NASA Astrophysics Data System (ADS)
Rodysill, J. R.
2017-12-01
Proxy-based reconstructions provide vital information for developing histories of environmental and climate changes. Networks of spatiotemporal paleoclimate information are powerful tools for understanding dynamical processes within the global climate system and improving model-based predictions of the patterns and magnitudes of climate changes at local- to global-scales. Compiling individual paleoclimate records and integrating reconstructed climate information in the context of an ensemble of multi-proxy records, which are fundamental for developing a spatiotemporal climate data network, are hindered by challenges related to data and information accessibility, chronological uncertainty, sampling resolution, climate proxy type, and differences between depositional environments. The U.S. Geological Survey (USGS) North American Holocene Climate Synthesis Working Group has been compiling and integrating multi-proxy paleoclimate data as part of an ongoing effort to synthesize Holocene climate records from North America. The USGS North American Holocene Climate Synthesis Working Group recently completed a late Holocene hydroclimate synthesis for the North American continent using several proxy types from a range of depositional environments, including lakes, wetlands, coastal marine, and cave speleothems. Using new age-depth relationships derived from the Bacon software package, we identified century-scale patterns of wetness and dryness for the past 2000 years with an age uncertainty-based confidence rating for each proxy record. Additionally, for highly-resolved North American lake sediment records, we computed average late Holocene sediment deposition rates and identified temporal trends in age uncertainty that are common to multiple lakes. This presentation addresses strengths and challenges of compiling and integrating data from different paleoclimate archives, with a particular focus on lake sediments, which may inform and guide future paleolimnological studies.
Late-Glacial to Late-holocene Shifts in Global Precipitation Delta(sup 18)O
NASA Technical Reports Server (NTRS)
Jasechko, S.; Lechler, A.; Pausata, F.S.R.; Fawcett, P.J.; Gleeson, T.; Cendon, D.I.; Galewsky, J.; LeGrande, A. N.; Risi, C.; Sharp, Z. D.;
2015-01-01
Reconstructions of Quaternary climate are often based on the isotopic content of paleo-precipitation preserved in proxy records. While many paleo-precipitation isotope records are available, few studies have synthesized these dispersed records to explore spatial patterns of late-glacial precipitation delta(sup 18)O. Here we present a synthesis of 86 globally distributed groundwater (n 59), cave calcite (n 15) and ice core (n 12) isotope records spanning the late-glacial (defined as 50,000 to 20,000 years ago) to the late-Holocene (within the past 5000 years). We show that precipitation delta(sup 18)O changes from the late-glacial to the late-Holocene range from -7.1% (delta(sup 18)O(late-Holocene) > delta(sup 18)O(late-glacial) to +1.7% (delta(sup 18)O(late-glacial) > delta(sup 18)O(late-Holocene), with the majority (77) of records having lower late-glacial delta(sup 18)O than late-Holocene delta(sup 18)O values. High-magnitude, negative precipitation delta(sup 18)O shifts are common at high latitudes, high altitudes and continental interiors.
NASA Astrophysics Data System (ADS)
Bhattacharya, T.; Byrne, R.; Wogau, K.; Bohnel, H.
2013-12-01
Understanding the Holocene variation in central Mexico's summer precipitation can help identify the processes responsible for climatic change and clarify the role of climate in Mesoamerican cultural change. We present proxy results from Aljojuca, a maar lake in the Oriental-Serdan Basin in Mexico's Trans-Mexican Volcanic Belt. The 12 m sediment core from Aljojuca features a laminated, high-resolution proxy archive. A chronology established via radiocarbon dating shows a basal date of 6,200 cal. years B.P. We use fluctuations in pollen, elemental geochemistry, and the stable isotope ratios of authigenic carbonates to reconstruct the timing and duration of mid to late Holocene droughts in central Mexico. We compare these results with geochemical analyses of maar wall rocks and palynological analyses of modern moss polsters to strengthen our interpretations of proxy results. We interpret periods of aridity as periods of reduced summer precipitation and therefore decreased summer monsoon strength. Our results reveal evidence of a gradual decrease in monsoon strength from the mid to late Holocene. We also identify a multi-century dry period between 1,150 and 800 cal yr. BP, coinciding with the abandonment of the nearby fortified city of Cantona. Spatiotemporal analysis of this and other paleoclimatic records reveals region-wide evidence of this ';Terminal Classic' drought, although its timing is spatially heterogeneous. Our results represent one of the only high-resolution mid-Holocene records from the eastern Trans-Mexican Volcanic Belt.
Holocene climatic fluctuations and periodic changes in the Asian southwest monsoon region
NASA Astrophysics Data System (ADS)
Zhang, Wenxiang; Niu, Jie; Ming, Qingzhong; Shi, Zhengtao; Lei, Guoliang; Huang, Linpei; Long, Xian'e.; Chang, Fengqin
2018-05-01
Climatic changes in the Asian southwest monsoon (ASWM) during the Holocene have become a topic of recent studies. It is important to understand the patterns and causes of Holocene climatic changes and their relationship with global changes. Based on the climate proxies and wavelet analysis of Lugu Lake in the ASWM region, the climatic fluctuations and periodic changes in the ASWM region during the Holocene have been reconstructed with a high-precision chronology. The results indicate the intensification of ASWM began to increase with Northern Hemisphere low-latitude solar insolation (LSI) and solar activity during the early Holocene, and gradually decreased during the late Holocene, exhibiting an apparent synchrony with numerous records of ASWM region. Meanwhile, an apparent 1000-a quasi-periodic signal is present in the environment proxies, and it demonstrates that the environmental change in the ASWM region has been driven mainly by LSI and solar activity.
NASA Astrophysics Data System (ADS)
Stahle, Laura N.; Chin, Hahjung; Haberle, Simon; Whitlock, Cathy
2017-12-01
Fire activity was reconstructed at five sites and vegetation history at three sites in northwest Tasmania, Australia in order to examine the climate and human drivers of environmental change in the region. Watershed-scale reconstructions of fire were compared to regional vegetation history. Fire activity was very low until ca. 12,000 cal yr BP. An early-Holocene fire maximum, ca. 11,800-9800 cal yr BP, occurred during the warmest interval of the Holocene as recorded by regional paleoclimate proxy records. This period of elevated burning was also coincident with an increase in arboreal sclerophyll plant taxa. A maximum in rainforest taxa occurred at ca. 8500-5800 cal yr BP concurrent with sharply diminished biomass burning compared with the early Holocene. The increase in rainforest taxa is attributed to elevated effective moisture during this period. Conditions were drier and variable in the late Holocene as compared with earlier periods. A rise in fire activity at ca. 4800-3200 cal yr BP was accompanied by an increase in sclerophyll taxa and decline of rainforest and subalpine taxa. Elevated palynological richness during the late Holocene co-occurred with high levels of charcoal suggesting that fires promoted high floristic diversity. At Cradle Mountain, there is no clear evidence that fire regimes or vegetation were extensively modified by humans prior to European settlement. Climate was the primary driver of fire activity over millennial timescales as explained by the close relationship between charcoal and climate proxy data.
NASA Astrophysics Data System (ADS)
Zhong, Wei; Cao, jiayuan; Xue, Jibin; Ouyang, Jun; Tang, Xiaohong; Yin, Huanling; Liao, Congyun; Long, Kun
2014-02-01
The study of a 300-cm-thick exposed lacustrine sediment section in the Hedong village in Zhaoqing area which is located in sub-tropical west Guangdong Province in South China, demonstrates that the lacustrine sedimentary sequence possibly contains evidence for exploring variation of Asian monsoon climate. Multi-proxy records, including the humification intensity, total organic carbon, and grain size fractions, reveal a general trend towards dry and cold conditions in the late Holocene that this is because of a decrease in solar insolation on an orbital scale. Three intensified Asian summer monsoon (ASM) intervals (˜3300-3000 cal yr BP, ˜2600-1600 cal yr BP, and ˜900-600 cal yr BP), and three weakened ASM intervals (˜4000-3300 cal yr BP, ˜3000-2600 cal yr BP, and ˜1600-900 cal yr BP) are identified. Our humification record (HDcal) shows a good correlation on multi-centennial scale with the tree ring Δ14C record, a proxy of solar activity. A spectral analysis of HDcal reveals four significant cycles, i.e., ˜1250 yr, 300 yr, 110 yr, and 70 yr, and most of these cycles are related to the solar activity. Our findings indicate that solar output and oceanic-atmospheric circulation probably have influenced the late Holocene climate variability in the study region.
NASA Astrophysics Data System (ADS)
Wong, Corinne I.; Banner, Jay L.; Musgrove, MaryLynn
2015-11-01
Delineating the climate processes governing precipitation variability in drought-prone Texas is critical for predicting and mitigating climate change effects, and requires the reconstruction of past climate beyond the instrumental record. We synthesize existing paleoclimate proxy data and climate simulations to provide an overview of climate variability in Texas during the Holocene. Conditions became progressively warmer and drier transitioning from the early to mid Holocene, culminating between 7 and 3 ka (thousand years ago), and were more variable during the late Holocene. The timing and relative magnitude of Holocene climate variability, however, is poorly constrained owing to considerable variability among the different records. To help address this, we present a new speleothem (NBJ) reconstruction from a central Texas cave that comprises the highest resolution proxy record to date, spanning the mid to late Holocene. NBJ trace-element concentrations indicate variable moisture conditions with no clear temporal trend. There is a decoupling between NBJ growth rate, trace-element concentrations, and δ18O values, which indicate that (i) the often direct relation between speleothem growth rate and moisture availability is likely complicated by changes in the overlying ecosystem that affect subsurface CO2 production, and (ii) speleothem δ18O variations likely reflect changes in moisture source (i.e., proportion of Pacific-vs. Gulf of Mexico-derived moisture) that appear not to be linked to moisture amount.
Moros, M.; Andrews, John T.; Eberl, D.D.; Jansen, E.
2006-01-01
We present new high-resolution proxy data for the Holocene history of drift ice off Iceland based on the mineralogy of the <2-mm sediment fraction using quantitative X-ray diffraction. These new data, bolstered by a comparison with published proxy records, point to a long-term increasing trend in drift ice input into the North Atlantic from 6 to 5 ka toward the present day at sites influenced by the cold east Greenland Current. This feature reflects the late Holocene Neoglacial or cooling period recorded in ice cores and further terrestrial archives on Greenland. In contrast, a decrease in drift ice during the same period is recorded at sites underlying the North Atlantic Drift, which may reflect a warming of this region. The results document that Holocene changes in iceberg rafting and sea ice advection did not occur uniformly across the North Atlantic. Centennial-scale climate variability in the North Atlantic region over the last ???4 kyr is linked to the observed changes in drift ice input. Increased drift ice may have played a role in the increase of cold intervals during the late Holocene, e.g., the Little Ice Age cooling. Copyright 2006 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Chen, Fahu; Wu, Duo; Chen, Jianhui; Zhou, Aifeng; Yu, Junqing; Shen, Ji; Wang, Sumin; Huang, Xiaozhong
2016-12-01
Climatic and environmental changes in the northeastern Tibetan Plateau are controlled by the Asian summer monsoon (ASM) and the westerlies, two key circulation components of the global climate system which directly affect a large human population and associated ecosystems in eastern Asia. During the past few decades, a series of Holocene palaeoclimatic records have been obtained from sediment cores from Lake Qinghai and from various other geological archives in the surrounding area of the northeastern Tibetan Plateau. However, because of uncertainties regarding the sediment chronologies and the climatic significance of the proxies used, the nature of Holocene climatic changes in the region remains unclear and even controversial. Here we review all major classes of the published data from drilled cores from Lake Qinghai, as well as other evidence from lakes and aeolian deposits from surrounding areas, in order to reconstruct changes in moisture patterns and possible summer monsoon evolution in the area during the Holocene. Combining the results of moisture and precipitation proxies such as vegetation history, pollen-based precipitation reconstruction, aeolian activity, lake water depth/lake level changes, salinity and sediment redness, we conclude that moisture and precipitation began to increase in the early Holocene, reached their maximum during the middle Holocene, and decreased during the late Holocene - similar to the pattern of the East Asian summer monsoon (EASM) in northern China. It is clear that the region experienced a relatively dry climate and weak EASM during the early Holocene, as indicated by relatively low tree pollen percentages and fluctuating pollen concentrations; generally low lake levels of Lake Qinghai and the adjacent Lake Hurleg and Lake Toson in the Qaidam Basin; and widely distributed aeolian sand deposition in the Lake Qinghai Basin and the nearby Gonghe Basin to the south, and in the eastern Qaidam Basin to the west. We argue that the ostracod δ18O record, which is widely used as a proxy of effective moisture and summer monsoon intensity in lake sediments, at least in Lake Qinghai, and which exhibits light values in the early Holocene and heavier values thereafter, cannot be used to reflect the strength of the EASM or the intensity of monsoon precipitation - as is also the case for leaf wax δ2H records. Rather, we argue that as is the case of the Chinese speleothem δ18O record, which also is often interpreted as an EASM proxy, it reflects variation in the δ18O of precipitation. Overall, we suggest that the EASM significantly affected precipitation in the northeastern Tibetan Plateau during the Holocene; and that it increased in strength during the early Holocene, reached a maximum during the middle Holocene and decreased during the late Holocene.
NASA Astrophysics Data System (ADS)
Fernández, Fernando J.; Pardiñas, Ulyses F. J.
2018-07-01
Very few excavated sequences in southern South America provide an approximation to the environmental evolution covering the segment Late Pleistocene-Holocene. Here we present the taphonomic analysis and paleoenvironmental reconstruction based on the small mammal remains retrieved from the archaeological and paleontological site Gruta del Indio (Mendoza Province, Argentina). Radiocarbon dates situate the small mammal deposits studied within the Late Pleistocene and Holocene. Thus, these assemblages provide a record for inferring environmental evolution in the middle basin of Atuel River during the last ∼31 ky BP. Taphonomic analysis revealed that most of small mammal remains were incorporated by a little destructive nocturnal owl. Recorded species include mainly cricetid and caviomorph rodents and a single marsupial. While Pleistocene assemblages have not exclusive species, the specific richness increases towards the Holocene probably linked with the climatic variability related to ENSO. In overall, the recorded small mammals suggest environmental stability during the Late Pleistocene-Holocene, mostly associated with Monte Desert conditions. Conversely, the pollen sequence studied from Gruta del Indio was interpreted as indicator of a deep environmental change during the Pleistocene-Holocene transition, when the Patagonian steppe was replaced by Monte Desert. Potential biases linked with these kinds of proxies are discussed.
Wong, Corinne I.; Banner, Jay L.; Musgrove, MaryLynn
2015-01-01
Delineating the climate processes governing precipitation variability in drought-prone Texas is critical for predicting and mitigating climate change effects, and requires the reconstruction of past climate beyond the instrumental record. We synthesize existing paleoclimate proxy data and climate simulations to provide an overview of climate variability in Texas during the Holocene. Conditions became progressively warmer and drier transitioning from the early to mid Holocene, culminating between 7 and 3 ka (thousand years ago), and were more variable during the late Holocene. The timing and relative magnitude of Holocene climate variability, however, is poorly constrained owing to considerable variability among the different records. To help address this, we present a new speleothem (NBJ) reconstruction from a central Texas cave that comprises the highest resolution proxy record to date, spanning the mid to late Holocene. NBJ trace-element concentrations indicate variable moisture conditions with no clear temporal trend. There is a decoupling between NBJ growth rate, trace-element concentrations, and δ18O values, which indicate that (i) the often direct relation between speleothem growth rate and moisture availability is likely complicated by changes in the overlying ecosystem that affect subsurface CO2 production, and (ii) speleothem δ18O variations likely reflect changes in moisture source (i.e., proportion of Pacific-vs. Gulf of Mexico-derived moisture) that appear not to be linked to moisture amount.
NASA Astrophysics Data System (ADS)
Axford, Y.; Isaacson, M.; Matthews-Bird, F.; Schellinger, G. C.; Carrio, C. L.; Kelly, M. A.; Lowell, T. V.; Beal, S. A., Jr.; Stroup, J. S.; Tapia, P. M.
2016-12-01
We present a 12,000-year long paleoenvironmental reconstruction from a small high-elevation lake in southeastern Peru. Climate and environmental change are inferred from chironomid species assemblages, charcoal abundance, size and morphology, and the abundance of some important pollen and spore types (Poaceae, Asteraceae, Isoetes). We employ a new chironomid training set developed for tropical South America (Matthews-Bird et al. 2016) to interpret shifts in chironomid assemblages. The sedimentary record from Yanacocha was first discussed by Beal et al. (2014), who reconstructed Hg deposition and measured metals, biogenic silica and loss-on-ignition through the Holocene. Additional downcore proxies are presented by Stroup et al. (this meeting). Yanacocha sits at 4910 m asl and less than 2 km from Quelccaya Ice Cap (QIC), but the lake's watershed has been topographically isolated from glacier meltwater since 12.3 ka. We compare our inferences from biological proxies with independent constraints on paleoclimate derived from published reconstructions of QIC fluctuations. Previous studies found that temperature was the primary driver of late Holocene fluctuations of QIC (e.g., Stroup et al. 2014), but records from the broader region indicate the Holocene also saw major changes in hydroclimate. Most modern precipitation at Yanacocha derives from the Amazon Basin to the east, and El Niño years are associated with drier conditions. Holocene sediments at Yanacocha likely thus record both changes in temperature and hydroclimate. Vegetation was sparse and no charcoal was preserved prior to 11.7 ka, whereas the early Holocene saw the highest overall pollen concentrations of the entire record and the onset of charcoal preservation. An increase in charcoal abundance, decrease in pollen concentrations, and shifts in vegetation and chironomid assemblages at Yanacocha suggest drier conditions from 9 to 3.5 ka, consistent with widespread regional evidence for early to middle Holocene aridity. One sample at 8.4 ka contains uniquely abundant charcoal, Poaceae and Asteraceae, possibly recording a brief (<500 yr) and uniquely dramatic dry event at that time. Shifts in chironomid assemblages, including a major shift centered on 1000 AD, indicate a variable climate through the late Holocene.
NASA Astrophysics Data System (ADS)
Roberts, C. Neil; Allcock, Samantha L.; Arnaud, Fabien; Dean, Jonathan R.; Eastwood, Warren J.; Jones, Matthew D.; Leng, Melanie J.; Metcalfe, Sarah E.; Malet, Emmanuel; Woodbridge, Jessie; Yiǧitbaşıoǧlu, Hakan
2016-04-01
Individual palaeoenvironmental records are a combination of regional-scale (e.g. climatic) and local factors. In order to separate these signals, we compare multiple proxies from two nearby maar lake records, on the assumption that common signals are due to regional-scale forcing. On the other side, we infer that residual signals are likely to be local and site-specific, rather than reflecting regional climate changes. A new core sequence from Nar lake has been dated by varve counting and U-Th as covering the last 13,800 years (Dean et al., 2015; Roberts et al., 2016). Periods of marked dryness are associated with peaks in Mg/dolomite, elevated Diatom-Inferred Electrical Conductivity, an absence of laminated sediments, and low Quercus/chenopod ratios. These conditions occurred during the Late-Glacial stadial, at 4.3-3.7 and 3.2-2.6 ka BP. Wet phases occurred during the early Holocene and again 1.5-0.6 ka, characterised by negative δ18O values, calcite precipitation, high Ca/Sr ratios, a high % of planktonic diatoms, laminated sediments, and high Quercus/chenopod ratios. Comparison with the independently dated record from Eski Acıgöl (Roberts et al., 2001) shows good correspondence for many proxies, especially for δ18O. A ranking of multiple proxies shows the worst correspondence is for clastic lithogenic elements (e.g. Ti flux). Differences between the two lake records are caused by basin infilling at Eski Acıgöl, which fails to register climatic changes during the last 2 ka, and to catchment erosion and increased flux of lithogenic elements into Nar lake; this is catchment-specific and primarily anthropogenic rather than climatic in origin. In separating a regional signal from site-specific "noise", two lakes may therefore be better than one. Dean, J.R. et al. 2015 Eastern Mediterranean hydroclimate over the late glacial and Holocene, reconstructed from the sediments of Nar lake, central Turkey, using stable isotopes and carbonate mineralogy. Quaternary Science Reviews 124, 162-174. Roberts, N et al. 2001 The tempo of Holocene climatic change in the eastern Mediterranean region: new high-resolution crater-lake sediment data from central Turkey. The Holocene 11, 721-736. Roberts, N., et al 2016 in press, A tale of two lakes: a multi-proxy comparison of Late Glacial and Holocene environmental change in Cappadocia, Turkey. Journal of Quaternary Science
NASA Astrophysics Data System (ADS)
Kaufman, Darrell S.; Axford, Yarrow L.; Henderson, Andrew C. G.; McKay, Nicholas P.; Oswald, W. Wyatt; Saenger, Casey; Anderson, R. Scott; Bailey, Hannah L.; Clegg, Benjamin; Gajewski, Konrad; Hu, Feng Sheng; Jones, Miriam C.; Massa, Charly; Routson, Cody C.; Werner, Al; Wooller, Matthew J.; Yu, Zicheng
2016-09-01
Reconstructing climates of the past relies on a variety of evidence from a large number of sites to capture the varied features of climate and the spatial heterogeneity of climate change. This review summarizes available information from diverse Holocene paleoenvironmental records across eastern Beringia (Alaska, westernmost Canada and adjacent seas), and it quantifies the primary trends of temperature- and moisture-sensitive records based in part on midges, pollen, and biogeochemical indicators (compiled in the recently published Arctic Holocene database, and updated here to v2.1). The composite time series from these proxy records are compared with new summaries of mountain-glacier and lake-level fluctuations, terrestrial water-isotope records, sea-ice and sea-surface-temperature analyses, and peatland and thaw-lake initiation frequencies to clarify multi-centennial- to millennial-scale trends in Holocene climate change. To focus the synthesis, the paleo data are used to frame specific questions that can be addressed with simulations by Earth system models to investigate the causes and dynamics of past and future climate change. This systematic review shows that, during the early Holocene (11.7-8.2 ka; 1 ka = 1000 cal yr BP), rather than a prominent thermal maximum as suggested previously, temperatures were highly variable, at times both higher and lower than present (approximate mid-20th-century average), with no clear spatial pattern. Composited pollen, midge and other proxy records average out the variability and show the overall lowest summer and mean-annual temperatures across the study region during the earliest Holocene, followed by warming over the early Holocene. The sparse data available on early Holocene glaciation show that glaciers in southern Alaska were as extensive then as they were during the late Holocene. Early Holocene lake levels were low in interior Alaska, but moisture indicators show pronounced differences across the region. The highest frequency of both peatland and thaw-lake initiation ages also occurred during the early Holocene. During the middle Holocene (8.2-4.2 ka), glaciers retreated as the regional average temperature increased to a maximum between 7 and 5 ka, as reflected in most proxy types. Following the middle Holocene thermal maximum, temperatures decreased starting between 4 and 3 ka, signaling the onset of Neoglacial cooling. Glaciers in the Brooks and Alaska Ranges advanced to their maximum Holocene extent as lakes generally rose to modern levels. Temperature differences for averaged 500-year time steps typically ranged by 1-2 °C for individual records in the Arctic Holocene database, with a transition to a cooler late Holocene that was neither abrupt nor spatially coherent. The longest and highest-resolution terrestrial water isotope records previously interpreted to represent changes in the Aleutian low-pressure system around this time are here shown to be largely contradictory. Furthermore, there are too few records with sufficient resolution to identify sub-centennial-scale climate anomalies, such as the 8.2 ka event. The review concludes by suggesting some priorities for future paleoclimate research in the region.
Kaufman, Darrell S.; Axford, Yarrow L.; Henderson, Andrew C.G.; McKay, Nicolas P.; Oswald, W. Wyatt; Saenger, Casey; Anderson, R. Scott; Bailey, Hannah L.; Clegg, Benjamin; Gajewski, Konrad; Hu, Feng Sheng; Jones, Miriam C.; Massa, Charly; Routson, Cody C.; Werner, Al; Wooller, Matthew J.; Yu, Zicheng
2016-01-01
Reconstructing climates of the past relies on a variety of evidence from a large number of sites to capture the varied features of climate and the spatial heterogeneity of climate change. This review summarizes available information from diverse Holocene paleoenvironmental records across eastern Beringia (Alaska, westernmost Canada and adjacent seas), and it quantifies the primary trends of temperature- and moisture-sensitive records based in part on midges, pollen, and biogeochemical indicators (compiled in the recently published Arctic Holocene database, and updated here to v2.1). The composite time series from these proxy records are compared with new summaries of mountain-glacier and lake-level fluctuations, terrestrial water-isotope records, sea-ice and sea-surface-temperature analyses, and peatland and thaw-lake initiation frequencies to clarify multi-centennial- to millennial-scale trends in Holocene climate change. To focus the synthesis, the paleo data are used to frame specific questions that can be addressed with simulations by Earth system models to investigate the causes and dynamics of past and future climate change. This systematic review shows that, during the early Holocene (11.7–8.2 ka; 1 ka = 1000 cal yr BP), rather than a prominent thermal maximum as suggested previously, temperatures were highly variable, at times both higher and lower than present (approximate mid-20th-century average), with no clear spatial pattern. Composited pollen, midge and other proxy records average out the variability and show the overall lowest summer and mean-annual temperatures across the study region during the earliest Holocene, followed by warming over the early Holocene. The sparse data available on early Holocene glaciation show that glaciers in southern Alaska were as extensive then as they were during the late Holocene. Early Holocene lake levels were low in interior Alaska, but moisture indicators show pronounced differences across the region. The highest frequency of both peatland and thaw-lake initiation ages also occurred during the early Holocene. During the middle Holocene (8.2–4.2 ka), glaciers retreated as the regional average temperature increased to a maximum between 7 and 5 ka, as reflected in most proxy types. Following the middle Holocene thermal maximum, temperatures decreased starting between 4 and 3 ka, signaling the onset of Neoglacial cooling. Glaciers in the Brooks and Alaska Ranges advanced to their maximum Holocene extent as lakes generally rose to modern levels. Temperature differences for averaged 500-year time steps typically ranged by 1–2 °C for individual records in the Arctic Holocene database, with a transition to a cooler late Holocene that was neither abrupt nor spatially coherent. The longest and highest-resolution terrestrial water isotope records previously interpreted to represent changes in the Aleutian low-pressure system around this time are here shown to be largely contradictory. Furthermore, there are too few records with sufficient resolution to identify sub-centennial-scale climate anomalies, such as the 8.2 ka event. The review concludes by suggesting some priorities for future paleoclimate research in the region.
NASA Astrophysics Data System (ADS)
Salvatteci, R.; Schneider, R. R.; Blanz, T.; Martinez, P.; Crosta, X.
2016-12-01
The Humboldt Current Ecosystem (HCE) off Peru yields about 10% of the global fish catch, producing more fish per unit area than any other region in the world. The high productivity is maintained by the upwelling of cold, nutrient-rich water from the oxygen minimum zone (OMZ), driven by strong trade winds. However, the potential impacts of climate change on upwelling dynamics and oceanographic conditions in the near future are uncertain, threatening local and global economies. Here, we unravel the response of the HCE to contrasting climatic conditions during the last two interglacials (i.e. Holocene and MIS5e) providing an independent insight about the relation between climatic factors and upwelling and productivity dynamics. For this purpose, we used multiple cores to reconstruct past changes in OMZ and upwelling intensity, productivity and fish biomass variability. Chronologies for the Holocene were obtained by multiple 14C ages and laminae correlations among cores, while for the MIS5e they were mainly done by correlation of prominent features in several proxies with other published records. We used a multiproxy approach including alkenones to reconstruct sea surface temperatures, δ15N as a proxy for water column denitrification, redox sensitive metals as proxies for sediment redox conditions, and diatom and fish debris assemblages to reconstruct ecological changes. The results show a very different response of the HCE to climate conditions during the last 2 interglacials, likely driven by changes in Tropical Pacific dynamics. During the Holocene we find that 1) the Late Holocene exhibits higher multi-centennial scale variability compared to the Early Holocene, 2) increased upwelling and a weak OMZ during the mid-Holocene, and 3) long term increase in productivity (diatoms and fishes) from the Early to the Late Holocene. During the MIS5e we find an 1) intense OMZ, 2) strong water column stratification, 3) high siliceous biomass, and 4) low fish biomass compared to the Holocene and a regime shift towards more hemipelagic fishes. Our paleoreconstructions during the globally warm MIS5e are consistent with models indicating that the expected increase in stratification and atmospheric CO2 concentrations may significantly reduce fish capacity in the HCE with heavy ecological and economic consequences.
Quantitative Holocene climatic reconstructions for the lower Yangtze region of China
NASA Astrophysics Data System (ADS)
Li, Jianyong; Dodson, John; Yan, Hong; Wang, Weiming; Innes, James B.; Zong, Yongqiang; Zhang, Xiaojian; Xu, Qinghai; Ni, Jian; Lu, Fengyan
2018-02-01
Quantitative proxy-based and high-resolution palaeoclimatic datasets are scarce for the lower reaches of the Yangtze River (LYR) basin. This region is in a transitional vegetation zone which is climatologically sensitive; and as a birthplace for prehistorical civilization in China, it is important to understand how palaeoclimatic dynamics played a role in affecting cultural development in the region. We present a pollen-based and regionally-averaged Holocene climatic twin-dataset for mean total annual precipitation (PANN) and mean annual temperature (TANN) covering the last 10,000 years for the LYR region. This is based on the technique of weighted averaging-partial least squares regression to establish robust calibration models for obtaining reliable climatic inferences. The pollen-based reconstructions generally show an early Holocene climatic optimum with both abundant monsoonal rainfall and warm thermal conditions, and a declining pattern of both PANN and TANN values in the middle to late Holocene. The main driving forces behind the Holocene climatic changes in the LYR area are likely summer solar insolation associated with tropical or subtropical macro-scale climatic circulations such as the Intertropical Convergence Zone (ITCZ), Western Pacific Subtropical High (WPSH), and El Niño/Southern Oscillation (ENSO). Regional multi-proxy comparisons indicate that the Holocene variations in precipitation and temperature for the LYR region display an in-phase relationship with other related proxy records from southern monsoonal China and the Indian monsoon-influenced regions, but are inconsistent with the Holocene moisture or temperature records from northern monsoonal China and the westerly-dominated region in northwestern China. Overall, our comprehensive palaeoclimatic dataset and models may be significant tools for understanding the Holocene Asian monsoonal evolution and for anticipating its future dynamics in eastern Asia.
NASA Astrophysics Data System (ADS)
Stein, R. H.; Fahl, K.; Gierz, P.; Niessen, F.; Lohmann, G.
2017-12-01
Over the last about four decades, coinciding with global warming and atmospheric CO2increase, the extent and thickness of Arctic sea ice has decreased dramatically, a decrease much more rapid than predicted by climate models. The driving forces of this change are still not fully understood. In this context, detailed paleoclimatic records going back beyond the timescale of direct observations, i.e., high-resolution Holocene records but also records representing more distant warm periods, may help to to distinguish and quantify more precisely the natural and anthropogenic greenhouse gas forcing of global climate change and related sea ice decrease. Here, we concentrate on sea ice biomarker records representing the penultimate glacial/last interglacial (MIS 6/MIS 5e) and the Holocene time intervals. Our proxy records are compared with climate model simulations using a coupled atmosphere-ocean general circulation model (AOGCM). Based on our data, polynya-type sea ice conditions probably occurred off the major ice sheets along the northern Barents and East Siberian continental margins during late MIS 6. Furthermore, we demonstrate that even during MIS 5e, i.e., a time interval when the high latitudes have been significantly warmer than today, sea ice existed in the central Arctic Ocean during summer, whereas sea ice was significantly reduced along the Barents Sea continental margin influenced by Atlantic Water inflow. Assuming a closed Bering Strait (no Pacific Water inflow) during early MIS 5, model simulations point to a significantly reduced sea ice cover in the central Arctic Ocean, a scenario that is however not supported by the proxy record and thus seems to be less realistic. Our Holocene biomarker proxy records from the Chukchi Sea indicate that main factors controlling the millennial Holocene variability in sea ice are probably changes in surface water and heat flow from the Pacific into the Arctic Ocean as well as the long-term decrease in summer insolation. Here, increased Pacific Water inflow (and heat flux) may have triggered the contemporaneous decrease in sea ice and maximum surface-water productivity during mid-Holocene times.
Mid-to-late Holocene climate change record in palaeo-notch sediment from London Island, Svalbard
NASA Astrophysics Data System (ADS)
Yang, Zhongkang; Sun, Liguang; Zhou, Xin; Wang, Yuhong
2018-06-01
The Arctic region is very sensitive to climate change and important in the Earth's climate system. However, proxy datasets for Arctic climate are unevenly distributed and especially scarce for Svalbard because glaciers during the Little Ice Age, the most extensive in the Holocene, destroyed large quantities of sediment records in Svalbard. Fortunately, palaeo-notch sediments could withstand glaciers and be well-preserved after deposition. In this study, we reconstructed a mid-to-late Holocene record of climate changes in a palaeo-notch sediment sequence from London Island. Multiple weathering indices were determined, they all showed consistent weathering conditions in the study area, and they were closely linked to climate changes. Total organic carbon (TOC) and total nitrogen (TN) were also determined, and their variation profiles were similar to those of weathering indices. The climate change record in our sediment sequence is consistent with ice rafting record from North Atlantic and glacier activity from Greenland, Iceland and Svalbard, and four cold periods are clearly present. Our study provides a relatively long-term climate change record for climate conditions from mid-to-late Holocene in Svalbard.
NASA Astrophysics Data System (ADS)
Kolling, H. M.; Stein, R. H.; Fahl, K.
2016-12-01
Sea is a critical component of the climate system and its role is not yet fully understood e.g. the recent rapid decrease in sea ice is not clearly reflected in climate models. This illustrates the need for high-resolution proxy-based sea-ice reconstructions going beyond the time scale of direct measurements in order to understand the processes controlling present and past natural variability of sea ice on short time scales. Here we present the first comparison of two high-resolution biomarker records from the East and West Greenland Shelf for the late Holocene. Both areas are highly sensitive to sea-ice changes as they are influenced by the East Greenland Current, the main exporter of Arctic freshwater and sea ice. On the East Greenland Shelf, we do not find any clear evidence for a long-term increase of sea ice during the late Holocene Neoglacial. This sea-ice record seems to be more sensitive to short-term climate events, such as the Roman Warm Period, the Dark Ages, the Medieval Warm Period and the Little Ice Age. In contrary, the West Greenland Shelf record shows a strong and gradual increase in sea ice concentration and a reduction in marine productivity markers starting near 1.6 ka. In general, the increase in sea ice seems to follow the decreasing solar insolation trend. Short-term events are not as clearly pronounced as on the East Greenland Shelf. A comparison to recently published foraminiferal records from the same cores (Perner et al., 2011, 2015) illuminates the differences of biomarker and micropaleontoligical proxies. It seems that the general trend is reflected in both proxies but the signal of small-scale events is preserved rather differently, pointing towards different environmental requirements of the species behind both proxies. References: Perner, K., et al., 2011. Quat. Sci. Revs. 30, 2815-2826 Perner, K., et al., 2015. Quat. Sci. Revs. 129, 296-307
NASA Astrophysics Data System (ADS)
Peros, M. C.; Chan, K.; Ponsford, L.; Carroll, J.; Magnan, G.
2014-12-01
Raised peat bogs receive all precipitation and nutrients from the atmosphere and are thus widely used archives for information on past environments and climates. In this paper we provide high-resolution multi-proxy data from a raised bog from northeastern Prince Edward Island, located in the Gulf of St. Lawrence, Canada. We studied testate amoeba (a proxy for water table depth), macrocharcoal (a proxy for local-scale fire), peat humification (a proxy for decomposition), plant macrofossils (indicative of local-scale vegetation), and organic matter content (yielding carbon accumulation rates) from a 5.5 m long core lifted from the center of Baltic Bog. Eleven AMS radiocarbon dates show that peat accumulation began before 9000 cal yr BP and continued almost uninterrupted until the present. The macrofossil data show that a transition from a sedge-dominated fen to a sphagnum-dominated bog occurred around 8000 cal yr BP, and sphagnum remained dominant in the bog throughout most of the Holocene. A testate amoeba-based reconstruction of water table depth indicates that conditions were drier during the early Holocene (~8000 to 5000 cal yr BP) and became gradually wetter into the late Holocene. In addition, a number of higher frequency shifts in precipitation are inferred throughout the Holocene on the basis of the testate amoeba and humification results. The macrocharcoal evidence indicates fire—probably in the surrounding forest—was relatively more common during the early Holocene, perhaps due to drier climate conditions. A large influx of charcoal at around 2000 cal yr BP suggests the presence of one or more major fires at this time, and a concurrent decrease in the rate of peat accumulation indicates the fire may have affected the bog itself. The data from Baltic Bog is broadly comparable to other proxy data (in particular pollen studies) from the Canadian Maritimes. This work is important because it: 1) helps us better understand the role of hydroclimatic variability in influencing peat bog ecosystems; and 2), represents one of the few peat-based records of Holocene paleoclimate from the region.
High-resolution proxy record of Holocene climate from a loess section in Southwestern Nebraska, USA
Miao, X.; Mason, J.A.; Johnson, W.C.; Wang, Hongfang
2007-01-01
Multi-proxy analysis was used to produce a high-resolution paleoclimatic record from an exceptionally thick section of the Holocene Bignell Loess near Wauneta, Southwestern Nebraska, in the central Great Plains. The Wauneta section has excellent age control, based on optically stimulated luminescence (OSL) and radiocarbon dating, and records multiple episodes of rapid loess deposition alternating with slower deposition and soil formation. The lowermost and uppermost OSL ages obtained from the Bignell Loess are 10,250 ?? 610??years (5.9??m depth) and 100 ?? 10??years (0.1??m depth), respectively. As a result, the Holocene has been temporally confined. Stratigraphically, the Bignell Loess overlies the Late Pleistocene Peoria Loess (deposited ??? 21-14??ka), and the two units are separated by the Brady Soil which is distinguished by its color and other pedogenic features. L*a*b* color parameters and organic carbon content of Bignell Loess are sensitive proxies to differentiate drought-induced aeolian sediment layers from the intercalated soil horizons. Soil organic carbon-derived ??13C data suggest that the C3-dominated floral environment during Peoria Loess deposition shifted dramatically to a C4-dominated environment during Brady Soil formation in response to a warming trend. Even greater C4 abundance characterized the late Holocene. High-resolution ??13C data support the contention that C3 vs. C4 vegetation change in the Holocene reflects ecosystem response to frequent vegetation disturbance under arid conditions. Time series analysis reveals that ??13C and color parameters display high frequency variation with periodicities of 103-118??years and 103??years, respectively. Similar periodicities were also reported in studies of North Dakota lakes, though the physical mechanism responsible is uncertain. Comparison of Bignell Loess color and tropical Pacific sea surface temperatures (SSTs) allows evaluation of a proposed teleconnection between drought in the Great Plains and La Nin??a-like conditions in the tropical Pacific. The loess color index and eastern tropical Pacific SST display broad similarities through the late Pleistocene and Holocene that are consistent with this teleconnection. On the other hand, drought centered at 3800??years ago is not consistent with the teleconnection, and the end of early Holocene aridity at the Wauneta section, around 6500??years ago, is much earlier than the corresponding rise in SST and increase in El Nin??o frequency in the eastern tropical Pacific. ?? 2006 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Lacey, Jack H.; Francke, Alexander; Leng, Melanie J.; Vane, Christopher H.; Wagner, Bernd
2015-09-01
Lake Ohrid (Macedonia/Albania) is the oldest extant lake in Europe and exhibits an outstanding degree of endemic biodiversity. Here, we provide new high-resolution stable isotope and geochemical data from a 10 m core (Co1262) through the Late Glacial to Holocene and discuss past climate and lake hydrology (TIC, δ13Ccalcite, δ18Ocalcite) as well as the terrestrial and aquatic vegetation response to climate (TOC, TOC/N, δ13Corganic, Rock Eval pyrolysis). The data identifies 3 main zones: (1) the Late Glacial-Holocene transition represented by low TIC and TOC contents, (2) the early to mid-Holocene characterised by high TOC and increasing TOC/N and (3) the Late Holocene-Present which shows a marked decrease in TIC and TOC. In general, an overall trend of increasing δ18Ocalcite from 9 ka to present suggests progressive aridification through the Holocene, consistent with previous records from Lake Ohrid and the wider Mediterranean region. Several proxies show commensurate excursions that imply the impact of short-term climate oscillations, such as the 8.2 ka event and the Little Ice Age. This is the best-dated and highest resolution archive of past Late Glacial and Holocene climate from Lake Ohrid and confirms the overriding influence of the North Atlantic in the north-eastern Mediterranean. The data presented set the context for the International Continental scientific Drilling Program Scientific Collaboration On Past Speciation Conditions in Lake Ohrid project cores recovered in spring-summer 2013, potentially dating back into the Lower Pleistocene, and will act as a recent calibration to reconstruct climate and hydrology over the entire lake history.
NASA Astrophysics Data System (ADS)
Polk, J. S.; van Beynen, P.
2007-12-01
Carbon isotopes from cave sediments collected from Jennings Cave in Marion County, Florida were analyzed using a multi-proxy approach. Fulvic acids (FAs), humic acids (HAs), black carbon, phytoliths, and bulk organic matter were extracted from the sediments for carbon isotope analysis to determine periods of vegetation change caused by climatic influences during the Late Holocene (~\\ 2,800 years BP). The carbon isotope record ranges from -35‰ to -14‰, exhibiting variability of ~\\ -21‰, within the different proxies, which indicates changes between C3 and C4 vegetation. This likely indicates changes between a sub-tropical forested environment and more arid, grassy plains conditions. These changes in plant assemblages were in response to changes in available water resources, with increased temperatures and evapotranspiration leading to arid conditions and a shift toward less C3 vegetation (increased C4 vegetation) during the MWP. The cave sediment fulvic acid cabon isotopes record agrees well with ä13C values from a speleothem collected nearby that covers the same time period. Prolonged migration of the NAO and ITCZ affects precipitation in Florida and likely caused vegetation changes during these climatic shifts.
Uncoupling human and climate drivers of late Holocene vegetation change in southern Brazil.
Robinson, Mark; De Souza, Jonas Gregorio; Maezumi, S Yoshi; Cárdenas, Macarena; Pessenda, Luiz; Prufer, Keith; Corteletti, Rafael; Scunderlick, Deisi; Mayle, Francis Edward; De Blasis, Paulo; Iriarte, José
2018-05-17
In the highlands of southern Brazil an anthropogenitcally driven expansion of forest occurred at the expense of grasslands between 1410 and 900 cal BP, coincident with a period of demographic and cultural change in the region. Previous studies have debated the relative contributions of increasing wetter and warmer climate conditions and human landscape modifications to forest expansion, but generally lacked high resoltiuon proxies to measure these effects, or have relied on single proxies to reconstruct both climate and vegetation. Here, we develop and test a model of natural ecosystem distribution against vegetation histories, paleoclimate proxies, and the archaeological record to distinguish human from temperature and precipitation impacts on the distribution and expansion of Araucaria forests during the late Holocene. Carbon isotopes from soil profiles confirm that in spite of climatic fluctuations, vegetation was stable and forests were spatially limited to south-facing slopes in the absence of human inputs. In contrast, forest management strategies for the past 1400 years expanded this economically important forest beyond its natural geographic boundaries in areas of dense pre-Columbian occupation, suggesting that landscape modifications were linked to demographic changes, the effects of which are still visible today.
Whitlock, Cathy; Dean, Walter E.; Fritz, Sherilyn C.; Stevens, Lora R.; Stone, Jeffery R.; Power, Mitchell J.; Rosenbaum, Joseph R.; Pierce, Kenneth L.; Bracht-Flyr, Brandi B.
2012-01-01
A 9400-yr-old record from Crevice Lake, a semi-closed alkaline lake in northern Yellowstone National Park, was analyzed for pollen, charcoal, geochemistry, mineralogy, diatoms, and stable isotopes to develop a nuanced understanding of Holocene environmental history in a region of northern Rocky Mountains that receives both summer and winter precipitation. The limited surface area, conical bathymetry, and deep water (> 31 m) of Crevice Lake create oxygen-deficient conditions in the hypolimnion and preserve annually laminated sediment (varves) for much of the record. Pollen data indicate that the watershed supported a closed Pinus-dominated forest and low fire frequency prior to 8200 cal yr BP, followed by open parkland until 2600 cal yr BP, and open mixed-conifer forest thereafter. Fire activity shifted from infrequent stand-replacing fires initially to frequent surface fires in the middle Holocene and stand-replacing events in recent centuries. Low values of δ18O suggest high winter precipitation in the early Holocene, followed by steadily drier conditions after 8500 cal yr BP. Carbonate-rich sediments before 5000 cal yr BP imply warmer summer conditions than after 5000 cal yr BP. High values of molybdenum (Mo), uranium (U), and sulfur (S) indicate anoxic bottom-waters before 8000 cal yr BP, between 4400 and 3900 cal yr BP, and after 2400 cal yr BP. The diatom record indicates extensive water-column mixing in spring and early summer through much of the Holocene, but a period between 2200 and 800 cal yr BP had strong summer stratification, phosphate limitation, and oxygen-deficient bottom waters. Together, the proxy data suggest wet winters, protracted springs, and warm effectively wet summers in the early Holocene and less snowpack, cool springs, warm dry summers in the middle Holocene. In the late Holocene, the region and lake experienced extreme changes in winter, spring, and summer conditions, with particularly short springs and dry summers and winters during the Roman Warm Period (~ 2000 cal yr BP) and Medieval Climate Anomaly (1200–800 cal yr BP). Long springs and mild summers occurred during the Little Ice Age, and these conditions persist to the present. Although the proxy data indicate effectively wet summer conditions in the early Holocene and drier conditions in the middle and late Holocene, none point specifically to changes in summer precipitation as the cause. Instead, summer conditions were governed by multi-seasonal controls on effective moisture that operated over multiple time scales.
NASA Astrophysics Data System (ADS)
Ziehmer, Malin Michelle; Nicolussi, Kurt; Schlüchter, Christian; Leuenberger, Markus
2017-04-01
High-resolution climate reconstructions based on tree-ring proxies are often limited by the individual segment length of living trees selected at the defined sampling sites, which mostly results in relatively short multi-centennial proxy series. A potential extension of living wood records comprise the addition of subfossil and archeological wood remains resulting in chronologies and associated climate reconstructions which are able to cover a few millennia in central Europe (e.g. Büntgen et al., 2011). However, existing multi-millennial tree-ring width chronologies in central Europe rank among the longest continuous chronologies world-wide and span the entire Holocene (Becker et al., 1993; Nicolussi et al. 2009). So far, these chronologies have mainly been used for dating subfossil wood samples, floating chronologies and archeological artifacts, but only in parts for reconstructing climate. Finds of Holocene wood remains in glacier forefields, peat bogs and small lakes allow us not only to establish such long-term tree-ring width records; further they offer the possibility to establish multi-millennial proxy records for the entire Holocene by using a multi-proxy approach which includes both tree-ring width and triple stable isotope ratios. As temperature limits tree growth at the Alpine upper tree line, the existing tree-ring width records are currently limited to reconstruct a single environmental variable. In the framework of the project Alpine Holocene Tree Ring Isotope Records, we combine tree-ring width, cellulose content as well as carbon, oxygen and hydrogen isotope series in a multi-proxy approach which allows the reconstruction of past environments by combining both Holocene wood remains and recent tree samples from two Alpine tree-line species. For this purpose, α-cellulose is prepared from 5-year tree ring blocks following the procedure after Boettger et al. (2007) and subsequently crushed by ultrasonic homogenization (Laumer et al., 2009). The cellulose content is determined for each individual sample and carbon, oxygen and hydrogen isotopic ratios are measured simultaneously (Loader et al., 2015). The isotope records of carbon, oxygen and hydrogen show distinct low-frequency trends for the Early- and Mid-Holocene, but the individual series per proxy are often offset in their isotopic signature. As the sampling sites in our study are distributed along a SW-NE transect, the influence of the site conditions (latitude, longitude, elevation, exposition) and the tree species is tested and subsequently a correction is applied to the individual series. In addition, the tree-ring width records operate as a helpful tool in detecting and attributing the influence of larch budmoth outbreaks on the cellulose content and isotope records. We here present a synthesis of the applied multi-proxy approach and its ability to reconstruct Holocene climate variability for the time span from 9000 to 3500 years b2k covering the Early-Holocene (9000 to 7200 years b2k) and Mid-Holocene (7200 to 4200 years b2k) and the transition to the late Holocene (4200 to 3500 years b2k) as well as the recent 400 years including the modern warming. References Becker, B., & Kromer, B. Palaeogeogr. Palaeoclimatol. Palaeoecol., 1993, 103(1): 67-71 Boettger, T., et al. Anal. Chem., 2007, 79: 4603-4612 Büntgen, U. et al. Science, 2011, 331(6017): 578-582 Laumer, W., et al. Rapid Commun. Mass Spectrom., 2009, 23: 1934-1940 Loader, N.J., et al. Anal. Chem., 2015, 87: 376-380 Nicolussi K., et al. The Holocene, 2009, 19(6): 909-920
Luo, C.; Yang, D.; Peng, Z.; Zhang, Z.; Weiguo, L.; He, J.; Zhou, C.
2008-01-01
A 10.35-m-long sediment core from the Luobei depression in Lop-Nur, Xinjiang, Northwest China, provides detailed information about environmental changes during the Late Pleistocene. The samples taken every 5 cm of the core were analyzed for 10 environmental proxies, including magnetic susceptibility, granularity, chroma, carbonate and loss on ignition (LOI), and pH value. The chronology data are provided by the uranium/thorium disequilibrium dates. The sediments of the section were deposited during the last 32000 years. The results of analysis of 10 proxies were examined using multivariate statistical analysis, and the principal components were calculated. According to the results, the Late Pleistocene sequence contains four climatic and environmental stages appearing in the cycles of cold-wet and warm-dry changes. During 10-9 ka BP, it was the earliest warm episode in the Holocene. Environmental changes in this district were restricted by global change, as suggested by the analysis of glacial-interglacial cycles. But it was different from the mutative trend of a monsoon region in East China because of its own characteristics, which was the situation of cold-wet and warm-dry climate-environment change. The candidate reason may be the uplift of the Tibet Plateau and the westerly wind circulation. ?? Science Press, Institute of Geochemistry, CAS and Springer-Verlag GmbH 2008.
North Siberian Permafrost reveals Holocene Arctic Winter Warming
NASA Astrophysics Data System (ADS)
Meyer, H.; Opel, T.; Laepple, T.; Alexander, D.; Hoffmann, K.; Werner, M.
2014-12-01
The Arctic climate has experienced a major warming over the past decades, which is unprecedented in the last 2000 yrs. There are, however, still major uncertainties about the temperature evolution during the Holocene. Most proxy reconstructions suggest a cooling in mid-and late Holocene (e.g. Wanner, 2008), whereas climate model simulations show only weak changes or even a moderate warming (e.g. Lohmann et al., 2013). In this study, we used ice wedges as promising permafrost climate archive studied by stable water isotope methods. Ice wedges may be identified by vertically oriented foliations, and they form by the repeated filling of winter thermal contraction cracks by snow melt water in spring. Therefore, the isotopic composition of wedge ice may be attributed to the climate conditions of the cold season (i.e. winter and spring). 42 samples of organic material enclosed in ice wedges have been directly dated by Radiocarbon methods. Here, we present the first terrestrial stable oxygen isotope record of Holocene winter temperatures in up to centennial-scale resolution based on permafrost ice wedges (Lena River Delta; Siberian Arctic). The Lena ice-wedge record shows that the recent isotopic temperatures are the highest of the past 7000 years. Despite similarities to Arctic temperature reconstructions of the last two millennia (Kaufman et al., 2009), it suggests a winter warming throughout the mid and late Holocene, opposite to most existing other proxy records (Wanner, 2008). This apparent contradiction can be explained by the seasonality of the ice-wedge genesis in combination with orbital and greenhouse gas forcing and is consistent with climate model simulations. We conclude that the present model-data mismatch might be an artefact of the summer bias of the existing proxy records and thus, our record helps to reconcile the understanding of the northern hemisphere Holocene temperature evolution. This is particular true for the Russian Arctic significantly underrepresented in Arctic-wide climate reconstructions. Kaufman, D. S. et al. Science 325, 1236-1239 (2009).Wanner, H. et al. Quat. Sci. Rev. 27, 1791-1828, (2008).Lohmann, G., Pfeiffer, M., Laepple, T., Leduc, G. & Kim, J. H. Clim. Past 9, 1807-1839, (2013).
NASA Astrophysics Data System (ADS)
Sharifi, Arash; Pourmand, Ali; Canuel, Elizabeth A.; Ferer-Tyler, Erin; Peterson, Larry C.; Aichner, Bernhard; Feakins, Sarah J.; Daryaee, Touraj; Djamali, Morteza; Beni, Abdolmajid Naderi; Lahijani, Hamid A. K.; Swart, Peter K.
2015-09-01
We present a high-resolution (sub-decadal to centennial), multi-proxy reconstruction of aeolian input and changes in palaeohydrological conditions based on a 13000 Yr record from Neor Lake's peripheral peat in NW Iran. Variations in relative abundances of refractory (Al, Zr, Ti, and Si), redox sensitive (Fe) and mobile (K and Rb) elements, total organic carbon (TOC), δ13CTOC, compound-specific leaf wax hydrogen isotopes (δD), carbon accumulation rates and dust fluxes presented here fill a large gap in the existing terrestrial paleoclimate records from the interior of West Asia. Our results suggest that a transition occurred from dry and dusty conditions during the Younger Dryas (YD) to a relatively wetter period with higher carbon accumulation rates and low aeolian input during the early Holocene (9000-6000 Yr BP). This period was followed by relatively drier and dustier conditions during middle to late Holocene, which is consistent with orbital changes in insolation that affected much of the northern hemisphere. Numerous episodes of high aeolian input spanning a few decades to millennia are prevalent during the middle to late Holocene. Wavelet analysis of variations in Ti abundances as a proxy for aeolian input revealed notable periodicities at 230, 320, and 470 years with significant periodicities centered around 820, 1550, and 3110 years over the last 13000 years. Comparison with palaeoclimate archives from West Asia, the North Atlantic and African lakes point to a teleconnection between North Atlantic climate and the interior of West Asia during the last glacial termination and the Holocene epoch. We further assess the potential role of abrupt climate change on early human societies by comparing our record of palaeoclimate variability with historical, geological and archaeological archives from this region. The terrestrial record from this study confirms previous evidence from marine sediments of the Arabian Sea that suggested climate change influenced the termination of the Akkadian empire. In addition, nearly all observed episodes of enhanced dust deposition during the middle to late Holocene coincided with times of drought, famine, and power transitions across the Iranian Plateau, Mesopotamia and the eastern Mediterranean region. These findings indicate that while socio-economic factors are traditionally considered to shape ancient human societies in this region, the influence of abrupt climate change should not be underestimated.
NASA Astrophysics Data System (ADS)
Peck, Victoria L.; Allen, Claire S.; Kender, Sev; McClymont, Erin L.; Hodgson, Dominic A.
2015-07-01
Recent intensification of wind-driven upwelling of warm upper circumpolar deep water (UCDW) has been linked to accelerated melting of West Antarctic ice shelves and glaciers. To better assess the long term relationship between UCDW upwelling and the stability of the West Antarctic Ice Sheet, we present a multi-proxy reconstruction of surface and bottom water conditions in Marguerite Bay, West Antarctic Peninsula (WAP), through the Holocene. A combination of sedimentological, diatom and foraminiferal records are, for the first time, presented together to infer a decline in UCDW influence within Marguerite Bay through the early to mid Holocene and the dominance of cyclic forcing in the late Holocene. Extensive glacial melt, limited sea ice and enhanced primary productivity between 9.7 and 7.0 ka BP is considered to be most consistent with persistent incursions of UCDW through Marguerite Trough. From 7.0 ka BP sea ice seasons increased and productivity decreased, suggesting that UCDW influence within Marguerite Bay waned, coincident with the equatorward migration of the Southern Hemisphere Westerly Winds (SWW). UCDW influence continued through the mid Holocene, and by 4.2 ka BP lengthy sea ice seasons persisted within Marguerite Bay. Intermittent melting and reforming of this sea ice within the late Holocene may be indicative of episodic incursions of UCDW into Marguerite Bay during this period. The cyclical changes in the oceanography within Marguerite Bay during the late Holocene is consistent with enhanced sensitively to ENSO forcing as opposed to the SWW-forcing that appears to have dominated the early to mid Holocene. Current measurements of the oceanography of the WAP continental shelf suggest that the system has now returned to the early Holocene-like oceanographic configuration reported here, which in both cases has been associated with rapid deglaciation.
NASA Astrophysics Data System (ADS)
Perello, M. M.; Bird, B. W.; Lei, Y.; Polissar, P. J.; Thompson, L. G.; Yao, T.
2017-12-01
The Tibetan Plateau is the headwaters of several major river systems in South Asia, which serve as essential water resources for more than 40% of the world's population. The majority of regional precipitation that sustains these water resources is from the Indian summer monsoon (ISM), which can experience considerably variability in response to local and remote forcings and teleconnections. Despite the ISM's importance, its sensitivity to long term and abrupt changes in climatic boundary conditions is not well established with the modern instrumental record or the available body of paleoclimate data. Here, we present results from an ongoing study that utilizes lake sediment records to provide a longer record of relative levels of precipitation and lake level during the monsoon season. The sediments cores used in this study were collected from five lakes along an east-west transect in the Eastern Tibetan Plateau (87-95°E). Using these records, we assess temporal and spatial variability in the intensity of the ISM throughout the Holocene on decadal frequencies. Multiple proxies, including sedimentology, grain size, geochemistry, terrestrial and aquatic leaf wax isotopes, and diatom community assemblages, are used to assess paleo-precipitation and lake level. Preliminary records from our lakes indicate regional trends in monsoon strength, with higher lake levels in the Early Holocene, but with greater variability in the Late Holocene than in other regional paleoclimate records. We have also observed weak responses in our lakes to the Late Holocene events, the Medieval Climate Anomaly and the Little Ice Age. These paleoclimate reconstructions furthers our understanding of strong versus weak monsoon intensities and can be incorporated in climate models for predicting future monsoon conditions.
Soil-landscape development and late Quaternary environmental change in coastal Estremadura, Portugal
NASA Astrophysics Data System (ADS)
Daniels, Michael; Haws, Jonathan; Benedetti, Michael; Bicho, Nuno
2015-04-01
This poster integrates soil-landscape analysis with archaeological survey and paleoenvironmental reconstruction. Soils in surface and buried contexts in Estremadura, Portugal, provide evidence of landscape stability and instability, relative age relationships between landforms, and general paleoenvironmental conditions during the late Quaternary. These factors provide insight into the distribution and condition of Paleolithic archaeological sites and help understand the record of human settlement in the region. Late Pleistocene and Holocene dunes extend inland approximately 10 km from coastal source regions. Surface soils in Holocene dunes under maritime pine (Pinus pinaster) forest exhibit A, E, C/Bh and A, C horizon sequences and classify as Quartzipsamments. Surface soils in late Pleistocene dunes exhibit A, E, Bh, Bhs, Bs horizon sequences and classify as Haplorthods. Both Pleistocene and Holocene dunes commonly bury a heavily weathered soil formed in calcareous sandstone. The boundary between underlying buried soils and overlying surface soils is characterized by a lag deposit of medium to coarse, moderately-rounded gravels, underlain immediately by subsurface Bt and Bss horizons. The lag deposit and absence of buried A horizons both indicate intense and/or prolonged surface erosion prior to burial by late Quaternary dunes. Soil-geomorphic relationships therefore suggest at least two distinct episodes of dune emplacement and subsequent landscape stability following an extensive episode late Pleistocene landscape instability and soil erosion. A conceptual model of soil-landscape evolution through the late Quaternary and Holocene results from the integration of soil profile data, proxy paleoenvironmental data, and the partial record of human settled as revealed in the archaeological record.
NASA Astrophysics Data System (ADS)
Filikci, Betül; Eriş, Kürşad Kadir; Çağatay, Namık; Sabuncu, Asen; Polonia, Alina
2017-10-01
Multi-proxy analyses of new piston core M13-08 together with seismic data from the Gulf of Gemlik provide a detailed record of paleoceanographic and paleoclimatic changes with special emphasis on the timing of the connections between the Sea of Marmara (SoM) and the Gulf of Gemlik during the late Pleistocene to Holocene. The deposition of a subaqueous delta sourced from the Armutlu River to the north is attributed to the lowstand lake level at -60 m in the gulf prior to 13.5 cal ka BP. On the basis of the seismic data, it is argued that the higher lake level (-60 m) in the gulf compared to the SoM level (-85 m) attests to its disconnection from the SoM during the late glacial period. Ponto-Caspian assemblages in the lacustrine sedimentary unit covering the time period between 13.5 and 12 cal ka BP represent a relict that was introduced into the gulf by a Black Sea outflow during the marine isotope stage 3 interstadial. Contrary to the findings of previous studies, the data suggest that such an outflow into the Gulf of Gemlik during the late glacial period could have occurred only if the SoM lake level (-85 m) was shallower than the sill depth (-55 m) of the gulf in the west. A robust age model of the core indicates the connection of the gulf with the marine SoM at 12 cal ka BP, consistent with the sill depth (-55 m) of the gulf on the global sea level curve. Strong evidence of a marine incursion into the gulf is well documented by the μ-XRF Sr/Ca data. The available profiles of elemental ratios in core M13-08, together with the age-depth model, imply that a warm and wet climate prevailed in the gulf during the early Holocene (12-10.1 cal ka BP), whereas the longest drought occurred during the middle Holocene (8.2-5.4 cal ka BP). The base of the main Holocene sapropel in the gulf is dated at 10.1 cal ka BP, i.e., 500 years younger than its equivalent in the SoM. The late Holocene is earmarked by warm and wet climate periods (5.0-4.2 and 4.2-2.7 cal ka BP) with some brief cold/dry periods (4.2 and 2.7-0.9 cal ka BP).
NASA Astrophysics Data System (ADS)
Lacey, Jack; Francke, Alexander; Leng, Melanie; Vane, Chris; Wagner, Bernd
2015-04-01
Lake Ohrid (Macedonia/Albania) is one of the world's oldest lakes and is renowned for its high degree of biological diversity. It is the target site for the ICDP SCOPSCO (Scientific Collaboration on Past Speciation Conditions in Lake Ohrid) project, an international research initiative to study the links between geology, environment and the evolution of endemic taxa. In 2011 a 10-meter core was recovered from the western shore of Lake Ohrid adjacent to the Lini Peninsula. Here we present high-resolution stable isotope and geochemical data from this core through the Late Glacial to Holocene to reconstruct past climate and hydrology (TIC, δ18Ocalcite, δ13Ccalcite) as well as the terrestrial and aquatic vegetation response to climate (TOC, TOC/N, δ13Corganic, Rock-Eval pyrolysis). The data identify 3 main zones: (1) the Late Glacial-Holocene transition represented by low TIC, TOC and higher isotope values, (2) the early to mid-Holocene characterised by higher TOC, TOC/N and lower δ18Ocalcite, and (3) the late Holocene which shows a marked decrease in TIC and TOC. In general there is an overall trend of increasing δ18Ocalcite from 9 ka to present, suggesting progressive aridification through the Holocene, which is consistent with previous records from Lake Ohrid and the wider Mediterranean region. Several proxies show commensurate excursions that imply the impact of short-term climate oscillations, such as the 8.2 ka event and the Little Ice Age. This is the best-dated and highest resolution archive of Late Glacial and Holocene climate from Lake Ohrid and confirms the overriding influence of the North Atlantic in the north-eastern Mediterranean. The data presented set the context for the SCOPSCO project cores recovered in spring-summer 2013 dating back into the Lower Pleistocene, and will act as a recent calibration to reconstruct climate and hydrology over the entire lake history.
NASA Astrophysics Data System (ADS)
Matthews-Bird, F.; Gosling, W. D.; Brooks, S. J.; Montoya, E.; Coe, A. L.
2014-12-01
Chironomidae (non-biting midges) is a family of two-winged aquatic insects of the order Diptera. They are globally distributed and one of the most diverse families within aquatic ecosystems. The insects are stenotopic, and the rapid turnover of species and their ability to colonise quickly favourable habitats means chironomids are extremely sensitive to environmental change, notably temperature. Through the development of quantitative temperature inference models chironomids have become important palaeoecological tools. Proxies capable of generating independent estimates of past climate are crucial to disentangling climate signals and ecosystem response in the palaeoecological record. This project has developed the first modern environmental calibration data set in order to use chironomids from the Tropical Andes as quantitative climate proxies. Using surface sediments from c. 60 lakes from Bolivia, Peru and Ecuador we have developed an inference model capable of reconstructing temperatures, with a prediction error of 1-2°C, from fossil assemblages. Here we present the first Lateglacial and Holocene chironomid-inferred temperature reconstructions from two sites in the tropical Andes. The first record, from a high elevation (4153 m asl) lake in the Bolivian Andes, shows persistently cool temperatures for the past 15 kyr, punctuated by warm episodes in the early Holocene (9-10 kyr BP). The chironomid-inferred Holocene temperature trends from a lake sediment record on the eastern Andean flank of Ecuador (1248 m asl) spanning the last 5 millennia are synchronous with temperature changes in the NGRIP ice core record. The temperature estimates suggest along the eastern flank of the Andes, at lower latitudes (~1°S), climate closely resemble the well-established fluctuations of the Northern Hemisphere for this time period. Late-glacial climate fluctuations across South America are still disputed with some palaeoecological records suggesting evidence for Younger Dryas like events. Estimates from quantitative climate proxies such as chironomids will help constrain these patterns and further our understanding of climate teleconnections on Quaternary timescales.
NASA Astrophysics Data System (ADS)
Axford, Y.; Lasher, G. E.; McFarlin, J. M.; Francis, D. R.; Kelly, M. A.; Langdon, P. G.; Levy, L.; Osburn, M. R.; Osterberg, E. C.
2015-12-01
Insolation-driven warmth across the Arctic during the early to middle Holocene (the Holocene Thermal Maximum, or HTM) represents a geologically accessible analog for future warming and its impacts. Improved constraints on the magnitude and seasonality of HTM warmth around Greenland's margins can advance the use of paleoclimate data to test and improve climate and ice sheet models. Here we present an overview of our recent efforts to reconstruct climate through the Holocene around the margins of the Greenland Ice Sheet using multiple proxies in lake sediments. We use insect (chironomid) assemblages to derive quantitative estimates of Holocene temperatures at sites with minimal soil and vegetation development near the eastern, northwestern and western margins of the ice sheet. Our chironomid-based temperature reconstructions consistently imply HTM July air temperatures 3 to 4.5 °C warmer than the pre-industrial late Holocene in these sectors of Greenland. The timing of reconstructed peak warmth differs between sites, with onset varying from ~10 ka to ~6.5 ka, but in good agreement with glacial geology and other evidence from each region. Our reconstructed temperature anomalies are larger than those typically inferred from annually-integrated indicators from the ice sheet itself, but comparable to the few other quantitative summer temperature estimates available from beyond the ice sheet on Greenland. Additional records are needed to confirm the magnitude of HTM warmth and to better define its seasonality and spatial pattern. To provide independent constraints on paleotemperatures and to elucidate additional aspects of Holocene paleoclimate, we are also employing oxygen isotopes of chironomid remains and other aquatic organic materials, and molecular organic proxies, in parallel (see Lasher et al. and McFarlin et al., this meeting). Combined with glacial geologic evidence, these multi-proxy records elucidate diverse aspects of HTM climate around Greenland - including temperature, hydroclimate, and the response of Greenland's glaciers to past climate change.
Anderson, Lesleigh; Brunelle, Andrea; Thompson, Robert S.
2015-01-01
Apparent changes in vegetation distribution, fire, and other disturbance regimes throughout western North America have prompted investigations of the relative importance of human activities and climate change as potential causal mechanisms. Assessing the effects of Euro-American settlement is difficult because climate changes occur on multi-decadal to centennial time scales and require longer time perspectives than historic observations can provide. Here, we report vegetation and environmental changes over the past ~13,000 years as recorded in a sediment record from Bison Lake, a subalpine lake on a high plateau in northwestern Colorado. Results are based on multiple independent proxies, which include pollen, charcoal, and elemental geochemistry, and are compared with previously reported interpretations of hydroclimatic changes from oxygen isotope ratios. The pollen data indicate a slowly changing vegetation sequence from sagebrush steppe during the late glacial to coniferous forest through the late Holocene. The most dramatic vegetation changes of the Holocene occurred during the ‘Medieval Climate Anomaly’ (MCA) and ‘Little Ice Age’ (LIA) with rapid replacement of conifer forest by grassland followed by an equally rapid return to conifer forest. Late Holocene vegetation responses are mirrored by changes in fire, lake biological productivity, and watershed erosion. These combined records indicate that subsequent disturbance related to Euro-American settlement, although perhaps significant, had acted upon a landscape that was already responding to MCA-LIA hydroclimatic change. Results document both rapid and long-term subalpine grassland ecosystem dynamics driven by agents of change that can be anticipated in the future and simulated by ecosystem models.
Kern, A.K.; Harzhauser, M.; Piller, W.E.; Mandic, O.; Soliman, A.
2012-01-01
The Late Miocene paleogeography of central Europe and its climatic history are well studied with a resolution of c. 106 years. Small-scale climatic variations are yet unresolved. Observing past climatic change of short periods, however, would encourage the understanding of the modern climatic system. Therefore, past climate archives require a resolution on a decadal to millennial scale. To detect such a short-term evolution, a continuous 6-m-core of the Paleo-Lake Pannon was analyzed in 1-cm-sample distance to provide information as precise and regular as possible. Measurements of the natural gamma radiation and magnetic susceptibility combined with the total abundance of ostracod shells were used as proxies to estimate millennial- to centennial scale environmental changes during the mid-Tortonian warm period. Patterns emerged, but no indisputable age model can be provided for the core, due to the lack of paleomagnetic reversals and the lack of minerals suitable for absolute dating. Therefore, herein we propose another method to determine a hypothetic time frame for these deposits. Based on statistical processes, including Lomb–Scargle and REDFIT periodograms along with Wavelet spectra, several distinct cyclicities could be detected. Calculations considering established off-shore sedimentation rates of the Tortonian Vienna Basin revealed patterns resembling Holocene solar-cycle-records well. The comparison of filtered data of Miocene and Holocene records displays highly similar patterns and comparable modulations. A best-fit adjustment of sedimentation rate results in signals which fit to the lower and upper Gleissberg cycle, the de Vries cycle, the unnamed 500-year- and 1000-year-cycles, as well as the Hallstatt cycle. Each of these cycles has a distinct and unique expression in the investigated environmental proxies, reflecting a complex forcing-system. Hence, a single-proxy-analysis, as often performed on Holocene records, should be considered cautiously as it might fail to capture the full range of solar cycles. PMID:23564975
NASA Astrophysics Data System (ADS)
Lane, Chad S.; Taylor, Audrey K.; Spencer, Jessica; Jones, Kaylee B.
2018-02-01
Reconstructions of late Quaternary paleohydrology are rare from the U.S. Atlantic coastal plain (ACP). Here we present compound-specific hydrogen (δ2Halkane) and carbon (δ13Calkane) isotope analyses of terrestrially-derived n-alkanes from Jones Lake and Singletary Lake in eastern North Carolina spanning the last ∼50,000 years. Combined with pollen, charcoal, and bulk geochemical analyses, the δ2Halkane data indicate arid conditions during the late-Pleistocene, but differing edaphic conditions at the sites perhaps related to differing water table depths. The δ13Calkane data indicate a significant C4 plant component during the late Pleistocene, but other proxies indicate a sparsely-vegetated landscape. The Pleistocene-Holocene transition is marked by rapid fluctuations in δ2Halkane values that are similar to the patterns of Bølling Allerød and Younger Dryas isotope data from Greenland indicating sensitivity of the regional climate to short-lived, high-amplitude climatic events. The δ2Halkane data indicate a mesic early Holocene that supported colonization by Quercus-dominated ecosystems. Evidence of middle Holocene aridity in eastern Tennessee and western North Carolina contrasts with evidence of mesic conditions on the ACP, a geographic pattern similar to modern teleconnected precipitation responses to the Pacific Decadal Oscillation. A transition to Pinus-dominated ecosystems ∼5500 cal yr B.P. is accompanied by a large increase charcoal, but is not coincident with any large changes in δ2Halkane values, indicating that hydrologic change was likely not responsible for sustained late-Holocene dominance of Pinus. The lack of a change in middle Holocene hydrology and the spatiotemporally heterogeneous nature of the Quercus-Pinus transition on the ACP indicate prehistoric anthropogenic land management practices may represent the most parsimonious explanation for the regionally pervasive ecological change.
NASA Astrophysics Data System (ADS)
Harning, David J.; Geirsdóttir, Áslaug; Miller, Gifford H.; Anderson, Leif
2016-11-01
Non-linear climate change is often linked to rapid changes in ocean circulation, especially around the North Atlantic. As the Polar Front fluctuated its latitudinal position during the Holocene, Iceland's climate was influenced by both the warm Atlantic currents and cool, sea ice-bearing Arctic currents. Drangajökull is Iceland's fifth largest ice cap. Climate proxies in lake sediment cores, dead vegetation emerging from beneath the ice cap, and moraine segments identified in a new DEM constrain the episodic expansion of the ice cap over the past 3 ka. Collectively, our data show that Drangajökull was advancing at ∼320 BCE, 180 CE, 560 CE, 950 CE and 1400 CE and in a state of recession at ∼450 CE, 1250 CE and after 1850 CE. The Late Holocene maximum extent of Drangajökull occurred during the Little Ice Age (LIA), occupying 262 km2, almost twice its area in 2011 CE and ∼20% larger than recent estimates of its LIA dimensions. Biological proxies from the sediment fill in a high- and low-elevation lake suggest limited vegetation and soil cover at high elevations proximal to the ice cap, whereas thick soil cover persisted until ∼750 CE at lower elevations near the coast. As Drangajökull expanded into the catchment of the high-elevation lake beginning at ∼950 CE, aquatic productivity diminished, following a trend of regional cooling supported by proxy records elsewhere in Iceland. Correlations between episodes of Drangajökull's advance and the documented occurrence of drift ice on the North Icelandic Shelf suggest export and local production of sea ice influenced the evolution of NW Iceland's Late Holocene climate.
NASA Astrophysics Data System (ADS)
Moossen, H. M.; Seki, O.; Quillmann, U.; Andrews, J. T.; Bendle, J. A.
2012-12-01
Holocene climate change has affected human cultures throughout at least the last 4000 years (D'Andrea et al., 2011). Today, studying Holocene climate variability is important, both to constrain the influence of climate change on ancient cultures and to place contemporary climate change in a historic context. Organic geochemical biomarkers are an ideal tool to study how climatic changes have affected terrestrial and marine ecosystems, as a host of different biomarker based climate proxies have emerged over recent years. Applying the available biomarker proxies on sediment cores from fjordic environments facilitates the study of how climate has affected terrestrial and marine ecosystems, and how these ecosystems have interacted. Ìsafjardardjúp fjord in Northwest Iceland is an ideal location to study North Atlantic Holocene climate change because the area is very sensitive to changes in the oceanic and atmospheric current systems (Hurrell, 1995; Quillmann et al., 2010). In this study we present high resolution (1 sample/30 calibrated years) terrestrial and marine biomarker records from a 38 m sediment core from Ìsafjardardjúp fjord covering the Holocene. We reconstruct sea surface temperature variations using the alkenone derived UK'37 proxy. Air temperature changes are reconstructed using the GDGT derived MBT/CBT palaeothermometer. We use the average chain length (ACL) variability of n-alkanes derived from terrestrial higher plant leaf waxes to reconstruct changing precipitation regimes. The relationship between ACL and precipitation is confirmed by comparing it with the δD signature of the C29 n-alkane and soil pH changes inferred by the CBT proxy. The combined sea surface and air temperature and precipitation records indicate that different climate changing drivers were dominant at different stages of the Holocene. Sea surface temperatures were strongly influenced by the melting of the remaining glaciers from the last glacial maximum throughout the early Holocene, while air temperatures were influenced by high solar insolation. The central Holocene climate is mainly driven by decreasing northern hemisphere insolation, while the lateral transport of energy from the equator into the North Atlantic region drives climate change in the late Holocene. D'Andrea, W.J., Huang, Y., Fritz, S.C., Anderson, N.J., (2011) Abrupt Holocene climate change as an important factor for human migration in West Greenland. Proceedings of the National Academy of Sciences of the United States of America, 108(24), 9765-9769. Hurrell, J.W., (1995) Decadal trends in the North Atlantic Oscillation - Regional temperatures and precipitation. Science, 269(5224), 676-679. Quillmann, U., Jennings, A., Andrews, J., (2010) Reconstructing Holocene palaeoclimate and palaeoceanography in Isafjaroardjup, northwest Iceland, from two fjord records overprinted by relative sea-level and local hydrographic changes. Journal of Quaternary Science, 25(7), 1144-1159.
Salt lake Laguna de Fuente de Piedra (S-Spain) as Late Quaternary palaeoenvironmental archive
NASA Astrophysics Data System (ADS)
Höbig, Nicole; Melles, Martin; Reicherter, Klaus
2014-05-01
This study deals with Late Quaternary palaeoenvironmental variability in Iberia reconstructed from terrestrial archives. In southern Iberia, endorheic basins of the Betic Cordilleras are relatively common and contain salt or fresh-water lakes due to subsurface dissolution of Triassic evaporites. Such precipitation or ground-water fed lakes (called Lagunas in Spanish) are vulnerable to changes in hydrology, climate or anthropogenic modifications. The largest Spanish salt lake, Laguna de Fuente de Piedra (Antequera region, S-Spain), has been investigated and serves as a palaeoenvironmental archive for the Late Pleistocene to Holocene time interval. Several sediment cores taken during drilling campaigns in 2012 and 2013 have revealed sedimentary sequences (up to 14 m length) along the shoreline. A multi-proxy study, including sedimentology, geochemistry and physical properties (magnetic susceptibility) has been performed on the cores. The sedimentary history is highly variable: several decimetre thick silty variegated clay deposits, laminated evaporites, and even few-centimetre thick massive gypsum crystals (i.e., selenites). XRF analysis was focussed on valuable palaeoclimatic proxies (e.g., S, Zr, Ti, and element ratios) to identify the composition and provenance of the sediments and to delineate palaeoenvironmental conditions. First age control has been realized by AMS-radiocarbon dating. The records start with approximately 2-3 m Holocene deposits and reach back to the middle of MIS 3 (GS-3). The sequences contain changes in sedimentation rates as well as colour changes, which can be summarized as brownish-beige deposits at the top and more greenish-grey deposits below as well as highly variegated lamination and selenites below ca. 6 m depth. The Younger Dryas, Bølling/Allerød, and the so-called Mystery Interval/Last Glacial Maximum have presumably been identified in the sediment cores and aligned to other climate records. In general, the cores of the Laguna de Fuente de Piedra show cyclic deposition including evaporitic sequences throughout the Holocene and Late Pleistocene, indicating higher fluxes and reworking of organic/inorganic carbon as well as other indicative proxy elements like Ti, Zr and Ca/Sr ratio during Late Pleistocene times. In order to achieve a better understanding of the palaeoenvironmental history in the study area further studies are planned which encompass biological/palaeontological indicators (e.g., pollen, diatoms) as well as another geochemical isotopic techniques on evaporitic deposits such as fluid inclusion analysis.
NASA Astrophysics Data System (ADS)
Polk, J.; van Beynen, P.; DeLong, K. L.; Asmerom, Y.; Polyak, V. J.
2017-12-01
Teleconnections between the tropical-subtropical regions of the Americas since the Last Glacial Maximum (LGM), particularly the Mid- to Late-Holocene, and high-resolution proxy records refining climate variability over this period continue to receive increasing attention. Here, we present a high-resolution, precisely dated speleothem record spanning multiple periods of time since the LGM ( 30 ka) for the Florida peninsula. The data indicate that the amount effect plays a significant role in determining the isotopic signal of the speleothem calcite. Collectively, the records indicate distinct differences in climate in the region between the LGM, Mid-Holocene, and Late Holocene, including a progressive shift in ocean composition and precipitation isotopic values through the period, suggesting Florida's sensitivity to regional and global climatic shifts. Comparisons between speleothem δ18O values and Gulf of Mexico marine records reveal a strong connection between the Gulf region and the terrestrial subtropical climate in the Late Holocene, while the North Atlantic's influence is clear in the earlier portions of the record. Warmer sea surface temperatures correspond to enhanced evaporation, leading to more intense atmospheric convection in Florida, and thereby modulating the isotopic composition of rainfall above the cave. These regional signals in climate extend from the subtropics to the tropics, with a clear covariance between the speleothem signal and other proxy records from around the region, as well as global agreement during the LGM period with other records. These latter connections appear to be driven by changes in the mean position of the Intertropical Convergence Zone and time series analysis of the δ18O values reveals significant multidecadal periodicities in the record, which are evidenced by agreement with the AMV and other multidecadal influences (NAO and PDO) likely having varying influence throughout the period of record. The climate variability recorded in our record suggests complex responses to major and abrupt shifts during these periods, likely due to Florida's subtropical location and the influence of multiple climate forcing mechanisms in the region.
Leaf wax records of late Holocene hydrologic changes on Abaco Island, Northern Bahamas
NASA Astrophysics Data System (ADS)
Tamalavage, A.; Feakins, S. J.; van Hengstum, P. J.; Louchouarn, P.; Fall, P. L.; Albury, N. A.; Donnelly, J. P.
2016-12-01
Previous pollen-based evidence from Abaco Island (Little Bahama Bank, Northern Bahamas) indicates that the terrestrial forest changed in dominance over the last 1500 years from palms to pines, and that this change is potentially driven by climate and/or anthropogenic factors. Geochemical markers (δ13Corg, δ15Norg,, C/N, and lignin phenols) measured from bulk sedimentary matter that has accumulated in Blackwood Sinkhole on Abaco Island also support the pollen-based evidence that vegetation has not been constant throughout the late Holocene (last 3000 years). More specifically, these geochemical markers document three intervals where sedimentary deposition was dominated by a different source of organic matter. These changes are likely driven by the combination of the ecological response to shoreline migration from Holocene sea-level rise, and a southward migration of the Intertropical Convergence Zone (ITCZ) at 1000 Cal yrs BP. However, the specific impact of a southward ITCZ displacement at 1000 Cal yrs BP on Abaco rainfall variability remains uncertain (e.g., quantity, seasonality). This research will explore hydrologic variability associated with regional vegetation changes by measuring precipitation isotopic composition based upon plant leaf wax n-alkanoic acid and n-alkane biomarkers. We find C29 and C31 n-alkanes and C24, C26, C28, and C30 n-alkanoic acids record the same hydrogen isotopic values within uncertainties indicating a uniform terrestrial vegetation source. We find a negative shift (-50‰) towards present in our initial analyses; the results of ongoing work will be presented at the meeting. This multi-proxy approach will allow us to resolve the nature of the leaf wax biomarker hydrogen isotope evidence for past precipitation, including testing for the impacts of vegetation on the hydrological proxy, and testing predictions of a shift in precipitation on Abaco Island over the late Holocene coincident with a southward displacement of the ITCZ.
NASA Astrophysics Data System (ADS)
Stroup, J. S.; Kelly, M. A.; Lowell, T. V.; Smith, C.; Beal, S. A., Jr.; Tapia, P. M.
2016-12-01
The past fluctuations of Quelccaya Ice Cap (QIC) are an indicator of tropical paleoclimate. At QIC, ice core and glacial geological records provide late Holocene climate constraints. However, early and middle Holocene QIC fluctuations are less well-known. To interpret past QIC fluctuations, we present Holocene-long lake sediment records from Challpacocha, a lake fed by QIC meltwater, and Yanacocha, a lake that has not received meltwater during the Holocene. To assess the clastic sediment delivered to Challpacocha by QIC meltwater, we compare visual stratigraphy, X-ray fluorescence chemistry, grainsize, loss on ignition and clastic flux records from both lakes (additional Yanacocha proxies are presented by Axford et al. (this meeting, abstract 157985)). We compare the meltwater derived clastic sediment record from Challpacocha with moraine and stratigraphic records of past ice extents during the late Holocene. This comparison indicates that clastic sediment flux in Challpacocha increased during QIC recession and decreased during QIC advance, or significantly reduced QIC extent. We then use the Challpacocha clastic sediment record to interpret early and middle Holocene QIC fluctuations. Based on the Challpacocha sediment record, combined with prior work, we suggest that from 11 to 6.5 ka QIC was similar to or smaller than its late Holocene extent. From 6.9 to 6.5 ka QIC may have been absent from the landscape. At 3-2.4 and 0.62-0.31 ka QIC experienced the most extensive Holocene fluctuations. We compare the clastic sediment fluxes from Challpacocha and Pacococha (a nearby lake fed by QIC; Rodbell et al., 2008) to infer QIC expansion between 6.5-5 ka. This is supported by 14C ages of in-situ subfossil plants which indicate ice advance at 6.3-4.7 ka (Thompson et al., 2006, 2013; Buffen et al., 2009). Our study highlights the value of using multiple datasets to improve lake sediment record interpretations.
NASA Astrophysics Data System (ADS)
Innes, James B.; Zong, Yongqiang; Wang, Zhanghua; Chen, Zhongyuan
2014-09-01
The transition to the Late Holocene/Neoglacial occurred as a worldwide process of climatic deterioration from the optimum thermal conditions of the mid-Holocene, culminating in an abrupt decline around 4200 cal yr ago, in a period of severe climatic deterioration that lasted for two or three centuries. This sudden climatic event has been recorded in many proxy data archives from around the world, and its effects were manifest in different ways depending on the reaction of regional weather systems and conditions, but often as greatly increased aridity and/or cold temperatures. It has been regarded as causing or contributing to the sudden collapse of several well-established human societies at that time, including advanced agricultural Late Neolithic cultures in eastern China. We have used high-resolution pollen and non-pollen palynomorph analysis to examine the nature of this climatic transition through its impacts on the vegetation and hydrology at Pingwang, a site in the Yangtze coastal lowlands which has no evidence of complicating environmental influences such as sea-level rise or significant human land-use activity, factors previously suggested as alternative reasons for changes in forest composition. Our results show two phases of forest alteration, one gradual from about 5500 cal BP and one sudden at about 4200 cal BP., in which the frequencies of subtropical forest elements fall and are replaced by those of conifers and cold-tolerant trees. Total arboreal pollen frequencies do not decline and the proportion of temperate forest trees, tolerant of a wide range of temperatures, remains unchanged throughout, both ruling out human land clearance as a cause of the change in forest composition. As these dates accord very well with the known timings of climate deterioration established from other proxy archives in the region, we conclude that climate was the main driver of vegetation change in eastern China at the mid- to Late Holocene transition. Our hydrological results support the view that a combination of rising local water level and climatic cooling during the 4200 cal BP event was the probable cause of societal collapse in the lower Yangtze valley.
NASA Astrophysics Data System (ADS)
Camuera, Jon; Jiménez-Moreno, Gonzalo; José Ramos-Román, María; García-Alix, Antonio; Jiménez-Espejo, Francisco; Toney, Jaime L.; Anderson, R. Scott; Kaufman, Darrell; Bright, Jordon; Sachse, Dirk
2017-04-01
Padul peatbog, located in southern Iberian Peninsula (western Mediterranean region) is a unique area for palaeoenvironmental studies due to its location, between arid and temperate climates. Previous studies showed that the Padul peatbog contains a continuous record of the last ca. 0.8-1 Ma, so it is an extraordinary site to identify glacial-interglacial phases as well as Heinrich and D-O events, linked to orbital- and suborbital-scale variations. In 2015, a new 42 m long core was taken from this area, providing an excellent sediment record probably for the last ca. 300,000 years. This study is focused on the paleoenvironmental and climatic reconstruction of the late Pleistocene and the early Holocene (ca. from 50,000 to 9,500 cal. yrs BP), using AMS 14C and AAR dating, high-resolution pollen analysis, lithology, continuous XRF-scanning, X-ray diffraction, magnetic susceptibility and organic geochemistry. These different proxies provide information not only about the regional environment change but also about local changes in the conditions of the Padul lake/peatbog due to variations in water temperature, pH or nutrients.
NASA Astrophysics Data System (ADS)
Stevens, Lora R.; Ito, Emi; Schwalb, Antje; Wright, Herbert E.
2006-11-01
A sediment core 7.2 m long from Lake Mirabad, Iran, was examined for loss-on-ignition, mineralogy, oxygen-isotopic composition of authigenic calcite, and trace-element composition of ostracodes to complement earlier pollen and ostracode-assemblage studies. Pollen, ostracode-inferred lake level, and high Sr/Ca ratios indicate that the early Holocene (10000 to 6500 cal yr BP) was drier than the late Holocene. Low δ18O values during this interval are interpreted as resulting from winter-dominated precipitation, characteristic of a Mediterranean climate. Increasing δ18O values after 6500 cal yr BP signal a gradual increase in spring rains, which are present today. A severe 600-yr drought occurred at ca. 5500 cal yr BP, shortly after the transition from pistachio-almond to oak forest. During the late Holocene, two milder droughts occurred at about 1500 and 500 cal yr BP. Within the resolution of the record, no drought is evident during the collapse of the Akkadian empire (4200-3900 cal yr BP). Rather, a decrease in δ18O values to early-Holocene levels may indicate the return to a Mediterranean precipitation regime.
NASA Astrophysics Data System (ADS)
Russo, E.; Mauri, A.; Davis, B. A. S.; Cubasch, U.
2017-12-01
The evolution of the Mediterranean region's climate during the Holocene has been the subject of long-standing debate within the paleoclimate community. Conflicting hypotheses have emerged from the analysis of different climate reconstructions based on proxy records and climate models outputs.In particular, pollen-based reconstructions of cooler summer temperatures during the Holocene have been criticized based on a hypothesis that the Mediterranean vegetation is mainly limited by effective precipitation and not summer temperature. This criticism is important because climate models show warmer summer temperatures during the Holocene over the Mediterranean region, in direct contradiction of the pollen-based evidence. Here we investigate this problem using a high resolution model simulation of the climate of the Mediterranean region during the mid-to-late Holocene, which we compare against pollen-based reconstructions using two different approaches.In the first, we compare the simulated climate from the model directly with the climate derived from the pollen data. In the second, we compare the simulated vegetation from the model directly with the vegetation from the pollen data.Results show that the climate model is unable to simulate neither the climate nor the vegetation shown by the pollen-data. The pollen data indicates an expansion in cool temperate vegetation in the mid-Holocene while the model suggests an expansion in warm arid vegetation. This suggests that the data-model discrepancy is more likely the result of bias in climate models, and not bias in the pollen-climate calibration transfer-function.
Kumaran, Navnith K. P.; Padmalal, Damodaran; Nair, Madhavan K.; Limaye, Ruta B.; Guleria, Jaswant S.; Srivastava, Rashmi; Shukla, Anumeha
2014-01-01
The high rainfall and low sea level during Early Holocene had a significant impact on the development and sustenance of dense forest and swamp-marsh cover along the southwest coast of India. This heavy rainfall flooded the coastal plains, forest flourishing in the abandoned river channels and other low-lying areas in midland.The coastline and other areas in lowland of southwestern India supply sufficient evidence of tree trunks of wet evergreen forests getting buried during the Holocene period under varying thickness of clay, silty-clay and even in sand sequences. This preserved subfossil log assemblage forms an excellent proxy for eco-geomorphological and palaeoclimate appraisal reported hitherto from Indian subcontinent, and complements the available palynological data. The bulk of the subfossil logs and partially carbonized wood remains have yielded age prior to the Holocene transgression of 6.5 k yrs BP, suggesting therein that flooding due to heavy rainfall drowned the forest cover, even extending to parts of the present shelf. These preserved logs represent a unique palaeoenvironmental database as they contain observable cellular structure. Some of them can even be compared to modern analogues. As these woods belong to the Late Pleistocene and Holocene, they form a valuable source of climate data that alleviates the lack of contemporaneous meteorological records. These palaeoforests along with pollen proxies depict the warmer environment in this region, which is consistent with a Mid Holocene Thermal Maximum often referred to as Holocene Climate Optimum. Thus, the subfossil logs of tropical evergreen forests constitute new indices of Asian palaeomonsoon, while their occurrence and preservation are attributed to eco-geomorphology and hydrological regimes associated with the intensified Asian Summer Monsoon, as recorded elsewhere. PMID:24727672
NASA Astrophysics Data System (ADS)
Roland, T.; Amesbury, M.; Royles, J.; Hodgson, D.; Convey, P.; Griffiths, H.; Charman, D.
2017-12-01
The Antarctic Peninsula (AP) has been one of the most rapidly warming regions on Earth, with air temperature increases of 3°C recorded since the mid-20th century. However, instrumental climate records are mostly limited to the late 1950s onwards and existing palaeoenvironmental data that provide a longer-term context to recent climate and biological changes are often spatially isolated and temporally fragmented. Ice-core records from the AP are not suitably located to be able to examine the spatial signature of climate changes over time. Moss banks located along the western AP are ideal archives for palaeoclimate research as they are well-preserved, have sufficiently high accumulation rates to permit decadally resolved analyses using multiple proxies over the last c. 4000 years, and are easily dated with 14C and 210Pb. Potential climate proxies (moss accumulation and growth rates, Δ13C in moss cellulose, testate amoebae concentration) are sensitive to regional temperature change, moderated by water availability and surface microclimate. Here we present multi-proxy records of biological change from these archives of late Holocene climate variability. We identified significant changepoints in six cores at three sites, across a transect spanning c. 600 km, observing that biological response to recent rapid warming on the AP is pervasive and unprecedented over the last 150 years. Longer records show that recent change is also unusual in the context of the past 4000 years and suggest that westerly wind strength linked to the Southern Annular Mode is the most likely driver of centennial-scale AP temperature variability. Widespread changes in the terrestrial biosphere of the AP in response to past temperature suggest that terrestrial ecosystems will alter rapidly under future warming scenarios, leading to major changes in the biology and landscape of this iconic region — an Antarctic greening to parallel well-established observations in the Arctic.
NASA Astrophysics Data System (ADS)
Jones, Samantha Elsie; Burjachs, Francesc; Ferrer-García, Carlos; Giralt, Santiago; Schulte, Lothar; Fernández-López de Pablo, Javier
2018-03-01
This article focuses on a former salt lake in the upper Vinalopó Valley in south-eastern Spain. The study spans the Late Pleistocene through to the Late Holocene, although with particular focus on the period between 11 ka cal BP and 3000 ka cal BP (which spans the Mesolithic and part of the Bronze Age). High resolution multi-proxy analysis (including pollen, non pollen palynomorphs, grain size, X-ray fluorescence and X-ray diffraction) was undertaken on the lake sediments. The results show strong sensitivity to both long term and small changes in the evaporation/precipitation ratio, affecting the surrounding vegetation composition, lake-biota and sediment geochemistry. To summarise the key findings the main general trends identified include: 1) Hyper-saline conditions and low lake levels at the end of the Late Glacial 2) Increasing wetness and temperatures which witnessed an expansion of mesophilic woodland taxa, lake infilling and the establishment of a more perennial lake system at the onset of the Holocene 3) An increase in solar insolation after 9 ka cal BP which saw the re-establishment of pine forests 4) A continued trend towards increasing dryness (climatic optimum) at 7 ka cal BP but with continued freshwater input 5) An increase in sclerophyllous open woody vegetation (anthropogenic?), and increasing wetness (climatic?) is represented in the lake record between 5.9 and 3 ka cal BP 6) The Holocene was also punctuated by several aridity pulses, the most prominent corresponding to the 8.2 ka cal BP event. These events, despite a paucity of well dated archaeological sites in the surrounding area, likely altered the carrying capacity of this area both regionally and locally, particularly during the Mesolithic-Neolithic transition, in terms of fresh water supply for human/animal consumption, wild plant food reserves and suitable land for crop growth.
Mid-Late Holocene Asian monsoon variations recorded in the Lake Rara sediment, western Nepal
NASA Astrophysics Data System (ADS)
Nakamura, A.; Yokoyama, Y.; Maemoku, H.; Yagi, H.; Okamura, M.; Matsuoka, H.; Miyake, N.; Adhikari, D.; Dangol, V.; Miyairi, Y.; Obrochta, S.; Matsuzaki, H.; Ikehara, M.
2011-12-01
The Asian monsoon is an important component of the Earth's climate system to understand regional and global climate dynamics. While geological reconstructions indicate that the Asian summer monsoon intensity gradually decreased through the Holocene, a clear and coherent picture of millennial and centennial scale variability has yet to emerge (e.g., Overpeck and Cole, 2007). The Himalayas are a key location for understanding centennial to millennial scale variations in the Asian monsoon, yet few studies of the Holocene have been conducted in this sensitive area. Direct evidence for shifts in monsoonal wind strength is often limited to marine proxy records, while terrestrial reconstructions (e.g., lake levels and spleothems) focus on precipitation. Here, we present the first evidence of terrestrial summer monsoon wind strength changes from Lake Rara, western Nepal. The lake is located at 3,000m above sea level and has a maximum water depth of 168m. Lake Rara Mn/Ti data, a proxy for lake stratification, provide the first direct comparison of the Indian summer monsoon wind intensity between the terrestrial Himalayan region and the marine Arabian sea region (Gupta et al., 2003) during mid-late Holocene. Centennial to millennial scale variability found in those records are synchronous, with the weak wind intervals corresponding to drier periods of East Asian. Strong similarities between the Lake Rara monsoon record and the Dongge cave speleothems precipitation record (Wang et al., 2005) suggest that the influence of Indian summer monsoon penetrates into southeastern China, which should be taken into account when interpreting paleomonsoon reconstructions. Overpeck JT, Cole JE. 2007. Climate change - Lessons from a distant monsoon. Nature 445: 270-271. Gupta AK, Anderson DM, Overpeck JT. 2003. Abrupt changes in the Asian southwest monsoon during the Holocene and their links to the North Atlantic Ocean. Nature 421: 354-357. Wang YJ, Cheng H, Edwards RL, He YQ, Kong XG, An ZS, Wu JY, Kelly MJ, Dykoski, CA, Li XD. 2005. The Holocene Asian monsoon: Links to solar changes and North Atlantic climate. Science 308: 854-857.
The late Quaternary decline and extinction of palms on oceanic Pacific islands
NASA Astrophysics Data System (ADS)
Prebble, M.; Dowe, J. L.
2008-12-01
Late Quaternary palaeoecological records of palm decline, extirpation and extinction are explored from the oceanic islands of the Pacific Ocean. Despite the severe reduction of faunal diversity coincidental with human colonisation of these previously uninhabited oceanic islands, relatively few plant extinctions have been recorded. At low taxonomic levels, recent faunal extinctions on oceanic islands are concentrated in larger bodied representatives of certain genera and families. Fossil and historic records of plant extinction show a similar trend with high representation of the palm family, Arecaceae. Late Holocene decline of palm pollen types is demonstrated from most islands where there are palaeoecological records including the Cook Islands, Fiji, French Polynesia, the Hawaiian Islands, the Juan Fernandez Islands and Rapanui. A strong correspondence between human impact and palm decline is measured from palynological proxies including increased concentrations of charcoal particles and pollen from cultivated plants and invasive weeds. Late Holocene extinctions or extirpations are recorded across all five of the Arecaceae subfamilies of the oceanic Pacific islands. These are most common for the genus Pritchardia but also many sedis fossil palm types were recorded representing groups lacking diagnostic morphological characters.
NASA Astrophysics Data System (ADS)
Martínez Izquierdo, H. B.; Bernal, J. P.; Pérez Enriquez, R.; Böhnel, H.; Morales-Malacara, J. B.; Solari, L.; Gómez-Tuena, A.
2010-03-01
The relationship between climate change and culture development in Mesoamerica is complex to unravel since many written archives were destroyed during natural disasters and cultural conflicts such as Spanish conquest. Local paleoclimate records offer a way to reconstruct this relationship. Stalagmites are amongst the most reliable records of past climate variability, due to their evolution in closed-system conditions, ease of dating, and inclusion of several geochemical proxies (such as calcite oxygen and carbon isotopic composition, trace element concentration and/or elemental ratios, color and grey-tone scale). Recently, stalagmites have been used as records to explore the climatic change during Holocene and its cultural relation in Mediterranean, Asian, North American and east African cultures. Only few works were made, however, for Mesoamerican cultures. We study here a banded stalagmite belonging to Jalpan, Queretaro, central Mexico. This stalagmite was found actively growing, with its base dated at 6.85 +/- 0.3 Ka B.P. A high resolution LA-ICP-MS Mg/Ca analysis as well as grey tone analysis were obtained in order to create annual resolution time series. The proxies were correlated with local and north Atlantic paleoclimate records. Such proxies also show signals associated with volcanic eruptions (Tacana, el Chichon, Popocatepetl and Ceboruco) during the Classic period. Other signals are associated with Maya civilization collapse. These results portray the relationship between the agricultural and population patterns with moisture variability for the center of Mexico (Teotihuacan influence zone) during late Formative and Classic period. Finally, we observe patterns such as the corresponding to the little ice age and the anthropogenic climate warming, the latter correlated with local precipitation data.
Climate and marine biogeochemistry during the Holocene from transient model simulations
NASA Astrophysics Data System (ADS)
Segschneider, Joachim; Schneider, Birgit; Khon, Vyacheslav
2018-06-01
Climate and marine biogeochemistry changes over the Holocene are investigated based on transient global climate and biogeochemistry model simulations over the last 9500 years. The simulations are forced by accelerated and non-accelerated orbital parameters, respectively, and atmospheric pCO2, CH4, and N2O. The analysis focusses on key climatic parameters of relevance to the marine biogeochemistry, and on the physical and biogeochemical processes that drive atmosphere-ocean carbon fluxes and changes in the oxygen minimum zones (OMZs). The simulated global mean ocean temperature is characterized by a mid-Holocene cooling and a late Holocene warming, a common feature among Holocene climate simulations which, however, contradicts a proxy-derived mid-Holocene climate optimum. As the most significant result, and only in the non-accelerated simulation, we find a substantial increase in volume of the OMZ in the eastern equatorial Pacific (EEP) continuing into the late Holocene. The concurrent increase in apparent oxygen utilization (AOU) and age of the water mass within the EEP OMZ can be attributed to a weakening of the deep northward inflow into the Pacific. This results in a large-scale mid-to-late Holocene increase in AOU in most of the Pacific and hence the source regions of the EEP OMZ waters. The simulated expansion of the EEP OMZ raises the question of whether the deoxygenation that has been observed over the last 5 decades could be a - perhaps accelerated - continuation of an orbitally driven decline in oxygen. Changes in global mean biological production and export of detritus remain of the order of 10 %, with generally lower values in the mid-Holocene. The simulated atmosphere-ocean CO2 flux would result in atmospheric pCO2 changes of similar magnitudes to those observed for the Holocene, but with different timing. More technically, as the increase in EEP OMZ volume can only be simulated with the non-accelerated model simulation, non-accelerated model simulations are required for an analysis of the marine biogeochemistry in the Holocene. Notably, the long control experiment also displays similar magnitude variability to the transient experiment for some parameters. This indicates that also long control runs are required when investigating Holocene climate and marine biogeochemistry, and that some of the Holocene variations could be attributed to internal variability of the atmosphere-ocean system.
Holocene climate and cultural evolution in late prehistoric-early historic West Asia
NASA Astrophysics Data System (ADS)
Staubwasser, Michael; Weiss, Harvey
2006-11-01
The precipitation climatology and the underlying climate mechanisms of the eastern Mediterranean, West Asia, and the Indian subcontinent are reviewed, with emphasis on upper and middle tropospheric flow in the subtropics and its steering of precipitation. Holocene climate change of the region is summarized from proxy records. The Indian monsoon weakened during the Holocene over its northernmost region, the Ganges and Indus catchments and the western Arabian Sea. Southern regions, the Indian Peninsula, do not show a reduction, but an increase of summer monsoon rain across the Holocene. The long-term trend towards drier conditions in the eastern Mediterranean can be linked to a regionally complex monsoon evolution. Abrupt climate change events, such as the widespread droughts around 8200, 5200 and 4200 cal yr BP, are suggested to be the result of altered subtropical upper-level flow over the eastern Mediterranean and Asia. The abrupt climate change events of the Holocene radically altered precipitation, fundamental for cereal agriculture, across the expanse of late prehistoric-early historic cultures known from the archaeological record in these regions. Social adaptations to reduced agro-production, in both dry-farming and irrigation agriculture regions, are visible in the archaeological record during each abrupt climate change event in West Asia. Chronological refinement, in both the paleoclimate and archaeological records, and transfer functions for both precipitation and agro-production are needed to understand precisely the evident causal linkages.
Quaternary Sea-ice history in the Arctic Ocean based on a new Ostracode sea-ice proxy
Cronin, T. M.; Gemery, L.; Briggs, W.M.; Jakobsson, M.; Polyak, L.; Brouwers, E.M.
2010-01-01
Paleo-sea-ice history in the Arctic Ocean was reconstructed using the sea-ice dwelling ostracode Acetabulastoma arcticum from late Quaternary sediments from the Mendeleyev, Lomonosov, and Gakkel Ridges, the Morris Jesup Rise and the Yermak Plateau. Results suggest intermittently high levels of perennial sea ice in the central Arctic Ocean during Marine Isotope Stage (MIS) 3 (25-45 ka), minimal sea ice during the last deglacial (16-11 ka) and early Holocene thermal maximum (11-5 ka) and increasing sea ice during the mid-to-late Holocene (5-0 ka). Sediment core records from the Iceland and Rockall Plateaus show that perennial sea ice existed in these regions only during glacial intervals MIS 2, 4, and 6. These results show that sea ice exhibits complex temporal and spatial variability during different climatic regimes and that the development of modern perennial sea ice may be a relatively recent phenomenon. ?? 2010.
NASA Astrophysics Data System (ADS)
Polovodova Asteman, Irina; Risebrobakken, Bjørg; Bąk, Małgorzata; Binczewska, Anna; Borówka, Ryszard; Dobosz, Sławomir; Jansen, Eystein; Kaniak, Aleksandra; Moros, Matthias; Perner, Kerstin; Sławinska, Joanna
2015-04-01
Climate change has a strong amplifying effect on the environment of marginal seas such as the Baltic Sea. Owing to the connection of the Baltic Sea with the Atlantic (and the resultant pathway of water exchange via the narrow Danish Straits), changes in the Baltic region are suggested to be driven by external oceanic and atmospheric forcing originating in the Atlantic, particularly in the eastern Nordic seas, the Skagerrak, and the Kattegat. CLIMLINK aims to reconstruct mid- to late Holocene ecosystem changes in these regions and identify linkages, common forcing factors and effects for the Baltic Sea on a millennial to decadal time scale. High-resolution sediment records from selected key sites in the Norwegian Trench, and central Baltic Sea are studied by using a multi-proxy approach. Micropalaeontological studies of diatoms and foraminifera are combined with geochemical proxies, such as stable isotopes, Mg/Ca, TOC, TIC, C/N, XRF and magnetic susceptibility in order to achieve a more comprehensive view on environmental changes during the last 6000 to 8000 years. The chronology of the sediment cores is secured by using multiple dating tools: Hg-pollution records, 137Cs, 210Pb, 14C and tephra layers. Herein we present the initial results of the project.
A Late Pleistocene sea level stack
NASA Astrophysics Data System (ADS)
Spratt, R. M.; Lisiecki, L. E.
2015-08-01
Late Pleistocene sea level has been reconstructed from ocean sediment core data using a wide variety of proxies and models. However, the accuracy of individual reconstructions is limited by measurement error, local variations in salinity and temperature, and assumptions particular to each technique. Here we present a sea level stack (average) which increases the signal-to-noise ratio of individual reconstructions. Specifically, we perform principal component analysis (PCA) on seven records from 0-430 ka and five records from 0-798 ka. The first principal component, which we use as the stack, describes ~80 % of the variance in the data and is similar using either five or seven records. After scaling the stack based on Holocene and Last Glacial Maximum (LGM) sea level estimates, the stack agrees to within 5 m with isostatically adjusted coral sea level estimates for Marine Isotope Stages 5e and 11 (125 and 400 ka, respectively). When we compare the sea level stack with the δ18O of benthic foraminifera, we find that sea level change accounts for about ~40 % of the total orbital-band variance in benthic δ18O, compared to a 65 % contribution during the LGM-to-Holocene transition. Additionally, the second and third principal components of our analyses reflect differences between proxy records associated with spatial variations in the δ18O of seawater.
NASA Astrophysics Data System (ADS)
Gurung, D.; McHugh, C. M.; Kenna, T. C.; Burckle, L.
2009-05-01
New methodologies that combine the use of microfossil diatom assemblages, and elemental geochemistry (bromine (Br)) are being developed to assess late Holocene climatic variability in estuaries. The main idea is that in an estuary the saltwater wedge fluctuates in response to the volume of fluvial discharge that depends on surface runoff from precipitation and melting of snow (spring freshet). During times of high precipitation the saltwater wedge is pushed seaward. In contrast, during times of drought the saltwater wedge moves landward into the estuary. The Hudson River estuary in New York was flooded by marine waters in the early Holocene and at present its sedimentation patterns are in a state of dynamic equilibrium. Guided by high-resolution multibeam bathymetry, sediment cores (˜6 m in length) were recovered from the oligohaline parts of the estuary where discharge and precipitation changes have more impact on the saltwater wedge fluctuations. In those cores that showed continuous sedimentation, diatom assemblages and Br (ppm) were studied and used as proxies for salinity. Diatom assemblages (marine, freshwater and brackish) were identified and counted and Br (ppm) was measured by X-ray fluorescence spectrometry with an Innov-X portable system. The results were calibrated to an Pb-210 age model and compared with instrumental data of precipitation, river discharge, and Palmer Drought Severity Index (PDSI), The results obtained from two different locations show that marine diatom abundance and Br content correlate with periods of high precipitation during 1992-1988; 1985-1980; 1976-1968; 1962-1958; and increase with periods of low precipitation or droughts in 1987-1985; 1980-1975; 1967-1962; 1943-1938. The mid to late Holocene record shows a variability on the scale of ˜300 to 400 years similar to that obtained by Cronin et al. (2003) for Chesapeake Bay and related to the North Atlantic Oscillation. From 1992 to the present, both marine diatoms and Br ppm increase dramatically and do not correlate to the precipitation record. This increase in salinity is observed in all the cores and could be the result of relative sea level rise into the estuary.
