Balic, Anamaria; Adams, Douglas; Mina, Mina
2009-01-01
Mice lacking both Prx1 and Prx2 display severe abnormalities in the mandible. Our analysis showed that complete loss of Prx gene products leads to growth abnormalities in the mandibular processes evident as early as E10.5 associated with changes in the survival of the mesenchyme in the medial region. Changes in the gene expression in the medial and lateral regions were related to gradual loss of a subpopulation of mesenchyme in the medial region expressing eHand. Our analysis also showed that Prx gene products are required for the initiation and maintenance of chondrogenesis and terminal differentiation of the chondrocytes in the caudal and rostral ends of Meckel’s cartilage. The fusion of the mandibular processes in the Prx1/Prx2 double mutants is caused by accelerated ossification. These observations together show that during mandibular morphogenesis Prx gene products play multiple roles including the cell survival, the region-specific terminal differentiation of Meckelian chondrocytes and osteogenesis. PMID:19777594
Signaling pathways regulating the expression of Prx1 and Prx2 in the Chick Mandibular Mesenchyme
Doufexi, Aikaterini-El; Mina, Mina
2009-01-01
Prx1 and Prx2 are members of the aristaless-related homeobox genes shown to play redundant but essential roles in morphogenesis of the mandibular processes. To gain insight into the signaling pathways that regulate expression of Prx genes in the mandibular mesenchyme, we used the chick as a model system. We examined the patterns of gene expression in the face and the roles of signals derived from the epithelium on the expression of Prx genes in the mandibular mesenchyme. Our results demonstrated stage-dependent roles of mandibular epithelium on the expression of Prx in the mandibular mesenchyme and provide evidence for positive roles of members of the fibroblast and hedgehog families derived from mandibular epithelium on the expression of Prx genes in the mandibular mesenchyme. Our studies suggest that endothelin-1 signaling derived from the mesenchyme is involved in restricting the expression of Prx2 to the medial mandibular mesenchyme. PMID:18942149
Machida, Takeshi; Ishibashi, Akiko; Kirino, Ai; Sato, Jun-ichi; Kawasaki, Shinji; Niimura, Youichi; Honjoh, Ken-ichi; Miyamoto, Takahisa
2012-01-01
Chloroplast NADPH-dependent thioredoxin reductase (NTRC) catalyzes the reduction of 2-Cys peroxiredoxin (2-Cys Prx) and, thus, probably functions as an antioxidant system. The functions of the enzyme in oxidative and salt stresses have been reported previously. We have previously identified and characterized NTRC in Chlorella vulgaris. In the present study, we isolated a full-length cDNA clone encoding 2-Cys Prx from C. vulgaris and investigated the involvement of Chlorella NTRC/2-Cys Prx system in several environmental stress tolerances by using yeast as a eukaryotic model. Deduced Chlorella 2-Cys Prx was homologous to those of chloroplast 2-Cys Prxs from plants, and two conserved cysteine residues were found in the deduced sequence. Enzyme assay showed that recombinant mature C. vulgaris NTRC (mCvNTRC) transferred electrons from NADPH to recombinant mature C. vulgaris 2-Cys Prx (mCvPrx), and mCvPrx decomposed hydrogen peroxide, tert-butyl hydroperoxide, and peroxynitrite by cooperating with mCvNTRC. Based on the results, the mCvNTRC/mCvPrx antioxidant system was identified in Chlorella. The antioxidant system genes were expressed in yeast separately or coordinately. Stress tolerances of yeast against freezing, heat, and menadione-induced oxidative stresses were significantly improved by expression of mCvNTRC, and the elevated tolerances were more significant when both mCvNTRC and mCvPrx were co-expressed. Our results reveal a novel feature of NTRC: it functions as an antioxidant system with 2-Cys Prx in freezing and heat stress tolerances. PMID:23029353
The sulfiredoxin-peroxiredoxin (Srx-Prx) axis in cell signal transduction and cancer development.
Mishra, Murli; Jiang, Hong; Wu, Lisha; Chawsheen, Hedy A; Wei, Qiou
2015-10-01
Redox signaling is a critical component of cell signaling pathways that are involved in the regulation of cell growth, metabolism, hormone signaling, immune regulation and variety of other physiological functions. Peroxiredoxin (Prx) is a family of thiol-based peroxidase that acts as a regulator of redox signaling. Members of Prx family can act as antioxidants and chaperones. Sulfiredoxin (Srx) is an antioxidant protein that exclusively reduces over-oxidized typical 2-Cys Prx. Srx has different affinities for individual Prx and it also catalyzes the deglutathionylation of variety of substrates. Individual component of the Srx-Prx system plays critical role in carcinogenesis by modulating cell signaling pathways involved in cell proliferation, migration and metastasis. Expression levels of individual component of the Srx-Prx axis have been correlated with patient survival outcome in multiple cancer types. This review will summarize the molecular basis of differences in the affinity of Srx for individual Prx and the role of individual component of the Srx-Prx system in tumor progression and metastasis. This enhanced understanding of molecular aspects of Srx-Prx interaction and its role in cell signal transduction will help define the Srx-Prx system as a future therapeutic target in human cancer. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Lim, Jong Gyu; Bang, Ye-Ji; Choi, Sang Ho
2014-12-26
Peroxiredoxins (Prxs) are ubiquitous antioxidant enzymes that reduce toxic peroxides. A new Vibrio vulnificus Prx, named Prx3, was identified and characterized in this study. Biochemical and mutational analyses revealed that Prx3 reduces H2O2, utilizing glutaredoxin 3 (Grx3) and glutathione (GSH) as reductants, and requires only N-terminal peroxidatic cysteine for its catalysis. These results, combined with the monomeric size of Prx3 observed under non-reducing conditions, suggested that Prx3 is a Grx3/GSH-dependent 1-Cys Prx and oxidized without forming intermolecular disulfide bonds. The prx3 mutation impaired growth in the medium containing peroxides and reduced virulence in mice, indicating that Prx3 is essential for survival under oxidative stress and pathogenesis of V. vulnificus. The Fe-S cluster regulator IscR activates prx3 by direct binding to a specific binding sequence centered at -44 from the transcription start site. The binding sequence was homologous to the Type 2 IscR-binding sequence, most likely recognized by the Fe-S clusterless apo-IscR in Escherichia coli. The iscR3CA mutant, chromosomally encoding the apo-locked IscR, exhibited 3-fold higher levels of activation of prx3 than the wild type and accumulated more IscR3CA protein in cells. The IscR-dependent activation of prx3 by aerobic growth and iron starvation was also associated with the increase in cellular levels of IscR protein. Taken together, the results suggested that IscR senses iron starvation as well as reactive oxygen species and shifts to the apo-form, which leads to the increase of cellular IscR and in turn prx3 expression, contributing to the survival and virulence of V. vulnificus during pathogenesis. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Peroxiredoxins in plants and cyanobacteria.
Dietz, Karl-Josef
2011-08-15
Peroxiredoxins (Prx) are central elements of the antioxidant defense system and the dithiol-disulfide redox regulatory network of the plant and cyanobacterial cell. They employ a thiol-based catalytic mechanism to reduce H2O2, alkylhydroperoxide, and peroxinitrite. In plants and cyanobacteria, there exist 2-CysPrx, 1-CysPrx, PrxQ, and type II Prx. Higher plants typically contain at least one plastid 2-CysPrx, one nucleo-cytoplasmic 1-CysPrx, one chloroplast PrxQ, and one each of cytosolic, mitochondrial, and plastidic type II Prx. Cyanobacteria express variable sets of three or more Prxs. The catalytic cycle consists of three steps: (i) peroxidative reduction, (ii) resolving step, and (iii) regeneration using diverse electron donors such as thioredoxins, glutaredoxins, cyclophilins, glutathione, and ascorbic acid. Prx proteins undergo major conformational changes in dependence of their redox state. Thus, they not only modulate cellular reactive oxygen species- and reactive nitrogen species-dependent signaling, but depending on the Prx type they sense the redox state, transmit redox information to binding partners, and function as chaperone. They serve in context of photosynthesis and respiration, but also in metabolism and development of all tissues, for example, in nodules as well as during seed and fruit development. The article surveys the current literature and attempts a mostly comprehensive coverage of present day knowledge and concepts on Prx mechanism, regulation, and function and thus on the whole Prx systems in plants.
OsPRX2 contributes to stomatal closure and improves potassium deficiency tolerance in rice.
Mao, Xiaohui; Zheng, Yanmei; Xiao, Kaizhuan; Wei, Yidong; Zhu, Yongsheng; Cai, Qiuhua; Chen, Liping; Xie, Huaan; Zhang, Jianfu
2018-01-01
Peroxiredoxins (Prxs) which are thiol-based peroxidases have been implicated in the toxic reduction and intracellular concentration regulation of hydrogen peroxide. In Arabidopsis thaliana At2-CysPrxB (At5g06290) has been demonstrated to be essential in maintaining the water-water cycle for proper H 2 O 2 scavenging. Although the mechanisms of 2-Cys Prxs have been extensively studied in Arabidopsis thaliana, the function of 2-Cys Prxs in rice is unclear. In this study, a rice homologue gene of At2-CysPrxB, OsPRX2 was investigated aiming to characterize the effect of 2-Cys Prxs on the K + -deficiency tolerance in rice. We found that OsPRX2 was localized in the chloroplast. Overexpressed OsPRX2 causes the stomatal closing and K + -deficiency tolerance increasing, while knockout of OsPRX2 lead to serious defects in leaves phenotype and the stomatal opening under the K + -deficiency tolerance. Detection of K + accumulation, antioxidant activity of transgenic plants under the starvation of potassium, further confirmed that OsPRX2 is a potential target for engineering plants with improved potassium deficiency tolerance. Copyright © 2017 Elsevier Inc. All rights reserved.
Park, Sun-Ji; Kim, Jung-Hak; Kim, Tae-Shin; Lee, Sang-Rae; Park, Jeen-Woo; Lee, Seunghoon; Kim, Jin-Man; Lee, Dong-Seok
2017-07-01
Luteal regression is a natural and necessary event to regulate the reproductive process in all mammals. Prostaglandin F2α (PGF2α) is the main factor that causes functional and structural regression of the corpus luteum (CL). It is well known that PGF2α-mediated ROS generation is closely involved in luteal regression. Peroxiredoxin 2 (Prx2) as an antioxidant enzyme plays a protective role against oxidative stress-induced cell death. However, the effect of Prx2 on PGF2α-induced luteal regression has not been reported. Here, we investigated the role of Prx2 in functional and structural CL regression induced by PGF2α-mediated ROS using Prx2-deficient (-/-) mice. We found that PGF2α-induced ROS generation was significantly higher in Prx2-/- MEF cells compared with that in wild-type (WT) cells, which induced apoptosis by activating JNK-mediated apoptotic signaling pathway. Also, PGF2α treatment in the CL derived from Prx2-/- mice promoted the reduction of steroidogenic enzyme expression and the activation of JNK and caspase3. Compared to WT mice, serum progesterone levels and luteal expression of steroidogenic enzymes decreased more rapidly whereas JNK and caspase3 activations were significantly increased in Prx2-/- mice injected with PGF2α. However, the impaired steroidogenesis and PGF2α-induced JNK-dependent apoptosis were rescued by the addition of the antioxidant N-acetyl-L-cysteine (NAC). This is the first study to demonstrate that Prx2 deficiency ultimately accelerated the PGF2α-induced luteal regression through activation of the ROS-dependent JNK pathway. These findings suggest that Prx2 plays a crucial role in preventing accelerated luteal regression via inhibition of the ROS/JNK pathway. Copyright © 2017 Elsevier Inc. All rights reserved.
Peroxiredoxins in Plants and Cyanobacteria
2011-01-01
Abstract Peroxiredoxins (Prx) are central elements of the antioxidant defense system and the dithiol-disulfide redox regulatory network of the plant and cyanobacterial cell. They employ a thiol-based catalytic mechanism to reduce H2O2, alkylhydroperoxide, and peroxinitrite. In plants and cyanobacteria, there exist 2-CysPrx, 1-CysPrx, PrxQ, and type II Prx. Higher plants typically contain at least one plastid 2-CysPrx, one nucleo-cytoplasmic 1-CysPrx, one chloroplast PrxQ, and one each of cytosolic, mitochondrial, and plastidic type II Prx. Cyanobacteria express variable sets of three or more Prxs. The catalytic cycle consists of three steps: (i) peroxidative reduction, (ii) resolving step, and (iii) regeneration using diverse electron donors such as thioredoxins, glutaredoxins, cyclophilins, glutathione, and ascorbic acid. Prx proteins undergo major conformational changes in dependence of their redox state. Thus, they not only modulate cellular reactive oxygen species- and reactive nitrogen species-dependent signaling, but depending on the Prx type they sense the redox state, transmit redox information to binding partners, and function as chaperone. They serve in context of photosynthesis and respiration, but also in metabolism and development of all tissues, for example, in nodules as well as during seed and fruit development. The article surveys the current literature and attempts a mostly comprehensive coverage of present day knowledge and concepts on Prx mechanism, regulation, and function and thus on the whole Prx systems in plants. Antioxid. Redox Signal. 15, 1129–1159. PMID:21194355
Peroxiredoxin 2 and peroxide metabolism in the erythrocyte.
Low, Felicia M; Hampton, Mark B; Winterbourn, Christine C
2008-09-01
Peroxiredoxin 2 (Prx2) is an antioxidant enzyme that uses cysteine residues to decompose peroxides. Prx2 is the third most abundant protein in erythrocytes, and competes effectively with catalase and glutathione peroxidase to scavenge low levels of hydrogen peroxide, including that derived from hemoglobin autoxidation. Low thioredoxin reductase activity in the erythrocyte is able to keep up with this basal oxidation and maintain the Prx2 in its reduced form, but exposure to exogenous hydrogen peroxide causes accumulation of the disulfide-linked dimer. The high cellular concentration means that although turnover is slow, erythrocyte Prx2 can act as a noncatalytic scavenger of hydrogen peroxide and a sink for hydrogen peroxide before turnover becomes limiting. The consequences of Prx2 oxidation for the erythrocyte are not well characterized, but mice deficient in this protein develop severe hemolytic anemia associated with Heinz body formation. Prx2, also known as calpromotin, regulates ion transport by associating with the membrane and activating the Gárdos channel. How Prx2 redox transformations are linked to membrane association and channel activation is yet to be established. In this review, we discuss the functional properties of Prx2 and its role as a major component of the erythrocyte antioxidant system.
Sun, Cen-Cen; Dong, Wei-Ren; Shao, Tong; Li, Jiang-Yuan; Zhao, Jing; Nie, Li
2017-01-01
Peroxiredoxin (Prx) was previously known as a Cys-dependent thioredoxin. However, we unexpectedly observed that Prx1 from the green spotted puffer fish Tetraodon nigroviridis (TnPrx1) was able to reduce H2O2 in a manner independent of Cys peroxidation and reductants. This study aimed to validate a novel function for Prx1, delineate the biochemical features and explore its antioxidant role in cells. We have confirmed that Prx1 from the puffer fish and humans truly possesses a catalase (CAT)-like activity that is independent of Cys residues and reductants, but dependent on iron. We have identified that the GVL motif was essential to the CAT-like activity of Prx1, but not to the Cys-dependent thioredoxin peroxidase (POX) activity, and generated mutants lacking POX and/or CAT-like activities for individual functional validation. We discovered that the TnPrx1 POX and CAT-like activities possessed different kinetic features in the reduction of H2O2. The overexpression of wild-type TnPrx1 and mutants differentially regulated the intracellular levels of reactive oxygen species (ROS) and the phosphorylation of p38 in HEK-293T cells treated with H2O2. Prx1 is a dual-function enzyme by acting as POX and CAT with varied affinities towards ROS. This study extends our knowledge on Prx1 and provides new opportunities to further study the biological roles of this family of antioxidants. PMID:28219939
Antioxidant peroxiredoxin 3 expression is regulated by 17beta-estradiol in rat white adipose tissue.
Bauzá-Thorbrügge, Marco; M Galmés-Pascual, Bel; Sbert-Roig, Miquel; J García-Palmer, Francisco; Gianotti, Magdalena; M Proenza, Ana; Lladó, Isabel
2017-09-01
Peroxiredoxin 3 (PRX3) plays a role as a regulator of the adipocyte mitochondrial function due to its antioxidant activity. We have previously reported the existence of a sexual dimorphism in the mitochondrial oxidative stress status of many rat tissues such as white (WAT) and brown (BAT) adipose tissues. The aim was to elucidate whether sex hormones may play a role in PRX3 expression in the adipose tissues of rats. In in vivo experiments, male and female standard diet fed rats, high fat diet (HFD) fed rats and rosiglitazone-supplemented HFD (HDF+Rsg) fed rats, as well as ovariectomized (OVX) and 17beta-estradiol-supplemented OVX (OVX+E2) female rats were used. 3T3-L1 adipocytes and brown adipocyte primary culture were used to study the roles of both E2 and testosterone in in vitro experiments. PRX3 levels were greater in the WAT of female rats than in males. This sexual dimorphism disappeared by HFD feeding but was magnified with Rsg supplementation. PRX3 sexual dimorphism was not observed in BAT, and neither HFD nor ovariectomy modified PRX3 levels. Rsg increased Prx3 expression in the BAT of both sexes. In vitro studies supported the results obtained in vivo and confirmed the contribution of E2 to sex differences in WAT Prx3 expression. Finally, we reported an E2 upregulation of both PRX3 and thioredoxin 2 (TRX2) in WAT but not in BAT that could play a key role in the sex dimorphism reported in the antioxidant defence of WAT in order to palliate the detrimental effect of the oxidative stress. Copyright © 2017 Elsevier Ltd. All rights reserved.
Cysteine-independent Catalase-like Activity of Vertebrate Peroxiredoxin 1 (Prx1)*
Sun, Cen-Cen; Dong, Wei-Ren; Zhao, Jing; Nie, Li; Xiang, Li-Xin; Zhu, Guan; Shao, Jian-Zhong
2015-01-01
Peroxiredoxins (Prxs) are a ubiquitous family of antioxidant proteins that are known as thioredoxin peroxidases. Here we report that Prx1 proteins from Tetraodon nigroviridis and humans also possess a previously unknown catalase-like activity that is independent of Cys residues and reductants but dependent on iron. We identified that the GVL motif was essential to the catalase (CAT)-like activity of Prx1 but not to the Cys-dependent thioredoxin peroxidase (POX) activity, and we generated mutants lacking POX and/or CAT activities for individually delineating their functional features. We discovered that the TnPrx1 POX and CAT activities possessed different kinetic features in reducing H2O2. The overexpression of wild-type TnPrx1 and mutants differentially regulated the intracellular levels of reactive oxygen species and p38 phosphorylation in HEK-293T cells treated with H2O2. These observations suggest that the dual antioxidant activities of Prx1 may be crucial for organisms to mediate intracellular redox homeostasis. PMID:26088136
Kusakisako, Kodai; Galay, Remil Linggatong; Umemiya-Shirafuji, Rika; Hernandez, Emmanuel Pacia; Maeda, Hiroki; Talactac, Melbourne Rio; Tsuji, Naotoshi; Mochizuki, Masami; Fujisaki, Kozo; Tanaka, Tetsuya
2016-08-19
Ticks are obligate hematophagous arthropods that feed on vertebrate blood that contains iron. Ticks also concentrate host blood with iron; this concentration of the blood leads to high levels of iron in ticks. The host-derived iron reacts with oxygen in the tick body and this may generate high levels of reactive oxygen species, including hydrogen peroxide (H2O2). High levels of H2O2 cause oxidative stress in organisms and therefore, antioxidant responses are necessary to regulate H2O2. Here, we focused on peroxiredoxin (Prx), an H2O2-scavenging enzyme in the hard tick Haemaphysalis longicornis. The mRNA and protein expression profiles of 2-Cys peroxiredoxin (HlPrx2) in H. longicornis were investigated in whole ticks and internal organs, and developmental stages, using real-time PCR and Western blot analysis during blood-feeding. The localization of HlPrx2 proteins in tick tissues was also observed by immunostaining. Moreover, knockdown experiments of HlPrx2 were performed using RNA interference to evaluate its function in ticks. Real-time PCR showed that HlPrx2 gene expression in whole ticks and internal organs was significantly upregulated by blood-feeding. However, protein expression, except in the midgut, was constant throughout blood-feeding. Knockdown of the HlPrx2 gene caused significant differences in the engorged body weight, egg weight and hatching rate for larvae as compared to the control group. Finally, detection of H2O2 after knockdown of HlPrxs in ticks showed that the concentration of H2O2 significantly increased before and after blood-feeding. Therefore, HlPrx2 can be considered important for successful blood-feeding and reproduction through the regulation of H2O2 concentrations in ticks before and after blood-feeding. This study contributes to the search for a candidate target for tick control and further understanding of the tick's oxidative stress coping mechanism during blood-feeding.
Kim, H J; Chae, H Z; Kim, Y J; Kim, Y H; Hwangs, T S; Park, E M; Park, Y M
2003-10-01
Transient/chronic microenvironmental hypoxia that exists within a majority of solid tumors has been suggested to have a profound influence on tumor growth and therapeutic outcome. Since the functions of novel antioxidant proteins, peroxiredoxin I (Prx I) and II, have been implicated in regulating cell proliferation, differentiation, and apoptosis, it was of our special interest to probe a possible role of Prx I and II in the context of hypoxic tumor microenvironment. Since both Prx I and II use thioredoxin (Trx) as an electron donor and Trx is a substrate for thioredoxin reductase (TrxR), we investigated the regulation of Trx and TrxR as well as Prx expression following hypoxia. Here we show a dynamic change of glutathione homeostasis in lung cancer A549 cells and an up-regulation of Prx I and Trx following hypoxia. Western blot analysis of 10 human lung cancer and paired normal lung tissues also revealed an elevated expression of Prx I and Trx proteins in lung cancer tissues. Immunohistochemical analysis of the lung cancer tissues confirmed an augmented Prx I and Trx expression in cancer cells with respect to the parenchymal cells in adjacent normal lung tissue. Based on these results, we suggest that the redox changes in lung tumor microenvironment could have acted as a trigger for the up-regulation of Prx I and Trx in lung cancer cells. Although the clinical significance of our finding awaits more rigorous future study, preferential augmentation of the Prx I and Trx in lung cancer cells may well represent an attempt of cancer cells to manipulate a dynamic redox change in tumor microenvironment in a manner that is beneficial for their proliferation and malignant progression.
