most straight-forward paleohydrologic records recently published. These terrestrial proxies convey direct paleoenvironmental signals of effective precipitation and aquifer recharge. The two main proxies are temporal changes of terminal lake levels in the Dead Sea basin and periods of deposition or non-deposition of speleothems. Other records, such as stable isotopes, if interpreted correctly, correspond well with these two direct proxies. All the records consistently indicate that the last two glacial periods in the central Levant were generally wet and cool, while the last two interglacials were dry and warm, so more water was available for the ecosystem and thus hominins during glacial periods than during interglacials. Some proxies indicate that the higher precipitation/evaporation ratio during glacial periods involved higher precipitation rather than only reduced evaporation. Beyond the general mean glacial/interglacial climate suggested here, variations occurred at all temporal scales throughout glacial or interglacial periods. In the Sahara-Negev arid barrier, moister conditions occurred during Marine Isotope Stage (MIS) 6a-5e, when Anatomically Modern Humans apparently migrated out of Africa. We suggest that this migration, as well as the later Neanderthal expansion from Southeast Europe or the Anatolian plateau into the Levant during early MIS 4, could be facilitated by the observed major climatic variations. Copyright © 2010 Elsevier Ltd. All rights reserved.

  3. Alpine Holocene Tree Ring Isotope Records - A Synthesis of a Multi-Proxy Approach in Dendroclimatology

    NASA Astrophysics Data System (ADS)

    Ziehmer, Malin Michelle; Nicolussi, Kurt; Schlüchter, Christian; Leuenberger, Markus

    2017-04-01

    High-resolution climate reconstructions based on tree-ring proxies are often limited by the individual segment length of living trees selected at the defined sampling sites, which mostly results in relatively short multi-centennial proxy series. A potential extension of living wood records comprise the addition of subfossil and archeological wood remains resulting in chronologies and associated climate reconstructions which are able to cover a few millennia in central Europe (e.g. Büntgen et al., 2011). However, existing multi-millennial tree-ring width chronologies in central Europe rank among the longest continuous chronologies world-wide and span the entire Holocene (Becker et al., 1993; Nicolussi et al. 2009). So far, these chronologies have mainly been used for dating subfossil wood samples, floating chronologies and archeological artifacts, but only in parts for reconstructing climate. Finds of Holocene wood remains in glacier forefields, peat bogs and small lakes allow us not only to establish such long-term tree-ring width records; further they offer the possibility to establish multi-millennial proxy records for the entire Holocene by using a multi-proxy approach which includes both tree-ring width and triple stable isotope ratios. As temperature limits tree growth at the Alpine upper tree line, the existing tree-ring width records are currently limited to reconstruct a single environmental variable. In the framework of the project Alpine Holocene Tree Ring Isotope Records, we combine tree-ring width, cellulose content as well as carbon, oxygen and hydrogen isotope series in a multi-proxy approach which allows the reconstruction of past environments by combining both Holocene wood remains and recent tree samples from two Alpine tree-line species. For this purpose, α-cellulose is prepared from 5-year tree ring blocks following the procedure after Boettger et al. (2007) and subsequently crushed by ultrasonic homogenization (Laumer et al., 2009). The cellulose content is determined for each individual sample and carbon, oxygen and hydrogen isotopic ratios are measured simultaneously (Loader et al., 2015). The isotope records of carbon, oxygen and hydrogen show distinct low-frequency trends for the Early- and Mid-Holocene, but the individual series per proxy are often offset in their isotopic signature. As the sampling sites in our study are distributed along a SW-NE transect, the influence of the site conditions (latitude, longitude, elevation, exposition) and the tree species is tested and subsequently a correction is applied to the individual series. In addition, the tree-ring width records operate as a helpful tool in detecting and attributing the influence of larch budmoth outbreaks on the cellulose content and isotope records. We here present a synthesis of the applied multi-proxy approach and its ability to reconstruct Holocene climate variability for the time span from 9000 to 3500 years b2k covering the Early-Holocene (9000 to 7200 years b2k) and Mid-Holocene (7200 to 4200 years b2k) and the transition to the late Holocene (4200 to 3500 years b2k) as well as the recent 400 years including the modern warming. References Becker, B., & Kromer, B. Palaeogeogr. Palaeoclimatol. Palaeoecol., 1993, 103(1): 67-71 Boettger, T., et al. Anal. Chem., 2007, 79: 4603-4612 Büntgen, U. et al. Science, 2011, 331(6017): 578-582 Laumer, W., et al. Rapid Commun. Mass Spectrom., 2009, 23: 1934-1940 Loader, N.J., et al. Anal. Chem., 2015, 87: 376-380 Nicolussi K., et al. The Holocene, 2009, 19(6): 909-920

  4. Aligning MIS5 proxy records from Lake Ohrid (FYROM) with independently dated Mediterranean archives: implications for core chronology

    NASA Astrophysics Data System (ADS)

    Zanchetta, G.; Regattieri, E.; Giaccio, B.; Wagner, B.; Sulpizio, R.; Francke, A.; Vogel, L. H.; Sadori, L.; Masi, A.; Sinopoli, G.; Lacey, J. H.; Leng, M. L.; Leicher, N.

    2015-10-01

    The DEEP site sediment sequence obtained during the ICDP SCOPSCO project at Lake Ohrid was dated using tephrostratigraphic information, cyclostratigraphy, and orbital tuning through marine isotope record. Although this approach is suitable for the generation of a general chronological framework of the long succession, it is insufficient to resolve more detailed paleoclimatological questions, such as leads and lags of climate events between marine and terrestrial records or between different regions. In this paper, we demonstrate how the use of different tie points can affect cyclostratigraphy and orbital tuning for the period between ca. 140 and 70 ka and how the results can be correlated with directly/indirectly radiometrically-dated Mediterranean marine and continental proxy records. The alternative age model obtained shows consistent differences with that proposed by Francke et al. (2015) for the same interval, in particular at the level of the MIS6-5e transition. According to this age model, different proxies from the DEEP site sediment record support an increase of temperatures between glacial to interglacial conditions, which is almost synchronous with a rapid increase in sea surface temperature observed in the western Mediterranean. The results show how important a detailed study of independent chronological tie points is for synchronizing different records and to highlight asynchronisms of climate events.

  5. Subtropical Climate Variability since the Last Glacial Maximum from Speleothem Precipitation Reconstructions in Florida

    NASA Astrophysics Data System (ADS)

    Polk, J.; van Beynen, P.; DeLong, K. L.; Asmerom, Y.; Polyak, V. J.

    2017-12-01

    Teleconnections between the tropical-subtropical regions of the Americas since the Last Glacial Maximum (LGM), particularly the Mid- to Late-Holocene, and high-resolution proxy records refining climate variability over this period continue to receive increasing attention. Here, we present a high-resolution, precisely dated speleothem record spanning multiple periods of time since the LGM ( 30 ka) for the Florida peninsula. The data indicate that the amount effect plays a significant role in determining the isotopic signal of the speleothem calcite. Collectively, the records indicate distinct differences in climate in the region between the LGM, Mid-Holocene, and Late Holocene, including a progressive shift in ocean composition and precipitation isotopic values through the period, suggesting Florida's sensitivity to regional and global climatic shifts. Comparisons between speleothem δ18O values and Gulf of Mexico marine records reveal a strong connection between the Gulf region and the terrestrial subtropical climate in the Late Holocene, while the North Atlantic's influence is clear in the earlier portions of the record. Warmer sea surface temperatures correspond to enhanced evaporation, leading to more intense atmospheric convection in Florida, and thereby modulating the isotopic composition of rainfall above the cave. These regional signals in climate extend from the subtropics to the tropics, with a clear covariance between the speleothem signal and other proxy records from around the region, as well as global agreement during the LGM period with other records. These latter connections appear to be driven by changes in the mean position of the Intertropical Convergence Zone and time series analysis of the δ18O values reveals significant multidecadal periodicities in the record, which are evidenced by agreement with the AMV and other multidecadal influences (NAO and PDO) likely having varying influence throughout the period of record. The climate variability recorded in our record suggests complex responses to major and abrupt shifts during these periods, likely due to Florida's subtropical location and the influence of multiple climate forcing mechanisms in the region.

  6. Late Holocene monsoon climate as evidenced by proxy records from a lacustrine sediment sequence in western Guangdong, South China

    NASA Astrophysics Data System (ADS)

    Zhong, Wei; Cao, jiayuan; Xue, Jibin; Ouyang, Jun; Tang, Xiaohong; Yin, Huanling; Liao, Congyun; Long, Kun

    2014-02-01

    The study of a 300-cm-thick exposed lacustrine sediment section in the Hedong village in Zhaoqing area which is located in sub-tropical west Guangdong Province in South China, demonstrates that the lacustrine sedimentary sequence possibly contains evidence for exploring variation of Asian monsoon climate. Multi-proxy records, including the humification intensity, total organic carbon, and grain size fractions, reveal a general trend towards dry and cold conditions in the late Holocene that this is because of a decrease in solar insolation on an orbital scale. Three intensified Asian summer monsoon (ASM) intervals (˜3300-3000 cal yr BP, ˜2600-1600 cal yr BP, and ˜900-600 cal yr BP), and three weakened ASM intervals (˜4000-3300 cal yr BP, ˜3000-2600 cal yr BP, and ˜1600-900 cal yr BP) are identified. Our humification record (HDcal) shows a good correlation on multi-centennial scale with the tree ring Δ14C record, a proxy of solar activity. A spectral analysis of HDcal reveals four significant cycles, i.e., ˜1250 yr, 300 yr, 110 yr, and 70 yr, and most of these cycles are related to the solar activity. Our findings indicate that solar output and oceanic-atmospheric circulation probably have influenced the late Holocene climate variability in the study region.

  7. Constraining the temperature history of the past millennium using early instrumental observations

    NASA Astrophysics Data System (ADS)

    Brohan, P.

    2012-12-01

    The current assessment that twentieth-century global temperature change is unusual in the context of the last thousand years relies on estimates of temperature changes from natural proxies (tree-rings, ice-cores etc.) and climate model simulations. Confidence in such estimates is limited by difficulties in calibrating the proxies and systematic differences between proxy reconstructions and model simulations - notable differences include large differences in multi-decadal variability between proxy reconstructions, and big uncertainties in the effect of volcanic eruptions. Because the difference between the estimates extends into the relatively recent period of the early nineteenth century it is possible to compare them with a reliable instrumental estimate of the temperature change over that period, provided that enough early thermometer observations, covering a wide enough expanse of the world, can be collected. By constraining key aspects of the reconstructions and simulations, instrumental observations, inevitably from a limited period, can reduce reconstruction uncertainty throughout the millennium. A considerable quantity of early instrumental observations are preserved in the world's archives. One organisation which systematically made observations and collected the results was the English East-India Company (EEIC), and 900 log-books of EEIC ships containing daily instrumental measurements of temperature and pressure have been preserved in the British Library. Similar records from voyages of exploration and scientific investigation are preserved in published literature and the records in National Archives. Some of these records have been extracted and digitised, providing hundreds of thousands of new weather records offering an unprecedentedly detailed view of the weather and climate of the late eighteenth and early nineteenth centuries. The new thermometer observations demonstrate that the large-scale temperature response to the Tambora eruption and the 1809 eruption was modest (perhaps 0.5C). This provides a powerful out-of-sample validation for the proxy reconstructions --- supporting their use for longer-term climate reconstructions. However, some of the climate model simulations in the CMIP5 ensemble show much larger volcanic effects than this --- such simulations are unlikely to be accurate in this respect.

  8. Tropical Pacific climate during the Medieval Climate Anomaly: progress and pitfalls

    NASA Astrophysics Data System (ADS)

    Cobb, K. M.; Westphal, N.; Charles, C.; Sayani, H. R.; Edwards, R. L.; Cheng, H.; Grothe, P. R.; Chen, T.; Hitt, N. T.; O'Connor, G.; Atwood, A. R.

    2016-12-01

    A vast trove of paleoclimate records indicates that the Medieval Climate Anomaly (MCA; 900-1200AD) was characterized by relative warmth throughout the Northern Hemisphere and significant hydroclimate anomalies - particularly well-resolved over North America - that posed a challenge to human populations. The global-scale nature of the climate anomalies has driven speculation that the tropical Pacific, with its rich spectrum of natural variability and far-reaching impact, may have undergone a prolonged reorganization during the MCA. While some key records from across the tropical Pacific document significant changes in temperature and/or hydrology, a dynamically-consistent picture of the MCA tropical Pacific climate state has proven elusive. In particular, there are few if any robust paleoclimate constraints from the central Pacific, where even modest changes in ocean temperature translate into distinct patterns of global atmospheric teleconnections. Here, we present a new collection of fossil coral multi-proxy records from Christmas Island (2N, 157W) that provide robust constraints on both temperature and hydrological changes during the MCA. We employ both modern coral data, instrumental climate data, and climate model output in developing a framework for quantifying the uncertainties associated with the new fossil coral data. In doing so, we illustrate the clear benefits of modern environmental monitoring campaigns that inform the generation of paleoclimate pseudo-proxies.

  9. Stratigraphic framework for Pliocene paleoclimate reconstruction: The correlation conundrum

    USGS Publications Warehouse

    Dowsett, H.J.; Robinson, M.M.

    2006-01-01

    Pre-Holocene paleoclimate reconstructions face a correlation conundrum because complications inherent in the stratigraphic record impede the development of synchronous reconstruction. The Pliocene Research, Interpretation and Synoptic Mapping (PRISM) paleoenvironmental reconstructions have carefully balanced temporal resolution and paleoclimate proxy data to achieve a useful and reliable product and are the most comprehensive pre-Pleistocene data sets available for analysis of warmer-than-present climate and for climate modeling experiments. This paper documents the stratigraphic framework for the mid-Pliocene sea surface temperature (SST) reconstruction of the North Atlantic and explores the relationship between stratigraphic/temporal resolution and various paleoceanographic estimates of SST. The magnetobiostratigraphic framework for the PRISM North Atlantic region is constructed from planktic foraminifer, calcareous nannofossil and paleomagnetic reversal events recorded in deep-sea cores and calibrated to age. Planktic foraminifer census data from multiple samples within the mid-Pliocene yield multiple SST estimates for each site. Extracting a single SST value at each site from multiple estimates, given the limitations of the material and stratigraphic resolution, is problematic but necessary for climate model experiments. The PRISM reconstruction, unprecedented in its integration of many different types of data at a focused stratigraphic interval, utilizes a time slab approach and is based on warm peak average temperatures. A greater understanding of the dynamics of the climate system and significant advances in models now mandate more precise, globally distributed yet temporally synchronous SST estimates than are available through averaging techniques. Regardless of the precision used to correlate between sequences within the midd-Pliocene, a truly synoptic reconstruction in the temporal sense is unlikely. SST estimates from multiple proxies promise to further refine paleoclimate reconstructions but must consider the complications associated with each method, what each proxy actually records, and how these different proxies compare in time-averaged samples.

  10. A global perspective on Glacial- to Interglacial variability change

    NASA Astrophysics Data System (ADS)

    Rehfeld, Kira; Münch, Thomas; Ho, Sze Ling; Laepple, Thomas

    2017-04-01

    Changes in climate variability are more important for society than changes in the mean state alone. While we will be facing a large-scale shift of the mean climate in the future, its implications for climate variability are not well constrained. Here we quantify changes in temperature variability as climate shifted from the Last Glacial cold to the Holocene warm period. Greenland ice core oxygen isotope records provide evidence of this climatic shift, and are used as reference datasets in many palaeoclimate studies worldwide. A striking feature in these records is pronounced millennial variability in the Glacial, and a distinct reduction in variance in the Holocene. We present quantitative estimates of the change in variability on 500- to 1500-year timescales based on a global compilation of high-resolution proxy records for temperature which span both the Glacial and the Holocene. The estimates are derived based on power spectral analysis, and corrected using estimates of the proxy signal-to-noise ratios. We show that, on a global scale, variability at the Glacial maximum is five times higher than during the Holocene, with a possible range of 3-10 times. The spatial pattern of the variability change is latitude-dependent. While the tropics show no changes in variability, mid-latitude changes are higher. A slight overall reduction in variability in the centennial to millennial range is found in Antarctica. The variability decrease in the Greenland ice core oxygen isotope records is larger than in any other proxy dataset. These results therefore contradict the view of a globally quiescent Holocene following the instable Glacial, and imply that, in terms of centennial to millennial temperature variability, the two states may be more similar than previously thought.

  11. The Relationship Between the Zonal Mean ITCZ and Regional Precipitation during the mid-Holocene

    NASA Astrophysics Data System (ADS)

    Niezgoda, K.; Noone, D.; Konecky, B.

    2017-12-01

    Characteristics of the zonal mean Tropical Rain Belt (TRB, i.e. the ITCZ + the land-based monsoons) are often inferred from individual proxy records of precipitation or other hydroclimatic variables. However, these inferences can be misleading. Here, an isotope-enabled climate model simulation is used to evaluate metrics of the zonal mean ITCZ vs. regional hydrological characteristics during the mid-Holocene (MH, 6 kya). The MH provides a unique perspective on the relationship between the ITCZ and regional hydrology because of large, orbitally-driven shifts in tropical precipitation as well as a critical mass of proxy records. By using a climate model with simulated water isotopes, characteristics of atmospheric circulation and water transport processes can be inferred, and comparison with isotope proxies can be made more directly. We find that estimations of the zonal-mean ITCZ are insufficient for evaluating regional responses of hydrological cycles to forcing changes. For example, one approximation of a 1.5-degree northward shift in the zonal-mean ITCZ position during the MH corresponded well with northward shifts in maximum rainfall in tropical Africa, but did not match southward shifts in the tropical Pacific or longitudinal shifts in the Indian monsoon region. In many regions, the spatial distribution of water vapor isotopes suggests that changes in moisture source and atmospheric circulation were a greater influence on precipitation distribution, intensity, and isotope ratio than the average northward shift in ITCZ latitude. These findings reinforce the idea that using tropical hydrological proxy records to infer zonal-mean characteristics of the ITCZ may be misleading. Rather, tropical proxy records of precipitation, particularly those that record precipitation isotopes, serve as a guideline for regional hydrological changes while model simulations can put them in the context of zonal mean tropical convergence.

  12. Lacustrine lignin biomarker record reveals a severe drought during the late Younger Dryas in southern Taiwan

    NASA Astrophysics Data System (ADS)

    Ding, Xiaodong; Bao, Hongyan; Zheng, Liwei; Li, Dawei; Kao, Shuh-Ji

    2017-03-01

    The Younger Dryas (YD) event, which punctuated the last glacial-Holocene transition period and had a profound impact on global climate, is the most well studied millennial-scale climate event although the triggering mechanism remains debate. Weakened Asian summer monsoon during the YD is recorded in oxygen isotopes of stalagmite from Mainland China. However, lacustrine climate record of the YD event has not been reported from the subtropical land-ocean boundary of the Asian continent near the Pacific warm pool. We provide a lignin biomarker record covering the last deglaciation and early Holocene (17-9 ka BP) from the Dongyuan Lake, southern Taiwan, located at the frontal zone of typhoon invasion. The lignin phenol ratio S/V shows that the vegetation in the catchments had shifted from gymnosperm dominant to angiosperm dominant plants since 12.2 ka BP. Significantly decreased lignin concentrations (TLP and λ8) and elevated lignin degradation parameters ((Ad/Al)v, P/(V + S), DHBA/V) in combination with other organic proxies (TOC, δ13Corg) during the late YD suggest a severe drought had occurred in southern Taiwan during this specific period. Changes in the lignin proxies from the Dongyuan Lake lagged the climate changes registered in stalagmite records by around 500-800 years, suggesting a slow response of vegetation and soil processes to rapid climate changes.

  13. Multi-proxy records of Eocene vegetation and climatic dynamics from North America

    NASA Astrophysics Data System (ADS)

    Sheldon, N. D.; Smith, S. Y.; Stromberg, C. A.; Hyland, E.; Miller, L. A.

    2010-12-01

    The Eocene is characterized by a “thermal maximum” in the early part, and a shift to “icehouse” conditions by the end of the epoch. Consequently, this is an interesting time to look at vegetation dynamics and understanding plant responses to environmental change, especially as refinement of global climate models is needed if we are to understand future climate change impacts. Paleobotanical evidence, such as phytoliths (plant silica bodies), and paleoenvironmental indicators, such as paleosols, offer an opportunity to study vegetation composition and dynamics in the absence of macrofossils on a variety of spatial and temporal scales. To examine the interaction between paleoclimatic/paleoenvironmental changes and paleovegetation changes, we will compare and contrast two well-dated, high-resolution, multi-proxy records from North America. The margins of the Green River Basin system during the Early Eocene Climatic Optimum (53-50 Ma) are an extremely important location for understanding ecological composition and potential climatic drivers of North American floral diversification, because this area is widely considered the point of origin for many modern grass clades. We examined paleosols preserved in the fluvial, basin-margin Wasatch Formation preserved near South Pass, Wyoming. Field identification of the paleosols indicated a suite that includes Entisols, Inceptisols, and Alfisols. To reconstruct paleovegetation, pedogenic carbonates were analyzed isotopically, and samples were collected and extracted for phytoliths . By combining these paleobotanical proxies with quantitative climatic proxies on whole rock geochemistry, we will present an integrated vegetation-climate history of the EECO at the margins of the Green River Basin. Second, we will present high-resolution record of vegetation patterns based on phytoliths from a section of the Renova Formation, Timberhills region, Montana dated to 39.2 ± 3 Ma. The section is composed of Alfisols, Entisols, Inceptisols, and composite paleosols superimposed onto floodplain sediments. Phytoliths from 27 paleosol horizons were extracted to reconstruct a high-resolution vegetation history. Phytolith morphotypes are predominantly from forest plants, confirming the presence of forests in Montana ~40 Ma. Tropical elements such as palms (Arecaceae) and spiral gingers (Costaceae) are present throughout the section, suggesting this was a paratropical forest. The high-resolution sampling demonstrates that vegetation shifts between three main dominant plant types: woody forest plants, Costaceae, and grasses. The heterogeneity is likely due to succession and vegetation patchiness. High proportions of grasses are correlated with low numbers of aquatic biosilica (diatoms, sponge spicules, chrysophytes) that suggests that these grasses were tolerant of relatively drier conditions, while Costaceae today inhabit forest gaps and margins so represent a specific microhabitat associated with the forest plants. Taken in concert, these two new studies provide examples of high-resolution, multi-proxy records of paleovegetation that can be compared with regional paleoclimatic reconstructions to examine the interplay between climatic and biotic change.

  14. Norwegian fjord sediments reveal NAO related winter temperature and precipitation changes of the past 2800 years

    NASA Astrophysics Data System (ADS)

    Faust, Johan C.; Fabian, Karl; Milzer, Gesa; Giraudeau, Jacques; Knies, Jochen

    2016-02-01

    The North Atlantic Oscillation (NAO) is the leading mode of atmospheric circulation variability in the North Atlantic region. Associated shifts of storm tracks, precipitation and temperature patterns affect energy supply and demand, fisheries and agricultural, as well as marine and terrestrial ecological dynamics. Long-term NAO records are crucial to better understand its response to climate forcing factors, and assess predictability and shifts associated with ongoing climate change. A recent study of instrumental time series revealed NAO as main factor for a strong relation between winter temperature, precipitation and river discharge in central Norway over the past 50 years. Here we compare geochemical measurements with instrumental data and show that primary productivity recorded in central Norwegian fjord sediments is sensitive to NAO variability. This observation is used to calibrate paleoproductivity changes to a 500-year reconstruction of winter NAO (Luterbacher et al., 2001). Conditioned on a stationary relation between our climate proxy and the NAO we establish a first high resolution NAO proxy record (NAOTFJ) from marine sediments covering the past 2800 years. The NAOTFJ shows distinct co-variability with climate changes over Greenland, solar activity and Northern Hemisphere glacier dynamics as well as climatically associated paleo-demographic trends. The here presented climate record shows that fjord sediments provide crucial information for an improved understanding of the linkages between atmospheric circulation, solar and oceanic forcing factors.

  15. Combined terrestrial and marine biomarker records from an Icelandic fjord: insights into Holocene climate drivers and marine/ terrestrial responses

    NASA Astrophysics Data System (ADS)

    Moossen, H. M.; Seki, O.; Quillmann, U.; Andrews, J. T.; Bendle, J. A.

    2012-12-01

    Holocene climate change has affected human cultures throughout at least the last 4000 years (D'Andrea et al., 2011). Today, studying Holocene climate variability is important, both to constrain the influence of climate change on ancient cultures and to place contemporary climate change in a historic context. Organic geochemical biomarkers are an ideal tool to study how climatic changes have affected terrestrial and marine ecosystems, as a host of different biomarker based climate proxies have emerged over recent years. Applying the available biomarker proxies on sediment cores from fjordic environments facilitates the study of how climate has affected terrestrial and marine ecosystems, and how these ecosystems have interacted. Ìsafjardardjúp fjord in Northwest Iceland is an ideal location to study North Atlantic Holocene climate change because the area is very sensitive to changes in the oceanic and atmospheric current systems (Hurrell, 1995; Quillmann et al., 2010). In this study we present high resolution (1 sample/30 calibrated years) terrestrial and marine biomarker records from a 38 m sediment core from Ìsafjardardjúp fjord covering the Holocene. We reconstruct sea surface temperature variations using the alkenone derived UK'37 proxy. Air temperature changes are reconstructed using the GDGT derived MBT/CBT palaeothermometer. We use the average chain length (ACL) variability of n-alkanes derived from terrestrial higher plant leaf waxes to reconstruct changing precipitation regimes. The relationship between ACL and precipitation is confirmed by comparing it with the δD signature of the C29 n-alkane and soil pH changes inferred by the CBT proxy. The combined sea surface and air temperature and precipitation records indicate that different climate changing drivers were dominant at different stages of the Holocene. Sea surface temperatures were strongly influenced by the melting of the remaining glaciers from the last glacial maximum throughout the early Holocene, while air temperatures were influenced by high solar insolation. The central Holocene climate is mainly driven by decreasing northern hemisphere insolation, while the lateral transport of energy from the equator into the North Atlantic region drives climate change in the late Holocene. D'Andrea, W.J., Huang, Y., Fritz, S.C., Anderson, N.J., (2011) Abrupt Holocene climate change as an important factor for human migration in West Greenland. Proceedings of the National Academy of Sciences of the United States of America, 108(24), 9765-9769. Hurrell, J.W., (1995) Decadal trends in the North Atlantic Oscillation - Regional temperatures and precipitation. Science, 269(5224), 676-679. Quillmann, U., Jennings, A., Andrews, J., (2010) Reconstructing Holocene palaeoclimate and palaeoceanography in Isafjaroardjup, northwest Iceland, from two fjord records overprinted by relative sea-level and local hydrographic changes. Journal of Quaternary Science, 25(7), 1144-1159.

  16. A multi-proxy intercomparison of environmental change in two maar lake records from central Turkey during the last 14 ka

    NASA Astrophysics Data System (ADS)

    Roberts, C. Neil; Allcock, Samantha L.; Arnaud, Fabien; Dean, Jonathan R.; Eastwood, Warren J.; Jones, Matthew D.; Leng, Melanie J.; Metcalfe, Sarah E.; Malet, Emmanuel; Woodbridge, Jessie; Yiǧitbaşıoǧlu, Hakan

    2016-04-01

    Individual palaeoenvironmental records are a combination of regional-scale (e.g. climatic) and local factors. In order to separate these signals, we compare multiple proxies from two nearby maar lake records, on the assumption that common signals are due to regional-scale forcing. On the other side, we infer that residual signals are likely to be local and site-specific, rather than reflecting regional climate changes. A new core sequence from Nar lake has been dated by varve counting and U-Th as covering the last 13,800 years (Dean et al., 2015; Roberts et al., 2016). Periods of marked dryness are associated with peaks in Mg/dolomite, elevated Diatom-Inferred Electrical Conductivity, an absence of laminated sediments, and low Quercus/chenopod ratios. These conditions occurred during the Late-Glacial stadial, at 4.3-3.7 and 3.2-2.6 ka BP. Wet phases occurred during the early Holocene and again 1.5-0.6 ka, characterised by negative δ18O values, calcite precipitation, high Ca/Sr ratios, a high % of planktonic diatoms, laminated sediments, and high Quercus/chenopod ratios. Comparison with the independently dated record from Eski Acıgöl (Roberts et al., 2001) shows good correspondence for many proxies, especially for δ18O. A ranking of multiple proxies shows the worst correspondence is for clastic lithogenic elements (e.g. Ti flux). Differences between the two lake records are caused by basin infilling at Eski Acıgöl, which fails to register climatic changes during the last 2 ka, and to catchment erosion and increased flux of lithogenic elements into Nar lake; this is catchment-specific and primarily anthropogenic rather than climatic in origin. In separating a regional signal from site-specific "noise", two lakes may therefore be better than one. Dean, J.R. et al. 2015 Eastern Mediterranean hydroclimate over the late glacial and Holocene, reconstructed from the sediments of Nar lake, central Turkey, using stable isotopes and carbonate mineralogy. Quaternary Science Reviews 124, 162-174. Roberts, N et al. 2001 The tempo of Holocene climatic change in the eastern Mediterranean region: new high-resolution crater-lake sediment data from central Turkey. The Holocene 11, 721-736. Roberts, N., et al 2016 in press, A tale of two lakes: a multi-proxy comparison of Late Glacial and Holocene environmental change in Cappadocia, Turkey. Journal of Quaternary Science

  17. Evaluation of PMIP2 and PMIP3 simulations of mid-Holocene climate in the Indo-Pacific, Australasian and Southern Ocean regions

    NASA Astrophysics Data System (ADS)

    Ackerley, Duncan; Reeves, Jessica; Barr, Cameron; Bostock, Helen; Fitzsimmons, Kathryn; Fletcher, Michael-Shawn; Gouramanis, Chris; McGregor, Helen; Mooney, Scott; Phipps, Steven J.; Tibby, John; Tyler, Jonathan

    2017-11-01

    This study uses the simplified patterns of temperature and effective precipitation approach from the Australian component of the international palaeoclimate synthesis effort (INTegration of Ice core, MArine and TErrestrial records - OZ-INTIMATE) to compare atmosphere-ocean general circulation model (AOGCM) simulations and proxy reconstructions. The approach is used in order to identify important properties (e.g. circulation and precipitation) of past climatic states from the models and proxies, which is a primary objective of the Southern Hemisphere Assessment of PalaeoEnvironment (SHAPE) initiative. The AOGCM data are taken from the Paleoclimate Modelling Intercomparison Project (PMIP) mid-Holocene (ca. 6000 years before present, 6 ka) and pre-industrial control (ca. 1750 CE, 0 ka) experiments. The synthesis presented here shows that the models and proxies agree on the differences in climate state for 6 ka relative to 0 ka, when they are insolation driven. The largest uncertainty between the models and the proxies occurs over the Indo-Pacific Warm Pool (IPWP). The analysis shows that the lower temperatures in the Pacific at around 6 ka in the models may be the result of an enhancement of an existing systematic error. It is therefore difficult to decipher which one of the proxies and/or the models is correct. This study also shows that a reduction in the Equator-to-pole temperature difference in the Southern Hemisphere causes the mid-latitude westerly wind strength to reduce in the models; however, the simulated rainfall actually increases over the southern temperate zone of Australia as a result of higher convective precipitation. Such a mechanism (increased convection) may be useful for resolving disparities between different regional proxy records and model simulations. Finally, after assessing the available datasets (model and proxy), opportunities for better model-proxy integrated research are discussed.

  18. Climate change response of great basin bristlecone pine in the Nevada NSF-EPSCoR Project (www.nvclimatechange.org)

    Treesearch

    Franco Biondi; Scotty Strachan

    2011-01-01

    Predicting the future of high-elevation pine populations is closely linked to correctly interpreting their past responses to climatic variability. As a proxy index of climate, dendrochronological records have the advantage of seasonal to annual resolution over multiple centuries to millennia (Bradley 1999). All climate reconstructions rely on the 'uniformity...

  19. Strong evidence for the influence of solar cycles on a Late Miocene lake system revealed by biotic and abiotic proxies

    PubMed Central

    Kern, A.K.; Harzhauser, M.; Piller, W.E.; Mandic, O.; Soliman, A.

    2012-01-01

    The Late Miocene paleogeography of central Europe and its climatic history are well studied with a resolution of c. 106 years. Small-scale climatic variations are yet unresolved. Observing past climatic change of short periods, however, would encourage the understanding of the modern climatic system. Therefore, past climate archives require a resolution on a decadal to millennial scale. To detect such a short-term evolution, a continuous 6-m-core of the Paleo-Lake Pannon was analyzed in 1-cm-sample distance to provide information as precise and regular as possible. Measurements of the natural gamma radiation and magnetic susceptibility combined with the total abundance of ostracod shells were used as proxies to estimate millennial- to centennial scale environmental changes during the mid-Tortonian warm period. Patterns emerged, but no indisputable age model can be provided for the core, due to the lack of paleomagnetic reversals and the lack of minerals suitable for absolute dating. Therefore, herein we propose another method to determine a hypothetic time frame for these deposits. Based on statistical processes, including Lomb–Scargle and REDFIT periodograms along with Wavelet spectra, several distinct cyclicities could be detected. Calculations considering established off-shore sedimentation rates of the Tortonian Vienna Basin revealed patterns resembling Holocene solar-cycle-records well. The comparison of filtered data of Miocene and Holocene records displays highly similar patterns and comparable modulations. A best-fit adjustment of sedimentation rate results in signals which fit to the lower and upper Gleissberg cycle, the de Vries cycle, the unnamed 500-year- and 1000-year-cycles, as well as the Hallstatt cycle. Each of these cycles has a distinct and unique expression in the investigated environmental proxies, reflecting a complex forcing-system. Hence, a single-proxy-analysis, as often performed on Holocene records, should be considered cautiously as it might fail to capture the full range of solar cycles. PMID:23564975

  20. Mineralogical evidence of reduced East Asian summer monsoon rainfall on the Chinese loess plateau during the early Pleistocene interglacials

    NASA Astrophysics Data System (ADS)

    Meng, Xianqiang; Liu, Lianwen; Wang, Xingchen T.; Balsam, William; Chen, Jun; Ji, Junfeng

    2018-03-01

    The East Asian summer monsoon (EASM) is an important component of the global climate system. A better understanding of EASM rainfall variability in the past can help constrain climate models and better predict the response of EASM to ongoing global warming. The warm early Pleistocene, a potential analog of future climate, is an important period to study EASM dynamics. However, existing monsoon proxies for reconstruction of EASM rainfall during the early Pleistocene fail to disentangle monsoon rainfall changes from temperature variations, complicating the comparison of these monsoon records with climate models. Here, we present three 2.6 million-year-long EASM rainfall records from the Chinese Loess Plateau (CLP) based on carbonate dissolution, a novel proxy for rainfall intensity. These records show that the interglacial rainfall on the CLP was lower during the early Pleistocene and then gradually increased with global cooling during the middle and late Pleistocene. These results are contrary to previous suggestions that a warmer climate leads to higher monsoon rainfall on tectonic timescales. We propose that the lower interglacial EASM rainfall during the early Pleistocene was caused by reduced sea surface temperature gradients across the equatorial Pacific, providing a testable hypothesis for climate models.

  1. New directions in hydro-climatic histories: observational data recovery, proxy records and the atmospheric circulation reconstructions over the earth (ACRE) initiative in Southeast Asia

    NASA Astrophysics Data System (ADS)

    Williamson, Fiona; Allan, Rob; Switzer, Adam D.; Chan, Johnny C. L.; Wasson, Robert James; D'Arrigo, Rosanne; Gartner, Richard

    2015-12-01

    The value of historic observational weather data for reconstructing long-term climate patterns and the detailed analysis of extreme weather events has long been recognized (Le Roy Ladurie, 1972; Lamb, 1977). In some regions however, observational data has not been kept regularly over time, or its preservation and archiving has not been considered a priority by governmental agencies. This has been a particular problem in Southeast Asia where there has been no systematic country-by-country method of keeping or preserving such data, the keeping of data only reaches back a few decades, or where instability has threatened the survival of historic records. As a result, past observational data are fragmentary, scattered, or even absent altogether. The further we go back in time, the more obvious the gaps. Observational data can be complimented however by historical documentary or proxy records of extreme events such as floods, droughts and other climatic anomalies. This review article highlights recent initiatives in sourcing, recovering, and preserving historical weather data and the potential for integrating the same with proxy (and other) records. In so doing, it focuses on regional initiatives for data research and recovery - particularly the work of the international Atmospheric Circulation Reconstructions over the Earth's (ACRE) Southeast Asian regional arm (ACRE SEA) - and the latter's role in bringing together disparate, but interrelated, projects working within this region. The overarching goal of the ACRE SEA initiative is to connect regional efforts and to build capacity within Southeast Asian institutions, agencies and National Meteorological and Hydrological Services (NMHS) to improve and extend historical instrumental, documentary and proxy databases of Southeast Asian hydroclimate, in order to contribute to the generation of high-quality, high-resolution historical hydroclimatic reconstructions (reanalyses) and, to build linkages with humanities researchers working on issues in environmental and climatic history in the region. Thus, this article also highlights the inherent value of multi/cross/inter-disciplinary projects in providing better syntheses and understanding of human and environmental/climatic variability and change.

  2. Differential proxy responses to late Allerød and early Younger Dryas climatic change recorded in varved sediments of the Trzechowskie palaeolake in Northern Poland

    NASA Astrophysics Data System (ADS)

    Słowiński, Michał; Zawiska, Izabela; Ott, Florian; Noryśkiewicz, Agnieszka M.; Plessen, Birgit; Apolinarska, Karina; Rzodkiewicz, Monika; Michczyńska, Danuta J.; Wulf, Sabine; Skubała, Piotr; Kordowski, Jarosław; Błaszkiewicz, Mirosław; Brauer, Achim

    2017-02-01

    High-resolution biological proxies (pollen, macrofossils, Cladocera and diatoms), geochemical data (μ-XRF element scans, TOC, C/N ratios, δ18Ocarb and δ13Corg values) and a robust chronology based on varve counting, AMS 14C dating and tephrochronology were applied to reconstruct lake system responses to rapid climatic and environmental changes of the Trzechowskie palaeolake (TRZ; Northern Poland) during the late Allerød - Younger Dryas (YD) transition. Palaeoecological and geochemical data at 5-15 years temporal resolution allowed tracing the dynamics of short-term shifts of the ecosystem triggered by abrupt climate change. The robust age control together with the high-resolution sampling allowed the detection of leads and lags between different proxies to the climate shift at the Allerød-Younger Dryas transition. Our results indicate (1) a water level decrease and an increase in wind activities during the late Allerød and the Allerød-YD transition, which caused intensified erosion in the catchment, (2) a two-decades delayed vegetation response in comparison to the lake depositional system. Comparison with the Lake Meerfelder Maar record revealed slightly different vegetation responses of the Trzechowskie palaeolake at the YD onset.

  3. A 3000-year annual-resolution record of the North Atlantic Oscillation

    NASA Astrophysics Data System (ADS)

    Kelly, B. F.; Mariethoz, G.; Hellstrom, J.; Baker, A.

    2013-12-01

    The North Atlantic Oscillation provides an index of North Atlantic climate variability. The 947-yr long annual resolution record of the North Atlantic Oscillation (NAO) of Trouet et al. (2009, Science, 324, 78-81), the NAO Morocco-Scotland index, combined tree ring and stalagmite data, the latter a single stalagmite growth rate archive from NW Scotland. Trouet et al (2009) noted the unusual persistence of the positive phase of the NAO during the Medieval Climate Anomaly (MCA; 1050-1400AD). In order to better assess the uniqueness of the persistently positive NAO in the MCA, we extend the speleothem portion of the proxy NAO record with a composite of five stalagmites from the same cave system. We present the first-ever composite speleothem growth rate record. Using a combination of lamina counting, U-Th dating, and correlation between growth rate series, we build a continuous, annual-resolution, annually laminated, stalagmite growth rates series for the last 3000 years. We use geostatistical and stochastic approaches appropriate to stalagmite growth rate time series to characterise uncertainty in the stalagmite series and to screen them for periods of relative climate sensitivity vs. periods where there is hydrologically introduced, non-climatic variability. We produce the longest annual-resolution annual lamina record of the NAO for the last 3000 years. The screened stalagmite series is compared to instrumental and proxy records of the NAO. Spectral and wavelet analysis demonstrates that the series contains significant decadal to centennial scale periodicity throughout the record. We demonstrate that the persistently positive NAO during the MCA (1080-1460 CE) is remarkable within the last 3000 years. Two other phases of persistent, positive NAO, occur at 290-550 CE and 660-530 BCE, in agreement with the lower resolution, 5,200-yr Greenland lake sediment NAO proxy (Olsen et al, 2012, Nature Geoscience, 5, 808-812).

  4. Climatic evolution of Marine Isotope Stage 5 and particularly the Eemian reconstructed from precisely dated speleothems from western Germany

    NASA Astrophysics Data System (ADS)

    Scholz, Denis; Hoffmann, Dirk L.; Spötl, Christoph; Hopcroft, Peter; Jochum, Klaus Peter; Richter, Detlev K.

    2015-04-01

    We present high-resolution δ18O, δ13C and trace element profiles for three stalagmites from western Germany, which grew during Marine Isotope Stage (MIS) 5. All stalagmites were precisely dated by MC-ICPMS 230Th/U-dating. Stalagmite HBSH-1 from Hüttenbläserschachthöhle grew between 130 and 80 ka and provides a climate record with decadal to centennial resolution. The other two stalagmites grew faster than HBSH 1, but their growth phases are shorter. Stalagmite HBSH 5 grew between 129 and 122 ka, whereas stalagmite BR 5 grew between 126 and 122 ka. The record of HBSH 1 shows four growth interruptions coinciding with Greenland Stadials (GS) 21, 22, 24, 25, and 26. This shows that stalagmite growth is a very sensitive proxy for cool and dry conditions in the northern hemisphere and enables us to precisely determine the timing and duration of the GS. We interpret stalagmite δ18O values as a proxy for supra-regional temperature changes in the North Atlantic realm, which is paticularly evident from their close resemblance with the δ18O values of the NGRIP and NEEM ice core records. Stalagmite δ13C values primarily reflect changes in hydrological balance and (local) vegetation and are, thus, a proxy for terrestrial climate change in central European. The δ13C record shows three pronounced negative peaks during MIS 5, and their timing is in agreement with MIS 5e, 5c and 5a. This suggests generally warm and humid climate in central Europe during these phases. The evolution of the δ18O and δ13C values during the Eemian is not parallel. The δ18O values progressively increase from 130 ka, peak at 125 ka and subsequently show a gradual decrease. The δ13C values, in contrast, start to decrease at 123 ka, show a negative peak at 120 ka and an aprupt increase at 114 ka. This suggests that the Eemian sensu strictu lasted from 124 to 114 ka, in agreement with a marine record from the Norwegian Sea and indicates and a strong influence on central European climate from high northern latitudes. We also compare our records with other MIS 5 climate records and climate modelling simulations performed with the general circulation model FAMOUS.

  5. Holocene climate variability in Texas, USA: An integration of existing paleoclimate data and modeling with a new, high-resolution speleothem record

    USGS Publications Warehouse

    Wong, Corinne I.; Banner, Jay L.; Musgrove, MaryLynn

    2015-01-01

    Delineating the climate processes governing precipitation variability in drought-prone Texas is critical for predicting and mitigating climate change effects, and requires the reconstruction of past climate beyond the instrumental record. We synthesize existing paleoclimate proxy data and climate simulations to provide an overview of climate variability in Texas during the Holocene. Conditions became progressively warmer and drier transitioning from the early to mid Holocene, culminating between 7 and 3 ka (thousand years ago), and were more variable during the late Holocene. The timing and relative magnitude of Holocene climate variability, however, is poorly constrained owing to considerable variability among the different records. To help address this, we present a new speleothem (NBJ) reconstruction from a central Texas cave that comprises the highest resolution proxy record to date, spanning the mid to late Holocene. NBJ trace-element concentrations indicate variable moisture conditions with no clear temporal trend. There is a decoupling between NBJ growth rate, trace-element concentrations, and δ18O values, which indicate that (i) the often direct relation between speleothem growth rate and moisture availability is likely complicated by changes in the overlying ecosystem that affect subsurface CO2 production, and (ii) speleothem δ18O variations likely reflect changes in moisture source (i.e., proportion of Pacific-vs. Gulf of Mexico-derived moisture) that appear not to be linked to moisture amount.

  6. 350 Year Cloud Reconstruction Deduced from Northeast Caribbean Coral Proxies

    NASA Astrophysics Data System (ADS)

    Winter, A.; Sammarco, P. W.; Mikolajewicz, U.; Jury, M.; Zanchettin, D.

    2014-12-01

    Clouds are a major factor influencing the global climate and its response to external forcing through their implications for the global hydrological cycle, and hence for the planetary radiative budget. Clouds also contribute to regional climates and their variability through, e.g., the changes they induce in regional precipitation patterns. There have been very few studies of decadal and longer-term changes in cloud cover in the tropics and sub-tropics, both over land and the ocean. In the tropics, there is great uncertainty regarding how global warming will affect cloud cover. Observational satellite data are too short to unambiguously discern any temporal trends in cloud cover. Corals generally live in well-mixed coastal regions and can often record environmental conditions of large areas of the upper ocean. This is particularly the case at low latitudes. Scleractinian corals are sessile, epibenthic fauna, and the type of environmental information recorded at the location where the coral has been living is dependent upon the species of coral considered and proxy index of interest. Skeletons of scleractinian corals are considered to provide among the best records of high-resolution (sub-annual) environmental variability in the tropical and sub-tropical oceans. Zooxanthellate hermatypic corals in tropical and sub-tropical seas precipitate CaCO3 skeletons as they grow. This growth is made possible through the manufacture of CaCO3crystals, facilitated by the zooxanthellae. During the process of crystallization, the holobiont binds carbon of different isotopes into the crystals. Stable carbon isotope concentrations vary with a variety of environmental conditions. In the Caribbean, d13C in corals of the species Montastraea faveolata can be used as a proxy for changes in cloud cover. In this contribution, we will demonstrate that the stable isotope 13C varies concomitantly with cloud cover for the northeastern Caribbean region. Using this proxy we have been able to reconstruct cloud cover conditions back to the year 1760 and thus determine historical cloud cover prior to the recent use of instrumental records. We will also discuss how our coral proxy record of cloud cover compares to paleo-climate model runs for the same time period.

  7. Hydroclimate of North Island of New Zealand during the last 45,000 Years.

    NASA Astrophysics Data System (ADS)

    Piatrunia, N.; Shanahan, T. M.; Augustinus, P. M.; Atkins, D.; Huang, Y.

    2016-12-01

    Southern hemisphere climate variability and its connection with past changes in the northern hemisphere remains poorly understood. While climate conditions in the polar regions are well-studied, the spatial and temporal resolution of existing southern hemisphere mid-latitude records is limited. New Zealand provides an ideal location for the preservation of high-resolution multi-proxy records in lacustrine cores and the analysis of mid-latitude climate throughout the Holocene and beyond. Here, we present a 45,000-year record of plant wax dD (a proxy for precipitation) and branched GDGT-derived temperatures from Lake Pupuke, on the North Island of New Zealand (36°78.30'S, 174°76.70'E) in order to better constrain changes in the climate of the southern hemisphere mid latitudes. We find that during the last glacial the North Island experienced colder and drier conditions, with temperatures that were > 3.5°C cooler than those experienced during the Holocene. Plant wax dD values vary substantially during the glacial interval, with the most enriched values occurring at 21 kyr and 24.5 kyr. Shifts to more arid conditions during these intervals were associated with intensification of the SH westerlies and the northward migration of the subtropical (STF), subpolar (SPF) and polar fronts (PF). The Lake Pupuke record suggests that deglaciation of New Zealand initiated at 18 kyr, with gradual increases in temperature. dD values continue to decrease gradually through the deglaciation, suggesting a linear response of precipitation to insolation forcing. However, temperature increases abruptly during the Bolling-Allerod warming - coincident with changes in the northern hemisphere. Together, these data suggest a decoupling of the controls on deglacial circulation and temperature changes, with important implications for our understanding of the mechanisms of deglacial climate changes in the southern hemisphere mid-latitudes and the interpretation of proxy records from this region.

  8. Late Quaternary Variability of Arctic Sea Ice: Insights From Biomarker Proxy Records and Model Simulations

    NASA Astrophysics Data System (ADS)

    Stein, R. H.; Fahl, K.; Gierz, P.; Niessen, F.; Lohmann, G.

    2017-12-01

    Over the last about four decades, coinciding with global warming and atmospheric CO2increase, the extent and thickness of Arctic sea ice has decreased dramatically, a decrease much more rapid than predicted by climate models. The driving forces of this change are still not fully understood. In this context, detailed paleoclimatic records going back beyond the timescale of direct observations, i.e., high-resolution Holocene records but also records representing more distant warm periods, may help to to distinguish and quantify more precisely the natural and anthropogenic greenhouse gas forcing of global climate change and related sea ice decrease. Here, we concentrate on sea ice biomarker records representing the penultimate glacial/last interglacial (MIS 6/MIS 5e) and the Holocene time intervals. Our proxy records are compared with climate model simulations using a coupled atmosphere-ocean general circulation model (AOGCM). Based on our data, polynya-type sea ice conditions probably occurred off the major ice sheets along the northern Barents and East Siberian continental margins during late MIS 6. Furthermore, we demonstrate that even during MIS 5e, i.e., a time interval when the high latitudes have been significantly warmer than today, sea ice existed in the central Arctic Ocean during summer, whereas sea ice was significantly reduced along the Barents Sea continental margin influenced by Atlantic Water inflow. Assuming a closed Bering Strait (no Pacific Water inflow) during early MIS 5, model simulations point to a significantly reduced sea ice cover in the central Arctic Ocean, a scenario that is however not supported by the proxy record and thus seems to be less realistic. Our Holocene biomarker proxy records from the Chukchi Sea indicate that main factors controlling the millennial Holocene variability in sea ice are probably changes in surface water and heat flow from the Pacific into the Arctic Ocean as well as the long-term decrease in summer insolation. Here, increased Pacific Water inflow (and heat flux) may have triggered the contemporaneous decrease in sea ice and maximum surface-water productivity during mid-Holocene times.

  9. Novel approaches to reducing uncertainty in regional climate predictions (Invited)

    NASA Astrophysics Data System (ADS)

    Ammann, C. M.

    2009-12-01

    Regional planning in preparation for future climate changes is rapidly gaining importance. However, compared to the global mean projections, correctly anticipating regional climate is often much more difficult, particularly with regard to hydrologic changes. The reason for the high, inherent uncertainty in location specific forecasts arises on one hand from the superposition of large internal variability in the atmosphere-ocean system on the more gradual changes. On the other hand, this problem is confounded by the fact that regional climate records are often short and therefore offer little guidance as to how an underlying trend can be identified within the noise. The use of indirect climate information (proxy records) from a host of natural archives has made significant progress recently. Based on an extended record, process studies can help reveal the regional response to changes in large scale climate that likely have to be expected. But in order to come up with robust, season and parameter specific (temperature versus moisture) climate reconstructions, comprehensive data compilations are needed that integrate proxy records of different characteristics, temporal representations, and different systematic and sampling uncertainties. Based on understanding of physical processes, and making explicit use of that knowledge, new dynamical and statistical techniques in paleoclimatology are being developed and explored. In addition to improved estimates of the past climate, the cascade of uncertainties is directly taken into account so that errors can more comprehensively be assessed. A brief overview of the problems and its potential implications for regional planning is followed by an application that demonstrates how collaboration between paleoclimatologists, climate modelers and statisticians can advance our understanding of the climate system and how agencies, businesses and individuals might be able to make better informed decisions in preparation for future climate.

  10. Calcareous microfossil-based orbital cyclostratigraphy in the Arctic Ocean

    USGS Publications Warehouse

    Marzen, Rachel; DeNinno, Lauren H.; Cronin, Thomas M.

    2016-01-01

    Microfaunal and geochemical proxies from marine sediment records from central Arctic Ocean (CAO) submarine ridges suggest a close relationship over the last 550 thousand years (kyr) between orbital-scale climatic oscillations, sea-ice cover, marine biological productivity and other parameters. Multiple paleoclimate proxies record glacial to interglacial cycles. To understand the climate-cryosphere-productivity relationship, we examined the cyclostratigraphy of calcareous microfossils and constructed a composite Arctic Paleoclimate Index (API) "stack" from benthic foraminiferal and ostracode density from 14 sediment cores. Following the hypothesis that API is driven mainly by changes in sea-ice related productivity, the API stack shows the Arctic experienced a series of highly productive interglacials and interstadials every ∼20 kyr. These periods signify minimal ice shelf and sea-ice cover and maximum marine productivity. Rapid transitions in productivity are seen during shifts from interglacial to glacial climate states. Discrepancies between the Arctic API curves and various global climatic, sea-level and ice-volume curves suggest abrupt growth and decay of Arctic ice shelves related to climatic and sea level oscillations.

  11. Tales from the South (and West) Pacific in the Common Era: A Climate Proxy Perspective (Invited)

    NASA Astrophysics Data System (ADS)

    Quinn, T. M.; Taylor, F. W.; Partin, J. W.; Maupin, C. R.; Hereid, K. A.; Gorman, M. K.

    2010-12-01

    The southwest Pacific is a major source of tropical climate variability through heat and moisture exchanges associated with the Western Pacific Warm Pool (WPWP) and the South Pacific Convergence Zone (SPCZ). These variations are especially significant at the annual, interannual (El Niño-Southern Oscillation, ENSO), and multi-decadal timescales. Gridded SST data products are available in the pre-satellite era in this region for the past ~130 years, although data density is a significant issue for the older half of these records. Time series of salinity (SSS) and rainfall from this region are exceedingly rare. Thus, climate proxy records must be used to reconstruct SST, SSS, and rainfall variations in the Common Era (CE) in the tropical Pacific. The analytical laboratory for paleoclimate studies at UT has focused its research efforts into producing climate proxy time series from southwest tropical Pacific using modern and fossil corals, and speleothems. Our most recent results are summarized in this presentation, although much of this work is still in progress. Coral climate records have been generated from Sabine Bank, Vanuatu (16°S, 166°E) and Misima Island, Papua New Guinea (10.6°S, 152.8°E). The Vanuatu coral record of monthly resolved Sr/Ca variations extends back to the late 18th century. All strong ENSO warm phase events of the 20th century observed in the instrumental record are also observed in the coral record. We note that several ENSO warm phase events in the 19th century portion of the coral record are comparable in size to that recorded in response to the 1982/1983 and 1997/1998 events. The Misima coral record of monthly resolved δ18O and Sr/Ca variations spans the interval ~1414-1645 CE — the heart of the Little Ice Age. Amplitude modulation of interannual variability is observed in this LIA record, much like what is observed during the relatively quiescent period of 1920-1950 in the 20th century instrumental and proxy records of ENSO. However, the amplitude of individual ENSO warm phase events in the LIA record is reduced, relative to that of the 1941/1942 ENSO warm phase events observed in a near modern coral record from Misima. Speleothem climate records have been generated from Espirito Santo, Vanuatu (15.5°S, 167°E) and Guadalcanal, Solomon Islands (~9°S, 160°E). The Vanuatu record of δ18O variations is from a fast-growing speleothem (~1-3 mm/year), which yields a record of rainfall variability spanning ~1670-2005 CE, as dated by U-Th disequilibrium techniques. Interannual changes in speleothem δ18O appear to capture ENSO events and subsequent reorganizations of the SPCZ. The Vanuatu speleothem δ18O record also exhibits concentrations of variance on the decadal scale. The Guadalcanal record of δ18O variations is also from a fast-growing speleothem (~1-4 mm/year), which yields a record of rainfall variability spanning ~1650-2010 CE, as dated by U-Th disequilibrium techniques. The δ18O records from both of these stalagmites provide evidence for changes in convection in the equatorial WPWP region of the SPCZ: the rising limb of the Pacific Walker Circulation.

  12. Geodynamic contributions to global climatic change

    NASA Technical Reports Server (NTRS)

    Bills, Bruce G.

    1992-01-01

    Orbital and rotational variations perturb the latitudinal and seasonal pattern of incident solar radiation, producing major climatic change on time scales of 10(exp 4)-10(exp 6) years. The orbital variations are oblivious to internal structure and processes, but the rotational variations are not. A program of investigation whose objective would be to explore and quantify three aspects of orbital, rotational, and climatic interactions is described. An important premise of this investigation is the synergism between geodynamics and paleoclimate. Better geophysical models of precessional dynamics are needed in order to accurately reconstruct the radiative input to climate models. Some of the paleoclimate proxy records contain information relevant to solid Earth processes, on time scales which are difficult to constrain otherwise. Specific mechanisms which will be addressed include: (1) climatic consequences of deglacial polar motion; and (2) precessional and climatic consequences of glacially induced perturbations in the gravitational oblateness and partial decoupling of the mantle and core. The approach entails constructing theoretical models of the rotational, deformational, radiative, and climatic response of the Earth to known orbital perturbations, and comparing these with extensive records of paleoclimate proxy data. Several of the mechanisms of interest may participate in previously unrecognized feed-back loops in the climate dynamics system. A new algorithm for estimating climatically diagnostic locations and seasons from the paleoclimate time series is proposed.

  13. Aromatic acids in a Eurasian Arctic ice core: a 2600-year proxy record of biomass burning

    NASA Astrophysics Data System (ADS)

    Grieman, Mackenzie M.; Aydin, Murat; Fritzsche, Diedrich; McConnell, Joseph R.; Opel, Thomas; Sigl, Michael; Saltzman, Eric S.

    2017-04-01

    Wildfires and their emissions have significant impacts on ecosystems, climate, atmospheric chemistry, and carbon cycling. Well-dated proxy records are needed to study the long-term climatic controls on biomass burning and the associated climate feedbacks. There is a particular lack of information about long-term biomass burning variations in Siberia, the largest forested area in the Northern Hemisphere. In this study we report analyses of aromatic acids (vanillic and para-hydroxybenzoic acids) over the past 2600 years in the Eurasian Arctic Akademii Nauk ice core. These compounds are aerosol-borne, semi-volatile organic compounds derived from lignin combustion. The analyses were made using ion chromatography with electrospray mass spectrometric detection. The levels of these aromatic acids ranged from below the detection limit (0.01 to 0.05 ppb; 1 ppb = 1000 ng L-1) to about 1 ppb, with roughly 30 % of the samples above the detection limit. In the preindustrial late Holocene, highly elevated aromatic acid levels are observed during three distinct periods (650-300 BCE, 340-660 CE, and 1460-1660 CE). The timing of the two most recent periods coincides with the episodic pulsing of ice-rafted debris in the North Atlantic known as Bond events and a weakened Asian monsoon, suggesting a link between fires and large-scale climate variability on millennial timescales. Aromatic acid levels also are elevated during the onset of the industrial period from 1780 to 1860 CE, but with a different ratio of vanillic and para-hydroxybenzoic acid than is observed during the preindustrial period. This study provides the first millennial-scale record of aromatic acids. This study clearly demonstrates that coherent aromatic acid signals are recorded in polar ice cores that can be used as proxies for past trends in biomass burning.

  14. Early Holocene change in atmospheric circulation in the Northern great plains: An upstream view of the 8.2 ka cold event

    USGS Publications Warehouse

    Dean, W.E.; Forester, R.M.; Bradbury, J.P.

    2002-01-01

    Elk Lake, in northwestern Minnesota, contains numerous proxy records of climatic and environmental change contained in varved sediments with annual resolution for the last 10,000 years. These proxies show that about 8200 calendar years ago (8.2 cal. ka; 7300 radiocarbon years) Elk Lake went from a well-stratified lake that was wind-protected in a boreal forest to a well-mixed lake in open prairie savanna receiving northwesterly wind-blown dust, probably from the dry floor of Lake Agassiz. This change in climate marks the initiation of the widely recognized mid-Holocene "altithermal" in central North America. The coincidence of this change with the so-called 8.2 cal. ka cold event, recognized in ice-core and other records from the circum-North Atlantic, and thought by some to be caused by catastrophic discharge of freshwater from proglacial lakes Agassiz and Ojibway, suggests that the two "events" might be related. Our interpretation of the Elk Lake proxy records, and of other records from less accurately dated sites, suggests that change in climate over North America was the result of a fundamental change in atmospheric circulation in response to marked changes in the relative proportions of land, water, and, especially, glacial ice in North America during the early Holocene. This change in circulation probably post-dates the final drainage of proglacial lakes along the southern margin of the Laurentide ice sheet, and may have produced a minor perturbation in climate over Greenland that resulted in a brief cold pulse detected in ice cores. ?? 2002 Elsevier Science Ltd. All rights reserved.

  15. Global Sea Surface Temperature and Ecosystem Change Across the Mid-Miocene Climatic Optimum

    NASA Astrophysics Data System (ADS)

    Veenstra, T. J. T.; Bakker, V. B.; Sangiorgi, F.; Peterse, F.; Schouten, S.; Sluijs, A.

    2016-12-01

    Even though the term Mid-Miocene Climatic Optimum (MMCO; ca. 17 to 14 Ma) has been widely used in the literature since the early 1990's, almost no early-middle Miocene sea surface temperature (SST) proxy records have been published that support climate warming across its onset. Benthic (and diagenetically altered planktic) foram δ18O records show a decrease, suggesting (deep) ocean warming and/or Antarctic ice sheet melting. However, reliable absolute SST proxy records are absent from the tropics and very scarce in temperate and polar regions. This leaves the question if the warmth of the MMCO was truly global and how its onset relates to the widely recorded positive (Monterey) carbon isotope excursion and volcanism. Finally, it remains uncertain how marine ecosystems responded to this hypothesized warming. We present organic biomarker SST proxy records (Uk'37 and TEX86) spanning the MMCO for several locations in the Atlantic and Pacific Ocean along a pole-to-pole transect, including Ocean Drilling Program Site 959 in the eastern Tropical Atlantic, ODP Site 643 in the Norwegian Sea, ODP Site 1007 on the Great Bahama Bank and Integrated Ocean Drilling Program Site U1352 off New Zealand. Additionally, we use marine palynology (mostly dinoflagellate cysts) to assess ecosystem change at these locations. The resulting spatial reconstruction of SST change shows that Middle Miocene warming was global. Nevertheless, the records also show distinct regional variability, including relatively large warming in the Norwegian Sea and a damped signal in the southern hemisphere, suggesting pronounced changes in ocean circulation. The onset of the MMCO was marked by prominent changes in ecological and depositional setting at the studied sites, likely also related to ocean circulation changes.

  16. Sea-level variability over the Common Era

    NASA Astrophysics Data System (ADS)

    Kopp, Robert; Horton, Benjamin; Kemp, Andrew; Engelhart, Simon; Little, Chris

    2017-04-01

    The Common Era (CE) sea-level response to climate forcing, and its relationship to centennial-timescale climate variability such as the Medieval Climate Anomaly (MCA) and the Little Ice Age (LIA), is fragmentary relative to other proxy-derived climate records (e.g. atmospheric surface temperature). However, the Atlantic coast of North America provides a rich sedimentary record of CE relative sea level with sufficient spatial and temporal resolution to inform mechanisms underlying regional and global sea level variability and their relationship to other climate proxies. This coast has a small tidal range, improving the precision of sea-level reconstructions. Coastal subsidence (from glacial isostatic adjustment, GIA) creates accommodation space that is filled by salt-marsh peat and preserves accurate and precise sea-level indicators and abundant material for radiocarbon dating. In addition to longer term GIA induced land-level change from ongoing collapse of the Laurentide forebulge, these records are ideally situated to capture climate-driven sea level changes. The western North Atlantic Ocean sea level is sensitive to static equilibrium effects from melting of the Greenland Ice Sheet, as well as large-scale changes in ocean circulation and winds. Our reconstructions reveal two distinct patterns in sea-level during the CE along the United States Atlantic coast: (1) South of Cape Hatteras, North Carolina, to Florida sea-level rise is essentially flat, with the record dominated by long-term geological processes until the onset of historic rates of rise in the late 19th century; (2) North of Cape Hatteras to Connecticut, sea level rise to maximum around 1000CE, a sea-level minimum around 1500 CE, and a long-term sea-level rise through the second half of the second millennium. The northern-intensified sea-level fall beginning 1000 is coincident with shifts toward persistent positive NAO-like atmospheric states inferred from other proxy records and is consistent with climate model simulations forced with sustained NAO-like heat fluxes. Changes in the wind-driven ocean circulation may also contribute to alongshore sea level variability over the CE. To reveal global mean sea level variability, we combine the salt-marsh data from North American Atlantic coast with tide-gauge records and other high resolution proxies from the northern and southern hemispheres. All reconstructions are from coasts that are tectonically stable and are based on four types of proxy archives (archaeological indicators, coral microatolls, salt marsh sediments and vermetid [mollusk] bioconstructions) that are best capable of capturing submeter-scale RSL changes. The database consists of reconstructions from Australasia (n = 2), Europe (n=5), Greenland (n = 3), North America (n = 6), the northern Gulf of Mexico (n = 3), the Mediterranean (n = 1), South Africa (n = 2), South America (n =2) and the South Pacific (n =3). We apply a noisy-input Gaussian process spatio-temporal modeling framework, which identifies a long-term falling global mean sea-level, interrupted in the middle of the 19th century by an acceleration yielding a 20th century rate of rise extremely likely (probability P = 0:95) faster than any previous century in the CE.

  17. Bridging the spectral divide: a case study with PAGES2k, the CESM Last Millennium Ensemble and proxy system models

    NASA Astrophysics Data System (ADS)

    Zhu, F.; Emile-Geay, J.; Ault, T.; McKay, N.; Dee, S.

    2017-12-01

    A grand challenge for paleoclimatology is to constrain climate model behavior on timescales longer than the instrumental record. Of particular interest is the spectrum of temperature as sensed by climate proxies. The "continuum" of climate variability [Huybers & Curry, Nature 2006] is often characterized by its scaling exponent β , where the spectral density S and the frequency f satisfy the power law S ∝ f-β . Recent studies have voiced concern that climate models underestimate scaling behavior compared to proxies [Laepple & Huybers, PNAS 2014]. Part of this discrepancy is known to lie in the complex processes whereby proxies transform climate signals [Dee et al, EPSL in press], yet many questions remain open. Here we leverage a recent multiproxy compilation [PAGES 2k Consortium, Sci Data 2017] to characterize scaling behavior over the Common Era using an interpolation-free method [Kirchner & Neal, PNAS 2013]. Proxy spectra are compared to spectra derived from the CESM Last Millennium Ensemble [Otto-Bliesner et al, BAMS 2016], using: (a) a naive model where proxies are assumed linearly related to annual temperature vs (b) proxy system models [Evans et al, QSR 2013] of varying complexity. Scaling behavior varies considerably by archive: on average the strongest centennial slopes are observed for lake sediments (β =1.2), while the smallest are observed for glacier ice (β =0.24). Results confirm that the CESM Last Millennium simulation (LM) exhibits decadal-centennial scaling closer to proxy spectra than the pre-industrial control run (PI): the latter shows a "blue" spectrum (β <0), while the former and the proxies display redder spectra (β >0), suggesting that forcings are essential to reduce the spectral divide. Yet, even with forcings, LM spectra are flatter than the proxy spectra. Subsequent work will investigate the roles of seasonal sensitivity (trees, foraminifera, alkenones), multivariate influences (corals, trees), detrending (trees) and post-depositional processes (ice cores, lake & marine sediments) on spectral discrepancies, and clarify whether CESM's temperature spectra truly exhibit a scaling deficiency, or whether the spectral divide is an artifact of imperfect data-model comparisons using naive assumptions.

  18. Temperature variations in the southern Great Lakes during the last deglaciation: Comparison between pollen and GDGT proxies

    NASA Astrophysics Data System (ADS)

    Watson, Benjamin I.; Williams, John W.; Russell, James M.; Jackson, Stephen T.; Shane, Linda; Lowell, Thomas V.

    2018-02-01

    Our understanding of deglacial climate history in the southern Great Lakes region of the United States is primarily based upon fossil pollen data, with few independent and multi-proxy climate reconstructions. Here we introduce a new, well-dated fossil pollen record from Stotzel-Leis, OH, and a new deglacial temperature record based on branched glycerol dialkyl glycerol tetraethers (brGDGTs) at Silver Lake, OH. We compare these new data to previously published records and to a regional stack of pollen-based temperature reconstructions from Stotzel-Leis, Silver Lake, and three other well-dated sites. The new and previously published pollen records at Stotzel-Leis are similar, but our new age model brings vegetation events into closer alignment with known climatic events such as the Younger Dryas (YD). brGDGT-inferred temperatures correlate strongly with pollen-based regional temperature reconstructions, with the strongest correlation obtained for a global soil-based brGDGT calibration (r2 = 0.88), lending confidence to the deglacial reconstructions and the use of brGDGT and regional pollen stacks as paleotemperature proxies in eastern North America. However, individual pollen records show large differences in timing, rates, and amplitudes of inferred temperature change, indicating caution with paleoclimatic inferences based on single-site pollen records. From 16.0 to 10.0ka, both proxies indicate that regional temperatures rose by ∼10 °C, roughly double the ∼5 °C estimates for the Northern Hemisphere reported in prior syntheses. Change-point analysis of the pollen stack shows accelerated warming at 14.0 ± 1.2ka, cooling at 12.6 ± 0.4ka, and warming from 11.6 ± 0.5ka into the Holocene. The timing of Bølling-Allerød (B-A) warming and YD onset in our records lag by ∼300-500 years those reported in syntheses of temperature records from the northern mid-latitudes. This discrepancy is too large to be attributed to uncertainties in radiocarbon dating, and correlation between pollen and brGDGT temperature reconstructions rules out vegetation lags as a cause. However, the YD termination appears synchronous among the brGDGT record, regional pollen stack, and Northern Hemisphere stack. The cause of the larger and lagged temperature changes in the southern Great Lakes relative to Northern Hemisphere averages remains unclear, but may be due to the effects of continentality and ice sheet extent on regional climate evolution.

  19. Temperature variations in the southern Great Lakes during the last deglaciation: Comparison between pollen and GDGT proxies

    USGS Publications Warehouse

    Watson, Benjamin I.; Williams, John W.; Russell, James M.; Jackson, Stephen T.; Shane, Linda; Lowell, Thomas V.

    2018-01-01

    Our understanding of deglacial climate history in the southern Great Lakes region of the United States is primarily based upon fossil pollen data, with few independent and multi-proxy climate reconstructions. Here we introduce a new, well-dated fossil pollen record from Stotzel-Leis, OH, and a new deglacial temperature record based on branched glycerol dialkyl glycerol tetraethers (brGDGTs) at Silver Lake, OH. We compare these new data to previously published records and to a regional stack of pollen-based temperature reconstructions from Stotzel-Leis, Silver Lake, and three other well-dated sites. The new and previously published pollen records at Stotzel-Leis are similar, but our new age model brings vegetation events into closer alignment with known climatic events such as the Younger Dryas (YD). brGDGT-inferred temperatures correlate strongly with pollen-based regional temperature reconstructions, with the strongest correlation obtained for a global soil-based brGDGT calibration (r2 = 0.88), lending confidence to the deglacial reconstructions and the use of brGDGT and regional pollen stacks as paleotemperature proxies in eastern North America. However, individual pollen records show large differences in timing, rates, and amplitudes of inferred temperature change, indicating caution with paleoclimatic inferences based on single-site pollen records. From 16.0 to 10.0ka, both proxies indicate that regional temperatures rose by ∼10 °C, roughly double the ∼5 °C estimates for the Northern Hemisphere reported in prior syntheses. Change-point analysis of the pollen stack shows accelerated warming at 14.0 ± 1.2ka, cooling at 12.6 ± 0.4ka, and warming from 11.6 ± 0.5ka into the Holocene. The timing of Bølling-Allerød (B-A) warming and YD onset in our records lag by ∼300–500 years those reported in syntheses of temperature records from the northern mid-latitudes. This discrepancy is too large to be attributed to uncertainties in radiocarbon dating, and correlation between pollen and brGDGT temperature reconstructions rules out vegetation lags as a cause. However, the YD termination appears synchronous among the brGDGT record, regional pollen stack, and Northern Hemisphere stack. The cause of the larger and lagged temperature changes in the southern Great Lakes relative to Northern Hemisphere averages remains unclear, but may be due to the effects of continentality and ice sheet extent on regional climate evolution.

  20. North Siberian Permafrost reveals Holocene Arctic Winter Warming

    NASA Astrophysics Data System (ADS)

    Meyer, H.; Opel, T.; Laepple, T.; Alexander, D.; Hoffmann, K.; Werner, M.

    2014-12-01

    The Arctic climate has experienced a major warming over the past decades, which is unprecedented in the last 2000 yrs. There are, however, still major uncertainties about the temperature evolution during the Holocene. Most proxy reconstructions suggest a cooling in mid-and late Holocene (e.g. Wanner, 2008), whereas climate model simulations show only weak changes or even a moderate warming (e.g. Lohmann et al., 2013). In this study, we used ice wedges as promising permafrost climate archive studied by stable water isotope methods. Ice wedges may be identified by vertically oriented foliations, and they form by the repeated filling of winter thermal contraction cracks by snow melt water in spring. Therefore, the isotopic composition of wedge ice may be attributed to the climate conditions of the cold season (i.e. winter and spring). 42 samples of organic material enclosed in ice wedges have been directly dated by Radiocarbon methods. Here, we present the first terrestrial stable oxygen isotope record of Holocene winter temperatures in up to centennial-scale resolution based on permafrost ice wedges (Lena River Delta; Siberian Arctic). The Lena ice-wedge record shows that the recent isotopic temperatures are the highest of the past 7000 years. Despite similarities to Arctic temperature reconstructions of the last two millennia (Kaufman et al., 2009), it suggests a winter warming throughout the mid and late Holocene, opposite to most existing other proxy records (Wanner, 2008). This apparent contradiction can be explained by the seasonality of the ice-wedge genesis in combination with orbital and greenhouse gas forcing and is consistent with climate model simulations. We conclude that the present model-data mismatch might be an artefact of the summer bias of the existing proxy records and thus, our record helps to reconcile the understanding of the northern hemisphere Holocene temperature evolution. This is particular true for the Russian Arctic significantly underrepresented in Arctic-wide climate reconstructions. Kaufman, D. S. et al. Science 325, 1236-1239 (2009).Wanner, H. et al. Quat. Sci. Rev. 27, 1791-1828, (2008).Lohmann, G., Pfeiffer, M., Laepple, T., Leduc, G. & Kim, J. H. Clim. Past 9, 1807-1839, (2013).

  1. Climatic aftermath of the 1815 Tambora eruption in China

    NASA Astrophysics Data System (ADS)

    Gao, Chaochao; Gao, Yujuan; Zhang, Qian; Shi, Chunming

    2017-02-01

    The 1815 eruption of the Tambora volcano led to the "Year without a Summer" and caused serious crop failure and famines in 1816 across Europe and North America. However, few reports are available on Tambora's influence in China despite the region's susceptibility to monsoonal volcanic perturbation. This study presents a systemic analysis of the climatic and related social responses to the Tambora perturbation in China, by using two independent lines of proxy records and projecting the responses on top of the impacts averaged over all tropical eruptions of the past millennium. Both the tree ring and Chinese documentary proxies show that Tambora induced a cold excursion, which caused severe frost damage, snow and ice accumulations that are uncommonly seen in southern China. Cold temperature tends to cause drought by suppressing evaporation and monsoonal circulation—a hydroclimate response that is evident in the tree-ring-based Monsoon Asia Drought Atlas but largely missing in a multiproxy precipitation reconstruction. Historical records of drought, flood, frost, and famine also show fairly mild responses outside southern China, which may be partially due to the insensitivity of documentary records to the Tambora-induced perturbation, or the cold background climate set up by the low solar insolation of the coincident Dalton Minimum and a preceding unknown eruption in 1809. The results presented here provide new insights into the spatial extent and characteristics of the Tambora perturbation, by providing a systematic evaluation of the climatic aftermath in China in parallel to that in Europe and North America. They also argue for the integral use of multiple proxies from different regions of the world to gain a better understanding of the climatic impacts for individual volcanic eruptions.

  2. Eocene Paleoclimate: Incredible or Uncredible? Model data syntheses raise questions.

    NASA Astrophysics Data System (ADS)

    Huber, M.

    2012-04-01

    Reconstructions of Eocene paleoclimate have pushed on the boundaries of climate dynamics theory for generations. While significant improvements in theory and models have brought them closer to the proxy data, the data themselves have shifted considerably. Tropical temperatures and greenhouse gas concentrations are now reconstructed to be higher than once thought--in agreement with models--but, many polar temperature reconstructions are even warmer than the eye popping numbers from only a decade ago. These interpretations of subtropical-to-tropical polar conditions once again challenge models and theory. But, the devil, is as always in the details and it is worthwhile to consider the range of potential uncertainties and biases in the paleoclimate record interpretations to evaluate the proposition that models and data may not materially disagree. It is necessary to ask whether current Eocene paleoclimate reconstructions are accurate enough to compellingly argue for a complete failure of climate models and theory. Careful consideration of Eocene model output and proxy data reveals that over most of the Earth the model agrees with the upper range of plausible tropical proxy data and the lower range of plausible high latitude proxy reconstructions. Implications for the sensitivity of global climate to greenhouse gas forcing are drawn for a range of potential Eocene climate scenarios ranging from a literal interpretation of one particular model to a literal interpretation of proxy data. Hope for a middle ground is found.

  3. Sensitivity of wetland hydrology to external climate forcing in central Florida

    NASA Astrophysics Data System (ADS)

    Lammertsma, Emmy I.; Donders, Timme H.; Pearce, Christof; Cremer, Holger; Gaiser, Evelyn E.; Wagner-Cremer, Friederike

    2015-11-01

    Available proxy records from the Florida peninsula give a varying view on hydrological changes during the late Holocene. Here we evaluate the consistency and sensitivity of local wetland records in relation to hydrological changes over the past 5 ka based on pollen and diatom proxies from peat cores in Highlands Hammock State Park, central Florida. Around 5 cal ka BP, a dynamic floodplain environment is present. Subsequently, a wetland forest establishes, followed by a change to persistent wet conditions between 2.5 and 2.0 ka. Long hydroperiods remain despite gradual succession and basin infilling with maximum wet conditions between 1.3 and 1.0 ka. The wet phase and subsequent strong drying over the last millennium, as indicated by shifts in both pollen and diatom assemblages, can be linked to the early Medieval Warm Period and Little Ice Age, respectively, driven by regionally higher sea-surface temperatures and a temporary northward migration of the Intertropical Convergence Zone. Changes during the 20th century are the result of constructions intended to protect the Highlands Hammock State Park from wildfires. The multiple cores and proxies allow distinguishing local and regional hydrological changes. The peat records reflect relatively subtle climatic changes that are not evident from regional pollen records from lakes.

  4. Proxy comparisons for Paleogene sea water temperature reconstructions

    NASA Astrophysics Data System (ADS)

    de Bar, Marijke; de Nooijer, Lennart; Schouten, Stefan; Ziegler, Martin; Sluijs, Appy; Reichart, Gert-Jan

    2017-04-01

    Several studies have reconstructed Paleogene seawater temperatures, using single- or multi-proxy approaches (e.g. Hollis et al., 2012 and references therein), particularly comparing TEX86 with foraminiferal δ18O and Mg/Ca. Whereas trends often agree relatively well, absolute temperatures can differ significantly between proxies, possibly because they are often applied to (extreme) climate events/transitions (e.g. Sluijs et al., 2011), where certain assumptions underlying the temperature proxies may not hold true. A more general long-term multi-proxy temperature reconstruction, is therefore necessary to validate the different proxies and underlying presumed boundary conditions. Here we apply a multi-proxy approach using foraminiferal calcite and organic proxies to generate a low-resolution, long term (80 Myr) paleotemperature record for the Bass River core (New Jersey, North Atlantic). Oxygen (δ18O), clumped isotopes (Δ47) and Mg/Ca of benthic foraminifera, as well as the organic proxies MBT'-CBT, TEX86H, U37K' index and the LDI were determined on the same sediments. The youngest samples of Miocene age are characterized by a high BIT index (>0.8) and fractional abundance of the C32 1,15-diol (>0.6; de Bar et al., 2016) and the absence of foraminifera, all suggesting high continental input and shallow depths. The older sediment layers (˜30 to 90 Ma) display BIT values and C32 1,15-diol fractional abundances <0.3, implying marine conditions. The temperature records (˜30 to 90 Ma) show the global transition from the Cretaceous to Eocene greenhouse world into the icehouse climate. The TEX86H sea surface temperature (SST) record shows a gradual cooling over time of ˜35 to 20 ˚ C, whereas the δ18O-derived bottom water temperatures (BWTs) decrease from ˜20 to 10 ˚ C, and the Mg/Ca and Δ47-derived BWTs decrease from ˜25 to 15 ˚ C. The absolute temperature difference between the δ18O and Δ47, might be explained by local variations in seawater δ18O composition. Similarly, the difference in Mg/Ca- and δ18O-derived BWTs is likely caused by uncertainties in the seawater Mg/Ca model and the relationship between the seawater Mg/Ca and the incorporation of Mg into the foraminiferal shell. The U37K' index could not be calculated as only di-unsaturated alkenones were identified, indicating that SSTs were > 28 ˚ C. In contrast, LDI temperatures were considerably lower and varied only between 21 and 19 ˚ C. MBT'-CBT derived mean annual temperatures for the ages of 9 and 20 Ma align well with the TEX86H SSTs. Overall, the agreement of the paleotemperature proxies in terms of main tendencies, and the covariation with the global benthic oxygen isotope compilation suggests that temperatures in this region varied in concert with global climate variability. The fact that offsets between the different proxies used here remain fairly constant down to 90 Ma ago, indicates that the fundamental mechanisms responsible for the proxy relation to temperature remained constant. de Bar, M. W., et al. (2016), Constraints on the application of long chain diol proxies in the Iberian Atlantic margin, Org. Geochem., 101, 184-195. Hollis, C. J., et al. (2012), Early Paleogene temperature history of the Southwest Pacific Ocean: Reconciling proxies and models, Earth Planet. Sci. Lett., 349, 53-66. Sluijs, A., et al. (2011), Southern ocean warming, sea level and hydrological change during the Paleocene-Eocene thermal maximum, Climate of the Past, 7(1), 47-61.

  5. Preboreal climate oscillations in Europe: Wiggle-match dating and synthesis of Dutch high-resolution multi-proxy records

    NASA Astrophysics Data System (ADS)

    Bos, Johanna A. A.; van Geel, Bas; van der Plicht, Johannes; Bohncke, Sjoerd J. P.

    2007-08-01

    In order to compare environmental and inferred climatic change during the Preboreal in The Netherlands, five terrestrial records were analysed. Detailed multi-proxy analyses including microfossils (e.g., pollen, spores, algae, and fungal spores), macroremains (e.g., seeds, fruits, wood, mosses, etc.), and loss on ignition measurements were carried out with high temporal resolution. To link the five Preboreal records, accurate chronologies were produced by AMS 14C wiggle-match dating. The Dutch records show that following the Lateglacial/Holocene climate warming, birch woodlands expanded between 11,530 and 11,500 cal BP during the Friesland Phase of the Preboreal. After the Friesland Phase, two distinct climatic shifts could be inferred: (1) around 11,430-11,350 cal BP the expansion of birch forests was interrupted by a dry continental phase with open grassland vegetation, the Rammelbeek Phase. This phase was coeval with the coldest part of the Preboreal oscillation (PBO) as observed in the δ 18O record of the Greenland ice-core records and has been attributed to a large meltwater flux that resulted in a temporary decrease of the thermohaline circulation in the North Atlantic. (2) At the start of the Late Preboreal, between 11,270 and 11,210 cal BP, a sudden shift to a more humid climate occurred and birch forests expanded again. A simultaneous increase in the cosmogenic nuclides 14C and 10Be suggests that these changes in climate and vegetation were forced by a sudden decline in solar activity. Expansion of pine occurred during the later part of the Late Preboreal. At the onset of the Boreal, between 10,770 and 10,700 cal BP, dense woodlands with hazel, oak, elm and pine started to develop in The Netherlands.

  6. Pollen and spores as biological recorders of past ultraviolet irradiance.

    NASA Astrophysics Data System (ADS)

    Fraser, Wesley; Jardine, Phillip; Lomax, Barry; Sephton, Mark; Shanahan, Timothy; Miller, Charlotte; Gosling, William

    2017-04-01

    Ultraviolet (UV) irradiance from the Sun is a key driver of climatic and biotic change. UV irradiance modulates processes in the stratosphere, and influences the biosphere from ecosystem-level through to the largest scale patterns of diversification and extinction. Yet our understanding of UV irradiance is limited to the present; no validated empirical method exists to reconstruct UV flux over long, geologically relevant timescales. Here, we show that a recently developed proxy for UV irradiance based on spore and pollen chemistry can be used over long (100,000 years) timescales. First, we demonstrate spatial variation in spore and pollen chemistry correlate with known latitudinal solar irradiance gradients. Second, using this relationship we provide a reconstruction of past changes in solar irradiance based on the pollen record obtained from Lake Bosumtwi in Ghana. Variations in the chemistry of grass pollen from the Lake Bosumtwi record show a link to multiple orbital precessional cycles (19-21,000 years). By providing a unique, local proxy for broad spectrum solar irradiance, the chemical analysis of spores and pollen offers unprecedented opportunities to decouple solar variability, climate and vegetation change through geologic time and a new proxy with which to probe the Earth system.

  7. Mid-to-late Holocene climate change record in palaeo-notch sediment from London Island, Svalbard

    NASA Astrophysics Data System (ADS)

    Yang, Zhongkang; Sun, Liguang; Zhou, Xin; Wang, Yuhong

    2018-06-01

    The Arctic region is very sensitive to climate change and important in the Earth's climate system. However, proxy datasets for Arctic climate are unevenly distributed and especially scarce for Svalbard because glaciers during the Little Ice Age, the most extensive in the Holocene, destroyed large quantities of sediment records in Svalbard. Fortunately, palaeo-notch sediments could withstand glaciers and be well-preserved after deposition. In this study, we reconstructed a mid-to-late Holocene record of climate changes in a palaeo-notch sediment sequence from London Island. Multiple weathering indices were determined, they all showed consistent weathering conditions in the study area, and they were closely linked to climate changes. Total organic carbon (TOC) and total nitrogen (TN) were also determined, and their variation profiles were similar to those of weathering indices. The climate change record in our sediment sequence is consistent with ice rafting record from North Atlantic and glacier activity from Greenland, Iceland and Svalbard, and four cold periods are clearly present. Our study provides a relatively long-term climate change record for climate conditions from mid-to-late Holocene in Svalbard.

  8. Proxy records of Holocene storm events in coastal barrier systems: Storm-wave induced markers

    NASA Astrophysics Data System (ADS)

    Goslin, Jérôme; Clemmensen, Lars B.

    2017-10-01

    Extreme storm events in the coastal zone are one of the main forcing agents of short-term coastal system behavior. As such, storms represent a major threat to human activities concentrated along the coasts worldwide. In order to better understand the frequency of extreme events like storms, climate science must rely on longer-time records than the century-scale records of instrumental weather data. Proxy records of storm-wave or storm-wind induced activity in coastal barrier systems deposits have been widely used worldwide in recent years to document past storm events during the last millennia. This review provides a detailed state-of-the-art compilation of the proxies available from coastal barrier systems to reconstruct Holocene storm chronologies (paleotempestology). The present paper aims (I) to describe the erosional and depositional processes caused by storm-wave action in barrier and back-barrier systems (i.e. beach ridges, storm scarps and washover deposits), (ii) to understand how storm records can be extracted from barrier and back-barrier sedimentary bodies using stratigraphical, sedimentological, micro-paleontological and geochemical proxies and (iii) to show how to obtain chronological control on past storm events recorded in the sedimentary successions. The challenges that paleotempestology studies still face in the reconstruction of representative and reliable storm-chronologies using these various proxies are discussed, and future research prospects are outlined.

  9. Synchronous multi-decadal climate variability of the whole Pacific areas revealed in tree rings since 1567

    NASA Astrophysics Data System (ADS)

    Fang, Keyan; Cook, Edward; Guo, Zhengtang; Chen, Deliang; Ou, Tinghai; Zhao, Yan

    2018-02-01

    Oceanic and atmospheric patterns play a crucial role in modulating climate variability from interannual to multi-decadal timescales by causing large-scale co-varying climate changes. The brevity of the existing instrumental records hinders the ability to recognize climate patterns before the industrial era, which can be alleviated using proxies. Unfortunately, proxy based reconstructions of oceanic and atmospheric modes of the past millennia often have modest agreements with each other before the instrumental period, raising questions about the robustness of the reconstructions. To ensure the stability of climate signals in proxy data through time, we first identified tree-ring datasets from distant regions containing coherent variations in Asia and North America, and then interpreted their climate information. We found that the multi-decadal covarying climate patterns of the middle and high latitudinal regions around the northern Pacific Ocean agreed quite well with the climate reconstructions of the tropical and southern Pacific areas. This indicates a synchronous variability at the multi-decadal timescale of the past 430 years for the entire Pacific Ocean. This pattern is closely linked to the dominant mode of the Pacific sea surface temperature (SST) after removing the warming trend. This Pacific multi-decadal SST variability resembles the Interdecadal Pacific Oscillation.

  10. Proceedings of a Workshop on Antarctic Meteorite Stranding Surfaces

    NASA Technical Reports Server (NTRS)

    Cassidy, W. A. (Editor); Whillans, I. M. (Editor)

    1990-01-01

    The discovery of large numbers of meteorites on the Antarctic Ice Sheet is one of the most exciting developments in polar science in recent years. The meteorites are found on areas of ice called stranding surfaces. Because of the sudden availability of hundreds, and then thousands, of new meteorite specimens at these sites, the significance of the discovery of meteorite stranding surfaces in Antarctica had an immediate and profound impact on planetary science, but there is also in this discovery an enormous, largely unrealized potential to glaciology for records of climatic and ice sheet changes. The glaciological interest derives from the antiquity of the ice in meteorite stranding surfaces. This exposed ice covers a range of ages, probably between zero and more than 500,000 years. The Workshop on Antarctic Meteorite Stranding Surfaces was convened to explore this potential and to devise a course of action that could be recommended to granting agencies. The workshop recognized three prime functions of meteorite stranding surfaces. They provide: (1) A proxy record of climatic change (i.e., a long record of climatic change is probably preserved in the exposed ice stratigraphy); (2) A proxy record of ice volume change; and (3) A source of unique nonterrestrial material.

  11. Sphagnum-dwelling testate amoebae in subarctic bogs are more sensitive to soil warming in the growing season than in winter: the results of eight-year field climate manipulations.

    PubMed

    Tsyganov, Andrey N; Aerts, Rien; Nijs, Ivan; Cornelissen, Johannes H C; Beyens, Louis

    2012-05-01

    Sphagnum-dwelling testate amoebae are widely used in paleoclimate reconstructions as a proxy for climate-induced changes in bogs. However, the sensitivity of proxies to seasonal climate components is an important issue when interpreting proxy records. Here, we studied the effects of summer warming, winter snow addition solely and winter snow addition together with spring warming on testate amoeba assemblages after eight years of experimental field climate manipulations. All manipulations were accomplished using open top chambers in a dry blanket bog located in the sub-Arctic (Abisko, Sweden). We estimated sensitivity of abundance, diversity and assemblage structure of living and empty shell assemblages of testate amoebae in the living and decaying layers of Sphagnum. Our results show that, in a sub-arctic climate, testate amoebae are more sensitive to climate changes in the growing season than in winter. Summer warming reduced species richness and shifted assemblage composition towards predominance of xerophilous species for the living and empty shell assemblages in both layers. The higher soil temperatures during the growing season also decreased abundance of empty shells in both layers hinting at a possible increase in their decomposition rates. Thus, although possible effects of climate changes on preservation of empty shells should always be taken into account, species diversity and structure of testate amoeba assemblages in dry subarctic bogs are sensitive proxies for climatic changes during the growing season. Copyright © 2011 Elsevier GmbH. All rights reserved.

  12. Mount Logan ice core record of tropical and solar influences on Aleutian Low variability: 500-1998 A.D.

    NASA Astrophysics Data System (ADS)

    Osterberg, Erich C.; Mayewski, Paul A.; Fisher, David A.; Kreutz, Karl J.; Maasch, Kirk A.; Sneed, Sharon B.; Kelsey, Eric

    2014-10-01

    Continuous, high-resolution paleoclimate records from the North Pacific region spanning the past 1500 years are rare; and the behavior of the Aleutian Low (ALow) pressure center, the dominant climatological feature in the Gulf of Alaska, remains poorly constrained. Here we present a continuous, 1500 year long, calibrated proxy record for the strength of the wintertime (December-March) ALow from the Mount Logan summit (PR Col; 5200 m asl) ice core soluble sodium time series. We show that ice core sodium concentrations are statistically correlated with North Pacific sea level pressure and zonal wind speed. Our ALow proxy record reveals a weak ALow from circa 900-1300 A.D. and 1575-1675 A.D., and a comparatively stronger ALow from circa 500-900 A.D., 1300-1575 A.D., and 1675 A.D. to present. The Mount Logan ALow proxy record shows strong similarities with tropical paleoclimate proxy records sensitive to the El Niño-Southern Oscillation and is consistent with the hypothesis that the Medieval Climate Anomaly was characterized by more persistent La Niña-like conditions while the Little Ice Age was characterized by at least two intervals of more persistent El Niño-like conditions. The Mount Logan ALow proxy record is significantly (p < 0.05) correlated and coherent with solar irradiance proxy records over various time scales, with stronger solar irradiance generally associated with a weaker ALow and La Niña-like tropical conditions. However, a step-like increase in ALow strength during the Dalton solar minimum circa 1820 is associated with enhanced Walker circulation. Furthermore, rising CO2 forcing or internal variability may be masking the twentieth century rise in solar irradiance.

  13. Water isotope systematics: Improving our palaeoclimate interpretations

    USGS Publications Warehouse

    Jones, M. D.; Dee, S.; Anderson, L.; Baker, A.; Bowen, G.; Noone, D.