Cordova, C.E.; Johnson, W.C.; Mandel, R.D.; Palmer, M.W.
2011-01-01
This study investigates stable carbon isotopes (??13C), opal phytolith assemblages, burnt phytoliths, microscopic charcoal and Sporormiella spores from modern soils and paleosols in Kansas and Oklahoma. Grass and dicot phytoliths in combination with ??13C are used as proxies for reconstructing the structure of grasslands and woodlands. Burnt grass phytoliths and microscopic charcoal are evaluated as proxies for reconstructing paleofire incidence. Concentrations of the fungal spore Sporormiella are used as a proxy for assessing large herbivore activity. These proxies were tested on various modern grassland communities of the central and southern Great Plains, including areas with bison, cattle, and small herbivores, and areas under different fire frequencies.Opal phytolith assemblages and ??13C values show that before cal 11ka, C3 grasses and woody plants predominated in areas that today are dominated by C4 grasses. The origin of the shortgrass prairie dates back to about cal 10ka. The origin of the tallgrass prairie, however, is not clear as phytolith data show variable assemblages throughout the Holocene (mixed-grass, tallgrass, and tallgrass-woodland mosaic). Different proxies (burnt phytoliths vs. charcoal) reveal different fire frequencies, but it is apparent that microfossil evidence for fire incidence is closely related to the abundance of woody plants in the landscape.Before cal 12. ka, soils show somewhat elevated concentration of Sporormiella, but lower concentrations than the modern high-density bison and cattle grazing areas. Throughout the Holocene, Sporormiella frequencies are low, which suggests lower large ungulate densities and perhaps high mobility. ?? 2010 Elsevier B.V.
NASA Astrophysics Data System (ADS)
Lu, Fuzhi; Ma, Chunmei; Zhu, Cheng; Lu, Huayu; Zhang, Xiaojian; Huang, Kangyou; Guo, Tianhong; Li, Kaifeng; Li, Lan; Li, Bing; Zhang, Wenqing
2018-03-01
Projecting how the East Asian summer monsoon (EASM) rainfall will change with global warming is essential for human sustainability. Reconstructing Holocene climate can provide critical insight into its forcing and future variability. However, quantitative reconstructions of Holocene summer precipitation are lacking for tropical and subtropical China, which is the core region of the EASM influence. Here we present high-resolution annual and summer rainfall reconstructions covering the whole Holocene based on the pollen record at Xinjie site from the lower Yangtze region. Summer rainfall was less seasonal and 30% higher than modern values at 10-6 cal kyr BP and gradually declined thereafter, which broadly followed the Northern Hemisphere summer insolation. Over the last two millennia, however, the summer rainfall has deviated from the downward trend of summer insolation. We argue that greenhouse gas forcing might have offset summer insolation forcing and contributed to the late Holocene rainfall anomaly, which is supported by the TraCE-21 ka transient simulation. Besides, tropical sea-surface temperatures could modulate summer rainfall by affecting evaporation of seawater. The rainfall pattern concurs with stalagmite and other proxy records from southern China but differs from mid-Holocene rainfall maximum recorded in arid/semiarid northern China. Summer rainfall in northern China was strongly suppressed by high-northern-latitude ice volume forcing during the early Holocene in spite of high summer insolation. In addition, the El Niño/Southern Oscillation might be responsible for droughts of northern China and floods of southern China during the late Holocene. Furthermore, quantitative rainfall reconstructions indicate that the Paleoclimate Modeling Intercomparison Project (PMIP) simulations underestimate the magnitude of Holocene precipitation changes. Our results highlight the spatial and temporal variability of the Holocene EASM precipitation and potential forcing mechanisms, which are very helpful for calibration of paleoclimate models and prediction of future precipitation changes in East Asia in the scenario of global warming.
NASA Astrophysics Data System (ADS)
Geirsdottir, A.; Miller, G. H.; Axford, Y.
2009-12-01
Many Icelandic lakes have sedimentation rates in excess of 1 m ka-1 throughout the Holocene. Such high rates offer the potential for decadally resolved (or better) records of environmental change at this sensitive North Atlantic site. Abundant well-defined tephra provide a secure geochronology. The fidelity of the common climate proxies biogenic silica (BSi) and total organic carbon (TOC), was tested by comparing these proxies in three lakes with very different catchment characteristics. Hestvatn (HST, 60 m deep) in southern Iceland receives overflow from a large river originating in the glaciated highlands of central Iceland, whereas the nearby lake Vestra Gislholtsvatn (VGHV, 15 m deep) has a small, low elevation catchment without glaciers. Haukadalsvatn (HAK, 42 m deep), in northwestern Iceland, has a large, high relief catchment. The BSi record from HAK has been shown to reflect April-May temperatures, with BSi highest when spring temperatures are at their maximum. The first- and second-order trends in BSi are similar in all three lakes for most of the Holocene. This supports the contention that BSi reflects primary productivity, and is less influenced by changes in sedimentation rate. In all three lakes, BSi reaches a maximum value shortly after 8 ka, and then declines gradually toward present, reflecting a relatively late Holocene thermal maximum, potentially due to the influence of meltwater from the lingering Laurentide Ice Sheet. A steady reduction in summer insolation determines this first-order trend towards lower BSi through the middle and late Holocene. Large, abrupt departures from the overall decrease in BSi characterize all three records after 8 ka. Following each rapid BSi decrease, BSi usually exhibits a step-function change, re-equilibrating at a lower BSi value. Some of the strongest departures (ca. 6 ka, 4 to 4.5 ka and ca. 3 ka) may be related to Icelandic volcanism, but the lack of a full recovery to pre-existing values after the eruptions suggests a change in state occurred in the catchments of the lakes. TOC reflects the balance between changes in primary productivity within the lakes, which appears to dominate the early and middle Holocene, and the flux of soil carbon to the lake during periods of catchment instability that dominates the record after ~2.5 ka. In HAK TOC the flux of soil carbon to the lake is high when cold summers are accompanied by dry, windy winters. The two southern lakes exhibit a substantial overprinting after settlement, although the northern and southern records start to depart ca. 1.5 ka, well before settlement, possibly reflecting an earlier onset of late Holocene cooling off northwest Iceland than in the south where the Irminger current maintains warmer coastal temperatures.
Holocene glacier and deep water dynamics, Adélie Land region, East Antarctica
NASA Astrophysics Data System (ADS)
Denis, Delphine; Crosta, Xavier; Schmidt, Sabine; Carson, Damien S.; Ganeshram, Raja S.; Renssen, Hans; Bout-Roumazeilles, Viviane; Zaragosi, Sebastien; Martin, Bernard; Cremer, Michel; Giraudeau, Jacques
2009-06-01
This study presents a high-resolution multi-proxy investigation of sediment core MD03-2601 and documents major glacier oscillations and deep water activity during the Holocene in the Adélie Land region, East Antarctica. A comparison with surface ocean conditions reveals synchronous changes of glaciers, sea ice and deep water formation at Milankovitch and sub-Milankovitch time scales. We report (1) a deglaciation of the Adélie Land continental shelf from 11 to 8.5 cal ka BP, which occurred in two phases of effective glacier grounding-line retreat at 10.6 and 9 cal ka BP, associated with active deep water formation; (2) a rapid glacier and sea ice readvance centred around 7.7 cal ka BP; and (3) five rapid expansions of the glacier-sea ice systems, during the Mid to Late Holocene, associated to a long-term increase of deep water formation. At Milankovich time scales, we show that the precessionnal component of insolation at high and low latitudes explains the major trend of the glacier-sea ice-ocean system throughout the Holocene, in the Adélie Land region. In addition, the orbitally-forced seasonality seems to control the coastal deep water formation via the sea ice-ocean coupling, which could lead to opposite patterns between north and south high latitudes during the Mid to Late Holocene. At sub-Milankovitch time scales, there are eight events of glacier-sea ice retreat and expansion that occurred during atmospheric cooling events over East Antarctica. Comparisons of our results with other peri-Antarctic records and model simulations from high southern latitudes may suggest that our interpretation on glacier-sea ice-ocean interactions and their Holocene evolutions reflect a more global Antarctic Holocene pattern.
NASA Astrophysics Data System (ADS)
Long, Hao; Shen, Ji; Chen, Jianhui; Tsukamoto, Sumiko; Yang, Linhai; Cheng, Hongyi; Frechen, Manfred
2017-10-01
Arid central Asia (ACA) is one of the largest arid (desert) areas in the world, and its climate is dominated by the westerlies. In this study, we examined sand dune evolution from the Bayanbulak Basin in the Tian Shan (Xinjiang, NW China), aiming to infer the Holocene moisture history of the ACA. Combined with stratigraphic observation and environmental proxies analysis (grain size, magnetic susceptibility and total organic content), large numbers of luminescence ages from multiple sites (eight sections, 79 samples) were applied to reconstruct the evolution of the sand dune accumulation in the study basin. The overall results imply very dry conditions characterized by sand dune accumulation at ∼12-6.5 ka, a wet interval between ∼6.5 and 0.8 ka when soil formation occurred, and decreased moisture during the last 0.8 ka. This moisture variation pattern is generally consistent with that inferred from many lacustrine records in the core zone of ACA, suggesting a widespread dry period in the early-to-middle Holocene and relatively wet middle-to-late Holocene. Thus, the moisture history derived from the current sand dune system contrasts with that in Asian monsoon areas, which are characterized by a strong monsoon (high precipitation) in the early and mid-Holocene and a weak monsoon (low precipitation and dry climate) during the late Holocene. Our results strongly suggest that the winter solar insolation and the external boundary conditions such as atmospheric CO2 concentration, ice sheets, and meltwater fluxes, have been major influential factors triggering the Holocene moisture evolution in the core zone of ACA.
Great Basin Archaeology During the Middle Holocene: a Reflection of Environmental Change
NASA Astrophysics Data System (ADS)
Wriston, T.
2008-12-01
Varying types of proxy data in the Great Basin of the western United States suggest that the environment changed dramatically during the mid-Holocene. Lake, marsh, and spring systems dried; and dune fields, first established at the end of the Pleistocene, where again activated as sediments were swept from drying basin lowlands. Plant communities reorganized and migrated along elevation gradients to adapt to these changing conditions, and animal populations followed. However, recent data suggests that conditions during the middle Holocene were variable. Minimally, three distinct periods can be recognized, herein named: the Initial Middle Holocene (ca. 8000 to 5800 cal yr BP), the Middle Holocene Gap (ca. 5800 to 5200 cal yr BP), and the Terminal Middle Holocene (ca. 5200 to 4000 cal yr BP). Depending on location and the type of proxy data studied, these periods can vary in their character and timing, but their sequence is increasingly recognized in records of both regional and global-scale. The Initial Middle Holocene is the driest and most volatile of the three periods, with a shift from winter-to summer-dominated precipitation, often delivered by torrential storms. Conversely, the Middle Holocene Gap is a relatively mesic interval with increased winter precipitation and cooler temperatures. A shift towards drier conditions is again evidenced during the Terminal Middle Holocene; however, conditions are never again as dry or as volatile as during the Initial Middle Holocene. The archaeological signature of the Great Basin during the middle Holocene reflects adaptation to this changing environment. During the Initial Middle Holocene, archaeological sites are relatively scarce, and when present, are near water sources substantial enough to persist through the intense drought. The uplands became a focus of sustained seasonal use for the first time as increasingly diverse resources and environments are routinely exploited. It follows that milling gear is a regular and increasingly important element of the prehistoric toolkit. At the onset of the Middle Holocene Gap, rising populations across the Great Basin (and worldwide) are reflected by a surge in archaeological visibility as environmental conditions improved. These populations persist through the less volatile Terminal Middle Holocene. Cultural adaptations to lean times refined during the middle Holocene lead to a punctuated increase in prehistoric populations at the middle-to-late Holocene transition around 4000 cal yr BP, when conditions reach near modern norms. This review offers a synopsis of our current understanding of mid-Holocene environmental change in the Great Basin and how the archaeological record reflects prehistoric adaptations to this dynamic period.
NASA Astrophysics Data System (ADS)
Gerhardt, S.; Groth, H.; Rühlemann, C.; Henrich, R.
We present late Quaternary records of aragonite preservation determined for sediment cores recovered on the Brazilian Continental Slope (1790-2585m water depth) where North Atlantic Deep Water (NADW) dominates at present. We have used various indirect dissolution proxies (carbonate content, aragonite/calcite contents, and sand percentages) as well as gastropodal abundances and fragmentation of Limacina inflata to determine the state of aragonite preservation. In addition, microscopic investigations of the dissolution susceptibility of three Limacina species yielded the Limacina Dissolution Index which correlates well with most of the other proxies. Excellent preservation of aragonite was found in the Holocene section, whereas aragonite dissolution gradually increases downcore. This general pattern is attributed to an overall increase in aragonite corrosiveness of pore waters. Overprinted on this early diagenetic trend are high-frequency fluctuations of aragonite preservation, which may be related to climatically induced variations of intermediate water masses.
Ecological stability during the LGM and the mid-Holocene in the Alpine Steppes of Tibet?
NASA Astrophysics Data System (ADS)
Miehe, Georg; Miehe, Sabine; Bach, Kerstin; Kluge, Jürgen; Wesche, Karsten; Yongping, Yang; Jianquan, Liu
2011-09-01
Arid and Alpine ecosystems are known for extreme environmental changes during the Late Quaternary. We hypothesize that the world's largest Alpine arid ecosystem however, the Alpine Steppes of the Tibetan highlands, remained ecologically stable during the LGM and the mid-Holocene. This hypothesis is tested by distributional range of plant species, plant life forms and rate of endemism. The set of character species has a precipitation gradient between 50 and 350 mm/a, testifying for resilience to precipitation changes. 83% of the species have a wider vertical range than 1000 m used as a proxy for resilience to temperature changes. 30% of the species are endemic with 10 endemic genera, including plate-shaped cushions as a unique plant life form. These findings are in line with palaeo-ecological proxies (δ 18O, pollen) allowing the assumption that Alpine Steppes persisted during the LGM with 3 to 4 K lower summer temperatures. During the mid-Holocene, forests could have replaced Alpine Steppes in the upper catchments of the Huang He, Yangtze, Mekong, Salween and Yarlung Zhangbo, but not in the interior basins of the north-western highlands, because the basins were then flooded, suppressing forests and supporting the environmental stability of this arid Alpine grassland biome.
NASA Astrophysics Data System (ADS)
Yang, Huan; Pancost, Richard D.; Dang, Xinyue; Zhou, Xinying; Evershed, Richard P.; Xiao, Guoqiao; Tang, Changyan; Gao, Li; Guo, Zhengtang; Xie, Shucheng
2014-02-01
The bacterial membrane lipid-based continental paleothermometer, the MBT/CBT or MBT‧-CBT proxy (methylation index of branched tetraethers/cyclization of branched tetraethers), results in a large temperature deviation when applied in semiarid and arid regions. Here we propose new calibration models based on the investigation of >100 surface soils across a large climatic gradient, with a particular focus on semiarid and arid regions of China, and apply them to a loess-paleosol sequence. As reported elsewhere, MBT values exhibit a much higher correlation with MAAT than with summer temperature, suggesting a minimal seasonality bias; however, MBT is apparently insensitive to temperature <5 °C or >20 °C. Additional complexities are apparent in alkaline and arid soils, which are characterized by different relationships to climatic parameters than those in the complete Chinese (or global) dataset. For example, MBT and CBT indices exhibit a negative correlation in alkaline and arid soils, in contrast to their positive correlation in acid soils. Moreover, the cyclization ratio of bGDGTs (CBT), previously defined as a proxy for soil pH, is apparently primarily controlled by MAAT in these alkaline soils. Thus, we propose (1) a local Chinese calibration of the MBT-CBT proxy and (2) an alternative temperature proxy for use in semiarid and arid regions based on the fractional abundances of bGDGTs; the latter has a markedly higher determination factor and lower root mean square error in alkaline soils than the Chinese local calibration and is suggested to be preferred for paleotemperature reconstruction in Chinese loess/paleosol sequences. These new bGDGT proxies have been applied to the Weinan Holocene paleosol section of the Chinese Loess Plateau (CLP). The fractional abundance calibration, when applied in the Weinan Holocene paleosol, produces a total Holocene temperature variation of 5.2 °C and a temperature for the topmost sample that is consistent with the modern temperature. Previously, we showed that the ratio of archaeal isoprenoid GDGTs to bGDGTs (Ri/b) increases at MAP < 600 mm, and elevated Ri/b values (>0.5) in the CLP suggest the presence of enhanced aridity in the late Holocene in North China. In combination, the high Ri/b ratios (>0.5) and the associated low MBT values (<0.4) reveal the co-occurrence of dry and cold events, especially in the latest Holocene, in the loess-paleosol sequences in CLP, and probably also in cold and arid regions outside of CLP.
NASA Astrophysics Data System (ADS)
van der Bilt, Willem; Bakke, Jostein; Werner, Johannes; Paasche, Øyvind; Rosqvist, Gunhild
2016-04-01
The collapse of ice shelves, rapidly retreating glaciers and a dramatic recent temperature increase show that Southern Ocean climate is rapidly shifting. Also, instrumental and modelling data demonstrate transient interactions between oceanic and atmospheric forcings as well as climatic teleconnections with lower-latitude regions. Yet beyond the instrumental period, a lack of proxy climate timeseries impedes our understanding of Southern Ocean climate. Also, available records often lack the resolution and chronological control required to resolve rapid climate shifts like those observed at present. Alpine glaciers are found on most Southern Ocean islands and quickly respond to shifts in climate through changes in mass balance. Attendant changes in glacier size drive variations in the production of rock flour, the suspended product of glacial erosion. This climate response may be captured by downstream distal glacier-fed lakes, continuously recording glacier history. Sediment records from such lakes are considered prime sources for paleoclimate reconstructions. Here, we present the first reconstruction of Late Holocene glacier variability from the island of South Georgia. Using a toolbox of advanced physical, geochemical (XRF) and magnetic proxies, in combination with state-of-the-art numerical techniques, we fingerprinted a glacier signal from glacier-fed lake sediments. This lacustrine sediment signal was subsequently calibrated against mapped glacier extent with the help of geomorphological moraine evidence and remote sensing techniques. The outlined approach enabled us to robustly resolve variations of a complex glacier at sub-centennial timescales, while constraining the sedimentological imprint of other geomorphic catchment processes. From a paleoclimate perspective, our reconstruction reveals a dynamic Late Holocene climate, modulated by long-term shifts in regional circulation patterns. We also find evidence for rapid medieval glacier retreat as well as a synchronous bi-polar Little Ice Age (LIA). In conclusion, our work shows the potential of novel analytical and numerical tools to improve the robustness and resolution of lake sediment-based paleoclimate reconstructions beyond the current state-of-the-art.
NASA Astrophysics Data System (ADS)
Levy, L.; Hammer, S. K.; Kelly, M. A.; Lowell, T. V.; Hall, B. L.; Howley, J. A.; Wilcox, P.; Medford, A.
2014-12-01
The margins of the Greenland Ice Sheet are currently responding to present-day climate changes. Determining how the ice sheet margins have responded to past climate changes provides a means to understand how they may respond in the future. Here we present a multi-proxy record used to reconstruct the Holocene fluctuations of the Vindue glacier, an ice sheet outlet glacier in eastern Greenland. Lake sediment cores from Qiviut lake (informal name), located ~0.75 km from the present-day Vindue glacier margin contain a sharp transition from medium sand/coarse silt to laminated gyttja just prior to 6,340±130 cal yr BP. We interpret this transition to indicate a time when the Vindue glacier retreated sufficiently to cease glacial sedimentation into the lake basin. Above this contact the core contains laminated gyttja with prominent, ~0.5 cm thick, silt layers. 10Be ages of boulders on bedrock located between Qiviut lake and the present-day ice margin date to 6.81 ± 0.67 ka (n = 3), indicating the time of deglaciation. These ages also agree well with the radiocarbon age of the silt-gyttja transition in Qiviut lake cores. 10Be ages on boulders on bedrock located more proximal to the ice margin (~0.5 km) yield ages of 2.67 ± 0.18 ka (n = 2). These ages indicate either the continued recession of the ice margin during the late Holocene or an advance at this time. Boulders on the historical moraines show that ice retreated from the moraine by AD 1620 ± 20 yrs (n = 2). These results are in contrast with some areas of the western margin of the ice sheet where 10Be ages indicate that the ice sheet was behind its Historical limit from the middle Holocene (~6-7 ka) to Historical time. This may indicate that the eastern margin may have responded to late Holocene cooling more sensitively or that the advance associated with the Historical moraines overran any evidence of late Holocene fluctuations along the western margin of the ice sheet.
NASA Astrophysics Data System (ADS)
Chen, Sang; Hoffmann, Sharon S.; Lund, David C.; Cobb, Kim M.; Emile-Geay, Julien; Adkins, Jess F.
2016-05-01
The El Niño-Southern Oscillation (ENSO) is the primary driver of interannual climate variability in the tropics and subtropics. Despite substantial progress in understanding ocean-atmosphere feedbacks that drive ENSO today, relatively little is known about its behavior on centennial and longer timescales. Paleoclimate records from lakes, corals, molluscs and deep-sea sediments generally suggest that ENSO variability was weaker during the mid-Holocene (4-6 kyr BP) than the late Holocene (0-4 kyr BP). However, discrepancies amongst the records preclude a clear timeline of Holocene ENSO evolution and therefore the attribution of ENSO variability to specific climate forcing mechanisms. Here we present δ18 O results from a U-Th dated speleothem in Malaysian Borneo sampled at sub-annual resolution. The δ18 O of Borneo rainfall is a robust proxy of regional convective intensity and precipitation amount, both of which are directly influenced by ENSO activity. Our estimates of stalagmite δ18 O variance at ENSO periods (2-7 yr) show a significant reduction in interannual variability during the mid-Holocene (3240-3380 and 5160-5230 yr BP) relative to both the late Holocene (2390-2590 yr BP) and early Holocene (6590-6730 yr BP). The Borneo results are therefore inconsistent with lacustrine records of ENSO from the eastern equatorial Pacific that show little or no ENSO variance during the early Holocene. Instead, our results support coral, mollusc and foraminiferal records from the central and eastern equatorial Pacific that show a mid-Holocene minimum in ENSO variance. Reduced mid-Holocene interannual δ18 O variability in Borneo coincides with an overall minimum in mean δ18 O from 3.5 to 5.5 kyr BP. Persistent warm pool convection would tend to enhance the Walker circulation during the mid-Holocene, which likely contributed to reduced ENSO variance during this period. This finding implies that both convective intensity and interannual variability in Borneo are driven by coupled air-sea dynamics that are sensitive to precessional insolation forcing. Isolating the exact mechanisms that drive long-term ENSO evolution will require additional high-resolution paleoclimatic reconstructions and further investigation of Holocene tropical climate evolution using coupled climate models.
Nelson, A.R.; Johnson, S.Y.; Kelsey, H.M.; Wells, R.E.; Sherrod, B.L.; Pezzopane, S.K.; Bradley, L.A.; Koehler, R. D.; Bucknam, R.C.
2003-01-01
Five trenches across a Holocene fault scarp yield the first radiocarbon-measured earthquake recurrence intervals for a crustal fault in western Washington. The scarp, the first to be revealed by laser imagery, marks the Toe Jam Hill fault, a north-dipping backthrust to the Seattle fault. Folded and faulted strata, liquefaction features, and forest soil A horizons buried by hanging-wall-collapse colluvium record three, or possibly four, earthquakes between 2500 and 1000 yr ago. The most recent earthquake is probably the 1050-1020 cal. (calibrated) yr B.P. (A.D. 900-930) earthquake that raised marine terraces and triggered a tsunami in Puget Sound. Vertical deformation estimated from stratigraphic and surface offsets at trench sites suggests late Holocene earthquake magnitudes near M7, corresponding to surface ruptures >36 km long. Deformation features recording poorly understood latest Pleistocene earthquakes suggest that they were smaller than late Holocene earthquakes. Postglacial earthquake recurrence intervals based on 97 radiocarbon ages, most on detrital charcoal, range from ???12,000 yr to as little as a century or less; corresponding fault-slip rates are 0.2 mm/yr for the past 16,000 yr and 2 mm/yr for the past 2500 yr. Because the Toe Jam Hill fault is a backthrust to the Seattle fault, it may not have ruptured during every earthquake on the Seattle fault. But the earthquake history of the Toe Jam Hill fault is at least a partial proxy for the history of the rest of the Seattle fault zone.
NASA Astrophysics Data System (ADS)
Zink, Klaus-G.; Leythaeuser, Detlev; Melkonian, Michael; Schwark, Lorenz
2001-01-01
Distribution patterns of C 37 and C 38 polyunsaturated long-chain alkenones (LCAs) serve as proxies for the determination of paleotemperatures for marine surface waters. We studied Recent/Subrecent and Late Glacial/Holocene sediments from Germany, Austria, Russia, and the U.S. to test for a correspondence between LCA distribution and surface water temperature in limnic systems. Previously, reports of LCA occurrence were restricted to sediments of 6 wide distributed freshwater and alkaline lakes. In this study 13 of 27 investigated lakes contained LCAs in surface sediments with concentrations varying between 12 to 205 μg/g TOC. Late Glacial to Holocene sediment sequences from Lake Steisslingen and Lake Wummsee, (Germany), Lake Pichozero (Russia), and Brush Lake (U.S.A.) contained abundant LCAs with averaged concentrations of 33 to 7536 μg/g TOC. For the first time we observed the occurrence of LCAs within in the water column of oligotrophic Lake Stechlin (NE-Germany). Alkenones were restricted to the zone of maximum chlorophyll concentration within the water column indicating that LCAs have a biosynthetic origin and can be attributed to phototrophic (micro)algae. Attempts to identify the producing organism, however, were not successful. Culture experiments allow various phytoplankton to be excluded as producers. Alkenone-producing algae are evidently of small size, hindering microscopical identification. LCAs commonly occur in high concentrations in Late Glacial sediments, mainly during the cold period of the Younger Dryas, whereas the Holocene usually is devoid of polyunsaturated alkenones. The episodic occurrence of LCAs restricts their utility as proxies for continuous geological records. Furthermore, lack of microscopical verification and the episodic distribution allow for different producers of unsaturated alkenones in Recent and Late Glacial sediments. An empirical relationship between LCA distribution and temperature was observed. In fossil sediments from Lake Steisslingen, there is a good correspondence between Uk37 and the temperature-controlled δ 18O isotope ratio of lake chalk. Comparison of LCA patterns obtained from the uppermost centimetres of lake sediments with averaged summer surface water temperatures of the lakes studied, demonstrates a trend of covariance ( r2: Uk'37 = 0.90, Uk37 = 0.67; n = 9). Hence, the same mechanism that causes temperature-dependence of LCA patterns in marine systems might be effective in limnic settings. Identification of alkenone producers and their culture under controlled temperature are still mandatory before LCAs can be routinely applied as paleotemperature proxy in limnic systems.
Mid-late Holocene climate, demography, and cultural dynamics in Iberia: A multi-proxy approach
NASA Astrophysics Data System (ADS)
Lillios, Katina T.; Blanco-González, Antonio; Drake, Brandon Lee; López-Sáez, José Antonio
2016-03-01
Despite increasing interest in the relationship between culture transformation and abrupt climate change, their complexities are poorly understood. The local impact of global environmental fluctuations depends on multiple factors, and their effects on societal collapse are often assumed rather than demonstrated. One of the major changes in west European later prehistory was the Copper to Bronze Age transition, contemporaneous with the 4.2 ky cal. BP event. This article offers a multi-dimensional insight into this historical process in the Iberian Peninsula from a multi-proxy and comparative perspective. Three study areas, representative of diverse ecological settings and historical trajectories, are compared. Using radiocarbon dates, 13C discrimination (Δ13C) values on C3 plants, and high-resolution palynological records as palaeoclimatic and palaeodemographic proxies, this study tracks the uneven signals of Holocene climate. The wettest Northwest region features the most stable trend lines, whereas the Southwest exhibits an abrupt decrease in its demographic signals c. 4500 cal. BP, which is then followed by a subsequent rise in the neighbouring Southeast. These lines of evidence suggest the possibility, never previously noted, of demic migration from the Southwest to the Southeast in the Early Bronze Age as a contributing factor to the cultural dynamics of southern Iberia.
NASA Astrophysics Data System (ADS)
Axford, Y.; Bigl, M.; Carrio, C.; Corbett, L. B.; Francis, D. R.; Hall, B. L.; Kelly, M. A.; Levy, L.; Lowell, T. V.; Osterberg, E. C.; Richter, N.; Roy, E.; Schellinger, G. C.
2013-12-01
Here we present new paleotemperature reconstructions based upon insect (Chironomidae) assemblages and other proxies from lake sediment cores recovered in east Greenland at ~71° N near Scoresby Sund and in northwest Greenland at ~77° N near Thule/Qaanaaq. In east Greenland, Last Chance Lake (informal name) is a small, non-glacial lake situated ~90 km east of the Greenland Ice Sheet margin. The lake preserves a sedimentary record of the entire Holocene (Levy et al. 2013). Chironomids from Last Chance Lake record cold summer temperatures (and establishment of a cold-climate fauna including abundant Oliveridia and Pseudodiamesa) during the late Holocene, preceded by summer temperatures estimated to have been 3 to 6°C warmer during the first half of the Holocene (when summer insolation forcing was greater than today). In northwest Greenland, Delta Sø and Wax Lips Lake (informal name) both preserve Holocene sediments. Here we discuss the late Holocene chironomid record from Delta Sø, whereas from Wax Lips Lake (a small, non-glacial lake situated ~2 km west of the ice sheet margin) we present a longer sedimentary and biostratigraphic record. The deeper portions of cores from Wax Lips Lake yield pre-Holocene and nonfinite radiocarbon ages, suggesting that this lake preserves sediments predating the Last Glacial Maximum. Abundant chironomids in the pre-glacial sediments appear to record interglacial conditions, and we infer that these sediments may date to the Last Interglacial (Eemian). The preservation of in situ Last Interglacial lacustrine sediments so close to the modern ice sheet margin suggests a minimally erosive glacierization style throughout the last glacial period, like that inferred for other Arctic locales such as on Baffin Island (Briner et al. 2007), ~750 km southwest of our study site. Our study sites are situated nearby key ice core sites (including NEEM, Camp Century, Agassiz and Renland) and very close to the ice sheet margin. These chironomid records therefore provide opportunities to compare climate inferences based upon ice core data and reconstructed ice margin histories with independent, biologically based estimates of air temperatures for the Holocene and possibly the Last Interglacial. Briner, J.P., Axford, Y., Forman, S.L., Miller, G.H., and Wolfe, A.P. 2007. Multiple generations of interglacial lake sediment preserved beneath the Laurentide Ice Sheet. Geology 35, 887-890. Levy, L.B., Kelly, M.A., Lowell, T.V., Hall, B.L., Hempel, L.A., Honsaker, W.M., Lusas, A.R., Howley, J.A., Axford, Y.L., 2013. Holocene fluctuations of Bregne ice cap, Scoresby Sund, east Greenland: a proxy for climate along the Greenland Ice Sheet margin. In press, Quaternary Science Reviews.
NASA Astrophysics Data System (ADS)
Axford, Y.; Bigl, M.; Carrio, C.; Corbett, L. B.; Francis, D. R.; Hall, B. L.; Kelly, M. A.; Levy, L.; Lowell, T. V.; Osterberg, E. C.; Richter, N.; Roy, E.; Schellinger, G. C.
2011-12-01
Here we present new paleotemperature reconstructions based upon insect (Chironomidae) assemblages and other proxies from lake sediment cores recovered in east Greenland at ~71° N near Scoresby Sund and in northwest Greenland at ~77° N near Thule/Qaanaaq. In east Greenland, Last Chance Lake (informal name) is a small, non-glacial lake situated ~90 km east of the Greenland Ice Sheet margin. The lake preserves a sedimentary record of the entire Holocene (Levy et al. 2013). Chironomids from Last Chance Lake record cold summer temperatures (and establishment of a cold-climate fauna including abundant Oliveridia and Pseudodiamesa) during the late Holocene, preceded by summer temperatures estimated to have been 3 to 6°C warmer during the first half of the Holocene (when summer insolation forcing was greater than today). In northwest Greenland, Delta Sø and Wax Lips Lake (informal name) both preserve Holocene sediments. Here we discuss the late Holocene chironomid record from Delta Sø, whereas from Wax Lips Lake (a small, non-glacial lake situated ~2 km west of the ice sheet margin) we present a longer sedimentary and biostratigraphic record. The deeper portions of cores from Wax Lips Lake yield pre-Holocene and nonfinite radiocarbon ages, suggesting that this lake preserves sediments predating the Last Glacial Maximum. Abundant chironomids in the pre-glacial sediments appear to record interglacial conditions, and we infer that these sediments may date to the Last Interglacial (Eemian). The preservation of in situ Last Interglacial lacustrine sediments so close to the modern ice sheet margin suggests a minimally erosive glacierization style throughout the last glacial period, like that inferred for other Arctic locales such as on Baffin Island (Briner et al. 2007), ~750 km southwest of our study site. Our study sites are situated nearby key ice core sites (including NEEM, Camp Century, Agassiz and Renland) and very close to the ice sheet margin. These chironomid records therefore provide opportunities to compare climate inferences based upon ice core data and reconstructed ice margin histories with independent, biologically based estimates of air temperatures for the Holocene and possibly the Last Interglacial. Briner, J.P., Axford, Y., Forman, S.L., Miller, G.H., and Wolfe, A.P. 2007. Multiple generations of interglacial lake sediment preserved beneath the Laurentide Ice Sheet. Geology 35, 887-890. Levy, L.B., Kelly, M.A., Lowell, T.V., Hall, B.L., Hempel, L.A., Honsaker, W.M., Lusas, A.R., Howley, J.A., Axford, Y.L., 2013. Holocene fluctuations of Bregne ice cap, Scoresby Sund, east Greenland: a proxy for climate along the Greenland Ice Sheet margin. In press, Quaternary Science Reviews.
A Late Pleistocene sea level stack
NASA Astrophysics Data System (ADS)
Spratt, Rachel M.; Lisiecki, Lorraine E.
2016-04-01
Late Pleistocene sea level has been reconstructed from ocean sediment core data using a wide variety of proxies and models. However, the accuracy of individual reconstructions is limited by measurement error, local variations in salinity and temperature, and assumptions particular to each technique. Here we present a sea level stack (average) which increases the signal-to-noise ratio of individual reconstructions. Specifically, we perform principal component analysis (PCA) on seven records from 0 to 430 ka and five records from 0 to 798 ka. The first principal component, which we use as the stack, describes ˜ 80 % of the variance in the data and is similar using either five or seven records. After scaling the stack based on Holocene and Last Glacial Maximum (LGM) sea level estimates, the stack agrees to within 5 m with isostatically adjusted coral sea level estimates for Marine Isotope Stages 5e and 11 (125 and 400 ka, respectively). Bootstrapping and random sampling yield mean uncertainty estimates of 9-12 m (1σ) for the scaled stack. Sea level change accounts for about 45 % of the total orbital-band variance in benthic δ18O, compared to a 65 % contribution during the LGM-to-Holocene transition. Additionally, the second and third principal components of our analyses reflect differences between proxy records associated with spatial variations in the δ18O of seawater.
NASA Astrophysics Data System (ADS)
Ding, Xiaodong; Bao, Hongyan; Zheng, Liwei; Li, Dawei; Kao, Shuh-Ji
2017-03-01
The Younger Dryas (YD) event, which punctuated the last glacial-Holocene transition period and had a profound impact on global climate, is the most well studied millennial-scale climate event although the triggering mechanism remains debate. Weakened Asian summer monsoon during the YD is recorded in oxygen isotopes of stalagmite from Mainland China. However, lacustrine climate record of the YD event has not been reported from the subtropical land-ocean boundary of the Asian continent near the Pacific warm pool. We provide a lignin biomarker record covering the last deglaciation and early Holocene (17-9 ka BP) from the Dongyuan Lake, southern Taiwan, located at the frontal zone of typhoon invasion. The lignin phenol ratio S/V shows that the vegetation in the catchments had shifted from gymnosperm dominant to angiosperm dominant plants since 12.2 ka BP. Significantly decreased lignin concentrations (TLP and λ8) and elevated lignin degradation parameters ((Ad/Al)v, P/(V + S), DHBA/V) in combination with other organic proxies (TOC, δ13Corg) during the late YD suggest a severe drought had occurred in southern Taiwan during this specific period. Changes in the lignin proxies from the Dongyuan Lake lagged the climate changes registered in stalagmite records by around 500-800 years, suggesting a slow response of vegetation and soil processes to rapid climate changes.
Xu, Deke; Lu, Houyuan; Chu, Guoqiang; Wu, Naiqin; Shen, Caiming; Wang, Can; Mao, Limi
2014-01-01
Here we presented a high-resolution 5350-year pollen record from a maar annually laminated lake in East Asia (EA). Pollen record reflected the dynamics of vertical vegetation zones and temperature change. Spectral analysis on pollen percentages/concentrations of Pinus and Quercus, and a temperature proxy, revealed ~500-year quasi-periodic cold-warm fluctuations during the past 5350 years. This ~500-year cyclic climate change occurred in EA during the mid-late Holocene and even the last 150 years dominated by anthropogenic forcing. It was almost in phase with a ~500-year periodic change in solar activity and Greenland temperature change, suggesting that ~500-year small variations in solar output played a prominent role in the mid-late Holocene climate dynamics in EA, linked to high latitude climate system. Its last warm phase might terminate in the next several decades to enter another ~250-year cool phase, and thus this future centennial cyclic temperature minimum could partially slow down man-made global warming. PMID:24402348
NASA Astrophysics Data System (ADS)
Steinman, B. A.; Pompeani, D. P.; Abbott, M. B.; Ortiz, J. D.; Stansell, N.; Mihindukulasooriya, L. N.; Hillman, A. L.; Finkenbinder, M. S.
2015-12-01
Oxygen isotope measurements of authigenic carbonate from Cleland Lake (British Columbia), Paradise Lake (British Columbia), and Lime Lake (Washington) provide an ~9,000 year Holocene record of precipitation-evaporation balance variations in the Pacific Northwest. Both Cleland Lake and Paradise Lake are small, surficially closed-basin systems with no active inflows or outflows. Lime Lake is surficially open with a seasonally active overflow. We sampled the lake sediment cores at 1-60 mm intervals (~3-33 years per sample on average) and measured the isotopic composition of fine-grained, authigenic CaCO3 in each sample. Negative δ18O values, which indicate wetter conditions in closed-basin lakes, occur in Cleland Lake and Paradise Lake sediment during the mid-Holocene and are followed by more positive δ18O values, which suggest drier conditions, in the late Holocene. The δ18O record from Lime Lake, which principally reflects changes in the isotopic composition of precipitation, exhibits less variability than the closed-basin lake records and follows an increasing trend from the mid-Holocene to present. Power spectrum analysis of the Cleland Lake δ18O data from 1,000 yr BP to present demonstrates significant periodicities of ~6 and ~67 years that likely reflect the enhancement of El Niño Southern Oscillation (ENSO) variability in the late Holocene with an associated multidecadal (i.e., 50 to 70 yr) component of the Pacific Decadal Oscillation. Results from mid-Holocene (6,000 yr BP) climate model simulations conducted as part of the Paleoclimate Modeling Intercomparison Project Phase 3 (PMIP3) indicate that in much of western North America, the cold season was wetter, and the warm season (April-September) was considerably drier (relative to the late Holocene), leading to an overall drier climate in western North America but with enhanced hydroclimatic seasonality. This is consistent with inferences from the Cleland and Paradise Lake δ18O records, which lake modeling experiments indicate are strongly influenced by cold season precipitation-evaporation balance. This also helps to explain apparent inconsistencies between the lake δ18O records and other proxies of hydroclimatic change from the greater Pacific Northwest region that indicate relatively drier conditions during the mid-Holocene.
NASA Astrophysics Data System (ADS)
Muñoz, Paula; Gorin, Georges; Parra, Norberto; Velásquez, Cesar; Lemus, Diego; Monsalve-M., Carlos; Jojoa, Marcela
2017-01-01
The Páramo de Frontino (3460 m elevation) in Colombia is located approximately halfway between the Pacific and Atlantic oceans. It contains a 17 kyr long, stratigraphically continuous sedimentary sequence dated by 30 AMS 14C ages. Our study covers the last 11,500 cal yr and focuses on the biotic (pollen) and abiotic (microfluorescence-X or μXRF) components of this high mountain ecosystem. The pollen record provides a proxy for temperature and humidity with a resolution of 20-35 yr, and μXRF of Ti and Fe is a proxy for rainfall with a sub-annual (ca. 6-month) resolution. Temperature and humidity display rapid and significant changes over the Holocene. The rapid transition from a cold (mean annual temperature (MAT) 3.5 °C lower than today) and wet Younger Dryas to a warm and dry early Holocene is dated at 11,410 cal yr BP. During the Holocene, MAT varied from ca. 2.5 °C below to 3.5° above present-day temperature. Warm periods (11,410-10,700, 9700-6900, 4000-2400 cal yr BP) were separated by colder intervals. The last 2.4 kyr of the record is affected by human impact. The Holocene remained dry until 7500 cal yr BP. Then, precipitations increased to reach a maximum between 5000 and 4500 cal yr BP. A rapid decrease occurred until 3500 cal yr BP and the late Holocene was dry. Spectral analysis of μXRF data show rainfall cyclicity at millennial scale throughout the Holocene, and at centennial down to ENSO scale in more specific time intervals. The highest rainfall intervals correlate with the highest activity of ENSO. Variability in solar output is possibly the main cause for this millennial to decadal cyclicity. We interpret ENSO and ITCZ as the main climate change-driving mechanisms in Frontino. Comparison with high-resolution XRF data from the Caribbean Cariaco Basin (a proxy for rainfall in the coastal Venezuelian cordilleras) demonstrates that climate in Frontino was Pacific-driven (ENSO-dominated) during the YD and early Holocene, whereas it was Atlantic-driven in Cariaco (ITCZ-dominated). From ca. 8000 cal yr BP, climate in both areas was under the dual influence of ENSO and ITCZ, thereby showing existing teleconnections between the tropical Pacific and Atlantic oceans. The Frontino record is to date the highest-resolution Holocene study in NW Colombia. An implication of these results is that new records should be analyzed with multiproxy tools, in particular those providing high resolution time series, such as μXRF.
NASA Astrophysics Data System (ADS)
Thirumalai, K.; Quinn, T. M.; Okumura, Y.; Richey, J. N.; Partin, J. W.; Poore, R. Z.
2015-12-01
Surface circulation in the Atlantic Ocean is an important mediator of global climate and yet its variability is poorly constrained on centennial timescales. Changes in the Atlantic meridional overturning circulation (AMOC) have been implicated in late Holocene climate variability in the Western Hemisphere, although the relationship between AMOC variability and hydroclimate is uncertain due to the lack of sufficiently highly resolved proxy records. Here we present a replicated reconstruction of sea-surface temperature (SST) and salinity (SSS) from the Garrison Basin in the northern Gulf of Mexico (NGOM) spanning the last 4,400 years to better constrain past sea-surface conditions. We generated time series of paired Mg/Ca (SST proxy) and δ18O (SST and SSS proxy) variations in planktic foraminifer Globigerinoides ruber (white variety) from three multi-cores collected in 2010. Using a Monte Carlo-based technique we produce a stacked record from the three multi-cores and constrain analytical, calibration, chronological, and sampling uncertainties. We apply this technique to existing paired Mg/Ca- δ18O studies in the Gulf of Mexico and Atlantic Ocean to facilitate comparison between time-uncertain proxy reconstructions. The Garrison Basin stack exhibits large centennial-scale variability (σSST~0.6°C; δ18Osw~0.17‰) and indicates a substantially cool (0.9±0.5°C) and fresh (0.26±0.1‰) Little Ice Age (LIA; 1450-1850 A.D.), corroborating extant records from the Gulf of Mexico. Focusing on the last millennium, we analyze a suite of oceanic and terrestrial proxy records to demonstrate a centennial-scale link between salt advection in the Atlantic Ocean, a diagnostic parameter of ocean circulation, and hydroclimate in the adjacent continents. The ensuing multiproxy relationships seem to be consistent with spatial field correlations of limited salinity and rainfall instrumental/reanalysis data, which suggest that NGOM salinity varies with large-scale Atlantic Ocean circulation and continental precipitation. Our results imply significant centennial-scale variability over the late Holocene and are consistent with limited observational analysis indicating a slowdown of AMOC during the LIA.
NASA Astrophysics Data System (ADS)
Balestra, B.; Ducassou, E.; Zarikian, C.; Bout-Roumazeilles, V.; Flores, J. A.; Paytan, A.
2017-12-01
We present preliminary micropaleontological and sedimentological data from IODP Site U1390 (Expedition 339), located in the central middle slope of the Gulf of Cadiz, since the last glaciation. This site has been targeted for reconstruction of regional paleo-circulation as it shows particularly high sedimentation rates, throughout the Holocene and the Last Glacial Maximum (LGM). We use micropaleontological and sedimentological proxies to understand the bottom current variations through time and the ecological conditions at the sea surface (planktonic foraminifer, pteropod and nannofossil assemblages), and the sea bottom (ostracod assemblages). Eleven samples, chosen at transitions of planktonic foraminifer assemblages, have been dated by AMS radiocarbon analyses. Preliminary results from benthic ostracod assemblages show variations in bottom water ventilation and food supply. Planktonic foraminifer assemblages clearly show the well-known cold events of this period such as the Younger Dryas and Heinrich stadial associated to coarser sediment, and warmer phases such as the Bölling-Allerød associated to muddy sediment. Other bio-events within the Holocene period are also recorded. The preservation of the coccolithophore assemblages is good to moderate. Coccolith abundances (expressed in coccoliths/gr of sediment) show higher values during the Holocene and generally are like assemblages previously reported for the same area. Implications for characterization of the Holocene, the last termination and LGM ecological conditions at high resolution and their potential fluctuations (i.e. amplitude and magnitude) under the influence of the lower core of the Mediterranean Outflow Water (MOW), with this multi proxy approach based on sedimentological, and paleontological data will be discussed.
Holocene East Asian Monsoon Variability: Links to Solar and Tropical Pacific Forcing
NASA Astrophysics Data System (ADS)
Kandasamy, S.; Chen, C. A.; Lou, J.
2006-12-01
Sedimentary geochemical records from subalpine Retreat Lake, subtropical Taiwan, document the unstable East Asian Monsoon (EAM) climate for the last ~10250 calendar years before the present (cal yr B.P.). The proxy records demonstrate cool, glacial conditions with weak EAM between ~10250 and 8640 cal yr B.P., the strongest EAM during the "Holocene optimum" (8640-4500 cal yr B.P.) with an abrupt, decadal onset of postglacial EAM (8640-8600 cal yr B.P.), and relatively dry conditions since 4500 cal yr B.P. Although after 8600 cal yr B.P., EAM strength reduces gradually in response to the Northern Hemisphere summer insolation, heat and moisture transport and the development of late Holocene El-Niño-Southern Oscillation in the tropical Pacific appear to corroborate the periods of abrupt monsoon changes. Our proxy records reveal several weak monsoon intervals that correlate to low sea surface temperatures in the western tropical Pacific and cold events in the North Atlantic, suggesting a mechanistic link. Among those, four weak EAM events at 8170, 5400, 4500-2100 and 2000-1600 cal yr B.P. are in phase with the timings of low concentrations of atmospheric methane and periods of reduced North Atlantic Deep Water production as well as the `8.2 ka cold spell' and widespread event of low-latitude cultural collapse. Our EAM records exhibit strong correlations with high- and low-latitude climate and monsoon records; thus, provide robust evidences that the centennial-millennial scale monsoon variability during the Holocene are globally-mediated via sun- ocean-monsoon-North Atlantic linkages.
A Multiproxy Reconstruction of Holocene Southern Westerlies from the Auckland Islands
NASA Astrophysics Data System (ADS)
Nichols, J. E.; Moy, C. M.; Peteet, D. M.; Weiss, A.; Curtin, L. G.
2015-12-01
The strength and position of the Southern Hemisphere Westerly Wind belt plays an important role in our understanding of the global carbon cycle and glacial-interglacial climate change. We present a paleoclimate record that is primarily influenced by the strength and latitudinal position of the Southern Hemisphere Westerly Winds from a late Holocene lake sediment core and a peat core that spans the last 13,000 years, both obtained from New Zealand's subantarctic Auckland Islands (50°S, 166°E). Several proxy indicators contribute to our reconstruction. Hydrogen isotope ratios of specific organic molecules allow us to reconstruct the hydrogen isotope ratios of precipitation. Using macrofossil counts and the abundances of leaf wax biomarkers, we are able to estimate the moisture balance at our sites. Model simulations of the Westerlies and the rate and isotope ratios of precipitation allow us to interpret our proxy data as changes in the strength and position of the Westerly Winds. In our lacustrine sediment, we found that the Westerlies have been shifting southward since the Little Ice Age, consistent with modern observations of a southward shift. In the peatland sediment, we found a multi-millennial northward shift in the Westerlies during the middle Holocene. We will present further ongoing work that strengthens the chronology of Auckland Islands environmental change and integrates these results with vegetation shifts identified in pollen and macrofossil data.
NASA Technical Reports Server (NTRS)
Tierney, J.E.; Oppo, D. W.; LeGrande, A. N.; Huang, Y.; Rosenthal, Y.; Linsley, B. K.
2012-01-01
Existing paleoclimate data suggest a complex evolution of hydroclimate within the Indo-Pacific Warm Pool (IPWP) during the Holocene epoch. Here we introduce a new leaf wax isotope record from Sulawesi, Indonesia and compare proxy water isotope data with ocean-atmosphere general circulation model (OAGCM) simulations to identify mechanisms influencing Holocene IPWP hydroclimate. Modeling simulations suggest that orbital forcing causes heterogenous changes in precipitation across the IPWP on a seasonal basis that may account for the differences in time-evolution of the proxy data at respective sites. Both the proxies and simulations suggest that precipitation variability during the September-November (SON) season is important for hydroclimate in Borneo. The preeminence of the SON season suggests that a seasonally lagged relationship between the Indian monsoon and Indian Ocean Walker circulation influences IPWP hydroclimatic variability during the Holocene.
NASA Astrophysics Data System (ADS)
Höbig, N.; Martinelli, E.; Motella, S.; Michetti, A. M.; Livio, F.; Tinner, W.; Reicherter, K.; Castelletti, L.
2012-04-01
Lake Como (northern Italy) is the deepest Italian lake, reaching a depth of about 425 m. The lambda-shaped lake expands about 45 km in NE-SW direction. Southwards of the hydrologically closed western branch, two sediment cores of 70 m (S1) and 65 m length (S2) were taken in the year 2005 close to the cathedral of Como (Piazza Verdi). The drilling sites are located in the middle of the Southern Alps, some 300 m from the present-day lakeshore. The cores provide the first detailed Late Glacial to Holocene multi-proxy record for the Lake Como basin. Our research is aimed at investigating the environmental and geological evolution of the Insubria Region. The multi-proxy study of the stratigraphic sequences contain geophysical, geotechnical, sedimentological, paleobotanical, and radiocarbon analyses. They have been performed for core S1 and are still in progress on core S2. With this data the working group focuses on two main issues. The first topic is the reconstruction of the natural and anthropogenic processes controlling the ground subsidence in the Como urban area (e.g., Comerci et al., 2007) and another aim is to reconstruct vegetation and land-use dynamics. In particular, 150 samples of vegetal macroremains have been collected in the palustrine deposits along S1 core, down to 31,00 m. Below this depth (dated 14C 12,496 ± 55 yr BP - 15,050 - 14,250 cal yr BP), the amount of plant macroremains in the sediment drops dramatically. The taxonomic determination was carried out on more than 800 macroremains. They are represented by fragments of wood, leaves, needles, seeds, fruits, mosses and tiny charcoals (Motella, 2009, unpublished PhD Thesis). Picea/Larix, Pinus sp., Juniperus with Betula, found in the deeper levels (30.80 - 30.00 m), are the first arboreal taxa that colonized the shores of Lake Como, and show that the reforestation began in this area about 16,000 years ago. During the early Holocene (25.10 m) Abies alba expanded and further upwards the sequence mixed deciduous forests became important. Preliminary results of palynological analyses for a section of the core S2 (35.04 - 18.12 m), show Late Glacial sediments in the depth of 35.04 - 31.16 m, due to vegetation changes related to natural climatic variability, with an alternation of communities typical of cold (Poaceae, Artemisia, Juniperus, Pinus and Betula) and temperate climates (e.g. Quercus). Later, during the Holocene, forests composed by mostly deciduous broadleaves and Abies alba expanded. During the mid and late Holocene human impact increased and modified vegetation. This is shown by the increase of herbs and heliofilous shrubs (26.51 m), typical of deforested spaces for fields and pastures. Human exploitation of wood is represented for example by the dramatic decline of Abies alba (24.97 m). Finally, the increase of Cerealia (19.39 m) is clearly related to intensified agricultural activities. The results of further paleobotanical and geophysical analyses which are in progress will be presented during the conference. Moreover, geochemical measurements (e.g., XRF) will be performed in future for core S2. Researches realized within the project of Italy-Switzerland Cooperation SITINET "Censimento, valorizzazione e messa in rete di siti geologici e archeologici" (Census, increase of value and computerization of geological and archaeological sites). Interreg IV A "Geo-Archeositi dell'Insubria" (Geo-Archaeosites of Insubria).
NASA Astrophysics Data System (ADS)
Noble, Paula; Zimmerman, Susan; Ball, Ian; Adams, Kenneth; Maloney, Jillian; Smith, Shane
2016-04-01
A mid Holocene dry period has been reported from lake records in the Great Basin and Sierra Nevada, yet the spatial and temporal extent of this interval is not well understood. We present evidence for a millennial-scale interval of high winter precipitation (neopluvial) at the end of the mid Holocene in the Lake Tahoe-Pyramid Lake watershed in the northern Sierra Nevada that reached its peak ˜3.7 kcal yr BP. A transect of 4 cores recovered from Fallen Leaf Lake in the Tahoe Basin were dated using AMS14C on plant macrofossils, and analyzed using scanning XRF, C and N elemental and stable isotope measurements, and diatoms as paleoclimate proxies. Fallen Leaf Lake is a deep glacially-derived lake situated in the Glen Alpine Valley at an elevation of 1942m, ˜45 m above the level of Lake Tahoe. In Fallen Leaf Lake, the end of the neopluvial is dated at 3.65 ± 0.09 kcal yr BP, and is the largest post-glacial signal in the cores. The neopluvial interval is interpreted to be a period of increased snowpack in the upper watershed, supported by depleted g δ13Corg (-27.5) values, negative baseline shifts in TOC and TN, lower C:N, and high abundances of Aulacoseira subarctica, a winter-early spring diatom. Collectively, these proxies indicate cooler temperatures, enhanced mixing, and/or shortened summer stratification resulting in increased algal productivity relative to terrestrial inputs. The neopluvial interval ends abruptly at 3.65 ka, with a change from mottled darker opaline clay to a homogeneous olive clay with decreased A. subarctica and opal, and followed by a 50% reduction in accumulation rates. After this transition δ13Corg becomes enriched by 2‰ and TOC, TN, and C:N all show the start of positive trends that continue through the Holocene. Pyramid Lake is an endorheic basin situated at the terminal end of the watershed, and inflow arrives from the Lake Tahoe basin via the Truckee River. At Pyramid Lake, existing ages on paleo-shorelines indicate a significant lake-level rise beginning at some point after 5 kcal yr BP and reaching a highstand of about 1186 m between 3.8 - 4.1 kcal yr BP (Briggs et al., 2005), but new OSL ages on Holocene shorelines are pending. In the Walker, Mono, and Owens lake basins, the neopluvial shorelines represent the highest late Holocene shorelines (Stine, 1990; Adams et al., 2014). Collectively, these studies indicate that the neopluvial and subsequent aridification intervals preserved in Fallen Leaf Lake sediments were at least regional in scale, affecting the watersheds in the northern Sierra Nevada-western Great Basin
Litwin, Ronald J.; Smoot, Joseph P.; Durika, Nancy J.; Smith, George I.
1999-01-01
We constructed a radiometrically calibrated proxy record of Late Pleistocene and Holocene climate change exceeding 230,000 yr duration, using pollen profiles from two cores taken through age-equivalent dry lakes - one core having greater age control (via 230Th alpha mass-spectrometry) and the other having greater stratigraphic completeness. The better dated of these two serial pollen records (Searles Lake) served as a reference section for improving the effective radiometric age control in a nearby and more complete pollen record (Owens Lake) because they: (1) are situated ~90 km apart in the same drainage system (on, and immediately leeward of, the eastern flank of the Sierra Nevada), and (2) preserved strikingly similar pollen profiles and concordant sequences of sedimentological changes. Pollen assemblages from both lakes are well preserved and diverse, and document serial changes in Late Pleistocene and Holocene plant zone distribution and composition in the westernmost Great Basin; they consist of taxa now inhabiting montane forest, woodland, steppe, and desert-scrub environments. The studied core intervals are interpreted here to be the terrestrial equivalent of marine δ18O stages 1 through 9; these pollen profiles now appear to be among the best radiometrically dated Late Pleistocene records of terrestrial climate change known.
NASA Astrophysics Data System (ADS)
Longman, Jack; Ersek, Vasile; Veres, Daniel; Salzmann, Ulrich
2017-07-01
The Romanian Carpathians are located at the confluence of three major atmospheric pressure fields: the North Atlantic, the Mediterranean and the Siberian. Despite its importance for understanding past human impact and climate change, high-resolution palaeoenvironmental reconstructions of Holocene hydroclimate variability, and in particular records of extreme precipitation events in the area, are rare. Here we present a 7500-year-long high-resolution record of past climatic change and human impact recorded in a peatbog from the Southern Carpathians, integrating palynological, geochemical and sedimentological proxies. Natural climate fluctuations appear to be dominant until 4500 years before present (yr BP), followed by increasing importance of human impact. Sedimentological and geochemical analyses document regular minerogenic deposition within the bog, linked to periods of high precipitation. Such minerogenic depositional events began 4000 yr BP, with increased depositional rates during the Medieval Warm Period (MWP), the Little Ice Age (LIA) and during periods of societal upheaval (e.g. the Roman conquest of Dacia). The timing of minerogenic events appears to indicate a teleconnection between major shifts in North Atlantic Oscillation (NAO) and hydroclimate variability in southeastern Europe, with increased minerogenic deposition correlating to low NAO index values. By linking the minerogenic deposition to precipitation variability, we state that this link persists throughout the mid-to-late Holocene.
NASA Astrophysics Data System (ADS)
Thomas, E. K.; Briner, J. P.; Axford, Y.
2007-12-01
The Arctic has a disproportionately large response to changes in radiative forcing of climate, and glaciers and arctic lacustrine ecosystems respond sensitively to these changes. Lacustrine ecosystems throughout the Arctic are undergoing rapid regime shifts, including dramatically increased primary productivity and changing aquatic floral and faunal assemblages. Our work on organic lake sediments from northeast Baffin Island shows a large increase in primary productivity, changes in insect (Chironomidae) assemblages including the disappearance of cold stenotherms, and a rise in chironomid-inferred summer water temperatures of at least 1.5°C over the past 50 years, reaching temperatures that were unprecedented in the past 5000 years. Here, we pursue the use of varve thickness, an abiotic temperature proxy, to expand our understanding of late Holocene temperature changes on northeast Baffin Island. We obtained a 14C- and 239+240Pu-dated surface core/percussion core pair from a proglacial lake. Together these cores span > 8000 years and the sediments are varved, as verified by the 239+240Pu analysis, for at least the past 700 years. Magnetic susceptibility was high during the early Holocene, decreased to near-zero values during the mid-Holocene and increased during the past 2500 years to reach the highest values seen in the record around 1000 years ago. Loss-on- ignition had an opposite trend, with the highest values in the mid-Holocene. Sedimentation rate was constant during most of the Holocene (0.03 cm yr -1) and increased during the past 1000 years to 0.05 cm yr -1. These parameters indicate that following the absence of an active glacier during the middle Holocene, glacier activity initiated ~2500 years ago and reached peak activity over the last 1000 years. Our ongoing work to obtain a varve-thickness record for at least the last 700 years, and its calibration to a nearby weather station, will be presented.
NASA Astrophysics Data System (ADS)
Browne, Imogen M.; Moy, Christopher M.; Riesselman, Christina R.; Neil, Helen L.; Curtin, Lorelei G.; Gorman, Andrew R.; Wilson, Gary S.
2017-10-01
The Southern Hemisphere westerly winds (SHWWs) play a major role in controlling wind-driven upwelling of Circumpolar Deep Water (CDW) and outgassing of CO2 in the Southern Ocean, on interannual to glacial-interglacial timescales. Despite their significance in the global carbon cycle, our understanding of millennial- and centennial-scale changes in the strength and latitudinal position of the westerlies during the Holocene (especially since 5000 yr BP) is limited by a scarcity of palaeoclimate records from comparable latitudes. Here, we reconstruct middle to late Holocene SHWW variability using a fjord sediment core collected from the subantarctic Auckland Islands (51° S, 166° E), located in the modern centre of the westerly wind belt. Changes in drainage basin response to variability in the strength of the SHWW at this latitude are interpreted from downcore variations in magnetic susceptibility (MS) and bulk organic δ13C and atomic C / N, which monitor influxes of lithogenous and terrestrial vs. marine organic matter, respectively. The fjord water column response to SHWW variability is evaluated using benthic foraminifer δ18O and δ13C, both of which are influenced by the isotopic composition of shelf water masses entering the fjord. Using these data, we provide marine and terrestrial-based evidence for increased wind strength from ˜ 1600 to 900 yr BP at subantarctic latitudes that is broadly consistent with previous studies of climate-driven vegetation change at the Auckland Islands. Comparison with a SHWW reconstruction using similar proxies from Fiordland suggests a northward migration of the SHWW over New Zealand during the first half of the last millennium. Comparison with palaeoclimate and palaeoceanographic records from southern South America and West Antarctica indicates a late Holocene strengthening of the SHWW after ˜ 1600 yr BP that appears to be broadly symmetrical across the Pacific Basin. Contemporaneous increases in SHWW at localities on either side of the Pacific in the late Holocene are likely controlled atmospheric teleconnections between the low and high latitudes, and by variability in the Southern Annular Mode and El Niño-Southern Oscillation.
NASA Astrophysics Data System (ADS)
Curtin, L.; D'Andrea, W. J.; de Wet, G.; Balascio, N.; Bradley, R. S.
2017-12-01
The climate of the North Atlantic region is extremely sensitive to changes in ocean and atmospheric circulation, and understanding past natural variability in North Atlantic climate provides important context for modern climate change. Here, we present Holocene and Eemian hydrogen isotope (δD) records from leaf waxes preserved in lacustrine sediments from the North Atlantic Faroe Islands and interpret them as a proxy for temperature and hydroclimate variability. In addition to helping to constrain the timing and amplitude of climate evolution during each of these interglacial periods, the data can be used to directly compare Eemian and Holocene climate using the same proxy from the same terrestrial location. Of the leaf waxes measured, the δD values of long-chain and mid-chain n-alkanes showed two different signals, which we interpret to represent leaf water δD values and lake water δD values, respectively. The δD values for long-chain and mid-chain fatty acids were most similar to the mid-chain n-alkanes, and likely represent a mixture of terrestrial and aquatic sources. Leaf wax-inferred δD values of precipitation during the early Holocene (10,000 to 8,000 cal yr BP) are 13‰ enriched compared to the remainder of the Holocene (after 8,000 cal yr BP), which show relatively stable values over time. Inferred lake water δD values decreased slowly over the late Holocene, suggesting a gradual transition to a wetter climate after 4,000 cal yr BP. At 2,000 cal yr BP there was a significant change in the distribution of leaf waxes that suggests a transition from shrubland to grassland, but which pre-dates the pollen evidence for this transition. The last interglacial period has been suggested as an analog for future climate conditions. We found that long-chain alkane δD values from the Eemian are most similar to the earliest Holocene, which corroborate previous pollen studies suggesting a warmer climate at the Faroe Islands during this period.
The Indonesian Throughflow: Oceanographic responses to Holocene changes in the mean Pacific state
NASA Astrophysics Data System (ADS)
Jacobel, A. W.; Oppo, D.; Eglinton, T. I.; Gibbons, F. T.; Montlucon, D.; Rosenthal, Y.; Linsley, B. K.
2009-12-01
The Indonesian Throughflow (ITF), which transfers upper ocean waters from the Pacific to the Indian Ocean, plays an essential role in global ocean circulation and tropical climate regulation. The flow and mixing regimes of the ITF are affected by changes in temperature, winds and upwelling caused by the Asian Monsoon/Intertropical Convergence Zone (AM/ITCZ) and interannual variations in El Niño (EN). Because the ITF is located in the Western Pacific Warm Pool, an area from which the atmosphere derives a large portion of its heat and water budget, changes in the ITF have the potential to perturb atmospheric circulation globally. Despite the importance of this region to global climate, changes in the ocean-atmosphere climate phenomenon affecting the ITF are still poorly understood. Our study used organic geochemical proxies for upwelling in the Makassar Strait to investigate Holocene oceanographic changes in the ITF in response to EN and the AM/ITCZ. A core-top biomarker survey was performed on multi-core samples from the Makassar Strait and surrounding areas. Concentrations of cholesterol (an indicator of integrated primary productivity) were determined by Gas Chromatography-Mass Spectrometry and were then compared with maps of regional July-August SST and determined to accurately reflect regional upwelling. Based on the findings of the core-top survey, a down-core biomarker record was generated from core BJ8-03-70 GGC taken from the West Sulawesi Margin in the Eastern Makassar Strait, an area that experiences seasonal upwelling associated with the boreal summer Asian monsoon. Cholesterol data show a trend towards increasing concentrations (upwelling or thermocline shoaling) in the late Holocene with a considerable increase approximately 6,000 years before present. Additionally, upwelling intensity appears to show more centennial-millennial variability during the late Holocene. Evidence that the summer monsoon has decreased in strength over the course of the Holocene (e.g. Wang et al., 2005) suggests that the increase in cholesterol is not a response to an increase in monsoon-driven upwelling. Because a shallower thermocline is associated with weak trade winds (El Niño-like conditions in the modern ocean), we interpret these results to represent a mid Holocene transition to a more El Niño-like mean Pacific state. This interpretation is consistent with previous evidence (Moy et al., 2002 and Conroy et al., 2008, yet the timing and reason for this transition is not well constrained. Further work should seek to develop a higher-resolution, multi-proxy dataset to explore and explain this change.
NASA Astrophysics Data System (ADS)
Hein, C. J.; Galy, V.; France-Lanord, C.; Galy, A.; Kudrass, H. R.; Peucker-Ehrenbrink, B.
2016-12-01
Silicate weathering coupled with carbonate precipitation and organic carbon (OC) burial in marine sediments are the primary mechanisms sequestering atmospheric CO2 over a range of timescales. The efficiency of both processes has long been mechanistically linked to climate: increased atmospheric CO2 sequestration under warm/wet conditions acts as a negative feedback, thereby contributing to global climate regulation. Over glacial-interglacial timescales, climate has been proposed to control the export rate of terrestrial silicate weathering products and terrestrial OC to river-dominated margins, as well as the rates of chemical weathering (i.e., the efficiency of carbon sequestration). Focused on the Ganges-Brahmaputra drainage basin, this study quantifies the relative role of climate change in the efficiency of silicate weathering and OC burial following the last glacial maximum. Stable hydrogen (δD) and carbon (δ13C) isotopic compositions of terrestrial plant wax compounds preserved in the Bengal Fan channel-levee system capture variations in the strength of the Indian summer monsoon and vegetation dynamics. Specifically, a 40‰ shift in δD and a 4‰ shift in both bulk OC and plant wax δ13C values between the late glacial and mid-Holocene, followed by a return to more intermediate values during the late Holocene, correlate well with regional post-glacial paleoclimate records. Sediment provenance proxies (Sr, Nd isotopic compositions) reveal that these changes coincided with a focusing of erosion on the southern flank of the Himalayan range during periods of greater monsoon strength and enhanced sediment discharge. However, OC loading, and thus carbon burial efficiency, in the Bengal Fan remained constant through time, demonstrating the primacy of physical erosion and climate-driven sediment export in marine OC sequestration. In contrast, a gradual increase in K/Si* and Ca/Si, and decrease in H2O+/Si*, throughout the study period may demonstrate the decoupling of climate and silicate weathering during the late Holocene, if those ratios are valid proxies for catchment-scale chemical weathering intensity. Together, these results reveal the dominant feedback between climate and sediment-export / OC-burial within the Ganges-Brahmaputra / Bengal Fan system following deglaciation.
NASA Astrophysics Data System (ADS)
Masi, Alessia; Francke, Alexander; Pepe, Caterina; Thienemann, Matthias; Wagner, Bernd; Sadori, Laura
2018-03-01
A new high-resolution pollen and NPP (non-pollen palynomorph) analysis has been performed on the sediments of Lake Dojran, a transboundary lake located at the border between Greece and the former Yugoslav Republic of Macedonia (FYROM). The sequence covers the last 12 500 years and provides information on the vegetational dynamics of the Late Glacial and Holocene for the southern Balkans. Robust age model, sedimentological diatom, and biomarker analyses published previously have been the base for a multi-perspective interpretation of the new palynological data. Pollen analysis revealed that the Late Glacial is characterized by steppic taxa with prevailing Amaranthaceae, Artemisia and Poaceae. The arboreal vegetation starts to rise after 11 500 yr BP, taking a couple of millennia to be definitively attested. Holocene vegetation is characterized by the dominance of mesophilous plants. The Quercus robur type and Pinus are the most abundant taxa, followed by the Quercus cerris type, the Quercus ilex type and Ostrya-Carpinus orientalis. The first attestation of human presence can be presumed at 5000 yr BP from the contemporary presence of cereals, Juglans and Rumex. A drop in both pollen concentration and influx together with a δ18Ocarb shift indicates increasing aridity and precedes clear and continuous human signs since 4000 yr BP. Also, a correlation between Pediastrum boryanum and fecal stanol suggests that the increase in nutrients in the water is related to human presence and pasture. An undoubted expansion of human-related plants occurs since 2600 yr BP when cereals, arboreal cultivated and other synanthropic non-cultivated taxa are found. A strong reduction in arboreal vegetation occurred at 2000 yr BP, when the Roman Empire impacted a landscape undergoing climate dryness in the whole Mediterranean area. In recent centuries the human impact still remains high but spots of natural vegetation are preserved. The Lake Dojran multi-proxy analysis including pollen data provides clear evidence of the importance of this approach in paleoenvironmental reconstruction. Cross-interpretation of several proxies allows us to comprehend past vegetation dynamics and human impact in the southern Balkans.
NASA Astrophysics Data System (ADS)
Selvaraj, Kandasamy; Wei, Kuo-Yen; Liu, Kon-Kee; Kao, Shuh-Ji
2012-03-01
Little information exists about centennial-scale climate variability on oceanic islands in the western Pacific where the East Asian monsoon (EAM) strongly influences the climate, mountain ecosystem and the society. In this study, we investigate a 168 cm long sediment core recovered from Emerald Peak Lake in subalpine NE Taiwan for the contents of grain size, total organic carbon (TOC), C/N ratio, and stable isotopes (δ13C and δ15N) to reconstruct the monsoon climate and vegetation density during the late Holocene. Six radiocarbon (14C) ages obtained on plant remains used for the chronology indicate that the sediment core has been accumulated since ˜3770 cal BP with a mean sedimentation rate of 44.6 cm/ka. The sub-centennial resolution of our proxy records reveals strong fluctuations of the EAM and vegetation density for the past ˜3770 cal BP. The greater contents of coarse and medium sediments with overall decreasing trends from 3770 to 2000 cal BP suggest an increasing fine sediment influx from the catchment likely due to an increasing lake water level. Although low TOC content, C/N ratio, and enriched δ13C values in bulk and fine sediments during this interval suggest a sparsely vegetated catchment, increasing trends of TOC content and C/N ratio together with decreasing trends of δ13C and δ15N values indicate a strengthening pattern of summer monsoon. This is in contrast to a decreasing monsoon strength inferred from Dongge Cave δ18O record at that time, supporting the idea of anti-phasing of summer EAM and Indian summer monsoon. Since 2000 cal BP, higher content of fine sediments with high TOC content and C/N ratio but relatively depleted δ13C and low δ15N values suggest a high but stable lake water level and dense C3 plants, consistent with a stronger summer monsoon in a wet climate. Within this general trend, we interpret a prominent change of proxy parameters in sediments from ˜560 to 150 cal BP, as subtropical evidence for the Little Ice Age in NE Taiwan. By comparing our proxy records with other diverse land and marine records from southern China and adjoining marine realm, we demonstrate that the centennial to millennial-scale fluctuations of the summer EAM over the northeastern Taiwan during the late Holocene have been largely modulated by the tropical Pacific forcing through El Niño along with solar forcing.
Ocean as the main driver of Antarctic ice sheet retreat during the Holocene
NASA Astrophysics Data System (ADS)
Crosta, Xavier; Crespin, Julien; Swingedouw, Didier; Marti, Olivier; Masson-Delmotte, Valérie; Etourneau, Johan; Goosse, Hugues; Braconnot, Pascale; Yam, Ruth; Brailovski, Irena; Shemesh, Aldo
2018-07-01
Ocean-driven basal melting has been shown to be the main ablation process responsible for the recession of many Antarctic ice shelves and marine-terminating glaciers over the last decades. However, much less is known about the drivers of ice shelf melt prior to the short instrumental era. Based on diatom oxygen isotope (δ18Odiatom; a proxy for glacial ice discharge in solid or liquid form) records from western Antarctic Peninsula (West Antarctica) and Adélie Land (East Antarctica), higher ocean temperatures were suggested to have been the main driver of enhanced ice melt during the Early-to-Mid Holocene while atmosphere temperatures were proposed to have been the main driver during the Late Holocene. Here, we present a new Holocene δ18Odiatom record from Prydz Bay, East Antarctica, also suggesting an increase in glacial ice discharge since 4500 years before present ( 4.5 kyr BP) as previously observed in Antarctic Peninsula and Adélie Land. Similar results from three different regions around Antarctica thus suggest common driving mechanisms. Combining marine and ice core records along with new transient accelerated simulations from the IPSL-CM5A-LR climate model, we rule out changes in air temperatures during the last 4.5 kyr as the main driver of enhanced glacial ice discharge. Conversely, our simulations evidence the potential for significant warmer subsurface waters in the Southern Ocean during the last 6 kyr in response to enhanced summer insolation south of 60°S and enhanced upwelling of Circumpolar Deep Water towards the Antarctic shelf. We conclude that ice front and basal melting may have played a dominant role in glacial discharge during the Late Holocene.
Abrupt aridities in the Levant-Sahel linked with solar activities
NASA Astrophysics Data System (ADS)
Stein, M.; Kushnir, Y.
2012-04-01
Observations of 19th and 20th century precipitation in the Dead Sea watershed region display a multidecadal, anti-phase relationship to North Atlantic (NAtl) sea surface temperature (SST) variability, such that when the NAtl is relatively cold, Jerusalem experiences higher than normal precipitation and vice versa. This association is underlined by a negative correlation to precipitation in the sub-Saharan Sahel and a positive correlation to precipitation in western North America, areas that are also affected by multidecadal NAtl SST variability. These observations are consistent with broad range of Holocene hydroclimatic fluctuations from the epochal, to the millennial and centennial time scales, as displayed by the Dead Sea and Sahelian lake levels and by direct and indirect proxy indicators of NAtl SSTs. On the epochal time scale, the gradual cooling of NAtl SSTs throughout the Holocene in response to precession-driven reduction of summer insolation is associated with previously well-studied wet-to-dry transition in the Sahel and with a general increase in Dead Sea lake levels from low stands after the Younger Dryas to higher stands in the mid- to late-Holocene. On the millennial and centennial time scales there is also evidence for an antiphase relationship between Holocene variations in the Dead Sea and Sahelian lake levels and with proxy indicators of NAtl SSTs. However, the records are punctuated by abrupt lake-level drops and extensive expansion of the desert belt at ~8.1, 5.7, 3.3 and 1.4 ka cal BP, which appear to be in-phase and which occur during previously documented abrupt major cooling events in the Northern Hemisphere. We link these cooling to solar activity variations that were identified in the North Atlantic IRD and cosmogenic isotopes records.
Hydrologic and temperature variability at Lake Titicaca over the past 50,000 years
NASA Astrophysics Data System (ADS)
Fornace, K.; Shanahan, T. M.; Sylva, S.; Ossolinski, J.; Baker, P. A.; Fritz, S. C.; Hughen, K. A.
2011-12-01
The Bolivian Altiplano has been the focus of many paleoclimate studies due to the important role it plays in the South American climate system. Although the timing of climate shifts in this region is relatively well known, the magnitudes of hydrologic versus temperature changes remain poorly quantified. Here we apply hydrogen isotope analysis (δD) of terrestrial leaf waxes and the TEX86 temperature proxy in sediments from Lake Titicaca to reconstruct hydrologic and temperature variability over the past 50,000 years. Our record reveals that the Altiplano underwent a major climate shift during the last deglaciation, reflected in a ~70-80% enrichment in leaf wax δD at the onset of the Holocene. Using the global isotope-temperature relationship for meteoric water, only 25-40% of this enrichment can be explained by the 4-5°C deglacial warming shown by the TEX86 proxy, indicating that precipitation was significantly reduced (and evaporation/evapotranspiration increased) during the Holocene. Further, the timing of these hydrologic and temperature changes was asynchronous during the transition from a cold and wet glacial state to a warm and dry Holocene. The major hydrologic shift recorded by leaf wax δD occurred around ~11-12 ka, consistent with Northern Hemisphere deglacial patterns, whereas TEX86 data indicate that rapid warming began much earlier, more typical of a Southern Hemisphere deglacial pattern. Within the late glacial and Holocene mean climate states, however, there is evidence of synchronous hydrologic and temperature variability on millennial timescales. This study demonstrates that climate on the Altiplano was controlled by the interaction of local and remote forcing on a range of timescales.
NASA Astrophysics Data System (ADS)
Glover, K. C.; MacDonald, G. M.; Kirby, M.
2016-12-01
Hydroclimatic variability is especially important in California, a water-stressed and increasingly populous region. We assess the range of past hydroclimatic sensitivity and variability in the San Bernardino Mountains of Southern California based on 125 ka of lacustrine sediment records. Geochemistry, charcoal and pollen highlight periods of sustained moisture, aridity and sudden variability driven by orbital and oceanic variations. Marine Isotope Stage 3 (MIS 3) is one such period of greater moisture availability that lasted c. 30 kyr, with smaller-scale perturbations likely reflect North Atlantic Dansgaard-Oeschgar events. Past glacial periods, MIS 4 and MIS 2, display high-amplitude changes. These include periods of reduced forest cover that span millennia, indicating long-lasting aridity. Rapid forest expansion also occurs, marking sudden shifts towards wet conditions. Fire regimes have also changed in tandem with hydroclimate and vegetation. Higher-resolution analysis of the past 10 ka shows that Southern California hydroclimate was broadly similar to other regions of the Southwest and Great Basin, including an orbital and oceanic-driven wet Early Holocene, dry Mid-Holocene, and highly variable Late Holocene. Shorter-term pluvial conditions occur throughout the Holocene, with episodic moisture likely derived from a Pacific source.
Wahl, D.; Byrne, R.; Schreiner, T.; Hansen, R.
2007-01-01
Pollen, loss on ignition and magnetic susceptibility analyses provide a high-resolution palaeoenvironmental record from Lago Puerto Arturo, Peten, Guatemala. The presence of Zea pollen -2650 BC provides a latest date for the arrival of maize agriculture to the region. The following 3600 years are marked by significant opening of the forest and episodic pulses of erosion. During the early Preclassic, around 1450 BC, all proxies indicate an abrupt increase in human activity, coincident with archaeological evidence of early settlement. Three discrete periods of decreased human activity are indicated by cessations of landscape disturbance. Such decreased human activity likely reflects periodic local population decline. These events coincide with times of cultural transition in the Maya lowlands and correspond to the terminal phases of the middle Preclassic, late Preclassic and late Classic periods. There is no evidence for human activity in the area following the late Classic abandonment. ?? 2007 SAGE Publications.
NASA Astrophysics Data System (ADS)
Dietze, Elisabeth; Zawiska, Izabela; Słowiński, Michał; Brauer, Achim
2015-04-01
Holocene lake level changes were studied at Lake Fürstenseer See, a typical lake with complex basin morphology in northeastern German sandur area. An acoustic sub-bottom profile and a transect of four long sediment cores in the deepest lake sub-basin were analyzed. The cores were dated with AMS-14C and correlated with multiple proxies (sediment facies, μ-XRF, macrofossils, subfossil Cladocera, carbonate isotopes). At sites in 10 and 15 m water depth, shifts in the sand-mud boundary, i.e. sediment limit sensu Digerfeldt (1986), allowed quantitative estimates of the absolute amplitude of lake level changes. At sites in 20 and 23 m water depth, the negative correlation of Ca and Ti reflect lake level changes qualitatively. During high lake stands massive organic muds were deposited. Lower lake levels isolated the lake sub-basins which reduced the overall water circulation and lead to the deposition of Ti-poor carbonate muds. Furthermore, macrofossil and subfossil Cladocera analyses were used as proxies for the intense reworking at the slope and for the trophic state of the lake, respectively. Lake levels were up to 4 m higher, e.g. around 5000 cal. yrs BP and during the Medieval time period (see also Kaiser et al., 2014). During the early to mid-Holocene (between 9400 and 6400 cal. yrs BP), Lake Fürstenseer See fluctuated at an at least 3-m lower level. Further water level changes can be related to known climatic events and regional human impact. Digerfeldt, G., 1986. Studies on past lake-level fluctuations. In Berglund, B. (ed.), Handbook of Holocene Palaeoecology and Palaeohydrology: 127-144. John Wiley & Sons, New York. Kaiser, K., Küster, M., Fülling, A., Theuerkauf, M., Dietze, E., Graventein, H., Koch, P.J., Bens, O., Brauer, A., 2014. Littoral landforms and pedosedimentary sequences indicating late Holocene lake-level changes in northern central Europe ' A case study from northeastern Germany. Geomorphology 216, 58-78.
NASA Astrophysics Data System (ADS)
Wittmeier, Hella E.; Bakke, Jostein; Vasskog, Kristian; Trachsel, Mathias
2015-04-01
Late Glacial and Holocene glacier fluctuations are important indicators of climate variability in the northern polar region and contain knowledge vital to understanding and predicting present and future climate changes. However, there still is a lack of robustly dated terrestrial climate records from Arctic Norway. Here, we present a high-resolution relative glacier activity record covering the past ∼10,000 cal. a BP from the northern outlet of the Langfjordjøkelen ice cap in Arctic Norway. This record is reconstructed from detailed geomorphic mapping, multi-proxy sedimentary fingerprinting and analyses of distal glacier-fed lake sediments. We used Principal Component Analysis to characterize sediments of glacial origin and trace them in a chain of downstream lakes. Of the variability in the sediment record of the uppermost Lake Jøkelvatnet, 73% can be explained by the first Principal Component axis and tied directly to upstream glacier erosion, whereas the glacial signal becomes weaker in the more distal Lakes Store Rundvatnet and Storvatnet. Magnetic susceptibility and titanium count rates were found to be the most suitable indicators of Holocene glacier activity in the distal glacier-fed lakes. The complete deglaciation of the valley of Sør-Tverrfjorddalen occurred ∼10,000 cal. a BP, followed by a reduced or absent glacier during the Holocene Thermal Optimum. The Langfjordjøkelen ice cap reformed with the onset of the Neoglacial ∼4100 cal. a BP, and the gradually increasing glacier activity culminated at the end of the Little Ice Age in the early 20th century. Over the past 2000 cal. a BP, the record reflects frequent high-amplitude glacier fluctuations. Periods of reduced glacier activity were centered around 1880, 1600, 1250 and 950 cal. a BP, while intervals of increased glacier activity occurred around 1680, 1090, 440 and 25 cal. a BP. The large-scale Holocene glacier activity of the Langfjordjøkelen ice cap is consistent with regional temperature proxy reconstructions and glacier variability across Norway. Long-term changes in the extent of the northern outlet of the Langfjordjøkelen ice cap largely followed trends in regional summer temperatures, whereas winter season atmospheric variability may have triggered decadal-scale glacial fluctuations and generally affected the amplitude of glacier events.
Holocene fluctuations of Quelccaya Ice Cap, Peru based on lacustrine and surficial geologic archives
NASA Astrophysics Data System (ADS)
Stroup, J. S.; Kelly, M. A.; Lowell, T. V.; Beal, S. A.; Smith, C. A.
2013-12-01
Peru's Quelccaya Ice Cap (QIC; 13.9°S, 70.8°W, ~5200-5670 m asl) is an important site for understanding tropical paleoclimate, mainly because of annually layered ice cores that provide an ~1800 year long record of tropical paleoclimatic conditions (e.g., Thompson et al., 2013). Here, we present a detailed record of QIC fluctuations using surficial deposits and lake sediments that extend back to late glacial time. We compare the late Holocene records of QIC 10Be-dated moraines and ice core data with lake sediments from a nearby glacially fed lake to establish the framework we use to interpret a Holocene long sediment record from a glacially fed lake. We also examine sediments from a nearby non-glacial lake to constrain non-glacial clastic input. We collected two ~5 m-long sediment cores, one from Laguna Challpacocha, which is currently fed by QIC meltwater, and one from the Laguna Yanacocha, which has not received QIC meltwater since ~12.3 ka. Changes in magnetic susceptibility, loss on ignition, bulk density and X-ray fluorescence chemistry combined with 14C and 210Pb chronologies provide information about sediment transported to the lakes. Retreat from the late Holocene extent defined by the 10Be-dated moraine record (~0.52 ka) is contemporaneous with a sharp transition from organic to clastic sedimentation in the Challpacocha core at ~ 0.52 ka. This implies that glacially-sourced clastic sedimentation, as tracked by loss on ignition, Ti counts and bulk density, increased during ice cap recession. Based on these same proxy data, we suggest the following Holocene history of QIC: QIC receded from the Challpacocha basin by ~10.6 ka. Increased clastic sedimentation at 8.2 - 4.1, 3.6 - 2.7 ka and from 0.55 ka - present are interpreted as times of ice cap recession. The increased clastic sedimentation at ~8.2 - 4.1 ka is consistent with surficial deposits near the present-day ice margin that indicate that at ~7.0 - 4.6 ka QIC was smaller than at present (Buffen et al., 2009). Clastic sedimentation may reflect the glacier thermal regime. Relic plants now being uncovered by the receding QIC (Thompson et al., 2006, 2013) suggest advance of cold-based ice that did not produce significant meltwater or rock flour. Striations, also present on the landscape, indicate warm-based ice conditions, which would produce meltwater and rock flour. We suggest that these striations were likely produced during ice cap retreat. A small QIC during early and middle Holocene time and large QIC during late Holocene time is similar to the Holocene extents of many Northern Hemisphere glaciers and apparently follows the pattern of Northern Hemisphere summer insolation.
NASA Astrophysics Data System (ADS)
Park, Jungjae; Shin, Young Ho; Byrne, Roger
2016-12-01
Several recent studies suggest the hypothesis that the El Niño-Southern Oscillation (ENSO) is an important factor controlling the Holocene East Asian Monsoon (EAM). However, the mechanism underlying this influence remains unclear due to the lack of high-resolution paleoclimate records from the coast of East Asia. Here, we provide a new record of late Holocene climate change in coastal East Asia based on multi-proxy evidence (pollen, organic content, magnetic susceptibility, grain size) obtained from a sediment core from Jeju Island, South Korea. As Jeju Island is strongly influenced by the Kuroshio flow, our sediment proxy records contain ENSO signals from the tropical Pacific. The study area was affected by dry/cool conditions in the western tropical Pacific (WTP) between 4350 and 1920 cal yr BP when El Niños were frequent, and by rapid warming/wetting and forestation since 1920 cal yr BP when La Niñas were more common. Jeju Island was relatively dry/cool between 2100 and 1600, 1300-1200, 1100-1000, 800-650, and 300-50 cal yr BP, as opposed to the Galápagos Islands, which were relatively wet/warm, reflecting the ENSO-related negative correlation between eastern and western margins of Pacific. Wet conditions may have prevailed during the early Little Ice Age (LIA) (620-280 cal yr BP) despite consistent cooling. This period of high precipitation may have been associated with the increased landfall of typhoons and with warmer Kuroshio currents under La Niña-like conditions. According to our results, EAM on the East Asian coastal margin was predominantly driven by ENSO activity, rather than by the precession effect. Paleoclimatic data from Jeju Island, with its insular position and closeness to warm Kuroshio currents, provide clear evidence of these ENSO influences.
Oxygen isotope records of Holocene climate variability in the Pacific Northwest
NASA Astrophysics Data System (ADS)
Steinman, Byron A.; Pompeani, David P.; Abbott, Mark B.; Ortiz, Joseph D.; Stansell, Nathan D.; Finkenbinder, Matthew S.; Mihindukulasooriya, Lorita N.; Hillman, Aubrey L.
2016-06-01
Oxygen isotope (δ18O) measurements of authigenic carbonate from Cleland Lake (southeastern British Columbia), Paradise Lake (central British Columbia), and Lime Lake (eastern Washington) provide a ∼9000 year Holocene record of precipitation-evaporation balance variations in the Pacific Northwest. Both Cleland Lake and Paradise Lake are small, surficially closed-basin systems with no active inflows or outflows. Lime Lake is surficially open with a seasonally active overflow. Water isotope values from Cleland and Paradise plot along the local evaporation line, indicating that precipitation-evaporation balance is a strong influence on lake hydrology. In contrast, Lime Lake water isotope values plot on the local meteoric water line, signifying minimal influence by evaporation. To infer past hydrologic balance variations at a high temporal resolution, we sampled the Cleland, Paradise, and Lime Lake sediment cores at 1-60 mm intervals (∼3-33 years per sample on average) and measured the isotopic composition of fine-grained (<63 μm) authigenic CaCO3 in each sample. Negative δ18O values, which indicate wetter conditions in closed-basin lakes, occur in Cleland Lake sediment from 7600 to 2200 years before present (yr BP), and are followed by more positive δ18O values, which suggest drier conditions, after 2200 yr BP. Highly negative δ18O values in the Cleland Lake record centered on ∼2400 yr BP suggest that lake levels were high (and that the lake may have been overflowing) at this time as a result of a substantially wetter climate. Similarly, Paradise Lake sediment δ18O values are relatively low from 7600 to 4000 yr BP and increase from ∼4000 to 3000 yr BP and from ∼2000 yr BP to present, indicating that climate became drier from the middle through the late Holocene. The δ18O record from Lime Lake, which principally reflects changes in the isotopic composition of precipitation, exhibits less variability than the closed-basin lake records and follows a generally increasing trend from the mid-Holocene to present. These results are consistent with several proximal reconstructions of changes in lake-level, precipitation amount, and precipitation isotopic composition and may also reflect the establishment of modern El Niño Southern Oscillation (ENSO) variability in the late Holocene, as inferred from proxy evidence of synoptic ocean-atmosphere changes in the Pacific basin. Results from mid-Holocene (6000 yr BP) climate model simulations conducted as part of the Paleoclimate Modeling Intercomparison Project Phase 3 (PMIP3) indicate that in much of western North America, the cold season (October-March) was wetter and the warm season (April-September) was considerably drier relative to the late Holocene, leading to an overall drier climate in western North America with enhanced hydroclimatic seasonality. This is consistent with inferences from the Cleland and Paradise δ18O records, which lake modeling experiments indicate are strongly influenced by cold season precipitation-evaporation balance. This also explains apparent inconsistencies between the lake δ18O records and other proxies of hydroclimatic change from the greater Pacific Northwest region that are less sensitive to cold season climate and thus indicate relatively drier conditions during the mid-Holocene. The abrupt negative excursion at ∼2400 yr BP in the Cleland Lake δ18O data, as well as the marked shift to more positive values after this time, demonstrate that gradual changes in ocean-atmosphere dynamics can produce abrupt, non-linear hydroclimate responses in the interior regions of western North America.
Atlantic forcing of Western Mediterranean winter rain minima during the last 12,000 years
NASA Astrophysics Data System (ADS)
Zielhofer, Christoph; Fletcher, William J.; Mischke, Steffen; De Batist, Marc; Campbell, Jennifer F. E.; Joannin, Sebastien; Tjallingii, Rik; El Hamouti, Najib; Junginger, Annett; Stele, Andreas; Bussmann, Jens; Schneider, Birgit; Lauer, Tobias; Spitzer, Katrin; Strupler, Michael; Brachert, Thomas; Mikdad, Abdeslam
2017-02-01
The limited availability of high-resolution continuous archives, insufficient chronological control, and complex hydro-climatic forcing mechanisms lead to many uncertainties in palaeo-hydrological reconstructions for the Western Mediterranean. In this study we present a newly recovered 19.63 m long core from Lake Sidi Ali in the North African Middle Atlas, a transition zone of Atlantic, Western Mediterranean and Saharan air mass trajectories. With a multi-proxy approach based on magnetic susceptibility, carbonate and total organic C content, core-scanning and quantitative XRF, stable isotopes of ostracod shells, charcoal counts, Cedrus pollen abundance, and a first set of diatom data, we reconstruct Western Mediterranean hydro-climatic variability, seasonality and forcing mechanisms during the last 12,000 yr. A robust chronological model based on AMS 14C dated pollen concentrates supports our high-resolution multi-proxy study. Long-term trends reveal low lake levels at the end of the Younger Dryas, during the mid-Holocene interval 6.6 to 5.4 cal ka BP, and during the last 3000 years. In contrast, lake levels are mostly high during the Early and Mid-Holocene. The record also shows sub-millennial- to centennial-scale decreases in Western Mediterranean winter rain at 11.4, 10.3, 9.2, 8.2, 7.2, 6.6, 6.0, 5.4, 5.0, 4.4, 3.5, 2.9, 2.2, 1.9, 1.7, 1.5, 1.0, 0.7, and 0.2 cal ka BP. Early Holocene winter rain minima are in phase with cooling events and millennial-scale meltwater discharges in the sub-polar North Atlantic. Our proxy parameters do not show so far a clear impact of Saharan air masses on Mediterranean hydro-climate in North Africa. However, a significant hydro-climatic shift at the end of the African Humid Period (∼5 ka) indicates a change in climate forcing mechanisms. The Late Holocene climate variability in the Middle Atlas features a multi-centennial-scale NAO-type pattern, with Atlantic cooling and Western Mediterranean winter rain maxima generally associated with solar minima.
NASA Astrophysics Data System (ADS)
Vacchi, Matteo; Rovere, Alessio; Marriner, Nick; Morhange, Christophe; Spada, Giorgio; Fontana, Alessandro
2016-04-01
After the review of 918 radiocarbon dated Relative Sea-Level (RSL) data-points we present here the first quality-controlled database constraining the Holocene sea-level histories of the western Mediterranean Sea (Spain, France, Italy, Slovenia, Croatia, Malta and Tunisia). We reviewed and standardized the geological RSL data-points using a new multi-proxy methodology based on: (1) modern taxa assemblages in Mediterranean lagoons and marshes; (2) beachrock characteristics (cement fabric and chemistry, sedimentary structures); and (3) the modern distribution of Mediterranean fixed biological indicators. These RSL data-points were coupled with the large number of archaeological RSL indicators available for the western Mediterranean. We assessed the spatial variability of RSL histories for 22 regions and compared these with the ICE-5G VM2 GIA model. In the western Mediterranean, RSL rose continuously for the whole Holocene with a sudden slowdown at ~7.5 ka BP and a further deceleration during the last ~4.0 ka BP, after which time observed RSL changes are mainly related to variability in isostatic adjustment. The sole exception is southern Tunisia, where data show evidence of a mid-Holocene high-stand compatible with the isostatic impacts of the melting history of the remote Antarctic ice sheet. Our results indicate that late-Holocene sea-level rise was significantly slower than the current one. First estimates of GIA contribution indicate that, at least in the northwestern sector, it accounts at least for the 25-30% of the ongoing sea-level rise recorded by Mediterranean tidal gauges. Such contribution is less constrained at lower latitudes due to the lower quality of the late Holocene index points. Future applications of spatio-temporal statistical techniques are required to better quantify the gradient of the isostatic contribution and to provide improved context for the assessment of 20th century acceleration of Mediterranean sea-level rise.
Chen, Y.-G.; Liu, J.C.-L.; Shieh, Y.-N.; Liu, T.-K.
2004-01-01
A core, drilled at San-liao-wan in the southwestern coastal plain of Taiwan, has been analyzed for total sulfur contents, isotopic values, as well as ratios of pyritic sulfur to organic carbon. Our results demonstrate a close relationship between late Pleistocene sea-level change and the proxies generated in this study. The inorganic sulfur contents indicate that at our study site, the Holocene transgression started at ???11 ka and remained under seawater for thousands of years until the late Holocene, corresponding to a depth of 20 m in the study core. The uppermost 20 m of core shows relatively high total organic carbon (TOC) and ??34S of inorganic sulfur, suggesting a transitional environment such as muddy lagoon or marsh, before the site turned into a modern coastal plain. In the lower part of the core, at depths of 110-145 m (corresponding ages of ???12-30 ka), low sulfur contents are recorded, probably indicating fluvial sediments deposited during the oceanic isotope stage (OIS) 2, a sea-level lowstand. The lower part of the core, roughly within OIS 3, records at least two transgressions, although the transgressional signals may be somewhat obscured by subsequent weathering. The reworked origin of organic matter reported in previous studies is confirmed by our organic sulfur data; however, the marine organic source was periodically dominant. The modern high sulfate concentrations in pore water have no correlation to the other sulfur species in the sediments, probably indicating that the sulfate migrated into the site subsequent to early diagenesis. ?? 2003 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kirchgeorg, Torben; Schüpbach, Simon; Colombaroli, Daniele; Beffa, Giorgia; Radaelli, Marta; Kehrwald, Natalie; Barbante, Carlo
2015-04-01
Holocene vegetation changes in the Maya Lowlands during the Holocene are a result of changing climate conditions, solely anthropogenic activities, or interactions of both factors. As a consequence, it is difficult to assess how tropical ecosystems will cope with projected changes in precipitation and land-use intensification over the next decades. We investigated the role of fire during the Holocene by combining different proxies. We distinguished between three different morphotypes (grass, wood and leaves) in macroscopic charcoal. We also determined the molecular fire proxies levoglucosan, mannosan and galactosan. Combining these different fire proxies allows a more robust understanding of the complex history of fire regimes at different spatial scales during the Holocene. Comparing the two biomass burning proxies may help increase our understanding about advantages and limitations of molecular markers as proxies for past fire reconstruction in lake sediments. In order to infer changes in past biomass burning, we analysed a lake sediment core from Lake Petén Itzá, Guatemala (17°00'N, 89°50'W, 110 m above sea level), and compared our results with millennial-scale vegetation and climate change data available in this area. Some differences were observed between the two records and we assumed that while macroscopic charcoal represents a local fire signal, the molecular fire proxies records seem to be influenced by regional to supra-regional fire or low temperature fires. During the Holocene we detected three periods of high fire activity: 9500-6000 cal yr BP, 3800 cal yr BP and 2700 cal yr BP. We attributed the first maximum (9500-6000 cal yr BP) to only climate conditions, which corresponds with observations from previous studies in this region. The fast decrease in the relative abundance of woody charcoal to grass charcoal at the 3800 cal yr BP fire maximum may result from human activity, but we cannot exclude that this shift was related to climate conditions during this period. The last maximum (2700 cal yr BP) we attribute to the agricultural activity of the Maya at Lake Petén Itzá.
NASA Astrophysics Data System (ADS)
K V, S.; Kurian, J.; Meloth, T.; Rasik, R.
2011-12-01
Reconstruction of the Indian monsoon precipitation on a centennial to millennial scale has important relevance on the future climate and hydrologic change over the entire South Asia. Here we present paleo-monsoon records from a AMS 14C dated sediment core from the Bay of Bengal (ABP-24/01; location - 11°15.52' N & 90°21.84' E, water depth - 3206 m) that span the past 24.5 ka BP (calendar age). The array of inorganic and organic geochemical proxy records examined here assist the reconstruction of monsoon associated precipitation/ runoff, oceanic productivity and water column processes during the last glacial maximum (LGM ~21±2 ka BP) to the late Holocene. During the early stages of LGM, terrigenous elemental concentrations (Al, Fe) remained low, with substantial increase towards late LGM stage. Significantly, the substantial LGM increase in the eolian proxy concentrations (Mg, Rb) suggest that with the diminishing strength of the rain bearing SW monsoon during LGM the dry NE monsoon strengthened, leading to increased dust input to the Bay of Bengal. Although the LGM biological productivity (Corg, CaCO3, Ba) at the site remained low due to the relative decrease in runoff-derived nutrients, the ocean bottom seems to have less ventilated (Mn, U, V). The deglacial period is associated with slightly increasing monsoonal runoff increasing trend in terrigenous input, without any increase in biological productivity. Interestingly, the enhanced terrigenous input to the core site occurred during 12.5 - 10 ka BP. The Holocene was characterised by a dramatic increase in biological productivity between 8.5 and 7 ka BP as well as relatively enhanced river influx. While the various proxy records suggest a substantial decrease in monsoonal terrigenous influx after 7 ka BP, the productivity records remained at elevated values with better ventilated bottom waters.
NASA Astrophysics Data System (ADS)
Berger, Jean-François; Delhon, Claire; Magnin, Frédéric; Bonté, Sandrine; Peyric, Dominique; Thiébault, Stéphanie; Guilbert, Raphaele; Beeching, Alain
2016-03-01
This multi-proxy study of a small floodplain in the Rhone catchment area, at the northern edge of the Mediterranean morphoclimatic system, provides valuable information concerning the impact of mid-Holocene climate variability (8.5-7.0 ka) and the effects of two rapid climatic changes (8.2 and 7.7/7.1 ka) on an alluvial plain, its basin and the first farming societies of the Rhone valley. Around 7.7/7.1 ka, the combined effects of (1) a strong rate of change in insolation and (2) variations in solar activity amplified marine and atmospheric circulation in the north-west Atlantic (Bond event 5b), which imply continental hydrological, soil and vegetation changes in the small catchment area. For this period, strong fluctuations in the plant cover ratio have been identified, related to a regime of sustained and regular fires, as well as abundant erosion of the hill slopes and frequent fluvial metamorphoses which led to braiding of the watercourse in this floodplain. There are few data available to evaluate the impact of natural events on prehistoric communities. This continental archive offers clear multi-proxy data for discussion of these aspects, having 4 cultural layers interbedded in the fluvial sequence (1 Late Mesolithic, 3 Cardial/Epicardial). Earlier data indicate the difficulty in recognizing such cultural features in the low alluvial plains of southern France during the Mesolithic/Early Neolithic transition, which should lead to caution when developing settlement models for this period.
Late-Quaternary recharge determined from chloride in shallow groundwater in the central Great Plains
Macfarlane, P.A.; Clark, J.F.; Davisson, M.L.; Hudson, G.B.; Whittemore, Donald O.
2000-01-01
An extensive suite of isotopic and geochemical tracers in groundwater has been used to provide hydrologic assessments of the hierarchy of flow systems in aquifers underlying the central Great Plains (southeastern Colorado and western Kansas) of the United States and to determine the late Pleistocene and Holocene paleotemperature and paleorecharge record. Hydrogeologic and geochemical tracer data permit classification of the samples into late Holocene, late Pleistocene-early Holocene, and much older Pleistocene groups. Paleorecharge rates calculated from the Cl concentration in the samples show that recharge rates were at least twice the late Holocene rate during late Pleistocene-early Holocene time, which is consistent with their relative depletion in 16O and D. Noble gas (Ne, Ar, Kr, Xe) temperature calculations confirm that these older samples represent a recharge environment approximately 5??C cooler than late Holocene values. These results are consistent with the global climate models that show a trend toward a warmer, more arid climate during the Holocene. (C) 2000 University of Washington.
NASA Astrophysics Data System (ADS)
Jin, Liya; Zhang, Xiaojian
2017-04-01
High-resolution and precisely dated speleothem oxygen isotope (δ18O) records from Asia have provided key evidence for past monsoonal changes. It is found that δ18O records of stalagmites from Kesang Cave (42°52'N, 81°45'E, Xinjiang, China) in inland central Asia were very similar to those from Qunf Cave (17°10'N, 54°18'E, southern Oman) in South Asia, shifting from light to heavy throughout the Holocene, which was regarded as a signal that strong Asian summer monsoon (ASM) may have intruded into the Kesang Cave site and/or adjacent areas in inland central Asia to produce heavy rainfall during the high insolation times (e.g. the early Holocene). However, this is in contrast to conclusions based on other Holocene proxy records and modeling simulations, showing a persistent wetting trend in arid central Asia during the Holocene with a dryer condition in the early Holocene and the wettest condition in the late Holocene. With an analysis of model-proxy data comparison, we revealed a possible physical mechanism responsible for the Holocene evolution of moisture/precipitation in Asian summer monsoon (ASM)-dominated regions and that in the inland central Asia. It is revealed that a recurrent circumglobal teleconnection (CGT) pattern in the summertime mid-latitude circulation of the Northern Hemisphere was closely related to the ASM and the climate of inland central Asia, acting as a bridge linking the ASM to insolation, high-latitude forcing (North Atlantic sea surface temperature (SST)), and low-latitude forcing (tropical Ocean SST). Also, the CGT influence speleothem δ18O values in South Asia via its effect on the amount of precipitation. In addition, the moisture source from the Indian Ocean is associated with relatively high δ18O values compared with that from the North Atlantic Ocean, leading to increased precipitation δ18O values. Hence, the CGT has probably been the key factor responsible for the in-phase relationship in speleothem δ18O values (Kesang Cave and Qunf Cave), but out-of-phase relationship in moisture/precipitation evolutions between inland central Asia and the ASM region during the Holocene. In addition, since boreal winter (December-January-February, DJF) precipitation in northwestern China (a part of the core zone in inland central Asia) during the Holocene has been revealed to contribute a great deal to moisture evolution in inland central Asia, and the changes in the seasonal cycle of incoming solar radiation driven by Earth's orbital changes have probably played an important role in the out-of-phase relationship in the moisture evolution between the inland central Asia and ASM regions during the Holocene.
NASA Astrophysics Data System (ADS)
Chlachula, Jiri; Krupyanko, Alexander A.
2016-06-01
The paper presents the results of Quaternary palaeoecology and geoarchaeology studies in the Zerkal'naya Basin, with new insights about sequenced natural shifts during the prehistoric occupation of this marginally explored NE Asian maritime territory. The Basin is part of the continental drainage system and the main physiographic and biotic corridor for peopling of the transitive coastal interior SE Primor'ye Region. The Final Pleistocene and Holocene environmental (biotic and abiotic) proxy records from the Upper/Final Palaeolithic to early historical sites document a dynamic climate change with vegetation cover transformations within riverine and mountain valley ecosystems of the Russian Far East. Most of the archaeological sites located on the low terraces and bedrock promontories along the main river channel and its tributary streams suggest traditional hunter gathered lifestyles based on seasonal salmon-fishing supplemented by pastoral economy. Tundra-forests with larch trees, dwarf birch thickets and polypod ferns from the basal stratigraphic units of the late Last Glacial occupation sites associated with the Upper Palaeolithic micro-blade and bifacial stone tool traditions (14C-dated to 19,000-12,000 cal yrs BP) indicate rather pronounced conditions and much lower MAT comparing today. Following a final Pleistocene cooling event, a major climate warming marked the onset of Holocene accompanied by a regional humidity increase promoting the formation of a mixed broadleaved-coniferous oak-dominant taiga, and culminating in the mid-Holocene Climatic Optimum. The appearance of mosaic parklands ca. 5,000-4,000 cal yrs BP. may be partly attributed to the expansion of the Far Eastern Neolithic cultures practicing forest clearance for pastures and dwellings. A progressing landscape opening indicated by the spread of light-demanding thickets and birch-dominated riverine biotopes with Artemisia suggests a further vegetation cover transformation during the late Neolithic and the early Palaeo-Metal (Bronze Age) periods. This trend corroborates the documented climate deterioration between 3,400 and 2,600 cal yrs BP, causing a regional aridification with a parkland-steppe broadening in the main SE Primor'ye river valleys. The late Holocene climate development persisted until the Little Ice Age which led to formation of the present settlement ecosystems with mixed (oak/cedar/fir-dominated) temperate maritime woodlands.