Prx I Suppresses K-ras-Driven Lung Tumorigenesis by Opposing Redox-Sensitive ERK/Cyclin D1 Pathway
Park, Young-Ho; Kim, Sun-Uk; Lee, Bo-Kyoung; Kim, Hyun-Sun; Song, In-Sung; Shin, Hye-Jun; Han, Ying-Hao; Chang, Kyu-Tae; Kim, Jin-Man; Lee, Dong-Seok; Kim, Yeul-Hong; Choi, Chang-Min; Kim, Bo-Yeon
2013-01-01
Abstract Aims: Coupled responses of mutated K-ras and oxidative stress are often an important etiological factor in non–small-cell lung cancer (NSCLC). However, relatively few studies have examined the control mechanism of oxidative stress in oncogenic K-ras-driven NSCLC progression. Here, we studied whether the redox signaling pathway governed by peroxiredoxin I (Prx I) is involved in K-rasG12D-mediated lung adenocarcinogenesis. Results: Using human-lung adenocarcinoma tissues and lung-specific K-rasG12D-transgenic mice, we found that Prx I was significantly up-regulated in the tumor regions via activation of nuclear erythroid 2-related factor 2 (Nrf2) transcription. Interestingly, the increased reactive oxygen species (ROS) by null mutation of Prx I greatly promoted K-rasG12D-driven lung tumorigenesis in number and size, which appeared to require the activation of the ROS-dependent extracellular signal-regulated kinase (ERK)/cyclin D1 pathway. Innovation: Taken together, these results suggest that Prx I functions as an Nrf2-dependently inducible tumor suppressant in K-ras-driven lung adenocarcinogenesis by opposing ROS/ERK/cyclin D1 pathway activation. Conclusion: These findings provide a better understanding of oxidative stress-mediated lung tumorigenesis. Antioxid. Redox Signal. 19, 482–496. PMID:23186333
Peroxiredoxins and NADPH-dependent thioredoxin systems in the model legume Lotus japonicus.
Tovar-Méndez, Alejandro; Matamoros, Manuel A; Bustos-Sanmamed, Pilar; Dietz, Karl-Josef; Cejudo, Francisco Javier; Rouhier, Nicolas; Sato, Shusei; Tabata, Satoshi; Becana, Manuel
2011-07-01
Peroxiredoxins (Prxs), thioredoxins (Trxs), and NADPH-thioredoxin reductases (NTRs) constitute central elements of the thiol-disulfide redox regulatory network of plant cells. This study provides a comprehensive survey of this network in the model legume Lotus japonicus. The aims were to identify and characterize these gene families and to assess whether the NTR-Trx systems are operative in nodules. Quantitative reverse transcription-polymerase chain reaction and immunological and proteomic approaches were used for expression profiling. We identified seven Prx, 14 Trx, and three NTR functional genes. The PrxQ1 gene was found to be transcribed in two alternative spliced variants and to be expressed at high levels in leaves, stems, petals, pods, and seeds and at low levels in roots and nodules. The 1CPrx gene showed very high expression in the seed embryos and low expression in vegetative tissues and was induced by nitric oxide and cytokinins. In sharp contrast, cytokinins down-regulated all other Prx genes, except PrxQ1, in roots and nodules, but only 2CPrxA and PrxQ1 in leaves. Gene-specific changes in Prx expression were also observed in response to ethylene, abscisic acid, and auxins. Nodules contain significant mRNA and protein amounts of cytosolic PrxIIB, Trxh1, and NTRA and of plastidic NTRC. Likewise, they express cytosolic Trxh3, Trxh4, Trxh8, and Trxh9, mitochondrial PrxIIF and Trxo, and plastidic Trxm2, Trxm4, and ferredoxin-Trx reductase. These findings reveal a complex regulation of Prxs that is dependent on the isoform, tissue, and signaling molecule and support that redox NTR-Trx systems are functional in the cytosol, mitochondria, and plastids of nodules.
Peroxiredoxins and NADPH-Dependent Thioredoxin Systems in the Model Legume Lotus japonicus1[W][OA
Tovar-Méndez, Alejandro; Matamoros, Manuel A.; Bustos-Sanmamed, Pilar; Dietz, Karl-Josef; Cejudo, Francisco Javier; Rouhier, Nicolas; Sato, Shusei; Tabata, Satoshi; Becana, Manuel
2011-01-01
Peroxiredoxins (Prxs), thioredoxins (Trxs), and NADPH-thioredoxin reductases (NTRs) constitute central elements of the thiol-disulfide redox regulatory network of plant cells. This study provides a comprehensive survey of this network in the model legume Lotus japonicus. The aims were to identify and characterize these gene families and to assess whether the NTR-Trx systems are operative in nodules. Quantitative reverse transcription-polymerase chain reaction and immunological and proteomic approaches were used for expression profiling. We identified seven Prx, 14 Trx, and three NTR functional genes. The PrxQ1 gene was found to be transcribed in two alternative spliced variants and to be expressed at high levels in leaves, stems, petals, pods, and seeds and at low levels in roots and nodules. The 1CPrx gene showed very high expression in the seed embryos and low expression in vegetative tissues and was induced by nitric oxide and cytokinins. In sharp contrast, cytokinins down-regulated all other Prx genes, except PrxQ1, in roots and nodules, but only 2CPrxA and PrxQ1 in leaves. Gene-specific changes in Prx expression were also observed in response to ethylene, abscisic acid, and auxins. Nodules contain significant mRNA and protein amounts of cytosolic PrxIIB, Trxh1, and NTRA and of plastidic NTRC. Likewise, they express cytosolic Trxh3, Trxh4, Trxh8, and Trxh9, mitochondrial PrxIIF and Trxo, and plastidic Trxm2, Trxm4, and ferredoxin-Trx reductase. These findings reveal a complex regulation of Prxs that is dependent on the isoform, tissue, and signaling molecule and support that redox NTR-Trx systems are functional in the cytosol, mitochondria, and plastids of nodules. PMID:21562331
Zhang, Yongdong; Lu, Zhiqiang
2015-05-01
Reactive oxygen species (ROSs) are generated in organisms in response to infections caused by invading microbes. However, excessive ROSs will inflict oxidative damage on the host. Peroxiredoxins (Prxs) are antioxidative enzymes that may eliminate ROSs efficiently. In this study, ApPrx1 from the pea aphid Acyrthosiphon pisum was cloned, and its function was investigated in vitro and in vivo. In the presence of DTT, recombinant ApPrx1 protein from Escherichia coli showed antioxidative activity by eliminating H2O2 effectively. The H2O2 levels were significantly higher in Micrococcus luteus-infected aphids than in uninfected aphids, and ApPrx1 expression was remarkably up-regulated when the aphids were infected with M. luteus or injected with H2O2. When ApPrx1 expression was reduced by dsRNA injection, the survival of the aphids decreased significantly after M. luteus infection. Knockdown of ApPrx1 decreased M. luteus loads inside the aphids 48h post-infection. While under infection conditions, the H2O2 levels were much higher in ApPrx1 knockdown aphids than in dsGFP-injected aphids, indicating that the decreased survival of the aphids was caused by increased oxidative stress. Taken together, our results reveal that ApPrx1 plays a protective role in oxidative stress caused by bacterial infection. Copyright © 2015 Elsevier Inc. All rights reserved.
Gao, Mai-cang; Jia, Xiao-di; Wu, Qi-fei; Cheng, Yan; Chen, Fen-rong; Zhang, Jun
2011-01-01
Aim: To investigate whether down-regulation of peroxiredoxin 1 (Prx1) and/or peroxiredoxin 5 (Prx5) sensitizes human esophageal cancer cells to ionizing radiation (IR). Methods: Human esophageal carcinoma cell lines Eca-109 and TE-1 were used. Prx mRNA expression profiles in Eca-109 and TE-1 cells were determined using RT-PCR. Two highly expressed isoforms of Prxs, Prx1 and Prx5, were silenced by RNA interference (RNAi). Following IR, intracellular reactive oxygen species (ROS) and apoptosis were measured using flow cytometry, the activities of catalase, superoxide dismutase and glutathione peroxidase were measured, and the radiosensitizing effect of RNAi was observed. Tumor xenograft model was also used to examine the radiosensitizing effect of RNAi in vivo. Results: Down-regulation of Prx1 and/or Prx5 by RNAi does not alter the activities of catalase, superoxide dismutase and glutathione peroxidase, but made human tumor cells more sensitive to IR-induced apoptosis both in vitro and in vivo. When the two isoforms were decreased simultaneously, intracellular ROS and apoptosis significantly increased after IR. Conclusion: Silencing Prx1 and/or Prx5 by RNAi sensitizes human Eca-109 and TE-1 cells to IR, and the intracellular ROS accumulation may contribute to the radiosensitizing effect of the RNAi. PMID:21468086
Physiological relevance of plant 2-Cys peroxiredoxin overoxidation level and oligomerization status.
Cerveau, Delphine; Ouahrani, Djelloul; Marok, Mohamed Amine; Blanchard, Laurence; Rey, Pascal
2016-01-01
Peroxiredoxins are ubiquitous thioredoxin-dependent peroxidases presumed to display, upon environmental constraints, a chaperone function resulting from a redox-dependent conformational switch. In this work, using biochemical and genetic approaches, we aimed to unravel the factors regulating the redox status and the conformation of the plastidial 2-Cys peroxiredoxin (2-Cys PRX) in plants. In Arabidopsis, we show that in optimal growth conditions, the overoxidation level mainly depends on the availability of thioredoxin-related electron donors, but not on sulfiredoxin, the enzyme reducing the 2-Cys PRX overoxidized form. We also observed that upon various physiological temperature, osmotic and light stress conditions, the overoxidation level and oligomerization status of 2-Cys PRX can moderately vary depending on the constraint type. Further, no major change was noticed regarding protein conformation in water-stressed Arabidopsis, barley and potato plants, whereas species-dependent up- and down-variations in overoxidation were observed. In contrast, both 2-Cys PRX overoxidation and oligomerization were strongly induced during a severe oxidative stress generated by methyl viologen. From these data, revealing that the oligomerization status of plant 2-Cys PRX does not exhibit important variation and is not tightly linked to the protein redox status upon physiologically relevant environmental constraints, the possible in planta functions of 2-Cys PRX are discussed. © 2015 John Wiley & Sons Ltd.
Sayed, Ahmed A; Cook, Shawna K; Williams, David L
2006-06-23
Schistosoma mansoni, a causative agent of schistosomiasis, resides in the hepatic portal circulation of their human host up to 30 years without being eliminated by the host immune attack. Production of an antioxidant "firewall," which would neutralize the oxidative assault generated by host immune defenses, is one proposed survival mechanism of the parasite. Schistosomes lack catalase, the main H2O2-neutralizing enzyme of many organisms, and their glutathione peroxidases are in the phospholipid class with poor reactivity toward H2O2. Evidence implicates peroxiredoxins (Prx) as providing the main enzymatic activity to reduce H2O2 in the parasite. Quantitative monitoring of Prx mRNAs during parasite life cycle indicated that Prx proteins are differentially expressed, with highest expression occurring in adult stages (oxidative resistant stages). Incubation of schistosomula with Prx1 double-stranded RNA knocked down total Prx enzymatic activity and resulted in lowered survival of cultured parasites compared with controls demonstrating that Prx are essential parasite proteins. These results represent the first report of lethal gene silencing in Schistosoma. Investigation of downstream effects of Prx silencing revealed an abrupt increase of lipid peroxides and the generation of several oxidized proteins. Using mass spectrometry, parasite albumin and actin were identified as the main oxidized proteins. Gene expression analysis showed that schistosome albumin was induced by oxidative stress. This study highlights Prx proteins as essential parasite proteins and potential new targets for anti-schistosome drug development and albumin as a novel, sacrificial oxidant scavenging protein in parasite redox regulation.
Synergistic cooperation of PDI family members in peroxiredoxin 4-driven oxidative protein folding.
Sato, Yoshimi; Kojima, Rieko; Okumura, Masaki; Hagiwara, Masatoshi; Masui, Shoji; Maegawa, Ken-ichi; Saiki, Masatoshi; Horibe, Tomohisa; Suzuki, Mamoru; Inaba, Kenji
2013-01-01
The mammalian endoplasmic reticulum (ER) harbors disulfide bond-generating enzymes, including Ero1α and peroxiredoxin 4 (Prx4), and nearly 20 members of the protein disulfide isomerase family (PDIs), which together constitute a suitable environment for oxidative protein folding. Here, we clarified the Prx4 preferential recognition of two PDI family proteins, P5 and ERp46, and the mode of interaction between Prx4 and P5 thioredoxin domain. Detailed analyses of oxidative folding catalyzed by the reconstituted Prx4-PDIs pathways demonstrated that, while P5 and ERp46 are dedicated to rapid, but promiscuous, disulfide introduction, PDI is an efficient proofreader of non-native disulfides. Remarkably, the Prx4-dependent formation of native disulfide bonds was accelerated when PDI was combined with ERp46 or P5, suggesting that PDIs work synergistically to increase the rate and fidelity of oxidative protein folding. Thus, the mammalian ER seems to contain highly systematized oxidative networks for the efficient production of large quantities of secretory proteins.
Selvaggio, Gianluca; Coelho, Pedro M B M; Salvador, Armindo
2018-05-01
The system (PTTRS) formed by typical 2-Cys peroxiredoxins (Prx), thioredoxin (Trx), Trx reductase (TrxR), and sulfiredoxin (Srx) is central in antioxidant protection and redox signaling in the cytoplasm of eukaryotic cells. Understanding how the PTTRS integrates these functions requires tracing phenotypes to molecular properties, which is non-trivial. Here we analyze this problem based on a model that captures the PTTRS' conserved features. We have mapped the conditions that generate each distinct response to H 2 O 2 supply rates (v sup ), and estimated the parameters for thirteen human cell types and for Saccharomyces cerevisiae. The resulting composition-to-phenotype map yielded the following experimentally testable predictions. The PTTRS permits many distinct responses including ultra-sensitivity and hysteresis. However, nearly all tumor cell lines showed a similar response characterized by limited Trx-S - depletion and a substantial but self-limited gradual accumulation of hyperoxidized Prx at high v sup . This similarity ensues from strong correlations between the TrxR, Srx and Prx activities over cell lines, which contribute to maintain the Prx-SS reduction capacity in slight excess over the maximal steady state Prx-SS production. In turn, in erythrocytes, hepatocytes and HepG2 cells high v sup depletes Trx-S - and oxidizes Prx mainly to Prx-SS. In all nucleated human cells the Prx-SS reduction capacity defined a threshold separating two different regimes. At sub-threshold v sup the cytoplasmic H 2 O 2 concentration is determined by Prx, nM-range and spatially localized, whereas at supra-threshold v sup it is determined by much less active alternative sinks and μM-range throughout the cytoplasm. The yeast shows a distinct response where the Prx Tsa1 accumulates in sulfenate form at high v sup . This is mainly due to an exceptional stability of Tsa1's sulfenate. The implications of these findings for thiol redox regulation and cell physiology are discussed. All estimates were thoroughly documented and provided, together with analytical approximations for system properties, as a resource for quantitative redox biology. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Novo-Uzal, Esther; Gutiérrez, Jorge; Martínez-Cortés, Teresa; Pomar, Federico
2014-10-01
Peroxidase isoenzymes play diverse roles in plant physiology, such as lignification and defence against pathogens. The actions and regulation of many peroxidases are not known with much accuracy. A number of studies have reported direct involvement of peroxidase isoenzymes in the oxidation of monolignols, which constitutes the last step in the lignin biosynthesis pathway. However, most of the available data concern only peroxidases and lignins from angiosperms. This study describes the molecular cloning of two novel peroxidases from the 'living fossil' Ginkgo biloba and their regulation by salt stress and salicylic acid. Suspension cell cultures were used to purify peroxidases and to obtain the cDNAs. Treatments with salicylic acid and sodium chloride were performed and peroxidase activity and gene expression were monitored. A novel peroxidase was purified, which preferentially used p-hydroxycinnamyl alcohols as substrates and was able to form dehydrogenation polymers in vitro from coniferyl and sinapyl alcohols. Two peroxidase full-length cDNAs, GbPrx09 and GbPrx10, were cloned. Both peroxidases showed high similarity to other basic peroxidases with a putative role in cell wall lignification. Both GbPrx09 and GbPrx10 were expressed in leaves and stems of the plant. Sodium chloride enhanced the gene expression of GbPrx09 but repressed GbPrx10, whereas salicylic acid strongly repressed both GbPrx09 and GbPrx10. Taken together, the data suggest the participation of GbPrx09 and GbPrx10 in the developmental lignification programme of the cell wall. Both peroxidases possess the structural characteristics necessary for sinapyl alcohol oxidation. Moreover, GbPrx09 is also involved in lignification induced by salt stress, while salicylic acid-mediated lignification is not a result of GbPrx09 and GbPrx10 enzymatic activity. © The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Knockdown of peroxiredoxin V increases glutamate‑induced apoptosis in HT22 hippocampal neuron cells.
Shen, Gui-Nan; Liu, Lei; Feng, Li; Jin, Yu; Jin, Mei-Hua; Han, Ying-Hao; Jin, Cheng-Hao; Jin, Yong-Zhe; Lee, Dong-Soek; Kwon, Tae Ho; Cui, Yu-Dong; Sun, Hu-Nan
2018-06-01
High concentrations of glutamate may mediate neuronal cell apoptosis by increasing intracellular reactive oxygen species (ROS) levels. Peroxiredoxin V (Prx V), a member of the Prx family, serves crucial roles in protecting cells from oxidative stress. The present study investigated the regulatory effect of Prx V on glutamate‑induced effects on viability and apoptosis in HT22 cells. Western blotting was used for protein expression analysis and Annexin V/PI staining and flow cytometry for determination of apoptosis. The results demonstrated that glutamate may ROS‑dependently increase HT22 cell apoptosis and upregulate Prx V protein levels. Furthermore, knockdown of Prx V protein expression with a lentivirus significantly enhanced HT22 cell apoptosis mediated by glutamate, which was reversed by inhibition of ROS with N‑acetyl‑L‑cysteine. Inhibiting the extracellular signal‑regulated kinase (ERK) signaling pathway with PD98059, a specific inhibitor for ERK phosphorylation, markedly decreased glutamate‑induced HT22 cell apoptosis in Prx V knockdown cells, indicating the potential involvement of ERK signaling in glutamate‑induced HT22 cell apoptosis. In addition, an increase in nuclear apoptosis‑inducing factor was observed in Prx V knockdown HT22 cells following glutamate treatment, compared with mock cells, whereas no differences in B‑cell lymphoma‑2 and cleaved‑caspase‑3 protein expression levels were observed between mock and Prx V knockdown cells. The results of the present study indicated that Prx V may have potential as a therapeutic molecular target for glutamate‑induced neuronal cell death and provide novel insight into the role of Prx V in oxidative‑stress induced neuronal cell death.
NASA Astrophysics Data System (ADS)
Song, In-Kang; Lee, Jae-Jin; Cho, Jin-Hwan; Jeong, Jihye; Shin, Dong-Hae; Lee, Kong-Joo
2016-10-01
Reactive oxygen species (ROS) are key molecules regulating various cellular processes. However, what the cellular targets of ROS are and how their functions are regulated is unclear. This study explored the cellular proteomic changes in response to oxidative stress using H2O2 in dose- and recovery time-dependent ways. We found discernible changes in 76 proteins appearing as 103 spots on 2D-PAGE. Of these, Prxs, DJ-1, UCH-L3 and Rla0 are readily oxidized in response to mild H2O2 stress, and then degraded and active proteins are newly synthesized during recovery. In studies designed to understand the degradation process, multiple cellular modifications of redox-sensitive proteins were identified by peptide sequencing with nanoUPLC-ESI-q-TOF tandem mass spectrometry and the oxidative structural changes of Prx2 explored employing hydrogen/deuterium exchange-mass spectrometry (HDX-MS). We found that hydrogen/deuterium exchange rate increased in C-terminal region of oxidized Prx2, suggesting the exposure of this region to solvent under oxidation. We also found that Lys191 residue in this exposed C-terminal region of oxidized Prx2 is polyubiquitinated and the ubiquitinated Prx2 is readily degraded in proteasome and autophagy. These findings suggest that oxidation-induced ubiquitination and degradation can be a quality control mechanism of oxidized redox-sensitive proteins including Prxs and DJ-1.
Odnokoz, Olena; Nakatsuka, Kyle; Klichko, Vladimir I.; Nguyen, Jacqueline; Solis, Liz Calderon; Ostling, Kaitlin; Badinloo, Marziyeh; Orr, William C.; Radyuk, Svetlana N.