    2016-01-01

    The stable isotopes of oxygen and hydrogen, measured in a variety of archives, are widely used proxies in Quaternary Science. Understanding the processes that control δ18O change have long been a focus of research (e.g. Shackleton and Opdyke, 1973; Talbot, 1990 ; Leng, 2006). Both the dynamics of water isotope cycling and the appropriate interpretation of geological water-isotope proxy time series remain subjects of active research and debate. It is clear that achieving a complete understanding of the isotope systematics for any given archive type, and ideally each individual archive, is vital if these palaeo-data are to be used to their full potential, including comparison with climate model experiments of the past. Combining information from modern monitoring and process studies, climate models, and proxy data is crucial for improving our statistical constraints on reconstructions of past climate variability.As climate models increasingly incorporate stable water isotope physics, this common language should aid quantitative comparisons between proxy data and climate model output. Water-isotope palaeoclimate data provide crucial metrics for validating GCMs, whereas GCMs provide a tool for exploring the climate variability dominating signals in the proxy data. Several of the studies in this set of papers highlight how collaborations between palaeoclimate experimentalists and modelers may serve to expand the usefulness of palaeoclimate data for climate prediction in future work.This collection of papers follows the session on Water Isotope Systematics held at the 2013 AGU Fall Meeting in San Francisco. Papers in that session, the breadth of which are represented here, discussed such issues as; understanding sub-GNIP scale (Global Network for Isotopes in Precipitation, (IAEA/WMO, 2006)) variability in isotopes in precipitation from different regions, detailed examination of the transfer of isotope signals from precipitation to geological archives, and the implications of advances in understanding in these areas for the interpretation of palaeo records and proxy data – climate model comparison.Here, we briefly review these areas of research, and discuss challenges for the water isotope community in improving our ability to partition climate vs. auxiliary signals in palaeoclimate data.

  14. Millennial-scale Asian summer monsoon variations in South China since the last deglaciation

    NASA Astrophysics Data System (ADS)

    Wang, Xisheng; Chu, Guoqiang; Sheng, Mei; Zhang, Shuqin; Li, Jinhua; Chen, Yun; Tang, Ling; Su, Youliang; Pei, Junling; Yang, Zhenyu

    2016-10-01

    Characterizing spatiotemporal variability of the Asian summer monsoon (ASM) is critical for full understanding of its behavior, dynamics, and future impacts. The present knowledge about ASM variations since the last glaciation in South China largely relies on several precisely-dated speleothem stable oxygen isotope (δ18 O) records. Although these speleothem δ18 O signals provide useful evidence for regional past environmental changes, their validity for denoting ASM intensity remains a great controversy. The Huguangyan Maar Lake (HML) provides one of the most complete archives of environmental and climatic changes in the tropical-subtropical South and East Asia since the last glaciation. Here we document a continuous centennial- to millennial-scale ASM record over the past 16 ky BP from the high-sedimentation-rate HML sediments. In contrast with the low-amplitude variations of Chinese speleothem-derived δ18 O signals and the Chinese loess-based monsoon precipitation proxy indexes, our multi-proxy records reveal a pattern of high-amplitude regional climatic fluctuations, including fine-scale oscillations during the Bølling-Allerød warming, the 8.2 ka cooling event, and an abrupt climate shift from 6.5-5.9 ka. The existence of Bond-like cold/dry events indicates a distinct influence of the North Atlantic circulation on low-latitude monsoon changes. The broad comparability between the HML paleo-proxies, Chinese speleothem δ18 O records, and the northern hemisphere summer insolation throughout the Holocene, suggests that solar insolation exerts a profound influence on ASM changes. These findings reinforce a model of combined insolation and glacial forcing of the ASM.

  15. Critical porosity of gas enclosure in polar firn independent of climate

    NASA Astrophysics Data System (ADS)

    Florian Schaller, Christoph; Freitag, Johannes; Eisen, Olaf

    2017-11-01

    In order to interpret the paleoclimatic record stored in the air enclosed in polar ice cores, it is crucial to understand the fundamental lock-in process. Within the porous firn, bubbles are sealed continuously until the respective horizontal layer reaches a critical porosity. Present-day firn air models use a postulated temperature dependence of this value as the only parameter to adjust to the surrounding conditions of individual sites. However, no direct measurements of the firn microstructure could confirm these assumptions. Here we show that the critical porosity is a climate-independent constant by providing an extensive data set of micrometer-resolution 3-D X-ray computer tomographic measurements for ice cores representing different extremes of the temperature and accumulation ranges. We demonstrate why indirect measurements suggest a climatic dependence and substantiate our observations by applying percolation theory as a theoretical framework for bubble trapping. The incorporation of our results significantly influences the dating of trace gas records, changing gas-age-ice-age differences by up to more than 1000 years. This may further help resolve inconsistencies, such as differences between East Antarctic δ15N records (as a proxy for firn height) and model results. We expect our findings to be the basis for improved firn air and densification models, leading to lower dating uncertainties. The reduced coupling of proxies and surrounding conditions may allow for more sophisticated reinterpretations of trace gas records in terms of paleoclimatic changes and will benefit the development of new proxies, such as the air content as a marker of local insolation.

  16. Seasonal climate variability in historical and prehistorical times deduced from varved lake sediments: Calibration of records from Lakes Woseriner See and Tiefer See

    NASA Astrophysics Data System (ADS)

    Czymzik, Markus; Kienel, Ulrike; Dreibrodt, Stefan; Brauer, Achim

    2013-04-01

    Societies are susceptible to the effects of even short-term climate variations on water supply, health, and agricultural productivity. However, understanding of human-climate interactions is limited due to the lack of high-resolution climate records in space and time. Varved lake sediments provide long time-series of seasonal climate variability directly from populated areas that can be compared to historical and archeological records. Calibration against meteorological data enables process-based insights into sediment deposition within the lake that can be extrapolated into the past using transfer functions. Lakes Woseriner See (53°40'N/12°2'E; 37 m asl.) and Tiefer See (53°23'N/13°97'E, 65 m asl.) in northeastern Germany are located only 35 km apart. Situated within the former settlement areas, the lakes are well suited for studying climate influences on society related to the Neolithic Funnelbeaker culture or the Slavic colonization. Sub-recent annual laminations allow to establish climate proxy data-series at seasonal resolution that can be calibrated against the long meteorological record from the nearby City of Schwerin. Seasonal climate proxy data-series covering the last 90 years have been obtained from short sediment cores applying a combination of microfacies analyses, X-ray fluorescence scanning (µ-XRF), and varve counting. Main sediment microfacies in both lakes are endogenic calcite varves comprising calcite and organic layer couplets of varying thickness, diatom layers, and dispersed detrital grains. Calibration against meteorological data indicates that variations in sediment layer thickness and composition are not stationary through time but influenced by inter-annual variations in meteorological conditions.

  17. Arctic Temperature Variability over the last Millennium

    NASA Astrophysics Data System (ADS)

    Divine, Dmitry V.; Werner, Johannes P.

    2017-04-01

    This study presents two new climate field reconstructions (CFR) of Arctic surface air temperature (SAT) variability over the last 1000 years. The CFR is based on collection of 60 temperature sensitive proxies north of 60 N mainly from the recently updated Pages2K v 2.0.0 global multiproxy database (Pages2K, 2017) of the Common Era supplemented with some new records not yet included in the Pages 2K archive. Using two subsets of annually dated proxy records sensitive to summer temperatures and those representative of both summer and annual mean SAT, we generated seasonal (summer) and annual SAT CFR for the study region. This study provides a substantial extension to the previous Artic CFR reconstruction by Tingley& Huybers (2013) in terms of both the input proxy data density and duration back in time as well as improved reconstruction technique applied. As a major innovation we used a recently developed extension to the BARCAST method of Tingley&Huybers (2010), BARCAST+AMS (Werner&Tingley, 2015) that provides a means to treat climate archives with dating uncertainties via probabilistic constraining the age-depth models of time-uncertain climate proxies within the hierarchical Bayesian framework. Preliminary analysis of the new reconstructions confirms the recent warming to interrupt the millennial scale general cooling trend. The rate of contemporary circum- Arctic warming of 0.04(0.01) C year-1 since AD 1961 is unprecedented on the time scale of at least past 1000 years. Since AD 1990 the circum-Arctic SAT persistently exceeds the two historical warm extremes of AD 1014-1017 and 1028-1033 associated with the Medieval Climate Anomaly (MCA). A previous well-recorded early 20th century Arctic warming is manifested as event with a magnitude and duration comparable to a number of other anomalies detected in past centuries including the MCA. The new reconstructions provide a prospective framework for further analysis of seasonal regional past climate variability on the range of time-scales. It includes the periods of past rapid changes in the Arctic with a focus on the regional manifestation and time evolution of past major climate extremes. References: Tingley, M. P. and Huybers, P.: Recent temperature extremes at high northern latitudes unprecedented in the past 600 years, Nature, 496, 201-205, 2013. Werner, J. P. and Tingley, M. P.: Technical Note: Probabilistically constraining proxy age-depth models within a Bayesian hierarchical reconstruction model, Clim. Past, 11, 533-545, doi:10.5194/cp-11-533-2015, 2015.

  18. State-dependent climate sensitivity in past warm climates and its implications for future climate projections.

    PubMed

    Caballero, Rodrigo; Huber, Matthew

    2013-08-27

    Projections of future climate depend critically on refined estimates of climate sensitivity. Recent progress in temperature proxies dramatically increases the magnitude of warming reconstructed from early Paleogene greenhouse climates and demands a close examination of the forcing and feedback mechanisms that maintained this warmth and the broad dynamic range that these paleoclimate records attest to. Here, we show that several complementary resolutions to these questions are possible in the context of model simulations using modern and early Paleogene configurations. We find that (i) changes in boundary conditions representative of slow "Earth system" feedbacks play an important role in maintaining elevated early Paleogene temperatures, (ii) radiative forcing by carbon dioxide deviates significantly from pure logarithmic behavior at concentrations relevant for simulation of the early Paleogene, and (iii) fast or "Charney" climate sensitivity in this model increases sharply as the climate warms. Thus, increased forcing and increased slow and fast sensitivity can all play a substantial role in maintaining early Paleogene warmth. This poses an equifinality problem: The same climate can be maintained by a different mix of these ingredients; however, at present, the mix cannot be constrained directly from climate proxy data. The implications of strongly state-dependent fast sensitivity reach far beyond the early Paleogene. The study of past warm climates may not narrow uncertainty in future climate projections in coming centuries because fast climate sensitivity may itself be state-dependent, but proxies and models are both consistent with significant increases in fast sensitivity with increasing temperature.

  19. Reconstructing Environmental Change Using Lake Varves as a Climate Proxy

    ERIC Educational Resources Information Center

    Dempsey, Christopher; Bodzin, Alec; Cirucci, Lori; Anastasio, David; Sahagian, Dork

    2012-01-01

    In this article, the authors describe an investigative activity in which their eighth-grade students reconstructed past environmental change in the New England area using data from lake varves in central Vermont to examine evidence of climate change. The investigation uses an authentic paleoclimate record (Ridge 2011) from the Pleistocene epoch,…

  20. Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes.

    PubMed

    McManus, J F; Francois, R; Gherardi, J-M; Keigwin, L D; Brown-Leger, S

    2004-04-22

    The Atlantic meridional overturning circulation is widely believed to affect climate. Changes in ocean circulation have been inferred from records of the deep water chemical composition derived from sedimentary nutrient proxies, but their impact on climate is difficult to assess because such reconstructions provide insufficient constraints on the rate of overturning. Here we report measurements of 231Pa/230Th, a kinematic proxy for the meridional overturning circulation, in a sediment core from the subtropical North Atlantic Ocean. We find that the meridional overturning was nearly, or completely, eliminated during the coldest deglacial interval in the North Atlantic region, beginning with the catastrophic iceberg discharge Heinrich event H1, 17,500 yr ago, and declined sharply but briefly into the Younger Dryas cold event, about 12,700 yr ago. Following these cold events, the 231Pa/230Th record indicates that rapid accelerations of the meridional overturning circulation were concurrent with the two strongest regional warming events during deglaciation. These results confirm the significance of variations in the rate of the Atlantic meridional overturning circulation for abrupt climate changes.

  1. Proxy-to-proxy calibration: Increasing the temporal resolution of quantitative climate reconstructions

    PubMed Central

    von Gunten, Lucien; D'Andrea, William J.; Bradley, Raymond S.; Huang, Yongsong

    2012-01-01

    High-resolution paleoclimate reconstructions are often restricted by the difficulties of sampling geologic archives in great detail and the analytical costs of processing large numbers of samples. Using sediments from Lake Braya Sø, Greenland, we introduce a new method that provides a quantitative high-resolution paleoclimate record by combining measurements of the alkenone unsaturation index () with non-destructive scanning reflectance spectroscopic measurements in the visible range (VIS-RS). The proxy-to-proxy (PTP) method exploits two distinct calibrations: the in situ calibration of to lake water temperature and the calibration of scanning VIS-RS data to down core data. Using this approach, we produced a quantitative temperature record that is longer and has 5 times higher sampling resolution than the original time series, thereby allowing detection of temperature variability in frequency bands characteristic of the AMO over the past 7,000 years. PMID:22934132

  2. Biomarker-based reconstruction of late Holocene sea-ice variability: East versus West Greenland continental shelf.

    NASA Astrophysics Data System (ADS)

    Kolling, H. M.; Stein, R. H.; Fahl, K.

    2016-12-01

    Sea is a critical component of the climate system and its role is not yet fully understood e.g. the recent rapid decrease in sea ice is not clearly reflected in climate models. This illustrates the need for high-resolution proxy-based sea-ice reconstructions going beyond the time scale of direct measurements in order to understand the processes controlling present and past natural variability of sea ice on short time scales. Here we present the first comparison of two high-resolution biomarker records from the East and West Greenland Shelf for the late Holocene. Both areas are highly sensitive to sea-ice changes as they are influenced by the East Greenland Current, the main exporter of Arctic freshwater and sea ice. On the East Greenland Shelf, we do not find any clear evidence for a long-term increase of sea ice during the late Holocene Neoglacial. This sea-ice record seems to be more sensitive to short-term climate events, such as the Roman Warm Period, the Dark Ages, the Medieval Warm Period and the Little Ice Age. In contrary, the West Greenland Shelf record shows a strong and gradual increase in sea ice concentration and a reduction in marine productivity markers starting near 1.6 ka. In general, the increase in sea ice seems to follow the decreasing solar insolation trend. Short-term events are not as clearly pronounced as on the East Greenland Shelf. A comparison to recently published foraminiferal records from the same cores (Perner et al., 2011, 2015) illuminates the differences of biomarker and micropaleontoligical proxies. It seems that the general trend is reflected in both proxies but the signal of small-scale events is preserved rather differently, pointing towards different environmental requirements of the species behind both proxies. References: Perner, K., et al., 2011. Quat. Sci. Revs. 30, 2815-2826 Perner, K., et al., 2015. Quat. Sci. Revs. 129, 296-307

  3. A 350 Year Cloud Cover Reconstruction Deduced from Caribbean Coral Proxies

    NASA Astrophysics Data System (ADS)

    Winter, Amos; Sammarco, Paul; Mikolajewicz, Uwe; Jury, Mark; Zanchettin, Davide

    2015-04-01

    Clouds are a major factor contributing to climate change with respect to a variety of effects on the earth's climates, primarily radiative effects, amelioration of heating, and regional changes in precipitation patterns. There have been very few studies of decadal and longer term changes in cloud cover in the tropics and sub-tropics, both over land and the ocean. In the tropics, there is great uncertainty regarding how global warming will affect cloud cover. Observational satellite data is so short that it is difficult to discern any temporal trends. The skeletons of scleractinian corals are considered to contain among the best records of high-resolution (sub-annual) environmental variability in the tropical and sub-tropical oceans. Corals generally live in well-mixed coastal regions and can often record environmental conditions of large areas of the upper ocean. This is particularly the case at low latitudes. Scleractinian corals are sessile, epibenthic fauna, and the type of environmental information recorded at the location where the coral has been living is dependent upon the species of coral considered and proxy index of interest. Zooxanthellate hermatypic corals in tropical and sub-tropical seas precipitate CaCO3 skeletons as they grow. This growth is made possible through the manufacture of CaCO3 crystals, facilitated by the zooxanthellae. During the process of crystallization, the holobiont binds carbon of different isotopes into the crystals. Stable carbon isotope concentrations vary with a variety of environmental conditions. In the Caribbean, δ13C in corals of the species Montastraea faveolata can be used as a proxy for changes in cloud cover. In this contribution, we will demonstrate that the stable isotope 13C varies concomitantly with cloud cover and present a new reconstruction of cloud cover over the Caribbean Sea that extends back to the year 1760. We will show that there is good agreement between the main features of our coral proxy record of cloud cover and of reanalysis and climate simulations for the same time period.

  4. Hydrodynamic Influences on Multiproxy-based Paleoclimate Reconstructions from Marine Sediments

    NASA Astrophysics Data System (ADS)

    Ausin Gonzalez, B.; Magill, C.; Wenk, P.; Haugh, G.; McIntyre, C.; Haghipour, N.; Hodell, D. A.; Eglinton, T. I.

    2017-12-01

    Multiproxy approaches, including those based on the abundance and composition of sedimentary organic matter at both the bulk (total organic carbon; TOC) and molecular (e.g., alkenone-derived Uk'37) level, are increasingly applied in investigations of past climate variability. Constraining of short-term and abrupt climate changes requires the establishment of accurate chronostratigraphies. For the last glacial to the present, a single age-depth model is typically constructed from radiocarbon ages of planktonic foraminifera and then applied to all proxy records derived from the same sediment core. Here, we develop independent, high-resolution 14C chronologies for planktonic foraminifera, TOC, and alkenones for a sediment core retrieved from the so-called "Shackleton sites" in the Northeast Atlantic Ocean. We observe 14C age offsets between these sedimentary components of up to several thousand years within the same sediment layer, with TOC and alkenones exhibiting older ages than corresponding foraminiferal carbonate. This asynchroneity suggests that application of planktic foraminifera-based chronostratigraphies to other proxy carriers (e.g., TOC and alkenones) may lead to spurious interpretation of sedimentary records. In order to further explore the influence of lateral transport processes on organic matter signatures and ages, we performed down-core, grain size-specific OC 14C analyses on selected sediment horizons. Results indicate strong interdependence between 14C age of OC and sediment grain size, underlying strong hydrodynamic controls on OC age. Furthermore, the magnitude of these temporal offsets varies over time in concert with changes in the strength of the Mediterranean Outflow Water (MOW), implying that OC [proxy] signatures are influenced by non-local inputs. Such influences co-vary with ocean and climate changes, such as Heinrinch Event 1, the Younger Dryas, and those corresponding to deposition of Sapropel 1 in the Mediterranean Sea (ca. 8 ka BP). Our findings suggest an interplay between past climate and ocean change, hydrodynamic forcing, and the (a)synchroneity of multiproxy records, and highlight the importance of developing independent, proxy-specific chronostratigraphies to accurately decipher past millennial- and centennial-scale climate variability.

  5. The little ice age as recorded in the stratigraphy of the tropical quelccaya ice cap.

    PubMed

    Thompson, L G; Mosley-Thompson, E; Dansgaard, W; Grootes, P M

    1986-10-17

    The analyses of two ice cores from a southern tropical ice cap provide a record of climatic conditions over 1000 years for a region where other proxy records are nearly absent. Annual variations in visible dust layers, oxygen isotopes, microparticle concentrations, conductivity, and identification of the historical (A.D. 1600) Huaynaputina ash permit accurate dating and time-scale verification. The fact that the Little Ice Age (about A.D. 1500 to 1900) stands out as a significant climatic event in the oxygen isotope and electrical conductivity records confirms the worldwide character of this event.

  6. Atmospheric CO2 variations on millennial-scale during MIS 6

    NASA Astrophysics Data System (ADS)

    Shin, Jinhwa; Grilli, Roberto; Chappellaz, Jérôme; Teste, Grégory; Nehrbass-Ahles, Christoph; Schmidely, Loïc; Schmitt, Jochen; Stocker, Thomas; Fischer, Hubertus

    2017-04-01

    Understanding natural carbon cycle / climate feedbacks on various time scales is highly important for predicting future climate changes. Paleoclimate records of Antarctic temperatures, relative sea level and foraminiferal isotope and pollen records in sediment cores from the Portuguese margin have shown climate variations on millennial time scale over the Marine Isotope Stage 6 (MIS 6; from approximately 135 to 190 kyr BP). These proxy data suggested iceberg calving in the North Atlantic result in cooling in the Northern hemisphere and warming in Antarctica by changes in the Atlantic Meridional Overturning Circulation, which is explained by a bipolar see-saw trend in the ocean (Margari et al., 2010). Atmospheric CO2 reconstruction from Antarctic ice cores can provide key information on how atmospheric CO2 concentrations are linked to millennial-scale climate changes. However, existing CO2 records cannot be used to address this relationship because of the lack of suitable temporal resolution. In this work, we will present a new CO2 record with an improved time resolution, obtained from the Dome C ice core (75˚ 06'S, 123˚ 24'E) spanning the MIS 6 period, using dry extraction methods. We will examine millennial-scale features in atmospheric CO2, and their possible links with other proxies covering MIS 6. Margari, V., Skinner, L. C., Tzedakis, P. C., Ganopolski, A., Vautravers, M., and Shackleton, N. J.: The nature of millennial scale climate variability during the past two glacial periods, Nat.Geosci., 3, 127-131, 2010.

  7. Sequence stratigraphy of the ANDRILL Southern McMurdo Sound (SMS) project drillcore, Antarctica: an expanded, near-field record of Antarctic Early to Middle Miocene climate and relative sea-level change

    NASA Astrophysics Data System (ADS)

    Fielding, C. R.; Browne, G. H.; Field, B.; Florindo, F.; Harwood, D. M.; Krissek, L. A.; Levy, R. H.; Panter, K.; Passchier, S.; Pekar, S. F.; SMS Science Team

    2008-12-01

    Present understanding of Antarctic climate change during the Early to Middle Miocene, including definition of major cycles of glacial expansion and contraction, relies in large part on stable isotope proxy records from Ocean Drilling Program cores. Here, we present a sequence stratigraphic analysis of the Southern McMurdo Sound drillcore (AND-2A), which was acquired during the Austral Spring of 2007. This core offers a hitherto unavailable ice-proximal stratigraphic archive of the Early to Middle Miocene from a high-accommodation Antarctic continental margin setting, and provides clear evidence of repeated fluctuations in climate, ice expansion/contraction and attendant sea-level change over the period 20-14 Ma, with a more fragmentary record of the post-14 Ma period. A succession of seventy sequences is recognized, each bounded by a significant facies dislocation (sequence boundary), composed internally of deposits of glacimarine to open shallow marine environments, and each typically dominated by the transgressive systems tract. From changes in facies abundances and sequence character, a series of long-term (m.y.) changes in climate and relative sea-level is identified. The lithostratigraphy can be correlated confidently to glacial events Mi1b and Mi2, to the Miocene Climatic Optimum, and to the global eustatic sea-level curve. SMS provides a detailed, direct, ice-proximal reference point from which to evaluate stable isotope proxy records for Neogene Antarctic paleoclimate.

  8. Simulating climate and stable water isotopes during the Last Interglacial using a coupled climate-isotope model

    NASA Astrophysics Data System (ADS)

    Gierz, Paul; Werner, Martin; Lohmann, Gerrit

    2017-09-01

    Understanding the dynamics of warm climate states has gained increasing importance in the face of anthropogenic climate change, and while it is possible to simulate warm interglacial climates, these simulated results cannot be evaluated without the aid of geochemical proxies. One such proxy is δ18O, which allows for inference about both a climate state's hydrology and temperature. We utilize a stable water isotope equipped climate model to simulate three stages during the Last Interglacial (LIG), corresponding to 130, 125, and 120 kyr before present, using forcings for orbital configuration as well as greenhouse gases. We discover heterogeneous responses in the mean δ18O signal to the climate forcing, with large areas of depletion in the LIG δ18O signal over the tropical Atlantic, the Sahel, and the Indian subcontinent, and with enrichment over the Pacific and Arctic Oceans. While we find that the climatology mean relationship between δ18O and temperature remains stable during the LIG, we also discover that this relationship is not spatially consistent. Our results suggest that great care must be taken when comparing δ18O records of different paleoclimate archives with the results of climate models as both the qualitative and quantitative interpretation of δ18O variations as a proxy for past temperature changes may be problematic due to the complexity of the signals.

  9. Holocene climate changes in eastern Beringia (NW North America) - A systematic review of multi-proxy evidence

    NASA Astrophysics Data System (ADS)

    Kaufman, Darrell S.; Axford, Yarrow L.; Henderson, Andrew C. G.; McKay, Nicholas P.; Oswald, W. Wyatt; Saenger, Casey; Anderson, R. Scott; Bailey, Hannah L.; Clegg, Benjamin; Gajewski, Konrad; Hu, Feng Sheng; Jones, Miriam C.; Massa, Charly; Routson, Cody C.; Werner, Al; Wooller, Matthew J.; Yu, Zicheng

    2016-09-01

    Reconstructing climates of the past relies on a variety of evidence from a large number of sites to capture the varied features of climate and the spatial heterogeneity of climate change. This review summarizes available information from diverse Holocene paleoenvironmental records across eastern Beringia (Alaska, westernmost Canada and adjacent seas), and it quantifies the primary trends of temperature- and moisture-sensitive records based in part on midges, pollen, and biogeochemical indicators (compiled in the recently published Arctic Holocene database, and updated here to v2.1). The composite time series from these proxy records are compared with new summaries of mountain-glacier and lake-level fluctuations, terrestrial water-isotope records, sea-ice and sea-surface-temperature analyses, and peatland and thaw-lake initiation frequencies to clarify multi-centennial- to millennial-scale trends in Holocene climate change. To focus the synthesis, the paleo data are used to frame specific questions that can be addressed with simulations by Earth system models to investigate the causes and dynamics of past and future climate change. This systematic review shows that, during the early Holocene (11.7-8.2 ka; 1 ka = 1000 cal yr BP), rather than a prominent thermal maximum as suggested previously, temperatures were highly variable, at times both higher and lower than present (approximate mid-20th-century average), with no clear spatial pattern. Composited pollen, midge and other proxy records average out the variability and show the overall lowest summer and mean-annual temperatures across the study region during the earliest Holocene, followed by warming over the early Holocene. The sparse data available on early Holocene glaciation show that glaciers in southern Alaska were as extensive then as they were during the late Holocene. Early Holocene lake levels were low in interior Alaska, but moisture indicators show pronounced differences across the region. The highest frequency of both peatland and thaw-lake initiation ages also occurred during the early Holocene. During the middle Holocene (8.2-4.2 ka), glaciers retreated as the regional average temperature increased to a maximum between 7 and 5 ka, as reflected in most proxy types. Following the middle Holocene thermal maximum, temperatures decreased starting between 4 and 3 ka, signaling the onset of Neoglacial cooling. Glaciers in the Brooks and Alaska Ranges advanced to their maximum Holocene extent as lakes generally rose to modern levels. Temperature differences for averaged 500-year time steps typically ranged by 1-2 °C for individual records in the Arctic Holocene database, with a transition to a cooler late Holocene that was neither abrupt nor spatially coherent. The longest and highest-resolution terrestrial water isotope records previously interpreted to represent changes in the Aleutian low-pressure system around this time are here shown to be largely contradictory. Furthermore, there are too few records with sufficient resolution to identify sub-centennial-scale climate anomalies, such as the 8.2 ka event. The review concludes by suggesting some priorities for future paleoclimate research in the region.

  10. Holocene climate changes in eastern Beringia (NW North America) – A systematic review of multi-proxy evidence

    USGS Publications Warehouse

    Kaufman, Darrell S.; Axford, Yarrow L.; Henderson, Andrew C.G.; McKay, Nicolas P.; Oswald, W. Wyatt; Saenger, Casey; Anderson, R. Scott; Bailey, Hannah L.; Clegg, Benjamin; Gajewski, Konrad; Hu, Feng Sheng; Jones, Miriam C.; Massa, Charly; Routson, Cody C.; Werner, Al; Wooller, Matthew J.; Yu, Zicheng

    2016-01-01

    Reconstructing climates of the past relies on a variety of evidence from a large number of sites to capture the varied features of climate and the spatial heterogeneity of climate change. This review summarizes available information from diverse Holocene paleoenvironmental records across eastern Beringia (Alaska, westernmost Canada and adjacent seas), and it quantifies the primary trends of temperature- and moisture-sensitive records based in part on midges, pollen, and biogeochemical indicators (compiled in the recently published Arctic Holocene database, and updated here to v2.1). The composite time series from these proxy records are compared with new summaries of mountain-glacier and lake-level fluctuations, terrestrial water-isotope records, sea-ice and sea-surface-temperature analyses, and peatland and thaw-lake initiation frequencies to clarify multi-centennial- to millennial-scale trends in Holocene climate change. To focus the synthesis, the paleo data are used to frame specific questions that can be addressed with simulations by Earth system models to investigate the causes and dynamics of past and future climate change. This systematic review shows that, during the early Holocene (11.7–8.2 ka; 1 ka = 1000 cal yr BP), rather than a prominent thermal maximum as suggested previously, temperatures were highly variable, at times both higher and lower than present (approximate mid-20th-century average), with no clear spatial pattern. Composited pollen, midge and other proxy records average out the variability and show the overall lowest summer and mean-annual temperatures across the study region during the earliest Holocene, followed by warming over the early Holocene. The sparse data available on early Holocene glaciation show that glaciers in southern Alaska were as extensive then as they were during the late Holocene. Early Holocene lake levels were low in interior Alaska, but moisture indicators show pronounced differences across the region. The highest frequency of both peatland and thaw-lake initiation ages also occurred during the early Holocene. During the middle Holocene (8.2–4.2 ka), glaciers retreated as the regional average temperature increased to a maximum between 7 and 5 ka, as reflected in most proxy types. Following the middle Holocene thermal maximum, temperatures decreased starting between 4 and 3 ka, signaling the onset of Neoglacial cooling. Glaciers in the Brooks and Alaska Ranges advanced to their maximum Holocene extent as lakes generally rose to modern levels. Temperature differences for averaged 500-year time steps typically ranged by 1–2 °C for individual records in the Arctic Holocene database, with a transition to a cooler late Holocene that was neither abrupt nor spatially coherent. The longest and highest-resolution terrestrial water isotope records previously interpreted to represent changes in the Aleutian low-pressure system around this time are here shown to be largely contradictory. Furthermore, there are too few records with sufficient resolution to identify sub-centennial-scale climate anomalies, such as the 8.2 ka event. The review concludes by suggesting some priorities for future paleoclimate research in the region.

  11. Constraining the temperature history of the past millennium using early instrumental observations

    NASA Astrophysics Data System (ADS)

    Brohan, P.; Allan, R.; Freeman, E.; Wheeler, D.; Wilkinson, C.; Williamson, F.

    2012-05-01

    The current assessment that twentieth-century global temperature change is unusual in the context of the last thousand years relies on estimates of temperature changes from natural proxies (tree-rings, ice-cores etc.) and climate model simulations. Confidence in such estimates is limited by difficulties in calibrating the proxies and systematic differences between proxy reconstructions and model simulations. As the difference between the estimates extends into the relatively recent period of the early nineteenth century it is possible to compare them with a reliable instrumental estimate of the temperature change over that period, provided that enough early thermometer observations, covering a wide enough expanse of the world, can be collected. One organisation which systematically made observations and collected the results was the English East-India Company (EEIC), and their archives have been preserved in the British Library. Inspection of those archives revealed 900 log-books of EEIC ships containing daily instrumental measurements of temperature and pressure, and subjective estimates of wind speed and direction, from voyages across the Atlantic and Indian Oceans between 1789 and 1834. Those records have been extracted and digitised, providing 273 000 new weather records offering an unprecedentedly detailed view of the weather and climate of the late eighteenth and early nineteenth centuries. The new thermometer observations demonstrate that the large-scale temperature response to the Tambora eruption and the 1809 eruption was modest (perhaps 0.5 °C). This provides a powerful out-of-sample validation for the proxy reconstructions - supporting their use for longer-term climate reconstructions. However, some of the climate model simulations in the CMIP5 ensemble show much larger volcanic effects than this - such simulations are unlikely to be accurate in this respect.

  12. Constraining the temperature history of the past millennium using early instrumental observations

    NASA Astrophysics Data System (ADS)

    Brohan, P.; Allan, R.; Freeman, E.; Wheeler, D.; Wilkinson, C.; Williamson, F.

    2012-10-01

    The current assessment that twentieth-century global temperature change is unusual in the context of the last thousand years relies on estimates of temperature changes from natural proxies (tree-rings, ice-cores, etc.) and climate model simulations. Confidence in such estimates is limited by difficulties in calibrating the proxies and systematic differences between proxy reconstructions and model simulations. As the difference between the estimates extends into the relatively recent period of the early nineteenth century it is possible to compare them with a reliable instrumental estimate of the temperature change over that period, provided that enough early thermometer observations, covering a wide enough expanse of the world, can be collected. One organisation which systematically made observations and collected the results was the English East India Company (EEIC), and their archives have been preserved in the British Library. Inspection of those archives revealed 900 log-books of EEIC ships containing daily instrumental measurements of temperature and pressure, and subjective estimates of wind speed and direction, from voyages across the Atlantic and Indian Oceans between 1789 and 1834. Those records have been extracted and digitised, providing 273 000 new weather records offering an unprecedentedly detailed view of the weather and climate of the late eighteenth and early nineteenth centuries. The new thermometer observations demonstrate that the large-scale temperature response to the Tambora eruption and the 1809 eruption was modest (perhaps 0.5 °C). This provides an out-of-sample validation for the proxy reconstructions - supporting their use for longer-term climate reconstructions. However, some of the climate model simulations in the CMIP5 ensemble show much larger volcanic effects than this - such simulations are unlikely to be accurate in this respect.

  13. Holocene climatic fluctuations and periodic changes in the Asian southwest monsoon region

    NASA Astrophysics Data System (ADS)

    Zhang, Wenxiang; Niu, Jie; Ming, Qingzhong; Shi, Zhengtao; Lei, Guoliang; Huang, Linpei; Long, Xian'e.; Chang, Fengqin

    2018-05-01

    Climatic changes in the Asian southwest monsoon (ASWM) during the Holocene have become a topic of recent studies. It is important to understand the patterns and causes of Holocene climatic changes and their relationship with global changes. Based on the climate proxies and wavelet analysis of Lugu Lake in the ASWM region, the climatic fluctuations and periodic changes in the ASWM region during the Holocene have been reconstructed with a high-precision chronology. The results indicate the intensification of ASWM began to increase with Northern Hemisphere low-latitude solar insolation (LSI) and solar activity during the early Holocene, and gradually decreased during the late Holocene, exhibiting an apparent synchrony with numerous records of ASWM region. Meanwhile, an apparent 1000-a quasi-periodic signal is present in the environment proxies, and it demonstrates that the environmental change in the ASWM region has been driven mainly by LSI and solar activity.

  14. Combining charcoal sediment and molecular markers to infer a Holocene fire history in the Maya lowlands of Petén, Guatemala

    NASA Astrophysics Data System (ADS)

    Kirchgeorg, Torben; Schüpbach, Simon; Colombaroli, Daniele; Beffa, Giorgia; Radaelli, Marta; Kehrwald, Natalie; Barbante, Carlo

    2015-04-01

    Holocene vegetation changes in the Maya Lowlands during the Holocene are a result of changing climate conditions, solely anthropogenic activities, or interactions of both factors. As a consequence, it is difficult to assess how tropical ecosystems will cope with projected changes in precipitation and land-use intensification over the next decades. We investigated the role of fire during the Holocene by combining different proxies. We distinguished between three different morphotypes (grass, wood and leaves) in macroscopic charcoal. We also determined the molecular fire proxies levoglucosan, mannosan and galactosan. Combining these different fire proxies allows a more robust understanding of the complex history of fire regimes at different spatial scales during the Holocene. Comparing the two biomass burning proxies may help increase our understanding about advantages and limitations of molecular markers as proxies for past fire reconstruction in lake sediments. In order to infer changes in past biomass burning, we analysed a lake sediment core from Lake Petén Itzá, Guatemala (17°00'N, 89°50'W, 110 m above sea level), and compared our results with millennial-scale vegetation and climate change data available in this area. Some differences were observed between the two records and we assumed that while macroscopic charcoal represents a local fire signal, the molecular fire proxies records seem to be influenced by regional to supra-regional fire or low temperature fires. During the Holocene we detected three periods of high fire activity: 9500-6000 cal yr BP, 3800 cal yr BP and 2700 cal yr BP. We attributed the first maximum (9500-6000 cal yr BP) to only climate conditions, which corresponds with observations from previous studies in this region. The fast decrease in the relative abundance of woody charcoal to grass charcoal at the 3800 cal yr BP fire maximum may result from human activity, but we cannot exclude that this shift was related to climate conditions during this period. The last maximum (2700 cal yr BP) we attribute to the agricultural activity of the Maya at Lake Petén Itzá.

  15. Punctuated Holocene climate of Vestfirðir, Iceland, linked to internal/external variables and oceanographic conditions

    NASA Astrophysics Data System (ADS)

    Harning, David J.; Geirsdóttir, Áslaug; Miller, Gifford H.

    2018-06-01

    Emerging Holocene paleoclimate datasets point to a non-linear response of Icelandic climate against a background of steady orbital cooling. The Vestfirðir peninsula (NW Iceland) is an ideal target for continued climate reconstructions due to the presence of a small ice cap (Drangajökull) and numerous lakes, which provide two independent means to evaluate existing Icelandic climate records and to constrain the forcing mechanisms behind centennial-scale cold anomalies. Here, we present new evidence for Holocene expansions of Drangajökull based on 14C dates from entombed dead vegetation as well as two continuous Holocene lake sediment records. Lake sediments were analyzed for both bulk physical (MS) and biological (%TOC, δ13C, C/N, and BSi) parameters. Composite BSi and C/N records from the two lakes yield a sub-centennial qualitative perspective on algal (diatom) productivity and terrestrial landscape stability, respectively. The Vestfirðir lake proxies suggest initiation of the Holocene Thermal Maximum by ∼8.8 ka with subsequent and pronounced cooling not apparent until ∼3 ka. Synchronous periods of reduced algal productivity and accelerated landscape instability point to cold anomalies centered at ∼8.2, 6.6, 4.2, 3.3, 2.3, 1.8, 1, and 0.25 ka. Triggers for cold anomalies are linked to variable combinations of freshwater pulses, low total solar irradiance, explosive and effusive volcanism, and internal modes of climate variability, with cooling likely sustained by ocean/sea-ice feedbacks. The climate evolution reflected by our glacial and organic proxy records corresponds closely to marine records from the North Iceland Shelf.

  16. The 9.2 ka event in Asian summer monsoon area: the strongest millennial scale collapse of the monsoon during the Holocene

    NASA Astrophysics Data System (ADS)

    Zhang, Wenchao; Yan, Hong; Dodson, John; Cheng, Peng; Liu, Chengcheng; Li, Jianyong; Lu, Fengyan; Zhou, Weijian; An, Zhisheng

    2018-04-01

    Numerous Holocene paleo-proxy records exhibit a series of centennial-millennial scale rapid climatic events. Unlike the widely acknowledged 8.2 ka climate anomaly, the likelihood of a significant climate excursion at around 9.2 cal ka BP, which has been notably recognized in some studies, remains to be fully clarified in terms of its magnitude and intensity, as well as its characteristics and spatial distributions in a range of paleoclimatic records. In this study, a peat sediment profile from the Dajiuhu Basin in central China was collected with several geochemical proxies and a pollen analysis carried out to help improve understanding of the climate changes around 9.2 cal ka BP. The results show that the peat development was interrupted abruptly at around 9.2 cal ka BP, when the chemical weathering strength decreased and the tree-pollen declined. This suggests that a strong drier regional climatic event occurred at around 9.2 cal ka BP in central China, which was, in turn, probably connected to the rapid 9.2 ka climate event co-developing worldwide. In addition, based on the synthesis of our peat records and the other Holocene hydrological records from Asian summer monsoon (ASM) region, we further found that the 9.2 ka event probably constituted the strongest abrupt collapse of the Asian monsoon system during the full Holocene interval. The correlations between ASM and the atmospheric 14C production rate, the North Atlantic drift ice records and Greenland temperature indicated that the weakened ASM event at around 9.2 cal ka BP could be interpreted by the co-influence of external and internal factors, related to the changes of the solar activity and the Atlantic Meridional Overturning Circulation (AMOC).

  17. Speleothem carbon isotopes in the tropics: a proxy for vegetation and what they reveal about the demise of Homo floresiensis

    NASA Astrophysics Data System (ADS)

    Scroxton, N.; Gagan, M. K.; Ayliffe, L. K.; Hellstrom, J.; Cheng, H.; Edwards, R.; Zhao, J.; Hantoro, W. S.; Rifai, H.; Scott-Gagan, H.; Cowley, J. A.; Suwargadi, B. W.

    2013-12-01

    Most long-term speleothem climate records focus on δ18O (Cruz Jr. et al. 2005, Wang et al. 2005, Meckler et al. 2012, Carolin et al. 2013). In tropical regions, where temperature variability is relatively small, speleothem δ18O serves as a proxy for precipitation amount. On orbital timescales, changes in moisture source, sea level and global ice volume also influence speleothem δ18O. As both δ18O and δ13C are measured simultaneously, a wealth of potential paleoclimatic information from the δ13C records for numerous sites awaits publication. However, δ13C is less well understood as an environmental proxy, and a simple control and explanation may not be forthcoming. We present a new 92,000-year long speleothem δ13C record for Liang Luar cave in Flores, Indonesia. Here, δ13C acts as a proxy for soil CO2 production above the cave, which is strongly linked to vegetative changes. Since vegetation and soil CO2 production are closely linked to a climatic control, changes in speleothem δ13C can be considered an environmental response to climate change. The Liang Luar δ13C record mainly tracks the δ18O, indicating close affiliation between vegetation and climate. Peak vegetation cover and soil activity (lower δ13C) occur in the early Holocene. The Last Glacial Maximum does not have notably higher δ13C than Isotope Stages 3 and 5a. δ13C variability in the glacial is much higher than that in the Holocene. Differences between the δ13C and δ18O records indicate periods of vegetative change without a climatic cause. The largest increase in δ13C (8‰) during the last 90kyr occurred at 68kyr BP. This anomalous δ13C excursion represents a major loss of vegetation around Liang Luar. The last surviving non-human member of the Homo genus: Homo floresiensis, disappeared from the stratigraphic record in nearby Liang Bua cave between 17 and 10kyr BP (Roberts et al. 2009). The cause of the disappearance, (e.g. climate change, volcanic catastrophe or human competition, has not been established. In contrast to the environmental upheaval around 68kyr BP, the period between 17 and 10kyr BP is remarkably stable. With little change in vegetation at this time, we can rule out volcanism or climate change as a likely cause of the extinction. We are left with an intriguing puzzle as to what caused the recent extinction of Homo floresiensis. Cruz Jr. et al. 2005, Nature, v. 434, p. 63 Wang et al. 2005, Science, v. 308, p. 854 Meckler et al. 2012, Science, v. 336, p. 1301 Carolin et al. 2013, Science, v. 340, p. 1564 Roberts et al. 2009, J. Hum. Evol., v. 57, p. 484

  18. North Atlantic Oscillation dynamics recorded in shells of a long-lived bivalve mollusk

    NASA Astrophysics Data System (ADS)

    Schöne, Bernd R.; Oschmann, Wolfgang; Rössler, Jochen; Freyre Castro, Antuané D.; Houk, Stephen D.; Kröncke, Ingrid; Dreyer, Wolfgang; Janssen, Ronald; Rumohr, Heye; Dunca, Elena

    2003-12-01

    Existing reconstructions of the winter North Atlantic Oscillation (WNAO) are based on terrestrial proxies and historical documents. No direct high-resolution, long-term rec ords from marine settings are available for this major climate-dictating phenomenon, which severely affects a variety of economic aspects of our society. Here we present a 245 yr proxy WNAO index based on shells of the long-lived marine bivalve mollusk Arctica islandica. Variations in annual rates of shell growth are positively correlated with WNAO-related changes in the food supply. Maximum amplitudes in frequency bands of 7 9 and 5 7 yr fall exactly within the range of instrumental and other proxy WNAO indices. These estimates were obtained for specimens collected live, 2000 km apart, in the central North Sea and on the Norwegian Shelf. Hence, the WNAO influences hydrographic regimes of large regions of the ocean. Our study demonstrates that A. islandica can reliably reconstruct WNAO dynamics for time intervals and regions without instrumental records. Our new tool functions as a proxy for the WNAO index prior to the twentieth-century greenhouse forcing and has the potential to further validate other proxy-based WNAO records.

  19. Evolution of the Climate Continuum from the Mid-Miocene Climatic Optimum to the Present

    NASA Astrophysics Data System (ADS)

    Aswasereelert, W.; Meyers, S. R.; Hinnov, L. A.; Kelly, D.

    2011-12-01

    The recognition of orbital rhythms in paleoclimate data has led to a rich understanding of climate evolution during the Neogene and Quaternary. In contrast, changes in stochastic variability associated with the transition from unipolar to bipolar glaciation have received less attention, although the stochastic component likely preserves key insights about climate. In this study, we seek to evaluate the dominance and character of stochastic climate energy since the Middle Miocene Climatic Optimum (~17 Ma). These analyses extend a previous study that suggested diagnostic stochastic responses associated with Northern Hemisphere ice sheet development during the Plio-Pleistocene (Meyers and Hinnov, 2010). A critical and challenging step necessary to conduct the work is the conversion of depth data to time data. We investigate climate proxy datasets using multiple time scale hypotheses, including depth-derived time scales, sedimentologic/geochemical "tuning", minimal orbital tuning, and comprehensive orbital tuning. To extract the stochastic component of climate, and also explore potential relationships between the orbital parameters and paleoclimate response, a number of approaches rooted in Thomson's (1982) multi-taper spectral method (MTM) are applied. Importantly, the MTM technique is capable of separating the spectral "continuum" - a measure of stochastic variability - from the deterministic periodic orbital signals (spectral "lines") preserved in proxy data. Time series analysis of the proxy records using different chronologic approaches allows us to evaluate the sensitivity of our conclusion about stochastic and deterministic orbital processes during the Middle Miocene to present. Moreover, comparison of individual records permits examination of the spatial dependence of the identified climate responses. Meyers, S.R., and Hinnov, L.A. (2010), Northern Hemisphere glaciation and the evolution of Plio-Pleistocene climate noise: Paleoceanography, 25, PA3207, doi:10.1029/2009PA001834. Thomson, D.J. (1982), Spectrum estimation and harmonic analysis: IEEE Proceedings, v. 70, p. 1055-1096.

  20. Two Centuries of Climate Variability From a Gulf of Papua Coral Confirms a Coherent, Widespread Multidecadal Signal

    NASA Astrophysics Data System (ADS)

    Cole, J. E.; Lough, J.; Reed, E. V.; Schrag, D. P.

    2016-12-01

    The Indo-Pacific warm pool is intimately involved with large-scale climate variability on seasonal to secular time scales. The lack of long instrumental observations in this region has motivated paleoclimatic analyses using diverse proxy data sources. We present here new multicentury paleoclimate records from a Gulf of Papua coral that capture past variability with a Pacific-wide signature. We have developed stable isotope, Sr/Ca, skeletal density, and luminescence data from a coral core recovered at Bramble Cay, Australia (9°S, 144°E). The geochemical records span CE 1775-1993 and are dominated by low-frequency (decade-century scale) variability that is consistent with records from other proxies in the same region, and with other coral records from far-flung sites across the southwest Pacific. Unlike in many Pacific coral records, we observe no strong trend towards warmer conditions. Although skeletal density bands are clearly visible, they show inconsistent seasonal phasing with the geochemical tracers of sea surface temperature (SST; Sr/Ca and oxygen isotope content), and skeletal density does not correlate with these tracers on longer time scales. In this coral, density banding must be controlled by a more complex mix of internal and/or external factors. Luminescent banding and reconstructed salinity provide similar histories, suggesting a common hydroclimatic signal with significant variability at periods of decades and longer. The strong low-frequency behavior in these new climate records of SST and hydroclimate, from a remote region of the Indo-Pacific, confirms an important source of internal climate variability, on a poorly documented time scale, from a region with far-reaching climatic importance.

  1. Climatic controls on hurricane patterns: a 1200-y near-annual record from Lighthouse Reef, Belize

    NASA Astrophysics Data System (ADS)

    Denommee, K. C.; Bentley, S. J.; Droxler, A. W.

    2014-01-01

    Tropical cyclones (TCs) are powerful agents of destruction, and understanding climatic controls on TC patterns is of great importance. Over timescales of seasons to several decades, relationships among TC track, frequency, intensity and basin-scale climate changes are well documented by instrumental records. Over centuries to millennia, climate-shift influence on TC regimes remains poorly constrained. To better understand these relationships, records from multiple locations of TC strikes spanning millennia with high temporal resolution are required, but such records are rare. Here we report on a highly detailed sedimentary proxy record of paleo-TC strikes from the Blue Hole of Lighthouse Reef, Belize. Our findings provide an important addition to other high-resolution records, which collectively demonstrate that shifts between active and inactive TC regimes have occurred contemporaneously with shifts hemispheric-scale oceanic and atmospheric circulation patterns such as MDR SSTs and NAO mode, rather than with changes in local climate phenomena as has previously been suggested.

  2. Using multi-resolution proxies to assess ENSO impacts on the mean state of the tropical Pacific.

    NASA Astrophysics Data System (ADS)

    Karamperidou, C.; Conroy, J. L.

    2016-12-01

    Observations and model simulations indicate that the relationship between ENSO and the mean state of the tropical Pacific is a two-way interaction. On one hand, a strong zonal SST gradient (dSST) in the Pacific (colder cold tongue) increases the potential intensity of upcoming ENSO events and may lead to increased ENSO variance. On the other hand, in a period of increased ENSO activity, large events can warm the cold tongue at decadal scales via residual heating, and thus lead to reduced zonal SST gradient (ENSO rectification mechanism). The short length of the observational record hinders our ability to confidently evaluate which mechanism dominates in each period, and whether it is sensitive to external climate forcing. This question is effectively a question of interaction between two timescales: interannual and decadal. Paleoclimate proxies of different resolutions can help elucidate this question, since they can be independent records of variability in these separate timescales. Here, we use coral proxies of ENSO variability from across the Pacific and multi-proxy records of dSST at longer timescales. Proxies, models, and observations indicate that in periods of increased ENSO activity, dSST is negatively correlated with ENSO variance at decadal timescales, indicating that strong ENSO events may affect the decadal mean state via warming the cold tongue. Using climate model simulations we attribute this effect to residual nonlinear dynamical heating, thus supporting the ENSO rectification mechanism. On the contrary, in periods without strong events, ENSO variance and dSST are positively correlated, which indicates that the primary mechanism at work is the effect of the mean state on ENSO. Our analysis also quantitatively identifies the regions where paleoclimate proxies are needed in order to reduce the existing uncertainties in ENSO-mean state interactions. Hence, this study is a synthesis of observations, model simulations and paleoclimate proxy evidence guided by the fundamental and open question of multi-scale interactions in the tropical Pacific, and illustrates the need for multi-resolution paleoclimate proxies and their potential uses.

  3. Understanding Extreme Precipitation Behaviour in British Columbia's Lower Mainland Using Historical and Proxy Records

    NASA Astrophysics Data System (ADS)

    Spry, Christina

    In British Columbia, Pineapple Express storms can lead to flooding, slope failures and negative impacts to water quality. Mitigating the impacts of extreme weather events in a changing climate requires an understanding of how local climate responds to regional-toglobal climate forcing patterns. In this study, I use historical and proxy data to identify the distinguishing characteristics of Pineapple Express storms and to develop a tree ring oxygen isotope record (1960--1995) of local climate conditions in the Lower Mainland of British Columbia. I found that high magnitude Pineapple Express storms have significantly higher precipitation and streamflow than other storms types, which result in relatively high contributions of Pineapple Express storms to the annual water budget. As well, Pineapple Express precipitation is characterized by an enriched delta18O isotopic signature when compared to precipitation originating from the North Pacific Ocean. However, differences in source water do not appear to be driving the variability in tree ring delta18O ratios. Instead, tree ring isotopic values exhibit a regional climate pattern that is strongly driven by latitudinal temperature gradients and the Rayleigh distillation effect. Therefore, future warmer conditions may decrease the temperature gradient between the equator and the poles, which can be recorded in the tree ring isotope record. The results also suggest that warmer temperatures due to climate change could result in more active Pineapple Express storm seasons, with multiple PE storms happening over a short period of time. Concurrent storms significantly increase the risk to society because the resulting antecedent saturated soil conditions can trigger precipitationinduced natural hazards. Keywords: extreme weather; stable isotopes; Pineapple Express; British Columbia; climate change; tree rings.

  4. Linking coral river runoff proxies with climate variability, hydrology and land-use in Madagascar catchments.

    PubMed

    Maina, Joseph; de Moel, Hans; Vermaat, Jan E; Bruggemann, J Henrich; Guillaume, Mireille M M; Grove, Craig A; Madin, Joshua S; Mertz-Kraus, Regina; Zinke, Jens

    2012-10-01

    Understanding the linkages between coastal watersheds and adjacent coral reefs is expected to lead to better coral reef conservation strategies. Our study aims to examine the main predictors of environmental proxies recorded in near shore corals and therefore how linked near shore reefs are to the catchment physical processes. To achieve these, we developed models to simulate hydrology of two watersheds in Madagascar. We examined relationships between environmental proxies derived from massive Porites spp. coral cores (spectral luminescence and barium/calcium ratios), and corresponding time-series (1950-2006) data of hydrology, climate, land use and human population growth. Results suggest regional differences in the main environmental drivers of reef sedimentation: on annual time-scales, precipitation, river flow and sediment load explained the variability in coral proxies of river discharge for the northeast region, while El Niño-Southern Oscillation (ENSO) and temperature (air and sea surface) were the best predictors in the southwest region. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. The continuum of hydroclimate variability in western North America during the last millennium

    USGS Publications Warehouse

    Ault, Toby R.; Cole, Julia E.; Overpeck, Jonathan T.; Pederson, Gregory T.; St. George, Scott; Otto-Bliesner, Bette; Woodhouse, Connie A.; Deser, Clara

    2013-01-01

    The distribution of climatic variance across the frequency spectrum has substantial importance for anticipating how climate will evolve in the future. Here we estimate power spectra and power laws (ß) from instrumental, proxy, and climate model data to characterize the hydroclimate continuum in western North America (WNA). We test the significance of our estimates of spectral densities and ß against the null hypothesis that they reflect solely the effects of local (non-climate) sources of autocorrelation at the monthly timescale. Although tree-ring based hydroclimate reconstructions are generally consistent with this null hypothesis, values of ß calculated from long-moisture sensitive chronologies (as opposed to reconstructions), and other types of hydroclimate proxies, exceed null expectations. We therefore argue that there is more low-frequency variability in hydroclimate than monthly autocorrelation alone can generate. Coupled model results archived as part of the Climate Model Intercomparison Project 5 (CMIP5) are consistent with the null hypothesis and appear unable to generate variance in hydroclimate commensurate with paleoclimate records. Consequently, at decadal to multidecadal timescales there is more variability in instrumental and proxy data than in the models, suggesting that the risk of prolonged droughts under climate change may be underestimated by CMIP5 simulations of the future.

  6. Mineral dust transport and deposition to Antarctica: a climate model perspective

    NASA Astrophysics Data System (ADS)

    Albani, S.; Mahowald, N. M.; Maggi, V.; Delmonte, B.

    2009-04-01

    Windblown mineral dust is a useful proxy for paleoclimates. Its life cycle is determined by climate conditions in the source areas, and following the hydrological cycle, and the intensity and dynamics of the atmospheric circulation. In addition aeolian dust itself is an active component of the climate system, influencing the radiative balance of the atmosphere through its interaction with incoming solar radiation and outgoing planetary radiation. The mineral aerosols also have indirect effects on climate, and are linked to interactions with cloud microphysics and atmospheric chemistry as well as to dust's role of carrier of iron and other elements that constitute limitating nutrients for phytoplancton to remote ocean areas. We use climate model (CCSM) simulations that include a scheme for dust mobilization, transport and deposition in order to describe the evolution of dust deposition in some Antarctic ice cores sites where mineral dust records are available. Our focus is to determine the source apportionment for dust deposited to Antarctica under current and Last Glacial Maximum climate conditions, as well as to give an insight in the spatial features of transport patterns. The understanding of spatial and temporal representativeness of an ice core record is crucial to determine its value as a proxy of past climates and a necessary step in order to produce a global picture of how the dust component of the climate system has changed through time.

  7. Paleoclimate reconstruction along the Pole-Equator-Pole transect of the Americas (PEP 1)

    USGS Publications Warehouse

    Markgraf, Vera; Baumgartner, T.R.; Bradbury, J.P.; Diaz, Henry F.; Dunbar, R.B.; Luckman, B.H.; Seltzer, G.O.; Swetnam, T.W.; Villalba, R.

    2000-01-01

    Examples are presented of inter-hemispheric comparison of instrumental climate and paleoclimate proxy records from the Americas for different temporal scales. Despite a certain symmetry of seasonal precipitation patterns along the PEP I transect, decadal variability of winter precipitation shows different characteristics in terms of amplitude and frequency in both the last 100 and last 1000 years. Such differences in variability are also seen in a comparison of time series of different El Nino/Southern Oscillation proxy records from North and South America, however, these differences do not appear to affect the spatial correlation with Pacific sea surface temperature patterns. Local and regional differences in response to climate change are even more pronounced for records with lower temporal resolution, and inter-hemispheric synchroneity may or may not be indicative of the same forcing. This aspect is illustrated in an inter-hemispheric comparison of the last 1000 years of glacier variability, and of the full- and lateglacial lake level history.

  8. The importance of independent chronology in integrating records of past climate change for the 60-8 ka INTIMATE time interval

    NASA Astrophysics Data System (ADS)

    Brauer, Achim; Hajdas, Irka; Blockley, Simon P. E.; Bronk Ramsey, Christopher; Christl, Marcus; Ivy-Ochs, Susan; Moseley, Gina E.; Nowaczyk, Norbert N.; Rasmussen, Sune O.; Roberts, Helen M.; Spötl, Christoph; Staff, Richard A.; Svensson, Anders

    2014-12-01

    This paper provides a brief overview of the most common dating techniques applied in palaeoclimate and palaeoenvironmental studies including four radiometric and isotopic dating methods (radiocarbon, 230Th disequilibrium, luminescence, cosmogenic nuclides) and two incremental methods based on layer counting (ice layer, varves). For each method, concise background information about the fundamental principles and methodological approaches is provided. We concentrate on the time interval of focus for the INTIMATE (Integrating Ice core, MArine and TErrestrial records) community (60-8 ka). This dating guide addresses palaeoclimatologists who aim at interpretation of their often regional and local proxy time series in a wider spatial context and, therefore, have to rely on correlation with proxy records obtained from different archives from various regions. For this reason, we especially emphasise scientific approaches for harmonising chronologies for sophisticated and robust proxy data integration. In this respect, up-to-date age modelling techniques are presented as well as tools for linking records by age equivalence including tephrochronology, cosmogenic 10Be and palaeomagnetic variations. Finally, to avoid inadequate documentation of chronologies and assure reliable correlation of proxy time series, this paper provides recommendations for minimum standards of uncertainty and age datum reporting.

  9. Quantitative Holocene climatic reconstructions for the lower Yangtze region of China

    NASA Astrophysics Data System (ADS)

    Li, Jianyong; Dodson, John; Yan, Hong; Wang, Weiming; Innes, James B.; Zong, Yongqiang; Zhang, Xiaojian; Xu, Qinghai; Ni, Jian; Lu, Fengyan

    2018-02-01

    Quantitative proxy-based and high-resolution palaeoclimatic datasets are scarce for the lower reaches of the Yangtze River (LYR) basin. This region is in a transitional vegetation zone which is climatologically sensitive; and as a birthplace for prehistorical civilization in China, it is important to understand how palaeoclimatic dynamics played a role in affecting cultural development in the region. We present a pollen-based and regionally-averaged Holocene climatic twin-dataset for mean total annual precipitation (PANN) and mean annual temperature (TANN) covering the last 10,000 years for the LYR region. This is based on the technique of weighted averaging-partial least squares regression to establish robust calibration models for obtaining reliable climatic inferences. The pollen-based reconstructions generally show an early Holocene climatic optimum with both abundant monsoonal rainfall and warm thermal conditions, and a declining pattern of both PANN and TANN values in the middle to late Holocene. The main driving forces behind the Holocene climatic changes in the LYR area are likely summer solar insolation associated with tropical or subtropical macro-scale climatic circulations such as the Intertropical Convergence Zone (ITCZ), Western Pacific Subtropical High (WPSH), and El Niño/Southern Oscillation (ENSO). Regional multi-proxy comparisons indicate that the Holocene variations in precipitation and temperature for the LYR region display an in-phase relationship with other related proxy records from southern monsoonal China and the Indian monsoon-influenced regions, but are inconsistent with the Holocene moisture or temperature records from northern monsoonal China and the westerly-dominated region in northwestern China. Overall, our comprehensive palaeoclimatic dataset and models may be significant tools for understanding the Holocene Asian monsoonal evolution and for anticipating its future dynamics in eastern Asia.

  10. Mio-Pliocene aridity in the south-central Andes associated with Southern Hemisphere cold periods

    PubMed Central

    Amidon, William H.; Fisher, G. Burch; Burbank, Douglas W.; Ciccioli, Patricia L.; Alonso, Ricardo N.; Gorin, Andrew L.; Silverhart, Perri H.; Kylander-Clark, Andrew R. C.; Christoffersen, Michael S.

    2017-01-01

    Although Earth’s climate history is best known through marine records, the corresponding continental climatic conditions drive the evolution of terrestrial life. Continental conditions during the latest Miocene are of particular interest because global faunal turnover is roughly synchronous with a period of global glaciation from ∼6.2–5.5 Ma and with the Messinian Salinity Crisis from ∼6.0–5.3 Ma. Despite the climatic and ecological significance of this period, the continental climatic conditions associated with it remain unclear. We address this question using erosion rates of ancient watersheds to constrain Mio-Pliocene climatic conditions in the south-central Andes near 30° S. Our results show two slowdowns in erosion rate, one from ∼6.1–5.2 Ma and another from 3.6 to 3.3 Ma, which we attribute to periods of continental aridity. This view is supported by synchrony with other regional proxies for aridity and with the timing of glacial ‟cold” periods as recorded by marine proxies, such as the M2 isotope excursion. We thus conclude that aridity in the south-central Andes is associated with cold periods at high southern latitudes, perhaps due to a northward migration of the Southern Hemisphere westerlies, which disrupted the South American Low Level Jet that delivers moisture to southeastern South America. Colder glacial periods, and possibly associated reductions in atmospheric CO2, thus seem to be an important driver of Mio-Pliocene ecological transitions in the central Andes. Finally, this study demonstrates that paleo-erosion rates can be a powerful proxy for ancient continental climates that lie beyond the reach of most lacustrine and glacial archives. PMID:28607045

  11. Climate variability in the subarctic area for the last 2 millennia

    NASA Astrophysics Data System (ADS)

    Nicolle, Marie; Debret, Maxime; Massei, Nicolas; Colin, Christophe; deVernal, Anne; Divine, Dmitry; Werner, Johannes P.; Hormes, Anne; Korhola, Atte; Linderholm, Hans W.

    2018-01-01

    To put recent climate change in perspective, it is necessary to extend the instrumental climate records with proxy data from paleoclimate archives. Arctic climate variability for the last 2 millennia has been investigated using statistical and signal analyses from three regionally averaged records from the North Atlantic, Siberia and Alaska based on many types of proxy data archived in the Arctic 2k database v1.1.1. In the North Atlantic and Alaska, the major climatic trend is characterized by long-term cooling interrupted by recent warming that started at the beginning of the 19th century. This cooling is visible in the Siberian region at two sites, warming at the others. The cooling of the Little Ice Age (LIA) was identified from the individual series, but it is characterized by wide-range spatial and temporal expression of climate variability, in contrary to the Medieval Climate Anomaly. The LIA started at the earliest by around AD 1200 and ended at the latest in the middle of the 20th century. The widespread temporal coverage of the LIA did not show regional consistency or particular spatial distribution and did not show a relationship with archive or proxy type either. A focus on the last 2 centuries shows a recent warming characterized by a well-marked warming trend parallel with increasing greenhouse gas emissions. It also shows a multidecadal variability likely due to natural processes acting on the internal climate system on a regional scale. A ˜ 16-30-year cycle is found in Alaska and seems to be linked to the Pacific Decadal Oscillation, whereas ˜ 20-30- and ˜ 50-90-year periodicities characterize the North Atlantic climate variability, likely in relation with the Atlantic Multidecadal Oscillation. These regional features are probably linked to the sea ice cover fluctuations through ice-temperature positive feedback.

  12. The Impact of the Revised Sunspot Record on Solar Irradiance Reconstructions

    NASA Astrophysics Data System (ADS)

    Kopp, G.; Krivova, N.; Lean, J.; Wu, C. J.

    2015-12-01

    We describe the expected effects of the new sunspot number time series on proxy model based reconstructions of the total solar irradiance (TSI), which is largely explained by the opposing effects of dark sunspots and bright faculae. Regressions of indices for facular brightening and sunspot darkening with time series of direct TSI observations during the recent 37-year spacecraft TSI measurement era determine the relative contributions from each. Historical TSI reconstructions are enabled by extending these proxy models back in time prior to the start of the measurement record using a variety of solar activity indices including the sunspot number time series alone prior to 1882. Such reconstructions are critical for Earth climate research, which requires knowledge of the incident energy from the Sun to assess climate sensitivity to the natural influence of solar variability. Two prominent TSI reconstructions that utilize the sunspot record starting in 1610 are the NRLTSI and the SATIRE models. We review the indices that each currently uses and estimate the effects the revised sunspot record has on these reconstructions.

  13. State-dependent climate sensitivity in past warm climates and its implications for future climate projections

    PubMed Central

    Caballero, Rodrigo; Huber, Matthew

    2013-01-01

    Projections of future climate depend critically on refined estimates of climate sensitivity. Recent progress in temperature proxies dramatically increases the magnitude of warming reconstructed from early Paleogene greenhouse climates and demands a close examination of the forcing and feedback mechanisms that maintained this warmth and the broad dynamic range that these paleoclimate records attest to. Here, we show that several complementary resolutions to these questions are possible in the context of model simulations using modern and early Paleogene configurations. We find that (i) changes in boundary conditions representative of slow “Earth system” feedbacks play an important role in maintaining elevated early Paleogene temperatures, (ii) radiative forcing by carbon dioxide deviates significantly from pure logarithmic behavior at concentrations relevant for simulation of the early Paleogene, and (iii) fast or “Charney” climate sensitivity in this model increases sharply as the climate warms. Thus, increased forcing and increased slow and fast sensitivity can all play a substantial role in maintaining early Paleogene warmth. This poses an equifinality problem: The same climate can be maintained by a different mix of these ingredients; however, at present, the mix cannot be constrained directly from climate proxy data. The implications of strongly state-dependent fast sensitivity reach far beyond the early Paleogene. The study of past warm climates may not narrow uncertainty in future climate projections in coming centuries because fast climate sensitivity may itself be state-dependent, but proxies and models are both consistent with significant increases in fast sensitivity with increasing temperature. PMID:23918397

  14. A High-Resolution Lipid Biomarker Perspective on North Iceland Shelf Marine Climate over the Last Millennium

    NASA Astrophysics Data System (ADS)

    Harning, D.; Sepúlveda, J.; Andrews, J. T.; Cabedo-Sanz, P.; Belt, S. T.; Marchitto, T. M.; Stoner, J. S.; Geirsdóttir, Á.; Miller, G. H.

    2017-12-01

    Icelandic climate is vulnerable to variations in the dominance of competing Arctic and Atlantic ocean currents. The boundary between these water masses delineates the Polar Front, which today occupies the North Iceland Shelf (NIS). To date, Holocene oceanographic reconstructions along the NIS have employed a variety of proxies including Mg/Ca and δ18O of benthic and planktonic foraminifera, quartz and calcite wt%, the alkenone unsaturation index (Uk'37) and biotic species assemblages. Sea surface temperature (SST) proxies are primarily derived from phytoplankton resulting in a seasonal bias toward spring/summer SST. Furthermore, SST proxies can be influenced by additional confounding variables (e.g. salinity, nutrients, depth habitat of biota) resulting in markedly different Holocene temperature reconstructions between proxy datasets. To evaluate the similarities and discrepancies between various marine proxies, we investigate a high-resolution sediment core collected from the central North Iceland Shelf (B997-316GGC, 658 m depth). Sedimentation covers the last millennium, which captures the transition from the Medieval Warm Period to the Little Ice Age. Age control is constrained by 14C dates and paleomagnetic secular variation. To assess marine surface productivity and sea ice conditions, we analyze quartz and calcite wt% via XRD and a series of highly branched isoprenoid biomarkers. Quantitative paleotemperature estimates are derived from a novel combination of Mg/Ca of foraminifera and two lipid biomarker indices, Uk'37 from Prymnesiophyte alkenones and TEX86 from Thaumarchaeota glycerol dialkyl glycerol tetraethers (GDGTs). The latter TEX86 record is the first paleo application in Icelandic waters, which a recent local calibration study suggests may reflect annual or winter sub-surface (0-200 m) temperatures. Our paleotemperature records are bolstered by the analysis of additional sediment core tops, which expand the established Icelandic calibrations. Finally, we perform statistical analyses in an effort to extract a robust record of paleoceanographic change and to test the applicability of various proxies in high-latitude paleoclimate studies.

  15. Holocene moisture and East Asian summer monsoon evolution in the northeastern Tibetan Plateau recorded by Lake Qinghai and its environs: A review of conflicting proxies

    NASA Astrophysics Data System (ADS)

    Chen, Fahu; Wu, Duo; Chen, Jianhui; Zhou, Aifeng; Yu, Junqing; Shen, Ji; Wang, Sumin; Huang, Xiaozhong

    2016-12-01

    Climatic and environmental changes in the northeastern Tibetan Plateau are controlled by the Asian summer monsoon (ASM) and the westerlies, two key circulation components of the global climate system which directly affect a large human population and associated ecosystems in eastern Asia. During the past few decades, a series of Holocene palaeoclimatic records have been obtained from sediment cores from Lake Qinghai and from various other geological archives in the surrounding area of the northeastern Tibetan Plateau. However, because of uncertainties regarding the sediment chronologies and the climatic significance of the proxies used, the nature of Holocene climatic changes in the region remains unclear and even controversial. Here we review all major classes of the published data from drilled cores from Lake Qinghai, as well as other evidence from lakes and aeolian deposits from surrounding areas, in order to reconstruct changes in moisture patterns and possible summer monsoon evolution in the area during the Holocene. Combining the results of moisture and precipitation proxies such as vegetation history, pollen-based precipitation reconstruction, aeolian activity, lake water depth/lake level changes, salinity and sediment redness, we conclude that moisture and precipitation began to increase in the early Holocene, reached their maximum during the middle Holocene, and decreased during the late Holocene - similar to the pattern of the East Asian summer monsoon (EASM) in northern China. It is clear that the region experienced a relatively dry climate and weak EASM during the early Holocene, as indicated by relatively low tree pollen percentages and fluctuating pollen concentrations; generally low lake levels of Lake Qinghai and the adjacent Lake Hurleg and Lake Toson in the Qaidam Basin; and widely distributed aeolian sand deposition in the Lake Qinghai Basin and the nearby Gonghe Basin to the south, and in the eastern Qaidam Basin to the west. We argue that the ostracod δ18O record, which is widely used as a proxy of effective moisture and summer monsoon intensity in lake sediments, at least in Lake Qinghai, and which exhibits light values in the early Holocene and heavier values thereafter, cannot be used to reflect the strength of the EASM or the intensity of monsoon precipitation - as is also the case for leaf wax δ2H records. Rather, we argue that as is the case of the Chinese speleothem δ18O record, which also is often interpreted as an EASM proxy, it reflects variation in the δ18O of precipitation. Overall, we suggest that the EASM significantly affected precipitation in the northeastern Tibetan Plateau during the Holocene; and that it increased in strength during the early Holocene, reached a maximum during the middle Holocene and decreased during the late Holocene.

  16. The Chew Bahir Drilling Project (HSPDP). Deciphering climate information from the Chew Bahir sediment cores: Towards a continuous half-million year climate record near the Omo - Turkana key palaeonanthropological Site

    NASA Astrophysics Data System (ADS)

    Foerster, Verena E.; Asrat, Asfawossen; Chapot, Melissa S.; Cohen, Andrew S.; Dean, Jonathan R.; Deino, Alan; Günter, Christina; Junginger, Annett; Lamb, Henry F.; Leng, Melanie J.; Roberts, Helen M.; Schaebitz, Frank; Trauth, Martin H.

    2017-04-01

    As a contribution towards an enhanced understanding of human-climate interactions, the Hominin Sites and Paleolakes Drilling Project (HSPDP) has successfully completed coring five dominantly lacustrine archives of climate change during the last 3.5 Ma in East Africa. All five sites in Ethiopia and Kenya are adjacent to key paleoanthropological research areas encompassing diverse milestones in human evolution, dispersal episodes, and technological innovation. The 280 m-long Chew Bahir sediment records, recovered from a tectonically-bound basin in the southern Ethiopian rift in late 2014, cover the past 550 ka of environmental history, a time period that includes the transition to the Middle Stone Age, and the origin and dispersal of modern Homo sapiens. Deciphering climate information from lake sediments is challenging, due to the complex relationship between climate parameters and sediment composition. We will present the first results in our efforts to develop a reliable climate-proxy tool box for Chew Bahir by deconvolving the relationship between sedimentological and geochemical sediment composition and strongly climate-controlled processes in the basin, such as incongruent weathering, transportation and authigenic mineral alteration. Combining our first results from the long cores with those from a pilot study of short cores taken in 2009/10 along a NW-SE transect of the basin, we have developed a hypothesis linking climate forcing and paleoenvironmental signal-formation processes in the basin. X-ray diffraction analysis of the first sample sets from the long Chew Bahir record reveals similar processes that have been recognized for the uppermost 20 m during the pilot-study of the project: the diagenetic illitization of smectites during episodes of higher alkalinity and salinity in the closed-basin lake induced by a drier climate. The precise time resolution, largely continuous record and (eventually) a detailed understanding of site specific proxy formation, will give us a continuous record of environmental history on decadal to orbital timescales. Our data enable us to test current hypotheses of the impact of a variety of climate shifts on human evolution and dispersal.

  17. A Tropical View of Atlantic Multidecadal SST Variability over the Last Two Millennia

    NASA Astrophysics Data System (ADS)

    Wurtzel, J. B.; Black, D. E.; Thunell, R.; Peterson, L. C.; Tappa, E. J.; Rahman, S.

    2011-12-01

    Instrumental and proxy-reconstructions show the existence of a 60-80 year periodicity in Atlantic sea surface temperature (SST), known as the Atlantic Multidecadal Oscillation (AMO). The AMO is correlated with circum-tropical Atlantic climate phenomena such as Sahel and Nordeste rainfall, as well as Atlantic hurricane patterns. Though it has been suggested that the AMO is controlled by thermohaline circulation, much debate exists as to whether the SST fluctuations are a result of anthropogenic forcing or natural climate variability. Our ability to address this issue has been limited by instrumental SST records that rarely extend back more than 50-100 years and proxy reconstructions that are largely terrestrial-based. Here we present a high-resolution marine sediment-derived reconstruction of seasonal tropical Atlantic SSTs from the Cariaco Basin spanning the past two millennia that is correlated with instrumental SSTs and the AMO for the period of overlap. The full record demonstrates that seasonality is largely controlled by variations in winter/spring SST. Wavelet analysis of the proxy data suggest that variability in the 60-80 year band evolved 250 years ago, while 40-60 year periodicities dominate earlier parts of the record. At least over the last millennia, multidecadal- and centennial- scale SST variability in the tropical Atlantic appears related to Atlantic meridional overturning circulation (AMOC) fluctuations and its associated northward heat transport that in turn may be driven by solar variability. An inverse correlation between the tropical proxy annual average SST record and Δ14C indicates that the tropics experienced positive SST anomalies during times of reduced solar activity, possibly as a result of decreased AMOC strength (Figure 1).

  18. Interdecadal modulation of El Niño teleconnection on monsoon Asia climate over the past five centuries

    NASA Astrophysics Data System (ADS)

    Li, J.; Xie, S. P.

    2017-12-01

    The El Niño influence on monsoon Asia climate weakened during the mid-20th century and strenthened substantially after the late 1970s. Exploring the nature of such an interdecadal variation is constrained by short instrumental records. Here we synthesize the Indo-Pacific tree-rings and coral records to reconstruct monsoon Asia temperature and moisture change during the past five centuries, and show that the interdecadal modulation of El Niño teleconnection on monsoon Asia climate is a robust feature beyond the instrumenal era. Comparison with proxy El Niño records indicates that the El Niño-monsoon Asia climate teleconnection is controlled by interdecadal changes in ENSO variance, with strong (weak) teleconnection in periods of high (low) variance, respectively.

  19. Climate variations of Central Asia on orbital to millennial timescales.

    PubMed

    Cheng, Hai; Spötl, Christoph; Breitenbach, Sebastian F M; Sinha, Ashish; Wassenburg, Jasper A; Jochum, Klaus Peter; Scholz, Denis; Li, Xianglei; Yi, Liang; Peng, Youbing; Lv, Yanbin; Zhang, Pingzhong; Votintseva, Antonina; Loginov, Vadim; Ning, Youfeng; Kathayat, Gayatri; Edwards, R Lawrence

    2016-11-11

    The extent to which climate variability in Central Asia is causally linked to large-scale changes in the Asian monsoon on varying timescales remains a longstanding question. Here we present precisely dated high-resolution speleothem oxygen-carbon isotope and trace element records of Central Asia's hydroclimate variability from Tonnel'naya cave, Uzbekistan, and Kesang cave, western China. On orbital timescales, the supra-regional climate variance, inferred from our oxygen isotope records, exhibits a precessional rhythm, punctuated by millennial-scale abrupt climate events, suggesting a close coupling with the Asian monsoon. However, the local hydroclimatic variability at both cave sites, inferred from carbon isotope and trace element records, shows climate variations that are distinctly different from their supra-regional modes. Particularly, hydroclimatic changes in both Tonnel'naya and Kesang areas during the Holocene lag behind the supra-regional climate variability by several thousand years. These observations may reconcile the apparent out-of-phase hydroclimatic variability, inferred from the Holocene lake proxy records, between Westerly Central Asia and Monsoon Asia.

  20. Climate variations of Central Asia on orbital to millennial timescales

    PubMed Central

    Cheng, Hai; Spötl, Christoph; Breitenbach, Sebastian F. M.; Sinha, Ashish; Wassenburg, Jasper A.; Jochum, Klaus Peter; Scholz, Denis; Li, Xianglei; Yi, Liang; Peng, Youbing; Lv, Yanbin; Zhang, Pingzhong; Votintseva, Antonina; Loginov, Vadim; Ning, Youfeng; Kathayat, Gayatri; Edwards, R. Lawrence

    2016-01-01

    The extent to which climate variability in Central Asia is causally linked to large-scale changes in the Asian monsoon on varying timescales remains a longstanding question. Here we present precisely dated high-resolution speleothem oxygen-carbon isotope and trace element records of Central Asia’s hydroclimate variability from Tonnel’naya cave, Uzbekistan, and Kesang cave, western China. On orbital timescales, the supra-regional climate variance, inferred from our oxygen isotope records, exhibits a precessional rhythm, punctuated by millennial-scale abrupt climate events, suggesting a close coupling with the Asian monsoon. However, the local hydroclimatic variability at both cave sites, inferred from carbon isotope and trace element records, shows climate variations that are distinctly different from their supra-regional modes. Particularly, hydroclimatic changes in both Tonnel’naya and Kesang areas during the Holocene lag behind the supra-regional climate variability by several thousand years. These observations may reconcile the apparent out-of-phase hydroclimatic variability, inferred from the Holocene lake proxy records, between Westerly Central Asia and Monsoon Asia. PMID:27833133

  1. Asynchronous east-west climate changes over the southwestern United States driven by competing moisture sources during the last deglaciation

    NASA Astrophysics Data System (ADS)

    Shanahan, T. M.; Wicks, T.; Jimmie, J. A.

    2013-12-01

    During the last deglaciation, the climate of the southwestern US changed dramatically, reflecting large-scale shifts in atmospheric circulation that were driven largely by changing temperature and ice cover in the high latitudes of the Northern Hemisphere. While a great deal has been learned about the nature of these changes in the desert southwest from speleothem, lake sediment and other proxy climate records, much less is known about deglacial changes in atmospheric circulation to the east, where continuous high-resolution proxy records are rare. Here we present a new record of changing vegetation and atmospheric moisture in central Texas from the δ13C of bulk organic matter and the δD of plant waxes preserved in the sediments of Hall's Cave. The record shows that Northern Hemisphere cold intervals were characterized by dry conditions, with a decreased proportion of winter grasses, trees and shrubs, whereas during warm intervals conditions were wetter and the proportion of C3 plants increased. These changes are opposite of those recorded elsewhere in the arid southwest, and particularly at sites in Arizona and New Mexico where the glacial was wet and the Bølling-Allerød was exceptionally dry. δDwax variations suggest that these east-west differences in deglacial climate change reflect differences in the relative importance of westerly storm tracks and the low level jet (LLJ) for delivering moisture to these areas. Terminal Pleistocene drought during the Bølling-Allerød appears to have been restricted to the desert southwest, while sites in Texas and the Great Plains became wetter. The asynchronous nature of these changes is seemingly at odds with a climatic origin for the late Pleistocene extinction of North American land mammals.

  2. Half-precessional climate forcing of Indian Ocean monsoon dynamics on the East African equator

    NASA Astrophysics Data System (ADS)

    Verschuren, D.; Sinninghe Damste, J. S.; Moernaut, J.; Kristen, I.; Fagot, M.; Blaauw, M.; Haug, G. H.; Project Members, C.

    2008-12-01

    The EuroCLIMATE project CHALLACEA produced a detailed multi-proxy reconstruction of the climate history of equatorial East Africa, based on the sediment record of Lake Challa, a 4.2 km2, 92-m deep crater lake on the lower East slope of Mt. Kilimanjaro (Kenya/Tanzania). Relatively stable sedimentation dynamics over the past 25,000 years resulted in a unique combination of high temporal resolution, excellent radiometric (210Pb, 14C) age control, and confidence that recording parameters of the climatic proxy signals extracted from the sediment have remained constant through time. The equatorial (3 deg. S) location of our study site in East Africa, where seasonal migration of convective activity spans the widest latitude range worldwide, produced unique information on how varying rainfall contributions from the northeasterly and southeasterly Indian Ocean monsoons shaped regional climate history. The Challa proxy records for temperature (TEX86) and moisture balance (reflection-seismic stratigraphy and the BIT index of soil bacterial input) uniquely weave together tropical climate variability at orbital and shorter time scales. The temporal pattern of reconstructed moisture balance bears the clear signature of half- precessional insolation forcing of Indian Ocean monsoon dynamics, modified by northern-latitude influence on moisture-balance variation at millennial and century time scales. During peak glacial time (but not immediately before) and the Younger Dryas, NH ice sheet influences overrode local insolation influence on monsoon intensity. After the NH ice sheets had melted and a relatively stable interglacial temperature regime developed, precession-driven summer insolation became the dominant determinant of regional moisture balance, with anti-phased patterns of Holocene hydrological change in the northern and southern (sub)tropics, and a uniquely hybrid pattern on the East African equator. In the last 2-3000 years a series of multi-century droughts with links to high latitude climate variability exerted widespread influence across the African continent. In northern and western tropical Africa these drought episodes accentuated the late- Holocene drying trend; in southern tropical Africa they mitigated or aborted the trend to increasing monsoon rainfall prescribed by SH insolation forcing.

  3. An 8700 Year Record of Holocene Climate Variability from the Yucatan Peninsula

    NASA Astrophysics Data System (ADS)

    Wahl, D.; Byrne, R.; Anderson, L.

    2013-12-01

    Our understanding of Holocene climate change in the Maya lowlands of Central America has improved significantly during the last several decades thanks to the development of proxy climate records from lake cores and speleothems. One important finding is that longer-term climate changes (i.e., millennial scale) were driven primarily by precessional forcing; less clear, however, are the causes of abrupt shifts and higher frequency (centennial to decadal) change recognized in many Holocene climate reconstructions. The mechanisms driving climate change on these time scales have been difficult to identify in the region, in part because the Yucatan peninsula is influenced by climatic conditions linked to both the tropical Atlantic and Pacific oceans. Additional complications arise from the development of dense human populations following the initial introduction of agriculture ~5000 cal yr BP, which had significant impact on the environment as a whole. Here we present the results of analyses (stable isotope, pollen, magnetic susceptibility, and physical properties) of a 7.25 m sediment core from Lago Puerto Arturo, a closed basin lake in the northern Peten, Guatemala. An age-depth model, based on 6 AMS radiocarbon determinations and created using CLAM, indicates the record extends to 8700 cal yr BP. Proxy data suggest that, similar to other low latitude sites, millennial scale climate at Lago Puerto Arturo was driven by changes in insolation. Higher frequency variability is associated with El Niño/Southern Oscillation (ENSO) and North Atlantic Oscillation (NAO) dynamics, reflecting latitudinal shifts in the Intertropical Convergence Zone in both the tropical North Atlantic and North Pacific. Solar forcing may also play a role in short-term climate change. The pollen and isotope records show that the entire period of prehispanic settlement and agricultural activity, i.e. ~5000-1000 cal yr B.P., was characterized by relatively dry conditions compared to before or after.

  4. Connecting medieval megadroughts and surface climate in the Last Millennium Reanalysis

    NASA Astrophysics Data System (ADS)

    Erb, M. P.; Emile-Geay, J.; Anderson, D. M.; Hakim, G. J.; Horlick, K. A.; Noone, D.; Perkins, W. A.; Steig, E. J.; Tardif, R.

    2016-12-01

    The North American Drought Atlas shows severe, long-lasting droughts during the Medieval Climate Anomaly. Because drought frequency and severity over the coming century is an area of vital interest, better understanding the causes of these historic droughts is crucial. A variety of research has suggested that a La Niña state was important for producing medieval megadroughts [1], and other work has indicated the potential roles of the Atlantic Multidecadal Oscillation [2] and internal atmospheric variability [3]. Correlations between drought and large-scale climate patterns also exist in the instrumental record [4], but understanding these relationships is far from complete. To investigate these relationships further, a data assimilation approach is employed. Proxy records - including tree rings, corals, and ice cores - are used to constrain climate states over the Common Era. By using general circulation model (GCM) output to quantify the covariances in the climate system, climate can be constrained not just at proxy sites but for all covarying locations and climate fields. Multiple GCMs will be employed to offset the limitations of imperfect model physics. This "Last Millennium Reanalysis" will be used to quantify relationships between North American medieval megadroughts and sea surface temperature patterns in the Atlantic and Pacific. 1. Cook, E. R., et al., Earth-Sci. Rev. 81, 93 (2007). 2. Oglesby, R., et al., Global Planet. Change 84-85, 56 (2012). 3. Stevenson, S., et al., J. Climate 28, 1865 (2015). 4. Cook, B. I., et al., J. Climate 27, 383 (2014).

  5. Fire, Climate, and Human Activity: A Combustive Combination

    NASA Astrophysics Data System (ADS)

    Kehrwald, N. M.; Battistel, D.; Argiriadis, E.; Barbante, C.; Barber, L. B.; Fortner, S. K.; Jasmann, J.; Kirchgeorg, T.; Zennaro, P.

    2017-12-01

    Ice and lake core records demonstrate that fires caused by human activity can dominate regional biomass burning records in the Common Era. These major increases in fires are often associated with extensive land use change such as an expansion in agriculture. Regions with few humans, relatively stable human populations and/or unvarying land use often have fire histories that are dominated by climate parameters such as temperature and precipitation. Here, we examine biomass burning recorded in ice cores from northern Greenland (NEEM, (77°27'N; 51°3.6'W), Alaska (Juneau Icefield, 58° 35' N; 134° 29'W) and East Antarctica (EPICA DOME C; 75°06'S; 123°21'E), along with New Zealand lake cores to investigate interactions between climate, fire and human activity. Biomarkers such as levoglucosan, and its isomers mannosan and galactosan, can only be produced by cellulose combustion and therefore are specific indicators of past fire activity archived in ice and lake cores. These fire histories add another factor to climate proxies from the same core, and provide a comparison to regional fire syntheses from charcoal records and climate models. For example, fire data from the JSBACH-Spitfire model for the past 2000 years demonstrates that a climate-only scenario would not increase biomass burning in high northern latitudes for the past 2000 years, while NEEM ice core and regional pollen records demonstrate both increased fire activity and land use change that may be ascribed to human activity. Additional biomarkers such as fecal sterols in lake sediments can determine when people were in an area, and can help establish if an increased human presence in an area corresponds with intensified fire activity. This combination of specific biomarkers, other proxy data, and model output can help determine the relative impact of humans versus climate factors on regional fire activity.

  6. Color reflectance spectroscopy of profundal lake sediments: a novel moisture-balance proxy for tropical East Africa

    NASA Astrophysics Data System (ADS)

    Meyer, Inka; Van Daele, Maarten; Fiers, Geraldine; Verleyen, Eli; De Batist, Marc; Verschuren, Dirk

    2016-04-01

    Investigations of the continuous sediment record from Lake Challa, a deep freshwater crater lake on the eastern slope of Mt. Kilimanjaro, are expanding our knowledge about past climate and environmental changes in equatorial East Africa. During a field campaign in 2005 a 20.65-m long composite sediment sequence was retrieved from the center of the lake, covering the past 25,000 years. Unlike many other East African lakes, Lake Challa never dried out during this period and therefore provides one of the few continuous and high-resolution regional climate-proxy records since before the LGM. Continuously taken digital line-scan images (GeoTek MSCL core logger) revealed systematic colour variation from greenish to yellow-brownish sediments throughout the core sequence. To characterize the origin of these colour variations, high-resolution colour reflectance spectrometry was carried out. The relative absorption band depth (RABD) at different wavelengths was calculated to distinguish between sediment components with distinct absorption/ reflection characteristics. RABD660/670 can be used as a proxy for chlorophyll and its derivates, and RABD610 as a proxy for carotenoids and their derivates. Comparison of RABD660/670 with independent reconstructions of rainfall (the Branched and Isoprenoid Tetraether (BIT) index of bacterial lipids) and seismic lake level reconstructions showed a positive correlation between these proxies. During times of wetter climate and higher lake level, e.g. the early Holocene, the RABD660/670 value is higher than during times of inferred dry conditions and low lake level, e.g. the early late-Glacial period (during which no chlorophyll or its derivates were detected). We attribute this positive correlation to reduced preservation of chlorophyll contained in the settling remains of dead phytoplankton during lowstands, when bottom waters may have been better oxygenated. This data is supported by the variation in fossil pigment concentration and composition analyzed by high performance liquid chromatography (HPLC). During humid/highstand episodes, chlorophyll and carotenoids are more diverse and abundant than during dry/lowstand episodes. Our data confirm the utility of reflectance spectroscopy as a tool for rapid, non-destructive and cost-effective analysis of long sequences of lithological change at high temporal resolution. They also support the previously published BIT-index record of Lake Challa as proxy for regional moisture-balance history.

  7. Extrapolar climate reversal during the last deglaciation.

    PubMed

    Asmerom, Yemane; Polyak, Victor J; Lachniet, Matthew S

    2017-08-02

    Large ocean-atmosphere and hydroclimate changes occurred during the last deglaciation, although the interplay between these changes remains ambiguous. Here, we present a speleothem-based high resolution record of Northern Hemisphere atmospheric temperature driven polar jet variability, which matches the Greenland ice core records for the most of the last glacial period, except during the last deglaciation. Our data, combined with data from across the globe, show a dramatic climate reversal during the last deglaciation, which we refer to as the Extrapolar Climate Reversal (ECR). This is the most prominent feature in most tropical and subtropical hydroclimate proxies. The initiation of the ECR coincides with the rapid rise in CO 2 , in part attributed to upwelling in the Southern Ocean and the near collapse of the Atlantic Meridional Overturning Circulation. We attribute the ECR to upwelling of cold deep waters from the Southern Ocean. This is supported by a variety of proxies showing the incursion of deep Southern Ocean waters into the tropics and subtropics. Regional climate variability across the extropolar regions during the interval previously referred to as the "Mystery Interval" can now be explained in the context of the ECR event.

  8. Uncoupling human and climate drivers of late Holocene vegetation change in southern Brazil.

    PubMed

    Robinson, Mark; De Souza, Jonas Gregorio; Maezumi, S Yoshi; Cárdenas, Macarena; Pessenda, Luiz; Prufer, Keith; Corteletti, Rafael; Scunderlick, Deisi; Mayle, Francis Edward; De Blasis, Paulo; Iriarte, José

    2018-05-17

    In the highlands of southern Brazil an anthropogenitcally driven expansion of forest occurred at the expense of grasslands between 1410 and 900 cal BP, coincident with a period of demographic and cultural change in the region. Previous studies have debated the relative contributions of increasing wetter and warmer climate conditions and human landscape modifications to forest expansion, but generally lacked high resoltiuon proxies to measure these effects, or have relied on single proxies to reconstruct both climate and vegetation. Here, we develop and test a model of natural ecosystem distribution against vegetation histories, paleoclimate proxies, and the archaeological record to distinguish human from temperature and precipitation impacts on the distribution and expansion of Araucaria forests during the late Holocene. Carbon isotopes from soil profiles confirm that in spite of climatic fluctuations, vegetation was stable and forests were spatially limited to south-facing slopes in the absence of human inputs. In contrast, forest management strategies for the past 1400 years expanded this economically important forest beyond its natural geographic boundaries in areas of dense pre-Columbian occupation, suggesting that landscape modifications were linked to demographic changes, the effects of which are still visible today.

  9. Arctic Ocean sea ice cover during the penultimate glacial and the last interglacial.

    PubMed

    Stein, Ruediger; Fahl, Kirsten; Gierz, Paul; Niessen, Frank; Lohmann, Gerrit

    2017-08-29

    Coinciding with global warming, Arctic sea ice has rapidly decreased during the last four decades and climate scenarios suggest that sea ice may completely disappear during summer within the next about 50-100 years. Here we produce Arctic sea ice biomarker proxy records for the penultimate glacial (Marine Isotope Stage 6) and the subsequent last interglacial (Marine Isotope Stage 5e). The latter is a time interval when the high latitudes were significantly warmer than today. We document that even under such warmer climate conditions, sea ice existed in the central Arctic Ocean during summer, whereas sea ice was significantly reduced along the Barents Sea continental margin influenced by Atlantic Water inflow. Our proxy reconstruction of the last interglacial sea ice cover is supported by climate simulations, although some proxy data/model inconsistencies still exist. During late Marine Isotope Stage 6, polynya-type conditions occurred off the major ice sheets along the northern Barents and East Siberian continental margins, contradicting a giant Marine Isotope Stage 6 ice shelf that covered the entire Arctic Ocean.Coinciding with global warming, Arctic sea ice has rapidly decreased during the last four decades. Here, using biomarker records, the authors show that permanent sea ice was still present in the central Arctic Ocean during the last interglacial, when high latitudes were warmer than present.