NASA Astrophysics Data System (ADS)
van der Bilt, Willem G. M.; Bakke, Jostein; Vasskog, Kristian; D'Andrea, William J.; Bradley, Raymond S.; Ólafsdóttir, Sædis
2015-10-01
The Arctic is warming faster than anywhere else on Earth. Holocene proxy time-series are increasingly used to put this amplified response in perspective by understanding Arctic climate processes beyond the instrumental period. However, available datasets are scarce, unevenly distributed and often of coarse resolution. Glaciers are sensitive recorders of climate shifts and variations in rock-flour production transfer this signal to the lacustrine sediment archives of downstream lakes. Here, we present the first full Holocene record of continuous glacier variability on Svalbard from glacier-fed Lake Hajeren. This reconstruction is based on an undisturbed lake sediment core that covers the entire Holocene and resolves variability on centennial scales owing to 26 dating points. A toolbox of physical, geochemical (XRF) and magnetic proxies in combination with multivariate statistics has allowed us to fingerprint glacier activity in addition to other processes affecting the sediment record. Evidence from variations in sediment density, validated by changes in Ti concentrations, reveal glaciers remained present in the catchment following deglaciation prior to 11,300 cal BP, culminating in a Holocene maximum between 9.6 and 9.5 ka cal BP. Correspondence with freshwater pulses from Hudson Strait suggests that Early Holocene glacier advances were driven by the melting Laurentide Ice Sheet (LIS). We find that glaciers disappeared from the catchment between 7.4 and 6.7 ka cal BP, following a late Hypsithermal. Glacier reformation around 4250 cal BP marks the onset of the Neoglacial, supporting previous findings. Between 3380 and 3230 cal BP, we find evidence for a previously unreported centennial-scale glacier advance. Both events are concurrent with well-documented episodes of North Atlantic cooling. We argue that this brief forcing created suitable conditions for glaciers to reform in the catchment against a background of gradual orbital cooling. These findings highlight the climate-sensitivity of the small glaciers studied, which rapidly responded to climate shifts. The start of prolonged Neoglacial glacier activity commenced during the Little Ice Age (LIA) around 700 cal BP, in agreement with reported advances from other glaciers on Svalbard. In conclusion, this study proposes a three-stage Holocene climate history of Svalbard, successively driven by LIS meltwater pulses, episodic Atlantic cooling and declining summer insolation.
NASA Astrophysics Data System (ADS)
Sejrup, H. P.; Haflidason, H.; Flatebø, T.; Klitgaard Kristensen, D.; Grøsfjeld, K.; Larsen, E.
2001-02-01
Sedimentological, micropalaeontological (benthic foraminifers and dinoflagellate cysts), stable isotope data and AMS 14C datings on cores and surface samples, in addition to acoustic data, have been obtained from Voldafjorden, western Norway. Based on these data the late glacial and Holocene sedimentological processes and variability in circulation and fjord environments are outlined. Glacial marine sedimentation prevailed in the Voldafjorden between 11.0 kyr and 9.2 kyr BP (radiocarbon years). In the later part of the Allerød period, and for the rest of the Holocene, there was deposition of fine-grained normal marine sediments in the fjord basin. Turbidite layers, recorded in core material and on acoustic profiles, dated to ca. 2.1, 6.9-7.6, ca. 9.6 and ca. 11.0 kyr BP, interrupted the marine sedimentation. The event dated to between 6.9 and 7.6 kyr BP probably corresponds to a tsunami resulting from large-scale sliding on the continental margin off Norway (the Storegga Tsunami).During the later part of the Allerød period, Voldafjorden had a strongly stratified water column with cold bottom water and warm surface water, reaching interglacial temperatures during the summer seasons. During the Younger Dryas cold event there was a return to arctic sea-surface summer temperatures, possibly with year-round sea-ice cover, the entire benthic fauna being composed of arctic species. The first strong Holocene warming, observed simultaneously in bottom and sea-surface temperature proxies, occurred at ca. 10.1 kyr BP. Bottom water proxies indicate two cold periods, possibly with 2°C lowering of temperatures, at ca. 10.0 (PBO 1) and at 9.8 kyr BP (PBO 2). These events may both result from catastrophic outbursts of Baltic glacial lake water. The remainder of the Holocene experienced variability in basin water temperature, indicated by oxygen isotope measurements with an amplitude of ca. 2°C, with cooler periods at ca. 8.4-9.0, 5.6, 5.2, 4.6, 4.2, 3.5, 2.2, 1.2 and 0.4-0.8 kyr BP. Changes in the fjord hydrology through the past 11.3 kyr show a close correspondence, both in amplitude and timing of events, recorded in cores from the Norwegian Sea region and the North Atlantic. These data suggest a close relationship between fjord environments and variability in large-scale oceanic circulation.
NASA Astrophysics Data System (ADS)
Finney, B.; Anderson, L.; Engstrom, D. R.
2017-12-01
North Pacific ocean-atmosphere processes strongly influence the climatology of Alaska by altering the strength and position of the Aleutian Low. During the past decade, the development of oxygen isotope proxy records that reflect the isotope composition of precipitation has provided substantial evidence of hydroclimatic variability in Alaska in response to Aleutian Low variations during the Holocene. However, a clear understanding of how the isotopic composition of precipitation reflects Aleutian Low variations remains uncertain because modern and proxy observations and modeling studies provide different predictions for regions (coastal and interior), elevations (0 to 5000 m), and time-scales (seasonal to century) that cannot be adequately tested by existing data. Precipitation isotope proxy records from Mount Logan, Denali, Jellybean Lake and Horse Trail Fen provide valuable perspectives at high elevation and interior (leeward) locations but no data has been available from near sea level on the coastal (windward) side of the Alaska and Chugach Mountain Ranges. Here we present newly recovered marl lake sediment cores from the Matanuska-Susitna region of Knik Arm on Cook Inlet, near Wasilla, 50 km north of Anchorage, AK that provide complete de-glacial and Holocene records of precipitation oxygen isotopes. Geochronology is underway based on identification of known tephras and AMS radiocarbon dating of terrestrial macrofossils. Modern and historic sediments are dated by 210Pb. The groundwater fed site is hydrologically open, unaffected by evaporation, has exceptionally high rates of marl sedimentation and preliminary results indicate clearly defined oxygen isotope excursions in the late 1970's and early 1940's, periods when North Pacific ocean-atmosphere forcing of the Aleutian Low is known to have undergone shifts. These results help to evaluate contrasting models of atmospheric circulation and associated isotope fractionation which is critical for proxy interpretation of paleo-records.
NASA Astrophysics Data System (ADS)
Heineke, Caroline; Niedermann, Samuel; Hetzel, Ralf; Akal, Cüneyt
2015-04-01
The Kula volcanic field is the youngest volcanic province in western Anatolia and covers an area of about 600 km2 around the town Kula (Richardson-Bunbury, 1996). Its alkali basalts formed by melting of an isotopically depleted mantle in a region of long-lived continental extension and asthenospheric upwelling (Prelevic et al., 2012). Based on morphological criteria and 40Ar/39Ar dating, four phases of Quaternary activity have been distinguished in the Kula volcanic field (Richardson-Bunbury, 1996; Westaway et al., 2006). The youngest lava flows are thought to be Holocene in age, but so far only one sample from this group was dated by 40Ar/39Ar at 7±2 ka (Westaway et al., 2006). In this study, we analysed cosmogenic 3He in olivine phenocrysts from three basalt flows and one cinder cone to resolve the Holocene history of volcanic eruptions in more detail. In addition, we applied 10Be exposure dating to two quartz-bearing xenoliths found at the surface of one flow and at the top of one cinder cone. The exposure ages fall in the range between ~500 and ~3000 years, demonstrating that the youngest volcanic activity is Late Holocene in age and therefore distinctly younger than previously envisaged. Our results show that the Late Holocene lava flows are not coeval but formed over a period of a few thousand years. We conclude that surface exposure dating of very young volcanic rocks provides a powerful alternative to 40Ar/39Ar dating. References Prelevic, D., Akal, C. Foley, S.F., Romer, R.L., Stracke, A. and van den Bogaard, P. (2012). Ultrapotassic mafic rocks as geochemical proxies for post-collisional dynamics of orogenic lithospheric mantle: the case of southwestern Anatolia, Turkey. Journal of Petrology, 53, 1019-1055. Richardson-Bunbury, J.M. (1996). The Kula Volcanic Field, western Turkey: the development of a Holocene alkali basalt province and the adjacent normal-faulting graben. Geological Magazine, 133, 275-283. Westaway, R., Guillou, H., Yurtmen, S., Beck, A., Bridgland, D., Demir, T., Scaillet, S. and Rowbotham, G. (2006). Late Cenozoic uplift of western Turkey: Improved dating of the Kula Quaternary volcanic field and numerical modelling of the Gediz River terrace staircase. Global and Planetary Change, 51, 131-171.
Saenger, C.; Cronin, T.; Thunell, R.; Vann, C.
2006-01-01
Long-term chronologies of precipitation can provide a baseline against which twentieth-century trends in rainfall can be evaluated in terms of natural variability and anthropogenic influence. However, there are relatively few methods to quantitatively reconstruct palaeoprecipitation and river discharge compared with proxies of other climatic factors, such as temperature. We developed autoregressive and least squares statistical models relating Chesapeake Bay salinity to river discharge and regional precipitation records. Salinity in northern and central parts of the modern Chesapeake Bay is influenced largely by seasonal, interannual and decadal variations in Susquehanna River discharge, which in turn are controlled by regional precipitation patterns. A power regressive discharge model and linear precipitation model exhibit well-defined decadal variations in peak discharge and precipitation. The utility of the models was tested by estimating Holocene palaeoprecipitation and Susquehanna River palaeodischarge, as indicated by isotopically derived palaeosalinity reconstructions from Chesapeake Bay sediment cores. Model results indicate that the early-mid Holocene (7055-5900 yr BP) was drier than the late Holocene (1500 yr BP - present), the 'Mediaeval Warm Period' (MWP) (1200-600 yr BP) was drier than the 'Little Ice Age' (LIA) (500-100 yr BP), and the twentieth century experienced extremes in precipitation possibly associated with changes in ocean-atmosphere teleconnections. ?? 2006 Edward Arnold (Publishers) Ltd.
Late-Holocene climate andecosystem history from Chesapeake Bay sediment cores, USA
Willard, D.A.; Cronin, T. M.; Verardo, S.
2003-01-01
Palaeoclimate records from late-Holocene sediments in Chesapeake Bay, the largest estuary in the USA, provide evidence that both decadal to centennial climate variability and European colonization had severe impacts on the watershed and estuary. Using pollen and dinoflagellate cysts as proxies for mid-Atlantic regional precipitation, estuarine salinity and dissolved oxygen (DO) during the last 2300 years, we identified four dry intervals, centred on AD 50 (P1/D1), AD 1000 (P2/D2), AD 1400 (P3) and AD 1600 (P4). Two centennial-scale events, P1/D1 and P2/D2, altered forest composition and led to increased salinity and DO levels in the estuary. Intervals P3 and P4 lasted several decades, leading to decreased production of pine pollen. Periods of dry mid-Atlantic climate correspond to 'megadroughts' identified from tree-ring records in the southeastern and central USA. The observed mid-Atlantic climate variability may be explained by changes in atmospheric circulation resulting in longer-term, perhaps amplified, intervals of meridional flow. After European colonization in the early seventeenth century, forest clearance for agriculture, timber and urbanization altered estuarine water quality, with dinoflagellate assemblages indicating reduced DO and increased turbidity.
Volcanic influence on centennial to millennial Holocene Greenland temperature change.
Kobashi, Takuro; Menviel, Laurie; Jeltsch-Thömmes, Aurich; Vinther, Bo M; Box, Jason E; Muscheler, Raimund; Nakaegawa, Toshiyuki; Pfister, Patrik L; Döring, Michael; Leuenberger, Markus; Wanner, Heinz; Ohmura, Atsumu
2017-05-03
Solar variability has been hypothesized to be a major driver of North Atlantic millennial-scale climate variations through the Holocene along with orbitally induced insolation change. However, another important climate driver, volcanic forcing has generally been underestimated prior to the past 2,500 years partly owing to the lack of proper proxy temperature records. Here, we reconstruct seasonally unbiased and physically constrained Greenland Summit temperatures over the Holocene using argon and nitrogen isotopes within trapped air in a Greenland ice core (GISP2). We show that a series of volcanic eruptions through the Holocene played an important role in driving centennial to millennial-scale temperature changes in Greenland. The reconstructed Greenland temperature exhibits significant millennial correlations with K + and Na + ions in the GISP2 ice core (proxies for atmospheric circulation patterns), and δ 18 O of Oman and Chinese Dongge cave stalagmites (proxies for monsoon activity), indicating that the reconstructed temperature contains hemispheric signals. Climate model simulations forced with the volcanic forcing further suggest that a series of large volcanic eruptions induced hemispheric-wide centennial to millennial-scale variability through ocean/sea-ice feedbacks. Therefore, we conclude that volcanic activity played a critical role in driving centennial to millennial-scale Holocene temperature variability in Greenland and likely beyond.
A comparison of Holocene fluctuations of the eastern and western margins of the Greenland Ice Sheet
NASA Astrophysics Data System (ADS)
Levy, L.; Kelly, M. A.; Lowell, T. V.; Hall, B. L.; Applegate, P. J.; Howley, J.; Axford, Y.
2013-12-01
Determining how the Greenland Ice Sheet (GrIS) responded to past temperature fluctuations is important for assessing its future stability in a changing climate. We present a record of the Holocene extents of the western GrIS margin near Kangerlussuaq (67.0°N, 50.7°W) and compare this with the past fluctuations of Bregne ice cap (71°N, 25.6° W), a small ice cap in the Scoresby Sund region 90 km from the eastern GrIS margin, to examine the mechanisms that influenced past ice margin fluctuations. The past extents of the Bregne ice cap are a proxy for the climatic conditions that influenced the nearby GrIS margin. We used glacial geomorphic mapping, 10Be dating of boulders and bedrock, and sediment cores from proglacial and non-glacial lakes. In western Greenland, 10Be ages on the Keglen moraines, 13 km west of the current GrIS margin and the Ørkendalen moraines, ≤2 km west of the current ice margin date to 7.3 × 0.1 ka (n=6) and 6.8 × 0.3 ka (n=9), respectively. Fresh moraines, ≤50 m from the current ice margin date to AD 1830-1950 and are likely associated with advances during the Little Ice Age (LIA). In some areas, the LIA moraines lie stratigraphically above the Ørkendalen moraines, indicating the GrIS was inboard of the Ørkendalen limit from 6.8 ka to the 20th century. In eastern Greenland, 10Be ages show that Bregne ice cap retreated within its late Holocene limit by 10.7 ka. A lack of clastic sediment in a proglacial lake suggests the ice cap was smaller or completely absent from ~10-2.6 ka. A snowline analysis indicates that temperatures ~0.5°C warmer than present would render the entire ice cap into an ablation zone. Glacial silts in the proglacial lake at ~2.6 and ~1.9 cal kyr BP to present indicate advances of Bregne ice cap. Fresh moraines ≤200 m of Bregne ice cap were deposited ≤2.6 cal kyr BP and mark the largest advance of the Holocene. Both the western GrIS margin and Bregne ice cap were influenced by Northern Hemisphere summer insolation during the Holocene. The western GrIS margin retreated significantly and Bregne ice cap likely disappeared during the warm early to middle Holocene. 10Be ages (10.7 ka) outboard of the late Holocene moraines at Bregne ice cap compared to those outside of the LIA moraines near Kangerlussuaq (6.8 ka) differ by ~4 kyr. This disparity in ages may have been caused by a large late Holocene advance in eastern Greenland, or perhaps the western GrIS margin retreated farther inland during the middle Holocene. Decreasing Northern Hemisphere summer insolation during the late Holocene, combined with a strong, cold East Greenland Current near Scoresby Sund may have influenced a significant ice cap advance. The temporal pattern of the responses of the eastern and western ice margins to Holocene climate changes may be indicative of how the GrIS will respond to future changes.
Boundary Conditions for Aeolian Activity in North American Dune Fields
NASA Astrophysics Data System (ADS)
Halfen, A. F.; Lancaster, N.; Wolfe, S.
2014-12-01
Geomorphic and chronological data for dune fields are evaluated for three contrasting areas of North America: 1) the Prairie-Parkland-Boreal ecozones of the northern Great Plains in Canada; 2) the Central Great Plains of the USA; and 3) the deserts of southwestern USA and northern Mexico. Luminescence and radiocarbon ages for periods of dune accumulation and stability are compared with palaeoenvironment proxies to provide an assessment of the boundary conditions of dune system response to changes in sediment supply, availability, and mobility. Dune fields in the northern Great Plains were formed from sediment originating from glaciofluvial or glaciolacustrine sediments deposited during deglaciation 16-11 ka. Subsequent aeolian deposition occurred in Parkland and Prairie dune fields as a result of mid-Holocene (8-5 ka) and late-Holocene (< 3.5 ka) activity related to drought conditions that reworked pre-existing aeolian sands. In the Central Great Plains, dune fields are closely linked to fluvial sediment sources. Sediment supply was high during deglaciation of the Rocky Mountains and resulted in widespread dune construction 16-10 ka. Multiple periods of Holocene reactivation are recorded and reflect increased sediment availability during drought episodes. Dune fields in the southwestern deserts experienced periods of construction as a result of enhanced supply of sediment from fluvial and lacustrine sources during the period 11.8-8 ka and at multiple intervals during the late Holocene. Despite spatial and temporal gaps in chronometric data as a result of sampling biases, the record from North American dune fields indicates the strong influence of sediment supply on dune construction, with changes in sediment availability as a result of drought episodes resulting in dune field reactivation and reworking of pre-existing sediment.
Reconstruction of early Holocene paleoclimate and environment in the SW Kola region, Russian Arctic
NASA Astrophysics Data System (ADS)
Grekov, Ivan; Kolka, Vasiliy; Syrykh, Liudmila; Nazarova, Larisa
2016-04-01
In the current period of the global climate change it becomes necessary to have a clear understanding of not only the changes taking place in the components of the natural environment, but also to understand development of all interactions between those components. Quaternary terrigenic sediments and lakes of the Kola Peninsula store information about the development of the region in the Late Glacial and Holocene: movements of the glacier, neotectonic activity, post-glacial rebound, formation and development of natural environments after deglaciation. Multi-proxy study of landscapes evolution of the Kola Peninsula in the Late Quaternary will help to establish a detailed reconstruction of climatic and environmental changes of this poor studied sector of the Arctic. Quaternary history on the Kola Peninsula is represented mainly by Late Pleistocene and Holocene sediments covering the Baltic Shield (Lavrova, 1960; Evzerov, 2015). Several palaeolimnological investigations in the Baltic Shield area have been performed earlier (Donner et al., 1977; Anundsen, 1985; Berglund, 2004). Studies of the southern coast of the Kola Peninsula have shown that marine transgression took place in the Late Pleistocene that was then replaced by a regression with variable speed. The slowdown of the uplift of the area took place between 8800 - 6800 BP (cal. years) and corresponded to the time of the Tapes transgression of the Arctic Ocean (Evzerov et al. 2010; Kolka, et al., 2013). Palaeoclimatic studies based on micro-paleontological analyzes indicate uneven development of the Kola Peninsula landscapes in the Late Glacial and Early Holocene. The northern coast of the Peninsula became free of ice first. In this area tundra-steppe vegetation was established for a short time and was later replaced by tundra (Snyder et al, 2000). Southern part of the Kola Peninsula was dependent on the conditions of deglaciation of the White Sea basin and cleared of ice much later (Evzerov et al., 2010; Kolka, et al., 2013). Reconstruction of the Early Holocene average July air temperatures based on chironomid analysis showed that in the middle of the Peninsula air T July were around + 10.3oC which is below the modern values. A sharp warming took place then during the Mid Holocene optimum (Ilyashuk, 2000; Ilyashuk, 2013). The reconstructed Early Holocene T July of the southern part of the Peninsula are similar to the modern T July + 12oC. For a detailed reconstruction of paleogeographic environments of the south-western part of the Kola Peninsula in Holocene we studied the valley of Kolvica river and the southern shore of lake Kolvitsa (67.01-67.11 N; 33.17-33.48 E). Analysis of lithological sequences and radiocarbon dating of sediments of small lakes present a clear outline of the development of the studied region from 9.3 14C ka (10.5 cal. ka BP) to the present day. Based on micro-paleontological analyzes we performed a qualitative reconstruction of climatic conditions during the Holocene, which shows a clear change of cooling and warming in the studied area, as well as the dynamics of the White Sea coastal zone and the development of the studied lake basins. This project was financed by RFBR 15-35-50479 mol_nr.
NASA Astrophysics Data System (ADS)
Böll, Anna; Gaye, Birgit; Lückge, Andreas
2014-05-01
Variability in the oceanic environment of the Arabian Sea region is strongly influenced by the seasonal monsoon cycle of alternating wind directions. Strong south-westerly winds during the summer monsoon induce upwelling of nutrient rich waters along the coast off Somalia, Oman and southwest India, which result in high rates of primary production. In the northeastern Arabian Sea off Pakistan on the other hand, primary production and sea surface temperatures are linked to northeast monsoonal winds that cool the sea surface and drive convective mixing and high surface ocean productivity during the winter season. In this study, we analyzed alkenone-derived sea surface temperature (SST) variations and proxies of primary productivity (organic carbon and δ15N) in a well-laminated sediment core from the Pakistan continental margin to establish the first high-resolution record of winter monsoon variability for the late Holocene. Over the last 2400 years reconstructed SST in the northeastern Arabian Sea decreased whereas productivity increased, imaging a long-term trend of northeast monsoon strengthening in response to insolation-induced southward migration of the Intertropical Convergence Zone. The comparison of our winter monsoon record with records of summer monsoon intensity suggests that summer and winter monsoon strength was essentially anti-correlated over the late Holocene throughout the Asian monsoon system. In addition, SST variations recorded off Pakistan match very well with Northern Hemisphere temperature records supporting the growing body of evidence that Asian climate is linked to Northern Hemisphere climate change. It reveals a consistent pattern of increased summer monsoon activity in the northeastern Arabian Sea during northern hemispheric warm periods (Medieval Warm Period, Roman Warm Period) and strengthened winter monsoon activity during hemispheric colder periods (Little Ice Age).
Holocene climatic change, aeolian sedimentation and the nomadic Anthropocene in Eastern Tibet
NASA Astrophysics Data System (ADS)
Lehmkuhl, F.; Schlütz, F.
2009-04-01
Geomorphological and palynological studies from the Nianbaoyeze Shan in Eastern Tibet provides detailed information on the Holocene landscape and vegetation development of a mountain system located on the westernmost boundary of the modern forest belt. In addition, detailed sedimentological work was done on a section south of the Anyemachin Shan further west. Our study provides detailed information on the late glacial landscape and vegetation development of eastern Tibet. Based on a suite of geomorphological and palynological proxy data from the Nianbaoyeze Shan on the eastern margin of the Tibetan Plateau (33°N/101°E, 3300-4500 m asl) we reconstruct recent landscape dynamics as a function of climate change and the longevity of human influence. Study results constrain several major phases of aeolian sedimentation between 50 - 15 ka and various glacier advances during the Late Pleistocene, the Holocene and the Little Ice Age (LIA). Increased aeolian deposition was primarily associated with periods of more extensive glacial ice extent. Fluvial and alluvial sediment pulses also document an increase of erosion starting at about 4000 cal yr B.P. coinciding with cooling (Neoglacial) and a growing anthropo-zoogenic influence. Evidence for periglacial mass movements indicate that the late Holocene cooling started at around 2000 cal yr B.P. demonstrating increased surface activity under the combined effects of human influence and climate deterioration (LIA). In a section south of the Anyemachin about 150 km further west Holocene silt and paleosols development match to these results but showing higher Holocene aeolian activity. The Holocene vegetation history started with an open landscape dominated by pioneer shrubs along braided rivers (<10,600 - 9800 cal yr B.P.), followed by the spreading of conifers (Picea, Juniperus, Abies) and Betula-trees accompanied by a successive closing of the vegetation cover by Poaceae, Cyperaceae and herbs (9800 - 8300 cal yr B.P.). First signs of nomadic influences appear as early as 7200 cal yr B.P., when temperatures were up to 2°C warmer than today. Forest remained very patchy with strong local contrasts. During the following cooling phase (5900 - 2750 yr cal B.P.) the natural Kobresia-mats were transformed by nomadic grazing to Bistorta-rich Kobresia pygmaea-pastures. Modern nomadic migration routes were established at least 2200 years ago. Overgrazing and trampling led to the shrinking of Bistorta and the spreading of annual weeds. Our data point to an early start of the nomadic Anthropocene at about 6000 years ago. Against this background of a very long grazing history, modern Tibet must be seen as a cultural landscape.
NASA Astrophysics Data System (ADS)
van der Bilt, Willem; Bakke, Jostein; Vasskog, Kristian; D`Andrea, William; Bradley, Raymond; Olafsdottir, Sædis
2016-04-01
The Arctic is responding sensitively to ongoing global climate change, warming and moistening faster than any other region on the planet. Holocene proxy paleoclimate time series are increasingly used to put this amplified response in perspective by understanding Arctic climate processes beyond the instrumental period. Glaciers rapidly respond to climate shifts as demonstrated by their current demise around the world. This response has a composite climate signature, marked by shifts in hydroclimate (winter precipitation) as well as (summer) temperature. Attendant changes in glacier size are recorded by variations in glacigenic rock flour that may be deposited in downstream lakes. Here, we present a Holocene reconstruction of glacier activity, based on sediments from Hajeren, a glacier-fed lake on northwest Spitsbergen in the High Arctic Svalbard archipelago. Owing to undisturbed sediments and robust age control, we could resolve variability on a sub-centennial scale. To ensure the accurate detection of glacier activity, we applied a toolbox of physical, magnetic and geochemical proxies in conjunction with multivariate statistics. Our findings indicate a three-stage Holocene climate history for Svalbard, driving by melt water pulses, episodic Atlantic cooling and a decline in orbitally driven summer insolation. Correspondence between inferred advances, including a Holocene glacier maximum around 9.5 ka BP, suggests forcing by the melting LIS during the Early Holocene. Following a late Holocene Thermal Maximum around 7.4 ka BP, glaciers disappeared from the catchment. Glaciers reformed around 4.2 ka BP during the regional onset of the Neoglacial, supporting previous findings. This transition did, however, not mark the onset of persistent glacier activity in the catchment, but a series of centennial-scale cycles of growth and decay, including events around 3.3 and 1.1 ka BP. As orbitally driven insolation declined towards the present, the glaciation threshold progressively lowered. The forcing behind these advances remains elusive, but their agreement with other glacier reconstructions from the region indicates a North Atlantic signature. Prolonged glacier activity commenced after 0.7 ka BP during the Little Ice Age, in agreement with other evidence from Svalbard. Comparatively high reconstructed temperatures during this timeframe suggest that glacier growth was precipitation-driven. Our findings highlight the sensitivity of small glaciers to climate shifts, demonstrating their potential to resolve centennial-scale perturbations. Moreover, this study underlines the value of lake sediments from glacier-fed lakes in understanding Holocene climate in the Arctic.
NASA Astrophysics Data System (ADS)
Hou, Juzhi; D'Andrea, William J.; Wang, Mingda; He, Yue; Liang, Jie
2017-05-01
Precipitation atop the Tibetan Plateau (TP) is delivered by the Indian summer monsoon, the Asian summer monsoon, and weather systems associated with the subtropical westerly jet. Variations in the relative importance of the monsoon systems and the westerly jet are hypothesized to have occurred at decadal, millennial and glacial-interglacial scales. However, paleoclimate observations based on explicit climate proxies are still scarce, limiting our understanding of the mechanisms of Holocene climate variability on the Tibetan Plateau (TP). Here we present three independently dated compound specific hydrogen isotope records of sedimentary leaf waxes from lakes on the TP, Bangong Co, Lake Qinghai and Linggo Co. The leaf wax δD records reflect isotopes in precipitation, and we combine these observations with existing isotopic and hydrological data to investigate variations in the influence of the summer monsoon and the westerly jet on the moisture budget of the TP since the Late Pleistocene. δD values of precipitation at all three lakes were relatively positive during the Late Pleistocene indicating a weakened summer monsoon. During the early and mid-Holocene, δD values of precipitation at the three lakes were relatively negative, suggesting the importance of summer monsoon. During the middle to late Holocene, δD values at Bangong Co and Lake Qinghai gradually increased with superimposed episodes of short term of δD variability. However, at Linggo Co in the northern TP, periods of more positive δD values of precipitation correspond to wetter intervals inferred from lake level high stands, and likely reflect variations in moisture associated with the westerly jet. Thus, the δD records at Linggo Co imply the lesser importance of summer monsoon moisture in the hydrologic budget of the northern TP. Collectively, the hydrogen isotope records at these three lakes document millennial and centennial scale variations in the strength of the summer monsoon systems and concurrent changes in the westerly jet. Furthermore, millennial-scale fluctuations in the δD records at the three lakes during the middle to late Holocene suggest episodes of reduced summer monsoonal moisture delivery to these regions, and correspond with intervals of cool sea surface temperatures in the North Atlantic.
Millennial-scale fluctuations in Saharan dust supply across the decline of the African Humid Period
NASA Astrophysics Data System (ADS)
Zielhofer, Christoph; von Suchodoletz, Hans; Fletcher, William J.; Schneider, Birgit; Dietze, Elisabeth; Schlegel, Michael; Schepanski, Kerstin; Weninger, Bernhard; Mischke, Steffen; Mikdad, Abdeslam
2017-09-01
The Sahara is the world's largest dust source with significant impacts on trans-Atlantic terrestrial and large-scale marine ecosystems. Contested views about a gradual or abrupt onset of Saharan aridity at the end of the African Humid Period dominate the current scientific debate about the Holocene Saharan desiccation. In this study, we present a 19.63 m sediment core sequence from Lake Sidi Ali (Middle Atlas, Morocco) at the North African desert margin. We reconstruct the interaction between Saharan dust supply and Western Mediterranean hydro-climatic variability during the last 12,000 yr based on analyses of lithogenic grain-sizes, XRF geochemistry and stable isotopes of ostracod shells. A robust chronological model based on AMS 14C dated pollen concentrates supports our multi-proxy study. At orbital-scale there is an overall increase in southern dust supply from the Early Holocene to the Late Holocene, but our Northern Saharan dust record indicates that a gradual Saharan desiccation was interrupted by multiple abrupt dust increases before the 'southern dust mode' was finally established at 4.7 cal ka BP. The Sidi Ali record features millennial peaks in Saharan dust increase at about 11.1, 10.2, 9.4, 8.2, 7.3, 6.6, 6.0, and 5.0 cal ka BP. Early Holocene Saharan dust peaks coincide with Western Mediterranean winter rain minima and North Atlantic cooling events. In contrast, Late Holocene dust peaks correspond mostly with prevailing positive phases of the North Atlantic Oscillation. By comparing with other North African records, we suggest that increases in Northern Saharan dust supply do not solely indicate sub-regional to regional aridity in Mediterranean Northwest Africa but might reflect aridity at a trans-Saharan scale. In particular, our findings support major bimillennial phases of trans-Saharan aridity at 10.2, 8.2, 6.0 and 4.2 cal ka BP. These phases coincide with North Atlantic cooling and a weak African monsoon.
NASA Astrophysics Data System (ADS)
Pérez-Asensio, José N.; Cacho, Isabel; Frigola, Jaime; Pena, Leopoldo D.; Sierro, Francisco J.; Asioli, Alessandra; Kuhlmann, Jannis; Huhn, Katrin
2017-04-01
Paleoenvironmental and paleoceanographic changes in the western Mediterranean are reconstructed for the last 24 ka using a combination of benthic foraminiferal assemblages and geochemical proxies measured on benthic foraminiferal shells (Mg/Ca-deep water temperatures and stable isotopes). The studied materials are sediment cores HER-GC-UB06 and MD95-2043recovered at 946 m and 1841 m, respectively, from the Alboran Sea. At present, both core sites are bathed by the Western Mediterranean Deep Water (WMDW), although UB06 core is close to the boundary with the overlying Levantine Intermediate Water (LIW). Therefore, past variability of both water masses can potentially be recorded by the benthic foraminiferal proxies from the studied sites. Benthic foraminiferal assemblages and geochemical data show fluctuations in bottom-water ventilation, organic matter accumulation and deep-water temperatures related to WMDW and LIW circulation. During the glacial interval, an alternation of events showing better ventilation (higher abundance of Cibicides pachyderma) with lower temperatures and events of warmer deep water temperatures with poorer ventilation (Nonionella iridea assemblage, lower abundance of C. pachyderma) are observed. This variability might reflect stronger WMDW formation during the Last Glacial Maximum (LGM) and Heinrich Stadial 1. During the Bølling-Allerød and Younger Dryas (YD) periods, cold temperatures and the lowest oxygenation rates are recorded coinciding with the highest abundance of deep infaunal taxa on both UB06 and MD95-2043 cores. This interval was coetaneous to the deposition of an Organic Rich Layer in the Alboran Sea. However, a re-ventilation trend started at the end of the YD in the shallower site (UB06 core) whereas low-oxygen conditions prevailed until the end of the early Holocene in the deep site (MD95-2043 core). During the early Holocene a significant deep water temperature increase occurred at the shallower site suggesting the replacement of WMDW by warmer water mass, likely LIW. In the middle Holocene, highly variable bottom-water oxygenation and temperatures are observed showing warmer deep waters with less oxygen content (higher deep and intermediate infaunal abundances). The late Holocene (last 4 ka) was characterized by slightly cooler deep water temperatures and enhanced oxygen levels supporting that WMDW became dominant at the shallower site. These observations reveal that Mediterranean thermohaline system has been highly variable during the studied period supporting its high sensitivity to changing climate conditions. These results open a new insight into the Mediterranean sensitivity to Holocene climate variability.
NASA Astrophysics Data System (ADS)
Mckay, M.
2016-12-01
Baffin Bay is a Reverse estuary located in the semi-arid south Texas coastal plain. It receives on average 60-80 cm of precipitation per year with evaporation exceeding precipitation by 60 cm/year. It has experienced a variety of paleoenvironmental influences since its formation as sea levels rose during the Holocene period. Many of these environmental influences include some terrestrial deposits from creeks, and changes in precipitation patterns. One of the most significant influences on the bay was when it was separated from the Gulf of Mexico by the formation of a large Barrier Island (Padre Island) 5,500 years ago. In recent times, Baffin Bay has experienced decreases in water quality. While it is evident that current anthropological inputs (increased nutrient loading, etc.) are contributory, natural factors that include long-term changes in precipitation patterns, and fresh water flows, along with changes in the bays circulation patterns may also influence the functioning of the bay. In this study, short sediment cores ( 1.3-1.7 m) were taken from twelve locations around the main basin and tributaries of the bay. All cores were sampled at either one or five centimetre intervals depending on the technique employed, using several non-destructive and destructive proxy techniques. Chronological control was provided by Cs-137/Pb-210 analyses. Proxy analysis has corresponded well with both with known events and with the assistance of Cs-137/Pb-210 analyses, are able help discern environmental inputs that are of anthropological origin as opposed to those that of a natural origin or cycle.
Holocene shifts of the southern westerlies across the South Atlantic
NASA Astrophysics Data System (ADS)
Voigt, Ines; Chiessi, Cristiano M.; Prange, Matthias; Mulitza, Stefan; Groeneveld, Jeroen; Varma, Vidya; Henrich, Ruediger
2015-02-01
The southern westerly winds (SWW) exert a crucial influence over the world ocean and climate. Nevertheless, a comprehensive understanding of the Holocene temporal and spatial evolution of the SWW remains a significant challenge due to the sparsity of high-resolution marine archives and appropriate SWW proxies. Here we present a north-south transect of high-resolution planktonic foraminiferal oxygen isotope records from the western South Atlantic. Our proxy records reveal Holocene migrations of the Brazil-Malvinas Confluence (BMC), a highly sensitive feature for changes in the position and strength of the northern portion of the SWW. Through the tight coupling of the BMC position to the large-scale wind field, the records allow a quantitative reconstruction of Holocene latitudinal displacements of the SWW across the South Atlantic. Our data reveal a gradual poleward movement of the SWW by about 1-1.5° from the early to the mid-Holocene. Afterward, variability in the SWW is dominated by millennial scale displacements on the order of 1° in latitude with no recognizable longer-term trend. These findings are confronted with results from a state-of-the-art transient Holocene climate simulation using a comprehensive coupled atmosphere-ocean general circulation model. Proxy-inferred and modeled SWW shifts compare qualitatively, but the model underestimates both orbitally forced multimillennial and internal millennial SWW variability by almost an order of magnitude. The underestimated natural variability implies a substantial uncertainty in model projections of future SWW shifts.
Wahl, David B.; Estrada-Belli, Francisco; Anderson, Lysanna
2015-01-01
The timing, magnitude and drivers of late Holocene environmental change in the Holmul region of the southern Maya lowlands are examined by combining paleoenvironmental and archeological data. Environmental proxy analyses on a ~ 3350 cal yr lacustrine sediment record include pollen, charcoal, loss on ignition, magnetic suscep- tibility, and elemental geochemistry. Archeological evidence is derived from extensive settlement surveys conducted near the study site. Results indicate nearby settlement and agricultural activity taking place in an environment characterized by open forest from around 3350 to 950 cal yr BP. The fire history shows a dramatic increase in burning during the Classic period, possibly reflecting changing agricultural strategies. A distinct band of carbonate deposited from 1270 to 1040 cal yr BP suggests decreased hydrologic input associated with drier conditions. Abrupt changes in proxy data around 940 cal yr BP indicate a cessation of human disturbance and local abandonment of the area.
NASA Astrophysics Data System (ADS)
Walsh, Megan K.; Prufer, Keith M.; Culleton, Brendan J.; Kennett, Douglas J.
2014-07-01
We report high-resolution macroscopic charcoal, pollen and sedimentological data for Agua Caliente, a freshwater lagoon located in southern Belize, and infer a late Holocene record of human land-use/climate interactions for the nearby prehistoric Maya center of Uxbenká. Land-use activities spanning the initial clearance of forests for agriculture through the drought-linked Maya collapse and continuing into the historic recolonization of the region are all reflected in the record. Human land alteration in association with swidden agriculture is evident early in the record during the Middle Preclassic starting ca. 2600 cal yr BP. Fire slowly tapered off during the Late and Terminal Classic, consistent with the gradual political demise and depopulation of the Uxbenká polity sometime between ca. 1150 and 950 cal yr BP, during a period of multiple droughts evident in a nearby speleothem record. Fire activity was at its lowest during the Maya Postclassic ca. 950-430 cal yr BP, but rose consistent with increasing recolonization of the region between ca. 430 cal yr BP and present. These data suggest that this environmental record provides both a proxy for 2800 years of cultural change, including colonization, growth, decline, and reorganization of regional populations, and an independent confirmation of recent paleoclimate reconstructions from the same region.
Late Quaternary Productivity Records from Coccolith Sr/Ca
NASA Astrophysics Data System (ADS)
Stoll, H. M.; Burke, A.; Mejia Ramirez, L. M.; Shimizu, N.; Ziveri, P. P. I.
2014-12-01
The Sr/Ca of coccoliths has been proposed as an indicator of productivity on the basis of correlation with export production in sediment traps and across upwelling productivity gradients, although the mechanism responsable for this relationship is not clear. For diverse oceanographic settings in the Late Quaternary, we compare coccolith Sr/Ca productivity records with those of other productivity indicators and proxies for mechanisms of productivity forcing. For the Somalia Basin in the Arabian Sea, coccolith Sr/Ca shows a large variation coherent with precessional forcing of wind strength as a mechanism for productivity regulation. During the glacial, the Sr/Ca peak is decoupled from productivity indicators based on organic C accumulation rate. For the Northern Bay of Bengal, coccolith Sr/Ca, Ba/Ti, and relative abundance of G. bulloides, all suggest greater productivity during the interglacial periods, consisted with Nd isotopic evidence for greater riverine nutrient inputs. In the Andaman Sea, coccolith Sr/Ca is highest during precessional maxima in the summer monsoon, consistent with proxies for chemical weathering in the Irawaddy rivershed. In the Eastern Mediterranean, coccolith Sr/Ca is on average low, and peaks during the E. Holocene interval characterized by deposition of sapropel S1. The peak in Sr/Ca however is comparable to the level maintained throughout the Holocene in the Western Mediterranean, where no sapropel occurs, implicating deepwater oxygen levels as a significant contributor to sapropel formation. Finally, on the Agulhas Bank, minima in coccolith Sr/Ca occur during obliquity minima which are periods of anomalous equatorward deposition of IRD in the Southern Ocean. Northward explansion of the westerly wind field during these cold intervals, block upwelling on the Agulhas Bank and result in low productivity.
NASA Astrophysics Data System (ADS)
Kelly, M. A.; Osterberg, E. C.; Lasher, G. E.; Farnsworth, L. B.; Howley, J. A.; Axford, Y.; Zimmerman, S. R. H.
2015-12-01
North Ice Cap (~76.9°N, 68°W, summit elevation 1322 m asl), a small, independent ice cap in northwestern Greenland, is located within ~25 km of the Greenland Ice Sheet margin and Harald Molkte Bræ outlet glacier. We present geochronological, geomorphic and sedimentological data constraining the Holocene extents of North Ice Cap and suggest that its past fluctuations can be used as a proxy for climate conditions along the northwestern margin of the Greenland Ice Sheet. Prior work by Goldthwait (1960) used glacial geomorphology and radiocarbon ages of subfossil plants emerging along shear planes in the ice cap margin to suggest that that North Ice Cap was not present during the early Holocene and nucleated in the middle to late Holocene time, with the onset of colder conditions. Subfossil plants emerging at shear planes in the North Ice Cap margin yield radiocarbon ages of ~4.8-5.9 cal kyr BP (Goldthwait, 1960) and ~AD 1000-1350 (950-600 cal yr BP), indicating times when the ice cap was smaller than at present. In situ subfossil plants exposed by recent ice cap retreat date to ~AD 1500-1840 (450-110 cal yr BP) and indicate small fluctuations of the ice cap margin. 10Be ages of an unweathered, lichen-free drift <100 m from the present North Ice Cap margin range from ~500 to 8000 yrs ago. We suggest that the drift was deposited during the last ~500 yrs and that the older 10Be ages are influenced by 10Be inherited from a prior period of exposure. We also infer ice cap fluctuations using geochemical data from a Holocene-long sediment core from Deltasø, a downstream lake that currently receives meltwater from North Ice Cap. The recent recession of the North Ice Cap margin influenced a catastrophic drainage of a large proglacial lake, Søndre Snesø, that our field team documented in August 2012. To our knowledge, this is the first significant lowering of Søndre Snesø in historical time.
NASA Astrophysics Data System (ADS)
Gromig, R.; Melles, M.; Wagner, B.; Krastel, S.; Andreev, A.; Fedorov, G.; Just, J.; Wennrich, V.; Savelieva, L.; Subetto, D.; Shumilovskikh, L.
2016-12-01
The joint German-Russian project 'PLOT - Paleolimnological Transect' aims to recover lake sediment sequences along a more than 6000 km long longitudinal transect across the Eurasian Arctic in order to study the Late Quaternary climatic and environmental history. The eastern end of the PLOT transect is formed by the well-studied record from Lake El'gygytgyn (NE Siberia). Lake Ladoga (N 60°50' E 31°30') is Europe's largest lake, both by size and volume and forms the westernmost end of the transect. Whereas modern sedimentation as well as the Holocene and Late Glacial history of Lake Ladoga have intensely been studied, the preglacial history of the lake is poorly studied to date by sediment cores drilled in the 1930's. A seismic survey of Lake Ladoga in summer 2013 revealed unconformities in the western lake basin, which may separate preglacial sediments in isolated depressions from Late Glacial and Holocene sediment successions above. A 23 m long sediment core (Co1309) was retrieved from one of these depressions. Core Co1309 was investigated by XRF-scanning, magnetic susceptibility measurements, as well as pollen, grain-size, and bio-geochemical analyses. An age-depth model combining radiocarbon, OSL, and paleomagnetic dates is in progress. Both, the pollen results and the OSL ages from the base of the record indicate a deposition during MIS 5e (Eemian). The well sorted reddish sands from this interval contain dinoflagellates suggesting at least brackish conditions, likely due to the existence of a gateway connecting a precursor of the Baltic Sea with the White Sea via Lake Ladoga. The Late Glacial sequence consists of greyish varved clays of decreasing thickness upwards with sporadically intercalated sand layers. The Holocene sequence is composed of brownish diatomaceous silty clay with minor proportions of sand.
NASA Astrophysics Data System (ADS)
Hörner, Tanja; Stein, Rüdiger; Fahl, Kirsten
2017-10-01
The Holocene is characterized by the late Holocene cooling trend as well as by internal short-term centennial fluctuations. Because Arctic sea ice acts as a significant component (amplifier) within the climate system, investigating its past long- and short-term variability and controlling processes is beneficial for future climate predictions. This study presents the first biomarker-based (IP25 and PIP25) sea ice reconstruction from the Kara Sea (core BP00-07/7), covering the last 8 ka. These biomarker proxies reflect conspicuous short-term sea ice variability during the last 6.5 ka that is identified unprecedentedly in the source region of Arctic sea ice by means of a direct sea ice indicator. Prominent peaks of extensive sea ice cover occurred at 3, 2, 1.3 and 0.3 ka. Spectral analysis of the IP25 record revealed 400- and 950-year cycles. These periodicities may be related to the Arctic/North Atlantic Oscillation, but probably also to internal climate system fluctuations. This demonstrates that sea ice belongs to a complex system that more likely depends on multiple internal forcing.
NASA Astrophysics Data System (ADS)
Finsinger, Walter; Morales-Molino, Cesar; Gałka, Mariusz; Valsecchi, Verushka; Bojovic, Srdjan; Tinner, Willy
2017-07-01
We analysed sediments from Crveni Potok (Tara Mountains, Serbia), a key site in the Dinaric Alps because it is located within the restricted distribution range of the endemic conifer Picea omorika (Serbian spruce), and thereby bears a unique potential in revealing its Holocene history. We used a set of proxies (pollen, plant-macrofossils, charcoal) to reconstruct the long-term vegetation and fire histories at different spatial scales. The comprehensive snapshot provided by the reconstructions fill an important gap of European long-term vegetation and fire histories in the overall data-coverage poor region of the Dinaric Alps. The reconstructions unfolded an unusual late-Holocene persistence of high forest cover that contrasts with the large majority of European landscape-scale forest-cover records, which show massive anthropogenic openings in the past two millennia. We also found evidence for good post-fire recovery of the currently threatened endemic P. omorika populations. This leads us to suggest that prescribed-burning programmes may be beneficial to reduce the vulnerability of the species, and for ecological restoration and conservation purposes of the declining and endangered populations.
NASA Astrophysics Data System (ADS)
Hein, Christopher J.; Galy, Valier; Galy, Albert; France-Lanord, Christian; Kudrass, Hermann; Schwenk, Tilmann
2017-11-01
Climate has been proposed to control both the rate of terrestrial silicate weathering and the export rate of associated sediments and terrestrial organic carbon to river-dominated margins - and thus the rate of sequestration of atmospheric CO2 in the coastal ocean - over glacial-interglacial timescales. Focused on the Ganges-Brahmaputra rivers, this study presents records of post-glacial changes in basin-scale Indian summer monsoon intensity and vegetation composition based on stable hydrogen (δD) and carbon (δ13C) isotopic compositions of terrestrial plant wax compounds preserved in the channel-levee system of the Bengal Fan. It then explores the role of these changes in controlling the provenance and degree of chemical weathering of sediments exported by these rivers, and the potential climate feedbacks through organic-carbon burial in the Bengal Fan. An observed 40‰ shift in δD and a 3-4‰ shift in both bulk organic-carbon and plant-wax δ13C values between the late glacial and mid-Holocene, followed by a return to more intermediate values during the late Holocene, correlates well with regional post-glacial paleoclimate records. Sediment provenance proxies (Sr, Nd isotopic compositions) reveal that these changes likely coincided with a subtle focusing of erosion on the southern flank of the Himalayan range during periods of greater monsoon strength and enhanced sediment discharge. However, grain-size-normalized organic-carbon concentrations in the Bengal Fan remained constant through time, despite order-of-magnitude level changes in catchment-scale monsoon precipitation and enhanced chemical weathering (recorded as a gradual increase in K/Si* and detrital carbonate content, and decrease in H2O+/Si*, proxies) throughout the study period. These findings demonstrate a partial decoupling of climate change and silicate weathering during the Holocene and that marine organic-carbon sequestration rates primary reflect rates of physical erosion and sediment export as modulated by climatic changes. Together, these results reveal the magnitude of climate changes within the Ganges-Brahmaputra basin following deglaciation and a closer coupling of monsoon strength with OC burial than with silicate weathering on millennial timescales.
Flannery, Jennifer A.; Poore, Richard Z.
2013-01-01
Sr/Ca ratios from skeletal samples from two Montastraea faveolata corals (one modern, one Holocene, ~6 Ka) from the Dry Tortugas National Park were measured as a proxy for sea-surface temperature (SST). We sampled coral specimens with a computer-driven triaxial micromilling machine, which yielded an average of 15 homogenous samples per annual growth increment. We regressed Sr/Ca values from resulting powdered samples against a local SST record to obtain a calibration equation of Sr/Ca = -0.0392 SST + 10.205, R = -0.97. The resulting calibration was used to generate a 47-year modern (1961-2008) and a 7-year Holocene (~6 Ka) Sr/Ca subannually resolved proxy record of SST. The modern M. faveolata yields well-defined annual Sr/Ca cycles ranging in amplitude from ~0.3 and 0.5 mmol/mol. The amplitude of ~0.3 to 0.5 mmol/mol equates to a 10-15°C seasonal SST amplitude, which is consistent with available local instrumental records. Summer maxima proxy SSTs calculated from the modern coral Sr/ Ca tend to be fairly stable: most SST maxima from 1961–2008 are 29°C ± 1°C. In contrast, winter minimum SST calculated in the 47-year modern time-series are highly variable, with a cool interval in the early to mid-1970s. The Holocene (~6 Ka) Montastraea faveolata coral also yields distinct annual Sr/Ca cycles with amplitudes ranging from ~0.3 to 0.6 mmol/mol. Absolute Sr/Ca values and thus resulting SST estimates over the ~7-year long record are similar to those from the modern coral. We conclude that Sr/Ca from Montastraea faveolata has high potential for developing subannually resolved Holocene SST records.
Near coast sedimentary stratigraphy as a proxy for climatic instability
NASA Astrophysics Data System (ADS)
McLivenny, J.
2009-04-01
Several studies have indicated a link between climatic deterioration and dune stability (Wilson 2002, Issar 2003, Dawson et al 2004). The frequency and magnitude of storms have been cited as a key variable in the stability of large dune systems. For the stratigraphy of dune systems to act as a regional climatic proxy there must be a good regional relationship between known climatic events and regionally correlated stratigraphic changes. Dunnet Bay in Caithness, Northern Scotland was chosen as a study site to look at the relationship between dune stability and climatic change during the late Holocene in Northern Scotland. Dunnet Bay was chosen for its physical attributes which make it an excellent natural sediment trap. Tucked in between headlands which act as barriers to long-shore transport the predominant movement of sediment there is straight onshore, with only minor amounts being lost to the sea. The immediate back-dune stratigraphy, colloquially known as "links", provided evidence of peat formation and dune stability. Stratigraphy was mapped using traditional field techniques and ground penetrating radar. The cores consisted mostly of massive layers of sand interleaved with peat. Sand layers were dated with optically stimulated luminescence (OSL) and interpreted as reflecting high wind energy regimes transporting sand inland. Peat layers were C14 dated and taken as representing climatic stability. Stratigraphy was mapped using hand auguring, percussion coring, and open sections. Ground penetrating radar was also used to look at the continuity of key layers. OSL dating in two open sections showed dates obtained from the first section (1790 AD ±70, 53 BC ± 100, 300 BC ± 100, 400 BC ± 100) mapped to the top of the second section (1800 AD ± 100, 1500 BC ± 200, 2900 BC ± 300) which was consistent with stratigraphy increasing sediment thickness towards the centre of the bay. The results were consistent with acquired C14 dates from selected peat layers. Taken collectively the results are consistent with some known episodes of climatic instability which occurred during the mid Holocene with instability phases occurring in Dunnet from approximately 6300- 4250 yrs BP, associated with climatic deterioration between 6000 - 5,200 Yrs BP (Lamb 1995) and dune instability between 2560 - 3900 Yrs BP, associated with an abrupt change of climate (Anderson 1995) In addition to the luminescence dates, 31 luminescence profiling dates were acquired in order to look at the continuity of the age vs. depth profile. Luminescence profile dates are small samples that require less preparation prior to luminescence measurement than full luminescence dating. Although larger errors are associated with luminescence profiling, it offered means of identifying at lesser cost the possible occurrence of mixing between eroded layers. The stratigraphic chronology was compared to other local and regional dune studies and periods of climatic deterioration found in other proxies. The GISP2 ice core (Greenland Ice Sheet Project) was found to provide chemical proxies for North Atlantic storminess which partially explained our observed stratigraphy (O`brien et al 1995). It is concluded that changes in dune stability at a regional scale are also influenced by local variables, so that one should be careful when attempting to draw stratigraphy to climate change. Key References: Issar, A. (2003) Climate changes during the Holocene and their impact on hydrological systems. Published by the Cambridge University Press 2003. Wilson, P. (2002) Holocene coastal dune development on the South Erridale peninsula, Wester Ross, Scotland. Scottish Journal of Geology, 38, 1, 5-13. Dawson, S., smith, D., Jordan, J., and Dawson D. G. (2004) Late Holocene coastal sand movements in the outer Hebrides N. W. Scotland. Marine Geology 210, 281-306 O`Brien, S. M. Mayewski, P.A. Meeker, L. D., Meese, D. A., Twickler, M. S. & Whitlow, S. I. (1995) Complexity of the Holocene Climate as reconstructed from a Greenland ice core. Science 270, pp 1962-1964 Lamb, H. (1995) Climate, History and the Modern World. Published by Routledge ISBN 0415127343, 9780415127349 2nd ed. Anderson, D. E. (1995) An abrupt mid-Holocene decline of pinus sylvestris in Glen Torridon, north west Scotland: Implications for paleoclimatic change. School of Geography and the Environment Research papers, Oxford
NASA Astrophysics Data System (ADS)
Jin, J. H.; Kim, M. J.; Kim, J. H.; Um, I. K.; Bahk, J. J.; Kwon, Y. K.; Lee, K. E.; Khim, B. K.
2009-04-01
The East Sea (the Sea of Japan) is a marginal deep basin, almost enclosed by the landmass of Korea and Japan. It is connected with the North Pacific Ocean only by four small shallow straits, Korea and Tsushima Strait (140 m deep), Tsugaru Strait (130 m deep), Soya Strait (55 m deep) and Tartar Strait (12 m deep). For the glacial periods such as the last glaciation, the sea has experienced a large magnitude of sea level fall reinforcing isolation of the sea from the open ocean. The sea level falls can be recognized by presence of dark sediment layers whereas values of oxygen isotope on foraminfera tests are not well accordant with those recorded in open oceans. A 20 m-long sediment core was raised from a deep borehole located on the southern slope of the East Sea where sedimentation rates exceed 0.3 mm/yr for the last deglaciation period. The core was analyzed at a dense interval (ca. 5 cm) to reveal vertical variation of opal content, del values of oxygen and carbon, TOC and CaCO3 content and C/N ratio. Among them, the opal content somewhat mimics the trend of del value of oxygen isotopes in open oceans: low during the last glacial period, increase during the deglaciation and high in Holocene. A sharp negative depression also occurs during the Younger Dryas event. Hence the opal content could be a good proxy record for the environmental change during late Pleistocene to Holocene. A large-scale negative depression of the opal content is also shown during Holocene. The depression is not well matched with the trend of oxygen isotope records in open oceans, suggestive of a particular event in this local area.
NASA Astrophysics Data System (ADS)
Polyak, L.; Nam, S. I.; Dipre, G.; Kim, S. Y.; Ortiz, J. D.; Darby, D. A.
2017-12-01
The impacts of the North Pacific oceanic and atmospheric system on the Arctic Ocean result in accelerated sea-ice retreat and related changes in hydrography and biota in the western Arctic. Paleoclimatic records from the Pacific sector of the Arctic are key for understanding the long-term history of these interactions. As opposed to stratigraphically long but strongly compressed sediment cores recovered from the deep Arctic Ocean, sediment depocenters on the Chukchi-Alaskan margin yield continuous, medium to high resolution records formed since the last deglaciation. While early Holocene conditions were non-analogous to modern environments due to the effects of prolonged deglaciation and insufficiently high sea levels, mid to late Holocene sediments are more relevant for recent and modern climate variability. Notably, a large depocenter at the Alaskan margin has sedimentation rates estimated as high as a few millimeters per year, thus providing a decadal to near-annual resolution. This high accumulation can be explained by sediment delivery via the Alaskan Coastal Current originating from the Bering Sea and supposedly controlled by the Aleutian Low pressure center. Preliminary results from sediment cores recovering the last several centuries, along with a comparison with other paleoclimatic proxy records from the Arctic-North Pacific region, indicate a persistent role of the Aleutian Low in the Bering Strait inflow and attendant deposition. More proxy studies are underway to reconstruct the history of this circulation system and its relationship with sea ice extent. The expected results will improve our understanding of natural variability in oceanic and atmospheric conditions at the Chukchi-Alaskan margin, a critical area for modulating the Arctic climate change.
Early and middle holocene hunter-gatherer occupations in western Amazonia: the hidden shell middens.
Lombardo, Umberto; Szabo, Katherine; Capriles, José M; May, Jan-Hendrik; Amelung, Wulf; Hutterer, Rainer; Lehndorff, Eva; Plotzki, Anna; Veit, Heinz
2013-01-01
We report on previously unknown early archaeological sites in the Bolivian lowlands, demonstrating for the first time early and middle Holocene human presence in western Amazonia. Multidisciplinary research in forest islands situated in seasonally-inundated savannahs has revealed stratified shell middens produced by human foragers as early as 10,000 years ago, making them the oldest archaeological sites in the region. The absence of stone resources and partial burial by recent alluvial sediments has meant that these kinds of deposits have, until now, remained unidentified. We conducted core sampling, archaeological excavations and an interdisciplinary study of the stratigraphy and recovered materials from three shell midden mounds. Based on multiple lines of evidence, including radiocarbon dating, sedimentary proxies (elements, steroids and black carbon), micromorphology and faunal analysis, we demonstrate the anthropogenic origin and antiquity of these sites. In a tropical and geomorphologically active landscape often considered challenging both for early human occupation and for the preservation of hunter-gatherer sites, the newly discovered shell middens provide evidence for early to middle Holocene occupation and illustrate the potential for identifying and interpreting early open-air archaeological sites in western Amazonia. The existence of early hunter-gatherer sites in the Bolivian lowlands sheds new light on the region's past and offers a new context within which the late Holocene "Earthmovers" of the Llanos de Moxos could have emerged.
NASA Astrophysics Data System (ADS)
Schweinsberg, A. D.; Licciardi, J. M.; Rodbell, D. T.; Stansell, N.; Tapia, P. M.
2012-12-01
Sediments contained in glacier-fed lakes and bogs provide continuous high-resolution records of glacial activity, and preserve multiproxy evidence of Holocene climate change. Tropical glacier fluctuations offer critical insight on regional paleoclimatic trends and controls, however, continuous sediment records of past tropical climates are limited. Recent cosmogenic 10Be surface exposure ages of moraine sequences in the Cordillera Vilcabamba of southern Peru (13°20'S latitude) reveal a glacial culmination during the early Holocene and a less extensive glaciation coincident with the Little Ice Age of the Northern Hemisphere. Here we supplement the existing 10Be moraine chronology with the first continuous records of multiproxy climate data in this mountain range from sediment cores recovered from bogs in direct stratigraphic contact with 10Be-dated moraines. Radiocarbon-dated sedimentological changes in a 2-meter long bog core reveal that the Holocene is characterized by alternating inorganic and organic-rich laminae, suggesting high-frequency climatic variability. Carbon measurements, bulk density, and bulk sedimentation rates are used to derive a record of clastic sediment flux that serves as a proxy indicator of former glacier activity. Preliminary analyses of the bog core reveal approximately 70 diatom taxa that indicate both rheophilic and lentic environments. Initial results show a general decrease in magnetic susceptibility and clastic flux throughout the early to mid-Holocene, which suggests an interval of deglaciation. An episode of high clastic flux from 3.8 to 2.0 ka may reflect a late Holocene glacial readvance. Volcanic glass fragments and an anomalous peak in magnetic susceptibility may correspond to the historical 1600 AD eruption of Huaynaputina. Ten new bog and lake sediment cores were collected during the 2012 field expedition and analytical measurements are underway. Ongoing efforts are focused on analyzing diatom assemblage data, developing detailed records of biogenic silica, clastic sediment flux, and magnetic susceptibility, and augmenting the 10Be moraine chronology with precise limiting radiocarbon ages to provide a more comprehensive assessment of regional climate and environmental indicators. These new paleoclimatic records will fill a large geographic gap in available proxy data and contribute toward a more complete understanding of Holocene climate variability in southern Peru. In addition, the basal radiocarbon ages being developed from sediments in contact with 10Be-dated moraines will place limits on the cosmogenic 10Be production rate in the high Andes.
Noble Gas Thermometry and Hydrologic Ages: Evidence for Late Holocene Warming in Southwest Texas
NASA Astrophysics Data System (ADS)
Castro, M.; Goblet, P.
2003-12-01
Paleoclimatic reconstruction through the use of noble gases dissolved in groundwater has been the object of numerous studies in recent years. Unlike many other continental temperature proxies, noble gases have the advantage of providing direct information on atmospheric temperatures at the time rainwater penetrated the ground and joined a particular groundwater reservoir. In recent years, new methods for determination of noble gas temperatures have been developed, which provide a high level of accuracy on such temperature estimations. The issue of paleoclimatic reconstruction through noble gases however, is not only one of accurate temperature determination, but also one of accurate water age estimation so that a correct correspondence between noble gas temperatures and groundwater age can be established and proper paleoclimatic reconstruction attempted. The typical approach to estimate groundwater ages has been based on computing water travel times along streamlines from the recharge to the observation point taking into account only advection. This approach is limited because, like any other tracer, the movement of water in porous media is also affected by cinematic dispersion and molecular diffusion. We have therefore undertaken the formulation of hydrologic models that yield significantly better constraints on groundwater ages in the Carrizo aquifer and surrounding formations of south Texas, where noble gas temperatures have already been determined. To account for groundwater mixing we treat age as one would treat a solute concentration. In order to simulate groundwater ages we used a finite element model of groundwater flow that has been validated by 4He and 3He. The finite model spans a 120.6 Km cross-section between altitudes of +220m and -2210 m, and comprises 58,968 elements and 31,949 nodes. Combination of these newly calculated water ages and previously reported noble gas temperatures reveals new aspects of late Pleistocene and Holocene climate in southwestern Texas, in particular, an abrupt late Holocene temperature increase previously unidentified through 14C dating. Temperature increased by up to 3.4° C in the first half of the last millennium and by 1.5° C between ˜5.6 and 3.7 kyrs BP. More important than the resolution of individual paleoclimate episodes is the identification of a slow cooling trend between ˜1,200 kyrs and ˜200 kyrs, a trend that accelerates during the late Pleistocene and early Holocene. This cooling trend gives way to an extremely rapid increase in temperature in the late Holocene. Such abrupt warming seems to have accelerated in the last millennium and seems to continue at present. This temperature increase is the most striking feature arising from the determination of new groundwater ages.
Kuhnt, Wolfgang; Holbourn, Ann; Xu, Jian; Opdyke, Bradley; De Deckker, Patrick; Röhl, Ursula; Mudelsee, Manfred
2015-01-06
The evolution of the Australian monsoon in relation to high-latitude temperature fluctuations over the last termination remains highly enigmatic. Here we integrate high-resolution riverine runoff and dust proxy data from X-ray fluorescence scanner measurements in four well-dated sediment cores, forming a NE-SW transect across the Timor Sea. Our records reveal that the development of the Australian monsoon closely followed the deglacial warming history of Antarctica. A minimum in riverine runoff documents dry conditions throughout the region during the Antarctic Cold Reversal (15-12.9 ka). Massive intensification of the monsoon coincided with Southern Hemisphere warming and intensified greenhouse forcing over Australia during the atmospheric CO2 rise at 12.9-10 ka. We relate the earlier onset of the monsoon in the Timor Strait (13.4 ka) to regional changes in landmass exposure during deglacial sea-level rise. A return to dryer conditions occurred between 8.1 and 7.3 ka following the early Holocene runoff maximum.
NASA Astrophysics Data System (ADS)
Kuhnt, Wolfgang; Holbourn, Ann; Xu, Jian; Opdyke, Bradley; de Deckker, Patrick; Röhl, Ursula; Mudelsee, Manfred
2015-01-01
The evolution of the Australian monsoon in relation to high-latitude temperature fluctuations over the last termination remains highly enigmatic. Here we integrate high-resolution riverine runoff and dust proxy data from X-ray fluorescence scanner measurements in four well-dated sediment cores, forming a NE-SW transect across the Timor Sea. Our records reveal that the development of the Australian monsoon closely followed the deglacial warming history of Antarctica. A minimum in riverine runoff documents dry conditions throughout the region during the Antarctic Cold Reversal (15-12.9 ka). Massive intensification of the monsoon coincided with Southern Hemisphere warming and intensified greenhouse forcing over Australia during the atmospheric CO2 rise at 12.9-10 ka. We relate the earlier onset of the monsoon in the Timor Strait (13.4 ka) to regional changes in landmass exposure during deglacial sea-level rise. A return to dryer conditions occurred between 8.1 and 7.3 ka following the early Holocene runoff maximum.
NASA Astrophysics Data System (ADS)
Hoffmann, S. S.; Dalsing, R.; McManus, J. F.
2016-12-01
Dynamical sedimentary proxies for deep ocean circulation, such as mean sortable silt size and 231Pa/230Th, allow the reconstruction of past changes in deep water circulation speed and ocean basin ventilation. This provides an important addition to traditional methods of deep water circulation reconstruction such as mapping water mass geometry through foraminiferal carbon isotopic records. We have produced records of mean sortable silt size from three intermediate-depth sediment core sites in the Labrador Sea, taken from the continental slope and Orphan Knoll east of Newfoundland, to reconstruct changes in intermediate depth water circulation including Glacial North Atlantic Intermediate Water and Labrador Sea Water. Radiocarbon dating indicates that the cores span the Holocene, deglaciation and LGM. Increases in mean sortable silt size appear to coincide with Heinrich Event 1, the Older Dryas, Younger Dryas, and mid-late Holocene, which could suggest increased bottom current speeds at these times. However, ice-rafted debris contributes to marine sediments in this region, and mean sortable silt size at times of major IRD input such as Heinrich Event 1 may therefore reflect multiple influences. We will use inverse modeling techniques to determine likely end members contributing to the sortable silt fraction and to correct for the effect of IRD on sortable silt size, allowing a better understanding of the influence of current speed on these samples. We combine these sortable silt measurements with the sedimentary geochemical proxy 231Pa/230Th, which has been used to reconstruct changes in North Atlantic meridional overturning circulation. New 231Pa/230Th data from cores KN158-4-27/28, which provided our best-resolved sortable silt record, will allow us to compare results from the two dynamical proxies to better understand both the behavior of these proxies in the Labrador Sea, and the history of intermediate-depth circulation and ventilation in the Labrador Sea during major abrupt climate events and transitions.
NASA Astrophysics Data System (ADS)
Miller, J.; Dekens, P. S.; Weber, M. E.; Spiess, V.; France-Lanord, C.
2015-12-01
The International Ocean Discovery Program (IODP) Expedition 354 drilled 7 sites in the Bay of Bengal, providing a unique opportunity to improve our understanding of the link between glacial cycles, tropical oceanographic changes, and monsoon strength. Deep-sea sediment cores of the Bengal Fan fluctuate between sand, hemipelagic and terrestrial sediment layers. All but one of the sites (U1454) contain a layer of calcareous clay in the uppermost part of the core that is late Pleistocene in age. During Expedition 354 site U1452C was sampled at high resolution (every 2cm) by a broad group of collaborators with the goal of reconstructing monsoon strength and oceanographic conditions using a variety of proxies. The top 480 cm of site U1452C (8ºN, 87ºE, 3671m water depth) contains primarily nannofossil rich calcareous clay. The relatively high abundance of foraminifera will allow us to generate a high resolution record of sea surface temperature (SST) and sea surface salinity (SSS) using standard foraminifera proxies. We will present oxygen isotopes (δ18O) and Mg/Ca data of mixed layer planktonic foraminifera from the top 70cm of the core, representing the Holocene to the last glacial maximum. δ18O of planktonic foraminifera records global ice volume and local SST and SSS, while Mg/Ca of foraminifera is a proxy for SST. The paired Mg/Ca and δ18O measurements on the same samples of foraminifera, together with published estimates with global ocean δ18O, can be used to reconstruct both SST and local δ18O of seawater, which is a function of the evaporation/precipitation balance. In future work, the local SSS and SST during the LGM will be paired with terrestrial and other oceanic proxies to increase our understanding of how global climate is connected to monsoon strength.
NASA Astrophysics Data System (ADS)
Hou, Xiaoqing; Hou, Guangliang; Wang, Fangfang; Wang, Qingbo
2018-02-01
Northeastern Qinghai-tibet Plateau is considered as the ideal region for study of the climate change during the Holocene. Based on the meteorological data, the surface & fossil pollen data, this paper reconstructed the precipitation series of the region since middle Holocene with the GIS and MAT techniques, and discussed its relationship with prehistorical human activities. The results indicate that there are four major climatic phases: (I) Middle Holocene Humid Phase (6300-5000 aBP), with the primitive millet-farming first imported into the region; (II) Late Middle Holocene Sub-humid Phase (5000-3900 aBP), with the millet-farming spread rapidly within the region; (III) Late Holocene Fluctuation Phase (3900-2900 aBP), with the mean annual precipitation dropped down to lower than 240 mm, and a production mode-shift to a combination of cropping and husbandry; (IV) Late Holocene Stationary Phase (2900-0 aBP), with a precipitation alike the modern time, and a steady farming-pastoral economic pattern.
NASA Astrophysics Data System (ADS)
Sanyal, P.; Ghosh, S.; Bhushan, R.; Juyal, N.
2017-12-01
The early Holocene was characterized by intensified monsoon, however none of the paleoclimatic records showed the magnitude required to shape the observed landform in the Ganges plain and sediment discharge in the Bay of Bengal. The Tropical Rainfall Measurement Mission data suggests that the Central Himalaya ( 2 km altitude) is characterized by high rainfall and hence paleoclimate proxies from this region would provide excellent opportunity to reconstruct the Holocene monsoon. An attempt has been made, for the first time, to reconstruct the Holocene monsoon using n-alkane δDC29 values of lake sediments from Benital area in the Central Himalaya which receives ca. 80% of the mean annual rainfall during summer monsoon. The n-alkane δDC29 values indicated that early Holocene (ca. 9 ka) was characterised by a wet phase with 70% increase in the rainfall followed by the dry middle-late Holocene which is in agreement with existing continental records. However, the change in intensity as inferred in the present study is maximum compared to the existing records. The comparison of δDC29values and the solar insolation data at 30 °N latitude suggested that migration of the Inter Tropical Convergence Zone controlled the variation in monsoonal rainfall. Comparison with the modern plants, the δ13CC29 values indicated that during ca. pre and post 7 ka the lake catchment was dominated by woody and non-woody plants, respectively. The cross plot between δDC29 and δ13CC29 indicated that at higher rainfall, the δ13CC29 values of catchment vegetation were less-responsive.
NASA Astrophysics Data System (ADS)
Franke, Jasper G.; Werner, Johannes P.; Donner, Reik V.
2017-11-01
Obtaining reliable reconstructions of long-term atmospheric circulation changes in the North Atlantic region presents a persistent challenge to contemporary paleoclimate research, which has been addressed by a multitude of recent studies. In order to contribute a novel methodological aspect to this active field, we apply here evolving functional network analysis, a recently developed tool for studying temporal changes of the spatial co-variability structure of the Earth's climate system, to a set of Late Holocene paleoclimate proxy records covering the last two millennia. The emerging patterns obtained by our analysis are related to long-term changes in the dominant mode of atmospheric circulation in the region, the North Atlantic Oscillation (NAO). By comparing the time-dependent inter-regional linkage structures of the obtained functional paleoclimate network representations to a recent multi-centennial NAO reconstruction, we identify co-variability between southern Greenland, Svalbard, and Fennoscandia as being indicative of a positive NAO phase, while connections from Greenland and Fennoscandia to central Europe are more pronounced during negative NAO phases. By drawing upon this correspondence, we use some key parameters of the evolving network structure to obtain a qualitative reconstruction of the NAO long-term variability over the entire Common Era (last 2000 years) using a linear regression model trained upon the existing shorter reconstruction.
NASA Astrophysics Data System (ADS)
Edvardsson, Johannes; Stančikaitė, Miglė; Miras, Yannick; Corona, Christophe; Gryguc, Gražyna; Gedminienė, Laura; Mažeika, Jonas; Stoffel, Markus
2018-04-01
To increase our understanding of long-term climate dynamics and its effects on different ecosystems, palaeoclimatic and long-term botanical reconstructions need to be improved, in particular in underutilized geographical regions. In this study, vegetation, (hydro)climate, and land-use changes were documented at two southeast Lithuanian peatland complexes - Čepkeliai and Rieznyčia - for the Late-Holocene period. The documentation was based on a combination of pollen, plant macrofossils, peat stratigraphic records, and subfossil trees. Our results cover the last two millennia and reveal the existence of moist conditions in Southern Lithuania between 300 and 500 CE and from 950 to 1850 CE. Conversely, changes towards warmer and/or dryer conditions have been recorded in 100, 600, and 750 CE, and since the 1850s. Significant differences with other Baltic proxies prevent deriving a complete and precise long-term reconstruction of past hydroclimatic variability at the regional scale. Yet, our results provide an important cornerstone for an improved understanding of regional climate change, i.e. in a region for which only (i) few detailed palaeobotanical studies exist and which has, in addition, been considered as (ii) an ecologically sensitive region at the interface between the temperate and boreal bioclimatic zones.
Late Pleistocene-Holocene phytoplankton productivity in the Gulf of Alaska, IODP Site U1419
NASA Astrophysics Data System (ADS)
LeVay, L. J.; Romero, O. E.; McClymont, E.; Müller, J.; Penkrot, M. L.; Jaeger, J. M.; Mix, A.; Walczak, M.
2016-12-01
The modern Gulf of Alaska (GoA) is a high-nutrient, low-chlorophyll region that is iron-limited; however, the coastal region of Alaska is macronutrient-limited. Vertical mixing of these shallow coastal and deep basinal waters produce high seasonal productivity across the shelf. Previous studies on the Alaskan shelf showed that productivity varied across the Pleistocene-Holocene transition, likely related to climate and sea level change that brought nutrients from estuaries into the Gulf. Here we explore an extended record through the Late Pleistocene-Holocene to reconstruct the productivity of phytoplankton groups in the GoA and to understand the impact of glacial/interglacial climates on primary production and nutrient availability near the shelf. International Ocean Discovery Program (IODP) Site U1419 was cored during Expedition 341 on the upper continental slope in the GoA. A high-resolution sedimentary sequence was recovered that records Late Pleistocene-Holocene glacial and paleoceanographic dynamics. Both calcareous nannoplankton and diatoms are well-represented at Site U1419. Very few studies have explored the competition of these two phytoplankton groups in the geologic record. Because calcareous nannoplankton and diatoms favor differing nutrient conditions, changes in their abundance can aid in reconstructing shifts in primary productivity as well as the causes, such as stratification or nutrient limitation. We present a multi-proxy record, including the group and species abundance of diatoms and calcareous nannoplankton, biogenic bulk components content, alkenone-based sea surface temperatures, and XRF core scanning elemental composition, which is used to interpret fluctuations in phytoplankton and identify the underlying causes. Initial results show the group abundance of nannoplankton and diatoms fluctuates greatly and appears to covary. Calcareous nannoplankton abundance increases with sea surface temperature and is related to higher alkenone concentrations in the sediments. The occurrence of diatoms is sporadic and could be linked to silica-limitation in surface waters. These findings will provide new insights into the processes governing fossil phytoplankton interactions and how this affects production and carbon cycling on the shelf.
Terrestrial Evidence for Holocene Pluvials in Coastal Southern California
NASA Astrophysics Data System (ADS)
Reynolds, L.; Simms, A.; Rockwell, T. K.; Peters, R. B.
2016-12-01
In 1861 a series of large storms attributed to a prolonged atmospheric river event impacted the coast of California, inundated large regions of the state for weeks on end, stalled the government, and devastated the economy. A recent report by the USGS, the Arkstorm Report, predicted a similar sized event today could cost the state more than $700 billion in long-term economic losses. The high-resolution sedimentary record from the Santa Barbara Basin indicates 8 flooding events similar to or larger than the 1861 event have occurred in the past 2000 years. However, little terrestrial evidence for these events has been identified to determine coastal impacts or test the completeness of the Santa Barbara Channel record. Here we show evidence from coastal wetlands along the Santa Barbara Channel that alluvial fan progradation events have recurred at least 7 times over the last 7ka. Because most streams in the Transverse ranges flow only during storms, these alluvial fan building events are interpreted to represent large flooding events. We use a chronology derived from over 40 radiocarbon dates from 39 vibracores up to 4m in length, and 7 Geoprobe cores up to 13m in length from Carpinteria Marsh to test whether these alluvial fan progradation events and/or other abrupt stratigraphic changes are synchronous with regionally documented climatic events. We show that a compilation of biological, sedimentological, geochemical, and archeological proxies for flooding, storms, and/or wet climate conditions from sites throughout the southwestern United States demonstrates the difficulty in correlating and interpreting regional Holocene events across variable proxies and geographic regions. Despite this variation, isolating the purely sedimentological proxies (increase in sedimentation rates, increase in grain size, decrease in organic content, etc.) seems to demonstrate a correlation between alluvial fan progradation events in Carpinteria at 0.3-0.9 ka and 3.5 ka and records of wet conditions throughout the western US, while a lack of alluvial fan deposits from 2-3 ka correlates with the Late Holocene Dry Period. Whether these flooding events represent increased occurrences of atmospheric river events, heightened El Nino activity, or longer-term changes in atmospheric conditions remains an open question.
NASA Astrophysics Data System (ADS)
Matter, Albert; Mahjoub, Ayman; Neubert, Eike; Preusser, Frank; Schwalb, Antje; Szidat, Sönke; Wulf, Gerwin
2016-10-01
The Wadi ad Dawasir fluvial system in central Saudi Arabia is investigated using remote sensing and sedimentology, in combination with bio-proxy analyses (molluscs and ostracods). Age control is provided by radiocarbon as well as luminescence dating, using both quartz and feldspar grains. It is shown that the fluvial system was active from the Asir Mountains across the partially sand-covered interior of the Arabian Peninsula to the Arabian Gulf during the Holocene humid period. Sedimentology and faunal analysis reveal the presence of perennial streams and a permanent freshwater lake in the distal reach of the Dawasir system that are synchronous with fluvial accumulation in the headwaters of its major tributary, Wadi Tathlith. The increased runoff during the Holocene led to a re-activation of streams that largely followed pre-existing Late Pleistocene courses and eroded into older sediments. The absence of Holocene lakes in most of the Rub' al-Khali implies that trans-Arabian rivers were mainly fed by precipitation in the Asir Mountains. Monsoonal rainfall was apparently stronger there as well as in the northern, south-eastern and southern part of the Arabian Peninsula (southern Yemen and Oman), but it apparently did not directly affect the interior during the Holocene. The palaeoenvironmental reconstruction shows a narrow trans-Arabian green freshwater corridor as the result of phases of sustained flow lasting up to several centuries. The permanent availability of water and subsistence for wildlife provided a favourable environment for human occupation as documented by Neolithic stone tools that are found all along Wadi ad Dawasir.
NASA Astrophysics Data System (ADS)
Hertzberg, Jennifer E.; Schmidt, Matthew W.; Bianchi, Thomas S.; Smith, Richard W.; Shields, Michael R.; Marcantonio, Franco
2016-01-01
The use of the TEX86 temperature proxy has thus far come to differing results as to whether TEX86 temperatures are representative of surface or subsurface conditions. In addition, although TEX86 temperatures might reflect sea surface temperatures based on core-top (Holocene) values, this relationship might not hold further back in time. Here, we investigate the TEX86 temperature proxy by comparing TEX86 temperatures to Mg/Ca temperatures of multiple species of planktonic foraminifera for two sites in the eastern tropical Pacific (on the Cocos and Carnegie Ridges) across the Holocene and Last Glacial Maximum. Core-top and Holocene TEX86H temperatures at both study regions agree well, within error, with the Mg/Ca temperatures of Globigerinoides ruber, a surface dwelling planktonic foraminifera. However, during the Last Glacial Maximum, TEX86H temperatures are more representative of upper thermocline temperatures, and are offset from G. ruber Mg/Ca temperatures by 5.8 °C and 2.9 °C on the Cocos Ridge and Carnegie Ridge, respectively. This offset between proxies cannot be reconciled by using different TEX86 temperature calibrations, and instead, we suggest that the offset is due to a deeper export depth of GDGTs at the LGM. We also compare the degree of glacial cooling at both sites based on both temperature proxies, and find that TEX86H temperatures greatly overestimate glacial cooling, especially on the Cocos Ridge. This study has important implications for applying the TEX86 paleothermometer in the eastern tropical Pacific.
Holocene warming in western continental Eurasia driven by glacial retreat and greenhouse forcing
NASA Astrophysics Data System (ADS)
Baker, Jonathan L.; Lachniet, Matthew S.; Chervyatsova, Olga; Asmerom, Yemane; Polyak, Victor J.
2017-06-01
The global temperature evolution during the Holocene is poorly known. Whereas proxy data suggest that warm conditions prevailed in the Early to mid-Holocene with subsequent cooling, model reconstructions show long-term warming associated with ice-sheet retreat and rising greenhouse gas concentrations. One reason for this contradiction could be the under-representation of indicators for winter climate in current global proxy reconstructions. Here we present records of carbon and oxygen isotopes from two U-Th-dated stalagmites from Kinderlinskaya Cave in the southern Ural Mountains that document warming during the winter season from 11,700 years ago to the present. Our data are in line with the global Holocene temperature evolution reconstructed from transient model simulations. We interpret Eurasian winter warming during the Holocene as a response to the retreat of Northern Hemisphere ice sheets until about 7,000 years ago, and to rising atmospheric greenhouse gas concentrations and winter insolation thereafter. We attribute negative δ18O anomalies 11,000 and 8,200 years ago to enhanced meltwater forcing of North Atlantic Ocean circulation, and a rapid decline of δ13C during the Early Holocene with stabilization after about 10,000 years ago to afforestation at our study site. We conclude that winter climate dynamics dominated Holocene temperature evolution in the continental interior of Eurasia, in contrast to regions more proximal to the ocean.
NASA Astrophysics Data System (ADS)
Prasad, Sushma; Baier, Janina
2014-11-01
The mid- to late Holocene interval is characterised by a highly variable climate in response to a gradual change in orbital insolation. The seasonal impact of these changes on the Eifel Maar region is not yet well documented largely due to uncertainties about the completeness of this archive ("missing varves" in the well known Lake Holzmaar) and a limited understanding of the factors (e.g. temperature, precipitation) influencing the seasonality archived within the lamination/varves. In this study we approach these challenges from a different perspective. Using detailed microfacies investigations we: (1) demonstrate that the ambiguity about the "missing varves" is related to the climate induced complex biotic and abiotic laminations that led to mis-identification of varves; (2) use a combination of detailed microfacies investigations (varve structure, seasonality of biotic and abiotic signals), lamination quality, varve counts on multiple cores, published and new radiocarbon dates to develop a continuous master chronology based on the Bayesian modelling approach. The dates of major climate, volcanic, and archaeological event(s) determined using our model are in good agreement with the independently determined ages of the same events from other archives, confirming the accuracy of our age model; (3) test the sensitivity of the seasonal proxies to the available data on mid-Holocene changes in temperature and precipitation; (4) demonstrate that the changes in lake eutrophicity are correlative with temperature changes in NW Europe and probably triggered by solar variability; and (5) show that the early Iron Age onset of eutrophication in Lake Holzmaar was climate induced and began several decades before the impact of anthropogenic activity was seen in the form of intensified detrital erosion in the catchment area. Our work has implications for understanding the impact of climate change and anthropogenic activities on limnological systems.
Climate Change in Lowland Central America During the Late Deglacial and Early Holocene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hillesheim, M B; Hodell, D A; Leyden, B W
2005-02-08
The transition from arid glacial to moist early Holocene conditions represented a profound change in northern lowland Neotropical climate. Here we report a detailed record of changes in moisture availability during the latter part of this transition ({approx}11,250 to 7,500 cal yr BP) inferred from sediment cores retrieved in Lake Peten Itza, northern Guatemala. Pollen assemblages demonstrate that a mesic forest had been largely established by {approx}11,250 cal yr BP, but sediment properties indicate that lake level was more than 35 m below modern stage. From 11,250 to 10,350 cal yr BP, during the Preboreal period, lithologic changes in sedimentsmore » from deep-water cores (>50 m below modern water level) indicate several wet-dry cycles that suggest distinct changes in effective moisture. Four dry events (designated PBE1-4) occurred at 11,200, 10,900, 10,700, and 10,400 cal yr BP and correlate with similar variability observed in the Cariaco Basin titanium record and glacial meltwater pulses into the Gulf of Mexico. After 10,350 cal yr BP, multiple sediment proxies suggest a shift to a more persistently moist early Holocene climate. Comparison of results from Lake Peten Itza with other records from the circum-Caribbean demonstrates a coherent climate response during the entire span of our record. Furthermore, lowland Neotropical climate during the late deglacial and early Holocene period appears to be tightly linked to climate change in the high-latitude North Atlantic. We speculate that the observed changes in lowland Neotropical precipitation were related to the intensity of the annual cycle and associated displacements in the mean latitudinal position of the Intertropical Convergence Zone and Azores-Bermuda high-pressure system. This mechanism operated on millennial-to-submillennial timescales and may have responded to changes in solar radiation, glacial meltwater, North Atlantic sea ice, and the Atlantic meridional overturning circulation (MOC).« less
Transient coupling relationships of the Holocene Australian monsoon
NASA Astrophysics Data System (ADS)
McRobie, F. H.; Stemler, T.; Wyrwoll, K.-H.
2015-08-01
The northwest Australian summer monsoon owes a notable degree of its interannual variability to interactions with other regional monsoon systems. Therefore, changes in the nature of these relationships may contribute to variability in monsoon strength over longer time scales. Previous attempts to evaluate how proxy records from the Indonesian-Australian monsoon region correspond to other records from the Indian and East Asian monsoon regions, as well as to El Niño-related proxy records, have been qualitative, relying on 'curve-fitting' methods. Here, we seek a quantitative approach for identifying coupling relationships between paleoclimate proxy records, employing statistical techniques to compute the interdependence of two paleoclimate time series. We verify the use of complex networks to identify coupling relationships between modern climate indices. This method is then extended to a set of paleoclimate proxy records from the Asian, Australasian and South American regions spanning the past 9000 years. The resulting networks demonstrate the existence of coupling relationships between regional monsoon systems on millennial time scales, but also highlight the transient nature of teleconnections during this period. In the context of the northwest Australian summer monsoon, we recognise a shift in coupling relationships from strong interhemispheric links with East Asian and ITCZ-related proxy records in the mid-Holocene to significantly weaker coupling in the later Holocene. Although the identified links cannot explain the underlying physical processes leading to coupling between regional monsoon systems, this method provides a step towards understanding the role that changes in teleconnections play in millennial-to orbital-scale climate variability.
Holocene carbon dynamics at the forest-steppe ecotone of southern Siberia.
Mackay, Anson William; Seddon, Alistair W R; Leng, Melanie J; Heumann, Georg; Morley, David W; Piotrowska, Natalia; Rioual, Patrick; Roberts, Sarah; Swann, George E A
2017-05-01
The forest-steppe ecotone in southern Siberia is highly sensitive to climate change; global warming is expected to push the ecotone northwards, at the same time resulting in degradation of the underlying permafrost. To gain a deeper understanding of long-term forest-steppe carbon dynamics, we use a highly resolved, multiproxy, palaeolimnological approach, based on sediment records from Lake Baikal. We reconstruct proxies that are relevant to understanding carbon dynamics including carbon mass accumulation rates (CMAR; g C m -2 yr -1 ) and isotope composition of organic matter (δ 13 C TOC ). Forest-steppe dynamics were reconstructed using pollen, and diatom records provided measures of primary production from near- and off-shore communities. We used a generalized additive model (GAM) to identify significant change points in temporal series, and by applying generalized linear least-squares regression modelling to components of the multiproxy data, we address (1) What factors influence carbon dynamics during early Holocene warming and late Holocene cooling? (2) How did carbon dynamics respond to abrupt sub-Milankovitch scale events? and (3) What is the Holocene carbon storage budget for Lake Baikal. CMAR values range between 2.8 and 12.5 g C m -2 yr -1 . Peak burial rates (and greatest variability) occurred during the early Holocene, associated with melting permafrost and retreating glaciers, while lowest burial rates occurred during the neoglacial. Significant shifts in carbon dynamics at 10.3, 4.1 and 2.8 kyr bp provide compelling evidence for the sensitivity of the region to sub-Milankovitch drivers of climate change. We estimate that 1.03 Pg C was buried in Lake Baikal sediments during the Holocene, almost one-quarter of which was buried during the early Holocene alone. Combined, our results highlight the importance of understanding the close linkages between carbon cycling and hydrological processes, not just temperatures, in southern Siberian environments. © 2016 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Roberts, C.
2008-12-01
The Holocene has witnessed a switch from a nature-dominated to a human-dominated Earth system. Although globally-significant human impacts (wildfire, megafaunal extinctions) occurred during the late Pleistocene, it was the advent of agriculture that led to the progressive transformation of land cover, and which distinguishes the Holocene from previous interglacial periods. A wide array of data provide clear evidence of local-to-regional human disturbance from ~5 ka BP, in some cases earlier. There is more uncertainty about when the anthropogenic "footprint" became detectable at a global scale, and there has consequently been debate about how much of the pre-industrial increase in atmospheric greenhouse gas concentrations is attributable to human causation, linked to processes such as deforestation (CO2) and wet rice cultivation (CH4). Although there has been recent progress in developing quantitative methods for translating pollen data into palaeo-land cover, such as the REVEALS model of Sugita (Holocene 2007) coupled to GIS, this has yet to be widely applied to existing data bases, and most pollen-based land-use reconstructions remain qualitative or semi-quantitative. Lake trophic status, sediment flux / soil erosion, and microcharcoal records of biomass burning provide alternative proxies that integrate regional-scale landscape disturbance. These proxy data along with documentary sources imply that globally-significant changes in land cover occurred prior to ~250 BP which must have altered atmospheric greenhouse gas concentrations by this time. The polarised debate for and against early anthropogenic impact on global carbon cycling mirrors our industrial-era division between nature and society, both conceptually (e.g. Cartesian dualism) and on the ground (e.g. demarcating land between monoculture agriculture and wilderness). However, for the period before ~1750 AD, this likely represents a false dichotomy, because pre-industrial societies more often formed part of the natural world, while at the same time modifying and transforming it. Attempts to partition carbon emissions between natural and anthropogenic sources during the Holocene may therefore be misplaced. Many landscapes, such as savannas, are the result of synergistic - and in some cases contingent - relationships between people, other animals, plants and other components of nature. The issue is thus not whether early humans altered carbon cycling (they did), but rather at what point it became detectable at a global scale, and what form it took.
Andrews, John T.; Darby, D.; Eberle, D.; Jennings, A.E.; Moros, M.; Ogilvie, A.
2009-01-01
An important indicator of Holocene climate change is provided by evidence for variations in the extent of drift ice. A proxy for drift ice in Iceland waters is provided by the presence of quartz. Quantitative x-ray diffraction analysis of the < 2 mm sediment fraction was undertaken on 16 cores from around Iceland. The quartz weight (wt.)% estimates from each core were integrated into 250-yr intervals between ????'0.05 and 11.7 cal. ka BP. Median quartz wt.% varied between 0.2 and 3.4 and maximum values ranged between 2.8 and 11.8 wt.%. High values were attained in the early Holocene and minimum values were reached 6 - 7 cal. ka BP. Quartz wt.% then rose steadily during the late Holocene. Our data exhibit no correlation with counts on haematite-stained quartz (HSQ) grains from VM129-191 west of Ireland casting doubt on the ice-transport origin. A pilot study on the provenance of Fe oxide grains in two cores that cover the last 1.3 and 6.1 cal. ka BP indicated a large fraction of the grains between 1 and 6 cal. ka BP were from either Icelandic or presently unsampled sources. However, there was a dramatic increase in Canadian and Russian sources from the Arctic Ocean ???1 cal. ka BP. These data may indicate the beginning of an Arctic Oscillation-like climate mode. ?? 2009 SAGE Publications.
Sundaland Peat Carbon Dynamics and Its Contribution to the Holocene Atmospheric CO2 Concentration
NASA Astrophysics Data System (ADS)
Abrams, Jesse F.; Hohn, Sönke; Rixen, Tim; Merico, Agostino
2018-04-01
The Sunda Shelf is a large submerged extension of the continental shelf of mainland Asia, joining the islands of Borneo, Java, and Sumatra and forming the shallow seabed of the South China Sea. Recent studies identified present-day peatlands in Southeast Asia as a globally important carbon reservoir. However, little is known about Sundaland paleopeatlands and their role in the global carbon cycle since the Last Glacial Maximum. Using a topography-based, sea level-driven model, we estimate the potential spatial extent of peatlands during the late Pleistocene and early Holocene across the low-lying Sundaland plains. We then use the estimated peatland area together with data on carbon accumulation rates to calculate the total peat carbon pool on the Sunda Shelf. Finally, using a global biogeochemical model, we analyze the relative influence of the predicted Sundaland peat dynamics and other carbon change mechanisms, specifically high-latitude forest growth and peat formation, shallow sea carbonate deposition, ocean warming, and combinations of them, on the global carbon cycle of the Holocene. We identify a feedback mechanism between sea level and peatland carbon sequestration in Sundaland that reduced atmospheric CO2 concentration by about 4-5 ppm and increased δ13C by 0.05‰ during the Holocene. We also show that a concurrence of mechanisms that includes Sundaland peat dynamics produces model results that are consistent with proxy records, especially with respect to δ13C.
NASA Astrophysics Data System (ADS)
Kushnir, Yochanan; Stein, Mordechai
2010-12-01
The importance of understanding processes that govern the hydroclimate of the Mediterranean Basin is highlighted by the projected significant drying of the region in response to the increase in greenhouse gas concentrations. Here we study the long-term hydroclimatic variability of the central Levant region, situated in the eastern boundary of the Basin, as reveled by instrumental observations and the Holocene record of Dead Sea level variations. Observations of 19th and 20th century precipitation in the Dead Sea watershed region display a multidecadal, anti-phase relationship to North Atlantic (NAtl) sea surface temperature (SST) variability, such that when the NAtl is relatively cold, Jerusalem experiences higher than normal precipitation and vice versa. This association is underlined by a negative correlation to precipitation in the sub-Saharan Sahel and a positive correlation to precipitation in western North America, areas that are also affected by multidecadal NAtl SST variability. These observations are consistent with a broad range of Holocene hydroclimatic fluctuations from the epochal, to the millennial and centennial time scales, as displayed by the Dead Sea lake level, by lake levels in the Sahel, and by direct and indirect proxy indicators of NAtl SSTs. On the epochal time scale, the gradual cooling of NAtl SSTs throughout the Holocene in response to precession-driven reduction of summer insolation is associated with previously well-studied wet-to-dry transition in the Sahel and with a general increase in Dead Sea lake levels from low stands after the Younger Dryas to higher stands in the mid- to late-Holocene. On the millennial and centennial time scales there is also evidence for an anti-phase relationship between Holocene variations in the Dead Sea and Sahelian lake levels and with proxy indicators of NAtl SSTs. However the records are punctuated by abrupt lake-level drops, which appear to be in-phase and which occur during previously documented abrupt major cooling events in the Northern Hemisphere. We propose that the mechanisms by which NAtl SSTs affect precipitation in the central Levant is related to the tendency for high (low) pressure anomalies to persist over the eastern North Atlantic/Western Mediterranean region when the Basin is cold (warm). This, in turn, affects the likelihood of cold air outbreaks and cyclogenesis in the Eastern Mediterranean and, consequently, rainfall in the central Levant region. Depending on its phase, this natural mechanism can alleviate or exacerbate the anthropogenic impact on the regions' hydroclimatic future.
Holocene melt-water variations recorded in Antarctic coastal marine benthic assemblages
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berkman, P.A.
Climate changes can influence the input of meltwater from the polar ice sheets. In Antarctica, signatures of meltwater input during the Holocene may be recorded in the benthic fossils which exist at similar altitudes above sea level in emerged beaches around the continent Interpreting the fossils as meltwater proxy records would be enhanced by understanding the modern ecology of the species in adjacent marine environments. Characteristics of an extant scallop assemblage in West McMurdo Sound, Antarctica, have been evaluated across a summer meltwater gradient to provide examples of meltwater records that may be contained in proximal scallop fossils. Integrating environmentalmore » proxies from coastal benthic assemblages around Antarctica, over ecological and geological time scales, is a necessary step in evaluating the marginal responses of the ice sheets to climate changes during the Holocene.« less
NASA Astrophysics Data System (ADS)
Lancaster, S. T.; Frueh, W. T.
2011-12-01
A large number (N = 351) of radiocarbon dates of charcoal from valley-bottom sediments in headwater valleys of the southern Oregon Coast Range provides the basis for a new index of fire frequency during the past 17,000 years in this steep landscape covered by dense coniferous forest. Study areas were chosen for their relative lack of recent forest disturbance by harvest or fire, and sampling of stream banks and terrace risers was random, weighted by deposit volume and bank or riser area. This sampling methodology was designed to characterize sediment residence times within valley-bottom storage, and the overall shape of the calibrated age distribution is therefore assumed representative of the dependence of charcoal preservation probability on calibrated age. A proxy record of fire history in the study areas is obtained by fitting a gamma distribution to the weighted mean calibrated charcoal ages by the method of moments; calculating the relative difference between the fit and the normalized histogram, with 50-year bin-widths, of charcoal ages; and smoothing that relative difference with a gaussian distribution, the standard deviation of which is at least two bin-widths and inversely proportional to the value of the fit distribution at larger ages. The calibrated charcoal age mean and variance of 1900 yrs BP and 7.39 x 106 yr2, respectively, yield shape and scale parameters of the fit gamma distribution of 0.490 and 3880 yrs, respectively. This heavy-tailed distribution indicates that probabilities of charcoal evacuation are not simply proportional to relative volume of encasing sediment deposits but, rather, decrease with deposit age. The smoothed proxy record of relative fire frequency has a global maximum at 7700 BP and prominent local maxima at 600 BP and 5700 BP, in order of decreasing magnitude; a global minimum at 4500 BP and local minimum at 1800 BP roughly bracket a period of fluctuating but relatively low fire frequency during the period 5000-1500 BP. Although resolution in the late glacial to early Holocene is limited, the record shows a high relative fire frequency during the late glacial before dipping 10,000-9000 BP. The 7700 BP maximum and 1800 BP minimum are consistent with another fire history from lake sediments northeast of our sites in the Oregon Coast Range. Other features appear to contradict that record but to support of climate change inferences based on other climate proxies.
NASA Astrophysics Data System (ADS)
Beilman, D. W.; Kallstrom, R.; Elison Timm, O.; Nichols, J. E.; Massa, C.
2016-12-01
A core raised from a windward mountain bog on the Island of Molokai, Hawaii was studied to reconstruct changes in hydroclimate and ecosystem response. The 250-cm radiocarbon-dated profile shows that formation of peat (organic matter greater than 90% and bulk density below 0.2 g cm-3) began around 10,000 years ago, in response to wetter conditions needed to waterlog and stabilize soil organic matter, and has continued through the Holocene. A previously-published pollen record from this site has no chronological information, but suggests that the dominant forest species have been present throughout but varied substantially in their relative abundance over Holocene time. The stable carbon isotope value of organic matter (δ13COM) showed a pattern of increasingly more-positive values from 10,000 to 8000 years ago, consistent with decreased stomatal conductance in woody vegetation and an early Holocene drying trend. An overall Holocene decrease in rainfall over the Pacific near Hawaii is also observed in transient model simulations forced by insolation, greenhouse gases and ice. Between 4000 and 2000 years ago, more-negative δ13COM values and a maximum in organic carbon accumulation suggest a period of somewhat wetter climate that seems to have ended around 2,000 years ago. The distribution and abundance of leaf wax compounds including alkyl lipids in the profile suggests a lower relative abundance of woody species 8000 to 3000 years ago and a shift towards more woody inputs preceding the arrival of humans. Taken together, evidence from this windward location shows an overall decrease in rainfall during the Holocene in general agreement with other Hawaii proxy data and model simulations. But these new data also show important millennial-scale changes in hydroclimate and ecosystem responses. Comparison to proxy records at leeward Hawaii locations revealed an onset of peat formation at around the same time at a similar elevation in the early Holocene, but both similarities and differences in hydroclimate trends, and overall complex pattern relative to reconstructions of Holocene El Nino variation, suggesting influence of both tropical and extratropical Pacific circulation.
NASA Astrophysics Data System (ADS)
Longo, W. M.; Crowther, J.; Daniels, W.; Russell, J. M.; Giblin, A. E.; Morrill, C.; Zhang, X.; Wang, X.; Huang, Y.
2015-12-01
Paleoclimate reconstructions have provided little consensus on how continental temperatures in Eastern Beringia changed from the Last Glacial Maximum (LGM) to the present. Reconstructions show regional differences in LGM severity, the timing of deglacial warming, and Holocene temperature variability. Currently, arctic temperatures are increasing at the fastest rates on the planet, highlighting the need to identify the sensitivities of arctic systems to various climate forcings. This cannot be done without resolving the complex climate history of Eastern Beringia. Here, we present two new organic geochemical temperature reconstructions from Lake E5, north central Alaska that span the LGM, last glacial termination and Holocene. The proxies (alkenones and brGDGTs) record seasonally distinct temperatures, allowing for the attribution of different forcings to each proxy. The alkenone-based UK37 reconstruction records spring/early summer lake temperatures and indicates a 4 oC abrupt warming at 13.1 ka and a relatively warm late Holocene, which peaks at 2.4 ka and exhibits a cooling trend from 2.4 to 0.1 ka. The brGDGT reconstruction is calibrated to mean annual air temperature and interpreted here as exhibiting a strong warm season bias. BrGDGTs show an abrupt 4.5 oC warming at 14 ka, and show evidence for an early Holocene Thermal Maximum (HTM), which cools by 3 oC after 8.4 ka. Because UK37 temperatures do not exhibit an early HTM, we hypothesize that summer insolation had a minimal effect on spring/early summer lake temperatures. Instead, the UK37 reconstruction agrees with sea ice and sea surface temperature reconstructions from the Beaufort and Chukchi Seas and northeast Pacific Ocean. We hypothesize that forcings associated with sea ice concentration and changes in atmospheric circulation had stronger affects on spring/early summer lake temperatures and we present modern observational data in support of this hypothesis. By contrast, the summer-biased brGDGT reconstruction suggests a strong and relatively direct temperature response to summer insolation forcing. Together, these records suggest that both internal and external forcings significantly affected LGM to present temperature variability in Eastern Beringia, with different seasonal biases.
NASA Astrophysics Data System (ADS)
Arauza, Hanna M.; Simms, Alexander R.; Bement, Leland C.; Carter, Brian J.; Conley, Travis; Woldergauy, Ammanuel; Johnson, William C.; Jaiswal, Priyank
2016-01-01
Fluvial geomorphology and stratigraphy often reflect past environmental and climate conditions. This study examines the response of Bull Creek, a small ephemeral creek in the Oklahoma panhandle, to environmental conditions through the late Pleistocene and Holocene. Fluvial terraces were mapped and their stratigraphy and sedimentology documented throughout the course of the main valley. Based on their elevations, terraces were broadly grouped into a late-Pleistocene fill terrace (T3) and two Holocene fill-cut terrace sets (T2 and T1). Terrace systems are marked by similar stratigraphies recording the general environmental conditions of the time. Sedimentary sequences preserved in terrace fills record the transition from a perennial fluvial system during the late glacial period and the Younger Dryas to a semiarid environment dominated by loess accumulation and punctuated by flood events during the middle to late Holocene. The highest rates of aeolian accumulation within the valley occurred during the early to middle Holocene. Our data provide significant new information regarding the late-Pleistocene and Holocene environmental history for this region, located between the well-studied Southern and Central High Plains of North America.
NASA Astrophysics Data System (ADS)
Kelly, M. A.; Lowell, T. V.; Schaefer, J. M.
2007-12-01
The Quelccaya Ice Cap region in the southeastern Peruvian Andes (~13-14°S latitude) is a key location for the development of late-glacial and Holocene terrestrial paleoclimate records in the tropics. We present a chronology of past extents of Quelccaya Ice Cap based on ~thirty internally consistent 10Be dates of boulders on moraines and bedrock as well as twenty radiocarbon dates of organic material associated with moraines. Based on results from both dating methods, we suggest that significant advances of Quelccaya Ice Cap occurred during late-glacial time, at ~12,700-11,400 yr BP, and during Late Holocene time ~400-300 yr BP. Radiocarbon dating of organic material associated with moraines provides maximum and minimum ages for ice advances and recessions, respectively, thus providing an independent check on 10Be dates of boulders on moraines. The opportunity to use both 10Be and radiocarbon dating makes the Quelccaya Ice Cap region a potentially important low-latitude calibration site for production rates of cosmogenic nuclides. Our radiocarbon chronology provides a tighter constraint on maximum ages of late-glacial and Late Holocene ice advances. Upcoming field research will obtain organic material for radiocarbon dating to improve minimum age constrains for late-glacial and Late Holocene ice recessions.
NASA Astrophysics Data System (ADS)
Ruiz-Fernández, Jesus; Nieuwendam, Alexandre; Oliva, Marc; Lopes, Vera; Cruces, Anabela; Conceição Freitas, Maria; Janeiro, Ana; López-Sáez, José Antonio; Gallinar, David; García-Hernández, Cristina
2016-04-01
In this contribution we present data from a 182 cm-long sedimentary sequence collected in the mid-altitude area of Belbín, a depression dammed by a moraine during the Last Glaciation in the Western Massif of the Picos de Europa (Cantabrian Mountains, NW Spain), in order to reconstruct the environmental changes and the conditioning factors of these changes occurred during the Mid-Late Holocene in this mountain area. The uppermost 60 cm of the sediments have been studied using a multi-proxy analysis including the texture, the organic matter content, the micromorphology of the quartz grains, and the concentration of charcoal particles. The geochronological framework of the environmental and climatic events for the Mid-late Holocene was established with three AMS 14C dates. During the last 6.7 ky cal BP a sequence of environmental changes took place in Belbin area driven by both warmer (between 6.7-5, 3.7-3, 2.6-1.1, 0.87-0.51 and since 0.01 ky cal BP) and colder stages (between 5-3.7, 3-2.6, 1.1-0.87 and 0.51 to 0.01 ky cal BP). The warmer stages were defined by the prevalence of chemical weathering of the quartz grains and relative increases of the C/N ratio. Conversely, during colder stages physical weathering of the quartz grains particles prevailed and the C/N values were lower. During the Late Holocene the sequence shows a progressive increase in the organic matter content, which may be associated with higher temperatures. Higher or lower concentration of charcoal particles according to warmer or colder climatic conditions is not detected, so the fires that have occurred in the area were likely to be related to human-induced fire management for grazing purposes. The period with the most frequent fire events occurred between 3.5 and 3 ky cal BP during the Bronze Age. Other significant peaks of charcoal particles occurred at ca. 2.6, 0.71 and 0.36 ky cal BP. This study shows evidence that the environmental changes occurred during the Mid-Late Holocene in this area of the Cantabrian Mountains are both conditioned by climate variability and human activity. Also, it has been demonstrated the relationship between the type of quartz grains, the weathering intensity (chemical and physical) and the concentrations of charcoal particles. There is a clear relation between the samples that evidence high intensity of chemical and physical weathering with higher average of charcoal particles concentration. Climatic conditions have an important role in weathering intensity, through the combination of silt abundance and cryogenic weathering, but in our study this is not the case, therefore fire most possibly modified local environmental conditions making quartz grains more vulnerable to post-fire situations. This emphasizes the important role of the fires in the micromorphology of quartz grains.
Lenz, Josefine; Grosse, Guido; Jones, Benjamin M.; Anthony, Katey M. Walter; Bobrov, Anatoly; Wulf, Sabine; Wetterich, Sebastian
2016-01-01
Permafrost-related processes drive regional landscape dynamics in the Arctic terrestrial system. A better understanding of past periods indicative of permafrost degradation and aggradation is important for predicting the future response of Arctic landscapes to climate change. Here, we used a multi-proxy approach to analyse a ~ 4 m long sediment core from a drained thermokarst lake basin on the northern Seward Peninsula in western Arctic Alaska (USA). Sedimentological, biogeochemical, geochronological, micropalaeontological (ostracoda, testate amoebae) and tephra analyses were used to determine the long-term environmental Early-Wisconsin to Holocene history preserved in our core for central Beringia. Yedoma accumulation dominated throughout the Early to Late-Wisconsin but was interrupted by wetland formation from 44.5 to 41.5 ka BP. The latter was terminated by the deposition of 1 m of volcanic tephra, most likely originating from the South Killeak Maar eruption at about 42 ka BP. Yedoma deposition continued until 22.5 ka BP and was followed by a depositional hiatus in the sediment core between 22.5 and 0.23 ka BP. We interpret this hiatus as due to intense thermokarst activity in the areas surrounding the site, which served as a sediment source during the Late-Wisconsin to Holocene climate transition. The lake forming the modern basin on the upland initiated around 0.23 ka BP and drained catastrophically in spring 2005. The present study emphasises that Arctic lake systems and periglacial landscapes are highly dynamic and that permafrost formation as well as degradation in central Beringia was controlled by regional to global climate patterns as well as by local disturbances.