2016-01-01
Previously, we have shown that flies under-expressing the two mitochondrial peroxiredoxins (Prxs), dPrx3 and dPrx5, display increases in tissue-specific apoptosis and dramatically shortened life span, associated with a redox crisis, manifested as changes in GSH:GSSG and accumulation of protein mixed disulfides. To identify specific pathways responsible for the observed biological effects, we performed a transcriptome analysis. Functional clustering revealed a prominent group enriched for immunity-related genes, including a considerable number of NF-kB-dependent antimicrobial peptides (AMP) that are up-regulated in the Prx double mutant. Using qRT-PCR analysis we determined that the age-dependent changes in AMP levels in mutant flies were similar to those observed in controls when scaled to percentage of life span. To further clarify the role of Prx-dependent mitochondrial signaling, we expressed different forms of dPrx5, which unlike the uniquely mitochondrial dPrx3 is found in multiple subcellular compartments, including mitochondrion, nucleus and cytosol. Ectopic expression of dPrx5 in mitochondria but not nucleus or cytosol partially extended longevity under normal or oxidative stress conditions while complete restoration of life span occurred when all three forms of dPrx5 were expressed from the wild type dPrx5 transgene. When dPrx5 was expressed in mitochondria or in all three compartments, it substantially delayed the development of hyperactive immunity while expression of cytosolic or nuclear forms had no effect on the immune phenotype. The data suggest a critical role of mitochondria in development of chronic activation of the immune response triggered by impaired redox control. PMID:27770625
Peroxiredoxin 5 promotes the epithelial-mesenchymal transition in colon cancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahn, Hye-Mi; Yoo, Jin-Woo; College of Natural Sciences, Kyungpook National University, Daegu
Globally, colorectal cancer (CRC) is common cause of cancer-related deaths. The high mortality rate of patients with colon cancer is due to cancer cell invasion and metastasis. Initiation of the epithelial-to-mesenchymal transition (EMT) is essential for the tumorigenesis. Peroxiredoinxs (PRX1-6) have been reported to be overexpressed in various tumor tissues, and involved to be responsible for tumor progression. However, the exact role of PRX5 in colon cancer remains to be investigated enhancing proliferation and promoting EMT properties. In this study, we constructed stably overexpressing PRX5 and suppressed PRX5 expression in CRC cells. Our results revealed that PRX5 overexpression significantly enhancedmore » CRC cell proliferation, migration, and invasion. On the other hand, PRX5 suppression markedly inhibited these EMT properties. PRX5 was also demonstrated to regulate the expression of two hallmark EMT proteins, E-cadherin and Vimentin, and the EMT-inducing transcription factors, Snail and Slug. Moreover, in the xenograft mouse model, showed that PRX5 overexpression enhances tumor growth of CRC cells. Thus, our findings first provide evidence in CRC that PRX5 promotes EMT properties by inducing the expression of EMT-inducing transcription factors. Therefore, PRX5 can be used as a predictive biomarker and serves as a putative therapeutic target for the development of clinical treatments for human CRC. - Highlights: • PRX5 promoted colorectal cancer cell proliferation. • PRX5 enhanced EMT properties in colorectal cancer. • PRX5 mediated the EMT by inducing the expression of Snail and Slug. • PRX5 promoted tumor growth of colorectal cancer cells.« less
The Neuroprotective Effect of Klotho is Mediated via Regulation of Members of the Redox System*
Zeldich, Ella; Chen, Ci-Di; Colvin, Teresa A.; Bove-Fenderson, Erin A.; Liang, Jennifer; Tucker Zhou, Tracey B.; Harris, David A.; Abraham, Carmela R.
2014-01-01
Generation of reactive oxygen species (ROS), leading to oxidative damage and neuronal cell death, plays an important role in the pathogenesis of neurodegenerative disorders, including Alzheimer disease. The present study aimed to examine the mechanism by which the anti-aging protein Klotho exerts neuroprotective effects against neuronal damage associated with neurodegeneration and oxidative stress. Pretreatment of rat primary hippocampal neurons and mouse hippocampal neuronal cell line HT22 with recombinant Klotho protected these cells from glutamate and oligomeric amyloid β (oAβ)-induced cytotoxicity. In addition, primary hippocampal neurons obtained from Klotho-overexpressing mouse embryos were more resistant to both cytotoxic insults, glutamate and oAβ, compared with neurons from wild-type littermates. An antioxidative stress array analysis of neurons treated with Klotho revealed that Klotho significantly enhances the expression of the thioredoxin/peroxiredoxin (Trx/Prx) system with the greatest effect on the induction of Prx-2, an antioxidant enzyme, whose increase was confirmed at the mRNA and protein levels. Klotho-induced phosphorylation of the PI3K/Akt pathway, a pathway important in apoptosis and longevity, was associated with sustained inhibitory phosphorylation of the transcription factor forkhead box O3a (FoxO3a) and was essential for the induction of Prx-2. Down-regulation of Prx-2 expression using a lentivirus harboring shRNA almost completely abolished the ability of Klotho to rescue neurons from glutamate-induced death and significantly, but not completely, inhibited cell death mediated by oAβ, suggesting that Prx-2 is a key modulator of neuroprotection. Thus, our results demonstrate, for the first time, the neuroprotective role of Klotho and reveal a novel mechanism underlying this effect. PMID:25037225
Silva, Fredy D A; Vasconcelos, Ilka M; Lobo, Marina D P; de Castro, Patrícia G; Magalhães, Vladimir G; de Freitas, Cléverson D T; Carlini, Célia R R S; Pinto, Paulo M; Beltramini, Leila M; Filho, José H A; Barros, Eduardo B; Alencar, Luciana M R; Grangeiro, Thalles B; Oliveira, José T A
2012-07-01
Peroxiredoxins have diverse functions in cellular defense-signaling pathways. 2-Cys-peroxiredoxins (2-Cys-Prx) reduce H2O2 and alkyl-hydroperoxide. This study describes the purification and characterization of a genuine 2-Cys-Prx from Vigna unguiculata (Vu-2-Cys-Prx). Vu-2-Cys-Prx was purified from leaves by ammonium sulfate fractionation, chitin affinity and ion exchange chromatography. Vu-2-Cys-Prx reduces H2O2 using NADPH and DTT. Vu-2-Cys-Prx is a 44 kDa (SDS-PAGE)/46 kDa (exclusion chromatography) protein that appears as a 22 kDa molecule under reducing conditions, indicating that it is a homodimer linked intermolecularly by disulfide bonds and has a pI range of 4.56–4.72; its NH2-terminal sequence was similar to 2-Cys-Prx from Phaseolus vulgaris (96%) and Populus tricocarpa (96%). Analysis by ESI-Q-TOF MS/MS showed a molecular mass/pI of 28.622 kDa/5.18. Vu-2-Cys-Prx has 8% α-helix, 39% β-sheet, 22% of turns and 31% of unordered forms. Vu-2-Cys-Prx was heat stable, has optimal activity at pH 7.0, and prevented plasmid DNA degradation. Atomic force microscopy shows that Vu-2-Cys-Prx oligomerized in decamers which might be associated with its molecular chaperone activity that prevented denaturation of insulin and citrate synthase. Its cDNA analysis showed that the redox-active Cys52 residue and the amino acids Pro45, Thr49 and Arg128 are conserved as in other 2-Cys-Prx. The biochemical and molecular features of Vu-2-Cys-Prx are similar to other members of 2-Cys-Prx family. To date, only one publication reported on the purification of native 2-Cys-Prx from leaves and the subsequent analysis by N-terminal Edman sequencing, which is crucial for construction of stromal recombinant 2-Cys-Prx proteins.
Interactions between peroxiredoxin 2, hemichrome and the erythrocyte membrane.
Bayer, Simone B; Low, Felicia M; Hampton, Mark B; Winterbourn, Christine C
2016-12-01
Peroxiredoxin 2 (Prx2) is an abundant antioxidant protein in erythrocytes that protects against hemolytic anemia resulting from hemoglobin oxidation and Heinz body formation. A small fraction of Prx2 is bound to the cell membrane, but the mechanism and relevance of binding are not clear. We have investigated Prx2 interactions with the erythrocyte membrane and oxidized hemoglobin and whether these interactions are dependent on Prx2 redox state. Membrane binding of Prx2 in erythrocytes decreased when the cells were treated with H 2 O 2 , but studies with purified Prx2 and isolated ghosts showed that the interaction was independent of Prx2 redox state. Hemoglobin oxidation leads to the formation of hemichrome, a denatured form of the protein that binds to Band3 protein in the cell membrane as part of the senescence process and is a precursor of Heinz bodies. Hemichrome competed with Prx2 and decreased Prx2 binding to the membrane, potentially explaining the decreased binding in oxidant-exposed cells. The increased membrane binding of Prx2 seen with increasing intracellular calcium was less sensitive to H 2 O 2 or hemichrome, suggesting an alternative mode of binding. Prx2 was also shown to exhibit chaperone-like activity by retarding the precipitation of pre-formed hemichrome. Our results suggest that Prx2, by restricting membrane binding of hemichrome, could impede Band3 clustering and exposure of senescence antigens. This mechanism, plus the observed chaperone activity for oxidized hemoglobin, may help protect against hemolytic anemia.
Zheng, Wen-jiang; Hu, Yong-hua; Zhang, Min; Sun, Li
2010-08-01
Peroxiredoxins (Prxs) are a group of antioxidant proteins that protect cells from oxidative damage caused by various peroxides. To date, six different isoforms of peroxiredoxin (Prx1 to Prx6) have been identified, of which, Prx6 belongs to the 1-Cys Prx subfamily. Although Prx6 of several fish species have been reported at sequence level, there are very few documented studies on the potential function of fish Prx6. In this report, we describe the identification and analysis of a Prx6 homologue, SmPrx6, from turbot Scophthalmus maximus. The full length cDNA of SmPrx6 contains a 5'- untranslated region (UTR) of 60 bp, an open reading frame of 666 bp, and a 3'-UTR of 244 bp. The deduced amino acid sequence of SmPrx6 shares 81-87% overall identities with known fish Prx6. In silico analysis identified in SmPrx6 a conserved Prx6 catalytic motif, PVCTTE, and the catalytic triads putatively involved in peroxidase and phospholipase A2 activities. Expression of SmPrx6 was detected in most fish organs, with the highest expression levels found in blood and heart and the lowest level in spleen. Experimental challenges with bacterial pathogens and poly(I:C) upregulated SmPrx6 expression in liver and spleen in a manner that is dependent on the challenging agent and the tissue type. Treatment of cultured primary hepatocytes with H(2)O(2) enhanced SmPrx6 expression in a dose-dependent manner. Recombinant SmPrx6 expressed in and purified from Escherichia coli exhibited thiol-dependent antioxidant activity and could protect cultured hepatocytes from H(2)O(2)-induced oxidative damage. Taken together, these results indicate that SmPrx6 is a Prx6 homologue with antioxidative property and is likely to be involved in both cellular maintenance and protective response during host immune defense against bacterial infection. Copyright 2010 Elsevier Ltd. All rights reserved.
Dynamic Regulation of Ero1α and Peroxiredoxin 4 Localization in the Secretory Pathway*
Kakihana, Taichi; Araki, Kazutaka; Vavassori, Stefano; Iemura, Shun-ichiro; Cortini, Margherita; Fagioli, Claudio; Natsume, Tohru; Sitia, Roberto; Nagata, Kazuhiro
2013-01-01
In the early secretory compartment (ESC), a network of chaperones and enzymes assists oxidative folding of nascent proteins. Ero1 flavoproteins oxidize protein disulfide isomerase (PDI), generating H2O2 as a byproduct. Peroxiredoxin 4 (Prx4) can utilize luminal H2O2 to oxidize PDI, thus favoring oxidative folding while limiting oxidative stress. Interestingly, neither ER oxidase contains known ER retention signal(s), raising the question of how cells prevent their secretion. Here we show that the two proteins share similar intracellular localization mechanisms. Their secretion is prevented by sequential interactions with PDI and ERp44, two resident proteins of the ESC-bearing KDEL-like motifs. PDI binds preferentially Ero1α, whereas ERp44 equally retains Ero1α and Prx4. The different binding properties of Ero1α and Prx4 increase the robustness of ER redox homeostasis. PMID:23979138
Lee, Su Jin; Kang, Jeong Han; Iqbal, Waqas; Kwon, Oh-Shin
2015-01-01
The mechanisms underlying the progression of simple steatosis to steatohepatitis are yet to be elucidated. To identify the proteins involved in the development of liver tissue inflammation, we performed comparative proteomic analysis of non-alcoholic steatohepatitis (NASH). Mice fed a methionine and choline deficient diet (MCD) developed hepatic steatosis characterized by increased free fatty acid (FFA) and triglyceride levels as well as alpha-SMA. Two-dimensional proteomic analysis revealed that the change from the normal diet to the MCD diet affected the expressions of 50 proteins. The most-pronounced changes were observed in the expression of proteins involved in Met metabolism and oxidative stress, most of which were significantly downregulated in NASH model animals. Peroxiredoxin (Prx) is the most interesting among the modulated proteins identified in this study. In particular, cross-regulated Prx1 and Prx6 are likely to participate in cellular defense against the development of hepatitis. Thus, these Prx isoforms may be a useful new marker for early stage steatohepatitis. Moreover, curcumin treatment results in alleviation of the severity of hepatic inflammation in steatohepatitis. Notably, curcumin administration in MCD-fed mice dramatically reduced CYP2E1 as well as Prx1 expression, while upregulating Prx6 expression. These findings suggest that curcumin may have a protective role against MCD fed-induced oxidative stress.
He, Tiantian; Hatem, Elie; Vernis, Laurence; Lei, Ming; Huang, Meng-Er
2015-12-21
Many promising anticancer molecules are abandoned during the course from bench to bedside due to lack of clear-cut efficiency and/or severe side effects. Vitamin K3 (vitK3) is a synthetic naphthoquinone exhibiting significant in vitro and in vivo anticancer activity against multiple human cancers, and has therapeutic potential when combined with other anticancer molecules. The major mechanism for the anticancer activity of vitK3 is the generation of cytotoxic reactive oxygen species (ROS). We thus reasoned that a rational redox modulation of cancer cells could enhance vitK3 anticancer efficiency. Cancer cell lines with peroxiredoxin 1 (PRX1) gene transiently or stably knocked-down and corresponding controls were exposed to vitK3 as well as a set of anticancer molecules, including vinblastine, taxol, doxorubicin, daunorubicin, actinomycin D and 5-fluorouracil. Cytotoxic effects and cell death events were evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)-based assay, cell clonogenic assay, measurement of mitochondrial membrane potential and annexin V/propidium iodide double staining. Global ROS accumulation and compartment-specific H2O2 generation were determined respectively by a redox-sensitive chemical probe and H2O2-sensitive sensor HyPer. Oxidation of endogenous antioxidant proteins including TRX1, TRX2 and PRX3 was monitored by redox western blot. We observed that the PRX1 knockdown in HeLa and A549 cells conferred enhanced sensitivity to vitK3, reducing substantially the necessary doses to kill cancer cells. The same conditions (combination of vitK3 and PRX1 knockdown) caused little cytotoxicity in non-cancerous cells, suggesting a cancer-cell-selective property. Increased ROS accumulation had a crucial role in vitK3-induced cell death in PRX1 knockdown cells. The use of H2O2-specific sensors HyPer revealed that vitK3 lead to immediate accumulation of H2O2 in the cytosol, nucleus, and mitochondrial matrix. PRX1 silencing significantly up-regulated mRNA and protein levels of NRH:quinone oxidoreductase 2, which was partially responsible for vitK3-induced ROS accumulation and consequent cell death. Our data suggest that PRX1 inactivation could represent an interesting strategy to enhance cancer cell sensitivity to vitK3, providing a potential new therapeutic perspective for this old molecule. Conceptually, a combination of drugs that modulate intracellular redox states and drugs that operate through the generation of ROS could be a new therapeutic strategy for cancer treatment.
Baek, Jin Young; Park, Sujin; Park, Jiyoung; Jang, Ji Yong; Wang, Su Bin; Kim, Sin Ri; Woo, Hyun Ae; Lim, Kyung Min; Chang, Tong-Shin
2017-06-01
UVB light induces generation of reactive oxygen species, ultimately leading to skin cell damage. Mitochondria are a major source of reactive oxygen species in UVB-irradiated skin cells, with increased levels of mitochondrial reactive oxygen species having been implicated in keratinocyte apoptosis. Peroxiredoxin III (PrxIII) is the most abundant and potent H 2 O 2 -removing enzyme in the mitochondria of most cell types. Here, the protective role of PrxIII against UVB-induced apoptosis of epidermal keratinocytes was investigated. Mitochondrial H 2 O 2 levels were differentiated from other types of ROS using mitochondria-specific fluorescent H 2 O 2 indicators. Upon UVB irradiation, PrxIII-knockdown HaCaT human keratinocytes and PrxIII-deficient (PrxIII -/- ) mouse primary keratinocytes exhibited enhanced accumulation of mitochondrial H 2 O 2 compared with PrxIII-expressing controls. Keratinocytes lacking PrxIII were subsequently sensitized to apoptosis through mitochondrial membrane potential loss, cardiolipin oxidation, cytochrome c release, and caspase activation. Increased UVB-induced epidermal tissue damage in PrxIII -/- mice was attributable to increased caspase-dependent keratinocyte apoptosis. Our findings show that mitochondrial H 2 O 2 is a key mediator in UVB-induced apoptosis of keratinocytes and that PrxIII plays a critical role in protecting epidermal keratinocytes against UVB-induced apoptosis through eliminating mitochondrial H 2 O 2 . These findings support the concept that reinforcing mitochondrial PrxIII defenses may help prevent UVB-induced skin damage such as inflammation, sunburn, and photoaging. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
The effects of chromium(VI) on the thioredoxin system: Implications for redox regulation
Myers, Charles R.
2014-01-01
Hexavalent chromium [Cr(VI)] compounds are highly redox active and have long been recognized as potent cytotoxins and carcinogens. The intracellular reduction of Cr(VI) generates reactive Cr intermediates, which are themselves strong oxidants, as well as superoxide, hydrogen peroxide, and hydroxyl radical. These probably contribute to the oxidative damage and effects on redox-sensitive transcription factors that have been reported. However, the identification of events that initiate these signaling changes has been elusive. More recent studies show that Cr(VI) causes irreversible inhibition of thioredoxin reductase (TrxR) and oxidation of thioredoxin (Trx) and peroxiredoxin (Prx). Mitochondrial Trx2/Prx3 are more sensitive to Cr(VI) treatment than cytosolic Trx1/Prx1, although both compartments show thiol oxidation with higher doses or longer treatments. Thiol redox proteomics demonstrate that Trx2, Prx3, and Trx1 are among the most sensitive proteins in cells to Cr(VI) treatment. Their oxidation could therefore represent initiating events that have widespread implications for protein thiol redox control and for multiple aspects of redox signaling. This review summarizes the effects of Cr(VI) on the TrxR/Trx system and how these events could influence a number of downstream redox signaling systems that are influenced by Cr(VI) exposure. Some of the signaling events discussed include the activation of apoptosis signal regulating kinase and MAP kinases (p38 and JNK) and the modulation of a number of redox-sensitive transcription factors including AP-1, NF-κB, p53, and Nrf2. PMID:22542445
The role of Peroxiredoxin 4 in inflammatory response and aging
Klichko, Vladimir I.; Orr, William C.; Radyuk, Svetlana N.
2015-01-01
In prior studies, we determined that moderate overexpression of the Drosophila endoplasmic reticulum (ER)-localized peroxiredoxin (Prx), dPrx4, reduced oxidative damage and conferred beneficial effects on lifespan, while high level expression increased the incidence of tissue-specific apoptosis and dramatically shortened longevity. The detrimental pro-apoptotic and life-shortening effects were attributed to aberrant localization of dPrx4 and the apparent ER stress elicited by dPrx4 overexpression. In addition, activation of both the NF-κB- and JAK/STAT- mediated stress responses was detected, although it wasn’t clear whether these served as functional alarm signals. Here we extend these findings to show that activation of the NF-κB -dependent immunity-related/inflammatory genes, associated with lifespan shortening effects, is dependent on the activity of a Drosophila NF-κB ortholog, Relish. In the absence of Relish, the pro-inflammatory effects typically elicited by dPrx4 overexpression were not detected. The absence of Relish not only prevented hyperactivation of the immunity-related genes but also significantly rescued the severe shortening of lifespan normally observed in dPrx4 over-expressors. Overactivation of the immune/inflammatory responses was also lessened by JAK/STAT signaling. In addition we found that cellular immune/pro-inflammatory responses provoked by the oxidant paraquat but not bacteria are mediated via dPrx4 activity in the ER, as up-regulation of the immune-related genes was eliminated in flies underexpressing dPrx4 whereas immune responses triggered by bacteria were unaffected. Finally, efforts to reveal critical tissues where dPrx4 modulates longevity showed that broad targeting of dPrx4 to neuronal tissue had strong beneficial effects, while targeting expression to the fat body had deleterious effects. PMID:26689888
Yim, Sun Hee; Kim, Yoo-Jin; Oh, Sue Young; Fujii, Junichi; Zhang, Yan; Gladyshev, Vadim N; Rhee, Sue Goo
2011-11-11
2-Cysteine (Cys) peroxiredoxins (Prxs), which include mammalian Prxs I-IV, possess two conserved Cys residues that are readily oxidized by H(2)O(2) to form a disulfide. In the case of Prx I-III, the disulfide is reduced by thioredoxin, thus enabling these proteins to function as peroxidases. Prx IV was shown previously to be synthesized as a 31-kDa polypeptide with an NH(2)-terminal signal peptide that is subsequently cleaved to generate a 27-kDa form of the protein that is localized to the endoplasmic reticulum. A form of Prx IV, larger than 27 kDa revealed by immunoblot analysis was suggested to represent the unprocessed, 31-kDa form, but this larger form was detected only in spermatids of the postpubertal testis. We now show that the larger form of Prx IV (here designated Prx IV-L) detected in the testis is actually a product of alternative transcription of the Prx IV gene that is encoded by newly identified exon 1A together with exons 2-7 that are shared with the 27-kDa form (designated Prx IV-S). Prx IV-L was detected in spermatids but not in mature sperm, it could form disulfide-linked dimers but not higher order oligomers via oxidation, and it was resistant to hyperoxidation unless additional reductant was added, suggesting that its peroxidase activity is limited in vivo. Phylogenetic analysis showed that the Prx IV-S gene is present in all vertebrates examined, whereas the Prx IV-L gene was detected only in placental mammals. We suggest that Prx IV-L functions as an H(2)O(2) sensor that mediates protein thiol oxidation required for the maturation of spermatozoa in placental mammals.