  10. Contradictory cooling in a warmer world? the climate of the Mediterranean region during the ';Holocene Thermal Maximum'

    NASA Astrophysics Data System (ADS)

    Davis, B.

    2013-12-01

    Extensive evidence from high latitudes of the Northern Hemisphere indicates that temperatures were warmer than present during the early-mid Holocene, a period known as the Holocene thermal maximum (HTM). The existence of the HTM over lower mid-latitudes and the sub-tropics however is less clear, with pollen-based reconstructions in particular actually indicating a contrary cooling at this time in these regions. This apparent cooling is controversial because it is not shown in climate model simulations, which indicate that the HTM occurred across all extra-tropical latitudes of the Northern Hemisphere. This is also supported by alkenone based SST reconstructions, which also show a much more widespread HTM than indicated by the pollen data. Here this problem is investigated by reviewing the evidence both for, and against, the HTM in the Mediterranean region, which represents one of the most intensively studied regions of sub-tropical climate in the Northern Hemisphere. This evidence includes a large number of both marine and terrestrial records that can be directly compared due to their close proximity around the Mediterranean Sea. The results highlight the potential for bias in both marine and terrestrial climate proxies, but despite many criticisms of the pollen-based record, it is shown that the existence of more extensive temperate vegetation in the early-mid Holocene in the Mediterranean is difficult to explain by anything other than a cooler climate. For instance, vegetation models driven by climate model output show that the warmer climate suggested by the models produces a HTM vegetation even more arid than today. The results have important implications in the interpretation of proxy records, but perhaps most importantly, the potential for climate models to underestimate cooling processes in a warmer world needs further investigation.

  11. Isotopic composition of ice core air reveals abrupt Antarctic warming during and after Heinrich Event 1a

    NASA Astrophysics Data System (ADS)

    Morgan, J. D.; Bereiter, B.; Baggenstos, D.; Kawamura, K.; Shackleton, S. A.; Severinghaus, J. P.

    2017-12-01

    Antarctic temperature variations during Heinrich events, as recorded by δ18O­ice­, generally show more gradual changes than the abrupt warmings seen in Greenland ice. However, quantitative temperature interpretation of the water isotope temperature proxy is difficult as the relationship between δ18Oice and temperature is not constant through time. Fortunately, ice cores offer a second temperature proxy based on trapped gases. During times of surface warming, thermal fractionation of gases in the column of unconsolidated snow (firn) on top of the ice sheet results in isotopically heavier nitrogen (N2) and argon (Ar) being trapped in the ice core bubbles. During times of surface cooling, isotopically lighter gases are trapped. Measurements of δ15N and δ40Ar can therefore be used, in combination with a model for the height of the column of firn, to quantitatively reconstruct surface temperatures. In the WAIS Divide Ice Core, the two temperature proxies show a brief disagreement during Heinrich Stadial 1. Despite δ18Oice recording relatively constant temperature, the nitrogen and argon isotopes imply an abrupt warming between 16 and 15.8 kyr BP, manifest as an abrupt 1.25oC increase in the firn temperature gradient. To our knowledge, this would be the first evidence that such abrupt climate change has been recorded in an Antarctic climate proxy. If confirmed by more detailed studies, this event may represent warming due to an extreme southward shift of the Earth's thermal equator (and the southern hemisphere westerly wind belt), caused by the 16.1 ka Heinrich Event.

  12. Runoff and sediment yield from proxy records: Upper Animas Creek Basin, New Mexico

    Treesearch

    W. R. Osterkamp

    1999-01-01

    Analyses of water- and sediment-yield records from the Walnut Gulch Experimental Watershed, the San Simon Wash Basin, and the Jornada Experimental Range, combined with observations of regional variations in climate, geology and soils, vegetation, topography, fire frequency, and land-use history, allow estimates of present conditions of water and sediment discharges in...

  13. Assessing the utility of elemental ratios as a paleotemperature proxy in shells of patelloid limpets

    NASA Astrophysics Data System (ADS)

    Graniero, Lauren; Surge, Donna; Gillikin, David

    2015-04-01

    Archaeological shell and fish middens are rich sources of paleoenvironmental proxy data. Carbonate hard part remains contained in such deposits have been used as archives of coastal marine climate and human-climate interactions. Oxygen isotope records from fast-growing limpet shells potentially capture summer and winter seasons, and thus, approach the full seasonal range of sea surface temperature (SST). Fast-growing shells are often short-lived, providing "snap-shots" of multi-year seasonal cycles. Patelloid limpet shells are common constituents in archaeological middens found along European, African, and South American coastlines. Oxygen isotope ratios of archaeological limpet shells from the genus, Patella, have been used to reconstruct seasonal SST and ocean circulation patterns during the Late Quaternary. Such studies depend on the ability to constrain the oxygen isotope ratio of seawater; therefore, alternative proxies are necessary for coastal localities where this is not possible. Elemental ratios (e.g., Sr/Ca, Mg/Ca) have been used as paleotemperature proxies in corals and foraminifera with varying degrees of success and appear problematic in bivalves. Here, we test whether such elemental ratios are useful as an alternative SST proxy in patelloid limpet shells.

  14. Variations in productivity and eolian fluxes in the northeastern Arabian Sea during the past 110 ka

    NASA Astrophysics Data System (ADS)

    Pourmand, Ali; Marcantonio, Franco; Schulz, Hartmut

    2004-04-01

    High-resolution (one to two samples/ka) radionuclide proxy records from core 93KL in the northeastern Arabian Sea provide evidence for millennial climate variability over the past 110 ka. We interpret 230Th-normalized 232Th fluxes as a proxy for eolian input, and authigenic uranium concentrations as a proxy for past productivity. We attribute orbital and suborbital variations in both proxies to changes in the intensity of the southwest Indian Ocean monsoon. The highest 230Th-normalized 232Th fluxes occur at times that are consistent with the timing of the Younger Dryas, Heinrich events 1-7 and cold Dansgaard-Oeschger stadial events recorded in the GISP2 ice core. Such high dust fluxes may be due to a weakened southwest monsoon in conjunction with strengthened northwesterlies from the Arabian Peninsula and Mesopotamia. Authigenic uranium concentrations, on the other hand, are highest during warm Dansgaard-Oeschger interstadials when the southwest monsoon is intensified relative to the northwesterly winds. Our results also indicate that on orbital timescales maximum average eolian fluxes coincide with the timing of marine isotopic stage (MIS) 2 and 4, while minimum fluxes occur during MIS 1, 3 and 5. Although the forcing mechanism(s) controlling suborbital variabilities in monsoonal intensity is still debated, our findings suggest an atmospheric teleconnection between the low-latitude southwest monsoon and North Atlantic climate.

  15. 600 yr High-Resolution Climate Reconstruction of the Atlantic Multidecadal Oscillation deduced from a Puerto Rican Speleothem

    NASA Astrophysics Data System (ADS)

    Vieten, Rolf; Winter, Amos; Scholz, Denis; Black, David; Spoetl, Christoph; Winterhalder, Sophie; Koltai, Gabriella; Schroeder-Ritzrau, Andrea; Terzer, Stefan; Zanchettin, Davide; Mangini, Augusto

    2016-04-01

    A multi-proxy speleothem study tracks the regional hydrological variability in Puerto Rico and highlights its close relation to the Atlantic Multidecadal Oscillation (AMO) describing low-frequency sea-surface temperature (SST) variability in the North Atlantic ocean. Our proxy record extends instrumental observations 600 years into the past, and reveals the range of natural hydrologic variability for the region. A detailed interpretation and understanding of the speleothem climate record is achieved by the combination of multi-proxy measurements, thin section petrography, XRD analysis and cave monitoring results. The speleothem was collected in Cueva Larga, a one mile-long cave system that has been monitored since 2012. MC-ICPMS 230Th/U-dating reveals that the speleothem grew constantly over the last 600 years. Trace element ratios (Sr/Ca and Mg/Ca) as well as stable isotope ratios (δ18O and δ13C) elucidate significant changes in atmospheric precipitation at the site. Monthly cave monitoring results demonstrate that the epikarst system responds to multi-annual changes in seepage water recharge. The drip water isotope and trace element composition lack short term or seasonal variability. This hydrological system creates favorable conditions to deduce decadal climate variability from Cueva Larga's climate record. The speleothem time series mimics the most recent AMO reconstruction over the last 200 years (Svendsen et al., 2014) with a time lag of 10-20 years. The lag seems to results from slow atmospheric signal transmission through the epikarst but the effect of dating uncertainties cannot be ruled out. Warm SSTs in the North Atlantic are related to drier conditions in Puerto Rico. During times of decreased rainfall a relative increase in prior calcite precipitation seems to be the main process causing increased Mg/Ca trace element ratios. High trace element ratios correlate to higher δ13C values. The increase in both proxies indicates a shift towards time periods of decreased rainfall. Before 1800 there were two intervals of increased Mg/Ca and δ13C values (dryer conditions) lasting several decades in our speleothem record centered around 1680 CE and 1470 CE. The elevated ratios indicate that drier conditions than present may have occurred in the region during periods of warm Atlantic surface waters.

  16. 600 yr High-Resolution Climate Reconstruction of the Atlantic Multidecadal Variability deduced from a Puerto Rican Speleothem

    NASA Astrophysics Data System (ADS)

    Winter, A.; Vieten, R.

    2015-12-01

    A multi-proxy speleothem study tracks the regional hydrological variability in Puerto Rico and highlights its close relation to the Atlantic Multidecadal Oscillation. Our proxy record extends instrumental observations 600 years into the past, and reveals the range of natural hydrologic variability for the region. A detailed interpretation and understanding of the speleothem climate record is achieved by the combination of multi-proxy measurements, thin section petrography, XRD analysis and cave monitoring results. The speleothem was collected in Cueva Larga, a one mile-long cave system that has been monitored since 2012. MC-ICPMS 230Th/U-dating reveals that the speleothem grew constantly over the last 600 years. Trace element ratios (Sr/Ca and Mg/Ca) as well as stable isotope ratios (δ18O and δ13C) elucidate significant changes in atmospheric precipitation at the site. Monthly cave monitoring results demonstrate that the epikarst system responds to multi-annual changes in seepage water recharge. The drip water isotope and trace element composition lack short term or seasonal variability. This hydrological system creates favorable conditions to deduce decadal climate variability from Cueva Larga's climate record. The speleothem time series mimics the most-recently published AMO reconstruction over the last 200 years with a time lag of 10-20 years. The time lag seems to results from slow atmospheric signal transmission through the epikarst but the effect of dating uncertainties cannot be ruled out. Warm SSTs in the North Atlantic are related to drier conditions in Puerto Rico. During times of decreased rainfall a relative increase in prior calcite precipitation seems to be the main process causing increased Mg/Ca trace element ratios. High trace element ratios correlate to higher δ13C values. The increase in both proxies indicates a shift towards time periods of decreased rainfall. Over the past 600 years there are two intervals of increased Mg/Ca and δ13C values lasting several decades in our speleothem record. They are centered around 1680 CE and 1470 CE. The elevated ratios indicate that drier conditions than present occurred in the region during periods of warm Atlantic surface waters. This may be a precursor of conditions now and to come.

  17. Development and Application of Otoliths as Paleoclimate Proxies.

    NASA Astrophysics Data System (ADS)

    Andrus, C. T.; Crowe, D. E.; Sandweiss, D. H.

    2001-12-01

    Otoliths are small (<20 mm) accretionary aragonite ear structures in teleost fish. Otolith aragonite is precipitated in oxygen isotope equilibrium with ambient water, thus otolith δ 18O values are proxies for temperature. Otolith growth is marked by concentric bands that reflect, in most species, daily to annual growth periods. New techniques of high-resolution CO2 extraction from aragonite, such as laser microprobe and micromill, permit measurement of δ 18O at temporal resolutions fine enough to discern seasonal climate variation. Otoliths are abundant in most maritime archaeological sites and are also found as fossils as old as the Jurassic. Gross otolith morphology is taxon-specific, often permitting identification to the species level. Depending on the behavior and natural history of each species, conditions within different environments and habitats may be recorded in the isotope chemistry. These environments range from abyssal oceanic depths to mid-continental rivers and lakes, but the most abundant archaeological otoliths are from fish that inhabit shallow coastal waters. Unlike most proxies that are sessile, fish are pelagic and thus record a paleoclimate record indicative of the range of habitats in which the individual grew. In fish with well-understood life histories, such as most economically significant species, this permits evaluation of multiple habitat climates through ontogeny as recorded in the incremental growth. In species with a defined home range (i.e. non-migratory), an integrated temperature history of region can be reconstructed from the δ 18O values, thus avoiding micro-environmental biases sometimes associated with sessile proxies. An example of such use of otoliths is our recent analyses of δ 18O profiles from mid-Holocene archaeological sites in coastal Peru that reflect sea surface temperature (SST) histories. This is an area of coast that lacks more traditional proxies, such as coral, yet is central to the understanding of a global phenomenon such as El Niño/southern oscillation. The high-resolution temperature records preserved in these sea catfish (Galeichthys peruvianus) otoliths reveal warmer than present summer SST in central Peru and near tropical conditions in the north.

  18. Stable Carbon Isotopes in Treerings; Revisiting the Paleocloud Proxy.

    NASA Astrophysics Data System (ADS)

    Gagen, M.; Zorita, E.; Dorado Liñán, I.; Loader, N.; McCarroll, D.; Robertson, I.; Young, G.

    2017-12-01

    The long term relationship between cloud cover and temperature is one of the most important climate feedbacks contributing to determining the value of climate sensitivity. Climate models still reveal a large spread in the simulation of changes in cloud cover under future warming scenarios and clarity might be aided by a picture of the past variability of cloudiness. Stable carbon isotope ratios from tree ring records have been successfully piloted as a palaeocloud proxy in geographical areas traditionally producing strong dendroclimatological reconstructions (high northern latitudes in the Northern Hemisphere) and with some notable successes elsewhere too. An expansion of tree-ring based palaeocloud reconstructions might help to estimate past variations of cloud cover in periods colder or warmer than the 20th century, providing a way to test model test this specific aspect. Calibration with measured instrumental sunshine and cloud data reveals stable carbon isotope ratios from tree rings as an indicator of incoming short wave solar radiation (SWR) in non-moisture stressed sites, but the statistical identification of the SWR signal is hampered by its interannual co-variability with air temperature during the growing season. Here we present a spatio-temporal statistical analysis of a multivariate stable carbon isotope tree ring data set over Europe to assess its usefulness to reconstruct past solar radiation changes. The interannual co-variability of the tree ring records stronger covariation with SWR than with air temperature. The resulting spatial patterns of interannual co-variability are strongly linked to atmospheric circulation in a physically consistent manner. However, the multidecadal variations in the proxy records show a less physically coherent picture. We explore whether atmospheric corrections applied to the proxy series are contributing to differences in the multi decadal signal and investigate whether multidecadal variations in soil moisture perturb the SWR. Preliminary results of strategies to bypass these problems are explored.

  19. Stable isotope compositions of speleothems from the last interglacial - Spatial patterns of climate fluctuations in Europe

    NASA Astrophysics Data System (ADS)

    Demény, Attila; Kern, Zoltán; Czuppon, György; Németh, Alexandra; Leél-Őssy, Szabolcs; Siklósy, Zoltán; Lin, Ke; Hu, Hsun-Ming; Shen, Chuan-Chou; Vennemann, Torsten W.; Haszpra, László

    2017-04-01

    Studies on the last interglacial (LIG) can provide information on how our environment behaved in a period of slightly higher global temperatures at about 125 ± 4 ka, even if it is not the best analogue for the Holocene. The available LIG climate proxy records are usually better preserved and can be studied at a higher resolution than those of the preceding interglacials, allowing detailed comparisons. This paper presents complex stable hydrogen, carbon and oxygen isotope records obtained for carbonate (δ13C and δ18Ocarb) and fluid inclusion hosted water (δD and δ18Ow) of a stalagmite from the Baradla Cave system in Central Europe that covers most of the LIG, as proven by U-Th dates. Comparing its C and O isotope data with records reported for other speleothem (cave-hosted carbonate) deposits from Europe revealed the complex behavior of these climate proxies, with a concerted relative increase in 18O of carbonates from 128 to 120 ka and synchronized shifts in the opposite direction after 119 ka. The hydrogen isotope analyses of inclusion-hosted water extracted from the BAR-II stalagmite also correspond to the regional climate proxy records, with meaningful deviations from global temperature trends. Beside following the general paleotemperature pattern from the climate optimum (high δD values up to -64‰ around 120 ka) to the subsequent cooling starting at about 119 ka (low δD values down to -90‰ at about 109 ka), a period between 126.5 and 123 ka with low δD values (down to -81‰) is detected in the BAR-II stalagmite. Although the isotope shifts are muted in the C-O isotope data of carbonate due to competitive fractionation processes, the δ13C data show a positive relationship with the δD pattern, indicating humidity - and possibly temperature - variations. The periods with low δD values fit well to temperature and humidity changes inferred from proxy records from western Europe to the eastern Mediterranean. Spatial distributions of these variables show, that at about 125 ± 2 ka the Mediterranean region was characterized by warm, humid conditions and enhanced seasonality with elevated winter precipitation. The combined interpretation of stable isotope data revealed that the Alpine and Mediterranean regions behaved differently during Greenland Stadial 26 (GS26, ∼119 to 116.2 ka). While the Alpine records fluctuated in close agreement with the Central Greenland ice core δ18O data, the BAR-II stalagmite show a positive δ18Ocarb anomaly. The Baradla data indicate enhanced aridity and seasonality for a part of GS26, with the relative dominance of summer precipitation and Mediterranean moisture contribution. Following the GS26 event, the effect of long-term global cooling becomes dominant in the Baradla isotope records and leads to glacial inception at about 109 ka.

  20. A Multi-proxy Approach to Using Cave Sediment Carbon Isotopes for Late Holocene Paleoenvironmental Reconstruction in Florida

    NASA Astrophysics Data System (ADS)

    Polk, J. S.; van Beynen, P.

    2007-12-01

    Carbon isotopes from cave sediments collected from Jennings Cave in Marion County, Florida were analyzed using a multi-proxy approach. Fulvic acids (FAs), humic acids (HAs), black carbon, phytoliths, and bulk organic matter were extracted from the sediments for carbon isotope analysis to determine periods of vegetation change caused by climatic influences during the Late Holocene (~\\ 2,800 years BP). The carbon isotope record ranges from -35‰ to -14‰, exhibiting variability of ~\\ -21‰, within the different proxies, which indicates changes between C3 and C4 vegetation. This likely indicates changes between a sub-tropical forested environment and more arid, grassy plains conditions. These changes in plant assemblages were in response to changes in available water resources, with increased temperatures and evapotranspiration leading to arid conditions and a shift toward less C3 vegetation (increased C4 vegetation) during the MWP. The cave sediment fulvic acid cabon isotopes record agrees well with ä13C values from a speleothem collected nearby that covers the same time period. Prolonged migration of the NAO and ITCZ affects precipitation in Florida and likely caused vegetation changes during these climatic shifts.

  1. Tree-ring δ18O in African mahogany (Entandrophragma utile) records regional precipitation and can be used for climate reconstructions

    NASA Astrophysics Data System (ADS)

    van der Sleen, Peter; Groenendijk, Peter; Zuidema, Pieter A.

    2015-04-01

    The availability of instrumental climate data in West and Central Africa is very restricted, both in space and time. This limits the understanding of the regional climate system and the monitoring of climate change and causes a need for proxies that allow the reconstruction of paleoclimatic variability. Here we show that oxygen isotope values (δ18O) in tree rings of Entandrophragma utile from North-western Cameroon correlate to precipitation on a regional to sub-continental scale (1930-2009). All found correlations were negative, following the proposed recording of the 'amount effect' by trees in the tropics. The capacity of E. utile to record the variability of regional precipitation is also confirmed by the significant correlation of tree-ring δ18O with river discharge data (1944-1983), outgoing longwave radiation (a proxy for cloud cover; 1974-2011) and sea surface salinity in the Gulf of Guinea (1950-2011). Furthermore, the high values in the δ18O chronology from 1970 onwards coincide with the Sahel drought period. Given that E. utile presents clear annual growth rings, has a wide-spread distribution in tropical Africa and is long lived (> 250 years), we argue that the analysis of oxygen isotopes in growth rings of this species is a promising tool for the study of paleoclimatic variability during the last centuries in West and Central Africa.

  2. Delayed build-up of Arctic ice sheets during 400,000-year minima in insolation variability.

    PubMed

    Hao, Qingzhen; Wang, Luo; Oldfield, Frank; Peng, Shuzhen; Qin, Li; Song, Yang; Xu, Bing; Qiao, Yansong; Bloemendal, Jan; Guo, Zhengtang

    2012-10-18

    Knowledge of the past variability of climate at high northern latitudes during astronomical analogues of the present interglacial may help to inform our understanding of future climate change. Unfortunately, long-term continuous records of ice-sheet variability in the Northern Hemisphere only are scarce because records of benthic (18)O content represent an integrated signal of changes in ice volume in both polar regions. However, variations in Northern Hemisphere ice sheets influence the Siberian High (an atmospheric pressure system), so variations in the East Asian winter monsoon (EAWM)--as recorded in the aeolian dust deposits on the Chinese Loess Plateau--can serve as a useful proxy of Arctic climate variability before the ice-core record begins. Here we present an EAWM proxy record using grain-size variations in two parallel loess sections representative of sequences across the whole of the Chinese Loess Plateau over the past 900,000 years. The results show that during periods of low eccentricity and precessional variability at approximately 400,000-year intervals, the grain-size-inferred intensity of the EAWM remains weak for up to 20,000 years after the end of the interglacial episode of high summer monsoon activity and strong pedogenesis. In contrast, there is a rapid increase in the EAWM after the end of most other interglacials. We conclude that, for both the 400,000-year interglacials, the weak EAWM winds maintain a mild, non-glacial climate at high northern latitudes for much longer than expected from the conventional loess and marine oxygen isotope records. During these times, the less-severe summer insolation minima at 65° N (ref. 4) would have suppressed ice and snow accumulation, leading to a weak Siberian High and, consequently, weak EAWM winds.

  3. A comparison of high-resolution pollen-inferred climate data from central Minnesota, USA, to 19th century US military fort climate data and tree-ring inferred climate reconstructions

    NASA Astrophysics Data System (ADS)

    St Jacques, J.; Cumming, B. F.; Sauchyn, D.; Vanstone, J. R.; Dickenson, J.; Smol, J. P.

    2013-12-01

    A vital component of paleoclimatology is the validation of paleoclimatological reconstructions. Unfortunately, there is scant instrumental data prior to the 20th century available for this. Hence, typically, we can only do long-term validation using other proxy-inferred climate reconstructions. Minnesota, USA, with its long military fort climate records beginning in 1820 and early dense network of climate stations, offers a rare opportunity for proxy validation. We compare a high-resolution (4-year), millennium-scale, pollen-inferred paleoclimate record derived from varved Lake Mina in central Minnesota to early military fort records and dendroclimatological records. When inferring a paleoclimate record from a pollen record, we rely upon the pollen-climate relationship being constant in time. However, massive human impacts have significantly altered vegetation; and the relationship between modern instrumental climate data and the modern pollen rain becomes altered from what it was in the past. In the Midwest, selective logging, fire suppression, deforestation and agriculture have strongly influenced the modern pollen rain since Euro-American settlement in the mid-1800s. We assess the signal distortion introduced by using the conventional method of modern post-settlement pollen and climate calibration sets to infer climate at Lake Mina from pre-settlement pollen data. Our first February and May temperature reconstructions are based on a pollen dataset contemporaneous with early settlement to which corresponding climate data from the earliest instrumental records has been added to produce a 'pre-settlement' calibration set. The second February and May temperature reconstructions are based on a conventional 'modern' pollen-climate dataset from core-top pollen samples and modern climate normals. The temperature reconstructions are then compared to the earliest instrumental records from Fort Snelling, Minnesota, and it is shown that the reconstructions based on the pre-settlement calibration set give much more credible reconstructions. We then compare the temperature reconstructions based upon the two calibration sets for AD 1116-2002. Significant signal flattening and bias exist when using the conventional modern pollen-climate calibration set rather than the pre-settlement pollen-climate calibration set, resulting in an overestimation of Little Ice Age monthly mean temperatures of 0.5-1.5 oC. Therefore, regional warming from anthropogenic global warming is significantly underestimated when using the conventional method of building pollen-climate calibration sets. We also compare the Lake Mina pollen-inferred effective moisture record to early 19th century climate data and to a four-century tree-ring inferred moisture reconstruction based upon sites in Minnesota and the Dakotas. This comparison shows that regional tree-ring reconstructions are biased towards dry conditions and record wet periods poorly relative to high-resolution pollen reconstructions, giving a false impression of regional aridity. It also suggests that varve chronologies should be based upon cross-dating to ensure a more accurate chronology.

  4. The cold climate geomorphology of the Eastern Cape Drakensberg: A reevaluation of past climatic conditions during the last glacial cycle in Southern Africa

    NASA Astrophysics Data System (ADS)

    Mills, S. C.; Barrows, T. T.; Telfer, M. W.; Fifield, L. K.

    2017-02-01

    Southern Africa is located in a unique setting for investigating past cold climate geomorphology over glacial-interglacial timescales. It lies at the junction of three of the world's major oceans and is affected by subtropical and temperate circulation systems, therefore recording changes in Southern Hemisphere circulation patterns. Cold climate landforms are very sensitive to changes in climate and thus provide an opportunity to investigate past changes in this region. The proposed existence of glaciers in the high Eastern Cape Drakensberg mountains, together with possible rock glaciers, has led to the suggestion that temperatures in this region were as much as 10-17 °C lower than present. Such large temperature depressions are inconsistent with many other palaeoclimatic proxies in Southern Africa. This paper presents new field observations and cosmogenic nuclide exposure ages from putative cold climate landforms. We discuss alternative interpretations for the formation of the landforms and confirm that glaciers were absent in the Eastern Cape Drakensberg during the last glaciation. However, we find widespread evidence for periglacial activity down to an elevation of 1700 m asl, as illustrated by extensive solifluction deposits, blockstreams, and stone garlands. These periglacial deposits suggest that the climate was significantly colder ( 6 °C) during the Last Glacial Maximum, in keeping with other climate proxy records from the region, but not cold enough to initiate or sustain glaciers or rock glaciers.

  5. Iranian speleothems: Investigating Quaternary climate variability in semi-arid Western Asia

    NASA Astrophysics Data System (ADS)

    Carolin, Stacy; Morgan, Jacob; Peckover, Emily; Walker, Richard; Henderson, Gideon; Rowe, Peter; Andrews, Julian; Ersek, Vasile; Sloan, Alastair; Talebian, Morteza; Fattahi, Morteza; Nezamdoust, Javad

    2016-04-01

    Rapid population growth and limited water supply has highlighted the need for vigorous water resource management practices in the semi-arid regions of Western Asia. One significant unknown in this discussion is the future change in rainfall amount due to the consequential effects of today's greenhouse gas forcing on the regional climate system. Currently, there is little paleoclimate proxy data in Western Asia to extend climate records beyond the limits of the instrumental period, leaving scant evidence to investigate the system's response to various climate forcings on different timescales. Here we present a synthesis of speleothem climate records across northern Iran, from the wetter climate of the Alborz and Zagros mountain ranges to the dry northeast, in order to investigate the magnitude of past climate variability and the forcings responsible. The stalagmites collected from the west and north-central mountain ranges, areas with ~200-400mm mean annual precipitation mostly falling within the fall-winter-spring months, all demonstrate growth limited to the interglacial periods of the Quaternary. We present overlapping Holocene stable isotope records with a complementary trace element record to assist in interpreting the isotopic variability. One of the records is sampled at <4yr resolution and spans 3.7-5.3 kyBP, a contested period of catastrophic droughts that allegedly eradicated civilizations in areas of the near East. Imposed upon decadal-scale variability, the record reveals a 1,000-yr gradual trend toward enriched stable oxygen isotope values, interpreted as a trend toward drier conditions, which ends with an abrupt 300-yr cessation in growth beginning at 4.3 kyBP, coincident with the so-called 4.2 kyBP drought event. From the northeast Iranian plateau, we present a new stalagmite record that spans the penultimate deglaciation and Stages 5e-5a. This region presently receives limited rain annually (~100-300mm/yr, regularly falling between November and May), and the record presented is one of the first speleothem climate records to span a deglaciation in West Asia. To improve our interpretation of the speleothem climate proxy timeseries, we use multiple decades of Tehran GNIP data, meteorological data, and isotope-equipped climate model outputs to investigate the large-scale mechanisms forcing isotopic variations in rainwater across northern Iran. We also examine possible transformation of water isotopes during the transition through the karst aquifer based on site properties, measured dripwater isotopes, and simple model experiments.

  6. Proxies of Tropical Cyclone Isotope Spikes in Precipitation: Landfall Site Selection

    NASA Astrophysics Data System (ADS)

    Lawrence, J. R.; Maddocks, R.

    2011-12-01

    The human experience of climate change is not one of gradual changes in seasonal or yearly changes in temperature or rainfall. Despite that most paleoclimatic reconstructions attempt to provide just such information. Humans experience climate change on much shorter time scales. We remember hurricanes, weeks of drought or overwhelming rainy periods. Tropical cyclones produce very low isotope ratios in both rainfall and in atmospheric water vapor. Thus, climate proxies that potentially record these low isotope ratios offer the most concrete record of climate change to which humans can relate. The oxygen isotopic composition of tropical cyclone rainfall has the potential to be recorded in fresh water carbonate fossil material, cave deposits and corals. The hydrogen isotopic composition of tropical cyclone rainfall has the potential to be recorded in tree ring cellulose and organic matter in fresh water bodies. The Class of carbonate organisms known as Ostracoda form their carapaces very rapidly. Thus fresh water ephemeral ponds in the subtropics are ideal locations for isotopic studies because they commonly are totally dry when tropical cyclones make landfall. The other proxies suffer primarily from a dilution effect. The water from tropical cyclones is mixed with pre-existing water. In cave deposits tropical cyclone rains mix with soil and ground waters. In the near shore coral environment the rain mixes with seawater. For tree rings there are three sources of water: soil water, atmospheric water vapor that exchanges with leaf water and tropical cyclone rain. In lakes because of their large size rainfall runoff mixes with ground water and preexisting water in the lake. A region that shows considerable promise is Texas / Northeast Mexico. In a study of surface waters that developed from the passage of Tropical Storm Allison (2001) in SE Texas both the pond water and Ostracoda that bloomed recorded the low oxygen isotope signal of that storm (Lawrence et al, 2008). In 2010 rain from Hurricane Alex, Tropical Depression 2 and Tropical Storm Hermine flooded ephemeral ponds in south Texas. Isotopic analysis of water and fossil Ostracoda from ephemeral ponds in south Texas is planned. Cores (50 cm in length) were taken in one of these ponds where living Ostracoda were found and collected.

  7. Wet and cold climate conditions recorded by coral geochemical proxies during the beginning of the first millennium CE in the northern South China Sea

    NASA Astrophysics Data System (ADS)

    Xiao, Hangfang; Deng, Wenfeng; Chen, Xuefei; Wei, Gangjian; Zeng, Ti; Zhao, Jian-xin

    2017-03-01

    The past two millennia include some distinct climate intervals, such as the Medieval Warm Period (MWP) and the Little Ice Age (LIA), which were caused by natural forcing factors, as well as the Current Warm Period (CWP) that has been linked to anthropogenic factors. Therefore, this period has been of great interest to climate change researchers. However, most studies are based on terrestrial proxy records, historical documentary data, and simulation results, and the ocean and the tropical record are very limited. The Eastern Han, Three Kingdoms, and Western Jin periods (25-316 CE) cover the beginning first millennium CE in China, and were characterized by a cold climate and frequent wars and regime changes. This study used paired Sr/Ca and δ18O series recovered from a fossil coral to reconstruct the sea surface water conditions during the late Eastern Han to Western Jin periods (167-309 CE) at Wenchang, eastern Hainan Island in the northern South China Sea (SCS), to investigate climate change at this time. The long-term sea surface temperature (SST) during the study interval was 25.1 °C, which is about 1.5 °C lower than that of the CWP (26.6 °C). Compared with the average value of 0.40‰ during the CWP, the long-term average seawater δ18O (-0.06‰) was more negative. These results indicate that the climate conditions during the study period were cold and wet and comparable with those of the LIA. This colder climate may have been associated with the weaker summer solar irradiance. The wet conditions were caused by the reduced northward shift of the intertropical convergence zone/monsoon rainbelt associated with the retreat of the East Asian summer monsoon. Interannual and interdecadal climate variability may also have contributed to the variations in SST and seawater δ18O recorded over the study period.

  8. Late quaternary climate, precipitation δ18O, and Indian monsoon variations over the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Li, Jingmin; Ehlers, Todd A.; Werner, Martin; Mutz, Sebastian G.; Steger, Christian; Paeth, Heiko

    2017-01-01

    The Himalaya-Tibet orogen contains one of the largest modern topographic and climate gradients on Earth. Proxy data from the region provide a basis for understanding Tibetan Plateau paleo climate and paleo elevation reconstructions. Paleo climate model comparisons to proxy data compliment sparsely located data and can improve climate reconstructions. This study investigates temporal changes in precipitation, temperature and precipitation δ18O (δO18p) over the Himalaya-Tibet from the Last Glacial Maximum (LGM) to present. We conduct a series of atmospheric General Circulation Model (GCM, ECHAM5-wiso) experiments at discrete time slices including a Pre-industrial (PI, Pre-1850 AD), Mid Holocene (MH, 6 ka BP) and LGM (21 ka BP) simulations. Model predictions are compared with existing proxy records. Model results show muted climate changes across the plateau during the MH and larger changes occurring during the LGM. During the LGM surface temperatures are ∼ 2.0- 4.0 °C lower across the Himalaya and Tibet, and >5.0 °C lower at the northwest and northeast edge of the Tibetan Plateau. LGM mean annual precipitation is 200-600 mm/yr lower over on the Tibetan Plateau. Model and proxy data comparison shows a good agreement for the LGM, but large differences for the MH. Large differences are also present between MH proxy studies near each other. The precipitation weighted annual mean δ18Op lapse rate at the Himalaya is about 0.4 ‰ /km larger during the MH and 0.2 ‰ /km smaller during the LGM than during the PI. Finally, rainfall associated with the continental Indian monsoon (between 70°E-110°E and 10°N-30°N) is about 44% less in the LGM than during PI times. The LGM monsoon period is about one month shorter than in PI times. Taken together, these results document significant spatial and temporal changes in temperature, precipitation, and δ18Op over the last ∼21 ka. These changes are large enough to impact interpretations of proxy data and the intensity of the Indian monsoon.

  9. Late Quaternary Hydroclimate of Arid Northeastern Mexico: Response of Millennial-scale Global Climate Change and the Atlantic Warm Pool

    NASA Astrophysics Data System (ADS)

    Roy, P. D.; Shanahan, T. M.; Sánchez Zavala, J. L.; Lozano-SantaCruz, R.; Vera-Vera, G.

    2017-12-01

    Model projections suggest that drought-prone northeastern Mexico could experience an increase of more than 2 ºC in mean annual temperature and precipitation could decrease at least by 10-20% over the 21st century. The combination of drought and warmth would enhance the dryness of this water-stressed region in the coming decades. However, because of the lack of long continuous records from the region, little is known about the past controls on climate variability in northeast Mexico. In order to better understand the susceptibility of this climatically sensitive but data-poor region, we present a new multi-proxy record of past hydrological changes from paleo-lacustrine deposits in the Sandia Basin ( 24°N) over the last 32 cal ka BP. We reconstruct runoff from changes in the abundance of Al-bearing clastic minerals and local hydrological changes from the oxygen isotope composition of lacustrine carbonates, as well as gypsum/calcite abundances. During the cooler Heinrich Stadials (HS3, HS2 and HS1) and Younger Dryas, the basin received less runoff and the lake was more saline, though hydrological conditions varied significantly throughout these stadial events. The wettest interval in the record occurred coincident with the Bølling-Allerød (B/A) interstadial. Arid conditions returned during the Holocene, with low sedimentation rates, reduced proxy runoff indicators, and enhanced gypsum deposition suggesting this was the driest interval of the last 30 ka. Our observations are consistent with a growing number of records from across both northeastern Mexico and the southern Great Plains suggesting dry conditions associated with North Atlantic stadials and a sudden but transient shift to wetter conditions accompanying the strengthening of the overturning circulation during the B/A. We will evaluate the possible influence of Atlantic Warm Pool on hydroclimate of the region by comparing the different proxy records to the sea-surface temperature of Gulf of Mexico, Caribbean Sea and tropical Atlantic Ocean.

  10. The Amazon reveals its secrets--partly

    USGS Publications Warehouse

    Betancourt, Julio L.

    2000-01-01

    The role of the tropics in global climate change during glacial cycles is hotly debated in paleoclimate cycles today. Records from South America have not provided a clear picture of tropical climate change. In his Perspective, Betancourt highlights the study by Maslin and Burns, who have deduced the outflow of the Amazon over the past 14,000 years. This may serve as a proxy that integrates hydrology over the entire South American tropics, although the record must be interpreted cautiously because factors other than rainfall may contribute to the variability in outflow.

  11. 400 years of summer hydroclimate from stable isotopes in Iberian trees

    NASA Astrophysics Data System (ADS)

    Andreu-Hayles, Laia; Ummenhofer, Caroline C.; Barriendos, Mariano; Schleser, Gerhard H.; Helle, Gerhard; Leuenberger, Markus; Gutierrez, Emilia; Cook, Edward R.

    2017-04-01

    Tree rings are natural archives that annually record distinct types of past climate variability depending on the parameters measured. Here, we use ring-width and stable isotopes in cellulose of trees from the northwestern Iberian Peninsula (IP) to understand regional summer hydroclimate over the last 400 years and the associated atmospheric patterns. Correlations between tree rings and climate data demonstrate that isotope signatures in the targeted Iberian pine forests are very sensitive to water availability during the summer period, and are mainly controlled by stomatal conductance. Non-linear methods based on extreme events analysis allow for capturing distinct seasonal climatic variability recorded by tree-ring parameters and asymmetric signals of the associated atmospheric features. Moreover, years with extreme high (low) values in the tree-ring records were characterised by coherent large-scale atmospheric circulation patterns with reduced (enhanced) moisture transport onto the northwestern IP. These analyses of extremes revealed that high/low proxy values do not necessarily correspond to mirror images in the atmospheric anomaly patterns, suggesting different drivers of these patterns and the corresponding signature recorded in the proxies. Regional hydroclimate features across the broader IP and western Europe during extreme wet/dry summers detected by the northwestern IP trees compare favourably to an independent multicentury sea level pressure and drought reconstruction for Europe. Historical records also validate our findings that attribute non-linear moisture signals recorded by extreme tree-ring values to distinct large-scale atmospheric patterns and allow for 400-yr reconstructions of the frequency of occurrence of extreme conditions in summer hydroclimate. We will discuss how the results for Lillo compare with other records.

  12. Middle to Late Pleistocene multi-proxy record of environmental response to climate change from the Vienna Basin, Central Europe (Austria)

    NASA Astrophysics Data System (ADS)

    Salcher, Bernhard C.; Frank-Fellner, Christa; Lomax, Johanna; Preusser, Frank; Ottner, Franz; Scholger, Robert; Wagreich, Michael

    2017-10-01

    Tectonic basins can represent valuable archives of the environmental history. Presented here are the stratigraphy and multi-proxy analyses of two adjacent alluvial fans in the Quaternary active parts of the Vienna Basin, situated at the interface of the Atlantic, European continental and Mediterranean climate. Deposits comprise a sequence of coarse-grained fluvial deposits intercalated by laterally extensive horizons of pedogenically altered fine sediments. To establish palaeoenvironmental reconstructions, fine-grained sequences from a drill core and outcrop data were analysed according to its malacofauna, palaeopedology, susceptibility and sedimentology. The chronological framework is provided by 38 luminescence ages and supported by geomagnetic polarity investigations. Distinct warm periods each associated with a geomagnetic excursion, are recorded in three pedocomplexes formed during the Last Interglacial and two earlier interglacial periods, indicted to correlate with Marine Isotope Stage (MIS) 9 and MIS 11, respectively. Environmental conditions during the early last glacial period (MIS 5, c. 100-70 ka) are reconstructed from mollusc-shell rich overbank fines deposited along a former channel belt, covered by massive sheetflood deposits during MIS 2. Analysed warm phases suggest strong variations in humidity, ranging from steppe to forest dominated environments. The study presents one of the few numerically dated Middle Pleistocene multi-proxy records and one of the most comprehensive malacological datasets covering the early phases of last glacial period of continental Europe.

  13. Multiproxy Holocene paleoclimate records from the southern Peruvian Andes - what new can we learn from the stable carbon isotope composition of high altitude organic matter deposits?

    NASA Astrophysics Data System (ADS)

    Skrzypek, Grzegorz; Engel, Zbyněk

    2015-04-01

    Interpretation of the Central Andean paleoclimate over the last millennia still represents a research challenge demanding deeper studies [1,2]. Several high-resolution paleoclimate proxies for the last 10,000 years have been developed for the northern hemisphere. However, similar proxies are very limited for South America, particularly for high altitudes where, for example, tree-ring chronologies are not available and instrumental records are very limited. Consequently, our knowledge of high altitude climate changes in arid regions of the Peruvian Andes mainly relies on ice-core and lake deposit studies. In our study, we used a new alternative proxy for interpretation of palaeoclimate conditions based on a peat core taken from the Carhuasanta Valley at the foot of Nevado Mismi in the southern Peruvian Andes (15° 30'S, 71° 43'W, 4809m a.s.l.). The stable carbon isotope composition (δ13C) of Distichia peat reflects mainly the relative variation of the mean air temperature during subsequent growing seasons [3], and allows reconstructions of palaeotemperature changes. In contrast, peat organic carbon concentration (C % wt) records mainly wetness in the valley, directly corresponding to the changes in runoff in the upper part of the catchment. The most prominent climate changes recorded in the peat over last 4ka occurred between 3040 and 2750 cal. yrs BP. The initial warming turned to a very rapid cooling to temperatures at least 2° C lower than the mean for the Late Holocene. Initially drier conditions within this event turned to a short wet phase after 2780 cal. yrs BP, when the temperature increased again. This event coincides with significant changes in peat and ice core records in the Central Andes that match the timing of the global climate event around 2.8 cal. ka BP. Climatic conditions in the study area became relatively dry and stable after the event for about 800 years. Highly variable temperatures and humidity prevailed during the last 2000 years, when an extended warm and relatively humid period occurred between 640-155 cal. yrs BP, followed by predominantly colder and drier conditions [4]. Our study demonstrates how the δ13C value and carbon content variations in Distichia peat can be interpreted and used for verification of other multiproxy records, particularly these which are challenging for accurate dating. [1] Stansell, N.D., Rodbell, D.T., Abbott, M.B., Mark, B.G., 2013. Proglacial lake sediment records of Holocene climate change in the western Cordillera of Peru. Quat. Sci. Rev. 10, 1-14. [2] Engel Z., Skrzypek G., 2014. Reply to the comment by A. Sáez et al. on Climate in the Western Cordillera of the Central Andes over the last 4300 years. Quat. Sci. Rev. (in press 10.1016/j.quascirev.2014.12.006). [3] Skrzypek, G., Engel, Z., Chuman, T., Šefrna, L., 2011. Distichia peat - A new stable isotope paleoclimate proxy for the Andes. Earth Planet. Sci. Lett. 307(3-4), 298-308. [4] Engel, Z., Skrzypek, G., Chuman, T., Šefrna, L., Mihaljevič, M., 2014. Climate in the Western Cordillera of the Central Andes over the last 4300 years. Quat. Sci. Rev. 99, 60-77.

  14. Hydrology of prairie pothole wetlands during drought and deluge: A 17-year study of the Cottonwood Lake wetland complex in North Dakota in the perspective of longer term measured and proxy hydrological records

    USGS Publications Warehouse

    Winter, T.C.; Rosenberry, D.O.

    1998-01-01

    From 1988 to 1992 the north-central plains of North America had a drought that was followed by a wet period that continues to the present (1997). Data on the hydrology of the Cottonwood Lake area (CWLA) collected for nearly 10 years before, and during, the recent dry and wet periods indicate that some prairie pothole wetlands served only a recharge function under all climate conditions. Transpiration from groundwater around the perimeter of groundwater discharge wetlands drew water from the wetlands by the end of summer, even during very wet years. Long-term records of a climate index (Palmer Drought Severity Index), stream discharge (Pembina River), and lake level (Devils Lake) were used to put the 17-year CWLA record into a longer term perspective. In addition, proxy records of climate determined from fossils in the sediments of Devils Lake were also used. These data indicate that the drought of 1988-92 may have been the second worst of the 20th century, but that droughts of that magnitude, and worse, were common during the past 500 years. In contrast, the present wet period may be the wettest it has been during the past 130 years, or possibly the past 500 years.

  15. Abrupt climate variability since the last deglaciation based on a high-resolution, multi-proxy peat record from NW Iran: The hand that rocked the Cradle of Civilization?

    NASA Astrophysics Data System (ADS)

    Sharifi, Arash; Pourmand, Ali; Canuel, Elizabeth A.; Ferer-Tyler, Erin; Peterson, Larry C.; Aichner, Bernhard; Feakins, Sarah J.; Daryaee, Touraj; Djamali, Morteza; Beni, Abdolmajid Naderi; Lahijani, Hamid A. K.; Swart, Peter K.

    2015-09-01

    We present a high-resolution (sub-decadal to centennial), multi-proxy reconstruction of aeolian input and changes in palaeohydrological conditions based on a 13000 Yr record from Neor Lake's peripheral peat in NW Iran. Variations in relative abundances of refractory (Al, Zr, Ti, and Si), redox sensitive (Fe) and mobile (K and Rb) elements, total organic carbon (TOC), δ13CTOC, compound-specific leaf wax hydrogen isotopes (δD), carbon accumulation rates and dust fluxes presented here fill a large gap in the existing terrestrial paleoclimate records from the interior of West Asia. Our results suggest that a transition occurred from dry and dusty conditions during the Younger Dryas (YD) to a relatively wetter period with higher carbon accumulation rates and low aeolian input during the early Holocene (9000-6000 Yr BP). This period was followed by relatively drier and dustier conditions during middle to late Holocene, which is consistent with orbital changes in insolation that affected much of the northern hemisphere. Numerous episodes of high aeolian input spanning a few decades to millennia are prevalent during the middle to late Holocene. Wavelet analysis of variations in Ti abundances as a proxy for aeolian input revealed notable periodicities at 230, 320, and 470 years with significant periodicities centered around 820, 1550, and 3110 years over the last 13000 years. Comparison with palaeoclimate archives from West Asia, the North Atlantic and African lakes point to a teleconnection between North Atlantic climate and the interior of West Asia during the last glacial termination and the Holocene epoch. We further assess the potential role of abrupt climate change on early human societies by comparing our record of palaeoclimate variability with historical, geological and archaeological archives from this region. The terrestrial record from this study confirms previous evidence from marine sediments of the Arabian Sea that suggested climate change influenced the termination of the Akkadian empire. In addition, nearly all observed episodes of enhanced dust deposition during the middle to late Holocene coincided with times of drought, famine, and power transitions across the Iranian Plateau, Mesopotamia and the eastern Mediterranean region. These findings indicate that while socio-economic factors are traditionally considered to shape ancient human societies in this region, the influence of abrupt climate change should not be underestimated.

  16. The volcanic double event at the dawn of the Dark Ages

    NASA Astrophysics Data System (ADS)

    Toohey, Matthew; Sigl, Michael; Krüger, Kirstin; Stordal, Frode; Svensen, Henrik

    2016-04-01

    Documentary records report dimming of the sun by a mysterious dust cloud covering Europe for 12-18 months in 536-537 CE, which was followed by a general climatic downturn and global societal decline. Tree rings and other climate proxies have corroborated the occurrence of this event as well as characterized its extent and duration, but failed to trace its origin. New volcanic timeseries, based on a multi-disciplinary approach that integrates novel, global-scale time markers with state-of-the-art continuous ice core aerosol measurements, automated objective ice-core layer counting, tephra analyses, and detailed examination of historical archives, show unequivocally that the 536-540 climate anomaly was concurrent with two or more major volcanic eruptions, with the largest eruptions likely occurring in the years 536 and 540 CE. Using a coupled aerosol-climate model, with eruption parameters constrained by ice core records and historical observations of the aerosol cloud, we reconstruct the radiative forcing resulting from the 536/540 CE eruption sequence. Comparing with existing reconstructions of the volcanic forcing over the past 1200 years, we estimate that the decadal-scale Northern Hemisphere (NH) extra-tropical radiative forcing from this volcanic "double event" was larger than that of any known period. Earth system model simulations including the volcanic forcing are used to explore the temperature and precipitation anomalies associated with the eruptions, and compared to available proxy records, including maximum latewood density (MXD) temperature reconstructions. Special attention is placed on the decadal persistence of the cooling signal in tree rings, and whether the climate model simulations reproduce such long-term climate anomalies. Finally, the climate model results are used to explore the probability of socioeconomic crisis resulting directly from the volcanic radiative forcing in different regions of the world.

  17. Earth's Climate History from Glaciers and Ice Cores

    NASA Astrophysics Data System (ADS)

    Thompson, Lonnie

    2013-03-01

    Glaciers serve both as recorders and early indicators of climate change. Over the past 35 years our research team has recovered climatic and environmental histories from ice cores drilled in both Polar Regions and from low to mid-latitude, high-elevation ice fields. Those ice core -derived proxy records extending back 25,000 years have made it possible to compare glacial stage conditions in the Tropics with those in the Polar Regions. High-resolution records of δ18O (in part a temperature proxy) demonstrate that the current warming at high elevations in the mid- to lower latitudes is unprecedented for the last two millennia, although at many sites the early Holocene was warmer than today. Remarkable similarities between changes in the highland and coastal cultures of Peru and regional climate variability, especially precipitation, imply a strong connection between prehistoric human activities and regional climate. Ice cores retrieved from shrinking glaciers around the world confirm their continuous existence for periods ranging from hundreds to thousands of years, suggesting that current climatological conditions in those regions today are different from those under which these ice fields originated and have been sustained. The ongoing widespread melting of high-elevation glaciers and ice caps, particularly in low to middle latitudes, provides strong evidence that a large-scale, pervasive and, in some cases, rapid change in Earth's climate system is underway. Observations of glacier shrinkage during the 20th and 21st century girdle the globe from the South American Andes, the Himalayas, Kilimanjaro (Tanzania, Africa) and glaciers near Puncak Jaya, Indonesia (New Guinea). The history and fate of these ice caps, told through the adventure, beauty and the scientific evidence from some of world's most remote mountain tops, provide a global perspective for contemporary climate. NSF Paleoclimate Program

  18. Homogenization of long instrumental temperature and precipitation series over the Spanish Northern Coast

    NASA Astrophysics Data System (ADS)

    Sigro, J.; Brunet, M.; Aguilar, E.; Stoll, H.; Jimenez, M.

    2009-04-01

    The Spanish-funded research project Rapid Climate Changes in the Iberian Peninsula (IP) Based on Proxy Calibration, Long Term Instrumental Series and High Resolution Analyses of Terrestrial and Marine Records (CALIBRE: ref. CGL2006-13327-C04/CLI) has as main objective to analyse climate dynamics during periods of rapid climate change by means of developing high-resolution paleoclimate proxy records from marine and terrestrial (lakes and caves) deposits over the IP and calibrating them with long-term and high-quality instrumental climate time series. Under CALIBRE, the coordinated project Developing and Enhancing a Climate Instrumental Dataset for Calibrating Climate Proxy Data and Analysing Low-Frequency Climate Variability over the Iberian Peninsula (CLICAL: CGL2006-13327-C04-03/CLI) is devoted to the development of homogenised climate records and sub-regional time series which can be confidently used in the calibration of the lacustrine, marine and speleothem time series generated under CALIBRE. Here we present the procedures followed in order to homogenise a dataset of maximum and minimum temperature and precipitation data on a monthly basis over the Spanish northern coast. The dataset is composed of thirty (twenty) precipitation (temperature) long monthly records. The data are quality controlled following the procedures recommended by Aguilar et al. (2003) and tested for homogeneity and adjusted by following the approach adopted by Brunet et al. (2008). Sub-regional time series of precipitation, maximum and minimum temperatures for the period 1853-2007 have been generated by averaging monthly anomalies and then adding back the base-period mean, according to the method of Jones and Hulme (1996). Also, a method to adjust the variance bias present in regional time series associated over time with varying sample size has been applied (Osborn et al., 1997). The results of this homogenisation exercise and the development of the associated sub-regional time series will be widely discussed. Initial comparisons with rapidly growing speleothems in two different caves indicate that speleothem trace element ratios like Ba/Ca are recording the decrease in littoral precipitation in the last several decades. References Aguilar, E., Auer, I., Brunet, M., Peterson, T. C. and Weringa, J. 2003. Guidelines on Climate Metadata and Homogenization, World Meteorological Organization (WMO)-TD no. 1186 / World Climate Data and Monitoring Program (WCDMP) no. 53, Geneva: 51 pp. Brunet M, Saladié O, Jones P, Sigró J, Aguilar E, Moberg A, Lister D, Walther A, Almarza C. 2008. A case-study/guidance on the development of long-term daily adjusted temperature datasets, WMO-TD-1425/WCDMP-66, Geneva: 43 pp. Jones, P D, and Hulme M, 1996, Calculating regional climatic time series for temperature and precipitation: Methods and illustrations, Int. J. Climatol., 16, 361- 377. Osborn, T. J., Briffa K. R., and Jones P. D., 1997, Adjusting variance for sample-size in tree-ring chronologies and other regional mean time series, Dendrochronologia, 15, 89- 99.

  19. Solar influence on climate during the past millennium: Results from transient simulations with the NCAR Climate System Model

    PubMed Central

    Ammann, Caspar M.; Joos, Fortunat; Schimel, David S.; Otto-Bliesner, Bette L.; Tomas, Robert A.

    2007-01-01

    The potential role of solar variations in modulating recent climate has been debated for many decades and recent papers suggest that solar forcing may be less than previously believed. Because solar variability before the satellite period must be scaled from proxy data, large uncertainty exists about phase and magnitude of the forcing. We used a coupled climate system model to determine whether proxy-based irradiance series are capable of inducing climatic variations that resemble variations found in climate reconstructions, and if part of the previously estimated large range of past solar irradiance changes could be excluded. Transient simulations, covering the published range of solar irradiance estimates, were integrated from 850 AD to the present. Solar forcing as well as volcanic and anthropogenic forcing are detectable in the model results despite internal variability. The resulting climates are generally consistent with temperature reconstructions. Smaller, rather than larger, long-term trends in solar irradiance appear more plausible and produced modeled climates in better agreement with the range of Northern Hemisphere temperature proxy records both with respect to phase and magnitude. Despite the direct response of the model to solar forcing, even large solar irradiance change combined with realistic volcanic forcing over past centuries could not explain the late 20th century warming without inclusion of greenhouse gas forcing. Although solar and volcanic effects appear to dominate most of the slow climate variations within the past thousand years, the impacts of greenhouse gases have dominated since the second half of the last century. PMID:17360418

  20. A global multiproxy database for temperature reconstructions of the Common Era.

    PubMed

    2017-07-11

    Reproducible climate reconstructions of the Common Era (1 CE to present) are key to placing industrial-era warming into the context of natural climatic variability. Here we present a community-sourced database of temperature-sensitive proxy records from the PAGES2k initiative. The database gathers 692 records from 648 locations, including all continental regions and major ocean basins. The records are from trees, ice, sediment, corals, speleothems, documentary evidence, and other archives. They range in length from 50 to 2000 years, with a median of 547 years, while temporal resolution ranges from biweekly to centennial. Nearly half of the proxy time series are significantly correlated with HadCRUT4.2 surface temperature over the period 1850-2014. Global temperature composites show a remarkable degree of coherence between high- and low-resolution archives, with broadly similar patterns across archive types, terrestrial versus marine locations, and screening criteria. The database is suited to investigations of global and regional temperature variability over the Common Era, and is shared in the Linked Paleo Data (LiPD) format, including serializations in Matlab, R and Python.

  1. A global multiproxy database for temperature reconstructions of the Common Era

    USGS Publications Warehouse

    Emile-Geay, Julian; McKay, Nicholas P.; Kaufman, Darrell S.; von Gunten, Lucien; Wang, Jianghao; Anchukaitis, Kevin J.; Abram, Nerilie J.; Addison, Jason A.; Curran, Mark A.J.; Evans, Michael N.; Henley, Benjamin J.; Hao, Zhixin; Martrat, Belen; McGregor, Helen V.; Neukom, Raphael; Pederson, Gregory T.; Stenni, Barbara; Thirumalai, Kaustubh; Werner, Johannes P.; Xu, Chenxi; Divine, Dmitry V.; Dixon, Bronwyn C.; Gergis, Joelle; Mundo, Ignacio A.; Nakatsuka, T.; Phipps, Steven J.; Routson, Cody C.; Steig, Eric J.; Tierney, Jessica E.; Tyler, Jonathan J.; Allen, Kathryn J.; Bertler, Nancy A. N.; Bjorklund, Jesper; Chase, Brian M.; Chen, Min-Te; Cook, Ed; de Jong, Rixt; DeLong, Kristine L.; Dixon, Daniel A.; Ekaykin, Alexey A.; Ersek, Vasile; Filipsson, Helena L.; Francus, Pierre; Freund, Mandy B.; Frezzotti, M.; Gaire, Narayan P.; Gajewski, Konrad; Ge, Quansheng; Goosse, Hugues; Gornostaeva, Anastasia; Grosjean, Martin; Horiuchi, Kazuho; Hormes, Anne; Husum, Katrine; Isaksson, Elisabeth; Kandasamy, Selvaraj; Kawamura, Kenji; Koc, Nalan; Leduc, Guillaume; Linderholm, Hans W.; Lorrey, Andrew M.; Mikhalenko, Vladimir; Mortyn, P. Graham; Motoyama, Hideaki; Moy, Andrew D.; Mulvaney, Robert; Munz, Philipp M.; Nash, David J.; Oerter, Hans; Opel, Thomas; Orsi, Anais J.; Ovchinnikov, Dmitriy V.; Porter, Trevor J.; Roop, Heidi; Saenger, Casey; Sano, Masaki; Sauchyn, David; Saunders, K.M.; Seidenkrantz, Marit-Solveig; Severi, Mirko; Shao, X.; Sicre, Marie-Alexandrine; Sigl, Michael; Sinclair, Kate; St. George, Scott; St. Jacques, Jeannine-Marie; Thamban, Meloth; Thapa, Udya Kuwar; Thomas, E.; Turney, Chris; Uemura, Ryu; Viau, A.E.; Vladimirova, Diana O.; Wahl, Eugene; White, James W. C.; Yu, Z.; Zinke, Jens

    2017-01-01

    Reproducible climate reconstructions of the Common Era (1 CE to present) are key to placing industrial-era warming into the context of natural climatic variability. Here we present a community-sourced database of temperature-sensitive proxy records from the PAGES2k initiative. The database gathers 692 records from 648 locations, including all continental regions and major ocean basins. The records are from trees, ice, sediment, corals, speleothems, documentary evidence, and other archives. They range in length from 50 to 2000 years, with a median of 547 years, while temporal resolution ranges from biweekly to centennial. Nearly half of the proxy time series are significantly correlated with HadCRUT4.2 surface temperature over the period 1850–2014. Global temperature composites show a remarkable degree of coherence between high- and low-resolution archives, with broadly similar patterns across archive types, terrestrial versus marine locations, and screening criteria. The database is suited to investigations of global and regional temperature variability over the Common Era, and is shared in the Linked Paleo Data (LiPD) format, including serializations in Matlab, R and Python.

  2. A global multiproxy database for temperature reconstructions of the Common Era

    PubMed Central

    Emile-Geay, Julien; McKay, Nicholas P.; Kaufman, Darrell S.; von Gunten, Lucien; Wang, Jianghao; Anchukaitis, Kevin J.; Abram, Nerilie J.; Addison, Jason A.; Curran, Mark A.J.; Evans, Michael N.; Henley, Benjamin J.; Hao, Zhixin; Martrat, Belen; McGregor, Helen V.; Neukom, Raphael; Pederson, Gregory T.; Stenni, Barbara; Thirumalai, Kaustubh; Werner, Johannes P.; Xu, Chenxi; Divine, Dmitry V.; Dixon, Bronwyn C.; Gergis, Joelle; Mundo, Ignacio A.; Nakatsuka, Takeshi; Phipps, Steven J.; Routson, Cody C.; Steig, Eric J.; Tierney, Jessica E.; Tyler, Jonathan J.; Allen, Kathryn J.; Bertler, Nancy A.N.; Björklund, Jesper; Chase, Brian M.; Chen, Min-Te; Cook, Ed; de Jong, Rixt; DeLong, Kristine L.; Dixon, Daniel A.; Ekaykin, Alexey A.; Ersek, Vasile; Filipsson, Helena L.; Francus, Pierre; Freund, Mandy B.; Frezzotti, Massimo; Gaire, Narayan P.; Gajewski, Konrad; Ge, Quansheng; Goosse, Hugues; Gornostaeva, Anastasia; Grosjean, Martin; Horiuchi, Kazuho; Hormes, Anne; Husum, Katrine; Isaksson, Elisabeth; Kandasamy, Selvaraj; Kawamura, Kenji; Kilbourne, K. Halimeda; Koç, Nalan; Leduc, Guillaume; Linderholm, Hans W.; Lorrey, Andrew M.; Mikhalenko, Vladimir; Mortyn, P. Graham; Motoyama, Hideaki; Moy, Andrew D.; Mulvaney, Robert; Munz, Philipp M.; Nash, David J.; Oerter, Hans; Opel, Thomas; Orsi, Anais J.; Ovchinnikov, Dmitriy V.; Porter, Trevor J.; Roop, Heidi A.; Saenger, Casey; Sano, Masaki; Sauchyn, David; Saunders, Krystyna M.; Seidenkrantz, Marit-Solveig; Severi, Mirko; Shao, Xuemei; Sicre, Marie-Alexandrine; Sigl, Michael; Sinclair, Kate; St. George, Scott; St. Jacques, Jeannine-Marie; Thamban, Meloth; Kuwar Thapa, Udya; Thomas, Elizabeth R.; Turney, Chris; Uemura, Ryu; Viau, Andre E.; Vladimirova, Diana O.; Wahl, Eugene R.; White, James W.C.; Yu, Zicheng; Zinke, Jens

    2017-01-01

    Reproducible climate reconstructions of the Common Era (1 CE to present) are key to placing industrial-era warming into the context of natural climatic variability. Here we present a community-sourced database of temperature-sensitive proxy records from the PAGES2k initiative. The database gathers 692 records from 648 locations, including all continental regions and major ocean basins. The records are from trees, ice, sediment, corals, speleothems, documentary evidence, and other archives. They range in length from 50 to 2000 years, with a median of 547 years, while temporal resolution ranges from biweekly to centennial. Nearly half of the proxy time series are significantly correlated with HadCRUT4.2 surface temperature over the period 1850–2014. Global temperature composites show a remarkable degree of coherence between high- and low-resolution archives, with broadly similar patterns across archive types, terrestrial versus marine locations, and screening criteria. The database is suited to investigations of global and regional temperature variability over the Common Era, and is shared in the Linked Paleo Data (LiPD) format, including serializations in Matlab, R and Python. PMID:28696409

  3. Rapid and cyclic dust accumulation during MIS 2 in Central Asia inferred from loess OSL dating and grain-size analysis.

    PubMed

    Li, Yun; Song, Yougui; Lai, Zhongping; Han, Li; An, Zhisheng

    2016-09-02

    Due to lack of reliable proxies from the Westerlies-dominant region, the strength change of Northern Hemisphere Westerlies remains poorly understood. The aim of this study is to provide a reliable paleoclimatic proxy about the Northern Hemisphere Westerlies change. Here we report a 30.7 m thick loess section from the Ili basin directly controlled by the Westerlies. Based on optically stimulated luminescence (OSL) and high resolution grain-size records, we reconstruct the change history of the Westerlies strength during the last glacial period (mainly Marine Isotope Stages 2, MIS2), being similar with the Westerlies index recorded in the Qinghai Lake sediments. Within error limits, all ages are in stratigraphic order. We further compare the climatic records among the Ili loess, Qinghai Lake and the NGRIP, their similarity shows a good climatic coupling relationship among the Central Asia, East Asia and the North Atlantic, and the Westerlies plays a critical influence in transporting the North Atlantic signal to Central and East Asia.

  4. Extreme Monsoon Rainfall Signatures Preserved in the Invasive Terrestrial Gastropod Lissachatina fulica

    NASA Astrophysics Data System (ADS)

    Ghosh, Prosenjit; Rangarajan, Ravi; Thirumalai, Kaustubh; Naggs, Fred

    2017-11-01

    Indian summer monsoon (ISM) rainfall lasts for a period of 4 months with large variations recorded in terms of rainfall intensity during its period between June and September. Proxy reconstructions of past ISM rainfall variability are required due to the paucity of long instrumental records. However, reconstructing subseasonal rainfall is extremely difficult using conventional hydroclimate proxies due to inadequate sample resolution. Here, we demonstrate the utility of the stable oxygen isotope composition of gastropod shells in reconstructing past rainfall on subseasonal timescales. We present a comparative isotopic study on present day rainwater and stable isotope ratios of precipitate found in the incremental growth bands of giant African land snail Lissachatina fulica (Bowdich) from modern day (2009) and in the historical past (1918). Isotopic signatures present in the growth bands allowed for the identification of ISM rainfall variability in terms of its active and dry spells in the modern as well as past gastropod record. Our results demonstrate the utility of gastropod growth band stable isotope ratios in semiquantitative reconstructions of seasonal rainfall patterns. High resolution climate records extracted from gastropod growth band stable isotopes (museum and archived specimens) can expand the scope for understanding past subseasonal-to-seasonal climate variability.

  5. North Pacific decadal climate variability since 1661

    USGS Publications Warehouse

    Biondi, Franco; Gershunov, Alexander; Cayan, Daniel R.

    2001-01-01

    Climate in the North Pacific and North American sectors has experienced interdecadal shifts during the twentieth century. A network of recently developed tree-ring chronologies for Southern and Baja California extends the instrumental record and reveals decadal-scale variability back to 1661. The Pacific decadal oscillation (PDO) is closely matched by the dominant mode of tree-ring variability that provides a preliminary view of multiannual climate fluctuations spanning the past four centuries. The reconstructed PDO index features a prominent bidecadal oscillation, whose amplitude weakened in the late l700s to mid-1800s. A comparison with proxy records of ENSO suggests that the greatest decadal-scale oscillations in Pacific climate between 1706 and 1977 occurred around 1750, 1905, and 1947.

  6. Assessing the deep drilling potential of Lago de Tota, Colombia, with a seismic survey

    NASA Astrophysics Data System (ADS)

    Bird, B. W.; Wattrus, N. J.; Fonseca, H.; Velasco, F.; Escobar, J.

    2015-12-01

    Reconciling orbital-scale patterns of inter-hemispheric South American climate during the Quaternary requires continuous, high-resolution paleoclimate records that span multiple glacial cycles from both hemispheres. Southern Andean Quaternary climates are represented by multi-proxy results from Lake Titicaca (Peru-Bolivia) spanning the last 400 ka and by pending results from the Lago Junin Drilling Project (Peru). Although Northern Andean sediment records spanning the last few million years have been retrieved from the Bogota and Fúquene Basins in the Eastern Cordillera of the Colombian Andes, climatic reconstructions based on these cores have thus far been limited to pollen-based investigations. When viewed together with the Southern Hemisphere results, these records suggest an anti-phased hemispheric climatic response during glacial cycles. In order to better assess orbital-scale climate responses, however, independent temperature and hydroclimate proxies from the Northern Hemisphere are needed in addition to vegetation histories. As part of this objective, an effort is underway to develop a paleoclimate record from Lago de Tota (3030 m asl), the largest lake in Colombia and the third largest lake in the Andes. One of 17 highland tectonic basins in Eastern Cordillera, Lago de Tota formed during Tertiary uplift that deformed pre-foreland megasequences, synrift and back-arc megasequences. The precise age and thickness of sediments in the Lago de Tota basin has not previously been established. Here, we present results from a recent single-channel seismic reflection survey collected with a small (5 cubic inch) air gun and high-resolution CHIRP sub-bottom data. With these data, we examine the depositional history and sequence stratigraphy of Lago de Tota and assess its potential as a deep drilling target.

  7. Reconstructing Tropical Southwest Pacific Climate Variability and Mean State Changes at Vanuatu during the Medieval Climate Anomaly using Geochemical Proxies from Corals

    NASA Astrophysics Data System (ADS)

    Lawman, A. E.; Quinn, T. M.; Partin, J. W.; Taylor, F. W.; Thirumalai, K.; WU, C. C.; Shen, C. C.

    2017-12-01

    The Medieval Climate Anomaly (MCA: 950-1250 CE) is identified as a period during the last 2 millennia with Northern Hemisphere surface temperatures similar to the present. However, our understanding of tropical climate variability during the MCA is poorly constrained due to a lack of sub-annually resolved proxy records. We investigate seasonal and interannual variability during the MCA using geochemical records developed from two well preserved Porites lutea fossilized corals from the tropical southwest Pacific (Tasmaloum, Vanuatu; 15.6°S, 166.9°E). Absolute U/Th dates of 1127.1 ± 2.7 CE and 1105.1 ± 3.0 CE indicate that the selected fossil corals lived during the MCA. We use paired coral Sr/Ca and δ18O measurements to reconstruct sea surface temperature (SST) and the δ18O of seawater (a proxy for salinity). To provide context for the fossil coral records and test whether the mean state and climate variability at Vanuatu during the MCA is similar to the modern climate, our analysis also incorporates two modern coral records from Sabine Bank (15.9°S, 166.0°E) and Malo Channel (15.7°S, 167.2°E), Vanuatu for comparison. We quantify the uncertainty in our modern and fossil coral SST estimates via replication with multiple, overlapping coral records. Both the modern and fossil corals reproduce their respective mean SST value over their common period of overlap, which is 25 years in both cases. Based on over 100 years of monthly Sr/Ca data from each time period, we find that SSTs at Vanuatu during the MCA are 1.3 ± 0.7°C cooler relative to the modern. We also find that the median amplitude of the annual cycle is 0.8 ± 0.3°C larger during the MCA relative to the modern. Multiple data analysis techniques, including the standard deviation and the difference between the 95th and 5th percentiles of the annual SST cycle estimates, also show that the MCA has greater annual SST variability relative to the modern. Stable isotope data acquisition is ongoing, and when complete we will have a suite of records of paired coral Sr/Ca and δ18O measurements. We will apply similar statistical techniques developed for the Sr/Ca-SST record to also investigate variability in the δ18O of seawater (salinity). Modern salinity variability at Vanuatu arises due to hydrological anomalies associated with the El Niño-Southern Oscillation in the tropical Pacific.

  8. Sr/Ca and δ18O records of a coral from Sanya: reconstructions of temperature and precipitation in the northern South China Sea in the late Holocene

    NASA Astrophysics Data System (ADS)

    Wagner, S.; Xoplaki, E.; Luterbacher, J.; Zorita, E.; Fleitmann, D.; Preiser-Kapeller, J.; Toreti, A., , Dr; Sargent, A. M.; Bozkurt, D.; White, S.; Haldon, J. F.; Akçer-Ön, S.; Izdebski, A.

    2016-12-01

    Past civilisations were influenced by complex external and internal forces, including changes in the environment, climate, politics and economy. A geographical hotspot of the interplay between those agents is the Mediterranean, a cradle of cultural and scientific development. We analyse a novel compilation of high-quality hydroclimate proxy records and spatial reconstructions from the Mediterranean and compare them with two Earth System Model simulations (CCSM4, MPI-ESM-P) for three historical time intervals - the Crusaders, 1095-1290 CE; the Mamluk regime in Transjordan, 1260-1516 CE; and the Ottoman crisis and Celâlî Rebellion, 1580-1610 CE - when environmental and climatic stress tested the resilience of complex societies. ESMs provide important information on the dynamical mechanisms and underlying processes that led to anomalous hydroclimatic conditions of the past. We find that the multidecadal precipitation and drought variations in the Central and Eastern Mediterranean during the three periods cannot be explained by external forcings (solar variations, tropical volcanism); rather they were driven by internal climate dynamics. The integrated analysis of palaeoclimate proxies, climate reconstructions and model simulations sheds light on our understanding of past climate change and its societal impact. Finally, our research emphasises the need to further study the societal dimension of environmental and climate change in the past, in order to properly understand the role that climate has played in human history.

  9. Hydroclimate variability in Scandinavia over the last millennium - insights from a climate model-proxy data comparison

    NASA Astrophysics Data System (ADS)

    Seftigen, Kristina; Goosse, Hugues; Klein, Francois; Chen, Deliang

    2017-12-01

    The integration of climate proxy information with general circulation model (GCM) results offers considerable potential for deriving greater understanding of the mechanisms underlying climate variability, as well as unique opportunities for out-of-sample evaluations of model performance. In this study, we combine insights from a new tree-ring hydroclimate reconstruction from Scandinavia with projections from a suite of forced transient simulations of the last millennium and historical intervals from the CMIP5 and PMIP3 archives. Model simulations and proxy reconstruction data are found to broadly agree on the modes of atmospheric variability that produce droughts-pluvials in the region. Despite these dynamical similarities, large differences between simulated and reconstructed hydroclimate time series remain. We find that the GCM-simulated multi-decadal and/or longer hydroclimate variability is systematically smaller than the proxy-based estimates, whereas the dominance of GCM-simulated high-frequency components of variability is not reflected in the proxy record. Furthermore, the paleoclimate evidence indicates in-phase coherencies between regional hydroclimate and temperature on decadal timescales, i.e., sustained wet periods have often been concurrent with warm periods and vice versa. The CMIP5-PMIP3 archive suggests, however, out-of-phase coherencies between the two variables in the last millennium. The lack of adequate understanding of mechanisms linking temperature and moisture supply on longer timescales has serious implications for attribution and prediction of regional hydroclimate changes. Our findings stress the need for further paleoclimate data-model intercomparison efforts to expand our understanding of the dynamics of hydroclimate variability and change, to enhance our ability to evaluate climate models, and to provide a more comprehensive view of future drought and pluvial risks.

  10. Hydrological variability in the Northern Levant: a 250 ka multiproxy record from the Yammoûneh (Lebanon) sedimentary sequence

    NASA Astrophysics Data System (ADS)

    Gasse, F.; Vidal, L.; Develle, A.-L.; van Campo, E.

    2011-11-01

    The Levant is a key region in terms of both long-term hydroclimate dynamics and human cultural evolution. Our understanding of the regional response to glacial-interglacial boundary conditions is limited by uncertainties in proxy-data interpretation and the lack of long-term records from different geographical settings. The present paper provides a 250 ka paleoenvironmental reconstruction based on a multi-proxy approach from northern Levant, derived from a 36 m lacustrine-palustrine sequence cored in the small intra-mountainous karstic Yammoûneh basin from northern Lebanon. We combined time series of sediment properties, paleovegetation, and carbonate oxygen isotopes (δc), to yield a comprehensive view of paleohydrologic-paleoclimatic fluctuations in the basin over the two last glacial-interglacial cycles. Integration of all available proxies shows that Interglacial maxima (early-mid MIS 7, MIS 5.5 and early MIS 1) experienced relatively high effective moisture, evidenced by the dominance of forested landscapes (although with different forest types) associated with authigenic carbonate sedimentation in a productive waterbody. Synchronous and steep δc increases can be reconciled with enhanced mean annual moisture when changes in seasonality are taken into account. During Glacials periods (MIS 2 and MIS 6), open vegetation tends to replace the forests, favouring local erosion and detrital sedimentation. However, all proxy data reveal an overall wetting during MIS 6, while a drying trend took place during MIS4-2, leading to extremely harsh LGM conditions possibly linked to water storage as ice in the surrounding highlands. Over the past 250 ka, the Yammoûneh record shows an overall decrease in local effective water, coincident with a weakening of seasonal insolation contrasts linked to the decreasing amplitude of the eccentricity cycle. The Yammoûneh record is roughly consistent with long-term climatic fluctuations in the northeastern Mediterranean region (except during MIS 6). It suggests that the role of seasonality on effective moisture, already highlighted for MIS 1, also explains older interglacial climate. The Yammoûneh record shares some features with speleothem isotope records of western Israel, while the Dead Sea basin generally evolved in opposite directions. Changes in atmospheric circulation, regional topographic patterns and site-specific hydrological factors are invoked as potential causes of spatial heterogeneities. Further work is needed to refine the Yammoûneh chronology, better understand its functioning through hydrological and climate modelling, and acquire other long records from northern Levant to disentangle the relative effects of local versus regional factors.

  11. Indications of a pan-hemispheric bi-partition of the Younger Dryas Stadial from Lake Suigetsu, Japan

    NASA Astrophysics Data System (ADS)

    Schlolaut, Gordon; Brauer, Achim; Nakagawa, Takeshi; Lamb, Henry; Marshall, Michael; Kato-Saito, Megumi; Staff, Richard; Bronk Ramsey, Christopher; Bryant, Charlotte

    2016-04-01

    The Younger Dryas Stadial marks the final succession of climatic fluctuations of the last Glacial. Whilst well studied in records from Europe and Greenland, few high resolution records are available from East Asia. Here we present a high resolution, multi-proxy study of the Lake Suigetsu (Japan) sediments using the 'SG06' composite profile. Utilising microfacies, μXRF, pollen and diatom analysis we characterise changes occurring in the timeframe corresponding to the Younger Dryas Stadial. Firstly, our results show that the climatic equivalent of the Younger Dryas at Lake Suigetsu shows no major lead or lag in comparison to records from the North Atlantic region, which was postulated by an earlier project on the Suigetsu sediments ('SG93'). Reason for this disagreement between the SG06 and SG93 core is that the SG93 core/chronology was compromised by gaps between individual cores and varve count uncertainties. Furthermore, some of the analysed proxies from the SG06 core show a sub-division of the Younger Dryas Stadial. The timing of this sub-division is similar to the bi-partition of the Younger Dryas Stadial observed in a number of European records (e.g. Lane et al., 2013). This bi-partition was related to a northward shift of the westerly wind jet in the North Atlantic region. Our findings imply that the underlying climatic mechanism operated on a hemispheric rather than just on a regional scale. References: Lane et al. 2013, Volcanic ash reveals time-transgressive abrupt climate change during the Younger Dryas, Geology 41, 1251-1254

  12. 400 Years of summer hydroclimate from stable isotopes in Iberian trees

    NASA Astrophysics Data System (ADS)

    Andreu-Hayles, Laia; Ummenhofer, Caroline C.; Barriendos, Mariano; Schleser, Gerhard H.; Helle, Gerhard; Leuenberger, Markus; Gutiérrez, Emilia; Cook, Edward R.

    2017-07-01

    Tree rings are natural archives that annually record distinct types of past climate variability depending on the parameters measured. Here, we use ring-width and stable isotopes in cellulose of trees from the northwestern Iberian Peninsula (IP) to understand regional summer hydroclimate over the last 400 years and the associated atmospheric patterns. Correlations between tree rings and climate data demonstrate that isotope signatures in the targeted Iberian pine forests are very sensitive to water availability during the summer period, and are mainly controlled by stomatal conductance. Non-linear methods based on extreme events analysis allow for capturing distinct seasonal climatic variability recorded by tree-ring parameters and asymmetric signals of the associated atmospheric features. Moreover, years with extreme high (low) values in the tree-ring records were characterised by coherent large-scale atmospheric circulation patterns with reduced (enhanced) moisture transport onto the northwestern IP. These analyses of extremes revealed that high/low proxy values do not necessarily correspond to mirror images in the atmospheric anomaly patterns, suggesting different drivers of these patterns and the corresponding signature recorded in the proxies. Regional hydroclimate features across the broader IP and western Europe during extreme wet/dry summers detected by the northwestern IP trees compare favourably to independent multicentury sea level pressure and drought reconstructions for Europe. Historical records also validate our findings that attribute non-linear moisture signals recorded by extreme tree-ring values to distinct large-scale atmospheric patterns and allow for 400-year reconstructions of the frequency of occurrence of extreme conditions in late spring and summer hydroclimate.

  13. El Niño-Southern Oscillation-based index insurance for floods: Statistical risk analyses and application to Peru

    NASA Astrophysics Data System (ADS)

    Khalil, Abedalrazq F.; Kwon, Hyun-Han; Lall, Upmanu; Miranda, Mario J.; Skees, Jerry

    2007-10-01

    Index insurance has recently been advocated as a useful risk transfer tool for disaster management situations where rapid fiscal relief is desirable and where estimating insured losses may be difficult, time consuming, or subject to manipulation and falsification. For climate-related hazards, a rainfall or temperature index may be proposed. However, rainfall may be highly spatially variable relative to the gauge network, and in many locations, data are inadequate to develop an index because of short time series and the spatial dispersion of stations. In such cases, it may be helpful to consider a climate proxy index as a regional rainfall index. This is particularly useful if a long record is available for the climate index through an independent source and it is well correlated with the regional rainfall hazard. Here El Niño-Southern Oscillation (ENSO) related climate indices are explored for use as a proxy to extreme rainfall in one of the districts of Peru, Piura. The ENSO index insurance product may be purchased by banks or microfinance institutions to aid agricultural damage relief in Peru. Crop losses in the region are highly correlated with floods but are difficult to assess directly. Beyond agriculture, many other sectors suffer as well. Basic infrastructure is destroyed during the most severe events. This disrupts trade for many microenterprises. The reliability and quality of the local rainfall data are variable. Averaging the financial risk across the region is desirable. Some issues with the implementation of the proxy ENSO index are identified and discussed. Specifically, we explore (1) the reliability of the index at different levels of probability of exceedance of maximum seasonal rainfall, (2) the effect of sampling uncertainties and the strength of the proxy's association to local outcome, (3) the potential for clustering of payoffs, (4) the potential that the index could be predicted with some lead time prior to the flood season, and (5) evidence for climate change or nonstationarity in the flood exceedance probability from the long ENSO record.

  14. An ocean-ice coupled response during the last glacial: a view from a marine isotopic stage 3 record south of the Faeroe Shetland Gateway

    NASA Astrophysics Data System (ADS)

    Zumaque, J.; Eynaud, F.; Zaragosi, S.; Marret, F.; Matsuzaki, K. M.; Kissel, C.; Roche, D. M.; Malaizé, B.; Michel, E.; Billy, I.; Richter, T.; Palis, E.

    2012-12-01

    The rapid climatic variability characterising the Marine Isotopic Stage (MIS) 3 (~60-30 cal ka BP) provides key issues to understand the atmosphere-ocean-cryosphere dynamics. Here we investigate the response of sea-surface paleoenvironments to the MIS3 climatic variability through the study of a high resolution oceanic sedimentological archive (core MD99-2281, 60°21' N; 09°27' W; 1197 m water depth), retrieved during the MD114-IMAGES (International Marine Global Change Study) cruise from the southern part of the Faeroe Bank. This sector was under the proximal influence of European ice sheets (Fennoscandian Ice Sheet to the East, British Irish Ice Sheet to the South) during the last glacial and thus probably responded to the MIS3 pulsed climatic changes. We conducted a multi-proxy analysis of core MD99-2281, including magnetic properties, x-ray fluorescence measurements, characterisation of the coarse (>150 μm) lithic fraction (grain concentration) and the analysis of selected biogenic proxies (assemblages and stable isotope ratio of calcareous planktonic foraminifera, dinoflagellate cyst - e.g. dinocyst - assemblages). Results presented here are focussed on the dinocyst response, this proxy providing the reconstruction of past sea-surface hydrological conditions, qualitatively as well as quantitatively (e.g. transfer function sensu lato). Our study documents a very coherent and sensitive oceanic response to the MIS3 rapid climatic variability: strong fluctuations, matching those of stadial/interstadial climatic oscillations as depicted by Greenland ice cores, are recorded in the MD99-2281 archive. Proxies of terrigeneous and detritical material suggest increases in continental advection during Greenland Stadials (including Heinrich events), the latter corresponding also to southward migrations of polar waters. At the opposite, milder sea-surface conditions seem to develop during Greenland Interstadials. After 30 ka, reconstructed paleohydrological conditions evidence strong shifts in SST: this increasing variability seems consistent with the hypothesised coalescence of the British and Fennoscandian ice sheets at that time, which could have directly influenced sea-surface environments in the vicinity of core MD99-2281.

  15. An Ocean - ice coupled response during the last glacial: zooming on the marine isotopic stage 3 south of the Faeroe Shetland Gateway

    NASA Astrophysics Data System (ADS)

    Zumaque, J.; Eynaud, F.; Zaragosi, S.; Marret, F.; Matsuzaki, K. M.; Kissel, C.; Roche, D. M.; Malaizé, B.; Michel, E.; Billy, I.; Richter, T.; Palis, E.

    2012-08-01

    The rapid climatic variability characterising the Marine Isotopic Stage (MIS) 3 (~ 60-30 CAL-ka BP) provides key issues to understand the atmosphere-ocean-cryosphere dynamics. Here we investigate the response of sea-surface paleoenvironments to the MIS3 climatic variability through the study of a high resolution oceanic sedimentological archive (core MD99-2281, 60°21' N; 09°27' W; 1197 m water depth), retrieved during the MD114-IMAGES (International Marine Global Change Study) cruise from the Southern part of the Faeroe Bank. This sector was under the proximal influence of European Ice Sheets (Fennoscandian Ice Sheet to the East, British Irish Ice Sheet to the South) and thus probably recorded their response to the MIS3 pulsed climatic changes. We conducted a multi-proxy analysis on core MD99-2281, including magnetic properties, X-Ray Fluorescence measurements, characterisation of the coarse (> 150 μm) lithic fraction (grain concentration) and the analysis of selected biogenic proxies (assemblages and stable isotope ratio of calcareous planktonic foraminifera, dinoflagellate cyst - e.g. dinocyst - assemblages). Results presented here are focussed on the dinocyst response, this proxy providing the reconstruction of past sea-surface hydrological conditions, qualitatively as well as quantitatively (e.g. transfer function sensu lato). Our study documents a very coherent and sensitive oceanic response to the MIS3 rapid climatic variability: strong fluctuations, matching those of stadial/interstadial climatic oscillations as depicted by Greenland Ice Cores, are recorded in the MD99-2281 archive. Proxies of terrigeneous and detritical material typify increases in continental advection during Greenland Stadials (including Heinrich events), the latter corresponding also to southward migrations of polar waters. At the opposite, milder sea-surface conditions seem to develop during Greenland Interstadials. After 30 ka, reconstructed paleohydrological conditions evidence strong shifts in SST: this increasing variability seems consistent with the hypothesised coalescence of the British and Fennoscandian ice sheets at that time, which could have directly influenced sea-surface environments in the vicinity of core MD99-2281.

  16. The Quaternary fossil-pollen record and global change

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grimm, E.C.

    Fossil pollen provide one of the most valuable records of vegetation and climate change during the recent geological past. Advantages of the fossil-pollen record are that deposits containing fossil pollen are widespread, especially in areas having natural lakes, that fossil pollen occurs in continuous stratigraphic sequences spanning millennia, and that fossil pollen occurs in quantitative assemblages permitting a multivariate approach for reconstructing past vegetation and climates. Because of stratigraphic continuity, fossil pollen records climate cycles on a wide range of scales, from annual to the 100 ka Milankovitch cycles. Receiving particular emphasis recently are decadal to century scale changes, possiblemore » from the sediments of varved lakes, and late Pleistocene events on a 5--10 ka scale possibly correlating with the Heinrich events in the North Atlantic marine record or the Dansgaard-Oeschger events in the Greenland ice-core record. Researchers have long reconstructed vegetation and climate by qualitative interpretation of the fossil-pollen record. Recently quantitative interpretation has developed with the aid of large fossil-pollen databases and sophisticated numerical models. In addition, fossil pollen are important climate proxy data for validating General Circulation Models, which are used for predicting the possible magnitude future climate change. Fossil-pollen data also contribute to an understanding of ecological issues associated with global climate change, including questions of how and how rapidly ecosystems might respond to abrupt climate change.« less

  17. High-resolution mineral dust and sea ice proxy records from the Talos Dome ice core

    NASA Astrophysics Data System (ADS)

    Schüpbach, S.; Federer, U.; Kaufmann, P. R.; Albani, S.; Barbante, C.; Stocker, T. F.; Fischer, H.

    2013-12-01

    In this study we report on new non-sea salt calcium (nssCa2+, mineral dust proxy) and sea salt sodium (ssNa+, sea ice proxy) records along the East Antarctic Talos Dome deep ice core in centennial resolution reaching back 150 thousand years (ka) before present. During glacial conditions nssCa2+ fluxes in Talos Dome are strongly related to temperature as has been observed before in other deep Antarctic ice core records, and has been associated with synchronous changes in the main source region (southern South America) during climate variations in the last glacial. However, during warmer climate conditions Talos Dome mineral dust input is clearly elevated compared to other records mainly due to the contribution of additional local dust sources in the Ross Sea area. Based on a simple transport model, we compare nssCa2+ fluxes of different East Antarctic ice cores. From this multi-site comparison we conclude that changes in transport efficiency or atmospheric lifetime of dust particles do have a minor effect compared to source strength changes on the large-scale concentration changes observed in Antarctic ice cores during climate variations of the past 150 ka. Our transport model applied on ice core data is further validated by climate model data. The availability of multiple East Antarctic nssCa2+ records also allows for a revision of a former estimate on the atmospheric CO2 sensitivity to reduced dust induced iron fertilisation in the Southern Ocean during the transition from the Last Glacial Maximum to the Holocene (T1). While a former estimate based on the EPICA Dome C (EDC) record only suggested 20 ppm, we find that reduced dust induced iron fertilisation in the Southern Ocean may be responsible for up to 40 ppm of the total atmospheric CO2 increase during T1. During the last interglacial, ssNa+ levels of EDC and EPICA Dronning Maud Land (EDML) are only half of the Holocene levels, in line with higher temperatures during that period, indicating much reduced sea ice extent in the Atlantic as well as the Indian Ocean sector of the Southern Ocean. In contrast, Holocene ssNa+ flux in Talos Dome is about the same as during the last interglacial, indicating that there was similar ice cover present in the Ross Sea area during MIS 5.5 as during the Holocene.

  18. Oceanographic and climatic evolution of the southeastern subtropical Atlantic over the last 3.5 Ma

    NASA Astrophysics Data System (ADS)

    Petrick, Benjamin; McClymont, Erin L.; Littler, Kate; Rosell-Melé, Antoni; Clarkson, Matthew O.; Maslin, Mark; Röhl, Ursula; Shevenell, Amelia E.; Pancost, Richard D.

    2018-06-01

    The southeast Atlantic Ocean is dominated by two major oceanic systems: the Benguela Upwelling System, one of the world's most productive coastal upwelling cells and the Agulhas Leakage, which is important for transferring warm salty water from the Indian Ocean to the Atlantic Ocean. Here, we present a multi-proxy record of marine sediments from ODP Site 1087. We reconstruct sea surface temperatures (U37K‧ and TEX86 indices), marine primary productivity (total chlorin and alkenone mass accumulation rates), and terrestrial inputs derived from southern Africa (Ti/Al and Ca/Ti via XRF scanning) to understand the evolution of the Southeast Atlantic Ocean since the late Pliocene. In the late Pliocene and early Pleistocene, ODP Site 1087 was situated within the Benguela Upwelling System, which was displaced southwards relative to present. We recognize a series of events in the proxy records at 3.3, 3.0, 2.2, 1.5, 0.9 and 0.6 Ma, which are interpreted to reflect a combination of changes in the location of major global wind and oceanic systems and local variations in the strength and/or position of the winds, which influence nutrient availability. Although there is a temporary SST cooling observed around the initiation of Northern Hemisphere glaciation (iNHG), proxy records from ODP Site 1087 show no clear climatic transition around 2.7 Ma but instead most of the changes occur before this time. This observation is significant because it has been previously suggested that there should be a change in the location and/or strength of upwelling associated with this climate transition. Rather, the main shifts at ODP Site 1087 occur at ca. 0.9 Ma and 0.6 Ma, associated with the early mid-Pleistocene transition (EMPT), with a clear loss of the previous upwelling-dominated regime. This observation raises the possibility that reorganisation of southeast Atlantic Ocean circulation towards modern conditions was tightly linked to the EMPT, but not to earlier climate transitions.

  19. Continental temperatures through the early Eocene in western central Europe

    NASA Astrophysics Data System (ADS)

    Inglis, G. N.; Collinson, M. E.; Riegel, W.; Wilde, V.; Farnsworth, A.; Lunt, D. J.; Robson, B.; Scott, A. C.; Lenz, O.; Pancost, R.

    2016-12-01

    In contrast to the marine realm, our understanding of terrestrial temperature change during greenhouse climates is poorly constrained. Recently, branched glycerol dialkyl glycerol tetraethers (brGDGTs) have been used to successfully reconstruct mean annual air temperature (MAAT) during the early Paleogene. However, despite the potential to provide new insights into terrestrial climate, the application of this proxy in lignite and coal deposits is still limited. Using samples recovered from Schöningen, Germany ( 48°N), we provide the first detailed study into the occurrence and distribution of brGDGTs through a sequence of Early Eocene lignites and associated marine interbeds. Branched GDGTs are abundant and present in every sample. In comparison to modern studies, changes in vegetation type do not appear to significantly impact brGDGT distributions; however, there are subtle differences in these distributions between lignites and siliciclastic nearshore marine interbed sediments. Using the most recent brGDGT temperature calibration, we generate the first continental temperature record from central-western continental Europe through the Early Eocene. Lignite-derived MAAT estimates range from 23 to 26°C and those derived from the nearshore marine interbeds always exceed 20°C. These estimates are consistent with other mid-latitude palaeoclimate proxy records which indicate enhanced early Eocene warmth. In the basal part of the section, warming is recorded in both the lignites ( 2°C) and nearshore marine interbeds ( 2-3°C). This culminates in a long-term temperature maximum, likely including the Early Eocene Climatic Optimum (EECO). Although this trend is relatively well established in marginal marine sediments within the SW Pacific, it has rarely been shown in other regions or terrestrial settings. Using a suite of new climate model simulations, our warming trend is consistent with a doubling of CO2 (from 560ppmv to 1120ppmv) which broadly agrees with proxy-derived CO2 estimates from the early Paleogene

  20. A Multidisciplinary Approach to Assessing the Causal Components of Climate Change

    NASA Astrophysics Data System (ADS)

    Gosnold, W. D.; Todhunter, P. E.; Dong, X.; Rundquist, B.; Majorowicz, J.; Blackwell, D. D.