Who’s on top? SST proxy comparison from the Peru Margin Upwelling System
NASA Astrophysics Data System (ADS)
Chazen, C.; Herbert, T.; Altabet, M. A.
2009-12-01
The Peru Margin upwelling region is situated at the interface between the poleward Peru Undercurrent and the equatorward Peru Coastal current. Strong coastal winds force cold, nutrient-rich thermocline waters to the surface. Sea surface temperatures in this region fluctuate sub-annually with changes in the position of the Intertropical convergence zone (ITCZ) and sub-decadally with modifications in the strength of Walker Circulation. In contrast, the temperature of the Peru Margin thermocline is stable, isolated from surface winds and slow to respond to major perturbations in surface temperature. Using high resolution sampling (6-7 year) across an annually laminated sediment core from the heart of the Peru Margin upwelling system (15°S) we explore how Uk’37 temperatures compare with TEX86 temperatures across a 200-year interval in the Mid-late Holocene. Mean late Holocene Uk’37 temperatures, extracted from a high sedimentation rate core from the Peru Margin are similar to modern mean annual sea surface temperatures at 15°S. Multi-decadal-scale (50-100 year) Uk’37 temperature fluctuations oscillate about the mean by 1.5°C. These rapid temperature changes are coherent with fluctuations in surface productivity (C37total and Biogenic Silica) in addition to sub-surface denitrification (δ15N). In contrast, TEX86 temperatures derived from identical samples exhibit colder temperatures than modern mean annual conditions and virtually no temperature fluctuation. We posit that TEX86 values are recording temperatures below the photic zone near the mix-layer-thermocline boundary and may, on longer timescales provide invaluable information about thermocline temperature. With this interpretation in mind, we present a TEX86-based long-term thermocline reconstruction over the Holocene.
NASA Astrophysics Data System (ADS)
Stansell, N.; Rodbell, D. T.; Moy, C. M.
2010-12-01
Pro-glacial lake sediments from the Cordillera Blanca, Peru contain continuous records of climate variability spanning the Last Glacial Maximum to present day. Here we present results from two alpine lake basins in the Queshgue Valley (9.8°S, 77.3°W) that contain high-resolution records of clastic sediment deposition for the last ~20,000 years. Radiocarbon-dated sediment cores were scanned at 0.5 to 1.0 cm resolution using a profiling x-ray fluorescence scanner for major and minor element distributions. In addition, we measured down-core variations in magnetic susceptibility, organic carbon, biogenic silica and calcium carbonate. Samples of bedrock and sediments from glacial moraines in the Queshgue watershed were analyzed using an ICP-MS in order to fingerprint and trace the source of glacial sediments deposited in the lakes. The bedrock is dominated by a combination of granodiorite with high Sr concentrations and meta-sedimentary rocks with high Zr values. Because the glacial sediments proximal to the modern glacier terminus are composed mostly of the granodiorite end-member, we interpret changes in Sr and clastic sediment concentrations in the lake sediment profiles as proxies for past glacial variability. Preliminary results indicate that glaciers retreated soon after ~14,500 cal yr BP and remained less extensive during the remaining late Glacial Stage and early Holocene. Gradually increasing clastic sediments through the middle and late Holocene indicate that glaciers became progressively larger, or more erosive towards present day. However, this overall Holocene trend of increasing glacier extent was interrupted by multiple periods of centennial- to millennial-scale ice margin retreat. For example, relative peaks in clastic sediments occurred from ~14,500 to 6000, 5600 to 5000, 4600 to 4200, 3600 to 3200, 2800 to 2700, 2400 to 2200, 1750 to 1550, 1100 to 900 cal yr BP, and during the Little Ice Age (~700 to 50 cal yr BP), while periods of low clastic sedimentary influx took place from between ~6000 to 5600, 5000 to 4600, 4200 to 3600, 3200 to 2800, 2700 to 2400, and 2200 to 1750, 1550 to 1100, and 900 to 700 cal yr BP. Periods of ice advance in the Cordillera Blanca generally correspond to times of increased moisture-balance and lower temperatures that are recorded in other regional, terrestrial proxy records.
How Early Holocene Greening of the Afro-Asian Dust Belt Changed Sources of Mineral Dust in West Asia
NASA Astrophysics Data System (ADS)
Pourmand, A.; Sharifi, A.; Goes, L. M.; Clement, A. C.; Canuel, E. A.; Naderi Beni, A.; Ahmady-Birgani, H.
2016-12-01
Production, transport and deposition of mineral dust have significant temporal and spatial impacts on different components of the Earth systems. In modern times, dust plumes can be associated with their source origin(s) using satellite and land-based measurements and back-trajectory reconstruction of air masses. Reconstructing past changes in the sources of mineral dust as related to changes in climate, however, must rely on the knowledge of the geochemical and mineralogical composition of modern and paleo-dust, and their potential source origins. In this contribution, we present a 13,000-year record of variations in radiogenic Sr-Nd-Hf isotopes and Rare Earth Element (REE) anomalies from an ombrotrophic (rain fed) peat core in NW Iran as proxies of past changes in sources of dust over West Asia. The geochemical fingerprint of dust particles deposited during the low-flux, early Holocene period (11,700-6,000 yr BP) is distinctly different from times of high dust fluxes during the Younger Dryas, and that of the mid-late Holocene. This indicates that the composition of mineral dust deposited at the receptor site changed as a function of prevailing atmospheric circulation regimes and land exposure. Simulations of atmospheric circulation over the region show the Northern Hemisphere Westerly Jet (NHWJ) was displaced poleward across the study area during the early Holocene when solar insolation was higher. This shift, coupled with lower dust emissions simulated based on greening of the Afro-Asian Dust Belt during the early Holocene likely led to potential sources in Central Asia to dominate dust export to West Asia during this period, in contrast to the dominant western and southwest Asian and Eastern African sources that prevail during the modern period.
Schwalb, Antje; Dean, Walter E.; Fritz, C. Sherilyn; Geiss, Christoph E.; Kromer, Bernd
2010-01-01
Proxy evidence at decadal resolution from Late Holocene sediments from Pickerel Lake, northeastern South Dakota, shows distinct centennial cycles (400-700 years) in magnetic susceptibility; contents of carbonate, organic carbon, and major elements; abundance in ostracodes; and delta18O and delta13C values in calcite. Proxies indicate cyclic changes in eolian input, productivity, and temperature. Maxima in magnetic susceptibility are accompanied by maxima in aluminum and iron mass accumulation rates (MARs), and in abundances of the ostracode Fabaeformiscandona rawsoni. This indicates variable windy, and dry conditions with westerly wind dominance, including during the Medieval Climate Anomaly. Maxima in carbonates, organic carbon, phosphorous, and high delta13C values of endogenic calcite indicate moister and less windy periods with increased lake productivity, including during the Little Ice Age, and alternate with maxima of eolian transport. Times of the Maunder, Sporer and Wolf sunspot minima are characterized by maxima in delta18O values and aluminum MARs, and minima in delta13C values and organic carbon content. We interpret these lake conditions during sunspot minima to indicate decreases in lake surface water temperatures of up to 4-5 degrees C associated with decreases in epilimnetic productivity during summer. We propose that the centennial cycles are triggered by solar activity, originate in the tropical Pacific, and their onset during the Late Holocene is associated with insolation conditions driven by precession. The cyclic pattern is transmitted from the tropical Pacific into the atmosphere and transported by westerly winds into the North Atlantic realm where they strengthen the Atlantic Meridional Overturning Circulation during periods of northern Great Plains wind maxima. This consequently leads to moister climates in Central and Northern Europe. Thus, Pickerel Lake provides evidence for mechanisms of teleconnections including an atmospheric link bridging between the different climate regimes from the tropical Pacific to the North Atlantic and onto the European continent.
NASA Astrophysics Data System (ADS)
Azuara, Julien; Lebreton, Vincent; Jalali, Bassem; Sicre, Marie-Alexandrine; Sabatier, Pierre; Dezileau, Laurent; Peyron, Odile; Frigola, Jaime; Combourieu-Nebout, Nathalie
2017-04-01
Forcings and physical mechanisms underlying Holocene climate variability still remain poorly understood. Comparison of different paleoclimatic reconstructions using spectral analysis allows to investigate their common periodicities and helps to understand the causes of past climate changes. Wavelet analysis applied on several proxy time series from the Atlantic domain already revealed the first key-issues on the origin of Holocene climate variability. However the differences in duration, resolution and variance between the time-series are important issues for comparing paleoclimatic sequences in the frequency domain. This work compiles 7 paleoclimatic proxy records from 4 time-series from the north-western Mediterranean all ranging from 7000 to 1000 yrs cal BP: -pollen and clay mineral contents from the lagoonal sediment core PB06 recovered in southern France, -Sea Surface Temperatures (SST) derived from alkenones, concentration of terrestrial alkanes and their average chain length (ACL) from core KSGC-31_GolHo-1B recovered in the Gulf of Lion inner-shelf, - δ18O record from speleothems recovered in the Asiul Cave in north-western Spain, -grain size record from the deep basin sediment drift core MD99-2343 north of Minorca island. A comparison of their frequency content is proposed using wavelet analysis and cluster analysis of wavelet power spectra. Common cyclicities are assessed using cross-wavelet analysis. In addition, a new algorithm is used in order to propagate the age model errors within wavelet power spectra. Results are consistents with a non-stationnary Holocene climate variability. The Halstatt cycles (2000-2500 years) depicted in many proxies (ACL, errestrial alkanes and SSTs) demonstrate solar activity influence in the north-western Mediterranean climate. Cluster analysis shows that pollen and ACL proxies, both indicating changes in aridity, are clearly distinct from other proxies and share significant common periodicities around 1000 and 600 years, since the mid-Holocene. The 1000 years period is also evidenced in terrestrial alkanes and Minorca sediment drift grain size, which respectively indicate changes in the Rhône hydrology and changes in the north-western Mediterranean deep water formation. These findings suggests that an original climate driver influences the Gulf of Lion area. Finally, both clay mineral content from PB06, indicative of past storminess and δ18O record from the north western Iberia, related to precipitations, record the well known 1500 years period since the middle Holocene. The presence of this period, widely encountered in the Atlantic, highlights the link between the north-western Mediterranean and the Atlantic climate variability.
Etayo-Cadavid, Miguel F.; Andrus, C. Fred T.; Jones, Kevin B.; Hodgins, Gregory W. L.; Sandweiss, Daniel H.; Uceda-Castillo, Sandiago; Quilter, Jeffrey
2013-01-01
For at least 6 m.y., El Niño events have posed the greatest environmental risk on the Peruvian coast. A better understanding of El Niño is essential for predicting future risk and growth in this tropical desert. To achieve this we analyzed archaeological and modern pre-bomb shells from the surf clam Donax for the radiocarbon reservoir effect (ΔR) to characterize late Holocene coastal upwelling conditions in northern Peru (8°14′S). Mean ΔR values from these shells suggest that modern upwelling conditions in this region were likely established between A.D. 539 and A.D. 1578. Our radiocarbon data suggest that upwelling conditions ca. A.D. 539 were less intense than those in modern times. The observed coastal water enrichment in 14C may be consequence of frequent strong El Niño events or extended El Niño–like conditions. These ΔR-inferred marine conditions are in agreement with proposed extended El Niño activity in proxy and archaeological records of ca. A.D. 475–530. Extended El Niño conditions have been linked to political destabilization, societal transformation, and collapse of the Moche civilization in northern Peru. A return to such conditions would have significant impacts on the dense population of this region today and in the near future.
A 1500-year holocene caribbean climate archive from the Blue Hole, lighthouse reef, belize
Gischler, E.; Shinn, E.A.; Oschmann, W.; Fiebig, J.; Buster, N.A.
2008-01-01
Sediment cores (up to 6 m in length) from the bottom of the Blue Hole, a 125 m deep Pleistocene sinkhole located in the lagoon of Lighthouse Reef Atoll, Belize, consist of undisturbed, annually layered biogenic carbonate muds and silts with intercalated coarser grained storm beds. The sedimentation rate of the layered sections is 2.5 mm/y on average, and the long cores span the past 1500 years. Oxygen isotopes of laminated sediment provide a late Holocene climate proxy: A high-resolution ??18O time series traces the final Migration Period Pessimum, the Medieval Warm Period, the Little Ice Age, and the subsequent temperature rise. Carbon isotopes (??13C) decrease up core and show the impacts of the decline of the Mayan culture and the Suess effect. Time series analyses of ??18O and ??13C content reveal 88-, 60-, 52-, and 32-year cyclicities, and suggest solar forcing. Storm event beds are most common during AD 650-850, around AD 1000, during AD 1200-1300, and AD 1450-1550. Major storm beds are rare during the past 500 years BP.
Influence of climate cycles on grapevine domestication and ancient migrations in Eurasia.
Mariani, Luigi; Cola, Gabriele; Maghradze, David; Failla, Osvaldo; Zavatti, Franco
2018-09-01
The objective of this work is to investigate the Holocenic climate cycles that may have influenced the domestication of grapevine in the Subcaucasian area and its subsequent spread in Eurasia. The analysis covered the longitudinal belt ranging from the Iberian Peninsula to Japan, seen as the preferential pathway for the Holocenic spread of grapevine and many other crops in Eurasia. Spectral analysis was considered as the criterion of investigation and the Holocenic cycles were analyzed considering different geochemical and biological proxies, of which seven are directly referred to vine. In this context the relation of the abovementioned proxies with spectral peaks of possible causal factors like Solar activity (SA), North Atlantic oceanic factors (Atlantic Multidecadal Oscillation - AMO and North Atlantic Oscillation - NAO), and subtropical oceanic factors (El Nino Southern Oscillation - ENSO) was also analyzed. In order to acquire a sufficiently wide number of proxies sensitive to the causal factors, we referred to a latitudinal belt wider than the one colonized by vine, also acquiring proxy from the Scandinavian area, notoriously susceptible to North Atlantic forcings. The analysis of the proxy spectral peaks, considering 20 classes with a 50-years step in the 0-1000 years range, showed that the 50% of the classes have a higher frequency of peaks at East than West, the 20% a higher frequency at West than East and the 10% an equal frequency, showing the efficiency of the propagation of Western signals towards the center of Eurasia. The search of the causal factors spectral peaks in the proxy series showed that AMO, NAO and SA acted with a certain regularity on the entire belt investigated both latitudinally and longitudinally, while spectral peaks linked to ENSO underwent a considerable attenuation moving northward. Finally, the specific analysis on viticultural proxies showed common peaks with causal factors. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Gjerde, Marthe; Bakke, Jostein; D'Andrea, William J.; Balascio, Nicholas L.; Bradley, Raymond S.; Vasskog, Kristian; Ólafsdóttir, Sædis; Røthe, Torgeir O.; Perren, Bianca B.; Hormes, Anne
2018-03-01
High resolution proxy records of past climate are sparse in the Arctic due to low organic production that restricts the use of radiocarbon dating and challenging logistics that make data collection difficult. Here, we present a new lake record from lake Hakluytvatnet at Amsterdamøya island (79.5°N), the northwesternmost island on Svalbard. Multi-proxy analyses of lake sediments in combination with geomorphological mapping reveal large environmental shifts that have taken place at Amsterdamøya during the Holocene. A robust chronology has been established for the lake sediment core through 28 AMS radiocarbon ages, and this gives an exceptionally well-constrained age control for a lake at this latitude. The Holocene was a period with large changes in the Hakluytvatnet catchment, and the onset of the Neoglacial (ca. 5 ka) marks the start of modern-day conditions in the catchment. The Neoglacial is characterized by fluctuations in the minerogenic input to the lake as well as internal productivity, and we suggest that these fluctuations are driven by atmospherically forced precipitation changes as well as sea ice extent modulating the amount of moisture that can reach Hakluytvatnet.
NASA Astrophysics Data System (ADS)
Perner, Kerstin; Moros, Matthias; De Deckker, Patrick; Blanz, Thomas; Wacker, Lukas; Telford, Richard; Siegel, Herbert; Schneider, Ralph; Jansen, Eystein
2018-01-01
The Leeuwin Current (LC), an eastern boundary current, transports tropical waters from the Indo-Pacific Warm Pool (IPWP) towards southern latitudes and modulates oceanic conditions offshore southern Australia. New, high-resolution planktic foraminifer assemblage data and alkenone-derived sea surface temperatures (SST) provide an in-depth view on LC variability and mechanisms driving the current's properties during the mid to late Holocene (last c. 7.4 ka BP). Our marine reconstructions highlight a longer-term mid to late Holocene reduction of tropical heat export from the IPWP area into the LC. Mid Holocene (c. 7.4 to 3.5 ka BP) occurrence of high SSTs (>19.5 °C), tropical planktic foraminifera and a well-stratified water column document an enhanced heat export from the tropics. From c. 3.5 ka BP onwards, a weaker LC and a notably reduced tropical heat export cause oceanic cooling offshore southern Australia. The observed mid to late Holocene trends likely result from large-scale changes in the IPWP's heat storage linked to the El Niño-Southern Oscillation (ENSO) phenomenon. We propose that a strong and warm LC occurs in response to a La Niña-like state of ENSO during the mid Holocene. The late Holocene LC cooling, however, results from a shift towards an El Niño-like state and a more variable ENSO system that causes cooling of the IPWP. Superimposed on these longer-term trends we find evidence of distinct late Holocene millennial-scale phases of enhanced El Niño/La Niña development, which appear synchronous with northern hemispheric climatic variability. Phases of dominant El Niño-like states occur parallel to North Atlantic cold phases: the '2800 years BP cooling event', the 'Dark Ages' and the 'Little Ice Age', whereas the 'Roman Warm Period' and the 'Medieval Climate Anomaly' parallel periods of a predominant La Niña-like state. Our findings provide further evidence of coherent interhemispheric climatic and oceanic conditions during the mid to late Holocene, suggesting ENSO as a potential mediator.
A global perspective on Glacial- to Interglacial variability change
NASA Astrophysics Data System (ADS)
Rehfeld, Kira; Münch, Thomas; Ho, Sze Ling; Laepple, Thomas
2017-04-01
Changes in climate variability are more important for society than changes in the mean state alone. While we will be facing a large-scale shift of the mean climate in the future, its implications for climate variability are not well constrained. Here we quantify changes in temperature variability as climate shifted from the Last Glacial cold to the Holocene warm period. Greenland ice core oxygen isotope records provide evidence of this climatic shift, and are used as reference datasets in many palaeoclimate studies worldwide. A striking feature in these records is pronounced millennial variability in the Glacial, and a distinct reduction in variance in the Holocene. We present quantitative estimates of the change in variability on 500- to 1500-year timescales based on a global compilation of high-resolution proxy records for temperature which span both the Glacial and the Holocene. The estimates are derived based on power spectral analysis, and corrected using estimates of the proxy signal-to-noise ratios. We show that, on a global scale, variability at the Glacial maximum is five times higher than during the Holocene, with a possible range of 3-10 times. The spatial pattern of the variability change is latitude-dependent. While the tropics show no changes in variability, mid-latitude changes are higher. A slight overall reduction in variability in the centennial to millennial range is found in Antarctica. The variability decrease in the Greenland ice core oxygen isotope records is larger than in any other proxy dataset. These results therefore contradict the view of a globally quiescent Holocene following the instable Glacial, and imply that, in terms of centennial to millennial temperature variability, the two states may be more similar than previously thought.
NASA Astrophysics Data System (ADS)
Barron, J. A.; Anderson, L.; Starratt, S.; Wahl, D.; Anderson, L.; Addison, J. A.
2015-12-01
Comparative analyses of marine and terrestrial proxy records reveal regional changes in precipitation seasonality and relationships with sea surface temperatures (SSTs) as indicators of ocean-atmosphere dynamics. Enhanced La Niña-like conditions and cooler SSTs characterized the middle Holocene (~8.O to 4.0 ka) waters off northern California and in the eastern equatorial Pacific. Terrestrial records suggest that winters in the western US were generally dry, although wetter intervals attributed to winter precipitation beginning at ~5.5 ka are documented in coastal Oregon and Washington and in the northern Great Basin. Proxy studies suggest that the North American Monsoon (NAM) intensified beginning at ~7.5 ka, coinciding with warming Gulf of California SSTs coupled with a more northerly position of the Intertropical Convergence Zone (ITCZ). If monsoonal precipitation spread northward into the eastern Great Basin and the western Rockies of Colorado, it is possible that wetter intervals of the middle Holocene in Nevada, Utah, and western Colorado may reflect increases in both summer and winter precipitation. El Niño event frequency and intensity began increasing between 4.0 and 3.0 ka, when modern ocean-atmosphere dynamics appear to have been established along the California coastal margin. Effects included cool, wet winters, enhanced spring coastal upwelling that extended into the summer, and higher September-October SSTs corresponding with the end of the coastal upwelling season. Winters became wetter in both the coastal and interior regions of the western US, while spring and summers generally became drier. The intensity of NAM precipitation also declined due to a more southerly mean position of the ITCZ. By ~3.0 cal ka the modern climatology of the margins of eastern North Pacific was established, resulting in intensification of the northwest-southwest precipitation dipole and the development of distinct Pacific Decadal Oscillation cycles.
NASA Astrophysics Data System (ADS)
Erdem, Z.; Schönfeld, J.; Glock, N.
2015-12-01
Benthic foraminifera have been used as proxies for the prevailing conditions at the sediment-water interface. Their distribution patterns are thought to facilitate reconstruction of past environmental conditions. Variations of bottom water oxygenation can be traced by the downcore distribution of benthic foraminifera and some of their morphological characters. Being one of the strongest and most pronounced OMZs in today's world oceans, the Peruvian OMZ is a key area to study such variations in relation with changing climate. Spatial changes or an extension of the OMZ through time and space are investigated using sediment cores from the lower OMZ boundary. We focus on time intervals Late Holocene, Early Holocene, Bølling Allerød, Heinrich-Stadial 1 and Last Glacial Maximum (LGM) to investigate changes in bottom-water oxygen and redox conditions. The recent distributions of benthic foraminiferal assemblages provide background data for an interpretation of the past conditions. Living benthic foraminiferal faunas from the Peruvian margin are structured with the prevailing bottom-water oxygen concentrations today (Mallon et al., 2012). Downcore distribution of benthic foraminiferal assemblages showed fluctuations in the abundance of the indicator species depicting variations and a decreasing trend in bottom water oxygen conditions since the LGM. In addition, changes in bottom-water oxygen and nitrate concentrations are reconstructed for the same time intervals by the pore density in tests of Planulina limbata and Bolivina spissa (Glock et al., 2011), respectively. The pore densities also indicate a trend of higher oxygen and nitrate concentrations in the LGM compared to the Holocene. Combination of both proxies provide information on past bottom-water conditions and changes of oxygen concentrations for the Peruvian margin. Glock et al., 2011: Environmental influences on the pore density of Bolivina spissa (Cushman), Journal of Foraminiferal Research, v. 41, no. 1, p. 22-32. Mallon et al., 2012: The response of benthic foraminifera to low-oxygen conditions of the Peruvian oxygen minimum zone, in ANOXIA, pp.305-322.
NASA Astrophysics Data System (ADS)
Matlakhova, Ekaterina; Panin, Andrei
2017-04-01
We collected and analyzed published radiocarbon dates from East European Plain (EEP) and Siberia to pick absolute dates on alluvial and associated deposits. After filtering unreliable dates, 1000 radiocarbon dates from EEP and 500 from Siberia were included into the database. Each date was supplied with information on geographic location and coordinates, catchment area, geomorphological position, characteristics of geological section and dated materials. Also the information about published sources was given. Documented sections refer to fluvial forms in a wide range of catchment sizes. To extract palaeohydrological signal we used two kinds of proxies: sedimentological and geomorphological. We used the following indicators of low activity: organic horizons (soil, peat) in overbank alluvium, balka bottoms and gully fans, small river palaeochannels; and the following indicators of high activity: active sedimentation on river floodplains (burial of organic horizons), balka bottoms and gully fans, erosion by flood flows on floodplains, in bottoms of balkas and gullies, river incision, big palaeochannels, channel avulsions and chute cutoffs. Each date that received palaeohydrological interpretation was regarded as the indicator of a particular Local Palaeohydrological Event. Combined probability density functions of high- and low-activity dates were used to detect time intervals of different palaeohydrological status. For EEP after low fluvial activity during LGM two palaeohydrological epochs were designated: extremely high activity in the end of MIS 2 (ca. 18-11.7 ka b2k), and much lower activity in the Holocene. Within the Holocene two hierarchical levels of hydroclimatic variability were designated according to their duration and magnitude - regional palaeohydrological phases (centuries to few millennia) and regional palaeofluvial episodes (decades to few centuries). Tendency is rather clear of activity lowering in the first half and rise in the second half of the Holocene. In most cases changes of fluvial activity were most likely induced by changing amounts of spring snowmelt runoff. Most distinct correlation of temperature and hydrological regimes was found in the Late Holocene: high fluvial activity corresponded to cold climatic phases (Little Ice Age), low activity, to warm phases (Medieval Climatic Optimum, current climate warming). Correlation of changes in fluvial activity within a west-east transect over Europe revealed relatively poor correlation in the Early and Mid Holocene and much higher synchronism since 3.0 ka b2k, which may indicate increasing role of westerlies in controlling European climates in the Late Holocene. Throughout the whole Holocene, changes of fluvial activity were governed by natural climate forcing until the last few centuries when land use changes induced accelerated hillslope and gully erosion. Comparison of results over Siberia with previously published Holocene flood chronologies in Europe revealed high concordance in the last millennium (the hydrological response to the MWP and LIA climate oscillations) and less similarity in earlier time.
A multiple-proxy approach to understanding rapid Holocene climate change in Southeast Greenland
NASA Astrophysics Data System (ADS)
Davin, S. H.; Bradley, R. S.; Balascio, N. L.; de Wet, G.
2012-12-01
The susceptibility of the Arctic to climate change has made it an excellent workshop for paleoclimatological research. Although there have been previous studies concerning climate variability carried out in the Arctic, there remains a critical dearth of knowledge due the limited number of high-resolution Holocene climate-proxy records available from this region. This gap skews our understanding of observed and predicted climate change, and fuels uncertainty both in the realms of science and policy. This study takes a comprehensive approach to tracking Holocene climate variability in the vicinity of Tasiilaq, Southeast Greenland using a ~5.6 m sediment core from Lower Sermilik Lake. An age-depth model for the core has been established using 8 radiocarbon dates, the oldest of which was taken at 4 m down core and has been been dated to approximately 6.2 kyr BP. The bottom meter of the core below the final radiocarbon date contains a transition from cobbles and coarse sand to organic-rich laminations, indicating the termination of direct glacial influence and therefore likely marking the end of the last glacial period in this region. The remainder of the core is similarly organic-rich, with light-to-dark brown laminations ranging from 0.5 -1 cm in thickness and riddled with turbidites. Using this core in tandem with findings from an on-site assessment of the geomorphic history of the locale we attempt to assess and infer the rapid climatic shifts associated with the Holocene on a sub-centennial scale. Such changes include the termination of the last glacial period, the Mid-Holocene Climatic Optimum, the Neoglacial Period, the Medieval Climatic Optimum, and the Little Ice Age. A multiple proxy approach including magnetic susceptibility, bulk organic geochemistry, elemental profiles acquired by XRF scanning, grain-size, and spectral data will be used to characterize the sediment and infer paleoclimate conditions. Additionally, percent biogenic silica by weight has been quantified via diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), and validated by a traditional wet leaching method. The use of the emerging DRIFTS technology to obtain inferred biogenic silica concentrations has not been widely applied to arctic lacustrine sediments and will help to contribute to the presently limited pool of literature on the topic. Preliminary results of the data reveal high frequency fluctuations between laminations superimposed on long-term trends, which has revealed already some correlation with Holocene climatic events. The data provided by this barrage of proxies is to be presented and will contribute to the understanding of Holocene Arctic climate change at a sub-centennial scale.
Five millennia of frozen vegetation and fire dynamics from an ice core in the Mongolian Altai
NASA Astrophysics Data System (ADS)
Brügger, S. O.; Gobet, E.; Sigl, M.; Osmont, D.; Papina, T.; Rudaya, N.; Schwikowski, M.; Tinner, W.
2017-12-01
The steppes of the Altai region in Central Asia are highly vulnerable to e.g. drought and overgrazing. Degradation during the past decades may undermine their resilience under global change conditions. Knowledge about past vegetation and fire dynamics in Mongolian Altai may contribute to a better understanding of future climate and human impact responses, however, paleo records are scarce in the area. Our novel high-alpine ice record from Tsambagarav glacier (48°39.338'N, 90°50.826'E, 4130m asl) in the Mongolian Altai provides unique paleoenvironmental informations at the landscape scale. The site is surrounded by dry steppes with scattered boreal tree stands. We assume that the site collects pollen and spores within several hundred km. The archive provides an exceptional temporal resolution with a sound chronology covering the past 5500 years (Herren et al. 2013). Microfossil analysis allows to reconstruct large-scale fire and vegetation dynamics to gain a better understanding of the timing and causes of late Holocene response variability. We use pollen as proxies for vegetation composition and structure, microscopic charcoal as a proxy for fire activity (Eichler et al. 2011), and spheroidal carbonaceous particles (SCPs or soots) as a proxy for fossil fuel combustion. Here we present the first microscopic charcoal record from Mongolia and link it to vegetation dynamics of the past. The reconstructed mid to late Holocene forest collapses likely in response to climate change underscore the vulnerability of relict forest ecosystems in the Mongolian Altai. Our multiproxy-study suggests that moisture is more important than temperature for forest preservation. The lacking resilience of vegetation to moisture changes in the past emphasizes the vulnerability of large forests in neighboring dry areas such as the Russian Altai, if global warming is associated to moisture declines as future projections forecast (IPCC; Climate Change 2013). References: Eichler et al. (2011). An ice-core based history of Siberian forest fires since AD 1250. Quat Sci Rev 30(9) Herren et al. (2013). The onset of Neoglaciation 6000 years ago in western Mongolia revealed by an ice core from the Tsambagarav mountain range. Quat Sci Rev 69 IPCC; Climate Change (2013): The Physical Science Basis. IPCC Working Group I Contribution to AR5
NASA Astrophysics Data System (ADS)
Lauterbach, Stefan; Dulski, Peter; Gleixner, Gerd; Hettler-Riedel, Sabine; Mingram, Jens; Plessen, Birgit; Prasad, Sushma; Schwalb, Antje; Schwarz, Anja; Stebich, Martina; Witt, Roman
2013-04-01
A mid-Holocene shift from predominantly wet to significantly drier climate conditions, attributed to the weakening of the Asian summer monsoon (ASM), is documented in numerous palaeoclimate records from the monsoon-influenced parts of Asia, e.g. the Tibetan Plateau and north- and southeastern China. In contrast, Holocene climate development in the arid regions of mid-latitude Central Asia, located north and northwest of the Tibetan Plateau, is less well-constrained but supposed to have been influenced by a complex interaction between the mid-latitude Westerlies and the ASM. Hence, well-dated and highly resolved palaeoclimate records from Central Asia might provide important information about spatio-temporal changes in the regional interplay between Westerlies and ASM and thus aid the understanding of global climate teleconnections. As a part of the project CADY (Central Asian Climate Dynamics), aiming at reconstructing past climatic and hydrological variability in Central Asia, several sediment cores were recovered from alpine Lake Son Kol (41° 48'N, 75° 12'E, 3016 m a. s. l.) in the Central Tian Shan of Kyrgyzstan. A radiocarbon-dated sediment sequence of 154.5 cm length, covering approximately the last 6000 years, was investigated by using a multi-proxy approach, including sedimentological, (bio)geochemical, isotopic and micropalaeontological analyses. Preliminary proxy data indicate hydrologically variable but predominantly wet conditions until ca. 5100 cal. a BP, characterized by the deposition of finely laminated organic-carbonatic sediments. In contrast to monsoonal Asia, where a distinct trend towards drier conditions is observed since the mid-Holocene, the hydrologically variable interval at Lake Son Kol was apparently followed by an only short-term dry episode between ca. 5100 and 4200 cal. a BP. This is characterized by a higher δD of the C29 n-alkanes, probably reflecting increased evapotranspiration. Also pollen, diatom and ostracod data point towards drier climate conditions. Higher δ15N values during this period may also reflect increased evaporation but could also be related to dust input of NOx, being in agreement with high amounts of fine-grained minerogenic material. Further periods of higher δ15N values and contents of fine-grained minerogenic material occurred at 3600-3000 and 2000-1600 cal. a BP. However, as biogeochemical data indicate no further distinct dry episodes since about 4200 cal. a BP, these intervals most probably reflect increased dust deposition. Finally, a trend towards wetter climate conditions can be observed during the last ca. 1500 years, reflected by high ostracod and diatom diversity and (bio)geochemical data. The absence of a pronounced drying trend since the mid-Holocene, as observed in monsoonal Asia, is largely consistent with results from other regional palaeoclimate records and might reflect the predominant influence of the strengthening mid-latitude Westerlies on regional climate since this time.
NASA Astrophysics Data System (ADS)
O'Cofaigh, C.; Jennings, A.; Moros, M.; Andrews, J. T.; Kilfeather, A.; Dowdeswell, J. A.; Richter, T.
2008-12-01
This poster shows the initial results of a joint scientific project to reconstruct the Late Quaternary-Holocene behavior of Jakobshavns Isbrae in central west Greenland, one of the largest ice streams draining the modern Greenland Ice Sheet. The underlying rationale for this research is to determine if recent observed changes to the mass balance of the Greenland Ice Sheet are part of the natural variability in ice-sheet dynamics, or if they relate to anthropogenically-induced climate warming. Key to resolving this question is an understanding of long-term changes in ice sheet behavior during the Late Quaternary and the Holocene. This research will allow assessment of the links between deglaciation and internal and external environmental controls, such as the influence of inflowing Atlantic Water, and will facilitate modelling of the likely future behavior of the GIS. Currently, four marine sediment cores arrayed along a transect from the Disko Bugt Fan to Disko Bay are providing information on changes in sediment flux and sedimentation style, such as abrupt intervals of iceberg-rafting vs. "normal" hemipelagic sedimentation, as well as the paleoceanographic setting and ice sheet-ocean interactions. The cores are being analysed using a variety of proxies including IRD, mineralogy, oxygen isotopes, foraminiferal assemblages, lithofacies analysis and AMS radiocarbon dating. Data are presented from two piston cores from the continental slope at the trough-mouth fan collected during the HE0006 'shakedown' cruise to Baffin Bay and from two gravity cores recovered in 2007 during MS Merian cruise MSM 05/03 to West Greenland. Slope cores contain sequences of laminated facies interpreted as fine-grained turbidites and intervals of massive, bioturbated, hemipelagic mud. The two Merian cores, contributed to this project by the Baltic Sea Research Institute, were collected from the southern entrance to Disko Bugt and the Vaigat channel north of Disko. Radiocarbon dates from the Disko Bugt core show that it contains a full Holocene record of glacial activity and paleoceanography. The poster will present the initial analyses, including radiocarbon dating, XRF compositional data, magnetic susceptibility, lithofacies and IRD analyses determined from x-radiography, foraminiferal analyses and sediment mineralogy. Additional cores and seismic data for this project will be obtained from a cruise on the Canadian research vessel, CSS Hudson in September 2008, and on the British ship, the RRS James Clark Ross in 2009.
Early Deglaciation of Drangajökull, Vestfirðir, Iceland: Smaller than Present by 9.2 ka
NASA Astrophysics Data System (ADS)
Harning, D.; Geirsdottir, A.; Miller, G. H.; Zalzal, K.
2016-12-01
The Holocene histories of Iceland's largest ice caps suggest rapid early Holocene deglaciation and disappearance by 9 ka, other than possible small remnants of Vatnajökull. The least documented is Drangajökull, Vestfirðir, NW Iceland, where our team has been working since 2010. A recent study claims Drangajökull behaved differently than the other Iceland ice caps, deglaciating much later, and persisting through the Holocene Thermal Maximum (HTM). We test this postulate through a suite of sediment cores from threshold lakes both proximal and distal to the ice cap's contemporary margin. Distal lakes document rapid early Holocene deglaciation across the southern highland plateau, with the northern margin of the ice cap reaching a size comparable to Drangajökull's contemporary limit by 10.3 ka. A proximal lake to the north records a transient readvance at 9.6 ka, likely in association with meltwater pulses from the disintegrating Laurentide Ice Sheet (LIS). Two other southeastern proximal lakes, whose catchments extend well beneath the modern ice cap, demonstrate that Drangajökull was already smaller than present before 9.2 ka. Supporting evidence for local early Holocene warmth is derived from biological summer temperature proxies in a lake record, with age control (tephra/14C) demonstrating continuous sediment accumulation from 10.3 ka to present. Peak warmth (HTM) inferred from elevated algal productivity occurred between 8.9 and 7.2 ka. The record of terrestrial warmth closely aligns with regional SST and precipitation records that together with lake sediment characteristics provide firm evidence that Drangajökull responded similarly to Iceland's other large ice caps. Drangajökull was smaller than its contemporary margin before 9.2 ka, and likely disappeared entirely during the warmer and drier summers between 9 and 7 ka, reforming in the Late Holocene.
NASA Astrophysics Data System (ADS)
Ruggieri, Nicoletta; Kaiser, Jérôme; Arz, Helge W.; Hefter, Jens; Siegel, Herbert; Mollenhauer, Gesine; Lamy, Frank
2014-05-01
A series of molecular organic markers were determined in surface sediments from the Gulf of Genoa (Ligurian Sea) in order to evaluate their potential for palaeo-environmental reconstructions. The interest for the Gulf of Genoa lies in its contrasting coastal and central areas in terms of terrestrial input, oligotrophy, primary production and surface temperature gradient. Moreover, the Gulf of Genoa contains a large potential for climate reconstruction as it is one of the four major Mediterranean centres for cyclogenesis and the ultra high sedimentation rates on the shelf make this area suitable for high resolution environmental reconstruction. Initial results from sediment cores in the coastal area indeed reveal the potential for Holocene environmental reconstruction on up to decadal timescales (see Poster "Reconstruction of late Holocene flooding events in the Gulf of Genoa, Ligurian Sea" by Lamy et al.). During R/V Poseidon cruise P413 (May 2011), ca. 60 sediment cores were taken along the Ligurian shelf, continental slope, and in the basin between off Livorno and the French border. Results based on surface sediments suggest that some biomarker-based proxies are well-suited to reconstruct sea surface temperature (SST), the input of terrestrial organic material (TOM), and marine primary productivity (PP). The estimated UK'37 SST reflects very closely the autumnal mean satellite-based SST distribution, while TEXH86 SSTs correspond to summer SST at offshore sites and to winter SST for the nearshore sites. Using both SST proxies together may thus allow reconstructing past seasonality changes. Proxies for TOM input (terrestrial n-alkane and n-alkanol concentrations, BIT index) have higher values close to the major river mouths and decrease offshore suggesting that these may be used as proxy for the variability in TOM input by runoff. Interestingly, high n-alkane average chain length in the most offshore sites may result from aeolian input from northern Africa. Finally, high concentrations of crenarchaeol and isoprenoid GDGTs in the open basin illustrate the preference of Thaumarchaeota for oligotrophic waters. This study represents a major prerequisite for the future application of lipid biomarkers on sediment cores from the Gulf of Genoa.
NASA Astrophysics Data System (ADS)
Hayward, Bruce W.; Grenfell, Hugh R.; Sabaa, Ashwaq T.; Kay, Jon; Daymond-King, Rhiannon; Cochran, Ursula
2010-03-01
This paper provides the first solid evidence in support of a century-old hypothesis that the mountainous Marlborough Sounds region in central New Zealand is subsiding. More recent hypotheses suggest that this may be a result of southward migration of a slab of subducted Pacific Plate causing flexural downwarping of the overlying crust in the vicinity of the transition between subduction and strike-slip on the Pacific-Australian plate boundary. The proxy evidence for gradual Holocene subsidence comes from micropaleontological study of seven intertidal sediment cores from the inner Marlborough Sounds (at Havelock, Mahau Sound and Shakespeare Bay). Quantitative estimates (using Modern Analogue Technique) of former tidal elevations based on fossil foraminiferal faunas provide evidence of tectonic (not compaction-related) subsidence in all cores. Estimates of subsidence rates for individual cores vary within the range 0.2-2.4 m ka -1. The wide variation within subsidence rate estimates are related to a combination of the accuracy limits of radiocarbon dates, elevation estimates, and particularly our poor knowledge of the New Zealand Holocene sea-level curve. The most consistent subsidence rate at all three sites for the mid-late Holocene (last 6-7 ka) is ˜0.7-0.8 m ka -1. This rate is consistent with the average subsidence rate in the adjacent 4-km thick Wanganui sedimentary basin for the last 5 myr. Subsidence is inferred to have migrated southwards from the Wanganui Basin to impinge on the inner Marlborough Sounds in just the last 100-200 ka.
NASA Astrophysics Data System (ADS)
Hammarlund, Dan; Klimaschewski, Andrea; St. Amour, Natalie A.; Andrén, Elinor; Self, Angela E.; Solovieva, Nadia; Andreev, Andrei A.; Barnekow, Lena; Edwards, Thomas W. D.
2015-11-01
Holocene records of cellulose-inferred lake-water δ18O were produced from two lake-sediment sequences obtained in central and northern Kamchatka, Russian Far East. The sediment records share similar fluctuations in δ18O during the interval of ca. 5000-800 cal yr BP that correspond (inversely) with changes in K+ content of the GISP2 ice-core record from Greenland, a proxy for the relative strength of the Siberian High, suggesting control by climate-related variability in δ18O of regional precipitation. The dramatic expansion of Siberian dwarf pine (Pinus pumila) in northern and central Kamchatka between ca. 5000 and 4000 cal yr BP, as inferred from pollen records from the same and neighbouring sites, appears to have occurred at a time of progressively declining δ18O of precipitation. This development is interpreted as reflecting a regional cooling trend accompanied by increasing winter snowfall related to gradual intensification of the Siberian High from ca. 5000 to ca. 3000 cal yr BP. A thicker and more long-lasting snow cover can be assumed to have favoured P. pumila by providing a competitive advantage over other boreal and subalpine tree and shrub species in the region during the later part of the Holocene. These results, which are the first of their kind from Kamchatka, provide novel insight into the Holocene vegetational and climatic development in easternmost Asia, as well as long-term atmospheric circulation dynamics in Beringia.
Late Pleistocene-Holocene coastal development of islands off Vietnam
NASA Astrophysics Data System (ADS)
Korotky, A. M.; Razjigaeva, N. G.; Ganzey, L. A.; Volkov, V. G.; Grebennikova, T. A.; Bazarova, V. B.; Kovalukh, N. N.
Relief and deposits of Vietnam shelf islands (Tkhanlam, Kaoptyaotyai, Koto, Kaotkhaotyai, Dongkho, Fongwong, Timatao Re, Che, Mung, Tyam, Kondao, Baikan, Fukuok, Tkhotyu, Tkhom) were studied. In the Late Pleistocene-Holocene these areas were the islands during transgressions, when the continent was submerged. The islands were connected to the continent during regressions. Coastal relief and deposits indicate the mark of Riss-Wurm and some Middle-Late Holocene transgressions and regressions. Transgressions were recorded in 10, 4-6, 3-4, 2.5-3, 1.5-2 m terraces, elevated benches and elevated coral reefs. Deposits of transgressive phases of Middle-Late Holocene with sea level rises from 0.5 to 3 m were dated: 5060-6800, 3357-4100, 2170-2435, 900-1200 years B.P. Regressions were accompanied by intensive eolian activities, downslope processes and erosional downcut of river valleys.
Microfaunal analysis of late Quaternary deposits of the northern Bering Sea.
McDougall, K.
1982-01-01
Holocene microfaunal associations and distribution patterns define three inner-shelf (1-20m) biofacies in Norton Sound, northern Bering Sea. The Holocene facies relations are the basis for interpreting early Holocene and late Pleistocene environmental conditions in the NE Bering Sea area. Norton Sound cores provide evidence of two marine transgressions and a varying river input.-from Author
NASA Astrophysics Data System (ADS)
Turney, C. S. M.; Wilmshurst, J. M.; Jones, R. T.; Wood, J. R.; Palmer, J. G.; Hogg, A. G.; Fenwick, P.; Crowley, S. F.; Privat, K.; Thomas, Z.
2017-03-01
Late-twentieth century changes in the intensity and migration of Southern Hemisphere westerly winds have been implicated in spatially complex variability in atmospheric and ocean circulation, and ice-sheet dynamics, across the mid- to high-latitudes. A major uncertainty, however, is whether present day hemispheric-wide symmetrical airflow is representative of past behaviour. Here we report a multi-proxy study from Stewart Island and southern Fiordland, New Zealand (46-47°S) reconstructing Holocene changes at the northern limit of westerly airflow. Increased minerogenic input and a pronounced shift in cool-loving vegetation around 5500 years ago is consistent with the establishment of westerly airflow at this latitude in the southwest Pacific. In marked contrast, stronger winds are reported further south over the subantarctic Auckland (50°S) and Campbell (52°S) Islands from 8000 years ago. Intriguingly, reconstructions from the east Pacific suggest a weakening of core westerly airflow after 8500 years ago, but an expansion along the northern limits sometime after 5500 years ago. Our results suggest similar atmospheric circulation changes have been experienced in the Pacific since 5500 years ago, but indicate an expanded network of sites is needed to comprehensively test the driver(s) and impact(s) of Holocene mid-latitude westerly winds across the Southern Hemisphere.
Abrupt tropical climate change: past and present.
Thompson, Lonnie G; Mosley-Thompson, Ellen; Brecher, Henry; Davis, Mary; León, Blanca; Les, Don; Lin, Ping-Nan; Mashiotta, Tracy; Mountain, Keith
2006-07-11
Three lines of evidence for abrupt tropical climate change, both past and present, are presented. First, annually and decadally averaged delta(18)O and net mass-balance histories for the last 400 and 2,000 yr, respectively, demonstrate that the current warming at high elevations in the mid- to low latitudes is unprecedented for at least the last 2 millennia. Second, the continuing retreat of most mid- to low-latitude glaciers, many having persisted for thousands of years, signals a recent and abrupt change in the Earth's climate system. Finally, rooted, soft-bodied wetland plants, now exposed along the margins as the Quelccaya ice cap (Peru) retreats, have been radiocarbon dated and, when coupled with other widespread proxy evidence, provide strong evidence for an abrupt mid-Holocene climate event that marked the transition from early Holocene (pre-5,000-yr-B.P.) conditions to cooler, late Holocene (post-5,000-yr-B.P.) conditions. This abrupt event, approximately 5,200 yr ago, was widespread and spatially coherent through much of the tropics and was coincident with structural changes in several civilizations. These three lines of evidence argue that the present warming and associated glacier retreat are unprecedented in some areas for at least 5,200 yr. The ongoing global-scale, rapid retreat of mountain glaciers is not only contributing to global sea-level rise but also threatening freshwater supplies in many of the world's most populous regions.
NASA Astrophysics Data System (ADS)
Guo, Licheng; Xiong, Shangfa; Ding, Zhongli; Jin, Guiyun; Wu, Jiabin; Ye, Wei
2018-06-01
The mid-Holocene environmental transition was characterised by global cooling and the abrupt weakening of the Northern Hemisphere monsoon systems. It is generally considered the key driver of the collapse of several mid-Holocene agricultural societies, on a global scale. However, only a few previous studies have tried to verify the climatic origin of the collapse of these societies, using the compilation of spatiotemporal data at a large scale. Especially, the nature of mid-Holocene human-environment interactions in the climatically-sensitive margin of the East Asian summer monsoon front remains to be thoroughly understood. However, a systematic compilation of archaeological data at a regional scale can be used to verify the role the mid-Holocene environmental transition played in the collapse of late Neolithic cultures in China. Here, we present a regional compilation of Holocene records from sub-aerial sedimentary deposits, lake sediments, and archaeological sites in the deserts of NE China and the adjacent regions to explore human-environment interactions during the mid-Holocene. Comparison of the records of Holocene climate change with the evolution of archaeological sites reveals that the mid-Holocene environmental transition resulted in ecosystem degradation in the deserts of NE China, rendering these areas much less habitable. Faced with substantially increased environmental pressures, the late Neolithic inhabitants used several subsistence strategies to adapt to the environmental transition, including change in agricultural practices and ultimately migration. Overall, our results support the view that a widespread mid-Holocene drought destroyed the rain-fed agricultural and/or plant-based subsistence economies, ultimately contributing to the collapse of late Neolithic cultures in NE China.
Sensitivity of wetland hydrology to external climate forcing in central Florida
NASA Astrophysics Data System (ADS)
Lammertsma, Emmy I.; Donders, Timme H.; Pearce, Christof; Cremer, Holger; Gaiser, Evelyn E.; Wagner-Cremer, Friederike
2015-11-01
Available proxy records from the Florida peninsula give a varying view on hydrological changes during the late Holocene. Here we evaluate the consistency and sensitivity of local wetland records in relation to hydrological changes over the past 5 ka based on pollen and diatom proxies from peat cores in Highlands Hammock State Park, central Florida. Around 5 cal ka BP, a dynamic floodplain environment is present. Subsequently, a wetland forest establishes, followed by a change to persistent wet conditions between 2.5 and 2.0 ka. Long hydroperiods remain despite gradual succession and basin infilling with maximum wet conditions between 1.3 and 1.0 ka. The wet phase and subsequent strong drying over the last millennium, as indicated by shifts in both pollen and diatom assemblages, can be linked to the early Medieval Warm Period and Little Ice Age, respectively, driven by regionally higher sea-surface temperatures and a temporary northward migration of the Intertropical Convergence Zone. Changes during the 20th century are the result of constructions intended to protect the Highlands Hammock State Park from wildfires. The multiple cores and proxies allow distinguishing local and regional hydrological changes. The peat records reflect relatively subtle climatic changes that are not evident from regional pollen records from lakes.
NASA Astrophysics Data System (ADS)
Sarkar, Saswati; Prasad, Sushma; Wilkes, Heinz; Riedel, Nils; Stebich, Martina; Basavaiah, Nathani; Sachse, Dirk
2015-09-01
A better understanding of past variations of the Indian Summer Monsoon (ISM), that plays a vital role for the still largely agro-based economy in India, can lead to a better assessment of its potential impact under global climate change scenarios. However, our knowledge of spatiotemporal patterns of ISM strength is limited due to the lack of high-resolution, continental paleohydrological records. Here, we reconstruct centennial-scale hydrological variability during the Holocene associated to changes in the intensity of the ISM based on a record of lipid biomarker abundances and compound-specific stable isotopic composition of a 10 m long sediment core from saline-alkaline Lonar Lake, situated in the core 'monsoon zone' of central India. We identified three main periods of distinct hydrology during the Holocene in central India. The period between 10.1 and 6 cal ka BP was likely the wettest during the Holocene. Lower average chain length (ACL) index values (29.4-28.6) and negative δ13Cwax values (-34.8‰ to -27.8‰) of leaf wax n-alkanes indicate the dominance of woody C3 vegetation in the catchment, and negative δDwax values (concentration weighted average) (-171‰ to -147‰) suggest a wet period due to an intensified monsoon. After 6 cal ka BP, a gradual shift to less negative δ13Cwax values (particularly for the grass derived n-C31) and appearance of the triterpene lipid tetrahymanol, generally considered as a marker for salinity and water column stratification, mark the onset of drier conditions. At 5.1 cal ka BP an increasing flux of leaf wax n-alkanes along with the highest flux of tetrahymanol indicate a major lowering of the lake level. Between 4.8 and 4 cal ka BP, we find evidence for a transition to arid conditions, indicated by high and strongly variable tetrahymanol flux. In addition, a pronounced shift to less negative δ13Cwax values, in particular for n-C31 (-25.2‰ to -22.8‰), during this period indicates a change of dominant vegetation to C4 grasses. In agreement with other proxy data, such as deposition of evaporite minerals, we interpret this period to reflect the driest conditions in the region during the last 10.1 ka. This transition led to protracted late Holocene arid conditions after 4 ka with the presence of a permanent saline lake, supported by the sustained presence of tetrahymanol and more positive average δDwax values (-122‰ to -141‰). A late Holocene peak of cyanobacterial biomarker input at 1.3 cal ka BP might represent an event of lake eutrophication, possibly due to human impact and the onset of cattle/livestock farming in the catchment. A unique feature of our record is the presence of a distinct transitional period between 4.8 and 4 cal ka BP, which was characterized by some of the most negative δDwax values during the Holocene (up to -180‰), when all other proxy data indicate the driest conditions during the Holocene. These negative δDwax values can as such most reasonably be explained by a shift in moisture source area and/or pathways or rainfall seasonality during this transitional period. We hypothesize that orbital induced weakening of the summer solar insolation and associated reorganization of the general atmospheric circulation, as a possible southward displacement of the tropical rainbelt, led to an unstable hydroclimate in central India between 4.8 and 4 ka. Our findings shed light onto the sequence of changes during mean state changes of the monsoonal system, once an insolation driven threshold has been passed, and show that small changes in solar insolation can be associated with major hydroclimate changes on the continents, a scenario that may be relevant with respect to future changes in the ISM system.
NASA Astrophysics Data System (ADS)
Stansell, Nathan D.; Licciardi, Joseph M.; Rodbell, Donald T.; Mark, Bryan G.
2017-05-01
Evaluating the timing and style of past glacier fluctuations in the tropical Andes is important for our scientific understanding of global environmental change. Terrestrial cosmogenic nuclide ages on moraine boulders combined with 14C-dated clastic sediment records from alpine lakes document glacial variability in the Cordillera Blanca of Peru during the last 16 ka. Late Glacial ice extents culminated at the start of the Antarctic Cold Reversal and began retracting prior to the Younger Dryas. Multiple moraine crests dating to the early Holocene mark brief readvances or stillstands that punctuated overall retreat of the Queshque Valley glacier terminus during this interval. Glaciers were less extensive during the middle Holocene before readvancing during the latest Holocene. These records suggest that tropical Atlantic and Pacific ocean-atmospheric processes exerted temporally variable forcing of Late Glacial and Holocene glacial changes in the Peruvian Andes.
NASA Astrophysics Data System (ADS)
Dee, S.; Russell, J. M.; Morrill, C.
2017-12-01
Climate models predict Africa will warm by up to 5°C in the coming century. Reconstructions of African temperature since the Last Glacial Maximum (LGM) have made fundamental contributions to our understanding of past, present, and future climate and can help constrain predictions from general circulation models (GCMs). However, many of these reconstructions are based on proxies of lake temperature, so the confounding influences of lacustrine processes may complicate our interpretations of past changes in tropical climate. These proxy-specific uncertainties require robust methodology for data-model comparison. We develop a new proxy system model (PSM) for paleolimnology to facilitate data-model comparison and to fully characterize uncertainties in climate reconstructions. Output from GCMs are used to force the PSM to simulate lake temperature, hydrology, and associated proxy uncertainties. We compare reconstructed East African lake and air temperatures in individual records and in a stack of 9 lake records to those predicted by our PSM forced with Paleoclimate Model Intercomparison Project (PMIP3) simulations, focusing on the mid-Holocene (6 kyr BP). We additionally employ single-forcing transient climate simulations from TraCE (10 kyr to 4 kyr B.P. and historical), as well as 200-yr time slice simulations from CESM1.0 to run the lake PSM. We test the sensitivity of African climate change during the mid-Holocene to orbital, greenhouse gas, and ice-sheet forcing in single-forcing simulations, and investigate dynamical hypotheses for these changes. Reconstructions of tropical African temperature indicate 1-2ºC warming during the mid-Holocene relative to the present, similar to changes predicted in the coming decades. However, most climate models underestimate the warming observed in these paleoclimate data (Fig. 1, 6kyr B.P.). We investigate this discrepancy using the new lake PSM and climate model simulations, with attention to the (potentially non-stationary) relationship between lake surface temperature and air temperature. The data-model comparison helps partition the impacts of lake-specific processes such as energy balance, mixing, sedimentation and bioturbation. We provide new insight into the patterns, amplitudes, sensitivity, and mechanisms of African temperature change.
Liu, Yajing; Liu, W.; Peng, Z.; Xiao, Y.; Wei, G.; Sun, W.; He, J.; Liu, Gaisheng; Chou, C.-L.
2009-01-01
We used positive thermal ionization mass spectrometry (PTIMS) to generate high precision ??11B records in Porites corals of the mid-late Holocene from the South China Sea (SCS). The ??11B values of the Holocene corals vary significantly, ranging from 22.2??? to 25.5???. The paleo-pH records of the SCS, reconstructed from the ??11B data, were not stable as previously thought but show a gradual increase from the Holocene thermal optimal and a sharp decrease to modern values. The latter is likely caused by the large amount of anthropogenic CO2 emissions since the Industrial Revolution but variations of atmospheric pCO2 cannot explain the pH change of the SCS before the Industrial Revolution. We suggest that variations of monsoon intensity during the mid-late Holocene may have driven the sea surface pH increase from the mid to late Holocene. Results of this study indicate that the impact of anthropogenic atmospheric CO2 emissions may have reversed the natural pH trend in the SCS since the mid-Holocene. Such ocean pH records in the current interglacial period can help us better understand the physical and biological controls on ocean pH and possibly predict the long-term impact of climate change on future ocean acidification. ?? 2008 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Liu, Yi; Liu, Weiguo; Peng, Zicheng; Xiao, Yingkai; Wei, Gangjian; Sun, Weidong; He, Jianfeng; Liu, Guijian; Chou, Chen-Lin
2009-03-01
We used positive thermal ionization mass spectrometry (PTIMS) to generate high precision δ 11B records in Porites corals of the mid-late Holocene from the South China Sea (SCS). The δ 11B values of the Holocene corals vary significantly, ranging from 22.2‰ to 25.5‰. The paleo-pH records of the SCS, reconstructed from the δ 11B data, were not stable as previously thought but show a gradual increase from the Holocene thermal optimal and a sharp decrease to modern values. The latter is likely caused by the large amount of anthropogenic CO 2 emissions since the Industrial Revolution but variations of atmospheric pCO 2 cannot explain the pH change of the SCS before the Industrial Revolution. We suggest that variations of monsoon intensity during the mid-late Holocene may have driven the sea surface pH increase from the mid to late Holocene. Results of this study indicate that the impact of anthropogenic atmospheric CO 2 emissions may have reversed the natural pH trend in the SCS since the mid-Holocene. Such ocean pH records in the current interglacial period can help us better understand the physical and biological controls on ocean pH and possibly predict the long-term impact of climate change on future ocean acidification.
New tree-ring evidence for the Late Glacial period from the northern pre-Alps in eastern Switzerland
NASA Astrophysics Data System (ADS)
Reinig, Frederick; Nievergelt, Daniel; Esper, Jan; Friedrich, Michael; Helle, Gerhard; Hellmann, Lena; Kromer, Bernd; Morganti, Sandro; Pauly, Maren; Sookdeo, Adam; Tegel, Willy; Treydte, Kerstin; Verstege, Anne; Wacker, Lukas; Büntgen, Ulf
2018-04-01
The rate and magnitude of temperature variability at the transition from the Last Glacial Maximum into the early Holocene represents a natural analog to current and predicted climate change. A limited number of high-resolution proxy archives, however, challenges our understanding of environmental conditions during this period. Here, we present combined dendrochronological and radiocarbon evidence from 253 newly discovered subfossil pine stumps from Zurich, Switzerland. The individual trees reveal ages of 41-506 years and were growing between the Allerød and Preboreal (∼13‧900-11‧300 cal BP). Together with previously collected pines from this region, this world's best preserved Late Glacial forest substantially improves the earliest part of the absolutely dated European tree-ring width chronology between 11‧300 and 11‧900 cal BP. Radiocarbon measurements from 65 Zurich pines between ∼12‧320 and 13‧950 cal BP provide a perspective to prolong the continuous European tree-ring record by another ∼2000 years into the Late Glacial era. These data will also be relevant for pinpointing the Laacher See volcanic eruption (∼12‧900 cal BP) and two major Alpine earthquakes (∼13‧770 and ∼11‧600 cal BP). In summary, this study emphasizes the importance of dating precision and multi-proxy comparison to disentangle environmental signals from methodological noise, particularly during periods of high climate variability but low data availability, such as the Younger Dryas cold spell (∼11‧700 and 12‧900 cal BP).
Kuroshio variation near Taiwan during the past 6,000 years
NASA Astrophysics Data System (ADS)
Wei, K.; Lai, Y.; Lin, Y.; Shen, C.; Mii, H.
2013-12-01
The Holocene thermal optimum at about 6 ka is considered to be warmer and wetter than the present in northern subtropical regions, and the late Holocene is expected to show a generally cooling trend ever since, however, the exact pattern is not yet clear for the Taiwan region. New and published data of hydrological proxies of the Late Holocene collected from two marine sedimentary cores adjacent to Taiwan were compiled in an attempt to reconstruct hydrological conditions of the Kuroshio over the past 6000 years. Sea surface temperatures, salinities and potential densities were estimated from paired measurements of Mg/Ca ratio and δ18O of planktonic foraminfera Globigerinoides ruber. The SSTs from Core ORI715-21 (22.7°N, 121.5°E, water depth 760 m) varied between 26.0 and 29.0°C, showing three short cool intervals during 5.6 - 5.0, ~3,5 and 0.8-0.2 ka intercalated in generally warm late Holocene. Salinity shows a generally decreasing trend, decreasing particularly in the last 3000 years. Reconstructed water density follows mainly with salinity change, showing a clear decreasing trend over the past 3000 years. The SSTs from Core MD01-2403 (25.3°N, 123.2°E, water depth 1420 m) in the southern Okinawa Trough varied between 26.5 and 29.5°C, exhibiting a stable, mild warm period between 5.0 and 2.6 ka, The SSTs in 6.0 - 5.5 ka, as well as in 2.5-1.0 ka are relatively cooler than the rest of time in the late Holocene. The SSS shows a decreasing trend since 2.0 ka. The SSTs and SSSs reconstructed from the southern Okinawa site (MD01-2403) are in general higher than that from the southern site ORI-715-21 near Green Island, somewhat counter-intuitive. In viewing the high-speed flow of the Kuroshio, mixture pattern of waters and the life cycle length of G. ruber, we regard that the record of the southern site reflects sea-surface conditions of the tropical Pacific east of Luzon and that of the South China Sea, while the northern site record reflects the condition of the Kuroshio near Taiwan eastern coast. The hydrological gradients reflect the strength of the Upstream Kuroshio as well the degree to which it mixed with the South China Sea water masses. Three intervals, marked by strong negative S-N SST gradients, 5.6-5.1, 3.7-3.5 and 2.4-1.9 Ka, are interpreted as having strong winter monsoons and weak Upstream Kuroshio such that the Kuroshio intruded into SCS and formed prolonged Loop Currents, bringing out more cool and fresh surface sea waters. No systematic relationships can be found among the Upstream Kuroshio strength, Greenland atmospheric temperature (GISP II δ18O), Asian monsoon (Dongge cave carbonate δ18O) and ENSO activity (Moy et al.2002).
NASA Astrophysics Data System (ADS)
Ramos-Román, María J.; Jiménez-Moreno, Gonzalo; Camuera, Jon; García-Alix, Antonio; Anderson, R. Scott; Jiménez-Espejo, Francisco J.; Carrión, José S.
2018-01-01
Holocene centennial-scale paleoenvironmental variability has been described in a multiproxy analysis (i.e., lithology, geochemistry, macrofossil, and microfossil analyses) of a paleoecological record from the Padul Basin in Sierra Nevada, southern Iberian Peninsula. This sequence covers a relevant time interval hitherto unreported in the studies of the Padul sedimentary sequence. The ˜ 4700-year record has preserved proxies of climate variability, with vegetation, lake levels, and sedimentological change during the Holocene in one of the most unique and southernmost wetlands in Europe. The progressive middle and late Holocene trend toward arid conditions identified by numerous authors in the western Mediterranean region, mostly related to a decrease in summer insolation, is also documented in this record; here it is also superimposed by centennial-scale variability in humidity. In turn, this record shows centennial-scale climate oscillations in temperature that correlate with well-known climatic events during the late Holocene in the western Mediterranean region, synchronous with variability in solar and atmospheric dynamics. The multiproxy Padul record first shows a transition from a relatively humid middle Holocene in the western Mediterranean region to more aridity from ˜ 4700 to ˜ 2800 cal yr BP. A relatively warm and humid period occurred between ˜ 2600 and ˜ 1600 cal yr BP, coinciding with persistent negative North Atlantic Oscillation (NAO) conditions and the historic Iberian-Roman Humid Period. Enhanced arid conditions, co-occurring with overall positive NAO conditions and increasing solar activity, are observed between ˜ 1550 and ˜ 450 cal yr BP (˜ 400 to ˜ 1400 CE) and colder and warmer conditions occurred during the Dark Ages and Medieval Climate Anomaly (MCA), respectively. Slightly wetter conditions took place during the end of the MCA and the first part of the Little Ice Age, which could be related to a change towards negative NAO conditions and minima in solar activity. Time series analysis performed from local (Botryococcus and total organic carbon) and regional (Mediterranean forest) signals helped us determining the relationship between southern Iberian climate evolution, atmospheric and oceanic dynamics, and solar activity. Our multiproxy record shows little evidence of human impact in the area until ˜ 1550 cal yr BP, when evidence of agriculture and livestock grazing occurs. Therefore, climate is the main forcing mechanism controlling environmental change in the area until relatively recently.
Early-Holocene greening of the Afro-Asian dust belt changed sources of mineral dust in West Asia
NASA Astrophysics Data System (ADS)
Sharifi, Arash; Murphy, Lisa N.; Pourmand, Ali; Clement, Amy C.; Canuel, Elizabeth A.; Naderi Beni, Abdolmajid; Lahijani, Hamid A. K.; Delanghe, Doriane; Ahmady-Birgani, Hesam
2018-01-01
Production, transport and deposition of mineral dust have significant impacts on different components of the Earth systems through time and space. In modern times, dust plumes are associated with their source region(s) using satellite and land-based measurements and trajectory analysis of air masses through time. Reconstruction of past changes in the sources of mineral dust as related to changes in climate, however, must rely on the knowledge of the geochemical and mineralogical composition of modern and paleo-dust, and that of their potential source origins. In this contribution, we present a 13,000-yr record of variations in radiogenic Sr-Nd-Hf isotopes and Rare Earth Element (REE) anomalies as well as dust grain size from an ombrotrophic (rain fed) peat core in NW Iran as proxies of past changes in the sources of dust over the interior of West Asia. Our data shows that although the grain size of dust varies in a narrow range through the entire record, the geochemical fingerprint of dust particles deposited during the low-flux, early Holocene period (11,700-6,000 yr BP) is distinctly different from aerosols deposited during high dust flux periods of the Younger Dryas and the mid-late Holocene (6,000-present). Our findings indicate that the composition of mineral dust deposited at the study site changed as a function of prevailing atmospheric circulation regimes and land exposure throughout the last deglacial period and the Holocene. Simulations of atmospheric circulation over the region show the Northern Hemisphere Summer Westerly Jet was displaced poleward across the study area during the early Holocene when Northern Hemisphere insolation was higher due to the Earth's orbital configuration. This shift, coupled with lower dust emissions simulated based on greening of the Afro-Asian Dust Belt during the early Holocene likely led to potential sources in Central Asia dominating dust export to West Asia during this period. In contrast, the dominant western and southwest Asian and Eastern African sources have prevailed during the mid-Holocene to modern times.
No evidence for planetary influence on solar activity 330 000 years ago
NASA Astrophysics Data System (ADS)
Cauquoin, A.; Raisbeck, G. M.; Jouzel, J.; Bard, E.
2014-01-01
Context. Abreu et al. (2012, A&A. 548, A88) have recently compared the periodicities in a 14C - 10Be proxy record of solar variability during the Holocene and found a strong similarity with the periodicities predicted on the basis of a model of the time-dependent torque exerted by the planets on the sun's tachocline. If verified, this effect would represent a dramatic advance not only in the basic understanding of the Sun's variable activity, but also in the potential influence of this variability on the Earth's climate. Cameron and Schussler (2013, A&A. 557, A83) have seriously criticized the statistical treatment used by Abreu et al. to test the significance of the coincidences between the periodicities of their model with the Holocene proxy record. Aims: If the Abreu et al. hypothesis is correct, it should be possible to find the same periodicities in the records of cosmogenic nuclides at earlier times. Methods: We present here a high-resolution record of 10Be in the EPICA Dome C (EDC) ice core from Antarctica during the Marine Interglacial Stage 9.3 (MIS 9.3), 325-336 kyr ago, and investigate its spectral properties. Results: We find very limited similarity with the periodicities seen in the proxy record of solar variability during the Holocene, or with that of the model of Abreu et al. Conclusions: We find no support for the hypothesis of a planetary influence on solar activity, and raise the question of whether the centennial periodicities of solar activity observed during the Holocene are representative of solar activity variability in general.
NASA Astrophysics Data System (ADS)
Jones, Rachel A.; Williams, John W.; Jackson, Stephen T.
2017-08-01
The timing and drivers of vegetation dynamics and formation of no-analog plant communities during the last deglaciation in the unglaciated southeastern US are poorly understood. We present a multi-proxy record spanning the past 19,800 years from Cupola Pond in the Ozarks Mountains, consisting of replicate high-resolution pollen records, 25 AMS radiocarbon dates, and macrofossil, charcoal, and coprophilous spore analyses. Full-glacial Pinus and Picea forests gave way to no-analog vegetation after 17,400 yr BP, followed by development of Quercus-dominated Holocene forests, with late Holocene rises in Pinus and Nyssa. Vegetation transitions, replicated in different cores, are closely linked to hemispheric climate events. Rising Quercus abundances coincide with increasing Northern Hemisphere temperatures and CO2 at 17,500 yr BP, declining Pinus and Picea at 14,500 yr BP are near the Bølling-Allerød onset, and rapid decline of Fraxinus and rise of Ostrya/Carpinus occur 12,700 yr BP during the Younger Dryas. The Cupola no-analog vegetation record is unusual for its early initiation (17,000 yr BP) and for its three vegetation zones, representing distinct rises of Fraxinus and Ostrya/Carpinus. Sporormiella was absent and sedimentary charcoal abundances were low throughout, suggesting that fire and megaherbivores were not locally important agents of disturbance and turnover. The Cupola record thus highlights the complexity of the late-glacial no-analog communities and suggests direct climatic regulation of their formation and disassembly.
NASA Astrophysics Data System (ADS)
Huang, Chao; Wei, Gangjian; Li, Wuxian; Liu, Ying
2018-04-01
This paper presents relatively high-resolution geochemical records spanning the past 4000 cal yr BP obtained from the lacustrine sediments of Poyang Lake in central China. The variations in the intensity of the East Asian summer monsoon (EASM) are traced using the K/Na, Ti/Na, Al/K, kaolinite/illite and clay/feldspar ratios, together with the chemical index of alteration (CIA), as indicators of chemical weathering. During the last 4000 years, the proxy records of chemical weathering from Poyang Lake exhibit an overall enhanced trend, consistent with regional hydrological changes in previous independent records. Further comparisons and analyses demonstrate that regional moisture variations in central China is inversely correlated with the EASM intensity, with weak EASM generating high precipitation in central China. Our data reveal three intervals of dramatically dry climatic conditions (i.e., ca. 4000-3200 cal yr BP, ca. 2800-2400 cal yr BP, and ca. 500-200 cal yr BP). A period of weak chemical weathering, related to cold and dry climatic conditions, occurred during the Little Ice Age (LIA), whereas more intense chemical weathering, reflecting warm and humid climatic conditions, was recorded during the Medieval Warm Period (MWP). Besides, an intensification of chemical weathering in Poyang Lake during the late Holocene agrees well with strong ENSO activity, suggesting that moisture variations in central China may be predominantly driven by ENSO variability.
NASA Astrophysics Data System (ADS)
Hou, J.; Russell, J. M.; Huang, Y.
2007-12-01
The tropics play a very important role in global climate variability, yet the mechanisms behind the tropical climate variation remain poorly understood. Here, we present a high-resolution, well-dated record from Sacred Lake, Kenya, East Africa. We measured D/H ratios of botryococcenes, a class of highly specific biomarkers produced by freshwater algae ( Botrycoccus braunii) in a sediment core obtained from this open lake. Our main goal is to examine changes in East African rainfall amount and moisture source during the past 18kyr BP. During the late Pleistocene and late Holocene, the hydrogen isotope records track local hydrological variations inferred from numerous lake level and pollen records from the region. However, during the early to mid-Holocene (10-5ka cal yr BP), the D/H values from Sacred Lake were as much as 90 per mil heavier than during the late Pleistocene and late Holocene. If the "amount effect" is the main control on the isotopic compositions of rainfall during the early to mid Holocene, Our data would suggest drier conditions, which is inconsistent with the "African Humid Period" inferred by numerous records of the mid-Holocene. We propose that the high isotopic ratios in precipitation in East Africa during the early to mid-Holocene is due to an eastward shift in the large-scale atmospheric circulation of the tropics. In East Africa, this shift involves a major increase in moisture source from the Atlantic Ocean relative to Indian Ocean. Heavier isotope ratios of precipitation originated from Atlantic Ocean result from the intensive convection and recycling of water vapor over the Congo Basin, as opposed to Indian moisture that traverses dry land masses and losses moisture rapidly. In comparison to the late Holocene, the early to mid-Holocene is characterized by relatively northerly positioning of the ITCZ and intense monsoon systems as well as weak ENSO. These factors combine to shift the walker circulation eastward, allowing the Atlantic moisture to penetrate farther into eastern Africa. Our theory is supported by climate model results, paleoclimate records from the Kilimanjaro ice core and Cariaco Basin, and other records from the Indian and Pacific Oceans. For example, the ice core in Kilimanjaro, East Africa suggest that the oxygen isotope ratios of precipitation were ~ 8 per mil higher during early to mid-Holocene than the late Holocene, which is consistent with our results.
NASA Astrophysics Data System (ADS)
Saini, Jeetendra; Guenther, Franziska; Mäusbacher, Roland; Gleixner, Gerd
2015-04-01
The Tibetan Plateau is one of the most extensive and sensitive region of elevated topography affecting global climate. The interplay between the Asian summer monsoon and the westerlies greatly influences the lake systems at the Tibetan Plateau. Despite a considerable number of research efforts in last decade, possible environmental reactions to change in monsoon dynamics are still not well understood. Here we present results from a sediment core of lake Donggi Cona, which dates back to late glacial period. Distinct organic geochemical proxies and stable isotopes are used to study the paleoenvironmental and hydrological changes in late glacial and Holocene period. Sedimentary n-alkanes of lake Donggi Cona are used as a proxy for paleoclimatic and monsoonal reconstruction. The hydrogen (δD) and carbon (δ13C) isotopes of n-alkanes are used as proxy for hydrological and phytoplankton productivity, respectively . Qualitative and quantitative analysis were performed for n-alkanes over the sediment core. δD proxy for sedimentary n-alkanes is used to infer lake water and rainfall signal. δD of (n-alkane C23) records the signal of the lake water, whereas δD of (n-alkane C29) record the precipitation signal, hence act as an appropriate proxy to track Asian monsoon. Long chain n-alkanes dominate over the sediment core while unsaturated mid chain n-alkenes have high abundance in some samples. From 18.4-13.8 cal ka BP, sample shows low organic productivity due to cold and arid climate. After 13.8-11.8 cal ka BP, slight increase in phytoplankton productivity indicate onset of weaker monsoon. From 11.8-6.8 cal ka BP, high content of organic matter indicates rise in productivity and strong monsoon with high inflow. After 6.8 cal ka BP, decrease in phytoplankton productivity indicating cooler climate and show terrestrial signal. Our results provide new insight into the variability of east Asian monsoon and changes in phytoplankton productivity for last 18.4 ka. Keywords: n-alkanes; n-alkane C23; n-alkane C29; hydrogen isotopes (δD); carbon isotopes (δ13C); east Asian monsoon; precipitation;
Bayesian Statistical Analysis of Historical and Late Holocene Rates of Sea-Level Change
NASA Astrophysics Data System (ADS)
Cahill, Niamh; Parnell, Andrew; Kemp, Andrew; Horton, Benjamin
2014-05-01
A fundamental concern associated with climate change is the rate at which sea levels are rising. Studies of past sea level (particularly beyond the instrumental data range) allow modern sea-level rise to be placed in a more complete context. Considering this, we perform a Bayesian statistical analysis on historical and late Holocene rates of sea-level change. The data that form the input to the statistical model are tide-gauge measurements and proxy reconstructions from cores of coastal sediment. The aims are to estimate rates of sea-level rise, to determine when modern rates of sea-level rise began and to observe how these rates have been changing over time. Many of the current methods for doing this use simple linear regression to estimate rates. This is often inappropriate as it is too rigid and it can ignore uncertainties that arise as part of the data collection exercise. This can lead to over confidence in the sea-level trends being characterized. The proposed Bayesian model places a Gaussian process prior on the rate process (i.e. the process that determines how rates of sea-level are changing over time). The likelihood of the observed data is the integral of this process. When dealing with proxy reconstructions, this is set in an errors-in-variables framework so as to take account of age uncertainty. It is also necessary, in this case, for the model to account for glacio-isostatic adjustment, which introduces a covariance between individual age and sea-level observations. This method provides a flexible fit and it allows for the direct estimation of the rate process with full consideration of all sources of uncertainty. Analysis of tide-gauge datasets and proxy reconstructions in this way means that changing rates of sea level can be estimated more comprehensively and accurately than previously possible. The model captures the continuous and dynamic evolution of sea-level change and results show that not only are modern sea levels rising but that the rates of rise are continuously increasing. Analysis of the a global tide-gauge record (Church and White, 2011) indicated that the rate of sea-level rise increased continuously since 1880AD and is currently 2.57mm/yr (95% credible interval of 1.71 to 4.35mm/yr). Application of the model a proxy reconstruction from North Carolina (Kemp et al., 2011) indicated that the mean rate of rise in this locality since the middle of the 19th century (current rate of 2.66 mm/yr with a 95% credible interval of 1.29 to 4.59mm/yr) is in agreement with results from the tide gauge analysis and is unprecedented in at least the last 2000 years.
Holocene extinction dynamics of Equus hydruntinus, a late-surviving European megafaunal mammal
NASA Astrophysics Data System (ADS)
Crees, Jennifer J.; Turvey, Samuel T.
2014-05-01
The European wild ass (Equus hydruntinus) is a globally extinct Eurasian equid. This species was widespread in Europe and southwest Asia during the Late Pleistocene, but its distribution became restricted to southern Europe and adjacent geographic regions in the Holocene. Previous research on E. hydruntinus has focused predominantly on its taxonomy and Late Pleistocene distribution. However, its Holocene distribution and extinction remain poorly understood, despite the fact that the European wild ass represents one of Europe's very few globally extinct Holocene megafaunal mammal species. We summarise all available Holocene zooarchaeological spatio-temporal occurrence data for the species, and analyse patterns of its distribution and extinction using point pattern analysis (kernel density estimation and Clark Evans index) and optimal linear estimation. We demonstrate that the geographic range of E. hydruntinus became highly fragmented into discrete subpopulations during the Holocene, which were associated with separate regions of open habitat and which became progressively extinct between the Neolithic and Iron Age. These data challenge previous suggestions of the late survival of E. hydruntinus into the medieval period in Spain, and instead suggest that postglacial climate-driven vegetational changes were a primary factor responsible for extinction of the species, driving isolation of small remnant subpopulations that may have been increasingly vulnerable to human exploitation. This study contributes to a more nuanced understanding of Late Quaternary species extinctions in Eurasia, suggesting that they were temporally staggered and distinct in their respective extinction trajectories.
NASA Astrophysics Data System (ADS)
Pendea, Ionel Florin; Ponomareva, Vera; Bourgeois, Joanne; Zubrow, Ezra B. W.; Portnyagin, Maxim; Ponkratova, Irina; Harmsen, Hans; Korosec, Gregory
2017-02-01
We used a new sedimentary record from a small kettle wetland to reconstruct the Late Glacial and Holocene vegetation and fire history of the Krutoberegovo-Ust Kamchatsk region in eastern Kamchatka Peninsula (Russia). Pollen and charcoal data suggest that the Late Glacial landscape was dominated by a relatively fire-prone Larix forest-tundra during the Greenland Interstadial complex (GI 1) and a subarctic steppe during the Younger Dryas (GS1). The onset of the Holocene is marked by the reappearance of trees (mainly Alnus incana) within a fern and shrub dominated landscape. The Holocene Thermal Maximum (HTM) features shifting vegetational communities dominated by Alnus shrubs, diverse forb species, and locally abundant aquatic plants. The HTM is further defined by the first appearance of stone birch forests (Betula ermanii) - Kamchatka's most abundant modern tree species. The Late Holocene is marked by shifts in forest dynamics and forest-graminoid ratio and the appearance of new non-arboreal taxa such as bayberry (Myrica) and meadow rue (Filipendula). Kamchatka is one of Earth's most active volcanic regions. During the Late Glacial and Holocene, Kamchatka's volcanoes spread large quantities of tephra over the study region. Thirty-four tephra falls have been identified at the site. The events represented by most of these tephra falls have not left evidence of major impacts on the vegetation although some of the thicker tephras caused expansion of grasses (Poaceae) and, at least in one case, forest die-out and increased fire activity.
NASA Astrophysics Data System (ADS)
Axford, Y.; Losee, S.; Briner, J. P.; Francis, D.; Langdon, P. G.; Walker, I.
2011-12-01
Paleoclimate proxy data can help reduce uncertainties regarding how the Greenland Ice Sheet, and thus global sea level, will respond to future climate change. Studies of terrestrial deposits along Greenland's margins offer opportunities to reconstruct both past temperature changes and the associated changes in Greenland Ice Sheet extent, thus empirically characterizing the ice sheet's response to temperature change. Here we present Holocene paleoclimate reconstructions developed from sediment records of five lakes along the western ice sheet margin, near Jakobshavn Isbræ and Disko Bugt. Insect (Chironomidae, or non-biting midge) remains from North Lake provide quantitative estimates of summer temperatures over the past ca. 7500 years at multi-centennial resolution, and changes in sediment composition at all five lakes offer evidence for glacier fluctuations, changes in lake productivity, and other environmental changes throughout the Holocene. Aims of this study include quantification of warmth in the early to mid Holocene, when summer solar insolation forcing exceeded present-day values at northern latitudes and the local Greenland Ice Sheet margin receded inboard of its present position, and the magnitude of subsequent Neoglacial and Little Ice Age cooling that drove ice sheet expansion. We find that the Jakobshavn Isbrae region experienced the warmest temperatures of the Holocene (with summers 2 to 3.5 degrees C warmer than present) between ~6000 and 4000 years ago. Neoglacial cooling began rather abruptly ~4000 years ago and intensified 3000 years ago. Our proxy data suggest that the coldest summers of the Holocene occurred during the 18th and 19th centuries in the Jakobshavn region. These results agree well with previous glacial geologic studies reconstructing local ice margin positions through the Holocene. Such reconstructions of paleoclimate and past ice sheet extent provide targets for testing and improving ice sheet models.
NASA Astrophysics Data System (ADS)
D'Andrea, W. J.; Balascio, N. L.; Bradley, R. S.; Bakke, J.; Gjerde, M.; Kaufman, D. S.; Briner, J. P.; von Gunten, L.
2014-12-01
Generating continuous, accurate and quantitative Holocene temperature estimates from the Arctic is an ongoing challenge. In many Arctic regions, tree ring-based approaches cannot be used and lake sediments provide the most valuable repositories for extracting paleotemperature information. Advances in lacustrine alkenone paleothermometry now allow for quantitative reconstruction of lake-water temperature based on the UK37 values of sedimentary alkenones. In addition, a recent study demonstrated the efficacy of non-destructive scanning reflectance spectroscopy in the visible range (VIS-RS) for high-resolution quantitative temperature reconstruction from arctic lake sediments1. In this presentation, I will report a new UK37-based temperature reconstruction and a scanning VIS-RS record (using the RABD660;670 index as a measure of sedimentary chlorin content) from Kulusuk Lake in southeastern Greenland (65.6°N, 37.1°W). The UK37 record reveals a ~3°C increase in summer lake water temperatures between ~10ka and ~7ka followed by sustained warmth until ~4ka and a gradual (~3°C) cooling until ~400 yr BP. The strong correlation between UK37 and RABD660;670 measured in the same sediment core provides further evidence that in arctic lakes where temperature regulates primary productivity, and thereby sedimentary chlorin content, these proxies can be combined to develop high-resolution quantitative temperature records. The Holocene temperature history of Kulusuk Lake determined using this approach corresponds to changes in the size of the glaciers adjacent to the lake, as inferred from sediment minerogenic properties measured with scanning XRF. Glaciers retreated during early Holocene warming, likely disappeared during the period of mid-Holocene warmth, and advanced after 4ka. I will also discuss new UK37 and RABD660;670 reconstructions from northwestern Svalbard and the central Brooks Range of Alaska within the framework of published regional temperature reconstructions and model simulations of Holocene temperature around the Arctic. 1. von Gunten, L., D'Andrea, W.J., Bradley, R.S. and Huang, Y., 2012, Proxy-to-proxy calibration: Increasing the temporal resolution of quantitative climate reconstructions. Scientific Reports, v. 2, 609. doi: 10:1038/srep00609.
Middle Holocene rapid environmental changes and human adaptation in Greece
NASA Astrophysics Data System (ADS)
Lespez, Laurent; Glais, Arthur; Lopez-Saez, José-Antonio; Le Drezen, Yann; Tsirtsoni, Zoï; Davidson, Robert; Biree, Laetitia; Malamidou, Dimitra
2016-03-01
Numerous researchers discuss of the collapse of civilizations in response to abrupt climate change in the Mediterranean region. The period between 6500 and 5000 cal yr BP is one of the least studied episodes of rapid climate change at the end of the Late Neolithic. This period is characterized by a dramatic decline in settlement and a cultural break in the Balkans. High-resolution paleoenvironmental proxy data obtained in the Lower Angitis Valley enables an examination of the societal responses to rapid climatic change in Greece. Development of a lasting fluvio-lacustrine environment followed by enhanced fluvial activity is evident from 6000 cal yr BP. Paleoecological data show a succession of dry events at 5800-5700, 5450 and 5000-4900 cal yr BP. These events correspond to incursion of cold air masses to the eastern Mediterranean, confirming the climatic instability of the middle Holocene climate transition. Two periods with farming and pastural activities (6300-5600 and 5100-4700 cal BP) are evident. The intervening period is marked by environmental changes, but the continuous occurrence of anthropogenic taxa suggests the persistence of human activities despite the absence of archaeological evidence. The environmental factors alone were not sufficient to trigger the observed societal changes.
NASA Astrophysics Data System (ADS)
Belt, Simon T.; Vare, Lindsay L.; Massé, Guillaume; Manners, Hayley R.; Price, John C.; MacLachlan, Suzanne E.; Andrews, John T.; Schmidt, Sabine
2010-12-01
A 7000 year spring sea ice record for Victoria Strait (ARC-4) and Dease Strait (ARC-5) in the Canadian Arctic Archipelago (CAA) has been determined by quantification of the sea ice diatom-derived biomarker IP 25 in two marine sediment piston cores obtained in 2005. The chronologies of the ARC-4 and ARC-5 cores were determined using a combination of 14C AMS dates obtained from macrobenthic fossils and magnetic susceptibility measurements. The ages of the tops of the piston cores were estimated by matching chemical and physical parameters with those obtained from corresponding box cores. These analyses revealed that, while the top of the ARC-4 piston core was estimated to be essentially modern (ca. 60 cal yr BP), a few hundred years of sediment appeared to be absent from the ARC-5 piston core. Downcore changes to IP 25 fluxes for both cores were interpreted in terms of variations in spring sea ice occurrence, and correlations between the individual IP 25 flux profiles for Victoria Strait, Dease Strait and Barrow Strait (reported previously) were shown to be statistically significant at both 50 and 100-year resolutions. The IP 25 data indicate lower spring sea ice occurrences during the early part of the record (ca. 7.0-3.0 cal kyr BP) and for parts of the late Holocene (ca. 1.5-0.8 cal kyr BP), especially for the two lower latitude study locations. In contrast, higher spring sea ice occurrences existed during ca. 3.0-1.5 cal kyr BP and after ca. 800 cal yr BP. The observation of, consecutively, lower and higher spring sea ice occurrence during two periods of the late Holocene, coincides broadly with the Medieval Warm Period and Little Ice Age epochs, respectively. The IP 25 data are complemented by particle size and mineralogical data, although these may alternatively reflect changes in sea level at the study sites. The IP 25 data are also compared to previous proxy-based determinations of palaeo sea ice and palaeoclimate for the CAA, including those based on bowhead whale remains and dinocyst assemblages. The spatial consistency in the proxy data which, most notably, indicates an increase in spring sea ice occurrence around 3 cal kyr BP, provides a potentially useful benchmark for the termination of the Holocene Thermal Maximum for the central CAA.
NASA Astrophysics Data System (ADS)
Schweinsberg, A.; Licciardi, J. M.; Rodbell, D. T.; Stansell, N.
2013-12-01
Records of past fluctuations in climatically sensitive tropical glaciers are among the best indicators of regional paleoclimatic trends and forcings. However, continuous sediment records in this region remain limited, particularly during the Holocene. Here we present the first continuous records of glacier activity in the Cordillera Vilcabamba (13°20'S) of southern Peru from lake and bog sediment cores in stratigraphic contact with 10Be-dated moraines. Completed analyses include sediment lithostratigraphy, magnetic susceptibility, and biogenic silica, in conjunction with AMS radiocarbon dates on charcoal. Carbon measurements, bulk density, and bulk sedimentation rates are used to derive a record of clastic sediment flux that serves as a proxy indicator of former glacier activity. Visually distinct sedimentological variations, magnetic susceptibility peaks, and radiocarbon dates were correlated among adjacent cores to construct one composite record representative of each coring site. Three composite cores are presented: two from the Rio Blanco valley and one from the Yanama valley. Sediment records from these two glaciated valleys suggest a series of environmental changes during the last ~12,000 calendar years BP. Clastic sediment flux trends are broadly consistent with published evidence that the early to middle Holocene was relatively warm and arid in the southern Peruvian Andes. An episode of high clastic flux in the late Holocene may reflect enhanced glacial activity in response to the onset of cooler and wetter conditions. A prominent peak in magnetic susceptibility at 1660 cal yr BP is present in all composite cores and serves as a chronostratigraphic marker. In addition, our new basal radiocarbon ages place limits on the cosmogenic 10Be production rate in the high Andes, suggesting the cosmogenic 10Be production rate is considerably lower than previously published estimates.
Zhang, Wenxiang; Ming, Qingzhong; Shi, Zhengtao; Chen, Guangjie; Niu, Jie; Lei, Guoliang; Chang, Fengqin; Zhang, Hucai
2014-01-01
Sediments from Xinyun Lake in central Yunnan, southwest China, provide a record of environmental history since the Holocene. With the application of multi-proxy indicators (total organic carbon (TOC), total nitrogen (TN), δ13C and δ15N isotopes, C/N ratio, grain size, magnetic susceptibility (MS) and CaCO3 content), as well as accelerator mass spectrometry (AMS) 14C datings, four major climatic stages during the Holocene have been identified in Xingyun's catchment. A marked increase in lacustrine palaeoproductivity occurred from 11.06 to 9.98 cal. ka BP, which likely resulted from an enhanced Asian southwest monsoon and warm-humid climate. Between 9.98 and 5.93 cal. ka BP, a gradually increased lake level might have reached the optimum water depth, causing a marked decline in coverage by aquatic plants and lake productivity of the lake. This was caused by strong Asian southwest monsoon, and coincided with the global Holocene Optimum. During the period of 5.60-1.35 cal. ka BP, it resulted in a warm and dry climate at this stage, which is comparable to the aridification of India during the mid- and late Holocene. The intensifying human activity and land-use in the lake catchment since the early Tang Dynasty (∼1.35 cal. ka BP) were associated with the ancient Dian culture within Xingyun's catchment. The extensive deforestation and development of agriculture in the lake catchment caused heavy soil loss. Our study clearly shows that long-term human activities and land-use change have strongly impacted the evolution of the lake environment and therefore modulated the sediment records of the regional climate in central Yunnan for more than one thousand years.
Holocene vegetation changes through Lac Ledro sediments (Trentino, Italy).
NASA Astrophysics Data System (ADS)
Joannin, Sebastien; Vannière, Boris; Galop, Didier; Magny, Michel; Gilli, Adrian; Chapron, Emmanuel; Wirth, Stéfanie; Anselmetti, Flavio; Desmet, Marc
2010-05-01
Lake Ledro is part of the French program ANR LAMA (coordinators: M. Magny and N. Combourieu Nebout) which aims to link Holocene paleoenvironmental changes along a north-south transect in Italy. Lake Ledro (652 m a.s.l.; Trentino, north-eastern Italy) is the northward component of the transect. It is located on the southern slope of the Alps and its catchment area covers 131 km2 with mountains culminating at 1500-2000 m. A multi-proxy approach based on biotic and abiotic indicators (lake-level, palynology, geochemistry and geophysic) was developed from deep and littoral cores, including sediment sequences in Early and Middle Bronze Age lake-shore archaeological sites. We aim reconstructing paleoenvironmental changes resulting from both climate and anthropic influences trough the entire Holocene. A deep master core was built after extracting twin cores from a non disturbed sediment zone recognised by seismic-reflexion investigations. The age-depth model is based on 13 AMS 14C ages measured on terrestrial plant macrofossils and the mean temporal resolution for analyses is ca 60 years. Palynological study shows the usual vegetation succession for the southern slope of the Alps. During the first part of the Holocene, abrupt changes are observed in pollen assemblages in relation to changes in other proxies (XRF and Magnetic Susceptibility) and correlate with cold events associated to the deglaciation in the North-Atlantic area. Cool episodes corresponding to the PreBoreal Oscillation (ca 11.3 ka cal BP) and 8.2 ka event are respectively characterized by stopping afforestation and a strong development of Abies in the local ecosystem. During the second part of the Holocene, two declines of arboreal pollen abundance are observed in relation with occurrences in both cereal and anthropic pollen indicators. These two phases are confirmed by increase in soil erosion as indicated by abiotic proxies. They give evidence of two successive steps for human settlement (Early-Middle Bronze Age and Iron Age) separated by forest development. In addition, XRF data allow two successive distinct palaeohydrological periods to be recognized into the Holocene. Finally, comparison between littoral and deep cores reinforces our interpretation and helps to disentangle climate and anthropic influences on the Holocene environment in the Central Mediterranean region.
2005-09-01
paleoceanographic and terrestrial climate proxies . Greenland ice cores, in particular, provide evidence of large amplitude, very rapid climate change during...received the most attention because it is the largest Holocene excursion in the GISP2 810 record [Alley et al., 1997]. Multiple proxies in Greenland ice...latitude North Atlantic foraminiferal-based proxies such as modem analogue technique [Marchal et al., 2002; Risebrobakken et al., 2003], but
NASA Astrophysics Data System (ADS)
Gu, Fang; Zonneveld, Karin A. F.; Chiessi, Cristiano M.; Arz, Helge W.; Pätzold, Jürgen; Behling, Hermann
2017-09-01
Long-term changes in vegetation and climate of southern Brazil, as well as ocean dynamics of the adjacent South Atlantic, were studied by analyses of pollen, spores and organic-walled dinoflagellate cysts (dinocysts) in marine sediment core GeoB2107-3 collected offshore southern Brazil covering the last 73.5 cal kyr BP. The pollen record indicates that grasslands were much more frequent in the landscapes of southern Brazil during the last glacial period if compared to the late Holocene, reflecting relatively colder and/or less humid climatic conditions. Patches of forest occurred in the lowlands and probably also on the exposed continental shelf that was mainly covered by salt marshes. Interestingly, drought-susceptible Araucaria trees were frequent in the highlands (with a similar abundance as during the late Holocene) until 65 cal kyr BP, but were rare during the following glacial period. Atlantic rainforest was present in the northern lowlands of southern Brazil during the recorded last glacial period, but was strongly reduced from 38.5 until 13.0 cal kyr BP. The reduction was probably controlled by colder and/or less humid climatic conditions. Atlantic rainforest expanded to the south since the Lateglacial period, while Araucaria forests advanced in the highlands only during the late Holocene. Dinocysts data indicate that the Brazil Current (BC) with its warm, salty and nutrient-poor waters influenced the study area throughout the investigated period. However, variations in the proportion of dinocyst taxa indicating an eutrophic environment reflect the input of nutrients transported mainly by the Brazilian Coastal Current (BCC) and partly discharged by the Rio Itajaí (the major river closest to the core site). This was strongly related to changes in sea level. A stronger influence of the BCC with nutrient rich waters occurred during Marine Isotope Stage (MIS) 4 and in particular during the late MIS 3 and MIS 2 under low sea level. Evidence of Nothofagus pollen grains from the southern Andes during late MIS 3 and MIS 2 suggests an efficient transport by the southern westerlies and Argentinean rivers, then by the Malvinas Current and finally by the BCC to the study site. Major changes in the pollen/spore and dinocyst assemblages occur with similar pacing, indicating strongly interlinked continental and marine environmental changes. Proxy comparisons suggest that the changes were driven by similar overarching factors, of which the most important was orbital obliquity.
NASA Astrophysics Data System (ADS)
Kirby, M.; Patterson, W. P.; Lachniet, M. S.; Anderson, M.; Noblet, J. A.
2017-12-01
Records of past climate inform on the natural range and mechanisms of climate change. In the arid Pacific southwest United States (pswUS), there exist a variety of Holocene records that infer past winter conditions (moisture and/or temperature). Holocene records of summer climate, however, are rare excepting short-lived (<500-1000 yrs) tree ring PDSIs and some pollen-inferred temperature reconstructions. As climate changes due to anthropogenic forcing, the severity of drought is expected to increase in the already water-stressed pswUS. Hot droughts are of considerable concern as summer temperatures rise. As a result, understanding how summer conditions changed in the past is critical to understanding future predictions under varied climate forcings. Here, we present a 9800 year delta-18O(calcite) record from Lake Elsinore, CA. This isotope record is interpreted to reflect late-spring to summer conditions, especially evaporation. Modern water isotope data support this interpretation. Our results reveal a three-part Holocene consisting of a highly evaporative early Holocene, a cooler mid-Holocene, and evaporative late Holocene. Coupled with an inferred winter wetness (run-off) record from Kirby et al. (2010), we estimate the severity of centennial scale Holocene dryness (i.e. dry winters plus hot summers = severe drought). The most severe droughts occur in the early Holocene, decline in the mid-Holocene, and return in the late Holocene. An independently dated isotope record from Lake Elsinore's littoral zone (Kirby et al. 2004) shows similar changes providing confidence in our longer record. Various forcing mechanisms are examined to explain the Elsinore summer record including insolation, Pacific SSTs, and trace gas radiative forcing.
Multiproxy evidence of Holocene climate variability from estuarine sediments, eastern North America
Cronin, T. M.; Thunell, R.; Dwyer, G.S.; Saenger, C.; Mann, M.E.; Vann, C.; Seal, R.R.
2005-01-01
We reconstructed paleoclimate patterns from oxygen and carbon isotope records from the fossil estuarine benthic foraminifera Elphidium and Mg/ Ca ratios from the ostracode Loxoconcha from sediment cores from Chesapeake Bay to examine the Holocene evolution of North Atlantic Oscillation (NAO)-type climate variability. Precipitation-driven river discharge and regional temperature variability are the primary influences on Chesapeake Bay salinity and water temperature, respectively. We first calibrated modern ??18 Owater to salinity and applied this relationship to calculate trends in paleosalinity from the ??18 Oforam, correcting for changes in water temperature estimated from ostracode Mg /Ca ratios. The results indicate a much drier early Holocene in which mean paleosalinity was ???28 ppt in the northern bay, falling ???25% to ???20 ppt during the late Holocene. Early Holocene Mg/Ca-derived temperatures varied in a relatively narrow range of 13?? to 16??C with a mean temperature of 14.2??C and excursions above 16??C; the late Holocene was on average cooler (mean temperature of 12.8??C). In addition to the large contrast between early and late Holocene regional climate conditions, multidecadal (20-40 years) salinity and temperature variability is an inherent part of the region's climate during both the early and late Holocene, including the Medieval Warm Period and Little Ice Age. These patterns are similar to those observed during the twentieth century caused by NAO-related processes. Comparison of the midlatitude Chesapeake Bay salinity record with tropical climate records of Intertropical Convergence Zone fluctuations inferred from the Cariaco Basin titanium record suggests an anticorrelation between precipitation in the two regions at both millennial and centennial timescales. Copyright 2005 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Staubwasser, M.; Sirocko, F.; Erlenkeuser, H.; Grootes, P. M.; Segl, M.
2003-04-01
Planktonic oxygen isotope ratios from the well-dated laminated sediment core 63KA off the river Indus delta are presented. The record reveals significant climate changes in the south Asian monsoon system throughout the Holocene. The most prominent event of the early-mid Holocene occurred after 8.4 ka BP and is within dating error of the GISP/GRIP event centered at 8.2 ka BP. The late Holocene is generally more variable and the largest change of the entire Holocene occurred at 4.2 ka BP. This event is concordant with the end of urban Harappan civilization in the Indus valley. Opposing isotopic trends across the northern Arabian Sea surface indicate a reduction in Indus river discharge at that time. Consequently, sustained drought may have initiated the archaeologically recorded interval of southeastward habitat tracking within the Harappan cultural domain. The hemispheric significance of the 4.2 ka BP event is evident from concordant climate change in the eastern Mediterranean and the Middle East. The remainder of the late Holocene shows drought cycles of approximately 700 years that are coherent with the evolution of cosmogenic radiocarbon production rates in the atmosphere. This suggests that solar variability is one fundamental cause behind late Holocene rainfall changes over south Asia.
NASA Astrophysics Data System (ADS)
Yu, Kaifeng; Lehmkuhl, Frank; Schlütz, Frank; Diekmann, Bernhard; Mischke, Steffen; Grunert, Jörg; Murad, Waheed; Nottebaum, Veit; Stauch, Georg
2016-04-01
Considerable efforts have been devoted to decipher the late Quaternary moisture and thermal history of the arid central Asia. However, an array of paramount aspects has inhibited our complete understanding of the broad pattern and underlying mechanisms: (i) Biased or even contradictory conclusions may be achieved due to the interpretations of different proxies. (ii) Most of the works poured attention into Holocene period, only few records can extend back to earlier marine isotope stages. (iii) Substantial spatial heterogeneity is noteworthy in the area. Exceeding amounts of studies were carried out in Lake Baikal catchments, northern and western Mongolia, while only two works were hitherto conducted in southern Mongolia. (iv) It remains elusive with respect to how and to what extent have East Asian Summer Monsoon and Westerlies affected the thermal and moisture signals in this spectacular arid region. To address this set of issues, two parallel cores (ONW I, 6.00 m; ONW II, 13.36 m) were retrieved from Orog Nuur, Gobi Desert of southern Mongolia. An array of multidisciplinary investigations involving geomorphologic mapping, radiocarbon dating, geochemical and biotic studies (i.e., palynological and ostracod valve analyses) provide a comprehensive data set for inferences of hydrological perturbations, vegetation development and phases of glacier expansions over the last ~50 ka. Orog Nuur catchment depicted a broadly vulnerable ecosystem that was dominated by Artemisia steppe community in the late Pleistocene, and Chenopodiaceae desert steppe in the Holocene. In addition, the Termination I is ideally documented in a complete suite of geochemical, palynological, and ostracod signatures. In general, the thermal and moisture history in the Gobi Desert were as follows: (i) MIS3 had a relatively warm temperature and sufficient moisture supply in particular between ~40 ka and ~26 ka; (ii) The MIS2 was subject to cold temperature and moisture deficit, which was interrupted by two exceedingly cold and dry playa phases related to the LGM and YD; (iii) The Holocene exhibited a cool to milder temperature and considerable sufficient moisture supply in particular the early Holocene. In the eastern Khangai, the glacial expansion during MIS3 was slightly more notable than that during the LGM. The considerable humid pulse in the mid-to late-MIS3 may be the main driving mechanism for the MIS3 glacial advance. In central to southern Mongolia, rather than solely by the westerlies, the late Quaternary moisture and thermal history may be modulated, if not controlled, by coupled atmospheric components including both the westerlies and the penetration of the East Asian Summer Monsoon into the Asian interior. In addition, the two sand laminations (correspond to the LGM and YD event, respectively) recorded in the Orog Nuur may provide a potential opportunity to be regarded as chronological benchmarks for the lacustrine sequence in the Gobi Desert, albeit more investigations still need to be carried out to test its reliability in a larger spatial scale.
NASA Astrophysics Data System (ADS)
Kovaleva, N. O.
2018-01-01
Specific features of the polygenetic mountain soils of the Tian-Shan (Kyrgystan) are due to the action of present-day and relict soil processes that vary in age and intensity under the influence of glacier movements and climatic fluctuations. These properties can be used as indicators of paleoclimatic changes. The diagnosis of ancient pedogenesis was based on criteria with the longest response time, namely, soil morphology, characteristics of organic matter, 13C-NMR spectra of soil humic acids, isotope composition of humus and carbonates, and the soil age. The results indicate a glacial climate of the Late Pleistocene, a dry and cold climate during the Early Holocene, warm and dry conditions of soil formation in the Middle Holocene, and humidity climate of the Late Holocene.
NASA Astrophysics Data System (ADS)
Belz, Lukas; Schüller, Irka; Wehrmann, Achim; Wilkes, Heinz
2015-04-01
The climate system of southern Africa is strongly influenced by large scale atmospheric and marine circulation processes and, therefore, very sensitive to global climate change. Recent publications provided evidence for strong spatial and temporal climate variability in southern Africa over the Holocene. It is of major importance to understand the mechanisms driving the southern African climate system in order to estimate regional implications of current global change. However, proxy datasets from continental geoarchives especially of the semi-arid western Kalahari region are still scarce. A main problem is the absence of conventional continental climatic archives, due to the lack of lacustrine systems. In this study we are exploring the utility of sediments from western Kalahari salt pans, i.e. local depressions which are flooded temporarily during rainfall events. Besides the analyses of basic geochemical bulk parameters including TOC, δ13Corg, TIC, δ13Ccarb, δ18Ocarb, TN, δ15N, the paleo-climatic approach focuses on reconstruction of local vegetation assemblages to identify changes in the ecosystem. This is pursued using plant biomarkers, particularly leaf wax n-alkanes and n-alcohols and their stable carbon and hydrogen isotopic signatures. Preliminary results show prominent shifts in n-alkane distribution and δ13C values of the C33 homologue during late Pleistocene and early Holocene. These shifts correlate to changes of the TOC content. Our data indicate changes in carbon sources which possibly reflect major environmental changes.
Reheis, M.C.; Slate, J.L.; Throckmorton, C.K.; McGeehin, J.P.; Sarna-Wojcicki, A. M.; Dengler, L.
1996-01-01
Well-dated surface and subsurface deposits in semiarid Fish Lake Valley, Nevada and California, demonstrate that alluvial-fan deposition is strongly associated with the warm dry climate of the last two interglacial intervals, and that fans were stable and (or) incised during the last glaciation. Fan deposition was probably triggered by a change from relatively moist to arid conditions causing a decrease in vegetation cover and increases in flash floods and sediment yield. We think that this scenario applies to most of the other valleys in the southern Basin and Range. Radiocarbon, tephra, and a few thermoluminescence and cosmogenic ages from outcrops throughout Fish Lake Valley and from cores on the Leidy Creek fan yield ages of > 100-50 ka and 11-0 ka for the last two periods of alluvial-fan deposition. Mapping, coring and shallow seismic profiling indicate that these periods were synchronous throughout the valley and on the proximal and distal parts of the fans. From 50 to 11 ka, fan deposition ceased, a soil formed on the older alluvium and the axial drainage became active as runoff and stream competence increased. Slow deposition due to sheet flow or aeolian processes locally continued during this interval, producing cumulic soil profiles. The soil was buried by debris-flow sediment beginning at about 11 ka, coincident with the onset of relatively dry and warm conditions in the region. However, ground-water discharge maintained a large freshwater marsh on the valley floor throughout the Holocene. Pulses of deposition during the Holocene are recorded in the marsh and fan deposits; some pulses coincided with periods of or transitions to warm, dry climate indicated by proxy climate records, whereas others may reflect local disturbances associated with volcanism and fires. Within the marsh deposits, much of the clastic material is probably desert loess. In addition, the deposition of coppice dunes within the fan deposits coincides with two dry periods during the late Holocene.
NASA Astrophysics Data System (ADS)
Conte, M. H.; Urrego, D. H.; Charles-Dominique, P.; Giraudeau, J.; Martinez, P.; Bush, M. B.; Huang, Y.; Russell, J. M.; Gaucher, P.