Molecular Basis for the Resistance of Human Mitochondrial 2-Cys Peroxiredoxin 3 to Hyperoxidation*
Haynes, Alexina C.; Qian, Jiang; Reisz, Julie A.; Furdui, Cristina M.; Lowther, W. Todd
2013-01-01
Peroxiredoxins (Prxs) detoxify peroxides and modulate H2O2-mediated cell signaling in normal and numerous pathophysiological contexts. The typical 2-Cys subclass of Prxs (human Prx1–4) utilizes a Cys sulfenic acid (Cys-SOH) intermediate and disulfide bond formation across two subunits during catalysis. During oxidative stress, however, the Cys-SOH moiety can react with H2O2 to form Cys sulfinic acid (Cys-SO2H), resulting in inactivation. The propensity to hyperoxidize varies greatly among human Prxs. Mitochondrial Prx3 is the most resistant to inactivation, but the molecular basis for this property is unknown. A panel of chimeras and Cys variants of Prx2 and Prx3 were treated with H2O2 and analyzed by rapid chemical quench and time-resolved electrospray ionization-TOF mass spectrometry. The latter utilized an on-line rapid-mixing setup to collect data on the low seconds time scale. These approaches enabled the first direct observation of the Cys-SOH intermediate and a putative Cys sulfenamide (Cys-SN) for Prx2 and Prx3 during catalysis. The substitution of C-terminal residues in Prx3, residues adjacent to the resolving Cys residue, resulted in a Prx2-like protein with increased sensitivity to hyperoxidation and decreased ability to form the intermolecular disulfide bond between subunits. The corresponding Prx2 chimera became more resistant to hyperoxidation. Taken together, the results of this study support that the kinetics of the Cys-SOH intermediate is key to determine the probability of hyperoxidation or disulfide formation. Given the oxidizing environment of the mitochondrion, it makes sense that Prx3 would favor disulfide bond formation as a protection mechanism against hyperoxidation and inactivation. PMID:24003226
Shi, Xiao-Jing; Ding, Lina; Zhou, Wenjuan; Ji, Yage; Wang, Junwei; Wang, Huimin; Ma, Yongcheng; Jiang, Guozhong; Tang, Kai
2017-01-01
Abstract Aims: Esophageal cancer (EC) is an aggressive malignancy and the most common solid tumor of gastrointestinal tract all over the world, with high incidence in Asia. The current study was designed to investigate the anticancer efficacy and mechanism that is involved in the action of a natural ent-kaurene diterpenoid, JDA-202, targeting EC. Results: We found that an antioxidant protein peroxiredoxin I (Prx I) was upregulated in human EC tissues as well as in EC cell lines. JDA-202, a novel natural compound isolated from Isodon rubescens (Labiatae), was proved to possess strong anti-proliferative activities on those cell lines. Importantly, JDA-202 does not only bind to Prx I directly and markedly inhibit the activity of Prx I in vitro, but it also significantly induces hydrogen peroxide (H2O2)-related cell death. Furthermore, overexpression of Prx I significantly reversed EC109 cell apoptosis caused by JDA-202, whereas short interfering RNA (siRNA)-induced Prx I knockdown resulted in marked cell death even without JDA-202 pretreatment. On the other hand, the increased phosphorylation of mitogen-activated protein kinase (MAPK) proteins (c-Jun N-terminal kinase [JNK], p38, and extracellular signal-regulated kinase [ERK]) by JDA-202 was suppressed by N-acetylcysteine (NAC) or catalase, a known reactive oxygen species (ROS) or H2O2 scavenger. JDA-202 also significantly inhibited the growth of EC109 tumor xenograft, without significant body weight loss and multi-organ toxicities. Innovation and Conclusion: Our findings, for the first time, demonstrated that JDA-202 may serve as a lead compound, targeting the overexpressed Prx I in EC cell lines and ROS accumulation as well as inhibiting the activation of their downstream targets in MAPKs. Antioxid. Redox Signal. 27, 73–92. PMID:27650197
Gonchoroski, Taylor; Virginio, Veridiana G; Thompson, Claudia E; Paes, Jéssica A; Machado, Cláudio X; Ferreira, Henrique B
2017-04-01
The minimal genome of the mollicute Mycoplasma hyopneumoniae, the etiological agent of porcine enzootic pneumonia, encodes a limited repertoire of antioxidant enzymes that include a single and atypical peroxiredoxin (MhPrx), whose evolution and function were studied here. MhPrx has only one catalytic cysteine, in contrast with some of its possible ancestors (2-Cys peroxiredoxins), which have two. Although it is more similar to 2-Cys orthologs, MhPrx can still function with a single peroxidatic cysteine (Cys P ), using non-thiolic electron donors to reduce it. Therefore, MhPrx could be a representative of a possible group of 2-Cys peroxiredoxins, which have lost the resolving cysteine (Cys R ) residue without losing their catalytic properties. To further investigate MhPrx evolution, we performed a comprehensive phylogenetic analysis in the context of several bacterial families, including Prxs belonging to Tpx and AhpE families, shedding light on the evolutionary history of Mycoplasmataceae Prxs and giving support to the hypothesis of a relatively recent loss of the Cys R within this family. Moreover, mutational analyses provided insights into MhPrx function with one, two, or without catalytic cysteines. While removal of the MhPrx putative Cys P caused complete activity loss, confirming its catalytic role, the introduction of a second cysteine in a site correspondent to that of the Cys R of a 2-Cys orthologue, as in the MhPrx supposed ancestral form, was compatible with enzyme activity. Overall, our phylogenetic and mutational studies support that MhPrx recently diverged from a 2-Cys Prx ancestor and pave the way for future studies addressing structural, functional, and evolutive aspects of peroxiredoxin subfamilies in Mollicutes and other bacteria.
Wu, Chih-Ching; Peng, Pei-Hua; Chang, Ya-Ting; Huang, Yu-Shan; Chang, Kai-Ping; Hao, Sheng-Po; Tsang, Ngan-Ming; Yeh, Chau-Ting; Chang, Yu-Sun; Yu, Jau-Song
2008-09-01
Nasopharyngeal carcinoma (NPC), one of the most common cancers in Southeast Asia, is commonly diagnosed late due to its deep location and vague symptoms. To identify biomarkers for improving NPC diagnosis, we established a proteomic platform for detecting aberrant serum proteins in nude mice bearing NPC xenografts. We first removed the three most abundant proteins from serum samples of tumor-bearing and control mice, and then labeled the samples with different fluorescent cyanine (Cy) dyes. The labeled serum proteins were then mixed equally and fractionated with ion-exchange chromatography followed by SDS-PAGE. Differentially expressed proteins were identified by in-gel tryptic digestion and MALDI-TOF MS. We identified peroxiredoxin 2 (Prx-II) and carbonic anhydrase 2 (CA-II) as being elevated in the xenograft mouse model compared to controls. Western blot analysis confirmed up-regulation of Prx-II and CA-II in plasma from five NPC patients, and ELISA showed that plasma Prx-II levels were significantly higher in NPC patients (n = 84) versus healthy controls (n = 90) (3.03 +/- 4.47 versus 1.90 +/- 2.74 microg/mL, p = 0.047). In conclusion, Cy dye labeling combined with three-dimensional fractionation is a feasible strategy for identifying differentially expressed serum proteins in an NPC xenograft model, and Prx-II may represent a potential NPC biomarker.
Chakkarapani, Elavazhagan; Dingley, John; Aquilina, Kristian; Osredkar, Damjan; Liu, Xun; Thoresen, Marianne
2013-01-01
Autoregulation of cerebral perfusion is impaired in hypoxic–ischemic encephalopathy. We investigated whether cerebrovascular pressure reactivity (PRx), an element of cerebral autoregulation that is calculated as a moving correlation coefficient between averages of intracranial and mean arterial blood pressure (MABP) with values between −1 and +1, is impaired during and after a hypoxic–ischemic insult (HI) in newborn pigs. Associations between end-tidal CO2, seizures, neuropathology, and PRx were investigated. The effect of hypothermia (HT) and Xenon (Xe) on PRx was studied. Pigs were randomized to Sham, and after HI to normothermia (NT), HT, Xe or xenon hypothermia (XeHT). We defined PRx >0.2 as peak and negative PRx as preserved. Neuropathology scores after 72 hours of survival was grouped as ‘severe' or ‘mild.' Secondary PRx peak during recovery, predictive of severe neuropathology and associated with insult severity (P=0.05), was delayed in HT (11.5 hours) than in NT (6.5 hours) groups. Seizures were associated with impaired PRx in NT pigs (P=0.0002), but not in the HT/XeHT pigs. PRx was preserved during normocapnia and impaired during hypocapnia. Xenon abolished the secondary PRx peak, increased (mean (95% confidence interval (CI)) MABP (6.5 (3.8, 9.4) mm Hg) and cerebral perfusion pressure (5.9 (2.9, 8.9) mm Hg) and preserved the PRx (regression coefficient, −0.098 (95% CI (−0.18, −0.01)), independent of the insult severity. PMID:23899927
Godahewa, G I; Perera, N C N; Elvitigala, Don Anushka Sandaruwan; Jayasooriya, R G P T; Kim, Gi-Young; Lee, Jehee
2016-10-01
1-cysteine peroxiredoxin (Prx6) is an antioxidant enzyme that protects cells by detoxifying multiple peroxide species. This study aimed to describe molecular features, functional assessments and potential immune responses of Prx6 identified from the big-belly seahorse, Hippocampus abdominalis (HaPrx6). The complete ORF (666 bp) of HaPrx6 encodes a polypeptide (24 kDa) of 222 amino acids, and harbors a prominent peroxiredoxin super-family domain, a peroxidatic catalytic center, and a peroxidatic cysteine. The deduced amino acid sequence of HaPrx6 shares a relatively high amino acid sequence similarity and close evolutionary relationship with Oplegnathus fasciatus Prx6. The purified recombinant HaPrx6 protein (rHaPrx6) was shown to protect plasmid DNA in the Metal Catalyzed Oxidation (MCO) assay and, together with 1,4-Dithiothreitol (DTT), protected human leukemia THP-1 cells from extracellular H2O2-mediated cell death. In addition, quantitative real-time PCR revealed that HaPrx6 mRNA was constitutively expressed in 14 different tissues, with the highest expression observed in liver tissue. Inductive transcriptional responses were observed in liver and kidney tissues of fish after treating them with bacterial stimuli, including LPS, Edwardsiella tarda, and Streptococcus iniae. These results suggest that HaPrx6 may play an important role in the immune response of the big-belly seahorse against microbial infection. Collectively, these findings provide structural and functional insights into HaPrx6. Copyright © 2016 Elsevier Ltd. All rights reserved.
Estimating Pressure Reactivity Using Noninvasive Doppler-Based Systolic Flow Index.
Zeiler, Frederick A; Smielewski, Peter; Donnelly, Joseph; Czosnyka, Marek; Menon, David K; Ercole, Ari
2018-04-05
The study objective was to derive models that estimate the pressure reactivity index (PRx) using the noninvasive transcranial Doppler (TCD) based systolic flow index (Sx_a) and mean flow index (Mx_a), both based on mean arterial pressure, in traumatic brain injury (TBI). Using a retrospective database of 347 patients with TBI with intracranial pressure and TCD time series recordings, we derived PRx, Sx_a, and Mx_a. We first derived the autocorrelative structure of PRx based on: (A) autoregressive integrative moving average (ARIMA) modeling in representative patients, and (B) within sequential linear mixed effects (LME) models with various embedded ARIMA error structures for PRx for the entire population. Finally, we performed sequential LME models with embedded PRx ARIMA modeling to find the best model for estimating PRx using Sx_a and Mx_a. Model adequacy was assessed via normally distributed residual density. Model superiority was assessed via Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), log likelihood (LL), and analysis of variance testing between models. The most appropriate ARIMA structure for PRx in this population was (2,0,2). This was applied in sequential LME modeling. Two models were superior (employing random effects in the independent variables and intercept): (A) PRx ∼ Sx_a, and (B) PRx ∼ Sx_a + Mx_a. Correlation between observed and estimated PRx with these two models was: (A) 0.794 (p < 0.0001, 95% confidence interval (CI) = 0.788-0.799), and (B) 0.814 (p < 0.0001, 95% CI = 0.809-0.819), with acceptable agreement on Bland-Altman analysis. Through using linear mixed effects modeling and accounting for the ARIMA structure of PRx, one can estimate PRx using noninvasive TCD-based indices. We have described our first attempts at such modeling and PRx estimation, establishing the strong link between two aspects of cerebral autoregulation: measures of cerebral blood flow and those of pulsatile cerebral blood volume. Further work is required to validate.
Gerrits, Esther G; Alkhalaf, Alaa; Landman, Gijs W D; van Hateren, Kornelis J J; Groenier, Klaas H; Struck, Joachim; Schulte, Janin; Gans, Reinold O B; Bakker, Stephan J L; Kleefstra, Nanne; Bilo, Henk J G
2014-01-01
Oxidative stress plays an underlying pathophysiologic role in the development of diabetes complications. The aim of this study was to investigate peroxiredoxin 4 (Prx4), a proposed novel biomarker of oxidative stress, and its association with and capability as a biomarker in predicting (cardiovascular) mortality in type 2 diabetes mellitus. Prx4 was assessed in baseline serum samples of 1161 type 2 diabetes patients. Cox proportional hazard models were used to evaluate the relationship between Prx4 and (cardiovascular) mortality. Risk prediction capabilities of Prx4 for (cardiovascular) mortality were assessed with Harrell's C statistic, the integrated discrimination improvement and net reclassification improvement. Mean age was 67 and the median diabetes duration was 4.0 years. After a median follow-up period of 5.8 years, 327 patients died; 137 cardiovascular deaths. Prx4 was associated with (cardiovascular) mortality. The Cox proportional hazard models added the variables: Prx4 (model 1); age and gender (model 2), and BMI, creatinine, smoking, diabetes duration, systolic blood pressure, cholesterol-HDL ratio, history of macrovascular complications, and albuminuria (model 3). Hazard ratios (HR) (95% CI) for cardiovascular mortality were 1.93 (1.57 - 2.38), 1.75 (1.39 - 2.20), and 1.63 (1.28 - 2.09) for models 1, 2 and 3, respectively. HR for all-cause mortality were 1.73 (1.50 - 1.99), 1.50 (1.29 - 1.75), and 1.44 (1.23 - 1.67) for models 1, 2 and 3, respectively. Addition of Prx4 to the traditional risk factors slightly improved risk prediction of (cardiovascular) mortality. Prx4 is independently associated with (cardiovascular) mortality in type 2 diabetes patients. After addition of Prx4 to the traditional risk factors, there was a slightly improvement in risk prediction of (cardiovascular) mortality in this patient group.
Gomes, Fernando; Palma, Flávio Romero; Barros, Mario H; Tsuchida, Eduardo T; Turano, Helena G; Alegria, Thiago G P; Demasi, Marilene; Netto, Luis E S
2017-10-13
Yeast Prx1 is a mitochondrial 1-Cys peroxiredoxin that catalyzes the reduction of endogenously generated H 2 O 2 Prx1 is synthesized on cytosolic ribosomes as a preprotein with a cleavable N-terminal presequence that is the mitochondrial targeting signal, but the mechanisms underlying Prx1 distribution to distinct mitochondrial subcompartments are unknown. Here, we provide direct evidence of the following dual mitochondrial localization of Prx1: a soluble form in the intermembrane space and a form in the matrix weakly associated with the inner mitochondrial membrane. We show that Prx1 sorting into the intermembrane space likely involves the release of the protein precursor within the lipid bilayer of the inner membrane, followed by cleavage by the inner membrane peptidase. We also found that during its import into the matrix compartment, Prx1 is sequentially cleaved by mitochondrial processing peptidase and then by octapeptidyl aminopeptidase 1 (Oct1). Oct1 cleaved eight amino acid residues from the N-terminal region of Prx1 inside the matrix, without interfering with its peroxidase activity in vitro Remarkably, the processing of peroxiredoxin (Prx) proteins by Oct1 appears to be an evolutionarily conserved process because yeast Oct1 could cleave the human mitochondrial peroxiredoxin Prx3 when expressed in Saccharomyces cerevisiae Altogether, the processing of peroxiredoxins by Imp2 or Oct1 likely represents systems that control the localization of Prxs into distinct compartments and thereby contribute to various mitochondrial redox processes. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Ruan, Zengliang; Liu, Guoyan; Wang, Beilei; Zhou, Yonghong; Lu, Jia; Wang, Qianqian; Zhao, Jie; Zhang, Liming
2014-01-01
We first identified and characterized a novel peroxiredoxin (Prx), designated as CcPrx4, from the cDNA library of the tentacle of the jellyfish Cyanea capillata. The full-length cDNA sequence of CcPrx4 consisted of 884 nucleotides with an open reading frame encoding a mature protein of 247 amino acids. It showed a significant homology to peroxiredoxin 4 (Prx4) with the highly conserved F-motif (93FTFVCPTEI101), hydrophobic region (217VCPAGW222), 140GGLG143 and 239YF240, indicating that it should be a new member of the Prx4 family. The deduced CcPrx4 protein had a calculated molecular mass of 27.2 kDa and an estimated isoelectric point of 6.3. Quantitative real-time PCR analysis showed that CcPrx4 mRNA could be detected in all the jellyfish tissues analyzed. CcPrx4 protein was cloned into the expression vector, pET-24a, and expressed in Escherichia coli Rosetta (DE3) pLysS. Recombinant CcPrx4 protein was purified by HisTrap High Performance chelating column chromatography and analyzed for its biological function. The results showed that the purified recombinant CcPrx4 protein manifested the ability to reduce hydrogen peroxide and protect supercoiled DNA from oxidative damage, suggesting that CcPrx4 protein may play an important role in protecting jellyfish from oxidative damage. PMID:24413803
Donnelly, Sheila; Stack, Colin M.; O'Neill, Sandra M.; Sayed, Ahmed A.; Williams, David L.; Dalton, John P.
2008-01-01
During helminth infections, alternatively activated macrophages (AAMacs) are key to promoting Th2 responses and suppressing Th1-driven inflammatory pathology. Th2 cytokines IL-4 and/or IL-13 are believed to be important in the induction and activation of AAMacs. Using murine models for the helminth infections caused by Fasciola hepatica (Fh) and Schistosoma mansoni (Sm), we show that a secreted antioxidant, peroxiredoxin (Prx), induces alternative activation of macrophages. These activated, Ym1-expressing macrophages enhanced the secretion of IL-4, IL-5, and IL-13 from naive CD4+ T cells. Administration of recombinant FhPrx and SmPrx to wild-type and IL-4−/− and IL-13−/− mice induced the production of AAMacs. In addition, Prx stimulated the expression of markers of AAMacs (particularly, Ym1) in vitro, and therefore can act independently of IL-4/IL-13 signaling. The immunomodulatory property of Prx is not due to its antioxidant activity, as an inactive recombinant variant with active site Cys residues replaced by Gly could also induce AAMacs and Th2 responses. Immunization of mice with recombinant Prx or passive transfer of anti-Prx antibodies prior to infection with Fh not only blocked the induction of AAMacs but also the development of parasite-specific Th2 responses. We propose that Prx activates macrophages as an initial step in the induction of Th2 responses by helminth parasites and is thereby a novel pathogen-associated molecular pattern.—Donnelly, S., Stack, C. M., O'Neill, S. M., Sayed, A. A., Williams, D. L., Dalton, J. P. Helminth 2-Cys peroxiredoxin drives Th2 responses through a mechanism involving alternatively activated macrophages. PMID:18708590
Peterson, Tina M.L.; Luckhart, Shirley
2008-01-01
Malaria parasite infection in anopheline mosquitoes induces nitrosative and oxidative stresses that limit parasite development, but also damage mosquito tissues in proximity to the response. Based on these observations, we proposed that cellular defenses in the mosquito may be induced to minimize self-damage. Specifically, we hypothesized that peroxiredoxins (Prxs), enzymes known to detoxify reactive oxygen species (ROS) and reactive nitrogen oxide species (RNOS), protect mosquito cells. We identified an Anopheles stephensi 2-Cys Prx ortholog of Drosophila melanogaster Prx-4783, which protects fly cells against oxidative stresses. To assess function, AsPrx-4783 was overexpressed in D. melanogaster (S2) and in A. stephensi (MSQ43) cells and silenced in MSQ43 cells with RNA interference before treatment with various ROS and RNOS. Our data revealed that AsPrx-4783 and DmPrx-4783 differ in host cell protection and that AsPrx-4783 protects A. stephensi cells against stresses that are relevant to malaria parasite infection in vivo, namely nitric oxide (NO), hydrogen peroxide, nitroxyl, and peroxynitrite. Further, AsPrx-4783 expression is induced in the mosquito midgut by parasite infection at times associated with peak nitrosative and oxidative stresses. Hence, whereas the NO-mediated defense response is toxic to both host and parasite, AsPrx-4783 may shift the balance in favor of the mosquito. PMID:16540402
Matsui, T; Nakayama, H; Yoshida, K; Shinmyo, A
2003-10-01
Peroxidases (PRX, EC 1.11.1.7) are widely distributed across microorganisms, plants, and animals; and, in plants, they have been implicated in a variety of secondary metabolic reactions. In particular, horseradish (Armoracia rusticana) root represents the main source of commercial PRX production. The prxC1a gene, which encodes horseradish PRX (HRP) C, is expressed mainly in the roots and stems of the horseradish plant. HRP C1a protein is shown to be synthesized as a preprotein with both a N-terminal (NTPP) and a C-terminal propeptide (CTPP). These propeptides, which might be responsible for intracellular localization or secretion, are removed before or concomitant with production of the mature protein. We investigated the functional role of HRP C1a NTPP and CTPP in the determination of the vesicular transport route, using an analytical system of transgenically cultured tobacco cells (Nicotiana tabacum, BY2). Here, we report that NTPP and CTPP are necessary and sufficient for accurate localization of mature HRP C1a protein to vacuoles of the vesicular transport system. We also demonstrate that HRP C1a derived from a preprotein lacking CTPP is shunted into the secretory pathway.
Barranco-Medina, Sergio; Krell, Tino; Bernier-Villamor, Laura; Sevilla, Francisca; Lázaro, Juan-José; Dietz, Karl-Josef
2008-01-01
Mitochondria from plants, yeast, and animals each contain at least one peroxiredoxin (Prx) that is involved in peroxide detoxification and redox signalling. The supramolecular dynamics of atypical type II Prx targeted to the mitochondrion was addressed in pea. Microcalorimetric (ITC) titrations identified an extremely high-affinity binding between the mitochondrial PsPrxIIF and Trx-o with a K(D) of 126+/-14 pM. Binding was driven by a favourable enthalpy change (DeltaH= -60.6 kcal mol(-1)) which was counterbalanced by unfavourable entropy changes (TDeltaS= -47.1 kcal mol(-1)). This is consistent with the occurrence of large conformational changes during binding which was abolished upon site-directed mutaganesis of the catalytic C59S and C84S. The redox-dependent interaction was confirmed by gel filtration of mitochondrial extracts and co-immunoprecipitation from extracts. The heterocomplex of PsPrxIIF and Trx-o reduced peroxide substrates more efficiently than free PsPrxIIF suggesting that Trx-o serves as an efficient and specific electron donor to PsPrxIIF in vivo. Other Trx-s tested by ITC analysis failed to interact with PsPrxIIF indicating a specific recognition of PsPrxIIF by Trx-o. PsPrxIIF exists primarily as a dimer or a hexamer depending on the redox state. In addition to the well-characterized oligomerization of classical 2-Cys Prx the results also show that atypical Prx undergo large structural reorganization with implications for protein-protein interaction and function.