    2004-05-01

    Separation of climate forcing by anthropogenic greenhouse gases from natural radiative climate forcing is difficult because the composite temperature signal in the meteorological and multi-proxy temperature records cannot be resolved directly into radiative forcing components. To address this problem, we have initiated a large-scale, multidisciplinary project to test coherence between ground surface temperatures (GST) reconstructed from borehole T-z profiles, surface air temperatures (SAT), soil temperatures, and solar radiation. Our hypothesis is that radiative heating and heat exchange between the ground and the air directly control the ground surface temperature. Consequently, borehole T-z measurements at multi-year intervals spanning time periods when solar radiation, soil and air temperatures have been recorded should enable comparison of the thermal energy stored in the ground to these quantities. If coherence between energy storage, solar radiation, GST, SAT and multi-proxy temperature data can be discerned for a one or two decade scale, synthesis of GST and multi-proxy data over the past several centuries may enable us to separately determine the anthropogenic and natural forcings of climate change. The data we are acquiring include: (1) New T-z measurements in boreholes previously used in paleoclimate and heat flow research in Canada and the United States from the 1970's to the present. (2) Meteorological data from the US Historical Climatology Network and the Automated Weather Data Network of the High Plains Regional Climate Center, and Environment Canada. (3) Direct and remotely sensed data on land use, environment, and soil properties at selected borehole and meteorological sites for the periods between borehole observations. The project addresses three related questions: What is the coherence between the GST, SAT, soil temperatures and solar radiation? Have microclimate changes at borehole sites and climate stations affected temperature trends? If good coherence is obtained, can the coherence between thermal energy stored in the ground and radiative forcing during the time between T-z measurements be extended several centuries into the past?

  1. Low-Latitude Western North Atlantic Climate Variability During the Past Millennium: Insights from Proxies and Models

    DTIC Science & Technology

    2009-09-01

    simulations indicate extratropical North Atlantic climate can influence the meridional position of the ITCZ [Chiang and Bitz, 2005; Broccoli et al...record from the Cariaco Basin: Baseline variability, twentieth-century warming, and Atlantic hurricane frequency. Paleoceanography, 22. Broccoli ...SSTs were not markedly cooler during the LIA suggests that the ITCZ may have responded to extra- tropical cooling. Idealized simulations [ Broccoli et al

  2. Hydrologic response of the Crow Wing Watershed, Minnesota, to mid-Holocene climate change

    USGS Publications Warehouse

    Person, M.; Roy, P.; Wright, H.; Gutowski, W.; Ito, E.; Winter, T.; Rosenberry, D.; Cohen, D.

    2007-01-01

    In this study, we have integrated a suite of Holocene paleoclimatic proxies with mathematical modeling in an attempt to obtain a comprehensive picture of how watersheds respond to past climate change. A three-dimensional surface-water-groundwater model was developed to assess the effects of mid-Holocene climate change on water resources within the Crow Wing Watershed, Upper Mississippi Basin in north central Minnesota. The model was first calibrated to a 50 yr historical record of average annual surface-water discharge, monthly groundwater levels, and lake-level fluctuations. The model was able to reproduce reasonably well long-term historical records (1949-1999) of water-table and lake-level fluctuations across the watershed as well as stream discharge near the watershed outlet. The calibrated model was then used to reproduce paleogroundwater and lake levels using climate reconstructions based on pollen-transfer functions from Williams Lake just outside the watershed. Computed declines in mid-Holocene lake levels for two lakes at opposite ends of the watershed were between 6 and 18 m. Simulated streamflow near the outlet of the watershed decreased to 70% of modern average annual discharge after ???200 yr. The area covered by wetlands for the entire watershed was reduced by ???16%. The mid-Holocene hydrologic changes indicated by these model results and corroborated by several lake-core records across the Crow Wing Watershed may serve as a useful proxy of the hydrologic response to future warm, dry climatic forecasts (ca. 2050) made by some atmospheric general-circulation models for the glaciated Midwestern United States. ?? 2007 Geological Society of America.

  3. New Zealand Maritime Glaciation: Millennial-Scale Southern Climate Change Since 3.9 Ma

    NASA Astrophysics Data System (ADS)

    Carter, Robert M.; Gammon, Paul

    2004-06-01

    Ocean Drilling Program Site 1119 is ideally located to intercept discharges of sediment from the mid-latitude glaciers of the New Zealand Southern Alps. The natural gamma ray signal from the site's sediment core contains a history of the South Island mountain ice cap since 3.9 million years ago (Ma). The younger record, to 0.37 Ma, resembles the climatic history of Antarctica as manifested by the Vostok ice core. Beyond, and back to the late Pliocene, the record may serve as a proxy for both mid-latitude and Antarctic polar plateau air temperature. The gamma ray signal, which is atmospheric, also resembles the ocean climate history represented by oxygen isotope time series.

  4. Centennial-scale links between Atlantic Ocean dynamics and hydroclimate over the last 4400 years: Insights from the northern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Thirumalai, K.; Quinn, T. M.; Okumura, Y.; Richey, J. N.; Partin, J. W.; Poore, R. Z.

    2015-12-01

    Surface circulation in the Atlantic Ocean is an important mediator of global climate and yet its variability is poorly constrained on centennial timescales. Changes in the Atlantic meridional overturning circulation (AMOC) have been implicated in late Holocene climate variability in the Western Hemisphere, although the relationship between AMOC variability and hydroclimate is uncertain due to the lack of sufficiently highly resolved proxy records. Here we present a replicated reconstruction of sea-surface temperature (SST) and salinity (SSS) from the Garrison Basin in the northern Gulf of Mexico (NGOM) spanning the last 4,400 years to better constrain past sea-surface conditions. We generated time series of paired Mg/Ca (SST proxy) and δ18O (SST and SSS proxy) variations in planktic foraminifer Globigerinoides ruber (white variety) from three multi-cores collected in 2010. Using a Monte Carlo-based technique we produce a stacked record from the three multi-cores and constrain analytical, calibration, chronological, and sampling uncertainties. We apply this technique to existing paired Mg/Ca- δ18O studies in the Gulf of Mexico and Atlantic Ocean to facilitate comparison between time-uncertain proxy reconstructions. The Garrison Basin stack exhibits large centennial-scale variability (σSST~0.6°C; δ18Osw~0.17‰) and indicates a substantially cool (0.9±0.5°C) and fresh (0.26±0.1‰) Little Ice Age (LIA; 1450-1850 A.D.), corroborating extant records from the Gulf of Mexico. Focusing on the last millennium, we analyze a suite of oceanic and terrestrial proxy records to demonstrate a centennial-scale link between salt advection in the Atlantic Ocean, a diagnostic parameter of ocean circulation, and hydroclimate in the adjacent continents. The ensuing multiproxy relationships seem to be consistent with spatial field correlations of limited salinity and rainfall instrumental/reanalysis data, which suggest that NGOM salinity varies with large-scale Atlantic Ocean circulation and continental precipitation. Our results imply significant centennial-scale variability over the late Holocene and are consistent with limited observational analysis indicating a slowdown of AMOC during the LIA.

  5. Evidence for ice-free summers in the late Miocene central Arctic Ocean

    PubMed Central

    Stein, Ruediger; Fahl, Kirsten; Schreck, Michael; Knorr, Gregor; Niessen, Frank; Forwick, Matthias; Gebhardt, Catalina; Jensen, Laura; Kaminski, Michael; Kopf, Achim; Matthiessen, Jens; Jokat, Wilfried; Lohmann, Gerrit

    2016-01-01

    Although the permanently to seasonally ice-covered Arctic Ocean is a unique and sensitive component in the Earth's climate system, the knowledge of its long-term climate history remains very limited due to the restricted number of pre-Quaternary sedimentary records. During Polarstern Expedition PS87/2014, we discovered multiple submarine landslides along Lomonosov Ridge. Removal of younger sediments from steep headwalls has led to exhumation of Miocene sediments close to the seafloor. Here we document the presence of IP25 as a proxy for spring sea-ice cover and alkenone-based summer sea-surface temperatures >4 °C that support a seasonal sea-ice cover with an ice-free summer season being predominant during the late Miocene in the central Arctic Ocean. A comparison of our proxy data with Miocene climate simulations seems to favour either relatively high late Miocene atmospheric CO2 concentrations and/or a weak sensitivity of the model to simulate the magnitude of high-latitude warming in a warmer than modern climate. PMID:27041737

  6. Sea ice and millennial-scale climate variability in the Nordic seas 90 kyr ago to present

    PubMed Central

    Hoff, Ulrike; Rasmussen, Tine L.; Stein, Ruediger; Ezat, Mohamed M.; Fahl, Kirsten

    2016-01-01

    In the light of rapidly diminishing sea ice cover in the Arctic during the present atmospheric warming, it is imperative to study the distribution of sea ice in the past in relation to rapid climate change. Here we focus on glacial millennial-scale climatic events (Dansgaard/Oeschger events) using the sea ice proxy IP25 in combination with phytoplankton proxy data and quantification of diatom species in a record from the southeast Norwegian Sea. We demonstrate that expansion and retreat of sea ice varies consistently in pace with the rapid climate changes 90 kyr ago to present. Sea ice retreats abruptly at the start of warm interstadials, but spreads rapidly during cooling phases of the interstadials and becomes near perennial and perennial during cold stadials and Heinrich events, respectively. Low-salinity surface water and the sea ice edge spreads to the Greenland–Scotland Ridge, and during the largest Heinrich events, probably far into the Atlantic Ocean. PMID:27456826

  7. Sea ice and millennial-scale climate variability in the Nordic seas 90 kyr ago to present.

    PubMed

    Hoff, Ulrike; Rasmussen, Tine L; Stein, Ruediger; Ezat, Mohamed M; Fahl, Kirsten

    2016-07-26

    In the light of rapidly diminishing sea ice cover in the Arctic during the present atmospheric warming, it is imperative to study the distribution of sea ice in the past in relation to rapid climate change. Here we focus on glacial millennial-scale climatic events (Dansgaard/Oeschger events) using the sea ice proxy IP25 in combination with phytoplankton proxy data and quantification of diatom species in a record from the southeast Norwegian Sea. We demonstrate that expansion and retreat of sea ice varies consistently in pace with the rapid climate changes 90 kyr ago to present. Sea ice retreats abruptly at the start of warm interstadials, but spreads rapidly during cooling phases of the interstadials and becomes near perennial and perennial during cold stadials and Heinrich events, respectively. Low-salinity surface water and the sea ice edge spreads to the Greenland-Scotland Ridge, and during the largest Heinrich events, probably far into the Atlantic Ocean.

  8. Study of spectro-temporal variation in paleo-climatic marine proxy records using wavelet transformations

    NASA Astrophysics Data System (ADS)

    Pandey, Chhavi P.

    2017-10-01

    Wavelet analysis is a powerful mathematical and computational tool to study periodic phenomena in time series particu-larly in the presence of potential frequency changes in time. Continuous wavelet transformation (CWT) provides localised spectral information of the analysed dataset and in particular useful to study multiscale, nonstationary processes occurring over finite spatial and temporal domains. In the present work, oxygen-isotope ratio from the plantonic foraminifera species (viz. Globigerina bul-loides and Globigerinoides ruber) acquired from the broad central plateau of the Maldives ridge situated in south-eastern Arabian sea have been used as climate proxy. CWT of the time series generated using both the biofacies indicate spectro-temporal varia-tion of the natural climatic cycles. The dominant period resembles to the period of Milankovitch glacial-interglacial cycle. Apart from that, various other cycles are present in the time series. The results are in good agreement with the astronomical theory of paleoclimates and can provide better visualisation of Indian summer monsoon in the context of climate change.

  9. Culturing Fundamentals Used To Design And Execute A Long-Term Multi-stressor Experiment To Assess Impact Of Deoxygenation, Ocean Acidification, And Warming On Benthic Foraminiferal Community Composition, Growth, And Carbonate Yield: Design And Results

    NASA Astrophysics Data System (ADS)

    Bernhard, J. M.; Wit, J. C.

    2015-12-01

    The geochemistry recorded in carbonate foraminiferal tests (shells) is often used as proxy for past oceanographic events and environments. By understanding past oceanic and climatic conditions, we can better predict future climate scenarios, a relevant ability in these times of global change. The fact that foraminifera are biological entities can be pivotal for understanding their geochemical records. Thus, growing foraminifera under known physicochemical conditions and analyzing the geochemistry of their cultured carbonate can yield insightful perspectives for proxy refinement and development. Because parameters often co-vary in nature, proper proxy calibration can only be done with materials grown in strictly controlled and known environments. This presentation will review the various crucial aspects of foraminiferal maintenance and culturing, especially from the perspective of proxy development. These fundamentals were used to design a long-term multi-stressor experiment with oxygen, pCO2 (pH), and temperature as variables to test the single, double or triple threats of deoxygenation, ocean acidification, and oceanic warming. Results on assemblage composition, survivorship and growth of a continental shelf benthic foraminiferal community will be presented. Although one agglutinated morphospecies grew in each of the five treatments, growth of individual calcareous species was more restricted. Initial results indicate that pCO2 was not the factor that impacted communities most. Supported in part by NSF OCE-1219948.

  10. Finding a Needle in a Climate Haystack

    NASA Astrophysics Data System (ADS)

    Verosub, K. L.; Medrano, R.; Valentine, M.

    2014-12-01

    We are studying the regional impact of volcanic eruptions that might have caused global cooling using high-quality annual-resolution proxy records of natural phenomena, such as tree-ring widths, and cultural events, such as the dates of the beginning of grape and rye harvests. To do this we need to determine if the year following an eruption was significantly colder and wetter than preceding or subsequent years as measured by any given proxy and if that year is consistently cold and wet across different proxies. The problem is complicated by the fact that normal inter-annual variations in any given proxy can be quite large and can obscure any volcanological impact and by the fact that inter-annual variations for different proxies will have different means and standard deviations. We address the first problem by assuming that on a regional scale, the inter-annual variations of different proxies are at best only weakly correlated and that, in the absence of a volcanological signal, these variations will average out on a regional scale. We address the second problem by renormalizing each record so that it has the same mean and standard deviation over a given time interval. We then sum the re-normalized records on a year-by-year basis and look for years with significantly higher total scores. The method can also be used to assess the statistical significance of an anomalous value. Our initial analysis of records primarily from the Northern Hemisphere shows that the years 1601 and 1816 were significantly colder and wetter than any others in the past 500 years. These years followed the eruptions of Huayanaputina in Chile and Tambora in Indonesia, respectively, by one year. The years 1698 and 1837 also show up as being climatologically severe although they have not (yet) been associated with specific volcanic eruptions.

  11. GLOBAL ENVIRONMENTAL CHANGE ISSUES IN THE WESTERN INDIAN OCEAN REGION

    EPA Science Inventory

    Mounting evidence from both instrumental and proxy records shows global climate continues to change. nalysis of near-surface temperatures over land and oceans during the past 130 years shows marked warming during the first half of this century with relatively steady temperatures ...

  12. Non-linear regime shifts in Holocene Asian monsoon variability: potential impacts on cultural change and migratory patterns

    NASA Astrophysics Data System (ADS)

    Donges, J. F.; Donner, R. V.; Marwan, N.; Breitenbach, S. F. M.; Rehfeld, K.; Kurths, J.

    2015-05-01

    The Asian monsoon system is an important tipping element in Earth's climate with a large impact on human societies in the past and present. In light of the potentially severe impacts of present and future anthropogenic climate change on Asian hydrology, it is vital to understand the forcing mechanisms of past climatic regime shifts in the Asian monsoon domain. Here we use novel recurrence network analysis techniques for detecting episodes with pronounced non-linear changes in Holocene Asian monsoon dynamics recorded in speleothems from caves distributed throughout the major branches of the Asian monsoon system. A newly developed multi-proxy methodology explicitly considers dating uncertainties with the COPRA (COnstructing Proxy Records from Age models) approach and allows for detection of continental-scale regime shifts in the complexity of monsoon dynamics. Several epochs are characterised by non-linear regime shifts in Asian monsoon variability, including the periods around 8.5-7.9, 5.7-5.0, 4.1-3.7, and 3.0-2.4 ka BP. The timing of these regime shifts is consistent with known episodes of Holocene rapid climate change (RCC) and high-latitude Bond events. Additionally, we observe a previously rarely reported non-linear regime shift around 7.3 ka BP, a timing that matches the typical 1.0-1.5 ky return intervals of Bond events. A detailed review of previously suggested links between Holocene climatic changes in the Asian monsoon domain and the archaeological record indicates that, in addition to previously considered longer-term changes in mean monsoon intensity and other climatic parameters, regime shifts in monsoon complexity might have played an important role as drivers of migration, pronounced cultural changes, and the collapse of ancient human societies.

  13. Coral proxy record of decadal-scale reduction in base flow from Moloka'i, Hawaii

    USGS Publications Warehouse

    Prouty, Nancy G.; Jupiter, Stacy D.; Field, Michael E.; McCulloch, Malcolm T.

    2009-01-01

    Groundwater is a major resource in Hawaii and is the principal source of water for municipal, agricultural, and industrial use. With a growing population, a long-term downward trend in rainfall, and the need for proper groundwater management, a better understanding of the hydroclimatological system is essential. Proxy records from corals can supplement long-term observational networks, offering an accessible source of hydrologic and climate information. To develop a qualitative proxy for historic groundwater discharge to coastal waters, a suite of rare earth elements and yttrium (REYs) were analyzed from coral cores collected along the south shore of Moloka'i, Hawaii. The coral REY to calcium (Ca) ratios were evaluated against hydrological parameters, yielding the strongest relationship to base flow. Dissolution of REYs from labradorite and olivine in the basaltic rock aquifers is likely the primary source of coastal ocean REYs. There was a statistically significant downward trend (−40%) in subannually resolved REY/Ca ratios over the last century. This is consistent with long-term records of stream discharge from Moloka'i, which imply a downward trend in base flow since 1913. A decrease in base flow is observed statewide, consistent with the long-term downward trend in annual rainfall over much of the state. With greater demands on freshwater resources, it is appropriate for withdrawal scenarios to consider long-term trends and short-term climate variability. It is possible that coral paleohydrological records can be used to conduct model-data comparisons in groundwater flow models used to simulate changes in groundwater level and coastal discharge.

  14. Aligning and synchronization of MIS5 proxy records from Lake Ohrid (FYROM) with independently dated Mediterranean archives: implications for DEEP core chronology

    NASA Astrophysics Data System (ADS)

    Zanchetta, Giovanni; Regattieri, Eleonora; Giaccio, Biagio; Wagner, Bernd; Sulpizio, Roberto; Francke, Alex; Vogel, Hendrik; Sadori, Laura; Masi, Alessia; Sinopoli, Gaia; Lacey, Jack H.; Leng, Melanie J.; Leicher, Niklas

    2016-05-01

    The DEEP site sediment sequence obtained during the ICDP SCOPSCO project at Lake Ohrid was dated using tephrostratigraphic information, cyclostratigraphy, and orbital tuning through the marine isotope stages (MIS) 15-1. Although this approach is suitable for the generation of a general chronological framework of the long succession, it is insufficient to resolve more detailed palaeoclimatological questions, such as leads and lags of climate events between marine and terrestrial records or between different regions. Here, we demonstrate how the use of different tie points can affect cyclostratigraphy and orbital tuning for the period between ca. 140 and 70 ka and how the results can be correlated with directly/indirectly radiometrically dated Mediterranean marine and continental proxy records. The alternative age model presented here shows consistent differences with that initially proposed by Francke et al. (2015) for the same interval, in particular at the level of the MIS6-5e transition. According to this new age model, different proxies from the DEEP site sediment record support an increase of temperatures between glacial to interglacial conditions, which is almost synchronous with a rapid increase in sea surface temperature observed in the western Mediterranean. The results show how a detailed study of independent chronological tie points is important to align different records and to highlight asynchronisms of climate events. Moreover, Francke et al. (2016) have incorporated the new chronology proposed for tephra OH-DP-0499 in the final DEEP age model. This has reduced substantially the chronological discrepancies between the DEEP site age model and the model proposed here for the last glacial-interglacial transition.

  15. The potential of the coral species Porites astreoides as a paleoclimate archive for the Tropical South Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Pereira, N. S.; Sial, A. N.; Frei, R.; Ullmann, C. V.; Korte, C.; Kikuchi, R. K. P.; Ferreira, V. P.; Kilbourne, K. H.

    2017-08-01

    The aragonitic skeletons of corals are unique archives of geochemical tracers that can be used as proxies for environmental conditions with high fidelity and sub-annual resolution. Such records have been extensively used for reconstruction of climatic conditions in the Pacific and Indian Oceans, Red Sea and Caribbean, but lack for the Equatorial South Atlantic. Here we present coral-based records of Sr/Ca, δ18O and δ13C and the first δ18O-SST calibration for the scleractinian coral species Porites astreoides from the Rocas Atoll, Equatorial South Atlantic. The investigated geochemical proxies for P. astreoides presented a very well-developed seasonal cyclicity in all proxies. We use the monthly means of δ18O and SST from the period of 2001-2013 to propose a calibration for a paleothermometer based on Porites, which gives T(°C) = -8.69(±0.79)* δ18O -7.05(±3.14), and yielded a SST δ18O-depended reconstruction with fidelity better than 0.5 °C for most of the record. Biases of up to 2 °C might be associated with reduced growth rate periods of the coral record. The Sr/Ca data show systematic, annual fluctuations but analyses are too imprecise to propose a Sr/Ca-SST calibration. The δ13C values are found to vary in phase with δ18O and Sr/Ca and are interpreted to be controlled by solar irradiation-modulated photosynthetic activity on the annual level. Our findings extend the global data base of coral records, contributing to further investigations using coral skeleton as environmental archives. In particular, the present study helps to better understand the climate variability of the South Atlantic tropical ocean-atmosphere system.

  16. Frozen Nature - A high-alpine ice core record reveals fire and vegetation dynamics in Western Europe over the past millennium

    NASA Astrophysics Data System (ADS)

    Brügger, S.; Gobet, E.; Sigl, M.; Osmont, D.; Schwikowski, M.; Tinner, W.

    2017-12-01

    Wild fires are an ecological disturbance agent across ecosystems, driving vegetation dynamics and resulting in disruption of habitats (Moritz et al. 2014).We analyze pollen and spores as proxies for vegetation composition, structure and agricultural activity, microscopic charcoal as a proxy for fire activity, and spheroidal carbonaceous particles (SCPs or soots) as a proxy for fossil fuel combustion which preserve in ice cores over millennia (Eichler et al. 2011).Our high-alpine ice core (4452 m a.s.l.) from Colle Gnifetti, Swiss Alps is located in the center of Western Europe, thus allowing to assess vegetation and societal responses to climatic change and wildfire disturbance on a subcontinental scale. The record covers the last millennium with an excellent chronological control (Jenk et al. 2009, Sigl et al. 2009), particularly over the most recent 200 years - the period that experienced important climatic changes and an increasing globalization of economy.The Colle Gnifetti record reflects large scale impacts such as extreme weather, societal innovations, agricultural crises and pollution of the industrial period in Western Europe. Pollution tracers occur in the record as early as 1750 AD and coincide with the shift to large-scale maize production in Northern Italy and with increased fire activity. Our multiproxy record may allow desentagling the role of climate and humans for vegetation composition and biomass burning. The attribution of causes may significantly advance our understanding of future vegetation and fire dynamics under global change conditions. To our knowledge we present the first long-term high-resolution palynological record of a high elevation ice core in Europe.REFERENCESEichler et al. (2011): An ice-core based history of Siberian forest fires since AD 1250. Quaternary Science Reviews, 30(9), 1027-1034.Jenk et al. (2009): A novel radiocarbon dating technique applied to an ice core from the Alps indicating late Pleistocene ages. Journal of Geophysical Research: Atmospheres, 114(D14).Moritz et al. (2014): Learning to coexist with wildfire. Nature, 515(7525), 58-66.Sigl et al. (2009): Towards radiocarbon dating of ice cores. Journal of Glaciology, 55(194), 985-996.

  17. The climate continuum revisited

    NASA Astrophysics Data System (ADS)

    Emile-Geay, J.; Wang, J.; Partin, J. W.

    2015-12-01

    A grand challenge of climate science is to quantify the extent of natural variability on adaptation-relevant timescales (10-100y). Since the instrumental record is too short to adequately estimate the spectra of climate measures, this information must be derived from paleoclimate proxies, which may harbor a many-to-one, non-linear (e.g. thresholded) and non-stationary relationship to climate. In this talk, I will touch upon the estimation of climate scaling behavior from climate proxies. Two case studies will be presented: an investigation of scaling behavior in a reconstruction of global surface temperature using state-of- the-art data [PAGES2K Consortium, in prep] and methods [Guillot et al., 2015]. Estimating the scaling exponent β in spectra derived from this reconstruction, we find that 0 < β < 1 in most regions, suggesting long-term memory. Overall, the reconstruction-based spectra are steeper than the ones based on an instrumental dataset [HadCRUT4.2, Morice et al., 2012], and those estimated from PMIP3/CMIP5 models, suggesting the climate system is more energetic at multidecadal to centennial timescales than can be inferred from the short instrumental record or from the models developed to reproduce it [Laepple and Huybers, 2014]. an investigation of scaling behavior in speleothems records of tropical hydroclimate. We will make use of recent advances in proxy system modeling [Dee et al., 2015] and investigate how various aspects of the speleothem system (karst dynamics, age uncertainties) may conspire to bias the estimate of scaling behavior from speleothem timeseries. The results suggest that ignoring such complications leads to erroneous inferences about hydroclimate scaling. References Dee, S. G., J. Emile-Geay, M. N. Evans, Allam, A., D. M. Thompson, and E. J. Steig (2015), J. Adv. Mod. Earth Sys., 07, doi:10.1002/2015MS000447. Guillot, D., B. Rajaratnam, and J. Emile-Geay (2015), Ann. Applied. Statist., pp. 324-352, doi:10.1214/14-AOAS794. Laepple, T., and P. Huybers (2014), PNAS, doi: 10.1073/pnas.1412077111. Morice, C. P., J. J. Kennedy, N. A. Rayner, and P. D. Jones (2012), JGR: Atmospheres, 117(D8), doi:10.1029/2011JD017187. PAGES2K Consortium (in prep), A global multiproxy database for temperature reconstructions of the Common Era, Scientific Data.

  18. A Regional Stable Carbon Isotope Dendro-Climatology from the South African Summer Rainfall Area.

    PubMed

    Woodborne, Stephan; Gandiwa, Patience; Hall, Grant; Patrut, Adrian; Finch, Jemma

    2016-01-01

    Carbon isotope analysis of four baobab (Adansonia digitata L.) trees from the Pafuri region of South Africa yielded a 1000-year proxy rainfall record. The Pafuri record age model was based on 17 radiocarbon dates, cross correlation of the climate record, and ring structures that were presumed to be annual for two of the trees. Here we present the analysis of five additional baobabs from the Mapungubwe region, approximately 200km west of Pafuri. The Mapungubwe chronology demonstrates that ring structures are not necessarily annually formed, and accordingly the Pafuri chronology is revised. Changes in intrinsic water-use efficiency indicate an active response by the trees to elevated atmospheric CO2, but this has little effect on the environmental signal. The revised Pafuri record, and the new Mapungubwe record correlate significantly with local rainfall. Both records confirm that the Medieval Warm Period was substantially wetter than present, and the Little Ice Age was the driest period in the last 1000 years. Although Mapungubwe is generally drier than Pafuri, both regions experience elevated rainfall peaking between AD 1570 and AD 1620 after which dry conditions persist in the Mapungubwe area until about AD 1840. Differences between the two records correlate with Agulhas Current sea-surface temperature variations suggesting east/west displacement of the temperate tropical trough system as an underlying mechanism. The Pafuri and Mapungubwe records are combined to provide a regional climate proxy record for the northern summer rainfall area of southern Africa.

  19. A Regional Stable Carbon Isotope Dendro-Climatology from the South African Summer Rainfall Area

    PubMed Central

    2016-01-01

    Carbon isotope analysis of four baobab (Adansonia digitata L.) trees from the Pafuri region of South Africa yielded a 1000-year proxy rainfall record. The Pafuri record age model was based on 17 radiocarbon dates, cross correlation of the climate record, and ring structures that were presumed to be annual for two of the trees. Here we present the analysis of five additional baobabs from the Mapungubwe region, approximately 200km west of Pafuri. The Mapungubwe chronology demonstrates that ring structures are not necessarily annually formed, and accordingly the Pafuri chronology is revised. Changes in intrinsic water-use efficiency indicate an active response by the trees to elevated atmospheric CO2, but this has little effect on the environmental signal. The revised Pafuri record, and the new Mapungubwe record correlate significantly with local rainfall. Both records confirm that the Medieval Warm Period was substantially wetter than present, and the Little Ice Age was the driest period in the last 1000 years. Although Mapungubwe is generally drier than Pafuri, both regions experience elevated rainfall peaking between AD 1570 and AD 1620 after which dry conditions persist in the Mapungubwe area until about AD 1840. Differences between the two records correlate with Agulhas Current sea-surface temperature variations suggesting east/west displacement of the temperate tropical trough system as an underlying mechanism. The Pafuri and Mapungubwe records are combined to provide a regional climate proxy record for the northern summer rainfall area of southern Africa. PMID:27427912

  20. Teleconnection stationarity, variability and trends of the Southern Annular Mode (SAM) during the last millennium

    NASA Astrophysics Data System (ADS)

    Dätwyler, Christoph; Neukom, Raphael; Abram, Nerilie J.; Gallant, Ailie J. E.; Grosjean, Martin; Jacques-Coper, Martín; Karoly, David J.; Villalba, Ricardo

    2017-11-01

    The Southern Annular Mode (SAM) is the leading mode of atmospheric interannual variability in the Southern Hemisphere (SH) extra-tropics. Here, we assess the stationarity of SAM spatial correlations with instrumental and paleoclimate proxy data for the past millennium. The instrumental period shows that temporal non-stationarities in SAM teleconnections are not consistent across the SH land areas. This suggests that the influence of the SAM index is modulated by regional effects. However, within key-regions with good proxy data coverage (South America, Tasmania, New Zealand), teleconnections are mostly stationary over the instrumental period. Using different stationarity criteria for proxy record selection, we provide new austral summer and annual mean SAM index reconstructions over the last millennium. Our summer SAM reconstructions are very robust to changes in proxy record selection and the selection of the calibration period, particularly on the multi-decadal timescale. In contrast, the weaker performance and lower agreement in the annual mean SAM reconstructions point towards changing teleconnection patterns that may be particularly important outside the summer months. Our results clearly portend that the temporal stationarity of the proxy-climate relationships should be taken into account in the design of comprehensive regional and hemispherical climate reconstructions. The summer SAM reconstructions show no significant relationship to solar, greenhouse gas and volcanic forcing, with the exception of an extremely strong negative anomaly following the AD 1257 Samalas eruption. Furthermore, reconstructed pre-industrial summer SAM trends are very similar to trends obtained by model control simulations. We find that recent trends in the summer SAM lie outside the 5-95% range of pre-industrial natural variability.

  1. The Reconstruction Potential of a 350 year-long, Mid-Elevation Proxy for PDSI in a Tree-Ring Record from Tropical North Queensland, Australia.

    NASA Astrophysics Data System (ADS)

    English, N. B.; Duffy, R.; Balanzategui, D.; Baker, P. J.; Evans, M. N.

    2014-12-01

    In far northern Queensland (FNQ) there are only sporadic coral and speleothem precipitation proxy records, and only one annually resolved, terrestrial record of rainfall that predates 1850 CE. Black kauri pine, Agathis atropurpurea, is a large conifer present in isolated stands near 1000 masl in the wet tropical dividing range of FNQ. Little is known about its phenology or responses to climate, although its presence near the elevational limit of the dividing range may hinder its ability to respond to increased temperature or decreased precipitation through elevational migration. We hypothesize that in this energy-limited forest, increased (decreased) solar radiation leads to increased (decreased) ring widths, and higher (lower) evapotranspiration rates produce increases (decreases) in the oxygen isotopic composition (δ18O) of the a-cellulose component of wood. To test this hypothesis, we collected over 60 cores from 21 large (dbh = 56 to 186 cm) A. atropurpurea trees from Spurgeon Peak National Park. The resulting tree-ring chronology extends from 2013 to 1438 CE and shows high average mean sensitivity (0.642) although expressed population signal drops off at 1650 CE as sample depth decreases. Comparison of the most recent 100 years of ring widths and direct climate observations show a significant positive relationship (r2 = 0.4, p < 0.01) to PDSI in December through March, coinciding with the austral rainy season associated with onset of the northern Australian Monsoon. Annualized δ18Oxygen (a-cellulose) maxima for 1983-2013 show strong and significant spatial positive relationships to Tmax and Pacific seasurface temperatures. Work to refine the interpretation of the data is onoing, but the resulting dataset may enable extension of the terrestrial climate record of north Queensland two centuries beyond current tree-ring proxies and historical observations.

  2. Last interglacial temperature seasonality reconstructed from tropical Atlantic corals

    NASA Astrophysics Data System (ADS)

    Felis, T.; Brocas, W.; Obert, J. C.; Gierz, P.; Lohmann, G.; Scholz, D.; Kölling, M.; Pfeiffer, M.; Scheffers, S. R.

    2016-12-01

    Reconstructions of last interglacial ( 127-117 ka) climate offer insights into the natural response and variability of the climate system during a period partially analogous to future climate change scenarios. However, the seasonal temperature changes of the tropical ocean are not well known for the last interglacial period. Here we present well preserved fossil corals (Diploria strigosa) recovered from the southern Caribbean island of Bonaire. These corals have been precisely dated by the 230Th/U-method to between 130 and 118 ka ago. Annual banding of the coral skeleton enabled construction of time windows of monthly resolved Sr/Ca temperature proxy records. Our eight coral records of up to 37 years in length cover a total of 105 years within the last interglacial period. From these coral records, sea surface temperature (SST) seasonality in the tropical North Atlantic Ocean is reconstructed. We detect similar to modern SST seasonality of 2.9 °C during the early (130 ka) and the late last interglacial (120 - 118 ka). However, within the mid-last interglacial, a significantly higher than modern SST seasonality of 4.9 °C (at 126 ka) and 4.1 °C (at 124 ka) is observed. These findings are supported by climate model simulations (COSMOS) and are consistent with the evolving amplitude of orbitally induced changes in seasonality of insolation throughout the last interglacial, irrespective of wider climatic instabilities that characterised this period, e.g. at 118 ka ago. The climate model simulations suggest that the SST seasonality changes documented in our last interglacial coral Sr/Ca records are representative of larger regions within the tropical North Atlantic. These simulations also suggest that the reconstructed SST seasonality increase during the mid-last interglacial is caused primarily by summer warming. Furthermore, a 124 ka old coral documents evidence of decadal SST variability in the tropical North Atlantic during the last interglacial, akin to that observed in modern instrumental records. Our results indicate that the dense theca walls of brain coral skeletons (e.g., Diploria strigosa) can provide robust seasonally resolved proxy records of tropical SST and reliable 230Th/U-ages for the last interglacial period.

  3. Corrigendum to "Three climatic cycles recorded in a loess-palaeosol sequence at Semlac (Romania)-Implications for dust accumulation in south-eastern Europe" [Quat. Sci. Rev. 154C (2016) 130-142

    NASA Astrophysics Data System (ADS)

    Zeeden, C.; Kels, H.; Hambach, U.; Schulte, P.; Protze, J.; Eckmeier, E.; Marković, S. B.; Klasen, N.; Lehmkuhl, F.

    2018-05-01

    In the article 'Three climatic cycles recorded in a loess-palaeosol sequence at Semlac (Romania)-Implications for dust accumulation in south-eastern Europe' (Zeeden et al., 2016) we employed rock magnetic and grain size proxy data in combination with OSL- and correlative age models. The data and dating is combined to discuss glacial-interglacial paleoclimate variability in an Eurasian context. This dataset was also interpreted regarding the dust source in the eastern Carpathian (Middle Danube) Basin.

  4. A 13000-year, high-resolution multi-proxy record of climate variability with episodes of enhanced atmospheric dust in Western Asia: Evidence from Neor peat complex in NW Iran

    NASA Astrophysics Data System (ADS)

    Sharifi, O.; Pourmand, A.; Canuel, E. A.; Peterson, L. C.

    2011-12-01

    The regional climate over West Asia, extending between Iran and the Arabian Peninsula to the eastern Mediterranean Sea, is governed by interactions between three major synoptic systems; mid-latitude Westerlies, the Siberian Anticyclone and the Indian Ocean Summer Monsoon. In recent years, a number of paleoclimate studies have drawn potential links between episodes of abrupt climate change during the Holocene, and the rise and fall of human civilizations across the "Fertile Crescent" of West Asia. High-resolution archives of climate variability from this region, however, are scarce, and at times contradicting. For example, while pollen and planktonic data from lakes in Turkey and Iran suggest that dry, continental conditions prevailed during the early-middle Holocene, oxygen isotope records indicate that relatively wet conditions dominated during this interval over West Asia. We present interannual to decadal multi-proxy records of climate variability from a peat complex in NW Iran to reconstruct changes in moisture and atmospheric dust content during the last 13000 years. Radiocarbon dating on 20 samples from a 775-cm peat core show a nearly constant rate of accumulation (1.7 mm yr-1, R2=0.99) since 13356 ± 116 cal yr B.P. Down-core X-ray fluorescence measurements of conservative lithogenic elements (e.g., Al, Zr, Ti) as well as redox-sensitive elements (e.g., Fe, K, Rb, Zn, Cu, and Co) at 2 mm intervals reveal several periods of elevated dust input to this region since the early Holocene. Down-core variations of total organic carbon and total nitrogen co-vary closely and are inversely correlated with conservative lithogenic elements (Al, Si, Ti), indicating a potential link between climate change and accumulation of organic carbon in the Neor peat mire. Major episodes of enhanced dust deposition (13000-12000, 11700-11200, 9200-8800, 7000-6000, 4200-3200, 2800-2200 and 1500-600 cal yr B.P) are in good agreement with other proxy records that document more arid climate in Asia and eastern Mediterranean Sea during these intervals. The relationship between periods of elevated dust input and the response of civilizations in the region, such as the Akkadian and Persian Empires, can also be inferred from variation of conservative lithogenic elements since 4200 cal yr B.P. Intensive dust deposition during 4200-3200 cal yr BP, for example, coincides with similar dry conditions documented by oxygen isotope and geochemical data from Lake Van and Tecer of Turkey, the geochemical data from the Gulf of Oman and oxygen isotope records from Soreq Cave in Israel. Several significant periodicities (e.g. 750, 900, 1550 and 3000 yr) observed from wavelet analysis of refractory elements correspond with the timing of internal climate feedbacks and/or solar variability as potential modulating mechanisms for abrupt climate change in West Asia during the Holocene.

  5. Paleoclimate Reconstruction of Guangxi in SW China during the Past 2000-Year: Stalagmite Records from Two Caves

    NASA Astrophysics Data System (ADS)

    Lien, W. Y.; Li, H. C.; Mii, H. S.

    2017-12-01

    Paleoclimate reconstructions help us to understand the role of the East Asian Summer Monsoon (EASM) on local precipitation and controlling factor of EASM variability, and to improve our climatic prediction. This study presents two stalagmite records from Jinlun Cave (23.553oN, 108.265oE) and Yilingyan Cave (23.041oN, 108.297oE) which are only 60 km apart in Guangxi Province, China. The 35-cm long stalagmite JL12 from Jinlun Cave and 10-cm long stalagmite YLY12 from Yilingyan Cave reveal 1500-year and 2000-year continuous growth respectively based on AMS 14C dating. Data points of the AMS 14C dates with the least dead carbon fraction (DCF) are used to build up the age model. Although dead carbons influence the 14C dating results, it is a feasible dating method for the stalagmites as 230Th/U dating on both stalagmites was not successful due to low U contents. A total of 1586 samples from JL12 and 948 samples from YLY12 have been done for stable isotopes analyses to serve as paleoclimate proxies. Comparison of the d18O records with the local rainfall records and the dry-wetness historic records shows the stalagmite d18O records as a rainfall proxy. The JL12 d18O record resembles the YLY12 d18O record in general, though some differences exist, which confirms the d18O records representing the local climate. The relatively lighter (lower) d18O values of the JL12 and YLY12 records during the Medieval Warm Period (MWP, AD900-1200) indicate stronger EASM. In the first phase of Little Ice Age (LIA), from AD1300 to AD1560, the d18O fluctuate drastically and the average during this period was lower, while the d18O was higher in the second phase of Little Ice Age (AD1560-AD1760), exhibiting a drier and stable climate in the second phase. Furthermore, the DCF varies through the stalagmite records, ascending during the LIA, descending during the MWP, which informs dry condition during the LIA and a moist climate in the MWP. Spectral analysis of the high-resolution d18O records reveal decadal variability of the local climates and the EASM influence.

  6. Millennial-scale climate variations in western Mediterranean during late Pleistocene-early Holocene: multi-proxy analyses from Padul peatbog (southern Iberian Peninsula)

    NASA Astrophysics Data System (ADS)

    Camuera, Jon; Jiménez-Moreno, Gonzalo; José Ramos-Román, María; García-Alix, Antonio; Jiménez-Espejo, Francisco; Toney, Jaime L.; Anderson, R. Scott; Kaufman, Darrell; Bright, Jordon; Sachse, Dirk

    2017-04-01

    Padul peatbog, located in southern Iberian Peninsula (western Mediterranean region) is a unique area for palaeoenvironmental studies due to its location, between arid and temperate climates. Previous studies showed that the Padul peatbog contains a continuous record of the last ca. 0.8-1 Ma, so it is an extraordinary site to identify glacial-interglacial phases as well as Heinrich and D-O events, linked to orbital- and suborbital-scale variations. In 2015, a new 42 m long core was taken from this area, providing an excellent sediment record probably for the last ca. 300,000 years. This study is focused on the paleoenvironmental and climatic reconstruction of the late Pleistocene and the early Holocene (ca. from 50,000 to 9,500 cal. yrs BP), using AMS 14C and AAR dating, high-resolution pollen analysis, lithology, continuous XRF-scanning, X-ray diffraction, magnetic susceptibility and organic geochemistry. These different proxies provide information not only about the regional environment change but also about local changes in the conditions of the Padul lake/peatbog due to variations in water temperature, pH or nutrients.

  7. The Paleoclimate Uncertainty Cascade: Tracking Proxy Errors Via Proxy System Models.

    NASA Astrophysics Data System (ADS)

    Emile-Geay, J.; Dee, S. G.; Evans, M. N.; Adkins, J. F.

    2014-12-01

    Paleoclimatic observations are, by nature, imperfect recorders of climate variables. Empirical approaches to their calibration are challenged by the presence of multiple sources of uncertainty, which may confound the interpretation of signals and the identifiability of the noise. In this talk, I will demonstrate the utility of proxy system models (PSMs, Evans et al, 2013, 10.1016/j.quascirev.2013.05.024) to quantify the impact of all known sources of uncertainty. PSMs explicitly encode the mechanistic knowledge of the physical, chemical, biological and geological processes from which paleoclimatic observations arise. PSMs may be divided into sensor, archive and observation components, all of which may conspire to obscure climate signals in actual paleo-observations. As an example, we couple a PSM for the δ18O of speleothem calcite to an isotope-enabled climate model (Dee et al, submitted) to analyze the potential of this measurement as a proxy for precipitation amount. A simple soil/karst model (Partin et al, 2013, 10.1130/G34718.1) is used as sensor model, while a hiatus-permitting chronological model (Haslett & Parnell, 2008, 10.1111/j.1467-9876.2008.00623.x) is used as part of the observation model. This subdivision allows us to explicitly model the transformation from precipitation amount to speleothem calcite δ18O as a multi-stage process via a physical and chemical sensor model, and a stochastic archive model. By illustrating the PSM's behavior within the context of the climate simulations, we show how estimates of climate variability may be affected by each submodel's transformation of the signal. By specifying idealized climate signals(periodic vs. episodic, slow vs. fast) to the PSM, we investigate how frequency and amplitude patterns are modulated by sensor and archive submodels. To the extent that the PSM and the climate models are representative of real world processes, then the results may help us more accurately interpret existing paleodata, characterize their uncertainties, and design sampling strategies that exploit their strengths while mitigating their weaknesses.

  8. Reconstructing coastal environmental condition in the eastern Norwegian Sea by means of Arctica islandica sclerochronological records

    NASA Astrophysics Data System (ADS)

    Trofimova, Tamara; Andersson, Carin

    2015-04-01

    Paleo archives are fundament in improving our knowledge of the natural climate variability. Established marine proxy records for the ocean, especially for high latitudes, are both sparsely distributed and are poorly resolved in time. The identification and development of new archives and proxies for studying key ocean processes at annual to sub-annual resolution that can extend the marine instrumental record is therefore a clear priority for marine climate science. The bivalve species Arctica islandica is a unique paleoclimatic archive with an exceptional longevity combined with high temporal resolution, due to accretion of annual growth increments. The aim of this study is to use sclerochronological records of A. islandica to extend instrumental hydrographic records and increase our understanding of a variability of a Norwegian Coastal Current (NCC). The NCC transports warm, low-salinity water northwards, which eventually plays role for the Arctic halocline. Moreover, previous investigations showed the connection of properties and variability of the NCC with catches of commercially valuable fishes. The knowledge of the variability of the NCC is also essential for possible future prediction climate conditions and fish stock variability in the region. In this study we use shells of Arctica islandica collected off the coast of Eggum (Lofoten, Norway). The material was obtained from the depth 5-10 m by dredging along the seabed and by means of scuba divers. We examine the growth patterns of living and subfossil shells. Ongoing work mainly focuses on the construction of a composite growth chronology based on increment-width time series. The results we will compare with existing time series of the environment and climatic parameters to determine the controlling factors and test the applicability of growth chronology in a climate reconstruction. Furthermore, we will perform geochemical analyses of the stable isotope composition (δ18O and δ13C) in shell carbonate to identify seasonal signals and reconstruct the surface water temperature on a sub-annual time-scale.

  9. A regime shift in the Sun-Climate connection with the end of the Medieval Climate Anomaly.

    PubMed

    Smirnov, D A; Breitenbach, S F M; Feulner, G; Lechleitner, F A; Prufer, K M; Baldini, J U L; Marwan, N; Kurths, J

    2017-09-11

    Understanding the influence of changes in solar activity on Earth's climate and distinguishing it from other forcings, such as volcanic activity, remains a major challenge for palaeoclimatology. This problem is best approached by investigating how these variables influenced past climate conditions as recorded in high precision paleoclimate archives. In particular, determining if the climate system response to these forcings changes through time is critical. Here we use the Wiener-Granger causality approach along with well-established cross-correlation analysis to investigate the causal relationship between solar activity, volcanic forcing, and climate as reflected in well-established Intertropical Convergence Zone (ITCZ) rainfall proxy records from Yok Balum Cave, southern Belize. Our analysis reveals a consistent influence of volcanic activity on regional Central American climate over the last two millennia. However, the coupling between solar variability and local climate varied with time, with a regime shift around 1000-1300 CE after which the solar-climate coupling weakened considerably.

  10. Holocene shifts of the southern westerlies across the South Atlantic

    NASA Astrophysics Data System (ADS)

    Voigt, Ines; Chiessi, Cristiano M.; Prange, Matthias; Mulitza, Stefan; Groeneveld, Jeroen; Varma, Vidya; Henrich, Ruediger

    2015-02-01

    The southern westerly winds (SWW) exert a crucial influence over the world ocean and climate. Nevertheless, a comprehensive understanding of the Holocene temporal and spatial evolution of the SWW remains a significant challenge due to the sparsity of high-resolution marine archives and appropriate SWW proxies. Here we present a north-south transect of high-resolution planktonic foraminiferal oxygen isotope records from the western South Atlantic. Our proxy records reveal Holocene migrations of the Brazil-Malvinas Confluence (BMC), a highly sensitive feature for changes in the position and strength of the northern portion of the SWW. Through the tight coupling of the BMC position to the large-scale wind field, the records allow a quantitative reconstruction of Holocene latitudinal displacements of the SWW across the South Atlantic. Our data reveal a gradual poleward movement of the SWW by about 1-1.5° from the early to the mid-Holocene. Afterward, variability in the SWW is dominated by millennial scale displacements on the order of 1° in latitude with no recognizable longer-term trend. These findings are confronted with results from a state-of-the-art transient Holocene climate simulation using a comprehensive coupled atmosphere-ocean general circulation model. Proxy-inferred and modeled SWW shifts compare qualitatively, but the model underestimates both orbitally forced multimillennial and internal millennial SWW variability by almost an order of magnitude. The underestimated natural variability implies a substantial uncertainty in model projections of future SWW shifts.

  11. Latest Holocene Climate Variability revealed by a high-resolution multiple Proxy Record off Lisbon (Portugal)

    NASA Astrophysics Data System (ADS)

    Abrantes, F.; Lebreiro, S.; Ferreira, A.; Gil, I.; Jonsdottir, H.; Rodrigues, T.; Kissel, C.; Grimalt, J.

    2003-04-01

    The North Atlantic Oscillation (NAO) is known to have a major influence on the wintertime climate of the Atlantic basin and surrounding countries, determining precipitation and wind conditions at mid-latitudes. A comparison of Hurrel's NAO index to the mean winter (January-March) discharge of the Iberian Tagus River reveals a good negative correlation to negative NAO, while the years of largest upwelling anomalies, as referred in the literature, appear to be in good agreement with positive NAO. On this basis, a better understanding of the long-term variability of the NAO and Atlantic climate variability can be gained from high-resolution climate records from the Lisbon area. Climate variability of the last 2,000 years is assessed through a multiple proxy study of sedimentary sequences recovered from the Tagus prodelta deposition center, off Lisbon (Western Iberia). Physical properties, XRF and magnetic properties from core logging, grain size, δ18O, TOC, CaCO3, total alkenones, n-alkanes, alkenone SST, diatoms, benthic and planktonic foraminiferal assemblage compositions and fluxes are the proxies employed. The age model for site D13902 is based on AMS C-14 dates from mollusc and planktonic foraminifera shells, the reservoir correction for which was obtained by dating 3 pre-bomb, mollusc shells from the study area. Preliminary results indicate a Little Ice Age (LIA - 1300 - 1600 AD) alkenone derived SSTs around 15 degC followed by a sharp and rapid increase towards 19 degC. In spite the strong variability observed for most records, this low temperature interval is marked by a general increase in organic carbon, total alkenone concentration, diatom and foraminiferal abundances, as well as an increase in the sediment fine fraction and XRF determined Fe content, pointing to important river input and higher productivity. The Medieval Warm Period (1080 - 1300 AD) is characterized by 17-18 degC SSTs, increased mean grain size, but lower magnetic susceptibility and Fe contents, also accompanied by low values for total alkenone, n-alkanes and organic carbon concentration as well as low diatom abundance which may reflect decreased runoff and productivity. Major peaks in magnetic susceptibility and grain size occur at both periods and are interpreted as the record of flood-like events that are likely to reflect times of primarily negative NAO.

  12. Evaluation of the Heshang Cave stalagmite calcium isotope composition as a paleohydrologic proxy by comparison with the instrumental precipitation record.

    PubMed

    Li, Xiuli; Cui, Xueping; He, Dong; Liao, Jin; Hu, Chaoyong

    2018-02-08

    With their merits of precise dating and sensitivity to climate changes, laminated stalagmites are an important terrestrial archive for reconstructions of paleohydrological changes. In particular, the Ca isotope composition (δ 44/42 Ca) of the Heshang Cave stalagmite has been documented to record a precipitation decrease during the 8.2 ka event in central China. As an extension, this study directly compares near-annual resolution δ 44/42 Ca data with an instrumental precipitation record to evaluate the fidelity of δ 44/42 Ca as a paleohydrologic proxy on annual to decade timescales. Over the period 1881-2001 AD, the δ 44/42 Ca values correlate significantly with both precipitation from a nearby weather station and the dryness/wetness index in the middle Yangtze River, with a stronger correlation on decadal smoothed data. These results clearly show that the δ 44/42 Ca ratio from stalagmites is an effective proxy for paleohydrological changes on a decadal timescale. More study is encouraged to refine understanding of stalagmite Ca isotope ratios and hydrological conditions and their application in paleohydrologic reconstructions.

  13. Alkenone and boron-based Pliocene pCO 2 records

    NASA Astrophysics Data System (ADS)

    Seki, Osamu; Foster, Gavin L.; Schmidt, Daniela N.; Mackensen, Andreas; Kawamura, Kimitaka; Pancost, Richard D.

    2010-03-01

    The Pliocene period is the most recent time when the Earth was globally significantly (˜ 3 °C) warmer than today. However, the existing pCO 2 data for the Pliocene are sparse and there is little agreement between the various techniques used to reconstruct palaeo- pCO 2. This disagreement, coupled with the general low temporal resolution of the published records, does not allow a robust assessment of the role of declining pCO 2 in the intensification of the Northern Hemisphere Glaciation (INHG) and a direct comparison to other proxy records are lacking. For the first time, we use a combination of foraminiferal ( δ11B) and organic biomarker (alkenone-derived carbon isotopes) proxies to determine the concentration of atmospheric CO 2 over the past 5 Ma. Both proxy records show that during the warm Pliocene pCO 2 was between 330 and 400 ppm, i.e. similar to today. The decrease to values similar to pre-industrial times (275-285 ppm) occurred between 3.2 Ma and 2.8 Ma — coincident with the INHG and affirming the link between global climate, the cryosphere and pCO 2.

  14. High-resolution multi-proxy reconstruction of Lake Ighiel (Western Carpathians, Romania): processes and controlling factors of lacustrine dynamics during the mid and late Holocene

    NASA Astrophysics Data System (ADS)

    Haliuc, Aritina; Veres, Daniel; Hubay, Katalin; Begy, Robert; Brauer, Achim; Hutchinson, Simon; Braun, Mihaly

    2016-04-01

    Concerns about current and prospective environmental change have increased the interest in past climate variability and its impact on the bio-hydro-atmosphere and human society. Acting as high-resolution terrestrial archives, lacustrine sediments are the result of the complex interaction between internal and external forcing and an important tool in efforts to resolve questions related to the palaeoclimatic and palaeoenvironmental conditions of the recent past. Here we discuss a new, high-resolution sedimentary record from the Romanian Carpathians (central-eastern Europe). Lake Ighiel (46° 10'50"N, 23° 22'00"E) is a small lake located in a mid-altitude mountain belt (Trascau Mountains) at an altitude of 924 m ( lake maximum depth 9 m; catchment area 487 ha). We employ detailed 210Pb and 14C dating coupled with high-resolution X-ray fluorescence scanning (μ-XRF) measurements, long-core sedimentary logging, environmental magnetic proxies (susceptibility, natural and induced remanences) in an attempt to trace the 6000 years evolution of lake-catchment system. More specifically, we discuss: i) the temporal evolution of the main sedimentation phases of the lake based on sedimentological, geochemical and magnetic proxies; ii) the amplitude and interplay of processes (natural and/or anthropogenic) controlling the depositional environment through time; iii) assess the contribution of each controlling factors and reconstruct the evolution of lacustrine system and palaeoclimate forcing using multivariate statistics. The sedimentary record can be divided into six phases based on alternating high and low detrital fluxes, oscillating lacustrine productivity and redox conditions. A series of detrital events (5200; 4800; 5400; 5250; 4500; 4050; 3800; 3500; 3250; 3050; 2650; 2350; 2250; 1400; 1100; 500; 100 cal yr BP) were identified by microfacies analyses and X-ray fluorescence scanning (μ-XRF) analysis. These events are reflected in most of the parameters and appear synchronous with climatically induced forcing such as increased regional precipitation and decreased total solar radiation. These changes are superimposed on clear anthropogenic derived contributions reflecting natural and mineral resource exploitation during the early metal ages, the Roman and Medieval periods, as well as during the recent period. The comparison of the our proxies with similarly resolved records from central-eastern Europe highlight the potential of Lake Ighiel as a record of palaeoclimatic and palaeohydrological conditions in a region still lacking high-resolution multi-proxy palaeoenvironmental archives. The authors acknowledge financial support from project PN-II-ID-PCE-2012-4-0530 "Millennial-scale geochemical records of anthropogenic impact and natural climate change in the Romanian Carpathians", contract nr. 15/02.09.2013.

  15. A new high-resolution sediment record from Lake Gościąż (central Poland)

    NASA Astrophysics Data System (ADS)

    Bonk, Alicja; Błaszkiewicz, Mirosław; Brauer, Achim; Brykała, Dariusz; Gierszewski, Piotr; Kramkowski, Mateusz; Plessen, Brigit; Schwab, Markus; Słowiński, Michał; Tjallingii, Rik

    2017-04-01

    The varved sediments from Lake Gościąż, located in the Vistula Valley in Central Poland, are an iconic record for palaeoclimate and palaeoenvironmental reconstruction (Goslar et al. 2000, Hajdas et al. 1995, Ralska-Jasiewiczowa et al. 1998). Recently, we obtained a set of new sediment cores from Lake Gościąż and established a 21 m long sediment profile. Except of the topmost part of the core, it is continuously laminated down to glacial sands. We aim at applying a comprehensive multi-proxy core analyses combined with monitoring of present-day sedimentation processes. Sediment investigations will include new methods that have been developed or advanced since the previous studies on the Lake Gościąż sediments including continuous micro-facies analyses, μXRF core scanning and tephrochronology. The main aims of our new project are a revision of the existing floating chronology and to synchronise the Lake Gościąż sediment record based on independent isochrones with other European varved lake records like, e.g. Lake Meerfelder Maar, in order to investigate in detail proxy responses to climate change and to decipher regional leads and lags in climate change. Here, we will present (1) the objectives of our new project on this key record of past climate and environmental change and, (2) preliminary results including magnetic susceptibility, μ-XRF core scanning and microfacies images. This study is a contribution to scientific project financed by the National Science Centre, Poland - No DEC-2015/19/B/ST10/03039.

  16. Quantitative use of Palaeo-Proxy Data in Global Circulation Models

    NASA Astrophysics Data System (ADS)

    Collins, M.

    2003-04-01

    It is arguably one of the ultimate aims of palaeo-modelling science to somehow "get the palaeo-proxy data into the model" i.e. to constrain the climate of the model the trajectory of the real climate recorded in the palaeo data. The traditional way of interfacing data with models is to use data assimilation. This presents a number of problems in the palaeo context as the data are more often representative of seasonal to annual or decadal climate and models have time steps of order minutes, hence the model increments are likely to be vanishingly small. Also, variational data assimilation schemes would require the adjoint of the coupled ocean-atmosphere model and the adjoint of the functions which translate model variables such as temperature and precipitation into the palaeo-proxies, both of which are hard to determine because of the high degree of non-linearity in the system and the wide range of space and time scales. An alternative is to add forward models of proxies to the model and run "many years" of simulation until an analog state is found which matches the palaeo data for each season, year, decade etc. Clearly "many years" might range from a few thousand years to almost infinity and depends on the number of degrees of freedom in the climate system and on the error characteristics of the palaeo data. The length of simulation required is probably beyond the supercomputer capacity of a single institution and hence an alternative is to use idle capacity of home and business personal computers - the climateprediction.net project.

  17. Extending isotopic fractionation in phytoplankton for Phanerozoic pCO2 reconstruction

    NASA Astrophysics Data System (ADS)

    Witkowski, C. R.; Agostini, S.; Weijers, J.; Schouten, S.; S Sinninghe Damsté, J.

    2017-12-01

    The atmospheric concentration of carbon dioxide (pCO2) is a keystone in many earth system dynamics, including the biosphere, carbon cycle, and climate. In order to better understand the impact of today's exceptional increases in pCO2 on the future, we look to secular trends in pCO2. Photosynthetic carbon isotopic fractionation (Ɛp), calculated from the difference between the stable carbon isotopic composition (δ13C) of environmental CO2 and biomass, has some of the lowest uncertainty in estimation among CO2 proxies. However, Ɛp is generally applied to species-specific compounds which have an evolution-limited record (e.g. alkenones limited ca. 50 Ma). To extend the use of Ɛp, we explore the general phytoplankton biomarker phytane. As the fossilized side-chain of chlorophyll, phytane is spatially and temporally ubiquitous, with the potential to record pCO2 back to the earliest photoautotrophs in the geologic record. To develop and validate its potential as a pCO2 proxy, we explored phytane in modern environments, in a multi-proxy case study, and in a Phanerozoic reconstruction. As a proof-of-concept, the δ13C of phytane was tested in modern environments at naturally-occurring CO2 vents in Japan and Italy, which showed clear fractionation over the steep CO2 gradient. This was then further tested in a multi-proxy assessment in DSDP site 467 that spans the last 15 Ma, looking at both well-established (i.e. alkenones) and potential (i.e. phytane, steranes, hopanes) pCO2 proxies; phytane represented the average δ13C for these biomarkers. Finally, the δ13C of phytane data over the Phanerozoic was compiled, showing agreement with literature reconstructions of pCO2. Current pCO2 reconstructions are derived from many different types of proxies, which can create incongruities and inconsistencies throughout time, making this single well-constrained proxy that ubiquitously spans the geologic record a useful addition to the palaeo-detective's toolbox.

  18. Development of Long Chain Alkyl Diol δD as a Paleohydrological Proxy

    NASA Astrophysics Data System (ADS)

    Neary, A.; Russell, J. M.; Cordero, D.

    2017-12-01

    Understanding past hydroclimate is important to better understand and prepare for future climate changes. Past hydrological change is often studied through δD of lipid biomarkers preserved in sediment. Long chain alkyl diols are lipid biomarkers that are widely distributed in lake and marine sediments. These compounds are produced by certain species of diatoms and algae (Eustigmatophytes). Diol δD is expected to record relative precipitation and evaporation, and other lake surface processes. This would be a valuable addition to the repertoire of organic compounds used for hydrologic reconstruction, such as leaf waxes which record precipitation. While long chain alkyl diols present an opportunity to expand the range of compounds available for compound specific isotope analysis, studies of diol δD are scarce. This study aims to compare diol and leaf wax δD records from Lake Tanganyika spanning approximately the past 20 kyrs in order to elucidate the controlling factors on diol δD values and evaluate the effectiveness of such a record as a paleohydrological proxy. If viable, diol δD records could be used to gain a deeper understanding of past climates. δD leaf wax records have been previously measured in Lake Tanganyika cores (Tierney et al., 2008). This study measures δD of long chain alkyl diols from the same cores in order to compare records. Our current measurements show significant deviations of the diol record from the leaf wax record at times when large magnitude changes in the leaf wax record are occurring, such as a less pronounced Younger Dryas and a more gradual decrease in δD values after Heinrich 1 than the sudden shift expressed by the leaf wax record. In addition to generating a diol δD record through time at Lake Tanganyika, we have also measured diol δD in surface sediments from several east African lakes in order to examine the potential for a proxy calibration. A positive correlation between diol and lake water δD has been observed, suggesting that lake water δD is the primary control while other environmental factors may also effect diol δD values.

  19. Rapid Late Holocene glacier fluctuations reconstructed from South Georgia lake sediments using novel analytical and numerical techniques

    NASA Astrophysics Data System (ADS)

    van der Bilt, Willem; Bakke, Jostein; Werner, Johannes; Paasche, Øyvind; Rosqvist, Gunhild

    2016-04-01

    The collapse of ice shelves, rapidly retreating glaciers and a dramatic recent temperature increase show that Southern Ocean climate is rapidly shifting. Also, instrumental and modelling data demonstrate transient interactions between oceanic and atmospheric forcings as well as climatic teleconnections with lower-latitude regions. Yet beyond the instrumental period, a lack of proxy climate timeseries impedes our understanding of Southern Ocean climate. Also, available records often lack the resolution and chronological control required to resolve rapid climate shifts like those observed at present. Alpine glaciers are found on most Southern Ocean islands and quickly respond to shifts in climate through changes in mass balance. Attendant changes in glacier size drive variations in the production of rock flour, the suspended product of glacial erosion. This climate response may be captured by downstream distal glacier-fed lakes, continuously recording glacier history. Sediment records from such lakes are considered prime sources for paleoclimate reconstructions. Here, we present the first reconstruction of Late Holocene glacier variability from the island of South Georgia. Using a toolbox of advanced physical, geochemical (XRF) and magnetic proxies, in combination with state-of-the-art numerical techniques, we fingerprinted a glacier signal from glacier-fed lake sediments. This lacustrine sediment signal was subsequently calibrated against mapped glacier extent with the help of geomorphological moraine evidence and remote sensing techniques. The outlined approach enabled us to robustly resolve variations of a complex glacier at sub-centennial timescales, while constraining the sedimentological imprint of other geomorphic catchment processes. From a paleoclimate perspective, our reconstruction reveals a dynamic Late Holocene climate, modulated by long-term shifts in regional circulation patterns. We also find evidence for rapid medieval glacier retreat as well as a synchronous bi-polar Little Ice Age (LIA). In conclusion, our work shows the potential of novel analytical and numerical tools to improve the robustness and resolution of lake sediment-based paleoclimate reconstructions beyond the current state-of-the-art.

  20. Holocene evolution of aquatic bioactivity and terrestrial erosion inferred from Skorarvatn, Vestfirðir, Iceland: Where is the Little Ice Age?

    NASA Astrophysics Data System (ADS)

    Harning, D.; Geirsdottir, A.; Miller, G. H.

    2016-12-01

    Icelandic lake sediment is well suited to provide high-resolution, well-dated continuous archives of North Atlantic climate variability. We provide new insight into the Holocene climate evolution of Vestfirðir, NW Iceland, from a 10.3 ka multi-proxy lake sediment record from non-glacial lake Skorarvatn. Age control is derived from a combination of tephrochronology and 14C-dated macrofossils. Sediment samples were analyzed for both physical (MS, density) and biological (TC, TN, δ13C, δ15N, C/N, BSi) climate proxies, providing a sub-centennial record of aquatic bioactivity and terrestrial landscape stability, and hence, summer temperature. The lake basin was ice free by at least 10.3 ka yet the waning Icelandic Ice Sheet persisted in the catchment until 9.3 ka. The local Holocene Thermal Maximum (HTM), inferred from maximum aquatic bioactivity, spans 8.9 to 7.2 ka but was interrupted by significant cooling at 8.2 ka. In accordance with other Icelandic climate records documenting progressively cooler summers following the HTM, our record reveals reduced aquatic productivity and elevated terrestrial erosion toward the present. Superimposed on this 1st order trend are abrupt episodes of cooling, inferred from low aquatic bioactivity and/or enhanced landscape instability, at 6.4, 4.2, 3, 2.5 and 1.5 ka. Surprisingly, there is no clear indication of the Little Ice Age (LIA) in our record despite evidence for the local ice cap, Drangajökull, attaining maximum areal coverage at this time. Persistently low temperatures inferred from reduced aquatic productivity plateau at 2 ka whereas increasing terrestrial erosion ceases at 1 ka. Lack of a catchment erosion signal during the LIA may be the result of depleted catchment soils and/or perennially frozen ground preventing the mobilization of soil and vegetation. With the exception of the LIA, Skorarvatn's qualitative summer temperature record corresponds closely to summer sea surface temperature and sea ice records on the North Iceland Shelf, supporting previous evidence that the North Atlantic imparts a significant impact of the state of Iceland's terrestrial climate.

  1. New Proxies for Climate change parameters: Foram Culturing and Pteropod Potentials

    NASA Astrophysics Data System (ADS)

    Keul, N.; Schneider, R. R.; Langer, G.; Bijma, J.; Peijnenburg, K. T.

    2017-12-01

    Global climate change is one of the most pressing challenges our society is currently facing and strong efforts are made to simulate future climate conditions. To better validate models that aim at predicting global temperature rise as a consequence of anthropogenic CO2 emissions, accurate atmospheric paleo-CO2 estimates in combination with temperature reconstructions are necessary. Consequently there is a strong need for reliable proxies, allowing reconstruction of climate change. With respect to foraminifera a combination of laboratory experiments and modeling is presented, to show the isolated impact of the different parameters of the carbonate system on trace element composition of their shells. We focus on U/Ca and Sr/Ca ratios, which have recently been established as new proxies reflecting changes in the carbonate system of seawater. While U/Ca correlates with carbonate ion concentration, Sr/Ca is primarily influenced by DIC. The latter is particularly promising since the impact of additional parameters is relatively well constrained and hence, Sr/Ca ratios may allow higher accuracy in carbonate system parameter reconstructions. Furthermore, our results will be discussed on how to advance our knowledge about foraminiferal biomineralization. Pteropods, among the first responders to ocean acidification and warming, are explored as carriers of marine paleoenvironmental signals. In order to characterize the stable isotopic composition of aragonitic pteropod shells and their variation in response to climate change parameters, pteropod shells were collected along a latitudinal transect in the Atlantic Ocean. By comparing shell oxygen isotopic composition to depth changes of the calculated aragonite equilibrium oxygen isotope values, we infer shallow calcification depths for Heliconoides inflatus (75 m), rendering this species a good potential proxy carrier for past variations in surface ocean properties. Furthermore, we demonstrate that indeed, pteropod shells are excellent recorders of climate change, as carbonate ion and temperature in the upper water column have dominant influences on pteropod shell carbon and oxygen isotopic composition. These results, in combination with a wide distribution and high abundance, make H. inflatus, a promising new proxy carrier in paleoceanography.

  2. Climatic and anthropogenic controls on Mississippi River floods: a multi-proxy palaeoflood approach

    NASA Astrophysics Data System (ADS)

    Munoz, S. E.; Therrell, M. D.; Remo, J. W.; Giosan, L.; Donnelly, J. P.

    2017-12-01

    Over the last century, many of the world's major rivers have been modified for the purposes of flood mitigation, power generation, and commercial navigation. Engineering modifications to the Mississippi River system have altered the river's sediment budget and channel morphology, but the influence of these modifications on flood risk is debated. Detecting and attributing changes in river discharge is challenging because instrumental streamflow records are often too short to evaluate the range of natural hydrological variability prior to the establishment of flood mitigation infrastructure. Here we show that multi-decadal trends of flood risk on the lower Mississippi River are strongly modulated by dynamical modes of climate variability, particularly the El Niño-Southern Oscillation (ENSO) and the Atlantic Multidecadal Oscillation (AMO), but that artificial channelization has greatly amplified flood magnitudes over the last century. Our results, based on a multi-proxy reconstruction of flood frequency and magnitude spanning the last five hundred years that combines sedimentary, tree-ring, and instrumental records, reveal that the magnitude of the 100-year flood has increased by 20% over the period of record, with 75% of this increase attributed to river engineering. We conclude that the interaction of human alterations to the Mississippi River system with dynamical modes of climate variability has elevated the current flood risk to levels that are unprecedented within the last five centuries.

  3. Evidence of multidecadal climate variability and the Atlantic Multidecadal Oscillation from a Gulf of Mexico sea-surface temperature-proxy record

    USGS Publications Warehouse

    Poore, R.Z.; DeLong, K.L.; Richey, J.N.; Quinn, T.M.

    2009-01-01

    A comparison of a Mg/Ca-based sea-surface temperature (SST)-anomaly record from the northern Gulf of Mexico, a calculated index of variability in observed North Atlantic SST known as the Atlantic Multidecadal Oscillation (AMO), and a tree-ring reconstruction of the AMO contain similar patterns of variation over the last 110 years. Thus, the multidecadal variability observed in the instrumental record is present in the tree-ring and Mg/Ca proxy data. Frequency analysis of the Gulf of Mexico SST record and the tree-ring AMO reconstruction from 1550 to 1990 found similar multidecadal-scale periodicities (???30-60 years). This multidecadal periodicity is about half the observed (60-80 years) variability identified in the AMO for the 20th century. The historical records of hurricane landfalls reveal increased landfalls in the Gulf Coast region during time intervals when the AMO index is positive (warmer SST), and decreased landfalls when the AMO index is negative (cooler SST). Thus, we conclude that alternating intervals of high and low hurricane landfall occurrences may continue on multidecadal timescales along the northern Gulf Coast. However, given the short length of the instrumental record, the actual frequency and stability of the AMO are uncertain, and additional AMO proxy records are needed to establish the character of multidecadal-scale SST variability in the North Atlantic. ?? 2009 US Government.

  4. The evolution of the North Atlantic Oscillation for the last 700 years inferred from D/H isotopes in the sedimentary record of Lake Azul (Azores archipelago, Portugal).

    NASA Astrophysics Data System (ADS)

    Rubio de Ingles, Maria Jesus; Shanahan, Timothy M.; Sáez, Alberto; José Pueyo, Juan; Raposeiro, Pedro M.; Gonçalves, Vitor M.; Hernández, Armand; Trigo, Ricardo; Sánchez López, Guiomar; Francus, Pierre; Giralt, Santiago

    2015-04-01

    The δD plant leaf wax variations provide insights on precipitation and evaporation evolution through time. This proxy has been used to reconstruct the temporal evolution of the North Atlantic Oscillation (NAO) climate mode since this mode rules most of the climate variability in the central North Atlantic area. A total lipid extraction preparation and the correspondent analyses in the IRMS have been done for 100 samples from the uppermost 1.5 m of the sedimentary infill of Lake Azul (Azores archipelago, Portugal). According to the chronological model, established by 210Pb profile and 4 AMS 14C dates, this record contains the environmental history of the last 730 years. The reconstructed precipitation variations obtained from D/H isotope values, suggest that this area has suffered significant changes in its distribution and intensity rainfall patterns through time. The end of the Medieval Climate Anomaly (MCA, 1100- 1300 AD) is characterized by a progressive enrichmentof D/H isotope values which meant decreasing arid conditions. These rainfalls' increase might be interpreted by a shift from positive to negative dominance of the NAO. The Little Ice Age (LIA, 1300 - 1850 AD) was characterized by two humid periods (1300- 1550 AD and 1650 - 1850 AD) separated by a relatively dry period. These precipitation oscillations are clearly visible by marked changes in the D/H isotope values. The LIA was followed by the persistence of the positive NAO mode, exhibited by the depletion of the D/H isotope signal, which indicated an overall decrease of the precipitation in the central North Atlantic area. Surprisingly, the D/H of the last 100 years, characterized by the present global warming and a persistent positive NAO mode, display large fluctuations most possibly linked to an enhancement of the storminess which is in concordance with the data fluctuations observed in the instrumental record for the last 80 years in the archipelago. This climatic evolution is in accordance with other NAO records of the North Atlantic region (Trouet et al., 2012) highlighting the validity of the D/H isotopes as precipitation proxy. Trouet V., Scourse J.D., Raible C.C., 2012. North Atlantic storminess and Atlantic Meridional Overturning Circulation during the last Millenium: Reconciling contradictory proxy record of NAO variability. Global and planetary change.

  5. Models of Solar Irradiance Variability and the Instrumental Temperature Record

    NASA Technical Reports Server (NTRS)

    Marcus, S. L.; Ghil, M.; Ide, K.

    1998-01-01

    The effects of decade-to-century (Dec-Cen) variations in total solar irradiance (TSI) on global mean surface temperature Ts during the pre-Pinatubo instrumental era (1854-1991) are studied by using two different proxies for TSI and a simplified version of the IPCC climate model.

  6. Measuring Holocene Indian Summer Monsoon Precipitation through Lake Sedimentary Proxies, Eastern Tibet

    NASA Astrophysics Data System (ADS)

    Perello, M. M.; Bird, B. W.; Lei, Y.; Polissar, P. J.; Thompson, L. G.; Yao, T.

    2017-12-01

    The Tibetan Plateau is the headwaters of several major river systems in South Asia, which serve as essential water resources for more than 40% of the world's population. The majority of regional precipitation that sustains these water resources is from the Indian summer monsoon (ISM), which can experience considerably variability in response to local and remote forcings and teleconnections. Despite the ISM's importance, its sensitivity to long term and abrupt changes in climatic boundary conditions is not well established with the modern instrumental record or the available body of paleoclimate data. Here, we present results from an ongoing study that utilizes lake sediment records to provide a longer record of relative levels of precipitation and lake level during the monsoon season. The sediments cores used in this study were collected from five lakes along an east-west transect in the Eastern Tibetan Plateau (87-95°E). Using these records, we assess temporal and spatial variability in the intensity of the ISM throughout the Holocene on decadal frequencies. Multiple proxies, including sedimentology, grain size, geochemistry, terrestrial and aquatic leaf wax isotopes, and diatom community assemblages, are used to assess paleo-precipitation and lake level. Preliminary records from our lakes indicate regional trends in monsoon strength, with higher lake levels in the Early Holocene, but with greater variability in the Late Holocene than in other regional paleoclimate records. We have also observed weak responses in our lakes to the Late Holocene events, the Medieval Climate Anomaly and the Little Ice Age. These paleoclimate reconstructions furthers our understanding of strong versus weak monsoon intensities and can be incorporated in climate models for predicting future monsoon conditions.

  7. A multi-proxy climatic record from the central Tengger Desert, southern Mongolian Plateau: Implications for the aridification of inner Asia since the late Pliocene

    NASA Astrophysics Data System (ADS)

    Li, Zaijun; Wang, Fei; Wang, Xin; Li, Baofeng; Chen, Fahu

    2018-07-01

    Aridification of the Asian interior is one of the most significant paleoenvironmental events during the Cenozoic. However, continuous paleoclimatic records from desert interiors are scarce because of the lack of outcrops, erosion and discontinuous sediment accumulation. Here we report a multi-proxy climatic record for the last ∼3.55 Ma from paleomagnetically-dated drilling core WEDP01 from the central Tengger Desert, which is one of the most important sediment source areas for Northern Hemisphere atmospheric dust and the Chinese Loess Plateau. Analysis of grain-size components indicates the onset of continuous dust deposition at 2.6 Ma and desert formation at 0.9 Ma. In addition, analysis of major element content and sediment color reveals a stepwise process of increasing aridification and significant cooling in the Tengger Desert area. Simultaneous aridification events in northwest China during the Quaternary were probably induced by the uplift of the Tibetan Plateau. Northern Hemisphere glaciation may have been another important factor for Asian aridification; meanwhile, the increased dust emission from sources such as the Tengger Desert may provide a positive feedback mechanism for global cooling.

  8. Inverse stochastic-dynamic models for high-resolution Greenland ice core records

    NASA Astrophysics Data System (ADS)

    Boers, Niklas; Chekroun, Mickael D.; Liu, Honghu; Kondrashov, Dmitri; Rousseau, Denis-Didier; Svensson, Anders; Bigler, Matthias; Ghil, Michael

    2017-12-01

    Proxy records from Greenland ice cores have been studied for several decades, yet many open questions remain regarding the climate variability encoded therein. Here, we use a Bayesian framework for inferring inverse, stochastic-dynamic models from δ18O and dust records of unprecedented, subdecadal temporal resolution. The records stem from the North Greenland Ice Core Project (NGRIP), and we focus on the time interval 59-22 ka b2k. Our model reproduces the dynamical characteristics of both the δ18O and dust proxy records, including the millennial-scale Dansgaard-Oeschger variability, as well as statistical properties such as probability density functions, waiting times and power spectra, with no need for any external forcing. The crucial ingredients for capturing these properties are (i) high-resolution training data, (ii) cubic drift terms, (iii) nonlinear coupling terms between the δ18O and dust time series, and (iv) non-Markovian contributions that represent short-term memory effects.

  9. Modelling the enigmatic Late Pliocene Glacial Event - Marine Isotope Stage M2

    USGS Publications Warehouse

    Dolan, Aisling M.; Haywood, Alan M.; Hunter, Stephen J.; Tindall, Julia C.; Dowsett, Harry J.; Hill, Daniel J.; Pickering, Steven J.

    2015-01-01

    The Pliocene Epoch (5.2 to 2.58 Ma) has often been targeted to investigate the nature of warm climates. However, climate records for the Pliocene exhibit significant variability and show intervals that apparently experienced a cooler than modern climate. Marine Isotope Stage (MIS) M2 (~ 3.3 Ma) is a globally recognisable cooling event that disturbs an otherwise relatively (compared to present-day) warm background climate state. It remains unclear whether this event corresponds to significant ice sheet build-up in the Northern and Southern Hemisphere. Estimates of sea level for this interval vary, and range from modern values to estimates of 65 m sea level fall with respect to present day. Here we implement plausible M2 ice sheet configurations into a coupled atmosphere–ocean climate model to test the hypothesis that larger-than-modern ice sheet configurations may have existed at M2. Climate model results are compared with proxy climate data available for M2 to assess the plausibility of each ice sheet configuration. Whilst the outcomes of our data/model comparisons are not in all cases straight forward to interpret, there is little indication that results from model simulations in which significant ice masses have been prescribed in the Northern Hemisphere are incompatible with proxy data from the North Atlantic, Northeast Arctic Russia, North Africa and the Southern Ocean. Therefore, our model results do not preclude the possibility of the existence of larger ice masses during M2 in the Northern or Southern Hemisphere. Specifically they are not able to discount the possibility of significant ice masses in the Northern Hemisphere during the M2 event, consistent with a global sea-level fall of between 40 m and 60 m. This study highlights the general need for more focused and coordinated data generation in the future to improve the coverage and consistency in proxy records for M2, which will allow these and future M2 sensitivity tests to be interrogated further.

  10. ENSO-Based Index Insurance: Approach and Peru Flood Risk Management Application

    NASA Astrophysics Data System (ADS)

    Khalil, A. F.; Kwon, H.; Lall, U.; Miranda, M. J.; Skees, J. R.

    2006-12-01

    Index insurance has recently been advocated as a useful risk transfer tool for disaster management situations where rapid fiscal relief is desirable, and where estimating insured losses may be difficult, time consuming, or subject to manipulation and falsification. For climate related hazards, a rainfall or temperature index may be proposed. However, rainfall may be highly spatially variable relative to the gauge network, and in many locations data are inadequate to develop an index due to short time-series and the spatial dispersion of stations. In such cases, it may be helpful to consider a climate proxy index as a regional rainfall index. This is particularly useful if a long record is available for the climate index through an independent source and it is well correlated with the regional rainfall hazard. Here, ENSO related climate indices are explored for use as a proxy to extreme rainfall in one of the departments of Peru -- Piura. The ENSO index insurance product may be purchased by banks or microfinance institutions (MFIs) to aid agricultural damage relief in Peru. Crop losses in the region are highly correlated with floods, but are difficult to assess directly. Beyond agriculture, many other sectors suffer as well. Basic infrastructure is destroyed during the most severe events. This disrupts trade for many micro-enterprises. The reliability and quality of the local rainfall data is variable. Averaging the financial risk across the region is desirable. Some issues with the implementation of the proxy ENSO index are identified and discussed. Specifically, we explore (a) the reliability of the index at different levels of probability of exceedance of maximum seasonal rainfall; (b) the potential for clustering of payoffs; (c) the potential that the index could be predicted with some lead time prior to the flood season; and (d) evidence for climate change or non-stationarity in the flood exceedance probability from the long ENSO record. Finally, prospects for the global application of an ENSO based index insurance product are discussed.

  11. The variability of the North Atlantic Oscillation throughout the Holocene

    NASA Astrophysics Data System (ADS)

    Wassenburg, Jasper; Dietrich, Stephan; Fietzke, Jan; Fohlmeister, Jens; Wei, Wei; Jochum, Klaus Peter; Scholz, Denis; Richter, Detlev; Sabaoui, Abdellah; Lohmann, Gerrit; Andreae, Meinrat; Immenhauser, Adrian

    2013-04-01

    The North Atlantic Oscillation (NAO) has a major impact on Northern Hemisphere winter climate. Trouet et al. (2009) reconstructed the NAO for the last millennium based on a Moroccan tree ring PDSI (Palmer Drought Severity Index) reconstruction and a Scottish speleothem record. More recently, Olsen et al. (2012) extended the NAO record back to 5.2 ka BP based on a lake record from West Greenland. It is, however, well known that the NAO exhibits non-stationary behavior and the use of a single location for a NAO reconstruction may not capture the complete variability. In addition, the imprint of the NAO on European rainfall patterns in the Early and Mid Holocene on (multi-) centennial timescales is still largely unknown. This is related to difficulties in establishing robust correlations between different proxy records and the fact that proxies may not only reflect winter conditions (i.e., the season when the NAO has the largest influence). Here we present a precisely dated, high resolution speleothem δ18O record from NW Morocco covering the complete Early and Mid Holocene. Carbon and oxygen isotopes were measured at a resolution of 15 years. A multi-proxy approach provides solid evidence that speleothem δ18O values reflect changes in past rainfall intensity. The Moroccan record shows a significant correlation with a speleothem rainfall record from western Germany, which covers the entire Holocene (Fohlmeister et al., 2012). The combination with the extended speleothem record from Scotland, speleothem records from north Italy and the NAO reconstruction from West Greenland (Olsen et al., 2012) allows us to study the variability of the NAO during the entire Holocene. The relation between West German and Northwest Moroccan rainfall has not been stationary, which is evident from the changing signs of correlation. The Early Holocene is characterized by a positive correlation, which changes between 9 and 8 ka BP into a negative correlation. Simulations with the state-of-the-art earth system model COSMOS for the Early and Mid Holocene (Wei and Lohmann, 2012) indicate that this change in the NAO teleconnection is related to large-scale circulation changes due to the ice sheet configuration and deglaciation. References: Fohlmeister, J., Schroder-Ritzrau, A., Scholz, D., Riechelmann, D.F.C., Mudelsee, M., Wackerbarth, A., Gerdes, A., Riechelmann, S., Immenhauser, A., Richter, D.K., Mangini, A., 2012. Bunker Cave stalagmites: an archive for central European Holocene climate variability. Climate of the Past 8, 1751-1764. Olsen, J., Anderson, J.N., Knudsen, M.F., 2012. Variability of the North Atlantic Oscillation over the past 5,200 years. Nature Geoscience DOI:10.1038/NGEO1589, Trouet, V., Esper, J., Graham, N.E., Baker, A., Scourse, J.D., Frank, D.C., 2009. Persistent Positive North Atlantic Oscillation Mode Dominated the Medieval Climate Anomaly. Science 324, 78-80. Wei, W., Lohmann, G., 2012. Simulated Atlantic Multidecadal Oscillation during the Holocene. Journal of Climate 6989-7002.

  12. Holocene Climate, Fire and Vegetation Change Inferred from Lacustrine Proxies in the Tropical Andes, Laguna Yanacocha, SE Peru

    NASA Astrophysics Data System (ADS)

    Axford, Y.; Isaacson, M.; Matthews-Bird, F.; Schellinger, G. C.; Carrio, C. L.; Kelly, M. A.; Lowell, T. V.; Beal, S. A., Jr.; Stroup, J. S.; Tapia, P. M.

    2016-12-01

    We present a 12,000-year long paleoenvironmental reconstruction from a small high-elevation lake in southeastern Peru. Climate and environmental change are inferred from chironomid species assemblages, charcoal abundance, size and morphology, and the abundance of some important pollen and spore types (Poaceae, Asteraceae, Isoetes). We employ a new chironomid training set developed for tropical South America (Matthews-Bird et al. 2016) to interpret shifts in chironomid assemblages. The sedimentary record from Yanacocha was first discussed by Beal et al. (2014), who reconstructed Hg deposition and measured metals, biogenic silica and loss-on-ignition through the Holocene. Additional downcore proxies are presented by Stroup et al. (this meeting). Yanacocha sits at 4910 m asl and less than 2 km from Quelccaya Ice Cap (QIC), but the lake's watershed has been topographically isolated from glacier meltwater since 12.3 ka. We compare our inferences from biological proxies with independent constraints on paleoclimate derived from published reconstructions of QIC fluctuations. Previous studies found that temperature was the primary driver of late Holocene fluctuations of QIC (e.g., Stroup et al. 2014), but records from the broader region indicate the Holocene also saw major changes in hydroclimate. Most modern precipitation at Yanacocha derives from the Amazon Basin to the east, and El Niño years are associated with drier conditions. Holocene sediments at Yanacocha likely thus record both changes in temperature and hydroclimate. Vegetation was sparse and no charcoal was preserved prior to 11.7 ka, whereas the early Holocene saw the highest overall pollen concentrations of the entire record and the onset of charcoal preservation. An increase in charcoal abundance, decrease in pollen concentrations, and shifts in vegetation and chironomid assemblages at Yanacocha suggest drier conditions from 9 to 3.5 ka, consistent with widespread regional evidence for early to middle Holocene aridity. One sample at 8.4 ka contains uniquely abundant charcoal, Poaceae and Asteraceae, possibly recording a brief (<500 yr) and uniquely dramatic dry event at that time. Shifts in chironomid assemblages, including a major shift centered on 1000 AD, indicate a variable climate through the late Holocene.

  13. New Martian climate constraints from radar reflectivity within the north polar layered deposits

    NASA Astrophysics Data System (ADS)

    Lalich, D. E.; Holt, J. W.

    2017-01-01

    The north polar layered deposits (NPLD) of Mars represent a global climate record reaching back millions of years, potentially recorded in visible layers and radar reflectors. However, little is known of the specific link between those layers, reflectors, and the global climate. To test the hypothesis that reflectors are caused by thick and indurated layers known as "marker beds," the reflectivity of three reflectors was measured, mapped, and compared to a reflectivity model. The measured reflectivities match the model and show a strong sensitivity to layer thickness, implying that radar reflectivity may be used as a proxy for short-term accumulation patterns and that regional climate plays a strong role in layer thickness variations. Comparisons to an orbitally forced NPLD accumulation model show a strong correlation with predicted marker bed formation, but dust content is higher than expected, implying a stronger role for dust in Mars polar climate than previously thought.

  14. North Atlantic variability and its links to European climate over the last 3000 years.

    PubMed

    Moffa-Sánchez, Paola; Hall, Ian R

    2017-11-23

    The subpolar North Atlantic is a key location for the Earth's climate system. In the Labrador Sea, intense winter air-sea heat exchange drives the formation of deep waters and the surface circulation of warm waters around the subpolar gyre. This process therefore has the ability to modulate the oceanic northward heat transport. Recent studies reveal decadal variability in the formation of Labrador Sea Water. Yet, crucially, its longer-term history and links with European climate remain limited. Here we present new decadally resolved marine proxy reconstructions, which suggest weakened Labrador Sea Water formation and gyre strength with similar timing to the centennial cold periods recorded in terrestrial climate archives and historical records over the last 3000 years. These new data support that subpolar North Atlantic circulation changes, likely forced by increased southward flow of Arctic waters, contributed to modulating the climate of Europe with important societal impacts as revealed in European history.

  15. Monsoon extremes and society over the past millennium on mainland Southeast Asia

    NASA Astrophysics Data System (ADS)

    Buckley, Brendan M.; Fletcher, Roland; Wang, Shi-Yu Simon; Zottoli, Brian; Pottier, Christophe

    2014-07-01

    The early 21st century has seen vigorous scientific interest in the Asian monsoon and significant development of paleo-proxies of monsoon strength. These include the Monsoon Asian Drought Atlas - a 700-year, gridded reconstruction of hydroclimate derived from 327 tree ring records - and several long speleothem records from China and India. Similar progress has been made on the study of monsoon climate dynamics through re-analysis data products and General Circulation Model diagnostics. The story has emerged of a variable monsoon over the latter Holocene, with extended droughts and anomalously wet episodes that occasionally and profoundly influenced the course of human history. We focus on Southeast Asia where an anomalous period of unstable climate coincided with the demise of the capital of the Khmer Empire at Angkor between the 14th and the 16th centuries, and we suggest that protracted periods of drought and deluge rain events, the latter of which damaged Angkor's extensive water management systems, may have been a significant factor in the subsequent transfer of the political capital away from Angkor. The late 16th and early 17th century experienced climate instability and the collapse of the Ming Dynasty in China under a period of drought, while Tonkin experienced floods and droughts throughout the 17th century. The 18th century was a period of great turmoil across Southeast Asia, when all of the region's polities saw great unrest and rapid realignment during one of the most extended periods of drought of the past millennium. New paleo-proxy records and the incorporation of historical documentation will improve future analyses of the interaction between climate extremes, social behavior and the collapse or disruption of regional societies, a subject of increasing concern given the uncertainties surrounding projections for future climate.

  16. An east-west climate see-saw in the Mediterranean during the last 2.6 ka: evidence and mechanisms

    NASA Astrophysics Data System (ADS)

    Roberts, C.; Moreno-Caballud, A.; Valero-Garces, B. L.; Luterbacher, J.; Xoplaki, E.; Allcock, S. L.

    2012-12-01

    Global precipitation anomalies during the Common Era show a spatial coherency that appears to be about an order of magnitude lower (i.e. smaller) than for temperature changes, as some areas became wetter while others experienced drought (Seager et al., 2007, Quat. Sci. Rev. 26, 2322-36). The Mediterranean basin (10°W-40°E; 30°-45°N) is influenced by some of the main mechanisms acting upon the global climate system and its regional water resources are sensitive to hydro-climatic variations. Reconstructing the timing, intensity, and patterns of hydrological variability in the Mediterranean is important for testing spatial-temporal coherency in palaeo-precipitation, and for understanding underlying climate forcing mechanisms. The region offers a broad spectrum of documentary information and natural archives which allow high-resolution climate reconstructions (Luterbacher et al., 2012, In: Lionello et al. (eds) The Mediterranean Climate: from past to future. Elsevier, pp. 87-185). During the period of instrumental records, the NAO has strongly influenced inter-annual precipitation variations in the western Mediterranean, while parts of the eastern basin have shown an anti-phase relationship in precipitation and atmospheric pressure. A wide array of proxy-climate data from Iberia and Morocco indicate overall drier conditions during the Medieval Climate Anomaly (MCA) and a generally wetter climate in the Little Ice Age (LIA)(Moreno et al., 2012, Quat. Sci. Rev. 43, 16-32). This pattern is consistent with strong NAO forcing of western Mediterranean climate over the last 1.1 ka (Trouet et al., 2009; Science 324, 78-80). High-resolution palaeolimnological evidence from central Anatolia exhibit an opposite pattern, implying that an east-west climate see-saw operated in the Mediterranean basin during the LIA and MCA (Roberts et al., 2012; Glob. Planet. Change 84-85, 23-34). However, the strongest evidence for higher (lower) winter season precipitation during the MCA (LIA) does not come from the southeast sector of the Mediterranean basin, as would be expected from the pattern of NAO forcing seen during the instrumental period. Prior to the MCA, many proxy-climate records show changes of significantly larger amplitude than during the last millennium, notably during and after the Roman period. However, absolute chronologies become less precise with dating errors of ±>50 yr (Dermody et al., 2012; Clim. Past 8, 637-651), making correlations less robust. Before 2.6 ka BP, i.e. coincident with the northern European grenzhorizont, proxy-climate records from the Mediterranean show changes which imply a significant shift in atmospheric boundary conditions (e.g. radiative forcing). It is clear that hydro-climatic trends have been non-uniform across the Mediterranean in recent millennia. The contrasting spatio-temporal patterns across the basin appear to have been determined by a combination of different climate modes along with major physical geographical controls, not by NAO forcing alone, and/or the character of the NAO and its teleconnections have been non-stationary.