2013-12-01
Model projections of future climate predict changes in ocean-atmosphere processes that will affect the organization of the Atlantic Intertropical Convergence Zone (ITCZ) and ENSO, and in turn, precipitation patterns over much of South America. The northeastern Amazon is particularly sensitive to ITCZ and ENSO organization, and experiences major episodes of drought and rainfall extremes due to interannual variability in ITCZ intensity and position. Hence understanding Holocene climate variability in the northeastern Amazon, and its phasing with other South American records, can provides new insights into past ITCZ organization and Atlantic-Pacific teleconnections. Lac Toponowini is a landslide-dammed lake in the undisturbed highland rainforest of French Guiana (Guyane). Toponowini sediments are finely varved, with pronounced light-dark couplets that appear to reflect alternating wet and dry season conditions. High-resolution X-Ray Fluorescence (XRF) profiling reveals that the couplets consist of bands of weathered clays and organic-rich material containing co-precipitated sulfides and platinum group elements (PGEs), sourced from gold deposits in the watershed. Mobility of PGEs is highly sensitive to hydrology and groundwater chemistry, and subtle variations in PGE flux and composition in Lac Toponowini appears to track past hydrologic conditions. Of note is the inverse correlation between the Pd/Pb ratio in Toponowini sediments and the %Ti record of fluvial input into the Cariaco Basin (Peterson and Haug 2006, Palaeogeog. Palaeoclim. Palaeoecol. 234, 97-113), which suggests antiphasing between rainfall in northern South America and French Guiana, consistent with ITCZ migration forced by multidecadal Atlantic variability. The carbon isotopic composition (δ13C) of terrestrial leaf waxes exhibits a maximum at ~1500 years BP, consistent with pollen evidence (Ledru 2001, Rev. Paleobot. Palynol. 115, 161-176) for ecosystem adaptations indicative of drier conditions in central Guyane at this time. New data on wax hydrogen isotopic composition will provide further insights into late Holocene precipitation patterns complementing pollen, carbon isotope and elemental proxies.
Climate-related relative sea-level changes from Chesapeake Bay, U.S. Atlantic coast
NASA Astrophysics Data System (ADS)
Shaw, Timothy; Horton, Benjamin; Kemp, Andrew; Cahill, Niamh; Mann, Michael; Engelhart, Simon; Kopp, Robert; Brain, Matthew; Clear, Jennifer; Corbett, Reide; Nikitina, Daria; Garcia-Artola, Ane; Walker, Jennifer
2017-04-01
Proxy-based reconstructions of relative sea level (RSL) from the coastlines of the North Atlantic have revealed spatial and temporal variability in the rates of RSL rise during periods of known Late-Holocene climatic variability. Regional driving mechanisms for such variability include glacial isostatic adjustment, static-equilibrium of land-ice changes and/or ocean dynamic effects as well as more localized factors (e.g. sediment compaction and tidal range change). We present a 4000-year RSL reconstruction from salt-marsh sediments of the Chesapeake Bay using a foraminiferal-based transfer function and a composite chronology. A local contemporary training set of foraminifera was developed to calibrate fossil counterparts and provide estimates of paleo marsh elevation with vertical uncertainties of ±0.06m. A composite chronology combining 30 radiocarbon dates, pollen chronohorizons, regional pollution histories, and short-lived radionuclides was placed into a Bayesian age-depth framework yielding low temporal uncertainties averaging 40 years. A compression-only geotechnical model was applied to decompact the RSL record. We coupled the proxy reconstruction with direct observations from nearby tide gauge records before rates of RSL rise were quantified through application of an Errors-In-Variables Integrated Gaussian Process model. The RSL history for Chesapeake Bay shows 6 m of rise since 2000 BCE. Between 2000 BCE and 1300 BCE, rates of RSL increasing to 1.4 mm/yr precede a significant decrease to 0.8 mm/yr at 700 BCE. This minimum coincides with widespread climate cooling identified in multiple paleoclimate archives of the North Atlantic. An increase in the rate of RSL rise to 2.1 mm/yr at 200 CE similarly precedes a decrease in the rate of RSL rise at 1450 CE (1.3 mm/yr) that coincides with the Little Ice Age. Modern rates of RSL rise (3.6 mm/yr) are the fastest observed in the past 4000 years. The temporal length and decadal resolution of the RSL reconstruction further reconciles the response of sea levels to late Holocene climate variability.
NASA Astrophysics Data System (ADS)
Hanna, Andrea J. M.; Allison, Mead A.; Bianchi, Thomas S.; Marcantonio, Franco; Goff, John A.
2014-02-01
Arctic coastal environments near major river outfalls, like Simpson Lagoon, Alaska and the adjacent Colville River Delta, potentially contain high-resolution sediment records useful in elucidating late Holocene Arctic sediment transport pathways and coupled terrestrial-ocean evidence of paleoclimate variability. This study utilizes a multi-tracer geochronology approach (137Cs, 239,240Pu, and 14C) tailored for high-latitude environments to determine the age models for cores collected from Simpson Lagoon, and to date seismic boundaries in shallow acoustic reflection data (CHIRP) to examine late Holocene infill patterns. Modern (~100 y) sediment accumulation rates range from <0.02 to 0.46±0.04 cm y-1, with a primary depocenter in western Simpson Lagoon adjacent to the Colville Delta and a secondary depocenter in eastern Simpson Lagoon. CHIRP reflectors, age-constrained by 14C analysis, reveal rapid late Holocene (0-3500 y BP) transgression consistent with high modern shoreline retreat rates. The western depocenter contains >5 m of late Holocene interbedded sediments, likely derived primarily from the Colville River, with onset of accumulation occurring prior to ~3500 y BP. A paleo-high in central Simpson Lagoon, separating the two depocenters, was subaerially exposed prior to ~600 y BP. The millimeters-per-year sedimentation rates across the lagoon, coupled with the undisturbed, interbedded sediment record, indicate that these settings hold great potential to develop new Arctic paleoenvironmental records.
NASA Astrophysics Data System (ADS)
Froede, Carl R., Jr.
2002-03-01
R. Fairbridge and F. Shepard proposed different sea-level curves for the late Holocene. South Florida, as a tectonically stable platform, provides a key locale from which late Quaternary sea-level measurements have been attempted. Previous studies supporting Holocene sea-level curves have focused on mangrove peat deposits, barrier ridges, and archaeological sites. However, in situ biological indicators provide the best evidence in support of varying sea-level positions during the late Holocene. The northeastern side of Key Biscayne, Florida, has two areas of rock reef where rhizoliths (i.e., fossilized root casts) are exposed within the intertidal zone. They have previously been interpreted as the fossilized roots of a former black mangrove (Avicennia germinans) forest. However, the morphology, size, orientation, and areal extent of the rhizoliths is best understood if they are interpreted as the former root casts of turtle grass (Thalassia testudinum). This interpretation would constitute in situ biological evidence of a late Holocene sea-level position at least 0.5 m higher than at present. Previously published 14C dating of the calcareous paste inside the rhizoliths suggests that they formed 1 2 k.y. before present. This corresponds to a higher than present sea-level highstand supported by independent evidence from other areas in south Florida.
Late Holocene Lake Level Fluctuations at Laguna Arapa, Peru and Connections to Human Demography
NASA Astrophysics Data System (ADS)
Hillman, A. L.; Abbott, M. B.; Werne, J. P.; Arkush, E.; Thompson, L. G.; Ferland, T.; Holmes, E.; Puhnaty, C.; Woods, A.
2016-12-01
The relationship between variations in hydroclimate and human demography on the Peruvian Altiplano has significant implications for understanding how people in the past have adapted to changes in freshwater resources. To investigate these human-environmental interactions, this project presents a 2,000 year sediment record from Laguna Arapa, a large lake that is <20 km NW of Lake Titicaca. Using sedimentology and stratigraphy as well as a suite of organic geochemical proxies including fecal 5β-stanols and leaf waxes (long chain n-alkanoic acids), we aim to tie together proxies of human population with indicators of regional hydroclimate. Preliminary results of sedimentology and stratigraphy show notable transitions from sand to silt to clay, suggesting rising lake level sequences at 500 and 700 AD. The last 1,300 years of sediment are characterized by alternating layers of organic rich material with abundant charcoal and black inorganic clay, suggesting intermittent periods of aridity and/or anthropogenic fire-setting. These layers are particularly frequent during the Medieval Climate Anomaly, which was characterized by dry and warm conditions. These results agree well with other records of hydroclimate from regional lakes as well as accumulation rate and temperature from the Quelccaya ice cap. Organic geochemical work is currently in progress and shows promise for linking together proxies of human demography with hydroclimate to understand the relationship between human settlement and climate change.
NASA Astrophysics Data System (ADS)
Ziehmer, Malin M.; Nicolussi, Kurt; Schlüchter, Christian; Leuenberger, Markus
2018-02-01
Cellulose content (CC (%)) in tree rings is usually utilised as a tool to control the quality of the α-cellulose extraction from tree rings in the preparation of stable-isotope analysis in wooden tissues. Reported amounts of CC (%) are often limited to mean values per tree. For the first time, CC (%) series from two high-Alpine species, Larix decidua Mill. (European Larch, LADE) and Pinus cembra L. (Swiss stone pine, PICE) are investigated in modern wood samples and Holocene wood remains from the Early and mid-Holocene. Modern CC (%) series reveal a species-specific low-frequency trend independent of their sampling site over the past 150 years. Climate-cellulose relationships illustrate the ability of CC (%) to record temperature in both species but for slightly different periods within the growing season. The Holocene CC (%) series illustrate diverging low-frequency trends in both species, independent of sampling site characteristics (latitude, longitude and elevation). Moreover, potential age trends are not apparent in the two coniferous species. The arithmetic mean of CC (%) series in the Early and mid-Holocene indicate low CC (%) succeeding cold events. In conclusion, CC (%) in tree rings show high potential to be established as novel supplementary proxy in dendroclimatology.
NASA Astrophysics Data System (ADS)
Reinemann, Scott A.; Porinchu, David F.; Bloom, Amy M.; Mark, Bryan G.; Box, Jason E.
2009-11-01
A sediment core spanning ˜ 7000 cal yr BP recovered from Stella Lake, a small sub-alpine lake located in Great Basin National Park, Nevada, was analyzed for subfossil chironomids (non-biting midges), diatoms, and organic content (estimated by loss-on-ignition (LOI)). Subfossil chironomid analysis indicates that Stella Lake was characterized by a warm, middle Holocene, followed by a cool "Neoglacial" period, with the last two millennia characterized by a return to warmer conditions. Throughout the majority of the core the Stella Lake diatom-community composition is dominated by small, periphytic taxa which are suggestive of shallow, cool, alkaline, oligotrophic waters with extensive seasonal ice cover. A reconstruction of mean July air temperature (MJAT) was developed by applying a midge-based inference model for MJAT (two-component WA-PLS) consisting of 79 lakes and 54 midge taxa ( rjack2 = 0.55, RMSEP = 0.9°C). Comparison of the chironomid-inferred temperature record to existing regional paleoclimate reconstructions suggests that the midge-inferred temperatures correspond well to regional patterns. This multi-proxy record provides valuable insight into regional Holocene climate and environmental conditions by providing a quantitative reconstruction of peak Holocene warmth and aquatic ecosystem response to these changes in the Great Basin, a region projected to experience increased aridity and higher temperatures.
NASA Astrophysics Data System (ADS)
Dudová, Lydie; Hájková, Petra; Opravilová, Věra; Hájek, Michal
2014-07-01
We discovered the first peat section covering the entire Holocene in the Hrubý Jeseník Mountains, representing an island of unique alpine vegetation whose history may display transitional features between the Hercynian and Carpathian regions. We analysed pollen, plant macrofossils (more abundant in bottom layers), testate amoebae (more abundant in upper layers), peat stratigraphy and chemistry. We found that the landscape development indeed differed from other Hercynian mountains located westward. This is represented by Pinus cembra and Larix during the Pleistocene/Holocene transition, the early expansion of spruce around 10,450 cal yr BP, and survival of Larix during the climatic optimum. The early Holocene climatic fluctuations are traced in our profile by species compositions of both the mire and surrounding forests. The mire started to develop as a calcium-rich percolation fen with some species recently considered to be postglacial relicts (Meesia triquetra, Betula nana), shifted into ombrotrophy around 7450 cal yr BP by autogenic succession and changed into a pauperised, nutrient-enriched spruce woodland due to modern forestry activities. We therefore concluded that its recent vegetation is not a product of natural processes. From a methodological viewpoint we demonstrated how using multiple biotic proxies and extensive training sets in transfer functions may overcome taphonomic problems.
What Do GDGT Thermometers Tell us About Environmental Changes During the Holocene in Central Africa?
NASA Astrophysics Data System (ADS)
Menot, G.; Garcin, Y.; Bard, E. G.; Deschamps, P.
2017-12-01
Africa has been recognized by the IPCC group as one of the most vulnerable continents to climate change. Validation of models currently used for future climate projections relies in part on their ability to reproduce past climate variability. Especially the past abrupt climatic and environmental events that have punctuated the recent history of the African continent are of prime interest to model the transient and non-linear response of the African monsoon and vegetation to both external forcing and internal feedbacks. The role of temperature among other controls of the hydrological cycle has to be assessed. However, reliable temperature benchmark sequences on continents remain scare and not evenly distributed. The recent discovery of tetraethers as paleothermometer has raised a considerable interest as these lipid biomarkers fill a gap between "quantitative but discrete" and "qualitative but continuous" proxies on continents. Their broad application is however to date hampered by the few constrains on their origin as well as on their dynamics and fates related to pedogenic, transport and sedimentary processes. Previous studies on the lake Barombi (Cameroon) demonstrate the potential of newly retrieved lacustrine sequences to document hydrological changes associated with the African humid Period and vegetation changes related to the late Holocene `rainforest crisis' with an appropriate time resolution. Preliminary reconstructed temperature profile reveals a clear shift at the end of the African Humid Period. Prior any interpretation of a climate signal, a more complete characterization of the tetraether distributions is however needed together with a thorough comparison with other sedimentological proxies. Such an approach should allow identifying the processes that have altered the validity of the tetraether record as changes in soil erosion or lacustrine stratification.
Heinrich 0 at the Younger Dryas Termination Offshore Newfoundland
NASA Astrophysics Data System (ADS)
Pearce, C.; Andrews, J. T.; Jennings, A. E.; Bouloubassi, I.; Seidenkrantz, M. S.; Kuijpers, A.; Hillaire-Marcel, C.
2014-12-01
The last deglaciation was marked by intervals of rapid climatic fluctuations accompanied by glacial advances and retreats along the eastern edge of the Laurentide ice sheet. The most severe of these events, the Younger Dryas cold reversal, was accompanied by the major detrital carbonate (DC) event generally referred to as "Heinrich event 0" (H0) in the westernmost and southern Labrador Sea. A detrital carbonate layer was observed in a high resolution marine sediment record from southern Newfoundland and the onset of the event was dated to 11,600 ± 70 cal. yrs. BP (local ΔR = 140 yrs.). A variety of different proxies was applied to investigate the transport mechanisms for deposition of the layer and provenance of the carbonates. Elevated concentrations of dolomite and calcite based on quantitative X-ray diffraction measurements, combined with the presence of several mature petrogenic biomarkers limit the source of the H0 detrital input to Palaeozoic carbonate outcrops in north-eastern Canada. The event is attributed to the rapid ice retreat from the Hudson Strait directly following the warming at the onset of the Holocene. Based on additional proxy data published earlier from the same record, the event succeeded the early Holocene resumption of the Atlantic Meridional Overturning Circulation (AMOC), indicating that the Hudson Strait meltwater event had probably no significant impact on the AMOC. The detrital carbonate layer can be found in other marine sediment records along the Labrador Current pathway, from Hudson Strait to the Grand Banks and the southern Newfoundland slope. By using the onset of deposition of the carbonates as a time-synchronous marker, the DC layer has great potential for improving marine chronologies of late glacial age in the region and evaluating spatial variations in ΔR values.
NASA Astrophysics Data System (ADS)
Schittek, Karsten; Kock, Sebastian T.; Lücke, Andreas; Hense, Jonathan; Ohlendorf, Christian; Kulemeyer, Julio J.; Lupo, Liliana C.; Schäbitz, Frank
2016-05-01
High-altitude cushion peatlands are versatile archives for high-resolution palaeoenvironmental studies, due to their high accumulation rates, range of proxies, and sensitivity to climatic and/or human-induced changes. Especially within the Central Andes, the knowledge about climate conditions during the Holocene is limited. In this study, we present the environmental and climatic history for the last 2100 years of Cerro Tuzgle peatland (CTP), located in the dry Puna of NW Argentina, based on a multi-proxy approach. X-ray fluorescence (XRF), stable isotope and element content analyses (δ13C, δ15N, TN and TOC) were conducted to analyse the inorganic geochemistry throughout the sequence, revealing changes in the peatlands' past redox conditions. Pollen assemblages give an insight into substantial environmental changes on a regional scale. The palaeoclimate varied significantly during the last 2100 years. The results reflect prominent late Holocene climate anomalies and provide evidence that in situ moisture changes were coupled to the migration of the Intertropical Convergence Zone (ITCZ). A period of sustained dry conditions prevailed from around 150 BC to around AD 150. A more humid phase dominated between AD 200 and AD 550. Afterwards, the climate was characterised by changes between drier and wetter conditions, with droughts at around AD 650-800 and AD 1000-1100. Volcanic forcing at the beginning of the 19th century (1815 Tambora eruption) seems to have had an impact on climatic settings in the Central Andes. In the past, the peatland recovered from climatic perturbations. Today, CTP is heavily degraded by human interventions, and the peat deposit is becoming increasingly susceptible to erosion and incision.
NASA Astrophysics Data System (ADS)
Mills, K.; Ryves, D. B.; Anderson, N. J.; Bryant, C. L.; Tyler, J. J.
2014-08-01
Equatorial East Africa has a complex regional patchwork of climate regimes, sensitive to climate fluctuations over a variety of temporal and spatial scales during the late Holocene. Understanding how these changes are recorded in and interpreted from biological and geochemical proxies in lake sedimentary records remains a key challenge to answering fundamental questions regarding the nature, spatial extent and synchroneity of climatic changes seen in East African palaeo-records. Using a paired lake approach, where neighbouring lakes share the same geology, climate and landscape, it might be expected that the systems will respond similarly to external climate forcing. Sediment cores from two crater lakes in western Uganda spanning the last ~1000 years were examined to assess diatom community responses to late Holocene climate and environmental changes, and to test responses to multiple drivers using redundancy analysis (RDA). These archives provide annual to sub-decadal records of environmental change. Lakes Nyamogusingiri and Kyasanduka appear to operate as independent systems in their recording of a similar hydrological response signal via distinct diatom records. However, whilst their fossil diatom records demonstrate an individualistic, indirect response to external (e.g. climatic) drivers, the inferred lake levels show similar overall trends and reflect the broader patterns observed in Uganda and across East Africa. The lakes appear to be sensitive to large-scale climatic perturbations, with evidence of a dry Medieval Climate Anomaly (MCA; ca. AD 1000-1200). The diatom record from Lake Nyamogusingiri suggests a drying climate during the main phase of the Little Ice Age (LIA) (ca. AD 1600-1800), whereas the diatom response from the shallower Lake Kyasanduka is more complex (with groundwater likely playing a key role), and may be driven more by changes in silica and other nutrients, rather than by lake level. The sensitivity of these two Ugandan lakes to regional climate drivers breaks down in ca. AD 1800, when major changes in the ecosystems appear to be a response to increasing cultural impacts within the lake catchments, although both proxy records appear to respond to the drought recorded across East Africa in the mid-20th century. The data highlight the complexity of diatom community responses to external drivers (climate or cultural), even in neighbouring, shallow freshwater lakes. This research also illustrates the importance of, and the need to move towards, a multi-lake, multi-proxy landscape approach to understanding regional hydrological change which will allow for rigorous testing of climate reconstructions, climate forcing and ecosystem response models.
NASA Astrophysics Data System (ADS)
Piller, W. E.; Kern, A. K.; Harzhauser, M.; Soliman, A.; Mandic, O.
2012-12-01
High time resolution is a key issue in reconstructing past climate systems. This is of particular importance when searching for model predictions of future climate change, such as the warm Late Miocene. For this study we selected Lake Pannon, a paleo-ancient, alkaline, brackish lake in Europe during the Tortonian (early Late Miocene). On a continuous sediment core including the interval from ca. 10.5 - 10.4 Ma we show the power of high resolution multiproxy analyses for reconstructing paleoclimatology on a decadal scale over several millennia of Late Miocene time. To demonstrate this high-resolution interpretation we selected a core from the western margin of Lake Pannon and studied it in respect to 2 different time resolutions. A continuous 6-m-core clearly displays regular fluctuations and modulations within three different environmental proxies (natural gamma radiation, magnetic susceptibility, total abundance of ostracods). Lomb-Scargle and REDFIT periodograms next to wavelet spectra of all data sets reveal distinct frequencies. Only few of these are deciphered in all proxy data sets at the same power, while some occur only in two or one proxies. A higher resolution study was conducted on a 1.5-m-long core interval based on pollen and dinoflagellate cysts, ostracod abundance, carbon and sulfur contents as well as magnetic susceptibility and natural gamma radiation. Based on an already established age model the study covers about two millennia of Late Miocene time with a resolution of ~13.7 years per sample. No major ecological turnovers are expected in respect to this very short interval. Thus, the pollen record suggests rather stable wetland vegetation with a forested hinterland. Shifts in the spectra can be mainly attributed to variations in transport mechanism, represented by few phases of fluvial input but mainly by changes in wind intensity and probably also wind direction. Even within this short time span, dinoflagellates document rapid changes between oligotrophic and eutrophic conditions, which are frequently coupled with lake stratification and dysoxic bottom waters. These phases prevented ostracods and molluscs from settling and fostered the activity of sulfur bacteria. Several of the studied proxies reveal iterative patterns. To compare and detect these repetitive signals REDFIT spectra were generated and Gaussian filters were applied. The resulting cycles correspond to the lower and upper Gleissberg, the de Vries/Suess, the unnamed 500-year, 1000-year 1,500-year and the Hallstatt cycles. To test the solar-forcing-hypothesis, our data have been compared with those from a Holocene isotope dataset. Our data represent a first unequivocal detection of solar cycles in pre-Pleistocene sediments.
NASA Astrophysics Data System (ADS)
Kotthoff, Ulrich; Andrén, Elinor; Andrén, Thomas; Ash, Jeanine; Bauersachs, Thorsten; Fanget, Anne-Sophie; Granoszewski, Wojciech; Groeneveld, Jeroen; Krupinski, Nadine; Peyron, Odile; Slomp, Caroline; Stepanova, Anna; Warnock, Jonathan; van Helmond, Niels; Expedition 347 Science Party
2016-04-01
Some of the largest marine environmental impacts from ongoing global climate change are occurring in continental shelf seas and enclosed basins, including severe oxygen depletion, intensifying stratification, and increasing temperatures. In order to predict future changes in water mass conditions, it is essential to reconstruct how these conditions have changed in the past against the background of climate changes. The brackish Baltic Sea is one of the largest semi-enclosed basins worldwide, and its sediment records provide a unique opportunity to analyse palaeo-environmental and climate change in central and northern Europe. IODP Expedition 347 recovered an exceptional set of sediment cores from the Baltic Sea which allow high-resolution reconstructions in unprecedented quality. We present a comparison of commonly-used proxies to reconstruct palaeoecosystems, -temperatures, and -salinity from IODP Site M0059 in the Little Belt over the past ˜8000 years. Our aim is to reconstruct the development of the terrestrial and marine ecosystems in the research area and the related environmental conditions, and to identify potential limitations of individual proxies. The age model for Site M0059 is based on 14Cdating, biostratigraphic correlation with neighbouring terrestrial pollen records, and sediment stratigraphy. Sedimentary organic carbon content and the bulk elemental composition have been measured, and can be used to determine the depositional environment and degree of oxygen depletion (e.g., Mo, Corg/Ptot). Pollen is used as proxy for vegetation development in the hinterland of the southern Baltic Sea and as a land/air-temperature proxy. Comparison with dinoflagellate cysts, insect remains, and green algae remains from the same samples provides a direct land-sea comparison. The application of the modern analogues technique to pollen assemblages has previously yielded precise results for late Pleistocene and Holocene datasets, including specific information on seasonality, but pollen-based reconstructions for Northern Europe may be hampered by plant migration effects. Palynomorph analyses are therefore complemented with analyses of lipid palaeothermometers, such as TEX86 and the long chain diol index (LDI), to reconstruct variations in Baltic Sea surface temperatures (SST). In addition, the MBT/CBT proxy is used to infer past changes in mean annual air temperatures (MAAT). Benthic foraminiferal δ18O and δ13C measurements (monospecific) and foraminifera and ostracod faunal assemblage analyses allow us to estimate bottom water salinity and environmental changes qualitatively and quantitatively. Low bottom water salinity (˜23 in bottom waters) and varying diagenesis in the Little Belt's organic-rich sediments complicates the application of benthic foraminiferal Mg/Ca as a palaeotemperature proxy. Reliable bottom water temperatures, however, are reconstructed using clumped isotope analyses of mollusc material. In addition, diatoms and the diol index (DI) are analysed to determine variation in salinity of the Baltic Sea's surface waters over the investigated time period. The results of this inter-proxy comparison study will be used to reconstruct gradients between different settings, e.g. how water column stratification developed, possibly if and how changes in seasonality occurred, and to identify the circumstances under which specific proxies may be affected by secondary impacts.
NASA Astrophysics Data System (ADS)
Elison Timm, O.; Flamholtz, W. M.; Li, S.; Massa, C.; Beilman, D. W.
2016-12-01
The motivation for this study was sparked by the idea that paleoclimate temperature and precipitation proxies provide sufficient information to make inferences about extratropical atmospheric circulation changes over the North Pacific during the Holocene. Typical targets for the circulation reconstruction problem include the strength and position of the Aleutian Low and the storm tracks. The reconstruction problem was investigated under idealized conditions using model simulation results from the TraCE-21ka transient climate simulation (http://www.cgd.ucar.edu/ccr/TraCE/), which covers the Last Glacial Maximum to present. It is demonstrated that modes of variability found on interannual to multidecadal timescales during the preindustrial era provide inadequate pattern for reconstructing long-term mean changes during the past 22,000 years. Our circulation reconstruction target was the geopotential height field at 500hPa (Z500) over the North Pacific Ocean during winter. We applied a field reconstruction method using Maximum Covariance Analysis (MCA). The MCA was applied to Z500 and surface temperatures as predictor information. The MCA was given model data containing interannual to multidecadal variability from the pre-industrial climate (1000BP-900BP). We worked with ten leading MCA modes in the reconstruction, which can reproduce about 90% of the covariability during the preindustrial period. Within the model simulation, we validated the field reconstructions against the model's circulation states over the last 22,000 years. Spatial skill scores show that the reconstruction skill drops significantly prior to the late Holocene. Reasons for the loss of reconstruction skill are due to the fact that externally forced climate changes do not resemble the internal modes of variability and that covariance between circulation and temperatures on interannual-multidecadal time scales changes with the background climate state. However, the reconstruction can be improved by including data from the early Holocene and the LGM era in the MCA. Based on these results, we advocate that paleoclimate model simulation results should be used define a set of first-guess pattern for the reconstruction of circulation anomalies from sparse and noisy proxy data.
Transition from a warm and dry to a cold and wet climate in NE China across the Holocene
NASA Astrophysics Data System (ADS)
Zheng, Yanhong; Pancost, Richard D.; Naafs, B. David A.; Li, Qiyuan; Liu, Zhao; Yang, Huan
2018-07-01
Northeast (NE) China lies in the northernmost part of the East Asian Summer monsoon (EASM) region. Although a series of Holocene climatic records have been obtained from lakes and peats in this region, the Holocene hydrological history and its controls remain unclear. More specifically, it is currently debated whether NE China experienced a dry or wet climate during the early Holocene. Here we reconstruct changes in mean annual air temperature and peat soil moisture across the last ∼13,000 year BP using samples from the Gushantun and Hani peat, located in NE China. Our approach is based on the distribution of bacterial branched glycerol dialkyl glycerol tetraethers (brGDGTs) and the abundance of the archaeal isoprenoidal (iso)GDGT crenarchaeol. Using the recently developed peat-specific MAATpeat temperature calibration we find that NE China experienced a relatively warm early Holocene (∼5-7 °C warmer than today), followed by a cooling trend towards modern-day values during the mid- and late Holocene. Moreover, crenarchaeol concentrations, brGDGT-based pH values, and the distribution of 6-methyl brGDGTs, all indicate an increase in soil moisture content from the early to late Holocene in both peats, which is largely consistent with other data from NE China. This trend towards increasing soil moisture/wetter conditions across the Holocene in NE China records contrasts with the trends observed in other parts of the EASM region, which exhibit an early and/or mid-Holocene moisture/precipitation maximum. However, the Holocene soil moisture variations and temperature-moisture relationships (warm-dry and cold-wet) observed in NE China are similar to those observed in the core area of arid central Asia which is dominated by the westerlies. We therefore propose that an increase in the intensity of the westerlies across the Holocene, driven by increasing winter insolation, expanding Arctic sea ice extent and the enhanced Okhotsk High, caused an increase in moisture during the late Holocene in NE China.
Proxy records of Holocene storm events in coastal barrier systems: Storm-wave induced markers
NASA Astrophysics Data System (ADS)
Goslin, Jérôme; Clemmensen, Lars B.
2017-10-01
Extreme storm events in the coastal zone are one of the main forcing agents of short-term coastal system behavior. As such, storms represent a major threat to human activities concentrated along the coasts worldwide. In order to better understand the frequency of extreme events like storms, climate science must rely on longer-time records than the century-scale records of instrumental weather data. Proxy records of storm-wave or storm-wind induced activity in coastal barrier systems deposits have been widely used worldwide in recent years to document past storm events during the last millennia. This review provides a detailed state-of-the-art compilation of the proxies available from coastal barrier systems to reconstruct Holocene storm chronologies (paleotempestology). The present paper aims (I) to describe the erosional and depositional processes caused by storm-wave action in barrier and back-barrier systems (i.e. beach ridges, storm scarps and washover deposits), (ii) to understand how storm records can be extracted from barrier and back-barrier sedimentary bodies using stratigraphical, sedimentological, micro-paleontological and geochemical proxies and (iii) to show how to obtain chronological control on past storm events recorded in the sedimentary successions. The challenges that paleotempestology studies still face in the reconstruction of representative and reliable storm-chronologies using these various proxies are discussed, and future research prospects are outlined.
Climate proxy data as groundwater tracers in regional flow systems
NASA Astrophysics Data System (ADS)
Clark, J. F.; Morrissey, S. K.; Stute, M.
2008-05-01
The isotopic and chemical signatures of groundwater reflect local climate conditions. By systematically analyzing groundwater and determining their hydrologic setting, records of past climates can be constructed. Because of their chemistries and relatively uncomplicated source functions, dissolved noble gases have yielded reliable records of continental temperatures for the last 30,000 to 50,000 years. Variations in the stable isotope compositions of groundwater due to long term climate changes have also been documented over these time scales. Because glacial - interglacial climate changes are relatively well known, these climate proxies can be used as "stratigraphic" markers within flow systems and used to distinguish groundwaters that have recharged during the Holocene from those recharged during the last glacial period, important time scales for distinguishing regional and local flow systems in many aquifers. In southern Georgia, the climate proxy tracers were able to identify leakage from surface aquifers into the Upper Floridan aquifer in areas previously thought to be confined. In south Florida, the transition between Holocene and glacial signatures in the Upper Floridan aquifer occurs mid-way between the recharge area and Lake Okeechobee. Down gradient of the lake, the proxies are uniform, indicating recharge during the last glacial period. Furthermore, there is no evidence for leakage from the shallow aquifers into the Upper Floridan. In the Lower Floridan, the climate proxies indicate that the saline water entered the aquifer after sea level rose to its present level.
Penguin tissue as a proxy for relative krill abundance in East Antarctica during the Holocene.
Huang, Tao; Sun, Liguang; Long, Nanye; Wang, Yuhong; Huang, Wen
2013-09-30
Antarctic krill (Euphausia superba) is a key component of the Southern Ocean food web. It supports a large number of upper trophic-level predators, and is also a major fishery resource. Understanding changes in krill abundance has long been a priority for research and conservation in the Southern Ocean. In this study, we performed stable isotope analyses on ancient Adélie penguin tissues and inferred relative krill abundance during the Holocene epoch from paleodiets of Adélie penguin (Pygoscelis adeliae), using inverse of δ¹⁵N (ratio of ¹⁵N/¹⁴N) value as a proxy. We find that variations in krill abundance during the Holocene are in accord with episodes of regional climate changes, showing greater krill abundance in cold periods. Moreover, the low δ¹⁵N values found in modern Adélie penguins indicate relatively high krill availability, which supports the hypothesis of krill surplus in modern ages due to recent hunt for krill-eating seals and whales by humans.
Millennial-scale variability in Holocene aquatic productivity from Burial Lake, Arctic Alaska
NASA Astrophysics Data System (ADS)
Finkenbinder, Matthew S.; Abbott, Mark B.; Stoner, Joseph S.; Ortiz, Joseph D.; Finney, Bruce P.; Dorfman, Jason M.; Stansell, Nathan D.
2018-05-01
Holocene records of lacustrine primary production are commonly used to reconstruct past changes in environmental and climatic conditions. While several methods exist to infer paleoproductivity trends, few studies to date have applied multiple geochemical indices in the same core sequence from Arctic lakes to evaluate their fidelity and sensitivity to specific climate variables over long (Holocene length) timescales. In this study, we evaluate sub-century to millennial-scale fluctuations in paleoproductivity over the Holocene using geochemical (biogenic opal and sedimentary chlorin) analyses of sediments from Burial Lake in the western Brooks Range, Alaska. Large fluctuations in opal and related proxies occur at millennial timescales over the last 10,000 years. We interpret the changes in opal to result from variability in diatom productivity, which is indirectly mediated by climate primarily through changes in the duration of the ice-free growing season and the availability of limiting nutrients at this oligotrophic, tundra lake. Comparison of the opal and sedimentary chlorin record, which is correlated with TOC, shows contrasting patterns on both short (century to multi-century) and relatively long (millennial) time scales. The concentration of opal far exceeds that of TOC and variations in sediment dry bulk density, driven by changes in the accumulation of opal, are likely responsible in part for the variations in sedimentary chlorin. Further, C/N ratio values indicate a mixed algal-terrestrial source of sedimentary organic matter. This result highlights the complexity in the climatic interpretation of sedimentary chlorin as an index of whole lake production, because the signal is prone to dilution/concentration from opal and also reflects a combination of aquatic and terrestrial production. Time series analysis of the productivity records indicates the presence of a significant ∼1500-yr oscillation in opal concentration, which has been found in North Atlantic Ocean proxy records and numerous other marine and terrestrial paleorecords. Comparison of diatom productivity against a sea-ice inferred reconstruction of the Arctic Oscillation (AO) from the Beaufort Sea (Darby et al., 2012) shows that periods of reduced productivity at Burial Lake coincide with inferred positive phases of the AO (AO+). Combined with modern observations of sea ice extent and meteorological data, we hypothesize that AO + conditions and a strengthened polar jet correspond with a shortened ice-free growing season, a decrease in the availability of limiting nutrients, and lower levels of diatom production at Burial Lake. Comparison of the spectral properties between opal and the AO reconstruction reveal similar millennial scale variations with ∼1500-yr variability during the middle Holocene that transition to ∼1000-yr variability during the late Holocene. In light of these findings, we suggest the possibility that millennial variations in diatom productivity observed in the Burial Lake record are related to millennial variability in high-latitude atmospheric circulation similar to the AO. These results shed light on the sensitivity of aquatic ecosystems in northern Alaska to changes in the duration of the ice-free growing season, the availability of limiting nutrients for phytoplankton growth, and Arctic-wide atmospheric circulation dynamics over the Holocene on millennial timescales.
NASA Astrophysics Data System (ADS)
Prevosti, Francisco; Santiago, Fernando; Prates, Luciano; Salemme, Mónica; Martin, Fabiana
2010-05-01
The mass extinction at the end of the Pleistocene affected South America during the Late Pleistocene and the Early Holocene, when megamammals and large mammals disappeared. Several carnivores became extinct, like the sabretooth Smilodon, the short face bear (Arctotherium) and some large canids (i.e. Protocyon, Canis dirus). After this mass event virtually no carnivores became extinct in South America. The only exception is the fox Dusicyon avus, a middle sized canid (estimated body mass between 10-15 kg) with a more carnivore diet than the living South American foxes (i.e. Lycalopex culpaeus). The last record of the species comes from middle-late Holocene archaeological sites in the Pampean Region (Argentina) and Patagonia (Argentina and Chile). During the Late Pleistocene D. avus had a wide distribution, that covered part of Uruguay, Argentina (Buenos Aires province) and the southernmost Chile. Albeit some remains from late Holocene sites have been published, these remains lack of isotopic dates that could (allow?) constraint (to determine) the date of extinction of this fox. In this contribution we present several new records from the Pampean Region and Patagonia, and several taxon dates. The new records indicate that D. avus disappeared in the late Holocene at least ≈ 3000 years BP in the island of Tierra del Fuego (Patagonia) and ≈ 1600 BP in the continent. Since at this time humans were occupying most of the Pampas and Patagonia a revision of the causes behind the extinction of this fox is required.
Holocene South Asian Monsoon Climate Change - Potential Mechanisms and Effects on Past Civilizations
NASA Astrophysics Data System (ADS)
Staubwasser, M.; Sirocko, F.; Grootes, P. M.; Erlenkeuser, H.; Segl, M.
2002-12-01
Planktonic oxygen isotope ratios from the laminated sediment core 63KA off the river Indus delta dated with 80 AMS radiocarbon ages reveal significant climate changes in the south Asian monsoon system throughout the Holocene. The most prominent event of the early-mid Holocene occurred after 8.4 ka BP and is within dating error of the GISP/GRIP event centered at 8.2 ka BP. The late Holocene is generally more variable, and shows non-periodic cycles in the multi-centennial frequency band. The largest change of the entire Holocene occurred at 4.2 ka BP and is concordant with the end of urban Harappan civilization in the Indus valley. Opposing isotopic trends across the northern Arabian Sea surface indicate a reduction in Indus river discharge at that time. Consequently, sustained drought may have initiated the archaeologically recorded interval of southeastward habitat tracking within the Harappan cultural domain. The hemispheric significance of the 4.2 ka BP event is evident from concordant climate change in the eastern Mediterranean and the Middle East. The late Holocene cycles in South Asia, which most likely represent drought cycles, vary between 250 and 800 years and are coherent with the evolution of cosmogenic radiocarbon production rates in the atmosphere. This suggests that solar variability is the fundamental cause behind late Holocene rainfall changes at least over south Asia.
R. Douglas Hunter; Irina P. Panyushkina; Steven W. Leavitt; Alex C. Wiedenhoeft; John Zawiskie
2006-01-01
Remains of a Holocene drowned forest in southern Lake Huron discovered in 12.5 m of water (164 m above sea level), 4.5 km east of Lexington, Michigan USA (Sanilac site), provided wood to investigate environment and lake history using several proxies. Macrofossil evidence indicates a forest comprised primarily of conifers equivalent to the modern ârich conifer swampâ...
Barrier island response to late Holocene climate events, North Carolina, USA
Mallinson, D.J.; Smith, C.W.; Mahan, S.; Culver, S.J.; McDowell, K.
2011-01-01
The Outer Banks barrier islands of North Carolina, USA, contain a geologic record of inlet activity that extends from ca. 2200. cal. yr BP to the present, and can be used as a proxy for storm activity. Optically stimulated luminescence (OSL) dating (26 samples) of inlet-fill and flood tide delta deposits, recognized in cores and geophysical data, provides the basis for understanding the chronology of storm impacts and comparison to other paleoclimate proxy data. OSL ages of historical inlet fill compare favorably to historical documentation of inlet activity, providing confidence in the technique. Comparison suggests that the Medieval Warm Period (MWP) and Little Ice Age (LIA) were both characterized by elevated storm conditions as indicated by much greater inlet activity relative to today. Given present understanding of atmospheric circulation patterns and sea-surface temperatures during the MWP and LIA, we suggest that increased inlet activity during the MWP responded to intensified hurricane impacts, while elevated inlet activity during the LIA was in response to increased nor'easter activity. A general decrease in storminess at mid-latitudes in the North Atlantic over the last 300. yr has allowed the system to evolve into a more continuous barrier with few inlets. ?? 2011 University of Washington.
North Atlantic Storm Activity During the Younger Dryas
NASA Astrophysics Data System (ADS)
Toomey, M.
2015-12-01
The risks posed to cities along the Eastern Seaboard by a potential intensification of tropical cyclone activity over the coming decades remain poorly constrained, in part, due to a lack of available storm proxy records that extend beyond the relatively stable climates of the late Holocene. Previous work in the Bahamas shows that coarse-grained, high-energy event layers in carbonate bank margin sediments: (1) closely track recent historic hurricane events and (2) that the sensitivity of this proxy may be less affected by the deglacial changes in sea level that have limited our ability to reconstruct past hurricane activity using overwash records from back-barrier beach settings. Here we present a record of storm triggered turbidite deposition from a suite of well dated (e.g. Lynch-Stieglitz et al., 2011, Paleoceanography) jumbo piston cores taken offbank (300-500 mbsl) the Dry Tortugas, Florida, that spans abrupt transitions in North Atlantic sea surface temperature and thermohaline circulation during the Younger Dryas (12.9 - 11.5 kyr BP). This record, along with General Circulation Model output (TraCE: NCAR-CGD), indicates strong hurricane activity may have occurred along Southeastern US coasts through this interval despite considerably colder North Atlantic SSTs.
Isoscapes of δ18O and δ2H reveal climatic forcings on Alaska and Yukon precipitation
NASA Astrophysics Data System (ADS)
Lachniet, Matthew S.; Lawson, Daniel E.; Stephen, Haroon; Sloat, Alison R.; Patterson, William P.
2016-08-01
Spatially extensive Arctic stable isotope data are sparse, inhibiting the climatic understanding required to interpret paleoclimate proxy records. To fill this need, we constrained the climatic and physiographic controls on δ18O and δD values of stream waters across Alaska and the Yukon to derive interpolated isoscape maps. δ18O is strongly correlated to winter temperature parameters and similarity of the surface water line (δ2H = 8.0 × δ18O + 6.4) to the Global Meteoric Water Line suggests stream waters are a proxy for meteoric precipitation. We observe extreme orographic δ18O decreases and a trans-Alaskan continental gradient of -8.3‰ 1000 km-1. Continental gradients are high in coastal zones and low in the interior. Localized δ18O increases indicate inland air mass penetration via topographic lows. Using observed δ18O/temperature gradients, we show that δ18O decreases in a ˜24 ka permafrost ice wedge relative to the late Holocene indicate mean annual and coldest quarter temperature reductions of 8.9 ± 1.7°C and 17.2 ± 3.2°C, respectively.
Large-scale coastal and fluvial models constrain the late Holocene evolution of the Ebro Delta
NASA Astrophysics Data System (ADS)
Nienhuis, Jaap H.; Ashton, Andrew D.; Kettner, Albert J.; Giosan, Liviu
2017-09-01
The distinctive plan-view shape of the Ebro Delta coast reveals a rich morphologic history. The degree to which the form and depositional history of the Ebro and other deltas represent autogenic (internal) dynamics or allogenic (external) forcing remains a prominent challenge for paleo-environmental reconstructions. Here we use simple coastal and fluvial morphodynamic models to quantify paleo-environmental changes affecting the Ebro Delta over the late Holocene. Our findings show that these models are able to broadly reproduce the Ebro Delta morphology, with simple fluvial and wave climate histories. Based on numerical model experiments and the preserved and modern shape of the Ebro Delta plain, we estimate that a phase of rapid shoreline progradation began approximately 2100 years BP, requiring approximately a doubling in coarse-grained fluvial sediment supply to the delta. River profile simulations suggest that an instantaneous and sustained increase in coarse-grained sediment supply to the delta requires a combined increase in both flood discharge and sediment supply from the drainage basin. The persistence of rapid delta progradation throughout the last 2100 years suggests an anthropogenic control on sediment supply and flood intensity. Using proxy records of the North Atlantic Oscillation, we do not find evidence that changes in wave climate aided this delta expansion. Our findings highlight how scenario-based investigations of deltaic systems using simple models can assist first-order quantitative paleo-environmental reconstructions, elucidating the effects of past human influence and climate change, and allowing a better understanding of the future of deltaic landforms.
NASA Astrophysics Data System (ADS)
Ramos Román, M. J.; Jimenez-Moreno, G.; Anderson, R. S.; García-Alix, A.; Toney, J. L.; Jiménez-Espejo, F. J. J.; Carrión, J. S.
2015-12-01
Sediments from alpine peat bogs and lakes from the Sierra Nevada in southeastern Spain (western Mediterranean area) have been very informative in terms of how vegetation and wetland environments were impacted by past climate change. Recently, many studies try to find out the relationship between solar activity, atmosphere and ocean dynamics and changes in the terrestrial environments. The Mediterranean is a very sensitive area with respect to atmospheric dynamics due to (1) its location, right in the boundary between subtropical and temperate climate systems and (2) the North Atlantic Oscillation (NAO) is one of the main mechanism that influence present climate in this area. Here we present a multi-proxy high-resolution study from Borreguil de la Caldera (BdlC), a peat bog that records the last ca. 4500 cal yr BP of vegetation, fire, human impact and climate history from the Sierra Nevada. The pollen, charcoal and non-pollen palynomorphs (NPPs) reconstruction in the BdlC-01 record evidence relative humidity changes in the last millennia interrupting the late Holocene aridification trend. This study shows a relative arid period between ca. 4000 and 3100 cal yr BP; the Iberian Roman humid period (ca. 2600 to 1600 cal yr BP); a relative arid period during the Dark Ages (from ca. AD 500 to AD 900) and Medieval Climate Anomaly (from ca. AD 900 to ca. AD 1300) and predominantly wetter conditions corresponding with The Little Ice Age period (from ca. AD 1300 to AD 1850). This climate variability could be explained by centennial scale changes in the NAO and solar activity.
NASA Astrophysics Data System (ADS)
Niedermeyer, E. M.; Mohtadi, M.; Sessions, A. L.; Feakins, S. J.
2012-12-01
We used the stable hydrogen and stable carbon isotopic composition (dD and d13C, respectively) of terrestrial plant leaf waxes as a proxy for past rainfall variations over northwestern Indonesia. Our study site lies within the western boundary of the Indo-Pacific Warm Pool (IPWP), a key evaporative site for the global hydrologic cycle. At present, rainfall intensity in tropical Indonesia is influenced by the Pacific Ocean El Nino Southern Oscillation (ENSO) (see Kirono et al., 1999), the Indian Ocean Dipole (IOD) mode (Saji et al., 1999), and to some extend by the position of the Intertropical Convergence Zone (ITCZ) (e.g. Koutavas and Lynch-Stieglitz, 2005). Paleoclimate studies show that these systems have varied in the past, however, the impact of these changes on regional paelo-hydrology of Indonesia is yet unknown. We worked on marine sediment core SO189-144KL (1°09,300 N; 98°03,960 E) retrieved at 480 m water depth off Northwest Sumatra from the eastern Indian Ocean. Sediments consist of material from marine and terrestrial sources, and radiocarbon dating indicates an age of ~300 years at the core top and of ~24,000 years at the base. We used d13C and dD values of the n-C30 alkanoic acid as proxies for changes in vegetation composition (C3 vs. C4 plants) and rainfall variability on land, respectively. Values of d13C show only little variation and suggest persistent dominance of tropical trees throughout the past 24,000 years. Values of dD display distinct variability throughout the record, however, mean rainfall intensities during the late Last Glacial compare to those during the Holocene. This is in agreement with rather consistent vegetation at the study site but in sharp contrast with reconstructions of contemporaneous rainfall patterns at the nearby islands Borneo (Partin et al., 2007) and Flores (Griffiths et al., 2009), indicating multiple controls on regional hydrology of Indonesia. In combination with previous studies of late Pleistocene to Holocene ENSO and IOD variability, we further address the complex controls on Indonesian climate with emphasis of Holocene rainfall variability. References Griffiths, M.L., Drysdale, R.N., Gagan, M.K., Zhao, J.x., Ayliffe, L.K., Hellstrom, J.C., Hantoro, W.S., Frisia, S., Feng, Y.x., Cartwright, I., Pierre, E.S., Fischer, M.J., Suwargadi, B.W., 2009. Increasing Australian-Indonesian monsoon rainfall linked to early Holocene sea-level rise. Nature Geoscience 2, 636-639. Kirono, D.G.C., Tapper, N.J., McBride, J.L., 1999. Documenting Indonesian rainfall in the 1997/1998 El Nino event. Physical Geography 20, 422-435. Koutavas, A., Lynch-Stieglitz, J., 2005. Variability of the marine ITCZ over the eastern Pacific during the past 30,000 years: Regional perspective and global context. In: Bradley, R.S., Diaz, H.F. (Eds.), The Hadley Circulation: Present Past and Future. Springer, pp. 347-369. Partin, J.W., Cobb, K.M., Adkins, J.F., Clark, B., Fernandez, D.P., 2007. Millennial-scale trends in west Pacific warm pool hydrology since the Last Glacial Maximum. Nature 449, 452-455. Saji, N.H., Goswami, B.N., Vinayachandran, P.N., Yamagata, T., 1999. A dipole mode in the tropical Indian Ocean. Nature 401, 360-363.
Late Holocene Coral Growth Records from the Southeast Florida Continental Reef Tract, USA
NASA Astrophysics Data System (ADS)
Modys, A.; Oleinik, A. E.; Manzello, D.; Enochs, I.; Kolodziej, G.; Carroll, R. J.
2017-12-01
The southeast Florida continental reef tract provides a unique opportunity to examine the past and present response of marginal coral reefs to environmental and climatic change. Here we compare growth records of radiometrically dated late Holocene (3.1 to 1.9 ka) and modern corals using cores extracted from the common reef-building coral species Pseudodiploria strigosa. In 2015 and 2016, a total of 4 modern and 5 subfossil cores were collected from two shallow-water sites (3.0 and 4.5 m depths) on the nearshore ridge complex (NRC) offshore northern Broward County, Florida. Using 3-D computerized tomography, skeletal extension rates were estimated from the thickness of high- and low-density growth bands and combined with density measurements to yield calcification rates. Our results indicate that mean linear extension, density, and calcification were significantly lower in the late Holocene corals (0.52±0.01 cm yr-1; 1.05±0.02 g cm-3; 0.55±0.01 g cm-2 yr-1) compared to today (0.64±0.02 cm yr-1; 1.20±0.02 g cm-3; 0.78±0.04 g cm-2 yr-1), despite shallower local water depths in the late Holocene. Based on the radiometric ages and presence of distinct burial notches on the subfossil corals, we suggest that late Holocene P. strigosa growth at this site was potentially suppressed by reduced sea surface temperatures (SSTs) and/or increased burial compared to present conditions.
Early and late Holocene glacial fluctuations and tephrostratigraphy, Cabin Lake, Alaska
Zander, Paul D.; Kaufman, Darrell S.; Kuehn, Stephen C.; Wallace, Kristi L.; Anderson, R. Scott
2013-01-01
Marked changes in sediment types deposited in Cabin Lake, near Cordova, Alaska, represent environmental shifts during the early and late Holocene, including fluctuations in the terminal position of Sheridan Glacier. Cabin Lake is situated to receive meltwater during periods when the outwash plain of the advancing Sheridan Glacier had aggraded. A brief early Holocene advance from 11.2 to 11.0 cal ka is represented by glacial rock flour near the base of the sediment core. Non-glacial lake conditions were restored for about 1000 years before the water level in Cabin Lake lowered and the core site became a fen. The fen indicates drier-than-present conditions leading up to the Holocene thermal maximum. An unconformity spanning 5400 years during the mid-Holocene is overlain by peat until 1110 CE when meltwater from Sheridan Glacier returned to the basin. Three intervals of an advanced Sheridan Glacier are recorded in the Cabin Lake sediments during the late Holocene: 1110–1180, 1260–1540 and 1610–1780 CE. The sedimentary sequence also contains the first five reported tephra deposits from the Copper River delta region, and their geochemical signatures suggest that the sources are the Cook Inlet volcanoes Redoubt, Augustine and Crater Peak, and possibly Mt Churchill in the Wrangell Volcanic field.
Half-precessional climate forcing of Indian Ocean monsoon dynamics on the East African equator
NASA Astrophysics Data System (ADS)
Verschuren, D.; Sinninghe Damste, J. S.; Moernaut, J.; Kristen, I.; Fagot, M.; Blaauw, M.; Haug, G. H.; Project Members, C.
2008-12-01
The EuroCLIMATE project CHALLACEA produced a detailed multi-proxy reconstruction of the climate history of equatorial East Africa, based on the sediment record of Lake Challa, a 4.2 km2, 92-m deep crater lake on the lower East slope of Mt. Kilimanjaro (Kenya/Tanzania). Relatively stable sedimentation dynamics over the past 25,000 years resulted in a unique combination of high temporal resolution, excellent radiometric (210Pb, 14C) age control, and confidence that recording parameters of the climatic proxy signals extracted from the sediment have remained constant through time. The equatorial (3 deg. S) location of our study site in East Africa, where seasonal migration of convective activity spans the widest latitude range worldwide, produced unique information on how varying rainfall contributions from the northeasterly and southeasterly Indian Ocean monsoons shaped regional climate history. The Challa proxy records for temperature (TEX86) and moisture balance (reflection-seismic stratigraphy and the BIT index of soil bacterial input) uniquely weave together tropical climate variability at orbital and shorter time scales. The temporal pattern of reconstructed moisture balance bears the clear signature of half- precessional insolation forcing of Indian Ocean monsoon dynamics, modified by northern-latitude influence on moisture-balance variation at millennial and century time scales. During peak glacial time (but not immediately before) and the Younger Dryas, NH ice sheet influences overrode local insolation influence on monsoon intensity. After the NH ice sheets had melted and a relatively stable interglacial temperature regime developed, precession-driven summer insolation became the dominant determinant of regional moisture balance, with anti-phased patterns of Holocene hydrological change in the northern and southern (sub)tropics, and a uniquely hybrid pattern on the East African equator. In the last 2-3000 years a series of multi-century droughts with links to high latitude climate variability exerted widespread influence across the African continent. In northern and western tropical Africa these drought episodes accentuated the late- Holocene drying trend; in southern tropical Africa they mitigated or aborted the trend to increasing monsoon rainfall prescribed by SH insolation forcing.
Holocene palaeoenvironmental history of the Amazonian mangrove belt
NASA Astrophysics Data System (ADS)
Cohen, Marcelo Cancela Lisboa; Pessenda, Luiz Carlos Ruiz; Behling, Hermann; de Fátima Rossetti, Dilce; França, Marlon Carlos; Guimarães, José Tasso Felix; Friaes, Yuri; Smith, Clarisse Beltrão
2012-11-01
Wetland dynamic in the northern Brazilian Amazon region during the Holocene was reviewed using palynological, carbon and nitrogen isotopes records, and C/N ratio previously published. The integration of 72 radiocarbon dates recorded in 34 sediment cores sampled along the marine and fluvial littoral, and mainly influenced by the Amazon River, reveals that marine influence and mangrove vegetation were wider than today on the mouth of Amazon River between >8990-8690 and 2300-2230 cal yr BP, forming a continuous mangrove belt along the northern Brazilian Amazon littoral. The establishment of this mangrove strip is a direct consequence of the marine incursion caused by post-glacial sea-level rise possibly associated with tectonic subsidence during the Early and Middle Holocene. In the Late Holocene, in areas influenced by the Amazon River discharge, the mangroves were replaced by freshwater vegetation, and the coast morphology evolved from an estuarine dominated into a rectilinear coast due to coastal progradation. Nevertheless, the marine-influenced littoral, which is currently dominated by mangroves and salt-marsh vegetation, has persistently had brackish water vegetation over tidal mud flats throughout the entire Holocene. Likely, the fragmentation of this continuous mangrove line during the Late Holocene was caused by the increase of river freshwater discharge associated to the change from dry into wet climates in the Late Holocene. This caused a significant decrease of tidal water salinity in areas near the mouth of Amazon River. These changes in the Amazon discharge are probably associated with dry and wet periods in the northern Amazon region during the Holocene.
Extensive Glacier Advances During the Pleistocene-Holocene Transition on Svalbard
NASA Astrophysics Data System (ADS)
Ingolfsson, O.; Farnsworth, W. R.; Allaart, L.; Håkansson, L.; Schomacker, A.
2017-12-01
A variety of data suggest extensive glacier advances on Svalbard in connection with the Pleistocene-Holocene transition, during period of regional warming. We present a study of a well-constrained end moraine formed during the Lateglacial-early Holocene transition in De Geerbukta, NE Svalbard. The landform was deposited by an outlet glacier re-advancing into a fjord suggesting a far more extended position than the late Holocene maximum. We compare the synchronicity of this glacier advance to climate and 15 other proposed Lateglacial-Early Holocene glacier advances in Svalbard. The evidence suggests that the Lateglacial-Early Holocene glaciers were much more dynamic than hitherto recognized, exhibited re-advances and extended well beyond the extensively studied late Holocene glacial expansion. We suggest that the culmination of the Neoglacial advances during the Little Ice Age does not mark the Holocene maximum extent of most Svalbard glaciers; it is just the most studied and most visible in the geological record. Furthermore, the evidence suggests that the final phase of Svalbard deglaciation, after the last major glaciation, was characterized by widespread advances of Svalbard outlet glaciers. The presentation will discuss the implications of this.
Reconstructing Holocene climate using a climate model: Model strategy and preliminary results
NASA Astrophysics Data System (ADS)
Haberkorn, K.; Blender, R.; Lunkeit, F.; Fraedrich, K.
2009-04-01
An Earth system model of intermediate complexity (Planet Simulator; PlaSim) is used to reconstruct Holocene climate based on proxy data. The Planet Simulator is a user friendly general circulation model (GCM) suitable for palaeoclimate research. Its easy handling and the modular structure allow for fast and problem dependent simulations. The spectral model is based on the moist primitive equations conserving momentum, mass, energy and moisture. Besides the atmospheric part, a mixed layer-ocean with sea ice and a land surface with biosphere are included. The present-day climate of PlaSim, based on an AMIP II control-run (T21/10L resolution), shows reasonable agreement with ERA-40 reanalysis data. Combining PlaSim with a socio-technological model (GLUES; DFG priority project INTERDYNAMIK) provides improved knowledge on the shift from hunting-gathering to agropastoral subsistence societies. This is achieved by a data assimilation approach, incorporating proxy time series into PlaSim to initialize palaeoclimate simulations during the Holocene. For this, the following strategy is applied: The sensitivities of the terrestrial PlaSim climate are determined with respect to sea surface temperature (SST) anomalies. Here, the focus is the impact of regionally varying SST both in the tropics and the Northern Hemisphere mid-latitudes. The inverse of these sensitivities is used to determine the SST conditions necessary for the nudging of land and coastal proxy climates. Preliminary results indicate the potential, the uncertainty and the limitations of the method.
Response of the North American monsoon to regional changes in ocean surface temperature
Barron, John A.; Metcalfe, Sarah E.; Addison, Jason A.
2012-01-01
The North American monsoon (NAM), an onshore wind shift occurring between July and September, has evolved in character during the Holocene largely due to changes in Northern Hemisphere insolation. Published paleoproxy and modeling studies suggest that prior to ∼8000 cal years BP, the NAM affected a broader region than today, extending westward into the Mojave Desert of California. Holocene proxy SST records from the Gulf of California (GoC) and the adjacent Pacific provide constraints for this changing NAM climatology. Prior to ∼8000 cal years BP, lower GoC SSTs would not have fueled northward surges of tropical moisture up the GoC, which presently contribute most of the monsoon precipitation to the western NAM region. During the early Holocene, the North Pacific High was further north and SSTs in the California Current off Baja California were warmer, allowing monsoonal moisture flow from the subtropical Pacific to take a more direct, northwesterly trajectory into an expanded area of the southwestern U.S. west of 114°W. A new upwelling record off southwest Baja California reveals that enhanced upwelling in the California Current beginning at ∼7500 cal year BP may have triggered a change in NAM climatology, focusing the geographic expression of NAM in the southwest USA into its modern core region east of ∼114°W, in Arizona and New Mexico. Holocene proxy precipitation records from the southwestern U.S. and northwestern Mexico, including lakes, vegetation/pollen, and caves are reviewed and found to be largely supportive of this hypothesis of changing Holocene NAM climatology.
Hydrologic response of the Crow Wing Watershed, Minnesota, to mid-Holocene climate change
Person, M.; Roy, P.; Wright, H.; Gutowski, W.; Ito, E.; Winter, T.; Rosenberry, D.; Cohen, D.
2007-01-01
In this study, we have integrated a suite of Holocene paleoclimatic proxies with mathematical modeling in an attempt to obtain a comprehensive picture of how watersheds respond to past climate change. A three-dimensional surface-water-groundwater model was developed to assess the effects of mid-Holocene climate change on water resources within the Crow Wing Watershed, Upper Mississippi Basin in north central Minnesota. The model was first calibrated to a 50 yr historical record of average annual surface-water discharge, monthly groundwater levels, and lake-level fluctuations. The model was able to reproduce reasonably well long-term historical records (1949-1999) of water-table and lake-level fluctuations across the watershed as well as stream discharge near the watershed outlet. The calibrated model was then used to reproduce paleogroundwater and lake levels using climate reconstructions based on pollen-transfer functions from Williams Lake just outside the watershed. Computed declines in mid-Holocene lake levels for two lakes at opposite ends of the watershed were between 6 and 18 m. Simulated streamflow near the outlet of the watershed decreased to 70% of modern average annual discharge after ???200 yr. The area covered by wetlands for the entire watershed was reduced by ???16%. The mid-Holocene hydrologic changes indicated by these model results and corroborated by several lake-core records across the Crow Wing Watershed may serve as a useful proxy of the hydrologic response to future warm, dry climatic forecasts (ca. 2050) made by some atmospheric general-circulation models for the glaciated Midwestern United States. ?? 2007 Geological Society of America.
Ager, Thomas A.; Rosenbaum, Joseph G.
2009-01-01
A radiocarbon-dated history of vegetation development since late Wisconsin deglaciation has been reconstructed from pollen evidence preserved in a sediment core from Pass Lake on Prince of Wales Island, southeastern Alaska. The shallow lake is in the south-central part of the island and occupies a low pass that was filled by glacial ice of local origin during the late Wisconsin glaciation. The oldest pollen assemblages indicate that pine woodland (Pinus contorta) had developed in the area by ~13,715 cal yr B.P. An abrupt decline in the pine population, coinciding with expansion of alder (Alnus) and ferns (mostly Polypodiaceae) began ~12,875 yr B.P., and may have been a response to colder, drier climates during the Younger Dryas climatic interval. Mountain hemlock (Tsuga mertensiana) began to colonize central Prince of Wales Island by ~11,920 yr B.P. and was soon followed by Sitka spruce (Picea sitchensis). Pollen of western hemlock (Tsuga heterophylla) began to appear in Pass Lake sediments soon after 11,200 yr B.P. The abundance of western hemlock pollen in the Pass Lake core during most of the Holocene appears to be the result of wind transport from trees growing at lower altitudes on the island. The late Holocene pollen record from Pass Lake is incomplete because of one or more unconformities, but the available record suggests that a vegetation change occurred during the late Holocene. Increases in pollen percentages of pine, cedar (probably yellow cedar, Chamaecyparis nootkatensis), and heaths (Ericales) suggest an expansion of muskeg vegetation occurred in the area during the late Holocene. This vegetation change may be related to the onset of cooler, wetter climates that began as early as ~3,774 yr B.P. in the region. This vegetation history provides the first radiocarbon-dated Late Glacial-Holocene terrestrial paleoecological framework for Prince of Wales Island. An analysis of magnetic properties of core sediments from Pass Lake suggests that unconformities caused by low lake levels may be detectable where fine-grained ferrimagnets are concentrated in peaty sediments.
Millennial- to century-scale variability in Gulf of Mexico Holocene climate records
Poore, R.Z.; Dowsett, H.J.; Verardo, S.; Quinn, T.M.
2003-01-01
Proxy records from two piston cores in the Gulf of Mexico (GOM) provide a detailed (50-100 year resolution) record of climate variability over the last 14,000 years. Long-term (millennial-scale) trends and changes are related to the transition from glacial to interglacial conditions and movement of the average position of the Intertropical Convergence Zone (ITCZ) related to orbital forcing. The ??18O of the surface-dwelling planktic foraminifer Globigerinoides ruber show negative excursions between 14 and 10.2 ka (radiocarbon years) that reflect influx of meltwater into the western GOM during melting of the Laurentide Ice Sheet. The relative abundance of the planktic foraminifer Globigerinoides sacculifer is related to transport of Caribbean water into the GOM. Maximum transport of Caribbean surface waters and moisture into the GOM associated with a northward migration of the average position of the ITCZ occurs between about 6.5 and 4.5 ka. In addition, abundance variations of G. sacculifer show century-scale variability throughout most of the Holocene. The GOM record is consistent with records from other areas, suggesting that century-scale variability is a pervasive feature of Holocene climate. The frequency of several cycles in the climate records is similar to cycles identified in proxy records of solar variability, indicating that at least some of the century-scale climate variability during the Holocene is due to external (solar) forcing.
North Atlantic forcing of moisture delivery to Europe throughout the Holocene
Smith, Andrew C.; Wynn, Peter M.; Barker, Philip A.; Leng, Melanie J.; Noble, Stephen R.; Tych, Wlodek
2016-01-01
Century-to-millennial scale fluctuations in precipitation and temperature are an established feature of European Holocene climates. Changes in moisture delivery are driven by complex interactions between ocean moisture sources and atmospheric circulation modes, making it difficult to resolve the drivers behind millennial scale variability in European precipitation. Here, we present two overlapping decadal resolution speleothem oxygen isotope (δ18O) records from a cave on the Atlantic coastline of northern Iberia, covering the period 12.1–0 ka. Speleothem δ18O reveals nine quasi-cyclical events of relatively wet-to-dry climatic conditions during the Holocene. Dynamic Harmonic Regression modelling indicates that changes in precipitation occurred with a ~1500 year frequency during the late Holocene and at a shorter length during the early Holocene. The timing of these cycles coincides with changes in North Atlantic Ocean conditions, indicating a connectivity between ocean conditions and Holocene moisture delivery. Early Holocene climate is potentially dominated by freshwater outburst events, whilst ~1500 year cycles in the late Holocene are more likely driven by changes internal to the ocean system. This is the first continental record of its type that clearly demonstrates millennial scale connectivity between the pulse of the ocean and precipitation over Europe through the entirety of the Holocene. PMID:27109216
NASA Astrophysics Data System (ADS)
Olson, E. J.; Dodd, J. P.
2015-12-01
Previous studies have documented that tree ring oxygen and hydrogen isotopes primarily reflect source water; however, biosynthetic fractionation processes modify this signal and can have a varied response to environmental conditions. The degree to which source water contributes to δ2H and δ18O values of plant α-cellulose is species-specific and modern calibration studies are necessary. Here we present a calibration data set of P. tamarugo α-cellulose δ2H and δ18O values from the Atacama Desert in Northern Chile. P. tamarugo trees are endemic to the region and have adapted to the extremely arid environment where average annual precipitation is < 5mm/yr. This modern isotope chronology has been constructed from living P. tamarugo trees (n=12) from the Pampa del Tamarugal Basin in the northern Atacama. Generally, the tree-ring α-cellulose δ18O values are poorly correlated with meteorological data from coastal stations (i.e. Iquique); however, there is good agreement between regional groundwater depth and α-cellulose δ18O values. Most notably, average α-cellulose δ18O values increase by >2 ‰ over the past 20 years associated with a ~1.1 m lowering of the local groundwater table throughout the area. The correlation between a-cellulose isotope values and hydrologic conditions in modern times provides a baseline for interpretation of tree-ring isotope chronologies from the past 9.5 kya. A high-resolution Holocene (1.8-9.1 kya) age record of Prosopis sp. tree ring α-cellulose δ18O values provides a proxy for climatic and hydrologic conditions. During the early Holocene δ18O values range from 31 to 35‰ (2σ=0.58‰), while during the late Holocene values are much more variable (27.4 to 41‰; 2σ=2.64‰). Anthropogenic demand on local water sources is the most significant environmental factor affecting the variation in modern α-cellulose δ18O values; however, climate induced changes in regional water availability are the dominant driver of variability in the paleo-record. Increased variability in α-cellulose δ18O values in the late Holocene most likely indicates a reduction in annual recharge and an increase in episodic flood events driven by ENSO and other modes of atmospheric variability.
The variability of the North Atlantic Oscillation throughout the Holocene
NASA Astrophysics Data System (ADS)
Wassenburg, Jasper; Dietrich, Stephan; Fietzke, Jan; Fohlmeister, Jens; Wei, Wei; Jochum, Klaus Peter; Scholz, Denis; Richter, Detlev; Sabaoui, Abdellah; Lohmann, Gerrit; Andreae, Meinrat; Immenhauser, Adrian
2013-04-01
The North Atlantic Oscillation (NAO) has a major impact on Northern Hemisphere winter climate. Trouet et al. (2009) reconstructed the NAO for the last millennium based on a Moroccan tree ring PDSI (Palmer Drought Severity Index) reconstruction and a Scottish speleothem record. More recently, Olsen et al. (2012) extended the NAO record back to 5.2 ka BP based on a lake record from West Greenland. It is, however, well known that the NAO exhibits non-stationary behavior and the use of a single location for a NAO reconstruction may not capture the complete variability. In addition, the imprint of the NAO on European rainfall patterns in the Early and Mid Holocene on (multi-) centennial timescales is still largely unknown. This is related to difficulties in establishing robust correlations between different proxy records and the fact that proxies may not only reflect winter conditions (i.e., the season when the NAO has the largest influence). Here we present a precisely dated, high resolution speleothem δ18O record from NW Morocco covering the complete Early and Mid Holocene. Carbon and oxygen isotopes were measured at a resolution of 15 years. A multi-proxy approach provides solid evidence that speleothem δ18O values reflect changes in past rainfall intensity. The Moroccan record shows a significant correlation with a speleothem rainfall record from western Germany, which covers the entire Holocene (Fohlmeister et al., 2012). The combination with the extended speleothem record from Scotland, speleothem records from north Italy and the NAO reconstruction from West Greenland (Olsen et al., 2012) allows us to study the variability of the NAO during the entire Holocene. The relation between West German and Northwest Moroccan rainfall has not been stationary, which is evident from the changing signs of correlation. The Early Holocene is characterized by a positive correlation, which changes between 9 and 8 ka BP into a negative correlation. Simulations with the state-of-the-art earth system model COSMOS for the Early and Mid Holocene (Wei and Lohmann, 2012) indicate that this change in the NAO teleconnection is related to large-scale circulation changes due to the ice sheet configuration and deglaciation. References: Fohlmeister, J., Schroder-Ritzrau, A., Scholz, D., Riechelmann, D.F.C., Mudelsee, M., Wackerbarth, A., Gerdes, A., Riechelmann, S., Immenhauser, A., Richter, D.K., Mangini, A., 2012. Bunker Cave stalagmites: an archive for central European Holocene climate variability. Climate of the Past 8, 1751-1764. Olsen, J., Anderson, J.N., Knudsen, M.F., 2012. Variability of the North Atlantic Oscillation over the past 5,200 years. Nature Geoscience DOI:10.1038/NGEO1589, Trouet, V., Esper, J., Graham, N.E., Baker, A., Scourse, J.D., Frank, D.C., 2009. Persistent Positive North Atlantic Oscillation Mode Dominated the Medieval Climate Anomaly. Science 324, 78-80. Wei, W., Lohmann, G., 2012. Simulated Atlantic Multidecadal Oscillation during the Holocene. Journal of Climate 6989-7002.
NASA Astrophysics Data System (ADS)
Zech, W.; Glaser, B.; Abramowski, U.; Dittmar, C.; Kubik, P. W.
2003-11-01
Late Quaternary glacier fluctuations in the Macha Khola valley (Gorkha Himal, Nepal) were reconstructed using relative and absolute dating techniques. Our results indicate that younger moraine complexes were left by Late Holocene (<1.7 cal. ka BP), mid-Holocene (ca 3 cal. ka BP), and Lateglacial (ca 13 cal. ka BP) ice advances. Older Late Quaternary glacier advances occurred during Marine Oxygen Isotope Stages (MIS) 2 and 3-4. No relics of Middle or Early Pleistocene glaciations could be found. During MIS 3-4, glaciers advanced down to an altitude of at least 2150 m a.s.l., corresponding to an ELA depression of approximately 1300 m. At about 3500 m a.s.l., the MIS 2 Macha Khola glacier reached almost the thickness of the former MIS 3-4 glacier and retreated some time before 17.9 cal. ka BP. The Lateglacial glacier advanced again several times to altitudes between 2450 and 3400 m a.s.l. The mid-Holocene glaciers extended much farther down-valley than the Late Holocene ones. Dendrochronological data of Abies spectabilis suggested several periods of unfavourable growth conditions especially at the beginning of the 19th (1820) and 20th (1905) centuries.
NASA Astrophysics Data System (ADS)
Self, Angela; Brooks, Stephen; Jones, Vivienne; Solovieva, Nadia; McGowan, Suzanne; Rosén, Peter; Parrott, Emily; Seppä, Heikki; Salonen, Sakari
2010-05-01
Average arctic temperatures have increased at almost twice the rate of the rest of the world over the last 100 years and climate projections suggest this trend is likely to continue resulting in an additional warming of 2 - 3°C in annual mean air temperatures by 2050. Freshwater ecosystems occupy a substantial area of the terrestrial environment in the Arctic and are particularly sensitive to temperature increases which may lead to profound changes in catchment characteristics, permafrost, hydrology and nutrient availability. Therefore it is important to understand how past changes in climate have affected these ecosystems. In this paper we present one of the first quantitative multi-proxy climate records from arctic Siberia. The affect of early - mid Holocene and recent climate change on arctic lakes in northern Russia were investigated in multi-proxy studies. The past climate was reconstructed using chironomid inference models to estimate mean July air temperatures and trends in continentality. Stable isotopes and LOI were analysed to infer past changes in sediment organic matter. Near-infrared spectroscopy (NIRS) and/or diatoms were used to infer changes in lake water total organic carbon and algal pigments and/or diatoms were used to infer changes in productivity and light penetration in the lake. Analyses of a sediment core from a tundra lake (Lake Kharinei) in north-eastern European Russia show significant assemblage changes in diatoms, chironomids and pigments, which coincide with climate-driven vegetation shifts from open birch forest to spruce forest and then to tundra over the Holocene. During the open birch phase of the late Glacial - early Holocene, chironomid-inferred reconstructions suggest that the climate was approximately 1 - 3°C warmer and more continental than present. Isotopic analyses indicate a productive environment receiving a significant input of organic material from terrestrial plants into the lake. Both diatoms and NIRS-TOC also suggest that the lake water was relatively high in TOC. Spruce forest became established within the catchment during the early - mid Holocene, which appears to have stimulated algal production. Throughout this period July air temperatures are inferred to have gradually declined to present-day values and the climate became more maritime. From ca. 4000 cal yrs BP July air temperatures remained stable but continentality increased leading to a shorter ice-free period. The pollen and macrofossil record indicates a transition to tundra vegetation ca 3000 cal yr BP which coincides with major changes in pigments, chironomids and diatoms. High resolution reconstruction of climate variability over the last 200 years from two tundra lakes on the Putoran Plateau, western Siberia, suggest that mean July air temperatures warmed by approximately 0.5°C between ca 1820 - 1980 and have remained relatively stable over the last 30 years. However major compositional changes in the chironomid and diatom assemblages have occurred within the last 125 - 50 years. Since the 1970s increases in the instrumental June temperature record and a chironomid-inferred shift to a more maritime climate have been accompanied by increases in diatom accumulation rates together with an increase in within-lake productivity and a trend towards increased algal productivity (as highlighted by stable isotope analysis). The synchronicity of the changes suggests the biota may be responding to lengthening of the ice-free period and related limnological changes. The changes in these Russian lakes corroborate results from Europe and Arctic Canada and indicate a circumpolar pattern of climate-driven regime change in arctic lakes in the last 100 years.
NASA Astrophysics Data System (ADS)
He, Keyang; Lu, Houyuan; Zheng, Yunfei; Zhang, Jianping; Xu, Deke; Huan, Xiujia; Wang, Jiehua; Lei, Shao
2018-05-01
The eastern coastal zone of China is densely populated and widely recognized as a center of rice domestication, which has undergone dramatic sea-level fluctuation during the Holocene epoch. Hemudu culture is distributed mainly in the eastern coastal area and was once presumed as a mature agricultural economy based on rice, making it an ideal case for examining the remarkable human-environment interaction in the Lower Yangtze River. Though numerous studies have been conducted on the cultural evolution, ecological environment, and rice domestication of Hemudu culture, the impact of sea-level fluctuation on human settlement and food production remains controversial. In this study, we report high-resolution pollen, phytolith, and diatom records, and accurately measured elevation from the Yushan site, which is the closest site of Hemudu culture to the modern coastline. Based on the data gathered, we suggest that the Hemudu culture and subsequent Liangzhu culture developed in the context of regression and were interrupted by two transgressions that occurred during 6300-5600 BP and 5000-4500 BP. The regional ecological environment of the Yushan site alternated between intertidal mudflat and freshwater wetlands induced by sea-level fluctuations in the mid-late Holocene. Though rice was cultivated in the wetland as early as 6700 BP, this cultivation was subsequently discontinued due to the transgression; thus, full domestication of rice did not occur until 5600 BP in this region. Comprehensive analysis of multiple proxies in this study promote the understanding of the relationship between environmental evolution, cultural interruption, and rice domestication.
NASA Astrophysics Data System (ADS)
Thevenon, Florian; Williamson, David; Bard, Edouard; Anselmetti, Flavio S.; Beaufort, Luc; Cachier, Hélène
2010-07-01
This paper addresses the quantification of combustion-derived products in oceanic and continental sediments by optical and chemical approaches, and the interest of combining such methods for reconstructing past biomass burning activity and the pyrogenic carbon cycle. In such context, the dark particles > 0.2 µm 2 remaining after the partial digestion of organic matter are optically counted by automated image analysis and defined as charcoal, while the elemental carbon remaining after thermal and chemical oxidative treatments is quantified as black carbon (BC). The obtained pyrogenic carbon records from three sediment core-based case studies, (i) the Late Pleistocene equatorial Pacific Ocean, (ii) the mid-Holocene European Lake Lucerne, and (iii) the Late Holocene African Lake Masoko, are interpreted as proxy records of regional transportation mechanisms and biomass burning activities. The results show that the burial of dark carbon-rich particles in the 360 kyr-long record from the west equatorial Pacific is controlled by the combination of sea-level changes and low-latitude atmospheric circulation patterns (summer monsoon dynamics). However, the three fold increases in charcoal and BC sediment influxes between 53-43 and 12-10 kyr BP suggest that major shifts in fire activity occur synchronously with human colonization in the Indo/Pacific region. The coarse charcoal distribution from a 7.2 kyr record from Lake Lucerne in Switzerland closely matches the regional timing of major technical, land-use, and socio-economic changes during the Neolithic (between ca. 5.7 and 5.2 kyr BP and 4.9-4.5 kyr BP), the Bronze and Iron Ages (at ca. 3.3 and 2.4 kyr BP, respectively), and the industrialization (after AD 1838), pointing to the key impact of human activities on the sources, transportation processes and reservoirs of refractory carbon during the Holocene. In the tropical Masoko maar lake in Tanzania, where charcoal and BC records are highly sensitive to the local climate and environment, surface runoffs from forested areas and/or aerial transportation over short distances are also important sources for detrital charred particles. However, this 4.3 kyr-long record exhibits a major increase in charcoal and BC sediment influxes between 1.8 and 0.6 kyr BP, synchronously with the regional extent of Late Iron Age and agricultural innovations. Therefore, in both marine and terrestrial depositional environments, the climate- and vegetation-controlled fire regimes appear to be strongly associated to societal changes, or directly affected by human practices. In fact, the anthropogenic effect associated to past human activities (e.g. settlement, agriculture, and metallurgy) has temporarily at least tripled the emissions of pyrogenic carbon in the environment. However, the data from the three Late Pleistocene to Holocene sequences also show that the redistribution of fossil particles by runoff and erosion processes is a significant source of pyrogenic carbon that should be understood as a prerequisite for interpreting sedimentary records of biomass burning.
Madole, Richard F.
2012-01-01
Stratigraphic analyses and radiocarbon geochronology of alluvial deposits exposed along the Roaring River, Colorado, lead to three principal conclusions: (1) the opinion that stream channels in the higher parts of the Front Range are relics of the Pleistocene and nonalluvial under the present climate, as argued in a water-rights trial USA v. Colorado, is untenable, (2) beds of clast-supported gravel alternate in vertical succession with beds of fine-grained sediment (sand, mud, and peat) in response to centennial-scale changes in snowmelt-driven peak discharges, and (3) alluvial strata provide information about Holocene climate history that complements the history provided by cirque moraines, periglacial deposits, and paleontological data. Most alluvial strata are of late Holocene age and record, among other things, that: (1) the largest peak flows since the end of the Pleistocene occurred during the late Holocene; (2) the occurrence of a mid- to late Holocene interval (~2450–1630(?) cal yr BP) of warmer climate, which is not clearly identified in palynological records; and (3) the Little Ice Age climate seems to have had little impact on stream channels, except perhaps for minor (~1 m) incision. Published
NASA Astrophysics Data System (ADS)
Madole, Richard F.
2012-09-01
Stratigraphic analyses and radiocarbon geochronology of alluvial deposits exposed along the Roaring River, Colorado, lead to three principal conclusions: (1) the opinion that stream channels in the higher parts of the Front Range are relics of the Pleistocene and nonalluvial under the present climate, as argued in a water-rights trial USA v. Colorado, is untenable, (2) beds of clast-supported gravel alternate in vertical succession with beds of fine-grained sediment (sand, mud, and peat) in response to centennial-scale changes in snowmelt-driven peak discharges, and (3) alluvial strata provide information about Holocene climate history that complements the history provided by cirque moraines, periglacial deposits, and paleontological data. Most alluvial strata are of late Holocene age and record, among other things, that: (1) the largest peak flows since the end of the Pleistocene occurred during the late Holocene; (2) the occurrence of a mid- to late Holocene interval (~ 2450-1630(?) cal yr BP) of warmer climate, which is not clearly identified in palynological records; and (3) the Little Ice Age climate seems to have had little impact on stream channels, except perhaps for minor (~ 1 m) incision.
Late Holocene and recent rainforest cultural landscapes of North Queensland, Australia
NASA Astrophysics Data System (ADS)
Steinberger, L. M.; Moss, P. T.; Haberle, S.; Cosgrove, R.; Ferrier
2011-12-01
The tropical rainforests of North Queensland, Australia, have been environments of significant human activity for several thousand years. Palaeoecological research has highlighted the long-term effects of Quaternary climate change on these environments at a broad spatial scale, including the expansion of tropical rainforest across the region following the termination of the Last Glacial Maximum. However, identifying the effects of a hunter-gatherer Aboriginal population has been more difficult. Palaeoecological suggestions of Pleistocene Aboriginal burning, based on pollen and charcoal records, have relied on coincident timing with a general narrative of colonisation rather than direct links with archaeological evidence. Current research is explicitly examining the environmental consequences of human activity in North Queensland rainforests by producing local palaeoecological data directly linked to sites and periods of human occupation. Pollen, macrocharcoal and phytolith records have been produced from sites of human activity within the rainforest. Late Holocene Aboriginal occupation of the rainforest is demonstrated to have had significant cultural links to patches of open vegetation that existed within the rainforest. While these patches are likely to have originated as edaphically controlled remnants of Pleistocene vegetation, their expansion and maintenance in the late Holocene is associated with increasing intensity of Aboriginal occupation of the rainforest. Late Holocene Aboriginal rainforest occupation is also contrasted with the historical European colonisation of the rainforest in the late 19th century, which resulted in the most significant environmental changes in the region since the early Holocene. Historical and ethnographic records provide important cultural context for understanding the transition between Aboriginal and European cultural landscapes of the rainforest.
Late-Holocene rodent middens from Rio Limay, Neuquen Province, Argentina
Markgraf, Vera; Betancourt, J.; Rylander, K.A.
1997-01-01
Pollen analysis of late-Holocene amberat deposits from two caves near the forest-steppe ecotone in northern Patagonia documents a major shift from Austrocedrus-Nothofagus forest to steppe shrub assemblages some time after 1800 and before 1300 BP. The probable explanation of the reduction of tree taxa calls for either drier summers or intensified land use or a combination of both.
Appalachian Piedmont landscapes from the Permian to the Holocene
Cleaves, E.T.
1989-01-01
Between the Potomac and Susquehanna Rivers and from the Blue Ridge to the Fall Zone, landscapes of the Piedmont are illustrated for times in the Holocene, Late Wisconsin, Early Miocene, Early Cretaceous, Late Triassic, and Permian. Landscape evolution took place in tectonic settings marked by major plate collisions (Permian), arching and rifting (Late Triassic) and development of the Atlantic passive margin by sea floor spreading (Early Cretaceous). Erosion proceeded concurrently with tectonic uplift and continued after cessation of major tectonic activity. Atlantic Outer Continental Shelf sediments record three major erosional periods: (1) Late Triassic-Early Jurassic; (2) Late Jurassic-Early Cretaceous; and (3) Middle Miocene-Holocene. The Middle Miocene-Holocene pulse is related to neotectonic activity and major climatic fluctuations. In the Piedmont upland the Holocene landscape is interpreted as an upland surface of low relief undergoing dissection. Major rivers and streams are incised into a landscape on which the landforms show a delicate adjustment to rock lithologies. The Fall Zone has apparently evolved from a combination of warping, faulting, and differential erosion since Late Miocene. The periglacial environment of the Late Wisconsin (and earlier glacial epochs) resulted in increased physical erosion and reduced chemical weathering. Even with lowered saprolitization rates, geochemical modeling suggests that 80 m or more of saprolite may have formed since Late Miocene. This volume of saprolite suggests major erosion of upland surfaces and seemingly contradicts available field evidence. Greatly subdued relief characterized the Early Miocene time, near the end of a prolonged interval of tropical morphogenesis. The ancestral Susquehanna and Potomac Rivers occupied approximately their present locations. In Early Cretaceous time local relief may have been as much as 900 m, and a major axial river draining both the Piedmont and Appalachians flowed southeast past Baltimore. The Late Triassic landscape was influenced by rift basin development. Streams drained into a hydrologically closed basin: no through-flowing rivers seem to have been present. A limestone escarpment along the Blue Ridge may have existed as a consequence of a semi-arid climate. The Permian may have been a time of Himalayan-like mountains and mountain glaciers. Streams (and glaciers) generally flowed southwest and west. ?? 1989.
Hydroclimate variability in the Nile River Basin during the past 28,000 years
NASA Astrophysics Data System (ADS)
Castañeda, Isla S.; Schouten, Stefan; Pätzold, Jürgen; Lucassen, Friedrich; Kasemann, Simone; Kuhlmann, Holger; Schefuß, Enno
2016-03-01
It has long been known that extreme changes in North African hydroclimate occurred during the late Pleistocene yet many discrepancies exist between sites regarding the timing, duration and abruptness of events such as Heinrich Stadial (HS) 1 and the African Humid Period (AHP). The hydroclimate history of the Nile River is of particular interest due to its lengthy human occupation history yet there are presently few continuous archives from the Nile River corridor, and pre-Holocene studies are rare. Here we present new organic and inorganic geochemical records of Nile Basin hydroclimate from an eastern Mediterranean (EM) Sea sediment core spanning the past 28 ka BP. Our multi-proxy records reflect the fluctuating inputs of Blue Nile versus White Nile material to the EM Sea in response to gradual changes in local insolation and also capture abrupt hydroclimate events driven by remote climate forcings, such as HS1. We find strong evidence for extreme aridity within the Nile Basin evolving in two distinct phases during HS1, from 17.5 to 16 ka BP and from 16 to 14.5 ka BP, whereas peak wet conditions during the AHP are observed from 9 to 7 ka BP. We find that zonal movements of the Congo Air Boundary (CAB), and associated shifts in the dominant moisture source (Atlantic versus Indian Ocean moisture) to the Nile Basin, likely contributed to abrupt hydroclimate variability in northern East Africa during HS1 and the AHP as well as to non-linear behavior of hydroclimate proxies. We note that different proxies show variable gradual and abrupt responses to individual hydroclimate events, and thus might have different inherent sensitivities, which may be a factor contributing to the controversy surrounding the abruptness of past events such as the AHP. During the Late Pleistocene the Nile Basin experienced extreme hydroclimate fluctuations, which presumably impacted Paleolithic cultures residing along the Nile corridor.
Late Holocene methane rise caused by orbitally controlled increase in tropical sources.
Singarayer, Joy S; Valdes, Paul J; Friedlingstein, Pierre; Nelson, Sarah; Beerling, David J
2011-02-03
Considerable debate surrounds the source of the apparently 'anomalous' increase of atmospheric methane concentrations since the mid-Holocene (5,000 years ago) compared to previous interglacial periods as recorded in polar ice core records. Proposed mechanisms for the rise in methane concentrations relate either to methane emissions from anthropogenic early rice cultivation or an increase in natural wetland emissions from tropical or boreal sources. Here we show that our climate and wetland simulations of the global methane cycle over the last glacial cycle (the past 130,000 years) recreate the ice core record and capture the late Holocene increase in methane concentrations. Our analyses indicate that the late Holocene increase results from natural changes in the Earth's orbital configuration, with enhanced emissions in the Southern Hemisphere tropics linked to precession-induced modification of seasonal precipitation. Critically, our simulations capture the declining trend in methane concentrations at the end of the last interglacial period (115,000-130,000 years ago) that was used to diagnose the Holocene methane rise as unique. The difference between the two time periods results from differences in the size and rate of regional insolation changes and the lack of glacial inception in the Holocene. Our findings also suggest that no early agricultural sources are required to account for the increase in methane concentrations in the 5,000 years before the industrial era.
NASA Astrophysics Data System (ADS)
Ivanova, E. V.; Ovsepyan, E.; Murdmaa, I.; de Vernal, A.; Risebrobakken, B.; Seitkalieva, E.; Radionova, E.; Alekhina, G.
2014-12-01
The Barents and Bering seas are closely linked to the High Arctic and to the THC by marine gateways as well as by land-sea and ocean-atmosphere interactions. Our multi-proxy time series demonstrate that these remote seas exhibited dramatic changes during the deglaciation through a succession of global and regional paleoceanographic events including the beginning of Termination I (BT1), Heinrich-1 or Oldest Dryas (OD), Bølling-Allerød (B/A), Younger Dryas (YD) and early Holocene (EH). In the NW Barents Sea, the increased subsurface-to-bottom Atlantic water inflow via the Kvitøya-Erik Eriksen trough (cores S 2519 and S 2528) is inferred at the late OD, late B/A and late YD/EH transition. These events are generally coupled with the strengthened AMOC. A remarkable sea surface warming and sea ice retreat are documented at ~ 13 ka BP. Surface warming and strong Atlantic water inflow were followed by intense iceberg calving in the Erik Eriksen Trough as indicated by the high IRD content of Core S-2519. The rock fragments are unsorted and mainly angular suggesting their ice-rafted (likely iceberg-rafted) origin. Svalbard glaciers apparently derived the material dominated by black schistous mudstones, hard limestones with coral remains, fine-grained sandstones from nearby islands, and icebergs spread it in the Kvitøya-Erik Eriksen Trough during the early deglaciation. The ice rafted coarse terrigenous material supply during the BT1 is also suggested for the NW Bering Sea. In the NW Pacific, NW Bering Sea and Sea of Okhotsk, surface bioproductivity peaked at B/A and EH mainly due to the global warming, enhanced nutrient supply by surface currents from the flooded northeastern shelf, intensified vertical mixing and water exchange through the opened straits. Oxygen-depleted bottom water at intermediate depths characterized several locations including the NW Bering Sea (Core SO201-2-85KL).
NASA Astrophysics Data System (ADS)
Ackerley, Duncan; Reeves, Jessica; Barr, Cameron; Bostock, Helen; Fitzsimmons, Kathryn; Fletcher, Michael-Shawn; Gouramanis, Chris; McGregor, Helen; Mooney, Scott; Phipps, Steven J.; Tibby, John; Tyler, Jonathan
2017-11-01
This study uses the simplified patterns of temperature and effective precipitation
approach from the Australian component of the international palaeoclimate synthesis effort (INTegration of Ice core, MArine and TErrestrial records - OZ-INTIMATE) to compare atmosphere-ocean general circulation model (AOGCM) simulations and proxy reconstructions. The approach is used in order to identify important properties (e.g. circulation and precipitation) of past climatic states from the models and proxies, which is a primary objective of the Southern Hemisphere Assessment of PalaeoEnvironment (SHAPE) initiative. The AOGCM data are taken from the Paleoclimate Modelling Intercomparison Project (PMIP) mid-Holocene (ca. 6000 years before present, 6 ka) and pre-industrial control (ca. 1750 CE, 0 ka) experiments. The synthesis presented here shows that the models and proxies agree on the differences in climate state for 6 ka relative to 0 ka, when they are insolation driven. The largest uncertainty between the models and the proxies occurs over the Indo-Pacific Warm Pool (IPWP). The analysis shows that the lower temperatures in the Pacific at around 6 ka in the models may be the result of an enhancement of an existing systematic error. It is therefore difficult to decipher which one of the proxies and/or the models is correct. This study also shows that a reduction in the Equator-to-pole temperature difference in the Southern Hemisphere causes the mid-latitude westerly wind strength to reduce in the models; however, the simulated rainfall actually increases over the southern temperate zone of Australia as a result of higher convective precipitation. Such a mechanism (increased convection) may be useful for resolving disparities between different regional proxy records and model simulations. Finally, after assessing the available datasets (model and proxy), opportunities for better model-proxy integrated research are discussed.
Solar and anthropogenic forcing of tropical hydrology
NASA Astrophysics Data System (ADS)
Shindell, Drew T.; Faluvegi, Greg; Miller, Ron L.; Schmidt, Gavin A.; Hansen, James E.; Sun, Shan
2006-12-01
Holocene climate proxies suggest substantial correlations between tropical meteorology and solar variations, but these have thus far not been explained. Using a coupled ocean-atmosphere-composition model forced by sustained multi-decadal irradiance increases, we show that greater tropical temperatures alter the hydrologic cycle, enhancing the climatological precipitation maxima in the tropics while drying the subtropical subsidence regions. The shift is enhanced by tropopause region ozone increases, and the model captures the pattern inferred from paleoclimate records. The physical process we describe likely affected past civilizations, including the Maya, Moche, and Ancestral Puebloans who experienced drought coincident with increased irradiance during the late medieval (~900-1250). Similarly, decreased irradiance may have affected cultures via a weakened monsoon during the Little Ice Age (~1400-1750). Projections of 21st-century climate change yield hydrologic cycle changes via similar processes, suggesting a strong likelihood of increased subtropical drought as climate warms.
NASA Astrophysics Data System (ADS)
Qin, Bingbin; Li, Tiegang; Xiong, Zhifang; Algeo, Thomas J.; Chang, Fengming
2017-04-01
We present new "size-normalized weight" (SNW)-Δ[CO32-] core-top calibrations for three planktonic foraminiferal species and assess their reliability as a paleo-alkalinity proxy. SNWs of Globigerina sacculifer and Neogloboquadrina dutertrei can be used to reconstruct past deep Pacific [CO32-], whereas SNWs of Pulleniatina obliquiloculata are controlled by additional environmental factors. Based on this methodological advance, we reconstruct SNW-based deepwater [CO32-] for core WP7 from the western tropical Pacific since 250 ka. Secular variation in the SNW proxy documents little change in deep Pacific [CO32-] between the Last Glacial Maximum and the Holocene. Further back in time, deepwater [CO32-] shows long-term increases from marine isotope stage (MIS) 5e to MIS 3 and from early MIS 7 to late MIS 6, consistent with the "coral reef hypothesis" that the deep Pacific Ocean carbonate system responded to declining shelf carbonate production during these two intervals. During deglaciations, we have evidence of [CO32-] peaks coincident with Terminations 2 and 3, which suggests that a breakdown of oceanic vertical stratification drove a net transfer of CO2 from the ocean to the atmosphere, causing spikes in carbonate preservation (i.e., the "deglacial ventilation hypothesis"). During MIS 4, a transient decline in SNW-based [CO32-], along with other reported [CO32-] and/or dissolution records, implies that increased deep-ocean carbon storage resulted in a global carbonate dissolution event. These findings provide new insights into the role of the deep Pacific in the global carbon cycle during the late Quaternary.
Ages, distributions, and origins of upland coastal dune sheets in Oregon, USA
Peterson, C.D.; Stock, E.; Price, D.M.; Hart, R.; Reckendorf, F.; Erlandson, J.M.; Hostetler, S.W.
2007-01-01
A total of ten upland dune sheets, totaling 245??km in combined length, have been investigated for their origin(s) along the Oregon coast (500??km in length). The ages of dune emplacement range from 0.1 to 103??ka based on radiocarbon (36 samples) and luminescence (46 samples) dating techniques. The majority of the emplacement dates fall into two periods of late-Pleistocene age (11-103??ka) and mid-late-Holocene age (0.1-8??ka) that correspond to marine low-stand and marine high-stand conditions, respectively. The distribution of both the late-Pleistocene dune sheets (516??km2 total surface area) and the late-Holocene dune sheets (184??km2) are concentrated (90% of total surface area) along a 100??km coastal reach of the south-central Oregon coast. This coastal reach lies directly landward of a major bight (Heceta-Perpetua-Stonewall Banks) on the continental shelf, at depths of 30-200??m below present mean sea level (MSL). The banks served to trap northward littoral drift during most of the late-Pleistocene conditions of lowered sea level (- 50 ?? 20??m MSL). The emerged inner-shelf permitted cross-shelf, eolian sand transport (10-50??km distance) by onshore winds. The depocenter sand deposits were reworked by the Holocene marine transgression and carried landward by asymmetric wave transport during early- to mid-Holocene time. The earliest dated onset of Holocene dune accretion occurred at 8??ka in the central Oregon coast. A northward migration of Northeast Pacific storm tracks to the latitude of the shelf depocenter (Stonewall, Perpetua, Heceta Banks) in Holocene time resulted in eastward wave transport from the offshore depocenter. The complex interplay of coastal morphology, paleosea-level, and paleoclimate yielded the observed peak distribution of beach and dune sand observed along the south-central Oregon coast. ?? 2007 Elsevier B.V. All rights reserved.
Keefer, David K.; Moseley, Michael E.; DeFrance, Susan D.
2003-01-01
Previous work throughout the Ilo region of south coastal Peru has documented the existence of flood and debris-flow deposits produced by two El Niño events evidently much more severe than any in recent history. These two events have been dated to ca. AD 1300–1400 and AD 1607–08. The Late Pleistocene to Holocene record of older sedimentary deposits in this region is dominated by flood and debris-flow deposits of similar scale. These older deposits have been described and dated from three coastal, alluvial-fan sites. These deposits, which are as old as 38 200 years, are dominated by massive debris-flow deposits, several tens of cm thick, typically composed of cobble- and boulder-sized clasts in a matrix of silty sand, with characteristics indicating generation by heavy rainfall in an arid environment. Twenty-two radiocarbon dates and a single infrared-stimulated luminescence date show that particularly severe El Niño events occurred throughout the Late Pleistocene and two of three divisions of the Holocene with significantly different frequencies. The period of greatest activity was during the Early Holocene when at least six such events took place during a period of ca. 3600 years, beginning near the end of the Younger Dryas ca. 12 000 years ago. One of these events produced a debris flow that may have caused abandonment of the Paleo-Indian site at Quebrada Tacahuay, one of the oldest on the Andean coast. No severe events took place during the Middle Holocene between ca. 8400 and 5300 years ago, when a wide variety of other paleoclimate proxy records indicate that the El Niño–Southern Oscillation regime was particularly weak. Since ca. 5300 years ago, four of these severe events have taken place. The Late Pleistocene sequence is constrained by only two dates, which indicate that at least ten severe events took place between ca. 38 200 and 12 900 years ago. Mechanisms probably responsible for generating these large-scale deposits include: (1) ‘Mega-Niños’ that produced anomalously heavy rainfall along most or all of the central Andean coast; (2) El Niños that occurred shortly after great earthquakes that produced large amounts of sediment; or (3) El Niños that produced anomalously heavy local rainfall. The existence of these large-scale deposits in the Ilo region implies a level of hazard much higher than indicated by the historical record alone
NASA Astrophysics Data System (ADS)
Curry, Brandon; Henne, Paul D.; Mesquita-Joanes, Francesc; Marrone, Federico; Pieri, Valentina; La Mantia, Tommaso; Calò, Camilla; Tinner, Willy
2016-10-01
Marked uncertainties persist regarding the climatic evolution of the Mediterranean region during the Holocene. For instance, whether moisture availability gradually decreased, remained relatively constant, or increased during the last 7000 years remains a matter of debate. To assess Holocene limnology, hydrology and moisture dynamics, the coastal lakes Lago Preola and Gorgo Basso, located in southwestern Sicily, were investigated through several stratigraphic analyses of ostracodes, including multivariate analyses of assemblages, transfer functions of salinity, and biochemical analyses of valves (Sr/Ca, δ18O and δ13C). During the early Holocene, the Gorgo Basso and Lago Preola ostracode records are similar. After an initial period of moderate salinity (1690-6100 mg/l from ca. 10,000-8190 cal yr BP), syndepositional or diagenetic dissolution of ostracode valves suggests that salinity declined to <250 mg/L from ca. 8190 to 7000 cal yr BP at both sites. After ca. 6250 cal yr BP, the ostracode records are strikingly different. Lago Preola became much more saline, with paleosalinity values that ranged from 2270 to about 24,420 mg/L. We suggest that Lago Preola's change from a freshwater to mesosaline lake at about 6250 cal yr BP was related to sea level rise and resulting intrusion of seawater-influenced groundwater. In contrast, Gorgo Basso remained a freshwater lake. The salinity of Gorgo Basso declined somewhat after 6250 cal yr BP, in comparison to the early Holocene, ranging from about 550 to 1680 mg/L. Cypria ophtalmica, a species capable of rapid swimming and flourishing in waters with low dissolved oxygen levels, became dominant at approximately the time when Greek civilization took root in Sicily (2600 cal yr BP), and it completely dominates the record during Roman occupation (roughly 2100 to 1700 cal yr BP). These freshwater conditions at Gorgo Basso suggest high effective moisture when evergreen olive-oak forests collapsed in response to increased Greco-Roman land use and fire. Ostracode valve geochemistry (Sr/Ca, δ18O) suggests significant changes in early vs. late Holocene hydrochemistry, either as changes in salinity or in the seasonality of precipitation. Harmonizing the autecological and geochemical data from Gorgo Basso suggests the latter was more likely, with relatively more late Holocene precipitation falling during the spring, summer, and fall, than winter compared to the early Holocene. Our ostracode-inferred paleosalinity data indicate that moisture availability did not decline during the late Holocene in the central Mediterranean region. Instead, moisture availability was lowest during the early Holocene, and most abundant during the late Holocene.
NASA Astrophysics Data System (ADS)
Arbuszewski, J. A.; Oppo, D.; Huang, K.; Dubois, N.; Galy, V.; Mohtadi, M.; Herbert, T.; Rosenthal, Y.; Linsley, B. K.
2012-12-01
The El Niño-Southern Oscillation (ENSO) is the most prominent mode of tropical Pacific climate variability and has the potential to significantly impact the climate of the Indo-Pacific region and globally1. In the past, the mean state of the Pacific Ocean has, at times, resembled El Niño or La Niña conditions2. Although the dynamical relationships responsible for these changes have been studied through paleoproxy reconstructions and climate modeling, many questions remain. Recent paleoproxy based studies of tropical Pacific hydrology and surface temperature variability have hypothesized that observed climatological changes over the Holocene are directly linked to ENSO and/or mean state variability, complementing studies that dynamically relate centennial scale ENSO variability to mean state changes3-8. These studies have suggested that mid Holocene ENSO variability was low and the mean state was more "La Niña" like3-6. In the late Holocene, paleoproxy data has been interpreted as indicating an increase in ENSO variability with a more moderate mean ocean state3-6. However, alternative explanations could exist. Here, we test the hypothesis that observed climatological changes in the eastern tropical Pacific are related to mean state or ENSO variability during the Holocene. We focus our study on two sets of cores from the equatorial Pacific, with one located in the Indo-Pacific Warm Pool (BJ803-119 GGC, 117MC, sedimentation rates ~29 cm/kyr) and the other just off the Galapagos in the heart of the Eastern Cold Tongue (KNR195-5 43 GGC, 42MC, sedimentation rates ~20cm/kyr). The western site lies in the region predicted by models to show the greatest variations in temperature and water column structure in response to mean state changes, while the eastern site lies in the area most prone to changes due to ENSO variability7. Together, these sites allow us the best chance to robustly reconstruct ENSO and mean state related changes. We use a multiproxy approach and consider records from organic (sterol abundances) and inorganic proxies (Mg/Ca and δ18O of 3 planktonic foraminiferal species, % G. bulloides) to reconstruct zonal tropical Pacific (sub)surface temperature and stratification gradients over the Holocene. A benefit of using this approach is that it enables us to combine the strengths of each individual proxy to derive more robust records. We will compare our records with published paleoproxy and model studies in the Pacific and Indo-Pacific regions. Armed with this information, we aim to better understand mean state changes in the tropical Pacific over the Holocene. 1 Ropelewski, C. F. & Halpert, M. S. Monthly Weather Review 115, 1606-1626 (1987). 2 Collins, M. et al. Nature Geoscience 3, doi: 10.1038/NGEO1868 (2010). 3 Koutavas, A., Lynch-Steiglitz, J., Marchitto, T. & Sachs, J. Science 297, 226-230 (2002). 4 Moy, C. M., Seltzer, G. O., Rodbell, D. T. & Anderson, D. M. Nature 420, 162-165 (2002). 5 Conroy, J. L., Overpeck, J. T., Cole, J. E., Shanahan, T. M. & Steinitz-Kannan, M. Quaternary Science Reviews 27, 1166-1180 (2008). 6 Makou, M. C., Eglinton, T. I., Oppo, D. W. & Hughen, K. A. Geology 38, 43-46 (2010). 7 Karnauskas, K., Smerdon, J., Seager, R. & Gonzalez-Rouco, J. Journal of Climate, doi: 10.1178/JCLI-D-1111-00421.00421 (2012 (in press)). 8 Clement, A., Seager, R. & Cane, M. Paleoceanography 14, 441-456 (2000).
Väliranta, M.; Salonen, J. S.; Heikkilä, M.; Amon, L.; Helmens, K.; Klimaschewski, A.; Kuhry, P.; Kultti, S.; Poska, A.; Shala, S.; Veski, S.; Birks, H. H.
2015-01-01
Holocene summer temperature reconstructions from northern Europe based on sedimentary pollen records suggest an onset of peak summer warmth around 9,000 years ago. However, pollen-based temperature reconstructions are largely driven by changes in the proportions of tree taxa, and thus the early-Holocene warming signal may be delayed due to the geographical disequilibrium between climate and tree populations. Here we show that quantitative summer-temperature estimates in northern Europe based on macrofossils of aquatic plants are in many cases ca. 2 °C warmer in the early Holocene (11,700–7,500 years ago) than reconstructions based on pollen data. When the lag in potential tree establishment becomes imperceptible in the mid-Holocene (7,500 years ago), the reconstructed temperatures converge at all study sites. We demonstrate that aquatic plant macrofossil records can provide additional and informative insights into early-Holocene temperature evolution in northernmost Europe and suggest further validation of early post-glacial climate development based on multi-proxy data syntheses. PMID:25858780
NASA Astrophysics Data System (ADS)
Koehler, Cornelia; Clift, Peter; Pressling, Nicola; Limmer, David; Giosan, Liviu; Tabrez, Ali
2010-05-01
In order to study Holocene Asian monsoon variations, we reconstructed changes in chemical weathering by examining sediments from the Indus Canyon. During the late Holocene, the Asian monsoon system had periods of high and low intensities that influenced the civilisations living in its realm. For example, the demise of the Harappan civilisation has been linked to a weakened monsoon system around 4 ka. The sediments in the Indus Canyon, which originate from the River Indus and its Himalayan tributaries, provide an ideal, natural environmental archive of the South Asian monsoon system. In order to investigate the alternation between arid and humid monsoonal climatic conditions, variations are traced using the magnetic minerals hematite and goethite, which form under distinct environmental conditions: goethite is stable under humid conditions, whereas hematite forms from the dehydration of goethite under arid conditions. The two minerals are characterised and quantified using environmental magnetic measurements, as well as diffuse reflectance spectrometry. Combining both approaches will enable us to reconstruct variations in chemical weathering over time. Furthermore, because this is governed by temperature and the availability of moisture, our weathering record will allow us to understand monsoon variability during the Holocene and test whether summer rain intensity has been decreasing in SW Asia since 8 ka. In addition, the multi-component analysis of colour reflectance spectra identifies different mineral components including hematite/goethite, clay mineral mixtures, calcite and organics. We will present our results from the multi-sensor core logger equipped with a Minolta spectrometer, measuring both magnetic susceptibility and the optical properties of the split sediment cores. Initial results indicate the presence of hematite and goethite in the sediment. There is an increasing hematite content up the cores, indicating an aridification trend during the Holocene. The sediments are further analysed using the environmental magnetic proxies NRM, ARM and IRM to fully understand the mineral magnetic variations and to quantify hematite and goethite contributions. This work plays an integral part of a larger scale palaeoenvironmental project on Indus Canyon sediments.
NASA Astrophysics Data System (ADS)
Kouwenberg, L. L. R.; Kurschner, W. M.; Wagner, F.; Visscher, H.