Prx1 and 3.2 kb Col1a1 promoters target distinct bone cell populations in transgenic mice
Ouyang, Zhufeng; Chen, Zhijun; Ishikawa, Masakazu; Yue, Xiuzhen; Kawanami, Aya; Leahy, Patrick; Greenfield, Edward M.; Murakami, Shunichi
2014-01-01
Bones consist of a number of cell types including osteoblasts and their precursor cells at various stages of differentiation. To analyze cellular organization within the bone, we generated Col1a1CreER-DsRed transgenic mice that express, in osteoblasts, CreER and DsRed under the control of a mouse 3.2 kb Col1a1 promoter. We further crossed Col1a1CreER-DsRed mice with Prx1CreER-GFP mice that express CreER and GFP in osteochondro progenitor cells under the control of a 2.4 kb Prx1 promoter. Since the 3.2 kb Col1a1 promoter becomes active in osteoblasts at early stages of differentiation, and Prx1CreER-GFP-expressing periosteal cells show endogenous Col1a1 expression, we expected to find a cell population in which both the 2.4 kb Prx1 promoter and the 3.2 kb Col1a1 promoter are active. However, our histological and flow cytometric analyses demonstrated that these transgenes are expressed in distinct cell populations. In the periosteum of long bones, Col1a1CreER-DsRed is expressed in the innermost layer directly lining the bone surface, while Prx1CreER-GFP-expressing cells are localized immediately outside of the Col1a1CreER-DsRed-expressing osteoblasts. In the calvaria, Prx1CreER-GFP-expressing cells are also localized in the cranial suture mesenchyme. Our experiments further showed that Col1a1CreER-DsRed-expressing cells lack chondrogenic potential, while the Prx1CreER-GFP-expressing cells show both chondrogenic and osteogenic potential. Our results indicate that Col1a1CreER-DsRed-expressing cells are committed osteoblasts, while Prx1CreER-GFP-expressing cells are osteochondro progenitor cells. The Prx1CreER-GFP and Col1a1CreER-DsRed transgenes will offer novel approaches for analyzing lineage commitment and early stages of osteoblast differentiation under physiologic and pathologic conditions. PMID:24513582
Denmeade, Samuel R; Egerdie, Blair; Steinhoff, Gary; Merchant, Rosemina; Abi-Habib, Ralph; Pommerville, Peter
2011-05-01
PRX302 is a prostate specific antigen (PSA)-activated pore-forming protein toxin under development as a targeted approach for improving lower urinary tract symptoms (LUTS) caused by benign prostatic hyperplasia (BPH) without affecting sexual function. To evaluate the safety and efficacy of PRX302 in men with moderate to severe BPH. Eligible subjects were refractory, intolerant, or unwilling to undergo medical therapies for BPH and had International Prostate Symptom Score (IPSS) ≥12, a quality of life (QoL) score ≥3, and prostate volumes between 30 and 80 g. Fifteen patients were enrolled in phase 1 studies, and 18 patients entered phase 2 studies. Subjects received intraprostatic injection of PRX302 into the right and left transition zone via a transperineal approach in an office-based setting. Phase 1 subjects received increasing concentrations of PRX302 at a fixed volume; phase 2 subjects received increasing volumes per deposit at a fixed concentration. IPSS, QoL, prostate volume, maximum flow rate (Q(max)), International Index of Erectile Function, serum PSA levels, pharmacokinetics, and adverse events were recorded at 30, 60, 90, 180, 270, and 360 d after treatment with PRX302. Sixty percent of men in the phase 1 study and 64% of men in the phase 2 study treated with PRX302 had ≥30% improvement compared to baseline in IPSS out to day 360. Patients also experienced improvement in QoL and reduction in prostate volume out to day 360. Patients receiving ≥1 ml of PRX302 per deposit had the best response overall. PRX302 had no deleterious effect on erectile function. Adverse events were mild to moderate and transient in nature. The major study limitation was the small sample size. The promising safety profile and evidence of efficacy in the majority of treated subjects in these phase 1 and 2 studies supports further development of PRX302 as a minimally invasive, targeted treatment for BPH. Copyright © 2010 European Association of Urology. Published by Elsevier B.V. All rights reserved.
Inada, Takasuke; Tamura, Atsushi; Terauchi, Masahiko; Yamaguchi, Satoshi; Yui, Nobuhiko
2018-01-30
Gene silencing of noggin by small interfering RNA (siRNA) is a promising approach for the treatment of bone defects, because noggin deactivates bone morphogenetic protein-2 (BMP-2) and suppresses osteogenic differentiation. Here, we demonstrated the silencing of the noggin gene by siRNA polyplexes composed of noggin-targeted siRNA and biocleavable cationic polyrotaxanes (DMAE-SS-PRX). To improve the endosomal escape efficiencies of the DMAE-SS-PRX/siRNA polyplexes, anionic and fusogenic GALA peptides were integrated onto the DMAE-SS-PRX/siRNA polyplexes via simple electrostatic interactions. The formation of ternary complexes was confirmed by gel electrophoresis, dynamic light scattering, and zeta-potential measurements. Although the association of GALA peptides with the DMAE-SS-PRX/siRNA polyplexes did not remarkably affect the cellular uptake efficiency of siRNA, the endosomal escape efficiency was remarkably increased for GALA/DMAE-SS-PRX/siRNA ternary polyplexes because of the endosomal and lysosomal membrane destabilization by GALA peptides. Consequently, GALA/DMAE-SS-PRX/siRNA ternary polyplexes showed significantly higher gene silencing efficiency against noggin and enhanced the BMP-2-mediated osteogenic differentiation efficiency. Therefore, we concluded that GALA/DMAE-SS-PRX/siRNA ternary polyplexes can be effective siRNA carriers for suppressing the expression of specific endogenous genes. Consequently, we believe that a more practical approach in vivo will be the combined use of BMP-2 and GALA/DMAE-SS-PRX/siRNA ternary polyplexes, because it will improve the efficacy of bone regeneration therapy.
Li, Zhen; Zhang, Qingwen; Zhou, Xuguo
2016-06-07
The pine wood nematode, Bursaphelenchus xylophilus, is the causal agent of pine wilt disease that has devastated pine forests in Asia. Parasitic nematodes are known to have evolved antioxidant stress responses that defend against host plant defenses. In this study, the infestation of whitebark pine, Pinus bungean, with B. xylophilus led to a significant increase in plant hydrogen peroxide (H2O2) and salicylic acid levels. Correspondingly, the expression of an antioxidative enzyme, 2-Cysteine peroxiredoxin (BxPrx), was elevated in B. xylophilus following the H2O2 treatments. Recombinant BxPrx, a thermal stabile and pH tolerant enzyme, exhibited high level of antioxidant activity against H2O2, suggesting that it is capable of protecting cells from free radical attacks. Immunohistochemical localization study showed that BxPrx was broadly expressed across different tissues and could be secreted outside the nematode. Finally, the number of BxPrx homologs in both dauer-like and fungi-feeding B. xylophilus were comparable based on bioinformatics analysis of existing EST libraries, indicating a potential role of BxPrx in both propagative and dispersal nematodes. These combined results suggest that BxPrx is a key genetic factor facilitating the infestation and distribution of B. xylophilus within pine hosts, and consequently the spread of pine wilt disease.
Peroxiredoxin 5 modulates immune response in Drosophila
Radyuk, Svetlana N.; Michalak, Katarzyna; Klichko, Vladimir I.; Benes, Judith; Orr, William C.
2010-01-01
Background Peroxiredoxins are redox-sensing enzymes with multiple cellular functions. Previously, we reported on the potent antioxidant function of Drosophila peroxiredoxin 5 (dPrx5). Studies with mammalian and human cells suggest that peroxiredoxins can modulate immune-related signaling. Methods Survivorship studies and bacteriological analysis were used to determine resistance of flies to fungal and bacterial infections. RT-PCR and immunoblot analyses determined expression of dPrx5 and immunity factors in response to bacterial challenge. Double mutants for dprx5 gene and genes comprising the Imd/Relish and dTak1/Basket branches of the immune signaling pathways were used in epistatic analysis. Results The dprx5 mutant flies were more resistant to bacterial infection than controls, while flies overexpressing dPrx5 were more susceptible. The enhanced resistance to bacteria was accompanied by rapid induction of the Imd-dependent antimicrobial peptides, phosphorylation of the JNK kinase Basket and altered transcriptional profiling of the transient response genes, puckered, ets21C and relish, while the opposite effects were observed in flies over-expressing dPrx5. Epistatic analysis of double mutants, using attacin D and Puckered as read outs of activation of the Imd and JNK pathways, implicated dPrx5 function in the control of the dTak1-JNK arm of immune signaling. Conclusions Differential effects on fly survivorship suggested a trade-off between the antioxidant and immune functions of dPrx5. Molecular and epistatic analyses identified dPrx5 as a negative regulator in the dTak1-JNK arm of immune signaling. General significance Our findings suggest that peroxiredoxins play an important modulatory role in the Drosophila immune response. PMID:20600624
Godahewa, G I; Perera, N C N; Lee, Jehee
2018-02-05
Natural killer enhancing factor A (NKEF-A), also known as peroxiredoxin 1 (Prx1), is a well-known antioxidant involved in innate immunity. Although NKEF-A/Prx1 has been studied in different fish species, the present study broadens the knowledge of NKEF-A gene in terms of molecular structure, function, and immune responses in fish species. Hippocampus abdominalis NKEF-A (HaNKEF-A) cDNA encoded a putative protein of 198 amino acids containing a thioredoxin_2 domain, VCP motifs, and three conserved cysteine residues including peroxidatic and resolving cysteines. Amino acid sequence comparison and phylogenetic breakdown showed the higher sequence identity and closer evolutionary position of HaNKEF-A to those of other fish counterparts. A recombinant protein of HaNKEF-A was shown to i) protect supercoiled DNA against mixed catalyzed oxidation, ii) reduce insulin disulfide bonds, and iii) scavenge extracellular H 2 O 2 . Results of in vitro assays demonstrated the concentration dependent antioxidant function of recombinant HaNKEF-A. In addition, qPCR assessments revealed that the HaNKEF-A transcripts were constitutively expressed in fourteen tissues with the highest expression in liver. As an innate immune response, HaNKEF-A transcripts were up-regulated in liver post injection of LPS, Edwardsiella tarda, Streptococcus iniae, and polyinosinic-polycytidylic acid. Thus, HaNKEF-A can safeguards big-belly seahorse from oxidative damage and pathogenic infections. This study provides insight into the functions of NKEF-A/Prx1 in fish species. Copyright © 2017 Elsevier B.V. All rights reserved.
Helm, Rebecca R; Martín-Díaz, Maria Laura; Tarrant, Ann M
2018-07-01
Peroxiredoxins (PRXs) are a family of antioxidant enzymes present in all domains of life. To date, the diversity and function of peroxiredoxins within animals have only been studied in a few model species. Thus, we sought to characterize peroxiredoxin diversity in cnidarians and to gain insight into their function in one cnidarian-the sea anemone Nematostella vectensis. Phylogenetic analysis using all six known PRX subfamilies (PRX1-4, PRX5, PRX6, PRXQ/AHPE1, TPX, BCP-PRXQ) revealed that like bilaterians, cnidarians contain representatives from three subfamilies (PRX1-4, PRX5, PRX6). Within the PRX1-4 subfamily, cnidarian sequences fall into two clades: PRX4, and a cnidarian-specific clade, which we term CNID-PRX. This phylogenetic analysis demonstrates that the three PRX subfamilies present in Bilateria were also present in the last common ancestor of the Cnidaria and Bilateria, and further that diversification of the PRX1-4 subfamily has occurred within the cnidarian lineage. We next examined the impact of decreased salinity, increased temperature, and peroxide exposure on the expression of four prx genes in N. vectensis (cnid-prx, prx4, prx5, and prx6). These genes exhibited unique expression patterns in response to these environmental stressors. Expression of prx4 decreased with initial exposure to elevated temperature, cnid-prx increased with exposure to elevated temperatures as well as with hydrogen peroxide exposure, and expression of all prxs transiently decreased with reduced salinity. Predicted subcellular localization patterns also varied among PRX proteins. Together these results provide evidence that peroxiredoxins in N. vectensis serve distinct physiological roles and lay a groundwork for understanding how peroxiredoxins mediate cnidarian developmental processes and environmental responses. Copyright © 2018 Elsevier Inc. All rights reserved.
Cloning and characterization of a 2-Cys peroxiredoxin from Pisum sativum.
Bernier-Villamor, Laura; Navarro, Eusebio; Sevilla, Francisca; Lázaro, Juan-José
2004-10-01
A cDNA sequence coding for a pea (Pisum sativum L.) 2-Cys peroxiredoxin (2-Cys Prx) has been cloned. The deduced amino acid sequence showed a high sequence homology to the 2-Cys Prx enzymes of Phaseolus vulgaris (86%), Arabidopsis thaliana (75%), and Spinacia oleracea (75%), and contained a chloroplast target sequence at its N-terminus. The mature enzyme, without the transit peptide, has a molecular mass of 22 kDa as well as two cysteine residues (Cys-53 and Cys-175) which are well conserved among proteins of this group. The protein was expressed in a heterologous system using the expression vector pET3d, and was purified to homogeneity by three sequential chromatographic steps. The enzyme exhibits peroxidase activity on hydrogen peroxide (H(2)O(2)) and t-butyl hydroperoxide (TBHP) with DTT as reducing agent. Although both pea Trxs f and m reduce oxidized 2-Cys Prx, Trx m is more efficient. The precise conditions for oligomerization of 2-Cys Prx through extensive gel filtration studies are also reported. The transition dimer-decamer produced in vitro between pH 7.5 and 8.0 and the influence of DTT suggest that a great change in the enzyme quaternary structure of 2-Cys Prx may take place in the chloroplast during the dark-light transition. In addition, the cyclophilin-dependent reduction of chloroplast 2-Cys Prx is shown.
Peroxiredoxin 3 Is a Redox-Dependent Target of Thiostrepton in Malignant Mesothelioma Cells
Newick, Kheng; Cunniff, Brian; Preston, Kelsey; Held, Paul; Arbiser, Jack; Pass, Harvey; Mossman, Brooke; Shukla, Arti; Heintz, Nicholas
2012-01-01
Thiostrepton (TS) is a thiazole antibiotic that inhibits expression of FOXM1, an oncogenic transcription factor required for cell cycle progression and resistance to oncogene-induced oxidative stress. The mechanism of action of TS is unclear and strategies that enhance TS activity will improve its therapeutic potential. Analysis of human tumor specimens showed FOXM1 is broadly expressed in malignant mesothelioma (MM), an intractable tumor associated with asbestos exposure. The mechanism of action of TS was investigated in a cell culture model of human MM. As for other tumor cell types, TS inhibited expression of FOXM1 in MM cells in a dose-dependent manner. Suppression of FOXM1 expression and coincidental activation of ERK1/2 by TS were abrogated by pre-incubation of cells with the antioxidant N-acetyl-L-cysteine (NAC), indicating its mechanism of action in MM cells is redox-dependent. Examination of the mitochondrial thioredoxin reductase 2 (TR2)-thioredoxin 2 (TRX2)-peroxiredoxin 3 (PRX3) antioxidant network revealed that TS modifies the electrophoretic mobility of PRX3. Incubation of recombinant human PRX3 with TS in vitro also resulted in PRX3 with altered electrophoretic mobility. The cellular and recombinant species of modified PRX3 were resistant to dithiothreitol and SDS and suppressed by NAC, indicating that TS covalently adducts cysteine residues in PRX3. Reduction of endogenous mitochondrial TRX2 levels by the cationic triphenylmethane gentian violet (GV) promoted modification of PRX3 by TS and significantly enhanced its cytotoxic activity. Our results indicate TS covalently adducts PRX3, thereby disabling a major mitochondrial antioxidant network that counters chronic mitochondrial oxidative stress. Redox-active compounds like GV that modify the TR2/TRX2 network may significantly enhance the efficacy of TS, thereby providing a combinatorial approach for exploiting redox-dependent perturbations in mitochondrial function as a therapeutic approach in mesothelioma. PMID:22761781
Collins, John A.; Wood, Scott T.; Nelson, Kimberly J.; Rowe, Meredith A.; Carlson, Cathy S.; Chubinskaya, Susan; Poole, Leslie B.; Furdui, Cristina M.; Loeser, Richard F.
2016-01-01
Oxidative stress-mediated post-translational modifications of redox-sensitive proteins are postulated as a key mechanism underlying age-related cellular dysfunction and disease progression. Peroxiredoxins (PRX) are critical intracellular antioxidants that also regulate redox signaling events. Age-related osteoarthritis is a common form of arthritis that has been associated with mitochondrial dysfunction and oxidative stress. The objective of this study was to determine the effect of aging and oxidative stress on chondrocyte intracellular signaling, with a specific focus on oxidation of cytosolic PRX2 and mitochondrial PRX3. Menadione was used as a model to induce cellular oxidative stress. Compared with chondrocytes isolated from young adult humans, chondrocytes from older adults exhibited higher levels of PRX1–3 hyperoxidation basally and under conditions of oxidative stress. Peroxiredoxin hyperoxidation was associated with inhibition of pro-survival Akt signaling and stimulation of pro-death p38 signaling. These changes were prevented in cultured human chondrocytes by adenoviral expression of catalase targeted to the mitochondria (MCAT) and in cartilage explants from MCAT transgenic mice. Peroxiredoxin hyperoxidation was observed in situ in human cartilage sections from older adults and in osteoarthritic cartilage. MCAT transgenic mice exhibited less age-related osteoarthritis. These findings demonstrate that age-related oxidative stress can disrupt normal physiological signaling and contribute to osteoarthritis and suggest peroxiredoxin hyperoxidation as a potential mechanism. PMID:26797130
Fish Peroxiredoxins and Their Role in Immunity
Valero, Yulema; Martínez-Morcillo, Francisco J.; Esteban, M. Ángeles; Chaves-Pozo, Elena; Cuesta, Alberto
2015-01-01
Peroxiredoxins (Prxs) are a family of antioxidant enzymes that protect cells from oxidative damage. In addition, Prxs may act as modulators of inflammation, protect against cell death and tumour progression, and facilitate tissue repair after damage. The most studied roles of Prx1 and Prx2 are immunological. Here we present a review on the effects of some immunostimulant treatments and bacterial, viral, or parasitic infections on the expression of fish Prxs at the gene and/or protein level, and point to their important role in immunity. The Prxs show antioxidant activity as well as a protective effect against infection. Some preliminary data are presented about the role of fish Prx1 and Prx2 in virus resistance although further studies are needed before the role of fish Prx in immunity can be definitively defined. PMID:26633533
Wound-induced expression of horseradish peroxidase.
Kawaoka, A; Kawamoto, T; Ohta, H; Sekine, M; Takano, M; Shinmyo, A
1994-01-01
Peroxidases have been implicated in the responses of plants to physiological stress and to pathogens. Wound-induced peroxidase of horseradish (Armoracia rusticana) was studied. Total peroxidase activity was increased by wounding in cell wall fractions extracted from roots, stems and leaves of horseradish. On the other hand, wounding decreased the peroxidase activity in the soluble fraction from roots. The enzyme activities of the basic isozymes were induced by wounding in horseradish leaves based on data obtained by fractionation of crude enzyme in isoelectric focusing gel electrophoresis followed by activity staining. We have previously isolated genomic clones for four peroxidase genes, namely, prxC1a, prxC1b, prxC2 and prxC3. Northern blot analysis using gene-specific probes showed that mRNA of prxC2, which encodes a basic isozyme, accumulated by wounding, while the mRNAs for other peroxidase genes were not induced. Tobacco (Nicotiana tabacum) plants were transformed with four chimeric gene constructs, each consisting of a promoter from one of the peroxidase genes and the β-glucuronidase (GUS) structural gene. High level GUS activity induced in response to wounding was observed in tobacco plants containing the prxC2-GUS construct.
NASA Astrophysics Data System (ADS)
Jadko, Sergiy
Early increasing of reactive oxygen species (ROS) concentration, including H2O2, occur in plant cells under various impacts and these ROS can function as signaling molecules in starting of cell stress responses. Peroxiredoxins (Prx) and thioredoxins (Trx) are significant cell ROS/H2O2 sensors and transmitters. Prx besides its antioxidant activity, participate in creating of stress redox signals by destroying of H2O2 and reducing of Trx. Than these reduced Trx lead to activation of various redox sensitive proteins, transcription factors and MAP kinases. This study aimed to investigate early increasing of ROS and H2O2 contents and Prx and Trx activities in pea roots and arabidopsis tissue culture cells under hypergravity and oxidative stresses. Pea roots of 3-5 days old seedlings and 12 days old tissue culture of Arabidopsis thaliana from leaves were studied. Pea seedlings were grown on wet filter paper and the tissue culture was grown on MS medium in dark conditions under 24oC. Hypergravity stress was induced by centrifugation at 15 g. Chemiluminescence (ChL) intensity for ROS concentration, H2O2 content and Prx and Trx activities were determined. All experiments were repeated by 3-4 times. Early increasing of ChL intensity and H2O2 content in the pea roots and arabidopsis tissue culture cells took place under hypergravity and oxidative stresses and its were higher corresponding controls on average on 25, 21 and 17 percents to 30, 60 and 90 min. At the same time Prx and Trx activities increased on 7, 13 and 16 percents. Thus under hypergravity and oxidative stresses in both investigated plants take place early increasing of ROS and H2O2 contents which as second messengers can lead to ROS/H2O2-dependent increasing of Prx and Trx activities with creating of H2O2-Prx-Trx signaling pathway.
Radyuk, Svetlana N.; Klichko, Vladimir I.; Michalak, Katarzyna; Orr, William C.