  17. Terrestrial Plant Biomarkers Preserved in Cariaco Basin Sediments: Records of Abrupt Tropical Vegetation Response to Rapid Climate Changes

    NASA Astrophysics Data System (ADS)

    Hughen, K. A.; Eglinton, T. I.; Makou, M.; Xu, L.; Sylva, S.

    2004-12-01

    Organic-rich sediments from the anoxic Cariaco Basin, Venezuela, preserve high concentrations of biomarkers for reconstruction of terrestrial environmental conditions. Molecular-level investigations of organic compounds provide a valuable tool for extracting terrestrial signals from these annually laminated marine sediments. Differences in hydrogen isotopic fractionation between C16-18 and C24-30 n-alkanoic acids suggest a marine source for the shorter chain lengths and a terrestrial source for the longer chains. Records of carbon and hydrogen isotopes, as well as average carbon chain length (ACL), from long-chain n-alkanoic acids parallel millennial-scale changes in vegetation and climate between the late Glacial and Preboreal periods, 15,000 to 10,000 years ago. Data from all terrestrial chain lengths were combined to produce single δ D and δ 13C indices through deglaciation, exhibiting enrichment during the late Glacial and Younger Dryas and depletion during the Bolling-Allerod and Preboreal periods. δ D reflects the hydrogen isotopic composition of environmental water used for plant growth, combined with evaporative enrichment within leaf spaces, and as such may act as a proxy for local aridity. Leaf wax δ 13C, which is a proxy for C3 versus C4 metabolic pathways, indicates that C3 plants predominated in the Cariaco watershed during warm/wet Bolling-Allerod and Holocene periods, and C4 plant biomass proliferated during cool/dry Glacial and Younger Dryas intervals. Coupled carbon and hydrogen isotopic measurements together clearly distinguish deglacial climatic periods as wetter with C3 vegetation versus drier with C4 vegetation. High resolution biomarker records reveal the rapidity of vegetation changes in northern South America during the last deglaciation. The leaf wax data reveal that local vegetation biomass, although not necessarily entire assemblages, shifted between arid grassland and wetter forest taxa on timescales of decades. Comparison of ACL versus δ 13C for Cariaco Basin and NW African leaf waxes indicate that biomarkers reflect real changes in local South American vegetation and not contamination from long-distance transport during cold windy climates. The precise temporal relationship between tropical vegetation shifts and climate changes is measured by direct comparison of terrestrial vegetation and climate proxies from the same core. Abrupt deglacial climate shifts in tropical and high-latitude North Atlantic regions were synchronous, whereas changes in tropical vegetation consistently lagged climate shifts by several decades.

  18. Paleoclimate and Asian monsoon variability inferred from n-alkanes and their stable isotopes at lake Donggi Cona, NE Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Saini, Jeetendra; Guenther, Franziska; Mäusbacher, Roland; Gleixner, Gerd

    2015-04-01

    The Tibetan Plateau is one of the most extensive and sensitive region of elevated topography affecting global climate. The interplay between the Asian summer monsoon and the westerlies greatly influences the lake systems at the Tibetan Plateau. Despite a considerable number of research efforts in last decade, possible environmental reactions to change in monsoon dynamics are still not well understood. Here we present results from a sediment core of lake Donggi Cona, which dates back to late glacial period. Distinct organic geochemical proxies and stable isotopes are used to study the paleoenvironmental and hydrological changes in late glacial and Holocene period. Sedimentary n-alkanes of lake Donggi Cona are used as a proxy for paleoclimatic and monsoonal reconstruction. The hydrogen (δD) and carbon (δ13C) isotopes of n-alkanes are used as proxy for hydrological and phytoplankton productivity, respectively . Qualitative and quantitative analysis were performed for n-alkanes over the sediment core. δD proxy for sedimentary n-alkanes is used to infer lake water and rainfall signal. δD of (n-alkane C23) records the signal of the lake water, whereas δD of (n-alkane C29) record the precipitation signal, hence act as an appropriate proxy to track Asian monsoon. Long chain n-alkanes dominate over the sediment core while unsaturated mid chain n-alkenes have high abundance in some samples. From 18.4-13.8 cal ka BP, sample shows low organic productivity due to cold and arid climate. After 13.8-11.8 cal ka BP, slight increase in phytoplankton productivity indicate onset of weaker monsoon. From 11.8-6.8 cal ka BP, high content of organic matter indicates rise in productivity and strong monsoon with high inflow. After 6.8 cal ka BP, decrease in phytoplankton productivity indicating cooler climate and show terrestrial signal. Our results provide new insight into the variability of east Asian monsoon and changes in phytoplankton productivity for last 18.4 ka. Keywords: n-alkanes; n-alkane C23; n-alkane C29; hydrogen isotopes (δD); carbon isotopes (δ13C); east Asian monsoon; precipitation;

  19. High-resolution Record of Holocene Climate, Vegetation, and Fire from a Raised Peat Bog, Prince Edward Island, Canadian Maritimes

    NASA Astrophysics Data System (ADS)

    Peros, M. C.; Chan, K.; Ponsford, L.; Carroll, J.; Magnan, G.

    2014-12-01

    Raised peat bogs receive all precipitation and nutrients from the atmosphere and are thus widely used archives for information on past environments and climates. In this paper we provide high-resolution multi-proxy data from a raised bog from northeastern Prince Edward Island, located in the Gulf of St. Lawrence, Canada. We studied testate amoeba (a proxy for water table depth), macrocharcoal (a proxy for local-scale fire), peat humification (a proxy for decomposition), plant macrofossils (indicative of local-scale vegetation), and organic matter content (yielding carbon accumulation rates) from a 5.5 m long core lifted from the center of Baltic Bog. Eleven AMS radiocarbon dates show that peat accumulation began before 9000 cal yr BP and continued almost uninterrupted until the present. The macrofossil data show that a transition from a sedge-dominated fen to a sphagnum-dominated bog occurred around 8000 cal yr BP, and sphagnum remained dominant in the bog throughout most of the Holocene. A testate amoeba-based reconstruction of water table depth indicates that conditions were drier during the early Holocene (~8000 to 5000 cal yr BP) and became gradually wetter into the late Holocene. In addition, a number of higher frequency shifts in precipitation are inferred throughout the Holocene on the basis of the testate amoeba and humification results. The macrocharcoal evidence indicates fire—probably in the surrounding forest—was relatively more common during the early Holocene, perhaps due to drier climate conditions. A large influx of charcoal at around 2000 cal yr BP suggests the presence of one or more major fires at this time, and a concurrent decrease in the rate of peat accumulation indicates the fire may have affected the bog itself. The data from Baltic Bog is broadly comparable to other proxy data (in particular pollen studies) from the Canadian Maritimes. This work is important because it: 1) helps us better understand the role of hydroclimatic variability in influencing peat bog ecosystems; and 2), represents one of the few peat-based records of Holocene paleoclimate from the region.

  20. Ocean and atmosphere teleconnections modulate east tropical Pacific productivity at late to middle Pleistocene terminations

    NASA Astrophysics Data System (ADS)

    Diz, Paula; Hernández-Almeida, Iván; Bernárdez, Patricia; Pérez-Arlucea, Marta; Hall, Ian R.

    2018-07-01

    The modern Eastern Equatorial Pacific (EEP) is a key oceanographic region for regulating the Earth's climate system, accounting for between 5-10% of global marine production whilst also representing a major source of carbon dioxide efflux to the atmosphere. Changes in ocean dynamics linked to the nutrient supply from the Southern Ocean have been suggested to have played a dominant role in regulating EEP productivity over glacial-interglacial timescales of the past 500 ka. Yet, the full extent of the climate and oceanic teleconnections and the mechanisms promoting the observed increase of productivity occurring at glacial terminations remain poorly understood. Here we present multi-proxy, micropaleontological, geochemical and sedimentological records from the easternmost EEP to infer changes in atmospheric patterns and oceanic processes potentially influencing regional primary productivity over glacial-interglacial cycles of the mid-late Pleistocene (∼0-650 ka). These proxy data support a leading role for the north-south migration of the Intertropical Convergence Zone (ITCZ) in shaping past productivity variability in the EEP. Productivity increases during glacial periods and notably peaks at major and "extra" glacial terminations (those occurring 1-2 precession cycles after some major terminations) coincident with the inferred southernmost position of the ITCZ. The comparison of our reconstructions with proxy records of climate variability suggests the intensification of related extratropical atmospheric and oceanic teleconnections during deglaciation events. These processes may have re-activated the supply of southern sourced nutrients to the EEP, potentially contributing to enhanced productivity in the EEP and thus counterbalancing the oceanic carbon dioxide outgassing at glacial terminations.

  1. The significance of chemical, isotopic, and detrital components in three coeval stalagmites from the superhumid southernmost Andes (53°S) as high-resolution palaeo-climate proxies

    NASA Astrophysics Data System (ADS)

    Schimpf, Daniel; Kilian, Rolf; Kronz, Andreas; Simon, Klaus; Spötl, Christoph; Wörner, Gerhard; Deininger, Michael; Mangini, Augusto

    2011-02-01

    Stalagmites are important palaeo-climatic archives since their chemical and isotopic signatures have the potential to record high-resolution changes in temperature and precipitation over thousands of years. We present three U/Th-dated records of stalagmites (MA1-MA3) in the superhumid southern Andes, Chile (53°S). They grew simultaneously during the last five thousand years (ka BP) in a cave that developed in schist and granodiorite. Major and trace elements as well as the C and O isotope compositions of the stalagmites were analysed at high spatial and temporal resolution as proxies for palaeo-temperature and palaeo-precipitation. Calibrations are based on data from five years of monitoring the climate and hydrology inside and outside the cave and on data from 100 years of regional weather station records. Water-insoluble elements such as Y and HREE in the stalagmites indicate the amount of incorporated siliciclastic detritus. Monitoring shows that the quantity of detritus is controlled by the drip water rate once a threshold level has been exceeded. In general, drip rate variations of the stalagmites depend on the amount of rainfall. However, different drip-water pathways above each drip location gave rise to individual drip rate levels. Only one of the three stalagmites (MA1) had sufficiently high drip rates to record detrital proxies over its complete length. Carbonate-compatible element contents (e.g. U, Sr, Mg), which were measured up to sub-annual resolution, document changes in meteoric precipitation and related drip-water dilution. In addition, these soluble elements are controlled by leaching during weathering of the host rock and soils depending on the pH of acidic pore waters in the peaty soils of the cave's catchment area. In general, higher rainfall resulted in a lower concentration of these elements and vice versa. The Mg/Ca record of stalagmite MA1 was calibrated against meteoric precipitation records for the last 100 years from two regional weather stations. Carbonate-compatible soluble elements show similar patterns in the three stalagmites with generally high values when drip rates and detrital tracers were low and vice versa. δ 13C and δ 18O values are highly correlated in each stalagmite suggesting a predominantly drip rate dependent kinetic control by evaporation and/or outgassing. Only C and O isotopes from stalagmite MA1 that received the highest drip rates show a good correlation between detrital proxy elements and carbonate-compatible elements. A temperature-related change in rainwater isotope values modified the MA1 record during the Little Ice Age (˜0.7-0.1 ka BP) that was ˜1.5 °C colder than today. The isotopic composition of the stalagmites MA2 and MA3 that formed at lower drip rates shows a poor correlation with stalagmite MA1 and all other chemical proxies of MA1. 'Hendy tests' indicate that the degassing-controlled isotope fractionation of MA2 and MA3 had already started at the cave roof, especially when drip rates were low. Changing pathways and residence times of the seepage water caused a non-climatically controlled isotope fractionation, which may be generally important in ventilated caves during phases of low drip rates. Our proxies indicate that the Neoglacial cold phases from ˜3.5 to 2.5 and from ˜0.7 to 0.1 ka BP were characterised by 30% lower precipitation compared with the Medieval Warm Period from 1.2 to 0.8 ka BP, which was extremely humid in this region.

  2. Amplified Late Pliocene terrestrial warmth in northern high latitudes from greater radiative forcing and closed Arctic Ocean gateways

    NASA Astrophysics Data System (ADS)

    Feng, Ran; Otto-Bliesner, Bette L.; Fletcher, Tamara L.; Tabor, Clay R.; Ballantyne, Ashley P.; Brady, Esther C.

    2017-05-01

    Proxy reconstructions of the mid-Piacenzian warm period (mPWP, between 3.264 and 3.025 Ma) suggest terrestrial temperatures were much warmer in the northern high latitudes (55°-90°N, referred to as NHL) than present-day. Climate models participating in the Pliocene Model Intercomparison Project Phase 1 (PlioMIP1) tend to underestimate this warmth. For instance, the underestimate is ∼10 °C on average across NHL and up to 17 °C in the Canadian Arctic region in the Community Climate System Model version 4 (CCSM4). Here, we explore potential mPWP climate forcings that might contribute to this mPWP mismatch. We carry out seven experiments to assess terrestrial temperature responses to Pliocene Arctic gateway closure, variations in CO2 level, and orbital forcing at millennial time scale. To better compare the full range of simulated terrestrial temperatures with sparse proxy data, we introduce a pattern recognition technique that simplifies the model surface temperatures to a few representative patterns that can be validate with the limited terrestrial proxy data. The pattern recognition technique reveals two prominent features of simulated Pliocene surface temperature responses. First, distinctive patterns of amplified warming occur in the NHL, which can be explained by lowered surface elevation of Greenland, pattern and amount of Arctic sea ice loss, and changing strength of Atlantic meridional overturning circulation. Second, patterns of surface temperature response are similar among experiments with different forcing mechanisms. This similarity is due to strong feedbacks from responses in surface albedo and troposphere water vapor content to sea ice changes, which overwhelm distinctions in forcings from changes in insolation, CO2 forcing, and Arctic gateway closure. By comparing CCSM4 simulations with proxy records, we demonstrate that both model and proxy records show similar patterns of mPWP NHL terrestrial warmth, but the model underestimates the magnitude. High insolation, greater CO2 forcing, and Arctic gateways closure each contributes to reduce the underestimate by enhancing the Arctic warmth of 1-2 °C. These results highlight the importance of considering proxy NHL warmth in the context of Pliocene Arctic gateway changes, and variations in insolation and CO2 forcing.

  3. Zircon (U-Th)/He Thermochronometric Constraints on Himalayan Thrust Belt Exhumation, Bedrock Weathering, and Cenozoic Seawater Chemistry

    NASA Astrophysics Data System (ADS)

    Colleps, Cody L.; McKenzie, N. Ryan; Stockli, Daniel F.; Hughes, Nigel C.; Singh, Birendra P.; Webb, A. Alexander G.; Myrow, Paul M.; Planavsky, Noah J.; Horton, Brian K.

    2018-01-01

    Shifts in global seawater 187Os/188Os and 87Sr/86Sr are often utilized as proxies to track global weathering processes responsible for CO2 fluctuations in Earth history, particularly climatic cooling during the Cenozoic. It has been proposed, however, that these isotopic records instead reflect the weathering of chemically distinctive Himalayan lithologies exposed at the surface. We present new zircon (U-Th)/He thermochronometric and detrital zircon U-Pb geochronologic evidence from the Himalaya of northwest India to explore these contrasting interpretations concerning the driving mechanisms responsible for these seawater records. Our data demonstrate in-sequence southward thrust propagation with rapid exhumation of Lesser Himalayan strata enriched in labile 187Os and relatively less in radiogenic 87Sr at ˜16 Ma, which directly corresponds with coeval shifts in seawater 187Os/188Os and 87Sr/86Sr. Results presented here provide substantial evidence that the onset of exhumation of 187Os-enriched Lesser Himalayan strata could have significantly impacted the marine 187Os/188Os record at 16 Ma. These results support the hypothesis that regional weathering of isotopically unique source rocks can drive seawater records independently from shifts in global-scale weathering rates, hindering the utility of these records as reliable proxies to track global weathering processes and climate in deep geologic time.

  4. Impact of prehistoric cooking practices on paleoenvironmental proxies in shell midden constituents

    NASA Astrophysics Data System (ADS)

    Müller, Peter; Staudigel, Philip; Murray, Sean T.; Westphal, Hildegard; Swart, Peter K.

    2016-04-01

    Paleoenvironmental proxy records such as oxygen isotopes of calcareous skeletal structures like fish otoliths or mollusk shells provide highest-resolution information about environmental conditions experienced by the organism. Accumulations of such skeletal structures by ancient coastal populations in so called "shell midden" deposits provide us with sub-seasonally resolved paleoclimate records covering time spans up to several millennia. Given their high temporal resolution, these deposits are increasingly used for paleoclimate reconstructions and complement our understanding of ancient climate changes. However, gathered as comestibles, most of these skeletal remains were subject to prehistoric cooking methods prior to deposition. The associated alteration of the chemical proxy signatures as well as the subsequent error for paleoenvironmental reconstructions remained almost entirely neglected so far. Here, we present clumped isotope, conventional oxygen and carbon isotopes as well as element:Ca ratios measured in modern bivalve shells after exposing them to different prehistoric cooking methods. Our data show that most cooking methods considerably alter commonly used paleoclimate proxy systems which can lead to substantial misinterpretations of ancient climate conditions. Since the magnitude of chemical alteration is not distinguishable from natural temperature variability in most coastal settings, the alteration of shell midden constituents by prehistoric cooking remains likely unnoticed in most cases. Thus, depending on the cooking method, pre-depositional heating might have introduced considerable errors into previous paleoclimate studies. However, our data also show that clumped isotope thermometry represents a suitable diagnostic tool to detect such pre-depositional cooking events and also allows differentiating between the most commonly applied prehistoric cooking methods.

  5. Arctic Climate and Terrestrial Vegetation Responses During the Middle to Late Eocene and Early Oligocene: Colder Winters Preceded Cool-Down.

    NASA Astrophysics Data System (ADS)

    Greenwood, D. R.; Eldrett, J.

    2006-12-01

    The late Eocene to early Oligocene is recognized as an interval of substantial change in the global climate, with isotopic proxies of climate indicating a significant drop in sea surface temperatures. Other studies have shown, however that at middle latitudes that terrestrial mean annual temperature did not change significantly over this interval, and that the major change was likely a shift towards a greater range of seasonal temperatures; colder winters and warmer summers. Previous analyses of high latitude (Arctic) middle Eocene climate using both leaf physiognomic analysis and qualitative analysis of identified nearest living relatives of terrestrial floras indicated upper microthermal environments (mean annual temp. or MAT ca 10°C but perhaps as high as 15°C, coldest month mean temp. or CMMT ca 0°C) for Axel Heiberg Island in the Arctic Archipelago, but did not address precipitation nor provide data on the Eocene-Oligocene transition in the Arctic. Presented here are new estimates of temperature and precipitation (annual and season amounts) for the Arctic based on NLR analysis of terrestrial plant palynomorphs (spores and pollen) from the ODP 913B and 985 cores from near Greenland. The record of climate for the Greenland cores show a similar climate in the middle Eocene to that previously estimated for Axel Heiberg Island further to the west, with MAT 10- 15°C but with CMMT >5°C. Precipitation was high (mean annual precip. or MAP >180 cm/yr), although with large uncertainties attached to the estimate. The climate proxy record for the late Eocene to early Oligocene shows a lack of change in MAT and MAP over the time interval. Consistent with other published records at middle latitudes, however, winter temperatures (as CMMT) show greater variability leading up to the E-O boundary, and consistently cooler values in the early Oligocene (CMMT <5°C) than recorded for most of the middle to late Eocene record (CMMT >5°C). Plant groups sensitive to freezing such as palms and the floating water fern Azolla were present in the warm parts of the record, but are absent from the latest Eocene and early Oligocene record. These data provide further evidence that the primary change in the global climate system in the E-O transition was a shift towards more extreme seasonal temperature ranges, rather than a drop in the mean temperature.

  6. Oxygen Isotopes Archived in Subfossil Chironomids: Advancing a Promising Proxy for Lake Water Isotopes

    NASA Astrophysics Data System (ADS)

    Lasher, G. E.; Axford, Y.; Blair, N. E.

    2017-12-01

    Oxygen isotopes measured in subfossil chironomid head capsules (aquatic insect remains) in lake sediments are beginning to offer paleoclimate insights from previously under-studied areas of the world. Since the first published pilot study demonstrated the potential of chironomid δ18O to record lake water δ18O (Wooller et al., 2004), subsequent work has refined our understanding of this proxy: confirming via lab cultures that growth water controls head capsule δ18O (Wang et al., 2009), refining laboratory pretreatment protocols, and further validating the method by demonstrating strong agreement between carbonate and chironomid-derived paleo-isotope records (Verbruggen et al., 2009, 2010, 2011). However, outstanding questions remain, including the seasonality of chironomid growth, possible species-dependent vital effects, and diagenetic effects on the protein-chitin complex that comprise chironomid cuticles. To address some of these questions, we summarize available data from paired modern chironomid-lake water δ18O values from around the world and discuss climatic and environmental factors affecting chironomid isotopic signatures. We also present new data on the resistance of these subfossils to diagenesis and degradation throughout the late Quaternary using Fourier Transform Infrared Spectroscopy (FT-IR) and Pyrolysis Gas Chromatography Mass Spectrometry (Py-GC/MS) of chironomid remains up to >100,000 years old. As chironomids are nearly ubiquitous in lakes globally and, we argue, molecularly stable through glacial and interglacial cycles, this proxy has the potential to greatly expand the spatial and temporal resolution of Quaternary paleo-isotopes and thus climate records. In addition to reviewing and presenting new methodological advances, we also present applications of chironomid δ18O from millennial- to centennial-scale Holocene Greenland lake records.

  7. Precipitation variability within the West Pacific Warm Pool over the past 120 ka: Evidence from the Davao Gulf, southern Philippines

    NASA Astrophysics Data System (ADS)

    Fraser, Nicholas; Kuhnt, Wolfgang; Holbourn, Ann; Bolliet, Timothé; Andersen, Nils; Blanz, Thomas; Beaufort, Luc

    2014-11-01

    Proxy records of hydrologic variability in the West Pacific Warm Pool (WPWP) have revealed wide-scale changes in past convective activity in response to orbital and suborbital climate forcings. However, attributing proxy responses to regional changes in WPWP hydrology versus local variations in precipitation requires independent records linking the terrestrial and marine realms. We present high-resolution stable isotope, UK'37 sea surface temperature, X-ray fluorescence (XRF) core scanning, and coccolithophore-derived paleoproductivity records covering the past 120 ka from International Marine Global Change (IMAGES) Program Core MD06-3075 (6°29'N, 125°50'E, water depth 1878 m), situated in the Davao Gulf on the southern side of Mindanao. XRF-derived log(Fe/Ca) records provide a robust proxy for runoff-driven sedimentary discharge from Mindanao, while past changes in local productivity are associated with variable freshwater runoff and stratification of the surface layer. Significant precessional-scale variability in sedimentary discharge occurred during marine isotope stage (MIS) 5, with peaks in discharge contemporaneous with Northern Hemisphere summer insolation minima. We attribute these changes to the latitudinal migration of the Intertropical Convergence Zone (ITCZ) over the WPWP together with variability in the strength of the Walker circulation acting on precessional timescales. Between 60 and 15 ka sedimentary discharge at Mindanao was muted, displaying little orbital- or millennial-scale variability, likely in response to weakened precessional insolation forcing and lower sea level driving increased subsidence of air masses over the exposed Sunda Shelf. These results highlight the high degree of local variability in the precipitation response to past climate changes in the WPWP.

  8. Recent climate warming drives ecological change in a remote high-Arctic lake.

    PubMed

    Woelders, Lineke; Lenaerts, Jan T M; Hagemans, Kimberley; Akkerman, Keechy; van Hoof, Thomas B; Hoek, Wim Z

    2018-05-01

    The high Arctic is the fastest warming region on Earth, evidenced by extreme near-surface temperature increase in non-summer seasons, recent rapid sea ice decline and permafrost melting since the early 1990's. Understanding the impact of climate change on the sensitive Arctic ecosystem to climate change has so far been hampered by the lack of time-constrained, high-resolution records and by implicit climate data analyses. Here, we show evidence of sharp growth in freshwater green algae as well as distinct diatom assemblage changes since ~1995, retrieved from a high-Arctic (80 °N) lake sediment record on Barentsøya (Svalbard). The proxy record approaches an annual to biennial resolution. Combining remote sensing and in-situ climate data, we show that this ecological change is concurrent with, and is likely driven by, the atmospheric warming and a sharp decrease in the length of the sea ice covered period in the region, and throughout the Arctic. Moreover, this research demonstrates the value of palaeoclimate records in pristine environments for supporting and extending instrumental records. Our results reinforce and extend observations from other sites that the high Arctic has already undergone rapid ecological changes in response to on-going climate change, and will continue to do so in the future.

  9. Comparing Apples to Apples: Paleoclimate Model-Data comparison via Proxy System Modeling

    NASA Astrophysics Data System (ADS)

    Dee, Sylvia; Emile-Geay, Julien; Evans, Michael; Noone, David

    2014-05-01

    The wealth of paleodata spanning the last millennium (hereinafter LM) provides an invaluable testbed for CMIP5-class GCMs. However, comparing GCM output to paleodata is non-trivial. High-resolution paleoclimate proxies generally contain a multivariate and non-linear response to regional climate forcing. Disentangling the multivariate environmental influences on proxies like corals, speleothems, and trees can be complex due to spatiotemporal climate variability, non-stationarity, and threshold dependence. Given these and other complications, many paleodata-GCM comparisons take a leap of faith, relating climate fields (e.g. precipitation, temperature) to geochemical signals in proxy data (e.g. δ18O in coral aragonite or ice cores) (e.g. Braconnot et al., 2012). Isotope-enabled GCMs are a step in the right direction, with water isotopes providing a connector point between GCMs and paleodata. However, such studies are still rare, and isotope fields are not archived as part of LM PMIP3 simulations. More importantly, much of the complexity in how proxy systems record and transduce environmental signals remains unaccounted for. In this study we use proxy system models (PSMs, Evans et al., 2013) to bridge this conceptual gap. A PSM mathematically encodes the mechanistic understanding of the physical, geochemical and, sometimes biological influences on each proxy. To translate GCM output to proxy space, we have synthesized a comprehensive, consistently formatted package of published PSMs, including δ18O in corals, tree ring cellulose, speleothems, and ice cores. Each PSM is comprised of three sub-models: sensor, archive, and observation. For the first time, these different components are coupled together for four major proxy types, allowing uncertainties due to both dating and signal interpretation to be treated within a self-consistent framework. The output of this process is an ensemble of many (say N = 1,000) realizations of the proxy network, all equally plausible under assumed dating uncertainties. We demonstrate the utility of the PSM framework with an integrative multi-PSM simulation. An intermediate-complexity AGCM with isotope physics (SPEEDY-IER, (Molteni, 2003, Dee et al., in prep)) is used to simulate the isotope hydrology and atmospheric response to SSTs derived from the LM PMIP3 integration of the CCSM4 model (Landrum et al., 2012). Relevant dynamical and isotope variables are then used to drive PSMs, emulating a realistic multiproxy network (Emile-Geay et al., 2013). We then ask the following question: given our best knowledge of proxy systems, what aspects of GCM behavior may be validated, and with what uncertainties? We approach this question via a three-tiered 'perfect model' study. A random realization of the simulated proxy data (hereafter 'PaleoObs') is used as a benchmark in the following comparisons: (1) AGCM output (without isotopes) vs. PaleoObs; (2) AGCM output (with isotopes) vs. PaleoObs; (3) coupled AGCM-PSM-simulated proxy ensemble vs. PaleoObs. Enhancing model-data comparison using PSMs highlights uncertainties that may arise from ignoring non-linearities in proxy-climate relationships, or the presence of age uncertainties (as is most typically done is paleoclimate model-data intercomparison). Companion experiments leveraging the 3 sub-model compartmentalization of PSMs allows us to quantify the contribution of each sub-system to the observed model-data discrepancies. We discuss potential repercussions for model-data comparison and implications for validating predictive climate models using paleodata. References Braconnot, P., Harrison, S. P., Kageyama, M., Bartlein, P. J., Masson-Delmotte, V., Abe-Ouchi, A., Otto-Bliesner, B., Zhao, Y., 06 2012. Evaluation of climate models using palaeoclimatic data. Nature Clim. Change 2 (6), 417-424. URL http://dx.doi.org/10.1038/nclimate1456 Emile-Geay, J., Cobb, K. M., Mann, M. E., Wittenberg, A. T., Apr 01 2013. Estimating central equatorial pacific sst variability over the past millennium. part i: Methodology and validation. Journal of Climate 26 (7), 2302-2328. URL http://search.proquest.com/docview/1350277733?accountid=14749 Evans, M., Tolwinski-Ward, S. E., Thompson, D. M., Anchukaitis, K. J., 2013. Applications of proxy system modeling in high resolution paleoclimatology. Quaternary Science Reviews. URL http://adsabs.harvard.edu/abs/2012QuInt.279U.134E Landrum, L., Otto-Bliesner, B. L., Wahl, E. R., Capotondi, A., Lawrence, P. J., Teng, H., 2012. Last Millennium Climate and Its Variability in CCSM4. Journal of Climate (submitted) Molteni, F., 2003. Atmospheric simulations using a GCM with simplified physical parametrizations. I model climatology and variability in multi-decadal experiments. Climate Dynamics, 175-191

  10. Water and carbon stable isotope records from natural archives: a new database and interactive online platform for data browsing, visualizing and downloading

    NASA Astrophysics Data System (ADS)

    Bolliet, Timothé; Brockmann, Patrick; Masson-Delmotte, Valérie; Bassinot, Franck; Daux, Valérie; Genty, Dominique; Landais, Amaelle; Lavrieux, Marlène; Michel, Elisabeth; Ortega, Pablo; Risi, Camille; Roche, Didier M.; Vimeux, Françoise; Waelbroeck, Claire

    2016-08-01

    Past climate is an important benchmark to assess the ability of climate models to simulate key processes and feedbacks. Numerous proxy records exist for stable isotopes of water and/or carbon, which are also implemented inside the components of a growing number of Earth system model. Model-data comparisons can help to constrain the uncertainties associated with transfer functions. This motivates the need of producing a comprehensive compilation of different proxy sources. We have put together a global database of proxy records of oxygen (δ18O), hydrogen (δD) and carbon (δ13C) stable isotopes from different archives: ocean and lake sediments, corals, ice cores, speleothems and tree-ring cellulose. Source records were obtained from the georeferenced open access PANGAEA and NOAA libraries, complemented by additional data obtained from a literature survey. About 3000 source records were screened for chronological information and temporal resolution of proxy records. Altogether, this database consists of hundreds of dated δ18O, δ13C and δD records in a standardized simple text format, complemented with a metadata Excel catalog. A quality control flag was implemented to describe age markers and inform on chronological uncertainty. This compilation effort highlights the need to homogenize and structure the format of datasets and chronological information as well as enhance the distribution of published datasets that are currently highly fragmented and scattered. We also provide an online portal based on the records included in this database with an intuitive and interactive platform (http://climateproxiesfinder.ipsl.fr/), allowing one to easily select, visualize and download subsets of the homogeneously formatted records that constitute this database, following a choice of search criteria, and to upload new datasets. In the last part, we illustrate the type of application allowed by our database by comparing several key periods highly investigated by the paleoclimate community. For coherency with the Paleoclimate Modelling Intercomparison Project (PMIP), we focus on records spanning the past 200 years, the mid-Holocene (MH, 5.5-6.5 ka; calendar kiloyears before 1950), the Last Glacial Maximum (LGM, 19-23 ka), and those spanning the last interglacial period (LIG, 115-130 ka). Basic statistics have been applied to characterize anomalies between these different periods. Most changes from the MH to present day and from LIG to MH appear statistically insignificant. Significant global differences are reported from LGM to MH with regional discrepancies in signals from different archives and complex patterns.

  11. Invited review: climate change impacts in polar regions: lessons from Antarctic moss bank archives.

    PubMed

    Royles, Jessica; Griffiths, Howard

    2015-03-01

    Mosses are the dominant plants in polar and boreal regions, areas which are experiencing rapid impacts of regional warming. Long-term monitoring programmes provide some records of the rate of recent climate change, but moss peat banks contain an unrivalled temporal record of past climate change on terrestrial plant Antarctic systems. We summarise the current understanding of climatic proxies and determinants of moss growth for contrasting continental and maritime Antarctic regions, as informed by 13C and 18O signals in organic material. Rates of moss accumulation are more than three times higher in the maritime Antarctic than continental Antarctica with growing season length being a critical determinant of growth rate, and high carbon isotope discrimination values reflecting optimal hydration conditions. Correlation plots of 13C and 18O values show that species (Chorisodontium aciphyllum / Polytrichum strictum) and growth form (hummock / bank) are the major determinants of measured isotope ratios. The interplay between moss growth form, photosynthetic physiology, water status and isotope composition are compared with developments of secondary proxies, such as chlorophyll fluorescence. These approaches provide a framework to consider the potential impact of climate change on terrestrial Antarctic habitats as well as having implications for future studies of temperate, boreal and Arctic peatlands. There are many urgent ecological and environmental problems in the Arctic related to mosses in a changing climate, but the geographical ranges of species and life-forms are difficult to track individually. Our goal was to translate what we have learned from the more simple systems in Antarctica, for application to Arctic habitats. © 2014 John Wiley & Sons Ltd.

  12. How Are MIS-5e And MIS-11 Different From Other Interglacials And the Future?

    NASA Astrophysics Data System (ADS)

    Yin, Q.; Berger, A.

    2017-12-01

    MIS-5e and MIS-11 appear in many proxy records as the warmest interglacials of the last million years although their astronomical configurations are very different. To investigate how they are different from other interglacials and between themselves, the climate of nine interglacials of the past 800,000 years has been simulated using both snapshot and transient experiments. These simulations allow to investigate the relative contributions of insolation and CO2 to the intensity and duration of each interglacial as well as the differences and similarities between the interglacials. The transient simulations which cover a large range of precession, obliquity and eccentricity allow to investigate the response of different climate variables and different regions to the three astronomical parameters. My presentation will focus on the characteristics of the climate forcing and response of MIS-5e and MIS-11 in comparison with the other intergalcials. Their duration and intensity at global and regional scales will be shown and the causes will be discussed. Unique features in astronomical forcing as well as in regional climate response are found in MIS-5e and MIS-11, which might help to understand why they appear to be among the warmest interglacials. The model results also show that the warm interval of MIS-11 is the longest, confirming its long duration as found in many proxy records. The long duration of MIS-11 is related to a particular combination of eccentricity, obliquity and precession as well as to its long-lasting high CO2 concentration. The differences between the seasonal behaviour of the past interglacials highlight the importance of seasonal climate reconstruction and therefore the necessity to obtain seasonal proxies. The simulated climate of MIS-5e and MIS-11 will also be compared with the climate of today and of the future to investigate the differences and similarities between the past warm conditions and the projected future warming. Part of the results are published in: Yin Q.Z. and Berger A., 2015. Interglacial analogues of the Holocene and its natural near future. Quaternary Science Reviews, 120, 28-46. Yin Q.Z. and Berger A., 2012. Individual contribution of insolation and CO2 to the interglacial climates of the past 800,000 years. Climate Dynamics 38:709-724.

  13. Weather and extremes in the last Millennium - a challenge for climate modelling

    NASA Astrophysics Data System (ADS)

    Raible, Christoph C.; Blumer, Sandro R.; Gomez-Navarro, Juan J.; Lehner, Flavio

    2015-04-01

    Changes in the climate mean state are expected to influence society, but the socio-economic sensitivity to extreme events might be even more severe. Whether or not the current frequency and severity of extreme events is a unique characteristic of anthropogenic-driven climate change can be assessed by putting the observed changes in a long-term perspective. In doing so, early instrumental series and proxy archives are a rich source to investigate also extreme events, in particular during the last millennium, yet they suffer from spatial and temporal scarcity. Therefore, simulations with coupled general circulation models (GCMs) could fill such gaps and help in deepening our process understanding. In this study, an overview of past and current efforts as well as challenges in modelling paleo weather and extreme events is presented. Using simulations of the last millennium we investigate extreme midlatitude cyclone characteristics, precipitation, and their connection to large-scale atmospheric patterns in the North Atlantic European region. In cold climate states such as the Maunder Minimum, the North Atlantic Oscillation (NAO) is found to be predominantly in its negative phase. In this sense, simulations of different models agree with proxy findings for this period. However, some proxy data available for this period suggests an increase in storminess during this period, which could be interpreted as a positive phase of the NAO - a superficial contradiction. The simulated cyclones are partly reduced over Europe, which is consistent with the aforementioned negative phase of the NAO. However, as the meridional temperature gradient is increased during this period - which constitutes a source of low-level baroclincity - they also intensify. This example illustrates how model simulations could be used to improve our proxy interpretation and to gain additional process understanding. Nevertheless, there are also limitations associated with climate modeling efforts to simulate the last millennium. In particular, these models still struggle to properly simulate atmospheric blocking events, an important dynamical feature for dry conditions during summer times. Finally, new and promising ways in improving past climate modelling are briefly introduced. In particular, the use of dynamical downscaling is a powerful tool to bridge the gap between the coarsely resolved GCMs and characteristics of the regional climate, which is potentially recorded in proxy archives. In particular, the representation of extreme events could be improved by dynamical downscaling as processes are better resolved than GCMs.

  14. Detecting oscillatory patterns and time lags from proxy records with non-uniform sampling: Some pitfalls and possible solutions

    NASA Astrophysics Data System (ADS)

    Donner, Reik

    2013-04-01

    Time series analysis offers a rich toolbox for deciphering information from high-resolution geological and geomorphological archives and linking the thus obtained results to distinct climate and environmental processes. Specifically, on various time-scales from inter-annual to multi-millenial, underlying driving forces exhibit more or less periodic oscillations, the detection of which in proxy records often allows linking them to specific mechanisms by which the corresponding drivers may have affected the archive under study. A persistent problem in geomorphology is that available records do not present a clear signal of the variability of environmental conditions, but exhibit considerable uncertainties of both the measured proxy variables and the associated age model. Particularly, time-scale uncertainty as well as the heterogeneity of sampling in the time domain are source of severe conceptual problems that may lead to false conclusions about the presence or absence of oscillatory patterns and their mutual phasing in different archives. In my presentation, I will discuss how one can cope with non-uniformly sampled proxy records to detect and quantify oscillatory patterns in one or more data sets. For this purpose, correlation analysis is reformulated using kernel estimates which are found superior to classical estimators based on interpolation or Fourier transform techniques. In order to characterize non-stationary or noisy periodicities and their relative phasing between different records, an extension of continuous wavelet transform is utilized. The performance of both methods is illustrated for different case studies. An extension to explicitly considering time-scale uncertainties by means of Bayesian techniques is briefly outlined.

  15. Model Sensitivity to North Atlantic Freshwater Forcing at 8.2 Ka

    NASA Technical Reports Server (NTRS)

    Morrill, Carrie; Legrande, Allegra Nicole; Renssen, H.; Bakker, P.; Otto-Bliesner, B. L.

    2013-01-01

    We compared four simulations of the 8.2 ka event to assess climate model sensitivity and skill in responding to North Atlantic freshwater perturbations. All of the simulations used the same freshwater forcing, 2.5 Sv for one year, applied to either the Hudson Bay (northeastern Canada) or Labrador Sea (between Canada's Labrador coast and Greenland). This freshwater pulse induced a decadal-mean slowdown of 10-25%in the Atlantic Meridional Overturning Circulation (AMOC) of the models and caused a large-scale pattern of climate anomalies that matched proxy evidence for cooling in the Northern Hemisphere and a southward shift of the Intertropical Convergence Zone. The multi-model ensemble generated temperature anomalies that were just half as large as those from quantitative proxy reconstructions, however. Also, the duration of AMOC and climate anomalies in three of the simulations was only several decades, significantly shorter than the duration of approx.150 yr in the paleoclimate record. Possible reasons for these discrepancies include incorrect representation of the early Holocene climate and ocean state in the North Atlantic and uncertainties in the freshwater forcing estimates.

  16. Orbital Forcing driving climate variability on Tropical South Atlantic

    NASA Astrophysics Data System (ADS)

    Oliveira, A. S.; Baker, P. A.; Silva, C. G.; Dwyer, G. S.; Chiessi, C. M.; Rigsby, C. A.; Ferreira, F.

    2017-12-01

    Past research on climate response to orbital forcing in tropical South America has emphasized on high precession cycles influencing low latitude hydrologic cycles, and driving the meridional migration of Intertropical Convergence Zone (ITCZ).However, marine proxy records from the tropical Pacific Ocean showed a strong 41-ka periodicities in Pleistocene seawater temperature and productivity related to fluctuations in Earth's obliquity. It Indicates that the western Pacific ITCZ migration was influenced by combined precession and obliquity changes. To reconstruct different climate regimes over the continent and understand the orbital cycle forcing over Tropical South America climate, hydrological reconstruction have been undertaken on sediment cores located on the Brazilian continental slope, representing the past 1.6 million years. Core CDH 79 site is located on a 2345 m deep seamount on the northern Brazilian continental slope (00° 39.6853' N, 44° 20.7723' W), 320 km from modern coastline of the Maranhão Gulf. High-resolution XRF analyses of Fe, Ti, K and Ca are used to define the changes in precipitation and sedimentary input history of Tropical South America. The response of the hydrology cycle to orbital forcing was studied using spectral analysis.The 1600 ka records of dry/wet conditions presented here indicates that orbital time-scale climate change has been a dominant feature of tropical climate. We conclude that the observed oscillation reflects variability in the ITCZ activity associated with the Earth's tilt. The prevalence of the eccentricity and obliquity signals in continental hydrology proxies (Ti/Ca and Fe/K) as implicated in our precipitation records, highlights that these orbital forcings play an important role in tropics hydrologic cycles. Throughout the Quaternary abrupt shifts of tropical variability are temporally correlated with abrupt climate changes and atmospheric reorganization during Mid-Pleistocene Transition and Mid-Brunhes Events. Our findings suggets that over Late Quaternary, the N-S ITCZ movement is not only exclusively related to precessional forcing. The prevalence of the obliquity signal in both precipitation and weathering as implicated in our records, highlights that this orbital forcing exerts a significant control on global hydrological cycle.

  17. 500-year climate cycles stacking of recent centennial warming documented in an East Asian pollen record

    PubMed Central

    Xu, Deke; Lu, Houyuan; Chu, Guoqiang; Wu, Naiqin; Shen, Caiming; Wang, Can; Mao, Limi

    2014-01-01

    Here we presented a high-resolution 5350-year pollen record from a maar annually laminated lake in East Asia (EA). Pollen record reflected the dynamics of vertical vegetation zones and temperature change. Spectral analysis on pollen percentages/concentrations of Pinus and Quercus, and a temperature proxy, revealed ~500-year quasi-periodic cold-warm fluctuations during the past 5350 years. This ~500-year cyclic climate change occurred in EA during the mid-late Holocene and even the last 150 years dominated by anthropogenic forcing. It was almost in phase with a ~500-year periodic change in solar activity and Greenland temperature change, suggesting that ~500-year small variations in solar output played a prominent role in the mid-late Holocene climate dynamics in EA, linked to high latitude climate system. Its last warm phase might terminate in the next several decades to enter another ~250-year cool phase, and thus this future centennial cyclic temperature minimum could partially slow down man-made global warming. PMID:24402348

  18. Increasing summer rainfall in arid eastern-Central Asia over the past 8500 years

    PubMed Central

    Hong, Bing; Gasse, Françoise; Uchida, Masao; Hong, Yetang; Leng, Xuetian; Shibata, Yasuyuki; An, Ning; Zhu, Yongxuan; Wang, Yu

    2014-01-01

    A detailed and well-dated proxy record of summer rainfall variation in arid Central Asia is lacking. Here, we report a long-term, high resolution record of summer rainfall extracted from a peat bog in arid eastern-Central Asia (AECA). The record indicates a slowly but steadily increasing trend of summer rainfall in the AECA over the past 8500 years. On this long-term trend are superimposed several abrupt increases in rainfall on millennial timescales that correspond to rapid cooling events in the North Atlantic. During the last millennium, the hydrological climate pattern of the AECA underwent a major change. The rainfall in the past century has reached its highest level over the 8500-year history, highlighting the significant impact of the human-induced greenhouse effect on the hydrological climate in the AECA. Our results demonstrate that even in very dry eastern-Central Asia, the climate can become wetter under global warming. PMID:24923304

  19. Late Holocene Lake Level Fluctuations at Laguna Arapa, Peru and Connections to Human Demography

    NASA Astrophysics Data System (ADS)

    Hillman, A. L.; Abbott, M. B.; Werne, J. P.; Arkush, E.; Thompson, L. G.; Ferland, T.; Holmes, E.; Puhnaty, C.; Woods, A.

    2016-12-01

    The relationship between variations in hydroclimate and human demography on the Peruvian Altiplano has significant implications for understanding how people in the past have adapted to changes in freshwater resources. To investigate these human-environmental interactions, this project presents a 2,000 year sediment record from Laguna Arapa, a large lake that is <20 km NW of Lake Titicaca. Using sedimentology and stratigraphy as well as a suite of organic geochemical proxies including fecal 5β-stanols and leaf waxes (long chain n-alkanoic acids), we aim to tie together proxies of human population with indicators of regional hydroclimate. Preliminary results of sedimentology and stratigraphy show notable transitions from sand to silt to clay, suggesting rising lake level sequences at 500 and 700 AD. The last 1,300 years of sediment are characterized by alternating layers of organic rich material with abundant charcoal and black inorganic clay, suggesting intermittent periods of aridity and/or anthropogenic fire-setting. These layers are particularly frequent during the Medieval Climate Anomaly, which was characterized by dry and warm conditions. These results agree well with other records of hydroclimate from regional lakes as well as accumulation rate and temperature from the Quelccaya ice cap. Organic geochemical work is currently in progress and shows promise for linking together proxies of human demography with hydroclimate to understand the relationship between human settlement and climate change.

  20. High-resolution Atmospheric pCO2 Reconstruction across the Paleogene Using Marine and Terrestrial δ13C records

    NASA Astrophysics Data System (ADS)

    Cui, Y.; Schubert, B.

    2016-02-01

    The early Paleogene (63 to 47 Ma) is considered to have a greenhouse climate1 with proxies suggesting atmospheric CO2 levels (pCO2) approximately 2× pre-industrial levels. However, the proxy based pCO2 reconstructions are limited and do not allow for assessment of changes in pCO2 at million to sub-million year time scales. It has recently been recognized that changes in C3 land plant carbon isotope fractionation can be used as a proxy for pCO2 with quantifiable uncertainty2. Here, we present a high-resolution pCO2 reconstruction (n = 597) across the early Paleogene using published carbon isotope data from both terrestrial organic matter and marine carbonates. The minimum and maximum pCO2 values reconstructed using this method are broad (i.e., 170 +60/-40 ppmv to 2000 +4480/-1060 ppmv) and reflective of the wide range of environments sampled. However, the large number of measurements allows for a robust estimate of average pCO2 during this time interval ( 400 +260/-120 ppmv), and indicates brief (sub-million-year) excursions to very high pCO2 during hyperthermal events (e.g., the PETM). By binning our high-resolution pCO2 data at 1 million year intervals, we can compare our dataset to the other available pCO2 proxies. Our result is broadly consistent with pCO2 levels reconstructed using other proxies, with the exception of paleosol-based pCO2 estimates spanning 53 to 50 Ma. At this timescale, no proxy suggests pCO2 higher than 2000 ppmv, whereas the global surface ocean temperature is considered to be >10 oC warmer than today. Recent climate modeling suggests that low atmospheric pressure during this time period could help reconcile the apparent disconnect between pCO2 and temperature and contribute to the greenhouse climate3. References1. Huber, M., Caballero, R., 2011. Climate of the Past 7, 603-633. 2. Schubert, B.A., Jahren, A.H., 2015. Geology 43, 435-438. 3. Poulsen, C.J., Tabor, C., White, J.D., 2015. Science 348, 1238-1241.

  1. The Role of Forcing and Internal Dynamics in explaining the 'Medieval Climate Anomaly'

    NASA Technical Reports Server (NTRS)

    Goossee, Hugues; Crespin, Elisabeth; Dubinkina, Svetlana; Loutre, Marie-France; Mann, Michael E.; Renssen, Hans; Shindell, Drew

    2012-01-01

    Proxy reconstructions suggest that peak global temperature during the past warm interval known as the Medieval Climate Anomaly (MCA, roughly 950-1250 AD) has been exceeded only during the most recent decades. To better understand the origin of this warm period, we use model simulations constrained by data assimilation establishing the spatial pattern of temperature changes that is most consistent with forcing estimates, model physics and the empirical information contained in paleoclimate proxy records. These numerical experiments demonstrate that the reconstructed spatial temperature pattern of the MCA can be explained by a simple thermodynamical response of the climate system to relatively weak changes in radiative forcing combined with a modification of the atmospheric circulation, displaying some similarities with the positive phase of the so-called Arctic Oscillation, and with northward shifts in the position of the Gulf Stream and Kuroshio currents. The mechanisms underlying the MCA are thus quite different from anthropogenic mechanisms responsible for modern global warming.

  2. Pteropods are excellent recorders of surface temperature and carbonate ion concentration.

    PubMed

    Keul, N; Peijnenburg, K T C A; Andersen, N; Kitidis, V; Goetze, E; Schneider, R R

    2017-10-03

    Pteropods are among the first responders to ocean acidification and warming, but have not yet been widely explored as carriers of marine paleoenvironmental signals. In order to characterize the stable isotopic composition of aragonitic pteropod shells and their variation in response to climate change parameters, such as seawater temperature, pteropod shells (Heliconoides inflatus) were collected along a latitudinal transect in the Atlantic Ocean (31° N to 38° S). Comparison of shell oxygen isotopic composition to depth changes in the calculated aragonite equilibrium oxygen isotope values implies shallow calcification depths for H. inflatus (75 m). This species is therefore a good potential proxy carrier for past variations in surface ocean properties. Furthermore, we identified pteropod shells to be excellent recorders of climate change, as carbonate ion concentration and temperature in the upper water column have dominant influences on pteropod shell carbon and oxygen isotopic composition. These results, in combination with a broad distribution and high abundance, make the pteropod species studied here, H. inflatus, a promising new proxy carrier in paleoceanography.

  3. A multi-proxy record of hydroclimate, vegetation, fire, and post-settlement impacts for a subalpine plateau, Central Rocky Mountains U.S.A

    USGS Publications Warehouse

    Anderson, Lesleigh; Brunelle, Andrea; Thompson, Robert S.

    2015-01-01

    Apparent changes in vegetation distribution, fire, and other disturbance regimes throughout western North America have prompted investigations of the relative importance of human activities and climate change as potential causal mechanisms. Assessing the effects of Euro-American settlement is difficult because climate changes occur on multi-decadal to centennial time scales and require longer time perspectives than historic observations can provide. Here, we report vegetation and environmental changes over the past ~13,000 years as recorded in a sediment record from Bison Lake, a subalpine lake on a high plateau in northwestern Colorado. Results are based on multiple independent proxies, which include pollen, charcoal, and elemental geochemistry, and are compared with previously reported interpretations of hydroclimatic changes from oxygen isotope ratios. The pollen data indicate a slowly changing vegetation sequence from sagebrush steppe during the late glacial to coniferous forest through the late Holocene. The most dramatic vegetation changes of the Holocene occurred during the ‘Medieval Climate Anomaly’ (MCA) and ‘Little Ice Age’ (LIA) with rapid replacement of conifer forest by grassland followed by an equally rapid return to conifer forest. Late Holocene vegetation responses are mirrored by changes in fire, lake biological productivity, and watershed erosion. These combined records indicate that subsequent disturbance related to Euro-American settlement, although perhaps significant, had acted upon a landscape that was already responding to MCA-LIA hydroclimatic change. Results document both rapid and long-term subalpine grassland ecosystem dynamics driven by agents of change that can be anticipated in the future and simulated by ecosystem models.

  4. Holocene tephrostratigraphy in high-latitude peatlands of the Southern Hemisphere: a link through time?

    NASA Astrophysics Data System (ADS)

    Roland, T. P.; Amesbury, M. J.; Charman, D.; De Vleeeschouwer, F.; Hodgson, D.; Hughes, P. D. M.; Mauquoy, D.; Piotrowska, N.; Royles, J.; van Bellen, S.; Vanneste, H.

    2014-12-01

    We present preliminary tephrostratigraphic data from south Patagonian peatlands and moss banks from the Antarctic Peninsula that provide greater chronological constraint to Holocene palaeoclimatic records and increase the potential for inter-regional correlation. Relative to the Northern Hemisphere, there is a paucity of high-resolution, robustly dated Holocene palaeoclimate records in the Southern Hemisphere, limiting our ability to validate climate models in this region and fully understand variation in the global climate system over time. In the absence of long-term instrumental data, multi-proxy (testate amoebae, plant macrofossils, δ13C, δ18O and δD) palaeoclimatic records from south Patagonian peatlands can provide valuable information about the long-term variability of the southern westerlies, a key component in determining the Southern Ocean's function as a sink or source of atmospheric carbon dioxide. Similarly, multi-proxy palaeoclimatic reconstructions from moss banks provide a unique terrestrial palaeoenvironmental archive from the Antarctic Peninsula, where records of past ecological change are rare and provide vital context for the recent, rapid biotic change recorded since the mid-20th century. Robust chronologies are imperative for the accurate examination of spatial and temporal patterns in Holocene climate variation. Previous work has confirmed the presence of discrete tephra horizons in south Patagonian peatlands and Antarctic Peninsula moss banks but the examination of distal, cryptotephras is currently underemployed as a geochronological tool. The chronological potential of these archives is considerable, given their high and largely continuous accumulation rates and suitability for 14C dating, presenting additional opportunities to refine the ages of major Holocene eruptions. Here, we present initial tephrostratigraphic results from both regions and explore the links between them.

  5. Twentieth century sea surface temperature and salinity variations at Timor inferred from paired coral δ18O and Sr/Ca measurements

    NASA Astrophysics Data System (ADS)

    Cahyarini, Sri Yudawati; Pfeiffer, Miriam; Nurhati, Intan Suci; Aldrian, Edvin; Dullo, Wolf-Christian; Hetzinger, Steffen

    2014-07-01

    The Indonesian Throughflow (ITF), which represents the global ocean circulation connecting the Pacific Warm Pool to the Indian Ocean, strongly influences the Indo-Pacific climate. ITF monitoring since the late 1990s using mooring buoys have provided insights on seasonal and interannual time scales. However, the absence of longer records limits our perspective on its evolution over the past century. Here, we present sea surface temperature (SST) and salinity (SSS) proxy records from Timor Island located at the ITF exit passage via paired coral δ18O and Sr/Ca measurements spanning the period 1914-2004. These high-resolution proxy based climate data of the last century highlights improvements and cautions when interpreting paleoclimate records of the Indonesian region. If the seasonality of SST and SSS is not perfectly in phase, the application of coral Sr/Ca thermometry improves SST reconstructions compared to estimates based on coral δ18O only. Our records also underline the importance of ocean advection besides rainfall on local SSS in the region. Although the El Niño/Southern Oscillation (ENSO) causes larger anomalies relative to the Indian Ocean Dipole (IOD), Timor coral-based SST and SSS records robustly correlate with IOD on interannual time scales, whereas ENSO only modifies Timor SST. Similarly, Timor SST and SSS are strongly linked to Indian Ocean decadal-scale variations that appear to lead Timor oceanographic conditions by about 1.6-2 years. Our study sheds new light on the complex signatures of Indo-Pacific climate modes on SST and SSS dynamics of the ITF. This article was corrected on 8 AUG 2014. See the end of the full text for details.

  6. Volcanic influence on centennial to millennial Holocene Greenland temperature change.

    PubMed

    Kobashi, Takuro; Menviel, Laurie; Jeltsch-Thömmes, Aurich; Vinther, Bo M; Box, Jason E; Muscheler, Raimund; Nakaegawa, Toshiyuki; Pfister, Patrik L; Döring, Michael; Leuenberger, Markus; Wanner, Heinz; Ohmura, Atsumu

    2017-05-03

    Solar variability has been hypothesized to be a major driver of North Atlantic millennial-scale climate variations through the Holocene along with orbitally induced insolation change. However, another important climate driver, volcanic forcing has generally been underestimated prior to the past 2,500 years partly owing to the lack of proper proxy temperature records. Here, we reconstruct seasonally unbiased and physically constrained Greenland Summit temperatures over the Holocene using argon and nitrogen isotopes within trapped air in a Greenland ice core (GISP2). We show that a series of volcanic eruptions through the Holocene played an important role in driving centennial to millennial-scale temperature changes in Greenland. The reconstructed Greenland temperature exhibits significant millennial correlations with K + and Na + ions in the GISP2 ice core (proxies for atmospheric circulation patterns), and δ 18 O of Oman and Chinese Dongge cave stalagmites (proxies for monsoon activity), indicating that the reconstructed temperature contains hemispheric signals. Climate model simulations forced with the volcanic forcing further suggest that a series of large volcanic eruptions induced hemispheric-wide centennial to millennial-scale variability through ocean/sea-ice feedbacks. Therefore, we conclude that volcanic activity played a critical role in driving centennial to millennial-scale Holocene temperature variability in Greenland and likely beyond.

  7. Mid-late Holocene climate, demography, and cultural dynamics in Iberia: A multi-proxy approach

    NASA Astrophysics Data System (ADS)

    Lillios, Katina T.; Blanco-González, Antonio; Drake, Brandon Lee; López-Sáez, José Antonio

    2016-03-01

    Despite increasing interest in the relationship between culture transformation and abrupt climate change, their complexities are poorly understood. The local impact of global environmental fluctuations depends on multiple factors, and their effects on societal collapse are often assumed rather than demonstrated. One of the major changes in west European later prehistory was the Copper to Bronze Age transition, contemporaneous with the 4.2 ky cal. BP event. This article offers a multi-dimensional insight into this historical process in the Iberian Peninsula from a multi-proxy and comparative perspective. Three study areas, representative of diverse ecological settings and historical trajectories, are compared. Using radiocarbon dates, 13C discrimination (Δ13C) values on C3 plants, and high-resolution palynological records as palaeoclimatic and palaeodemographic proxies, this study tracks the uneven signals of Holocene climate. The wettest Northwest region features the most stable trend lines, whereas the Southwest exhibits an abrupt decrease in its demographic signals c. 4500 cal. BP, which is then followed by a subsequent rise in the neighbouring Southeast. These lines of evidence suggest the possibility, never previously noted, of demic migration from the Southwest to the Southeast in the Early Bronze Age as a contributing factor to the cultural dynamics of southern Iberia.

  8. Extreme decay of meteoric beryllium-10 as a proxy for persistent aridity.

    PubMed

    Valletta, Rachel D; Willenbring, Jane K; Lewis, Adam R; Ashworth, Allan C; Caffee, Marc

    2015-12-09

    The modern Antarctic Dry Valleys are locked in a hyper-arid, polar climate that enables the East Antarctic Ice Sheet (EAIS) to remain stable, frozen to underlying bedrock. The duration of these dry, cold conditions is a critical prerequisite when modeling the long-term mass balance of the EAIS during past warm climates and is best examined using terrestrial paleoclimatic proxies. Unfortunately, deposits containing such proxies are extremely rare and often difficult to date. Here, we apply a unique dating approach to tundra deposits using concentrations of meteoric beryllium-10 ((10)Be) adhered to paleolake sediments from the Friis Hills, central Dry Valleys. We show that lake sediments were emplaced between 14-17.5 My and have remained untouched by meteoric waters since that time. Our results support the notion that the onset of Dry Valleys aridification occurred ~14 My, precluding the possibility of EAIS collapse during Pliocene warming events. Lake fossils indicate that >14 My ago the Dry Valleys hosted a moist tundra that flourished in elevated atmospheric CO2 (>400 ppm). Thus, Dry Valleys tundra deposits record regional climatic transitions that affect EAIS mass balance, and, in a global paleoclimatic context, these deposits demonstrate how warming induced by 400 ppm CO2 manifests at high latitudes.

  9. Extreme decay of meteoric beryllium-10 as a proxy for persistent aridity

    PubMed Central

    Valletta, Rachel D.; Willenbring, Jane K.; Lewis, Adam R.; Ashworth, Allan C.; Caffee, Marc

    2015-01-01

    The modern Antarctic Dry Valleys are locked in a hyper-arid, polar climate that enables the East Antarctic Ice Sheet (EAIS) to remain stable, frozen to underlying bedrock. The duration of these dry, cold conditions is a critical prerequisite when modeling the long-term mass balance of the EAIS during past warm climates and is best examined using terrestrial paleoclimatic proxies. Unfortunately, deposits containing such proxies are extremely rare and often difficult to date. Here, we apply a unique dating approach to tundra deposits using concentrations of meteoric beryllium-10 (10Be) adhered to paleolake sediments from the Friis Hills, central Dry Valleys. We show that lake sediments were emplaced between 14–17.5 My and have remained untouched by meteoric waters since that time. Our results support the notion that the onset of Dry Valleys aridification occurred ~14 My, precluding the possibility of EAIS collapse during Pliocene warming events. Lake fossils indicate that >14 My ago the Dry Valleys hosted a moist tundra that flourished in elevated atmospheric CO2 (>400 ppm). Thus, Dry Valleys tundra deposits record regional climatic transitions that affect EAIS mass balance, and, in a global paleoclimatic context, these deposits demonstrate how warming induced by 400 ppm CO2 manifests at high latitudes. PMID:26647733

  10. A point-by-point multi-scale surface temperature reconstruction method and tests by pseudo proxy experiments

    NASA Astrophysics Data System (ADS)

    Chen, X.

    2016-12-01

    This study present a multi-scale approach combining Mode Decomposition and Variance Matching (MDVM) method and basic process of Point-by-Point Regression (PPR) method. Different from the widely applied PPR method, the scanning radius for each grid box, were re-calculated considering the impact from topography (i.e. mean altitudes and fluctuations). Thus, appropriate proxy records were selected to be candidates for reconstruction. The results of this multi-scale methodology could not only provide the reconstructed gridded temperature, but also the corresponding uncertainties of the four typical timescales. In addition, this method can bring in another advantage that spatial distribution of the uncertainty for different scales could be quantified. To interpreting the necessity of scale separation in calibration, with proxy records location over Eastern Asia, we perform two sets of pseudo proxy experiments (PPEs) based on different ensembles of climate model simulation. One consist of 7 simulated results by 5 models (BCC-CSM1-1, CSIRO-MK3L-1-2, HadCM3, MPI-ESM-P, and Giss-E2-R) of the "past1000" simulation from Coupled Model Intercomparison Project Phase 5. The other is based on the simulations of Community Earth System Model Last Millennium Ensemble (CESM-LME). The pseudo-records network were obtained by adding the white noise with signal-to-noise ratio (SNR) increasing from 0.1 to 1.0 to the simulated true state and the locations mainly followed the PAGES-2k network in Asia. Totally, 400 years (1601-2000) simulation was used for calibration and 600 years (1001-1600) for verification. The reconstructed results were evaluated by three metrics 1) root mean squared error (RMSE), 2) correlation and 3) reduction of error (RE) score. The PPE verification results have shown that, in comparison with ordinary linear calibration method (variance matching), the RMSE and RE score of PPR-MDVM are improved, especially for the area with sparse proxy records. To be noted, in some periods with large volcanic activities, the RMSE of MDVM get larger than VM for higher SNR cases. It should be inferred that the volcanic eruptions might blur the intrinsic characteristics of multi-scales variabilities of the climate system and the MDVM method would show less advantage in that case.

  11. Late Holocene droughts in the Fertile Crescent recorded in a speleothem from northern Iraq

    NASA Astrophysics Data System (ADS)

    Flohr, Pascal; Fleitmann, Dominik; Zorita, Eduardo; Sadekov, Aleksey; Cheng, Hai; Bosomworth, Matt; Edwards, Lawrence; Matthews, Wendy; Matthews, Roger

    2017-02-01

    Droughts have had large impacts on past and present societies. High-resolution paleoclimate data are essential to place recent droughts in a meaningful historical context and to predict regional future changes with greater accuracy. Such records, however, are very scarce in the Middle East in general, and the Fertile Crescent in particular. Here we present a 2400 year long speleothem-based multiproxy record from Gejkar Cave in northern Iraq. Oxygen and carbon isotopes and magnesium are faithful recorders of effective moisture. The new Gejkar record not only shows that droughts in 1998-2000 and 2007-2010, which have been argued to be a contributing factor to Syrian civil war, were extreme compared to the current mean climate, but they were also superimposed on a long-term aridification trend that already started around or before 950 C.E. (Common Era). This long-term trend is not captured by tree ring records and climate models, emphasizing the importance of using various paleoclimate proxy data to evaluate and improve climate models and to correctly inform policy makers about future hydroclimatic changes in this drought-prone region.

  12. Climate at the edge of human dispersal in the European Middle Pleistocene

    NASA Astrophysics Data System (ADS)

    Horne, David

    2014-05-01

    Pleistocene palaeoclimatic reconstructions based on fossils from sites containing archaeological evidence of human occupation can answer key questions about the climatic context of early human dispersal in Europe. Biological proxies including foraminifera, ostracods, diatoms, chironomid larvae, molluscs and pollen are widely used to estimate palaeoclimatic parameters, typically palaeotemperatures, using indicator species, Mutual Climatic Range (MCR), Modern Analogue Technique (MAT) and transfer function approaches. Any single proxy method will yield plausible results, but there is a need for multi-proxy testing; matching or overlapping results inspire confidence, whereas if independent proxies yield results that do not match or even overlap, one or more must be wrong. The Multi-Proxy Consensus (MPC) approach not only compares two or more proxy results in order to check for agreement, but also offers potential for more refined results to be obtained from the range of mutual agreement between two or more overlapping palaeotemperature ranges. Studies of MIS9 (late Middle Pleistocene) deposits in the Thames-Medway river system in SE England (some of which contain stone implements representing human occupation) have yielded palaeotemperature estimates based on ostracods, beetles, fish, herpetiles, pollen and plant macrofossils. The MPC approach demonstrates the consistency of the results and defines a more continental climate than today (mean July air temperatures similar or 1 degree warmer, mean January air temperatures at least 2 degrees colder). Two River Thames MIS11 sites (Ebbsfleet and Swanscombe) have yielded MPC results indicating summers up to 1.5 degrees warmer and winters at least 5 degrees colder than today. British early Middle Pleistocene sites record the earliest human presence in Europe North of the Alps. At Boxgrove (MIS13), well-known for its rich record of human activity (stone tools and butchered bones), combined ostracod and herpetile MCR results indicate summers within 3 degrees (above or below) of present day values, but winters at least 2 degrees colder, consistent with the mutual consensus of beetle and ostracod MCR results from another MIS13 human occupation site, Waverley Wood. Comparable MPC results have been obtained from older sites including Sugworth (MIS15?), Norton Subcourse and West Runton (both MIS17-15?); although none of these has yielded evidence of human presence they are potentially informative about the climatic context of Pakefield (MIS19 or 17), one of the earliest British sites with such evidence, where palaeoclimate reconstruction (warmer summers, winters similar to or colder than today) is based solely on the beetles. Likewise only the beetle MCR method has thus far been applied to the oldest known human occupation site in Britain, Happisburgh (MIS25 or 21), where similar summers and colder winters are again indicated; as yet no opportunity has arisen to check this result against another proxy. Human colonization of these sites by dispersal from more southerly populations had to contend with colder/longer winters, requiring greater dependence on meat for food because plant resources were only available in warmer months. Adaptive strategies likely involved using shelters and animal hides to keep warm, and eventually also fire (at least by MIS11), rather than seasonal migrations or physiological adaptations.

  13. Forced Climate Changes in West Antarctica and the Indo-Pacific by Northern Hemisphere Ice Sheet Topography

    NASA Astrophysics Data System (ADS)

    Jones, T. R.; Roberts, W. H. G.; Steig, E. J.; Cuffey, K. M.; Markle, B. R.; White, J. W. C.

    2017-12-01

    The behavior of the Indo-Pacific climate system across the last deglaciation is widely debated. Resolving these debates requires long term and continuous climate proxy records. Here, we use an ultra-high resolution and continuous water isotope record from an ice core in the Pacific sector of West Antarctica. In conjunction with the HadCM3 coupled ocean-atmosphere GCM, we demonstrate that the climate of both West Antarctica and the Indo-Pacific were substantially altered during the last deglaciation by the same forcing mechanism. Critically, these changes are not dependent on ENSO strength, but rather the location of deep tropical convection, which shifts at 16 ka in response to climate perturbations induced by the Laurentide Ice Sheet. The changed rainfall patterns in the tropics explain the deglacial shift from expanded-grasslands to rainforest-dominated ecosystems in Indonesia. High-frequency climate variability in the Southern Hemisphere is also changed, through a tropical Pacific teleconnection link dependent on the propogration of Rossby Waves.

  14. Reconstructing the history of the Atlantic Multidecadal Oscillation using high-resolution Mg/Ca paleothermometry from a Cariaco Basin core

    NASA Astrophysics Data System (ADS)

    Wurtzel, J. B.; Black, D. E.; Rahman, S.; Thunell, R.; Peterson, L. C.; Tappa, E.

    2010-12-01

    Instrumental and proxy-reconstructions show the existence of an approximately 70-year periodicity in Atlantic sea surface temperature (SST), known as the Atlantic Multidecadal Oscillation (AMO). The AMO is correlated with circum-tropical Atlantic climate phenomena such as Sahel and Nordeste rainfall, and Atlantic hurricane patterns. Though it has been suggested that the AMO is controlled by thermohaline circulation, much debate exists as to whether the SST fluctuations are a result of anthropogenic forcing or a natural climate mode, or even if the AMO is a true oscillation at all. Our ability to address this issue has been limited by instrumental SST records that rarely extend back more than 50-100 years and proxy reconstructions that are mostly terrestrial-based. Additionally, the modern instrumental variability likely contains an anthropogenic component that is not easily distinguished from the natural background of the system. From a marine sediment core taken in the Cariaco Basin, we have developed a high-resolution SST reconstruction for the past ca. 1500 years using Mg/Ca paleothermometry on seasonally-representative foraminifera, with the most recent data calibrated to the instrumental record. Previous studies have shown Cariaco Basin Mg/Ca-SSTs to be well-correlated to the Caribbean Sea and much of the western tropical Atlantic, which allows us to create a record that can be used to determine pre-anthropogenic rates and ranges of SST variability and observe how they change over time. Averaging the seasonal temperatures derived from the two foraminiferal species over the instrumental period yields a strong correlation to the AMO index from A. D. 1880 through 1970 (r = 0.44, p<0.0001). Wavelet analysis of the proxy average annual SST data indicates that modern AMO variability is not a consistent feature through time, and may be a function of warm-period climate.

  15. Phanerozoic pCO2 recorded by the plants that used it: refinement, independent validation and multi-proxy comparison of a physiological model.

    NASA Astrophysics Data System (ADS)

    Franks, P.; Royer, D. L.; Kowalczyk, J.; Milligan, J.

    2016-12-01

    CO2 has been described as the most important greenhouse gas in terms of maintaining a habitable climate on Earth. However, pCO2 has not been constant through time and the resulting variability of its forcing has contributed to periodic swings in global climate between warmer and cooler periods. Reliable prediction of the magnitude and effects of future global warming with increasing pCO2 depends on quantifying climate sensitivity to forcing by pCO2, which can only be measured from the record of pCO2 and temperature in Earth's geological past. This has been difficult because of inherent uncertainties, sometimes unquantifiable, in the reconstruction of pCO2 for past geologic periods. Recently a new CO2 proxy was developed based on the principle that photosynthesis by plants is quantitatively dependent on pCO2 (CO2 being the substrate for photosynthesis), with the record of this relationship preserved in the structure and chemistry of plant fossils (Franks et al., 2014, Geophysical Research Letters, 41: 4685-4694). This method has constrained uncertainty to more moderate bounds and eliminated instances of unbounded uncertainty. Here we describe a refinement to one of the input physiological quantities, the present-day ratio of intercellular to ambient CO2 concentration, ci/ca, which improves model accuracy. We also summarise the key findings of an independent validation and multi proxy comparison of the model using fossil plant material from a floristically diverse early Paleocene site which, at 64.5 Ma, was living 1.5 m.y after the Cretaceous-Paleogene boundary (KPB) mass extinction event. Principal amongst these findings is an upward revision of pCO2 to a median 612 ppm for the early Paleocene, with a corresponding minimum average Earth system sensitivity of 3.8 °C.

  16. Multiproxy records of Holocene climate and glacier variability from sediment cores in the Cordillera Vilcabamba of southern Peru

    NASA Astrophysics Data System (ADS)

    Schweinsberg, A. D.; Licciardi, J. M.; Rodbell, D. T.; Stansell, N.; Tapia, P. M.

    2012-12-01

    Sediments contained in glacier-fed lakes and bogs provide continuous high-resolution records of glacial activity, and preserve multiproxy evidence of Holocene climate change. Tropical glacier fluctuations offer critical insight on regional paleoclimatic trends and controls, however, continuous sediment records of past tropical climates are limited. Recent cosmogenic 10Be surface exposure ages of moraine sequences in the Cordillera Vilcabamba of southern Peru (13°20'S latitude) reveal a glacial culmination during the early Holocene and a less extensive glaciation coincident with the Little Ice Age of the Northern Hemisphere. Here we supplement the existing 10Be moraine chronology with the first continuous records of multiproxy climate data in this mountain range from sediment cores recovered from bogs in direct stratigraphic contact with 10Be-dated moraines. Radiocarbon-dated sedimentological changes in a 2-meter long bog core reveal that the Holocene is characterized by alternating inorganic and organic-rich laminae, suggesting high-frequency climatic variability. Carbon measurements, bulk density, and bulk sedimentation rates are used to derive a record of clastic sediment flux that serves as a proxy indicator of former glacier activity. Preliminary analyses of the bog core reveal approximately 70 diatom taxa that indicate both rheophilic and lentic environments. Initial results show a general decrease in magnetic susceptibility and clastic flux throughout the early to mid-Holocene, which suggests an interval of deglaciation. An episode of high clastic flux from 3.8 to 2.0 ka may reflect a late Holocene glacial readvance. Volcanic glass fragments and an anomalous peak in magnetic susceptibility may correspond to the historical 1600 AD eruption of Huaynaputina. Ten new bog and lake sediment cores were collected during the 2012 field expedition and analytical measurements are underway. Ongoing efforts are focused on analyzing diatom assemblage data, developing detailed records of biogenic silica, clastic sediment flux, and magnetic susceptibility, and augmenting the 10Be moraine chronology with precise limiting radiocarbon ages to provide a more comprehensive assessment of regional climate and environmental indicators. These new paleoclimatic records will fill a large geographic gap in available proxy data and contribute toward a more complete understanding of Holocene climate variability in southern Peru. In addition, the basal radiocarbon ages being developed from sediments in contact with 10Be-dated moraines will place limits on the cosmogenic 10Be production rate in the high Andes.

  17. Comparison of sea level pressure reconstructions from western North American tree rings with a proxy record of winter severity in Japan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gordon, G.A.; Lough, J.M.; Fritts, H.C.

    Reconstructions of winter (December-February) sea level pressure (SLP) from western North American tree-ring chronologies are compared with a proxy record of winter severity in Japan derived from the historically documented freeze dates of Lake Suwa. The SLP reconstructions extend from 1602 to 1961 and freeze dates from 1443 to 1954. The instrumental and reconstructed SLP for the 20th century reveal two distinct circulation regimes (teleconnection patterns) over the North Pacific that appear to be associated with severe and mild winters and, consequently, with early and late freezing of the lake. The reconstructed SLPO anomaly map for severe winters prior tomore » 1683 shows a pattern similar to those in the instrumental and reconstructed records of the 20th century. The analysis reveals that the reliability of the reconstruction may vary with the configuration of the actual SLP pattern as the mild winter pattern is not as well reconstructed as the severe winter pattern. That result illustrates the importance of testing the reliability of a reconstruction within the context of the intended interpretation. This analysis demonstrates how different types of proxy climate data can be compared and verified.« less

  18. Solar Forcing of Regional Climate Change During the Maunder Minimum

    NASA Technical Reports Server (NTRS)

    Shindell, Drew T.; Schmidt, Gavin A.; Mann, Michael E.; Rind, David; Waple, Anne; Hansen, James E. (Technical Monitor)

    2002-01-01

    We examine the climate response to solar irradiance changes between the late 17th century Maunder Minimum and the late 18th century. Global average temperature changes are small (about 0.3 to 0.4 C) in both a climate model and empirical reconstructions. However, regional temperature changes are quite large. In the model, these occur primarily through a forced shift toward the low index state of the Arctic Oscillation/North Atlantic Oscillation. This leads to colder temperatures over the Northern Hemisphere continents, especially in winter (1 to 2 C), in agreement with historical records and proxy data for surface temperatures.

  19. Climatic interpretation of the length fluctuations of Glaciar Frías, North Patagonia, Argentina

    NASA Astrophysics Data System (ADS)

    Leclercq, P. W.; Pitte, P.; Giesen, R. H.; Masiokas, M. H.; Oerlemans, J.

    2011-10-01

    We explore the climatic information contained in the record of length fluctuations of Glaciar Frías, in the North Patagonian Andes of Argentina. This record is one of the longest and most detailed glacier records in southern South America, starting in 1639. In order to interpret the length variations of Glaciar Frías since the maximum Little Ice Age extent in 1639, we use a combination of a simplified surface energy-balance model to calculate the glacier mass balance, and a flow-line model to account for the dynamical response of the glacier to changes in the climatic forcing. The overall retreat of the glacier observed over 1639-2009 is best explained by an annual mean temperature increase of 1.16 °C or a decrease in annual precipitation of 34%, most of which would have occurred during the 20th century. The glacier model is also forced with independent proxy-based reconstructions of precipitation and temperature, based on tree rings and a composition of documentary evidence, tree rings, sediments, corals, and ice cores. The uncertainties in the presently available proxy reconstructions are rather large, leading to a wide range in the modelled glacier length. Most of the observations lie within this range. However, in these reconstructions, the mid-17th century is too cold and the early 19th century ca. 0.7 °C too warm to explain the observed glacier lengths.

  20. Late-glacial and Holocene records of fire and vegetation from Cradle Mountain National Park, Tasmania, Australia

    NASA Astrophysics Data System (ADS)

    Stahle, Laura N.; Chin, Hahjung; Haberle, Simon; Whitlock, Cathy

    2017-12-01

    Fire activity was reconstructed at five sites and vegetation history at three sites in northwest Tasmania, Australia in order to examine the climate and human drivers of environmental change in the region. Watershed-scale reconstructions of fire were compared to regional vegetation history. Fire activity was very low until ca. 12,000 cal yr BP. An early-Holocene fire maximum, ca. 11,800-9800 cal yr BP, occurred during the warmest interval of the Holocene as recorded by regional paleoclimate proxy records. This period of elevated burning was also coincident with an increase in arboreal sclerophyll plant taxa. A maximum in rainforest taxa occurred at ca. 8500-5800 cal yr BP concurrent with sharply diminished biomass burning compared with the early Holocene. The increase in rainforest taxa is attributed to elevated effective moisture during this period. Conditions were drier and variable in the late Holocene as compared with earlier periods. A rise in fire activity at ca. 4800-3200 cal yr BP was accompanied by an increase in sclerophyll taxa and decline of rainforest and subalpine taxa. Elevated palynological richness during the late Holocene co-occurred with high levels of charcoal suggesting that fires promoted high floristic diversity. At Cradle Mountain, there is no clear evidence that fire regimes or vegetation were extensively modified by humans prior to European settlement. Climate was the primary driver of fire activity over millennial timescales as explained by the close relationship between charcoal and climate proxy data.

  1. Oasis deposits in the southern margin of the Taklimakan Desert and abrupt environmental changes during the last 30 ka

    NASA Astrophysics Data System (ADS)

    Shu, P.; Li, B.; Wang, H.; Cheng, P.; An, Z.; Zhou, W.; Zhang, D. D.

    2017-12-01

    Taklimakan Desert, the largest arid landform in the Eurasia, is one of the most important dust sources in the world. Growing evidences shows that millennial-scale abrupt climate changes during the last glacial period in the region. However, records on millennial-scale climate and environmental changes remain poorly understood because dating eolian, lacustrine, and fluvial sediments and establishing the reliable environmental proxies from these records are always challenging. Here, we present 32 AMS 14C dates of bulk sediments, grain size, and Rb/Sr ratio parameters from the oasis sequence and dates of bulk loess and charcoal from the upstream source regions to examine the significance of oasis sediments on millennial-scale environmental changes in the Taklimakan Desert. We found that substantial reversal of radiocarbon dates on total organic carbon (TOC) was controlled by source region organic carbon input. Loess hills, alpine meadow north of the study region provided fluvial deposits along drainage system and deflation in the river valleys further provide eolain materials. We argue that early oasis deposits experienced deflation and re-deposition less severe than the younger oasis deposits. After refining radiocarbon age-depth relationships for an age model by Bacon package, proxy records show substantial abrupt fluctuations in climate and environments during the last glacial period, among which three wet intervals, two dry periods are identified. The wetter and warmer conditions during the Holocene facilitated human to occupy the oasis.

  2. Simulations of Western North American Hydroclimate during the Little Ice Age and Medieval Climate Anomaly

    NASA Astrophysics Data System (ADS)

    Simon, S. M.; Mann, M. E.; Steinman, B. A.; Feng, S.; Zhang, Y.; Miller, S. K.

    2013-12-01

    Despite the immense impact that large, modern North American droughts, such as those of the 1930s and 1950s, have had on economic, social, aquacultural, and agricultural systems, they are smaller in duration and magnitude than the multidecadal megadroughts that affected North America, in particular the western United States, during the Medieval Climate Anomaly (MCA, ~ 900-1300 AD) and the Little Age (LIA, ~1450-1850 AD). Although various proxy records have been used to reconstruct the timing of these MCA and LIA megadroughts in the western United States, there still exists great uncertainty in the magnitude and spatial coherence of such droughts in the Pacific Northwest region, especially on decadal to centennial timescales. This uncertainty motivates the following study to establish a causal link between the climate forcing that induced these megadroughts and the spatiotemporal response of regional North American hydroclimates to this forcing. This study seeks to establish a better understanding of the influence of tropical Pacific and North Atlantic SSTs on North American drought during the MCA and LIA. We force NCAR's Community Atmospheric Model version 5.1.1 (CAM 5) with prescribed proxy-reconstructed tropical Pacific and North Atlantic SST anomalies from the MCA and LIA, in order to investigate the influence that these SST anomalies had on the spatiotemporal patterns of drought in North America. To isolate the effects of individual ocean basin SSTs on the North American climate system, the model experiments use a variety of SST permutations in the tropical Pacific and North Atlantic basin as external forcing. In order to quantify the spatiotemporal response of the North American climate system to these SST forcing permutations, temperature and precipitation data derived from the MCA and LIA model experiments are compared to lake sediment isotope and tree ring-based hydroclimate reconstructions from the Pacific Northwest. The spatiotemporal temperature and precipitation patterns from the model experiments indicate that in the Pacific Northwest, the MCA and LIA were anomalously wet and dry periods, respectively, a finding that is largely supported by the lake sediment records. This pattern contrasts with the dry MCA/wet LIA pattern diagnosed in model experiments for the U.S Southwest and indicated by tree ring-based proxy data. Thus, the CAM 5 model experiments confirm the wet/dry dipole pattern suggested by proxy data for the western U.S. during the MCA and LIA and highlights the role that the natural variability of tropical Pacific and North Atlantic SSTs played in driving this spatiotemporal climate pattern and its related teleconnections.

  3. A High-Resolution Speleothem Record From Florida of Atmospheric Teleconnections Since 1,500 Years Ago

    NASA Astrophysics Data System (ADS)

    Polk, J. S.; van Beynen, P.; Asmerom, Y.

    2008-12-01

    Understanding atmospheric teleconnections between tropical, subtropical, and higher-latitude regions of the North Atlantic Ocean is necessary to better evaluate the anthropogenic contribution to climate change. Here, we present a precisely dated, high- resolution speleothem record of stable isotopes and trace elements from Florida spanning the last 1,500 years. By using a multi-proxy approach, the different climatic influences were deconvolved, including the NAO, ENSO, PDO, and ITCZ, which all can affect our region. Further comparison using time-series analysis between our data and other high-resolution records covering this same period reveal differing influences of these teleconnections on geographic regions. Our record shows both the influence of changing rainfall above the cave and the influence of sea surface temperatures on atmospheric convection caused by atmospheric-oceanic variability over time.

  4. Climate sensitivity derived from orbital-scale, δ11B-based pCO2 estimates in the early Pleistocene, ~1.5 Ma

    NASA Astrophysics Data System (ADS)

    Dyez, K. A.; Hoenisch, B.

    2015-12-01

    Atmospheric CO2 concentrations in the late Pleistocene have been characterized from ancient air bubbles trapped within polar ice sheets. Ice-core records clearly demonstrate the glacial-interglacial relationship between the global carbon cycle and climate, but they are so far limited to the last 800 ky, when glacial cycles occurred approximately every 100-ky. Boron isotope ratios (δ11B) recorded in the tests of fossil planktic foraminifera offer an opportunity to extend the atmospheric pCO2 record into the early Pleistocene, when glacial cycles instead occurred approximately every 41-ky. We present a new high-resolution record of planktic foraminiferal d11B, Mg/Ca (a sea surface temperature proxy) and salinity estimates from the deconvolution of δ18O and Mg/Ca. Combined with reasonable assumptions of ocean alkalinity, these data allow us to estimate pCO2 over three of the 41-ky climate cycles at ~1.5 Ma. Our results confirm the hypothesis that climate and atmospheric pCO2 were coupled beyond ice core records and provide new constraints for studies of long-term CO2 storage and release, regional controls on the early Pleistocene carbon cycle, and estimating climate sensitivity before the mid-Pleistocene transition.

  5. Paleoclimatic and paleoecological reconstruction of early Miocene terrestrial equatorial deposits, Rusinga and Mfangano Islands, Lake Victoria, Kenya

    NASA Astrophysics Data System (ADS)

    Michel, L. A.; Peppe, D. J.; McNulty, K. P.; Driese, S. G.; Lutz, J.; Nightingale, S.; Maxbauer, D. P.; Horner, W. H.; DiPietro, L. M.; Lehmann, T.; Dunsworth, H. M.; Harcourt-Smith, W. E.; Ogondo, J.

    2012-12-01

    Biological responses to climatic shifts are often studied to inform us on future anthropogenic-driven climate change. However, few of these climatic shifts occur over time scales appropriate to modern change and few occur with biota similar to modern. The Miocene Climatic Optimum is an ideal interval to study because of its rapid duration and because it occurred during the rise and proliferation of apes. The sediments on Rusinga and Mfangano Islands, Lake Victoria, Kenya were deposited between 18 and 20 Ma and record a changing equatorial climate just prior to the Miocene Climate Optimum. This location also offers an opportunity to use multiple proxies to constrain climate and landscape, including paleosol geochemistry, paleobotany and paleontology. Additionally, due to the rich fossil preservation on the islands, climatic shifts are framed within the context of early caterrhine evolution. Here, we report a climate shift recorded through three time slices spanning two formations over ~2 myr. The oldest unit, the Wayando Formation, records an arid, probably open ecosystem with pedogenic calcite rhizoliths, a high groundwater table, poorly-formed paleosols and permineralized sedges. The middle time slice, the Grit Member-Fossil Bed Member contact of the Hiwegi Formation, shows evidence of a local saline lake, with desiccation features, satin-spar after gypsum deposits and salt hoppers. Paleobotanical and sedimentological data from roughly contemporaneous strata indicate a warm, highly seasonal environment that supported a mixture of woodland and forested elements across the landscape. The youngest unit, which is within the Kibanga Member of the Hiwegi Formation, displays demonstrable evidence for a closed-canopy multistoried forest with the presence of tree-stump casts and permineralized root systems within a red-brown paleosol. Within the same paleosol horizon, the dental remains of the catarrhines Proconsul and Dendropithecus have been discovered in situ. This stratum is overlain by a sandstone with preserved leaves. Bulk soil geochemistry and paleobotanical proxies suggest the climate was warm (MAT estimates range = 22.6 - 34.5 °C) and relatively wet (MAP estimates range = 700 - 2,620 mm). This study suggests that tropical Africa may have had a much more dynamic climate leading up to the Miocene Climatic Optimum than previously suggested, and underwent considerable ecosystem reorganization both before and after the Miocene Climatic Optimum.

  6. Experiments with the living dead: Plants as monitors and recorders of Biosphere Geosphere interactions.

    NASA Astrophysics Data System (ADS)

    Lomax, Barry; Fraser, Wesley

    2016-04-01

    Understanding variations in the Earth's climate history will enhance our understanding of and capacity to predict future climate change. Importantly this information can then be used to reduce uncertainty around future climate change predictions. However to achieve this, it is necessary to develop well constrained and robustly tested palaeo-proxies. Plants are innately coupled to the atmosphere requiring both sunlight and CO2 to drive photosynthesis and carbon assimilation. When combined with their resilience and persistence, the study of plant responses to climate change in concert with the analysis of fossil plants offer the opportunity to monitor past atmospheric conditions and infer palaeoclimate change. In this presentation we highlight how this approach is leading to the development of mechanistic palaeoproxies tested on palaeobotanically relevant extant species showing that plant fossils can be used as both monitors and geochemical recorders of atmospheric changes.

  7. Maximum rates of climate change are systematically underestimated in the geological record.

    PubMed

    Kemp, David B; Eichenseer, Kilian; Kiessling, Wolfgang

    2015-11-10

    Recently observed rates of environmental change are typically much higher than those inferred for the geological past. At the same time, the magnitudes of ancient changes were often substantially greater than those established in recent history. The most pertinent disparity, however, between recent and geological rates is the timespan over which the rates are measured, which typically differ by several orders of magnitude. Here we show that rates of marked temperature changes inferred from proxy data in Earth history scale with measurement timespan as an approximate power law across nearly six orders of magnitude (10(2) to >10(7) years). This scaling reveals how climate signals measured in the geological record alias transient variability, even during the most pronounced climatic perturbations of the Phanerozoic. Our findings indicate that the true attainable pace of climate change on timescales of greatest societal relevance is underestimated in geological archives.

  8. Climatic record of the Iberian peninsula from lake Moncortes' sediments

    NASA Astrophysics Data System (ADS)

    Cao, Min; Huguet, Carme; Rull, Valenti; Valero, Blas; Rosell-Mele, Antoni

    2014-05-01

    Climatic record of the Iberian peninsula from lake Moncortes' sediments Min Cao1, Carme Huguet1, Valenti Rull2, Blas L. Valero-Garces3, Antoni Rosell-Melé1,4 1Institut de Ciència i Tecnologia Ambientals (ICTA), Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Catalonia, Spain; 2Institut de Botanic de Barcelona (CSIC), Passeig del Migdia s/n, 08038, Barcelona, Spain, 3 Instituto Pirenaico de Ecologıa (CSIC), Avda. Montañana 1005, 50059 Zaragoza, Spain, 4Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Catalonia, Spain. The continuing buildup of industrial greenhouse gases in the atmosphere and concomitant increase in global temperatures has made much of the world's society aware that decades to centuries of environmental change lie ahead, and that these will have profound economic, political and societal impacts. The Iberian Peninsula lies in the boundary between tropical and subtropical climates and seems to amplify the climatic signals form the northern hemisphere through both atmospheric and water circulation feedbacks, making it an ideal site to monitor Northern hemisphere climate changes. This extreme sensitivity to climatic changes also makes the Iberian Peninsula extremely vulnerable to future climate changes. This is why understanding sensitivity to climate change and the consequences it will have on both climate and the hydrological cycle is key to implement preventive measures. The aim of our study is to come up with a high resolution quantitative reconstruction of climate variability (temperature, production and precipitation) in the Iberian Peninsula from lake sediments. We also want to establish the relation between those changes and the ones observed in both ice cores from Greenland and paleotemperature records from marine sediments of the continental Iberian margin. For these reasons we sampled a core in Moncortes (42.3N, 0.99E), a lake of karstic origin with an average depth of 25m and an area of 0.19km2. Lake Moncortes is situated at 1065 m above sea level, has an average temperature of 10ºC (minimum 3 and maximum 16ºC) and a mean annual precipitation of 770mm. We used the MBT/CBT (Weijers et al. 2007) proxy of pH and terrestrial temperature and the TEX86 temperature proxy (Schouten et al. 2002) to estimate changes in and around the lake. Both proxies are based on the glycerol dialkyl glycerol tetraethers (GDGTs) of archaea (isoprenoid GDGTs) and bacteria (branched GDGTs) origin. We also measured soils surrounding the lake (Menges et al. 2013) in order to establish end-members for the proxies as well as organic matter transport. Data on n-alkane isotopes will help establish hydrographic regime changes. We observe changes in temperature and humidity consistent with those on teh northern hemisphere. J. Menges, C. Huguet, J.M. Alcañiz, S. Fietz, D. Sachse, A. Rosell-Melé Biogechemistry discussions (2013), BGD bg-2013-198. S. Schouten, E.C. Hopmans, E. Schefuss, J.S.S. Damste, Earth and Planetary Science Letters 204(2002) 265-274 J.W.H. Weijers, S. Schouten, J.S.S. Damste, Geochimica Et Cosmochimica Acta 71(2007) A1098-A1098.