An inverse relation of stomatal frequency in leaves of many plant taxa and atmospheric CO2 concentration has been repeatedly demonstrated. Response curves based on this species-specific relation are increasingly used to reconstruct paleo-CO2 levels from stomatal frequency analysis on fossil leaves. This type of atmospheric CO2 records have been produced for a large part of geological history, varying from the Paleozoic to the Holocene. Quaternary glaciochemical records from Antarctica and Greenland suggest that CO2 concentration and temperature are strongly linked, in general CO2 appears to lag temperature change. However, in order to assess this relation, high res- olution records with a precise chronology are needed. During the Holocene, several century-scale climatic fluctuations took place, such as the 8.2 kyr event and the Lit- tle Ice age. Linking these temperature fluctuations to paleo-CO2 concentrations in glaciochemical records can be difficult, because the resolution of ice-cores is gen- erally low and the ice-gas age difference complicates accurate dating. An excellent alternative tool for high-resolution Holocene CO2 reconstructions can be provided by stomatal frequency analysis of leaves from Holocene peat and lake sediments. In this study, it is demonstrated that the western hemlock (Tsuga heterophylla) also ad- justs its stomatal frequency to the historical CO2 rise. After careful proxy-validation, a high resolution paleo-atmospheric CO2 record over the last 2000 years based on subfossil Tsuga heterophylla needles from Mount Rainier (Washington, USA) was re- constructed. Chronology is provided by a suite of AMS carbon isotope dates and the presence of tephra layers from nearby Mt. St Helens. The record reproduces CO2 lev- els around 280 ppmv for the Little Ice Age and the CO2 rise to 365 ppmv over the last 150 years. A prominent feature is a marked rise in CO2 at 350 years AD, gradu- ally declining over the next centuries. The CO2 record will be discussed in terms of its relation to local volcanic CO2 production, paleoclimate data and changes in the terrestrial and marine carbon sources and sinks.
NASA Astrophysics Data System (ADS)
Hájek, Michal; Dudová, Lydie; Hájková, Petra; Roleček, Jan; Moutelíková, Jitka; Jamrichová, Eva; Horsák, Michal
2016-02-01
The south-western part of the White Carpathians (Czech Republic, Slovakia) is known for its exceptional grassland diversity and occurrence of many species with disjunct distribution patterns, including isolated populations of continental forest-steppe species. The north-eastern part of the mountain range lacks many of these species and has clearly lower maxima of grassland species richness. While climatic and edaphic conditions of both regions largely overlap, their specific environmental history has been hypothesized to explain the exceptional richness in the south-western part. We explored an entire-Holocene record (9650 BC onwards), the first one from the north-eastern part, to find out whether differences in history may explain regional patterns of species rarity and richness. We analysed pollen, macrofossils and molluscs and dated the sequence with 13 radiocarbon dates. We further reconstructed past human activities using available archaeological evidence. Based on this analysis, the Early-Holocene landscape was reconstructed as semi-open with broad-leaved trees (elm and lime) appearing already around 9500 BC. Lime reached a relative abundance of as much as 60% around 8700 BC. All analysed proxies support the existence of dense lime-dominated woodland during the forest optimum starting after climate moistening around 6800 BC, some 2200 years before the first signs of slight forest opening in the Late Neolithic. During the Bronze and Iron Ages, human pressure increased, which led to a decrease in lime and an increase in oak, hornbeam, grasses and grassland snails; nevertheless, forests still dominated the landscape and beech spread when human impact temporarily decreased. Colonisation after AD 1350 created the modern grassland-rich landscape. All available evidence confirmed an early post-Glacial expansion of broad-leaved trees, supporting the hypothesis on their glacial refugia in the Carpathians, as well as presence of closed-canopy forest well before the Neolithic. This environmental history was unfavourable for the survival of Early-Holocene forest-steppe species in the north-eastern White Carpathians and may explain the impoverished grassland flora compared to the south-western part. We conclude that contrasting Holocene histories may explain those patterns in species richness and distributions, which cannot be explained by recent environmental conditions alone.
NASA Astrophysics Data System (ADS)
He, Y.; Liu, Z.; Zheng, Z.; Zhao, C.; Sun, Y.
2012-12-01
The Northeastern Tibetan Plateau is a high elevation region sensitive to large-scale climate change, thus allows us better understanding the Holocene climate interactions between the mid-latitude westerly and subtropical Asia monsoon circulations. This region is now and in the late Holocene out of the influence of Asian monsoon systems and inconsistency hydrological variations from monsoon controlled region is suggested. However, the boundary and the interactions between the westerly and the Asian monsoon circulations during the whole Holocene have not been well documented. Here we present multiple biomarker alkane and alkenone based records from Lake Gahai in the Qaidam Basin on the northeastern Tibetan Plateau to study the lake level and climate variability over the past 12,000 years. Characterized by marked alkane-based average chain length (ACL) and carbon preference index (CPI) values, our records provide unambiguous evidence of a generally dry climate from 9 to 2 ka (1 ka = 1,000 cal yr BP), and a relatively wet climate after 2 ka and before 9 ka. The occurrence of alkenones during the period of low ACL and CPI values also supports this result. Good match between our records and other earlier paleoclimatic records derived from the same basin was found, suggesting the paleoenvironment record obtained at Lake Gahai is a regional record rather than a local signal, at least in the Qaidam Basin. This generally dry climate between 9 and 2 ka was almost synchronous with the weakening of East Asian and Indian monsoon intensities. However, our data suggest an opposite moisture relation from our region and westerly controlled region. This phenomenon may lie on the interaction between westerly and monsoon systems, probably contributed to the topographic subsidence associated with stronger atmospheric convergence and rising motion on the plateau. Also this discrepancy was likely due to the enhanced evaporation than to the increased monsoon precipitation in the northeastern Tibetan Plateau, which accounts for the high temperatures.
Diatoms as Proxies for a Fluctuating Ice Cap Margin, Hvitarvatn, Iceland
NASA Astrophysics Data System (ADS)
Black, J. L.; Miller, G. H.; Geirsdottir, A.
2005-12-01
There are no complete records of terrestrial environmental change for the Holocene (11,000yrs) in Iceland and the status of Icelandic glaciers in the early Holocene remains unclear. It is not even known whether Iceland's large ice caps disappeared in the early Holocene, and if they did, when they re-grew. Icelandic lakes are particularly well suited to address these uncertainties as: 1) Glacial erosion and soft bedrock result in high lacustrine sedimentation rates, 2) Diagnostic tephras aid the geochronology, 3) Iceland's sensitivity to changes in North Atlantic circulation should produce clear signals in key environmental proxies (diatoms) preserved in lacustrine sequences, and 4) Ice-cap profiles are relatively flat so small changes in the equilibrium line altitude result in large changes in accumulation area. Hence, large changes in ice-sheet margins during the Holocene will impact sedimentation in glacier-dominated lakes and the diatom assemblages at those times. Hvitarvatn is a glacier dominated lake located on the eastern margin of Langjokull Ice Cap in central-western Iceland. The uppermost Hvitarvatn sediments reflect a glacially dominated system with planktonic, silica-demanding diatom taxa that suggest a high dissolved silica and turbid water environment consistent with high fluxes of glacial flour. Below this are Neoglacial sediments deposited when Langjokull was active, but outlet glaciers were not in contact with Hvitarvatn. The diatom assemblage here shows a small increase in abundance, but is still dominated by planktic, silica-demanding taxa. A distinct shift in lake conditions is reflected in the lowermost sediments, composed of predominantly benthic diatoms and deposited in clear water conditions with long growing seasons likely found in an environment with warmer summers than present and with no glacial erosion. Langjokull must have disappeared in the early Holocene for such a diverse, benthic dominated diatom assemblage to flourish.
NASA Astrophysics Data System (ADS)
Cluett, A.; Thomas, E. K.
2017-12-01
Anthropogenic warming is projected to drive profound change to the Arctic hydrological cycle within the century, most notably in the intensification of rainfall, with potential feedbacks to the climate system and cryosphere. However, the relationship between hydroclimate and cryosphere variability is poorly constrained in the long-term due to a scarcity of high-resolution hydroclimate records from the Arctic. We analyze the stable hydrogen isotopes (dD) of leaf wax biomarkers from lacustrine sediments spanning the Holocene to 9000 cal. year B.P. from Lake Gus (67.032ºN, 52.427ºW, 300 m a.s.l.; informal name), a small lake approximately 90 km from the modern western margin of the Greenland Ice Sheet. We interpret the signal of aquatic leaf wax isotopes in the context of a survey of 100 modern lake water samples from western Greenland across an aridity gradient to better understand the combined climatological and hydrological controls on lake water dD in the study area. We compare variability of aquatic and terrestrial leaf wax isotopes to infer changes in relative moisture throughout the Holocene, and complement our leaf wax record with analysis of glycerol dialkyl glycerol tetraethers (GDGTs) and alkenones, to produce records of summer temperature. Pairing temperature and leaf wax isotope records provides a means to constrain the changing dD-temperature relationship throughout the Holocene and infer moisture source variability. In combination, these proxies produce a comprehensive hydroclimate record at approximately centennial scale to evaluate shifts in relative moisture, temperature, and moisture source, and to investigate the interaction between hydroclimate and Greenland Ice Sheet margin fluctuations through the Holocene.
NASA Astrophysics Data System (ADS)
Harning, David J.; Geirsdóttir, Áslaug; Miller, Gifford H.
2018-06-01
Emerging Holocene paleoclimate datasets point to a non-linear response of Icelandic climate against a background of steady orbital cooling. The Vestfirðir peninsula (NW Iceland) is an ideal target for continued climate reconstructions due to the presence of a small ice cap (Drangajökull) and numerous lakes, which provide two independent means to evaluate existing Icelandic climate records and to constrain the forcing mechanisms behind centennial-scale cold anomalies. Here, we present new evidence for Holocene expansions of Drangajökull based on 14C dates from entombed dead vegetation as well as two continuous Holocene lake sediment records. Lake sediments were analyzed for both bulk physical (MS) and biological (%TOC, δ13C, C/N, and BSi) parameters. Composite BSi and C/N records from the two lakes yield a sub-centennial qualitative perspective on algal (diatom) productivity and terrestrial landscape stability, respectively. The Vestfirðir lake proxies suggest initiation of the Holocene Thermal Maximum by ∼8.8 ka with subsequent and pronounced cooling not apparent until ∼3 ka. Synchronous periods of reduced algal productivity and accelerated landscape instability point to cold anomalies centered at ∼8.2, 6.6, 4.2, 3.3, 2.3, 1.8, 1, and 0.25 ka. Triggers for cold anomalies are linked to variable combinations of freshwater pulses, low total solar irradiance, explosive and effusive volcanism, and internal modes of climate variability, with cooling likely sustained by ocean/sea-ice feedbacks. The climate evolution reflected by our glacial and organic proxy records corresponds closely to marine records from the North Iceland Shelf.
NASA Astrophysics Data System (ADS)
Roland, T. P.; Amesbury, M. J.; Charman, D.; De Vleeeschouwer, F.; Hodgson, D.; Hughes, P. D. M.; Mauquoy, D.; Piotrowska, N.; Royles, J.; van Bellen, S.; Vanneste, H.
2014-12-01
We present preliminary tephrostratigraphic data from south Patagonian peatlands and moss banks from the Antarctic Peninsula that provide greater chronological constraint to Holocene palaeoclimatic records and increase the potential for inter-regional correlation. Relative to the Northern Hemisphere, there is a paucity of high-resolution, robustly dated Holocene palaeoclimate records in the Southern Hemisphere, limiting our ability to validate climate models in this region and fully understand variation in the global climate system over time. In the absence of long-term instrumental data, multi-proxy (testate amoebae, plant macrofossils, δ13C, δ18O and δD) palaeoclimatic records from south Patagonian peatlands can provide valuable information about the long-term variability of the southern westerlies, a key component in determining the Southern Ocean's function as a sink or source of atmospheric carbon dioxide. Similarly, multi-proxy palaeoclimatic reconstructions from moss banks provide a unique terrestrial palaeoenvironmental archive from the Antarctic Peninsula, where records of past ecological change are rare and provide vital context for the recent, rapid biotic change recorded since the mid-20th century. Robust chronologies are imperative for the accurate examination of spatial and temporal patterns in Holocene climate variation. Previous work has confirmed the presence of discrete tephra horizons in south Patagonian peatlands and Antarctic Peninsula moss banks but the examination of distal, cryptotephras is currently underemployed as a geochronological tool. The chronological potential of these archives is considerable, given their high and largely continuous accumulation rates and suitability for 14C dating, presenting additional opportunities to refine the ages of major Holocene eruptions. Here, we present initial tephrostratigraphic results from both regions and explore the links between them.
Jones, Rachel A.; Williams, John W.; Jackson, Stephen T.
2017-01-01
The timing and drivers of vegetation dynamics and formation of no-analog plant communities during the last deglaciation in the unglaciated southeastern US are poorly understood. We present a multi-proxy record spanning the past 19,800 years from Cupola Pond in the Ozarks Mountains, consisting of replicate high-resolution pollen records, 25 AMS radiocarbon dates, and macrofossil, charcoal, and coprophilous spore analyses. Full-glacial Pinus and Picea forests gave way to no-analog vegetation after 17,400 yr BP, followed by development of Quercus-dominated Holocene forests, with late Holocene rises in Pinus and Nyssa. Vegetation transitions, replicated in different cores, are closely linked to hemispheric climate events. Rising Quercus abundances coincide with increasing Northern Hemisphere temperatures and CO2 at 17,500 yr BP, declining Pinus and Picea at 14,500 yr BP are near the Bølling-Allerød onset, and rapid decline of Fraxinus and rise of Ostrya/Carpinus occur 12,700 yr BP during the Younger Dryas. The Cupola no-analog vegetation record is unusual for its early initiation (17,000 yr BP) and for its three vegetation zones, representing distinct rises of Fraxinus and Ostrya/Carpinus. Sporormiella was absent and sedimentary charcoal abundances were low throughout, suggesting that fire and megaherbivores were not locally important agents of disturbance and turnover. The Cupola record thus highlights the complexity of the late-glacial no-analog communities and suggests direct climatic regulation of their formation and disassembly.
NASA Astrophysics Data System (ADS)
Kramkowski, Mateusz; Filbrandt-Czaja, Anna; Ott, Florian; Słowiński, Michał; Tjallingii, Rik; Błaszkiewicz, Mirosław; Brauer, Achim
2015-04-01
Anually laminated (varved) lake deposits are suitable natural archives for reconstructing past climatic and environmental changes at seasonal resolution. A major advantage of such records is that varve counting allows constructing robust and independent chronologies, a key challenge for paleoclimate research. Recently, a new annually laminated sediment record has been obtained from Lake Jelonek, located in the eastern part of the Pomeranian Lakeland in northern Poland (Tuchola Pinewoods). The lake is surrounded by forest and covers an area of 19,9 ha and has a maximum depth of 13,8 m. Three overlapping series of 14,3 m - long sediment records have been cored with an UWITEC 90 mm diameter piston corer from the deepest part of the lake. A continuous master composite profile has been established comprising the entire postglacial lacustrine sediment infill. Preliminary analyses including micro-facies analyses on thin sections from selected intervals as well as X-ray fluorescence element scanning (µ-XRF) reveal that the sediments are to a large part annually laminated. Here we present detailed varve models for different sediment intervals and discuss high-resolution geochemical variation in the entire sediment record. A preliminary age model based on radiocarbon dating and major biostratigraphical boundaries based on pollen data will be presented as well. These data will form the fundament for the planned multi-proxy study for detailed reconstructions of climatic and environmental variability during the late glacial and Holocene in the southern Baltic. This study is a contribution to the Virtual Institute ICLEA (Integrated Climate and Landscape Evolution Analysis) funded by the Helmholtz Association and National Science Centre Poland NCN 2011/01/B/ST10/07367.
NASA Astrophysics Data System (ADS)
Arppe, Laura; Kurki, Eija; Wooller, Matthew; Luoto, Tomi; Zajączkowski, Marek; Ojala, Antti
2017-04-01
The oxygen isotope composition of head capsule chitin of chironomid larvae picked from a sediment core covering the past 5500 years from lake Svartvatnet in southern Spitsbergen was used to reconstruct the isotopic composition of oxygen in lake water (δ18Olw) and local precipitation. Consistent with the gradual cooling of climate over the Neoglacial period, the δ18Olw record displays a gentle decreasing trend over the study period. The Svartvatnet δ18Olwrecord shows a maximum at ca. 1900-1800 cal BP, consistent with the timing of the Roman Warm Period, and three negative excursions increasing in intensity towards the present-day at 3400-3200, 1250-1100 and 350-50 cal BP, which are tentatively linked to multidecadal periods of low solar activity amplified by oceanic and atmospheric feedbacks. The time period of the Little Ice Age shows a two-step decrease in δ18Olwvalues, with a remarkable, 8-9‰ drop at 350-50 cal BP construed to predominantly represent significantly decreased winter temperatures during a period of increased seasonal differences and extended sea ice cover inducing changes in moisture source regions. Similarity of the trends between the δ18Olwrecord and a July-T reconstruction based on chironomid assemblages (Luoto et al., in review) from the same core suggests that air temperature exerts a significant control over the δ18Olwvalues, but the record is most likely influenced by changes in sea ice extent and possibly the seasonal distribution of precipitation. Reference: Luoto TP, Ojala A, Brooks S et al. Synchronized proxy-based temperature reconstructions reveal mid-to late Holocene climate oscillations in High Arctic Svalbard. Journal of Quaternary Science, submitted.
A late Holocene tephrochronology for the Maya Lowlands, Central America
NASA Astrophysics Data System (ADS)
Nooren, K.; Huizinga, A.; Hoek, W.; Bergen, M. V.; Middelkoop, H.
2012-12-01
The Maya Lowlands in southern Mexico, Guatemala and Belize were densely populated for thousands of years, and have been the subject of intensive studies on the interaction between humans and their environment. Accurate radiocarbon dating of proxy records and disrupting events has proved to be difficult due to the lack of organic material in many deposits and the 'old carbon effect' related to the calcareous geology of the Yucatan Peninsula. So far, tephrostratigraphy has hardly been used to define time markers for palynological, limnological and archaeological studies in this region, despite the frequent occurrence of tephra fall. With the objective to fill this gap, we developed a tephrochronology for the Maya Lowlands using sediment cores from a flood basin of the Usumacinta-Grijalva delta in southern Mexico. Tephrostratigraphy and radiocarbon dating were used to estimate the timing of past volcanic eruptions, and chemical compositions of glass shards were used to identify potential sources. At least six tephralayers were deposited since 2000 BC, the most notable representing eruptions of El Chichón volcano in the 5th and 15th century AD. The high sulphur emissions accompanying El Chichón's eruptions allowed testing of our age-depth model through a correlation with volcanic sulphate peaks in ice cores from Greenland and Antarctica. We demonstrate the applicability of the established tephrochronological framework in a detailed chronological reconstruction of the formation of the world's largest late Holocene beach ridge plain in southern Mexico. This plain with over 500 beach ridges is a highly sensitive recorder of combined sea level rise, subsidence, storm activity and changes in climate and upstream land use since the dawn of Olmec and Maya cultures circa 5000 years ago.
NASA Astrophysics Data System (ADS)
Boswijk, G.; Fowler, A. M.; Palmer, J. G.; Fenwick, P.; Hogg, A.; Lorrey, A.; Wunder, J.
2014-04-01
Millennial and multi-millennial tree-ring chronologies can provide useful proxy records of past climate, giving insight into a more complete range of natural climate variability prior to the 20th century. Since the 1980s a multi-millennial tree-ring chronology has been developed from kauri (Agathis australis) from the upper North Island, New Zealand. Previous work has demonstrated the sensitivity of kauri to the El Niño-Southern Oscillation (ENSO). Here we present recent additions and extensions to the late Holocene kauri chronology (LHKC), and assess the potential of a composite master chronology, AGAUc13, for palaeoclimate reconstruction. The updated composite kauri chronology now spans 4491 years (2488 BCE-2002 CE) and includes data from 18 modern sites, 25 archaeological sites, and 18 sub-fossil (swamp) kauri sites. Consideration of the composition and statistical quality of AGAUc13 suggests the LHKC has utility for palaeoclimate reconstruction but there are caveats. These include: (a) differences in character between the three assemblages including growth rate and sensitivity; (b) low sample depth and low statistical quality in the 10th-13th century CE, when the record transitions from modern and archaeological material to the swamp kauri; (c) a potential difference in amplitude of the signal in the swamp kauri; (d) a westerly bias in site distribution prior to 911 CE; (e) variable statistical quality across the entire record associated with variable replication; and (f) complex changes in sample depth and tree age and size which may influence centennial scale trends in the data. Further tree ring data are required to improve statistical quality, particularly in the first half of the second millennium CE.
Biomarker evidence for increasing aridity in south-central India over the Holocene
NASA Astrophysics Data System (ADS)
Sarkar, S.; Wilkes, H.; Prasad, S.; Brauer, A.; Basavaiah, N.; Strecker, M. R.; Sachse, D.
2012-12-01
Summer monsoonal rainfall has played an important role in the development and sustenance of the largely agro-based economy in the Indian subcontinent in the recent past. A better understanding of past variations in monsoonal rainfall can therefore lead to an assessment of its potential impact on early human societies. However, our knowledge of spatiotemporal patterns of past monsoon strength, as inferred from proxy records, is limited due to the lack of high-resolution paleo-hydrological records from continental archives. Here, we reconstruct centennial-scale hydrological variability associated with changes in the intensity of the Indian Summer Monsoon based on a record of lipid biomarker abundances and compound-specific stable isotopic composition of a 10-m-long sediment core from saline-alkaline Lonar Lake, situated in the core 'monsoon zone' of south-central India. We identified three periods of distinct hydrology over the Holocene in south-central India. The period between 10.4 and 6.5 ka BP was characterized by a relatively high abundance of land-plant biomarkers, such as long-chain n-alkanes. The composition of these leaf-wax n-alkanes (weighted average of concentration of different chain-length n-alkanes, expressed as the ACL index) and their negative δ13C (-30‰ to -33 ‰) indicate the dominance of woody C3 vegetation in the catchment, and negative δD (-170‰ to -175‰) values argue for a wet period due to an intensified monsoon. Rapid fluctuations in abundance of both terrestrial and aquatic biomarkers between 6.5 and 4 ka BP indicate an unstable lake ecosystem, culminating in a transition to arid conditions. Higher ACL values and a pronounced shift to more positive δ13C values (up to -22‰) of leaf-wax n-alkanes over this period indicate a change of dominant vegetation to C4 grasses. Along with a 40‰ increase in leaf wax n-alkane δD values, which likely resulted from less rainfall and/or higher plant evapotranspiration, we interpret this period to reflect the driest conditions in the region during the last 10 ka. This transition led to protracted late Holocene arid conditions and a permanent saline lake. This is supported by the great abundance of the triterpene lipid tetrahymanol, generally considered as a marker for water-column stratification and salinity. A late Holocene peak of algal/cyanobacterial biomarker input at 1.3 ka BP may represent an event of lake eutrophication, possibly due to human impact and cattle/livestock farming in the catchment. Our record suggests substantial weakening of the monsoon over continental south-central India during the Holocene, placing the onset of aridification at 6.5 ka BP, earlier than observed in marine records throughout the Indian Ocean. Since human colonization in this region, as suggested by archeological evidence, dates back to late Holocene (ca. 3.5/3.2 ka BP) a possible human influence on the observed vegetation change at 6.5 ka BP is unlikely. Despite the prevailing arid conditions in the region since 6.5 ka the availability of freshwater through perennial springs around the lake may have attracted human settlements close to the lake for grazing of animals or small-scale farming.
Long-Term ENSO Variation Over the Last 20,000 Years From the Peru Continental Margin
NASA Astrophysics Data System (ADS)
Skilbeck, G.; Fink, D.; Gagan, M.; Rein, B.
2006-12-01
Three ODP Leg 201 cores from the Peru continental margin comprise highly laminated diatomaceous ooze spanning Last Glacial Maximum to present. Geochemical proxy data, layer counting and spectral analysis of red color variation suggest the layers represent interannual accumulation under the influence tropical ENSO conditions, with darker layers representing El Niño events. AMS 14-C dating (Skilbeck &Fink, 2006) of bulk sediment from Sites 201-1228 and -1229 (~11°S) and comparison with Rein et al. (2005) Core SO147-106KL (~12°S) show that where the shelf is narrow south of ~10.5°S, regionally consistent rates of sediment accumulation have occurred over the late Deglaciation and Holocene, with high rates characterising the late (0-2.0 kyrBP, ~100 cm/ka) and the early (8.5-10 kyrBP, ~80 cm/ka) Holocene. Over these intervals laminae are of interannual resolution. Further north where the shelf is broader, Holocene-Late Deglaciation sediments are thin or absent, but the Early Deglaciation is well represented. In a core from ODP Site 201-1227 (~9°S, 427m water depth), the period 15.5-17.5 kyrBP is characterised by sediment accumulation rates in excess of 300 cm/ka, and interannual laminations are again present. Spectral analysis of the instrumental record of ENSO, the SOI, shows a relative stable mode of variation with an average frequency of about 5.5 yr for the past 130 years. Analysis of our ODP cores shows that the ENSO mode appears to be relatively stable for periods of 300-500 years throughout the Holocene with frequencies varying mostly between 5 and 8 years and relatively sudden mode switches, suggesting inter alia that the instrumental record is not long enough to test predictive models of ENSO variation. Throughout the Holocene, this pattern of variation transcends the sedimentation-rate zones identified above, with the inference that changes in the rate of sedimentation have not influenced the temporal pattern. The later part of the deglaciation period (10-14 kyrBP) appears to be a relatively long period of stable ENSO with a repeat frequency between 5 and 6 years. Layer variation over the interval between 14 to 15.5 yrBP loses interannual variability and is characterised by a dominant frequency of ~11-12 yr, but this may simply reflect the low sedimentation rate during this interval. During Early Deglaciation interannual- to decadal-scale layer variability is present, with over 600 discernable laminae recognisable across the ~1600 year interval represented in Core 210-1227B. ENSO during this time has multiple interannual frequency modes ranging between 4 and 10 yr, particularly over the interval 17.2- 16.2 kyrBP, with mode switches slightly more frequent than during the Holocene at between 200 and 300 years. In addition to the interannual laminations and the centennial-scale pattern of frequency mode variation described above, there is a regular oscillatory pattern in the contrast between dark and light laminations which can be traced to parasequence-like packets of laminations on a centimetre scale, and representing variability in the decadal to centennial range. References Rein, B., A. Luckge, et al. (2005). Paleoceanography 20(PA4003): 17p. Skilbeck, C.G. &D. Fink (2005). ODP Scientific Results 201.
Late Quaternary faulting in the Vallo di Diano basin (southern Apennines, Italy)
NASA Astrophysics Data System (ADS)
Villani, F.; Pierdominici, S.; Cinti, F. R.
2009-12-01
The Vallo di Diano is the largest Quaternary extensional basin in the southern Apennines thrust-belt axis (Italy). This portion of the chain is highly seismic and is currently subject to NE-extension, which triggers large (M> 6) normal-faulting earthquakes along NW-trending faults. The eastern edge of the Vallo di Diano basin is bounded by an extensional fault system featuring three main NW-trending, SW-dipping, right-stepping, ~15-17 km long segments (from north to south: Polla, Atena Lucana-Sala Consilina and Padula faults). Holocene activity has been documented so far only for the Polla segment. We have therefore focused our geomorphological and paleoseismological study on the southern portion of the system, particularly along the ~ 4 km long Atena Lucana-Sala Consilina and Padula faults overlap zone. The latter is characterized by a complex system of coalescent alluvial fans, Middle Pleistocene to Holocene in age. Here we recognized a > 4 km long and 0.5-1.4 km wide set of scarps (ranging in height between 1 m and 2.5 m) affecting Late Pleistocene - Holocene alluvial fans. In the same area, two Late Pleistocene volcanoclastic layers at the top of an alluvial fan exposed in a quarry are affected by ~ 1 m normal displacements. Moreover, a trench excavated across a 2 m high scarp affecting a Holocene fan revealed warping of Late Holocene debris flow deposits, with a total vertical throw of about 0.3 m. We therefore infer the overlap zone of the Atena Lucana-Sala Consilina and Padula faults is a breached relay ramp, generated by hard-linkage of the two fault segments since Late Pleistocene. This ~ 32 km long fault system is active and is capable of generating Mw ≥6.5 earthquakes.
Holocene and latest Pleistocene climate and glacier fluctuations in Iceland
NASA Astrophysics Data System (ADS)
Geirsdóttir, Áslaug; Miller, Gifford H.; Axford, Yarrow; Ólafsdóttir, Sædís
2009-10-01
Multiproxy climate records from Iceland document complex changes in terrestrial climate and glacier fluctuations through the Holocene, revealing some coherent patterns of change as well as significant spatial variability. Most studies on the Last Glacial Maximum and subsequent deglaciation reveal a dynamic Iceland Ice Sheet (IIS) that responded abruptly to changes in ocean currents and sea level. The IIS broke up catastrophically around 15 ka as the Polar Front migrated northward and sea level rose. Indications of regional advance or halt of the glaciers are seen in late Alleröd/early Younger Dryas time and again in PreBoreal time. Due to the apparent rise of relative sea level in Iceland during this time, most sites contain evidence for fluctuating, tidewater glacier termini occupying paleo fjords and bays. The time between the end of the Younger Dryas and the Preboreal was characterized by repeated jökulhlaups that eroded glacial deposits. By 10.3 ka, the main ice sheet was in rapid retreat across the highlands of Iceland. The Holocene thermal maximum (HTM) was reached after 8 ka with land temperatures estimated to be 3 °C higher than the 1961-1990 reference, and net precipitation similar to modern. Such temperatures imply largely ice-free conditions across Iceland in the early to mid-Holocene. Several marine and lacustrine sediment climate proxies record substantial summer temperature depression between 8.5 and 8 ka, but no moraines have been detected from that time. Termination of the HTM and onset of Neoglacial cooling took place sometime after 6 ka with increased glacier activity between 4.5 and 4.0 ka, intensifying between 3.0 and 2.5 ka. Although a distinct warming during the Medieval Warm Period is not dramatically apparent in Icelandic records, the interval from ca AD 0 to 1200 is commonly characterized by relative stability with slow rates of change. The literature most commonly describes Little Ice Age moraines (ca AD 1250-1900) as representing the most extensive ice margins since early Holocene deglaciation, with temperature depressions of 1-2 °C compared to the AD 1961-1990 average. Steep north-south and west-east temperature gradients are reconstructed in the Holocene records of Iceland, suggesting a strong maritime influence on the terrestrial climate of Iceland.
NASA Astrophysics Data System (ADS)
Johnson, W. C.; Gaines, E. P.
2010-12-01
Summer of 2009, Colorado State University Center for Environmental Management of Military Lands conducted test excavations of 29 prehistoric archaeological sites situated on a loess-mantled morainal ridge complex within the Jarvis Creek valley of the Tanana River system at Fort Wainwright in Interior Alaska. Initial loess deposition on the moraines began about 13,000 cal yr BP, with subsequent long-term, nomadic occupation of the area occurring from 9,500 to 1,060 cal yr BP. An array of data were extracted from bulk-sediment samples and used to assess past environmental conditions. Parameters and approaches used to generate these data included stable carbon isotope ratios, magnetic susceptibility, biogenic opal analysis, detrital charcoal content, quantitative color (L*a*b), and particle-size distribution. Stable carbon isotope trends, in combination with the other environmental proxy data, document major environmental changes. Data from the glacial till-loess transition and lower silt mantle indicate that the area was cold and slightly mesic, and dominated by treeless C3-dominated grassland immediately after the terminal Pleistocene glacial retreat (~12,700 cal yr BP). A dearth of particulate charcoal and charred phytoliths from sediments of this period suggests a minor role for fire, e.g., only localized, small fires. Cold, treeless environmental conditions continued throughout the Early Holocene (~12,000-7,000 cal yr BP), though it was more mesic than earlier. Middle Holocene (~7000-5000 cal yr BP) data display a shift in C3 grass species (increased δ13C values), the appearance of a shrub component to the plant community, significant surface stability, and more widespread fire occurrence. Picea glauca (white spruce) and Alnus sp. (alder) appear in the later parts of the Middle Holocene, and charcoal concentration increases. The Late Holocene (since ~5,000 cal yr BP) witnessed a decline in P. glauca by about 50%, a tenfold increase in Alnus, and the appearance of Betula sp. (birch). Further increases in isotope values and high frequencies of algal statospores in the surface soil (last ~2500 yrs) indicate that the soil has remained moist throughout most of the growing season due to rain and snowmelt. Also, a 4.5-fold increase in charcoal concentration and increase in charcoal particle size suggest common, local fires in the latter part of the Holocene, the period during which the modern vegetative community was established.
NASA Astrophysics Data System (ADS)
Yang, Qing; Li, Xiaoqiang; Zhou, Xinying; Zhao, Keliang; Sun, Nan
2016-12-01
To quantitatively reconstruct Holocene precipitation for particular geographical areas, suitable proxies and faithful dating controls are required. The fossilized seeds of common millet (Panicum miliaceum) are found throughout the sedimentary strata of northern China and are suited to the production of quantitative Holocene precipitation reconstructions: their isotopic carbon composition (δ13C) gives a measure of the precipitation required during the growing season of summer (here the interval from mid-June to September) and allows these seeds to be dated. We therefore used a regression function, as part of a systematic study of the δ13C of common millet, to produce a quantitative reconstruction of mid-Holocene summer precipitation in the Guanzhong Basin (107°40'-107°49' E, 33°39'-34°45' N). Our results showed that mean summer precipitation at 7.7-3.4 ka BP was 353 mm, ˜ 50 mm or 17 % higher than present levels, and the variability increased, especially after 5.2 ka BP. Maximum mean summer precipitation peaked at 414 mm during the period 6.1-5.5 ka BP, ˜ 109 mm (or 36 %) higher than today, indicating that the East Asian summer monsoon (EASM) peaked at this time. This work can provide a new proxy for further research into continuous paleoprecipitation sequences and the variability of summer precipitation, which will promote the further research into the relation between early human activity and environmental change.
NASA Astrophysics Data System (ADS)
Reddy, A. Nallapa; Nagendra, R.
2017-12-01
The foraminifer taxon Bolliella adamsi Banner et Blow, 1959 is found to co-occur with index planktic foraminifer taxa of the Late Pliocene (Zone N21) in a core of 2.60 m at 1300 m water depth off Tuticorin, Bay of Bengal. This taxon has been previously known as a Holocene taxon of the Indo-Pacific province. This study significantly revises the known stratigraphic range of B. adamsi from the Late Pliocene (uppermost part of Zone N21) to the Holocene in the Bay of Bengal area.
NASA Astrophysics Data System (ADS)
Berman, K.; Axford, Y.; Lasher, G. E.
2017-12-01
Multi-proxy analysis of a coastal lake in southwest Greenland near Nuuk provides evidence for regional environmental changes, including the timing of isostatic rebound and the temperature history of the area. T1 (informal name) is a small lake 50 km south of Nuuk, at 17.5 m elevation and currently isolated from glacial meltwater drainage. The lake's sediment record begins approximately 9500 cal years BP, when the site was submerged beneath sea level due to glacial isostatic depression following the Last Glacial Maximum. The record captures the transition of the environment from a submerged, glacially-influenced marine site to a non-glacially fed (and initially meromictic) freshwater lake 8600 cal years BP. Magnetic susceptibility, a proxy for sediment minerogenic content, decreased rapidly from 9500 to 8600 years BP, before abruptly stabilizing and remaining relatively low and steady for the rest of the record. The transition to a lacustrine environment was characterized by a rapid and relatively simultaneous increase in primary productivity (inferred from biogenic silica concentrations) and shift towards terrestrial versus marine sources of organic matter (inferred from carbon:nitrogen ratios and nitrogen isotopes) between 8700 and 8400 years BP. Together, these proxies and the presence of marine shells below the transition provide robust evidence for the transition from a marine environment to a freshwater lake in response to regional postglacial isostatic rebound. Within the Holocene, measures of bulk sediment composition (e.g., biogenic silica, loss-on-ignition and magnetic susceptibility) are relatively stable. Chironomid (Insecta: Diptera: Chironomidae) assemblages, which in some environments are quantitative proxies for summer temperature changes, show species-level shifts within the Holocene that will be interpreted in this presentation alongside indicators of landscape change including carbon:nitrogen ratios, bulk sediment spectral reflectance and bulk sediment elemental composition from scanning XRF.
Holocene aeolian activity in the Gonghe Basin, north-eastern Tibetan Plateau
NASA Astrophysics Data System (ADS)
Stauch, Georg; Lai, Zhongping; Lehmkuhl, Frank; Schulte, Philipp
2016-04-01
The Gonghe Basin is located on the north-eastern edge of Tibetan Plateau and has a mean altitude of 3000 m asl. With a size of 20.000 km² it is the largest intramontane Basin on the north-eastern Plateau. The well-studied Qinghai Basin is situated north of the Basin, while the drier central Plateau is further south-west. Previous research indicated an early onset of the aeolian accumulation in the Qinghai Basin at around 18 ka while in the areas further to the south-west aeolian archives date back only to the beginning of the Holocene. First new OSL ages from aeolian sand and loess indicate a intermediate timing of the aeolian accumulation in the Gonghe Basin at the transition from the late glacial to the Holocene. Late glacial and early Holocene ages of aeolian sediments were hitherto associated with wetter climate conditions caused by the strengthening of the Asian summer monsoon. Higher moisture availability resulted in an increased vegetation cover, leading to the permanent stabilization of the aeolian sediments. Under glacial climate conditions a constant remobilization of the sediments can be assumed. The new OSL ages from the Gonghe Basin indicate a progressive shift of the monsoonal strength in westward directions during the late glacial until the early Holocene.
Middle to late Holocene coastal evolution along the south coast of Upolu Island, Samoa
Goodwin, I.D.; Grossman, E.E.
2003-01-01
Stratigraphic surveys and sedimentological analyses of coastal sediments and reef cores along the south coast of Upolu Island, Samoa, reveal that during the middle Holocene this coast was characterised by barrier spits, open lagoons, and estuaries. These estuarine systems matured during the late Holocene, with progressive sedimentation and inlet closure, leading to the dominance of mangrove swamps in the past 1000 years. Contemporaneous with the transition of open estuaries to mangrove swamps was the aggradation and progradation of coastal plains. The coastal progradation since 700-1000 years BP is best explained by increased sediment availability and reduced incident wave energy at the shore resulting from the shallowing and subsequent cessation of reef crest accretion following the mid-Holocene sea-level highstand ca. ???4500 yr BP. A small relative sea-level (RSL) lowering since 700-1000 years may have contributed to the positive sediment budget. This study highlights the need for island-wide coastal surveys to assess the relative roles of RSL, sediment budgets, and hydrodynamics on coastal evolution and stability. Differences in coastal evolution around Upolu Island may also be influenced by differential tectonic movements associated with late Holocene volcanism, coseismicity, and/ or submarine landslides. ?? 2003 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kirby, Matthew E.; Knell, Edward J.; Anderson, William T.; Lachniet, Matthew S.; Palermo, Jennifer; Eeg, Holly; Lucero, Ricardo; Murrieta, Rosa; Arevalo, Andrea; Silveira, Emily; Hiner, Christine A.
2015-09-01
Silver Lake is the modern terminal playa of the Mojave River in southern California (USA). As a result, it is well located to record both influences from the winter precipitation dominated San Bernardino Mountains - the source of the Mojave River - and from the late summer to early fall North American monsoon at Silver Lake. Here, we present various physical, chemical and biological data from a new radiocarbon-dated, 8.2 m sediment core taken from Silver Lake that spans modern through 14.8 cal ka BP. Texturally, the core varies between sandy clay, clayey sand, and sand-silt-clay, often with abrupt sedimentological transitions. These grain-size changes are used to divide the core into six lake status intervals over the past 14.8 cal ka BP. Notable intervals include a dry Younger Dryas chronozone, a wet early Holocene terminating 7.8 - 7.4 cal ka BP, a distinct mid-Holocene arid interval, and a late Holocene return to ephemeral lake conditions. A comparison to potential climatic forcings implicates a combination of changing summer - winter insolation and tropical and N Pacific sea-surface temperature dynamics as the primary drivers of Holocene climate in the central Mojave Desert.
NASA Astrophysics Data System (ADS)
Scuderi, Louis A.; Fawcett, Peter J.
2013-09-01
Development of an accurate chronology for glacial deposits in the Sierra Nevada has long been problematic given the lack of suitable organic material for radiocarbon dating. Lichenometry initially appeared promising as ages showed an increase from cirque headwalls to down-canyon moraines. However, while Recess Peak lichen age estimates range from 2 to 3 ka, recent work shows these deposits to be at least 10 ka older. Here, we present evidence for a late Holocene reset of Recess Peak lichen ages by significant post-depositional climate change. Following late-Pleistocene deposition of Recess Peak moraines, warming through the mid-Holocene allowed forests to advance into shallow basins eliminating local inverted tree lines. This produced a partial canopy where shading killed the original post-Pleistocene crustose lichen colonies. Late-Holocene cooling resulted in forest retreat from these basins as alpine tree line fell. Lichens then recolonized the re-exposed Recess Peak deposits. We conclude that while Recess Peak lichen ages are accurate to within the dating uncertainty of the technique, existing lichen ages actually date the timing of post-mid-Holocene cooling and recolonization, and not the original emplacement of these deposits. Thus, applications of Lichenometry should consider post-depositional environmental change when interpreting the meaning of these dates.
Late Holocene vegetation and ocean variability in the Gulf of Oman
NASA Astrophysics Data System (ADS)
Miller, Charlotte S.; Leroy, Suzanne A. G.; Collins, Philip E. F.; Lahijani, Hamid A. K.
2016-07-01
Fossil pollen and dinocyst records in marine sequences are frequently combined to reveal the response of vegetation and ocean conditions to changes in both regional and global climate. In this study we analysed pollen and dinocysts within a clearly-laminated sediment core off the Iranian coast in the Gulf of Oman, an extremely data-poor area, to reconstruct climatic change during the Late Holocene (last 1900 years). The vegetation record from southern Iran indicates a replacement of savannah by desert formations at c. 910 CE, shortly after the Islamic invasion and the subsequent collapse of the Sassanid Empire. From c. 910 to 1145 CE, during the Medieval Climate Anomaly (MCA), the vegetation was heavily dominated by desert formations, such as Amaranthaceae, Caryophyllaceae, Asteraceae, Centaurea and Calligonum. In parallel, in the Gulf of Oman, the presence of Impagidinium paradoxum indicates a lack of freshwater discharge into the ocean around this time. The desert taxa of the MCA were subsequently replaced by savannah formations at c. 1145 CE, comprised mainly of Poaceae and Cyperaceae, corresponding to the Little Ice Age (LIA), indicating generally wetter climatic conditions. A sudden increase in Spiniferites ramosus (1-63%), at c. 1440 CE suggests an increase in the strength of the SW summer monsoon, with increased freshwater discharge into the ocean at this time. Our data indicate that over the past two millennia the NW Arabian Sea region has alternated between contrasting climatic conditions, with firstly a humid phase equivalent to the cultural period of the Sassanid Empire, a significantly drier climate during the MCA and a relatively wetter climate during the LIA. The mechanisms resulting in dry conditions during the MCA in the Middle East associated with the northward shift of the ITCZ and the intensification of the Indian summer monsoon may be similar to those causing the dry conditions which dominated the Early Holocene in the Near East. Our palaeoenvironmental proxy data support current observations that a globally anthropogenically-induced warmer climate is likely to lead to increased drought severity in the Middle East, putting additional stress on governments already struggling with poverty and social tensions.
NASA Astrophysics Data System (ADS)
Demény, Attila; Kern, Zoltán; Molnár, Mihály; Czuppon, György; Leél-Őssy, Szabolcs; Surányi, Gergely; Gilli, Adrian
2017-04-01
Flowstones formed from springs in the Baradla and Béke Caves, North-east Hungary were drilled at several locations, and their sites were monitored for temperature, CO2 level in cave air, water and carbonate compositions for three years. The monitoring results suggest that the carbonate precipitated close to equilibrium with the local water. The non-systematic distribution of stable isotope and chemical compositions along sections on the surfaces of flowstone occurrences indicate irregular formation and the possibility of hiatuses within the flowstones' edifices. Approximately 40 cm long drill cores were extracted from the „Nagy-tufa" flowstone of the Béke Cave (BNT-2 core) and the Havasok flowstone of the Baradla Cave. U-Th dating efforts resulted in very large age uncertainties for the BNT-2 core, owing to detrital Th contamination. Therefore, in addition to the U-Th dating, AMS radiocarbon analyses were conducted to establish reliable age-depth models. The raw 14C ages were corrected for the dead carbon fraction (dfc) using radiocarbon results obtained for samples that yielded also accurate U-Th ages. Calibration and age-depth modeling have been performed using the OxCal v4.2.4. software. The data prove that the flowstones in the studied caves were formed contemporarily, covering the last 4 ka with two major hiatuses around 3.5 and 1 ka BP. Inclusion-hosted water contents, stable carbon and oxygen isotope compositions of carbonate, and hydrogen isotope composition of inclusion-hosted water as well as Si contents were determined for the two cores and compared with regional paleoclimate records for the period of 3.5 to 1 ka BP. The water contents, δ13Ccarb values and Si contents show correspondence with paleoprecipitation proxies from Central Europe to western Anatolia, while the paleotemperature estimates obtained using the δDwater values were in agreement with temperature reconstructions derived from paleobiological proxies from nearby lake sediments. The inferred paleohumidity variations agree also with water level changes of Lake Balaton (Western Hungary) assumed on the base of settlement migrations revealed by archeological excavations. These correlations indicate that the flowstone data provide valuable information about the regional water balance fluctuations for the late Holocene. The study was financed by the Hungarian Research Fund (OTKA NK 101664).
Denali fault slip rates and Holocene-late Pleistocene kinematics of central Alaska
Matmon, A.; Schwartz, D.P.; Haeussler, Peter J.; Finkel, R.; Lienkaemper, J.J.; Stenner, Heidi D.; Dawson, T.E.
2006-01-01
The Denali fault is the principal intracontinental strike-slip fault accommodating deformation of interior Alaska associated with the Yakutat plate convergence. We obtained the first quantitative late Pleistocene-Holocene slip rates on the Denali fault system from dating offset geomorphic features. Analysis of cosmogenic 10Be concentrations in boulders (n = 27) and sediment (n = 13) collected at seven sites, offset 25-170 m by the Denali and Totschunda faults, gives average ages that range from 2.4 ± 0.3 ka to 17.0 ± 1.8 ka. These offsets and ages yield late Pleistocene-Holocene average slip rates of 9.4 ± 1.6, 12.1 ± 1.7, and 8.4 ± 2.2 mm/yr-1 along the western, central, and eastern Denali fault, respectively, and 6.0 ± 1.2 mm/yr-1 along the Totschunda fault. Our results suggest a westward decrease in the mean Pleistocene-Holocene slip rate. This westward decrease likely results from partitioning of slip from the Denali fault system to thrust faults to the north and west. 2006 Geological Society of America.
NASA Astrophysics Data System (ADS)
Yokoyama, Y.; Okuno, J.; Miyairi, Y.; Obrochta, S.; Demboya, N.; Makino, Y.; Kawahata, H.
2012-12-01
A Mid to Late Holocene sea-level record based on combined geomorphological, geological and micropaleontological observations was obtained from well-developed wave cut benches subaerially exposed along the Shimokita Peninsula, northern Japan. Results indicate that the benches were formed during mid to late Holocene sea-level transgressions, reaching a maximum highstand level of 2 m above present at about 3,000 to 4,000 years ago. This timing corresponds to an abrupt, order of magnitude decrease in sedimentation rate as recorded in a core recovered from proximal Mutsu Bay. In addition, glacio-hydro-isostatic adjustment due to crustal deformation in response to postglacial sea-level rise was modeled, and results are consistent with the reconstructed local 2 m highstand. Given that meltwater contributions from the major North American and European ice sheets had largely ceased by 7,000 years ago, these independent lines of evidence, taken together, indicate that melting of the Antarctic ice sheet ended by late Holocene, around 3,000-4,000 years ago.
NASA Astrophysics Data System (ADS)
Liu, Jianbao; Chen, Jianhui; Zhang, Xiaojian; Chen, Fahu
2016-04-01
Monsoon precipitation over China exhibits large spatial differences. It has been found that a significantly enhanced East Asian summer monsoon (EASM) is characterized by increased rainfall in northern China and by reduced rainfall in southern China, and this relationship occurs on different time scales during the Holocene. This study presents results from a diverse range of proxy paleoclimatic records from northern China where precipitation variability is traditionally considered as an EASM proxy. Our aim is to evaluate the evolution of the EASM during the Holocene and to compare it with all of the published stalagmite δ18O records from the Asian Monsoon region in order to explore the potential mechanism(s) controlling the Chinese stalagmite δ18O. We found that the intensity of the EASM during the Holocene recorded by the traditional EASM proxy of moisture (or precipitation) records from northern China are significantly different from the Chinese stalagmite δ18O records. The EASM maximum occurred during the mid-Holocene, challenging the prevailing view of an early Holocene EASM maximum mainly inferred from stalagmite δ18O records in eastern China. In addition, all of the well-dated Holocene stalagmite δ18O records, covering a broad geographical region, exhibit a remarkably similar trend of variation and are statistically well-correlated on different time scales, thus indicating a common signal. However, in contrast with the clear consistency in the δ18O values in all of the cave records, both instrumental and paleoclimatic records exhibit significant spatial variations in rainfall on decadal-to- centennial time scales over eastern China. In addition, both paleoclimatic records and modeling results suggest that Holocene East Asian summer monsoon precipitation reached a maximum at different periods in different regions of China. Thus the stalagmite δ18O records from the EASM region should not be regarded as a reliable indicator of the strength of the East Asian summer monsoon. Furthermore, modern observations indicate that the moisture for precipitation in the East Asian monsoon region is mainly derived from the Indian Ocean. The moisture transport route from the Indian Ocean to the East Asian monsoon region during the Holocene is almost identical to that of modern precipitation. Therefore the strong correlation of δ18O records in the EASM and Indian summer monsoon (ISM) regions, and the similarity of the pattern of latitudinal changes in δ18O values in stalagmites and in modern meteoric precipitation along the water vapor transport route, further suggests that the stalagmite δ18O records from the EASM region are essentially a signal of the isotopic composition of precipitation, which is determined mainly by changes in the δ18O of atmospheric vapour in the upstream source region over the Indian Ocean and Indian Monsoon region via the upstream depletion mechanism. Finally, the main trends of the stalagmite δ18O records are strongly correlated with the known evolution of the ISM, and therefore these records reflect the history of the ISM rather than that of the EASM. Our findings support the conclusion that EASM variability is mainly controlled by Northern Hemisphere summer insolation and was strongly modulated by ice volume during the last deglaciation and early Holocene, which delayed the response of the EASM maximum to peak insolation forcing.
NASA Astrophysics Data System (ADS)
Rémillard, Audrey M.; St-Onge, Guillaume; Bernatchez, Pascal; Hétu, Bernard; Buylaert, Jan-Pieter; Murray, Andrew S.; Lajeunesse, Patrick
2017-09-01
The Magdalen Islands (Québec, Canada) in the centre of the Gulf of St. Lawrence are located in a strategic position for providing an overview of the relative sea-level (RSL) history of the Maritime Provinces of eastern Canada. Although data are available for the coastal terrestrial areas of the Maritimes, data from the Gulf are very scarce and both the RSL and glacio-isostatic adjustment (GIA) models extrapolate for this central region. This study provides new stratigraphic and chronological data from four outcrops and two coring sites on the Magdalen Islands. In addition to the five samples used mainly for age control purposes, nine new luminescence ages are presented. With these new data added to the available literature, a new RSL curve is reconstructed for the LGM to the late Holocene period and a partial curve is proposed for the interval between the late MIS 4 to the MIS 3. Data also indicate a few insights for the MIS 5 period. Results reveal that for the LGM to the late Holocene, the curve corresponds to the J-shaped curve scenario recognized in the literature. The RSL changes during this period are the result of glacio-isostatic rebound, migration and collapse of the peripheral forebulge, and eustatic sea-level changes. For the LGM to the early Holocene, glacio-isostatic depression curves displaying a few local differences are also proposed. For the late Holocene, the data constrain the curve between two types of indicators, i.e. marine and terrestrial, and indicate that the RSL has risen at least 3 m during the last two millennia. Sediments dated to the MIS 5 and the interval between the late MIS 4 and the MIS 3 illustrate that the GIA following the LGM also occurred for the MIS 5 interglacial and the MIS 3 interstadial. Finally, recent GIA models are discussed in light of the results of this paper.
NASA Astrophysics Data System (ADS)
Huguet, C.; Munnuru Singamshetty, K.; Routh, J.; Fietz, S.; Mangini, A.; Ghosh, P.; Lone, M. A.; Rangarajan, R.; Eliasson, J.
2016-12-01
The Mawmluh cave in northeastern India, is affected by global climate patterns displaying glacial-interglacial patterns and also the Indian Summer Monsoon (ISM). Precipitation from the ISM plays a vital role for the local community and thus, understanding the driving forces of ISM fluctuations became a recent focus of a number of paleoclimate studies. Here, we used the stalagmite KM-1 from Mawmluh cave to reconstruct climate variability during the last glacial-interglacial transition from 22 to 6 ka. For the first time, molecular proxy data (TEX86 and MBT/CBT derived from isoprenoid and branched GDGTs respectively) were coupled to stable isotope records (δ13C and δ18O) and compared to other speleothem records in Asia. ISM system abruptly transition between a suppressed and active state which is associated to changes in vegetation and thus shifts in δ13C. The abrupt δ13C shift observed in our record indicate changes to wetter climate in the Holocene, which are coupled to increase in abundance of GDGTs indicating higher production and/or transfer to KM-1. The TEX86-derived temperature roughly follows the glaciation-deglaciation cycle and Holocene changes. The TEX86 results show good correspondence with the δ18O records for temperature highlighting the potential for the use of molecular proxy in speleothem based climate reconstructions. While the MBT/CBT proxy is also defined as a temperature proxy it is not coupled with δ18O patterns, and thus shows no clear temperature signal. A decoupling between MBT/CBT from soils and the connected speleothems as well as a precipitation-moisture effect on this proxy have been previously reported. In this particular case the MBT/CBT seems to be better related to precipitation-monsoon changes, and thus warrant further exploration as a complementary proxy to isotope records for monsoon strength.
NASA Astrophysics Data System (ADS)
Anderson, Leif S.; Flowers, Gwenn E.; Jarosch, Alexander H.; Aðalgeirsdóttir, Guðfinna Th; Geirsdóttir, Áslaug; Miller, Gifford H.; Harning, David J.; Thorsteinsson, Thorsteinn; Magnússon, Eyjólfur; Pálsson, Finnur
2018-06-01
Drangajökull is a maritime ice cap located in northwest (Vestfirðir) Iceland. Drangajökull's evolution is therefore closely linked to atmospheric and ocean variability. In order to better constrain the Holocene climate and glacier history of Vestfirðir we model the past evolution of Drangajökull ice cap. Simulations from 10 ka to present are forced by general circulation model output, ice-core-based temperature reconstructions, and sea-surface temperature reconstructions. Based on these 10-thousand year simulations, Drangajökull did not persist through the Holocene. We estimate that air temperatures were 2.5-3.0 °C higher during the Holocene Thermal Maximum than the local 1960-1990 average. Simulations support Drangajökull's late Holocene inception between 2 and 1 ka, though intermittent ice likely occupied cirques as early as 2.6 ka. Drangajökull is primarily a Little Ice Age ice cap: it expanded between 1300 and 1750 CE, with the most rapid growth occurring between 1600 and 1750 CE. The maximum Holocene extent of Drangajökull occurred between 1700 and 1925 CE, despite the lowest late Holocene temperatures, occurring between 1650 and 1720 CE. Between 1700 and 1925 CE temperatures were likely 0.6-0.8 °C lower than the 1950-2015 reference temperature. The modern equilibrium line altitude (ELA) is bracketed by topographic thresholds: a 1 °C temperature increase from the modern ELA would eliminate the ice cap's accumulation area, while a reduction of 0.5 °C would lead to the rapid expansion of the ice cap across Vestfirðir. The proximity of Drangajökull to topographic thresholds may explain its late inception and rapid expansion during the Little Ice Age.
NASA Astrophysics Data System (ADS)
Wang, M.
2017-12-01
The use of bacterial branched glycerol dialkyl glycerol tetraethers (brGDGTs) to reconstruct mean annual air temperatures (MAATs) and environmental pH from soils has sparked significant interest in the terrestrial paleoclimate community. However, the reconstruction of these climate proxies from peat bogs is rare in monsoonal regions of the East Asia. This research was carried out on a core from the Shuizhuyang (SZY) peat bog located in Fujian Province. Branched GDGT (brGDGT) indexes were used for reconstructing the paleoclimate of the last 30 cal ka. The aim was to evaluate quantitatively the MAAT and pH values since the Last Glacial Maximum (LGM) in the subtropical zone of China. Results show that the CBT-MBT'-derived MAAT at MIS 3 is about 15.6 °C on average, which is followed by a significant fall at the LGM (11.7-12.1 °C). The temperature difference between the LGM and the present-day value is as high as 5.8 °C. The synchronous variation of biomarker and pollen proxies indicates that replacement of subtropical evergreen broadleaved forests by coldtolerant, deciduous broadleaved forests was driven by the significant drop in air temperature. Our results also indicate that the Younger Dryas event lasted from about 12.9 to about 11.3 cal ka, and cooling event at 3.2 cal ka in the late Holocene was detected, showing the sensitivity of peat bogs to rapid cooling. Our pH reconstructions indicate that the pH of the bog rose during Heinrich 1 and Bølling-Allerød periods, probably due to low precipitation, and were lowest in the Holocene thermal maximum between 8 ka and 2.5 ka, probably due to higher precipitation. The decoupling of reconstructed MAAT and pH during particularly deglaciation and YD periods supports the hypothesis that the variations in temperature and precipitation are not always synchronous.
NASA Astrophysics Data System (ADS)
Adloff, F.; Mikolajewicz, U.; Kučera, M.; Grimm, R.; Maier-Reimer, E.; Schmiedl, G.; Emeis, K.-C.
2011-10-01
Nine thousand years ago (9 ka BP), the Northern Hemisphere experienced enhanced seasonality caused by an orbital configuration close to the minimum of the precession index. To assess the impact of this "Holocene Insolation Maximum" (HIM) on the Mediterranean Sea, we use a regional ocean general circulation model forced by atmospheric input derived from global simulations. A stronger seasonal cycle is simulated by the model, which shows a relatively homogeneous winter cooling and a summer warming with well-defined spatial patterns, in particular, a subsurface warming in the Cretan and western Levantine areas. The comparison between the SST simulated for the HIM and a reconstruction from planktonic foraminifera transfer functions shows a poor agreement, especially for summer, when the vertical temperature gradient is strong. As a novel approach, we propose a reinterpretation of the reconstruction, to consider the conditions throughout the upper water column rather than at a single depth. We claim that such a depth-integrated approach is more adequate for surface temperature comparison purposes in a situation where the upper ocean structure in the past was different from the present-day. In this case, the depth-integrated interpretation of the proxy data strongly improves the agreement between modelled and reconstructed temperature signal with the subsurface summer warming being recorded by both model and proxies, with a small shift to the south in the model results. The mechanisms responsible for the peculiar subsurface pattern are found to be a combination of enhanced downwelling and wind mixing due to strengthened Etesian winds, and enhanced thermal forcing due to the stronger summer insolation in the Northern Hemisphere. Together, these processes induce a stronger heat transfer from the surface to the subsurface during late summer in the western Levantine; this leads to an enhanced heat piracy in this region, a process never identified before, but potentially characteristic of time slices with enhanced insolation.
NASA Astrophysics Data System (ADS)
Adloff, F.; Mikolajewicz, U.; Kučera, M.; Grimm, R.; Maier-Reimer, E.; Schmiedl, G.; Emeis, K.-C.
2011-11-01
Nine thousand years ago (9 ka BP), the Northern Hemisphere experienced enhanced seasonality caused by an orbital configuration close to the minimum of the precession index. To assess the impact of this "Holocene Insolation Maximum" (HIM) on the Mediterranean Sea, we use a regional ocean general circulation model forced by atmospheric input derived from global simulations. A stronger seasonal cycle is simulated by the model, which shows a relatively homogeneous winter cooling and a summer warming with well-defined spatial patterns, in particular, a subsurface warming in the Cretan and western Levantine areas. The comparison between the SST simulated for the HIM and a reconstruction from planktonic foraminifera transfer functions shows a poor agreement, especially for summer, when the vertical temperature gradient is strong. As a novel approach, we propose a reinterpretation of the reconstruction, to consider the conditions throughout the upper water column rather than at a single depth. We claim that such a depth-integrated approach is more adequate for surface temperature comparison purposes in a situation where the upper ocean structure in the past was different from the present-day. In this case, the depth-integrated interpretation of the proxy data strongly improves the agreement between modelled and reconstructed temperature signal with the subsurface summer warming being recorded by both model and proxies, with a small shift to the south in the model results. The mechanisms responsible for the peculiar subsurface pattern are found to be a combination of enhanced downwelling and wind mixing due to strengthened Etesian winds, and enhanced thermal forcing due to the stronger summer insolation in the Northern Hemisphere. Together, these processes induce a stronger heat transfer from the surface to the subsurface during late summer in the western Levantine; this leads to an enhanced heat piracy in this region, a process never identified before, but potentially characteristic of time slices with enhanced insolation.
Curry, B Brandon; Henne, Paul; Mezquita-Joanes, Francesc; Marrone, Federico; Pieri, Valentina; La Mantia, Tommaso; Calo, Camilla; Tinner, Willy
2016-01-01
Marked uncertainties persist regarding the climatic evolution of the Mediterranean region during the Holocene. For instance, whether moisture availability gradually decreased, remained relatively constant, or increased during the last 7000 years remains a matter of debate. To assess Holocene limnology, hydrology and moisture dynamics, the coastal lakes Lago Preola and Gorgo Basso, located in southwestern Sicily, were investigated through several stratigraphic analyses of ostracodes, including multivariate analyses of assemblages, transfer functions of salinity, and biochemical analyses of valves (Sr/Ca, δ18O and δ13C). During the early Holocene, the Gorgo Basso and Lago Preola ostracode records are similar. After an initial period of moderate salinity (1690–6100 mg/l from ca. 10,000–8190 cal yr BP), syndepositional or diagenetic dissolution of ostracode valves suggests that salinity declined to <250 mg/L from ca. 8190 to 7000 cal yr BP at both sites. After ca. 6250 cal yr BP, the ostracode records are strikingly different. Lago Preola became much more saline, with paleosalinity values that ranged from 2270 to about 24,420 mg/L. We suggest that Lago Preola's change from a freshwater to mesosaline lake at about 6250 cal yr BP was related to sea level rise and resulting intrusion of seawater-influenced groundwater. In contrast, Gorgo Basso remained a freshwater lake. The salinity of Gorgo Basso declined somewhat after 6250 cal yr BP, in comparison to the early Holocene, ranging from about 550 to 1680 mg/L. Cypria ophtalmica, a species capable of rapid swimming and flourishing in waters with low dissolved oxygen levels, became dominant at approximately the time when Greek civilization took root in Sicily (2600 cal yr BP), and it completely dominates the record during Roman occupation (roughly 2100 to 1700 cal yr BP). These freshwater conditions at Gorgo Basso suggest high effective moisture when evergreen olive-oak forests collapsed in response to increased Greco-Roman land use and fire. Ostracode valve geochemistry (Sr/Ca, δ18O) suggests significant changes in early vs. late Holocene hydrochemistry, either as changes in salinity or in the seasonality of precipitation. Harmonizing the autecological and geochemical data from Gorgo Basso suggests the latter was more likely, with relatively more late Holocene precipitation falling during the spring, summer, and fall, than winter compared to the early Holocene. Our ostracode-inferred paleosalinity data indicate that moisture availability did not decline during the late Holocene in the central Mediterranean region. Instead, moisture availability was lowest during the early Holocene, and most abundant during the late Holocene.
Late Holocene expansion of Ponderosa pine (Pinus ponderosa) in the Central Rocky Mountains, USA
Norris, Jodi R; Betancourt, Julio L.; Jackson, Stephen T.
2016-01-01
Main conclusions: P. ponderosa expanded its range across large parts of northern Wyoming and central Montana during the late Holocene, probably in response to both northward and westward increases in summer temperature and rainfall. The underlying climatic driver may be the same as for the contemporaneous expansion of J. osteosperma, but will remain undetermined without focused development and integration of independent palaeoclimate records in the region."
NASA Astrophysics Data System (ADS)
Del Carlo, P.; Di Roberto, A.; Di Vincenzo, G.; Bertagnini, A.; Landi, P.; Pompilio, M.; Colizza, E.; Giordano, G.
2015-05-01
Eight pyroclastic fall deposits have been identified in cores of Late Pleistocene-Holocene marine sediments from the Ross Sea (Antarctica), and their components, granulometry and clast morphologies were analysed. Sedimentological, petrographic and geochemical analysis of clasts, with 40Ar-39Ar dating of alkali feldspar grains, indicate that during this period at least five explosive eruptions of mid to high intensity (plinian to subplinian) occurred, and that three of these eruptions took place from Mount Melbourne volcanic complex, between 137.1 ± 3.4 and 12 ka. Geochemical comparison of the studied tephra with micro- and crypto-tephra recovered from deep Antarctic ice cores and from nearby englacial tephra at Frontier Mountain indicates that eruptive activity in the Melbourne Volcanic Province of northern Victoria Land was intense during the Late Pleistocene-Holocene, but only a general area of provenance for the majority of the identified tephra can be identified.
Covault, J.A.; Romans, B.W.; Fildani, A.; McGann, M.; Graham, S.A.
2010-01-01
Terrestrial source areas are linked to deep-sea basins by sediment-routing systems, which only recently have been studied with a holistic approach focused on terrestrial and submarine components and their interactions. Here we compare an extensive piston-core and radiocarbon-age data set from offshore southern California to contemporaneous Holocene climate proxies in order to test the hypothesis that climatic signals are rapidly propagated from source to sink in a spatially restricted sediment-routing system that includes the Santa Ana River drainage basin and the Newport deep-sea depositional system. Sediment cores demonstrate that variability in rates of Holocene deep-sea turbidite deposition is related to complex ocean-atmosphere interactions, including enhanced magnitude and frequency of the North American monsoon and El Ni??o-Southern Oscillation cycles, which increased precipitation and fluvial discharge in southern California. This relationship is evident because, unlike many sediment-routing systems, the Newport submarine canyon-and-channel system was consistently linked tothe Santa Ana River,which maintained sediment delivery even during Holocene marine transgression and highstand. Results of this study demonstrate the efficiency of sediment transport and delivery through a spatially restricted, consistently linked routing system and the potential utility of deep-sea turbidite depositional trends as paleoclimate proxies in such settings. ?? 2010 by The University of Chicago.
Late quaternary climate, precipitation δ18O, and Indian monsoon variations over the Tibetan Plateau
NASA Astrophysics Data System (ADS)
Li, Jingmin; Ehlers, Todd A.; Werner, Martin; Mutz, Sebastian G.; Steger, Christian; Paeth, Heiko
2017-01-01
The Himalaya-Tibet orogen contains one of the largest modern topographic and climate gradients on Earth. Proxy data from the region provide a basis for understanding Tibetan Plateau paleo climate and paleo elevation reconstructions. Paleo climate model comparisons to proxy data compliment sparsely located data and can improve climate reconstructions. This study investigates temporal changes in precipitation, temperature and precipitation δ18O (δO18p) over the Himalaya-Tibet from the Last Glacial Maximum (LGM) to present. We conduct a series of atmospheric General Circulation Model (GCM, ECHAM5-wiso) experiments at discrete time slices including a Pre-industrial (PI, Pre-1850 AD), Mid Holocene (MH, 6 ka BP) and LGM (21 ka BP) simulations. Model predictions are compared with existing proxy records. Model results show muted climate changes across the plateau during the MH and larger changes occurring during the LGM. During the LGM surface temperatures are ∼ 2.0- 4.0 °C lower across the Himalaya and Tibet, and >5.0 °C lower at the northwest and northeast edge of the Tibetan Plateau. LGM mean annual precipitation is 200-600 mm/yr lower over on the Tibetan Plateau. Model and proxy data comparison shows a good agreement for the LGM, but large differences for the MH. Large differences are also present between MH proxy studies near each other. The precipitation weighted annual mean δ18Op lapse rate at the Himalaya is about 0.4 ‰ /km larger during the MH and 0.2 ‰ /km smaller during the LGM than during the PI. Finally, rainfall associated with the continental Indian monsoon (between 70°E-110°E and 10°N-30°N) is about 44% less in the LGM than during PI times. The LGM monsoon period is about one month shorter than in PI times. Taken together, these results document significant spatial and temporal changes in temperature, precipitation, and δ18Op over the last ∼21 ka. These changes are large enough to impact interpretations of proxy data and the intensity of the Indian monsoon.
NASA Astrophysics Data System (ADS)
Daley, T. J.; Barber, K. E.; Street-Perrott, F. A.; Loader, N. J.; Marshall, J. D.; Crowley, S. F.; Fisher, E. H.
2010-07-01
Stable isotope analyses of Sphagnum alpha-cellulose, precipitation and bog water from three sites across northwestern Europe (Raheenmore, Ireland, Walton Moss, northern England and Dosenmoor, northern Germany) over a total period of 26 months were used to investigate the nature of the climatic signal recorded by Sphagnum moss. The δ18O values of modern alpha-cellulose tracked precipitation more closely than bog water, with a mean isotopic fractionation factor αcellulose-precipitation of 1.0274 ± 0.001 (1 σ) (≈27‰). Sub-samples of isolated Sphagnum alpha-cellulose were subsequently analysed from core WLM22, Walton Moss, northern England yielding a Sphagnum-specific isotope record spanning the last 4300 years. The palaeo-record, calibrated using the modern data, provides evidence for large amplitude variations in the estimated oxygen isotope composition of precipitation during the mid- to late Holocene. Estimates of palaeotemperature change derived from statistical relationships between modern surface air temperatures and δ18O precipitation values for the British Isles give unrealistically large variation in comparison to proxies from other archives. We conclude that use of such relationships to calibrate mid-latitude palaeo-data must be undertaken with caution. The δ18O record from Sphagnum cellulose was highly correlated with a palaeoecologically-derived index of bog surface wetness (BSW), suggesting a common climatic driver.
NASA Astrophysics Data System (ADS)
Wang, Xingchen Tony; Sigman, Daniel M.; Prokopenko, Maria G.; Adkins, Jess F.; Robinson, Laura F.; Hines, Sophia K.; Chai, Junyi; Studer, Anja S.; Martínez-García, Alfredo; Chen, Tianyu; Haug, Gerald H.
2017-03-01
The Southern Ocean regulates the ocean’s biological sequestration of CO2 and is widely suspected to underpin much of the ice age decline in atmospheric CO2 concentration, but the specific changes in the region are debated. Although more complete drawdown of surface nutrients by phytoplankton during the ice ages is supported by some sediment core-based measurements, the use of different proxies in different regions has precluded a unified view of Southern Ocean biogeochemical change. Here, we report measurements of the 15N/14N of fossil-bound organic matter in the stony deep-sea coral Desmophyllum dianthus, a tool for reconstructing surface ocean nutrient conditions. The central robust observation is of higher 15N/14N across the Southern Ocean during the Last Glacial Maximum (LGM), 18-25 thousand years ago. These data suggest a reduced summer surface nitrate concentration in both the Antarctic and Subantarctic Zones during the LGM, with little surface nitrate transport between them. After the ice age, the increase in Antarctic surface nitrate occurred through the deglaciation and continued in the Holocene. The rise in Subantarctic surface nitrate appears to have had both early deglacial and late deglacial/Holocene components, preliminarily attributed to the end of Subantarctic iron fertilization and increasing nitrate input from the surface Antarctic Zone, respectively.
Devils Hole, Nevada, δ18O record extended to the mid-Holocene
Winograd, Isaac J.; Landwehr, Jurate M.; Coplen, Tyler B.; Sharp, Warren D.; Riggs, Alan C.; Ludwig, Kenneth R.; Kolesar, Peter T.
2006-01-01
The mid-to-late Pleistocene Devils Hole δ18O record has been extended from 60,000 to 4500 yr ago. The new δ18O time series, in conjunction with the one previously published, is shown to be a proxy of Pacific Ocean sea surface temperature (SST) off the coast of California. During marine oxygen isotope stages (MIS) 2 and 6, the Devil Hole and SST time series exhibit a steady warming that began 5000 to > 10,000 yr prior to the last and penultimate deglaciations. Several possible proximate causes for this early warming are evaluated. The magnitude of the peak δ18O or SST during the last interglacial (LIG) is significantly greater (1 per mill and 2 to 3°C, respectively) than the peak value of these parameters for the Holocene; in contrast, benthic δ18O records of ice volume show only a few tenths per mill difference in the peak value for these interglacials. Statistical analysis provides an estimate of the large shared information (variation) between the Devils Hole and Eastern Pacific SST time series from ∼ 41 to ∼ 2°N and enforces the concept of a common forcing among all of these records. The extended Devils Hole record adds to evidence of the importance of uplands bordering the eastern Pacific as a source of archives for reconstructing Pacific climate variability.
Sigman, Daniel M.; Prokopenko, Maria G.; Adkins, Jess F.; Robinson, Laura F.; Hines, Sophia K.; Chai, Junyi; Studer, Anja S.; Martínez-García, Alfredo; Chen, Tianyu; Haug, Gerald H.
2017-01-01
The Southern Ocean regulates the ocean’s biological sequestration of CO2 and is widely suspected to underpin much of the ice age decline in atmospheric CO2 concentration, but the specific changes in the region are debated. Although more complete drawdown of surface nutrients by phytoplankton during the ice ages is supported by some sediment core-based measurements, the use of different proxies in different regions has precluded a unified view of Southern Ocean biogeochemical change. Here, we report measurements of the 15N/14N of fossil-bound organic matter in the stony deep-sea coral Desmophyllum dianthus, a tool for reconstructing surface ocean nutrient conditions. The central robust observation is of higher 15N/14N across the Southern Ocean during the Last Glacial Maximum (LGM), 18–25 thousand years ago. These data suggest a reduced summer surface nitrate concentration in both the Antarctic and Subantarctic Zones during the LGM, with little surface nitrate transport between them. After the ice age, the increase in Antarctic surface nitrate occurred through the deglaciation and continued in the Holocene. The rise in Subantarctic surface nitrate appears to have had both early deglacial and late deglacial/Holocene components, preliminarily attributed to the end of Subantarctic iron fertilization and increasing nitrate input from the surface Antarctic Zone, respectively. PMID:28298529
NASA Astrophysics Data System (ADS)
Desjardins, Thierry; Turcq, Bruno; Nguetnkam, Jean-Pierre; Achoundong, Gaston; Mandeng-Yogo, Magloire; Cetin, Fethyé; Lézine, Anne-Marie
2013-07-01
In order to better understand the dynamics of the forest-savanna mosaic from central Cameroon, we analyzed 13C and 14C profiles of six oxisols: two under forests and four under savannas. The δ13C soil profiles collected in the forests indicate that these environments are stable at least since the mid-Holocene, whereas the areas currently covered by savannas were formerly occupied by more forested vegetations. The 14C dating of organic matter indicate that the late extension of the savannas in central Cameroon date from the Late Holocene, starting from 4000-3500 14C yr BP.
NASA Astrophysics Data System (ADS)
Mutz, Sebastian G.; Ehlers, Todd A.; Werner, Martin; Lohmann, Gerrit; Stepanek, Christian; Li, Jingmin
2018-04-01
The denudation history of active orogens is often interpreted in the context of modern climate gradients. Here we address the validity of this approach and ask what are the spatial and temporal variations in palaeoclimate for a latitudinally diverse range of active orogens? We do this using high-resolution (T159, ca. 80 × 80 km at the Equator) palaeoclimate simulations from the ECHAM5 global atmospheric general circulation model and a statistical cluster analysis of climate over different orogens (Andes, Himalayas, SE Alaska, Pacific NW USA). Time periods and boundary conditions considered include the Pliocene (PLIO, ˜ 3 Ma), the Last Glacial Maximum (LGM, ˜ 21 ka), mid-Holocene (MH, ˜ 6 ka), and pre-industrial (PI, reference year 1850). The regional simulated climates of each orogen are described by means of cluster analyses based on the variability in precipitation, 2 m air temperature, the intra-annual amplitude of these values, and monsoonal wind speeds where appropriate. Results indicate the largest differences in the PI climate existed for the LGM and PLIO climates in the form of widespread cooling and reduced precipitation in the LGM and warming and enhanced precipitation during the PLIO. The LGM climate shows the largest deviation in annual precipitation from the PI climate and shows enhanced precipitation in the temperate Andes and coastal regions for both SE Alaska and the US Pacific Northwest. Furthermore, LGM precipitation is reduced in the western Himalayas and enhanced in the eastern Himalayas, resulting in a shift of the wettest regional climates eastward along the orogen. The cluster-analysis results also suggest more climatic variability across latitudes east of the Andes in the PLIO climate than in other time slice experiments conducted here. Taken together, these results highlight significant changes in late Cenozoic regional climatology over the last ˜ 3 Myr. Comparison of simulated climate with proxy-based reconstructions for the MH and LGM reveal satisfactory to good performance of the model in reproducing precipitation changes, although in some cases discrepancies between neighbouring proxy observations highlight contradictions between proxy observations themselves. Finally, we document regions where the largest magnitudes of late Cenozoic changes in precipitation and temperature occur and offer the highest potential for future observational studies that quantify the impact of climate change on denudation and weathering rates.
Holocene coastal dune fields used as indicators of net littoral transport: West Coast, USA
Peterson, C.D.; Stock, E.; Hart, R.; Percy, D.; Hostetler, S.W.; Knott, J.R.
2010-01-01
Between Point Grenville, Washington, and Point Conception, California (1500 km distance) 21 dune fields record longshore transport in 20 littoral cells during the late Holocene. The direction of predominant littoral transport is established by relative positions of dune fields (north, central, or south) in 17 representative littoral cells. Dune field position is north of cell midpoints in northernmost Oregon and Washington, but is south of cell midpoints in southern Oregon and California. Downdrift sand trapping occurs at significant changes in shoreline angle and/or at bounding headlands that project at least 2.5 km seaward from the general coastal trend. Sand bypassing occurs around small headlands of less than 0.5 km in projection distance. A northward shift of the winter low-pressure center in the northeast Pacific Ocean is modeled from 11 ka to 0 ka. Nearshore current forcing in southern Oregon and northern California switched from northward in earliest Holocene time to southward in late Holocene time. The late Holocene (5-0 ka) is generally characterized by net northward littoral drift in northernmost Oregon and Washington and by net southward littoral drift in southernmost Oregon and California. A regional divergence of net transport direction in central Oregon, i.e. no net drift, is consistent with modeled wind and wave forcing at the present time (0 ka). ?? 2009 Elsevier B.V.
Dean, W.E.; Forester, R.M.; Bradbury, J.P.
2002-01-01
Elk Lake, in northwestern Minnesota, contains numerous proxy records of climatic and environmental change contained in varved sediments with annual resolution for the last 10,000 years. These proxies show that about 8200 calendar years ago (8.2 cal. ka; 7300 radiocarbon years) Elk Lake went from a well-stratified lake that was wind-protected in a boreal forest to a well-mixed lake in open prairie savanna receiving northwesterly wind-blown dust, probably from the dry floor of Lake Agassiz. This change in climate marks the initiation of the widely recognized mid-Holocene "altithermal" in central North America. The coincidence of this change with the so-called 8.2 cal. ka cold event, recognized in ice-core and other records from the circum-North Atlantic, and thought by some to be caused by catastrophic discharge of freshwater from proglacial lakes Agassiz and Ojibway, suggests that the two "events" might be related. Our interpretation of the Elk Lake proxy records, and of other records from less accurately dated sites, suggests that change in climate over North America was the result of a fundamental change in atmospheric circulation in response to marked changes in the relative proportions of land, water, and, especially, glacial ice in North America during the early Holocene. This change in circulation probably post-dates the final drainage of proglacial lakes along the southern margin of the Laurentide ice sheet, and may have produced a minor perturbation in climate over Greenland that resulted in a brief cold pulse detected in ice cores. ?? 2002 Elsevier Science Ltd. All rights reserved.
Dean, W.E.; Schwalb, A.
2000-01-01
The sediments in Pickerel Lake, northeastern South Dakota, provide a continuous record of climatic and environmental change for the last 12000 yr. Sediments deposited between 12 and 6 ka (radiocarbon) show extreme variations in composition, oxygen and carbon isotopic composition of bulk carbonate, carbon isotopic composition of organic matter, and magnetic susceptibility. These variations reflect changes in sources of moisture, regional vegetation types, precipitation-evaporation balance, ground- and surface-water influx, water residence time, erosion, lake productivity, water level, and water temperature. The total carbonate content of late Pleistocene sediments steadily increased from <20% at the base of the core to as much as 80% in sediments deposited between 11 and 9 ka. By about 8 ka, the total carbonate content of the sediments had declined to about 40% where it remained with little variation for the past 8 kyr, suggesting relatively stable conditions. There are marked increases in values of ??13C and ??18O in bulk carbonate, and ??13C of organic matter, in sediments deposited between 10 and 6 ka as evaporation increased, and the vegetation in the watershed changed from forest to prairie. This shift toward more 18O-enriched carbonate may also reflect a change in source or seasonality of precipitation. During this early Holocene interval the organic carbon (OC) content of the sediments remained relatively low (2-3%), but then increased rapidly to 4.5% between 7 and 6 ka, reflecting the rapid transition to a prairie lake. The OC content fluctuates slightly between 4 and 6% in sediments deposited over the past 6 kyr. Like OC and total carbonate, most variables measured show little variation in the 13 m of sediment deposited over the past 6 kyr, particularly when compared with early Holocene variations. Although the magnetic susceptibility of this upper 13 m of sediment is generally low (<10 SI units), the upper six meters of the section is marked by striking 1 m cycles (ca. 400-500 yr periodicity) in susceptibility. These cycles are interpreted as being due to variations in the influx of eolian detrital-clastic material. Century-scale cyclic variations in different proxy variables for aridity and eolian activity from sediments deposited over the past 2000 yr in other lakes in the northern Great Plains, as well as in sand dune activity, suggest that aridity cycles were the dominant feature of late Holocene climate of the northern Great Plains. (C) 2000 Elsevier Science Ltd and INQUA. All rights reserved.
NASA Astrophysics Data System (ADS)
Masi, Alessia; Sadori, Laura; Francke, Alexander; Pepe, Caterina; Wagner, Bernd
2015-04-01
Lake Dojran (41° 12'N, 22° 44'E, 144 m a.s.l.) is located at the border between the F.Y.R. of Macedonia and Greece in a karstic basin formed by a combination of Tertiary volcanic and tectonic activities. The lake is fed by small rivers, creeks and springs, with most of the run off originating from the near Belasica and Kroussia Mountains. The area of Lake Dojran is influenced by the mountain climate of the central and northern Balkans. In addition, it is tempered by the influence of the Mediterranean Sea, to which it is exposed via the Thessaloniki Plain. The marine influence provides mild winters with high precipitation and long, hot, dry summers. The diverse natural vegetation has been heavily influenced by human activities, particularly during the historical era. Remnants of natural vegetation which survive are dominated by mesophilous plants, in particular deciduous oaks and ashes together with riparian elements such as alders and planes. A 717 cm core was collected from the deepest part of the lake (ca. 6.6 m depth), in Macedonian waters. Thirteen radiocarbon dates carried out on terrestrial plant remains, charcoal, carbonate shell fragments, and bulk organic matter, established that the core covers the last ca. 12500 years, spanning the Younger Dryas to the present (1). Here, we build on previous sedimentological and diatom-based palaeolimnological research, strengthening the multi-proxy dataset by addition of palynological evidence for vegetation catchment change. The Late Glacial was characterized first by an Artemisia steppe, followed by expansion of chenopods and then grasses, confirming the arid climate inferred from sedimentology and diatom data. The subsequent expansion of grasses matches with an increase in lake level inferred from changes in the diatom assemblages. Forest expansion at the onset of the Holocene is characterized by deciduous, semideciduous and evergreen oaks, with pine and fir, during an initial deepwater phase followed by shallowing towards the mid Holocene. Intensification of erosion after 2800 cal yr BP inferred from sedimentology (1) correlates clearly with palynological evidence for deforestation and the intensification of cultivation of cereals and fruit trees such as Olea, Juglans and Castanea. The palynological data also support diatom-based inferences that Late Holocene environmental change also incorporates a climatic shift towards aridification. (1) Francke A., Wagner B., Leng M. J., Rethemeyer J., 2013. Clim Past 9: 481-498. (2) Zhang X., Reed J., Wagner B., Francke A., Levkov Z., 2014. Quat Sci Rev 103: 51-66.
NASA Astrophysics Data System (ADS)
Mert Gokturk, Ozan; Fleitmann, Dominik; Badertscher, Seraina; Cheng, Hai; Edwards, R. Lawrence; Tuysuz, Okan
2015-04-01
Based on the δ13C profile of a stalagmite from the Kocain Cave in southern Turkey, we present a new proxy record of winter temperatures for the Eastern Mediterranean covering the last ~5500 years. In this region precisely-dated and highly-resolved paleoclimate records for the cold season are almost non-existent. The comparison of the most recent part of the Kocain record with meteorological observations reveals that stalagmite δ13C values correlate on decadal scale with the amount of snowfall above the cave, which correlates well with average winter temperatures. More negative δ13C values indicate higher drip rates in the cave due to more efficient infiltration during snowmelt above Kocain Cave, during colder winters. Cold periods in the rest of the record coincide with widespread glacier advances, especially with the ones in the Alps during the Bronze Age - Iron Age transition (from ~1000 BC on) and the late Little Ice Age (~1600 to 1850 AD). This further supports the interpretation of δ13C as a temperature proxy. Although winters during the Medieval Climate Anomaly were not continuously warm in the Eastern Mediterranean, winter warmth in the modern era was matched or exceeded several times in the last ~5700 years, especially during the time of Minoan civilization in Crete (~2700 to 1200 BC). Moreover, we provide evidence for the important role of winter cold and drought in the events leading to the unrest in the 16th century Anatolia during the Ottoman rule. Kocain Cave record brings insights into several climatically-induced historical changes in the Eastern Mediterranean, and has the potential to be a key record in a region with a long and vibrant history.
NASA Astrophysics Data System (ADS)
Felis, T.; Ionita, M.; Rimbu, N.; Lohmann, G.; Kölling, M.
2016-12-01
Throughout the global deserts, annually resolved reconstructions of temperature that extend the short instrumental record are virtually absent, and proxy records of aridity are difficult to obtain. The Little Ice Age ( 1450-1850) is thought to have been characterized by generally cold conditions in many regions of the globe with little commonality regarding the hydroclimate. However, due to a lack of annually resolved natural archives in the Sahara and Arabian Desert, the precise characteristics of Middle Eastern climate during the Little Ice Age are unknown. Here we show, based on subseasonally resolved proxy records using corals from the northern Red Sea that the Middle East did not experience pronounced cooling during the late Little Ice Age (1751-1850). Instead, it was characterised by an even more arid climate than today. From our coral records and early instrumental data we conclude that Middle Eastern aridity resulted from a blocking-like atmospheric circulation over central Europe that weakened the moist Mediterranean westerlies and favoured the advection of dry continental air from Eurasia. We find that this extreme aridity terminated abruptly between 1850 and 1855 due to an atmospheric circulation change over the European-Middle East area at the end of the Little Ice Age with profound impacts on regional hydroclimate. Our results provide a hydroclimatic perspective on the resettlement of abandoned areas of the historical Fertile Crescent following the Little Ice Age. Furthermore, we speculate such an atmospheric blocking could have prevailed during other North Atlantic-European cold events of the Holocene epoch, and may explain the northern Mesopotamian aridification at 4,200 years ago that is thought to have led to the collapse of ancient civilizations.
NASA Astrophysics Data System (ADS)
Bos, Johanna A. A.; van Geel, Bas; van der Plicht, Johannes; Bohncke, Sjoerd J. P.
2007-08-01
In order to compare environmental and inferred climatic change during the Preboreal in The Netherlands, five terrestrial records were analysed. Detailed multi-proxy analyses including microfossils (e.g., pollen, spores, algae, and fungal spores), macroremains (e.g., seeds, fruits, wood, mosses, etc.), and loss on ignition measurements were carried out with high temporal resolution. To link the five Preboreal records, accurate chronologies were produced by AMS 14C wiggle-match dating. The Dutch records show that following the Lateglacial/Holocene climate warming, birch woodlands expanded between 11,530 and 11,500 cal BP during the Friesland Phase of the Preboreal. After the Friesland Phase, two distinct climatic shifts could be inferred: (1) around 11,430-11,350 cal BP the expansion of birch forests was interrupted by a dry continental phase with open grassland vegetation, the Rammelbeek Phase. This phase was coeval with the coldest part of the Preboreal oscillation (PBO) as observed in the δ 18O record of the Greenland ice-core records and has been attributed to a large meltwater flux that resulted in a temporary decrease of the thermohaline circulation in the North Atlantic. (2) At the start of the Late Preboreal, between 11,270 and 11,210 cal BP, a sudden shift to a more humid climate occurred and birch forests expanded again. A simultaneous increase in the cosmogenic nuclides 14C and 10Be suggests that these changes in climate and vegetation were forced by a sudden decline in solar activity. Expansion of pine occurred during the later part of the Late Preboreal. At the onset of the Boreal, between 10,770 and 10,700 cal BP, dense woodlands with hazel, oak, elm and pine started to develop in The Netherlands.
NASA Astrophysics Data System (ADS)
Kaiser, Knut; Opgenoorth, Lars; Schoch, Werner H.; Miehe, Georg
2009-07-01
Charcoal and fossil wood taken from palaeosols, sediments and artificial structures were analysed in order to evaluate the regional pedoanthracological potential and to obtain information on Holocene environmental changes, particularly on possible past tree occurrences in southern Tibet. This research was initiated by the question to what extent this area is influenced by past human impact. Even recent evaluations have perceived the present treeless desertic environment of southern Tibet as natural, and the previous Holocene palaeoenvironmental changes detected were predominantly interpreted to be climate-determined. The material analysed - comprising a total of 53 botanical spectra and 55 radiocarbon datings from 46 sampling sites (c. 3500-4700 m a.s.l.) - represents the largest systematically obtained data set of charcoal available from Tibet so far. 27 taxa were determined comprising trees, (dwarf-) shrubs and herbs as well as grasses. The predominant tree taxa were Juniperus, Hippophae, Salix and Betula. According to their present-day occurrence in the region, the genera Juniperus and Hippophae can be explicitly attributed to tree species. Further, less frequently detected tree taxa were Populus, Pinus, Quercus, Taxus and Pseudotsuga. Charcoal of Juniperus mainly occurred on southern exposures, whereas Betula was associated with northern exposures. In contrast, the (partly) phreatophytic taxa Hippophae and Salix showed no prevalent orientation. The distribution of radiocarbon ages on charcoal revealed a discontinuous record of burning events cumulating in the Late Holocene (c. 5700-0 cal BP). For southern Tibet, these results indicated a Late Holocene vegetation change from woodlands to the present desertic pastures. As agrarian economies in southern and south-eastern Tibet date back to c. 3700 and 5700 cal BP, respectively, and the present-day climate is suitable for tree growth up to c. 4600 m a.s.l., we concluded that the Late Holocene loss or thinning out of woodlands had been primarily caused by humans.
Vaquero, Manuel; Allué, Ethel; Bischoff, James L.; Burjachs, Francesc; Vallverdú, Josep
2013-01-01
The correlation between environmental and cultural changes is one of the primary archeological and paleoanthropological research topics. Analysis of ice and marine cores has yielded a high-resolution record of millennial-scale changes during the Late Pleistocene and Holocene eras. However, cultural changes are documented in low-resolution continental deposits; thus, their correlation with the millennial-scale climatic sequence is often difficult. In this paper, we present a rare occurrence in which a thick archeological sequence is associated with a high-resolution environmental record. The Cinglera del Capello is a tufa-draped cliff located in the northeastern Iberian Peninsula, 50 km west of Barcelona. This cliff harbors several rock-shelters with Late Pleistocene and Early Holocene deposits. Together, the deposits of four rock-shelters span from 7000 to 70,000 years ago and provide a high-resolution record of the environmental and human dynamics during this timespan. This record allows the correlation of the cultural and environmental changes. The multiproxy approach to the Cinglera evidence indicates that the main cultural stages of the Late Pleistocene and Early Holocene (Middle Paleolithic, Upper Paleolithic and Mesolithic) are associated with significant changes in the environmental and depositional contexts.
NASA Astrophysics Data System (ADS)
Roskin, Joel; Katra, Itzhak; Blumberg, Dan G.
2013-04-01
The study of the effects of past climates on ancient cultures is usually based on geologic records pertaining to rainfall and temperature fluctuations and shifts. This study proposes a paradigm of anthropogenic activity and windiness fluctuations to explain aeolian sedimentation and dune mobilization in the northwestern (NW) Negev Desert dunefield (Israel). The proposed paradigm contributes a different approach to estimating the effect of climate changes on the unprecedented agricultural and urban settlement expansion during the late Roman to Early Islamic period in the northern and central Negev Desert. This study builds upon the late Holocene cluster of luminescence ages of Roskin et al. (Age, origin and climatic controls on vegetated linear dunes in the northwestern Negev Desert (Israel), Quaternary Science Reviews 30 (2011), 1649-1674) coupled with analysis of archaeological finds and historical texts. We suggest that whereas the NW Negev dunefield was generally stable during the Holocene, intermittent dune mobilization during the late Holocene, at ~1.8 ka and mostly 1.4-1.1 ka (~600-900 CE), are linked to periods of human occupation. The idea that the last glacial dune encroachments alone that formed the NW Negev dunefield is connected to cold-event windy climates that may have intensified East Mediterranean cyclonic winter storms, cannot explain the late Holocene dune mobilizations. We conceptually model a connection between late Holocene dune mobilization, widespread anthropogenic occupation and activity, and windiness. We maintain that historic grazing and uprooting shrubs for fuel in the past by nomads and sedentary populations led to decimation of dune stabilizers, biogenic soil crusts and vegetation, causing dune erodibility and low-grade activity. Short-term events of amplified wind power in conjunction with periods of augmented anthropogenic activity that triggered major events of dune mobilization (elongation) and accretion have been preserved in the dune chronostratigraphy. Because they were short lived, the dune mobilization events, corresponding windiness, and probable dustiness which were examined affected the northern Negev landscape differentially. However, they cannot be proved to have affected the environment sufficiently to influence the decline of the late Byzantine and Early Islam agricultural establishment. This study demonstrates the sensitivity of dunes in arid and semi-arid regions to a combination of local and short-term fluctuations in windiness at times of widespread grazing (anthropogenic activity). The results remind us that in similar future scenarios, sand mobilization may be similarly retriggered to varying degrees.
Live coral cover in the fossil record: an example from Holocene reefs of the Dominican Republic
NASA Astrophysics Data System (ADS)
Lescinsky, H.; Titus, B.; Hubbard, D.
2012-06-01
Fossil reefs hold important ecological information that can provide a prehuman baseline for understanding recent anthropogenic changes in reefs systems. The most widely used proxy for reef "health," however, is live coral cover, and this has not been quantified in the fossil record because it is difficult to establish that even adjacent corals were alive at the same time. This study uses microboring and taphonomic proxies to differentiate between live and dead corals along well-defined time surfaces in Holocene reefs of the Enriquillo Valley, Dominican Republic. At Cañada Honda, live coral cover ranged from 59 to 80% along a contemporaneous surface buried by a storm layer, and the reef, as a whole had 33-80% live cover within the branching, mixed, massive and platy zones. These values equal or exceed those in the Dominican Republic and Caribbean today or reported decades ago. The values from the western Dominican Republic provide a geologic baseline against which modern anthropogenic changes in Caribbean reefs can be considered.
The Relationship Between the Zonal Mean ITCZ and Regional Precipitation during the mid-Holocene
NASA Astrophysics Data System (ADS)
Niezgoda, K.; Noone, D.; Konecky, B.
2017-12-01
Characteristics of the zonal mean Tropical Rain Belt (TRB, i.e. the ITCZ + the land-based monsoons) are often inferred from individual proxy records of precipitation or other hydroclimatic variables. However, these inferences can be misleading. Here, an isotope-enabled climate model simulation is used to evaluate metrics of the zonal mean ITCZ vs. regional hydrological characteristics during the mid-Holocene (MH, 6 kya). The MH provides a unique perspective on the relationship between the ITCZ and regional hydrology because of large, orbitally-driven shifts in tropical precipitation as well as a critical mass of proxy records. By using a climate model with simulated water isotopes, characteristics of atmospheric circulation and water transport processes can be inferred, and comparison with isotope proxies can be made more directly. We find that estimations of the zonal-mean ITCZ are insufficient for evaluating regional responses of hydrological cycles to forcing changes. For example, one approximation of a 1.5-degree northward shift in the zonal-mean ITCZ position during the MH corresponded well with northward shifts in maximum rainfall in tropical Africa, but did not match southward shifts in the tropical Pacific or longitudinal shifts in the Indian monsoon region. In many regions, the spatial distribution of water vapor isotopes suggests that changes in moisture source and atmospheric circulation were a greater influence on precipitation distribution, intensity, and isotope ratio than the average northward shift in ITCZ latitude. These findings reinforce the idea that using tropical hydrological proxy records to infer zonal-mean characteristics of the ITCZ may be misleading. Rather, tropical proxy records of precipitation, particularly those that record precipitation isotopes, serve as a guideline for regional hydrological changes while model simulations can put them in the context of zonal mean tropical convergence.
Characterising Late-Holocene glacier variability in the southern tropical Andes
NASA Astrophysics Data System (ADS)
Bromley, G.; Winckler, G.; Hall, B. L.; Schaefer, J. M.
2011-12-01
Accurate resolution of both the timing and magnitude of Late-Holocene climate events, such as the Little Ice Age, is vital in order to test different hypotheses for the causes and propagation of such climate variability. However, in contrast to higher latitudes, well-dated records from the tropics are relatively rare and the overall climatic structure of the last millennium remains unresolved. Much of this uncertainty stems from difficulties associated with radiocarbon dating in these dry, often high-altitude environments, a situation that now is being addressed through the application and refinement of cosmogenic surface-exposure methods. We present detailed Late-Holocene moraine records, resolved with radiocarbon and surface-exposure dating, from sites across the Andes of southern Peru. Specifically, we describe glacial records from both the arid Western Cordillera, where glaciation is limited by moisture availability, and the humid Eastern Cordillera, where ablation is controlled primarily by air temperature. In both locations, the most recent advance is marked by two to three unweathered terminal moraines located several hundred metres beyond the modern ice margins. Our chronology indicates that, while the advance occurred broadly in step with the classic 'Little Ice Age', the maximum glacial extent in southern Peru was achieved relatively early on and that the 18th and 19th centuries were dominated by glacier retreat. In a broader temporal context, our data also confirm that, in contrast to northern temperate latitudes, the event in southern Peru was the most recent significant interruption in a progressive Holocene retreat. The consistency in glacier response between the different climate zones suggests (i) that this pattern of Late-Holocene climate variability was of at least regional extent and (ii) that temperature fluctuations were the primary driving mechanism.
NASA Astrophysics Data System (ADS)
Maxwell, K. V.; Ramos, N. T.; Tsutsumi, H.; Shen, C. C.
2017-12-01
Emergent coral reef terraces fringing the islands of Lubang and Cabra located offshore southwest Luzon Island, Philippines are studied to understand Late Quaternary deformation and relative sea level changes along the southern terminus of the Manila subduction zone. In both islands, the emergent coral reef platforms have two to three terrace steps with meter-scale terrace risers and often well preserved. We also observed varied elevations of emergent coral reef platforms in both localities. In the northwest portion of Lubang Island, we identified three terrace steps, which rise to about 5 m above mean sea level (amsl). Cabra Island is a coral island that is fringed by two to possibly three steps of emergent coral reef terraces rising up to 11.9 m amsl with TI measured at 3-6 m, TII: 7-8 m, and TIII: 11.9 m amsl. Age constraints are provided by Thorium-230 of fossil corals taken on terrace surfaces. Thorium-230 ages obtained from attached fossil coral samples yielded mid-Holocene ages of 5,121 ± 16 and 3,221 ± 10 years BP. Late Holocene ages of 76 ± 2, 153 ± 2, and 330 ± 3 years BP are meanwhile provided by coral boulders found on the surface of TI in Cabra Island. The two sets of Holocene ages provide interesting insights on relative sea level changes and uplift along the southern end of the Manila Trench. The mid-Holocene ages possibly account for accumulated uplift in southwest Luzon while the late Holocene ages could provide evidence for extreme wave events that occurred in the region since the 1600s.
Late Pleistocene-Holocene paleobiogeography of the genus Apodemus in Central Europe
Knitlová, Markéta; Horáček, Ivan
2017-01-01
Wood mice of the genus Apodemus are an essential component of small mammal communities throughout Europe. Molecular data suggest the postglacial colonization of current ranges from south European glacial refugia, different in particular species. Yet, details on the course of colonization and Holocene history of particular species are not available, partly because of a lack of reliable criteria for species identification in the fossil record. Using a sample of extant species, we analyzed variation patterns and between-species overlaps for a large set of metric and non-metric dental variables and established the criteria enabling the reliable species identification of fragmentary fossil material. The corresponding biometrical analyses were undertaken with fossil material of the genus (2528 items, 747 MNI) from 22 continuous sedimentary series in the Czech Republic and Slovakia, from LGM to Recent. In Central Europe, the genus is invariantly absent in LGM assemblages but regularly appears during the Late Vistulian. All the earliest records belong to A. flavicollis, the species clearly predominating in the fossil record until the Late Holocene. A. uralensis accompanied it in all regions until the late Boreal when disappeared from the fossil record (except for Pannonia). A few items identified as A. sylvaticus had already appeared in the early Holocene assemblages, first in the western part of the region, yet the regular appearance of the species is mostly in the post-Neolithic age. A. agrarius appeared sparsely from the Boreal with a maximum frequency during the post-Neolithic period. The results conform well to the picture suggested by molecular phylogeography but demonstrate considerable differences among particular species in dynamic of the range colonization. Further details concerning Holocene paleobiogeography of individual species in the medium latitude Europe are discussed. PMID:28282422
Onset and Multiple Fluctuations of Holocene Glaciation in the Sierra Nevada, California
NASA Astrophysics Data System (ADS)
Bowerman, N. D.; Clark, D. H.
2004-12-01
Multiple sediment cores from two paternoster tarns (First and Second lakes) in North Fork Big Pine Creek, Sierra Nevada, preserve the most detailed and complete record of Holocene glaciation yet recovered in the range; they indicate that the glacier was absent during the early Holocene, reformed in the late Holocene, and experienced several expansions and contractions, culminating with the Matthes maximum during the last ˜200 years. The lakes are fed by outwash from the Palisade Glacier, the largest ( ˜1.3 km2) and presumably longest-lived glacier in the Sierra Nevada, and capture essentially all of the rock flour produced by the glacier. Distinct late-Holocene (Matthes) and late-Pleistocene (Recess Peak) moraines lie between the modern glacier and the lakes. Thus, the lakes have received continuous sedimentation since the retreat of the Tioga glacier ( ˜15,000 yr B.P.), and therefore capture rock flour related to all subsequent advances. First and Second lakes occupy relatively deep bedrock basins at 3036 m and 3066 m asl., respectively. Third Lake, a shallow (<3 m deep), moraine-dammed lake that lies directly above Second Lake, is the only lake between the Palisade Glacier and the lower lakes. As such, it captures the coarsest (sand/gravel bedload) outwash, but abundant suspended sediment (silt/clay) continues to the lower lakes. We cored the lakes using both Reasoner and Livingston corers, to sediment depths of up to ˜5 m. The deepest cores bottomed in coarse, inorganic sand and silt that we interpret as outwash or slopewash related to Tioga deglaciation. Magnetic susceptibility (MS) analyses of the sediment cores indicate that both lakes record multiple late-Holocene peaks in MS, with the most recent peak being the largest. They also retain outwash near the base related to the more extensive Recess Peak advance. MS peaks in Sierran lakes typically indicate greater abundances of clastic (vs. organic) sediment. The peaks in our cores thus imply 4-5 periods of increased flux of rock flour (outwash) from the upstream Palisade Glacier, most likely related to formation and expansions of the glacier in the late Holocene. The maximum peak at the top of the cores confirms the moraine record, which indicates that the maximum Holocene advance of Sierran glaciers occurred during the late Little Ice Age (last ˜200 yr) At least one tephra layer, possibly related to the Mono/Inyo dome complexes, occurs in the middle depths of the First Lake cores. Other narrow peaks in MS may also be associated with tephra deposits. Ongoing detailed analyses of the sediments, including AMS radiocarbon dating, visual and x-ray imaging, particle size analysis, organic content, tephrochronology, diatom assemblages, and palynology will constrain the timing and character of the environmental fluctuations related to the rock-flour flux. We will present results of these analyses at the meeting.
Paleotempertures retrieved from the groundwater archives in the largest watershed (≈800 km2) in the Olympic Mountains suggest asynchronous Olympic Peninsula climate responses during the Everson interstade period after the last continental glacial maximum. Dissolved noble gases fr...
NASA Astrophysics Data System (ADS)
Harning, D.; Sepúlveda, J.; Andrews, J. T.; Cabedo-Sanz, P.; Belt, S. T.; Marchitto, T. M.; Stoner, J. S.; Geirsdóttir, Á.; Miller, G. H.
2017-12-01
Icelandic climate is vulnerable to variations in the dominance of competing Arctic and Atlantic ocean currents. The boundary between these water masses delineates the Polar Front, which today occupies the North Iceland Shelf (NIS). To date, Holocene oceanographic reconstructions along the NIS have employed a variety of proxies including Mg/Ca and δ18O of benthic and planktonic foraminifera, quartz and calcite wt%, the alkenone unsaturation index (Uk'37) and biotic species assemblages. Sea surface temperature (SST) proxies are primarily derived from phytoplankton resulting in a seasonal bias toward spring/summer SST. Furthermore, SST proxies can be influenced by additional confounding variables (e.g. salinity, nutrients, depth habitat of biota) resulting in markedly different Holocene temperature reconstructions between proxy datasets. To evaluate the similarities and discrepancies between various marine proxies, we investigate a high-resolution sediment core collected from the central North Iceland Shelf (B997-316GGC, 658 m depth). Sedimentation covers the last millennium, which captures the transition from the Medieval Warm Period to the Little Ice Age. Age control is constrained by 14C dates and paleomagnetic secular variation. To assess marine surface productivity and sea ice conditions, we analyze quartz and calcite wt% via XRD and a series of highly branched isoprenoid biomarkers. Quantitative paleotemperature estimates are derived from a novel combination of Mg/Ca of foraminifera and two lipid biomarker indices, Uk'37 from Prymnesiophyte alkenones and TEX86 from Thaumarchaeota glycerol dialkyl glycerol tetraethers (GDGTs). The latter TEX86 record is the first paleo application in Icelandic waters, which a recent local calibration study suggests may reflect annual or winter sub-surface (0-200 m) temperatures. Our paleotemperature records are bolstered by the analysis of additional sediment core tops, which expand the established Icelandic calibrations. Finally, we perform statistical analyses in an effort to extract a robust record of paleoceanographic change and to test the applicability of various proxies in high-latitude paleoclimate studies.
NASA Astrophysics Data System (ADS)
Carré, Matthieu; Jackson, Donald; Maldonado, Antonio; Chase, Brian M.; Sachs, Julian P.
2016-01-01
The variability of radiocarbon marine reservoir age through time and space limits the accuracy of chronologies in marine paleo-environmental archives. We report here new radiocarbon reservoir ages (ΔR) from the central coast of Chile ( 32°S) for the Holocene period and compare these values to existing reservoir age reconstructions from southern Peru and northern Chile. Late Holocene ΔR values show little variability from central Chile to Peru. Prior to 6000 cal yr BP, however, ΔR values were markedly increased in southern Peru and northern Chile, while similar or slightly lower-than-modern ΔR values were observed in central Chile. This extended dataset suggests that the early Holocene was characterized by a substantial increase in the latitudinal gradient of marine reservoir age between central and northern Chile. This change in the marine reservoir ages indicates that the early Holocene air-sea flux of CO2 could have been up to five times more intense than in the late Holocene in the Peruvian upwelling, while slightly reduced in central Chile. Our results show that oceanic circulation changes in the Humboldt system during the Holocene have substantially modified the air-sea carbon flux in this region.
The Holocene Records of Glycerol Dialkyl Glycerol Tetraethers From the Northern Chukchi Sea
NASA Astrophysics Data System (ADS)
Park, Y.; Yamamoto, M.; Nam, S.; Polyak, L. V.
2013-12-01
We analyzed glycerol dialkyl glycerol tetraethers (GDGTs) in Cores HOTRAX 05-01 JPC5 and JPC 8, and ARA02B 01-GC in the northern Chukchi Sea. All of the three cores showed a similar changing pattern in GDGT composition during the Holocene. In the beginning of early Holocene, both isoprenoid and branched GDGT concentrations were low, and BIT and CBT were relatively high. The similar composition is found in modern sediments from the western Arctic Ocean north of 75°N, suggesting that the northern Chukchi Sea was covered by perennial sea ice. GDGT concentration increased, and BIT and CBT decreased during the early Holocene and reached the same level as those in modern sediments at 8 ka. TEX86 and CBT/MBT indices showed millennial-scale variation. We interpret that these proxies did not simply indicate temperatures but were affected by the relative contribution of different sediment sources. Millennial-scale variability likely reflected changes in sediment transport in the northern Chukchi Sea.
Holocene depositional environments and surface-level changes at Lake Fryxell, Antarctica
Whittaker, T.E.; Hall, B.L.; Hendy, C.H.; Spaulding, S.A.