2013-01-01
Peroxiredoxin 4 (Prx4) has been implicated in a wide variety of biological processes, including development, progression of cancer, inflammation, and antioxidant function. The purpose of this study was to provide further insight into its multiple roles at the whole-animal level, using Drosophila. Reduced expression of dPrx4 (up to 90%) resulted in greater sensitivity to oxidative stress, an elevated H2O2 flux, and increases in lipid peroxidation, but no effect on longevity. Overexpression at low levels (<2-fold) gave reduced levels of oxidative damage and tended to show an increase in longevity. Flies expressing dPrx4 globally at high levels (>5-fold) had a dramatically reduced life span (by 20–80%) and increased apoptosis. Analysis of these overexpressors revealed an aberrant redistribution of the dPrx4 protein from the endoplasmic reticulum (ER) to cytosol and hemolymph. In addition to the known proapoptotic effects of the cytosolic form of dPrx4, dPrx4 overexpression triggered an NF-κB-mediated proinflammatory response, similar to that observed in cells under ER stress or when microbially challenged. Finally, we provide the first evidence that dPrx4, on secretion into the hemolymph, elicits a JAK/STAT-mediated response. The effects on fly survival and homeostasis appear to represent a combination of differential effects dictated in large part by dPrx4 subcellular and tissue-specific localization.—Radyuk, S. N., Klichko, V. I., Michalak, K., Orr, W. C. The effect of peroxiredoxin 4 on fly physiology is a complex interplay of antioxidant and signaling functions. PMID:23271054
Gümbel, Denis; Gelbrich, Nadine; Napp, Matthias; Daeschlein, Georg; Kramer, Axel; Sckell, Axel; Burchardt, Martin; Ekkernkamp, Axel; Stope, Matthias B
2017-03-01
To evaluate the potential involvement of redox-specific signalling pathways in cold atmospheric plasma (CAP)-induced apoptosis on human osteosarcoma cells. Osteosarcoma cell lines were treated with CAP with or without antioxidative agents and seeded in cell culture plates. Cell proliferation was determined by counting viable cells. Carrier gas-treated cells served as control. Peroxiredoxin (PRX) 1-3 expression and secretion were assessed. CAP treatment exhibited strongly attenuated proliferation rates. This effect was significantly attenuated by the addition of N-acetylcysteine (NAC). CAP-treated cells exhibited an increase of PRX 1 and 2 10 sec after treatment. The ratio of oxidized to reduced PRX1 and PRX2 was significantly altered with increasing cellular concentration of the oxidized dimer. Antioxidant supplementation with NAC increases proliferation of CAP-treated osteosarcoma cells, implicating an involvement of redox signalling. Activation of PRX1 and -2 indicate CAP affects redox homeostasis. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
Araujo, Alex Sander da Rosa; Fernandes, Tania; Ribeiro, Maria Flavia; Khaper, Neelam; Belló-Klein, Adriane
2010-11-01
The present study was conducted to test whether adaptation in the antioxidant system would differentially modulate prosurvival and proapoptotic proteins in hyperthyroidism-induced cardiac hypertrophy. Male Wistar rats were divided into 4 groups: control, vitamin E (20 mg · kg(-1) · d(-1) subcutaneously, 28 days), thyroxine (T4) (12 mg/L in drinking water for 28 days), and T4 + vitamin E. Cardiac mass, redox ratio, glutathione peroxidase (GPx) and glutathione reductase (GR) activities, NF-E2-related factor 2 (Nrf2) thioredoxin-1 (Trx-1), peroxiredoxin-6 (Prx-6), phospho-extracellular-signal-regulated kinases 1/2 (p-ERK 1/2)/extracellular-signal-regulated kinases 1/2 (ERK1/2), and phospho-c-Jun N-terminal kinase (p-JNK)/c-Jun N-terminal kinase (JNK) myocardial protein expression were quantified. Cardiac hypertrophy was attenuated in the T4 + vitamin E group. The redox ratio; GPx and GR; as well as Nrf2, Trx-1, Prx-6, and p-ERK1/2/ERK1/2 immunocontent were elevated in T4 group. All these effects were attenuated by vitamin E administration. p-JNK/JNK remained unchanged in all the groups. The overall results suggest that redox imbalance due to hyperthyroidism induce adaptation of antioxidant systems, favoring ERK1/2 activation and leading to development of cardiac hypertrophy.
RNA-binding properties and RNA chaperone activity of human peroxiredoxin 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Ji-Hee; Lee, Jeong-Mi; Lee, Hae Na
2012-09-07
Highlights: Black-Right-Pointing-Pointer hPrx1 has RNA-binding properties. Black-Right-Pointing-Pointer hPrx1 exhibits helix-destabilizing activity. Black-Right-Pointing-Pointer Cold stress increases hPrx1 level in the nuclear fraction. Black-Right-Pointing-Pointer hPrx1 enhances the viability of cells exposed to cold stress. -- Abstract: Human peroxiredoxin 1 (hPrx1), a member of the peroxiredoxin family, detoxifies peroxide substrates and has been implicated in numerous biological processes, including cell growth, proliferation, differentiation, apoptosis, and redox signaling. To date, Prx1 has not been implicated in RNA metabolism. Here, we investigated the ability of hPrx1 to bind RNA and act as an RNA chaperone. In vitro, hPrx1 bound to RNA and DNA, and unwoundmore » nucleic acid duplexes. hPrx1 also acted as a transcription anti-terminator in an assay using an Escherichia coli strain containing a stem-loop structure upstream of the chloramphenicol resistance gene. The overall cellular level of hPrx1 expression was not increased at low temperatures, but the nuclear level of hPrx1 was increased. In addition, hPrx1 overexpression enhanced the survival of cells exposed to cold stress, whereas hPrx1 knockdown significantly reduced cell survival under the same conditions. These findings suggest that hPrx1 may perform biological functions as a RNA-binding protein, which are distinctive from known functions of hPrx1 as a reactive oxygen species scavenger.« less
Genome-wide analysis of putative peroxiredoxin in unicellular and filamentous cyanobacteria.
Cui, Hongli; Wang, Yipeng; Wang, Yinchu; Qin, Song
2012-11-16
Cyanobacteria are photoautotrophic prokaryotes with wide variations in genome sizes and ecological habitats. Peroxiredoxin (PRX) is an important protein that plays essential roles in protecting own cells against reactive oxygen species (ROS). PRXs have been identified from mammals, fungi and higher plants. However, knowledge on cyanobacterial PRXs still remains obscure. With the availability of 37 sequenced cyanobacterial genomes, we performed a comprehensive comparative analysis of PRXs and explored their diversity, distribution, domain structure and evolution. Overall 244 putative prx genes were identified, which were abundant in filamentous diazotrophic cyanobacteria, Acaryochloris marina MBIC 11017, and unicellular cyanobacteria inhabiting freshwater and hot-springs, while poor in all Prochlorococcus and marine Synechococcus strains. Among these putative genes, 25 open reading frames (ORFs) encoding hypothetical proteins were identified as prx gene family members and the others were already annotated as prx genes. All 244 putative PRXs were classified into five major subfamilies (1-Cys, 2-Cys, BCP, PRX5_like, and PRX-like) according to their domain structures. The catalytic motifs of the cyanobacterial PRXs were similar to those of eukaryotic PRXs and highly conserved in all but the PRX-like subfamily. Classical motif (CXXC) of thioredoxin was detected in protein sequences from the PRX-like subfamily. Phylogenetic tree constructed of catalytic domains coincided well with the domain structures of PRXs and the phylogenies based on 16s rRNA. The distribution of genes encoding PRXs in different unicellular and filamentous cyanobacteria especially those sub-families like PRX-like or 1-Cys PRX correlate with the genome size, eco-physiology, and physiological properties of the organisms. Cyanobacterial and eukaryotic PRXs share similar conserved motifs, indicating that cyanobacteria adopt similar catalytic mechanisms as eukaryotes. All cyanobacterial PRX proteins share highly similar structures, implying that these genes may originate from a common ancestor. In this study, a general framework of the sequence-structure-function connections of the PRXs was revealed, which may facilitate functional investigations of PRXs in various organisms.
Genome-wide analysis of putative peroxiredoxin in unicellular and filamentous cyanobacteria
2012-01-01
Background Cyanobacteria are photoautotrophic prokaryotes with wide variations in genome sizes and ecological habitats. Peroxiredoxin (PRX) is an important protein that plays essential roles in protecting own cells against reactive oxygen species (ROS). PRXs have been identified from mammals, fungi and higher plants. However, knowledge on cyanobacterial PRXs still remains obscure. With the availability of 37 sequenced cyanobacterial genomes, we performed a comprehensive comparative analysis of PRXs and explored their diversity, distribution, domain structure and evolution. Results Overall 244 putative prx genes were identified, which were abundant in filamentous diazotrophic cyanobacteria, Acaryochloris marina MBIC 11017, and unicellular cyanobacteria inhabiting freshwater and hot-springs, while poor in all Prochlorococcus and marine Synechococcus strains. Among these putative genes, 25 open reading frames (ORFs) encoding hypothetical proteins were identified as prx gene family members and the others were already annotated as prx genes. All 244 putative PRXs were classified into five major subfamilies (1-Cys, 2-Cys, BCP, PRX5_like, and PRX-like) according to their domain structures. The catalytic motifs of the cyanobacterial PRXs were similar to those of eukaryotic PRXs and highly conserved in all but the PRX-like subfamily. Classical motif (CXXC) of thioredoxin was detected in protein sequences from the PRX-like subfamily. Phylogenetic tree constructed of catalytic domains coincided well with the domain structures of PRXs and the phylogenies based on 16s rRNA. Conclusions The distribution of genes encoding PRXs in different unicellular and filamentous cyanobacteria especially those sub-families like PRX-like or 1-Cys PRX correlate with the genome size, eco-physiology, and physiological properties of the organisms. Cyanobacterial and eukaryotic PRXs share similar conserved motifs, indicating that cyanobacteria adopt similar catalytic mechanisms as eukaryotes. All cyanobacterial PRX proteins share highly similar structures, implying that these genes may originate from a common ancestor. In this study, a general framework of the sequence-structure-function connections of the PRXs was revealed, which may facilitate functional investigations of PRXs in various organisms. PMID:23157370
NASA Astrophysics Data System (ADS)
Carvalho, Paulo S.; de Melo, Cristiane C.; Ayala, Alejandro P.; Ellena, Javier
2016-08-01
A comprehensive solid state study of Paroxetine nitrate hydrate, (PRX+·NO3-)H2O, is reported. This salt was characterized by a combination of methods, including Single crystal X-ray diffraction, Thermal analysis, Fourier transform infrared spectroscopy (FTIR) and Solubility measurements. (PRX+·NO3-)H2O crystallizes in the monoclinic C2 space group (Z‧ = 1) and its packing was analyzed in details, showing that the main supramolecular motif consists in a C22(4) chain formed by charge-assisted N+-H⋯O- hydrogen bonds. The salt formation and conformation features were also accuracy established via FTIR spectra. In comparison with the pharmaceutical approved (PRX+ṡCl-)ṡ0.5H2O, (PRX+ṡNO3-)ṡH2O showed a decrease of 24 °C in the drug melting peak and a slight reduction in its water solubility value.
Mitchell, Robert M; Tajuddin, Nuzhath; Campbell, Edward M; Neafsey, Edward J; Collins, Michael A
2016-07-01
Epidemiological studies indicate that light-moderate alcohol (ethanol) consumers tend to have reduced risks of cognitive impairment and progression to dementia during aging. Exploring possible mechanisms, we previously found that moderate ethanol preconditioning (MEP, 20-30mM) of rat brain cultures for several days instigated neuroprotection against β-amyloid peptides. Our biochemical evidence implicated the NMDA receptor (NMDAR) as a potential neuroprotective "sensor", specifically via synaptic NMDAR signaling. It remains unclear how ethanol modulates the receptor and its downstream targets to engender neuroprotection. Here we confirm with deconvolution microscopy that MEP of rat mixed cerebellar cultures robustly increases synaptic NMDAR localization. Phospho-activation of the non-receptor tyrosine kinases Src and Pyk2, known to be linked to synaptic NMDAR, is also demonstrated. Additionally, the preconditioning enhances levels of an antioxidant protein, peroxiredoxin 2 (Prx2), reported to be downstream of synaptic NMDAR signaling, and NMDAR antagonism with memantine (earlier found to abrogate MEP neuroprotection) blocks the Prx2 elevations. To further link Prx2 with antioxidant-based neuroprotection, we circumvented the ethanol preconditioning-NMDAR pathway by pharmacologically increasing Prx2 with the naturally-occurring cruciferous compound, 3H-1,2-dithiole-3-thione (D3T). Thus, D3T pretreatment elevated Prx2 expression to a similar extent as MEP, while concomitantly preventing β-amyloid neurotoxicity; D3T also protected the cultures from hydrogen peroxide toxicity. The findings support a mechanism that couples synaptic NMDAR signaling, Prx2 expression and augmented antioxidant defenses in ethanol preconditioning-induced neuroprotection. That this mechanism can be emulated by a cruciferous vegetable constituent suggests that such naturally-occurring "neutraceuticals" may be useful in therapy for oxidative stress-related dementias. Copyright © 2016 Elsevier B.V. All rights reserved.
Liu, Guosheng; Sheng, Xiaoyan; Greenshields, David L; Ogieglo, Adam; Kaminskyj, Susan; Selvaraj, Gopalan; Wei, Yangdou
2005-07-01
A cDNA library was constructed from leaf epidermis of diploid wheat (Triticum monococcum) infected with the powdery mildew fungus (Blumeria graminis f. sp. tritici) and was screened for genes encoding peroxidases. From 2,500 expressed sequence tags (ESTs), 36 cDNAs representing 10 peroxidase genes (designated TmPRX1 to TmPRX10) were isolated and further characterized. Alignment of the deduced amino acid sequences and phylogenetic clustering with peroxidases from other plant species demonstrated that these peroxidases fall into four distinct groups. Differential expression and tissue-specific localization among the members were observed during the B. graminis f. sp. tritici attack using Northern blots and reverse-transcriptase polymerase chain reaction analyses. Consistent with its abundance in the EST collection, TmPRX1 expression showed the highest induction during pathogen attack and fluctuated in response to the fungal parasitic stages. TmPRX1 to TmPRX6 were expressed predominantly in mesophyll cells, whereas TmPRX7 to TmPRX10, which feature a putative C-terminal propeptide, were detectable mainly in epidermal cells. Using TmPRX8 as a representative, we demonstrated that its C-terminal propeptide was sufficient to target a green fluorescent protein fusion protein to the vacuoles in onion cells. Finally, differential expression profiles of the TmPRXs after abiotic stresses and signal molecule treatments were used to dissect the potential role of these peroxidases in multiple stress and defense pathways.
Barley Coleoptile Peroxidases. Purification, Molecular Cloning, and Induction by Pathogens1
Kristensen, Brian Kåre; Bloch, Helle; Rasmussen, Søren Kjærsgaard
1999-01-01
A cDNA clone encoding the Prx7 peroxidase from barley (Hordeum vulgare L.) predicted a 341-amino acid protein with a molecular weight of 36,515. N- and C-terminal putative signal peptides were present, suggesting a vacuolar location of the peroxidase. Immunoblotting and reverse-transcriptase polymerase chain reaction showed that the Prx7 protein and mRNA accumulated abundantly in barley coleoptiles and in leaf epidermis inoculated with powdery mildew fungus (Blumeria graminis). Two isoperoxidases with isoelectric points of 9.3 and 7.3 (P9.3 and P7.3, respectively) were purified to homogeneity from barley coleoptiles. P9.3 and P7.3 had Reinheitszahl values of 3.31 and 2.85 and specific activities (with 2,2′-azino-di-[3-ethyl-benzothiazoline-6-sulfonic acid], pH 5.5, as the substrate) of 11 and 79 units/mg, respectively. N-terminal amino acid sequencing and matrix-assisted laser desorption/ionization time-of-flight mass-spectrometry peptide analysis identified the P9.3 peroxidase activity as due to Prx7. Tissue and subcellular accumulation of Prx7 was studied using activity-stained isoelectric focusing gels and immunoblotting. The peroxidase activity due to Prx7 accumulated in barley leaves 24 h after inoculation with powdery mildew spores or by wounding of epidermal cells. Prx7 accumulated predominantly in the epidermis, apparently in the vacuole, and appeared to be the only pathogen-induced vacuolar peroxidase expressed in barley tissues. The data presented here suggest that Prx7 is responsible for the biosynthesis of antifungal compounds known as hordatines, which accumulate abundantly in barley coleoptiles. PMID:10364401
Double NF1 Inactivation Affects Adrenocortical Function in NF1Prx1 Mice and a Human Patient
Kobus, Karolina; Hartl, Daniela; Ott, Claus Eric; Osswald, Monika; Huebner, Angela; von der Hagen, Maja; Emmerich, Denise; Kühnisch, Jirko; Morreau, Hans; Hes, Frederik J.; Mautner, Victor F.; Harder, Anja; Tinschert, Sigrid; Mundlos, Stefan; Kolanczyk, Mateusz
2015-01-01
Background Neurofibromatosis type I (NF1, MIM#162200) is a relatively frequent genetic condition, which predisposes to tumor formation. Apart from tumors, individuals with NF1 often exhibit endocrine abnormalities such as precocious puberty (2,5–5% of NF1 patients) and some cases of hypertension (16% of NF1 patients). Several cases of adrenal cortex adenomas have been described in NF1 individuals supporting the notion that neurofibromin might play a role in adrenal cortex homeostasis. However, no experimental data were available to prove this hypothesis. Materials and Methods We analysed Nf1Prx1 mice and one case of adrenal cortical hyperplasia in a NF1patient. Results In Nf1Prx1 mice Nf1 is inactivated in the developing limbs, head mesenchyme as well as in the adrenal gland cortex, but not the adrenal medulla or brain. We show that adrenal gland size is increased in NF1Prx1 mice. Nf1Prx1 female mice showed corticosterone and aldosterone overproduction. Molecular analysis of Nf1 deficient adrenals revealed deregulation of multiple proteins, including steroidogenic acute regulatory protein (StAR), a vital mitochondrial factor promoting transfer of cholesterol into steroid making mitochondria. This was associated with a marked upregulation of MAPK pathway and a female specific increase of cAMP concentration in murine adrenal lysates. Complementarily, we characterized a patient with neurofibromatosis type I with macronodular adrenal hyperplasia with ACTH-independent cortisol overproduction. Comparison of normal control tissue- and adrenal hyperplasia- derived genomic DNA revealed loss of heterozygosity (LOH) of the wild type NF1 allele, showing that biallelic NF1 gene inactivation occurred in the hyperplastic adrenal gland. Conclusions Our data suggest that biallelic loss of Nf1 induces autonomous adrenal hyper-activity. We conclude that Nf1 is involved in the regulation of adrenal cortex function in mice and humans. PMID:25775093
Ring, Ludwig; Yeh, Su-Ying; Hücherig, Stephanie; Hoffmann, Thomas; Blanco-Portales, Rosario; Fouche, Mathieu; Villatoro, Carmen; Denoyes, Béatrice; Monfort, Amparo; Caballero, José Luis; Muñoz-Blanco, Juan; Gershenson, Jonathan; Schwab, Wilfried
2013-01-01
Plant phenolics have drawn increasing attention due to their potential nutritional benefits. Although the basic reactions of the phenolics biosynthetic pathways in plants have been intensively analyzed, the regulation of their accumulation and flux through the pathway is not that well established. The aim of this study was to use a strawberry (Fragaria × ananassa) microarray to investigate gene expression patterns associated with the accumulation of phenylpropanoids, flavonoids, and anthocyanins in strawberry fruit. An examination of the transcriptome, coupled with metabolite profiling data from different commercial varieties, was undertaken to identify genes whose expression correlated with altered phenolics composition. Seventeen comparative microarray analyses revealed 15 genes that were differentially (more than 200-fold) expressed in phenolics-rich versus phenolics-poor varieties. The results were validated by heterologous expression of the peroxidase FaPRX27 gene, which showed the highest altered expression level (more than 900-fold). The encoded protein was functionally characterized and is assumed to be involved in lignin formation during strawberry fruit ripening. Quantitative trait locus analysis indicated that the genomic region of FaPRX27 is associated with the fruit color trait. Down-regulation of the CHALCONE SYNTHASE gene and concomitant induction of FaPRX27 expression diverted the flux from anthocyanins to lignin. The results highlight the competition of the different phenolics pathways for their common precursors. The list of the 15 candidates provides new genes that are likely to impact polyphenol accumulation in strawberry fruit and could be used to develop molecular markers to select phenolics-rich germplasm. PMID:23835409
Wavelet pressure reactivity index: A validation study.