  9. Late Holocene monsoon climate of northeastern Taiwan inferred from elemental (C, N) and isotopic (δ13C, δ15N) data in lake sediments

    NASA Astrophysics Data System (ADS)

    Selvaraj, Kandasamy; Wei, Kuo-Yen; Liu, Kon-Kee; Kao, Shuh-Ji

    2012-03-01

    Little information exists about centennial-scale climate variability on oceanic islands in the western Pacific where the East Asian monsoon (EAM) strongly influences the climate, mountain ecosystem and the society. In this study, we investigate a 168 cm long sediment core recovered from Emerald Peak Lake in subalpine NE Taiwan for the contents of grain size, total organic carbon (TOC), C/N ratio, and stable isotopes (δ13C and δ15N) to reconstruct the monsoon climate and vegetation density during the late Holocene. Six radiocarbon (14C) ages obtained on plant remains used for the chronology indicate that the sediment core has been accumulated since ˜3770 cal BP with a mean sedimentation rate of 44.6 cm/ka. The sub-centennial resolution of our proxy records reveals strong fluctuations of the EAM and vegetation density for the past ˜3770 cal BP. The greater contents of coarse and medium sediments with overall decreasing trends from 3770 to 2000 cal BP suggest an increasing fine sediment influx from the catchment likely due to an increasing lake water level. Although low TOC content, C/N ratio, and enriched δ13C values in bulk and fine sediments during this interval suggest a sparsely vegetated catchment, increasing trends of TOC content and C/N ratio together with decreasing trends of δ13C and δ15N values indicate a strengthening pattern of summer monsoon. This is in contrast to a decreasing monsoon strength inferred from Dongge Cave δ18O record at that time, supporting the idea of anti-phasing of summer EAM and Indian summer monsoon. Since 2000 cal BP, higher content of fine sediments with high TOC content and C/N ratio but relatively depleted δ13C and low δ15N values suggest a high but stable lake water level and dense C3 plants, consistent with a stronger summer monsoon in a wet climate. Within this general trend, we interpret a prominent change of proxy parameters in sediments from ˜560 to 150 cal BP, as subtropical evidence for the Little Ice Age in NE Taiwan. By comparing our proxy records with other diverse land and marine records from southern China and adjoining marine realm, we demonstrate that the centennial to millennial-scale fluctuations of the summer EAM over the northeastern Taiwan during the late Holocene have been largely modulated by the tropical Pacific forcing through El Niño along with solar forcing.

  10. Modeling Climate and Societal Resilience in the Mediterranean During the Last Millennium

    NASA Astrophysics Data System (ADS)

    Wagner, S.; Xoplaki, E.; Luterbacher, J.; Zorita, E.; Fleitmann, D.; Preiser-Kapeller, J.; Toreti, A., , Dr; Sargent, A. M.; Bozkurt, D.; White, S.; Haldon, J. F.; Akçer-Ön, S.; Izdebski, A.

    2017-12-01

    Past civilisations were influenced by complex external and internal forces, including changes in the environment, climate, politics and economy. A geographical hotspot of the interplay between those agents is the Mediterranean, a cradle of cultural and scientific development. We analyse a novel compilation of high-quality hydroclimate proxy records and spatial reconstructions from the Mediterranean and compare them with two Earth System Model simulations (CCSM4, MPI-ESM-P) for three historical time intervals - the Crusaders, 1095-1290 CE; the Mamluk regime in Transjordan, 1260-1516 CE; and the Ottoman crisis and Celâlî Rebellion, 1580-1610 CE - when environmental and climatic stress tested the resilience of complex societies. ESMs provide important information on the dynamical mechanisms and underlying processes that led to anomalous hydroclimatic conditions of the past. We find that the multidecadal precipitation and drought variations in the Central and Eastern Mediterranean during the three periods cannot be explained by external forcings (solar variations, tropical volcanism); rather they were driven by internal climate dynamics. The integrated analysis of palaeoclimate proxies, climate reconstructions and model simulations sheds light on our understanding of past climate change and its societal impact. Finally, our research emphasises the need to further study the societal dimension of environmental and climate change in the past, in order to properly understand the role that climate has played in human history.

  11. The Fossil Atmospheres Project: A novel approach for simultaneously refining the Ginkgo paleo-pCO2 barometer & educating citizens about climate change

    NASA Astrophysics Data System (ADS)

    Barclay, R. S.; Soul, L.; Bolton, A.; Wilson, J. P.; Megonigal, P.; Wing, S. L.

    2017-12-01

    During the Late Cretaceous and Paleogene, the Earth's climate was much warmer than today, often punctuated by rapid hyperthermal events. The background warmth and hyperthermals are often attributed to increased atmospheric carbon dioxide (pCO2), yet paleo-pCO2 proxy estimates for this interval often disagree widely, and there are few paired records of temperature and pCO2. Consequently, we have an inadequate understanding of what generated past warm climates, and of the magnitude of pCO2 change associated with hyperthermals. We aim to develop a more reliable stomatal proxy for paleo-pCO2 by quantifying the effect of pCO2 and other environmental variables on stomatal properties of living Ginkgo biloba trees. Herbarium collections of G. biloba demonstrate that the stomatal index proxy for paleo-pCO2 is strongly correlated with pCO2 over the range of 290-400 ppm. However, despite wide application of the Ginkgo paleo-pCO2 barometer, our understanding of pCO2 in the fossil record has been hindered because the morphological and physiological changes in Ginkgo biloba stomata under pCO2 above 400 ppm have been poorly constrained. To address this problem, we are conducting an elevated CO2 experiment that will quantify the response of Ginkgo to elevated pCO2, an experiment we call 'Fossil Atmospheres'. We are growing 15 Ginkgo biloba trees in open-topped chambers in natural field conditions, under atmospheres with ambient (400), 600, 800, and 1,000 ppm of CO2. Each tree is regularly monitored for changes in stomatal frequency, and rates of photosynthesis and transpiration to constrain parameters used in gas exchange models of paleo-pCO2. We have also involved citizen scientists in the process of collecting stomatal index measurements with the Zooniverse platform, utilizing the interaction to educate citizens about modern climate change from the less-menacing viewpoint of deep-time climate change events. Our results can then be used to infer paleo-pCO2 from stomatal features of Late Cretaceous-Paleogene fossils of the nearly identical species, Ginkgo wyomingensis, allowing for paleo-pCO2 estimates from these terrestrial fossils to be compared with temperature and paleo-pCO2 records derived from the marine realm.

  12. Seasonality of bottom water temperature in the northern North Sea reconstructed from the oxygen isotope composition of the bivalve Arctica islandica

    NASA Astrophysics Data System (ADS)

    Trofimova, Tamara; Andersson, Carin; Bonitz, Fabian

    2017-04-01

    The seasonality of temperature changes is an important characteristic of climate. However, observational data for the ocean are only available for the last 150 year from a limited number of locations. Prior to 18th century information is only available from proxy reconstructions. The vast majority of such reconstructions depend on land-based archives, primarily from dendrochronology. Established marine proxy records for the ocean, especially at high latitudes, are both sparsely distributed and poorly resolved in time. Therefore, the identification and development of proxies for studying key ocean processes at sub-annual resolution that can extend the marine instrumental record is a clear priority in marine climate science. In this study, we have developed a record of early Holocene seasonal variability of bottom water temperature from the Viking Bank in the northern most North Sea. This area is of a particular interest since the hydrography is controlled by the inflow of Atlantic water. The reconstruction is based on the oxygen isotope composition of the growth increments in two sub-fossil shells of Arctica islandica (Bivalvia), dated to 9600-9335 cal. yr BP. By combining radiocarbon dating and sclerochronological techniques a floating chronology spanning over 200 years was constructed. Using the chronology as an age model, oxygen isotope measurements from 2 shells were combined into a 22-years long record. The results from this oxygen isotope record are compared with stable oxygen isotope profiles from modern shells to estimate changes in the mean state and seasonality between present and early Holocene. Shell-derived oxygen isotope values together with ice-volume corrected oxygen isotope values for the seawater were used to calculate bottom-water temperatures on a sub-annual time-scale. Preliminary results of the reconstructed early Holocene bottom water temperature indicate higher seasonality and lower minimum temperature compared to the present.

  13. Late Neogene Orbitally-Forced Sea Surface Temperature Variability in the Eastern Equatorial Pacific as Measured by Uk'37 and TEX86

    NASA Astrophysics Data System (ADS)

    Lawrence, K. T.; Pearson, A.; Castañeda, I. S.; Peterson, L.

    2017-12-01

    Key features of late Neogene climate remain uncertain due to conflicting records derived from different sea surface temperature (SST) proxies. To resolve these disputes, it is necessary to explore both the consistencies and differences between paleotemperature estimates from critical oceanographic regimes. Here, we report orbital-scale climate variability at ODP Site 846 in the Eastern Equatorial Pacific (EEP) in the interval from 5-6 Ma using alkenone and TEX86 temperature estimates. Results from both proxies are very similar in their secular trends and magnitude of long-term temperature change; and spectral analysis demonstrates that the records are coherent and in-phase or nearly in-phase in both the obliquity and precession bands. However, we find that the temperatures reconstructed by TEX86 are consistently offset towards colder values by 2ºC with orbital-scale variations approximately twice the amplitude of the Uk'37 derived estimates. Both temperature records are antiphased - i.e. "colder" - at higher sediment alkenone concentrations, a qualitative indicator of increased glacial productivity. Temperature differences between the proxies are accentuated during glacial intervals in contrasts to modern observations of EEP surface and subsurface temperatures, which show that thermocline temperatures are fairly stable, and thus by analogy, glacial cooling and/or enhanced upwelling should have reduced rather than accentuated temperature gradients in the upper water column. Therefore, arguments that Uk'37 corresponds to temperature variability in the surface, while TEX86 responds to the subsurface, may be too simplistic. Instead, it appears generally true that high-productivity environments, including the EEP, tend to have negative TEX86 anomalies. This may reflect a dual dependence of TEX86 records on both water column temperature and local productivity. Overall, our data suggest that in the EEP and likely in other upwelling zones, paleotemperature data derived from these proxies should not necessarily be used interchangeably and only Uk'37 is suitable for determining absolute SSTs. However, our data also suggest that TEX86 may be suitable for estimating long-term trends in SST and for spectral and phase analysis in upwelling regimes.

  14. Climatic History of the Northeastern United States During the Past 3000 Years

    NASA Technical Reports Server (NTRS)

    Marlon, Jennifer R.; Pederson, Neil; Nolan, Connor; Goring, Simon; Shuman, Bryan; Robertson, Ann; Booth, Robert; Bartlein, Patrick J.; Berke, Melissa A.; Clifford, Michael; hide

    2017-01-01

    Many ecosystem processes that influence Earth system feedbacks - vegetation growth, water and nutrient cycling, disturbance regimes - are strongly influenced by multidecadal- to millennial-scale climate variations that cannot be directly observed. Paleoclimate records provide information about these variations, forming the basis of our understanding and modeling of them. Fossil pollen records are abundant in the NE US, but cannot simultaneously provide information about paleoclimate and past vegetation in a modeling context because this leads to circular logic. If pollen data are used to constrain past vegetation changes, then the remaining paleoclimate archives in the northeastern US (NE US) are quite limited. Nonetheless, a growing number of diverse reconstructions have been developed but have not yet been examined together. Here we conduct a systematic review, assessment, and comparison of paleotemperature and paleohydrological proxies from the NE US for the last 3000 years. Regional temperature reconstructions (primarily summer) show a long-term cooling trend (1000BCE - 1700CE) consistent with hemispheric-scale reconstructions, while hydroclimate data show gradually wetter conditions through the present day. Multiple proxies suggest that a prolonged, widespread drought occurred between 550 and 750CE. Dry conditions are also evident during the Medieval Climate Anomaly, which was warmer and drier than the Little Ice Age and drier than today. There is some evidence for an acceleration of the longer-term wetting trend in the NE US during the past century; coupled with an abrupt shift from decreasing to increasing temperatures in the past century, these changes could have wide-ranging implications for species distributions, ecosystem dynamics, and extreme weather events. More work is needed to gather paleoclimate data in the NE US to make inter-proxy comparisons and to improve estimates of uncertainty in reconstructions.

  15. Climatic history of the northeastern United States during the past 3000 years

    NASA Astrophysics Data System (ADS)

    Marlon, Jennifer R.; Pederson, Neil; Nolan, Connor; Goring, Simon; Shuman, Bryan; Robertson, Ann; Booth, Robert; Bartlein, Patrick J.; Berke, Melissa A.; Clifford, Michael; Cook, Edward; Dieffenbacher-Krall, Ann; Dietze, Michael C.; Hessl, Amy; Hubeny, J. Bradford; Jackson, Stephen T.; Marsicek, Jeremiah; McLachlan, Jason; Mock, Cary J.; Moore, David J. P.; Nichols, Jonathan; Peteet, Dorothy; Schaefer, Kevin; Trouet, Valerie; Umbanhowar, Charles; Williams, John W.; Yu, Zicheng

    2017-10-01

    Many ecosystem processes that influence Earth system feedbacks - vegetation growth, water and nutrient cycling, disturbance regimes - are strongly influenced by multidecadal- to millennial-scale climate variations that cannot be directly observed. Paleoclimate records provide information about these variations, forming the basis of our understanding and modeling of them. Fossil pollen records are abundant in the NE US, but cannot simultaneously provide information about paleoclimate and past vegetation in a modeling context because this leads to circular logic. If pollen data are used to constrain past vegetation changes, then the remaining paleoclimate archives in the northeastern US (NE US) are quite limited. Nonetheless, a growing number of diverse reconstructions have been developed but have not yet been examined together. Here we conduct a systematic review, assessment, and comparison of paleotemperature and paleohydrological proxies from the NE US for the last 3000 years. Regional temperature reconstructions (primarily summer) show a long-term cooling trend (1000 BCE-1700 CE) consistent with hemispheric-scale reconstructions, while hydroclimate data show gradually wetter conditions through the present day. Multiple proxies suggest that a prolonged, widespread drought occurred between 550 and 750 CE. Dry conditions are also evident during the Medieval Climate Anomaly, which was warmer and drier than the Little Ice Age and drier than today. There is some evidence for an acceleration of the longer-term wetting trend in the NE US during the past century; coupled with an abrupt shift from decreasing to increasing temperatures in the past century, these changes could have wide-ranging implications for species distributions, ecosystem dynamics, and extreme weather events. More work is needed to gather paleoclimate data in the NE US to make inter-proxy comparisons and to improve estimates of uncertainty in reconstructions.

  16. Reconstruction of the West Pacific ENSO precipitation anomaly using the compound-specific hydrogen isotopic record of marine lake sediments of Palau

    NASA Astrophysics Data System (ADS)

    Smittenberg, R. H.; Sachs, J. P.; Dawson, M. N.

    2004-12-01

    There is still much uncertainty whether the El Niño Southern Oscillation (ENSO) will become stronger or more frequent in a warming global climate. A principal reason for this uncertainty stems from a glaring lack of paleoclimate data in the equatorial Pacific, which hampers model validation. To partly resolve this data deficiency, sediments of three marine anoxic lakes were cored in Palau, an island group that lies in the heart of the West Pacific Warm Pool. The lakes contain seawater that seeps through fissures in the surrounding karst, and they are permanently stratified due to fresh water input provided by the year-round wet climate (map 1970-2000 = 3.7m). During ENSO events, however, the islands suffer from drought. The surface water hydrogen isotopic compositions in the lakes are sensitive to the relative proportions of D-depleted rainwater and D-enriched seawater, and are therefore sensitive to ENSO events. The lake surface water H/D values are recorded by algal and bacterial biomarkers that are preserved well in the highly organic and anoxic sediments, which accumulate relatively fast (mean 1 mm/yr). Ongoing down core measurement will eventually result in a precipitation proxy record of the islands. To obtain endmember D/H values, a comprehensive set of water samples from sea, lakes and rain water was obtained, as well as suspended particulate matter. Higher plant biomarker D/H values derived from the jungle vegetation surrounding the lakes may render supporting climatic proxy data, being influenced by evapotranspiration. Some lakes are inhabited by millions of jellyfish (Mastigias) that live in symbiosis with zooxanthellae. The jellyfish of one of the investigated lakes disappeared completely after the last large ENSO event in 1998 (returning in 2000-01), and a correlation is suggested. To reconstruct the history of jellyfish occurrence, jellyfish and sedimentary lipids were extracted and compared. In addition to a possible ENSO proxy record, this information will contribute to a better understanding of the lake system and ecology of the jellyfish, providing a better basis for conservation efforts.

  17. The last millennium of Aleutian low variability based on dendrochonolgy and water isotope proxies

    NASA Astrophysics Data System (ADS)

    Gaglioti, B.; Mann, D. H.; Andreu-Hayles, L.; Wiles, G. C.; Streverler, G.; Williams, P.; Field, R. D.; D'Arrigo, R.

    2017-12-01

    How the wintertime Aleutian Low pressure system (AL) will respond to climate forcing is germane to the forest resources, glaciers, and fisheries in the North Pacific region. Recent work suggests the AL has strengthened over the last few centuries, and new, high-resolution paleo-records could help evaluate this trend. Namely, when it started, whether it has any historical precedents, and what it means for high-latitude climate feedbacks? Our study area is Southeast Alaska and the Southwest Yukon Territory, where the winters are warmer and wetter when the AL is stronger (deeper) and positioned further east. First, we use newly developed winter-sensitive tree-ring records to determine how AL variability has changed over the past 1000 years. During winters with a stronger AL, meridional flow brings: (i) heavy ice storms and snow loads to the coastal mountains that can injure sub-alpine trees; (ii) thaw events that can compromise growth in coastal forests; and (iii) changes in seasonality that can moderate the climate sensitivity of mid-elevation trees. Therefore, a time series of changing tree architecture in the mountains, tree ring widths in the lowlands, and running inter-series correlation in mid-slope chronologies collectively provide a landscape-level view of paleo-AL variability. Second, we compare and complement this dendro perspective with new proxy records based on stable oxygen isotope ratios measured in tree-ring and peat cellulose (d18O cell). To interpret how these proxies reflect the AL, we analyze the precipitation isotopes in Gustavus, Alaska over the past 16 months. We then use d18Ocell time series along a coastal to inland transect that records the degree of heavy-isotope rainout over the St. Elias Mountains, a factor that depends on the sources and pathways of the dominant storm tracks, which are influenced by the AL strength. We will present these new data in the context of existing AL reconstructions, and discuss the implications for the ongoing trends, and environmental corollaries of AL strength.

  18. Centennial-scale winter climate variability over the last two millennia in the northern Gulf of Mexico based on paired δ18O and Mg/Ca in Globorotalia truncatulinoides

    NASA Astrophysics Data System (ADS)

    Fortiz, V.; Thirumalai, K.; Richey, J. N.; Quinn, T. M.

    2014-12-01

    We present a replicated record of paired foraminiferal δ18O and Mg/Ca variations in multi-cores collected from the Garrison Basin (26º43'N, 93º55'W) in the northern Gulf of Mexico (GOM). Using δ18O (sea surface temperature, SST; sea surface salinity, SSS proxy) and Mg/Ca (SST proxy) variations in non-encrusted planktic foraminifer Globorotalia truncatulinoides we produce time series spanning the last two millennia that is characterized by centennial-scale climate variability. We interpret geochemical variations in G. truncatulinoides to reflect winter climate variability because data from a sediment trap, located ~350 km east of the core site, reveal that annual flux of G. truncatulinoides is heavily weighted towards winter (peak production in January-February; Spear et al., 2011). Similar centennial-scale variability is also observed in the foraminiferal geochemistry of Globigerinoides ruber in the same multi-cores, which likely reflect mean annual climate variations. Our replicated results and comparisons to other SST reconstructions from the region lend confidence that the northern GOM surface ocean underwent large, centennial-scale variability, most likely dominated by changes in winter climate. This variability occurred in a time period where climate forcing is small and background conditions are similar to pre-industrial times. References: Spear, J.W.; Poore, R.Z., and Quinn, T.M., 2011, Globorotalia truncatulinoides (dextral) Mg/Ca as a proxy for Gulf of Mexico winter mixed-layer temperature: Evidence from a sediment trap in the northern Gulf of Mexico. Marine Micropaleontology, 80, 53-61.

  19. Excess warming in Central Europe after the 8.2 ka cold event: evidence from a varve-dated ostracod δ18O record from Mondsee (Austria)

    NASA Astrophysics Data System (ADS)

    Lauterbach, Stefan; Andersen, Nils; Erlenkeuser, Helmut; Danielopol, Dan L.; Namiotko, Tadeusz; Hüls, Matthias; Belmecheri, Soumaya; Nantke, Carla; Meyer, Hanno; Chapligin, Bernhard; von Grafenstein, Uli; Brauer, Achim

    2017-04-01

    As evidenced by numerous palaeoclimate records worldwide, the Holocene warm period has been punctuated by several short, low-amplitude cold episodes. Among these, the so-called 8.2 ka cold event represents a particularly prominent climate anomaly. Accordingly, several proxy-based and modeling studies have addressed its causal mechanisms, absolute dating, duration, amplitude, spatio-temporal characteristics and environmental consequences so far. However, knowledge about the dynamics and causes of subsequent climate recovery is still limited although this is essential for understanding rapid climate change. Here we present a new sub-decadally resolved and precisely dated oxygen isotope (δ18O) record for the interval 7.7-8.7 ka BP derived from benthic ostracods preserved in the varved lake sediments of pre-Alpine Mondsee (Austria), providing new insights into climate development around the 8.2 ka cold event in Central Europe. The high-resolution Mondsee δ18O record reveals the occurrence of a pronounced cold spell around 8.2 ka BP, whose amplitude (˜1.0 ‰ , equivalent to a 1.5-2.0 ˚ C cooling), total duration (151 years) and absolute dating (8231-8080 varve years BP, i.e. calendar years before AD 1950) agrees well with results from other Northern Hemisphere palaeoclimate archives, e.g. the Greenland ice cores. In addition, the Mondsee data set provides evidence for a 75-year-long δ18O overshoot directly following the 8.2 ka event (between 8080 and 8005 varve years BP), which is interpreted as a period of excess warming (about 0.5-0.6 ˚ C above the pre-8.2 ka event level) in Central Europe. Though so far not been explicitly described elsewhere, this observation is consistent with evidence from other proxy records in the North Atlantic realm, therefore likely reflecting a hemispheric-scale signal rather than a local phenomenon. As a possible trigger we suggest an enhanced resumption of the Atlantic meridional overturning circulation (AMOC), supporting assumptions from climate model simulations.

  20. Correlating Ice Cores from Quelccaya Ice Cap with Chronology from Little Ice Age Glacial Extents

    NASA Astrophysics Data System (ADS)

    Stroup, J. S.; Kelly, M. A.; Lowell, T. V.

    2010-12-01

    Proxy records indicate Southern Hemisphere climatic changes during the Little Ice Age (LIA; ~1300-1850 AD). In particular, records of change in and around the tropical latitudes require attention because these areas are sensitive to climatic change and record the dynamic interplay between hemispheres (Oerlemans, 2005). Despite this significance, relatively few records exist for the southern tropics. Here we present a reconstruction of glacial fluctuations of Quelccaya Ice Cap (QIC), Peruvian Andes, from pre-LIA up to the present day. In the Qori Kalis valley, extensive sets of moraines exist beginning with the 1963 AD ice margin (Thompson et al., 2006) and getting progressively older down valley. Several of these older moraines can be traced and are continuous with moraines in the Challpa Cocha valley. These moraines have been dated at <1050-1350-AD (Mercer and Palacios, 1977) and interpreted to have been deposited during the Little Ice Age. We present a new suite of surface exposure and radiocarbon dates collected in 2008 and 2009 that constrain the ages of these moraines. Preliminary 10Be ages of boulder surfaces atop the moraines range from ~350-1370 AD. Maximum and minimum-limiting radiocarbon ages bracketing the moraines are ~0-1800 AD. The chronology of past ice cap extents are correlated with ice core records from QIC which show an accumulation increase during ~1500-1700 AD and an accumulation decrease during ~1720-1860 AD (Thompson et al., 1985; 1986; 2006). In addition, other proxy records from Peru and the tropics are correlated with the records at QIC as a means to understand climate conditions during the LIA. This work forms the basis for future modeling of the glacial system during the LIA at QIC and for modeling of past temperature and precipitation regimes at high altitude in the tropics.

  1. A 2000-yr-long multi-proxy lacustrine record from eastern Baffin Island, Arctic Canada reveals first millennium AD cold period

    NASA Astrophysics Data System (ADS)

    Thomas, Elizabeth K.; Briner, Jason P.; Axford, Yarrow; Francis, Donna R.; Miller, Gifford H.; Walker, Ian R.

    2011-05-01

    We generate a multi-proxy sub-centennial-scale reconstruction of environmental change during the past two millennia from Itilliq Lake, Baffin Island, Arctic Canada. Our reconstruction arises from a finely subsectioned 210Pb- and 14C-dated surface sediment core and includes measures of organic matter (e.g., chlorophyll a; carbon-nitrogen ratio) and insect (Diptera: Chironomidae) assemblages. Within the past millennium, the least productive, and by inference coldest, conditions occurred ca. AD 1700-1850, late in the Little Ice Age. The 2000-yr sediment record also reveals an episode of reduced organic matter deposition during the 6th-7th century AD; combined with the few other records comparable in resolution that span this time interval from Baffin Island, we suggest that this cold episode was experienced regionally. A comparable cold climatic episode occurred in Alaska and western Canada at this time, suggesting that the first millennium AD cold climate anomaly may have occurred throughout the Arctic. Dramatic increases in aquatic biological productivity at multiple trophic levels are indicated by increased chlorophyll a concentrations since AD 1800 and chironomid concentrations since AD 1900, both of which have risen to levels unprecedented over the past 2000 yr.

  2. Roosevelt Island Climate Evolution Project (RICE): A 65 Kyr ice core record of black carbon aerosol deposition to the Ross Ice Shelf, West Antarctica.

    NASA Astrophysics Data System (ADS)

    Edwards, Ross; Bertler, Nancy; Tuohy, Andrea; Neff, Peter; Proemse, Bernedette; Feiteng, Wang; Goodwin, Ian; Hogan, Chad

    2015-04-01

    Emitted by fires, black carbon aerosols (rBC) perturb the atmosphere's physical and chemical properties and are climatically active. Sedimentary charcoal and other paleo-fire records suggest that rBC emissions have varied significantly in the past due to human activity and climate variability. However, few paleo rBC records exist to constrain reconstructions of the past rBC atmospheric distribution and its climate interaction. As part of the international Roosevelt Island Climate Evolution (RICE) project, we have developed an Antarctic rBC ice core record spanning the past ~65 Kyr. The RICE deep ice core was drilled from the Roosevelt Island ice dome in West Antarctica from 2011 to 2013. The high depth resolution (~ 1 cm) record was developed using a single particle intracavity laser-induced incandescence soot photometer (SP2) coupled to an ice core melter system. The rBC record displays sub-annual variability consistent with both austral dry-season and summer biomass burning. The record exhibits significant decadal to millennial-scale variability consistent with known changes in climate. Glacial rBC concentrations were much lower than Holocene concentrations with the exception of several periods of abrupt increases in rBC. The transition from glacial to interglacial rBC concentrations occurred over a much longer time relative to other ice core climate proxies such as water isotopes and suggests . The protracted increase in rBC during the transition may reflected Southern hemisphere ecosystem / fire regime changes in response to hydroclimate and human activity.

  3. Glacial terminations and the Last Interglacial in the Okhotsk Sea; Their implication to global climatic changes

    NASA Astrophysics Data System (ADS)

    Gorbarenko, Sergey; Velivetskaya, Tatyana; Malakhov, Mikhail; Bosin, Aleksandr

    2017-05-01

    Paleoclimate data from the Okhotsk Sea (OS) over Terminations II and I (TII, TI), and the Last and Present Interglacial (LIG, PIG) periods were compiled in order to examine Northern Hemisphere climate and sea level changes. Based on records of four AMS 14C-dated OS cores over TI-PIG, it is argued that the OS productivity/climate, IRD (ice-rafted debris), and benthic foraminiferal oxygen isotope (δ18Obf) proxies provide representative and in-phase evidence of the Northern Hemisphere climate and continental ice sheet changes consistent with the LR 04 δ18Obf curve. Chronologies for two central OS cores over TII-LIG-cooling event 23 (C23) were constructed by correlating OS productivity proxies with well-dated δ18O records of Chinese speleothems because OS environment is modulated by East Asian Monsoon; and, as well as correlating measured magnetic paleointensity excursions with those in the dated PISO-1500 paleointensity stack. Results show several OS climatic and environment states, including TII coeval with Asian Weak Monsoon Interval (WMI) II since 136 ka, LIG with a sharp two-step transition (130.2-129 ka) and demise at С25 (116.5 ka), and last glaciation with coolings at C24 (111 ka) and C23. The OS productivity and IRD records demonstrate certain climate amelioration in the middle of WMI-II, and two insignificant cooling events inside the LIG marked by C27 (126 ka) and C26 (120.6 ka). OS δ18Obf records of both cores demonstrate a gradual trend of lighter values since around 131.5 ka BP, continuing from the onset of LIG (129 ka) to minimum values at 126 ka BP (C27), then nearly constant values until 121.5 ka, followed by a slight increase up to 120.6 ka (C26), and a subsequent strong increase up to 116.5 ka (C25). The magnitude of OS δ18Obf oscillations is 1.35‰, which is less than those in the N. Atlantic. It may therefore be suggested that this OS index probably tracks changes in continental ice sheet volume and sea level.

  4. Variability of North African hydroclimate during the last two climatic cycles: New insights from dust flux and provenance

    NASA Astrophysics Data System (ADS)

    Skonieczny, C.; McGee, D.; Bory, A. J. M.; Winckler, G.; Bradtmiller, L.; Bout-Roumazeilles, V.; Perala-Dewey, J.; Delattre, M.; Kinsley, C. W.; Polissar, P. J.; Malaizé, B.

    2016-12-01

    Every year, several hundred teragrams of dust are emitted from the Sahara and Sahel regions. These mineral particles sensitively track variations in atmospheric circulation and continental aridity. Sediments of the Northeastern Tropical Atlantic Ocean (NETAO) are fed by this intense dust supply and comprise unique long-term archives of past Saharan/Sahelian dust emissions. Past modifications of dust characteristics in these sedimentary archives can provide unique insights into changes in environmental conditions in source areas (aridity, weathering), as well as changes in atmospheric transport (wind direction and strength). Here we document changes in sediment supply to the NETAO using marine sediment core MD03-2705 (18°05N; 21°09W; 3085m water depth). This record is strategically located under the influence of seasonal dust plumes, and marine sediments of this area have revealed that past dust inputs were sensitive to global climate changes over the late Quaternary. We will focus our study on the last two climatic cycles (0-240ka), a period orbitally characterized by changes in the amplitude of both precession (MIS6-5 vs. MIS1-2) and ice volume (MIS 7 vs. MIS5). We will present, for the first time in this area, a continuous high-resolution record of dust, opal, carbonate and organic matter fluxes using 230Th-normalization. The constant flux proxy 230Thxs provides flux data that are not substantially affected by lateral advection or age model errors. These fluxes data will be complemented by grain-size, clay mineralogical and geochemical (major elements) analysis. By pairing dust flux measurements with complementary proxy data reflecting changes in aridity, wind strength and dust source, this study will provide a robust, continuous record of the magnitude and pacing of the North African hydroclimate variability through the last two climatic cycles. In particular, this long-term study will offer the opportunity to compare the well-documented North African climate variability over the last glacial cycle with the less studied variability recorded during previous glacial-interglacial cycles in order to improve our understanding of the balance of high and low-latitude controls on the climate of North Africa.

  5. Multi-proxy reconstructions and the power of integration across marine, terrestrial, and freshwater ecosystems. (Invited)

    NASA Astrophysics Data System (ADS)

    Black, B.

    2013-12-01

    Over the past decade, dendrochronology (tree-ring analysis) techniques have been increasingly applied to growth increments of various bivalve, fish, and coral species. In particular, the use of crossdating ensures that all increments in a dataset have assigned the correct calendar year of formation and that the resulting chronology is exactly placed in time. Such temporal alignment facilitates direct comparisons among chronologies that span diverse taxa and ecosystems, illustrating the pervasive, synchronizing influence of climate from alpine forests to the continental slope. Such an approach can be particularly beneficial to reconstructions in that each species captures climate signals from its unique 'perspective' of life history and habitat. For example, combinations of tree-ring data and chronologies for the long-lived bivalve Pacific geoduck (Panopea generosa) capture substantially more variance in regional sea surface temperatures than either proxy could explain alone. Just as importantly, networks of chronologies spanning multiple trophic levels can help identify climate variables critical to ecosystem functioning, which can then be targeted to generate most biologically relevant reconstructions possible. Along the west coast of North America, fish and bivalve chronologies in combination with records of seabird reproductive success indicate that winter sea-level pressure is closely associated with California Current productivity, which can be hind-cast over the past six centuries using coastal tree-ring chronologies. Thus, multiple proxies not only increase reconstruction skill, but also help isolate climate variables most closely linked to ecosystem structure and functioning.

  6. Multi-proxy reconstructions and the power of integration across marine, terrestrial, and freshwater ecosystems. (Invited)

    NASA Astrophysics Data System (ADS)

    Barrett, P. J.

    2011-12-01

    Over the past decade, dendrochronology (tree-ring analysis) techniques have been increasingly applied to growth increments of various bivalve, fish, and coral species. In particular, the use of crossdating ensures that all increments in a dataset have assigned the correct calendar year of formation and that the resulting chronology is exactly placed in time. Such temporal alignment facilitates direct comparisons among chronologies that span diverse taxa and ecosystems, illustrating the pervasive, synchronizing influence of climate from alpine forests to the continental slope. Such an approach can be particularly beneficial to reconstructions in that each species captures climate signals from its unique 'perspective' of life history and habitat. For example, combinations of tree-ring data and chronologies for the long-lived bivalve Pacific geoduck (Panopea generosa) capture substantially more variance in regional sea surface temperatures than either proxy could explain alone. Just as importantly, networks of chronologies spanning multiple trophic levels can help identify climate variables critical to ecosystem functioning, which can then be targeted to generate most biologically relevant reconstructions possible. Along the west coast of North America, fish and bivalve chronologies in combination with records of seabird reproductive success indicate that winter sea-level pressure is closely associated with California Current productivity, which can be hind-cast over the past six centuries using coastal tree-ring chronologies. Thus, multiple proxies not only increase reconstruction skill, but also help isolate climate variables most closely linked to ecosystem structure and functioning.

  7. A 300-million-year record of atmospheric carbon dioxide from fossil plant cuticles

    NASA Astrophysics Data System (ADS)

    Retallack, Gregory J.

    2001-05-01

    To understand better the link between atmospheric CO2 concentrations and climate over geological time, records of past CO2 are reconstructed from geochemical proxies. Although these records have provided us with a broad picture of CO2 variation throughout the Phanerozoic eon (the past 544Myr), inconsistencies and gaps remain that still need to be resolved. Here I present a continuous 300-Myr record of stomatal abundance from fossil leaves of four genera of plants that are closely related to the present-day Ginkgo tree. Using the known relationship between leaf stomatal abundance and growing season CO2 concentrations, I reconstruct past atmospheric CO2 concentrations. For the past 300Myr, only two intervals of low CO2 (<1,000p.p.m.v.) are inferred, both of which coincide with known ice ages in Neogene (1-8Myr) and early Permian (275-290Myr) times. But for most of the Mesozoic era (65-250Myr), CO2 levels were high (1,000-2,000p.p.m.v.), with transient excursions to even higher CO2 (>2,000p.p.m.v.) concentrations. These results are consistent with some reconstructions of past CO2 (refs 1, 2) and palaeotemperature records, but suggest that CO2 reconstructions based on carbon isotope proxies may be compromised by episodic outbursts of isotopically light methane. These results support the role of water vapour, methane and CO2 in greenhouse climate warming over the past 300Myr.

  8. Holocene temperature shifts around Greenland: Paleolimnological approaches to quantifying past warmth and documenting its consequences

    NASA Astrophysics Data System (ADS)

    Axford, Y.; Lasher, G. E.; McFarlin, J. M.; Francis, D. R.; Kelly, M. A.; Langdon, P. G.; Levy, L.; Osburn, M. R.; Osterberg, E. C.

    2015-12-01

    Insolation-driven warmth across the Arctic during the early to middle Holocene (the Holocene Thermal Maximum, or HTM) represents a geologically accessible analog for future warming and its impacts. Improved constraints on the magnitude and seasonality of HTM warmth around Greenland's margins can advance the use of paleoclimate data to test and improve climate and ice sheet models. Here we present an overview of our recent efforts to reconstruct climate through the Holocene around the margins of the Greenland Ice Sheet using multiple proxies in lake sediments. We use insect (chironomid) assemblages to derive quantitative estimates of Holocene temperatures at sites with minimal soil and vegetation development near the eastern, northwestern and western margins of the ice sheet. Our chironomid-based temperature reconstructions consistently imply HTM July air temperatures 3 to 4.5 °C warmer than the pre-industrial late Holocene in these sectors of Greenland. The timing of reconstructed peak warmth differs between sites, with onset varying from ~10 ka to ~6.5 ka, but in good agreement with glacial geology and other evidence from each region. Our reconstructed temperature anomalies are larger than those typically inferred from annually-integrated indicators from the ice sheet itself, but comparable to the few other quantitative summer temperature estimates available from beyond the ice sheet on Greenland. Additional records are needed to confirm the magnitude of HTM warmth and to better define its seasonality and spatial pattern. To provide independent constraints on paleotemperatures and to elucidate additional aspects of Holocene paleoclimate, we are also employing oxygen isotopes of chironomid remains and other aquatic organic materials, and molecular organic proxies, in parallel (see Lasher et al. and McFarlin et al., this meeting). Combined with glacial geologic evidence, these multi-proxy records elucidate diverse aspects of HTM climate around Greenland - including temperature, hydroclimate, and the response of Greenland's glaciers to past climate change.

  9. Reconstructing paleoclimate fields using online data assimilation with a linear inverse model

    NASA Astrophysics Data System (ADS)

    Perkins, Walter A.; Hakim, Gregory J.

    2017-05-01

    We examine the skill of a new approach to climate field reconstructions (CFRs) using an online paleoclimate data assimilation (PDA) method. Several recent studies have foregone climate model forecasts during assimilation due to the computational expense of running coupled global climate models (CGCMs) and the relatively low skill of these forecasts on longer timescales. Here we greatly diminish the computational cost by employing an empirical forecast model (linear inverse model, LIM), which has been shown to have skill comparable to CGCMs for forecasting annual-to-decadal surface temperature anomalies. We reconstruct annual-average 2 m air temperature over the instrumental period (1850-2000) using proxy records from the PAGES 2k Consortium Phase 1 database; proxy models for estimating proxy observations are calibrated on GISTEMP surface temperature analyses. We compare results for LIMs calibrated using observational (Berkeley Earth), reanalysis (20th Century Reanalysis), and CMIP5 climate model (CCSM4 and MPI) data relative to a control offline reconstruction method. Generally, we find that the usage of LIM forecasts for online PDA increases reconstruction agreement with the instrumental record for both spatial fields and global mean temperature (GMT). Specifically, the coefficient of efficiency (CE) skill metric for detrended GMT increases by an average of 57 % over the offline benchmark. LIM experiments display a common pattern of skill improvement in the spatial fields over Northern Hemisphere land areas and in the high-latitude North Atlantic-Barents Sea corridor. Experiments for non-CGCM-calibrated LIMs reveal region-specific reductions in spatial skill compared to the offline control, likely due to aspects of the LIM calibration process. Overall, the CGCM-calibrated LIMs have the best performance when considering both spatial fields and GMT. A comparison with the persistence forecast experiment suggests that improvements are associated with the linear dynamical constraints of the forecast and not simply persistence of temperature anomalies.

  10. Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation.

    PubMed

    Shakun, Jeremy D; Clark, Peter U; He, Feng; Marcott, Shaun A; Mix, Alan C; Liu, Zhengyu; Otto-Bliesner, Bette; Schmittner, Andreas; Bard, Edouard

    2012-04-04

    The covariation of carbon dioxide (CO(2)) concentration and temperature in Antarctic ice-core records suggests a close link between CO(2) and climate during the Pleistocene ice ages. The role and relative importance of CO(2) in producing these climate changes remains unclear, however, in part because the ice-core deuterium record reflects local rather than global temperature. Here we construct a record of global surface temperature from 80 proxy records and show that temperature is correlated with and generally lags CO(2) during the last (that is, the most recent) deglaciation. Differences between the respective temperature changes of the Northern Hemisphere and Southern Hemisphere parallel variations in the strength of the Atlantic meridional overturning circulation recorded in marine sediments. These observations, together with transient global climate model simulations, support the conclusion that an antiphased hemispheric temperature response to ocean circulation changes superimposed on globally in-phase warming driven by increasing CO(2) concentrations is an explanation for much of the temperature change at the end of the most recent ice age.

  11. Solar Variability Magnitudes and Timescales

    NASA Astrophysics Data System (ADS)

    Kopp, Greg

    2015-08-01

    The Sun’s net radiative output varies on timescales of minutes to many millennia. The former are directly observed as part of the on-going 37-year long total solar irradiance climate data record, while the latter are inferred from solar proxy and stellar evolution models. Since the Sun provides nearly all the energy driving the Earth’s climate system, changes in the sunlight reaching our planet can have - and have had - significant impacts on life and civilizations.Total solar irradiance has been measured from space since 1978 by a series of overlapping instruments. These have shown changes in the spatially- and spectrally-integrated radiant energy at the top of the Earth’s atmosphere from timescales as short as minutes to as long as a solar cycle. The Sun’s ~0.01% variations over a few minutes are caused by the superposition of convection and oscillations, and even occasionally by a large flare. Over days to weeks, changing surface activity affects solar brightness at the ~0.1% level. The 11-year solar cycle has comparable irradiance variations with peaks near solar maxima.Secular variations are harder to discern, being limited by instrument stability and the relatively short duration of the space-borne record. Proxy models of the Sun based on cosmogenic isotope records and inferred from Earth climate signatures indicate solar brightness changes over decades to millennia, although the magnitude of these variations depends on many assumptions. Stellar evolution affects yet longer timescales and is responsible for the greatest solar variabilities.In this talk I will summarize the Sun’s variability magnitudes over different temporal ranges, showing examples relevant for climate studies as well as detections of exo-solar planets transiting Sun-like stars.

  12. Comparison of Geochemical, Grain-Size, and Magnetic Proxies for Rock Flour and Ice- Rafted Debris in the Late Pleistocene Mono Basin, CA

    NASA Astrophysics Data System (ADS)

    Zimmerman, S. H.; Hemming, S. R.; Kent, D. V.

    2008-12-01

    Advance and retreat of mountain glaciers are important indicators of climate variability, but the most direct proxy record, mapping and dating of moraines, is by nature discontinous. The Sierra Nevada form the western boundary of the Mono Lake basin, and the proximity of the large Pleistocene lake to the glacial canyons of the Sierra presents a rare opportunity to examine glacial variability in a continuous, well-dated lacustrine sequence. We have applied a geochemical proxy for rock flour to the glacial silts of the late Pleistocene Wilson Creek Formation, but because it is time- and sample-intensive, another method is required for a high-resolution record. Previous microscopic examination, thermomagnetic measurements, XRD analysis, and new isothermal remnant magnetization (IRM) acquisition curves show that the magnetic mineralogy is dominated by fine-grained, unaltered magnetite. Bulk measurements show strong susceptibility (mean ~ 16 x 10- 6 m3/kg) and remanent magnetization (mean IRM ~ 10-2 Am2/kg) compared to diluting components (carbonate, smectite, rhyolitic ash). The Wilson Creek type section sediments also contain a coarse lithic fraction, quantified by counting the >2cm clasts in outcrop and the >425 μm fraction in the bulk sediment. Susceptibility, IRM, and ARM (anhysteretic remnant magnetization) are quite similar throughout the type section, with the abundance of coarse lithic fraction correlative to the ratio k/IRM. Because the magnetic fraction of the rock flour is fine-grained magnetite, IRM should capture the changes in concentration of flour through time, and the major features of the (low-resolution) geochemical flour proxy record are identifiable in the IRM record. Flux-correction of the IRM results in a rock flour proxy record with major peaks between 36 and 48 ka, similar to a rock flour record from neighboring Owens Lake. This regional glacial signal contrasts with peaks in coarse lithics between 58 and 68 ka in the Wilson Creek record; coupled with coeval high lake levels and a lack of geomorphic evidence of glacier-lake interaction, this is taken to indicate that the rafting was due to shore ice, rather than glacial icebergs.

  13. Records of millennial-scale climate change from the Great Basin of the Western United States

    NASA Astrophysics Data System (ADS)

    Benson, Larry

    High-resolution (decadal) records of climate change from the Owens, Mono, and Pyramid Lake basins of California and Nevada indicate that millennialscale oscillations in climate of the Great Basin occurred between 52.6 and 9.2 14C ka. Climate records from the Owens and Pyramid Lake basins indicate that most, but not all, glacier advances (stades) between 52.6 and ˜15.0 14C ka occurred during relatively dry times. During the last alpine glacial period (˜60.0 to ˜14.0 14C ka), stadial/interstadial oscillations were recorded in Owens and Pyramid Lake sediments by the negative response of phytoplankton productivity to the influx of glacially derived silicates. During glacier advances, rock flour diluted the TOC fraction of lake sediments and introduction of glacially derived suspended sediment also increased the turbidity of lake water, decreasing light penetration and photosynthetic production of organic carbon. It is not possible to correlate objectively peaks in the Owens and Pyramid Lake TOC records (interstades) with Dansgaard-Oeschger interstades in the GISP2 ice-core δ18O record given uncertainties in age control and difference in the shapes of the OL90, PLC92 and GISP2 records. In the North Atlantic region, some climate records have clearly defined variability/cyclicity with periodicities of 102 to 103 yr; these records are correlatable over several thousand km. In the Great Basin, climate proxies also have clearly defined variability with similar time constants, but the distance over which this variability can be correlated remains unknown. Globally, there may be minimal spatial scales (domains) within which climate varies coherently on centennial and millennial scales, but it is likely that the sizes of these domains vary with geographic setting and time. A more comprehensive understanding of the mechanisms of climate forcing and the physical linkages between climate forcing and system response is needed in order to predict the spatial scale(s) over which climate varies coherently.

  14. Seasonally resolved climate variability during the last interglacial from southern Caribbean corals

    NASA Astrophysics Data System (ADS)

    Brocas, William; Felis, Thomas; Kölling, Martin; Scholz, Denis; Lohmann, Gerrit; Scheffers, Sanders

    2013-04-01

    A range of future climate scenarios have been predicted for a warmer Earth as a result of varying anthropogenic greenhouse emissions. The Last Interglacial period (~125,000 years ago, Marine Isotope Stage 5) offers a period in time which is estimated to have been in the range of 0.1 to > 2oC warmer than present (AD 1961-1990). Although this period is not considered completely analogous for future climate states, the mechanisms behind such changes have the potential to be well understood. Here we present the initial findings of a study which aims to augment current understanding by quantifying the climate dynamics of the tropical southern Caribbean using high resolution marine climate archives. In doing so, we highlight geochemical proxies obtained from aragonitic coral skeletons as a proxy for seasonality and interannual to decadal climate variability. Unique fossil coral material has been collected from an uplifted reef terrace on the island of Bonaire (Netherlands Antilles), which according to 230Th/U dating, was deposited during the Last Interglacial. The sampling technique employed here has been focused using C/T scanning and X-radiography which revealed annual density bands in 21 individual coral colonies. Due to a high average extension rate of greater than 6mm/year, monthly records are available which represent growth periods from 9 to 40 years and so cover various time windows across the Last Interglacial. We discuss the results from geochemical signals of Sr/Ca and oxygen isotope ratios (δ18O) which reflect, respectively, regional temperature and hydrological balance at the sea surface. The finding that Sr/Ca and δ18O cycles occur alongside visible annual density bands allows the quality of the fossil coral material to be considered high and reliable. To further supplement the interpretation of these records greyscale increment analysis, Mg/Ca and δ13C records are presented. The implications of these findings, when compared to Holocene records, identify the variability of internal and external forcing mechanisms behind the local behaviour of climate patterns and phenomena. By comparing our findings to "state of the art" climate models, the reconstructed index states of such patterns can be placed into a larger spatial context. This work is a contribution to the DFG Programme INTERDYNAMIC

  15. Reconstructing East African rainfall and Indian Ocean sea surface temperatures over the last centuries using data assimilation

    NASA Astrophysics Data System (ADS)

    Klein, François; Goosse, Hugues

    2018-06-01

    The relationship between the East African rainfall and Indian Ocean sea-surface temperatures (SSTs) is well established. The potential interest of this covariance to improve reconstructions of both variables over the last centuries is examined here. This is achieved through an off-line method of data assimilation based on a particle filter, using hydroclimate-related records at four East African sites (Lake Naivasha, Lake Challa, Lake Malawi and Lake Masoko) and SSTs-related records at six oceanic sites spread over the Indian Ocean to constrain the Last Millennium Ensemble of simulations performed by CESM1. Skillful reconstructions of the Indian SSTs and East African rainfall can be obtained based on the assimilation of only one of these variables, when assimilating pseudo-proxy data deduced from the model CESM1. The skill of these reconstructions increases with the number of particles selected in the particle filter, although the improvement becomes modest beyond 99 particles. When considering a more realistic framework, the skill of the reconstructions is strongly deteriorated because of the model biases and the uncertainties of the real proxy-based reconstructions. However, it is still possible to obtain a skillful reconstruction of SSTs over most of the Indian Ocean only based on the assimilation of the six SST-related proxy records selected, as far as a local calibration is applied at all individual sites. This underlines once more the critical role of an adequate integration of the signal inferred from proxy records into the climate models for reconstructions based on data assimilation.

  16. Autogenic geomorphic processes determine the resolution and fidelity of terrestrial paleoclimate records.

    PubMed

    Foreman, Brady Z; Straub, Kyle M

    2017-09-01

    Terrestrial paleoclimate records rely on proxies hosted in alluvial strata whose beds are deposited by unsteady and nonlinear geomorphic processes. It is broadly assumed that this renders the resultant time series of terrestrial paleoclimatic variability noisy and incomplete. We evaluate this assumption using a model of oscillating climate and the precise topographic evolution of an experimental alluvial system. We find that geomorphic stochasticity can create aliasing in the time series and spurious climate signals, but these issues are eliminated when the period of climate oscillation is longer than a key time scale of internal dynamics in the geomorphic system. This emergent autogenic geomorphic behavior imparts regularity to deposition and represents a natural discretization interval of the continuous climate signal. We propose that this time scale in nature could be in excess of 10 4 years but would still allow assessments of the rates of climate change at resolutions finer than the existing age model techniques in isolation.

  17. Autogenic geomorphic processes determine the resolution and fidelity of terrestrial paleoclimate records

    PubMed Central

    Foreman, Brady Z.; Straub, Kyle M.

    2017-01-01

    Terrestrial paleoclimate records rely on proxies hosted in alluvial strata whose beds are deposited by unsteady and nonlinear geomorphic processes. It is broadly assumed that this renders the resultant time series of terrestrial paleoclimatic variability noisy and incomplete. We evaluate this assumption using a model of oscillating climate and the precise topographic evolution of an experimental alluvial system. We find that geomorphic stochasticity can create aliasing in the time series and spurious climate signals, but these issues are eliminated when the period of climate oscillation is longer than a key time scale of internal dynamics in the geomorphic system. This emergent autogenic geomorphic behavior imparts regularity to deposition and represents a natural discretization interval of the continuous climate signal. We propose that this time scale in nature could be in excess of 104 years but would still allow assessments of the rates of climate change at resolutions finer than the existing age model techniques in isolation. PMID:28924607

  18. Pollen-proxies say cooler, climate models say warmer: resolving conflicting views of the Holocene climate of the Mediterranean region

    NASA Astrophysics Data System (ADS)

    Russo, E.; Mauri, A.; Davis, B. A. S.; Cubasch, U.

    2017-12-01

    The evolution of the Mediterranean region's climate during the Holocene has been the subject of long-standing debate within the paleoclimate community. Conflicting hypotheses have emerged from the analysis of different climate reconstructions based on proxy records and climate models outputs.In particular, pollen-based reconstructions of cooler summer temperatures during the Holocene have been criticized based on a hypothesis that the Mediterranean vegetation is mainly limited by effective precipitation and not summer temperature. This criticism is important because climate models show warmer summer temperatures during the Holocene over the Mediterranean region, in direct contradiction of the pollen-based evidence. Here we investigate this problem using a high resolution model simulation of the climate of the Mediterranean region during the mid-to-late Holocene, which we compare against pollen-based reconstructions using two different approaches.In the first, we compare the simulated climate from the model directly with the climate derived from the pollen data. In the second, we compare the simulated vegetation from the model directly with the vegetation from the pollen data.Results show that the climate model is unable to simulate neither the climate nor the vegetation shown by the pollen-data. The pollen data indicates an expansion in cool temperate vegetation in the mid-Holocene while the model suggests an expansion in warm arid vegetation. This suggests that the data-model discrepancy is more likely the result of bias in climate models, and not bias in the pollen-climate calibration transfer-function.

  19. Food residue fatty acid δ13C and δD values as proxies for evaluating cultural and climatic change at Çatalhöyük, Turkey

    NASA Astrophysics Data System (ADS)

    Pitter, S.; Evershed, R. P.; Hodder, I.

    2012-12-01

    Compound specific δ13C stable isotope analysis via gas chromatography-combustion-isotope ratio mass spectrometry (GC-C- IRMS) of C16:0 and C18:0 fatty acids from archaeological pottery has been used previously to probe the organic residue record to identify specific animal origins of fats. By following previously established methods (Evershed et al. 2008) a more comprehensive record of the domestic animal-based subsistence practices of the Neolithic site Çatalhöyük has now been established. Furthermore, a new palaeoenvironmental proxy was also established through δD analysis of C16:0 and C18:0 fatty acids using GC-thermal conversion-IRMS (GC-TC-IRMS). This novel approach has demonstrated a means of observing changes in relative humidity associated with specific pottery types at archaeological sites, creating a proxy that may address several limitations in the field of archaeology with regards to understanding links between humans and their changing environments.

  20. Performance of Simulated El Niño-Southern Oscillation Climate Reconstructions over the Last Millennium: Comparison of Methods

    NASA Astrophysics Data System (ADS)

    Wahl, Eugene R.; Amrhein, Dan E.; Smerdon, Jason E.; Ammann, Caspar M.

    2010-05-01

    A key question in late-Holocene climate dynamics is the role of dominant modes in influencing climates in teleconnected regions of the world. For example, it has recently been proposed that ENSO had a key role in influencing the extended period of largely positive-phase NAO during ~1100-1400 CE (Trouet et al., 2009, Science, 324, 78). Fundamental to understanding the global and regional climatological roles of dominant modes are primary data on the variations of the modes themselves, in particular paleoclimate data that greatly extend instrumental-period information. Establishing records of ENSO indices that span the past millennium has proven difficult, and well-verified reconstructions produced to date have non-trivial differences (cf., e.g., Braganza et al., 2009, Journal of Geophysical Research, 114, D05106). This presentation examines important general questions regarding reconstructions of modal indices, including ENSO: is it best (1) to focus on proxy evidence from the most strongly influenced (or most strongly teleconnected) areas, (2) to combine proxy data from a large regional network encompassing the primary area of modal activity and teleconnections (e.g., around the Pacific Rim in the case of ENSO), or (3) to use climate field reconstruction (CFR) methods that assimilate up-to-global-scale proxy information? A systematic suite of reconstruction simulation experiments (RSEs), derived from NCAR CSM 1.4 millennium transient model output, is explored to test the various strengths and weaknesses of these three approaches for reconstructing the NINO3 index. By doing this, NINO3 reconstruction fidelity can be gauged over the entire simulated millennium via comparison to the known model target; such comparisons are restricted to brief "validation" periods in real-world reconstructions due to the length of the instrumental record. For strategies (1) and (2), pseudoproxies are formed by adding white noise to the model output (seasonally-appropriate precipitation or temperature) at the simulated proxy locations, so that the correlation of the noise-added time series to the original CSM output emulates that of real-world proxy information to local instrumental climate data. White noise is considered a reasonable first-order approximation of random process in these two strategies, since all predictands and predictors used in the reconstruction algorithms are "pre-whitened" by removal of AR1 persistence, following dendrochronological methods. For strategy (3), pseudoproxies are similarly sampled at locations that approximate proxy availability in real-world CFR applications; white noise at a signal-to-noise ratio of 0.25 (by variance) is added (real-world noise characteristics are likely more complex than the model adopted in this case). Monte Carlo replication of the simulated reconstructions is then generated from multiple pseudoproxy noise realizations, and thus a probabilistic characterization of the uncertainty involved in the reconstruction process is derived. The results of these experiments indicate that exploitation of low-noise proxy data (i.e., proxy information that closely tracks its associated teleconnected climatic variable) from the most-strongly teleconnected areas (strategy 1) is a preferable method for ENSO index reconstruction, in comparison to adding additional proxy information from less-strongly teleconnected areas (strategy 2). Average reconstruction fidelity was reduced by strategy (2) and the width of the estimated credible intervals (CIs) was widened relative to those generated using strategy (1). The use of CFR methods, strategy (3), further enhances the width of the simulated CIs, even to the point of suggesting possible loss of reconstruction significance (at the 95% level) for a brief period. Given these widened CIs, however, the CFR method shows the highest reconstruction fidelity overall (restricted to the 19th and 20th centuries), suggesting it might be a preferable method along with strategy (1). The enhanced performance of the CFR method during this time is due at least in part to the fact that the CFR reconstructions better capture the 20th century trend than the reconstructions in strategies (1) and (2) (note that the pre-whitening process leaves the trend largely intact), and may also be due to the greater proxy richness exploited in the CFR method. This enhanced performance during the real-world time of calibration and verification should also lead to the caveat that it might suggest performance during such a limited period that gives an over-optimistic view of its true potential over the full millennium.

  1. Climate variability and human impact in South America during the last 2000 years: synthesis and perspectives from pollen records

    NASA Astrophysics Data System (ADS)

    Flantua, S. G. A.; Hooghiemstra, H.; Vuille, M.; Behling, H.; Carson, J. F.; Gosling, W. D.; Hoyos, I.; Ledru, M. P.; Montoya, E.; Mayle, F.; Maldonado, A.; Rull, V.; Tonello, M. S.; Whitney, B. S.; González-Arango, C.

    2016-02-01

    An improved understanding of present-day climate variability and change relies on high-quality data sets from the past 2 millennia. Global efforts to model regional climate modes are in the process of being validated against, and integrated with, records of past vegetation change. For South America, however, the full potential of vegetation records for evaluating and improving climate models has hitherto not been sufficiently acknowledged due to an absence of information on the spatial and temporal coverage of study sites. This paper therefore serves as a guide to high-quality pollen records that capture environmental variability during the last 2 millennia. We identify 60 vegetation (pollen) records from across South America which satisfy geochronological requirements set out for climate modelling, and we discuss their sensitivity to the spatial signature of climate modes throughout the continent. Diverse patterns of vegetation response to climate change are observed, with more similar patterns of change in the lowlands and varying intensity and direction of responses in the highlands. Pollen records display local-scale responses to climate modes; thus, it is necessary to understand how vegetation-climate interactions might diverge under variable settings. We provide a qualitative translation from pollen metrics to climate variables. Additionally, pollen is an excellent indicator of human impact through time. We discuss evidence for human land use in pollen records and provide an overview considered useful for archaeological hypothesis testing and important in distinguishing natural from anthropogenically driven vegetation change. We stress the need for the palynological community to be more familiar with climate variability patterns to correctly attribute the potential causes of observed vegetation dynamics. This manuscript forms part of the wider LOng-Term multi-proxy climate REconstructions and Dynamics in South America - 2k initiative that provides the ideal framework for the integration of the various palaeoclimatic subdisciplines and palaeo-science, thereby jump-starting and fostering multidisciplinary research into environmental change on centennial and millennial timescales.

  2. Distribution of branched GDGTs in surface sediments from the Colville River, Alaska: Implications for the MBT'/CBT paleothermometer in Arctic marine sediments

    NASA Astrophysics Data System (ADS)

    Hanna, Andrea J. M.; Shanahan, Timothy M.; Allison, Mead A.

    2016-07-01

    Significant climate fluctuations in the Arctic over the recent past, and additional predicted future temperature changes, highlight the need for high-resolution Arctic paleoclimate records. Arctic coastal environments supplied with terrigenous sediment from Arctic rivers have the potential to provide annual to subdecadal resolution records of climate variability over the last few millennia. A potential tool for paleotemperature reconstructions in these marine sediments is the revised methylation index of branched tetraethers (MBT')/cyclization ratio of branched tetraethers (CBT) proxy based on branched glycerol dialkyl glycerol tetraethers (brGDGTs). In this study, we examine the source of brGDGTs in the Colville River, Alaska, and the adjacent Simpson Lagoon and reconstruct temperatures from Simpson Lagoon sediments to evaluate the applicability of this proxy in Arctic estuarine environments. The Colville catchment soils, fluvial sediments, and estuarine sediments contain statistically similar brGDGT distributions, indicating that the brGDGTs throughout the system are soil derived with little alteration from in situ brGDGT production in the river or coastal waters. Temperatures reconstructed from the MBT'/CBT indices for surface samples show good agreement with regional summer (June through September) temperatures, suggesting a seasonal bias in Arctic temperature reconstructions from the Colville system. In addition, we reconstruct paleotemperatures from an estuarine sediment core that spans the last 75 years, revealing an overall warming trend in the twentieth century that is consistent with trends observed in regional instrumental records. These results support the application of this brGDGT-based paleotemperature proxy for subdecadal-scale summer temperature reconstructions in Arctic estuaries containing organic material derived from sediment-laden, episodic rivers.

  3. Changes in mid to late Holocene monsoon strength in eastern Mexico inferred from high-resolution maar lake sediments

    NASA Astrophysics Data System (ADS)

    Bhattacharya, T.; Byrne, R.; Wogau, K.; Bohnel, H.

    2013-12-01

    Understanding the Holocene variation in central Mexico's summer precipitation can help identify the processes responsible for climatic change and clarify the role of climate in Mesoamerican cultural change. We present proxy results from Aljojuca, a maar lake in the Oriental-Serdan Basin in Mexico's Trans-Mexican Volcanic Belt. The 12 m sediment core from Aljojuca features a laminated, high-resolution proxy archive. A chronology established via radiocarbon dating shows a basal date of 6,200 cal. years B.P. We use fluctuations in pollen, elemental geochemistry, and the stable isotope ratios of authigenic carbonates to reconstruct the timing and duration of mid to late Holocene droughts in central Mexico. We compare these results with geochemical analyses of maar wall rocks and palynological analyses of modern moss polsters to strengthen our interpretations of proxy results. We interpret periods of aridity as periods of reduced summer precipitation and therefore decreased summer monsoon strength. Our results reveal evidence of a gradual decrease in monsoon strength from the mid to late Holocene. We also identify a multi-century dry period between 1,150 and 800 cal yr. BP, coinciding with the abandonment of the nearby fortified city of Cantona. Spatiotemporal analysis of this and other paleoclimatic records reveals region-wide evidence of this ';Terminal Classic' drought, although its timing is spatially heterogeneous. Our results represent one of the only high-resolution mid-Holocene records from the eastern Trans-Mexican Volcanic Belt.

  4. Paleoclimatological study using stalagmites from Java Island, Indonesia

    NASA Astrophysics Data System (ADS)

    Watanabe, Y.; Matsuoka, H.; Ohsawa, S.; Yamada, M.; Kitaoka, K.; Kiguchi, M.; Ueda, J.; Yoshimura, K.; Kurisaki, K.; Nakai, S.; Brahmantyo, B.; Maryunani, K. A.; Tagami, T.; Takemura, K.; Yoden, S.

    2006-12-01

    In the last decade, decoding geochemical records in stalagmites has been widely recognized as a powerful tool for the elucidation of paleoclimate/environment of the terrestrial areas. The previous data are mainly reported from areas that are located in middle latitude. However, this study aims at reconstructing past climate variations in the Asian equatorial regions by using oxygen isotopes and other geochemical proxies recorded in Indonesian stalagmites.. Especially, we focus on the detection of the precipitation anomaly that reflects the El Niño Southern Oscillation (ENSO). We performed geological surveys in Buniayu limestone caves, Sukabumi, West Java, and Karangbolong, Central Java, Indonesia and collected a series of stalagmites/stalactites and drip water samples. Detailed textures of stalagmite samples were observed using thin sections to identify "annual" bandings. Moreover, we also measured both (1) annual luminescent banding that can be viewed by ultraviolet-light stimulation and (2) uranium series disequilibrium ages using the MC-ICP-MS for each stalagmite to construct the age model. We also carried out 3H-3He dating and stable isotope measurements of drip water samples to understand hydrogeology in study areas. Based on these frameworks, oxygen isotopes and other geochemical proxies will be analyzed for annual or sub-annual time scales. The proxy data will then be compared with meteorological data set, such as local precipitation, in the past 50 years. Finally, we will reconstruct for longer timescales the past climate, particularly the precipitation anomaly, in the region to detect ancient ENSO.

  5. Quantification of depositional changes and paleo-seismic activities from laminated sediments using outcrop data

    NASA Astrophysics Data System (ADS)

    Weidlich, O.; Bernecker, M.

    2004-04-01

    Measurements of laminations from marine and limnic sediments are commonly a time-consuming procedure. However, the resulting quantitative proxies are of importance for the interpretation of both, climate changes and paleo-seismic activities. Digital image analysis accelerates the generation and interpretation of large data sets from laminated sediments based on contrasting grey values of dark and light laminae. Statistical transformation and correlation of the grey value signals reflect high frequency cycles due to changing mean laminae thicknesses, and thus provide data monitoring climate change. Perturbations (e.g., slumping structures, seismites, and tsunamites) of the commonly continuous laminae record seismic activities and obtain proxies for paleo-earthquake frequency. Using outcrop data from (i) the Pleistocene Lisan Formation of Jordan (Dead Sea Basin) and (ii) the Carboniferous-Permian Copacabana Formation of Bolivia (Lake Titicaca), we present a two-step approach to gain high-resolution time series based on field data for both purposes from unconsolidated and lithified outcrops. Step 1 concerns the construction of a continuous digital phototransect and step 2 covers the creation of a grey density curve based on digital photos along a line transect using image analysis. The applied automated image analysis technique provides a continuous digital record of the studied sections and, therefore, serves as useful tool for the evaluation of further proxy data. Analysing the obtained grey signal of the light and dark laminae of varves using phototransects, we discuss the potential and limitations of the proposed technique.

  6. Reconstructing Holocene glacier activity at Langfjordjøkelen, Arctic Norway, using multi-proxy fingerprinting of distal glacier-fed lake sediments

    NASA Astrophysics Data System (ADS)

    Wittmeier, Hella E.; Bakke, Jostein; Vasskog, Kristian; Trachsel, Mathias

    2015-04-01

    Late Glacial and Holocene glacier fluctuations are important indicators of climate variability in the northern polar region and contain knowledge vital to understanding and predicting present and future climate changes. However, there still is a lack of robustly dated terrestrial climate records from Arctic Norway. Here, we present a high-resolution relative glacier activity record covering the past ∼10,000 cal. a BP from the northern outlet of the Langfjordjøkelen ice cap in Arctic Norway. This record is reconstructed from detailed geomorphic mapping, multi-proxy sedimentary fingerprinting and analyses of distal glacier-fed lake sediments. We used Principal Component Analysis to characterize sediments of glacial origin and trace them in a chain of downstream lakes. Of the variability in the sediment record of the uppermost Lake Jøkelvatnet, 73% can be explained by the first Principal Component axis and tied directly to upstream glacier erosion, whereas the glacial signal becomes weaker in the more distal Lakes Store Rundvatnet and Storvatnet. Magnetic susceptibility and titanium count rates were found to be the most suitable indicators of Holocene glacier activity in the distal glacier-fed lakes. The complete deglaciation of the valley of Sør-Tverrfjorddalen occurred ∼10,000 cal. a BP, followed by a reduced or absent glacier during the Holocene Thermal Optimum. The Langfjordjøkelen ice cap reformed with the onset of the Neoglacial ∼4100 cal. a BP, and the gradually increasing glacier activity culminated at the end of the Little Ice Age in the early 20th century. Over the past 2000 cal. a BP, the record reflects frequent high-amplitude glacier fluctuations. Periods of reduced glacier activity were centered around 1880, 1600, 1250 and 950 cal. a BP, while intervals of increased glacier activity occurred around 1680, 1090, 440 and 25 cal. a BP. The large-scale Holocene glacier activity of the Langfjordjøkelen ice cap is consistent with regional temperature proxy reconstructions and glacier variability across Norway. Long-term changes in the extent of the northern outlet of the Langfjordjøkelen ice cap largely followed trends in regional summer temperatures, whereas winter season atmospheric variability may have triggered decadal-scale glacial fluctuations and generally affected the amplitude of glacier events.

  7. Reconstruction of Last Glacial Tropical SST Anomalies from Mg/Ca and UK37' to Constrain Climate Sensitivity

    NASA Astrophysics Data System (ADS)

    Lea, D. W.; de Garidel-Thoron, T.; Bard, E. G.; Kienast, M.

    2016-12-01

    Proxy paleoclimate data provides an important constrain on climate sensitivity. The tropics have been identified as a region which primarily responds to greenhouse gas forcing (GHF). The SENSETROP (Sensitivity of the Tropics) group has identified the LGM, HS1 and HS2 as key time windows to test the hypothesis that SST anomalies recorded by two geochemical paleothermometers, Mg/Ca and UK37', can be used to establish tropical climate response and, via the magnitude and spatial pattern of these anomalies, provide robust comparisons to the output of general circulation models. This work is a logical extension of prior efforts such as CLIMAP and MARGO, which largely relied on faunal SST proxies that are affected by other factors such as productivity or water column structure. With this goal in mind we have developed the SENSETROP database of published and unpublished Mg/Ca and UK37' data from low latitude (30° N to 30° S) marine cores spanning the last glacial cycle. The database contains 78 Mg/Ca records and 40 UK37' records, distributed between the tropical ocean basins: 49 in the Pacific Ocean, 32 in the Indian Ocean, and 27 in the Atlantic Ocean. Most of the cores are confined to the ocean margins. All of the data come from well dated records that include radiocarbon. As a test of the database, we determined the average SST anomaly during the LGM, 19,000-23,000 yr BP, relative to the late Holocene, 0-4,000 yr BP, from select records that contain at least 4 SST points in each time window for which the SDs < 0.75 °C. For G. ruber (all morphotypes) Mg/Ca, the recorded anomaly from 23 cores is -2.6 ± 0.6 °C, based on >1100 individual determinations. For UK37', the recorded anomaly for 14 cores is -2.4 ± 0.9 °C, based on >400 individual determinations. Agreement between these two independent proxies increases confidence in the LGM cooling level. The new results from the SENSETROP database show a strong level of homogeneity throughout the tropics, with slightly ( 0.3 °C) greater cooling in the NH. These results are in marked contrast to MARGO, which showed a strong level of heterogeneity in tropical SST. The new SENSETROP results are consistent with a primary control of greenhouse gas forcing on tropical SSTs during the LGM. Extension of these results to ECS determinations suggests values consistent with the IPCC canonical range.

  8. Holocene climate dynamics in the Eastern Italian Alps: a multi-proxy study from ice and peat bogs

    NASA Astrophysics Data System (ADS)

    Poto, Luisa; Gabrieli, Jacopo; Segnana, Michela; Festi, Daniela; Oeggl, Klaus; Barbante, Carlo

    2014-05-01

    The Eastern Italian Alps are located near one of the areas in the world with some of the longest records of extreme environmental use by human activity. In this area, paleo-climate studies are hampered by the lack of high-resolution multi-proxy records with adequate chronological control. With this project, we propose to reconstruct Holocene climatic and environmental variations in the Eastern Italian Alps using terrestrial and glaciological archives. We aim to study the characteristics of different climate stages in this sector of the Alps using an ice core drilled on the top of the Ortles glacier (46°30' N, 10°32 E, 3850 m a.s.l.) and ombrotrophic peat bog records from the Dolomites (Danta di Cadore, 46°34' N, 12°33 E, 1400 m a.s.l. and Coltrondo 46°39'28.37''N 12°26'59.17''E, 1800 m a.s.l., Belluno province). The study of global climatic change require a holistic and multi-proxy approach to better understand several complex and often non-linear relationships. In the Italian Alps our study on peat cores represents the first attempt where a multi-proxy approach is applied, and here we report our first results. A 7.0 m peat sequence was extracted in Danta di Cadore. The depth-age scale, based upon independent 14C and 210Pb dates and modeled with the Clam method (Blaauw, 2010), demonstrates that the archive covers more than 13,200 years (cal BP). We determined physical proprieties, Ca and Ti trends, pore water pH, conductivity, and Ca/Mg ratios to identify changes in trophic conditions. The results confirm that the uppermost 400 cm are composed of ombrotrophic peat representing the longest Eastern Alpine ombrotrophic record yet obtained, covering the last 7,000 years. The oldest radiocarbon age (13,200 years cal BP) provides evidence that, during the Bölling-Alleröd interstadial, the upper part of the Piave Glacier was ice-free up to 1400 m a.s.l.. At that time pollen assemblages show that a conifer forest characterized the local vegetation. This forest was then affected by the climatic cooling of the Younger Dryas, which caused an opening of the vegetation. The climatic amelioration occurring at the onset of the Holocene favored the local expansion of warmth-demanding species. X-ray Fluorescence Core Scanner (XRF-CS) analysis was applied for the first time on Eastern Alpine peat sequences. XRF-CS signals were calibrated with ICP-MS, showing very high correlation and demonstrating that the XRF-CS technique provides reliable quantitative data. Results provide information about geochemical processes occurring in the bog. The impact of mining activity was also evaluated. Concentration levels and enrichment factors (EFs) of several trace elements such as Pb, Ag and Cd correspond to the historical data about mining activities in the Cadore region. Lead isotopes ratios were measured to identify natural and anthropogenic sources of Pb emissions. Results show an increase of Pb deriving from fuel combustion over the last decades that gradually overlie the impacts of mining activity. The decreasing 206Pb/207Pb trend reached its minimum value of 1.153 in the 1990s and then increased again. In these years, Italy started to follow EU rules to limit global pollutants in the atmosphere, and finally banned leaded fuels in 2002. Both 206Pb/207Pb ratio and Pb fluxes show a particular event between 1975 and 1980: this behavior is characteristic of the ILE (Isotopic Lead Experiment), a large-scale isotopic tracer experiment which was carried out in the Piedmont region (N-W Italy). This multi-proxy approach that integrates, using new chronological insights, chemical physical and biological features of the core, improves our understanding of Eastern Alpine Holocene climate, helping to delineate biotic and abiotic responses to climate dynamics during the present interglacial. Blaauw, M. 2010. Methods and code for 'classical' age modeling of radiocarbon sequences. Quarternary Geochronology, 5: 512-518.

  9. Constant Flux Proxies and Pleistocene Sediment Accumulation Rates on the Juan de Fuca Ridge in the Northeast Pacific

    NASA Astrophysics Data System (ADS)

    Middleton, J. L.; Mukhopadhyay, S.; Langmuir, C. H.; Costa, K.; McManus, J. F.; d'Almeida, M.; Huybers, P. J.; Winckler, G.

    2016-12-01

    Mass accumulation rates of marine sediments are often employed to constrain deposition rates of important proxies such as terrigenous dust, carbonate, and biogenic opal to quantitatively examine variations in continental aridity, atmospheric transport, and biologic productivity across changing climatic conditions. However, deposition rates that are estimated using traditional mass accumulation rates calculated from sediment core age models can be subject to bias from lateral sediment transport and limited age model resolution. Constant flux proxies, such as extraterrestrial helium-3 (3HeET) and excess thorium-230 (230ThXS), can be used to calculate vertical sediment accumulation rates that are independent of age model uncertainties and the effects of lateral sediment transport. While a short half-life limits analyses of 230ThXS to the past 500 ka, 3HeET is stable and could be used to constrain sedimentary fluxes during much of the Cenozoic. Despite the vast paleoceanographic potential of constant flux proxies, few studies have directly compared the behavior of 230ThXS and 3HeET using measurements from the same samples. Sediment grain size fractionation and local scavenging effects may differentially bias one or both proxy systems and complicate the interpretation of 230ThXS or 3HeET data. We will present a new record of vertical sediment accumulation rates spanning the past 600 ka in the Northeast Pacific constrained using analyses of both 3HeET and 230ThXS in two sediment cores from cruise AT26-19 on the Juan de Fuca Ridge. Such a record allows for intercomparison of both constant flux proxies in the mid-ocean ridge environment and examination of sedimentary behavior across multiple glacial cycles. The 230ThXS-derived accumulation rates typically range from 0.5 to 2 g cm-2 ka-1 over the past 450 ka, with periods of maximum deposition coinciding with glacial maxima. Preliminary results of samples analyzed with both 3HeET and 230ThXS indicate relative consistency between vertical sediment accumulation rates computed from each proxy and encourage the use of these constant flux proxies in other sedimentary records.

  10. Does Timing Matter? Temporal Stability of Soil-Magnetic Climate Proxies

    NASA Astrophysics Data System (ADS)

    Geiss, C. E.

    2013-12-01

    Numerous studies have shown that the rock-magnetic properties of soils can serve as valuable proxies of continental climates. Many studies average the magnetic properties of several closely spaced sites to reconstruct regional climate signals, but little is known about the temporal variability of soil-magnetic properties. We analyzed the magnetic properties of five, closely spaced (within 20 m from each other) soil profiles that were sampled over a period of five years between 2002 and 2006. The soil profiles are well-developed and display strong magnetic enhancement. According to land records, agricultural influence was minimal as the site had never been plowed and solely been used as pasture. Detailed soil descriptions and measurements of magnetic susceptibility (χ), anhysteretic and isothermal remanent magnetization (ARM, IRM), as well as coercivity parameters show that all studied profiles have very similar horizination and magnetic properties are virtually unchanged from year to year. The only differences between the soil profiles are the position and strength of redoximorphic features. These nanocrystalline iron-oxide deposits have little influence on the magnetic properties of the soils and the timing of soil sampling for magnetic analyses is not a critical factor when sampling for climatic reconstructions.

  11. A multiple-proxy approach to understanding rapid Holocene climate change in Southeast Greenland

    NASA Astrophysics Data System (ADS)

    Davin, S. H.; Bradley, R. S.; Balascio, N. L.; de Wet, G.

    2012-12-01

    The susceptibility of the Arctic to climate change has made it an excellent workshop for paleoclimatological research. Although there have been previous studies concerning climate variability carried out in the Arctic, there remains a critical dearth of knowledge due the limited number of high-resolution Holocene climate-proxy records available from this region. This gap skews our understanding of observed and predicted climate change, and fuels uncertainty both in the realms of science and policy. This study takes a comprehensive approach to tracking Holocene climate variability in the vicinity of Tasiilaq, Southeast Greenland using a ~5.6 m sediment core from Lower Sermilik Lake. An age-depth model for the core has been established using 8 radiocarbon dates, the oldest of which was taken at 4 m down core and has been been dated to approximately 6.2 kyr BP. The bottom meter of the core below the final radiocarbon date contains a transition from cobbles and coarse sand to organic-rich laminations, indicating the termination of direct glacial influence and therefore likely marking the end of the last glacial period in this region. The remainder of the core is similarly organic-rich, with light-to-dark brown laminations ranging from 0.5 -1 cm in thickness and riddled with turbidites. Using this core in tandem with findings from an on-site assessment of the geomorphic history of the locale we attempt to assess and infer the rapid climatic shifts associated with the Holocene on a sub-centennial scale. Such changes include the termination of the last glacial period, the Mid-Holocene Climatic Optimum, the Neoglacial Period, the Medieval Climatic Optimum, and the Little Ice Age. A multiple proxy approach including magnetic susceptibility, bulk organic geochemistry, elemental profiles acquired by XRF scanning, grain-size, and spectral data will be used to characterize the sediment and infer paleoclimate conditions. Additionally, percent biogenic silica by weight has been quantified via diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), and validated by a traditional wet leaching method. The use of the emerging DRIFTS technology to obtain inferred biogenic silica concentrations has not been widely applied to arctic lacustrine sediments and will help to contribute to the presently limited pool of literature on the topic. Preliminary results of the data reveal high frequency fluctuations between laminations superimposed on long-term trends, which has revealed already some correlation with Holocene climatic events. The data provided by this barrage of proxies is to be presented and will contribute to the understanding of Holocene Arctic climate change at a sub-centennial scale.

  12. Origin of orbital periods in the sedimentary relative paleointensity records

    NASA Astrophysics Data System (ADS)

    Xuan, Chuang; Channell, James E. T.

    2008-08-01

    Orbital cycles with 100 kyr and/or 41 kyr periods, detected in some sedimentary normalized remanence (relative paleointensity) records by power spectral analysis or wavelet analysis, have been attributed either to orbital forcing of the geodynamo, or to lithologic contamination. In this study, local wavelet power spectra (LWPS) with significance tests have been calculated for seven relative paleointensity (RPI) records from different regions of the world. The results indicate that orbital periods (100 kyr and/or 41 kyr) are significant in some RPI records during certain time intervals, and are not significant in others. Time intervals where orbital periods are significant are not consistent among the RPI records, implying that orbital periods in these RPI records may not have a common origin such as orbital forcing on the geodynamo. Cross-wavelet power spectra (|XWT|) and squared wavelet coherence (WTC) between RPI records and orbital parameters further indicate that common power exists at orbital periods but is not significantly coherent, and exhibits variable phase relationships, implying that orbital periods in RPI records are not caused directly by orbital forcing. Similar analyses for RPI records and benthic oxygen isotope records from the same sites show significant coherence and constant in-phase relationships during time intervals where orbital periods were significant in the RPI records, indicating that orbital periods in the RPI records are most likely due to climatic 'contamination'. Although common power exists at orbital periods for RPI records and their normalizers with significant coherence during certain time intervals, phase relationships imply that 'contamination' (at orbital periods) is not directly due to the normalizers. Orbital periods are also significant in the NRM intensity records, and 'contamination' in RPI records can be attributed to incomplete normalization of the NRM records. Further tests indicate that 'contamination' is apparently not directly related to physical properties such as density or carbonate content, or to the grain size proxy κARM/ κ. However, WTC between RPI records and the grain size proxy ARM/IRM implies that ARM/IRM does reflect the 'contamination' in some RPI records. It appears that orbital periods were introduced into the NRM records (and have not been normalized when calculating RPI records) through magnetite grain size variations reflected in the ARM/IRM grain size proxy. The orbital power in ARM/IRM for some North Atlantic sites is probably derived from bottom-current velocity variations that are orbitally modulated and are related to the vigor of thermohaline circulation and the production of North Atlantic Deep Water (NADW). In the case of ODP Site 983, the orbital power in RPI appears to exhibit a shift from 41-kyr to 100-kyr period at the mid-Pleistocene climate transition (˜750 ka), reinforcing the climatic origin of these orbital periods. RPI records from the Atlantic and Pacific oceans, and RPI records with orbital periods eliminated by band-pass filters, are highly comparable with each other in the time domain, and are coherent and in-phase in time-frequency space, especially at non-orbital periods, indicating that 'contamination', although present (at orbital periods) is not debilitating to these RPI records as a global signal that is primarily of geomagnetic origin.

  13. Mid-Pliocene to Early Pleistocene land and sea surface temperature history of NW Australia based on organic geochemical proxies

    NASA Astrophysics Data System (ADS)

    Smith, R. A.; Castañeda, I. S.; Henderiks, J.; Christensen, B. A.; De Vleeschouwer, D.; Renema, W.; Groeneveld, J.; Bogus, K.; Gallagher, S. J.; Fulthorpe, C.; Expedition 356 Scientists, I.

    2017-12-01

    IODP Expedition 356 Site U1463 is located off the coast of NW Australia, and is sensitive to Indonesian Throughflow (ITF) variability. The ITF is a critical ocean gateway that affects global thermohaline circulation, and regulates the movement of water from the Pacific Ocean into the Indian Ocean. However, despite its importance to the global climate system, few SST reconstructions exist for this region that span the Plio-Pleistocene. Here we investigate both the land and sea-surface temperature (SST) history of NW Australia to constrain ITF variability across the Plio-Pleistocene interval. We apply multiple organic geochemical proxies to this site from 3.4-2.6 Ma, which includes the mid-Pliocene warm period, characterized by slightly higher (2-3°C) global temperatures and similar CO2 concentrations to modern values (e.g. Badger et al. 2013; Bartoli et al., 2011; Dowsett et al., 2009; Hönisch et al., 2009; Pagani et al. 2009; Raymo et al., 1996). SST was reconstructed using TEX86, based on isoprenoid glycerol dialkyl glycerol tetraethers (iGDGTs), and the long-chain diol index (LDI), based on the ratio of diols produced by marine diatoms (Rampen et al., 2012). The Uk'37 index, based on long-chain ketones, was analyzed but cannot be applied as a SST proxy at this site due to the influence of coastal alkenone producers. Additionally, a continental air temperature record was developed using the MBT'5ME proxy, based on branched GDGTs (De Jonge et al., 2014; Weijers et al., 2007). We find that TEX86, LDI and MBT'5Me exhibit similar trends and show relatively warm and stable temperatures from 3.5-2.4 Ma followed by a gradual cooling of 3-4°C from 2.4-1.5 Ma. This cooling corresponds with an arid interval previously identified on the same core by Christensen et al. (2017). Furthermore, we find that the TEX86 record agrees closely with the LR04 global benthic δ18O stack (Lisiecki and Raymo, 2005) and captures glacial/interglacial periods including Marine Isotope Stage M2. Our results help to constrain climatic changes across the mid-Pliocene warm period and aim to improve future climate models and elucidate the role of the ITF in driving global climate variability.

  14. Ice Core Records of Recent Northwest Greenland Climate

    NASA Astrophysics Data System (ADS)

    Osterberg, E. C.; Wong, G. J.; Ferris, D.; Lutz, E.; Howley, J. A.; Kelly, M. A.; Axford, Y.; Hawley, R. L.

    2014-12-01

    Meteorological station data from NW Greenland indicate a 3oC temperature rise since 1990, with most of the warming occurring in fall and winter. According to remote sensing data, the NW Greenland ice sheet (GIS) and coastal ice caps are responding with ice mass loss and margin retreat, but the cryosphere's response to previous climate variability is poorly constrained in this region. We are developing multi-proxy records (lake sediment cores, ice cores, glacial geologic data, glaciological models) of Holocene climate change and cryospheric response in NW Greenland to improve projections of future ice loss and sea level rise in a warming climate. As part of our efforts to develop a millennial-length ice core paleoclimate record from the Thule region, we collected and analyzed snow pit samples and short firn cores (up to 21 m) from the coastal region of the GIS (2Barrel site; 76.9317o N, 63.1467o W, 1685 m el.) and the summit of North Ice Cap (76.938o N, 67.671o W, 1273 m el.) in 2011, 2012 and 2014. The 2Barrel ice core record has statistically significant relationships with regional spring and fall Baffin Bay sea ice extent, summertime temperature, and annual precipitation. Here we evaluate relationships between the 2014 North Ice Cap firn core glaciochemical record and climate variability from regional instrumental stations and reanalysis datasets. We compare the coastal North Ice Cap record to more inland records from 2Barrel, Camp Century and NEEM to evaluate spatial and elevational gradients in recent NW Greenland climate change.

  15. Fossil bryophytes as recorders of ancient CO2 levels: Experimental evidence and a Cretaceous case study

    NASA Astrophysics Data System (ADS)

    Fletcher, Benjamin J.; Beerling, David J.; Brentnall, Stuart J.; Royer, Dana L.

    2005-09-01

    Biological and geochemical CO2 proxies provide critical constraints on understanding the role of atmospheric CO2 in driving climate change during Earth history. As no single existing CO2 proxy is without its limitations, there is a clear need for new approaches to reconstructing past CO2 concentrations. Here we develop a new pre-Quaternary CO2 proxy based on the stable carbon isotope composition (δ13C) of astomatous land plants. In a series of CO2-controlled laboratory experiments, we show that the carbon isotope discrimination (Δ13C) of a range of bryophyte (liverwort and moss) species increases with atmospheric CO2 across the range 375 to 6000 ppm. Separate experiments establish that variations in growth temperature, water content and substrate type have minor impacts on the Δ13C of liverworts but not mosses, indicating the greater potential of liverworts to faithfully record past variations in CO2. A mechanistic model for calculating past CO2 concentrations from bryophyte Δ13C (White et al., 1994) is extended and calibrated using our experimental results. The potential for fossil liverworts to record past CO2 changes is investigated by analyzing the δ13C of specimens collected from Alexander Island, Antarctica dating to the "greenhouse" world of the mid-Cretaceous. Our analysis and isotopic model yield mid-Cretaceous CO2 concentrations of 1000-1400 ppm, in general agreement with independent proxy data and long-term carbon cycle models. The exceptionally long evolutionary history of bryophytes offers the possibility of reconstructing CO2 concentrations back to the mid-Ordovician, pre-dating all currently used quantitative CO2 proxies.

  16. Moss stable isotopes (carbon-13, oxygen-18) and testate amoebae reflect environmental inputs and microclimate along a latitudinal gradient on the Antarctic Peninsula.

    PubMed

    Royles, Jessica; Amesbury, Matthew J; Roland, Thomas P; Jones, Glyn D; Convey, Peter; Griffiths, Howard; Hodgson, Dominic A; Charman, Dan J

    2016-07-01

    The stable isotope compositions of moss tissue water (δ(2)H and δ(18)O) and cellulose (δ(13)C and δ(18)O), and testate amoebae populations were sampled from 61 contemporary surface samples along a 600-km latitudinal gradient of the Antarctic Peninsula (AP) to provide a spatial record of environmental change. The isotopic composition of moss tissue water represented an annually integrated precipitation signal with the expected isotopic depletion with increasing latitude. There was a weak, but significant, relationship between cellulose δ(18)O and latitude, with predicted source water inputs isotopically enriched compared to measured precipitation. Cellulose δ(13)C values were dependent on moss species and water content, and may reflect site exposure to strong winds. Testate amoebae assemblages were characterised by low concentrations and taxonomic diversity, with Corythion dubium and Microcorycia radiata types the most cosmopolitan taxa. The similarity between the intra- and inter-site ranges measured in all proxies suggests that microclimate and micro-topographical conditions around the moss surface were important determinants of proxy values. Isotope and testate amoebae analyses have proven value as palaeoclimatic, temporal proxies of climate change, whereas this study demonstrates that variations in isotopic and amoeboid proxies between microsites can be beyond the bounds of the current spatial variability in AP climate.

  17. Climatic history of the northeastern United States during the past 3000 years

    USGS Publications Warehouse

    Marlon, Jennifer R.; Pederson, Neil; Nolan, Connor; Goring, Simon; Shuman, Bryan; Robertson, Ann; Booth, Robert K.; Bartlein, Patrick J.; Berke, Melissa A.; Clifford, Michael; Cook, Edward; Dieffenbacher-Krall, Ann; Dietze, Michael C.; Hessl, Amy; Hubeny, J. Bradford; Jackson, Stephen T.; Marsicek, Jeremiah; McLachlan, Jason S.; Mock, Cary J.; Moore, David J. P.; Nichols, Jonathan M.; Peteet, Dorothy M.; Schaefer, Kevin; Trouet, Valerie; Umbanhowar, Charles; Williams, John W.; Yu, Zicheng

    2017-01-01

    Many ecosystem processes that influence Earth system feedbacks, including vegetation growth, water and nutrient cycling, and disturbance regimes, are strongly influenced by multi-decadal to millennial-scale variations in climate that cannot be captured by instrumental climate observations. Paleoclimate information is therefore essential for understanding contemporary ecosystems and their potential trajectories under a variety of future climate conditions. With the exception of fossil pollen records, there are a limited number of northeastern US (NE US) paleoclimate archives that can provide constraints on its temperature and hydroclimate history. Moreover, the records that do exist have not been considered together. Tree-ring data indicate that the 20th century was one of the wettest of the past 500 years in the eastern US (Pederson et al., 2014), and lake-level records suggest it was one of the wettest in the Holocene (Newby et al., 2014); how such results compare with other available data remains unclear, however. Here we conduct a systematic review, assessment, and comparison of paleotemperature and paleohydrological proxies from the NE US for the last 3000 years. Regional temperature reconstructions are consistent with the long-term cooling trend (1000 BCE–1700 CE) evident in hemispheric-scale reconstructions, but hydroclimate reconstructions reveal new information, including an abrupt transition from wet to dry conditions around 550–750 CE. NE US paleo data suggest that conditions during the Medieval Climate Anomaly were warmer and drier than during the Little Ice Age, and drier than today. There is some evidence for an acceleration over the past century of a longer-term wetting trend in the NE US, and coupled with the abrupt shift from a cooling trend to a warming trend from increased greenhouse gases, may have wide-ranging implications for species distributions, ecosystem dynamics, and extreme weather events. More work is needed to gather paleoclimate data in the NE US, make inter-proxy comparisons, and improve estimates of uncertainty in the reconstructions.

  18. Nineteenth Century Long-Term Instrumental Records, Examples From the Southeastern United States

    NASA Astrophysics Data System (ADS)

    Mock, C. J.

    2001-12-01

    Early instrumental records in the United States, defined as those operating before 1892 which is regarded the period prior to the modern climate record, provide a longer perspective of climatic variability at decadal and interannual timescales. Such reconstructions also provide a means of verification for other proxy data. This paper provides a American perspective of historical climatic research, emphasizing the urgent need to properly evaluate data quality and provide necessary corrections to make them compatible with the modern record. Different fixed observation times, different practices of weather instrument exposures, and statistical methods for calibration are the main issues in applying corrections and conducting proper climatic interpretations. I illustrate several examples on methodologies of this historical climatic research, focusing on the following in the Southeastern United States: daily reconstructed temperature time-series centered on Charleston SC and Natchez MS back to the late eighteenth century, and precipitation frequency reconstructions during the antebellum period for the Gulf Coast and coastal Southeast Atlantic states. Results indicate several prominent extremes unprecedented as compared to the modern record, such as the widespread warm winter of 1827-28, and the severe cold winters of 1856 and 1857. The reconstructions also yield important information concerning responses to past ENSO events, the PNA, NAO, and the PDO, particularly when compared with instrumental data from other regions. A high potential also exists for applying the climate reconstructions to assess historical climatic impacts on society in the Southeast, such as to understand climatic linkages to famous case studies of Yellow Fever epidemics and severe drought.

  19. Winter temperature conditions (1670-2010) reconstructed from varved sediments, western Canadian High Arctic

    NASA Astrophysics Data System (ADS)

    Amann, Benjamin; Lamoureux, Scott F.; Boreux, Maxime P.