2008-01-01
We report on Holocene surface-level variations of Lake Fryxell, Antarctica, as determined from multi-proxy analyses of 18 sediment cores. During this time accumulating sediments were predominantly aeolian sand with algal and carbonate laminae. Based on stratigraphy, mineralogy and diatom assemblages we suggest some carbonate laminae were deposited when lake level dropped, leading to concentration and subsequent precipitation of salts. Although lake level appears to have remained relatively stable throughout the Holocene, minor (<4.5 m below present) lowstands occurred at approximately 6400, 4700, 3800 and ??? 1600 cal. yr BP. The stability of Lake Fryxell during the Holocene contrasts with large-scale variability at other Dry Valleys lakes (eg, Lake Vanda) and with suggestions from chemical diffusion models of a near-desiccation at ???1200 cal. yr BP. The reason for the comparative stability of Lake Fryxell is uncertain, but may be the result of basin morphology and the number, aspect and proximity of meltwater sources. ?? 2008 SAGE Publications.
Early Holocene to present landscape dynamics of the tectonic lakes of west-central Mexico
NASA Astrophysics Data System (ADS)
Castillo, Miguel; Muñoz-Salinas, Esperanza; Arce, José Luis; Roy, Priyadarsi
2017-12-01
Paleoclimatic reconstructions from lake sediments of central Mexico indicate that the environmental conditions in the Holocene have oscillated from cool-dry to warm-wet, thus, landscape erosion rates have been modified accordingly. The Cenozoic tectonics and volcanic activity of west-central Mexico have produced a set of lakes in warmer and drier conditions compared to lakes of central Mexico. Nevertheless, the Holocene landscape dynamics for this area remains understudied. Using age-depth models, OSL and multi-element chemistry analysis of sediments in the lakes of San Marcos and Sayula we explore the landscape dynamics from early Holocene present of west-central Mexico. Our results indicate that the sedimentation rates in San Marcos Lake notably increased from 240 yr BP to the present. Since AD 1950 the sedimentation rate in Sayula Lake rose fourfold the rates of the last 2000 years. Analysis of OSL and chemistry of major elements of sediments indicates that IRSL/BLSL strongly correlates with Ti/Al (R2 = 0.93) and with the mean monthly rainfall (R2 = 0.70). We propose that the IRSL/BLSL can be used as a proxy to infer past changes in landscape dynamics. Analysis of climatic data from the 1950s to present indicates that rainfall, and consequently water runoff, is enhanced in summers free of ENSO conditions. Extreme one-day rainfall can, however, exceed mean seasonal rainfall and occur in all phases of ENSO. Droughts are particularly severe in the phase of La Niña. Our results indicate that the erosion rate in San Marcos Lake was high from ∼8000 to ∼7000 yr BP in a period coinciding with the advance and recession of glaciers in Central Mexico, however, the erosion rates in the last 165 years have surpassed the rates of the early to mid-Holocene. By constraining the age of sediment and using environmental proxies such as the Ti/Al and IRSL/BLSL from lake sediments of Sayula and San Marcos we present the first model of landscape dynamics of this part of Mexico from the Early Holocene to present times.
Holocene reef accretion: southwest Molokai, Hawaii, U.S.A.
Engels, Mary S.; Fletcher, Charles H.; Field, Michael E.; Storlazzi, Curt D.; Grossman, Eric E.; Rooney, John J.B.; Conger, Christopher L.; Glenn, Craig
2004-01-01
Two reef systems off south Molokai, Hale O Lono and Hikauhi (separated by only 10 km), show strong and fundamental differences in modern ecosystem structure and Holocene accretion history that reflect the influence of wave-induced near-bed shear stresses on reef development in Hawaii. Both sites are exposed to similar impacts from south, Kona, and trade-wind swell. However, the Hale O Lono site is exposed to north swell and the Hikuahi site is not. As a result, the reef at Hale O Lono records no late Holocene net accretion while the reef at Hikauhi records consistent and robust accretion over late Holocene time. Analysis and dating of 24 cores from Hale O Lono and Hikauhi reveal the presence of five major lithofacies that reflect paleo-environmental conditions. In order of decreasing depositional energy they are: (1) coral-algal bindstone; (2) mixed skeletal rudstone; (3) massive coral framestone; (4) unconsolidated floatstone; and (5) branching coral framestone-bafflestone. At Hale O Lono, 10 cores document a backstepping reef ranging from ∼ 8,100 cal yr BP (offshore) to ∼ 4,800 cal yr BP (nearshore). A depauperate community of modern coral diminishes shoreward and seaward of ∼ 15 m depth due to wave energy, disrupted recruitment activities, and physical abrasion. Evidence suggests a change from conditions conducive to accretion during the early Holocene to conditions detrimental to accretion in the late Holocene. Reef structure at Hikauhi, reconstructed from 14 cores, reveals a thick, rapidly accreting and young reef (maximum age ∼ 900 cal yr BP). Living coral cover on this reef increases seaward with distance from the reef crest but terminates at a depth of ∼ 20 m where the reef ends in a large sand field. The primary limitation on vertical reef growth is accommodation space under wave base, not recruitment activities or energy conditions. Interpretations of cored lithofacies suggest that modern reef growth on the southwest corner of Molokai, and by extension across Hawaii in general, is controlled by wave-induced near-bed shear stress related to refracted North Pacific swell. Holocene accretion patterns here also reflect the long-term influence of wave-induced near-bed shear stress from north swell during late Holocene time. This finding is consistent with other studies (e.g., Grigg 1998; Cabioch et al. 1999) that reflect the dominance of swell energy and sea level in controlling modern and late Holocene accretion elsewhere in Hawaii and across the Pacific and Indian oceans. Notably, however, this result is refined and clarified for Hawaii in the hypothesis of Rooney et al. (2003) stating that enhancement of the El Niño Southern Oscillation beginning approximately 5000 years ago led to increased north swell energy and signaled the end to net accretion along exposed coastlines in Hawaii. The exposure of Hale O Lono to north swell and the age of sea floor there (ca. 4,800 cal yr BP), coupled with the lack of north swell incidence at Hikauhi and the continuous accretion that has occurred there over the last millennium, strongly supports the ENSO reef hypothesis as outlined by Rooney et al. (2003). Other factors controlling Holocene reef accretion at the study site are relative sea-level position and rate of rise, and wave sheltering by Laau Point. Habitat suitable for reef accretion on the southwest shore of Molokai has shrunk throughout the Holocene.
NASA Astrophysics Data System (ADS)
Zarate, P. F.; Fritz, S. C.; Ramirez Sanchez, U.; Gomez Salazar, S.; Ceja Andrade, I.; Priyadarsi Debajyoti, R.; Brenner, M.
2012-12-01
CHAPHOLO ( CHAP: Chapala; HOLO: Holocene) has as goal to evaluate paleoenvironmental variations recorded in the sediment of neotectonic Lake Chapala (LCH), western Mexico (20°15.129'N, 103° 02.996'W). The lake lies about 1524 m asl. LCH is the largest lake in Mexico (1,100 kmyr2), but is shallow (zmax = 7.20 m). It is located in a basin belonging to the Citala Rift, the east-west branch of three continental rifts that join to form the so-called Jalisco triple junction. Our working hypothesis is that recent (Holocene) paleolimnological changes in LCH were caused by major climate variations and by minor regional/local processes (e.g. volcanism). We will drill a 40m long core from the lake depocenter, with the objective of recovering a full Holocene record, and likely more, assuming a mean sedimentation rate of 2 mm yr-1. Core chronology will be established using AMS 14C and 210Pb techniques and climate inferences will be made using geochemical, geophysical and micropaleontological proxies. Particularly, we pretend to identify the six "short" fluctuations of climate that characterized the Holocene (Mayewski et al., 2004) and the identification of Mediewal Warm Period and the droughts affected the mayan culture (Hodell et al., 1995). We will verify the application of Ti as a proxy to rainfall (Metcalfe et al., 2010). During the last 10,000 the fact about the dissolution of diatom in LCH sediments must be evaluated (Ryves et al., 2009). The working group is multidisciplinary (Geochemistry, Micropaleontology, Paleolimnology, Geophysics) and involves multiple institutions (Guadalajara University, Mexican National University-UNAM, University of Florida, University of Nebraska-Lincoln). CHAPHOLO is supported by funds from the Mexican government and from the Guadalajara University. The theme of CHAPHOLO is consistent with global environmental programs such as PAGES and CLIVAR. This project will be developed in stages over three years.
The Holocene warm-humid phases in the North China Plain as recorded by multi-proxy records
NASA Astrophysics Data System (ADS)
Cui, Jianxin; Zhou, Shangzhe; Chang, Hong
2009-02-01
The grain size and palinology of sediment and the frequency of 14C dada provide an integrated reconstruction of the Holocene warm-humid phases of the North China Plain. Two clear intense and long-lasting warm-humid phases were identified by comprehensive research in this region. The first phase was dated back to the early Holocene (9 000-7 000 a BP), and the second was centered at 5 000-3 000 a BP. The warm-humid episode between 9 000 and 7 000 a BP was also recognized at other sites showing global climatic trends rather than local events. Compared with the concern to the warm-humid phase of the early Holocene, the second one was not paid enough attention in the last few decades. The compilation of the Holocene paleoclimate data suggests that perhaps the second warm-humid phase was pervasive in monsoon region of China. In perspective of environmental archaeology, much attention should be devoted to it, because the flourish and adaptation of the Neolithic cultures and the building up of the first state seem to corresponding to the general warm-humid climatic conditions of this period. In addition, a warm-humid interval at 7 200-6 500 a BP was recognized by the grain size data from three sites. However, this warm-humid event was not shown in pollen assemblage and temporal distribution of 14C data. Perhaps, the resolution for climatic reconstruction from pollen and temporal distribution of 14C data cited here is relatively low and small-amplitude and short-period climatic events cannot be well reflected by the data. Due to the difference in locality and elevation of sampling site, as well as in resolution of proxy records, it is difficult to make precise correlation. Further work is needed in the future.
NASA Astrophysics Data System (ADS)
Spencer, Jessica; Jones, Kaylee B.; Gamble, Douglas W.; Benedetti, Michael M.; Taylor, Audrey K.; Lane, Chad S.
2017-10-01
We conducted fossil pollen, charcoal, and geochemical analyses of sediment cores from Jones Lake and Singletary Lake spanning the last ∼50,000 cal yr B.P. to examine the linkages between climate, vegetation, and fire activity on the Atlantic Coastal Plain, and particularly emphasize changes since the Last Glacial Maximum. Application of the modern analog technique (MAT) to fossil pollen data allowed for quantitative estimates of Holocene climate, but Pleistocene assemblages had no modern analogues preempting their use for quantitative reconstructions. The MAT data indicate markedly lower mean annual precipitation and temperatures during the late Pleistocene relative to the Holocene. Increased charcoal accumulation during interstadials indicates increased fire activity during these warm intervals. Geochemical data (δ13C, δ15N, C:N) and pollen concentrations indicate a sparsely-vegetated Pleistocene landscape that produced few fires followed by an increase in biomass and fire activity around the lakes during the Holocene transition. A Quercus spp. maximum in the early Holocene is associated with low charcoal abundances, while increased dominance of Pinus spp. during the middle Holocene is associated with dramatic increases in charcoal. It is unclear if the Quercus-Pinus transition was the result of changing fire regimes or if the fire regime changed in response to vegetation. The regional asynchronicity of the Quercus-Pinus transition may indicate another forcing mechanism besides climate change, such as prehistoric human activity, is responsible for the ecological change. Macroscopic charcoal and C:N ratios reach unprecedented values during the late Holocene, possibly as a result of deforestation by both prehistoric Native Americans and later immigrant populations.
Lignin phenols in sediments of Lake Baikal, Siberia: Application to paleoenvironmental studies
Orem, W.H.; Colman, Steven M.; Lerch, H.E.
1997-01-01
Sediments from three cores obtained from distinct depositional environments in Lake Baikal, Siberia were analyzed for organic carbon, total nitrogen and lignin phenol concentration and composition. Results were used to examine changes in paleoenvironmental conditions during climatic cycles of the late Quaternary (< 125 ka). Average organic carbon, and total nitrogen concentrations, atomic C/N ratios and organic carbon accumulation rates were significantly higher in the Holocene compared with the late Pleistocene, reflecting overall warmer temperatures and increased runoff during the Holocene. A Holocene maximum in organic carbon was observed at about 6 ka, and may represent the warmest wettest period of the Holocene. At one site (Academician Ridge) pronounced late Pleistocene maxima in organic carbon and biogenic silica were observed at about 80-85 ka, probably indicative of an interstadial period with enhanced aquatic productivity. Total sedimentary lignin phenol contents were generally lower in the late Pleistocene compared to the Holocene, but with several peaks in concentration during the late Pleistocene. These late Pleistocene peaks in total sedimentary lignin content (dated at about 80, 50 and 30 ka) directly precede or occur during peaks in sedimentary biogenic silica contents. These periods likely represent relatively warm interstadial times, with increased precipitation producing the observed increase in terrestrial runoff and aquatic productivity. Lignin phenol ratios (S/V, C/V and P/V) were used to examine changes in terrestrial vegetation type resulting from changes in paleoenvironmental conditions during the late Pleistocene. A degree of caution must be used in the interpretation of these ratios with regard to vegetation sources and paleoenvironmental conditions, because of potential compositional changes in lignin resulting from biodegradation. Nevertheless, results show that long glacial periods were characterized by terrestrial vegetation composed of a mix of non-woody angiosperm vegetation and minor gymnosperm forest. Shorter interstadial periods are defined by a change to dominant gymnosperm forest and were observed at about 80, 75, 63, 50 and 30 ka, ranging from about 2-6 kyr in duration. These interstadial periods of the late Pleistocene defined by lignin phenol ratios generally occur during longer periods of enhanced sedimentary biogenic silica content (about 10-15 ka in duration), providing corroborative evidence of these warm interstadial periods.Sediments obtained in Lake Baikal were analyzed for organic carbon, total nitrogen and lignin phenol composition and used to study changes in paleoenvironmental conditions during climatic cycles of the late Quaternary. The organic carbon, total nitrogen concentrations, atomic C/N ratios and organic carbon accumulation rates were higher in the Holocene showing overall warmer temperatures and increased runoff. Total lignin phenol contents were lower in the Pleistocene representing relatively warm interstadial times with increased precipitation, runoff and aquatic productivity. Lignin phenol was used to examine vegetation changes due to paleoenvironmental conditions and showed that long glacial periods were characterized by terrestrial vegetation.
Weppner, Kerrie N.; Pierce, Jennifer L.; Betancourt, Julio L.
2013-01-01
Fire and vegetation records at the City of Rocks National Reserve (CIRO), south-central Idaho, display the interaction of changing climate, fire and vegetation along the migrating front of single-leaf pinyon (Pinus monophylla) and Utah juniper (Juniperus osteosperma). Radiocarbon dating of alluvial charcoal reconstructed local fire occurrence and geomorphic response, and fossil woodrat (Neotoma) middens revealed pinyon and juniper arrivals. Fire peaks occurred ~ 10,700–9500, 7200–6700, 2400–2000, 850–700, and 550–400 cal yr BP, whereas ~ 9500–7200, 6700–4700 and ~ 1500–1000 cal yr BP are fire-free. Wetter climates and denser vegetation fueled episodic fires and debris flows during the early and late Holocene, whereas drier climates and reduced vegetation caused frequent sheetflooding during the mid-Holocene. Increased fires during the wetter and more variable late Holocene suggest variable climate and adequate fuels augment fires at CIRO. Utah juniper and single-leaf pinyon colonized CIRO by 3800 and 2800 cal yr BP, respectively, though pinyon did not expand broadly until ~ 700 cal yr BP. Increased fire-related deposition coincided with regional droughts and pinyon infilling ~ 850–700 and 550–400 cal yr BP. Early and late Holocene vegetation change probably played a major role in accelerated fire activity, which may be sustained into the future due to pinyon–juniper densification and cheatgrass invasion.
Long-term resilience of late holocene coastal subsistence system in Southeastern South america.
Colonese, André Carlo; Collins, Matthew; Lucquin, Alexandre; Eustace, Michael; Hancock, Y; de Almeida Rocha Ponzoni, Raquel; Mora, Alice; Smith, Colin; Deblasis, Paulo; Figuti, Levy; Wesolowski, Veronica; Plens, Claudia Regina; Eggers, Sabine; de Farias, Deisi Scunderlick Eloy; Gledhill, Andy; Craig, Oliver Edward
2014-01-01
Isotopic and molecular analysis on human, fauna and pottery remains can provide valuable new insights into the diets and subsistence practices of prehistoric populations. These are crucial to elucidate the resilience of social-ecological systems to cultural and environmental change. Bulk collagen carbon and nitrogen isotopic analysis of 82 human individuals from mid to late Holocene Brazilian archaeological sites (∼6,700 to ∼1,000 cal BP) reveal an adequate protein incorporation and, on the coast, the continuation in subsistence strategies based on the exploitation of aquatic resources despite the introduction of pottery and domesticated plant foods. These results are supported by carbon isotope analysis of single amino acid extracted from bone collagen. Chemical and isotopic analysis also shows that pottery technology was used to process marine foods and therefore assimilated into the existing subsistence strategy. Our multidisciplinary results demonstrate the resilient character of the coastal economy to cultural change during the late Holocene in southern Brazil.
Girardclos, S.; Baster, I.; Wildi, W.; Pugin, A.; Rachoud-Schneider, A. -M.
2003-01-01
The Late-Glacial and Holocene sedimentary history of the Hauts-Monts area (western Lake Geneva, Switzerland) is reconstructed combining high resolution seismic stratigraphy and well-dated sedimentary cores. Six reflections and seismic units are defined and represented by individual isopach maps, which are further combined to obtain a three-dimensional age-depth model. Slumps, blank areas and various geometries are identified using these seismic data. The sediment depositional areas have substantially changed throughout the lake during the end of the Late-Glacial and the Holocene. These changes are interpreted as the result of variations in the intensity of deep lake currents and the frequency of strong winds determining the distribution of sediment input from the Versoix River and from reworking of previously deposited sediments within the lacustrine basin. The identified changes in sediment distribution allowed us to reconstruct the lake's deep-current history and the evolution of dominant strong wind regimes from the Preboreal to present times.
Long-Term Resilience of Late Holocene Coastal Subsistence System in Southeastern South America
Colonese, André Carlo; Collins, Matthew; Lucquin, Alexandre; Eustace, Michael; Hancock, Y.; de Almeida Rocha Ponzoni, Raquel; Mora, Alice; Smith, Colin; DeBlasis, Paulo; Figuti, Levy; Wesolowski, Veronica; Plens, Claudia Regina; Eggers, Sabine; de Farias, Deisi Scunderlick Eloy; Gledhill, Andy; Craig, Oliver Edward
2014-01-01
Isotopic and molecular analysis on human, fauna and pottery remains can provide valuable new insights into the diets and subsistence practices of prehistoric populations. These are crucial to elucidate the resilience of social-ecological systems to cultural and environmental change. Bulk collagen carbon and nitrogen isotopic analysis of 82 human individuals from mid to late Holocene Brazilian archaeological sites (∼6,700 to ∼1,000 cal BP) reveal an adequate protein incorporation and, on the coast, the continuation in subsistence strategies based on the exploitation of aquatic resources despite the introduction of pottery and domesticated plant foods. These results are supported by carbon isotope analysis of single amino acid extracted from bone collagen. Chemical and isotopic analysis also shows that pottery technology was used to process marine foods and therefore assimilated into the existing subsistence strategy. Our multidisciplinary results demonstrate the resilient character of the coastal economy to cultural change during the late Holocene in southern Brazil. PMID:24718458
High Arctic Holocene temperature record from the Agassiz ice cap and Greenland ice sheet evolution
Lecavalier, Benoit S.; Fisher, David A.; Milne, Glenn A.; Vinther, Bo M.; Tarasov, Lev; Lacelle, Denis; Main, Brittany; Zheng, James; Bourgeois, Jocelyne; Dyke, Arthur S.
2017-01-01
We present a revised and extended high Arctic air temperature reconstruction from a single proxy that spans the past ∼12,000 y (up to 2009 CE). Our reconstruction from the Agassiz ice cap (Ellesmere Island, Canada) indicates an earlier and warmer Holocene thermal maximum with early Holocene temperatures that are 4–5 °C warmer compared with a previous reconstruction, and regularly exceed contemporary values for a period of ∼3,000 y. Our results show that air temperatures in this region are now at their warmest in the past 6,800–7,800 y, and that the recent rate of temperature change is unprecedented over the entire Holocene. The warmer early Holocene inferred from the Agassiz ice core leads to an estimated ∼1 km of ice thinning in northwest Greenland during the early Holocene using the Camp Century ice core. Ice modeling results show that this large thinning is consistent with our air temperature reconstruction. The modeling results also demonstrate the broader significance of the enhanced warming, with a retreat of the northern ice margin behind its present position in the mid Holocene and a ∼25% increase in total Greenland ice sheet mass loss (∼1.4 m sea-level equivalent) during the last deglaciation, both of which have implications for interpreting geodetic measurements of land uplift and gravity changes in northern Greenland. PMID:28512225
NASA Astrophysics Data System (ADS)
Massa, C.; Beilman, D. W.; Nichols, J. E.; Elison Timm, O.
2016-12-01
Holocene peat deposits from the Hawaiian Islands provide a unique opportunity to resolve millennial to centennial-scale climate variability over the central Pacific region, where data remain scarce. Because both extratropical and tropical modes of climate variability have a strong influence on modern rainfall over the archipelago, hydroclimate proxies from peat would provide valuable information about past Pacific climate changes. The few terrestrial records studied, based on pollen or leaf wax biomarkers, showed evidence for substantial vegetation changes that have been linked to a drying trend over the Holocene. Leaf wax n-alkanes, as well as their stable isotopic compositions (δ13C and δD), are indeed increasingly used to reconstruct past hydroclimate conditions. The interpretation of n-alkanes as biomarkers requires however a thorough knowledge of their distribution in modern plants that contribute to sediments, but in Hawaii the modern vegetation is understudied compared to proxy applications. Here we report results from a preliminary investigation of n-alkanes distributions in dominant modern plant litter collected at a bog site at the summit of the Waianae mountains on the Island of Oahu. We compared n-alkane distributions among species and plant groups in order to test whether taxa or plant functional types (mosses, ferns, woody plants, and sedges) can be discriminated from their n-alkane profiles. Results showed that general plant groups were difficult to distinguish based on individual n-alkanes abundances, chain lengths, or ratios. At the species level, the sedge Machaerina augustifolia, was largely dominated by n-C29 ( 60%), suggesting some chain lengths could be useful as proxies for identifying the contribution of sedges to sedimentary records. Woody plant average chain length was highly variable but overall was not shorter (even slightly higher) than in other terrestrial plants, as it is often assumed. A sedimentary profile from this site shows variation and an overall decrease in n-alkane chain length over the Holocene, but patterns across common modern plants suggest that caution should be exercised when ascribing n-alkane distribution parameters to a specific group of tropical vegetation.
Ecotone shift and major droughts during the mid-late Holocene in the central Tibetan Plateau.
Shen, Caiming; Liu, Kam-Biu; Morrill, Carrie; Overpeck, Jonathan T; Peng, Jinlan; Tang, Lingyu
2008-04-01
A well-dated pollen record from a large lake located on the meadow-steppe ecotone provides a history of ecotone shift in response to monsoonal climate changes over the last 6000 years in the central Tibetan Plateau. The pollen record indicates that the ecotone shifted eastward during 6000-4900, 4400-3900, and 2800-1600 cal. yr BP when steppes occupied this region, whereas it shifted westward during the other intervals when the steppes were replaced by meadows. The quantitative reconstruction of paleoclimate derived from the pollen record shows that monsoon precipitation fluctuated around the present level over the last 6000 years in the central Tibetan Plateau. Three major drought episodes of 5600-4900, 4400-3900, and 2800-2400 cal. yr BP are detected by pollen signals and lake sediments. Comparison of our record with other climatic proxy data from the Tibetan Plateau and other monsoonal regions shows that these episodes are three major centennial-scale monsoon weakening events.
Toomey, Michael; Korty, Robert L.; Donnelly, Jeffrey P.; van Hengstum, Peter J.; Curry, William B.
2017-01-01
The risk posed by intensification of North Atlantic hurricane activity remains controversial, in part due to a lack of available storm proxy records that extend beyond the relatively stable climates of the late Holocene. Here we present a record of storm-triggered turbidite deposition offshore the Dry Tortugas, south Florida, USA, that spans abrupt transitions in North Atlantic sea-surface temperature and Atlantic Meridional Overturning Circulation (AMOC) during the Younger Dryas (12.9–11.7 ka). Despite potentially hostile conditions for cyclogenesis in the tropical North Atlantic at that time, our record and numerical experiments suggest that strong hurricanes may have regularly affected Florida. Less severe surface cooling at mid-latitudes (∼20°–40°N) than across much of the tropical North Atlantic (∼10°–20°N) in response to AMOC reduction may best explain strong hurricane activity during the Younger Dryas near the Dry Tortugas and possibly along the entire southeastern coast of the United States.
Ocean-atmosphere forcing of centennial hydroclimatic variability in the Pacific Northwest
Steinman, Byron A.; Abbott, Mark B.; Mann, Michael E.; Ortiz, Joseph D.; Feng, Song; Pompeani, David P.; Stansell, Nathan D.; Anderson, Lesleigh; Finney, Bruce P.; Bird, Broxton W.
2014-01-01
Reconstructing centennial timescale hydroclimate variability during the late Holocene is critically important for understanding large-scale patterns of drought and their relationship with climate dynamics. We present sediment oxygen isotope records spanning the last two millennia from 10 lakes, as well as climate model simulations, indicating that the Little Ice Age was dry relative to the Medieval Climate Anomaly in much of the Pacific Northwest of North America. This pattern is consistent with observed associations between the El Niño Southern Oscillation (ENSO), the Northern Annular Mode and drought as well as with proxy-based reconstructions of Pacific ocean-atmosphere variations over the past 1000 years. The large amplitude of centennial variability indicated by the lake data suggests that regional hydroclimate is characterized by longer-term shifts in ENSO-like dynamics, and that an improved understanding of the centennial timescale relationship between external forcing and drought conditions is necessary for projecting future hydroclimatic conditions in western North America.
Corella, J. P.; Valero-Garcés, B. L.; Vicente- Serrano, S. M.; Brauer, A.; Benito, G.
2016-01-01
Documenting subdecadal-scale heavy rainfall (HR) variability over several millennia can rarely be accomplished due to the paucity of high resolution, homogeneous and continuous proxy records. Here, using a unique, seasonally resolved lake record from southern Europe, we quantify temporal changes in extreme HR events for the last 2,800 years in this region and their correlation with negative phases of the Mediterranean Oscillation (MO). Notably, scarce HR dominated by a persistent positive MO mode characterizes the so-called Migration period (CE 370–670). Large hydroclimatic variability, particularly between CE 1012 and 1164, singles out the Medieval Climatic Anomaly, whereas more stationary HR conditions occurred between CE 1537 and 1805 coinciding with the Little Ice Age. This exceptional paleohydrological record highlights that the present-day trend towards strengthened hydrological deficit and less HR in the western Mediterranean is neither acute nor unusual in the context of Late Holocene hydrometeorological variability at centennial to decadal time scales. PMID:27910953
NASA Astrophysics Data System (ADS)
Corella, J. P.; Valero-Garcés, B. L.; Vicente-Serrano, S. M.; Brauer, A.; Benito, G.
2016-12-01
Documenting subdecadal-scale heavy rainfall (HR) variability over several millennia can rarely be accomplished due to the paucity of high resolution, homogeneous and continuous proxy records. Here, using a unique, seasonally resolved lake record from southern Europe, we quantify temporal changes in extreme HR events for the last 2,800 years in this region and their correlation with negative phases of the Mediterranean Oscillation (MO). Notably, scarce HR dominated by a persistent positive MO mode characterizes the so-called Migration period (CE 370-670). Large hydroclimatic variability, particularly between CE 1012 and 1164, singles out the Medieval Climatic Anomaly, whereas more stationary HR conditions occurred between CE 1537 and 1805 coinciding with the Little Ice Age. This exceptional paleohydrological record highlights that the present-day trend towards strengthened hydrological deficit and less HR in the western Mediterranean is neither acute nor unusual in the context of Late Holocene hydrometeorological variability at centennial to decadal time scales.
NASA Astrophysics Data System (ADS)
Hays, J. D.
2009-12-01
Shallow (0-200m) and deep (200 to1000m) living radiolarian flux is used to measure past production from within discrete intervals of the ocean’s water column. Deep-living faunas can also be used as proxies for export production, for they remineralize it and respond geographically and temporally to varying export. Few members of the mesopelagic community leave a fossil record, but of those that do, radiolarians are the most abundant and diverse group. In northwest Pacific late Pleistocene (glacial) sediments, deep-living radiolarian flux dominates over shallow-living flux, but the reverse is true in Holocene sediments, with the dramatic dominance change occurring across the Pleistocene-Holocene boundary. Changing primary productivity can’t cause these flux changes, for shallow-living faunas have access to the same carbon flux as do deep-living faunas, but rather they signal a major reorganization of the radiolarian fauna within the water column and suggest greater glacial than Holocene carbon export. In the Holocene world-ocean, the only region where deep-living radiolarian flux dominates over shallow-living flux is in the Sea of Okhotsk, suggesting environmental similarities between this sea and the northwest Pacific. In winter, cold Siberian air chills the upper hundred meters of the Sea of Okhotsk, promoting the spread of vast sea ice fields. High productivity in a thin (10-15m) summer mixed layer depletes nutrients Between 15 and about 150m exists a layer of cold (-1 to 0 degrees C.) intermediate water, within which radiolarian concentrations are low, but these concentrations increase between 200 and 500m in warmer intermediate water (Nimmergut and Abelmann, 2002). This radiolarian stratification results in greater deep- than shallow-living radiolarian flux to the sea floor. A similar water structure in the glacial northwest Pacific is the probable cause of similar flux patterns between the glacial northwest Pacific and Holocene Sea of Okhotsk. If so then cold glacial northwest Pacific intermediate water promoted the southward spread of sea ice. This inference is supported by the near coincidence of the southern limit of deep-living species dominated glacial sediments and extensive ice rafting. It also explains nutrient depleted glacial northwest Pacific surface waters inferred from isotopic data.
NASA Astrophysics Data System (ADS)
Ward, B. M.; Wong, C. I.; Novello, V. F.; Silva, L.; McGee, D.; Cheng, H.; Wang, X.; Edwards, R. L.; Cruz, F. W., Sr.; Santos, R. V.
2017-12-01
δ18O records from South America offer insight into past variability of the South American Monsoon System (SAMS). Potential, however, for understanding local moisture conditions is limited as precipitation δ18O is strongly influenced by regional climate dynamics. Here we create Holocene speleothem 87Sr/86Sr records at 200-yr resolution using TIMS methods in the Center for Isotope Geochemistry at Boston College to complement existing Holocene δ18O speleothem records and investigate local moisture conditions above caves located in the eastern Amazon Basin (PAR - 4°S, 55°W) and southwestern Brazil (JAR - 21°S, 56°W). Speleothem 87Sr/86Sr variability is interpreted to reflect differences in the extent of water-rock interaction due to differences in infiltration rates under wet and dry conditions. Drier conditions promote longer residence time, enhanced water-rock interaction, and greater evolution of dripwater 87Sr/86Sr values from an initial isotopic signature acquired from the soil to the signature of the cave host rock. PAR speleothem 87Sr/86Sr values range from 0.71024 to 0.71067 and are bracketed by soil (0.71710 to 0.70956) and bedrock (0.70852 to 0.70899) values. JAR speleothem 87Sr/86Sr values range from 0.71216 to 0.71539 and are greater than bedrock values (0.70825 to 0.71219), although some speleothem values exceed the single analysis conducted of the soil isotopic composition (0.71473). JAR speleothem 87Sr/86Sr values increase from the early to mid Holocene, consistent with increase in local moisture availability associated with intensification of the SAMS suggested by decreasing δ18O values in many records from the region. Speleothem 87Sr/86Sr values at JAR decrease from the mid to late Holocene, consistent with an increase in δ18O values at PAR that suggest a decline in monsoon intensity. 87Sr/86Sr variability at JAR, however, is positively correlated with the δ18O record. Preliminary 87Sr/86Sr results from PAR are only broadly consistent with the JAR 87Sr/86Sr record and exhibit variability that is not obviously consistent with other records in the region. On-going research investigates the conceptual model of Sr-isotopes as a local moisture proxy and the nature of coupling between local and regional Holocene hydroclimate at these sites and additional sites in central and southeast Brazil.
Dwyer, Gary S.; Cronin, Thomas M.; Baker, Paul A.; Rodriguez-Lazaro, Julio
2000-01-01
We reconstructed three time series of last glacial-to-present deep-sea temperature from deep and intermediate water sediment cores from the western North Atlantic using Mg/Ca ratios of benthic ostracode shells. Although the Mg/Ca data show considerable variability (“scatter”) that is common to single-shell chemical analyses, comparisons between cores, between core top shells and modern bottom water temperatures (BWT), and comparison to other paleo-BWT proxies, among other factors, suggest that multiple-shell average Mg/Ca ratios provide reliable estimates of BWT history at these sites. The BWT records show not only glacial-to-interglacial variations but also indicate BWT changes during the deglacial and within the Holocene interglacial stage. At the deeper sites (4500- and 3400-m water depth), BWT decreased during the last glacial maximum (LGM), the late Holocene, and possibly during the Younger Dryas. Maximum deep-sea warming occurred during the latest deglacial and early Holocene, when BWT exceeded modern values by as much as 2.5°C. This warming was apparently most intense around 3000 m, the depth of the modern-day core of North Atlantic deep water (NADW). The BWT variations at the deeper water sites are consistent with changes in thermohaline circulation: warmer BWT signifies enhanced NADW influence relative to Antarctic bottom water (AABW). Thus maximum NADW production and associated heat flux likely occurred during the early Holocene and decreased abruptly around 6500 years B.P., a finding that is largely consistent with paleonutrient studies in the deep North Atlantic. BWT changes in intermediate waters (1000-m water depth) of the subtropical gyre roughly parallel the deep BWT variations including dramatic mid-Holocene cooling of around 4°C. Joint consideration of the Mg/Ca-based BWT estimates and benthic oxygen isotopes suggests that the cooling was accompanied by a decrease in salinity at this site. Subsequently, intermediate waters warmed to modern values that match those of the early Holocene maximum of ∼7°C. Intermediate water BWT changes must also be driven by changes in ocean circulation. These results thus provide independent evidence that supports the hypothesis that deep-ocean circulation is closely linked to climate change over a range of timescales regardless of the mean climate state. More generally, the results further demonstrate the potential of benthic Mg/Ca ratios as a tool for reconstructing past ocean and climate conditions.
NASA Astrophysics Data System (ADS)
Lee, Borom; Nam, Seung-Il; Huh, Youngsook; Lee, Mi Jung
2015-04-01
Changes in oceanographic circulation in the Artic have a large influence on the global oceanic and climate system of the Earth through the geological times. In particular, freshwater input from the North Pacific to the western Arctic Ocean affects the Atlantic meridional overturning circulation (AMOC) after the opening of the Bering Strait. Seawater-derived neodymium isotope in marine sediments has been used as a proxy to trace the origin of water masses and oceanic circulation system. The global average residence time of Nd is shorter than the global ocean mixing time and dissolved Nd in seawater behaves quasi-conservatively. In the modern Arctic Ocean, the Nd isotope distribution is dominated by Atlantic source water, although the circum-Arctic riverine discharge and Pacific-derived waters also have noticeable impacts. In this study, we investigated seawater-derived neodymium isotope records from a sediment core recovered from the Chukchi Sea to understand the changes in hydrograhic circulation of the western Arctic during the Holocene. A gravity core, ARA02B 01A, was collected on the northern shelf of the Chukchi Sea (73°37.8939'N, 166°30.9838'W, ca. 111 m in water depth) during the RV Araon expedition in 2011. To obtain seawater-derived Nd records, we extracted Fe-Mn oxide coatings as an authigenic fraction from bulk sediments by leaching with acid-reducing solution after removing carbonate by leaching with acetic acid. Our preliminary results might show a general pattern of increasing radiogenic ɛNd values through Holocene intervals. Therefore, it implies that ɛNd results may be related with variations in the intensity of Bering Strait inflow during the last ~9.31 ka BP. The radiogenic trend was strongly pronounced from the late Holocene (ɛNd -7.23; ca. 8.84 ka BP) to the middle Holocene (ɛNd -4.78; ca. 6.18 ka BP) and vaguely during the middle Holocene. After 4.13 ka BP, ɛNd values were increased again from -4.86 to -4.03 at 0.57 ka BP. But 87Sr/86Sr values vary from 0.70929 to 0.70991 throughout the whole sediment core and they might be higher than the Sr isotopic value of modern seawater (0.70918). This implies that the leachates may not be preserved past seawater signal. Thus, our preliminary results indicate that further studies for assessment of leaching methods and for other reliable seawater-derived records (including authigenic carbonates, i.e., foraminiferal and bivalve shells which are found in sediment cores) are necessary.
Past collapse and late Holocene reestablishment of the Petermann Ice Tongue, Northwest Greenland
NASA Astrophysics Data System (ADS)
Reilly, B. T.; Stoner, J. S.; Mix, A. C.; Jakobsson, M.; Jennings, A. E.; Walczak, M.; Dyke, L. M.
2017-12-01
Petermann Glacier, Northwest Greenland, has been a stable outlet glacier of the Greenland Ice Sheet on historical timescales. Yet, anomalous calving events in 2010 and 2012 and oceanographic studies over the last decade indicate that Petermann Glacier and its ice tongue are especially sensitive to ice-ocean interactions, leading many to speculate on its future stability. To place these observations in the context of a longer timeframe and better understand the sensitivity of Petermann Glacier to future climate change, a 2015 international and interdisciplinary expedition of the Icebreaker Oden collected a suite of sediment cores from Petermann Fjord, spanning the mid to late Holocene and forming a transect from beneath the modern ice tongue to the mouth of the fjord (25 - 80 km from the modern grounding line). We characterize the stratigraphy ( 5.5 - 6.5 m at piston core sites) using a combination of X-ray fluorescence (XRF) scanning geochemistry, computed tomography (CT) scanning, and particle-size specific magnetic measurements on these cores and nearby terrestrial samples. Age-depth modeling, based on radiocarbon dated benthic foraminifera, is in progress with reservoir age corrections assessed using paleomagnetic comparisons to regional and global records. We observe changes in the composition and spatial pattern of ice rafted debris (IRD) and sediment fabric that reveal a dynamic history. Following early Holocene deglaciation of the region, a paleo-ice tongue broke up and an extended period of seasonally open marine conditions ensued through the middle Holocene. This ice-tongue collapse was followed by a large increase in the relative abundance of Petermann sourced IRD of non-local granitic composition. This granitic IRD component steadily declined through the middle Holocene, reaching negligible contributions when the ice tongue was reestablished in the late Holocene. Regional paleoenvironmental studies suggest warmer oceanographic and atmospheric conditions around Northwest Greenland in the middle Holocene, offering an opportunity to study the sensitivity of one of Greenland's major outlet glaciers to environmental forcing.
Pleistocene and Holocene geomorphological development in the Algarve, southern Portugal
NASA Astrophysics Data System (ADS)
Chester, David K.
2012-06-01
A detailed chronological framework for Pleistocene and Holocene geomorphology and landscape evolution in the Algarve is proposed. With regards to the Pleistocene, attention has focused on the origin, dating and stratigraphy of the Ludo Formation. Subsuming the classifications of earlier writers, it is now proposed that during the Pliocene a marine transgression occurred across a tectonically controlled basin that was constrained by the mountains of the Algarve interior to the north. Fluvial sands were then deposited in a regressive phase during the late Pliocene/early Pleistocene, while braided streams operating under semi-arid conditions subsequently laid down sands and gravels in the middle and upper Pleistocene. Lying unconformably over the Ludo Formation is an alluvial deposit (Odiáxere gravels and Loulé sands) of late Pleistocene/early Holocene date that is found within the river valleys of the Algarve. In the early-Holocene (ca.10, 000-ca.7000 BP) and early late-Holocene (ca.5000-ca.3000 BP), the situation in the Algarve was one of climatic amelioration (i.e., warmer and wetter conditions), rising sea levels, vegetation colonization, soil development and towards the end of this period trenching of the Odiáxere gravels and Loulé sands. From ca.3000 BP evidence is abundant that humans became important geomorphological agents either acting on their own or in combination with climatic factors. From around 5000 BP, conditions became dryer and, between ca.3000 BP and ca.700 BP, clearance of land by pre-Roman, Roman, and especially Islamic agricultural settlers caused widespread erosion and the deposition of extensive spreads of topsoil dominated sediment within river valleys (i.e., the Holocene terrace) and in coastal estuaries. A period followed up to 1900 CE when agricultural practices were less damaging to the soil, erosion was reduced and the Holocene terrace - together with coastal and estuarine deposits - was incised. In the past century and under increased human pressure, renewed erosion is in evidence in the interior valleys and at the coast.
NASA Astrophysics Data System (ADS)
Furze, Mark F. A.; Pieńkowski, Anna J.; Coulthard, Roy D.
2014-05-01
Radiocarbon-dated marine mammal remains from emergent Arctic coastlines have frequently been used to reconstruct Holocene sea-ice histories. The use of such reconstructions has hitherto been complicated by uncertain marine reservoir corrections precluding meaningful intercomparisons with data reported in calibrated or sidereal years. Based on an exhaustive compilation of previously published marine mammal radiocarbon dates (both live-harvested materials and subfossils) from the Canadian Arctic Archipelago (CAA), new, statistically-derived δ13C and ΔR values are provided. Average δ13C values are: -16.1 ± 1.1‰ (bone collagen; n = 193) for bowhead (Balaena mysticetus); -14.4 ± 0.5‰ (n = 44; dentine) for beluga (Delphinapterus leucas); -14.8 ± 1.9‰ (teeth and tusks; n = 18) and -18.0 ± 4.7‰ (n = 9; bone collagen) for walrus (Odobenus rosmarus). ΔR values are 170 ± 95 14C years for bowhead (n = 23) and 240 ± 60 14C years for beluga (n = 12). Scarce data preclude calculation of meaningful, statistically robust walrus ΔR. Using the new ΔR values, an expanded and revised database of calibrated bowhead dates (651 dates; many used in previous CAA sea-ice reconstructions) shows pronounced late Quaternary spatio-temporal fluctuations in bone abundance. Though broadly resembling earlier bowhead subfossil frequency data, analysis of the new expanded database suggests early- and mid-Holocene increases in whale abundance to be of longer duration and lower amplitude than previously considered. A more even and persistent spread of infrequent low-abundance remains during “whale free” intervals is also seen. The dominance of three eastern regions (Prince Regent Inlet & Gulf of Boothia; Admiralty Inlet; Berlinguet Inlet/Bernier Bay) in the CAA data, collectively contributing up to 88% of all subfossil remains in the mid-Holocene, is notable. An analysis of calibrated regional sea-level index points suggests that severance of the Admiralty Inlet-Gulf of Boothia marine channel due to isostatically-driven regression may have played a significant role in enhanced whale mortality during this interval. Comparisons between the newly calibrated bowhead data and other regional sea-ice proxy data further highlight spatial and temporal discrepancies, potentially due to regional asynchronicities and variable sensitivities in proxy response to climate and oceanographic forcing. However, the limited number of deglacial-postglacial marine records continues to hamper extensive intercomparisons between marine mammal and other proxy datasets. Nevertheless, an examination of assumptions inherent in linking bowhead subfossil frequencies, population densities, and sea-ice thickness and distribution, shows that such relationships are highly complex. Factors such as broad sea-ice preferences, variable mortality rates and causes, long distance carcass transport, variable coastline and basin/channel geometries, and changing emergence rates all complicate the correlation of whale bone abundance to sea-ice histories.
NASA Astrophysics Data System (ADS)
Kühl, Norbert; Moschen, Robert; Wagner, Stefanie
2010-05-01
Pollen as well as stable isotopes have great potential as climate proxy data. While variability in these proxy data is frequently assumed to reflect climate variability, other factors than climate, including human impact and statistical noise, can often not be excluded as primary cause for the observed variability. Multiproxy studies offer the opportunity to test different drivers by providing different lines of evidence for environmental change such as climate variability and human impact. In this multiproxy study we use pollen and peat humification to evaluate to which extent stable oxygen and carbon isotope series from the peat bog "Dürres Maar" reflect human impact rather than climate variability. For times before strong anthropogenic vegetation change, isotope series from Dürres Maar were used to validate quantitative reconstructions based on pollen. Our study site is the kettle hole peat bog "Dürres Maar" in the Eifel low mountain range, Germany (450m asl), which grew 12m during the last 10,000 years. Pollen was analysed with a sum of at least 1000 terrestrial pollen grains throughout the profile to minimize statistical effects on the reconstructions. A recently developed probabilistic indicator taxa method ("pdf-method") was used for the quantitative climate estimates (January and July temperature) based on pollen. For isotope analysis, attention was given to use monospecific Sphagnum leaves whenever possible, reducing the potential of a species effect and any potential artefact that can originate from selective degradation of different morphological parts of Sphagnum plants (Moschen et al., 2009). Pollen at "Dürres Maar" reflect the variable and partly strong human impact on vegetation during the last 4000 years. Stable isotope time series were apparently not influenced by human impact at this site. This highlights the potential of stable isotope investigations from peat for climatic interpretation, because stable isotope series from lacustrine sediments might strongly react to anthropogenic deforestation, as carbon isotope time series from the adjacent Lake Holzmaar suggest. Reconstructions based on pollen with the pdf-method are robust to the human impact during the last 4000 years, but do not reproduce the fine scale climate variability that can be derived from the stable isotope series (Kühl et al., in press). In contrast, reconstructions on the basis of pollen data show relatively pronounced climate variability (here: January temperature) during the Mid-Holocene, which is known from many other European records. The oxygen isotope time series as available now indicate that at least some of the observed variability indeed reflects climate variability. However, stable carbon isotopes show little concordance. At this stage our results point in the direction that 1) the isotopic composition might reflect a shift in influencing factors during the Holocene, 2) climate trends can robustly be reconstructed with the pdf method and 3) fine scale climate variability can potentially be reconstructed using the pdf-method, given that climate sensitive taxa at their distribution limit are present. The latter two conclusions are of particular importance for the reconstruction of climatic trends and variability of interglacials older than the Holocene, when sites are rare and pollen is often the only suitable proxy in terrestrial records. Kühl, N., Moschen, R., Wagner, S., Brewer, S., Peyron, O., in press. A multiproxy record of Late Holocene natural and anthropogenic environmental change from the Sphagnum peat bog Dürres Maar, Germany: implications for quantitative climate reconstructions based on pollen. J. Quat. Sci., DOI: 10.1002/jqs.1342. Available online. Moschen, R., Kühl, N., Rehberger, I., Lücke, A., 2009. Stable carbon and oxygen isotopes in sub-fossil Sphagnum: Assessment of their applicability for palaeoclimatology. Chemical Geology 259, 262-272.
Solar forcing of Florida Straits surface salinity during the early Holocene
NASA Astrophysics Data System (ADS)
Schmidt, Matthew W.; Weinlein, William A.; Marcantonio, Franco; Lynch-Stieglitz, Jean
2012-09-01
Previous studies showed that sea surface salinity (SSS) in the Florida Straits as well as Florida Current transport covaried with changes in North Atlantic climate over the past two millennia. However, little is known about earlier Holocene hydrographic variability in the Florida Straits. Here, we combine Mg/Ca-paleothermometry and stable oxygen isotope measurements on the planktonic foraminifera Globigerinoides ruber (white variety) from Florida Straits sediment core KNR166-2 JPC 51 (24° 24.70' N, 83° 13.14' W, 198 m deep) to reconstruct a high-resolution (˜25 yr/sample) early to mid Holocene record of sea surface temperature and δ18OSW (a proxy for SSS) variability. After removing the influence of global δ18OSW change due to continental ice volume variability, we find that early Holocene SSS enrichments are associated with increased evaporation/precipitation ratios in the Florida Straits during periods of reduced solar forcing, increased ice rafted debris in the North Atlantic and the development of more permanent El Niño-like conditions in the eastern equatorial Pacific. When considered with previous high-resolution reconstructions of Holocene tropical atmospheric circulation changes, our results provide evidence that variations in solar forcing over the early Holocene had a significant impact on the global tropical hydrologic cycle.
Barron, J.A.; Bukry, D.; Dean, W.E.
2005-01-01
High-resolution records of calcium carbonate, biogenic opal, diatoms, and silicoflagellates from western Guaymas Basin gravity core GGC55 and piston core JPC56 and eastern Guaymas Basin DSDP Site 480 reveal a complex paleoceanographic history of the central Gulf of California during the past 15,000 years. Prior to ??? 6.2 ka, the eastern and western Guaymas Basin proxy records were remarkably similar. After conditions similar to those of today during the B??lling-Allerod, the Younger Dryas (YD) saw a major drop in diatom production, coincident with increased calcium carbonate and tropical microfossils suggestive of El Nin??o-like conditions. Biosiliceous productivity began increasing during the latter part of the YD, but it was only during the earliest Holocene (11.6 to 11.0 ka) that conditions similar to those of the B??lling-Allerod returned to the central Gulf. Between around 11.0 and 6.2 ka, tropical diatoms and silicoflagellates were virtually absent from the central Gulf, as relatively cooler and fresher surface waters resembling those of the modern northern Gulf were present in the central Gulf. Beginning at about 6.2 ka, tropical diatoms and silicoflagellates began increasing in the central Gulf, and coccoliths returned to western Gulf sediments. The onset of modern-day monsoon conditions in the American Southwest required the presence of warm SSTs in the northern Gulf, which probably did not occur until after about 5.4 ka, when tropical diatoms and silicoflagellates became relatively common in the central Gulf. Modern east-west contrasts, which arise from late winter-early spring coastal upwelling on the mainland side and lower diatom productivity on the western side of the Gulf, commenced between 6.2 and 5.4 ka, possibly due to a shift in the direction of late winter-early spring winds more towards the southeast, or down the axis of the Gulf. This proposed wind shift might have ultimately been due to a late Holocene strengthening of ENSO-like conditions in the eastern equatorial Pacific.
NASA Astrophysics Data System (ADS)
Luecke, Andreas; Wissel, Holger; Mayr*, Christoph; Oehlerich, Markus; Ohlendorf, Christian; Zolitschka, Bernd; Pasado Science Team
2010-05-01
The ICDP project PASADO aims to develop a detailed paleoclimatic record for the southern part of the South American continent from sediments of Laguna Potrok Aike (51°58'S, 70°23'W), situated in the Patagonian steppe east of the Andean cordillera and north of the Street of Magellan. The precursor project SALSA recovered the Holocene and Late Glacial sediment infill of Laguna Potrok Aike and developed the environmental history of the semi-arid Patagonian steppe by a consequent interdisciplinary multi-proxy approach (e.g. Haberzettl et al., 2007). From September to November 2008 the ICDP deep drilling took place and successfully recovered in total 510 m of sediments from two sites resulting in a composite depth of 106 m for the selected main study Site 2. A preliminary age model places the record within the last 50.000 years. During the drilling campaign, the core catcher content of each drilled core run (3 m) was taken as separate sample to be shared and distributed between involved laboratories long before the main sampling party. A total of 70 core catcher samples describe the sediments of Site 2 and will form the base for more detailed investigations on the palaeoclimatic history of Patagonia. We here report on the organic carbon and nitrogen isotope composition of bulk sediment and plant debris of the core catcher samples. Similar investigations were performed for Holocene and Late Glacial sediments of Laguna Potrok Aike revealing insights into the organic matter dynamics of the lake and its catchment as well as into climatically induced hydrological variations with related lake level fluctuations (Mayr et al., 2009). The carbon and nitrogen content of the core catcher fine sediment fraction (<200 µm) is low to very low (around 1 % and 0.1 %, respectively) and requires particular attention in isotope analysis. The carbon isotope composition shows comparably little variation around a value of -26.0 per mil. The positive values of the Holocene and the Late Glacial (up to 22.0 per mil) are only sporadically reached down core. Compared to this, separated moss debris is remarkably 13C depleted with a minimum at 31.5 per mil. The nitrogen isotope ratios of glacial Laguna Potrok Aike sediments are lower (2.5 per mil) than those of the younger part of the record. The core catcher samples indicate several oscillations between 0.5 and 3.5 per mil. Data suggest a correlation between nitrogen isotopes and C/N ratios, but no linear relation between carbon isotopes and carbon content and an only weak relationship between carbon and nitrogen isotopes. Increasing nitrogen isotope values from 8000 cm downwards could probably be related to changed environmental conditions of Marine Isotope Stage 3 (MIS 3) compared to Marine Isotope Stage 2 (MIS 2). This will be further evaluated with higher resolution from the composite profile including a detailed study of discrete plant debris layers. References Haberzettl, T. et al. (2007). Lateglacial and Holocene wet-dry cycles in southern Patagonia: chronology, sedimentology and geochemistry of a lacustrine record from Laguna Potrok Aike, Argentina. The Holocene, 17: 297-310. Mayr, C. et al. (2009). Isotopic and geochemical fingerprints of environmental changes during the last 16,000 years on lacustrine organic matter from Laguna Potrok Aike (southern Patagonia, Argentina). Journal of Paleolimnology, 42: 81-102.
NASA Astrophysics Data System (ADS)
Saini, Jeetendra; Günther, Franziska; Aichner, Bernhard; Mischke, Steffen; Herzschuh, Ulrike; Zhang, Chengjun; Mäusbacher, Roland; Gleixner, Gerd
2017-02-01
We investigated 4.84-m-long sediment record spanning over the Late Glacial and Holocene from Lake Donggi Cona to be able to reconstruct circulation pattern on the Tibetan Plateau (TP). Presently, Lake Donggi Cona is located at the boundaries of Westerlies and Asian monsoon circulations in the northeastern TP. However, the exact timing and stimulating mechanisms for climatic changes and monsoon shifts in this region are still debated. We used a 19-ka-long stable isotope record of sedimentary n-alkanes to address this discrepancy by providing insights into paleohydrological conditions. The δD of nC23 is influenced by lake water evaporation; the δD values of sedimentary nC29 are mainly controlled by moisture source and temperature changes. Long-chain n-alkanes dominate over the core whereas three mean clusters (i.e. microbial, aquatic and terrestrial) can be inferred. Multi-proxies suggest five major episodes in the history of Lake Donggi Cona. The Lake Donggi Cona record indicates that the Late Glacial (18.4-14.8 cal ka BP) was dominated by low productivity of mainly microbial and aquatic organisms. Relatively low δD values suggest low temperatures and moist conditions eventually caused by stronger Westerlies, winter monsoon and melt-water influence. Likely, the shift (∼17.9 cal ka BP) from microbial to enhanced aquatic input suggests either a change from deep to shallow water lake or a break in local stratification. Between 14.8 and 13.0 cal ka BP, variable climatic conditions prevailed. Although the Westerlies weekend, the increase in temperature enhanced the permafrost and snow melting (displayed by a high sedimentary accumulation rate). Higher δD values indicate increasingly arid conditions with higher temperatures which eventually lead to high evaporative conditions and lowest lake levels. Low vegetation cover and high erosion rates led to high sediment accumulation resulting in stratification followed by anoxia in the terminal lake. From 13.0 to 9.2 cal ka BP, lowered values of δD along with high contents of terrestrial organic matter marked the early-Holocene warming indicating a further strengthening of summer precipitation and higher lake levels. A cooling trend was observed in the mid-Holocene between 9.2 and 3.0 cal ka BP accompanied by higher moisture availability (displayed by lowered δD values) caused by reduced evaporative conditions due to a drop in temperature and recovering Westerlies. After 3.0 cal ka BP, a decrease in lake productivity and cold and semi-arid conditions prevailed suggesting lower lake levels and reduced moisture from recycled air masses and Westerlies. We propose that the summer monsoon was the predominant moisture source during the Bølling-Allerød warm complex and early-Holocene followed by Westerlies in mid-to-late Holocene period. Stable carbon isotope values ∼ - 32‰ indicate the absence of C4-type vegetation in the region contradicting with their presence in the Lake Qinghai record. The δD record from lake Donggi Cona highlights the importance of the interplay between Westerlies and summer monsoon circulation at this location, which is highly dynamic in northeastern plateau compared to the North Atlantic circulation and insolation changes. Consequently lake Donggi Cona might be an important anchor point for environmental reconstructions on the Tibetan Plateau.
A Tale of Two Lakes: Catchment-Specific Responses to Late Holocene Cooling in Northwest Iceland
NASA Astrophysics Data System (ADS)
Crump, S. E.; Florian, C. R.; Miller, G. H.; Geirsdottir, A.; Zalzal, K.
2015-12-01
Lake sediments are frequently utilized for reconstructing paleoclimate in the Arctic, particularly in Iceland, where high sedimentation rates and abundant tephra layers allow for the development high-resolution, well-dated records. However, when developing climate records using biological proxies, catchment-specific processes must be understood and separated from the primary climate signal in order to develop accurate reconstructions. In this study, we compare proxy records (biogenic silica [BSi], C:N, ∂13C, and algal pigments) of the last 2 ka from two nearby lakes in northwest Iceland in order to elucidate how different catchments respond to similar climate history. Torfdalsvatn and Bæjarvötn are two coastal lakes located 60 km apart; mean summer temperatures are highly correlated between the two sites over the instrumental record, and likely for the past 2 ka as well. Consistent with other Icelandic records, both lakes record cooling as decreasing aquatic productivity (BSi) over the last 2 ka. Both sediment cores also record the onset of landscape destabilization, reflected by increased terrestrial input (C:N and ∂13C), which suggests an intensification of cooling. However, the timing and magnitude of this shift differ markedly between lakes. Biological proxies indicate gradual landscape destabilization beginning ~900 AD at Torfdalsvatn in contrast to a sharper, more intense landscape destabilization at ~1400 AD at Bæjarvötn. Because temperatures at the two lakes are well correlated, contrasting proxy responses are likely the result of catchment-specific thresholds and processes. Specifically, a steeper catchment at Bæjarvötn may allow for a more pronounced influx of terrestrial material as the critical shear stress for soil erosion is surpassed more readily. The impact of human colonization on erosion rates is also critical to assess, and recent developments in lipid biomarkers will allow for more precise reconstructions of human activity in each catchment.
NASA Astrophysics Data System (ADS)
Davis, B.
2013-12-01
Extensive evidence from high latitudes of the Northern Hemisphere indicates that temperatures were warmer than present during the early-mid Holocene, a period known as the Holocene thermal maximum (HTM). The existence of the HTM over lower mid-latitudes and the sub-tropics however is less clear, with pollen-based reconstructions in particular actually indicating a contrary cooling at this time in these regions. This apparent cooling is controversial because it is not shown in climate model simulations, which indicate that the HTM occurred across all extra-tropical latitudes of the Northern Hemisphere. This is also supported by alkenone based SST reconstructions, which also show a much more widespread HTM than indicated by the pollen data. Here this problem is investigated by reviewing the evidence both for, and against, the HTM in the Mediterranean region, which represents one of the most intensively studied regions of sub-tropical climate in the Northern Hemisphere. This evidence includes a large number of both marine and terrestrial records that can be directly compared due to their close proximity around the Mediterranean Sea. The results highlight the potential for bias in both marine and terrestrial climate proxies, but despite many criticisms of the pollen-based record, it is shown that the existence of more extensive temperate vegetation in the early-mid Holocene in the Mediterranean is difficult to explain by anything other than a cooler climate. For instance, vegetation models driven by climate model output show that the warmer climate suggested by the models produces a HTM vegetation even more arid than today. The results have important implications in the interpretation of proxy records, but perhaps most importantly, the potential for climate models to underestimate cooling processes in a warmer world needs further investigation.
NASA Astrophysics Data System (ADS)
Zhang, Wenchao; Yan, Hong; Dodson, John; Cheng, Peng; Liu, Chengcheng; Li, Jianyong; Lu, Fengyan; Zhou, Weijian; An, Zhisheng
2018-04-01
Numerous Holocene paleo-proxy records exhibit a series of centennial-millennial scale rapid climatic events. Unlike the widely acknowledged 8.2 ka climate anomaly, the likelihood of a significant climate excursion at around 9.2 cal ka BP, which has been notably recognized in some studies, remains to be fully clarified in terms of its magnitude and intensity, as well as its characteristics and spatial distributions in a range of paleoclimatic records. In this study, a peat sediment profile from the Dajiuhu Basin in central China was collected with several geochemical proxies and a pollen analysis carried out to help improve understanding of the climate changes around 9.2 cal ka BP. The results show that the peat development was interrupted abruptly at around 9.2 cal ka BP, when the chemical weathering strength decreased and the tree-pollen declined. This suggests that a strong drier regional climatic event occurred at around 9.2 cal ka BP in central China, which was, in turn, probably connected to the rapid 9.2 ka climate event co-developing worldwide. In addition, based on the synthesis of our peat records and the other Holocene hydrological records from Asian summer monsoon (ASM) region, we further found that the 9.2 ka event probably constituted the strongest abrupt collapse of the Asian monsoon system during the full Holocene interval. The correlations between ASM and the atmospheric 14C production rate, the North Atlantic drift ice records and Greenland temperature indicated that the weakened ASM event at around 9.2 cal ka BP could be interpreted by the co-influence of external and internal factors, related to the changes of the solar activity and the Atlantic Meridional Overturning Circulation (AMOC).
A High-Resolution Record of Holocene Climate Variability from a Western Canadian Coastal Inlet
NASA Astrophysics Data System (ADS)
Dallimore, A.; Thomson, R. E.; Enkin, R. J.; Kulikov, E. A.; Bertram, M. A.; Wright, C. A.; Southon, J. R.; Barrie, J. V.; Baker, J.; Pienitz, R.; Calvert, S. E.; Chang, A. S.; Pedersen, T. F.
2004-12-01
Conditions within the Pacific Ocean have a major effect on the climate of northwestern North America. High resolution records of present and past northeast Pacific climate are revealed in our multi-disciplinary study of annually laminated marine sediments from anoxic coastal inlets of British Columbia. Past climate conditions for the entire Holocene are recorded in the sediment record contained in a 40 meter, annually laminated marine sediment core taken in Effingham Inlet, on the west coast of Vancouver Island, British Columbia, from the French ship the Marion Dufresne, as part of the international IMAGES program. By combining our eight year continuous instrument record of modern coastal ocean dynamics and climate with high-resolution analysis of depositional processes, we have been able to develop proxy measurements of past climatic and oceanographic changes on annual to millennial time scales. Results indicate that regional climate has oscillated on a variety of time scales throughout the Holocene. At times, climatic change has been dramatically rapid. We are also developing digital methods for statistical time-series analyses of physical sediment properties through the Holocene in order to obtain a more objective quantitative approach for detecting cyclicity in our data. Results of the time series analysis of lamination thickness reveals statistically significant spectral peaks of climate scale variability at established decadal to century time scales. These in turn may be related to solar cycles and quasi-cyclical ocean processes such as the Pacific Decadal Oscillation. However, the annually laminated time series are periodically interrupted by massive mud intervals which are related to bottom currents and at times paleo-seismic events, illustrating the need for a full understanding of modern oceanographic and sedimentation processes, so an accurate proxy record of past climate can be established.
NASA Astrophysics Data System (ADS)
Donges, J. F.; Donner, R. V.; Marwan, N.; Breitenbach, S. F. M.; Rehfeld, K.; Kurths, J.
2015-05-01
The Asian monsoon system is an important tipping element in Earth's climate with a large impact on human societies in the past and present. In light of the potentially severe impacts of present and future anthropogenic climate change on Asian hydrology, it is vital to understand the forcing mechanisms of past climatic regime shifts in the Asian monsoon domain. Here we use novel recurrence network analysis techniques for detecting episodes with pronounced non-linear changes in Holocene Asian monsoon dynamics recorded in speleothems from caves distributed throughout the major branches of the Asian monsoon system. A newly developed multi-proxy methodology explicitly considers dating uncertainties with the COPRA (COnstructing Proxy Records from Age models) approach and allows for detection of continental-scale regime shifts in the complexity of monsoon dynamics. Several epochs are characterised by non-linear regime shifts in Asian monsoon variability, including the periods around 8.5-7.9, 5.7-5.0, 4.1-3.7, and 3.0-2.4 ka BP. The timing of these regime shifts is consistent with known episodes of Holocene rapid climate change (RCC) and high-latitude Bond events. Additionally, we observe a previously rarely reported non-linear regime shift around 7.3 ka BP, a timing that matches the typical 1.0-1.5 ky return intervals of Bond events. A detailed review of previously suggested links between Holocene climatic changes in the Asian monsoon domain and the archaeological record indicates that, in addition to previously considered longer-term changes in mean monsoon intensity and other climatic parameters, regime shifts in monsoon complexity might have played an important role as drivers of migration, pronounced cultural changes, and the collapse of ancient human societies.
Pleistocene Indian Monsoon Rainfall Variability
NASA Astrophysics Data System (ADS)
Yirgaw, D. G.; Hathorne, E. C.; Giosan, L.; Collett, T. S.; Sijingeo, A. V.; Nath, B. N.; Frank, M.
2014-12-01
The past variability of the Indian Monsoon is mostly known from records of wind strength over the Arabian Sea. Here we investigate proxies for fresh water input and runoff in a region of strong monsoon precipitation that is a major moisture source for the east Asian Monsoon. A sediment core obtained by the IODP vessel JOIDES Resolution and a gravity core from the Alcock Seamount complex in the Andaman Sea are used to examine the past monsoon variability on the Indian sub-continent and directly over the ocean. The current dataset covers the last glacial and deglacial but will eventually provide a Pleistocene record. We utilise the ecological habitats of G. sacculifer and N. dutertrei to investigate the freshwater-induced stratification with paired Mg/Ca and δ18O analyses to estimate seawater δ18O (δ18Osw). During the last 60 kyrs, Ba/Ca ratios and δ18Osw values generally agree well between the two cores and suggest the weakest surface runoff and monsoon during the LGM and strongest monsoon during the Holocene. The difference in δ18O between the species, interpreted as a proxy for upper ocean stratification, implies stratification developed around 37 ka and remained relatively constant during the LGM, deglacial and Holocene. To investigate monsoon variability for intervals in the past, single shell Mg/Ca and δ18O analyses have been conducted. Mg/Ca ratios from individual shells of N. dutertrei suggest relatively small changes in temperature. However, individual N. dutertrei δ18O differ greatly between the mid-Holocene and samples from the LGM and a nearby core top. The mid-Holocene individuals have a greater range and large skew towards negative values indicating greater fresh water influence.
The Influence of the East Asian Winter Monsoon on Indonesian Rainfall During the Past 60,000 Years
NASA Astrophysics Data System (ADS)
Konecky, B. L.; Russell, J. M.; Vogel, H.; Bijaksana, S.; Huang, Y.
2013-12-01
The Indo-Pacific Warm Pool (IPWP) invigorates the oceanic-atmospheric circulation in the tropics, with far-reaching climate impacts that extend into the high latitudes. A growing number of deglacial proxy reconstructions from the Maritime Continent and its surrounding seas have revealed the importance of both high- and low-latitude climate processes to IPWP rainfall during the deglaciation and the Holocene. However, few records extend beyond the Last Glacial Maximum (LGM), making it difficult to assess regional rainfall characteristics and monsoon interactions under the glacial/interglacial boundary conditions of the Pleistocene. Proxy reconstructions of the oxygen and hydrogen isotopic composition of rainfall (δ18O/δDprecip) have proven useful in understanding millennial to orbital scale changes in the climate of the Maritime Continent, but the tendency for δ18O/δDprecip in this region to reflect regional and/or remote climate processes has highlighted the need to reconstruct δ18O/δDprecip alongside independent proxies for continental rainfall amount. Here we present a reconstruction of δDprecip using leaf wax compounds preserved in the sediments of Lake Towuti, Central Sulawesi, from 60,000 years before present (kyr BP) to today. Our δDprecip reconstruction provides a precipitation isotopic counterpart to multi-proxy geochemical reconstructions of surface hydrology and vegetation characteristics from the same sediment cores, enabling for the first time an independent assessment of both continental rainfall intensity and δDprecip from this region on glacial/interglacial timescales. We find that orbital-scale variations in δDprecip and rainfall intensity are strongly tied to the East Asian Winter Monsoon (EAWM), which is an important contributor to the band of convection over the Maritime Continent during austral summer. Unlike today, however, severely dry conditions in Central Sulawesi during the Last Glacial Maximum were accompanied by a strengthened EAWM and D-depleted precipitation. In contrast, wet conditions in Central Sulawesi during Marine Isotope Stage 3 (MIS3) and during the early Holocene occurred when the EAWM was weakened. These findings support previous inferences based on Australian data that glacial boundary conditions modified the relationship between the EAWM and the Australian-Indonesian Summer Monsoon (AISM). However, previously proposed mechanisms for this modified EAWM/AISM relationship are not sufficient to explain our observations in Indonesia, and must be expanded. We propose revisions to these mechanisms in order to explain observations of Indonesian rainfall and δDprecip. Our findings provide important context for the circulation patterns that drove rainfall variations in Central Sulawesi during the past 60 kyr, and help to reconcile some of the disagreements among late Pleistocene records of surface runoff and δ18O/δDprecip from the IPWP region.
NASA Astrophysics Data System (ADS)
Skrzypek, Grzegorz; Engel, Zbyněk
2015-04-01
Interpretation of the Central Andean paleoclimate over the last millennia still represents a research challenge demanding deeper studies [1,2]. Several high-resolution paleoclimate proxies for the last 10,000 years have been developed for the northern hemisphere. However, similar proxies are very limited for South America, particularly for high altitudes where, for example, tree-ring chronologies are not available and instrumental records are very limited. Consequently, our knowledge of high altitude climate changes in arid regions of the Peruvian Andes mainly relies on ice-core and lake deposit studies. In our study, we used a new alternative proxy for interpretation of palaeoclimate conditions based on a peat core taken from the Carhuasanta Valley at the foot of Nevado Mismi in the southern Peruvian Andes (15° 30'S, 71° 43'W, 4809m a.s.l.). The stable carbon isotope composition (δ13C) of Distichia peat reflects mainly the relative variation of the mean air temperature during subsequent growing seasons [3], and allows reconstructions of palaeotemperature changes. In contrast, peat organic carbon concentration (C % wt) records mainly wetness in the valley, directly corresponding to the changes in runoff in the upper part of the catchment. The most prominent climate changes recorded in the peat over last 4ka occurred between 3040 and 2750 cal. yrs BP. The initial warming turned to a very rapid cooling to temperatures at least 2° C lower than the mean for the Late Holocene. Initially drier conditions within this event turned to a short wet phase after 2780 cal. yrs BP, when the temperature increased again. This event coincides with significant changes in peat and ice core records in the Central Andes that match the timing of the global climate event around 2.8 cal. ka BP. Climatic conditions in the study area became relatively dry and stable after the event for about 800 years. Highly variable temperatures and humidity prevailed during the last 2000 years, when an extended warm and relatively humid period occurred between 640-155 cal. yrs BP, followed by predominantly colder and drier conditions [4]. Our study demonstrates how the δ13C value and carbon content variations in Distichia peat can be interpreted and used for verification of other multiproxy records, particularly these which are challenging for accurate dating. [1] Stansell, N.D., Rodbell, D.T., Abbott, M.B., Mark, B.G., 2013. Proglacial lake sediment records of Holocene climate change in the western Cordillera of Peru. Quat. Sci. Rev. 10, 1-14. [2] Engel Z., Skrzypek G., 2014. Reply to the comment by A. Sáez et al. on Climate in the Western Cordillera of the Central Andes over the last 4300 years. Quat. Sci. Rev. (in press 10.1016/j.quascirev.2014.12.006). [3] Skrzypek, G., Engel, Z., Chuman, T., Šefrna, L., 2011. Distichia peat - A new stable isotope paleoclimate proxy for the Andes. Earth Planet. Sci. Lett. 307(3-4), 298-308. [4] Engel, Z., Skrzypek, G., Chuman, T., Šefrna, L., MihaljeviÄ, M., 2014. Climate in the Western Cordillera of the Central Andes over the last 4300 years. Quat. Sci. Rev. 99, 60-77.
Niche conservatism above the species level.
Hadly, Elizabeth A; Spaeth, Paula A; Li, Cheng
2009-11-17
Traits that enable species to persist in ecological environments are often maintained over time, a phenomenon known as niche conservatism. Here we argue that ecological niches function at levels above species, notably at the level of genus for mammals, and that niche conservatism is also evident above the species level. Using the proxy of geographic range size, we explore changes in the realized niche of North American mammalian genera and families across the major climatic transition represented by the last glacial-interglacial transition. We calculate the mean and variance of range size for extant mammalian genera and families, rank them by range size, and estimate the change in range size and rank during the late Pleistocene and late Holocene. We demonstrate that range size at the genus and family levels was surprisingly constant over this period despite range shifts and extinctions of species within the clades. We suggest that underlying controls on niche conservatism may be different at these higher taxonomic levels than at the species level. Niche conservatism at higher levels seems primarily controlled by intrinsic life history traits, whereas niche conservatism at the species level may reflect underlying environmental controls. These results highlight the critical importance of conserving the biodiversity of mammals at the genus level and of maintaining an adequate species pool within genera.
Patterned Ground in Wetlands of the Maya Lowlands: Anthropogenic and Natural Causes
NASA Astrophysics Data System (ADS)
Beach, T.; Beach, S. L.
2004-12-01
We use geological and archaeological evidence to understand the formation of patterned ground in perennial and seasonal wetlands in the karst depressions of Belize and Guatemala. Some scholars have argued that these features are the remnants of ancient Maya wetland fields, chinampas, on which intensive cultivation produced food that could begin to nourish the extremely high population of the Late Classic (A.D. 550-850). Others have argued that these were natural features or that they represent landscape manipulation for rising sea level in the Preclassic (1000 B.C. -A.D. 250). We present the evidence for ancient intensive agriculture and natural landscape formation with multiple proxies: excavated field and canal features, artifacts, pollen, soil stratigraphy, and water chemistry. Evidence thus far suggests that many regional depressions have Preclassic (1200 BC to AD 200) or earlier paleosols, buried from 1-2 m by eroded soils induced by Maya land use practices. These paleosols were buried by eroded sediments from uplands and by precipitation of gypsum from rising groundwater. The sedimentation occurred largely between the Preclassic and Late Classic, when ancient Maya farmers built canals in pre-existing low spots to reclaim these wetlands. Thus, stable natural processes, environmental change, and human manipulation have acted together to form patterned wetland ground over the later Holocene.
Midcontinental Native American population dynamics and late Holocene hydroclimate extremes
NASA Astrophysics Data System (ADS)
Bird, Broxton W.; Wilson, Jeremy J.; Gilhooly, William P., III; Steinman, Byron A.; Stamps, Lucas
2017-01-01
Climate’s influence on late Pre-Columbian (pre-1492 CE), maize-dependent Native American populations in the midcontinental United States (US) is poorly understood as regional paleoclimate records are sparse and/or provide conflicting perspectives. Here, we reconstruct regional changes in precipitation source and seasonality and local changes in warm-season duration and rainstorm events related to the Pacific North American pattern (PNA) using a 2100-year-long multi-proxy lake-sediment record from the midcontinental US. Wet midcontinental climate reflecting negative PNA-like conditions occurred during the Medieval Climate Anomaly (950-1250 CE) as Native American populations adopted intensive maize agriculture, facilitating population aggregation and the development of urban centers between 1000-1200 CE. Intensifying midcontinental socio-political instability and warfare between 1250-1350 CE corresponded with drier positive PNA-like conditions, culminating in the staggered abandonment of many major Native American river valley settlements and large urban centers between 1350-1450 CE during an especially severe warm-season drought. We hypothesize that this sustained drought interval rendered it difficult to support dense populations and large urban centers in the midcontinental US by destabilizing regional agricultural systems, thereby contributing to the host of socio-political factors that led to population reorganization and migration in the midcontinent and neighboring regions shortly before European contact.
Midcontinental Native American population dynamics and late Holocene hydroclimate extremes
Bird, Broxton W.; Wilson, Jeremy J.; Gilhooly III, William P.; Steinman, Byron A.; Stamps, Lucas
2017-01-01
Climate’s influence on late Pre-Columbian (pre-1492 CE), maize-dependent Native American populations in the midcontinental United States (US) is poorly understood as regional paleoclimate records are sparse and/or provide conflicting perspectives. Here, we reconstruct regional changes in precipitation source and seasonality and local changes in warm-season duration and rainstorm events related to the Pacific North American pattern (PNA) using a 2100-year-long multi-proxy lake-sediment record from the midcontinental US. Wet midcontinental climate reflecting negative PNA-like conditions occurred during the Medieval Climate Anomaly (950–1250 CE) as Native American populations adopted intensive maize agriculture, facilitating population aggregation and the development of urban centers between 1000–1200 CE. Intensifying midcontinental socio-political instability and warfare between 1250–1350 CE corresponded with drier positive PNA-like conditions, culminating in the staggered abandonment of many major Native American river valley settlements and large urban centers between 1350–1450 CE during an especially severe warm-season drought. We hypothesize that this sustained drought interval rendered it difficult to support dense populations and large urban centers in the midcontinental US by destabilizing regional agricultural systems, thereby contributing to the host of socio-political factors that led to population reorganization and migration in the midcontinent and neighboring regions shortly before European contact. PMID:28139698
Aromatic acids in a Eurasian Arctic ice core: a 2600-year proxy record of biomass burning
NASA Astrophysics Data System (ADS)
Grieman, Mackenzie M.; Aydin, Murat; Fritzsche, Diedrich; McConnell, Joseph R.; Opel, Thomas; Sigl, Michael; Saltzman, Eric S.
2017-04-01
Wildfires and their emissions have significant impacts on ecosystems, climate, atmospheric chemistry, and carbon cycling. Well-dated proxy records are needed to study the long-term climatic controls on biomass burning and the associated climate feedbacks. There is a particular lack of information about long-term biomass burning variations in Siberia, the largest forested area in the Northern Hemisphere. In this study we report analyses of aromatic acids (vanillic and para-hydroxybenzoic acids) over the past 2600 years in the Eurasian Arctic Akademii Nauk ice core. These compounds are aerosol-borne, semi-volatile organic compounds derived from lignin combustion. The analyses were made using ion chromatography with electrospray mass spectrometric detection. The levels of these aromatic acids ranged from below the detection limit (0.01 to 0.05 ppb; 1 ppb = 1000 ng L-1) to about 1 ppb, with roughly 30 % of the samples above the detection limit. In the preindustrial late Holocene, highly elevated aromatic acid levels are observed during three distinct periods (650-300 BCE, 340-660 CE, and 1460-1660 CE). The timing of the two most recent periods coincides with the episodic pulsing of ice-rafted debris in the North Atlantic known as Bond events and a weakened Asian monsoon, suggesting a link between fires and large-scale climate variability on millennial timescales. Aromatic acid levels also are elevated during the onset of the industrial period from 1780 to 1860 CE, but with a different ratio of vanillic and para-hydroxybenzoic acid than is observed during the preindustrial period. This study provides the first millennial-scale record of aromatic acids. This study clearly demonstrates that coherent aromatic acid signals are recorded in polar ice cores that can be used as proxies for past trends in biomass burning.
NASA Astrophysics Data System (ADS)
Lasher, G. E.; Axford, Y.; Blair, N. E.
2017-12-01
Oxygen isotopes measured in subfossil chironomid head capsules (aquatic insect remains) in lake sediments are beginning to offer paleoclimate insights from previously under-studied areas of the world. Since the first published pilot study demonstrated the potential of chironomid δ18O to record lake water δ18O (Wooller et al., 2004), subsequent work has refined our understanding of this proxy: confirming via lab cultures that growth water controls head capsule δ18O (Wang et al., 2009), refining laboratory pretreatment protocols, and further validating the method by demonstrating strong agreement between carbonate and chironomid-derived paleo-isotope records (Verbruggen et al., 2009, 2010, 2011). However, outstanding questions remain, including the seasonality of chironomid growth, possible species-dependent vital effects, and diagenetic effects on the protein-chitin complex that comprise chironomid cuticles. To address some of these questions, we summarize available data from paired modern chironomid-lake water δ18O values from around the world and discuss climatic and environmental factors affecting chironomid isotopic signatures. We also present new data on the resistance of these subfossils to diagenesis and degradation throughout the late Quaternary using Fourier Transform Infrared Spectroscopy (FT-IR) and Pyrolysis Gas Chromatography Mass Spectrometry (Py-GC/MS) of chironomid remains up to >100,000 years old. As chironomids are nearly ubiquitous in lakes globally and, we argue, molecularly stable through glacial and interglacial cycles, this proxy has the potential to greatly expand the spatial and temporal resolution of Quaternary paleo-isotopes and thus climate records. In addition to reviewing and presenting new methodological advances, we also present applications of chironomid δ18O from millennial- to centennial-scale Holocene Greenland lake records.
1987-03-01
South Dakota 13 2 Description of the Lower Brule Section MT-i, now submerged by the waters of Lake Sharpe, Lyman County, South Dakota 15 3 Sequence...MT-i, now submerged by the waters of Lake Sharpe, Lyman County, South Dakota Unit # Description Thickness 1 Gray, thinbedded Cretaceous Pierre Shale...14,000 10000 C- 14 YBP WISCONSlNAN HOLOCENE AGE LATE EARLY MIDDLE LATE 10 M.I1. AGGIE BROWN PICK CITY OW MID.UPE MBR MEMBER M EMBER RIVERDALE MEMBER OAHE
NASA Astrophysics Data System (ADS)
Miller, Gifford H.; Landvik, Jon Y.; Lehman, Scott J.; Southon, John R.
2017-01-01
The response of the Northern Hemisphere cryosphere to the monotonic decline in summer insolation and variable radiative forcing during the Holocene has been one of irregular expansion culminating in the Little Ice Age, when most glaciers attained their maximum late Holocene dimensions. Although periods of intervening still-stand or ice-retreat can be reconstructed by direct dating of ice-recessional features, defining times of Neoglacial ice growth has been limited to indirect proxies preserved in distal archives. Here we report 45 precise radiocarbon dates on in situ plants emerging from beneath receding glaciers on Svalbard that directly date the onset of snowline descent and glacier expansion, entombing the plants. Persistent snowline lowering occurred between 4.0 and 3.4 ka, but with little additional persistent lowering until early in the first millennium AD. Populations of individual 14C calendar age results and their aggregate calendar age probabilities define discrete episodes of vegetation kill and snowline lowering 240-340 AD, 410-540 AD and 670-750 AD, each with a lower snowline than the preceding episode, followed by additional snowline lowering between 1000 and 1220 AD, and between 1300 and 1450 AD. Snowline changes after 1450 AD, including the maximum ice extent of the Little Ice Age are not resolved by our collections, although snowlines remained lower than their 1450 AD level until the onset of modern warming. A time-distance diagram derived from a 250-m-long transect of dated ice-killed plants documents ice-margin advances ∼750, ∼1100 and after ∼1500 AD, concordant with distributed vegetation kill ages seen in the aggregate data set, supporting our central thesis that vegetation kill ages provide direct evidence of snowline lowering and cryospheric expansion. The mid- to late-Holocene history of snowline lowering on Svalbard is similar to ELA reconstructions of Norwegian and Svalbard cirque glaciers, and consistent with a cryospheric response to the secular decline of regional summertime insolation and stepped changes in nearby surface ocean environments. The widespread exposure of entombed plants dating from the first millennium AD suggests that Svalbard's average summer temperatures of the past century now exceed those of any century since at least 700 AD, including medieval times.
NASA Astrophysics Data System (ADS)
Sarti, G.; Rossi, V.; Amorosi, A.; Ciampalini, A.; Molli, G.; Moretti, S.; Solari, L.
2016-12-01
Through the integration of sedimentological, radar interferometry and structural studies, a complex mid-late Quaternary coastal evolution related to Milankovitch-scale glacio-eustatic oscillations and local tectonics was reconstructed for the southern margin of the Arno coastal plain (APC, Tuscany, Italy). A set of 14C and ESR ages combined with SAR data, paleontological and archaeological proxy support the chronological framework. At a regional scale, the ACP straddles at the SW termination of a regional-scale fault, a crustal expression of lithospheric-scale tear segmenting the deep structure of the northern Apennines. GPS data, historical and present-day seismicity testify the activity of the fault zone. The thickness (up to 3000 m) and the age (Upper Miocene-Holocene) of the APC fill deposits reflect the accommodation space through time north of the Livorno-Sillaro line (LSL), in contrast to the recent uplifting documented south of the it. The uppermost 100 m of subsurface in the APC shows a Pleistocene incised-valley system (IVS), ca. 4 km wide and 45 m deep. The IVS fill is composed of floodplain clays passing upwards to estuarine deposits, dated to MIS 7. Above, a succession of amalgamated fluvial-channel sands record both depositional and erosional events of post-MIS 7 age. Upwards, a Holocene alluvial-deltaic succession overlies an indurated horizon related to a younger IVS system that formed at MIS 3/MIS 2 transition. The Holocene succession becomes thin in proximity of an isolated relief, Upper Pleistocene in age, rising up to 15 m above the present-day plain, ca. 6 km south of the Arno River. ERS and Envisat SAR data were acquired between the 1992 and the 2010 and processed by using the PSInSAR technique. The subsidence rates along the southern boundary of the ACP, reach 28 mm/y even if this data may be partially enhanced by water exploitation. Our results document that the transition between the subsiding and uplifting areas does not coincide with the traditionally defined surface trace of LSL, but is located ca. 20 km northward, close to the present day Arno river course. The complex interplay between sediment accumulation and erosional processes documented in the subsurface of ACP reflect changes in the eustatic rate, connected to the Milankovitch cyclicity, and local activity of the surface splay of LSL.
NASA Astrophysics Data System (ADS)
Li, Xiangzhong; Liu, Xiangjun; He, Yuxin; Liu, Weiguo; Zhou, Xin; Wang, Zheng
2018-02-01
Holocene climatic and environmental changes on the northeastern Tibetan Plateau (TP) have been widely discussed based on the climatic records from sedimentary cores. However, differences in the reconstructed climatic history from various studies in this region still exist, probably due to influence of climatic proxies from multiple factors and the chronological uncertainties in lacustrine sediments. Here we present records of terrestrial plant δ13C, soil color and total organic carbon content over the past 8400 years from a well-dated meadow section on the northeastern TP. The terrestrial plant δ13C value serves as a good summer precipitation/moisture indicator in the studied region. Soil color property and TOC content are also able to disentangle the moisture evolution history. All the data show much wet climates at 8400-7400 cal yr BP, dry climates at 7400-6000 cal yr BP and then wet conditions with fluctuation at 6000-3200 cal yr BP. Late Holocene moisture appears to be comparable with moist conditions from 6000 to 3200 cal yr BP. By further comparing the climatic variations in the Lake Qinghai area with records of the reconstructed summer temperature and the Asian Monsoon precipitation, we believe that the pattern of moisture/precipitation evolution in the Lake Qinghai area was not completely consistent with regions around Lake Qinghai, probably due to complicated interaction between the East Asian Summer Monsoon and the Indian Summer Monsoon.
Mounier, Aurélien; Correia, Maria; Rivera, Frances; Crivellaro, Federica; Power, Ronika; Jeffery, Joe; Wilshaw, Alex; Foley, Robert A; Mirazón Lahr, Marta
2018-05-29
Africa is the birthplace of the species Homo sapiens, and Africans today are genetically more diverse than other populations of the world. However, the processes that underpinned the evolution of African populations remain largely obscure. Only a handful of late Pleistocene African fossils (∼50-12 Ka) are known, while the more numerous sites with human fossils of early Holocene age are patchily distributed. In particular, late Pleistocene and early Holocene human diversity in Eastern Africa remains little studied, precluding any analysis of the potential factors that shaped human diversity in the region, and more broadly throughout the continent. These periods include the Last Glacial Maximum (LGM), a moment of extreme aridity in Africa that caused the fragmentation of population ranges and localised extinctions, as well as the 'African Humid Period', a moment of abrupt climate change and enhanced connectivity throughout Africa. East Africa, with its range of environments, may have acted as a refugium during the LGM, and may have played a critical biogeographic role during the heterogene`ous environmental recovery that followed. This environmental context raises a number of questions about the relationships among early Holocene African populations, and about the role played by East Africa in shaping late hunter-gatherer biological diversity. Here, we describe eight mandibles from Nataruk, an early Holocene site (∼10 Ka) in West Turkana, offering the opportunity of exploring population diversity in Africa at the height of the 'African Humid Period'. We use 3D geometric morphometric techniques to analyze the phenotypic variation of a large mandibular sample. Our results show that (i) the Nataruk mandibles are most similar to other African hunter-fisher-gatherer populations, especially to the fossils from Lothagam, another West Turkana locality, and to other early Holocene fossils from the Central Rift Valley (Kenya); and (ii) a phylogenetic connection may have existed between these Eastern African populations and some Nile Valley and Maghrebian groups, who lived at a time when a Green Sahara may have allowed substantial contact, and potential gene flow, across a vast expanse of Northern and Eastern Africa. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Hall, Stephen A.; Peterson, John A.
2013-04-01
The Rio Grande is one of the larger rivers in North America, and the development of its floodplain is related to Holocene climate and climate change. The late Pleistocene through early Holocene channel is characterized by a meander or braided system with lateral cutting and backfilling, resulting in the valley-wide deposition of massive to cross-bedded, fine-to-medium textured sand. The late Pleistocene-early Holocene floodplain is also the sand source for the adjacent Bolson sand sheet. The sand sheet stopped accumulating new sand 5000 yrs ago, an event directly related to the shutting off of the sand supply caused by the deposition of overbank muds that covered and sealed the floodplain surface. During the middle Holocene, the river may have dried intermittently with the floodplain becoming deflated and local sand dunes forming on the floodplain. After 5000 yrs the climate was less arid and the river shifted to a regime of increased flooding and overbank deposition of silt and clay. By 2500 yrs, a late Holocene period of wet climate resulted in further overbank deposition and the formation of a cumulic Mollisol across the floodplain, the Socorro paleosol. The period of wet climate corresponds to the Audubon Neoglacial and active rock glaciers in the southern Rocky Mountains, speleothem growth in nearby caves, and other evidence for wet-cool conditions in the region. After 1000 yrs, the climate became drier, and the deposition and accumulation of overbank muds by the flooding Rio Grande came to a halt. Even though the river has flooded often in historic times, and presumably during late prehistoric times as well, there is little evidence for deposition of overbank sediments on the floodplain since A.D. 1000. Accordingly, the present-day surface of the Lower Valley is ten centuries old. Three channels occur on the US side of the Lower Valley floodplain, and during the past 2500 yrs stream flow has shifted from one to the other by the avulsion process of channel reoccupation, although most flow has been in the Rio Grande channel, the largest of the three.
2012-11-26
Pleistocene/Early-Holocene Prehistory (12,000 to 7,000 BP). The Lake Mojave Period in the southwestern Great Basin comprises a regional manifestation...adaptive patterns with focal exploitation of such habitats (Tetra Tech 2010). Middle-Holocene Prehistory (8,000 to 4,000 BP). Succeeding Lake Mojave in the...Security Fence at Edwards Air Force Base, California Late Holocene Prehistory (4,000 to Contact). With return to more “favorable” environmental
Clastic sediment flux to tropical Andean lakes: records of glaciation and soil erosion
NASA Astrophysics Data System (ADS)
Rodbell, Donald T.; Seltzer, Geoffrey O.; Mark, Bryan G.; Smith, Jacqueline A.; Abbott, Mark B.
2008-08-01
We developed records of clastic sediment flux to 13 alpine lakes in Peru, Ecuador, and Bolivia, and compared these with independently dated records of regional glaciation. Our objectives are to determine whether a strong relationship exists between the extent of ice cover in the region and the rate of clastic sediment delivery to alpine lakes, and thus whether clastic sediment records serve as reliable proxies for glaciation during the late Pleistocene. We isolated the clastic component in lake sediment cores by removing the majority of the biogenic and authigenic components from the bulk sediment record, and we dated cores by a combination of radiocarbon and tephrochronology. In order to partially account for intra-basin differences in sediment focusing, bedrock erosivity, and sediment availability, we normalized each record to the weighted mean value of clastic sediment flux for each respective core. This enabled the stacking of all 13 lake records to produce a composite record that is generally representative of the tropical Andes. There is a striking similarity between the composite record of clastic sediment flux and the distribution of ˜100 cosmogenic radionuclide (CRN) exposure ages for erratics on moraine crests in the central Peruvian and northern Bolivian Andes. The extent of ice cover thus appears to be the primary variable controlling the delivery of clastic sediment to alpine lakes in the region, which bolsters the increasing use of clastic sediment flux as a proxy for the extent of ice cover in the region. The CRN moraine record and the stacked lake core composite record together indicate that the expansion of ice cover and concomitant increase in clastic sediment flux began at least 40 ka, and the local last glacial maximum (LLGM) culminated between 30 and 20 ka. A decline in clastic sediment flux that began ˜20 ka appears to mark the onset of deglaciation from the LLGM, at least one millennium prior to significant warming in high latitude regions. The interval between 20 and 18 ka was marked by near-Holocene levels of clastic sediment flux, and appears to have been an interval of much reduced ice extent. An abrupt increase in clastic sediment flux 18 ka heralded the onset of an interval of expanded ice cover that lasted until ˜14 ka. Clastic sediment flux declined thereafter to reach the lowest levels of the entire length of record during the early-middle Holocene. A middle Holocene climatic transition is apparent in nearly all records and likely reflects the onset of Neoglaciation and/or enhanced soil erosion in the tropical Andes.
Record of the North American southwest monsoon from Gulf of Mexico sediment cores
Poore, R.Z.; Pavich, M.J.; Grissino-Mayer, H. D.
2005-01-01
Summer monsoonal rains (the southwest monsoon) are an important source of moisture for parts of the southwestern United States and northern Mexico. Improved documentation of the variability in the southwest monsoon is needed because changes in the amount and seasonal distribution of precipitation in this semiarid region of North America influence overall water supply and fire severity. Comparison of abundance variations in the planktic foraminifer Globigerinoides sacculifer in marine cores from the western and northern Gulf of Mexico with terrestrial proxy records of precipitation (tree-ring width and packrat-midden occurrences) from the southwestern United States indicate that G. sacculifer abundance is a proxy for the southwest monsoon on millennial and submillennial time scales. The marine record confirms the presence of a severe multicentury drought centered ca. 1600 calendar (cal.) yr B.P. as well as several multidecadal droughts that have been identified in a long tree-ring record spanning the past 2000 cal. yr from westcentral New Mexico. The marine record further suggests that monsoon circulation, and thus summer rainfall, was enhanced in the middle Holocene (ca. 6500-4500 14C yr B.P.; ca. 6980-4710 cal. yr B.P.). The marine proxy provides the potential for constructing a highly resolved, well-dated, and continuous history of the southwest monsoon for the entire Holocene. ?? 2005 Geological Society of America.
NASA Astrophysics Data System (ADS)
Gibson, D. K.; Bird, B. W.; Wattrus, N. J.; Escobar, J.; Fonseca, H.; Velasco, F.; Polissar, P. J.
2017-12-01
Geophysical analysis of lacustrine seismic stratigraphy at Laguna de Tota (hereafter "Tota"), Boyaca, Colombia, provides a record of lake level fluctuations that ranges from the Late Quaternary to the present. Changes in Tota's volume indicated by off-lap and on-lap sequences show that regional hydroclimate varied considerably during at least the last 40 Ka. Modern lake level variability at Tota has been directly linked to the El Niño-Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO), suggesting that past lake level changes identified in CHIRP seismic data may provide insight into past Pacific atmosphere-ocean dynamics. Here, we use high-resolution CHIRP data spanning the top 15 meters of sediment column and a preliminary age model based on Holocene sedimentation rates to investigate lake level variability over the past 40 Ka. Our data demonstrates that lake levels at Tota were generally lower between 40 and 30 Ka, experienced rapid and extreme fluctuations between 30 and 20 Ka (including the lowest recorded lake level at Tota during the LGM at 22 Ka), and gradually rose to the present day high stand between 20 and 0 Ka. Although the CHIRP data indicate significant late Quaternary lake level fluctuations, the timing and duration of these events needs to be more firmly constrained with additional investigations combining sediment core collection and analysis, geochronology, and other lake level proxies. Future work combining these methods holds tremendous potential in terms of reconstructing Late Quaternary atmosphere-ocean cycles.
NASA Astrophysics Data System (ADS)
Peterson, Curt D.; Murillo-Jiménez, Janette M.; Stock, Errol; Price, David M.; Hostetler, Steve W.; Percy, David
2017-10-01
Shallow morpho-stratigraphic sections (n = 11) in each of two large coastal dune sheets including the Magdalena (7000 km2) and Guerrero Negro (8000 km2) dune sheets, from the Pacific Ocean side of Baja California Sur, Mexico, have been analyzed for dune deposit age. The shallow morpho-stratigraphic sections (∼2-10 m depth) include 11 new TL and 14C ages, and paleosol chronosequences, that differentiate cemented late Pleistocene dune deposits (20.7 ± 2.1 to 99.8 ± 9.4 ka) from uncemented Holocene dune deposits (0.7 ± 0.05 to at least 3.2 ± 0.3 ka). Large linear dune ridges (5-10 m in height) in the dune sheet interiors trend southeast and are generally of late Pleistocene age (∼70-20 ka). The late Pleistocene dune deposits reflect eolian transport of marine sand across the emerged continental shelf (30-50 km southeast distance) from low-stand paleo-shorelines (-100 ± 25 m elevation), which were locally oriented nearly orthogonal to modeled deep-water wave directions (∼300° TN). During the Holocene marine transgression, onshore and alongshore wave transport delivered remobilized shelf-sand deposits to the nearshore areas of the large dune sheets, building extensive barrier islands and sand spits. Submerged back-barrier lagoons generally precluded marine sand supply to dune sheet interiors in middle to late Holocene time, though exceptions occur along some ocean and lagoon shorelines. Reactivation of the late Pleistocene dune deposits in the dune sheet interiors lead to generally thin (1-3 m thickness), but widespread, covers of Holocene dune deposits (0.41 ± 0.05 to 10.5 ± 1.6 ka). Mechanical drilling will be required to penetrate indurated subsoil caliche layers to reach basal Pleistocene dune deposits.
A Holocene history of dune-mediated landscape change along the southeastern shore of Lake Superior
Loope, Walter L.; Fisher, Timothy G.; Jol, Harry M.; Anderton, John B.; Blewett, William L.
2004-01-01
Causal links that connect Holocene high stands of Lake Superior with dune building, stream damming and diversion and reservoir impoundment and infilling are inferred from a multidisciplinary investigation of a small watershed along the SE shore of Lake Superior. Radiocarbon ages of wood fragments from in-place stumps and soil O horizons, recovered from the bottom of 300-ha Grand Sable Lake, suggest that the near-shore inland lake was formed during multiple episodes of late Holocene dune damming of ancestral Sable Creek. Forest drownings at ~3000, 1530, and 300 cal. years BP are highly correlated with local soil burial events that occurred during high stands of Lake Superior. During these and earlier events, Sable Creek was diverted onto eastward-graded late Pleistocene meltwater terraces. Ground penetrating radar (GPR) reveals the early Holocene valley of Sable Creek (now filled) and its constituent sedimentary structures. Near-planar paleosols, identified with GPR, suggest two repeating modes of landscape evolution mediated by levels of Lake Superior. High lake stands drove stream damming, reservoir impoundment, and eolian infilling of impoundments. Falling Lake Superior levels brought decreased sand supply to dune dams and lowered stream base level. These latter factors promoted stream piracy, breaching of dune dams, and aerial exposure and forestation of infilled lakebeds. The bathymetry of Grand Sable Lake suggests that its shoreline configuration and depth varied in response to events of dune damming and subsequent dam breaching. The interrelated late Holocene events apparent in this study area suggest that variations in lake level have imposed complex hydrologic and geomorphic signatures on upper Great Lakes coasts.
NASA Astrophysics Data System (ADS)
Capítulo, Leandro Rodrigues; Kruse, Eduardo E.
2017-07-01
The Upper Pleistocene-Holocene geological evolution, which is characterized by its landscape-forming energy and is related to geological and geomorphological complexity, has an impact on the groundwater dynamics of coastal aquifers. The geological configuration of a sector of the east coast of the Province of Buenos Aires was analyzed, as well as its connection with the geological and geomorphological history of the region during the Late Pleistocene and Holocene, and its influence on the regional and local geohydrological behaviour. This analysis was based on the application of the concept of hydrofacies. Boreholes were drilled and sampled (with depths of up to 40 m), and vertical electrical sounding, electrical tomography and pumping tests were undertaken. The description of the cutting samples by means of a stereo microscope, the interpretation of satellite images, and the construction of lithological and hydrogeological profiles and flow charts were carried out in the laboratory, and then integrated in a GIS. The identification of the lithological units and their distribution in the area allowed the construction of an evolutionary geological model for the Late Pleistocene and Holocene. Three aquifer units can be recognized: one of Late Pleistocene age (hydrofacies E) and the other two of Holocene age (hydrofacies A and C); their hydraulic connection depends on the occurrence and thickness variation of the aquitard units (hydrofacies B and D). The approach adopted allows the examination of the possibilities for groundwater exploitation and constitutes an applied conceptual framework to be taken into consideration when developing conceptual and numerical models at the local and regional scales.
NASA Astrophysics Data System (ADS)
Fenger, T. L.; Surge, D. M.; Schoene, B. R.; Carter, J. G.; Milner, N.
2006-12-01
Shells of the European limpet, Patella vulgata, from Late Holocene archaeological deposits potentially contain critical information about climate change in coastal areas. Before deciphering climate information preserved in these zooarchaeological records, we studied the controls on oxygen isotope ratios (δ18O) in modern specimens. We tested the hypothesis that P. vulgata precipitates its shell in isotopic equilibrium with ambient water by comparing δ18OSHELL with expected values. Expected δ18OSHELL was constructed using the calcite-water fractionation equation, observed sea surface temperature (SST), and assuming δ18OWATER is +0.10‰ (VSMOW). Comparison between expected and measured δ18OSHELL revealed a +1.51±0.21‰ (VPDB) offset from expected values. Consequently, estimated SST calculated from δ18OSHELL was 6.50±2.45°C lower than observed SST. However, because the offset was relatively uniform, an adjustment can be made to account for this predictable vital effect and past SST can be reliably reconstructed. To further investigate the source of offset in this genus, we analyzed a fully marine tropical species (Patella stellaeformis) to minimize seasonal variation in environmental factors that influence δ18OSHELL. P. stellaeformis was evaluated to determine whether it has a similar offset from equilibrium as P. vulgata. We tested the hypotheses that: (1) δ18OSHELL in tropical species also displays vital effects; and (2) the offset from equilibrium (if any) would be constant and predictable. Our results indicated: (1) aragonite comprises most of P. stellaeformis' shell; and (2) δ18OSHELL is statistically indistinguishable from expected values calculated using the aragonite-water fractionation equation (Kolmogorov-Smirnov test statistic=0.61, D0.05[56, 57]=1.36) in contrast with our observations in P. vulgata. Differences in mineralogy or growth rates at different latitudes may play a role in mechanisms that influence vital effects.
NASA Astrophysics Data System (ADS)
Di Rita, Federico; Lirer, Fabrizio; Bonomo, Sergio; Cascella, Antonio; Ferraro, Luciana; Florindo, Fabio; Insinga, Donatella Domenica; Lurcock, Pontus Conrad; Margaritelli, Giulia; Petrosino, Paola; Rettori, Roberto; Vallefuoco, Mattia; Magri, Donatella
2018-01-01
A new high-resolution pollen record, spanning the last five millennia, is presented from the Gulf of Gaeta (Tyrrhenian Sea, central Italy), with the aim of verifying if any vegetation change occurred in the central Mediterranean region in relation to specific well-known global and/or regional climate events, including the 4.2 ka event, the Medieval Climate Anomaly (MCA) and the Little Ice Age (LIA), and to detect possible vegetation changes related to still under-investigated climate signals, for example the so-called "Bond 2" cold event around 2.8 ka BP. The vegetation dynamics of the Gaeta record shows a recurrent pattern of forest increase and decline punctuating the mid- and late Holocene. When the timing of these patterns is compared with the climate proxy data available from the same core (planktonic foraminifera assemblages and oxygen stable isotope record) and with the NAO (North Atlantic Oscillation) index, it clearly appears that the main driver for the forest fluctuations is climate, which may even overshadow the effects of human activity. We have found a clear correspondence between phases with negative NAO index and forest declines. In particular, around 4200 cal BP, a drop in AP (Arboreal Pollen) confirms the clearance recorded in many sites in Italy south of 43°N. Around 2800 cal BP, a vegetation change towards open conditions is found at a time when the NAO index clearly shows negative values. Between 800 and 1000 AD, a remarkable forest decline, coeval with a decrease in the frequencies of both Castanea and Olea, matches a shift in the oxygen isotope record towards positive values, indicating cooler temperatures, and a negative NAO. Between 1400-1850 AD, in the time period chronologically corresponding to the LIA (Little Ice Age), the Gaeta record shows a clear decline of the forest cover, particularly evident after 1550 AD, once again in correspondence with negative NAO index.
Sea-level change during the last 2500 years in New Jersey, USA
Kemp, Andrew C.; Horton, Benjamin P.; Vane, Christopher H.; Bernhardt, Christopher E.; Corbett, D. Reide; Engelhart, Simon E.; Anisfeld, Shimon C.; Parnell, Andrew C.; Cahill, Niamh
2013-01-01
Relative sea-level changes during the last ∼2500 years in New Jersey, USA were reconstructed to test if late Holocene sea level was stable or included persistent and distinctive phases of variability. Foraminifera and bulk-sediment δ13C values were combined to reconstruct paleomarsh elevation with decimeter precision from sequences of salt-marsh sediment at two sites using a multi-proxy approach. The additional paleoenvironmental information provided by bulk-sediment δ13C values reduced vertical uncertainty in the sea-level reconstruction by about one third of that estimated from foraminifera alone using a transfer function. The history of sediment deposition was constrained by a composite chronology. An age–depth model developed for each core enabled reconstruction of sea level with multi-decadal resolution. Following correction for land-level change (1.4 mm/yr), four successive and sustained (multi-centennial) sea-level trends were objectively identified and quantified (95% confidence interval) using error-in-variables change point analysis to account for age and sea-level uncertainties. From at least 500 BC to 250 AD, sea-level fell at 0.11 mm/yr. The second period saw sea-level rise at 0.62 mm/yr from 250 AD to 733 AD. Between 733 AD and 1850 AD, sea level fell at 0.12 mm/yr. The reconstructed rate of sea-level rise since ∼1850 AD was 3.1 mm/yr and represents the most rapid period of change for at least 2500 years. This trend began between 1830 AD and 1873 AD. Since this change point, reconstructed sea-level rise is in agreement with regional tide-gauge records and exceeds the global average estimate for the 20th century. These positive and negative departures from background rates demonstrate that the late Holocene sea level was not stable in New Jersey.
NASA Astrophysics Data System (ADS)
Bouimetarhan, I.; Dupont, L.; Schefuss, E.; Mollenhauer, G.; Stuut, J.; Mulitza, S.; Zonneveld, K.
2007-12-01
Pollen and organic-walled dinoflagellate cyst assemblages from core GeoB9503 retrieved from the mud-belt (50 m water depth) off the Senegal River mouth have been analyzed to reconstruct short-term paleo-oceanographic and paleo-environmental changes in tropical NW Africa during the interval from 4200 to 1200 years before present (BP). Our study emphasizes significant coeval changes in continental vegetation and oceanic environmental changes in and off Senegal. The land-sea correlation is further examined by comparison with paleo-sea surface temperature (SST) reconstructions based on alkenones analyses. These multi-proxy analyses reveal short-term land-sea climatic linkages in the western Sahel during the late Holocene. Initial dry conditions were followed by a strong and rapid humidity increase around 2,800 years BP when the environment became enriched in woody plants and plants requiring wet conditions. This interval is also characterized by the occurrence of dinoflagellate cysts of river plume affinity. We interpret these observations as the result of enhanced Senegal River runoff with high terrigenous input into the ocean and the local occurrence of cool and less-saline surface waters suggesting discharge-induced upwelling off the river mouth. After 2,500 years BP, the environment slowly became drier again, as indicated by slight increases in sahelian savanna and desert elements and SST. Around 2200 years BP, strong fluctuations in pollen and dinocyst accumulation rates in conjunction with periodically lowered SSTs, suggest an episodic "flash flood" events. The driest phase developed after about 1,800 years BP characterized by the decrease of arboreal pollen and its replacement by pollen from the Saharan group and occurrence of pollen of Pinus and Olea that have their source areas in North Africa suggesting strong trade winds. Furthermore, maximum SST in our record and high abundances of dinoflagellate cysts of subtropical/tropical affinity, such as Tuberculodinium vancampoae, indicate high nutrient, warm and stratified surface water conditions over the core site.
Holocene noble gas paleothermometry from springs in the Olympic Mountains, Washington.
Noble gas temperature proxies are examined from 52 springs in the Olympic Mountains, Washington. Groundwater flows from seeps to pooled springs at <0.1 L s-1 - 2.5 L s-1 in the Elwha watershed (≈692 km2). About 85% of sampled springs issue from confined fracture reservoirs preser...