Liu, Xiuyun; Czosnyka, Marek; Donnelly, Joseph; Cardim, Danilo; Cabeleira, Manuel; Hutchinson, Peter J; Hu, Xiao; Smielewski, Peter; Brady, Ken
2018-04-17
The brain is vulnerable to damage from too little or too much blood flow. A physiological mechanism called cerebral autoregulation (CA) exists to maintain stable blood flow even if cerebral perfusion pressure (CPP) is changing. A robust method for assessing CA is not yet available. There are still some problems with the traditional measure, the pressure reactivity index (PRx). We introduced a new method, wavelet transform method (wPRx) to assess CA using data from two sets of controlled hypotension experiments in piglets: One set with artificially manipulated ABP oscillations; the other group were spontaneous ABP waves. A significant linear relationship was found between wPRx and PRx in both groups, with wPRx rendering a more stable result for the spontaneous waves. Although both methods showed similar accuracy in distinguishing intact and impaired CA, it seems that wPRx tend to perform better than PRx, though not significantly. We present a novel method to monitor cerebral autoregulation (CA) using the wavelet transform (WT). The new method is validated against the pressure reactivity index (PRx) in two piglet experiments with controlled hypotension. The first experiment (n = 12) had controlled haemorrhage with artificial stationary arterial blood pressure (ABP) and intracranial pressure (ICP) oscillations induced by sinusoidal slow changes in positive end-expiratory pressure ('PEEP group') . The second experiment (n = 17) had venous balloon inflation during spontaneous, non-stationary ABP and ICP oscillations ('non-PEEP group'). Wavelet transform phase shift (WTP) between ABP and ICP was calculated in the frequency 0.0067-0.05 Hz. Wavelet semblance, the cosine of WTP was used to make the values comparable to PRx, and the new index was termed wavelet pressure reactivity index (wPRx). The traditional PRx, the running correlation coefficient between ABP and ICP, was calculated. The result showed a significant linear relationship between wPRx and PRx in the PEEP group (R = 0.88) and non-PEEP group (R = 0.56). In non-PEEP group, wPRx showed better performance than PRx in distinguishing CPP above and below lower limit of autoregulation (LLA). When CPP was decreased below LLA, wPRx increased from 0.43 ± 0.28 to 0.69 ± 0.12 (p = 0.003) while PRx increased from 0.07 ± 0.21 to 0.27 ± 0.37 (p = 0.04). Moreover, wPRx rendered a more stable result than PRx (SD of PRx was 0.40 ± 0.07, and SD of wPRx was 0.28 ± 0.11, p = 0.001). Assessment of CA using wavelet derived phase shift between ABP and ICP is feasible. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Laxa, Miriam; König, Janine; Dietz, Karl-Josef; Kandlbinder, Andrea
2006-01-01
Cyps (cyclophilins) are ubiquitous proteins of the immunophilin superfamily with proposed functions in protein folding, protein degradation, stress response and signal transduction. Conserved cysteine residues further suggest a role in redox regulation. In order to get insight into the conformational change mechanism and functional properties of the chloroplast-located CYP20-3, site-directed mutagenized cysteine→serine variants were generated and analysed for enzymatic and conformational properties under reducing and oxidizing conditions. Compared with the wild-type form, elimination of three out of the four cysteine residues decreased the catalytic efficiency of PPI (peptidyl-prolyl cis–trans isomerase) activity of the reduced CYP20-3, indicating a regulatory role of dithiol–disulfide transitions in protein function. Oxidation was accompanied by conformational changes with a predominant role in the structural rearrangement of the disulfide bridge formed between Cys54 and Cys171. The rather negative Em (midpoint redox potential) of −319 mV places CYP20-3 into the redox hierarchy of the chloroplast, suggesting the activation of CYP20-3 in the light under conditions of limited acceptor availability for photosynthesis as realized under environmental stress. Chloroplast Prx (peroxiredoxins) were identified as interacting partners of CYP20-3 in a DNA-protection assay. A catalytic role in the reduction of 2-Cys PrxA and 2-Cys PrxB was assigned to Cys129 and Cys171. In addition, it was shown that the isomerization and disulfide-reduction activities are two independent functions of CYP20-3 that both are regulated by the redox state of its active centre. PMID:16928193
Nucleotide sequences of two genomic DNAs encoding peroxidase of Arabidopsis thaliana.
Intapruk, C; Higashimura, N; Yamamoto, K; Okada, N; Shinmyo, A; Takano, M
1991-02-15
The peroxidase (EC 1.11.1.7)-encoding gene of Arabidopsis thaliana was screened from a genomic library using a cDNA encoding a neutral isozyme of horseradish, Armoracia rusticana, peroxidase (HRP) as a probe, and two positive clones were isolated. From the comparison with the sequences of the HRP-encoding genes, we concluded that two clones contained peroxidase-encoding genes, and they were named prxCa and prxEa. Both genes consisted of four exons and three introns; the introns had consensus nucleotides, GT and AG, at the 5' and 3' ends, respectively. The lengths of each putative exon of the prxEa gene were the same as those of the HRP-basic-isozyme-encoding gene, prxC3, and coded for 349 amino acids (aa) with a sequence homology of 89% to that encoded by prxC3. The prxCa gene was very close to the HRP-neutral-isozyme-encoding gene, prxC1b, and coded for 354 aa with 91% homology to that encoded by prxC1b. The aa sequence homology was 64% between the two peroxidases encoded by prxCa and prxEa.
Takahashi, Toshiaki; Zimmer, Julia; Friedmacher, Florian; Puri, Prem
2016-12-01
Pleuroperitoneal folds (PPFs) are the source of the primordial diaphragm's muscle connective tissue (MCT), and developmental mutations have been shown to result in congenital diaphragmatic hernia (CDH). The protein paired-related homeobox 1 (Prx1) labels migrating PPF cells and stimulates expression of transcription factor 4 (Tcf4), a novel MCT marker that controls morphogenesis of the fetal diaphragm. We hypothesized that diaphragmatic Prx1 and Tcf4 expression is decreased in the nitrofen-induced CDH model. Time-mated rats were exposed to either nitrofen or vehicle on gestational day 9 (D9). Fetal diaphragms were microdissected on D13, D15, and D18, and divided into control and nitrofen-exposed specimens. Gene expression levels of Prx1 and Tcf4 were analyzed by qRT-PCR. Immunofluorescence double staining for Prx1 and Tcf4 was performed to evaluate protein expression and localization. Relative mRNA expression of Prx1 and Tcf4 was significantly downregulated in PPFs (D13), developing diaphragms (D15) and fully muscularized diaphragms (D18) of nitrofen-exposed fetuses compared to controls. Confocal laser scanning microscopy revealed markedly diminished Prx1 and Tcf4 expression in diaphragmatic MCT of nitrofen-exposed fetuses on D13, D15, and D18 compared to controls. Decreased expression of Prx1 and Tcf4 in the fetal diaphragm may cause defects in the PPF-derived MCT, leading to development of CDH in the nitrofen model. Level 2c (Centre for Evidence-Based Medicine, Oxford). Copyright © 2016 Elsevier Inc. All rights reserved.
Awad, Jasmin; Stotz, Henrik U; Fekete, Agnes; Krischke, Markus; Engert, Cornelia; Havaux, Michel; Berger, Susanne; Mueller, Martin J
2015-04-01
Different peroxidases, including 2-cysteine (2-Cys) peroxiredoxins (PRXs) and thylakoid ascorbate peroxidase (tAPX), have been proposed to be involved in the water-water cycle (WWC) and hydrogen peroxide (H2O2)-mediated signaling in plastids. We generated an Arabidopsis (Arabidopsis thaliana) double-mutant line deficient in the two plastid 2-Cys PRXs (2-Cys PRX A and B, 2cpa 2cpb) and a triple mutant deficient in 2-Cys PRXs and tAPX (2cpa 2cpb tapx). In contrast to wild-type and tapx single-knockout plants, 2cpa 2cpb double-knockout plants showed an impairment of photosynthetic efficiency and became photobleached under high light (HL) growth conditions. In addition, double-mutant plants also generated elevated levels of superoxide anion radicals, H2O2, and carbonylated proteins but lacked anthocyanin accumulation under HL stress conditions. Under HL conditions, 2-Cys PRXs seem to be essential in maintaining the WWC, whereas tAPX is dispensable. By comparison, this HL-sensitive phenotype was more severe in 2cpa 2cpb tapx triple-mutant plants, indicating that tAPX partially compensates for the loss of functional 2-Cys PRXs by mutation or inactivation by overoxidation. In response to HL, H2O2- and photooxidative stress-responsive marker genes were found to be dramatically up-regulated in 2cpa 2cpb tapx but not 2cpa 2cpb mutant plants, suggesting that HL-induced plastid to nucleus retrograde photooxidative stress signaling takes place after loss or inactivation of the WWC enzymes 2-Cys PRX A, 2-Cys PRX B, and tAPX. © 2015 American Society of Plant Biologists. All Rights Reserved.
Myers, Judith M.; Antholine, William E.; Myers, Charles R.
2011-01-01
Hexavalent chromium [Cr(VI)] compounds (e.g. chromates) are strong oxidants that readily enter cells where they are reduced to reactive Cr intermediates that can directly oxidize some cell components and can promote the generation of reactive oxygen and nitrogen species. Inhalation is a major route of exposure which directly exposes the bronchial epithelium. Previous studies with non-cancerous human bronchial epithelial cells (BEAS-2B) demonstrated that Cr(VI) treatment results in the irreversible inhibition of thioredoxin reductase (TrxR) and the oxidation of thioredoxins (Trx) and peroxiredoxins (Prx). The mitochondrial Trx/Prx system is somewhat more sensitive to Cr(VI) than the cytosolic Trx/Prx system, and other redox-sensitive mitochondrial functions are subsequently affected including electron transport complexes I and II. Studies reported here show that Cr(VI) does not cause indiscriminant thiol oxidation, and that the Trx/Prx system is among the most sensitive of cellular protein thiols. Trx/Prx oxidation is not unique to BEAS-2B cells, as it was also observed in primary human bronchial epithelial cells. Increasing the intracellular levels of ascorbate, an endogenous Cr(VI) reductant, did not alter the effects on TrxR, Trx, or Prx. The peroxynitrite scavenger MnTBAP did not protect TrxR, Trx, Prx, or the electron transport chain from the effects of Cr(VI), implying that peroxynitrite is not required for these effects. Nitration of tyrosine residues of TrxR was not observed following Cr(VI) treatment, further ruling out peroxynitrite as a significant contributor to the irreversible inhibition of TrxR. Cr(VI) treatments that disrupt the TrxR/Trx/Prx system did not cause detectable mitochondrial DNA damage. Overall, the redox stress that results from Cr(VI) exposure shows selectivity for key proteins which are known to be important for redox signaling, antioxidant defense, and cell survival. PMID:21237240
A Genetic Screen for Mutants with Supersized Lipid Droplets in Caenorhabditis elegans
Li, Shiwei; Xu, Shibin; Ma, Yanli; Wu, Shuang; Feng, Yu; Cui, Qingpo; Chen, Lifeng; Zhou, Shuang; Kong, Yuanyuan; Zhang, Xiaoyu; Yu, Jialei; Wu, Mengdi; Zhang, Shaobing O.
2016-01-01
To identify genes that regulate the dynamics of lipid droplet (LD) size, we have used the genetically tractable model organism Caenorhabditis elegans, whose wild-type LD population displays a steady state of size with an upper limit of 3 μm in diameter. From a saturated forward genetic screen of 6.7 × 105 mutagenized haploid genomes, we isolated 118 mutants with supersized intestinal LDs often reaching 10 μm. These mutants define nine novel complementation groups, in addition to four known genes (maoc-1, dhs-28, daf-22, and prx-10). The nine groups are named drop (lipid droplet abnormal) and categorized into four classes. Class I mutants drop-5 and drop-9, similar to prx-10, are up-regulated in ACS-22-DGAT-2-dependent LD growth, resistant to LD hydrolysis, and defective in peroxisome import. Class II mutants drop-2, drop-3, drop-6, and drop-7 are up-regulated in LD growth, are resistant to LD hydrolysis, but are not defective in peroxisome import. Class III mutants drop-1 and drop-8 are neither up-regulated in LD growth nor resistant to LD hydrolysis, but seemingly up-regulated in LD fusion. Class IV mutant drop-4 is cloned as sams-1 and, different to the other three classes, is ACS-22-independent and hydrolysis-resistant. These four classes of supersized LD mutants should be valuable for mechanistic studies of LD cellular processes including growth, hydrolysis, and fusion. PMID:27261001
Liu, Mingxue; Liu, Jing; Liu, Xing; Wei, Guanghui
2014-06-01
In previous studies, we established an animal model of human congenital hydronephrosis with exposure of developing mice to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), but the etiopathogenesis is not entirely clear. The present study was to identify the changes that may be involved in the etiology at the protein level. C57BL/6J mice fetuses were treated with TCDD. Comparative proteomic analysis was adopted to identify the proteins associated with hydronephrosis induced by TCDD. Two-dimensional electrophoresis display revealed that 19 protein spots were differentially expressed in the upper urinary tract tissues in fetal mice after exposure to TCDD. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) identified 12 up-regulated proteins: peroxiredoxin I (Prx I), cadherin 6, gamma-actin, radixin, desmin, type II transforming growth factor-beta receptor, chromogranin B, serum albumin precursor, transferrin, hypothetical protein LOC70984, lipk protein, and zinc finger protein 336. Histochemical staining indicated that Prx I protein was positively expressed in the ureteric epithelium in the treated group, and not in the control group, which is consistent with MALDI-TOF-MS. Prx I protein may be a potential biomarker or responsive protein of hydronephrosis in fetal mice induced by TCDD. Copyright © 2013 Journal of Pediatric Urology Company. Published by Elsevier Ltd. All rights reserved.
Hu, Chao-Chien; Liao, Jiahn-Haur; Hsu, Kuang-Yang; Lin, I-Lin; Tsai, Ming-Hsuan; Wu, Wen-Hsin; Wei, Tzu-Tang; Huang, Yi-Shiang; Chiu, Shih-Jiuan; Chen, Hsiang-Yin; Wu, Shih-Hsiung
2011-01-01
Purpose In this study, we investigated the biochemical pharmacology of pirenoxine (PRX) and catalin under in vitro selenite/calcium- and ultraviolet (UV)-induced lens protein turbidity challenges. The systemic effects of catalin were determined using a selenite-induced cataractogenesis rat model. Methods In vitro cataractogenesis assay systems (including UVB/C photo-oxidation of lens crystallins, calpain-induced proteolysis, and selenite/calcium-induced turbidity of lens crystallin solutions) were used to screen the activity of PRX and catalin eye drop solutions. Turbidity was identified as the optical density measured using spectroscopy at 405 nm. We also determined the in vivo effects of catalin on cataract severity in a selenite-induced cataract rat model. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS–PAGE) was applied to analyze the integrity of crystallin samples. Results PRX at 1,000 μM significantly delayed UVC-induced turbidity formation compared to controls after 4 h of UVC exposure (p<0.05), but not in groups incubated with PRX concentrations of <1,000 μM. Results were further confirmed by SDS–PAGE. The absolute γ-crystallin turbidity induced by 4 h of UVC exposure was ameliorated in the presence of catalin equivalent to 1~100 μM PRX in a concentration-dependent manner. Samples with catalin-formulated vehicle only (CataV) and those containing PRX equivalent to 100 μM had a similar protective effect after 4 h of UVC exposure compared to the controls (p<0.05). PRX at 0.03, 0.1, and 0.3 μM significantly delayed 10 mM selenite- and calcium-induced turbidity formation compared to controls on days 0~4 (p<0.05). Catalin (equivalent to 32, 80, and 100 μM PRX) had an initial protective effect against selenite-induced lens protein turbidity on day 1 (p<0.05). Subcutaneous pretreatment with catalin (5 mg/kg) also statistically decreased the mean cataract scores in selenite-induced cataract rats on post-induction day 3 compared to the controls (1.3±0.2 versus 2.4±0.4; p<0.05). However, catalin (equivalent to up to 100 μM PRX) did not inhibit calpain-induced proteolysis activated by calcium, and neither did 100 μM PRX. Conclusions PRX at micromolar levels ameliorated selenite- and calcium-induced lens protein turbidity but required millimolar levels to protect against UVC irradiation. The observed inhibition of UVC-induced turbidity of lens crystallins by catalin at micromolar concentrations may have been a result of the catalin-formulated vehicle. Transient protection by catalin against selenite-induced turbidity of crystallin solutions in vitro was supported by the ameliorated cataract scores in the early stage of cataractogenesis in vivo by subcutaneously administered catalin. PRX could not inhibit calpain-induced proteolysis activated by calcium or catalin itself, and may be detrimental to crystallins under UVB exposure. Further studies on formulation modifications of catalin and recommended doses of PRX to optimize clinical efficacy by cataract type are warranted. PMID:21850160
Hu, Chao-Chien; Liao, Jiahn-Haur; Hsu, Kuang-Yang; Lin, I-Lin; Tsai, Ming-Hsuan; Wu, Wen-Hsin; Wei, Tzu-Tang; Huang, Yi-Shiang; Chiu, Shih-Jiuan; Chen, Hsiang-Yin; Wu, Shih-Hsiung; Wu, Tzu-Hua
2011-01-01
In this study, we investigated the biochemical pharmacology of pirenoxine (PRX) and catalin under in vitro selenite/calcium- and ultraviolet (UV)-induced lens protein turbidity challenges. The systemic effects of catalin were determined using a selenite-induced cataractogenesis rat model. In vitro cataractogenesis assay systems (including UVB/C photo-oxidation of lens crystallins, calpain-induced proteolysis, and selenite/calcium-induced turbidity of lens crystallin solutions) were used to screen the activity of PRX and catalin eye drop solutions. Turbidity was identified as the optical density measured using spectroscopy at 405 nm. We also determined the in vivo effects of catalin on cataract severity in a selenite-induced cataract rat model. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) was applied to analyze the integrity of crystallin samples. PRX at 1,000 μM significantly delayed UVC-induced turbidity formation compared to controls after 4 h of UVC exposure (p<0.05), but not in groups incubated with PRX concentrations of <1,000 μM. Results were further confirmed by SDS-PAGE. The absolute γ-crystallin turbidity induced by 4 h of UVC exposure was ameliorated in the presence of catalin equivalent to 1~100 μM PRX in a concentration-dependent manner. Samples with catalin-formulated vehicle only (CataV) and those containing PRX equivalent to 100 μM had a similar protective effect after 4 h of UVC exposure compared to the controls (p<0.05). PRX at 0.03, 0.1, and 0.3 μM significantly delayed 10 mM selenite- and calcium-induced turbidity formation compared to controls on days 0~4 (p<0.05). Catalin (equivalent to 32, 80, and 100 μM PRX) had an initial protective effect against selenite-induced lens protein turbidity on day 1 (p<0.05). Subcutaneous pretreatment with catalin (5 mg/kg) also statistically decreased the mean cataract scores in selenite-induced cataract rats on post-induction day 3 compared to the controls (1.3±0.2 versus 2.4±0.4; p<0.05). However, catalin (equivalent to up to 100 μM PRX) did not inhibit calpain-induced proteolysis activated by calcium, and neither did 100 μM PRX. PRX at micromolar levels ameliorated selenite- and calcium-induced lens protein turbidity but required millimolar levels to protect against UVC irradiation. The observed inhibition of UVC-induced turbidity of lens crystallins by catalin at micromolar concentrations may have been a result of the catalin-formulated vehicle. Transient protection by catalin against selenite-induced turbidity of crystallin solutions in vitro was supported by the ameliorated cataract scores in the early stage of cataractogenesis in vivo by subcutaneously administered catalin. PRX could not inhibit calpain-induced proteolysis activated by calcium or catalin itself, and may be detrimental to crystallins under UVB exposure. Further studies on formulation modifications of catalin and recommended doses of PRX to optimize clinical efficacy by cataract type are warranted.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Atsmon, Jacob; Sackler Faculty of Medicine, Tel Aviv University; Brill-Almon, Einat
PRX-105 is a plant-derived recombinant version of the human ‘read-through’ acetylcholinesterase splice variant (AChE-R). Its active site structure is similar to that of the synaptic variant, and it displays the same affinity towards organophosphorus (OP) compounds. As such, PRX-105 may serve as a bio-scavenger for OP pesticides and chemical warfare agents. To assess its potential use in prophylaxis and treatment of OP poisoning we conducted several preliminary tests, reported in this paper. Intravenous (IV) PRX-105 was administered to mice either before or after exposure to an OP toxin. All mice who received an IV dose of 50 nmol/kg PRX-105, 2more » min before being exposed to 1.33 × LD{sub 50} and 1.5 × LD{sub 50} of toxin and 10 min after exposure to 1.5 × LD{sub 50} survived. The pharmacokinetic and toxicity profiles of PRX-105 were evaluated in mice and mini-pigs. Following single and multiple IV doses (50 to 200 mg/kg) no deaths occurred and no significant laboratory and histopathological changes were observed. The overall elimination half-life (t{sub ½}) in mice was 994 (± 173) min. Additionally, a first-in-human study, to assess the safety, tolerability and pharmacokinetics of the compound, was conducted in healthy volunteers. The t{sub ½} in humans was substantially longer than in mice (average 26.7 h). Despite the small number of animals and human subjects who were assessed, the fact that PRX-105 exerts a protective and therapeutic effect following exposure to lethal doses of OP, its favorable safety profile and its relatively long half-life, renders it a promising candidate for treatment and prophylaxis against OP poisoning and warrants further investigation. - Highlights: • PRX-105 is a PEGylated plant-derived recombinant human acetylcholinesterase-R. • PRX-105 is a promising bio-scavenger for organophosphorous toxins at lethal doses. • PRX-105 was shown to protect animals both prophylactically and post-poisoning. • First-in-human study exhibited its safety, tolerability and pharmacokinetics. • Toxicokinetic animal studies have shown a favorable safety profile.« less
Identification of differentially expressed proteins during human urinary bladder cancer progression.
Memon, Ashfaque A; Chang, Jong W; Oh, Bong R; Yoo, Yung J
2005-01-01
Comparative proteome analysis was performed between RT4 (grade-1) and T24 (grade-3) bladder cancer cell lines, in an attempt to identify differentially expressed proteins during bladder cancer progression. Among those relatively abundant proteins, seven spots changed more than two-fold reproducibly and identified by peptide mass fingerprinting using mass spectrometry and database search. We found most extensive and reproducible down-regulation of NADP dependent isocitrate dehydrogenase cytoplasmic (IDPc) and peroxiredoxin-II (Prx-II), in poorly differentiated T24 compared to well-differentiated RT4 bladder cancer cell line. Subsequent Western blotting analysis of human biopsy samples from bladder cancer patient revealed significant loss of IDPc and Prx-II in more advance tumor samples, in agreement with data on cell lines. These results suggest that loss of IDPc and Prx-II during tumor development may involve in tumor progression and metastasis. However, additional investigations are needed on large number of human samples to further verify these findings.
Kim, Je Hein; Jung, In Jung; Kim, Dool Yi; Fanata, Wahyu Indra; Son, Bo Hwa; Yoo, Jae Yong; Harmoko, Rikno; Ko, Ki Seong; Moon, Jeong Chan; Jang, Ho Hee; Kim, Woe Yeon; Kim, Jae-Yean; Lim, Chae Oh; Lee, Sang Yeol; Lee, Kyun Oh
2011-04-29
Proteomic analysis of a rice callus led to the identification of 10 abscisic acid (ABA)-induced proteins as putative products of the embryo-specific promoter candidates. 5'-flanking sequence of 1 Cys-Prx, a highly-induced protein gene, was cloned and analyzed. The transcription initiation site of 1 Cys-Prx maps 96 nucleotides upstream of the translation initiation codon and a TATA-box and putative seed-specific cis-acting elements, RYE and ABRE, are located 26, 115 and 124 bp upstream of the transcription site, respectively. β-glucuronidase (GUS) expression driven by the 1 Cys-Prx promoters was strong in the embryo and aleurone layer and the activity reached up to 24.9 ± 3.3 and 40.5 ± 2.1 pmol (4 MU/min/μg protein) in transgenic rice seeds and calluses, respectively. The activity of the 1 Cys-Prx promoters is much higher than that of the previously-identified embryo-specific promoters, and comparable to that of strong endosperm-specific promoters in rice. GUS expression driven by the 1 Cys-Prx promoters has been increased by ABA treatment and rapidly induced by wounding in callus and at the leaf of the transgenic plants, respectively. Furthermore, ectopic expression of the GUS construct in Arabidopsis suggested that the 1 Cys-Prx promoter also has strong activity in seeds of dicot plants. Copyright © 2011 Elsevier Inc. All rights reserved.