    2017-09-01

    Advances in paleoclimatology from the Arctic have provided insights into long-term climate conditions. However, while past annual and summer temperature have received considerable research attention, comparatively little is known about winter paleoclimate. Arctic winter is of special interest as it is the season with the highest sensitivity to climate change, and because it differs substantially from summer and annual measures. Therefore, information about past changes in winter climate is key to improve our knowledge of past forced climate variability and to reduce uncertainty in climate projections. In this context, Arctic lakes with snowmelt-fed catchments are excellent potential winter climate archives. They respond strongly to snowmelt-induced runoff, and indirectly to winter temperature and snowfall conditions. To date, only a few well-calibrated lake sediment records exist, which appear to reflect site-specific responses with differing reconstructions. This limits the possibility to resolve large-scale winter climate change prior the instrumental period. Here, we present a well-calibrated quantitative temperature and snowfall record for the extended winter season (November through March; NDJFM) from Chevalier Bay (Melville Island, NWT, Canadian Arctic) back to CE 1670. The coastal embayment has a large catchment influenced by nival terrestrial processes, which leads to high sedimentation rates and annual sedimentary structures (varves). Using detailed microstratigraphic analysis from two sediment cores and supported by μ-XRF data, we separated the nival sedimentary units (spring snowmelt) from the rainfall units (summer) and identified subaqueous slumps. Statistical correlation analysis between the proxy data and monthly climate variables reveals that the thickness of the nival units can be used to predict winter temperature (r = 0.71, pc < 0.01, 5-yr filter) and snowfall (r = 0.65, pc < 0.01, 5-yr filter) for the western Canadian High Arctic over the last ca. 400 years. Results reveal a strong variability in winter temperature back to CE 1670 with the coldest decades reconstructed for the period CE 1800-1880, while the warmest decades and major trends are reconstructed for the period CE 1880-1930 (0.26°C/decade) and CE 1970-2010 (0.37°C/decade). Although the first aim of this study was to increase the paleoclimate data coverage for the winter season, the record from Chevalier Bay also holds great potential for more applied climate research such as data-model comparisons and proxy-data assimilation in climate model simulations.

  20. Comment on “Geochemistry of buried river sediments from Ghaggar Plains, NW India: Multi-proxy records of variations in provenance, paleoclimate, and paleovegetation patterns in the late quaternary” by Ajit Singh, Debajyoti Paul, Rajiv Sinha, Kristina J. Thomsen, Sanjeev Gupta

    USGS Publications Warehouse

    Clift, Peter D.; Giosan, Liviu; East, Amy E.

    2016-01-01

    Singh et al. (2016) published a geochemical record of sediment compositions from the flood plain of the Ghaggar River in western India and use the changing provenance, particularly as traced by Nd isotope composition, to reconstruct how erosion patterns have changed over the past 100 k.y. In doing so they propose a link between climate change and erosion, and they argue for more erosion from the Higher Himalaya during warmer interglacial periods and more from the Lesser Himalaya during glacial intervals. While we support the concept of erosion patterns being climatically modulated we here take the opportunity to compare the data presented by Singh et al. (2016) to relevant published records within the region greater Ghaggar region and to open a balanced discussion on how climate and erosion are coupled in the western Himalaya.

  1. Rapid climate change did not cause population collapse at the end of the European Bronze Age

    PubMed Central

    Armit, Ian; Swindles, Graeme T.; Becker, Katharina; Plunkett, Gill; Blaauw, Maarten

    2014-01-01

    The impact of rapid climate change on contemporary human populations is of global concern. To contextualize our understanding of human responses to rapid climate change it is necessary to examine the archeological record during past climate transitions. One episode of abrupt climate change has been correlated with societal collapse at the end of the northwestern European Bronze Age. We apply new methods to interrogate archeological and paleoclimate data for this transition in Ireland at a higher level of precision than has previously been possible. We analyze archeological 14C dates to demonstrate dramatic population collapse and present high-precision proxy climate data, analyzed through Bayesian methods, to provide evidence for a rapid climatic transition at ca. 750 calibrated years B.C. Our results demonstrate that this climatic downturn did not initiate population collapse and highlight the nondeterministic nature of human responses to past climate change. PMID:25404290

  2. Rapid climate change did not cause population collapse at the end of the European Bronze Age.

    PubMed

    Armit, Ian; Swindles, Graeme T; Becker, Katharina; Plunkett, Gill; Blaauw, Maarten

    2014-12-02

    The impact of rapid climate change on contemporary human populations is of global concern. To contextualize our understanding of human responses to rapid climate change it is necessary to examine the archeological record during past climate transitions. One episode of abrupt climate change has been correlated with societal collapse at the end of the northwestern European Bronze Age. We apply new methods to interrogate archeological and paleoclimate data for this transition in Ireland at a higher level of precision than has previously been possible. We analyze archeological (14)C dates to demonstrate dramatic population collapse and present high-precision proxy climate data, analyzed through Bayesian methods, to provide evidence for a rapid climatic transition at ca. 750 calibrated years B.C. Our results demonstrate that this climatic downturn did not initiate population collapse and highlight the nondeterministic nature of human responses to past climate change.

  3. Climate variability and human impact on the environment in South America during the last 2000 years: synthesis and perspectives

    NASA Astrophysics Data System (ADS)

    Flantua, S. G. A.; Hooghiemstra, H.; Vuille, M.; Behling, H.; Carson, J. F.; Gosling, W. D.; Hoyos, I.; Ledru, M. P.; Montoya, E.; Mayle, F.; Maldonado, A.; Rull, V.; Tonello, M. S.; Whitney, B. S.; González-Arango, C.

    2015-07-01

    An improved understanding of present-day climate variability and change relies on high-quality data sets from the past two millennia. Global efforts to reconstruct regional climate modes are in the process of validating and integrating paleo-proxies. For South America, however, the full potential of vegetation records for evaluating and improving climate models has hitherto not been sufficiently acknowledged due to its unknown spatial and temporal coverage. This paper therefore serves as a guide to high-quality pollen records that capture environmental variability during the last two millennia. We identify the pollen records with the required temporal characteristics for PAGES-2 ka climate modelling and we discuss their sensitivity to the spatial signature of climate modes throughout the continent. Diverse patterns of vegetation response to climate change are observed, with more similar patterns of change in the lowlands and varying intensity and direction of responses in the highlands. Pollen records display local scale responses to climate modes, thus it is necessary to understand how vegetation-climate interactions might diverge under variable settings. Additionally, pollen is an excellent indicator of human impact through time. Evidence for human land use in pollen records is useful for archaeological hypothesis testing and important in distinguishing natural from anthropogenically driven vegetation change. We stress the need for the palynological community to be more familiar with climate variability patterns to correctly attribute the potential causes of observed vegetation dynamics. The LOTRED-SA-2 k initiative provides the ideal framework for the integration of the various paleoclimatic sub-disciplines and paleo-science, thereby jumpstarting and fostering multi-disciplinary research into environmental change on centennial and millennial time scales.

  4. 100- kyr cyclicity in volcanic ash emplacement: evidence from a 1.1 Myr tephra record from the NW Pacific.

    PubMed

    Schindlbeck, Julie C; Jegen, Marion; Freundt, Armin; Kutterolf, Steffen; Straub, Susanne M; Mleneck-Vautravers, Maryline J; McManus, Jerry F

    2018-03-13

    It is a longstanding observation that the frequency of volcanism periodically changes at times of global climate change. The existence of causal links between volcanism and Earth's climate remains highly controversial, partly because most related studies only cover one glacial cycle. Longer records are available from marine sediment profiles in which the distribution of tephras records frequency changes of explosive arc volcanism with high resolution and time precision. Here we show that tephras of IODP Hole U1437B (northwest Pacific) record a cyclicity of explosive volcanism within the last 1.1 Myr. A spectral analysis of the dataset yields a statistically significant spectral peak at the ~100 kyr period, which dominates the global climate cycles since the Middle Pleistocene. A time-domain analysis of the entire eruption and δ 18 O record of benthic foraminifera as climate/sea level proxy shows that volcanism peaks after the glacial maximum and ∼13 ± 2 kyr before the δ 18 O minimum right at the glacial/interglacial transition. The correlation is especially good for the last 0.7 Myr. For the period 0.7-1.1 Ma, during the Middle Pleistocene Transition (MPT), the correlation is weaker, since the 100 kyr periodicity in the δ 18 O record diminishes, while the tephra record maintains its strong 100 kyr periodicity.

  5. Late Holocene Winter Temperatures in the Eastern Mediterranean and Their Relation to Cultural Changes: The Kocain Cave Record

    NASA Astrophysics Data System (ADS)

    Mert Gokturk, Ozan; Fleitmann, Dominik; Badertscher, Seraina; Cheng, Hai; Edwards, R. Lawrence; Tuysuz, Okan

    2015-04-01

    Based on the δ13C profile of a stalagmite from the Kocain Cave in southern Turkey, we present a new proxy record of winter temperatures for the Eastern Mediterranean covering the last ~5500 years. In this region precisely-dated and highly-resolved paleoclimate records for the cold season are almost non-existent. The comparison of the most recent part of the Kocain record with meteorological observations reveals that stalagmite δ13C values correlate on decadal scale with the amount of snowfall above the cave, which correlates well with average winter temperatures. More negative δ13C values indicate higher drip rates in the cave due to more efficient infiltration during snowmelt above Kocain Cave, during colder winters. Cold periods in the rest of the record coincide with widespread glacier advances, especially with the ones in the Alps during the Bronze Age - Iron Age transition (from ~1000 BC on) and the late Little Ice Age (~1600 to 1850 AD). This further supports the interpretation of δ13C as a temperature proxy. Although winters during the Medieval Climate Anomaly were not continuously warm in the Eastern Mediterranean, winter warmth in the modern era was matched or exceeded several times in the last ~5700 years, especially during the time of Minoan civilization in Crete (~2700 to 1200 BC). Moreover, we provide evidence for the important role of winter cold and drought in the events leading to the unrest in the 16th century Anatolia during the Ottoman rule. Kocain Cave record brings insights into several climatically-induced historical changes in the Eastern Mediterranean, and has the potential to be a key record in a region with a long and vibrant history.

  6. Evidence for higher-than-average air temperatures after the 8.2 ka event provided by a Central European δ18O record

    NASA Astrophysics Data System (ADS)

    Andersen, Nils; Lauterbach, Stefan; Erlenkeuser, Helmut; Danielopol, Dan L.; Namiotko, Tadeusz; Hüls, Matthias; Belmecheri, Soumaya; Dulski, Peter; Nantke, Carla; Meyer, Hanno; Chapligin, Bernhard; von Grafenstein, Ulrich; Brauer, Achim

    2017-09-01

    The so-called 8.2 ka event represents one of the most prominent cold climate anomalies during the Holocene warm period. Accordingly, several studies have addressed its trigger mechanisms, absolute dating and regional characteristics so far. However, knowledge about subsequent climate recovery is still limited although this might be essential for the understanding of rapid climatic changes. Here we present a new sub-decadally resolved and precisely dated oxygen isotope (δ18O) record for the interval between 7.7 and 8.7 ka BP (103 calendar years before AD 1950), derived from the calcareous valves of benthic ostracods preserved in the varved lake sediments of pre-Alpine Mondsee (Austria). Besides a clear reflection of the 8.2 ka event, showing a good agreement in timing, duration and magnitude with other regional stable isotope records, the high-resolution Mondsee lake sediment record provides evidence for a 75-year-long interval of higher-than-average δ18O values directly after the 8.2 ka event, possibly reflecting increased air temperatures in Central Europe. This observation is consistent with evidence from other proxy records in the North Atlantic realm, thus most probably reflecting a hemispheric-scale climate signal rather than a local phenomenon. As a possible trigger we suggest an enhanced resumption of the Atlantic meridional overturning circulation (AMOC), supporting assumptions from climate model simulations.

  7. Atlantic deep water circulation during the last interglacial.

    PubMed

    Luo, Yiming; Tjiputra, Jerry; Guo, Chuncheng; Zhang, Zhongshi; Lippold, Jörg

    2018-03-13

    Understanding how the Atlantic Meridional Overturning Circulation (AMOC) evolved during crucial past geological periods is important in order to decipher the interplay between ocean dynamics and global climate change. Previous research, based on geological proxies, has provided invaluable insights into past AMOC changes. However, the causes of the changes in water mass distributions in the Atlantic during different periods remain mostly elusive. Using a state-of-the-art Earth system model, we show that the bulk of NCW in the deep South Atlantic Ocean below 4000 m migrated from the western basins at 125 ka to the eastern basins at 115 ka, though the AMOC strength is only slightly reduced. These changes are consistent with proxy records, and it is mainly due to more penetration of the AABW at depth at 115 ka, as a result of a larger density of AABW formed at 115 ka. Our results show that depth changes in regional deep water pathways can result in large local changes, while the overall AMOC structure hardly changes. Future research should thus be careful when interpreting single proxy records in terms of large-scale AMOC changes, and considering variability of water-mass distributions on sub-basin scale would give more comprehensive interpretations of sediment records.

  8. Investigation of n-Alkane Distributions in Modern Plant Litter from Hawaii wetlands: a potential proxy for past vegetation and hydroclimate changes?

    NASA Astrophysics Data System (ADS)

    Massa, C.; Beilman, D. W.; Nichols, J. E.; Elison Timm, O.

    2016-12-01

    Holocene peat deposits from the Hawaiian Islands provide a unique opportunity to resolve millennial to centennial-scale climate variability over the central Pacific region, where data remain scarce. Because both extratropical and tropical modes of climate variability have a strong influence on modern rainfall over the archipelago, hydroclimate proxies from peat would provide valuable information about past Pacific climate changes. The few terrestrial records studied, based on pollen or leaf wax biomarkers, showed evidence for substantial vegetation changes that have been linked to a drying trend over the Holocene. Leaf wax n-alkanes, as well as their stable isotopic compositions (δ13C and δD), are indeed increasingly used to reconstruct past hydroclimate conditions. The interpretation of n-alkanes as biomarkers requires however a thorough knowledge of their distribution in modern plants that contribute to sediments, but in Hawaii the modern vegetation is understudied compared to proxy applications. Here we report results from a preliminary investigation of n-alkanes distributions in dominant modern plant litter collected at a bog site at the summit of the Waianae mountains on the Island of Oahu. We compared n-alkane distributions among species and plant groups in order to test whether taxa or plant functional types (mosses, ferns, woody plants, and sedges) can be discriminated from their n-alkane profiles. Results showed that general plant groups were difficult to distinguish based on individual n-alkanes abundances, chain lengths, or ratios. At the species level, the sedge Machaerina augustifolia, was largely dominated by n-C29 ( 60%), suggesting some chain lengths could be useful as proxies for identifying the contribution of sedges to sedimentary records. Woody plant average chain length was highly variable but overall was not shorter (even slightly higher) than in other terrestrial plants, as it is often assumed. A sedimentary profile from this site shows variation and an overall decrease in n-alkane chain length over the Holocene, but patterns across common modern plants suggest that caution should be exercised when ascribing n-alkane distribution parameters to a specific group of tropical vegetation.

  9. A Revised Set of Dendroclimatic Reconstructions of Summer Drought over the Conterminous U.S.

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Mann, M. E.; Cook, E. R.

    2002-12-01

    We describe a revised set of dendroclimatic reconstructions of drought patterns over the conterminous U.S back to 1700. These reconstructions are based on a set of 483 drought-sensitive tree ring chronologies available across the continental U.S. used previously by Cook et al [Cook, E.R., D.M. Meko, D.W. Stahle, and M.K. Cleaveland, Drought Reconstructions for the Continental United States, Journal of Climate, 12, 1145-1162, 1999]. In contrast with the "Point by Point" (PPR) local regression technique used by Cook et al (1999), the tree ring data were calibrated against the instrumental record of summer drought[June-August Palmer Drought Severity Index (PDSI)] based on application of the "Regularized Expectation Maximization" (RegEM) algorithm to relate proxy and instrumental data over a common (20th century) interval. This approach calibrates the proxy data set against the instrumental record by treating the reconstruction as initially missing data in the combined proxy/instrumental data matrix, and optimally estimating the mean and covariances of the combined data matrix through an iterative procedure which yields a reconstruction of the PDSI field with minimal error variance [Schneider, T., Analysis of Incomplete Climate Data: Estimation of Mean Values and Covariance Matrices and Imputation of Missing Values, Journal of Climate, 14, 853-871, 2001; Mann, M.E., Rutherford, S., Climate Reconstruction Using 'Pseudoproxies', Geophysical Research Letters, 29, 139-1-139-4, 2002; Rutherford, S., Mann, M.E., Delworth, T.L., Stouffer, R., The Performance of Covariance-Based Methods of Climate Field Reconstruction Under Stationary and Nonstationary Forcing, J. Climate, accepted, 2002]. As in Cook et al (1999), a screening procedure was first used to select an optimal subset of candidate tree-ring drought predictors, and the predictors (tree ring data) and predictand (instrumental PDSI) were pre-whitened prior to calibration (with serial correlation added back into the reconstruction at the end of the procedure). The PDSI field was separated into 8 relatively homogenous regions of summer drought though a cluster analysis, and three distinct calibration schemes were investigated: (i) 'global' (i.e., entire conterminous U.S. domain) proxy data calibrated against 'global' PDSI; (ii) regional proxy data calibrated against regional PDSI, and (iii) global proxy data calibrated against regional PDSI. The greatest cross-validated skill was evident for case (iii), suggesting the existence of useful non-local information in the tree ring predictor set. The resulting reconstructions of drought were compared against the previous reconstructions of Cook et al (1999) back to 1700, with very similar results found for the domain mean and regional mean time series. Cross-validation results based on withheld late 19th/early 20th century instrumental data [and a regionally-limited extension of cross-validation results back to mid 19th century based on long available instrumental series] both suggest a modest improvement in reconstructive skill over the PPR approach. Differences at the regional scale are evident for particular years and for decadal drought episodes. At the continental scale, the 1930s "Dust Bowl" remains the most severe drought event since 1700 within the context of the estimated uncertainties, but more severe episodes may have occurred at regional scales in past centuries.

  10. Holocene climate and cultural evolution in late prehistoric-early historic West Asia

    NASA Astrophysics Data System (ADS)

    Staubwasser, Michael; Weiss, Harvey

    2006-11-01

    The precipitation climatology and the underlying climate mechanisms of the eastern Mediterranean, West Asia, and the Indian subcontinent are reviewed, with emphasis on upper and middle tropospheric flow in the subtropics and its steering of precipitation. Holocene climate change of the region is summarized from proxy records. The Indian monsoon weakened during the Holocene over its northernmost region, the Ganges and Indus catchments and the western Arabian Sea. Southern regions, the Indian Peninsula, do not show a reduction, but an increase of summer monsoon rain across the Holocene. The long-term trend towards drier conditions in the eastern Mediterranean can be linked to a regionally complex monsoon evolution. Abrupt climate change events, such as the widespread droughts around 8200, 5200 and 4200 cal yr BP, are suggested to be the result of altered subtropical upper-level flow over the eastern Mediterranean and Asia. The abrupt climate change events of the Holocene radically altered precipitation, fundamental for cereal agriculture, across the expanse of late prehistoric-early historic cultures known from the archaeological record in these regions. Social adaptations to reduced agro-production, in both dry-farming and irrigation agriculture regions, are visible in the archaeological record during each abrupt climate change event in West Asia. Chronological refinement, in both the paleoclimate and archaeological records, and transfer functions for both precipitation and agro-production are needed to understand precisely the evident causal linkages.

  11. Reconstructing Holocene palaeo-environmental conditions in the Baltic: A multi-proxy comparison from the Little Belt (IODP Expedition 347, Site M0059)

    NASA Astrophysics Data System (ADS)

    Kotthoff, Ulrich; Andrén, Elinor; Andrén, Thomas; Ash, Jeanine; Bauersachs, Thorsten; Fanget, Anne-Sophie; Granoszewski, Wojciech; Groeneveld, Jeroen; Krupinski, Nadine; Peyron, Odile; Slomp, Caroline; Stepanova, Anna; Warnock, Jonathan; van Helmond, Niels; Expedition 347 Science Party

    2016-04-01

    Some of the largest marine environmental impacts from ongoing global climate change are occurring in continental shelf seas and enclosed basins, including severe oxygen depletion, intensifying stratification, and increasing temperatures. In order to predict future changes in water mass conditions, it is essential to reconstruct how these conditions have changed in the past against the background of climate changes. The brackish Baltic Sea is one of the largest semi-enclosed basins worldwide, and its sediment records provide a unique opportunity to analyse palaeo-environmental and climate change in central and northern Europe. IODP Expedition 347 recovered an exceptional set of sediment cores from the Baltic Sea which allow high-resolution reconstructions in unprecedented quality. We present a comparison of commonly-used proxies to reconstruct palaeoecosystems, -temperatures, and -salinity from IODP Site M0059 in the Little Belt over the past ˜8000 years. Our aim is to reconstruct the development of the terrestrial and marine ecosystems in the research area and the related environmental conditions, and to identify potential limitations of individual proxies. The age model for Site M0059 is based on 14Cdating, biostratigraphic correlation with neighbouring terrestrial pollen records, and sediment stratigraphy. Sedimentary organic carbon content and the bulk elemental composition have been measured, and can be used to determine the depositional environment and degree of oxygen depletion (e.g., Mo, Corg/Ptot). Pollen is used as proxy for vegetation development in the hinterland of the southern Baltic Sea and as a land/air-temperature proxy. Comparison with dinoflagellate cysts, insect remains, and green algae remains from the same samples provides a direct land-sea comparison. The application of the modern analogues technique to pollen assemblages has previously yielded precise results for late Pleistocene and Holocene datasets, including specific information on seasonality, but pollen-based reconstructions for Northern Europe may be hampered by plant migration effects. Palynomorph analyses are therefore complemented with analyses of lipid palaeothermometers, such as TEX86 and the long chain diol index (LDI), to reconstruct variations in Baltic Sea surface temperatures (SST). In addition, the MBT/CBT proxy is used to infer past changes in mean annual air temperatures (MAAT). Benthic foraminiferal δ18O and δ13C measurements (monospecific) and foraminifera and ostracod faunal assemblage analyses allow us to estimate bottom water salinity and environmental changes qualitatively and quantitatively. Low bottom water salinity (˜23 in bottom waters) and varying diagenesis in the Little Belt's organic-rich sediments complicates the application of benthic foraminiferal Mg/Ca as a palaeotemperature proxy. Reliable bottom water temperatures, however, are reconstructed using clumped isotope analyses of mollusc material. In addition, diatoms and the diol index (DI) are analysed to determine variation in salinity of the Baltic Sea's surface waters over the investigated time period. The results of this inter-proxy comparison study will be used to reconstruct gradients between different settings, e.g. how water column stratification developed, possibly if and how changes in seasonality occurred, and to identify the circumstances under which specific proxies may be affected by secondary impacts.

  12. Seasonally Resolved Oxygen Isotope Paleoclimate Proxy in Tree-Ring Cellulose from the Southeastern U.S.

    NASA Astrophysics Data System (ADS)

    Miller, D. L.; Mora, C. I.; Grissino-Mayer, H. D.; Mock, C. J.

    2004-12-01

    Stable isotopes in precipitation reflect changes in climate, moisture source, and extreme events such as tropical cyclones, and an oxygen isotope proxy record of these changes through time and space is preserved in tree-ring cellulose. Extreme climate events such as droughts and hurricanes are formidable natural disasters in the southeastern United States, and considerable efforts have been made to understand factors controlling their frequency, whether natural or anthropogenic. Tree rings offer an unusually well-resolved, dateable record of climate events extending beyond modern or historical (documentary) records. Oxygen isotopes in alpha-cellulose of shallowly-rooted conifers predominately reflect the composition of precipitation. Tropical storm convection results in marked 18O depletion in storm precipitation, to -15‰ relative to source seawater (~0‰ ). The depletion increases towards the eyewall of the cyclone, however, isotopically depleted precipitation may extend outward many 100's of km. Storm water 18O depletion translates to soil water 18O depletion that may persist for many weeks until ameliorated by soil water evaporation. Tree growth during that time will take up the anomalous isotopic compositions. Distinctive earlywood (EW ~March-June) versus latewood (LW ~July-October) growth allows the rings to be resolved at an intra-annual (seasonal) scale. By comparison to average soil water, droughts result in 18O-enriched soil water compositions. Seasonal drought or years of continued drought will be similarly captured in the isotope compositions of tree-ring cellulose. A 227-year (1770-1997) seasonally-resolved record of tropical cyclone and drought activity was obtained from cross-sections of felled slash pines (Pinus elliottii Engelm.) and remnant longleaf pines (Pinus palustris Mill.) from southern Georgia. Interpretations of drought or hurricane events were tested by comparison with recent, detailed meteorological records. The 227-year record reveals most previously established hurricane events, including Florence (1953) and the Great Hurricane of 1780. Newly recognized tropical storms such as 1857 are also evident. Significant seasonal droughts such as 1955, 1927, 1904 and 1896, are observed for southeastern Georgia. Larger-scale climate oscillations appear to overprint the EW and LW isotope series, displaying periods of relatively large or small differences in EW and LW δ 18O values. The oscillations are interpreted to reflect dominant climate modes that influence moisture source or seasonal temperature variation. The tree-ring record potentially extends many centuries. A preliminary record through a portion of the North American "Little Ice Age" (1580-1650) indicates a significant reduction in tropical cyclone activity.

  13. Mid- to Late Holocene climate development in Central Asia as revealed from multi-proxy analyses of sediments from Lake Son Kol (Kyrgyzstan)

    NASA Astrophysics Data System (ADS)

    Lauterbach, Stefan; Dulski, Peter; Gleixner, Gerd; Hettler-Riedel, Sabine; Mingram, Jens; Plessen, Birgit; Prasad, Sushma; Schwalb, Antje; Schwarz, Anja; Stebich, Martina; Witt, Roman

    2013-04-01

    A mid-Holocene shift from predominantly wet to significantly drier climate conditions, attributed to the weakening of the Asian summer monsoon (ASM), is documented in numerous palaeoclimate records from the monsoon-influenced parts of Asia, e.g. the Tibetan Plateau and north- and southeastern China. In contrast, Holocene climate development in the arid regions of mid-latitude Central Asia, located north and northwest of the Tibetan Plateau, is less well-constrained but supposed to have been influenced by a complex interaction between the mid-latitude Westerlies and the ASM. Hence, well-dated and highly resolved palaeoclimate records from Central Asia might provide important information about spatio-temporal changes in the regional interplay between Westerlies and ASM and thus aid the understanding of global climate teleconnections. As a part of the project CADY (Central Asian Climate Dynamics), aiming at reconstructing past climatic and hydrological variability in Central Asia, several sediment cores were recovered from alpine Lake Son Kol (41° 48'N, 75° 12'E, 3016 m a. s. l.) in the Central Tian Shan of Kyrgyzstan. A radiocarbon-dated sediment sequence of 154.5 cm length, covering approximately the last 6000 years, was investigated by using a multi-proxy approach, including sedimentological, (bio)geochemical, isotopic and micropalaeontological analyses. Preliminary proxy data indicate hydrologically variable but predominantly wet conditions until ca. 5100 cal. a BP, characterized by the deposition of finely laminated organic-carbonatic sediments. In contrast to monsoonal Asia, where a distinct trend towards drier conditions is observed since the mid-Holocene, the hydrologically variable interval at Lake Son Kol was apparently followed by an only short-term dry episode between ca. 5100 and 4200 cal. a BP. This is characterized by a higher δD of the C29 n-alkanes, probably reflecting increased evapotranspiration. Also pollen, diatom and ostracod data point towards drier climate conditions. Higher δ15N values during this period may also reflect increased evaporation but could also be related to dust input of NOx, being in agreement with high amounts of fine-grained minerogenic material. Further periods of higher δ15N values and contents of fine-grained minerogenic material occurred at 3600-3000 and 2000-1600 cal. a BP. However, as biogeochemical data indicate no further distinct dry episodes since about 4200 cal. a BP, these intervals most probably reflect increased dust deposition. Finally, a trend towards wetter climate conditions can be observed during the last ca. 1500 years, reflected by high ostracod and diatom diversity and (bio)geochemical data. The absence of a pronounced drying trend since the mid-Holocene, as observed in monsoonal Asia, is largely consistent with results from other regional palaeoclimate records and might reflect the predominant influence of the strengthening mid-latitude Westerlies on regional climate since this time.

  14. Multiproxy summer precipitation reconstructions for Asia during the past 530 years

    NASA Astrophysics Data System (ADS)

    Feng, S.; Hu, Q. S.; Wu, Q.

    2011-12-01

    The Asian summer monsoons and the monsoon circulation affect the weather and climate in most of the tropics and extra-tropics of the Eastern Hemisphere, where more than 60% of the earth's population live. Thus it is of paramount importance to understand variations of the Asian summer monsoons from a long-term perspective. This study reconstructed a 0.5°×0.5° gridded summer (June-August) precipitation in Asia (5°-55°N, 60°-135°E) during the past 530 years based on annually resolved predictors from natural and human archives. There are 221 proxy records with temporally stable and significant correlations with the summer precipitation in the study region. Most of the proxy records only cover the last 300-400 years, and a few proxy records were available before 1470AD. The missing values in the proxy data were infilled using analogue techniques. Then the regularized expectation maximization method is used to reconstruct the summer precipitation back to 1470AD. The reduction of error (RE) between the reconstructed values and observations suggests that the reconstructions are reliable, with RE>0.0 on all grid points for the study region. The reconstruction skill is very high (RE>0.4) over regions with denser proxy records (e.g. East China, Mongolia and Central Asia), and slightly lower in northeastern and southeastern Asia with RE usually less than 0.2. The reconstructed gridded summer precipitation data allow us to identify and analyze the regional variations of drought and flood during the last 530 years. These analysis results show that the severe droughts that affected China during the Little Ice Age (e.g. the mega-drought during the late 1630s to early 1640s that triggered the collapse of the Ming Dynasty) shared a similar spatial extent with the modern droughts in northern and central China.

  15. A New Holocene Lake Sediment Archive from Samoa (Tropical South Pacific) Reveals Millennial Scale Changes in Hydroclimate.

    NASA Astrophysics Data System (ADS)

    Sear, D. A.; Hassall, J. D.; Langdon, P. G.; Croudace, I. W. C.; Maloney, A. E.; Sachs, J. P.

    2015-12-01

    El Niño-Southern Oscillation (ENSO) is the strongest source of interannual climate variability on the planet. Its behaviour leads to major hydro-climate impacts around the world, including flooding, drought, and altering cyclone frequency. Simulating ENSO behaviour is difficult using climate models, as it is a complex non-linear system, and hence predicting its future variability under changing climate is challenging. Using palaeoclimate data thus allows an insight into long-term ENSO behaviour against a range of different forcings throughout the Holocene. To date long, coherent, high resolution records from lake sediment archives have been limited to the Pacific Rim. We present new data from the closed crater Lake Lanoto'o, on Upolu Island, Samoa, located within the tropical South Pacific. The lake sediment record extends back into the early Holocene with an average sedimentation rate 0.4mm a-1. We demonstrate a strong correspondence between precipitation at the study site and measures of the Southern Oscillation Index (SOI)1. We compare geochemical proxies of precipitation to a long-term reconstruction of the SOI2. The resulting proxy SOI record extends over the last 9000 years, revealing scales of change in ENSO that match those recorded from sites located on the Pacific rim3,4. A major period of La-Nina dominance occurs around 4.5ka BP before abruptly switching to El-Nino dominance around 3.2ka. Thereafter, phases of El-Nino - La Nina dominance, alternate every c. 400yrs. The results point to prolonged phases of enhanced or reduced precipitation - conditions that may influence future population resilience to climate change, and may also have been triggers for the colonisation of more remote eastern Polynesia. 1. http://www.cgd.ucar.edu/cas/catalog/climind/SOI.signal.annstd.ascii. 2. Yan, H. et al. (2011) Nature Geoscience, 4, p.611. 3. Conroy J. L. et al. (2008) Quaternary Science Reviews, 27, p.1166 4. Moy, C. M. et al. (2002) Nature, 420, p.162

  16. Mid- to late Holocene climate-driven regime shifts inferred from diatom, ostracod and stable isotope records from Lake Son Kol (Central Tian Shan, Kyrgyzstan)

    NASA Astrophysics Data System (ADS)

    Schwarz, Anja; Turner, Falko; Lauterbach, Stefan; Plessen, Birgit; Krahn, Kim J.; Glodniok, Sven; Mischke, Steffen; Stebich, Martina; Witt, Roman; Mingram, Jens; Schwalb, Antje

    2017-12-01

    Arid Central Asia represents a key region for understanding climate variability and interactions in the Northern Hemisphere. Patterns and mechanisms of Holocene climate change in arid Central Asia are, however, only partially understood. Multi-proxy data combining diatom, ostracod, sedimentological, geochemical and stable isotope analyses from a ca. 6000-year-old lake sediment core from Son Kol (Central Kyrgyzstan) show distinct and repeated changes in species assemblages. Diatom- and ostracod-inferred conductivity shifts between meso-euhaline and freshwater conditions suggest water balance and regime shifts. Organism-derived data are corroborated by stable isotope, mineralogical and geochemical records, underlining that Son Kol was affected by strong lake level fluctuations of several meters. The δ13Ccarb/δ18Ocarb correlation shows repeated switchovers from a closed to an open lake system. From 6000 to 3800 and 3250 to 1950 cal. yr BP, Son Kol was a closed basin lake with higher conductivities, increased nutrient availability and a water level located below the modern outflow. Son Kol became again a hydrologically open lake at 3800 and 1950 cal. yr BP. Comparisons to other local and regional paleoclimate records indicate that these regime shifts were largely controlled by changing intensity and position of the Westerlies and the Siberian Anticyclone that triggered changes in the amount of winter precipitation. A strong influence of the Westerlies ca. 5000-4400, 3800-3250 and since 1950 cal. yr BP enhanced the amount of precipitation during spring, autumn and winter, whereas cold and dry winters prevailed during phases with a strong Siberian Anticyclone and southward shifted Westerlies at ca. 6000-5000, 4400-3800 and 3250-1950 cal. yr BP. Similarities between variations in winter precipitation at Son Kol and records of the predominant NAO-mode further suggest a teleconnection between wet (dry) winter climate in Central Asia and a positive (negative) NAO-mode. Thus, this study identifies climate fluctuations as the main driver for hydrological regime shifts in Son Kol controlling physicochemical conditions and consequently causing abrupt species assemblage changes. This emphasizes the importance of multi-proxy approaches to identify triggers, thresholds and cascades of aquatic ecosystem transformations.

  17. Appraising timing response of paleoenvironmental proxies to the Bond cycle in the western Mediterranean over the last 20 kyr

    NASA Astrophysics Data System (ADS)

    Rodrigo-Gámiz, Marta; Martínez-Ruiz, Francisca; Rodríguez-Tovar, Francisco J.; Pardo-Igúzquiza, Eulogio; Ortega-Huertas, Miguel

    2018-04-01

    The timing of climate responses to the Bond cycle is investigated in the western Mediterranean. Periodicities had been previously reported in a marine sediment record from this region spanning the last 20 kyr, and registered by diverse paleoenvironmental proxies, in particular those associated with terrigenous input, redox conditions, productivity, sea surface temperature (SST) and salinity. Further cross-spectral analyses on these time series reveal leads-lags in the 1400 year climate cycle. Considering as reference a terrigenous input proxy (the K/Al ratio), all the paleoenvironmental proxies displayed time shifts varying from ca. 700 year to ca. 350 year. SST and salinity variations show a first leaded response with the inflow of cold and less salty Atlantic waters. Followed by a time lead of 525 year, progresively arid conditions with an increase of eolian dust transport to the area, given by the Zr/Al signal, are observed. The intensification of dust transport could have triggered a latest biological response, lead by 350 year, with an increase of productivity, as suggested by the Ba/Al ratio. Lastly changes in the Mediterranean thermohaline circulation, indicated by a selected redox proxy (the U/Th ratio), are observed. These results support that the oceanic response triggered the atmospheric response to the Bond cycle in the western Mediterranean. Changes in the North Atlantic Oscillation mode and in the Inter-Tropical Convergence Zone migrations with variations in the monsoon activity or Saharan winds system, are considered as main forcing mechanisms, with a complex relationship of the involved phenomena.

  18. The role of the NAO on the North Atlantic hydrological conditions and its interplay with the EA and SCAND atmospheric patterns

    NASA Astrophysics Data System (ADS)

    Hernandez, A.; Rubio-Ingles, M. J.; Shanahan, T. M.; Sáez, A.; Raposeiro, P. M.; Vázquez-Loureiro, D.; Sánchez-López, G.; Gonçalves, V. M.; Bao, R.; Trigo, R.; Giralt, S.

    2016-12-01

    The NAO is the main atmospheric circulation mode controlling the largest fraction of the North Atlantic climate variability. It is defined by the normalized air pressure difference between the Azores High and the Iceland Low as the southern and northern centers of action of the dipole respectively. The NAO pattern has large influence over the precipitation regime in the North Atlantic and the western facade of Europe. Thus, the Lake Azul (São Miguel island, Azores archipelago), with a strategic location in the middle of the north Atlantic Ocean, is influenced by variations on intensity and position of the southern NAO center of action. The reconstruction of the past hydrological conditions in lake location for the last 700 years was obtained by means of high resolution δD plant leaf wax analyses, a proxy for the Precipitation/Evaporation ratio. The 700 years of climatic history included the end of the Medieval Climate Anomaly (MCA), the Little Ice Age (LIA) and the modern Global Warming (GW). The hydrological results showed multidecadal variations with no particular conditions at any climatic period. Overall, the MCA (1285 - 1350 AD) displayed mostly dry conditions, the LIA (1350 - 1820 AD) was mainly wet and, the last 200 years of record showed highly variable conditions. The lake Azul hydrological variations have been compared with a wide range of additional proxy datasets, including: documentary, ice, tree rings, speleothem, lacustrine and oceanic records from the North Atlantic. This comparison has allowed us to understand the decadal and centennial imprints of the NAO as well as to infer its interaction with other relevant large-scale circulation patterns over this sector, such as the Eastern Atlantic (EA) and the Scandinavian (SCAND) climate modes.

  19. Hydrologic and temperature variability at Lake Titicaca over the past 50,000 years

    NASA Astrophysics Data System (ADS)

    Fornace, K.; Shanahan, T. M.; Sylva, S.; Ossolinski, J.; Baker, P. A.; Fritz, S. C.; Hughen, K. A.

    2011-12-01

    The Bolivian Altiplano has been the focus of many paleoclimate studies due to the important role it plays in the South American climate system. Although the timing of climate shifts in this region is relatively well known, the magnitudes of hydrologic versus temperature changes remain poorly quantified. Here we apply hydrogen isotope analysis (δD) of terrestrial leaf waxes and the TEX86 temperature proxy in sediments from Lake Titicaca to reconstruct hydrologic and temperature variability over the past 50,000 years. Our record reveals that the Altiplano underwent a major climate shift during the last deglaciation, reflected in a ~70-80% enrichment in leaf wax δD at the onset of the Holocene. Using the global isotope-temperature relationship for meteoric water, only 25-40% of this enrichment can be explained by the 4-5°C deglacial warming shown by the TEX86 proxy, indicating that precipitation was significantly reduced (and evaporation/evapotranspiration increased) during the Holocene. Further, the timing of these hydrologic and temperature changes was asynchronous during the transition from a cold and wet glacial state to a warm and dry Holocene. The major hydrologic shift recorded by leaf wax δD occurred around ~11-12 ka, consistent with Northern Hemisphere deglacial patterns, whereas TEX86 data indicate that rapid warming began much earlier, more typical of a Southern Hemisphere deglacial pattern. Within the late glacial and Holocene mean climate states, however, there is evidence of synchronous hydrologic and temperature variability on millennial timescales. This study demonstrates that climate on the Altiplano was controlled by the interaction of local and remote forcing on a range of timescales.

  20. Holocene East Asian Monsoon Variability: Links to Solar and Tropical Pacific Forcing

    NASA Astrophysics Data System (ADS)

    Kandasamy, S.; Chen, C. A.; Lou, J.

    2006-12-01

    Sedimentary geochemical records from subalpine Retreat Lake, subtropical Taiwan, document the unstable East Asian Monsoon (EAM) climate for the last ~10250 calendar years before the present (cal yr B.P.). The proxy records demonstrate cool, glacial conditions with weak EAM between ~10250 and 8640 cal yr B.P., the strongest EAM during the "Holocene optimum" (8640-4500 cal yr B.P.) with an abrupt, decadal onset of postglacial EAM (8640-8600 cal yr B.P.), and relatively dry conditions since 4500 cal yr B.P. Although after 8600 cal yr B.P., EAM strength reduces gradually in response to the Northern Hemisphere summer insolation, heat and moisture transport and the development of late Holocene El-Niño-Southern Oscillation in the tropical Pacific appear to corroborate the periods of abrupt monsoon changes. Our proxy records reveal several weak monsoon intervals that correlate to low sea surface temperatures in the western tropical Pacific and cold events in the North Atlantic, suggesting a mechanistic link. Among those, four weak EAM events at 8170, 5400, 4500-2100 and 2000-1600 cal yr B.P. are in phase with the timings of low concentrations of atmospheric methane and periods of reduced North Atlantic Deep Water production as well as the `8.2 ka cold spell' and widespread event of low-latitude cultural collapse. Our EAM records exhibit strong correlations with high- and low-latitude climate and monsoon records; thus, provide robust evidences that the centennial-millennial scale monsoon variability during the Holocene are globally-mediated via sun- ocean-monsoon-North Atlantic linkages.

  1. The Southern Hemisphere between 30 and 11 cal. kyr B.P.: a comparison between continental records from Africa, South America and Australia

    NASA Astrophysics Data System (ADS)

    Sylvestre, F.; Williams, M. A.; Gasse, F.; Chalie, F.; Vincens, A.; David, W.

    2006-12-01

    The timing and amplitude of climate changes during the Last Glacial Maximum (LGM) and Termination I have led to considerable debate around the mechanisms driving the reorganisation of the global climate system and its regional expression. The LGM over the southern tropics and subtropics is still poorly understood and the interpretation of different proxies sometimes appears controversial. Here, we summarise the best, well-dated continental records spanning the interval 30-11 cal. kyr, from Africa south of the equator, Australia and South America. Due to the scarcity of the usable records, we had to decipher several proxies (pollen-inferred vegetation, diatom-inferred lake level, isotopes, sea-surface temperatures SST- in the surrounding oceans) and to consider all existing types of archives (wetlands, lakes, speleothems, (peri)glacial deposits, dunes and aeolian dusts), to characterize as completely as possible, the major features of the climate variability over the three continents. Regional similarities and divergences are pointed out, especially East-West asymmetry linked with oceanic currents and topography. The processes driving the observed temperature and hydrological changes are discussed focusing on the following questions: -How did monsoonal climates in the southern tropics respond to orbital forcing versus other glacial boundary conditions, e.g., sea-surface conditions, during the LGM? Example: several tropical lakes from southern Africa were low during the LGM probably in response to low SST. -How did the convergence zones (e.g. the Intertropical Convergence Zone ITCZ) have migrated through time and why? Example: in South America, LGM dryness in Amazonia has been associated with a southward migration of the ITCZ. -How did the extratropical, winter rainfall domain expand/retreat in response to meridian shifts of the Subtropical Westerly Jet and of the oceanic Subtropical Front, and to latitudinal thermal gradient in the Southern Ocean? Example: in tropical Andes and southwestern Africa, several pollen and hydrological records suggest winter rainfall influence further north than today at the LGM. -When did continental glaciers reach their greatest extent? We discuss the factors driving glacier advances with examples from Peru and Bolivia and from the Snowy Mountains in Australia. -How, when and where rapid climate changes can be related with climate shifts at northern and southern high latitudes? Example: some records show that the first deglaciation steps have been in phase with those in Antarctica, but the end of the Younger Dryas is well recorded in many places, e.g. from N to S in Africa.

  2. Drivers of pluvial lake distributions in western North America

    NASA Astrophysics Data System (ADS)

    Ibarra, D. E.; Oster, J. L.; Winnick, M.; Caves, J. K.; Ritch, A. J.; Chamberlain, C. P.; Maher, K.

    2016-12-01

    The distribution of large inland lakes in western North America during the Plio-Pleistocene is intimately linked to the regional hydroclimate and moisture delivery dynamics. We investigate the climatological conditions driving terminal basin lakes in western North America during the mid-Pliocene warm period and the latest Pleistocene glacial maximum. Lacustrine deposits and geologic proxies suggest that lakes and wet conditions persisted during both warm and cold periods in the southwest, despite dramatically different global climate, ice sheet configuration and pCO2 levels. We use two complementary methods to quantify the hydroclimate drivers of terminal basin lake levels. First, a quantitative proxy-model comparison is conducted using compilations of geologic proxies and an ensemble of climate models. We utilize archived climate model simulations of the Last Glacial Maximum (21 ka, LGM) and mid-Pliocene (3.3 Ma) produced by the Paleoclimate Modelling Intercomparison Project (PMIP and PlioMIP). Our proxy network is made up of stable isotope records from caves, soils and paleosols, lake deposits and shorelines, glacier chronologies, and packrat middens. Second, we forward model the spatial distribution of lakes in the region using a Budyko framework to constrain the water balance for terminally draining watersheds, and make quantitative comparisons to mapped lacustrine shorelines and outcrops. Cumulatively these two approaches suggest that reduced evaporation and moderate increases in precipitation, relative to modern, drove moderate to large pluvial lakes during the LGM in the Great Basin. In contrast, larger precipitation increases appear to be the primary driver of lake levels during the mid-Pliocene in the southwest, with this spatial difference suggesting a role for El Niño teleconnections. These results demonstrate that during past periods of global change patterns of `dry-gets-drier, wet-gets-wetter' do not hold true for western North America.

  3. Increased chemical weathering during the deglacial to mid-Holocene summer monsoon intensification

    NASA Astrophysics Data System (ADS)

    Miriyala, Pavan; Sukumaran, N. P.; Nath, B. Nagender; Ramamurty, P. B.; Sijinkumar, A. V.; Vijayagopal, B.; Ramaswamy, V.; Sebastian, Tyson

    2017-03-01

    Chemical weathering and the ensuing atmospheric carbon dioxide consumption has long been considered to work on geological time periods until recently when some modelling and natural records have shown that the weathering-related CO2 consumption can change at century to glacial-interglacial time scale. Last glacial to interglacial transition period is a best test case to understand the interplay between Pco2-temperature-chemical weathering when a pulse of rapid chemical weathering was initiated. Here we show, from a high resolution 54 ka record from the Andaman Sea in the northern Indian Ocean, that the chemical weathering responds to deglacial to mid-Holocene summer monsoon intensification in the Myanmar watersheds. The multi-proxy data (Al/K, CIA, Rb/Sr, 87Sr/86Sr for degree of weathering and 143Nd/144Nd for provenance) reveal an increase in silicate weathering with initiation of interglacial warm climate at ~17.7 ka followed by a major change at 15.5 ka. Inferred changes in chemical weathering have varied in tandem with the regional monsoonal proxies (δ18Osw-salinity changes of Northern Indian Ocean, effective Asian moisture content and δ18O records of Chinese caves) and are synchronous with changes in summer insolation at 30°N and δ18O of GISP2 implying that chemical weathering was not a later amplifier but worked in tandem with global climate change.

  4. Holocene forest dynamics in central and western Mediterranean: periodicity, spatio-temporal patterns and climate influence.

    PubMed

    Di Rita, Federico; Fletcher, William J; Aranbarri, Josu; Margaritelli, Giulia; Lirer, Fabrizio; Magri, Donatella

    2018-06-12

    It is well-known that the Holocene exhibits a millennial-scale climate variability. However, its periodicity, spatio-temporal patterns and underlying processes are not fully deciphered yet. Here we focus on the central and western Mediterranean. We show that recurrent forest declines from the Gulf of Gaeta (central Tyrrhenian Sea) reveal a 1860-yr periodicity, consistent with a ca. 1800-yr climate fluctuation induced by large-scale changes in climate modes, linked to solar activity and/or AMOC intensity. We show that recurrent forest declines and dry events are also recorded in several pollen and palaeohydrological proxy-records in the south-central Mediterranean. We found coeval events also in several palaeohydrological records from the south-western Mediterranean, which however show generally wet climate conditions, indicating a spatio-temporal hydrological pattern opposite to the south-central Mediterranean and suggesting that different expressions of climate modes occurred in the two regions at the same time. We propose that these opposite hydroclimate regimes point to a complex interplay of the prevailing or predominant phases of NAO-like circulation, East Atlantic pattern, and extension and location of the North African anticyclone. At a larger geographical scale, displacements of the ITCZ, modulated by solar activity and/or AMOC intensity, may have also indirectly influenced the observed pattern.

  5. Five millennia of frozen vegetation and fire dynamics from an ice core in the Mongolian Altai

    NASA Astrophysics Data System (ADS)

    Brügger, S. O.; Gobet, E.; Sigl, M.; Osmont, D.; Papina, T.; Rudaya, N.; Schwikowski, M.; Tinner, W.

    2017-12-01

    The steppes of the Altai region in Central Asia are highly vulnerable to e.g. drought and overgrazing. Degradation during the past decades may undermine their resilience under global change conditions. Knowledge about past vegetation and fire dynamics in Mongolian Altai may contribute to a better understanding of future climate and human impact responses, however, paleo records are scarce in the area. Our novel high-alpine ice record from Tsambagarav glacier (48°39.338'N, 90°50.826'E, 4130m asl) in the Mongolian Altai provides unique paleoenvironmental informations at the landscape scale. The site is surrounded by dry steppes with scattered boreal tree stands. We assume that the site collects pollen and spores within several hundred km. The archive provides an exceptional temporal resolution with a sound chronology covering the past 5500 years (Herren et al. 2013). Microfossil analysis allows to reconstruct large-scale fire and vegetation dynamics to gain a better understanding of the timing and causes of late Holocene response variability. We use pollen as proxies for vegetation composition and structure, microscopic charcoal as a proxy for fire activity (Eichler et al. 2011), and spheroidal carbonaceous particles (SCPs or soots) as a proxy for fossil fuel combustion. Here we present the first microscopic charcoal record from Mongolia and link it to vegetation dynamics of the past. The reconstructed mid to late Holocene forest collapses likely in response to climate change underscore the vulnerability of relict forest ecosystems in the Mongolian Altai. Our multiproxy-study suggests that moisture is more important than temperature for forest preservation. The lacking resilience of vegetation to moisture changes in the past emphasizes the vulnerability of large forests in neighboring dry areas such as the Russian Altai, if global warming is associated to moisture declines as future projections forecast (IPCC; Climate Change 2013). References: Eichler et al. (2011). An ice-core based history of Siberian forest fires since AD 1250. Quat Sci Rev 30(9) Herren et al. (2013). The onset of Neoglaciation 6000 years ago in western Mongolia revealed by an ice core from the Tsambagarav mountain range. Quat Sci Rev 69 IPCC; Climate Change (2013): The Physical Science Basis. IPCC Working Group I Contribution to AR5

  6. Climate and tectonic variability during Late Quaternary in western fringe of Tibetan Plateau: case study from Trans-Himalayan ranges of Ladakh, NW India

    NASA Astrophysics Data System (ADS)

    Phartiyal, B.

    2016-12-01

    The climate system plays an important role in the geomorphological dynamics of a region. The cold, arid, high altitude, tectonically active areas of Ladakh (India) in Trans Himalaya, western Tibetan Plateau is none exception. Noticeable change in the landscape with a shift from fluvial to lacustrine regime at 10000 yrs BP forming big open valley lakes occupying the present day river valleys is attributed to the early Holocene northward advancement of the mean latitudinal position of the summer ITCZ causing wetter conditions in this dry area. The glaciers of the Ladakh range are almost depleted and the northern range glaciers show andrastic retreat in the Quaternary time. Lakes were studied using multi-proxies, to record centennial and decadal scale climatic variability. Spatial and temporal setting of Spituk palaeolake (12600-240 cal yrs BP) along Indus River, was analyzed using multi proxies. The lake that extended for 40-50 km covering an area of 106 km2, was formed after Older Dryas as a result of river blockage by precipitation induced debris flow and seismicity. Two lake phases between 12600-9000 and 5500-3200 cal yrs BP show stable lake conditions and have synchronous relationship between high variation in monsoon intensity, high δ18O values in the Guliya core, rise in temperature and high solar insolation. High magnetic susceptibility and clay content along with diversified diatom and other freshwater algae and land derived organic matter are indicative of fresh water supply leading to high lake level from 4700 yr BP onwards in the present pro-glacial lakes studied. The multi-proxy data provides evidence of much higher and stable lake level during 3700 yr BP and 3000 yr BP onwards due to high water supply in these lake. It is in contrast to the records of weak ISM conditions and low lake level in rest of the part of Indian peninsula during the period. The study also suggests strong western disturbance activity during 4800-3000 yr BP leading to high lake level in this region. The ongoing researches aim to make an inventory/dataset of these records and address the climate-tectonics interaction with respect to the lake outburst consequences.

  7. Mid-Late Holocene Asian monsoon variations recorded in the Lake Rara sediment, western Nepal

    NASA Astrophysics Data System (ADS)

    Nakamura, A.; Yokoyama, Y.; Maemoku, H.; Yagi, H.; Okamura, M.; Matsuoka, H.; Miyake, N.; Adhikari, D.; Dangol, V.; Miyairi, Y.; Obrochta, S.; Matsuzaki, H.; Ikehara, M.

    2011-12-01

    The Asian monsoon is an important component of the Earth's climate system to understand regional and global climate dynamics. While geological reconstructions indicate that the Asian summer monsoon intensity gradually decreased through the Holocene, a clear and coherent picture of millennial and centennial scale variability has yet to emerge (e.g., Overpeck and Cole, 2007). The Himalayas are a key location for understanding centennial to millennial scale variations in the Asian monsoon, yet few studies of the Holocene have been conducted in this sensitive area. Direct evidence for shifts in monsoonal wind strength is often limited to marine proxy records, while terrestrial reconstructions (e.g., lake levels and spleothems) focus on precipitation. Here, we present the first evidence of terrestrial summer monsoon wind strength changes from Lake Rara, western Nepal. The lake is located at 3,000m above sea level and has a maximum water depth of 168m. Lake Rara Mn/Ti data, a proxy for lake stratification, provide the first direct comparison of the Indian summer monsoon wind intensity between the terrestrial Himalayan region and the marine Arabian sea region (Gupta et al., 2003) during mid-late Holocene. Centennial to millennial scale variability found in those records are synchronous, with the weak wind intervals corresponding to drier periods of East Asian. Strong similarities between the Lake Rara monsoon record and the Dongge cave speleothems precipitation record (Wang et al., 2005) suggest that the influence of Indian summer monsoon penetrates into southeastern China, which should be taken into account when interpreting paleomonsoon reconstructions. Overpeck JT, Cole JE. 2007. Climate change - Lessons from a distant monsoon. Nature 445: 270-271. Gupta AK, Anderson DM, Overpeck JT. 2003. Abrupt changes in the Asian southwest monsoon during the Holocene and their links to the North Atlantic Ocean. Nature 421: 354-357. Wang YJ, Cheng H, Edwards RL, He YQ, Kong XG, An ZS, Wu JY, Kelly MJ, Dykoski, CA, Li XD. 2005. The Holocene Asian monsoon: Links to solar changes and North Atlantic climate. Science 308: 854-857.

  8. Representation of layer-counted proxy records as probability densities on error-free time axes

    NASA Astrophysics Data System (ADS)

    Boers, Niklas; Goswami, Bedartha; Ghil, Michael

    2016-04-01

    Time series derived from paleoclimatic proxy records exhibit substantial dating uncertainties in addition to the measurement errors of the proxy values. For radiometrically dated proxy archives, Goswami et al. [1] have recently introduced a framework rooted in Bayesian statistics that successfully propagates the dating uncertainties from the time axis to the proxy axis. The resulting proxy record consists of a sequence of probability densities over the proxy values, conditioned on prescribed age values. One of the major benefits of this approach is that the proxy record is represented on an accurate, error-free time axis. Such unambiguous dating is crucial, for instance, in comparing different proxy records. This approach, however, is not directly applicable to proxy records with layer-counted chronologies, as for example ice cores, which are typically dated by counting quasi-annually deposited ice layers. Hence the nature of the chronological uncertainty in such records is fundamentally different from that in radiometrically dated ones. Here, we introduce a modification of the Goswami et al. [1] approach that is specifically designed for layer-counted proxy records, instead of radiometrically dated ones. We apply our method to isotope ratios and dust concentrations in the NGRIP core, using a published 60,000-year chronology [2]. It is shown that the further one goes into the past, the more the layer-counting errors accumulate and lead to growing uncertainties in the probability density sequence for the proxy values that results from the proposed approach. For the older parts of the record, these uncertainties affect more and more a statistically sound estimation of proxy values. This difficulty implies that great care has to be exercised when comparing and in particular aligning specific events among different layer-counted proxy records. On the other hand, when attempting to derive stochastic dynamical models from the proxy records, one is only interested in the relative changes, i.e. in the increments of the proxy values. In such cases, only the relative (non-cumulative) counting errors matter. For the example of the NGRIP records, we show that a precise estimation of these relative changes is in fact possible. References: [1] Goswami et al., Nonlin. Processes Geophys. (2014) [2] Svensson et al., Clim. Past (2008)

  9. Model simulations and proxy-based reconstructions for the European region in the past millennium (Invited)

    NASA Astrophysics Data System (ADS)

    Zorita, E.

    2009-12-01

    One of the objectives when comparing simulations of past climates to proxy-based climate reconstructions is to asses the skill of climate models to simulate climate change. This comparison may accomplished at large spatial scales, for instance the evolution of simulated and reconstructed Northern Hemisphere annual temperature, or at regional or point scales. In both approaches a 'fair' comparison has to take into account different aspects that affect the inevitable uncertainties and biases in the simulations and in the reconstructions. These efforts face a trade-off: climate models are believed to be more skillful at large hemispheric scales, but climate reconstructions are these scales are burdened by the spatial distribution of available proxies and by methodological issues surrounding the statistical method used to translate the proxy information into large-spatial averages. Furthermore, the internal climatic noise at large hemispheric scales is low, so that the sampling uncertainty tends to be also low. On the other hand, the skill of climate models at regional scales is limited by the coarse spatial resolution, which hinders a faithful representation of aspects important for the regional climate. At small spatial scales, the reconstruction of past climate probably faces less methodological problems if information from different proxies is available. The internal climatic variability at regional scales is, however, high. In this contribution some examples of the different issues faced when comparing simulation and reconstructions at small spatial scales in the past millennium are discussed. These examples comprise reconstructions from dendrochronological data and from historical documentary data in Europe and climate simulations with global and regional models. These examples indicate that the centennial climate variations can offer a reasonable target to assess the skill of global climate models and of proxy-based reconstructions, even at small spatial scales. However, as the focus shifts towards higher frequency variability, decadal or multidecadal, the need for larger simulation ensembles becomes more evident. Nevertheless,the comparison at these time scales may expose some lines of research on the origin of multidecadal regional climate variability.

  10. Middle Holocene humidity increase in Florida: climate or sea-level?

    NASA Astrophysics Data System (ADS)

    Donders, Timme H.

    2014-11-01

    Florida climate in highly sensitive to both high and low latitude climate perturbations due to its latitudinal position surrounded by water masses that transport heat northward. A well-studied aspect is that middle Holocene conditions became significantly wetter in Florida, initiating widespread peat accumulation in the Everglades. This environmental change has been attributed to various climate forcings, such as migration of the Intertropical Convergence Zone (ITCZ), increases in tropical storm intensity, position of the Bermuda High, intensification of the El Niño Southern Oscillation (ENSO), and post glacial sea level rise (SLR). Discerning between these forcings is only possible with quantitative reconstructions from a transect of sites that are affected differentially. Application of a transfer function on a north-to-south gradient of pollen records from Florida lakes here shows that the pattern of increasing precipitation during the middle Holocene cannot be explained by SLR, but that ENSO intensification is an important contributing factor. Seasonal-resolved proxy records with improved age models are urgently needed to further solve these issues.

  11. Summer moisture changes in the Lake Qinghai area on the northeastern Tibetan Plateau recorded from a meadow section over the past 8400 yrs

    NASA Astrophysics Data System (ADS)

    Li, Xiangzhong; Liu, Xiangjun; He, Yuxin; Liu, Weiguo; Zhou, Xin; Wang, Zheng

    2018-02-01

    Holocene climatic and environmental changes on the northeastern Tibetan Plateau (TP) have been widely discussed based on the climatic records from sedimentary cores. However, differences in the reconstructed climatic history from various studies in this region still exist, probably due to influence of climatic proxies from multiple factors and the chronological uncertainties in lacustrine sediments. Here we present records of terrestrial plant δ13C, soil color and total organic carbon content over the past 8400 years from a well-dated meadow section on the northeastern TP. The terrestrial plant δ13C value serves as a good summer precipitation/moisture indicator in the studied region. Soil color property and TOC content are also able to disentangle the moisture evolution history. All the data show much wet climates at 8400-7400 cal yr BP, dry climates at 7400-6000 cal yr BP and then wet conditions with fluctuation at 6000-3200 cal yr BP. Late Holocene moisture appears to be comparable with moist conditions from 6000 to 3200 cal yr BP. By further comparing the climatic variations in the Lake Qinghai area with records of the reconstructed summer temperature and the Asian Monsoon precipitation, we believe that the pattern of moisture/precipitation evolution in the Lake Qinghai area was not completely consistent with regions around Lake Qinghai, probably due to complicated interaction between the East Asian Summer Monsoon and the Indian Summer Monsoon.

  12. A Mid-Holocene Relative Sea-Level Stack, New Jersey, USA

    NASA Astrophysics Data System (ADS)

    Horton, B.; Walker, J. S.; Kemp, A.; Shaw, T. J.; Kopp, R. E.

    2017-12-01

    Most high resolution (decimeter- and decadal-scale) relative sea-level (RSL) records using salt-marsh microfossils as a proxy only extend through the Common Era, limiting our understanding of driving mechanisms of RSL change and how sea-level is influenced by changing climate. Records beyond the Common Era are limited by the depth of continuous sequences of salt-marsh peat suitable for high resolution reconstructions, as well as contamination by local processes such as sediment compaction. In contrast, sequences of basal peats have produced compaction-free RSL records through the Holocene, but at a low resolution (meter- and centennial-scale). We devise a new Multi-Proxy Presence/Absence Method (MP2AM) to develop a mid-Holocene RSL stack. We stack a series of 1 m basal peat cores that overlap along a uniform elevational gradient above an incompressible basal sand. We analyzed three sea-level indicators from 14 cores: foraminifera, testate amoebae, and stable carbon isotope geochemistry. To reconstruct RSL, this multi-proxy approach uses the timesaving presence/absence of forams and testates to determine the elevation of the highest occurrence of forams and the lowest occurrence of testates in each basal core. We use stable carbon isotope geochemistry to determine the C3/C4 vegetation boundary in each core. We develop age-depth models for each core using a series of radiocarbon dates. The RSL records from each 1 m basal core are combined to create a stack or, in effect, one long core of salt-marsh material. This method removes the issue of compaction to create a continuous RSL record to address temporal changes and periods of climate and sea-level variability. We reconstruct a southern NJ mid-Holocene RSL record from Edwin B. Forsythe National Wildlife Refuge, where Kemp et al. (2013) completed a 2500 yr RSL record using a foraminifera-based transfer function approach. Preliminary radiocarbon dates suggest the basal sequence is at least 4246-4408 cal yrs BP. Presence/absence of forams and testates and the transition of C3/C4 vegetation is identified in each core and constrained with radiocarbon dating. A short core with full counts of forams and testates is used to test the new method and compare with the traditional foraminifera-based transfer function approach and the local tide gauge record.

  13. A new long sediment record from Padul, southern Spain records orbital- and suborbital-scale environmental and climate changes during the middle and late Quaternary

    NASA Astrophysics Data System (ADS)

    Jimenez-Moreno, Gonzalo; Camuera, Jon; Ramos-Roman, Maria J.; Toney, Jaime L.; Anderson, R. Scott; Jimenez-Espejo, Francisco J.; Kaufman, Darrell; Bright, Jordon; Webster, Cole

    2017-04-01

    Long paleoenvironmental records are necessary in order to understand recurrent climatic or paleoenvironmental changes occurring with a certain periodicity (i.e., glacial-interglacial cycles). In this respect, the Padul peat bog has one of the best available records of Pleistocene sediments in semiarid Southern Europe. The sedimentary sequence is more than 100 m thick and has been used to study palaeoenvironmental change for the past ca. 1 Ma. Since the 1960s several cores have already been taken from this basin showing oscillations in many proxies (pollen, organic geochemistry and sedimentation) related with paleoclimatic and paleohydrological changes. However, a more detailed and higher resolution study, using new dating and analytical techniques (AMS 14C, AAR, continuous XRF-scanning, high-resolution pollen analysis and geochemistry), needs to be done in such an interesting site. Here we present preliminary paleoenvironmental data from a new sediment core, Padul-15-05, which shows significant changes in the environment and lake sedimentation, probably related with glacial-interglacial climate dynamics during the past ca. 300,000 years. These data confirm that orbital- as well as suborbital-scale variability (i.e., Heinrich, D-O events) are recorded in the studied core. This unique record thus has very high potential for paleoenvironmental and paleoclimatic reconstructions for, at least, the two last climatic cycles in this semiarid Mediterranean area.

  14. Dolni Vestonice (Czech Republic) an intermédiate loess series between Western and eastern European records

    NASA Astrophysics Data System (ADS)

    Rousseau, D.; Antoine, P.; Hatte, C.; Lagroix, F.; Fuchs, M.; Moine, O.; Gauthier, C.; Svoboda, J.; Lisa, L.

    2010-12-01

    Previous investigations on western and eastern European loess series have shown similarities at least for the main loess deposition during the last climate cycle, recording North-Atlantic abrupt climate changes, the Dansgaard-Oeschger and Heinrich events. To address the question of how such record occurred through modeling experiments (Sima et al., QSR, 2009), we need reference series located in an intermediary position between the Nussloch (Germany - Antoine et al, QI 2001, QSR, 2009; Rousseau et al, GRL 2007) and Stayky (Ukraine -Rousseau et al, Clim Past D 2010) loess series at about 50°N latitude, location of the main deposits. The key sequence of Dolni Vestonice in southern Czech Republic, had been investigated previously and described by many authors since 1961, and more especially by G Kukla and B Klima. Here we present the preliminary results of the new study of this key sequence by a multidisciplinary study, supported by ANR-ACTES project, combining the detailed stratigraphy, AMS 14C and IRSL dating, rock magnetic property, grain size, d13C and mollusks analyses. We applied the same sampling protocol than previously developed, by carefully cleaning the sequence on a vertical panel, 15m high and 5m wide in order to have parallel samples (on continuous columns) easily comparable. The results show similar patterns, high frequency variations of the different proxies in the upper part of the record corresponding to MIS 3 and 2, as observed in western and eastern European sequences supporting then our assumption of the recording of N Atlantic abrupt changes over Europe. Other interesting variations are clearly demonstrated for every proxy making these results remarkable new data for individual in deep studies. Moreover our detailed investigation also shows new data about abrupt dust events, markers, in the lower part of the sequence, and previously interpreted as strong dust events, and how they appear within sedimentary cycles linked to the cyclicity at the base of the last climate cycle.

  15. A High-Resolution Biogenic Silica Record From Lake Titicaca, Peru-Bolivia: South American Millennial-Scale Climate Variability From 18-60 Kya

    NASA Astrophysics Data System (ADS)

    Ekdahl, E. J.; Fritz, S. C.; Stevens, L. R.; Baker, P. A.; Seltzer, G. O.

    2004-12-01

    Sediments recovered from a deep basin in Lake Titicaca, Peru-Boliva, were analyzed for biogenic silica (BSi) content by extraction of freeze dried sediments in 1% sodium carbonate. Sediments were dated using an age model developed from multiple 14C dates on bulk sediments. The BSi record shows distinct fluctuations in concentration and accumulation rate from 18 to 60 kya. Multi-taper method spectral analysis reveals a significant millennial-scale component to these fluctuations centered at 1370 years. High BSi accumulation rates correlate with enhanced benthic diatom preservation, suggesting that the BSi record is related to variations in lake water level. Modern-day Lake Titicaca lake level and precipitation are strongly related to northern equatorial Atlantic sea surface temperatures, with cooler SSTs related to wetter conditions. Subsequently, the spectral behavior of the GRIP ice core δ 18O record was investigated in order to estimate coherency and linkages between North Atlantic and tropical South American climate. GRIP data exhibit a significant 1370-year spectral peak which comprises approximately 26% of the total variability in the record. Despite a high degree of coherency between millennial-scale periodicities in Lake Titicaca BSi and GRIP δ 18O records, the Lake Titicaca silica record does not show longer term cooling cycles characteristic of D-O cycles found in the GRIP record. Rather, the Lake Titicaca record is highly periodic and more similar in nature to several Antarctic climate proxy records. These results suggest that while South American tropical climate varies in phase with North Atlantic climate, additional forcing mechanisms are manifest in the region which may include tropical Pacific and Southern Ocean variability.

  16. Reassessing Pliocene temperature gradients

    NASA Astrophysics Data System (ADS)

    Tierney, J. E.

    2017-12-01

    With CO2 levels similar to present, the Pliocene Warm Period (PWP) is one of our best analogs for climate change in the near future. Temperature proxy data from the PWP describe dramatically reduced zonal and meridional temperature gradients that have proved difficult to reproduce with climate model simulations. Recently, debate has emerged regarding the interpretation of the proxies used to infer Pliocene temperature gradients; these interpretations affect the magnitude of inferred change and the degree of inconsistency with existing climate model simulations of the PWP. Here, I revisit the issue using Bayesian proxy forward modeling and prediction that propagates known uncertainties in the Mg/Ca, UK'37, and TEX86 proxy systems. These new spatiotemporal predictions are quantitatively compared to PWP simulations to assess probabilistic agreement. Results show generally good agreement between existing Pliocene simulations from the PlioMIP ensemble and SST proxy data, suggesting that exotic changes in the ocean-atmosphere are not needed to explain the Pliocene climate state. Rather, the spatial changes in SST during the Pliocene are largely consistent with elevated CO2 forcing.

  17. New carbon-isotope evidence from the Polish Basin for a major carbon-cycle perturbation at the Triassic-Jurassic Boundary

    NASA Astrophysics Data System (ADS)

    Pointer, Robyn; Hesselbo, Stephen; Littler, Kate; Pieńkowski, Grzegorz; Hodbod, Marta

    2016-04-01

    Carbon-isotope analysis of fossil plant material from a Polish core provides new evidence of a perturbation to the atmospheric carbon-cycle at the Triassic-Jurassic boundary (~201 Ma). The Triassic-Jurassic boundary was a time of extreme climate change which also coincided with the end-Triassic mass extinction. The new data will allow us to identify climatic changes in the Polish Basin across the Triassic-Jurassic boundary and evaluate these changes on a broader scale by comparison to data from other sites located around the world. The Niekłan borehole core, located in the southern Polish Basin, provides a ~200 metre-long terrestrial record spanning the Rhaetian and Hettangian, including the Triassic-Jurassic boundary (~208-199 Ma). The Niekłan core consists of interbedded fluvial and lacustrine sediments containing preserved plant material and thus provides an excellent opportunity to study both terrestrial palaeoenvironmental changes in the Polish Basin and perturbations in the carbon-cycle more broadly. Carbon-isotope analysis of macrofossil plant material and microscopic woody phytoclasts from the Niekłan core reveals a negative carbon-isotope excursion (CIE) of ~-3‰ at the end of the Rhaetian, before a gradual return to more positive values thereafter. The negative CIE suggests an injection of isotopically-light carbon into the atmosphere occurred just before the Triassic-Jurassic boundary. Likely sources of this carbon include volcanogenic gases, methane released from gas hydrates, or a combination of the two. The negative CIE seen in plant material at Niekłan is also recorded in a variety of geological materials from contemporaneous sites world-wide. These time-equivalent, but geographically separated, records indicate that the negative CIE recorded in the Niekłan plant material is the result of a regional or global carbon-cycle perturbation and is not merely a local signal. Future work will focus on using a range of palaeoenvironmental proxies in order to produce a detailed record of climate change at the Triassic-Jurassic boundary to complement the new fossil plant carbon-isotope record from the Niekłan core. A new, detailed, multi-proxy record from the Polish Basin will allow us to quantify the climate changes occurring in the basin across the Triassic-Jurassic boundary.

  18. Post-glacial climate forcing of surface processes in the Ganges-Brahmaputra river basin and implications for carbon sequestration

    NASA Astrophysics Data System (ADS)

    Hein, Christopher J.; Galy, Valier; Galy, Albert; France-Lanord, Christian; Kudrass, Hermann; Schwenk, Tilmann

    2017-11-01

    Climate has been proposed to control both the rate of terrestrial silicate weathering and the export rate of associated sediments and terrestrial organic carbon to river-dominated margins - and thus the rate of sequestration of atmospheric CO2 in the coastal ocean - over glacial-interglacial timescales. Focused on the Ganges-Brahmaputra rivers, this study presents records of post-glacial changes in basin-scale Indian summer monsoon intensity and vegetation composition based on stable hydrogen (δD) and carbon (δ13C) isotopic compositions of terrestrial plant wax compounds preserved in the channel-levee system of the Bengal Fan. It then explores the role of these changes in controlling the provenance and degree of chemical weathering of sediments exported by these rivers, and the potential climate feedbacks through organic-carbon burial in the Bengal Fan. An observed 40‰ shift in δD and a 3-4‰ shift in both bulk organic-carbon and plant-wax δ13C values between the late glacial and mid-Holocene, followed by a return to more intermediate values during the late Holocene, correlates well with regional post-glacial paleoclimate records. Sediment provenance proxies (Sr, Nd isotopic compositions) reveal that these changes likely coincided with a subtle focusing of erosion on the southern flank of the Himalayan range during periods of greater monsoon strength and enhanced sediment discharge. However, grain-size-normalized organic-carbon concentrations in the Bengal Fan remained constant through time, despite order-of-magnitude level changes in catchment-scale monsoon precipitation and enhanced chemical weathering (recorded as a gradual increase in K/Si* and detrital carbonate content, and decrease in H2O+/Si*, proxies) throughout the study period. These findings demonstrate a partial decoupling of climate change and silicate weathering during the Holocene and that marine organic-carbon sequestration rates primary reflect rates of physical erosion and sediment export as modulated by climatic changes. Together, these results reveal the magnitude of climate changes within the Ganges-Brahmaputra basin following deglaciation and a closer coupling of monsoon strength with OC burial than with silicate weathering on millennial timescales.

  19. Reconstruction of Pleistocene Paleo-Hydrology and Climate Variations in Western Asia as Recorded in Speleothems from West-Central Iran

    NASA Astrophysics Data System (ADS)

    Mehterian, S.; Pourmand, A.; Sharifi, A.; Lahijani, H. A. K.; Naderi, M.; Swart, P. K.

    2014-12-01

    Extending from the eastern Mediterranean Sea to the northwest Indian Ocean and modern Iran, West Asia represents one of the most climatically dynamic regions in the northern hemisphere. The regional climate of West Asia is governed by interactions between the mid-latitude Westerlies, the Siberian Anticyclone and the Indian Ocean Summer Monsoon. In recent years, sparse records of Pleistocene climate variability have emerged from cave deposits (speleothems) in East Asia, the Arabian Peninsula and eastern Mediterranean. However, there remains a large gap in our understanding of abrupt and long-term climate variability in this region. We present for the first time δ18O data from speleothem and water samples that were collected from two cave systems in west-central Iran at similar latitudes, 60km apart: Qaleh Kord Cave (QKC, 35°47'50"N, 48°51'25"E) and Kataleh Khor Cave (KKC, 35°50'09"N, 48°09'41"E). U-Th geochronometry in two stalagmites from QKC yielded ages that range from 73,000 to 118,000 years B.P. Likewise, two stalagmites dated from KKC yielded ages 214,000-260,000 years B.P. and 300,000-500,000 years B.P. The analysis of additional speleothems from these caves should help to establish a continuous half million year multi-proxy record of δ18O variations, trace metal composition (Mg/Ca, Sr/Ca), and radiogenic Sr isotopes in these cave systems. High-resolution δ18O analyses of QKC stalagmites show patterns of variation that can be attributed to Marine Isotope Stage (MIS) 5a and 5b. Since both these caves sit at relatively high elevations (QKC: 2,160 masl, KKC: 1,695 masl) far from major seas (1,100km from Mediterranean Sea, 1,500km from North Indian Ocean), this record potentially reflects the synoptic interactions between the Westerlies and the Siberian Anticyclone during this time interval, as opposed to direct variations caused by sea level fluctuations. Measurements of drip water composition and modern environmental parameters (temperature, relative humidity and pCO2) inside the caves paired with δ18O analyses of fluid inclusions in the stalagmites will place additional constraints on multi-proxy reconstruction of paleo-records from these cave systems.

  20. Quantifying Proxy Influence in the Last Millennium Reanalysis

    NASA Astrophysics Data System (ADS)

    Hakim, G. J.; Anderson, D. N.; Emile-Geay, J.; Noone, D.; Tardif, R.

    2017-12-01

    We examine the influence of proxies in the climate field reconstruction known as the Last Millennium Reanalysis (Hakim et al. 2016; JGR-A). This data assimilation framework uses the CCSM4 Last Millennium simulation as an agnostic prior, proxies from the PAGES 2k Consortium (2017; Sci. Data), and an offline ensemble square-root filter for assimilation. Proxies are forward modeled using an observation model ("proxy system model") that maps from the prior space to the proxy space. We assess proxy impact using the method of Cardinali et al. (2004; QJRMS), where influence is measured in observation space; that is, at the location of observations. Influence is determined by three components: the prior at the location, the proxy at the location, and remote proxies as mediated by the spatial covariance information in the prior. Consequently, on a per-proxy basis, influence is higher for spatially isolated proxies having small error, and influence is lower for spatially dense proxies having large error. Results show that proxy influence depends strongly on the observation model. Assuming the proxies depend linearly on annual mean temperature yields the largest per-proxy influence for coral d18O and coral Sr/Ca records, and smallest influence for tree-ring width. On a global basis (summing over all proxies of a given type), tree-ring width and coral d18O have the largest influence. A seasonal model for the proxies yields very different results. In this case we model the proxies linearly on objectively determined seasonal temperature, except for tree proxies, which are fit to a bivariate model on seasonal temperature and precipitation. In this experiment, on a per-proxy basis, tree-ring density has by far the greatest influence. Total proxy influence is dominated by tree-ring width followed by tree-ring density. Compared to the results for the annual-mean observation model, the experiment where proxies are measured seasonally has more than double the total influence (sum over all proxies); this experiment also has higher verification scores when measured against other 20th century temperature reconstructions. These results underscore the importance of improving proxy system models, since they increase the amount of information available for data-assimilation-based reconstructions.

  1. Holocene climatic variations in the Western Cordillera of Colombia: A multiproxy high-resolution record unravels the dual influence of ENSO and ITCZ

    NASA Astrophysics Data System (ADS)

    Muñoz, Paula; Gorin, Georges; Parra, Norberto; Velásquez, Cesar; Lemus, Diego; Monsalve-M., Carlos; Jojoa, Marcela

    2017-01-01

    The Páramo de Frontino (3460 m elevation) in Colombia is located approximately halfway between the Pacific and Atlantic oceans. It contains a 17 kyr long, stratigraphically continuous sedimentary sequence dated by 30 AMS 14C ages. Our study covers the last 11,500 cal yr and focuses on the biotic (pollen) and abiotic (microfluorescence-X or μXRF) components of this high mountain ecosystem. The pollen record provides a proxy for temperature and humidity with a resolution of 20-35 yr, and μXRF of Ti and Fe is a proxy for rainfall with a sub-annual (ca. 6-month) resolution. Temperature and humidity display rapid and significant changes over the Holocene. The rapid transition from a cold (mean annual temperature (MAT) 3.5 °C lower than today) and wet Younger Dryas to a warm and dry early Holocene is dated at 11,410 cal yr BP. During the Holocene, MAT varied from ca. 2.5 °C below to 3.5° above present-day temperature. Warm periods (11,410-10,700, 9700-6900, 4000-2400 cal yr BP) were separated by colder intervals. The last 2.4 kyr of the record is affected by human impact. The Holocene remained dry until 7500 cal yr BP. Then, precipitations increased to reach a maximum between 5000 and 4500 cal yr BP. A rapid decrease occurred until 3500 cal yr BP and the late Holocene was dry. Spectral analysis of μXRF data show rainfall cyclicity at millennial scale throughout the Holocene, and at centennial down to ENSO scale in more specific time intervals. The highest rainfall intervals correlate with the highest activity of ENSO. Variability in solar output is possibly the main cause for this millennial to decadal cyclicity. We interpret ENSO and ITCZ as the main climate change-driving mechanisms in Frontino. Comparison with high-resolution XRF data from the Caribbean Cariaco Basin (a proxy for rainfall in the coastal Venezuelian cordilleras) demonstrates that climate in Frontino was Pacific-driven (ENSO-dominated) during the YD and early Holocene, whereas it was Atlantic-driven in Cariaco (ITCZ-dominated). From ca. 8000 cal yr BP, climate in both areas was under the dual influence of ENSO and ITCZ, thereby showing existing teleconnections between the tropical Pacific and Atlantic oceans. The Frontino record is to date the highest-resolution Holocene study in NW Colombia. An implication of these results is that new records should be analyzed with multiproxy tools, in particular those providing high resolution time series, such as μXRF.

  2. Replicating the Ice-Volume Signal of the Early Pleistocene with a Complex Earth System Model

    NASA Astrophysics Data System (ADS)

    Tabor, C. R.; Poulsen, C. J.; Pollard, D.

    2013-12-01

    Milankovitch theory proposes high-latitude summer insolation intensity paces the ice ages by controlling perennial snow cover amounts (Milankovitch, 1941). According to theory, the ~21 kyr cycle of precession should dominate the ice-volume records since it has the greatest influence on high-latitude summer insolation. Modeling experiments frequently support Milankovitch theory by attributing the majority of Northern Hemisphere high-latitude summer snowmelt to changes in the cycle of precession (e.g. Jackson and Broccoli, 2003). However, ice-volume proxy records, especially those of the Early Pleistocene (2.6-0.8 Ma), display variability with a period of ~41 kyr (Raymo and Lisiecki, 2005), indicative of insolation forcing from obliquity, which has a much smaller influence on summer insolation intensity than precession. Several hypotheses attempt to explain the discrepancies between Milkankovitch theory and the proxy records by invoking phenomena such as insolation gradients (Raymo and Nisancioglu, 2003), hemispheric offset (Raymo et al., 2006; Lee and Poulsen, 2009), and integrated summer energy (Huybers, 2006); however, all of these hypotheses contain caveats (Ruddiman, 2006) and have yet to be supported by modeling studies that use a complex GCM. To explore potential solutions to this '41 kyr problem,' we use an Earth system model composed of the GENESIS GCM and Land Surface model, the BIOME4 vegetation model, and the Pennsylvania State ice-sheet model. Using an asynchronous coupling technique, we run four idealized transient combinations of obliquity and precession, representing the orbital extremes of the Pleistocene (Berger and Loutre, 1991). Each experiment is run through several complete orbital cycles with a dynamic ice domain spanning North America and Greenland, and fixed preindustrial greenhouse-gas concentrations. For all orbital configurations, model results produce greater ice-volume spectral power at the frequency of obliquity despite significantly greater summer insolation variability from the cycle of precession. We find obliquity enhances the climate sensitivity to direct insolation forcing through positive high-latitude surface feedbacks between vegetation, sea-ice, and mean-annual insolation while the seasonal dichotomy of precessional forcing leads to climate counterbalancing that dampens the annual ice-volume response. Longer cycle duration further amplifies the ice-volume response to obliquity. Our results help remedy the discrepancies between Milankovitch theory and the ice-volume proxy records. However, summer insolation intensity remains the most important factor for determining ice-volume rate-of-change in our experiments. Consequently, we still find a significant ice-volume response to precession, which is inconsistent with the Early Pleistocene records. The disconnect is likely attributable to climate phenomena not accounted for in the model or our choice of initial conditions, which are poorly constrained for the Early Pleistocene and ice-sheet modeling in general. Future work will examine the importance of initial climate conditions on ice-volume response.

  3. The diatom flora of Lake Kinneret (Israel) - Paleolimnological evidence for Holocene climate change and human impact in the southeastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Vossel, Hannah; Reed, Jane M.; Litt, Thomas

    2015-04-01

    The Mediterranean basin is a region of highly complex topography and climatic variability, such that our understanding of the past environmental variability is still limited. Diatoms (single-celled siliceous algae, Bacillariophyceae) are abundant, diverse and sensitive to a wide range of environmental parameters. They are often well preserved in lake sediment records, and have well-recognised potential to generate high-quality paleolimnological data. Diatoms remain one of the least-exploited proxies in Mediterranean palaeoclimate research. Here, we present results of diatom analysis of an 18 m sediment core from Lake Kinneret (Israel) as part of a multi-proxy study of Holocene climate change and human impact in the Levant (http://www.sfb806.uni-koeln.de). Results are compared with other proxy data including pollen, and with output data from regional climate modelling, to strengthen interpretation of environmental change in the southeastern Mediterranean. The results show remarkable shifts in the diatom flora over the last ca. 8,000 years. Preliminary investigations show that 98% of the diatom taxa can be classified as oligohalobous-indifferent and as alkaliphilous, as is typical of freshwater, alkaline lakes of open hydrology in limestone, karst-dominated catchments. Changes in the diatom data over time can be interpreted mainly in terms of productivity shifts, with a clear trend from oligotrophic at the base to hypereutrophic in the modern lake. The eutrophication trend accelerates after ca. 3,000 cal. yrs. BP, indicating the influence of increased human activity in the catchment, identified previously by analysis of the vegetational history (Schiebel, 2013). The analysis of the composition of the diatom flora also provides some evidence for lake-level fluctuations, as a proxy for shifts in moisture availability. Low lake-level stands are characterized by low diatom concentration and increased relative abundance of littoral taxa. High lake-level stands are marked by the clear dominance of planktonic species, such as Cyclotella ocellata PANTOCSEK and Cyclotella paleo-ocellata VOSSEL & VAN DE VIJVER (a newly described centric diatom which may be endemic (Vossel et al., 2015), in phases of high diatom concentration. Such inferred lake-level oscillations correlate well with the output from the climatic models from the Levant region, representing changes in moisture availability (Litt et al., 2012), although the signal is obscured in the last 3,000 years by the effects of anthropogenic eutrophication. References Litt, T.; Ohlwein, C.; Neumann, F. H.; Hense, A. & Stein, M. (2012): Holocene climate variability in the Levant from the Dead Sea pollen record. - Quat. Sci. Rev., 49: 95-105. Schiebel, V. (2013): Vegetation and climate history of the southern Levant during the last 30,000 years based on palynological investigation. - Unpublished PhD thesis. Vossel, H.; Reed, J. M.; Houk, V.; Cvetkoska, A. & Van de Vijver, B. (2015): Cyclotella paleo-ocellata, a new centric diatom (Bacillariophyta) from Lake Kinneret (Israel). Fottea, 15 (1), in press.

  4. Assessment of East Antarctic ice flow directions, ice grounding events, and glacial thermal regime across the middle Miocene climate transition from the ANDRILL-SMS and CRP drill holes

    NASA Astrophysics Data System (ADS)

    Passchier, S.; Hauptvogel, D.; Hansen, M.; Falk, C.; Martin, L.

    2010-12-01

    Here we present a synthesis of early and middle Miocene ice sheet development based on facies analyses and multiple compositional studies on the AND-2A and CRP drillcores from the Ross Sea, ca. 10 km off the coast of East Antarctica. The middle Miocene is characterized by one of the three largest shifts in deep-sea oxygen isotope records. During this time the East Antarctic ice sheet became dry-based at high elevation in the Transantarctic Mountains and advanced across the Ross Sea continental shelf to create widespread glacial unconformities. However, detailed proxy records also indicate that ice development was complex and may have occurred in a stepwise fashion, instead of one major episode. Our analyses of “grounded ice” diamictites from both the CRP and AND-2A cores show a significant change in composition across the middle Miocene transition. More detailed analyses of the stratigraphic distribution of facies, heavy mineral provenance, particle size, and major and trace element geochemistry in AND-2A show that relatively large polythermal ice-sheets similar in size to the modern were already present between 17.6 and 17.1 Ma. These results are in agreement with proxy records suggesting that Antarctic ice volumes were larger than today’s volume during the Mi-1b glaciation. Between 17.1 and 15.6-14.9 Ma, a predominance of iceberg debris sourced from the Ferrar Group in the Transantarctic Mountains suggests vigorous glacial erosion and fjord incision by East Antarctic outlet glaciers. The facies characteristics and comparison with compositional data from Neogene tills in the Transantarctic Mountains further suggest that the East Antarctic ice sheet may have been smaller than today during the Miocene climatic optimum (~17-15 Ma) with ice possibly reaching sea level only near the central Transantarctic Mountains. Advance of the grounding line and the development of glacial flow patterns compatible with a larger ice sheet than the modern commenced between 15.6 and 14.7 Ma and was established prior to 14.2 Ma. These results suggest an earlier onset of Antarctic ice growth across the middle Miocene climate transition than is generally inferred from geochemical proxy records.

  5. Paleoclimate in continental northwestern Europe during the Eemian and early Weichselian (125-97 ka): insights from a Belgian speleothem

    NASA Astrophysics Data System (ADS)

    Vansteenberge, Stef; Verheyden, Sophie; Cheng, Hai; Edwards, R. Lawrence; Keppens, Eddy; Claeys, Philippe

    2016-07-01

    The last interglacial serves as an excellent time interval for studying climate dynamics during past warm periods. Speleothems have been successfully used for reconstructing the paleoclimate of last interglacial continental Europe. However, all previously investigated speleothems are restricted to southern Europe or the Alps, leaving large parts of northwestern Europe undocumented. To better understand regional climate changes over the past, a larger spatial coverage of European last interglacial continental records is essential, and speleothems, because of their ability to obtain excellent chronologies, can provide a major contribution. Here, we present new, high-resolution data from a stalagmite (Han-9) obtained from the Han-sur-Lesse Cave in Belgium. Han-9 formed between 125.3 and ˜ 97 ka, with interruptions of growth occurring at 117.3-112.9 and 106.6-103.6 ka. The speleothem was investigated for its growth, morphology and stable isotope (δ13C and δ18O) composition. The speleothem started growing relatively late within the last interglacial, at 125.3 ka, as other European continental archives suggest that Eemian optimum conditions were already present during that time. It appears that the initiation of Han-9 growth is caused by an increase in moisture availability, linked to wetter conditions around 125.3 ka. The δ13C and δ18O proxies indicate a period of relatively stable conditions after 125.3 ka; however, at 120 ka the speleothem δ18O registered the first signs of regionally changing climate conditions, being a modification of ocean source δ18O linked to an increase in ice volume towards the Marine Isotope Stage (MIS) 5e-5d transition. At 117.5 ka, drastic vegetation changes are recorded by Han-9 δ13C immediately followed by a cessation of speleothem growth at 117.3 ka, suggesting a transition to significantly dryer conditions. The Han-9 record covering the early Weichselian displays larger amplitudes in both isotope proxies and changes in stalagmite morphology, evidencing increased variability compared to the Eemian. Stadials that appear to be analogous to those in Greenland are recognized in Han-9, and the chronology is consistent with other European (speleothem) records. Greenland Stadial 25 is reflected as a cold/dry period within Han-9 stable isotope proxies, and the second interruption in speleothem growth occurs simultaneously with Greenland Stadial 24.

  6. Mechanisms Underlying Early Medieval Droughts in Mesoamerica

    NASA Astrophysics Data System (ADS)

    Bhattacharya, T.; Chiang, J. C. H.

    2015-12-01

    Multidecadal drought during the early Medieval Climate Anomaly (MCA, 800-1200 CE) in Mesoamerica has been implicated in the demise of many pre-Columbian societies, including the Maya. The mechanisms behind these droughts, however, are poorly understood. Researchers most often interpret these records as tracking the mean position of the ITCZ, with a southward shifted ITCZ resulting in Mesoamerican drought. This is puzzling, however, because our dynamical understanding of the ITCZ and its role in interhemispheric heat transport would suggest a more northward shifted ITCZ during the MCA. Here, we evaluate two hypotheses to reconcile existing proxies and dynamics. First, we assess whether evidence for dry conditions during the MCA is robust across multiple Mesoamerican proxy records, focusing on the influence of radiometric dating uncertainty on estimates of drought timing. Second, we use control simulations of CCSM4 and HadCM3, as well as a broader synthesis of oceanic and terrestrial proxies, to explore the mechanisms responsible for long-term drought in Mesoamerica. Ultimately, we suggest that a temporary slowdown of the AMOC, either internally or externally forced, combined with local and regional land surface feedbacks can explain these droughts in Mesoamerica.

  7. Holocene multi-proxy environmental reconstruction from lake Hakluytvatnet, Amsterdamøya Island, Svalbard (79.5°N)

    NASA Astrophysics Data System (ADS)

    Gjerde, Marthe; Bakke, Jostein; D'Andrea, William J.; Balascio, Nicholas L.; Bradley, Raymond S.; Vasskog, Kristian; Ólafsdóttir, Sædis; Røthe, Torgeir O.; Perren, Bianca B.; Hormes, Anne

    2018-03-01

    High resolution proxy records of past climate are sparse in the Arctic due to low organic production that restricts the use of radiocarbon dating and challenging logistics that make data collection difficult. Here, we present a new lake record from lake Hakluytvatnet at Amsterdamøya island (79.5°N), the northwesternmost island on Svalbard. Multi-proxy analyses of lake sediments in combination with geomorphological mapping reveal large environmental shifts that have taken place at Amsterdamøya during the Holocene. A robust chronology has been established for the lake sediment core through 28 AMS radiocarbon ages, and this gives an exceptionally well-constrained age control for a lake at this latitude. The Holocene was a period with large changes in the Hakluytvatnet catchment, and the onset of the Neoglacial (ca. 5 ka) marks the start of modern-day conditions in the catchment. The Neoglacial is characterized by fluctuations in the minerogenic input to the lake as well as internal productivity, and we suggest that these fluctuations are driven by atmospherically forced precipitation changes as well as sea ice extent modulating the amount of moisture that can reach Hakluytvatnet.

  8. Climate oscillations reflected in the microbiome of Arabian Sea sediments

    NASA Astrophysics Data System (ADS)

    Orsi, W. D.; Coolen, M.; He, L.; Wuchter, C.; Irigoien, X.; Hemingway, J. D.; Johnson, C.; Chust, G.; Moore, K.; Galy, V.; Giosan, L.