Optical dating of late Holocene storm surges from Schokland (Noordoostpolder, the Netherlands)
NASA Astrophysics Data System (ADS)
van den Biggelaar, Don; Kluiving, Sjoerd; van Balen, Roland; Kasse, Cronelils; Troelstra, Simon; Prins, Maarten; Wallinga, Jakob; Versendaal, Alice
2015-04-01
Storm surges have a major impact on land use and human habitation in coastal regions. Our understanding of this impact can be improved by correlating long-term historical storm records with sedimentary evidence of storm surges, but so far few studies use such an approach. Here we present detailed geological and historical data on late Holocene storm surges from the former island Schokland, located in the northern part of Flevoland (central Netherlands). During the late Holocene, Schokland transformed from a peat area that gradually inundated (~1200 yr ago) via an island in a marine environment (~400 yr ago) to a land-locked island in the reclaimed Province of Flevoland (~70 yr ago). Deposits formed between 1200 and 70 year ago on lower parts of the island, consist of a stacked sequence of clay and sand layers, with the latter being deposited during storm surges. We dated the sandy laminae of late Holocene storm surges in the clay deposit on Schokland to improve the age model of the island's flooding history during the last 1200 years. Samples for dating were obtained from a mechanical core at Schokland. The top of the peat underlying the clay and sand deposits was dated using 14C accelerator mass spectrometry (AMS) of terrestrial plant and seed material. Sandy intervals of the flood deposits were dated using a series of ten quartz OSL ages, which were obtained using state-of-the-art methods to deal with incomplete resetting of the OSL signal. These new dates, together with laboratory analyses on the clay deposit (thermogravimetric analysis, grain-size analyses, foraminifera, bivalves and ostracods) and a literature study show that storm surges had a major impact on both the sedimentary and the anthropogenic history of Schokland. The results show that the stacked clay sequence is younger than expected, indicating either an increasing sedimentation rate or reworking of the clay by storm surges. Furthermore, the results indicate that a correlation can be made between the sedimentary remains of late Holocene storm surges and several major storm surges mentioned in the historical sources that eroded parts of Schokland.
Middle Holocene thermal maximum in eastern Beringia
NASA Astrophysics Data System (ADS)
Kaufman, D. S.; Bartlein, P. J.
2015-12-01
A new systematic review of diverse Holocene paleoenvironmental records (Kaufman et al., Quat. Sci. Rev., in revision) has clarified the primary multi-centennial- to millennial-scale trends across eastern Beringia (Alaska, westernmost Canada and adjacent seas). Composite time series from midges, pollen, and biogeochemical indicators are compared with new summaries of mountain-glacier and lake-level fluctuations, terrestrial water-isotope records, sea-ice and sea-surface-temperature analyses, and peatland and thaw-lake initiation frequencies. The paleo observations are also compared with recently published simulations (Bartlein et al., Clim. Past Discuss., 2015) that used a regional climate model to simulate the effects of global and regional-scale forcings at 11 and 6 ka. During the early Holocene (11.5-8 ka), rather than a prominent thermal maximum as suggested previously, the newly compiled paleo evidence (mostly sensitive to summer conditions) indicates that temperatures were highly variable, at times both higher and lower than present, although the overall lowest average temperatures occurred during the earliest Holocene. During the middle Holocene (8-4 ka), glaciers retreated as the regional average temperature increased to a maximum between 7 and 5 ka, as reflected in most proxy types. The paleo evidence for low and variable temperatures during the early Holocene contrasts with more uniformly high temperatures during the middle Holocene and agrees with the climate simulations, which show that temperature in eastern Beringia was on average lower at 11 ka and higher at 6 ka than at present (pre-industrial). Low temperatures during the early Holocene can be attributed in part to the summer chilling caused by flooding the continental shelves, whereas the mid-Holocene thermal maximum was likely driven by the loss of the Laurentide ice sheet, rise in greenhouse gases, higher-than-present summer insolation, and expansion of forest over tundra.
Direct evidence for human reliance on rainforest resources in late Pleistocene Sri Lanka.
Roberts, Patrick; Perera, Nimal; Wedage, Oshan; Deraniyagala, Siran; Perera, Jude; Eregama, Saman; Gledhill, Andrew; Petraglia, Michael D; Lee-Thorp, Julia A
2015-03-13
Human occupation of tropical rainforest habitats is thought to be a mainly Holocene phenomenon. Although archaeological and paleoenvironmental data have hinted at pre-Holocene rainforest foraging, earlier human reliance on rainforest resources has not been shown directly. We applied stable carbon and oxygen isotope analysis to human and faunal tooth enamel from four late Pleistocene-to-Holocene archaeological sites in Sri Lanka. The results show that human foragers relied primarily on rainforest resources from at least ~20,000 years ago, with a distinct preference for semi-open rainforest and rain forest edges. Homo sapiens' relationship with the tropical rainforests of South Asia is therefore long-standing, a conclusion that indicates the time-depth of anthropogenic reliance and influence on these habitats. Copyright © 2015, American Association for the Advancement of Science.
NASA Astrophysics Data System (ADS)
Meyer, Inka; Van Daele, Maarten; Fiers, Geraldine; Verleyen, Eli; De Batist, Marc; Verschuren, Dirk
2016-04-01
Investigations of the continuous sediment record from Lake Challa, a deep freshwater crater lake on the eastern slope of Mt. Kilimanjaro, are expanding our knowledge about past climate and environmental changes in equatorial East Africa. During a field campaign in 2005 a 20.65-m long composite sediment sequence was retrieved from the center of the lake, covering the past 25,000 years. Unlike many other East African lakes, Lake Challa never dried out during this period and therefore provides one of the few continuous and high-resolution regional climate-proxy records since before the LGM. Continuously taken digital line-scan images (GeoTek MSCL core logger) revealed systematic colour variation from greenish to yellow-brownish sediments throughout the core sequence. To characterize the origin of these colour variations, high-resolution colour reflectance spectrometry was carried out. The relative absorption band depth (RABD) at different wavelengths was calculated to distinguish between sediment components with distinct absorption/ reflection characteristics. RABD660/670 can be used as a proxy for chlorophyll and its derivates, and RABD610 as a proxy for carotenoids and their derivates. Comparison of RABD660/670 with independent reconstructions of rainfall (the Branched and Isoprenoid Tetraether (BIT) index of bacterial lipids) and seismic lake level reconstructions showed a positive correlation between these proxies. During times of wetter climate and higher lake level, e.g. the early Holocene, the RABD660/670 value is higher than during times of inferred dry conditions and low lake level, e.g. the early late-Glacial period (during which no chlorophyll or its derivates were detected). We attribute this positive correlation to reduced preservation of chlorophyll contained in the settling remains of dead phytoplankton during lowstands, when bottom waters may have been better oxygenated. This data is supported by the variation in fossil pigment concentration and composition analyzed by high performance liquid chromatography (HPLC). During humid/highstand episodes, chlorophyll and carotenoids are more diverse and abundant than during dry/lowstand episodes. Our data confirm the utility of reflectance spectroscopy as a tool for rapid, non-destructive and cost-effective analysis of long sequences of lithological change at high temporal resolution. They also support the previously published BIT-index record of Lake Challa as proxy for regional moisture-balance history.
Wan, Xinru
2017-01-01
Climate change and humans are proposed as the two key drivers of total extinction of many large mammals in the Late Pleistocene and Early Holocene, but disentangling their relative roles remains challenging owing to a lack of quantitative evaluation of human impact and climate-driven distribution changes on the extinctions of these large mammals in a continuous temporal–spatial dimension. Here, our analyses showed that temperature change had significant effects on mammoth (genus Mammuthus), rhinoceros (Rhinocerotidae), horse (Equidae) and deer (Cervidae). Rapid global warming was the predominant factor driving the total extinction of mammoths and rhinos in frigid zones from the Late Pleistocene and Early Holocene. Humans showed significant, negative effects on extirpations of the four mammalian taxa, and were the predominant factor causing the extinction or major extirpations of rhinos and horses. Deer survived both rapid climate warming and extensive human impacts. Our study indicates that both the current rates of warming and range shifts of species are much faster than those from the Late Pleistocene to Holocene. Our results provide new insight into the extinction of Late Quaternary megafauna by demonstrating taxon-, period- and region-specific differences in extinction drivers of climate change and human disturbances, and some implications about the extinction risk of animals by recent and ongoing climate warming. PMID:28330916
Wan, Xinru; Zhang, Zhibin
2017-03-29
Climate change and humans are proposed as the two key drivers of total extinction of many large mammals in the Late Pleistocene and Early Holocene, but disentangling their relative roles remains challenging owing to a lack of quantitative evaluation of human impact and climate-driven distribution changes on the extinctions of these large mammals in a continuous temporal-spatial dimension. Here, our analyses showed that temperature change had significant effects on mammoth (genus Mammuthus ), rhinoceros (Rhinocerotidae), horse (Equidae) and deer (Cervidae). Rapid global warming was the predominant factor driving the total extinction of mammoths and rhinos in frigid zones from the Late Pleistocene and Early Holocene. Humans showed significant, negative effects on extirpations of the four mammalian taxa, and were the predominant factor causing the extinction or major extirpations of rhinos and horses. Deer survived both rapid climate warming and extensive human impacts. Our study indicates that both the current rates of warming and range shifts of species are much faster than those from the Late Pleistocene to Holocene. Our results provide new insight into the extinction of Late Quaternary megafauna by demonstrating taxon-, period- and region-specific differences in extinction drivers of climate change and human disturbances, and some implications about the extinction risk of animals by recent and ongoing climate warming. © 2017 The Author(s).
NASA Astrophysics Data System (ADS)
Klinge, Michael; Lehmkuhl, Frank; Schulte, Philipp; Hülle, Daniela; Nottebaum, Veit
2017-09-01
In the semi-arid to semi-humid regions of western Mongolia four different geomorphological aeolian and fluvial archives were investigated in order to gain environmental information of landscape evolution during the late glacial and the Holocene. These archives, which contain aeolian deposits, fluvial sediments, and paleosols, are situated upon glacial moraines, fluvial terraces, floodplains, or mountain slopes. While radiometric dating provides information about the age of the sediment and paleosols, grain size and element distribution provide information about the sediment source and soil development. Extensive aeolian sediment transport occurred from 17 to 10 ka during the late glacial when climate was cold and dry. Since that period the developing steppe and alpine meadow vegetation served as a dust trap. During the warm and wet early to mid-Holocene sediment transport was reduced under a dense vegetation cover. All paleosols of the investigated archives show late Holocene ages which point to an environmental turning point around 3 ka. Since then, the Neoglacial period started with cooler climate conditions and periglacial processes intensified again. Recognizable glacier advances occurred during the Little Ice Age several centuries ago. Since then, global climate change leads to warmer and more arid conditions. During the late Holocene, a new period of strong geomorphological activity started and huge quantities of aeolian, colluvial and fluvial sediment accumulated. These intensified soil relocation processes cannot be explained exclusively by climate change because there are no explicit indications found in the palynological and lacustrine records of Mongolia. This discrepancy suggests that the additional factor of human impact has to be considered, which amplified the climate signal on the landscape. Simultaneously, when the enhanced geomorphological processes occurred, the prehistoric people changed from hunting and gathering to livestock husbandry. A first extensive population growth of the Scythian nomadic tribes is documented for the beginning of the Bronze Age in Central Asia. This temporal concurrence supports the finding of a first extensive human impact on landscape development.
NASA Astrophysics Data System (ADS)
Lane, C.; Taylor, A. K.; Spencer, J.; Jones, K.
2017-12-01
Reconstructions of late Quaternary paleohydrology are rare from the U.S. Atlantic coastal plain (ACP). Here we present compound-specific hydrogen isotope analyses of terrestrially-derived n-alkanes (δ2Halkane) from Jones Lake and Singletary Lake in eastern North Carolina spanning the last 50,000 years. Combined with prior pollen, charcoal, and bulk sediment geochemical analyses, the δ2Halkane data indicate arid conditions during the late-Pleistocene, but marked differences in edaphic conditions at the two sites likely due to differing water table depths. The Pleistocene-Holocene transition is marked by rapid fluctuations in δ2Halkane values that resemble the Bølling Allerød and Younger Dryas climatic events indicating potential sensitivity of regional hydrology to rapid climate change. The δ2Halkane data indicate a generally mesic Holocene that supported colonization by Quercus-dominated ecosystems during the early to middle Holocene. Evidence of increased aridity on the in eastern Tennessee and western North Carolina contrasts with evidence of mesic conditions in eastern North Carolina during the middle to late Holocene, a geographic pattern similar to modern teleconnected precipitation responses to the Pacific Decadal Oscillation. This pattern may be indicative of a stronger Pacific basin influence on regional paleoprecipitation patterns than the distally-closer Atlantic. A transition from Quercus-to Pinus-dominated ecosystems 5500 cal yr B.P. is accompanied by a large increase in charcoal abundance, but is not coincident with any high-amplitude changes in the δ2Halkane record, indicating that precipitation variability was not likely the mechanism responsible for this ecological transition. While further development of regional paleohydrological records is necessary, the lack of a clear change in middle Holocene precipitation dynamics and the temporally-heterogeneous nature of the Quercus-Pinus transition in the region indicate prehistoric anthropogenic land management practices may represent the most parsimonious explanation for the ecological change.
NASA Astrophysics Data System (ADS)
Walsh, Megan K.; Lukens, Michael L.; McCutcheon, Patrick T.; Burtchard, Greg C.
2017-12-01
With the creation of Mount Rainier National Park (MORA) in 1899 came the active management of the park's landscapes and a heavy emphasis on fire suppression. Today, managers at MORA seek to better manage current fire activity; however, this requires an improved understanding of past fire activity on the mountain. In this study high-resolution macroscopic charcoal analysis and pollen analysis of lake sediment records was used to reconstruct the postglacial fire and vegetation history for the Sunrise Ridge area of MORA. Fire activity was lowest during the Late Glacial when vegetation was sparse and climate was cool and dry. Fire activity increased during the early Holocene as the regional climate warmed and dried, and burnable biomass became more abundant. Fire activity continued to increase into the middle Holocene (until ca. 6600 cal yr BP) even as the regional climate became wetter and eventually cooler; the modern-day mesic forest and subalpine meadow landscapes of the park established at this time. Fire activity was generally highest and mean fire return intervals were lowest on Sunrise Ridge during the late Holocene, and are consistent with tree-ring based estimates of fire frequency. The similarity between the Sunrise Ridge and other paleofire records in the Pacific Northwest suggests that broad-scale climatic shifts, such as the retreat of the Cordilleran ice sheet and changes in annual insolation, as well as increased interannual climate variability (i.e., drought) particularly in the middle to late Holocene, were responsible for changes in fire activity during the postglacial period. However, abundant and increasing archaeological evidence from Sunrise Ridge during the middle to late Holocene suggests that humans may have also influenced the landscape at this time. It is likely that fires will continue to increase at MORA as drought becomes a more frequent occurrence in the Pacific Northwest.
NASA Astrophysics Data System (ADS)
van Soelen, E. E.; Brooks, G.; Lammertsma, E.; Donders, T.; Wagner-Cremer, F.; Sangiorgi, F.; Cremer, H.; Sinninghe Damsté, J. S.; Reichart, G. J.
2009-04-01
The exact consequences of human induced climate change are as yet not known. One of the current debates concerns the relation between rising sea surface temperatures (SST) and enhanced hurricane activity. It has also been suggested that the El Niño Southern Oscillation (ENSO) variability plays a major role in providing favorable circumstances for hurricane development. Paleo-climate reconstructions can help understanding long-term trends in hurricane activity. However, reliable climate reconstructions first require that suitable proxies are developed and tested. For this purpose, a pilot-study was performed using biomarkers, pollen, dinoflagellates and diatoms in a core from Tampa-Bay, Florida, covering the Holocene. The hydrological cycle in this part of Florida is strongly affected by both ENSO [1] and hurricanes. Biomarkers of both terrestrial and marine origin were abundant in the core sediments. High taraxerol concentrations were found which are characteristic for the close proximity of mangrove forests on the bays fringes. Other vascular plant derived biomarkers include friedelanone and β-sitosterol. Marine biomarkers include amongst others dinosterol and long-chain C37 and C38 alkenones, indicative for dinoflagellates and haptophyte algae respectively. These biomarkers are absent in sediments older than 7 kyr BP, indicating a non-marine depositional environment. In sediments younger than 7 kyr BP, increasing amounts of marine biomarkers indicate a transition towards estuarine conditions. SST was reconstructed on the alkenones-based paleothermometer Uk'37 and indicates temperatures of ~ 26°C for the past ~4 kyr. Between 7 and 4 kyr BP, concentrations of alkenones in the sediments are too low for reliable SST reconstructions. The shift towards estuarine conditions is a consequence of rising sea-levels following the last deglaciation and is in agreement with earlier findings by Cronin et al. [2], who recognized a change from lacustrine to marine sediments around 7 kyr BP in the same sediment core. Dinoflagellates and diatoms indicate increasing marine conditions from 7 kyr BP onwards, implying that sea level continued rising. Also the pollen-record shows a shift around 7 kyr BP, with a decrease in Cypress swamp vegetation and a slight increase in mangrove pollen, indicative of transgression. Organic geochemical and micropaleontological proxies are in agreement with each other and confirm earlier findings for Holocene Tampa Bay development. The excellent preservation of both terrestrial and marine biomarkers makes them a useful proxy for the reconstruction of SST, precipitation and runoff and eventually hurricanes, especially when read a multi-proxy approach.
Pluvial lakes in the Great Basin of the western United States: a view from the outcrop
Reheis, Marith C.; Adams, Kenneth D.; Oviatt, Charles G.; Bacon, Steven N.
2014-01-01
Paleo-lakes in the western United States provide geomorphic and hydrologic records of climate and drainage-basin change at multiple time scales extending back to the Miocene. Recent reviews and studies of paleo-lake records have focused on interpretations of proxies in lake sediment cores from the northern and central parts of the Great Basin. In this review, emphasis is placed on equally important studies of lake history during the past ∼30 years that were derived from outcrop exposures and geomorphology, in some cases combined with cores. Outcrop and core records have different strengths and weaknesses that must be recognized and exploited in the interpretation of paleohydrology and paleoclimate. Outcrops and landforms can yield direct evidence of lake level, facies changes that record details of lake-level fluctuations, and geologic events such as catastrophic floods, drainage-basin changes, and isostatic rebound. Cores can potentially yield continuous records when sampled in stable parts of lake basins and can provide proxies for changes in lake level, water temperature and chemistry, and ecological conditions in the surrounding landscape. However, proxies such as stable isotopes may be influenced by several competing factors the relative effects of which may be difficult to assess, and interpretations may be confounded by geologic events within the drainage basin that were unrecorded or not recognized in a core. The best evidence for documenting absolute lake-level changes lies within the shore, nearshore, and deltaic sediments that were deposited across piedmonts and at the mouths of streams as lake level rose and fell. We review the different shorezone environments and resulting deposits used in such reconstructions and discuss potential estimation errors. Lake-level studies based on deposits and landforms have provided paleohydrologic records ranging from general changes during the past million years to centennial-scale details of fluctuations during the late Pleistocene and Holocene. Outcrop studies have documented the integration histories of several important drainage basins, including the Humboldt, Amargosa, Owens, and Mojave river systems, that have evolved since the Miocene within the active tectonic setting of the Great Basin; these histories have influenced lake levels in terminal basins. Many pre-late Pleistocene lakes in the western Great Basin were significantly larger and record wetter conditions than the youngest lakes. Outcrop-based lake-level data provide important checks on core-based proxy interpretations; we discuss four such comparisons. In some cases, such as for Lakes Owens and Manix, outcrop and core data synthesis yields stronger and more complete records; in other cases, such as for Bonneville and Lahontan, conflicts point toward reconsideration of confounding factors in interpretation of core-based proxies.
NASA Astrophysics Data System (ADS)
Trofimova, Tamara; Andersson, Carin; Bonitz, Fabian
2017-04-01
The seasonality of temperature changes is an important characteristic of climate. However, observational data for the ocean are only available for the last 150 year from a limited number of locations. Prior to 18th century information is only available from proxy reconstructions. The vast majority of such reconstructions depend on land-based archives, primarily from dendrochronology. Established marine proxy records for the ocean, especially at high latitudes, are both sparsely distributed and poorly resolved in time. Therefore, the identification and development of proxies for studying key ocean processes at sub-annual resolution that can extend the marine instrumental record is a clear priority in marine climate science. In this study, we have developed a record of early Holocene seasonal variability of bottom water temperature from the Viking Bank in the northern most North Sea. This area is of a particular interest since the hydrography is controlled by the inflow of Atlantic water. The reconstruction is based on the oxygen isotope composition of the growth increments in two sub-fossil shells of Arctica islandica (Bivalvia), dated to 9600-9335 cal. yr BP. By combining radiocarbon dating and sclerochronological techniques a floating chronology spanning over 200 years was constructed. Using the chronology as an age model, oxygen isotope measurements from 2 shells were combined into a 22-years long record. The results from this oxygen isotope record are compared with stable oxygen isotope profiles from modern shells to estimate changes in the mean state and seasonality between present and early Holocene. Shell-derived oxygen isotope values together with ice-volume corrected oxygen isotope values for the seawater were used to calculate bottom-water temperatures on a sub-annual time-scale. Preliminary results of the reconstructed early Holocene bottom water temperature indicate higher seasonality and lower minimum temperature compared to the present.
Late Pleistocene/Early Holocene Evidence of Prostatic Stones at Al Khiday Cemetery, Central Sudan
Usai, Donatella
2017-01-01
The recovery of three stone-like ovoid objects within the burial of a pre-Mesolithic (Late Pleistocene/Early Holocene) individual at Al Khiday cemetery (Central Sudan) raises the question of the nature and origin of these objects. The position in which the objects were found in relation to the human skeleton suggested a pathological condition affecting the individual, possibly urinary bladder, kidney stones or gallstones. To solve this issue, a multi-analytical approach, consisting of tomographic, microstructural and compositional analyses, was therefore performed. Based on their microstructure and mineralogical composition, consisting of hydroxylapatite and whitlockite, the investigated stones were identified as primary (endogenous) prostatic calculi. In addition, the occurrence of bacterial imprints also indicates on-going infectious processes in the individual. This discovery of the earliest known case of lithiasis extends the appearance of prostatic stones into the Late Pleistocene/Early Holocene, a disease which therefore can no longer be considered exclusive to the modern era, but which also affected prehistoric individuals, whose lifestyle and diet were significantly different to our own. PMID:28122013
NASA Astrophysics Data System (ADS)
Nazarova, Larisa; Diekmann, Bernhard; Pestrjakova, Ludmila; Herzschuh, Ulrike; Subetto, Dmitry
2010-05-01
Yakutia (Russia, northeastern part of Eurasia) represents one of Earths most extreme climatic settings in the world with deep-reaching frozen ground and a semiarid continental climate with highest seasonal temperature contrasts in the northern hemisphere. The amplitude of temperature variations around the year sometimes exceeds 100oC. There are few examples of quantitative palaeoecological studies in Siberia and these data have to be tested by quantitative studies from other sites in this region, inferred from different proxies and using regional calibration datasets and temperature models that are still lacking. Chironomid midges (Insecta, Diptera, Chironomidae) have been widely used to reconstruct past climate variability in many areas of Western Europe and North America. A chironomid-mean July air temperature inference model has been developed, based on a modern calibration set of 200 lakes sampled along a transect from 110° to 159° E and 61° to73° N in northern Russia. The inference model was applied to sediment cores from 2 lakes in the Central Yakutia in order to reconstruct past July air temperatures. The lacustrine records span mid- to late Holocene. The downcore variability in the chironomid assemblages and the composition of organic matter give evidence of climate-driven and interrelated changes in biological productivity, lacustrine trophic states, and lake-level fluctuations. Three phases of the climate development in Central Yakutia can be derived from the geochemical composition of the lake cores and according to the inferred from chironomid assemblages mean July air ToC. Content of organic matters reached maximal values in the period between 7000-4500 yBP. Sedimentation rate is especially high, numerous molluscs shells are found in sediments. All this along with the reconstructed air temperature confirmed that Mid Holocene optimum in Central Yakutia took place in this period with the maximal temperatures up to 4oC above present day ToC. Strong faunistic changes take place after 4500 yBP. Temperature reconstruction has shown that around 4500 ka BP air temperature went down up to 2oC below modern temperature. These observations confirm end of Holocene climate optimum at this time. The lake status record reveals a long-term trend towards lake-level lowering in the course of climate deterioration after 4.2 cal. ka BP and reduced evaporation as well as progressive sediment infill. This long-term trend is overprinted by short-term fluctuations at centennial time scales with high lake levels and decreased biological productivity during cool climate spells with reduced evaporation, as also observed in modern thermokarst lakes of Central Yakutia.
NASA Astrophysics Data System (ADS)
Bridault, Anne
2010-05-01
The Lateglacial-Early Holocene transition is characterized by rapid oscillations between warm and cold episodes. Their impact on ecosystem dynamics was particularly pronounced in north-western Europe where hunter-gatherer societies experienced a succession of environmental transformations, including the expansion and dispersal of biotic communities and changing herbivore habitats. Recent archaeozoological studies and AMS direct dating on mammalian bones/or bone collagen allow to map and precise this process at a supra-regional scale (France). At regional scales (i.e. Paris Basin & Jura-Northern French Alps), results indicate a rapid faunal reorganisation at the end of Lateglacial that will be presented in detail. Composition of faunal assemblages remains then unchanged during the Early Holocene. By contrast, significant herbivore habitat changes are recorded during the Early Holocene by other proxies (pollen data and isotopic data) and a decrease in Red Deer size through time is evidenced by osteometrical analyses. Hypotheses regarding the kind of adaptation process experienced by the faunal communities through time will be presented. Factors that may have controlled the observed changes will be discussed.
Early-Holocene decoupled summer temperature and monsoon precipitation in southwest China
NASA Astrophysics Data System (ADS)
Wu, D.; Chen, F.; Chen, X.; Lv, F.; Zhou, A.; Chen, J.; Abbott, M. B.; Yu, J.
2017-12-01
Proxy based reconstructions of Holocene temperature have shown that both the timing and magnitude of the thermal maximum vary substantially between different regions; the simulations results from climate models also show that summers were substantially cooler over regions directly influenced by the presence of the Laurentide ice sheet during the early Holocene, whereas other regions of the Northern Hemisphere were dominated by orbital forcing. However, for lack of summer temperature reconstruction in the low latitude regions like southwestern China dominated by the Indian summer monsoon, the Holocene summer temperature variations and it underlying forcing mechanism are ambiguous. Here we present a well-dated record of pollen-based quantitative summer temperature (mean July; MJT) over the last 14000 years from Xingyun Lake, Yunnan Province, southwest China. It was found that MJT decreased during the YD event, then increased slowly until 7400 yr BP, and decreased thereafter. The MJT shows a pattern with middle Holocene maximum of MJT, indicating a different changing pattern with the carbonate oxygen isotope record (d18O) from the same core during the early Holocene (11500-7400 yr BP), which has the similar variation with speleothem d18O record from Dongge cave, both indicate the variation of monsoon precipitation with the highest precipitation occurred during the early Holocene. Therefore, we propose that the variation of summer temperature and precipitation in southwest China was decoupled during the early Holocene. However, both MJT and monsoon precipitation decreased after the middle Holocene following the boreal summer insolation. We suggest that the high precipitation with strong summer monsoon and hence higher cloud cover may depress the temperature increasing forced by increasing summer insolation during the early Holocene; while melting ice-sheet in the high latitude regions had strongly influenced the summer temperature increase during the deglacial period, which weakened northward heat transport by the ocean. In addition, the high concentration of atmospheric aerosol during the early Holocene may also have partly contribution to the cool summer temperature by weakening solar insolation.
Pollen evidence for a mid-Holocene East Asian summer monsoon maximum in northern China
NASA Astrophysics Data System (ADS)
Wen, Ruilin; Xiao, Jule; Fan, Jiawei; Zhang, Shengrui; Yamagata, Hideki
2017-11-01
There is a controversy regarding whether the high precipitation delivered by an intensified East Asian summer monsoon occurred during the early Holocene, or during the middle Holocene, especially in the context of the monsoonal margin region. The conflicting views on the subject may be caused by chronological uncertainties and ambiguities in the interpretation of different climate proxies measured in different sedimentary sequences. Here, we present a detailed record of the Holocene evolution of vegetation in northern China based on a high-resolution pollen record from Dali Lake, located near the modern summer monsoon limit. From 12,000-8300 cal BP, the sandy land landscape changed from desert to open elm forest and shrubland, while dry steppe dominated the hilly lands and patches of birch forest developed in the mountains. Between 8300 and 6000 cal BP, elm forest was extensively distributed in the sandy lands, while typical steppe covered the hilly lands and mixed coniferous-broadleaved forests expanded in the mountains. Our pollen evidence contradicts the view that the monsoonal rainfall increased during the early Holocene; rather, it indicates that the East Asian summer monsoon did not become intensified until ∼8000 cal BP in northern China. The low precipitation during the early Holocene can be attributed to the boundary conditions, i.e., to the remnant high-latitude Northern Hemisphere ice sheets and the relatively low global sea level.
NASA Astrophysics Data System (ADS)
Nazarkina, A. V.; Belyanin, P. S.
2014-05-01
The evolution of alluvial soils in the Bikin River basin in the Middle and the Late Holocene is discussed. On the basis of biostratigraphic data, four pollen zones have been identified in the soils: Pinus koraiensis- Picea, Pinus koraiensis- Quercus- Sphagnum, Betula- Alnus- Alnaster, and Quercus. A set of soil characteristics (texture, acid-base properties, and the organic matter content and group composition) have also been determined. These data allow us to distinguish between four stages of alluvial soil formation in the Bikin River basin. They characterize humus-forming conditions in the Middle and the Late Holocene. Reconstruction of ancient vegetation conditions makes it possible to conclude that climatic fluctuations were synchronous with changes in the soil characteristics. During the Holocene climatic optimum, humus was formed in a slightly acid medium, and humic acids predominated. In cold periods with increased precipitation, fulvic acids predominated in the composition of humus, and the portion of insoluble residue was high because of the more acid medium. The stages of alluvial pedogenesis in the Bikin River valley follow the sedimentation model of soil evolution. Alluvial gray humus soils evolved from typical gray humus soils under meadow communities during warm periods to gleyic and gleyed soils under birch shrubs and alder groves in colder and wetter periods.
NASA Astrophysics Data System (ADS)
Avigliano, Roberto; di Anastasio, Giulio; Improta, Salvatore; Peresani, Marco; Ravazzi, Cesare
2000-12-01
A late glacial to early Holocene lacustrine and peat succession, rich in conifer remains and including some palaeolithic flint artefacts, has been investigated in the Palughetto intermorainic basin (Venetian Pre-Alps). The geomorphological and stratigraphical relationships, 14C dates and pollen analyses allow a reconstruction of the environmental history of the basin and provide significant insights into the reforestation and peopling of the Pre-Alps. The onset of peat accumulation is dated to 14.4-14.1 kyr cal. BP, coinciding with reforestation at middle altitudes that immediately post-dates the immigration of Larix decidua and Picea abies subsp. europaea. Plant macrofossils point to the expansion of spruce about 14.3 kyr cal. BP, so far one of the earliest directly dated in the late glacial period of southern Europe. The previous hypothesis of an early Holocene spruce immigration in the Southern Alps from Slovenia needs reconsideration. Organic sedimentation stopped at the end of the Younger Dryas and was followed by the evolution of hydromorphic soils containing lithic artefacts, anthropic structures and wood charcoal. The typological features of the flint implements refer human occupation of the site to the end of the recent Epigravettian. Charcoals yielded dates either consistent with, or younger than, the archaeological chronology, in the early and middle Holocene.
NASA Technical Reports Server (NTRS)
Han, Y. M.; Peteet, D. M.; Arimoto, R.; Cao, J. J.; An, Z. S.; Sritrairat, S.; Yan, B. Z.
2016-01-01
Smoldering and flaming fires, which emit different proportions of organic (OC) and black carbon (BC, in the form of char and soot), have long been recognized in modern wildfire observations but never in a paleo-record, and little is known about their interactions with climate. Here we show that in the late glacial-early Holocene transition period, when the climate was moist, relatively high quantities of char were deposited in Linsley Pond, Connecticut, USA while soot was more abundant during the warmer and drier early Holocene interval. The highest soot mass accumulation rates (MARs) occurred at the beginning of the Holocene as fuel availability increased through the climatic transition when boreal forests were locally extirpated. These variations with time are related to the different formation pathways of char and soot, which are governed by combustion efficiency. This study provides an approach for differentiating smoldering from flaming combustion in paleo-wildfire reconstructions. Our results suggest that climate and fuel loads control the occurrence of different wildfire types and precipitation may play a key role.
NASA Astrophysics Data System (ADS)
Han, Y. M.; Peteet, D. M.; Arimoto, R.; Cao, J. J.; An, Z. S.; Sritrairat, S.; Yan, B. Z.
2016-02-01
Smoldering and flaming fires, which emit different proportions of organic (OC) and black carbon (BC, in the form of char and soot), have long been recognized in modern wildfire observations but never in a paleo-record, and little is known about their interactions with climate. Here we show that in the late glacial-early Holocene transition period, when the climate was moist, relatively high quantities of char were deposited in Linsley Pond, Connecticut, USA while soot was more abundant during the warmer and drier early Holocene interval. The highest soot mass accumulation rates (MARs) occurred at the beginning of the Holocene as fuel availability increased through the climatic transition when boreal forests were locally extirpated. These variations with time are related to the different formation pathways of char and soot, which are governed by combustion efficiency. This study provides an approach for differentiating smoldering from flaming combustion in paleo-wildfire reconstructions. Our results suggest that climate and fuel loads control the occurrence of different wildfire types and precipitation may play a key role.
Han, Y M; Peteet, D M; Arimoto, R; Cao, J J; An, Z S; Sritrairat, S; Yan, B Z
2016-02-10
Smoldering and flaming fires, which emit different proportions of organic (OC) and black carbon (BC, in the form of char and soot), have long been recognized in modern wildfire observations but never in a paleo-record, and little is known about their interactions with climate. Here we show that in the late glacial-early Holocene transition period, when the climate was moist, relatively high quantities of char were deposited in Linsley Pond, Connecticut, USA while soot was more abundant during the warmer and drier early Holocene interval. The highest soot mass accumulation rates (MARs) occurred at the beginning of the Holocene as fuel availability increased through the climatic transition when boreal forests were locally extirpated. These variations with time are related to the different formation pathways of char and soot, which are governed by combustion efficiency. This study provides an approach for differentiating smoldering from flaming combustion in paleo-wildfire reconstructions. Our results suggest that climate and fuel loads control the occurrence of different wildfire types and precipitation may play a key role.
El Niño controls Holocene rabbit and hare populations in Baja California
NASA Astrophysics Data System (ADS)
Hart, Isaac A.; Broughton, Jack M.; Gruhn, Ruth
2015-07-01
The El Niño/Southern Oscillation (ENSO) is a major source of climatic variation worldwide, with significant impacts on modern human and animal populations. However, few detailed records exist on the long-term effects of ENSO on prehistoric vertebrate populations. Here we examine how lagomorph (rabbit and hare) deposition rate, population age structure and taxonomic composition from Abrigo de los Escorpiones, a well-dated, trans-Holocene vertebrate fauna from northern Baja California, Mexico, vary as a function of the frequency of wet El Niño events and eastern Pacific sea-surface temperatures (SSTs) derived from eastern Pacific geological records. Faunal indices vary significantly in response to El Niño-based precipitation and SST, with substantial moisture-driven variability in the middle and late Holocene. The late Holocene moisture pulse is coincident with previously documented changes in the population dynamics of other vertebrates, including humans. As the frequency and intensity of ENSO is anticipated to vary in the future, these results have important implications for change in future vertebrate populations.
NASA Astrophysics Data System (ADS)
Giosan, Liviu; Ponton, Camilo; Usman, Muhammed; Blusztajn, Jerzy; Fuller, Dorian Q.; Galy, Valier; Haghipour, Negar; Johnson, Joel E.; McIntyre, Cameron; Wacker, Lukas; Eglinton, Timothy I.
2017-12-01
Soil erosion plays a crucial role in transferring sediment and carbon from land to sea, yet little is known about the rhythm and rates of soil erosion prior to the most recent few centuries. Here we reconstruct a Holocene erosional history from central India, as integrated by the Godavari River in a sediment core from the Bay of Bengal. We quantify terrigenous fluxes, fingerprint sources for the lithogenic fraction and assess the age of the exported terrigenous carbon. Taken together, our data show that the monsoon decline in the late Holocene significantly increased soil erosion and the age of exported organic carbon. This acceleration of natural erosion was later exacerbated by the Neolithic adoption and Iron Age extensification of agriculture on the Deccan Plateau. Despite a constantly elevated sea level since the middle Holocene, this erosion acceleration led to a rapid growth of the continental margin. We conclude that in monsoon conditions aridity boosts rather than suppresses sediment and carbon export, acting as a monsoon erosional pump modulated by land cover conditions.
A Late Glacial to Holocene record of environmental change from Lake Dojran (Macedonia, Greece)
NASA Astrophysics Data System (ADS)
Francke, A.; Wagner, B.; Leng, M. J.; Rethemeyer, J.
2013-02-01
A Late Glacial to Holocene sediment sequence (Co1260, 717 cm) from Lake Dojran, located at the boarder of the F.Y.R. of Macedonia and Greece, has been investigated to provide information on climate variability in the Balkan region. A robust age-model was established from 13 radiocarbon ages, and indicates that the base of the sequence was deposited at ca. 12 500 cal yr BP, when the lake-level was low. Variations in sedimentological (H2O, TOC, CaCO3, TS, TOC/TN, TOC/TS, grain-size, XRF, δ18Ocarb, δ13Ccarb, δ13Corg) data were linked to hydro-acoustic data and indicate that warmer and more humid climate conditions characterised the remaining period of the Younger Dryas until the beginning of the Holocene. The Holocene exhibits significant environmental variations, including the 8.2 and 4.2 ka cooling events, the Medieval Warm Period and the Little Ice Age. Human induced erosion processes in the catchment of Lake Dojran intensified after 2800 cal yr BP.
A Mid-Holocene Relative Sea-Level Stack, New Jersey, USA
NASA Astrophysics Data System (ADS)
Horton, B.; Walker, J. S.; Kemp, A.; Shaw, T. J.; Kopp, R. E.
2017-12-01
Most high resolution (decimeter- and decadal-scale) relative sea-level (RSL) records using salt-marsh microfossils as a proxy only extend through the Common Era, limiting our understanding of driving mechanisms of RSL change and how sea-level is influenced by changing climate. Records beyond the Common Era are limited by the depth of continuous sequences of salt-marsh peat suitable for high resolution reconstructions, as well as contamination by local processes such as sediment compaction. In contrast, sequences of basal peats have produced compaction-free RSL records through the Holocene, but at a low resolution (meter- and centennial-scale). We devise a new Multi-Proxy Presence/Absence Method (MP2AM) to develop a mid-Holocene RSL stack. We stack a series of 1 m basal peat cores that overlap along a uniform elevational gradient above an incompressible basal sand. We analyzed three sea-level indicators from 14 cores: foraminifera, testate amoebae, and stable carbon isotope geochemistry. To reconstruct RSL, this multi-proxy approach uses the timesaving presence/absence of forams and testates to determine the elevation of the highest occurrence of forams and the lowest occurrence of testates in each basal core. We use stable carbon isotope geochemistry to determine the C3/C4 vegetation boundary in each core. We develop age-depth models for each core using a series of radiocarbon dates. The RSL records from each 1 m basal core are combined to create a stack or, in effect, one long core of salt-marsh material. This method removes the issue of compaction to create a continuous RSL record to address temporal changes and periods of climate and sea-level variability. We reconstruct a southern NJ mid-Holocene RSL record from Edwin B. Forsythe National Wildlife Refuge, where Kemp et al. (2013) completed a 2500 yr RSL record using a foraminifera-based transfer function approach. Preliminary radiocarbon dates suggest the basal sequence is at least 4246-4408 cal yrs BP. Presence/absence of forams and testates and the transition of C3/C4 vegetation is identified in each core and constrained with radiocarbon dating. A short core with full counts of forams and testates is used to test the new method and compare with the traditional foraminifera-based transfer function approach and the local tide gauge record.
High-resolution mineral dust and sea ice proxy records from the Talos Dome ice core
NASA Astrophysics Data System (ADS)
Schüpbach, S.; Federer, U.; Kaufmann, P. R.; Albani, S.; Barbante, C.; Stocker, T. F.; Fischer, H.
2013-12-01
In this study we report on new non-sea salt calcium (nssCa2+, mineral dust proxy) and sea salt sodium (ssNa+, sea ice proxy) records along the East Antarctic Talos Dome deep ice core in centennial resolution reaching back 150 thousand years (ka) before present. During glacial conditions nssCa2+ fluxes in Talos Dome are strongly related to temperature as has been observed before in other deep Antarctic ice core records, and has been associated with synchronous changes in the main source region (southern South America) during climate variations in the last glacial. However, during warmer climate conditions Talos Dome mineral dust input is clearly elevated compared to other records mainly due to the contribution of additional local dust sources in the Ross Sea area. Based on a simple transport model, we compare nssCa2+ fluxes of different East Antarctic ice cores. From this multi-site comparison we conclude that changes in transport efficiency or atmospheric lifetime of dust particles do have a minor effect compared to source strength changes on the large-scale concentration changes observed in Antarctic ice cores during climate variations of the past 150 ka. Our transport model applied on ice core data is further validated by climate model data. The availability of multiple East Antarctic nssCa2+ records also allows for a revision of a former estimate on the atmospheric CO2 sensitivity to reduced dust induced iron fertilisation in the Southern Ocean during the transition from the Last Glacial Maximum to the Holocene (T1). While a former estimate based on the EPICA Dome C (EDC) record only suggested 20 ppm, we find that reduced dust induced iron fertilisation in the Southern Ocean may be responsible for up to 40 ppm of the total atmospheric CO2 increase during T1. During the last interglacial, ssNa+ levels of EDC and EPICA Dronning Maud Land (EDML) are only half of the Holocene levels, in line with higher temperatures during that period, indicating much reduced sea ice extent in the Atlantic as well as the Indian Ocean sector of the Southern Ocean. In contrast, Holocene ssNa+ flux in Talos Dome is about the same as during the last interglacial, indicating that there was similar ice cover present in the Ross Sea area during MIS 5.5 as during the Holocene.
(Model) Peatlands in late Quaternary interglacials
NASA Astrophysics Data System (ADS)
Kleinen, Thomas; Brovkin, Victor
2016-04-01
Peatlands have accumulated a substantial amount of carbon, roughly 600 PgC, during the Holocene. Prior to the Holocene, there is relatively little direct evidence of peatlands, though coal deposits bear witness to a long history of peat-forming ecosystems going back to the Carboniferous. We therefore need to rely on models to investigate peatlands in times prior to the Holocene. We have developed a dynamical model of wetland extent and peat accumulation, integrated in the coupled climate carbon cycle model of intermediate complexity CLIMBER2-LPJ, in order to mechanistically model interglacial carbon cycle dynamics. This model consists of the climate model of intermediate complexity CLIMBER2 and the dynamic global vegetation model LPJ, which we have extended with modules to determine peatland extent and carbon accumulation. The model compares reasonably well to Holocene peat data. We have used this model to investigate the dynamics of atmospheric CO2 in the Holocene and two other late Quaternary interglacials, namely the Eemian, which is interesting due to its warmth, and Marine Isotope Stage 11 (MIS11), which is the longest interglacial during the last 500ka. We will also present model results of peatland extent and carbon accumulation for these interglacials. We will discuss model shortcomings and knowledge gaps currently preventing an application of the model to full glacial-interglacial cycles.
NASA Astrophysics Data System (ADS)
Klemm, Juliane; Herzschuh, Ulrike; Pestryakova, Luidmila A.
2016-09-01
Palaeoecological investigations in the larch forest-tundra ecotone in northern Siberia have the potential to reveal Holocene environmental variations, which likely have consequences for global climate change because of the strong high-latitude feedback mechanisms. A sediment core, collected from a small lake (radius ∼100 m), was used to reconstruct the development of the lake and its catchment as well as vegetation and summer temperatures over the last 7100 calibrated years. A multi-proxy approach was taken including pollen and sedimentological analyses. Our data indicate a gradual replacement of open larch forests by tundra with scattered single trees as found today in the vicinity of the lake. An overall trend of cooling summer temperature from a ∼2 °C warmer-than-present mid-Holocene summer temperatures until the establishment of modern conditions around 3000 years ago is reconstructed based on a regional pollen-climate transfer function. The inference of regional vegetation changes was compared to local changes in the lake's catchment. An initial small water depression occurred from 7100 to 6500 cal years BP. Afterwards, a small lake formed and deepened, probably due to thermokarst processes. Although the general trends of local and regional environmental change match, the lake catchment changes show higher variability. Furthermore, changes in the lake catchment slightly precede those in the regional vegetation. Both proxies highlight that marked environmental changes occurred in the Siberian forest-tundra ecotone over the course of the Holocene.
NASA Astrophysics Data System (ADS)
Stein, Ruediger; Fahl, Kirsten
2013-04-01
Recently, a novel and promising biomarker proxy for reconstruction of Arctic sea-ice conditions was developed and is based on the determination of a highly branched isoprenoid with 25 carbons (IP25; Belt et al., 2007). Following this pioneer IP25 study by Belt and colleagues, several IP25 studies of marine surface sediments and sediment cores as well as sediment trap samples from northpolar areas were carried out successfully and allowed detailed reconstruction of modern and late Quaternary sea ice variability in these regions (e.g., Massé et al., 2008; Müller et al., 2009, 2011; Vare et al., 2009; Belt et al., 2010; Fahl and Stein, 2012; for review see Stein et al., 2012). Here, we present new (low-resolution) biomarker records from Ocean Drilling Program (ODP) Sites 911 and 912, representing the Pliocene-Pleistocene time interval (including the interval of major intensification of Northern Hemisphere Glaciation near 2.7 Ma). These data indicate that sea ice of variable extent was present in the Fram Strait/southern Yermak Plateau area during most of the time period under investigation. In general, an increase in sea-ice cover seems to correlate with phases of extended late Pliocene-Pleistocene continental ice-sheets. At ODP Site 912, a significant increase in sea-ice extension occurred near 1.2 Ma (Stein and Fahl, 2012). Furthermore, our data support the idea that a combination of IP25 and open water, phytoplankton biomarker data ("PIP25 index"; Müller et al., 2011) may give more reliable and quantitative estimates of past sea-ice cover (at least for the study area). This study reveals that the novel IP25/PIP25 biomarker approach has potential for semi-quantitative paleo-sea ice studies covering the entire Quaternary and motivate to carry out further detailed high-resolution research on ODP/IODP material using this proxy. References Belt, S.T., Massé, G., Rowland, S.J., Poulin, M., Michel, C., LeBlanc, B., 2007. A novel chemical fossil of palaeo sea ice: IP25. Organic Geochemistry 38, 16-27. Belt, S.T., Vare, L.L., Massé, G., Manners, H.R., Price, J.C., MacLachlan, S.E., Andrews, J.T., Schmidt, S., 2010. Striking similarities in temporal changes to spring sea ice occurrence across the central Canadian Arctic Archipelago over the last 7000 years. Quaternary Science Reviews 29, 3489-3504. Fahl, K. and Stein, R., 2012. Modern seasonal variability and deglacial/Holocene change of central Arctic Ocean sea-ice cover: New insights from biomarker proxy records. Earth Planetary Science Letters 351-352C, 123-133, doi:10.1016/j.epsl.2012.07.009. Massé, G., Rowland, S.J., Sicre, M.-A., Jacob, J., Jansen, E., Belt, S.T., 2008. Abrupt climate changes for Iceland during the last millennium: Evidence from high resolution sea ice reconstructions. Earth Planetary Science Letters 269, 565-569. Müller, J., Massé, G., Stein, R., Belt, S.T., 2009. Variability of sea-ice conditions in the Fram Strait over the past 30,000 years. Nature Geoscience 2, 772-776. Müller, J., Wagner, A., Fahl, K., Stein, R., Prange, M., Lohmann, G., 2011. Towards quantitative sea ice reconstructions in the northern North Atlantic: A combined biomarker and numerical modelling approach. Earth Planetary Science Letters 306, 137-148. Stein, R. and Fahl, K., 2012. Biomarker proxy IP25 shows potential for studying entire Quaternary Arctic sea-ice history. Organic Geochemistry; doi: 10.1016/j.orggeochem.2012.11.005. Stein, R., Fahl, K., and Müller, J., 2012. Proxy reconstruction of Arctic Ocean sea ice history: "From IRD to IP25". Polarforschung 82, 37-71. Vare, L.L., Massé, G., Gregory, T.R., Smart, C.W., Belt, S.T., 2009. Sea ice variations in the central Canadian Arctic Archipelago during the Holocene. Quaternary Science Reviews 28, 1354-1366.
NASA Astrophysics Data System (ADS)
Shibahara, Akihiko; Ohkushi, Ken'ichi; Kennett, James P.; Ikehara, Ken
2007-09-01
A strong oxygen minimum zone (OMZ) currently exists at upper intermediate water depths on the northern Japanese margin, NW Pacific. The OMZ results largely from a combination of high surface water productivity and poor ventilation of upper intermediate waters. We investigated late Quaternary history (last 34 kyr) of ocean floor oxygenation and the OMZ using quantitative changes in benthic foraminiferal assemblages in three sediment cores taken from the continental slope off Shimokita Peninsula and Tokachi, northern Japan, at water depths between 975 and 1363 m. These cores are well located within the present-day OMZ, a region of high surface water productivity, and in close proximity to the source region of North Pacific Intermediate Water. Late Quaternary benthic foraminiferal assemblages experienced major changes in response to changes in dissolved oxygen concentration in ocean floor sediments. Foraminiferal assemblages are interpreted to represent three main groups representing oxic, suboxic, and dysoxic conditions. Assemblage changes in all three cores and hence in bottom water oxygenation coincided with late Quaternary climatic episodes, similar to that known for the southern California margin. These episodes, in turn, are correlated with orbital and millennial climate episodes in the Greenland ice core including the last glacial episode, Bølling-Ållerød (B/A), Younger Dryas, Preboreal (earliest Holocene), early Holocene, and late Holocene. The lowest oxygen conditions, marked by dysoxic taxa and laminated sediments in one core, occurred during the B/A and the Preboreal intervals. Suboxic taxa dominated mainly during the last glacial, the Younger Dryas, and most of the Holocene. Dysoxic conditions during the B/A and Preboreal intervals in this region were possibly caused by high surface water productivity at times of reduced intermediate ventilation in the northwestern Pacific. Remarkable similarities are evident in the late Quaternary sequence of benthic foraminiferal assemblage change between the two very distant continental margins of northern Japan and southern California. The oscillations in OMZ strength, reflected by these faunal changes, were widespread and apparently synchronous over wide areas of the North Pacific, reflecting broad changes in intermediate water ventilation and surface ocean productivity closely linked with late Quaternary climate change on millennial and orbital timescales.
Multi-proxy dating of Holocene maar lakes and Pleistocene dry maar sediments in the Eifel, Germany
NASA Astrophysics Data System (ADS)
Sirocko, Frank; Dietrich, Stephan; Veres, Daniel; Grootes, Pieter M.; Schaber-Mohr, Katja; Seelos, Klemens; Nadeau, Marie-Josée; Kromer, Bernd; Rothacker, Leo; Röhner, Marieke; Krbetschek, Matthias; Appleby, Peter; Hambach, Ulrich; Rolf, Christian; Sudo, Masafumi; Grim, Stephanie
2013-02-01
During the last twelve years the ELSA Project (Eifel Laminated Sediment Archive) at Mainz University has drilled a total of about 52 cores from 27 maar lakes and filled-in maar basins in the Eifel/Germany. Dating has been completed for the Holocene cores using 6 different methods (210Pb and 137Cs activities, palynostratigraphy, event markers, varve counting, 14C). In general, the different methods consistently complement one another within error margins. Event correlation was used for relating typical lithological changes with historically known events such as the two major Holocene flood events at 1342 AD and ca 800 BC. Dating of MIS2-MIS3 core sections is based on greyscale tuning, radiocarbon and OSL dating, magnetostratigraphy and tephrochronology. The lithological changes in the sediment cores demonstrate a sequence of events similar to the North Atlantic rapid climate variability of the Last Glacial Cycle. The warmest of the MIS3 interstadials was GI14, when a forest with abundant spruce covered the Eifel area from 55 to 48 ka BP, i.e. during a time when also other climate archives in Europe suggested very warm conditions. The forest of this "Early Stage 3 warm phase" developed subsequently into a steppe with scattered birch and pine, and finally into a glacial desert at around 25 ka BP. Evidence for Mono Lake and Laschamp geomagnetic excursions is found in two long cores. Several large eruptions during Middle and Late Pleistocene (Ulmener Maar - 11,000 varve years BP, Laacher See - 12,900 varve years BP, Mosenberg volcanoes/Meerfelder Maar 41-45 cal ka BP, Dümpel Maar 116 ka BP, Glees Maar - 151 ka BP) produced distinct ash-layers crucial for inter-core and inter-site correlations. The oldest investigated maar of the Eifel is 40Ar/39Ar dated to the time older than 520 ka BP.
NASA Astrophysics Data System (ADS)
Rossi, Carlos; Bajo, Petra; Lozano, Rafael P.; Hellstrom, John
2018-07-01
The Younger Dryas (YD) stadial represents the most abrupt climate change of the Earth's recent history. Thus, understanding its causes and different local responses is relevant for Quaternary paleoclimatology. We present a speleothem high-resolution proxy record of the Lateglacial to Early Holocene paleoclimate of the Cantabrian Cordillera (N Spain), a strategic location to evaluate the influence of North Atlantic events such as the YD on South-Western Europe. Fluorescence lamination, growth-rate, stable-isotope, and [Mg] records from stalagmite SIR-1 were dated using an age-depth model constrained by U-Th dates and annual-lamina counting. The YD is recorded as a prominent positive δ13C excursion whose chronology (12.95 ± 0.14 to 11.62 ± 0.16 ka) and shape closely agree with the GS-1 stadial as defined in Greenland ice, supporting the event synchronicity in both areas. A colder and drier YD climate limited soil productivity and dripwater availability, leading to higher δ13C and [Mg], reduced growth rate, and virtually absent fluorescence lamination. The early YD record (until ∼12.5 ka) reflects increasing aridity, whereas the late YD (from ∼12.2 ka on) shows the opposite trend. At the YD boundaries, temperature changes influenced the [Mg] record by modifying the Mg partition into calcite. However, this effect was superseded by major changes in dripwater Mg/Ca linked to rainfall variations. During the Early Holocene, the Arnero Sierra was forested and had a relatively warm and humid seasonal climate, indicated in SIR-1 by higher growth rates, lower δ13C and [Mg], and well-developed fluorescent lamination. Similar to other high-resolution stalagmitic records of the Cordillera, from ∼8.5 to 8.0 ka SIR-1 reflects a temporary trend of increasing aridity.
NASA Astrophysics Data System (ADS)
Cabadas Báez, H. V.; Sedov, S.; Solleiro Rebolledo, E.
2010-03-01
The Yucatán Peninsula, located in the southeast part of Mexico, is characterized to be an extended and low altitude platform constituted by calcareous rocks. These rocks are mainly limestones formed since Cretaceous under a marine shelf environment. In the northeast coast, the youngest sediments are found, as products of Quaternary sea level changes. We studied various profiles in quarries, following north-south transect in the Yucatan coast, near Cancún. In such profiles a sequence consisting of different kind of calcareous sediments and a soil in the surface were analyzed. The base of the sequence is constituted by a petrocalcic horizon (calcrete) that was formed during the last interglacial, 125,000 yrs. ago. Under the calcrete, a transgressive sequence appears with calcareous sediments of lagoon and reef facies. The uppermost part consists of dune-like sediments with crossed stratification overlied by another petrocalcic horizon, maybe formed during the Pleistocene-Holocene transition. Soils of the Yucatan Peninsula are very thin, rich in organic matter, neutral and well structured, and their image do not correspond to that found in tropical soils (deep, strongly weathered, leached). They are directly associated with the dune sediment dissolution because are infilling the "space" generated by rock dissolution. Calcrete is always in the uppermost part, but is broken and crossed by soil. This sequence reveals some aspects of the environmental dynamic during Late Pleistocene-Holocene. First, a dryer environment is assumed due to the presence of the calcrete in the base. During the glacial period, a transgressive environment prevailed and marine calcareous sedimentation started. During Last Glacial Maximum a regression occurred, the climate was drier and the formation of dune sediments and another calcrete occurred. In the Holocene climate changed shifting toward more humid conditions that produced the modern soil cover, under tropical conditions.
NASA Astrophysics Data System (ADS)
Goldsmith, Y.; Broecker, W. S.; Polissar, P. J.; Xu, H.; Lan, J.; Zhou, W.; An, Z.; deMenocal, P. B.
2016-12-01
The magnitude, rate and extent of East Asian Monsoon (EAM) rainfall changes during the late Pleistocene-Holocene is reconstructed using the first well-dated northeastern China lake-area record from a closed-lake basin, which enables reconstructing quantitative absolute paleo-rainfall amounts. In addition, compound specific hydrogen isotopes (dDwax) from lake-sediments are used to reconstruct the isotopic composition of rainwater (dP). Lake-levels were 60m higher than present during the early and middle Holocene. Requiring an absolute increase in mean annual rainfall to at least two times higher than today and a 400 km northward expansion. The EAM intensity and northern extent alternated abruptly between wet and dry periods on time scales of a few centuries. Both the onset ( 60 m rise at 11.5 ka BP) and termination ( 35 m drop at 5.5 ka BP) of the Holocene humid period occurred abruptly, within centuries. dDwax is negatively correlated with the lake area record (R2=0.77), showing for the first time, the co-evolution of dP and local rainfall amount. Lake level is also highly correlated with Both North and South Chinese stalagmite records. These results indicate that local distillation is a significant control on dP in East China, and that local rainfall amount is correlated with the intensity of the large EAM system. These results resolve a current debate regarding the use of dP as a proxy for rainfall amount and validate the "intensity-based" interpretations of the Chinese cave deposit records. The lake is located at the modern NW boundary of the EAM, therefore, lake level is governed by the northward extent of the EAM. The covariation of lake level and the intensity of the monsoon indicate that intensity and northward expansion of the EAM are linked and that during intense (weak) EAM periods the EAM northwestern boundary shifts northward (southward).
NASA Astrophysics Data System (ADS)
Schwarz, Anja; Turner, Falko; Lauterbach, Stefan; Plessen, Birgit; Krahn, Kim J.; Glodniok, Sven; Mischke, Steffen; Stebich, Martina; Witt, Roman; Mingram, Jens; Schwalb, Antje
2017-12-01
Arid Central Asia represents a key region for understanding climate variability and interactions in the Northern Hemisphere. Patterns and mechanisms of Holocene climate change in arid Central Asia are, however, only partially understood. Multi-proxy data combining diatom, ostracod, sedimentological, geochemical and stable isotope analyses from a ca. 6000-year-old lake sediment core from Son Kol (Central Kyrgyzstan) show distinct and repeated changes in species assemblages. Diatom- and ostracod-inferred conductivity shifts between meso-euhaline and freshwater conditions suggest water balance and regime shifts. Organism-derived data are corroborated by stable isotope, mineralogical and geochemical records, underlining that Son Kol was affected by strong lake level fluctuations of several meters. The δ13Ccarb/δ18Ocarb correlation shows repeated switchovers from a closed to an open lake system. From 6000 to 3800 and 3250 to 1950 cal. yr BP, Son Kol was a closed basin lake with higher conductivities, increased nutrient availability and a water level located below the modern outflow. Son Kol became again a hydrologically open lake at 3800 and 1950 cal. yr BP. Comparisons to other local and regional paleoclimate records indicate that these regime shifts were largely controlled by changing intensity and position of the Westerlies and the Siberian Anticyclone that triggered changes in the amount of winter precipitation. A strong influence of the Westerlies ca. 5000-4400, 3800-3250 and since 1950 cal. yr BP enhanced the amount of precipitation during spring, autumn and winter, whereas cold and dry winters prevailed during phases with a strong Siberian Anticyclone and southward shifted Westerlies at ca. 6000-5000, 4400-3800 and 3250-1950 cal. yr BP. Similarities between variations in winter precipitation at Son Kol and records of the predominant NAO-mode further suggest a teleconnection between wet (dry) winter climate in Central Asia and a positive (negative) NAO-mode. Thus, this study identifies climate fluctuations as the main driver for hydrological regime shifts in Son Kol controlling physicochemical conditions and consequently causing abrupt species assemblage changes. This emphasizes the importance of multi-proxy approaches to identify triggers, thresholds and cascades of aquatic ecosystem transformations.
Late Holocene volcanic activity and environmental change in Highland Guatemala
NASA Astrophysics Data System (ADS)
Lohse, Jon C.; Hamilton, W. Derek; Brenner, Mark; Curtis, Jason; Inomata, Takeshi; Morgan, Molly; Cardona, Karla; Aoyama, Kazuo; Yonenobu, Hitoshi
2018-07-01
We present a record of late Holocene volcanic eruptions with elemental data for a sequence of sampled tephras from Lake Amatitlan in Highland Guatemala. Our tephrochronology is anchored by a Bayesian P_Sequence age-depth model based on multiple AMS radiocarbon dates. We compare our record against a previously published study from the same area to understand the record of volcanism and environmental changes. This work has implications for understanding the effects of climate and other environmental changes that may be related to the emission of volcanic aerosols at local, regional and global scales.
NASA Astrophysics Data System (ADS)
Anderson, L.; Wahl, D.; Estrada-Belli, F.
2015-12-01
Widespread demographic shifts in the southern Maya lowlands at the end of the Classic period have been attributed to environmental change caused by human activity and/or climate variability. Fire was essential to landscape modification and was a primary agent of environmental change associated with prehispanic land use. While several studies have provided insight into the dynamic relationship between natural and anthropogenic drivers of change, defining the specific interplay between natural environmental change, human modification of the environment, and cultural response to changes remains a persistent challenge. Here we present the results of a multi-proxy study that reconstructs fire history, agricultural land use, and environmental change during and after Pre-Columbian Maya settlement. Results are interpreted in the context of settlement history as inferred from archaeological mapping around the study site. Our findings suggest landscape disturbance, as indicated by erosion, local burning, and nearby maize agriculture, was at its peak during the Early Classic period. This disturbance was likely due to large-scale settlement at the nearby site of Witzna'. All proxies indicate a slow decline in disturbance into the Late Classic period, beginning around 1300 cal yr BP. Cival and Chanchich, two proximal site centers to the south of Laguna Ek'Naab, supported their largest populations during the Late Preclassic and Late Classic, with little or no settlement during the Early Classic. The data from Laguna Ek'Naab suggests that Witzna' may have been an important center during the Early Classic. Whether the decreasing environmental degradation after 1240 cal yr BP is do to a decline in local population or changing land use strategies is not discernable based on the data thus far. However, the near complete absence of burning and continued decrease in erosion from 1240-1090 cal yr BP suggests little anthropogenic activity in the area. Burning resumes in the watershed around 1090 cal yr BP and persists until all evidence for agriculture and environmental disturbance disappears at 995 cal yr BP. Permanent abandonment is inferred based on the last appearance of Zea pollen, a lack of burning, and minimal clay input into Laguna Ek'Naab. After this time, the data suggest abandonment through the present.
NASA Astrophysics Data System (ADS)
Packalen, M.; Finkelstein, S. A.; McLaughlin, J.
2014-12-01
Current interglacial development of a nearly continuous peat cover in the Hudson Bay Lowlands, Canada has resulted in a globally significant carbon (C) reservoir. Yet, the fate of peatland C stores and related climate system feedbacks remain uncertain under scenarios of a changing climate and enhanced anthropogenic pressure. Here, we examine peatland development in the HBL in relation to Holocene C-dynamics, together with records of paleo- and modern climate, glacial isostatic adjustment (GIA) and paleoenvironmental change. We report that the timing of peat initiation is tightly coupled with GIA in the HBL, while peatland age, trophic status, and paleoclimate contribute to explaining some of the temporal variation in C accumulation rates (CARs). Our results show that CARs are greatest from younger, minerotrophic peatlands and in association with warmer Holocene climates. Peat initiation rates and CARs in the HBL were greatest during the mid-Holocene; however, model evidence indicates that two-thirds of the HBL C pool is stored in peat of late Holocene age, owing to long-term peatland expansion and development. Since mid-Holocene peat initiation, the HBL has been a net C-sink and currently stores ~ 30 Pg C, with spatial climate patterns accounting for up to half of the C-mass distribution. Yet, the HBL has also been a modest C-source since peat initiation, with 85% of the losses occurring during the late Holocene. Our results indicate that the HBL may have been a potential terrestrial source of 1 - 7 Tg CH4 y-1 to the late Holocene atmosphere, due to the decay of previously accrued peat, under wetter conditions than present, and from a landscape occupied by an abundance of minerotrophic peatlands. While the peatlands of the HBL may continue to function as a globally significant C reservoir, conservative climate scenarios predict a warmer and wetter HBL in the next century that may lie outside the range of past climate variability. Disproportionate hydroclimatic change may alter the net water balance in the HBL resulting in C losses that may have important implications for the global C budget and climate system. Further investigation regarding autogenic and allogenic controls on spatial-temporal C dynamics is warranted and may contribute to reducing the uncertainty concerning the HBL's potential to remain a long-term net C-sink.
Duross, Christopher; Hylland, Michael D.; Hiscock, Adam; Personius, Stephen; Briggs, Richard; Gold, Ryan D.; Beukelman, Gregg; McDonald, Geg N; Erickson, Ben; McKean, Adam; Angster, Steve; King, Roselyn; Crone, Anthony J.; Mahan, Shannon
2017-01-01
The Nephi segment of the Wasatch fault zone (WFZ) comprises two fault strands, the northern and southern strands, which have evidence of recurrent late Holocene surface-faulting earthquakes. We excavated paleoseismic trenches across these strands to refine and expand their Holocene earthquake chronologies; improve estimates of earthquake recurrence, displacement, and fault slip rate; and assess whether the strands rupture separately or synchronously in large earthquakes. Paleoseismic data from the Spring Lake site expand the Holocene record of earthquakes on the northern strand: at least five to seven earthquakes ruptured the Spring Lake site at 0.9 ± 0.2 ka (2σ), 2.9 ± 0.7 ka, 4.0 ± 0.5 ka, 4.8 ± 0.8 ka, 5.7 ± 0.8 ka, 6.6 ± 0.7 ka, and 13.1 ± 4.0 ka, yielding a Holocene mean recurrence of ~1.2–1.5 kyr and vertical slip rate of ~0.5–0.8 mm/yr. Paleoseismic data from the North Creek site help refine the Holocene earthquake chronology for the southern strand: at least five earthquakes ruptured the North Creek site at 0.2 ± 0.1 ka (2σ), 1.2 ± 0.1 ka, 2.6 ± 0.9 ka, 4.0 ± 0.1 ka, and 4.7 ± 0.7 ka, yielding a mean recurrence of 1.1–1.3 kyr and vertical slip rate of ~1.9–2.0 mm/yr. We compare these Spring Lake and North Creek data with previous paleoseismic data for the Nephi segment and report late Holocene mean recurrence intervals of ~1.0–1.2 kyr for the northern strand and ~1.1–1.3 kyr for the southern strand. The northern and southern strands have similar late Holocene earthquake histories, which allow for models of both independent and synchronous rupture. However, considering the earthquake timing probabilities and per-event vertical displacements, we have the greatest confidence in the simultaneous rupture of the strands, including rupture of one strand with spillover rupture to the other. Ultimately, our results improve the surface-faulting earthquake history of the Nephi segment and enhance our understanding of how structural barriers influence normal-fault rupture.
Early and mid-Holocene age for the Tempanos moraines, Laguna San Rafael, Patagonian Chile
NASA Astrophysics Data System (ADS)
Harrison, Stephan; Glasser, Neil F.; Duller, Geoff A. T.; Jansson, Krister N.
2012-01-01
Data about the nature and timing of Holocene events from the Southern Hemisphere, especially in southern South America, are required to provide insight into the extent and nature of past climate change in a region where land-based records are restricted. Here we present the first use of single grain Optically Stimulated Luminescence (OSL) dating of a moraine sequence recording glacial advance along the western side of the Patagonian Icefields. Dates from the Tempanos moraines at Laguna San Rafael (LSR) show that the San Rafael Glacier (SRG) advanced to maximum Holocene positions during the period 9.3 to 9.7 ka and at 5.7 ka. Outwash lying beneath the moraine in its northern portion, dated to 7.7 ka, indicates that the glacier front was also advanced at this time. Since these advances span both the regional early Holocene warm-dry phase (11.5 ka to 7.8 ka) and the subsequent cooling and rise in precipitation in the mid-late Holocene (since 6.6 ka) we infer that the advances of the SRG are not simply climate-driven, but that the glacier has also probably responded strongly to non-climatic stimuli such as internal ice dynamics and the transition between calving and non-calving. Many westwards-flowing glaciers in Patagonia were probably calving during much of the Late Pleistocene and Holocene, so we conclude that establishing robust glacial chronologies where climatic and non-climatic factors cannot be distinguished is likely to remain a challenge.
Postglacial response of a stream in central Iowa to changes in climate and Drainage basin factors
Van Nest, J.; Bettis, E. Arthur
1990-01-01
Postglacial geomorphic development of the Buchanan Drainage, a small tributary to the South Skunk River, is reconstructed by documenting relationships among four allostratigraphic units and 17 radiocarbon dates. Formation and headward expansion of the valley was both episodic and time-transgressive. Response to downstream conditions in the South Skunk River largely controlled the early formation of the basin. Downcutting through Pleistocene deposits produced a gravelly lag deposit that was buried by alluvium in the downstream portion of the valley during the early Holocene (10,500-7700 yr B.P.). Lag deposits formed in a similar manner continued to develop in the upper portion of the drainageway into the late Holocene (3000-2000 yr B.P.). Episodes of aggradation during the middle Holocene (7700-6300 yr B.P.) and late Holocene (3000-2000 yr B.P.) were separated by a period of soil formation. Holocene geomorphic events in the drainageway coincide with some vegetational and climatic changes as documented in upland pollen sequences from central Iowa. Analysis of plant macrofossil assemblages recovered from alluvium indicates that during the middle Holocene forest contracted and prairie expanded into the uplands within the basin. Vegetational changes within the basin apparently had only minor influence on rates of hillslope erosion, and the widely accepted relationship between prairie (versus forest) vegetative cover and increased rates of hillslope erosion did not hold. Instead, greater amounts of erosion occurred under forested conditions when local water tables were higher and seepage erosion was more effective. ?? 1990.
Engels, M.S.; Fletcher, C.H.; Field, M.; Conger, C.L.; Bochicchio, C.
2008-01-01
Twelve cores from the protected reef-flat of Molokai revealed that carbonate sediment accumulation, ranging from 3 mm year-1 to less than 1 mm year-1, ended on average 2,500 years ago. Modern sediment is present as a mobile surface veneer but is not trapped within the reef framework. This finding is consistent with the arrest of deposition at the end of the mid-Holocene highstand, known locally as the "Kapapa Stand of the Sea," ???2 m above the present datum ca. 3,500 years ago in the main Hawaiian Islands. Subsequent erosion, non-deposition, and/or a lack of rigid binding were probable factors leading to the lack of reef-flat accumulation during the late Holocene sea-level fall. Given anticipated climate changes, increased sedimentation of reef-flat environments is to be expected as a consequence of higher sea level. ?? 2008 Springer-Verlag.
The Early Anthropogenic Hypothesis: Challenges and Responses
NASA Astrophysics Data System (ADS)
Ruddiman, William F.
2007-12-01
Ruddiman (2003) proposed that late Holocene anthropogenic intervention caused CH4 and CO2 increases that kept climate from cooling and that preindustrial pandemics caused CO2 decreases and a small cooling. Every aspect of this early anthropogenic hypothesis has been challenged: the timescale, the issue of stage 11 as a better analog, the ability of human activities to account for the gas anomalies, and the impact of the pandemics. This review finds that the late Holocene gas trends are anomalous in all ice timescales; greenhouse gases decreased during the closest stage 11 insolation analog; disproportionate biomass burning and rice irrigation can explain the methane anomaly; and pandemics explain half of the CO2 decrease since 1000 years ago. Only ˜25% of the CO2 anomaly can, however, be explained by carbon from early deforestation. The remainder must have come from climate system feedbacks, including a Holocene ocean that remained anomalously warm because of anthropogenic intervention.
Late Holocene history of Chaitén Volcano: new evidence for a 17th century eruption
Lara, Luis E.; Moreno, Rodrigo; Amigo, Álvaro; Hoblitt, Richard P.; Pierson, Thomas C.
2013-01-01
Prior to May 2008, it was thought that the last eruption of Chaitén Volcano occurred more than 5,000 years ago, a rather long quiescent period for a volcano in such an active arc segment. However, increasingly more Holocene eruptions are being identified. This article presents both geological and historical evidence for late Holocene eruptive activity in the 17th century (AD 1625-1658), which included an explosive rhyolitic eruption that produced pumice ash fallout east of the volcano and caused channel aggradation in the Chaitén River. The extents of tephra fall and channel aggradation were similar to those of May 2008. Fine ash, pumice and obsidian fragments in the pre-2008 deposits are unequivocally derived from Chaitén Volcano. This finding has important implications for hazards assessment in the area and suggests the eruptive frequency and magnitude should be more thoroughly studied.
NASA Astrophysics Data System (ADS)
Ouyang, Tingping; Li, Mingkun; Zhao, Xiang; Zhu, Zhaoyu; Tian, Chengjing; Qiu, Yan; Peng, Xuechao; Hu, Qiao
2016-05-01
Magnetic property has been proved to be a sensitive proxy to climate change for both terrestrial and marine sediments. Based on the schedule frame established by AMS 14C dating of foraminifera, detail magnetic analyses were performed for core PC24 sediments at sampling intervals of 2 cm to discuss magnetic sensitivity of marine sediment to climate during Holocene for the northern South China Sea. The results indicated that: 1) Concentration dependent magnetic parameters are positive corresponding to variation of temperature. The frequency dependent susceptibility coefficient basically reflected the variation in humidity; 2) XARM/SIRM was more sensitive to detrital magnetite particles and SIRM/X was more effective to biogenic magnetite particles. Variations of XARM/SIRM and SIRM/X are corresponding to precipitation and temperature, respectively; 3) the Holocene Megathermal in the study area was identified as 7.5-3.4 cal. ka BP. The warmest stage of Holocene for the study area should be during 6.1 to 3.9 cal. ka BP; 4) The 8 ka cold event was characterized as cold and dry during 8.55 to 8.25 cal. ka BP; 5) During early and middle Holocene, the climate combinations were warm dry and cold wet. It turned to warm and wet after 2.7 cal. ka BP.
Late Pleistocene dune activity in the central Great Plains, USA
Mason, J.A.; Swinehart, J.B.; Hanson, P.R.; Loope, D.B.; Goble, R.J.; Miao, X.; Schmeisser, R.L.
2011-01-01
Stabilized dunes of the central Great Plains, especially the megabarchans and large barchanoid ridges of the Nebraska Sand Hills, provide dramatic evidence of late Quaternary environmental change. Episodic Holocene dune activity in this region is now well-documented, but Late Pleistocene dune mobility has remained poorly documented, despite early interpretations of the Sand Hills dunes as Pleistocene relicts. New optically stimulated luminescence (OSL) ages from drill cores and outcrops provide evidence of Late Pleistocene dune activity at sites distributed across the central Great Plains. In addition, Late Pleistocene eolian sands deposited at 20-25 ka are interbedded with loess south of the Sand Hills. Several of the large dunes sampled in the Sand Hills clearly contain a substantial core of Late Pleistocene sand; thus, they had developed by the Late Pleistocene and were fully mobile at that time, although substantial sand deposition and extensive longitudinal dune construction occurred during the Holocene. Many of the Late Pleistocene OSL ages fall between 17 and 14 ka, but it is likely that these ages represent only the later part of a longer period of dune construction and migration. At several sites, significant Late Pleistocene or Holocene large-dune migration also probably occurred after the time represented by the Pleistocene OSL ages. Sedimentary structures in Late Pleistocene eolian sand and the forms of large dunes potentially constructed in the Late Pleistocene both indicate sand transport dominated by northerly to westerly winds, consistent with Late Pleistocene loess transport directions. Numerical modeling of the climate of the Last Glacial Maximum has often yielded mean monthly surface winds southwest of the Laurentide Ice Sheet that are consistent with this geologic evidence, despite strengthened anticyclonic circulation over the ice sheet. Mobility of large dunes during the Late Pleistocene on the central Great Plains may have been the result of cold, short growing seasons with relatively low precipitation and low atmospheric CO2 that increased plant moisture stress, limiting the ability of vegetation to stabilize active dune sand. The apparent coexistence of large mobile dunes with boreal forest taxa suggests a Late Pleistocene environment with few modern analogs. ?? 2011 Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Miao, Yunfa; Fang, Xiaomin; Song, Chunhui; Yan, Xiaoli; Zhang, Ping; Meng, Qingquan; Li, Fang; Wu, Fuli; Yang, Shengli; Kang, Shuyuan; Wang, Yuanping
2016-05-01
Fire provides an important indicator of paleoclimatic change. However, little information relating to late Cenozoic fire history has been gathered in mid-latitude Asia (including Inner Asia and East Asia), a key region for understanding the development of the arid-monsoon climate system as well as the driving forces behind it. Here we first report the records of microcharcoal concentrations (MC) covering the Holocene (10-0 ka) and late Pleistocene (0.8-0 Ma), which we use to analyze the fire activity patterns at an orbital time scale; then we compile the late Cenozoic MC record to investigate the long-term fire history by analyzing four cores from the Yangtze River Delta (YRD) area, East Asia (representing 8-0 Ma) and three sites in Inner Asia (representing 18-2 Ma). The results show that the (i) MC remained higher during the relatively dry late Holocene/glacial stages than that during the humid middle Holocene/interglacial stages at individual sites; (ii) MC increased with time in both Inner Asia and East Asia after 18 and 8 Ma, respectively; and (iii) MC always remained higher in the dry Inner Asia than in the contemporaneous wet East Asia. All these characteristics imply that late Cenozoic fire occurrence in mid-latitude Asia experienced a gradual increasing trend along with the global temperature/ice volume change, and indicates a continuous aridification trend across mid-latitude Asia. The global cooling, rather than the Tibetan Plateau uplift, might have played a key role in this observed trend.
NASA Astrophysics Data System (ADS)
Misra, Pavani; Sinha, Rajiv; Tandon, Sampat Kumar
2016-04-01
To seek insights into natural climate variability on decadal/ centennial or half-millennial scale, we need to examine Holocene stratigraphic records. Due to the paucity of high-resolution Holocene continental records in India, Holocene climate change has mostly been studied from the marine sediments. Since agricultural communities are sustained by the resources of large river basins, it is important to understand the response of these systems directly to any climate change. The fluvial archive itself offers a relatively low resolution record, but the ox-bows and meander cut-offs in these basins act as semi-closed systems and hence offer the possibility of obtaining better time resolved stratigraphic data. Therefore, lakes from Central Ganga Plains can be regarded as good terrestrial archives; these have been inadequately investigated as compared to the lakes in western India which have been studied with multi-proxy approaches and show major abrupt climatic disruptions. Previous work on some of the lakes in the Central Ganga Plains is largely based on fossil pollen and commonly shows an alternating increase in tree pollen and grassland pollen representing a shifting trend of warm and humid conditions (from 12,500 to 6,400 and 4,800 to 2000 cal yrs BP), to cold and dry spells, respectively. Lake organic facies from Sanai Tal follow an increasing trend of δ13C values from 15,000 to 5,800 14C yr BP, which indicate an enhanced aquatic productivity during that period, except between 11,500 to 10,500 14C yr BP when lighter δ13C values are observed (Sharma et al., 2004), indicating a dry climate for this short period. Against the above background of previous studies, the Baraila Tal, a lake in the Central Ganga Plains has been chosen to obtain a relatively better time-resolved stratigraphy and to characterize its lithofacies for assessing proxy-paleoclimatic data. We have carried out sedimentary facies analysis for three trenches in the Baraila Tal; the major sand, silt and clay facies are subdivided into 21 sub-facies. One of the trenches has been studied for its clay mineralogy, TOC and grain size distribution, using XRD, Rock Eval pyrolysis and the wet sieving method, respectively. High resolution chronology will be based on AMS C-14 dates. These data will then be assessed for their utility as proxy-indicators of past climate. Reference: Sharma S., Joachimski M., Sharma M., Tobschall H.J., Singh I.B., Sharma C., Chauhan M.S., Morgenroth G., 2004. Lateglacial and Holocene environmental changes in Ganga plain, Northern India. Quaternary Science Review, 23: 145-159
NASA Astrophysics Data System (ADS)
Wagner, S.; Xoplaki, E.; Luterbacher, J.; Zorita, E.; Fleitmann, D.; Preiser-Kapeller, J.; Toreti, A., , Dr; Sargent, A. M.; Bozkurt, D.; White, S.; Haldon, J. F.; Akçer-Ön, S.; Izdebski, A.
2016-12-01
Past civilisations were influenced by complex external and internal forces, including changes in the environment, climate, politics and economy. A geographical hotspot of the interplay between those agents is the Mediterranean, a cradle of cultural and scientific development. We analyse a novel compilation of high-quality hydroclimate proxy records and spatial reconstructions from the Mediterranean and compare them with two Earth System Model simulations (CCSM4, MPI-ESM-P) for three historical time intervals - the Crusaders, 1095-1290 CE; the Mamluk regime in Transjordan, 1260-1516 CE; and the Ottoman crisis and Celâlî Rebellion, 1580-1610 CE - when environmental and climatic stress tested the resilience of complex societies. ESMs provide important information on the dynamical mechanisms and underlying processes that led to anomalous hydroclimatic conditions of the past. We find that the multidecadal precipitation and drought variations in the Central and Eastern Mediterranean during the three periods cannot be explained by external forcings (solar variations, tropical volcanism); rather they were driven by internal climate dynamics. The integrated analysis of palaeoclimate proxies, climate reconstructions and model simulations sheds light on our understanding of past climate change and its societal impact. Finally, our research emphasises the need to further study the societal dimension of environmental and climate change in the past, in order to properly understand the role that climate has played in human history.
Equilibrium line altitudes and climate during the Late Holocene glacial maximum in the Andes
NASA Astrophysics Data System (ADS)
Sagredo, E. A.; Lowell, T. V.; Kelly, M. A.; Aravena, J.
2012-12-01
Documenting the spatial and temporal pattern of climate change associated with widespread glacial fluctuations during Late Holocene time is critical for understanding the mechanisms underlying these climatic/glacial events. Here, we estimate the change in equilibrium line altitudes (ELAs) associated with the most prominent glacial advance during the last millennium for four alpine glaciers in different climatic regimes in the Andes. We reconstruct scenarios of the climatic conditions (temperature and precipitation anomalies) that accommodate the ELA depressions. The glaciers studied are an unnamed glacier in the Cordillera Vilcanota (13°S), Tapado glacier (30°S), Cipreses glacier (34°S) and Tranquilo glacier (47°S). Results from the combined geomorphic analysis and application of a surface energy and mass balance model suggest that there is not a unique combination of temperature and precipitation conditions that accommodates the ELA change recorded since the Late Holocene maximum at the four sites. Assuming no change in precipitation, the ELA depressions could be explained by a cooling (with respect to present-day values) of at least -0.7°C at Cordillera Vilcanota, -1.0°C at Tapado glacier, -0.5°C at Cipreses glacier and -1.3°C at Tranquilo glacier. In contrast, assuming no change in temperature, the ELA depressions could be explained by an increase in the precipitation of at least 0.51 m (63% of the annual precipitation) at Cordillera Vilcanota, 0.33 m (95%) at Tapado glacier, 0.17 m (21%) at Cipreses glacier and 0.68 m (62%) at Tranquilo glacier. Our results serve as targets to test predictions from models of global climate dynamics for the last millennium and contribute to the understanding of the mechanisms underlying the Late Holocene glacial fluctuations.
NASA Astrophysics Data System (ADS)
White, S. M.; Ravelo, A. C.
2016-12-01
It is unclear to what extent ENSO depends on mean climatic state. The Pliocene is an excellent test case because the tropical Pacific was markedly different than today, with a zonal temperature gradient as low as 1.5°C [Wara et al., 2005] and a deeper thermocline across the entire basin [Ford et al., 2015]. This would be expected to weaken the Bjerknes and thermocline feedbacks, thus strongly damping ENSO variability. However, it is possible that other relevant feedbacks evolved along with the Bjerknes and thermocline feedbacks, such that the net effect was only a small change in ENSO [Manucharyan and Fedorov, 2014]. Existing reconstructions of Pliocene ENSO [Scroxton et al., 2011; Watanabe et al., 2011] support the latter view, though not conclusively; a reanalysis of the Scroxton et al. data reveals lower Pliocene ENSO variability compared to the late Holocene. To reconstruct Pliocene ENSO, we perform Mg/Ca analyses on individual planktonic foraminifera from ODP 849 in the eastern equatorial Pacific, yielding a distribution of temperatures from each selected time interval. We use quantile-quantile plots to compare Pliocene temperature distributions to the late Holocene; differences in the warm tail are attributable to changes in El Niño events. Preliminary data show that the amplitude of El Niño events was similar to the late Holocene at 3.1 Ma, but was reduced at 4.5 Ma and at 5.0 Ma. At 5.5 Ma, El Niño amplitude appears similar to the late Holocene, though La Niña amplitude appears lower. These findings, along with additional data, will be discussed in the context of long-term trends in thermocline depth, zonal SST gradient, and Panamanian gateway throughflow.
Fire regimes and vegetation change in tropical northern Australia during the late-Holocene
NASA Astrophysics Data System (ADS)
Mackenzie, Lydia; Moss, Patrick; Ulm, Sean; Sloss, Craig; Heijnis, Henk; Jacobsen, Geraldine
2016-04-01
This study explores the impact of human occupation and abandonment on fire regimes and vegetation communities in the South Wellesley Islands, Gulf of Carpentaria, tropical northern Australia, using charcoal and pollen analysis from four sediment records. Pollen analysis from wetland sediments reveal vegetation succession from mangrove communities to hypersaline mudflats and open woodlands occurred during the late-Holocene. Aquatic species replaced salt tolerant species as the prograding shoreline and dune development formed the Marralda wetlands by 800 cal a BP on the south east coast of Bentinck Island. Wetlands developed on the north and west coast by 500 and 450 cal a BP, respectively. The timing of wetland initiation indicates localised late-Holocene sea level regression, stabilisation and coastal plain development in the Gulf of Carpentaria. Wetland initiation encouraged permanent human occupation of the South Wellesley archipelago, with ongoing archaeological research finding permanent occupation in the last 1500 years, followed by a significant increase in sites from 700 years ago, which peaks over the last 300 years. Macro-charcoal (>125μm) accumulation rates provide a record of fire intensity and frequency across the Island. Both local and regional fire events increase in the last 700 years as traditional owners occupied the Island, with local fires occurring every 104 and 74 years on average (N= 4 and 5 respectively). In the 1950's traditional Indigenous Kaiadilt fire management practices ceased, with the frequency and peak magnitude of fire events significantly increasing and vegetation communities becoming more open. The South Wellesley Islands were unoccupied until the 1980's and were not influenced by European occupation. This study of an Island ecosystem during the late-Holocene provides insight into the effect of human presence and fire regimes on vegetation composition and distribution in a fire resilient environment.
NASA Astrophysics Data System (ADS)
Sinclair, G.; Carlson, A. E.; Rood, D. H.; Axford, Y.
2017-12-01
The late Holocene, with its spatially complex pattern of centennial-scale climate variation, is an ideal time period to test the response of the cryosphere to atmospheric and oceanic temperature changes. The south Greenland Ice Sheet (sGrIS), with its proximity to areas of North Atlantic Deep Water formation and a large spectrum of glaciological regimes over a relatively small area, provides an excellent location to examine the spatial heterogeneity of ice-sheet and glacier responses to climate change. Here, we will present 50 Be-10 surface exposure ages from eight moraines in six locations around the margin of the sGrIS. These moraines are located just outboard of historical moraines, and will therefore allow us to constrain the timing of the most extensive prehistoric late-Holocene advance and retreat of ice margins draining the sGrIS and independent valley glaciers. The dataset includes both marine- and land-terminating glaciers draining the sGrIS, the low-altitude Qassimiut lobe, the high-altitude alpine Julianhåb ice cap and isolated valley glaciers. This diverse dataset will allow us to determine to what extent late-Holocene centennial-scale behavior of the ice-sheet and glacier margins were synchronous, perhaps in response to an external climate forcing, or more stochastic, governed instead by local factors such as basal thermal regime, bedrock topography, or microclimates. This has implications for understanding the forcings and responses of cryospheric changes at timescales relevant to human society. In addition to providing context for paleoclimatic and glacial geologic investigations, this work will inform future sea-level projections by providing targets for validating high-resolution ice-sheet and glacier models.
NASA Astrophysics Data System (ADS)
Aharon, Paul; Dhungana, Rajesh
2017-08-01
Oxygen and carbon isotope time-series derived from an actively growing aragonitic stalagmite in DeSoto Caverns exhibit with unusual clarity rapid hydroclimate changes in the mid-to-late Holocene. Data consist of 1884 δ18O and δ13C determinations whose chronology is anchored on 35 230Th/234U absolute dates in the interval 6.0-1.1 cal ka BP. Exceptional 18O and 13C-enrichments centered at 4.8 ± 0.14 cal ka BP likely represent the imprints of a severe drought. Isotope cycles from 4.7 to 1.3 cal ka BP, exhibit a dominant periodicity of 68 ± 4 yrs. A gradual cooling trend of ∼0.6 °C/103 yrs is attributed to a declining seasonal contrast in insolation. The synchronicity of the mega-drought in the Southeast US with the (1) termination of the African Humid Period; (ii) abrupt reduction of the North Atlantic Deep Water production, and (iii) rapid sea-ice expansion in the polar regions of both Hemispheres testifies to the global extent and rapidity of the "5 ka" event and points to the North Atlantic Deep Water variability as the likely controlling factor. The multidecadal cycles are consistent with alternating dry and wet summers occurring during a long-term switch in the seasonal rainfall amount dominance from winter to summer. The periodic summer droughts in the Southeast US support climate models that predict profound hydroclimate changes in the late Holocene governed by the Atlantic Multidecadal Oscillation. The relatively short and rapid hydroclimate phase transitions documented in this study introduce a complication in the correlation of late Holocene drought events that had significant societal impacts.
Mensing, Scott A.; Sharpe, Saxon E.; Tunno, Irene; Sada, Don W.; Thomas, Jim M.; Starratt, Scott W.; Smith, Jeremy
2013-01-01
Evidence of a multi-centennial scale dry period between ∼2800 and 1850 cal yr BP is documented by pollen, mollusks, diatoms, and sediment in spring sediments from Stonehouse Meadow in Spring Valley, eastern central Nevada, U.S. We refer to this period as the Late Holocene Dry Period. Based on sediment recovered, Stonehouse Meadow was either absent or severely restricted in size at ∼8000 cal yr BP. Beginning ∼7500 cal yr BP, the meadow became established and persisted to ∼3000 cal yr BP when it began to dry. Comparison of the timing of this late Holocene drought record to multiple records extending from the eastern Sierra Nevada across the central Great Basin to the Great Salt Lake support the interpretation that this dry period was regional. The beginning and ending dates vary among sites, but all sites record multiple centuries of dry climate between 2500 and 1900 cal yr BP. This duration makes it the longest persistent dry period within the late Holocene. In contrast, sites in the northern Great Basin record either no clear evidence of drought, or have wetter than average climate during this period, suggesting that the northern boundary between wet and dry climates may have been between about 40° and 42° N latitude. This dry in the southwest and wet in the northwest precipitation pattern across the Great Basin is supported by large-scale spatial climate pattern hypotheses involving ENSO, PDO, AMO, and the position of the Aleutian Low and North Pacific High, particularly during winter.
NASA Astrophysics Data System (ADS)
Rodionova, Alexandra
2016-04-01
Peatlands are an important natural archive for past climatic changes. Climatic changes throughout the Holocene have been reconstructed from peat using a wide array of biological and other proxies. Many different proxy indicators can be derived from peat cores allowing for a multi-proxy approach to climatic reconstructions. Peat-based climatic and environmental reconstructions are currently available from many sites in Yenisei Siberia, mainly for its northern territories. The purpose of this paper is to study some features of peatland development and environmental reconstructions from the Holocene period in the south part of Yenisei Siberia (Kansk forest-steppe zone). The main method used in this research is macrofossil analysis. It can be used to reconstruct the development of local vegetation and surface wetness on peatlands. The macrofossil analysis in the peat resulted from the study of the vegetation in a particular place over a period of time, and it allowed the reconstruction of environmental changes that have occurred since the Late Glacial. Then we used ecological scales of moisture and reconstructed surface wetness for the entire period of the bog formation. Radiocarbon dating was carried out at Sobolev Institute of Geology and Mineralogy, Russian Academy of Sciences, Novosibirsk . Peatland "Pinchinskoye" was selected for investigation in Kansk forest-steppe. It is located on the right bank of the Yenisei River in the floodplain of Esaulovka River. Peat cores of 350 cm were selected in the southern part of the peatbog, including 225 cm of peat (with loam layers in the range of 90 to 135 cm), 75 cm of organic and mineral sapropel with the inclusion of fossil shells of mollusks and different plant macrofossils and 50 cm of the loam below. The process of peat accumulation dated back 8400 ± 140 years, which is the oldest date for the forest-steppe zone of Yenisei Siberia. The climate of Boreal period of the Holocene was chilly. Under these conditions, in the territory of the peatland "Pinchinskoye" there was a small lake. The birch forest with different grasses was growing along the banks of the lake. The lake level dropped significantly at the beginning of the Atlantic period around 7000 BP in a warm and dry climate. This launched the lake overgrowth and eutrophication. Birch forests and then spruce forests rich in herbs with green moss emerged in the peatland. An increase in moisture was recorded for the Sub-Boreal period (4900-2400) and, as a result, the prevalence of marsh communities with bog bean and fern. Increasing water level of rovers led to the spill and silting up of the bog surface in 2020 ± 60 BP at the beginning of the Sub-Atlantic period. After the decline of the water level, the process of peat accumulation continued and spread out throughout the whole trough flat. Sedge, cotton grass, sphagnum moss and green moss predominated in the composition of plant communities in Sub-Atlantic period, starting from 1500 BP. In the last 500 years, the peatland moved to the mesoeutrophic phase of development.
High resolution paleoceanography of the central Gulf of California during the past 15,000 years
NASA Astrophysics Data System (ADS)
Barron, J. A.; Bukry, D.; Dean, W. E.
2004-12-01
A high resolution paleoceanographic history of the central Gulf of California during the past 15,000 years has been assembled using microfossil (diatom and silicoflagellate) and geochemical proxy data from a composite section of gravity core GGC55 and giant piston core JPC56 in the western Guaymas Basin (27.5 deg. N, 112.1 deg. W, water depth 818 m) and from DSDP Site 480 (27.9 deg. N, 111.7 deg. W, 655 m water depth) in the eastern Guaymas Basin. These data argue for abrupt, basin-wide changes during the Bolling-Allerod, Younger Dryas, and earliest part of the Holocene that mirror changes documented in cores from the Pacific margins of both Baja and Alta California. Between about 10 ka and 6 ka, these central Gulf of California records became more regionally distinctive, as surface and intermediate waters resembling those of the modern-day northern Gulf became dominant and virtually no calcium carbonate or tropical microfossils were preserved in the underlying sediments. Beginning at about 6 ka, tropical microfossils returned to the central Gulf, possibly signaling enhanced El Nino-like conditions. Proxy data suggest that late winter-early spring coastal upwelling was abruptly strengthened on the mainland (eastern) side at about 5.4 ka and again at about 3.0 ka, whereas sediments from the western side of the central Gulf became increasingly diatom poor and calcium carbonate rich. An intensification of northwest winds during the late winter to early spring likely occurred in the central Gulf at about 5.4 ka. Interestingly, this proposed wind shift in the Gulf of California coincides with an abrupt 5.4 ka change to drier conditions in the Cariaco Basin off Venezuela that has been proposed to reflect a southward shift in the mean position of the Intertropical Convergence Zone in response to increasing El Nino-like conditions.
NASA Astrophysics Data System (ADS)
Nelson, David M.; Urban, Michael A.; Kershaw, A. Peter; Hu, Feng Sheng
2016-05-01
Climate, atmospheric pCO2, and fire all may exert major influences on the relative abundance of C3 and C4 grasses in the present-day vegetation. However, the relative role of these factors in driving variation in C3 and C4 grass abundances in the paleorecord is uncertain, and C4 abundance is often interpreted narrowly as a proxy indicator of aridity or pCO2. We measured δ13C values of individual grains of grass (Poaceae) pollen in the sediments of two sites in southeastern Australia to assess changes in the proportions of C3 and C4 grasses during the past 25,000 years. These data were compared with shifts in pCO2, temperature, moisture balance, and fire to assess how these factors were related to long-term variation of C4 grass abundance during the late Quaternary. At Caledonia Fen, a high-elevation site in the Snowy Mountains, C4 grass abundance decreased from an average of 66% during the glacial period to 11% during the Holocene, primarily in response to increased pCO2 and temperature. In contrast, this pattern did not exist in low-elevation savannah woodlands around Tower Hill Northwest Crater, where C4 grass abundance instead varied in response to shifts in regional aridity. Fire did not appear to have strongly influenced the proportions of C3 and C4 grasses on the landscape at millennial timescales at either site. These patterns are similar to those of a recent study in East Africa, suggesting that elevation-related climatic differences influence how the abundance of C3 and C4 grasses responds to shifts in climate and pCO2. These results caution against using C4 plant abundance as a proxy indicator of either climate or pCO2 without an adequate understanding of key controlling factors.
Late Pleistocene and Holocene vegetation and climate changes in the Lake Baikal region
NASA Astrophysics Data System (ADS)
Demske, D.; Heumann, G.; Granoszewski, W.; Mamakowa, K.; Piotrowska, N.; Bluszcz, A.; Goslar, T.
2003-04-01
Palynological high-resolution records from Lake Baikal sediments document strong vegetational changes during the transitions from an open landscape to Late Glacial shrublands and Holocene forests. For three core sites, investigated within EU-Project CONTINENT, sporomorph concentrates were used for AMS 14C dating of environmental changes. The pollen record from the northern lake site, located in vicinity to the Barguzin Mountains, shows pronounced maxima of Salix and Picea corresponding to late Pleistocene warming. A peak maximum in Alnus fruticosa during the Younger Dryas cooling coincided with low abundance of green algae in the lake and a decline in Picea trees. Fern-rich forests with Picea, Larix and Betula developed during early Holocene. With an abrupt expansion of Pteridium ferns Abies appeared in the northeastern Baikal region, reflecting optimum conditions for dark taiga. Among pines Pinus sibirica prevailed prior to the spread of P. sylvestris. Expansion of pines points to a distinct decrease in precipitation. A palynological sequence from the same site reflects the vegetation development during the last interglacial, with differences indicated by higher abundance of Abies. The upper part of the interglacial record comprises the transition to stadial conditions. Further pollen spectra are probably equivalent to first interstadials of the early glacial period (Zyryansk). Comparison with southern sites, in vicinity to the Selenga Delta and the Khamar-Daban Mountains, reveals that regional and temporal differentiation of Holocene vegetation development and climate conditions was closely related to the distribution of mountain ranges.
Barron, John A.; Bukry, David; Cheshire, Heather
2014-01-01
High-resolution studies of diatoms and silicoflagellates of the past 55 kyrs in cores MD02-2517/2515 from the central Gulf of California (GoC) reveal profound changes in GoC surface waters. Roperia tesselata, a diatom proxy for late winter–early spring upwelling, and Dictyocha stapedia, a subtropical silicoflagellate indicative of GoC sea surface temperatures (SSTs) > 24 °C, are common during the Holocene but rare during Marine Isotope Stage (MIS) 2 and most of MIS 3, a relationship that likely reflects a more northerly position of the North Pacific High (NPH) during the Holocene. In contrast during most of MIS 2 (~ 27–15 ka), the persistent presence of Distephanus speculum, a silicoflagellate associated with SSTs During MIS 3 (~ 55–27 ka), increased dominance of Azpeitia nodulifera (diatom) implies that stratified, tropical waters were present year round, whereas silicoflagellate assemblages suggest that stratified tropical conditions alternated with more productive, upwelling conditions on millennial timescales. Reduced biosiliceous productivity during Heinrich events likely reflected a reduction in both surface water nutrient levels and in the strength of northwest winds due to a weakened and more southerly NPH. Conversely, enhanced biosiliceous productivity during MIS 3 interstadials was probably linked to heightened nutrient levels and a strengthened NPH. Abrupt relative abundance increases of the silicoflagellate, Dictyocha aculeata, approximate the termination of MIS3 Heinrich events and may signal times when nutrient-rich deep waters associated with the resumption of enhanced Atlantic Meridional Overturning Circulation penetrated into the central Gulf.
NASA Astrophysics Data System (ADS)
Li, Jianyong; Dodson, John; Yan, Hong; Cheng, Bo; Zhang, Xiaojian; Xu, Qinghai; Ni, Jian; Lu, Fengyan
2017-05-01
Quantitative information regarding the long-term variability of precipitation and vegetation during the period covering both the Late Glacial and the Holocene on the Qinghai-Tibetan Plateau (QTP) is scarce. Herein, we provide new and numerical reconstructions for annual mean precipitation (PANN) and vegetation history over the last 18,000 years using high-resolution pollen data from Lakes Dalianhai and Qinghai on the northeastern QTP. Hitherto, five calibration techniques including weighted averaging, weighted average-partial least squares regression, modern analogue technique, locally weighted weighted averaging regression, and maximum likelihood were first employed to construct robust inference models and to produce reliable PANN estimates on the QTP. The biomization method was applied for reconstructing the vegetation dynamics. The study area was dominated by steppe and characterized with a highly variable, relatively dry climate at 18,000-11,000 cal years B.P. PANN increased since the early Holocene, obtained a maximum at 8000-3000 cal years B.P. with coniferous-temperate mixed forest as the dominant biome, and thereafter declined to present. The PANN reconstructions are broadly consistent with other proxy-based paleoclimatic records from the northeastern QTP and the northern region of monsoonal China. The possible mechanisms behind the precipitation changes may be tentatively attributed to the internal feedback processes of higher latitude (e.g., North Atlantic) and lower latitude (e.g., subtropical monsoon) competing climatic regimes, which are primarily modulated by solar energy output as the external driving force. These findings may provide important insights into understanding the future Asian precipitation dynamics under the projected global warming.
NASA Astrophysics Data System (ADS)
Adloff, F.; Mikolajewicz, U.; Kucera, M.; Grimm, R.; Maier-Reimer, E.; Schmiedl, G.; Emeis, K.
2011-05-01
Nine thousand years ago, the Northern Hemisphere experienced enhanced seasonality caused by an orbital configuration with a minimum of the precession index. To assess the impact of the "Holocene Insolation Maximum" (HIM) on the Mediterranean Sea, we use a regional ocean general circulation model forced by atmospheric input derived from global simulations. A stronger seasonal cycle is simulated in the model, which shows a relatively homogeneous winter cooling and a summer warming with well-defined spatial patterns, in particular a subsurface warming in the Cretan and Western Levantine areas. The comparison between the SST simulated for the HIM and the reconstructions from planktonic foraminifera transfer functions shows a poor agreement, especially for summer, when the vertical temperature gradient is strong. However, a reinterpretation of the reconstructions is proposed, to consider the conditions throughout the upper water column. Such a depth-integrated approach accounts for the vertical range of preferred habitat depths of the foraminifera used for the reconstructions and strongly improves the agreement between modelled and reconstructed temperature signal. The subsurface warming is recorded by both model and proxies, with a light shift to the south in the model results. The mechanisms responsible for the peculiar subsurface pattern are found to be a combination of enhanced downwelling and wind mixing due to strengthened Etesian winds, and enhanced thermal forcing due to the stronger summer insolation in the Northern Hemisphere. Together, these processes induce a stronger heat transfer from the surface to the subsurface during late summer in the Western Levantine; this leads to an enhanced heat piracy in this region.
Holocene thinning of the Greenland ice sheet.
Vinther, B M; Buchardt, S L; Clausen, H B; Dahl-Jensen, D; Johnsen, S J; Fisher, D A; Koerner, R M; Raynaud, D; Lipenkov, V; Andersen, K K; Blunier, T; Rasmussen, S O; Steffensen, J P; Svensson, A M
2009-09-17
On entering an era of global warming, the stability of the Greenland ice sheet (GIS) is an important concern, especially in the light of new evidence of rapidly changing flow and melt conditions at the GIS margins. Studying the response of the GIS to past climatic change may help to advance our understanding of GIS dynamics. The previous interpretation of evidence from stable isotopes (delta(18)O) in water from GIS ice cores was that Holocene climate variability on the GIS differed spatially and that a consistent Holocene climate optimum-the unusually warm period from about 9,000 to 6,000 years ago found in many northern-latitude palaeoclimate records-did not exist. Here we extract both the Greenland Holocene temperature history and the evolution of GIS surface elevation at four GIS locations. We achieve this by comparing delta(18)O from GIS ice cores with delta(18)O from ice cores from small marginal icecaps. Contrary to the earlier interpretation of delta(18)O evidence from ice cores, our new temperature history reveals a pronounced Holocene climatic optimum in Greenland coinciding with maximum thinning near the GIS margins. Our delta(18)O-based results are corroborated by the air content of ice cores, a proxy for surface elevation. State-of-the-art ice sheet models are generally found to be underestimating the extent and changes in GIS elevation and area; our findings may help to improve the ability of models to reproduce the GIS response to Holocene climate.
Late Holocene droughts in the Fertile Crescent recorded in a speleothem from northern Iraq
NASA Astrophysics Data System (ADS)
Flohr, Pascal; Fleitmann, Dominik; Zorita, Eduardo; Sadekov, Aleksey; Cheng, Hai; Bosomworth, Matt; Edwards, Lawrence; Matthews, Wendy; Matthews, Roger
2017-02-01
Droughts have had large impacts on past and present societies. High-resolution paleoclimate data are essential to place recent droughts in a meaningful historical context and to predict regional future changes with greater accuracy. Such records, however, are very scarce in the Middle East in general, and the Fertile Crescent in particular. Here we present a 2400 year long speleothem-based multiproxy record from Gejkar Cave in northern Iraq. Oxygen and carbon isotopes and magnesium are faithful recorders of effective moisture. The new Gejkar record not only shows that droughts in 1998-2000 and 2007-2010, which have been argued to be a contributing factor to Syrian civil war, were extreme compared to the current mean climate, but they were also superimposed on a long-term aridification trend that already started around or before 950 C.E. (Common Era). This long-term trend is not captured by tree ring records and climate models, emphasizing the importance of using various paleoclimate proxy data to evaluate and improve climate models and to correctly inform policy makers about future hydroclimatic changes in this drought-prone region.
Hou, Weiguo; Dong, Hailiang; Li, Gaoyuan; Yang, Jian; Coolen, Marco J. L.; Liu, Xingqi; Wang, Shang; Jiang, Hongchen; Wu, Xia; Xiao, Haiyi; Lian, Bin; Wan, Yunyang
2014-01-01
Sediments from Tibetan lakes in NW China are potentially sensitive recorders of climate change and its impact on ecosystem function. However, the important plankton members in many Tibetan Lakes do not make and leave microscopically diagnostic features in the sedimentary record. Here we established a taxon-specific molecular approach to specifically identify and quantify sedimentary ancient DNA (sedaDNA) of non-fossilized planktonic organisms preserved in a 5-m sediment core from Kusai Lake spanning the last 3100 years. The reliability of the approach was validated with multiple independent genetic markers. Parallel analyses of the geochemistry of the core and paleo-climate proxies revealed that Monsoon strength-driven changes in nutrient availability, temperature, and salinity as well as orbitally-driven changes in light intensity were all responsible for the observed temporal changes in the abundance of two dominant phytoplankton groups in the lake, Synechococcus (cyanobacteria) and Isochrysis (haptophyte algae). Collectively our data show that global and regional climatic events exhibited a strong influence on the paleoecology of phototrophic plankton in Kusai Lake. PMID:25323386
Holocene eolian activity in the Minot dune field, North Dakota
Muhs, D.R.; Stafford, Thomas W.; Been, J.; Mahan, S.A.; Burdett, J.; Skipp, G.; Rowland, Z.M.
1997-01-01
Stabilized eolian sand is common over much of the Great Plains region of the United States and Canada, including a subhumid area of ??? 1500 km2 near Minot, North Dakota. Eolian landforms consist of sand sheets and northwest-trending parabolic dunes. Dunes and sand sheets in the Minot field are presently stabilized by a cover of prairie grasses or oak woodland. Stratigraphic studies and accelerator mass spectrometry radiocarbon dating of paleosols indicate at least two periods of eolian sand movement in the late Holocene. Pedologic data suggest that all of the dune field has experienced late Holocene dune activity, though not all parts of the dune field may have been active simultaneously. Similar immobile element (Ti, Zr, La, Ce) concentrations support the interpretation that eolian sands are derived from local glaciofluvial and glaciolacustrine sediments. However, glaciolacustrine and glaciofluvial source sediments have high Ca concentrations from carbonate minerals, whereas dune sands are depleted in Ca. Because noneolian-derived soils in the area are calcareous, these data indicate that the Minot dune field may have had extended periods of activity in the Holocene, such that eolian abrasion removed soft carbonate minerals. The southwest-facing parts of some presently stabilized dunes were active during the 1930s drought, but were revegetated during the wetter years of the 1940s. These observations indicate that severe droughts accompanied by high temperatures are the most likely cause of Holocene eolian activity.