    2016-12-01

    More than 1029 microbial cells reside in marine sediment, but the forces underlying their vertical distribution are poorly understood. Sedimentary communities are shaped to a large extent through selection by the modern environment such as energy availability and porosity. However, some microbes within certain settings reflect depositional conditions suggesting they have experienced no or weak selection after burial. Here, we show that in sediments underlying the Arabian Sea oxygen minimum zone (OMZ), the stratigraphy of some subsisting bacteria records their selection to changing paleo-environmental conditions over relatively short (e.g., centennial to millennial) timescales. We performed the highest resolved sedimentary metagenomic profile to date and coupled it with multiple paleoceanographic proxies. Despite being vertically separated, bacterial communities deposited under recurring low-oxygen conditions are more similar to one another than those deposited under higher oxygen. Furthermore, genomic potential for denitrification recurringly correlates with OMZ strength and paleo-denitrification proxies. In contrast, the genomic potential for oxygen-dependent metabolism, specifically genes encoding mono-oxygenases, is correlated with bioturbated sediment intervals deposited under higher oxygen concentrations. These patterns correlate strongly with the strength of the OMZ whose strength is teleconnected to North Atlantic climate. While the primary electron acceptors nitrate and nitrite are depleted at the sediment surface, metagenomes revealed mixed acid and Entner-Dourdoroff fermentation pathways encoded by many of the denitrifier groups. Fermentation has thus enabled the long-term subsistence of these bacteria whose stratigraphy serves as a proxy for changing paleoceanographic conditions and potential climate feedback mechanisms.

  9. Development, Production and Validation of the NOAA Solar Irradiance Climate Data Record

    NASA Astrophysics Data System (ADS)

    Coddington, O.; Lean, J.; Pilewskie, P.; Snow, M. A.; Lindholm, D. M.

    2015-12-01

    A new climate data record of Total Solar Irradiance (TSI) and Solar Spectral Irradiance (SSI), including source code and supporting documentation is now publicly available as part of the National Oceanographic and Atmospheric Administration's (NOAA) National Centers for Environmental Information (NCEI) Climate Data Record (CDR) Program. Daily and monthly averaged values of TSI and SSI, with associated time and wavelength dependent uncertainties, are estimated from 1882 to the present with yearly averaged values since 1610, updated quarterly for the foreseeable future. The new Solar Irradiance Climate Data Record, jointly developed by the University of Colorado at Boulder's Laboratory for Atmospheric and Space Physics (LASP) and the Naval Research Laboratory (NRL), is constructed from solar irradiance models that determine the changes from quiet Sun conditions when bright faculae and dark sunspots are present on the solar disk. The magnitudes of the irradiance changes that these features produce are determined from linear regression of the proxy Mg II index and sunspot area indices against the approximately decade-long solar irradiance measurements made by instruments on the SOlar Radiation and Climate Experiment (SORCE) spacecraft. We describe the model formulation, uncertainty estimates, operational implementation and validation approach. Future efforts to improve the uncertainty estimates of the Solar Irradiance CDR arising from model assumptions, and augmentation of the solar irradiance reconstructions with direct measurements from the Total and Spectral Solar Irradiance Sensor (TSIS: launch date, July 2017) are also discussed.

  10. Milankovitch Cyclicity in the Eocene Green River Formation of Colorado and Wyoming

    NASA Astrophysics Data System (ADS)

    Machlus, M.; Olsen, P. E.; Christie-Blick, N.; Hemming, S. R.

    2001-12-01

    The Eocene Green River Formation is a classic example of cyclic lacustrine sediments. Following Bradley (1929, U.S.G.S. Prof. Paper 158-E), many descriptive studies suggested precession and eccentricity as the probable climatic forcing to produce the cyclic pattern. Here we report spectral analysis results that confirm this hypothesis. Furthermore, we have identified the presence of a surprisingly large amplitude obliquity cycle, the long-period eccentricity cycle (400 k.y.) and the long period modulators of obliquity. Spectral analyses of data from Colorado were undertaken on an outcrop section and core data using two different proxies for lake depth. In a section measured in the west Piceance Creek basin, three lithologies (ranks) were used as a proxy for relative water depth, from relatively shallow to deep water: laminated marlstones; microlaminated, light-colored oil-shales; and microlaminated black oil shales. A multi-tapered spectrum of the 190-m-thick record in the depth domain shows significant peaks at periods of 2.1, 3.4, 12 and 39 m. These are interpreted as the precession, obliquity and eccentricity cycles. The precession cycle confirms Bradley's independent estimate of 2.4 m per 20 k.y. cycle, based on varve counts at the same location. A high-amplitude, continuous 3.4 m (obliquity) cycle exists in the evolutive spectrum of this record. A second spectral analysis of an oil-shale-yield record was made on a 530 m core near the basin depocenter. This record includes the time-equivalent of the outcrop section, spans a longer interval of time, and has a higher sedimentation rate. Peaks are found at 5, 10, 25 and 79 m. Again, the probable obliquity peak, at 10 m, is continuous along the record. Initial tuning of this record to a 39.9 k.y. cosine wave improves the resolution of the precession, short and long eccentricity cycles. Spectral analysis of oil shale yield and sonic velocity data of cores from the Green River basin, Wyoming, gives similar results. Spectral peaks at 6, 13, 31 and 122 m appear mainly in the Tipton and the Wilkins Peak members. The correlation between oil shale yield, lithology and relative water depth was examined in the upper part of the Wilkins Peak Member and the Lower part of the Laney Member. The succession from microlaminated black oil shale to laminated micrite corresponds with documented lateral changes in facies from deep to shallow environments, thus confirming the use of these facies as relative water-depth proxies. Furthermore, the upsection record of oil shale yields correlates with these facies, with higher yields corresponding to deeper water facies. This correlation supports the use of the oil shale yield record as a proxy for short-term lake-level changes, and therefore a proxy for climate. The spectral analysis results from both basins show the importance of the obliquity cycle in these continental records. This cycle cannot be identified by cycle-counting, and therefore was not previously recognized. Earlier published attempts at spectral analysis of short records from the Piceance Creek and Uinta basins misinterpreted the observed cycles. This is the first time both the obliquity cycle and the long-term eccentricity cycle have been identified in the Green River and Piceance Creek basins.

  11. Advanced Regional and Decadal Predictions of Coastal Inundation for the U.S. Atlantic and Gulf Coasts

    NASA Astrophysics Data System (ADS)

    Horton, B. P.; Donnelly, J. P.; Corbett, D. R.; Kemp, A.; Lindeman, K.; Mann, M. E.; Peltier, W. R.; Rahmstorf, S.

    2012-12-01

    Future inundation of the US Atlantic and Gulf coasts will depend upon both sea-level rise and the intensity and frequency of tropical cyclones, each of which will be affected by climate change. In this proposal, we will employ new interdisciplinary approaches to bring about a step change in the reliability of predictions of such inundation. The rate of sea-level rise along the US Atlantic and Gulf coasts has increased throughout the 20th century. Whilst there is widespread agreement that it continue to accelerate during the 21st century, great uncertainty surrounds its magnitude and geographic distribution. Key uncertainties include the role of continental ice sheets, mountain glaciers and ocean density changes. Insufficient understanding of these complex physical processes precludes accurate prediction of sea-level rise. New approaches using semi-empirical models that relate instrumental records of climate and sea-level rise have projected up to 2 m of sea-level rise by AD 2100. But the time span of instrumental sea-level records is insufficient to adequately constrain the climate:sea-level relationship. Here, we produce new high resolution proxy data of sea-level and temperature to provide crucial additional constraints to such semi-empirical models. Our dataset will span the alternation between the "Medieval Climate Anomaly" and "Little Ice Age". Before the models can provide appropriate data for coastal management and planning, they must be complemented with regional estimates of sea-level rise. Therefore, the proxy sea-level data has been collected from six study areas (Massachusetts, New Jersey, North Carolina, Georgia and Atlantic and Gulf coasts of Florida) to accommodate the required extent of regional variability. In the case of inundation arising from tropical cyclones, the historical and observational records are insufficient for predicting their nature and recurrence, because they are such extreme and rare events. Moreover, in the future, the resultant storm surges will be superimposed on background sea-level rise. To overcome these problems, we couple regional sea-level rise projections with hurricane simulations and storm surge models to map coastal inundation for the current climate and the best and worst case climate scenarios of the IPCC AR4. The products of this proposal will raise the bar for the scientific prediction of region-specific inundation probabilities in terms of coordinated semi-empirical proxy data, hindcast- and forecast-driven sea-level modeling and tropical cyclone forecasting. To optimize transfer of this often complex information for effective adaptive decision-making by managers and planners, we will systematically review >800 adaptation reports and consult early and often with primary endusers to identify their exact needs. We will produce high penetration print and web products for diverse audiences, specific to each region.

  12. Sedimentary Facies and their possible significance in Holocene paleoclimate reconstruction: Example of Baraila Tal, Central Ganga Plains

    NASA Astrophysics Data System (ADS)

    Misra, Pavani; Sinha, Rajiv; Tandon, Sampat Kumar

    2016-04-01

    To seek insights into natural climate variability on decadal/ centennial or half-millennial scale, we need to examine Holocene stratigraphic records. Due to the paucity of high-resolution Holocene continental records in India, Holocene climate change has mostly been studied from the marine sediments. Since agricultural communities are sustained by the resources of large river basins, it is important to understand the response of these systems directly to any climate change. The fluvial archive itself offers a relatively low resolution record, but the ox-bows and meander cut-offs in these basins act as semi-closed systems and hence offer the possibility of obtaining better time resolved stratigraphic data. Therefore, lakes from Central Ganga Plains can be regarded as good terrestrial archives; these have been inadequately investigated as compared to the lakes in western India which have been studied with multi-proxy approaches and show major abrupt climatic disruptions. Previous work on some of the lakes in the Central Ganga Plains is largely based on fossil pollen and commonly shows an alternating increase in tree pollen and grassland pollen representing a shifting trend of warm and humid conditions (from 12,500 to 6,400 and 4,800 to 2000 cal yrs BP), to cold and dry spells, respectively. Lake organic facies from Sanai Tal follow an increasing trend of δ13C values from 15,000 to 5,800 14C yr BP, which indicate an enhanced aquatic productivity during that period, except between 11,500 to 10,500 14C yr BP when lighter δ13C values are observed (Sharma et al., 2004), indicating a dry climate for this short period. Against the above background of previous studies, the Baraila Tal, a lake in the Central Ganga Plains has been chosen to obtain a relatively better time-resolved stratigraphy and to characterize its lithofacies for assessing proxy-paleoclimatic data. We have carried out sedimentary facies analysis for three trenches in the Baraila Tal; the major sand, silt and clay facies are subdivided into 21 sub-facies. One of the trenches has been studied for its clay mineralogy, TOC and grain size distribution, using XRD, Rock Eval pyrolysis and the wet sieving method, respectively. High resolution chronology will be based on AMS C-14 dates. These data will then be assessed for their utility as proxy-indicators of past climate. Reference: Sharma S., Joachimski M., Sharma M., Tobschall H.J., Singh I.B., Sharma C., Chauhan M.S., Morgenroth G., 2004. Lateglacial and Holocene environmental changes in Ganga plain, Northern India. Quaternary Science Review, 23: 145-159

  13. Register of the last 1000 years of environmental, climatic and anthropogenic change in Isla Grande de Chiloé, inferred through a multi-proxy approach: Lake Pastahué, Chile-South Center (42°S)

    NASA Astrophysics Data System (ADS)

    Troncoso, Jose; Alvarez, Denisse; Díaz, Gustavo; Fierro, Pablo; Araneda, Alberto; Torrejón, Fernando; Rondanelli, Mauricio; Fagel, Nathalie; Urrutia, Roberto

    2017-04-01

    Knowledge of the past environmental and climatic conditions of the lake ecosystems of the Isla Grande de Chiloé and its relationship with the anthropic effect, on a high temporal resolution scale, is scarcely known. Specifically, multi-proxy studies provide a better understanding of the context in which changes occurred in the past. This insular region is particularly interesting because environmental conditions (pre and post-Hispanic) and knowledge about the impacts generated in the ecosystems during the Spanish colonization process have so far been little studied, compared to the rest of Chile continental. This research is a new contribution to the scarce information existing for the last millennium of the Isla Grande de Chiloé. The objective of this work was to reconstruct the environmental and climatic history of the last 1000 years, from the Lake Pastahué, in the Isla Grande de Chiloé through a multi-proxy analysis and compare them with other records for the region. The core sediment was sub-sampled to perform sedimentological analysis (organic matter, carbonates, magnetic susceptibility and granulometry) and biological indicators (pollen, chironomids). The age model was constructed from the activity of 210Pb,137Cs and 14C. The pollen results reveal a composition of nordpatagónico forest represented by Nothofagus, Weinmannia, Drimys, Tepualia, Myrtaceae, Poaceae and Pteridophyta, while the anthropic effect for the last cm of the profile is represented by Rumex and Pinus. The results show a significant increase in magnetic susceptibility since the middle of the 20th century, suggesting an increase in allochthonous material to the lake. The sedimentological parameters and the chironomid assembly show similar variations along the profile, which also shows changes in the trophic state of the lake. The changes recorded in lake Pastahue are directly related to past climatic phenomena occurring in the last millennium, such as the medieval climatic anomaly (MCA) and the Little Ice Age (LIA) manifested in increases and decreases in temperatures, these antecedents are in agreement with others records for the region. The variations observed for the last cm of the profile could be a result of the decrease of the forests due to the intensification of the agricultural and cattle activities generated by the chilotes from century XX to the present time. The data provided by this research are still insufficient to establish an extralocal climatic influence of MCA and LIA events in Chiloé; although certain trends are observed. Research Funded by the projects: CONICYT- Scholarship PhD National 2014, FONDECYT N°1120807 and CRHIAM / CONICYT / FONDAP / 15130015.

  14. Climatic impact of volcanic eruptions

    NASA Technical Reports Server (NTRS)

    Rampino, Michael R.

    1991-01-01

    Studies have attempted to 'isolate' the volcanic signal in noisy temperature data. This assumes that it is possible to isolate a distinct volcanic signal in a record that may have a combination of forcings (ENSO, solar variability, random fluctuations, volcanism) that all interact. The key to discovering the greatest effects of volcanoes on short-term climate may be to concentrate on temperatures in regions where the effects of aerosol clouds may be amplified by perturbed atmospheric circulation patterns. This is especially true in subpolar and midlatitude areas affected by changes in the position of the polar front. Such climatic perturbation can be detected in proxy evidence such as decrease in tree-ring widths and frost rings, changes in the treeline, weather anomalies, severity of sea-ice in polar and subpolar regions, and poor grain yields and crop failures. In low latitudes, sudden temperature drops were correlated with the passage overhead of the volcanic dust cloud (Stothers, 1984). For some eruptions, such as Tambora, 1815, these kinds of proxy and anectdotal information were summarized in great detail in a number of papers and books (e.g., Post, 1978; Stothers, 1984; Stommel and Stommel, 1986; C. R. Harrington, in press). These studies lead to the general conclusion that regional effects on climate, sometimes quite severe, may be the major impact of large historical volcanic aerosol clouds.

  15. Spatiotemporal climatic, hydrological, and environmental variations based on records of annually laminated lake sediments from northern Poland

    NASA Astrophysics Data System (ADS)

    Tylmann, W.; Blanke, L.; Kinder, M.; Loewe, T.; Mayr, C.; Ohlendorf, C.; Zolitschka, B.

    2009-12-01

    In northern Poland there is the unique opportunity to compare varved lake sediment records with distinct climatic trends along a 700 km long W-E transect. Annually laminated Holocene sediment sequences from Lake Lubinskie, Lake Suminko, Lake Lazduny, and Lake Szurpily were cored for high-resolution multiproxy climate and environmental reconstruction in the framework of the Polish-German project “Northern Polish Lake Research” (NORPOLAR). First results from a 139 cm long gravity core of Lake Lazduny (53°51.4’N, 21°57.3’E) document deposition of an organic (mean organic matter: 13.9%; mean biogenic opal: 9.8%) and highly carbonaceous gyttja (mean calcite content: 61.6%). The finely laminated sediment consists of biochemical varves. Pale spring/summer layers composed of autochthonous carbonates alternate with dark fall/winter layers made of organic and minerogenic detritus. The established chronology for the last 1500 calendar-years is based on thin section analysis supported by independent radiometric dating (C-14, Pb-210). Sedimentological, geochemical and stable isotope analyses were carried out with a decadal temporal resolution. Additionally, non-destructive and high-resolution XRF scanning data reveal a rhythmic variation in the Ca content that reflects seasonal calcite deposition. Redox-sensitive elements like Fe, Mn and S are interpreted to be the response to mean winter temperatures: colder winter temperatures → extended lake ice cover → intensification of meromixis → increased Fe/Mn ratio. In turn, these parameters can be linked to NAO (North Atlantic Oscillation) variability, because a negative NAO is related to colder and drier conditions in northeastern Europe. Climate variability is also mirrored by the δ13C record of the endogenic calcite fraction. In mid-latitude lakes calcite precipitation is dominated by productivity-controlled consumption of the dissolved inorganic carbon (DIC) pool. Thus the δ13C record potentially provides a proxy for lacustrine primary production related to seasonal water temperature. As human land use considerably increased and modified the nutrient availability since the 19th century, this relationship is not applicable for the upper part of the record. Main future goals of NORPOLAR will be to (1) establish absolute chronologies for all available records covering the entire Holocene; (2) provide high-resolution data sets of paleoredox conditions, paleoproductivity, lake water balance, lacustrine carbon cycles and soil erosion in the catchment areas; (3) link paleodata with modern instrumental and monitoring data to improve the understanding of signal generation from forcing factors via processes to proxy records; and (4) provide regional data sets of reconstructed and quantified climate parameters to be compared with the output of regional climate models.

  16. No evidence for planetary influence on solar activity 330 000 years ago

    NASA Astrophysics Data System (ADS)

    Cauquoin, A.; Raisbeck, G. M.; Jouzel, J.; Bard, E.

    2014-01-01

    Context. Abreu et al. (2012, A&A. 548, A88) have recently compared the periodicities in a 14C - 10Be proxy record of solar variability during the Holocene and found a strong similarity with the periodicities predicted on the basis of a model of the time-dependent torque exerted by the planets on the sun's tachocline. If verified, this effect would represent a dramatic advance not only in the basic understanding of the Sun's variable activity, but also in the potential influence of this variability on the Earth's climate. Cameron and Schussler (2013, A&A. 557, A83) have seriously criticized the statistical treatment used by Abreu et al. to test the significance of the coincidences between the periodicities of their model with the Holocene proxy record. Aims: If the Abreu et al. hypothesis is correct, it should be possible to find the same periodicities in the records of cosmogenic nuclides at earlier times. Methods: We present here a high-resolution record of 10Be in the EPICA Dome C (EDC) ice core from Antarctica during the Marine Interglacial Stage 9.3 (MIS 9.3), 325-336 kyr ago, and investigate its spectral properties. Results: We find very limited similarity with the periodicities seen in the proxy record of solar variability during the Holocene, or with that of the model of Abreu et al. Conclusions: We find no support for the hypothesis of a planetary influence on solar activity, and raise the question of whether the centennial periodicities of solar activity observed during the Holocene are representative of solar activity variability in general.

  17. Paleoceanographic history of the Lower Bengal Fan during the last glacial cycle - IODP Expedition 354

    NASA Astrophysics Data System (ADS)

    Dekens, P. S.; Weber, M. E.; Lantzsch, H.; Das, S. K.; Williams, T.; Adhikari, R. R.; Jia, G.; Fox, L. R.; Ge, J.; Manoj, M. C.; Savian, J. F.; Reilly, B. T.; Selkin, P. A.; Meynadier, L.; Spiess, V.; France-Lanord, C.; Sharma, B.

    2015-12-01

    IODP Expedition 354 drilled a ~320 km long transect of seven sites on the Lower Bengal Fan at 8o N in the Northern Indian Ocean. The sediments cores recovered record a complex relationship between turbiditic and hemipelagic environments. This variability offers a unique opportunity to link our understanding of tectonic and terrestrial processes with climate and oceanography. With the exception the westernmost Site U1454, all sites show a several meter thick, hemipelagic top layer, usually representing Late Quaternary sediment. We present physical, geochemical and stable isotopic properties of this interval to establish a time frame and assess the paleoceanographic development of the region during the last glacial cycle. We sampled Site U1452C-1H continuously for the uppermost 480 cm of hemipelagic sediment in 2-cm increments. Preliminary results indicate the Toba Ash 1 (0.74 ka) is a distinct time marker in all physical properties. Furthermore, wet-bulk density as well as color reflectance b* (the red-green component) and L* (the lightness) show a dominant precession cyclicity. Hence, we are able to provide an insolation-tuned chronology for the last 200 ka (MIS1 - 7) as a preliminary age model. These records agree well with d18O records retrieved from Chinese caves. We will present a preliminary paleoceanographic proxy data to reconstruct sea-surface temperature (SST), sea-surface salinity (SSS), ice volume, marine biological productivity, nutrient supply, and deep-water circulation. These oceanographic and climate conditions are linked to changes in monsoonal strength and terrestrial input using sedimentary proxies to reconstruct chemical weathering and sediment sources and transport time. This work addresses one of the primary cruise objectives - linking monsoon variability, regional and global climate, and Bay of Bengal sediment deposition.

  18. Modeling the influence of a reduced equator-to-pole sea surface temperature gradient on the distribution of water isotopes in the Eocene

    NASA Astrophysics Data System (ADS)

    Speelman, E. N.; Sewall, J. O.; Noone, D. C.; Huber, M.; Sinninghe Damsté, J. S.; Reichart, G.

    2009-12-01

    Proxy-based climate reconstructions suggest the existence of a strongly reduced equator-to-pole temperature gradient during most of the Early Eocene. With the realization that the Eocene Arctic Ocean was covered with enormous quantities of the free floating freshwater fern Azolla, new questions related to Eocene (global) hydrological cycling facilitating these blooms arose. Changes in hydrological cycling, as a consequence of a reduced temperature gradient, are expected to be most clearly reflected in the isotopic composition (D, 18O) of precipitation. The interpretation of water isotopic records to quantitatively estimate past precipitation patterns is, however, hampered by the lack of detailed information on changes in their spatial and temporal distribution. Using the isotope-enabled global circulation model, Community Atmosphere Model v.3 (isoCAM3), relationships between water isotopes and past climates can be simulated. Here we examine the influence of a reduced meridional sea surface temperature gradient on the spatial distribution of precipitation and its isotopic composition in an Eocene setting. Overall, our combination of Eocene climate forcings, with superimposed TEX86-derived SST estimates and elevated pCO2 concentrations, produces a climate that agrees well with proxy data in locations around the globe. It shows the presence of an intensified hydrological cycle with precipitation exceeding evaporation in the Arctic region. The Eocene model runs with a significantly reduced equator-to-pole temperature gradient in a warmer more humid world predict occurrence of less depleted precipitation, with δD values ranging only between 0 and -140‰ (as opposed to the present-day range of 0 to -300‰). Combining new results obtained from compound specific isotope analyses on terrestrially derived n-alkanes extracted from Eocene sediments, and model calculations, shows that the model not only captures the main features, but reproduces isotopic values quantitatively as well. This combination of modeling outcomes and independent stable isotope records thus confirms independently the validity of the earlier, proxy-based, inferred reduced meridional temperature gradient.

  19. Persistent near-tropical warmth on the Antarctic continent during the early Eocene epoch.

    PubMed

    Pross, Jörg; Contreras, Lineth; Bijl, Peter K; Greenwood, David R; Bohaty, Steven M; Schouten, Stefan; Bendle, James A; Röhl, Ursula; Tauxe, Lisa; Raine, J Ian; Huck, Claire E; van de Flierdt, Tina; Jamieson, Stewart S R; Stickley, Catherine E; van de Schootbrugge, Bas; Escutia, Carlota; Brinkhuis, Henk

    2012-08-02

    The warmest global climates of the past 65 million years occurred during the early Eocene epoch (about 55 to 48 million years ago), when the Equator-to-pole temperature gradients were much smaller than today and atmospheric carbon dioxide levels were in excess of one thousand parts per million by volume. Recently the early Eocene has received considerable interest because it may provide insight into the response of Earth's climate and biosphere to the high atmospheric carbon dioxide levels that are expected in the near future as a consequence of unabated anthropogenic carbon emissions. Climatic conditions of the early Eocene 'greenhouse world', however, are poorly constrained in critical regions, particularly Antarctica. Here we present a well-dated record of early Eocene climate on Antarctica from an ocean sediment core recovered off the Wilkes Land coast of East Antarctica. The information from biotic climate proxies (pollen and spores) and independent organic geochemical climate proxies (indices based on branched tetraether lipids) yields quantitative, seasonal temperature reconstructions for the early Eocene greenhouse world on Antarctica. We show that the climate in lowland settings along the Wilkes Land coast (at a palaeolatitude of about 70° south) supported the growth of highly diverse, near-tropical forests characterized by mesothermal to megathermal floral elements including palms and Bombacoideae. Notably, winters were extremely mild (warmer than 10 °C) and essentially frost-free despite polar darkness, which provides a critical new constraint for the validation of climate models and for understanding the response of high-latitude terrestrial ecosystems to increased carbon dioxide forcing.

  20. A 50,000 year insect record from Rancho La Brea, Southern California: Insights into past climate and fossil deposition

    NASA Astrophysics Data System (ADS)

    Holden, Anna R.; Southon, John R.; Will, Kipling; Kirby, Matthew E.; Aalbu, Rolf L.; Markey, Molly J.

    2017-07-01

    Rigorously studied and dated Late Quaternary paleoenvironmental reconstructions from Ranch La Brea (RLB) and the Los Angeles Basin are scarce. Here, we use data from AMS radiocarbon dated insect fragments to infer local climates over the past 50,000 years. Our results indicate: 1) Quaternary insect remains can be located with great accuracy in radiocarbon time, and 2) well-dated and documented climate indicator beetle species are sensitive proxies for environmental change in the Los Angeles Basin. A total of 182 extant RLB ground and darkling beetle species (Coleoptera: Carabidae, Tenebrionidae) were radiocarbon dated. The resulting radiocarbon dates form a semi-continuous range from ∼50 to 28, 16-7.5, and 4 kcal yrs BP to the present. Associated insect climate ranges indicate past conditions consistent with, or very similar to, the current Los Angeles Basin Mediterranean climate. Importantly, these insect data suggest higher temperatures and aridity than inferred previously from other RLB proxies. Furthermore, wider-than-assumed dating spreads for some deposits emphasize the lack of biostratigraphy for RLB, and challenge inferences based on limited sets of radiocarbon dates and assumptions about stratigraphic integrity. Our results demonstrate the necessity to independently radiocarbon date each taxon. The insect paleoclimate interpretations were compared to regional pollen data, primarily from various southern Californian sites including Lake Elsinore and Santa Barbara Basin. These comparisons reveal an important difference in climate interpretations for the last Glacial: the RLB insect data suggest climate similar to the current one, while the regional pollen data have been interpreted as indicating a climate wetter than present.

  1. Millennial-scale variations in western Sierra Nevada precipitation during the last glacial cycle MIS 4/3 transition

    NASA Astrophysics Data System (ADS)

    Oster, Jessica L.; Montañez, Isabel P.; Mertz-Kraus, Regina; Sharp, Warren D.; Stock, Greg M.; Spero, Howard J.; Tinsley, John; Zachos, James C.

    2014-07-01

    Dansgaard-Oeschger (D-O) cycles had far-reaching effects on Northern Hemisphere and tropical climate systems during the last glacial period, yet the climatic response to D-O cycles in western North America is controversial, especially prior to 55 ka. We document changes in precipitation along the western slope of the central Sierra Nevada during early Marine Oxygen Isotope Stages (MIS) 3 and 4 (55-67 ka) from a U-series dated speleothem record from McLean's Cave. The timing of our multi-proxy geochemical dataset is coeval with D-O interstadials (15-18) and stadials, including Heinrich Event 6. The McLean's Cave stalagmite indicates warmer and drier conditions during Greenland interstadials (GISs 15-18), signified by elevated δ18O, δ13C, reflectance, and trace element concentrations, and less radiogenic 87Sr/86Sr. Our record extends evidence of a strong linkage between high-latitude warming and reduced precipitation in western North America to early MIS 3 and MIS 4. This record shows that the linkage persists in diverse global climate states, and documents the nature of the climatic response in central California to Heinrich Event 6.

  2. Revealing climatic variability of the last three millennia in northwestern Iberia using pollen influx data

    NASA Astrophysics Data System (ADS)

    Desprat, Stéphanie; Sánchez Goñi, María. Fernanda; Loutre, Marie-France

    2003-08-01

    Climatic variability of the last 3 millennia in NW Iberia has been documented using high-resolution pollen analysis of Vir-18 core, retrieved from the Ría de Vigo (42°14.07‧N, 8°47.37‧W). The depth-age model is based on two accelerator mass spectrometry 14C dates and three historically dated botanical events in Galicia: the expansion of Juglans and Pinus, as well as the introduction of Eucalyptus. During the last 3000 years, the relative pollen record demonstrates the occurrence of an open deciduous oak forest, indicating a humid and temperate climate in northwestern Iberia. Two-step forest reduction since 975 cal BC suggests climate as the main cause rather than major socio-economic changes documented in historical archives. Absolute pollen influx has been compared with instrumental summer and winter temperatures and tentatively used as a proxy of short (decadal-scale) and low-amplitude (˜1°C) temperature variations. This new approach allows us to detect for the first time in NW Iberia the millennial-scale climatic cyclicity suggested by North Atlantic records, challenging the apparent climatic stability reflected by the relative pollen record. The Little Ice Age is recorded as low pollen influx values between 1400 and 1860 cal AD, with a cold maximum at 1700 cal AD (Maunder Minimum). The Roman and Medieval Warm Periods are detected through high pollen influx values at 250 cal BC-450 cal AD and 950-1400 cal AD, respectively.

  3. Response of North American Great Basin Lakes to Dansgaard-Oeschger oscillations

    USGS Publications Warehouse

    Benson, L.; Lund, S.; Negrini, R.; Linsley, B.; Zic, M.

    2003-01-01

    We correlate oscillations in the hydrologic and/or cryologic balances of four Great Basin surface-water systems with Dansgaard-Oeschger (D-O) events 2-12. This correlation is relatively strong at the location of the magnetic signature used to link the lake records, but becomes less well constrained with distance/time from the signature. Comparison of proxy glacial and hydrologic records from Owens and Pyramid lakes indicates that Sierran glacial advances occurred during times of relative dryness. If our hypothesized correlation between the lake-based records and the GISP2 ??18O record is correct, it suggests that North Atlantic D-O stades were associated with relatively cold and dry conditions and that interstades were associated with relatively warm and wet conditions throughout the Great Basin between 50,500 and 27,000 GISP2yr B.P. The Great Basin lacustrine climate records reinforce the hypothesis that D-O events affected the climate throughout much of the Northern Hemisphere during marine isotope stages 2 and 3. However, the absolute phasing between lake-size and ice-core ??18O records remains difficult to determine.

  4. Fragility of estimated spatial temperature patterns in climate field reconstructions of the Common Era

    NASA Astrophysics Data System (ADS)

    Wang, J.; Emile-Geay, J.; Vaccaro, A.; Guillot, D.; Rajaratnam, B.

    2013-12-01

    Climate field reconstructions (CFRs) of the Common Era can provide insight into dynamical causes of low-frequency climate variability. For instance, the Mann et al. [2009] study found that the reconstructed sea-surface temperature difference between the Medieval Climate Anomaly and the Little Ice Age (hereinafter MCA - LIA) is marked by a La-Niña like pattern over the tropical Pacific, and proposed dynamical explanations for this observation. In this talk, we assess the robustness of such spatial patterns. First we examine the impact of the CFR methodology. Starting with the network of Mann et al. [2008] (hereinafter M08), we perform temperature reconstruction using four different CFR techniques: RegEM-TTLS [Schneider, 2001], the Mann et al. [2009] implementation of RegEM-TTLS (hereinafter M09), Canonical Correlation Analysis [Smerdon et al., 2010, CCA] and GraphEM [Guillot et al., in revision]. We find that results are greatly method-dependent even with identical inputs. While the M09 reconstruction displays a La Niña-like pattern over the tropical Pacific for MCA - LIA, CCA gives a neutral pattern, RegEM-TTLS and GraphEM both display El Niño-like pattern but show different amplitudes. Next we assess a given CFR technique's sensitivity to the selection of inputs. Proxies are selected based on the statistical significance of their correlations with HadCRUT3v annual temperature. A multiple hypothesis test [Ventura et al., 2004] is conducted to preclude spurious correlations. This choice has a large impact on resulting CFRs. In particular, whether the correlation is calculated between local or regional temperature-proxy pairs determines the number of significant records included in the proxy network. This in turn greatly affects the reconstructed spatial patterns and the Northern Hemispheric mean temperature time series with all CFR methods investigated. In order to further analyze CFRs' sensitivities to the abovementioned procedural choices, we assemble an updated multi-proxy network and produce a new 2000-year-long global temperature reconstruction. The network expands upon the existing M08 network by screening tree-ring proxies for the 'divergence problem' [D'Arrigo et al., 2008] and adds 58 non tree-ring proxies, of which 28 are located in the tropics and 11 are available within at least the past 1500 years. Overall, considerable differences are still evident among reconstructions using different CFR methods. Yet such differences are smaller using the updated proxy network compared with using the M08 network, consistent with pseudoproxy studies [Wang et al, 2013]. Our results collectively highlight the fragility of reconstructed patterns in the current state of proxy networks and CFR methods. We conclude that dynamical interpretations of such patterns are premature until these technical aspects are resolved. Reference: Wang, J., Emile-Geay, J., Guillot, D., Smerdon, J. E., and Rajaratnam, B.: Evaluating climate field reconstruction techniques using improved emulations of real-world conditions, Clim. Past Discuss., 9, 3015-3060, doi:10.5194/cpd-9-3015-2013, 2013.

  5. A multi-proxy analysis of Late Quaternary ocean and climate variability for the Maldives, Inner Sea

    NASA Astrophysics Data System (ADS)

    Bunzel, Dorothea; Schmiedl, Gerhard; Lindhorst, Sebastian; Mackensen, Andreas; Reolid, Jesús; Romahn, Sarah; Betzler, Christian

    2017-12-01

    As a natural sediment trap, the marine sediments of the sheltered central part of the Maldives Inner Sea represent an exceptional archive for paleoenvironmental and climate changes in the equatorial Indian Ocean. To evaluate the complex interplay between high-latitude and monsoonal climate variability, related dust fluxes, and regional oceanographic responses, we focused on Fe / Al, Ti / Al and Si / Ca ratios as proxies for terrigenous sediment delivery and total organic carbon (TOC) and Br XRF counts as proxies for marine productivity. Benthic foraminiferal fauna distributions, grain size and stable δ18O and δ13C data were used for evaluating changes in the benthic ecosystem and changes in the intermediate water circulation, bottom water current velocity and oxygenation. Our multi-proxy data record reveals an enhanced dust supply during the glacial intervals, causing elevated Fe / Al and Si / Ca ratios, an overall coarsening of the sediment and an increasing amount of agglutinated benthic foraminifera. The enhanced dust fluxes can be attributed to higher dust availability in the Asian desert and loess areas and its transport by intensified winter monsoon winds during glacial conditions. These combined effects of wind-induced mixing of surface waters and dust fertilization during the cold phases resulted in an increased surface water productivity and related organic carbon fluxes. Thus, the development of highly diverse benthic foraminiferal faunas with certain detritus and suspension feeders was fostered. The difference in the δ13C signal between epifaunal and deep infaunal benthic foraminifera reveals intermediate water oxygen concentrations between approximately 40 and 100 µmol kg-1 during this time. The precessional fluctuation pattern of oxygen changes resembles that from the deep Arabian Sea, suggesting an expansion of the oxygen minimum zone (OMZ) from the Arabian Sea into the tropical Indian Ocean with a probable regional signal of strengthened winter-monsoon-induced organic matter fluxes and oxygen consumption further controlled by the varying inflow intensity of the Antarctic Intermediate Water (AAIW). In addition, the bottom water oxygenation pattern of the Maldives Inner Sea reveals a long phase of reduced ventilation during the last glacial period. This process is likely linked to the combined effects of generally enhanced oxygen consumption rates during high-productivity phases, reduced AAIW production and the restriction of upper bathyal environments in the Inner Sea during sea-level lowstands. Thus, our multi-proxy record reflects a close linkage between the Indian monsoon oscillation, intermediate water circulation, productivity and sea-level changes on orbital timescale.

  6. High-Resolution Holocene Records of Paleoceanographic and Paleoclimatic Variability from the Southern Alaskan Continental Margin

    NASA Astrophysics Data System (ADS)

    Finney, B. P.; Jaeger, J. M.; Mix, A. C.; Cowan, E. A.; Gulick, S. S.; Mayer, L. A.; Pisias, N. G.; Powell, R. D.; Prahl, F.; Stoner, J. S.

    2004-12-01

    We are investigating sediments from the fjords and continental margin of southern Alaska to develop high-resolution climatic and oceanographic records for the Late Quaternary. Our goal is to better understand linkages between climatic, terrestrial and oceanic systems in this tectonically active and biologically productive region. A field program was conducted aboard the R/V Maurice Ewing in August/September 2004 utilizing geophysical surveys (high-resolution swath bathymetric and backscatter imaging, shallow sub-bottom profiling, and where permitted, high-resolution seismic reflection profiling), piston and multi-coring, and CTD/water sampling at about 30 sites in this region. Cores are being analyzed for sedimentological, microfossil, geochemical and stable isotopic proxies, with chronologies constrained by Pb-210, AMS radiocarbon, tephrochronolgic and paleomagnetic dating. Our preliminary results demonstrate that these rapidly accumulating sedimentary archives can resolve environmental changes on annual to decadal timescales. Records of recent changes in lithogenic sediment accumulation and biological productivity on the Gulf of Alaska shelf track historical climatic data that extends to the early 20th century in this region. The records also correlate with multi-decadal climate regimes during the Little Ice Age as suggested by tree-ring, glacial advance and salmon abundance records from nearby coastal sites. Jack Dymond's enthusiasm for collaborative, interdisciplinary research will help guide us in unraveling the fingerprints of key processes in this relatively unexplored region.

  7. Ecotone shift and major droughts during the mid-late Holocene in the central Tibetan Plateau.

    PubMed

    Shen, Caiming; Liu, Kam-Biu; Morrill, Carrie; Overpeck, Jonathan T; Peng, Jinlan; Tang, Lingyu

    2008-04-01

    A well-dated pollen record from a large lake located on the meadow-steppe ecotone provides a history of ecotone shift in response to monsoonal climate changes over the last 6000 years in the central Tibetan Plateau. The pollen record indicates that the ecotone shifted eastward during 6000-4900, 4400-3900, and 2800-1600 cal. yr BP when steppes occupied this region, whereas it shifted westward during the other intervals when the steppes were replaced by meadows. The quantitative reconstruction of paleoclimate derived from the pollen record shows that monsoon precipitation fluctuated around the present level over the last 6000 years in the central Tibetan Plateau. Three major drought episodes of 5600-4900, 4400-3900, and 2800-2400 cal. yr BP are detected by pollen signals and lake sediments. Comparison of our record with other climatic proxy data from the Tibetan Plateau and other monsoonal regions shows that these episodes are three major centennial-scale monsoon weakening events.

  8. Synthesizing US Colonial Climate: Available Data and a "Proxy Adjustment" Method

    NASA Astrophysics Data System (ADS)

    Zalzal, K. S.; Munoz-Hernandez, A.; Arrigo, J. S.

    2008-12-01

    Climate and its variability is a primary driver of hydrologic systems. A paucity of instrumental data makes reconstructing seventeenth- and eighteenth-century climatic conditions along the Northeast corridor difficult, yet this information is necessary if we are to understand the conditions, changes and interactions society had with hydrosystems during this first period of permanent European settlement. For this period (approx. 1600- 1800) there are instrumental records for some regions such as annual temperature and precipitation data for Philadelphia beginning in 1738; Cambridge, Mass., from 1747-1776; and temperature for New Haven, Conn., from 1780 to 1800. There are also paleorecords, including tree-rings analyses and sediment core examinations of pollen and overwash deposits, and historical accounts of extreme weather events. Our analyses of these data show that correlating even the available data is less than straightforward. To produce a "best track" climate record, we introduce a new method of "paleoadjustment" as a means to characterize climate statistical properties as opposed to a strict reconstruction. Combining the instrumented record with the paleorecord, we estimated two sets of climate forcings to use in colonial hydrology study. The first utilized a recent instrumented record (1817-1917) from Baltimore, Md, statistically adjusted in 20-year windows to match trends in the paleorecords and anecdotal evidence from the Middle Colonies and Chesapeake Bay region. The second was a regression reconstruction for New England using climate indices developed from journal records and the Cambridge, Mass., instrumental record. The two climate reconstructions were used to compute the annual potential water yield over the 200-year period of interest. A comparison of these results allowed us to make preliminary conclusions regarding the effect of climate on hydrology during the colonial period. We contend that an understanding of historical hydrology will improve our ability to predict and react to changes in global water resources.

  9. Detailed glaciochemical investigations in southern Victoria Land - a proxy climatic record

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayewski, P.A.

    1987-09-01

    Local accumulation-basins in the Transantarctic Mountains possess sites suitable for recovering ice-core records that are valuable for studying climate change. These sites are also unique, because they are close to the sites of other ice-core studies and to areas with established terrestrial records. The objective is to study a snowpit in detail and collect ice cores in southern Victoria Land; this work will be similar to the investigations that the authors has conducted in south Greenland and in the Dominion Range near the Beardmore Glacier. The proposed sites are in Convoy, Asgard, and Royal Society ranges. The authors will selectmore » one site at which he will recover two ice cores, each approximately 200 to 300 meters in depth. Samples will be analyzed for major anions (chloride, sulfate, nitrate, fluoride) and cations (sodium, potassium, magnesium, ammonium, silicate), total acidity, conductivity, density, and core stratigraphy with dating provided by cross-calibration of all of the preceding plus total beta-activity, lead-210, oxygen isotopes, and microparticles. This investigation will yield a detailed record of several thousand years of glacial history, climate change, and volcanic activity for southern Victoria Land. This record will be compared to existing terrestrial records to add necessary detail and to other global ice-core records to assess global climatic change. It will also help to document volcanic activity for Mount Erebus as well as other volcanos in the Southern Hemisphere and possibly some in the Northern Hemisphere. With this record, the author will be able to evaluate the influence of volcanic and solar activity on climate as well as add greatly to the understanding of the chemistry of the global atmosphere.« less

  10. Multi-proxy evidence for climate-driven changes in arctic lakes from northern Russia over the Holocene.

    NASA Astrophysics Data System (ADS)

    Self, Angela; Brooks, Stephen; Jones, Vivienne; Solovieva, Nadia; McGowan, Suzanne; Rosén, Peter; Parrott, Emily; Seppä, Heikki; Salonen, Sakari

    2010-05-01

    Average arctic temperatures have increased at almost twice the rate of the rest of the world over the last 100 years and climate projections suggest this trend is likely to continue resulting in an additional warming of 2 - 3°C in annual mean air temperatures by 2050. Freshwater ecosystems occupy a substantial area of the terrestrial environment in the Arctic and are particularly sensitive to temperature increases which may lead to profound changes in catchment characteristics, permafrost, hydrology and nutrient availability. Therefore it is important to understand how past changes in climate have affected these ecosystems. In this paper we present one of the first quantitative multi-proxy climate records from arctic Siberia. The affect of early - mid Holocene and recent climate change on arctic lakes in northern Russia were investigated in multi-proxy studies. The past climate was reconstructed using chironomid inference models to estimate mean July air temperatures and trends in continentality. Stable isotopes and LOI were analysed to infer past changes in sediment organic matter. Near-infrared spectroscopy (NIRS) and/or diatoms were used to infer changes in lake water total organic carbon and algal pigments and/or diatoms were used to infer changes in productivity and light penetration in the lake. Analyses of a sediment core from a tundra lake (Lake Kharinei) in north-eastern European Russia show significant assemblage changes in diatoms, chironomids and pigments, which coincide with climate-driven vegetation shifts from open birch forest to spruce forest and then to tundra over the Holocene. During the open birch phase of the late Glacial - early Holocene, chironomid-inferred reconstructions suggest that the climate was approximately 1 - 3°C warmer and more continental than present. Isotopic analyses indicate a productive environment receiving a significant input of organic material from terrestrial plants into the lake. Both diatoms and NIRS-TOC also suggest that the lake water was relatively high in TOC. Spruce forest became established within the catchment during the early - mid Holocene, which appears to have stimulated algal production. Throughout this period July air temperatures are inferred to have gradually declined to present-day values and the climate became more maritime. From ca. 4000 cal yrs BP July air temperatures remained stable but continentality increased leading to a shorter ice-free period. The pollen and macrofossil record indicates a transition to tundra vegetation ca 3000 cal yr BP which coincides with major changes in pigments, chironomids and diatoms. High resolution reconstruction of climate variability over the last 200 years from two tundra lakes on the Putoran Plateau, western Siberia, suggest that mean July air temperatures warmed by approximately 0.5°C between ca 1820 - 1980 and have remained relatively stable over the last 30 years. However major compositional changes in the chironomid and diatom assemblages have occurred within the last 125 - 50 years. Since the 1970s increases in the instrumental June temperature record and a chironomid-inferred shift to a more maritime climate have been accompanied by increases in diatom accumulation rates together with an increase in within-lake productivity and a trend towards increased algal productivity (as highlighted by stable isotope analysis). The synchronicity of the changes suggests the biota may be responding to lengthening of the ice-free period and related limnological changes. The changes in these Russian lakes corroborate results from Europe and Arctic Canada and indicate a circumpolar pattern of climate-driven regime change in arctic lakes in the last 100 years.

  11. The Holocene warm-humid phases in the North China Plain as recorded by multi-proxy records

    NASA Astrophysics Data System (ADS)

    Cui, Jianxin; Zhou, Shangzhe; Chang, Hong

    2009-02-01

    The grain size and palinology of sediment and the frequency of 14C dada provide an integrated reconstruction of the Holocene warm-humid phases of the North China Plain. Two clear intense and long-lasting warm-humid phases were identified by comprehensive research in this region. The first phase was dated back to the early Holocene (9 000-7 000 a BP), and the second was centered at 5 000-3 000 a BP. The warm-humid episode between 9 000 and 7 000 a BP was also recognized at other sites showing global climatic trends rather than local events. Compared with the concern to the warm-humid phase of the early Holocene, the second one was not paid enough attention in the last few decades. The compilation of the Holocene paleoclimate data suggests that perhaps the second warm-humid phase was pervasive in monsoon region of China. In perspective of environmental archaeology, much attention should be devoted to it, because the flourish and adaptation of the Neolithic cultures and the building up of the first state seem to corresponding to the general warm-humid climatic conditions of this period. In addition, a warm-humid interval at 7 200-6 500 a BP was recognized by the grain size data from three sites. However, this warm-humid event was not shown in pollen assemblage and temporal distribution of 14C data. Perhaps, the resolution for climatic reconstruction from pollen and temporal distribution of 14C data cited here is relatively low and small-amplitude and short-period climatic events cannot be well reflected by the data. Due to the difference in locality and elevation of sampling site, as well as in resolution of proxy records, it is difficult to make precise correlation. Further work is needed in the future.

  12. Grape harvest dates as indicator of spring-summer mean maxima temperature variations in the Minho region (NW of Portugal) since the 19th century

    NASA Astrophysics Data System (ADS)

    Moreno, J.; Fatela, F.; Moreno, F.; Leorri, E.; Taborda, R.; Trigo, R.

    2016-06-01

    This paper reports a climatic reconstruction approach for the Minho region (NW of Portugal) using grape harvest dates (GHD) as proxy of surface air temperature. This new GHD series was built based on the records from a set of local and regional newspapers (1854-1978) and the annuals of a Wine Producers Cooperative (1978-2010). The strong inverse correlation between Minho GHD and the mean maxima temperatures of the preceding March to August months (GSTmax), registered at the Braga weather station for the overlap period 1941-2009, allowed a reconstruction, with associated statistical uncertainties, of the regional GSTmax back to 1856. These were then used to characterize the main climatic episodes in the region during the last 154 years. The most noticeable feature that emerges from the comparison of the Minho GSTmax with the global annual average temperatures of Jones et al. (2013) is that these regional temperatures, in clear contrast with the global warming observed from around 1990 onwards, show no noteworthy increasing trend. The influence of climatic variability was examined also in terms of the relations between GSTmax (1950-2009) and the main meteorological teleconnection patterns affecting the North Atlantic European sector where the Minho region is included. Data support the hypothesis that persistent positive modes of spring-summer Scandinavian (SCA) and summer East Atlantic/Western Russia patterns triggered lower GSTmax, especially in the 60s-80s. The search for solar imprints in the Minho region climate identified the SCA mode as a promising connection between the two, since it is significantly inversely correlated with both, the TSI and the GSTmax. Like in other traditional European viticultural regions, the Minho GHD have shown to be a valuable tool for understanding the interactions between large-scale circulation modes and regional/local climatic conditions. Besides it will deliver a reliable assessment of climatic proxies from geological record, like tidal marsh benthic foraminifera assemblages.

  13. Impact of the Little Ice Age cooling and 20th century climate change on peatland vegetation dynamics in central and northern Alberta using a multi-proxy approach and high-resolution peat chronologies

    NASA Astrophysics Data System (ADS)

    Magnan, Gabriel; van Bellen, Simon; Davies, Lauren; Froese, Duane; Garneau, Michelle; Mullan-Boudreau, Gillian; Zaccone, Claudio; Shotyk, William

    2018-04-01

    Northern boreal peatlands are major terrestrial sinks of organic carbon and these ecosystems, which are highly sensitive to human activities and climate change, act as sensitive archives of past environmental change at various timescales. This study aims at understanding how the climate changes of the last 1000 years have affected peatland vegetation dynamics in the boreal region of Alberta in western Canada. Peat cores were collected from five bogs in the Fort McMurray region (56-57° N), at the southern limit of sporadic permafrost, and two in central Alberta (53° N and 55° N) outside the present-day limit of permafrost peatlands. The past changes in vegetation communities were reconstructed using detailed plant macrofossil analyses combined with high-resolution peat chronologies (14C, atmospheric bomb-pulse 14C, 210Pb and cryptotephras). Peat humification proxies (C/N, H/C, bulk density) and records of pH and ash content were also used to improve the interpretation of climate-related vegetation changes. Our study shows important changes in peatland vegetation and physical and chemical peat properties during the Little Ice Age (LIA) cooling period mainly from around 1700 CE and the subsequent climate warming of the 20th century. In some bogs, the plant macrofossils have recorded periods of permafrost aggradation during the LIA with drier surface conditions, increased peat humification and high abundance of ericaceous shrubs and black spruce (Picea mariana). The subsequent permafrost thaw was characterized by a short-term shift towards wetter conditions (Sphagnum sect. Cuspidata) and a decline in Picea mariana. Finally, a shift to a dominance of Sphagnum sect. Acutifolia (mainly Sphagnum fuscum) occurred in all the bogs during the second half of the 20th century, indicating the establishment of dry ombrotrophic conditions under the recent warmer and drier climate conditions.

  14. Episodic expansion of Drangajökull, Vestfirðir, Iceland, over the last 3 ka culminating in its maximum dimension during the Little Ice Age

    NASA Astrophysics Data System (ADS)

    Harning, David J.; Geirsdóttir, Áslaug; Miller, Gifford H.; Anderson, Leif

    2016-11-01

    Non-linear climate change is often linked to rapid changes in ocean circulation, especially around the North Atlantic. As the Polar Front fluctuated its latitudinal position during the Holocene, Iceland's climate was influenced by both the warm Atlantic currents and cool, sea ice-bearing Arctic currents. Drangajökull is Iceland's fifth largest ice cap. Climate proxies in lake sediment cores, dead vegetation emerging from beneath the ice cap, and moraine segments identified in a new DEM constrain the episodic expansion of the ice cap over the past 3 ka. Collectively, our data show that Drangajökull was advancing at ∼320 BCE, 180 CE, 560 CE, 950 CE and 1400 CE and in a state of recession at ∼450 CE, 1250 CE and after 1850 CE. The Late Holocene maximum extent of Drangajökull occurred during the Little Ice Age (LIA), occupying 262 km2, almost twice its area in 2011 CE and ∼20% larger than recent estimates of its LIA dimensions. Biological proxies from the sediment fill in a high- and low-elevation lake suggest limited vegetation and soil cover at high elevations proximal to the ice cap, whereas thick soil cover persisted until ∼750 CE at lower elevations near the coast. As Drangajökull expanded into the catchment of the high-elevation lake beginning at ∼950 CE, aquatic productivity diminished, following a trend of regional cooling supported by proxy records elsewhere in Iceland. Correlations between episodes of Drangajökull's advance and the documented occurrence of drift ice on the North Icelandic Shelf suggest export and local production of sea ice influenced the evolution of NW Iceland's Late Holocene climate.

  15. Multi-scale controls of historical forest-fire regimes: new insights from fire-scar networks

    Treesearch

    Donald A. Falk; Emily K. Heyerdahl; Peter M. Brown; Calvin Farris; Peter Z. Fule; Donald McKenzie; Thomas W. Swetnam; Alan H. Taylor; Megan L. Van Horne

    2011-01-01

    Anticipating future forest-fire regimes under changing climate requires that scientists and natural resource managers understand the factors that control fire across space and time. Fire scars—proxy records of fires, formed in the growth rings of long-lived trees—provide an annually accurate window into past low-severity fire regimes. In western North America, networks...

  16. Drought is a recurring challenge in the Middle East.

    PubMed

    Kaniewski, David; Van Campo, Elise; Weiss, Harvey

    2012-03-06

    Climate change and water availability in the Middle East are important in understanding human adaptive capacities in the face of long-term environmental changes. The key role of water availability for sedentary and nomad populations in these arid to semiarid landscapes is understood, but the millennium-scale influence of hydrologic instability on vegetation dynamics, human occupation, and historic land use are unknown, which has led to a stochastic view of population responses and adaptive capacities to precipitation anomalies. Within the time-frame of the last two global climate events, the Medieval Climate Anomaly and the Little Ice Age, we report hydrologic instability reconstructed from pollen-derived climate proxies recovered near Tell Leilan, at the Wadi Jarrah in the Khabur Plains of northeastern Syria, at the heart of ancient northern Mesopotamia. By coupling climate proxies with archaeological-historical data and a pollen-based record of agriculture, this integrative study suggests that variability in precipitation is a key factor on crop yields, productivity, and economic systems. It may also have been one of the main parameters controlling human settlement and population migrations at the century to millennial timescales in the arid to semiarid areas of the Middle East. An abrupt shift to drier conditions at ca. AD 1400 is contemporaneous with a change from sedentary village life to regional desertion and nomadization (sheep/camel pastoralists) during the preindustrial era in formerly Ottoman realms, and thereby adds climate change to the multiple causes for Ottoman Empire "decline."

  17. Drought is a recurring challenge in the Middle East

    PubMed Central

    Kaniewski, David; Van Campo, Elise; Weiss, Harvey

    2012-01-01

    Climate change and water availability in the Middle East are important in understanding human adaptive capacities in the face of long-term environmental changes. The key role of water availability for sedentary and nomad populations in these arid to semiarid landscapes is understood, but the millennium-scale influence of hydrologic instability on vegetation dynamics, human occupation, and historic land use are unknown, which has led to a stochastic view of population responses and adaptive capacities to precipitation anomalies. Within the time-frame of the last two global climate events, the Medieval Climate Anomaly and the Little Ice Age, we report hydrologic instability reconstructed from pollen-derived climate proxies recovered near Tell Leilan, at the Wadi Jarrah in the Khabur Plains of northeastern Syria, at the heart of ancient northern Mesopotamia. By coupling climate proxies with archaeological-historical data and a pollen-based record of agriculture, this integrative study suggests that variability in precipitation is a key factor on crop yields, productivity, and economic systems. It may also have been one of the main parameters controlling human settlement and population migrations at the century to millennial timescales in the arid to semiarid areas of the Middle East. An abrupt shift to drier conditions at ca. AD 1400 is contemporaneous with a change from sedentary village life to regional desertion and nomadization (sheep/camel pastoralists) during the preindustrial era in formerly Ottoman realms, and thereby adds climate change to the multiple causes for Ottoman Empire “decline.” PMID:22355126

  18. CLIMLINK: Climate forcing factors for marine environmental change during the mid- and late Holocene - a link between the NE Atlantic and the Baltic Sea.

    NASA Astrophysics Data System (ADS)

    Polovodova Asteman, Irina; Risebrobakken, Bjørg; Bąk, Małgorzata; Binczewska, Anna; Borówka, Ryszard; Dobosz, Sławomir; Jansen, Eystein; Kaniak, Aleksandra; Moros, Matthias; Perner, Kerstin; Sławinska, Joanna

    2015-04-01

    Climate change has a strong amplifying effect on the environment of marginal seas such as the Baltic Sea. Owing to the connection of the Baltic Sea with the Atlantic (and the resultant pathway of water exchange via the narrow Danish Straits), changes in the Baltic region are suggested to be driven by external oceanic and atmospheric forcing originating in the Atlantic, particularly in the eastern Nordic seas, the Skagerrak, and the Kattegat. CLIMLINK aims to reconstruct mid- to late Holocene ecosystem changes in these regions and identify linkages, common forcing factors and effects for the Baltic Sea on a millennial to decadal time scale. High-resolution sediment records from selected key sites in the Norwegian Trench, and central Baltic Sea are studied by using a multi-proxy approach. Micropalaeontological studies of diatoms and foraminifera are combined with geochemical proxies, such as stable isotopes, Mg/Ca, TOC, TIC, C/N, XRF and magnetic susceptibility in order to achieve a more comprehensive view on environmental changes during the last 6000 to 8000 years. The chronology of the sediment cores is secured by using multiple dating tools: Hg-pollution records, 137Cs, 210Pb, 14C and tephra layers. Herein we present the initial results of the project.

  19. Pollen assemblages as paleoenvironmental proxies in the Florida Everglades

    USGS Publications Warehouse

    Willard, D.A.; Weimer, L.M.; Riegel, W.L.

    2001-01-01

    Analysis of 170 pollen assemblages from surface samples in eight vegetation types in the Florida Everglades indicates that these wetland sub-environments are distinguishable from the pollen record and that they are useful proxies for hydrologic and edaphic parameters. Vegetation types sampled include sawgrass marshes, cattail marshes, sloughs with floating aquatics, wet prairies, brackish marshes, tree islands, cypress swamps, and mangrove forests. The distribution of these vegetation types is controlled by specific environmental parameters, such as hydrologic regime, nutrient availability, disturbance level, substrate type, and salinity; ecotones between vegetation types may be sharp. Using R-mode cluster analysis of pollen data, we identified diagnostic species groupings; Q-mode cluster analysis was used to differentiate pollen signatures of each vegetation type. Cluster analysis and the modern analog technique were applied to interpret vegetational and environmental trends over the last two millennia at a site in Water Conservation Area 3A. The results show that close modern analogs exist for assemblages in the core and indicate past hydrologic changes at the site, correlated with both climatic and land-use changes. The ability to differentiate marshes with different hydrologic and edaphic requirements using the pollen record facilitates assessment of relative impacts of climatic and anthropogenic changes on this wetland ecosystem on smaller spatial and temporal scales than previously were possible. ?? 2001 Elsevier Science B.V.

  20. A multi-proxy paleolimnological reconstruction of Holocene climate conditions in the Great Basin, United States

    NASA Astrophysics Data System (ADS)

    Reinemann, Scott A.; Porinchu, David F.; Bloom, Amy M.; Mark, Bryan G.; Box, Jason E.

    2009-11-01

    A sediment core spanning ˜ 7000 cal yr BP recovered from Stella Lake, a small sub-alpine lake located in Great Basin National Park, Nevada, was analyzed for subfossil chironomids (non-biting midges), diatoms, and organic content (estimated by loss-on-ignition (LOI)). Subfossil chironomid analysis indicates that Stella Lake was characterized by a warm, middle Holocene, followed by a cool "Neoglacial" period, with the last two millennia characterized by a return to warmer conditions. Throughout the majority of the core the Stella Lake diatom-community composition is dominated by small, periphytic taxa which are suggestive of shallow, cool, alkaline, oligotrophic waters with extensive seasonal ice cover. A reconstruction of mean July air temperature (MJAT) was developed by applying a midge-based inference model for MJAT (two-component WA-PLS) consisting of 79 lakes and 54 midge taxa ( rjack2 = 0.55, RMSEP = 0.9°C). Comparison of the chironomid-inferred temperature record to existing regional paleoclimate reconstructions suggests that the midge-inferred temperatures correspond well to regional patterns. This multi-proxy record provides valuable insight into regional Holocene climate and environmental conditions by providing a quantitative reconstruction of peak Holocene warmth and aquatic ecosystem response to these changes in the Great Basin, a region projected to experience increased aridity and higher temperatures.

  1. Paleoclimate reconstruction through Bayesian data assimilation

    NASA Astrophysics Data System (ADS)

    Fer, I.; Raiho, A.; Rollinson, C.; Dietze, M.

    2017-12-01

    Methods of paleoclimate reconstruction from plant-based proxy data rely on assumptions of static vegetation-climate link which is often established between modern climate and vegetation. This approach might result in biased climate constructions as it does not account for vegetation dynamics. Predictive tools such as process-based dynamic vegetation models (DVM) and their Bayesian inversion could be used to construct the link between plant-based proxy data and palaeoclimate more realistically. In other words, given the proxy data, it is possible to infer the climate that could result in that particular vegetation composition, by comparing the DVM outputs to the proxy data within a Bayesian state data assimilation framework. In this study, using fossil pollen data from five sites across the northern hardwood region of the US, we assimilate fractional composition and aboveground biomass into dynamic vegetation models, LINKAGES, LPJ-GUESS and ED2. To do this, starting from 4 Global Climate Model outputs, we generate an ensemble of downscaled meteorological drivers for the period 850-2015. Then, as a first pass, we weigh these ensembles based on their fidelity with independent paleoclimate proxies. Next, we run the models with this ensemble of drivers, and comparing the ensemble model output to the vegetation data, adjust the model state estimates towards the data. At each iteration, we also reweight the climate values that make the model and data consistent, producing a reconstructed climate time-series dataset. We validated the method using present-day datasets, as well as a synthetic dataset, and then assessed the consistency of results across ecosystem models. Our method allows the combination of multiple data types to reconstruct the paleoclimate, with associated uncertainty estimates, based on ecophysiological and ecological processes rather than phenomenological correlations with proxy data.

  2. Isoscapes of δ18O and δ2H reveal climatic forcings on Alaska and Yukon precipitation

    NASA Astrophysics Data System (ADS)

    Lachniet, Matthew S.; Lawson, Daniel E.; Stephen, Haroon; Sloat, Alison R.; Patterson, William P.

    2016-08-01

    Spatially extensive Arctic stable isotope data are sparse, inhibiting the climatic understanding required to interpret paleoclimate proxy records. To fill this need, we constrained the climatic and physiographic controls on δ18O and δD values of stream waters across Alaska and the Yukon to derive interpolated isoscape maps. δ18O is strongly correlated to winter temperature parameters and similarity of the surface water line (δ2H = 8.0 × δ18O + 6.4) to the Global Meteoric Water Line suggests stream waters are a proxy for meteoric precipitation. We observe extreme orographic δ18O decreases and a trans-Alaskan continental gradient of -8.3‰ 1000 km-1. Continental gradients are high in coastal zones and low in the interior. Localized δ18O increases indicate inland air mass penetration via topographic lows. Using observed δ18O/temperature gradients, we show that δ18O decreases in a ˜24 ka permafrost ice wedge relative to the late Holocene indicate mean annual and coldest quarter temperature reductions of 8.9 ± 1.7°C and 17.2 ± 3.2°C, respectively.

  3. High-resolution pCO2 reconstruction across the early Cenozoic greenhouse and late Cenozoic icehouse climates

    NASA Astrophysics Data System (ADS)

    Cui, Y.; Schubert, B.

    2016-12-01

    Historical data and ice core records provide the best-constrained data on global temperatures and atmospheric carbon dioxide concentrations (pCO2), which can be used to calculate short-term estimates of climate sensitivity. These data, however, may not be representative of longer timescales and represent a period of Earth history when pCO2 and global temperatures were relatively low; recent work suggests that climate sensitivity may change under different climate states and timescales. Here we present a new high-resolution pCO2 reconstruction for the early (65 to 50 Ma) and late (30 to 0 Ma) Cenozoic using a proxy based on changes in carbon isotope fractionation in C3 land plants. This work uses widely available carbon isotope data from various terrestrial organic substrates to produce a nearly continuous record of pCO2. This record identifies both large-scale trends (e.g., the early Cenozoic is characterized by higher pCO2 than the late Cenozoic), as well as transient, highly elevated pCO2 during the early Eocene hyperthermals. We discuss the uncertainties associated with this new pCO2 reconstruction, which include the effects of precipitation, plant community shifts, and source effects on the δ13C record. Additionally, uncertainty associated with the correlation in time between δ13C estimates of atmospheric CO2 and the terrestrial δ13C of organic matter is included in the error propagation. Comparison of the new pCO2 record to existing global average temperature records based on the δ18O value of well-preserved marine foraminifera can yield new insight into Earth system climate sensitivity across a wide range of climate states and timescales.

  4. Continental-scale temperature covariance in proxy reconstructions and climate models

    NASA Astrophysics Data System (ADS)

    Hartl-Meier, Claudia; Büntgen, Ulf; Smerdon, Jason; Zorita, Eduardo; Krusic, Paul; Ljungqvist, Fredrik; Schneider, Lea; Esper, Jan

    2017-04-01

    Inter-continental temperature variability over the past millennium has been reported to be more coherent in climate model simulations than in multi-proxy-based reconstructions, a finding that undermines the representation of spatial variability in either of these approaches. We assess the covariance of summer temperatures among Northern Hemisphere continents by comparing tree-ring based temperature reconstructions with state-of-the-art climate model simulations over the past millennium. We find inter-continental temperature covariance to be larger in tree-ring-only reconstructions compared to those derived from multi-proxy networks, thus enhancing the agreement between proxy- and model-based spatial representations. A detailed comparison of simulated temperatures, however, reveals substantial spread among the models. Over the past millennium, inter-continental temperature correlations are driven by the cooling after major volcanic eruptions in 1257, 1452, 1601, and 1815. The coherence of these synchronizing events appears to be elevated in several climate simulations relative to their own covariance baselines and the proxy reconstructions, suggesting these models overestimate the amplitude of cooling in response to volcanic forcing at large spatial scales.

  5. Historic global biomass burning emissions for CMIP6 (BB4CMIP) based on merging satellite observations with proxies and fire models (1750-2015)

    NASA Astrophysics Data System (ADS)

    van Marle, Margreet J. E.; Kloster, Silvia; Magi, Brian I.; Marlon, Jennifer R.; Daniau, Anne-Laure; Field, Robert D.; Arneth, Almut; Forrest, Matthew; Hantson, Stijn; Kehrwald, Natalie M.; Knorr, Wolfgang; Lasslop, Gitta; Li, Fang; Mangeon, Stéphane; Yue, Chao; Kaiser, Johannes W.; van der Werf, Guido R.

    2017-09-01

    Fires have influenced atmospheric composition and climate since the rise of vascular plants, and satellite data have shown the overall global extent of fires. Our knowledge of historic fire emissions has progressively improved over the past decades due mostly to the development of new proxies and the improvement of fire models. Currently, there is a suite of proxies including sedimentary charcoal records, measurements of fire-emitted trace gases and black carbon stored in ice and firn, and visibility observations. These proxies provide opportunities to extrapolate emission estimates back in time based on satellite data starting in 1997, but each proxy has strengths and weaknesses regarding, for example, the spatial and temporal extents over which they are representative. We developed a new historic biomass burning emissions dataset starting in 1750 that merges the satellite record with several existing proxies and uses the average of six models from the Fire Model Intercomparison Project (FireMIP) protocol to estimate emissions when the available proxies had limited coverage. According to our approach, global biomass burning emissions were relatively constant, with 10-year averages varying between 1.8 and 2.3 Pg C yr-1. Carbon emissions increased only slightly over the full time period and peaked during the 1990s after which they decreased gradually. There is substantial uncertainty in these estimates, and patterns varied depending on choices regarding data representation, especially on regional scales. The observed pattern in fire carbon emissions is for a large part driven by African fires, which accounted for 58 % of global fire carbon emissions. African fire emissions declined since about 1950 due to conversion of savanna to cropland, and this decrease is partially compensated for by increasing emissions in deforestation zones of South America and Asia. These global fire emission estimates are mostly suited for global analyses and will be used in the Coupled Model Intercomparison Project Phase 6 (CMIP6) simulations.

  6. Numerical Modelling of Speleothem and Dripwater Chemistry: Interpreting Coupled Trace Element and Isotope Proxies for Climate Reconstructions

    NASA Astrophysics Data System (ADS)

    Owen, R.; Day, C. C.; Henderson, G. M.

    2016-12-01

    Speleothem palaeoclimate records are widely used but are often difficult to interpret due to the geochemical complexity of the soil-karst-cave system. Commonly analysed proxies (e.g. δ18O, δ13C and Mg/Ca) may be affected by multiple processes along the water flow path from atmospheric moisture source through to the cave drip site. Controls on speleothem chemistry include rainfall and aerosol chemistry, bedrock chemistry, temperature, soil pCO2, the degree of open-system dissolution and prior calcite precipitation. Disentangling the effects of these controls is necessary to fully interpret speleothem palaeoclimate records. To quantify the effects of these processes, we have developed an isotope-enabled numerical model based on the geochemical modelling software PHREEQC. The model calculates dripwater chemistry and isotopes through equilibrium bedrock dissolution and subsequent iterative CO2 degassing and calcite precipitation. This approach allows forward modelling of dripwater and speleothem proxies, both chemical (e.g. Ca concentration, pH, Mg/Ca and Sr/Ca ratios) and isotopic (e.g. δ18O, δ13C, δ44Ca and radiocarbon content), in a unified framework. Potential applications of this model are varied and the model may be readily expanded to include new isotope systems or processes. Here we focus on calculated proxy co-variation due to changes in model parameters. Examples include: - The increase in Ca concentration, decrease in δ13C and increase in radiocarbon content as bedrock dissolution becomes more open-system. - Covariation between δ13C, δ44Ca and trace metal proxies (e.g. Mg/Ca) predicted by changing prior calcite precipitation. - The effect of temperature change on all proxies through the soil-karst-cave system. Separating the impact of soil and karst processes on geochemical proxies allows more quantitative reconstruction of the past environment, and greater understanding in modern cave monitoring studies.

  7. North Atlantic Storm Activity During the Younger Dryas

    NASA Astrophysics Data System (ADS)

    Toomey, M.

    2015-12-01

    The risks posed to cities along the Eastern Seaboard by a potential intensification of tropical cyclone activity over the coming decades remain poorly constrained, in part, due to a lack of available storm proxy records that extend beyond the relatively stable climates of the late Holocene. Previous work in the Bahamas shows that coarse-grained, high-energy event layers in carbonate bank margin sediments: (1) closely track recent historic hurricane events and (2) that the sensitivity of this proxy may be less affected by the deglacial changes in sea level that have limited our ability to reconstruct past hurricane activity using overwash records from back-barrier beach settings. Here we present a record of storm triggered turbidite deposition from a suite of well dated (e.g. Lynch-Stieglitz et al., 2011, Paleoceanography) jumbo piston cores taken offbank (300-500 mbsl) the Dry Tortugas, Florida, that spans abrupt transitions in North Atlantic sea surface temperature and thermohaline circulation during the Younger Dryas (12.9 - 11.5 kyr BP). This record, along with General Circulation Model output (TraCE: NCAR-CGD), indicates strong hurricane activity may have occurred along Southeastern US coasts through this interval despite considerably colder North Atlantic SSTs.

  8. Holocene Climate Reconstructions from Lake Water Oxygen Isotopes in NW and SW Greenland

    NASA Astrophysics Data System (ADS)

    Lasher, G. E.; Axford, Y.; McFarlin, J. M.; Kelly, M. A.; Osterberg, E. C.; Berkelhammer, M. B.; Berman, K.; Kotecki, P.; Gawin, B.

    2016-12-01

    Reconstructions of stable isotopes of precipitation (SIP) from currently unglaciated parts of Greenland can help elucidate spatial patterns of past climate shifts in this climatically important and complex region. We have developed a 7700-year record of lake water δ18O from a small non-glacial lake in NW Greenland (near Thule Air Base), inferred from the δ18O of subfossil chironomid (insect) head capsules and aquatic mosses. Lake water δ18O remains constant from 8 ka until 4 ka and then declines by 2.5 ‰ to the present, representing a +2.5 to 5.5 °C Holocene Thermal Maximum temperature anomaly for this region. For comparison, two new sediment records from hydrologically connected lakes south of Nuuk in SW Greenland record 8500 years of lake water δ18O, also inferred from δ18O of chironomids. At the time cores were collected during the summer in 2014 and 2015, all lakes reflected SIP and exhibited minimal evaporation influence. Historical monitoring of stable isotopes of precipitation from Thule Air Base and Grønnedal in south Greenland suggest the controls on SIP differ greatly between our two study sites, as would be predicted based upon the strongly Arctic (in the NW) versus North Atlantic (in the SW) atmospheric and marine influences at the two sites. Interpretation of Holocene climate from these two contrasting sites will be discussed. These climate records from the same proxy allow us to compare millennial scale Holocene climate responses to northern hemisphere solar insolation trends in two different climate regimes of Greenland.

  9. An improved land biosphere module for use in the DCESS Earth system model (version 1.1) with application to the last glacial termination

    NASA Astrophysics Data System (ADS)

    Eichinger, Roland; Shaffer, Gary; Albarrán, Nelson; Rojas, Maisa; Lambert, Fabrice

    2017-09-01

    Interactions between the land biosphere and the atmosphere play an important role for the Earth's carbon cycle and thus should be considered in studies of global carbon cycling and climate. Simple approaches are a useful first step in this direction but may not be applicable for certain climatic conditions. To improve the ability of the reduced-complexity Danish Center for Earth System Science (DCESS) Earth system model DCESS to address cold climate conditions, we reformulated the model's land biosphere module by extending it to include three dynamically varying vegetation zones as well as a permafrost component. The vegetation zones are formulated by emulating the behaviour of a complex land biosphere model. We show that with the new module, the size and timing of carbon exchanges between atmosphere and land are represented more realistically in cooling and warming experiments. In particular, we use the new module to address carbon cycling and climate change across the last glacial transition. Within the constraints provided by various proxy data records, we tune the DCESS model to a Last Glacial Maximum state and then conduct transient sensitivity experiments across the transition under the application of explicit transition functions for high-latitude ocean exchange, atmospheric dust, and the land ice sheet extent. We compare simulated time evolutions of global mean temperature, pCO2, atmospheric and oceanic carbon isotopes as well as ocean dissolved oxygen concentrations with proxy data records. In this way we estimate the importance of different processes across the transition with emphasis on the role of land biosphere variations and show that carbon outgassing from permafrost and uptake of carbon by the land biosphere broadly compensate for each other during the temperature rise of the early last deglaciation.

  10. Multi-proxy palaeoclimate reconstructions from peatlands in southern South America

    NASA Astrophysics Data System (ADS)

    Roland, Thomas; Hughes, Paul; Mauquoy, Dmitri; van Bellen, Simon; Daley, Tim; Loader, Neil; Street-Perrott, Alayne

    2014-05-01

    There is a relative paucity of palaeoclimatic archives in South America relative to many other regions of the world. This paucity must be addressed in order to validate climate models and improve our understanding of the global climate system. The southern westerlies represent an important component of climatic variability in the region and, in turn, their migration and changes in their intensity can play a key role in determining whether the Southern Ocean functions as a sink or source of atmospheric carbon dioxide. Increased ventilation of deep waters with elevated concentrations of dissolved inorganic carbon, driven by enhanced Ekman transport, leads to increased outgassing of carbon dioxide. However, as instrumental records are limited to the latter half of the twentieth century, little is known about the long-term variability of the southern Westerlies and their subsequent effects. The Peninsula Brunswick and Isla Grande de Tierra del Fuego are directly situated in the core path of the southern westerlies during the Austral summer and they are ideally suited for studies of past variability in westerly intensity and position. The region's abundant peatlands are capable of recording these long-term changes, as wind intensity and westerly position affects precipitation and temperature, two key drivers (i.e. P-E) of water-table dynamics in ombrotrophic peatlands. Currently, the peatlands of southern Patagonia represent a relatively unexploited resource in terms of palaeoclimate reconstruction. As a result, we have developed a new regional network of multi-proxy (testate amoebae, plant macrofossils, stable isotopes) archives, supported by high-resolution radiocarbon chronologies, to develop quantitative climate reconstructions for southern South America spanning the last ~2000 years using Sphagnum magellanicum-dominated peat deposits.

  11. Palaeoclimate signal recorded by stable isotopes in cave ice: a modeling approach

    NASA Astrophysics Data System (ADS)

    Perşoiu, A.; Bojar, A.-V.

    2012-04-01

    Ice accumulations in caves preserve a large variety of geochemical information as candidate proxies for both past climate and environmental changes, one of the most significant being the stable isotopic composition of the ice. A series of recent studies have targeted oxygen and hydrogen stable isotopes in cave ice as proxies for past air temperatures, but the results are far from being as straightforward as they are in high latitude and altitude glaciers and ice caps. The main problems emerging from these studies are related to the mechanisms of cave ice formation (i.e., freezing of water) and post-formation processes (melting and refreezing), which both alter the original isotopic signal in water. Different methods have been put forward to solve these issues and a fair understanding of the present-day link between stable isotopes in precipitation and cave ice exists now. However, the main issues still lays unsolved: 1) is it possible to extend this link to older ice and thus reconstruct past changes in air temperature?; 2) to what extent are ice dynamics processes modifying the original climatic signal and 3) what is the best method to be used in extracting a climatic signal from stable isotopes in cave ice? To respond to these questions, we have conducted a modeling experiment, in which a theoretical cave ice stable isotope record was constructed using present-day observations on stable isotope behavior in cave ice and ice dynamics, and different methods (presently used for both polar and cave glaciers), were used to reconstruct the original, known, isotopic values. Our results show that it is possible to remove the effects of ice melting and refreezing on stable isotope composition of cave ice, and thus reconstruct the original isotopic signal, and further the climatic one.

  12. Synchoronous inter-hemispheric alpine glacier advances during the Late Glacial?

    NASA Astrophysics Data System (ADS)

    Bakke, Jostein; Paasche, Øyvind

    2016-04-01

    The termination of the last glaciation in both hemispheres was a period of rapid climate swings superimposed on the overall warming trend, resulting from large-scale reorganizations of the atmospheric and oceanic circulation patterns in both hemispheres. Environmental changes during the deglaciation have been inferred from proxy records, as well as by model simulations. Several oscillations took place both in northern and southern hemispheres caused by melt water releases such as during the Younger Dryas in north and the Antarctic Cold Reversal in south. However, a consensus on the hemispheric linkages through ocean and atmosphere are yet to be reached. Here we present a new multi-proxy reconstruction from a sub-annually resolved lake sediment record from Lake Lusvatnet in Arctic Norway compared with a new reconstruction from the same time interval at South Georgia, Southern Ocean, suggesting inter-hemispheric climate linkages during the Bølling/Allerød time period. Our reconstruction of the alpine glacier in the lake Lusvatnet catchment show a synchronous glacier advance with the Birch-hill moraine complex in the Southern Alps, New Zealand during the Intra Allerød Cooling period. We propose these inter hemispheric climate swings to be forced by the northward migration of the southern Subtropical Front during the Antarctic Cold Reversal. Such a northward migration of the Subtropical Front is shown in model simulation and in palaeorecords to reduce the Agulhas leakage impacting the strength of the Atlantic meridional overturning circulation. We simply ask if this can be the carrier of rapid climate swings from one hemisphere to another? Our high-resolution reconstructions provide the basis for an enhanced understanding of the tiny balance between migration of the Subtropical Front in the Southern Ocean and the teleconnection to northern hemisphere.

  13. Multi-centennial upper-ocean heat content reconstruction using online data assimilation

    NASA Astrophysics Data System (ADS)

    Perkins, W. A.; Hakim, G. J.

    2017-12-01

    The Last Millennium Reanalysis (LMR) provides an advanced paleoclimate ensemble data assimilation framework for multi-variate climate field reconstructions over the Common Era. Although reconstructions in this framework with full Earth system models remain prohibitively expensive, recent work has shown improved ensemble reconstruction validation using computationally inexpensive linear inverse models (LIMs). Here we leverage these techniques in pursuit of a new multi-centennial field reconstruction of upper-ocean heat content (OHC), synthesizing model dynamics with observational constraints from proxy records. OHC is an important indicator of internal climate variability and responds to planetary energy imbalances. Therefore, a consistent extension of the OHC record in time will help inform aspects of low-frequency climate variability. We use the Community Climate System Model version 4 (CCSM4) and Max Planck Institute (MPI) last millennium simulations to derive the LIMs, and the PAGES2K v.2.0 proxy database to perform annually resolved reconstructions of upper-OHC, surface air temperature, and wind stress over the last 500 years. Annual OHC reconstructions and uncertainties for both the global mean and regional basins are compared against observational and reanalysis data. We then investigate differences in dynamical behavior at decadal and longer time scales between the reconstruction and simulations in the last-millennium Coupled Model Intercomparison Project version 5 (CMIP5). Preliminary investigation of 1-year forecast skill for an OHC-only LIM shows largely positive spatial grid point local anomaly correlations (LAC) with a global average LAC of 0.37. Compared to 1-year OHC persistence forecast LAC (global average LAC of 0.30), the LIM outperforms the persistence forecasts in the tropical Indo-Pacific region, the equatorial Atlantic, and in certain regions near the Antarctic Circumpolar Current. In other regions, the forecast correlations are less than the persistence case but still positive overall.

  14. Tropical Glaciers in the Common Era: Papua, Indonesia, Quelccaya Ice Cap, Peru and Kilimanjaro, Tanzania

    NASA Astrophysics Data System (ADS)

    Thompson, L. G.; Mosley-Thompson, E. S.; Davis, M. E.

    2011-12-01

    High-resolution ice core stratigraphic records of δ18O (temperature proxy) demonstrate that the current warming at high elevations in mid- to lower latitudes is unprecedented for at least the last two millennia, although at many sites the Early Holocene was much warmer than at present. Here we discuss the interaction of El Niño-Southern Oscillation (ENSO) variability and warming trends as recorded in ice core records from high-altitude tropical glaciers and the implications of the warming trends for the future of these glaciers. ENSO has strong impacts on meteorological phenomena that either directly or indirectly affect most regions on the planet and their populations, particularly throughout the Tropics. Here we examine similarities and differences among ice core records from Papua (Indonesia), Quelccaya Ice Cap (Peru) and Kilimanjaro (Tanzania). Quelccaya, Earth's largest tropical ice cap, has provided continuous, annually-resolved proxy records of climatic and environmental variability preserved in many measurable parameters, especially oxygen and hydrogen isotopic ratios (δ18O, δD) and the net mass balance (accumulation) spanning the last 1800 years. The remarkable similarity between changes in the highland and coastal cultures of Peru and climate variability in the Andes, especially with regard to precipitation, implies a strong connection between prehistoric human activities and climate in this region. The well-documented ice loss on Quelccaya, Kilimanjaro in eastern Africa and the ice fields near Puncak Jaya in Papua, Indonesia presents a possible analog for glacier response in the tropics during the Holocene. The ongoing melting of these ice fields is consistent with model predictions of a vertical amplification of temperature in the Tropics. A sequence of over 50 recently exposed, rooted, soft-bodied plant deposits collected between 2002 and 2011 from the retreating margins of the Quelccaya ice cap provide a longer term perspective for the recent glacier retreat. The ongoing glacier retreat in the Tropics and associated loss of natural resources has dire implications for people living in these areas. These recent changes are examined in the context of the Common Era from a glacier derived paleoclimate perspective as recorded in the glaciers on the world's highest mountains.

  15. Ocean-Ice Sheet Interactions in the Norwegian Sea and Teleconnections to Low Latitude Hydrology and Atmospheric Circulation

    NASA Astrophysics Data System (ADS)

    Brendryen, J.; Hannisdal, B.; Haaga, K. A.; Haflidason, H.; Castro, D. D.; Grasmo, K. J.; Sejrup, H. P.; Edwards, R. L.; Cheng, H.; Kelly, M. J.; Lu, Y.

    2016-12-01

    Abrupt millennial scale climatic events known as Dansgaard-Oeschger events are a defining feature of the Quaternary climate system dynamics in the North Atlantic and beyond. We present a high-resolution multi-proxy record of ocean-ice sheet interactions in the Norwegian Sea spanning the interval between 50 and 150 ka BP. A comparison with low latitude records indicates a very close connection between the high northern latitude ocean-ice sheet interactions and large scale changes in low latitude atmospheric circulation and hydrology even on sub-millennial scales. The records are placed on a common precise radiometric chronology based on correlations to U/Th dated speleothem records from China and the Alps. This enables a comparison of the records to orbital and other climatically important parameters such as U/Th dated sea-level data from corals and speleothems. We explore the drive-response relationships in these coupled systems with the information transfer (IT) and the convergent cross mapping (CCM) analytical techniques. These methods employ conceptually different approaches to detect the relative strength and directionality of potentially chaotic and nonlinearly coupled systems. IT is a non-parametric measure of information transfer between data records based on transfer entropy, while CCM relies on delay reconstructions using Takens' theorem. This approach enables us to address how the climate system processes interact and how this interaction is affected by external forcing from for example greenhouse gases and orbital variability.

  16. The new climate data record of total and spectral solar irradiance: Current progress and future steps

    NASA Astrophysics Data System (ADS)

    Coddington, Odele; Lean, Judith; Rottman, Gary; Pilewskie, Peter; Snow, Martin; Lindholm, Doug

    2016-04-01

    We present a climate data record of Total Solar Irradiance (TSI) and Solar Spectral Irradiance (SSI), with associated time and wavelength dependent uncertainties, from 1610 to the present. The data record was developed jointly by the Laboratory for Atmospheric and Space Physics (LASP) at the University of Colorado Boulder and the Naval Research Laboratory (NRL) as part of the National Oceanographic and Atmospheric Administration's (NOAA) National Centers for Environmental Information (NCEI) Climate Data Record (CDR) Program, where the data record, source code, and supporting documentation are archived. TSI and SSI are constructed from models that determine the changes from quiet Sun conditions arising from bright faculae and dark sunspots on the solar disk using linear regression of proxies of solar magnetic activity with observations from the SOlar Radiation and Climate Experiment (SORCE) Total Irradiance Monitor (TIM), Spectral Irradiance Monitor (SIM), and SOlar Stellar Irradiance Comparison Experiment (SOLSTICE). We show that TSI can be separately modeled to within TIM's measurement accuracy from solar rotational to solar cycle time scales and we assume that SSI measurements are reliable on solar rotational time scales. We discuss the model formulation, uncertainty estimates, and operational implementation and present comparisons of the modeled TSI and SSI with the measurement record and with other solar irradiance models. We also discuss ongoing work to assess the sensitivity of the modeled irradiances to model assumptions, namely, the scaling of solar variability from rotational-to-cycle time scales and the representation of the sunspot darkening index.

  17. Increased chemical weathering during the deglacial to mid-Holocene summer monsoon intensification

    PubMed Central

    Miriyala, Pavan; Sukumaran, N. P.; Nath, B. Nagender; Ramamurty, P. B.; Sijinkumar, A. V.; Vijayagopal, B.; Ramaswamy, V.; Sebastian, Tyson

    2017-01-01

    Chemical weathering and the ensuing atmospheric carbon dioxide consumption has long been considered to work on geological time periods until recently when some modelling and natural records have shown that the weathering-related CO2 consumption can change at century to glacial-interglacial time scale. Last glacial to interglacial transition period is a best test case to understand the interplay between Pco2-temperature-chemical weathering when a pulse of rapid chemical weathering was initiated. Here we show, from a high resolution 54 ka record from the Andaman Sea in the northern Indian Ocean, that the chemical weathering responds to deglacial to mid-Holocene summer monsoon intensification in the Myanmar watersheds. The multi-proxy data (Al/K, CIA, Rb/Sr, 87Sr/86Sr for degree of weathering and 143Nd/144Nd for provenance) reveal an increase in silicate weathering with initiation of interglacial warm climate at ~17.7 ka followed by a major change at 15.5 ka. Inferred changes in chemical weathering have varied in tandem with the regional monsoonal proxies (δ18Osw-salinity changes of Northern Indian Ocean, effective Asian moisture content and δ18O records of Chinese caves) and are synchronous with changes in summer insolation at 30°N and δ18O of GISP2 implying that chemical weathering was not a later amplifier but worked in tandem with global climate change. PMID:28303943

  18. Tropical Indo-Pacific hydroclimate response to North Atlantic forcing during the last deglaciation as recorded by a speleothem from Sumatra, Indonesia

    NASA Astrophysics Data System (ADS)

    Wurtzel, Jennifer B.; Abram, Nerilie J.; Lewis, Sophie C.; Bajo, Petra; Hellstrom, John C.; Troitzsch, Ulrike; Heslop, David

    2018-06-01

    Abrupt changes in Atlantic Meridional Overturning Circulation are known to have affected the strength of the Indian and Asian Monsoons during glacial and deglacial climate states. However, there is still much uncertainty around the hydroclimate response of the Indo-Pacific Warm Pool (IPWP) region to abrupt climate changes in the North Atlantic. Many studies suggest a mean southward shift in the intertropical convergence zone (ITCZ) in the IPWP region during phases of reduced Atlantic meridional overturning, however, existing proxies have seasonal biases and conflicting responses, making it difficult to determine the true extent of North Atlantic forcing in this climatically important region. Here we present a precisely-dated, high-resolution record of eastern Indian Ocean hydroclimate variability spanning the last 16 ky (thousand years) from δ18O measurements in an aragonite-calcite speleothem from central Sumatra. This represents the western-most speleothem record from the IPWP region. Precipitation arrives year-round at this site, with the majority sourced from the local tropical eastern Indian Ocean and two additional long-range seasonal sources associated with the boreal and austral summer monsoons. The Sumatran speleothem demonstrates a clear deglacial structure that includes 18O enrichment during the Younger Dryas and 18O depletion during the Bølling-Allerød, similar to the pattern seen in speleothems of the Asian and Indian monsoon realms. The speleothem δ18O changes at this site are best explained by changes in rainfall amount and changes in the contributions from different moisture pathways. Reduced rainfall in Sumatra during the Younger Dryas is most likely driven by reductions in moisture transport along the northern or southern monsoon transport pathways to Sumatra. Considered with other regional proxies, the record from Sumatra suggests the response of the IPWP to North Atlantic freshwater forcing is not solely driven by southward shifts of the ITCZ, but also a reduction in moisture transport along both monsoon pathways.

  19. The Impact of Elevated Temperatures on Continental Carbon Cycling in the Paleogene

    NASA Astrophysics Data System (ADS)

    Pancost, R. D.; Handley, L.; Taylor, K. W.; Collinson, M. E.; Weijers, J.; Talbot, H. M.; Hollis, C. J.; Grogan, D. S.; Whiteside, J. H.

    2010-12-01

    Recent climate and biogeochemical modelling suggests that methane flux from wetlands and soils was greater during past greenhouse climates, due to a combination of higher continental temperatures, an enhanced hydrological cycle, and elevated primary production. Here, we examine continental environments in the Paleogene using a range of biomarker proxies (complemented by palaeobotanical approaches), including air temperatures derived from the distribution of soil bacterial glycerol dialkyl glycerol tetraethers (the MBT/CBT proxy), as well as evidence from wetland and lacustrine settings for enhanced methane cycling. Previously published and new MBT/CBT records parallel sea surface temperature records, suggesting elevated continental temperatures during the Eocene even at mid- to high latitudes (New Zealand, 20-28°C; the Arctic, 17°C; across the Sierra Nevada, 15-25°C; and SE England, 20-30°C). Such temperatures are broadly consistent with paleobotanical records and would have directly led to increased methane production via the metabolic impact of temperature on rates of methanogenesis. To test this, we have determined the distributions and carbon isotopic compositions of archaeal ether lipids and bacterial hopanoids in thermally immature Eocene lignites. In particular, the Cobham lignite, deposited in SE England and spanning the PETM, is characterised by markedly higher concentrations of both methanogen and methanotroph biomarkers compared to modern and Holocene temperate peats. Elevated temperatures, by fostering either stratification and/or decreased oxygen solubility, could have also led to enhanced methane production in Paleogene lakes. Both the Messel Shale (Germany) and Green River Formation, specifically the Parachute Creek oil shale horizons (Utah and Wyoming), are characterised by strongly reducing conditions (including euxinic conditions in the latter), as well as abundant methanogen and methanotroph biomarkers. Such results confirm model predictions of elevated Eocene methane levels relative to the Holocene (x10), but suggest that even these could be underestimates as they do not take into account lacustrine production and are generally characterised by lower high latitude temperatures than proxies suggest.

  20. Early-Mid Holocene climatic variations in Tasmania, Australia: multi-proxy records in a stalagmite from Lynds Cave

    NASA Astrophysics Data System (ADS)

    Xia, Qikai; Zhao, Jian-xin; Collerson, K. D.

    2001-12-01

    Mass spectrometric uranium-series dating and C-O isotopic analysis of a stalagmite from Lynds Cave, northern Tasmania, Australia provide a high-resolution record of regional climate change between 5100 and 9200 yr before present (BP). Combined δ18O, δ13C, growth rate, initial 234U/238U and physical property (color, transparency and porosity) records allow recognition of seven climatic stages: Stage I (>9080 yr BP) - a relatively dry period at the beginning of stalagmite growth evidenced by elevated 234U/238U; Stage II (9080-8600 yr BP) - a period of unstable climate characterized by high-frequency variability in temperature and bio-productivity; Stage III (8600-8000 yr BP) - a period of stable and moderate precipitation and stable and high bio-productivity, with a continuously rising temperature; Stage IV (8000-7400 yr BP) - the warmest period with high evaporation and low effective precipitation (rainfall less evaporation); Stage V (7400-7000 yr BP) - the wettest period with highest stalagmite growth and enhanced but unstable bio-productivity; Stage VI (7000-6600 yr BP) - a period with a significantly reduced precipitation and bio-productivity without noticeable change in temperature; Stage VII (6600-5100 yr BP) - a period of lowest temperature and precipitation marking a significant climatic deterioration. Overall, the records suggest that the warmest climate occurred between 8000 and 7400 yr BP, followed by a wettest period between 7400 and 7000 yr BP. These are broadly correlated with the so-called 'Mid Holocene optimum' previously proposed using pollen and lake level records. However, the timing and resolution of the speleothem record from Lynds Cave are significantly higher than in both the pollen and lake level records. This allows us to correlate the abrupt change in physical property, δ18O, δ13C, growth rate, and initial 234U/238U of the stalagmite at ˜8000 yr BP with a global climatic event at Early-Mid Holocene transition.

Top