Puerto-Galán, Leonor; Pérez-Ruiz, Juan M; Guinea, Manuel; Cejudo, Francisco Javier
2015-05-01
Hydrogen peroxide is a harmful by-product of photosynthesis, which also has important signalling activity. Therefore, the level of hydrogen peroxide needs to be tightly controlled. Chloroplasts harbour different antioxidant systems including enzymes such as the 2-Cys peroxiredoxins (2-Cys Prxs). Under oxidizing conditions, 2-Cys Prxs are susceptible to inactivation by overoxidation of their peroxidatic cysteine, which is enzymatically reverted by sulfiredoxin (Srx). In chloroplasts, the redox status of 2-Cys Prxs is highly dependent on NADPH-thioredoxin reductase C (NTRC) and Srx; however, the relationship of these activities in determining the level of 2-Cys Prx overoxidation is unknown. Here we have addressed this question by a combination of genetic and biochemical approaches. An Arabidopsis thaliana double knockout mutant lacking NTRC and Srx shows a phenotype similar to the ntrc mutant, while the srx mutant resembles wild-type plants. The deficiency of NTRC causes reduced overoxidation of 2-Cys Prxs, whereas the deficiency of Srx has the opposite effect. Moreover, in vitro analyses show that the disulfide bond linking the resolving and peroxidatic cysteines protects the latter from overoxidation, thus explaining the dominant role of NTRC on the level of 2-Cys Prx overoxidation in vivo. The overoxidation of chloroplast 2-Cys Prxs shows no circadian oscillation, in agreement with the fact that neither the NTRC nor the SRX genes show circadian regulation of expression. Additionally, the low level of 2-Cys Prx overoxidation in the ntrc mutant is light dependent, suggesting that the redox status of 2-Cys Prxs in chloroplasts depends on light rather than the circadian clock. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Wu, Jian X; Yang, Mingshi; Berg, Frans van den; Pajander, Jari; Rades, Thomas; Rantanen, Jukka
2011-12-18
New chemical entities (NCEs) often show poor water solubility necessitating solid dispersion formulation. The aim of the current study is to employ design of experiments in investigating the influence of one critical process factor (solvent evaporation rate) and two formulation factors (PVP:piroxicam ratio (PVP:PRX) and PVP molecular weight (P(MW))) on the physical stability of PRX solid dispersion prepared by the solvent evaporation method. The results showed the rank order of an increase in factors contributing to a decrease in the extent of PRX nucleation being evaporation rate>PVP:PRX>P(MW). The same rank order was found for the decrease in the extent of PRX crystal growth in PVP matrices from day 0 up to day 12. However, after 12days the rank became PVP:PRX>evaporation rate>P(MW). The effects of an increase in evaporation rate and PVP:PRX ratio in stabilizing PRX were of the same order of magnitude, while the effect from P(MW) was much smaller. The findings were confirmed by XRPD. FT-IR showed that PRX recrystallization in the PVP matrix followed Ostwald's step rule, and an increase in the three factors all led to increased hydrogen bonding interaction between PRX and PVP. The present study showed the applicability of the Quality by Design approach in solid dispersion research, and highlights the need for multifactorial analysis. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Vovk, R. V.; Vovk, N. R.; Goulatis, I. L.; Chroneos, A.
2013-10-01
In this paper, the influence of praseodymium doping on the conductivity across (transverse) the basal plane of high-temperature superconducting Y1-xPrxBa2Cu3O7-δ single crystals is investigated. It is determined that an increase of praseodymium doping leads to increased localization effects and the implementation of a metal-insulator transition Y1-xPrxBa2Cu3O7-δ, which always precedes the superconducting transition. The increase of the praseodymium concentration also leads to a significant displacement of the point of the metal-insulator transition to the low temperature region.
Wang, Shie; Huang, Weiquan; Shi, Hexiu; Lin, Cuiying; Xie, Meirong; Wang, Jianxin
2010-02-01
Peroxiredoxin (Prx) II belongs to a recently discovered family of peroxidases that play important roles in antioxidation and signal transduction. In this study, we aimed to study the localization and expression of Prx II in the mouse ovary, oviduct, and uterus, and preimplantation embryos. Immunohistochemical staining analysis showed that, in the ovary, Prx II was expressed in the oocyte cytoplasm of the primary follicle, the secondary follicle, and the premature follicle; Prx II was expressed in germinal vesicle-intact oocytes (GV oocytes) and metaphase II eggs (MII eggs), as well as at various stages in early embryos. Reverse transcription polymerase chain reaction (RT-PCR) results indicated that the Prx II mRNA was expressed at a high level in GV eggs, slightly lower levels in MII eggs, and had no detectable expression in four-cell embryos and early blastocysts. In the oviduct, Prx II was expressed in the epithelia, while in the uterus Prx II was mainly distributed in the endometrial stroma. Taken together, our results suggest that Prx II plays a key antioxidation role in the maturation of oocytes and development of early embryos, thus providing crucial experimental evidence for further exploring the function of Prx II in the development of oocytes and preimplantation embryos. 2009 Wiley-Liss, Inc.
Farag, Mohamed A.; Deavours, Bettina E.; de Fátima, Ângelo; Naoumkina, Marina; Dixon, Richard A.; Sumner, Lloyd W.
2009-01-01
Metabolic profiling of elicited barrel medic (Medicago truncatula) cell cultures using high-performance liquid chromatography coupled to photodiode and mass spectrometry detection revealed the accumulation of the aurone hispidol (6-hydroxy-2-[(4-hydroxyphenyl)methylidene]-1-benzofuran-3-one) as a major response to yeast elicitor. Parallel, large-scale transcriptome profiling indicated that three peroxidases, MtPRX1, MtPRX2, and MtPRX3, were coordinately induced with the accumulation of hispidol. MtPRX1 and MtPRX2 exhibited aurone synthase activity based upon in vitro substrate specificity and product profiles of recombinant proteins expressed in Escherichia coli. Hispidol possessed significant antifungal activity relative to other M. truncatula phenylpropanoids tested but has not been reported in this species before and was not found in differentiated roots in which high levels of the peroxidase transcripts accumulated. We propose that hispidol is formed in cell cultures by metabolic spillover when the pool of its precursor, isoliquiritigenin, builds up as a result of an imbalance between the upstream and downstream segments of the phenylpropanoid pathway, reflecting the plasticity of plant secondary metabolism. The results illustrate that integration of metabolomics and transcriptomics in genetically reprogrammed plant cell cultures is a powerful approach for the discovery of novel bioactive secondary metabolites and the mechanisms underlying their generation. PMID:19571306
Mice expressing GFP and CreER in osteochondro progenitor cells in the periosteum.
Kawanami, Aya; Matsushita, Takehiko; Chan, Yuk Yu; Murakami, Shunichi
2009-08-28
We generated Prx1CreER-GFP transgenic mice that express tamoxifen-inducible Cre recombinase and GFP under the control of a 2.4 kb Prx1 promoter. The transgene is expressed in osteochondro progenitor cells in the developing limb buds and in a subpopulation of periosteal cells that is closely associated with the cortical bone. GFP-expressing cells isolated from the diaphyses of long bones by cell sorting express multiple markers of periosteal cells, including Prx1, Fgf18, Tenascin-W, Periostin, and Thrombospondin 2. In addition, these cells undergo chondrogenic and osteogenic differentiation in culture upon induction. Cell fate analysis using the Rosa26 LacZ reporter indicated that transgene-expressing cells give rise to some of the chondrocytes and osteoblasts in the fracture callus. Collectively, these observations strongly suggest that the transgene-expressing cells are osteochondro progenitor cells in the periosteum. The established Prx1CreER-GFP mice would offer novel approaches for analyzing the functions of periosteal cells in vitro and in vivo.
Vainshtein, Jeffrey M; Samuels, Stuart; Tao, Yebin; Lyden, Teresa; Haxer, Marc; Spector, Matthew; Schipper, Matthew; Eisbruch, Avraham
2016-04-01
The purpose of this study was to assess how xerostomia affects dysphagia. Prospective longitudinal studies of 93 patients with oropharyngeal cancer treated with definitive chemotherapy-intensity-modulated radiotherapy (IMRT). Observer-rated dysphagia (ORD), patient-reported dysphagia (PRD), and patient-reported xerostomia (PRX) assessment of the swallowing mechanics by videofluoroscopy (videofluoroscopy score), and salivary flow rates, were prospectively assessed from pretherapy through 2 years. ORD grades ≥2 were rare and therefore not modeled. Of patients with no/mild videofluoroscopy abnormalities, a substantial proportion had PRD that peaked 3 months posttherapy and subsequently improved. Through 2 years, highly significant correlations were observed between PRX and PRD scores for all patients, including those with no/mild videofluoroscopy abnormalities. Both PRX and videofluoroscopy scores were highly significantly associated with PRD. On multivariate analysis, PRX score was a stronger predictor of PRD than the videofluoroscopy score. Xerostomia contributes significantly to PRD. Efforts to further decrease xerostomia, in addition to sparing parotid glands, may translate into improvements in PRD. © 2015 Wiley Periodicals, Inc. Head Neck 38: E1605-E1612, 2016. © 2015 Wiley Periodicals, Inc.
Riddell, Jonah R.; Wang, Xiang-Yang; Minderman, Hans; Gollnick, Sandra O.
2010-01-01
Peroxiredoxin 1 (Prx1) is an antioxidant and molecular chaperone that can be secreted from tumor cells. Prx1 is over-expressed in many cancers and elevation of Prx1 is associated with poor clinical outcome. In the current study we demonstrate that incubation of Prx1 with thioglycollate (TG)-elicited murine macrophages or immature bone marrow derived dendritic cells resulted in Toll-like receptor 4 (TLR4) dependent secretion of TNF-α and IL-6 and dendritic cell maturation. Optimal secretion of cytokines in response to Prx1 was dependent upon serum and required CD14 and MD2. Binding of Prx1 to TG-macrophages occurred within minutes and resulted in TLR4 endocytosis. Prx1 interaction with TLR4 was independent of its peroxidase activity and appeared to be dependent upon its chaperone activity and ability to form decamers. Cytokine expression occurred via the TLR-MyD88 signaling pathway, which resulted in nuclear translocation and activation of NFκB. These findings suggest that Prx1 may act as danger signal similar to other TLR4 binding chaperone molecules such as HSP72. This is an author-produced version of a manuscript accepted for publication in The Journal of Immunology (The JI). The American Association of Immunologists, Inc. (AAI), publisher of The JI, holds the copyright to this manuscript. This version of the manuscript has not yet been copyedited or subjected to editorial proofreading by The JI; hence, it may differ from the final version published in The JI (online and in print). AAI (The JI) is not liable for errors or omissions in this author-produced version of the manuscript or in any version derived from it by the U.S. National Institutes of Health or any other third party. The final, citable version of record can be found at www.jimmunol.org. PMID:20018613
Notch signaling controls chondrocyte hypertrophy via indirect regulation of Sox9
Kohn, Anat; Rutkowski, Timothy P; Liu, Zhaoyang; Mirando, Anthony J; Zuscik, Michael J; O’Keefe, Regis J; Hilton, Matthew J
2015-01-01
RBPjk-dependent Notch signaling regulates both the onset of chondrocyte hypertrophy and the progression to terminal chondrocyte maturation during endochondral ossification. It has been suggested that Notch signaling can regulate Sox9 transcription, although how this occurs at the molecular level in chondrocytes and whether this transcriptional regulation mediates Notch control of chondrocyte hypertrophy and cartilage development is unknown or controversial. Here we have provided conclusive genetic evidence linking RBPjk-dependent Notch signaling to the regulation of Sox9 expression and chondrocyte hypertrophy by examining tissue-specific Rbpjk mutant (Prx1Cre;Rbpjkf/f), Rbpjk mutant/Sox9 haploinsufficient (Prx1Cre;Rbpjkf/f;Sox9f/+), and control embryos for alterations in SOX9 expression and chondrocyte hypertrophy during cartilage development. These studies demonstrate that Notch signaling regulates the onset of chondrocyte maturation in a SOX9-dependent manner, while Notch-mediated regulation of terminal chondrocyte maturation likely functions independently of SOX9. Furthermore, our in vitro molecular analyses of the Sox9 promoter and Notch-mediated regulation of Sox9 gene expression in chondrogenic cells identified the ability of Notch to induce Sox9 expression directly in the acute setting, but suppresses Sox9 transcription with prolonged Notch signaling that requires protein synthesis of secondary effectors. PMID:26558140
Four novel cases of periaxin-related neuropathy and review of the literature.
Marchesi, C; Milani, M; Morbin, M; Cesani, M; Lauria, G; Scaioli, V; Piccolo, G; Fabrizi, G M; Cavallaro, T; Taroni, F; Pareyson, D
2010-11-16
To report 4 cases of autosomal recessive hereditary neuropathy associated with novel mutations in the periaxin gene (PRX) with a review of the literature. Periaxin protein is required for the maintenance of peripheral nerve myelin. Patients with PRX mutations have early-onset autosomal recessive demyelinating Charcot-Marie-Tooth disease (CMT4F) or Déjèrine-Sottas neuropathy (DSN). Only 12 different mutations have been described thus far. Case reports and literature review. Four patients from 3 unrelated families (2 siblings and 2 unrelated patients) were affected by an early-onset, slowly progressive demyelinating neuropathy with relevant sensory involvement. All carried novel frameshift or nonsense mutations in the PRX gene. The 2 siblings were compound heterozygotes for 2 PRX null mutations (p.Q547X and p.K808SfsX2), the third patient harbored a homozygous nonsense mutation (p.E682X), and the last patient had a homozygous 2-nt insertion predicting a premature protein truncation (p.S259PfsX55). Electrophysiologic analysis showed a severe slowing of motor nerve conduction velocities (MNCVs, between 3 and 15.3 m/s) with undetectable sensory nerve action potentials (SNAPs). Sural nerve biopsy, performed in 2 patients, demonstrated a severe demyelinating neuropathy and onion bulb formations. Interestingly, we observed some variability of disease severity within the same family. These cases and review of the literature indicate that PRX-related neuropathies have early onset but overall slow progression. Typical features are prominent sensory involvement, often with sensory ataxia; a moderate-to-dramatic reduction of MNCVs and almost invariable absence of SNAPs; and pathologic demyelination with classic onion bulbs, and less commonly myelin folding and basal lamina onion bulbs.
Oh, Joo-Yeun; Stapley, Ryan; Harper, Victoria; Marques, Marisa B; Patel, Rakesh P
2015-12-01
Storage-dependent damage to red blood cells (RBCs) varies significantly. Identifying RBC units that will undergo higher levels of hemolysis during storage may allow for more efficient inventory management decision-making. Oxidative-stress mediates storage-dependent damage to RBCs and will depend on the oxidant:antioxidant balance. We reasoned that this balance or redox tone will serve as a determinant of how a given RBC unit stores and that its assessment in "young" RBCs will predict storage-dependent hemolysis. RBCs were sampled from bags and segments stored for 7 to 42 days. Redox tone was assessed by nitrite oxidation kinetics and peroxiredoxin-2 (Prx-2) oxidation. In parallel, hemolysis was assessed by measuring cell-free hemoglobin (Hb) and free heme (hemin). Correlation analyses were performed to determine if Day 7 measurements predicted either the level of hemolysis at Day 35 or the increase in hemolysis during storage. Higher Day 7 Prx-2 oxidation was associated with higher Day 35 Prx-2 oxidation, suggesting that early assessment of this variable may identify RBCs that will incur the most oxidative damage during storage. RBCs that oxidized nitrite faster on Day 7 were associated with the greatest levels of storage-dependent hemolysis and increases in Prx-2 oxidation. An inverse relationship between storage-dependent changes in oxyhemoglobin and free heme was observed underscoring an unappreciated reciprocity between these molecular species. Moreover, free heme was higher in the bag compared to paired segments, with opposite trends observed for free Hb. Measurement of Prx-2 oxidation and nitrite oxidation kinetics early during RBC storage may predict storage-dependent damage to RBC including hemolysis-dependent formation of free Hb and heme. © 2015 AABB.
Role of Klotho in Osteoporosis and Renal Osteodystrophy
2015-10-01
uremia induced increases in FGF23 transcription (Figure 6). VEGFa Runx2 Osx Col1a1 ALP OC 0 2 4 6 8 KL fl/fl Prx1-Cre; KL fl/fl m R N A ex pr es...week old mice revealed that Prx1cre;Klothofl/fl mice have significantly higher expression of osteoblastic and osteocytic markers such as Col1a1 , Runx2
Sánchez-Riego, Ana M; Mata-Cabana, Alejandro; Galmozzi, Carla V; Florencio, Francisco J
2016-01-01
NADPH-thioredoxin reductase C (NTRC) is a bimodular enzyme composed of an NADPH-thioredoxin reductase and a thiioredoxin domain extension in the same protein. In plants, NTRC has been described to be involved in the protection of the chloroplast against oxidative stress damage through reduction of the 2-Cys peroxiredoxin (2-Cys Prx) as well as through other functions related to redox enzyme regulation. In cyanobacteria, the Anabaena NTRC has been characterized in vitro, however, nothing was known about its in vivo function. In order to study that, we have generated the first knockout mutant strain (ΔntrC), apart from the previously described in Arabidopsis. Detailed characterization of this strain reveals a differential sensitivity to oxidative stress treatments with respect to the wild-type Anabaena strain, including a higher level of ROS (reactive oxygen species) in normal growth conditions. In the mutant strain, different oxidative stress treatments such as hydrogen peroxide, methyl-viologen or high light irradiance provoke an increase in the expression of genes related to ROS detoxification, including AnNTRC and peroxiredoxin genes, with a concomitant increase in the amount of AnNTRC and 2-Cys Prx. Moreover, the role of AnNTRC in the antioxidant response is confirmed by the observation of a pronounced overoxidation of the 2-Cys Prx and a time-delay recovery of the reduced form of this protein upon oxidative stress treatments. Our results suggest the participation of this enzyme in the peroxide detoxification in Anabaena. In addition, we describe the role of Anabaena NTRC in thermotolerance, by the appearance of high molecular mass AnNTRC complexes, showing that the mutant strain is more sensitive to high temperature treatments.
NASA Astrophysics Data System (ADS)
Ardini, Matteo; Golia, Giordana; Passaretti, Paolo; Cimini, Annamaria; Pitari, Giuseppina; Giansanti, Francesco; Leandro, Luana Di; Ottaviano, Luca; Perrozzi, Francesco; Santucci, Sandro; Morandi, Vittorio; Ortolani, Luca; Christian, Meganne; Treossi, Emanuele; Palermo, Vincenzo; Angelucci, Francesco; Ippoliti, Rodolfo
2016-03-01
Graphene oxide (GO) is rapidly emerging worldwide as a breakthrough precursor material for next-generation devices. However, this requires the transition of its two-dimensional layered structure into more accessible three-dimensional (3D) arrays. Peroxiredoxins (Prx) are a family of multitasking redox enzymes, self-assembling into ring-like architectures. Taking advantage of both their symmetric structure and function, 3D reduced GO-based composites are hereby built up. Results reveal that the ``double-faced'' Prx rings can adhere flat on single GO layers and partially reduce them by their sulfur-containing amino acids, driving their stacking into 3D multi-layer reduced GO-Prx composites. This process occurs in aqueous solution at a very low GO concentration, i.e. 0.2 mg ml-1. Further, protein engineering allows the Prx ring to be enriched with metal binding sites inside its lumen. This feature is exploited to both capture presynthesized gold nanoparticles and grow in situ palladium nanoparticles paving the way to straightforward and ``green'' routes to 3D reduced GO-metal composite materials.Graphene oxide (GO) is rapidly emerging worldwide as a breakthrough precursor material for next-generation devices. However, this requires the transition of its two-dimensional layered structure into more accessible three-dimensional (3D) arrays. Peroxiredoxins (Prx) are a family of multitasking redox enzymes, self-assembling into ring-like architectures. Taking advantage of both their symmetric structure and function, 3D reduced GO-based composites are hereby built up. Results reveal that the ``double-faced'' Prx rings can adhere flat on single GO layers and partially reduce them by their sulfur-containing amino acids, driving their stacking into 3D multi-layer reduced GO-Prx composites. This process occurs in aqueous solution at a very low GO concentration, i.e. 0.2 mg ml-1. Further, protein engineering allows the Prx ring to be enriched with metal binding sites inside its lumen. This feature is exploited to both capture presynthesized gold nanoparticles and grow in situ palladium nanoparticles paving the way to straightforward and ``green'' routes to 3D reduced GO-metal composite materials. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr08632a
Park, Miey; Shin, Hae J; Lee, Soo Y; Ahn, Tae I
2005-01-01
Phagocytic cells have defense systems against reactive oxygen species generated as the first non-specific defense mechanism against invading pathogens or microorganisms. We cloned a cDNA encoding a 21.69-kDa protein in Amoeba proteus homologous to 2-Cys peroxiredoxin (Prx-Ap). In the disk inhibition assay using H2O2 as an oxidizing agent, Escherichia coli overproducing Prx-Ap showed better viability than did E. coli transformed with pBluescript II SK for control. Monoclonal antibodies (mAb) produced against Prx-Ap reacted with a 22.5-kDa protein and several minor proteins. In Western blot analysis, levels of the 22.5-kDa protein in amoebae treated with 2-mM H2O2 for 1 h increased about 2-fold over those in control cells. Immunofluorescence scattered throughout the cytoplasm also increased after H2O2 treatment. In Northern blot analysis using the cDNA as a probe, the level of transcripts also changed with H2O2 treatment. When amoebae were fed with Tetrahymena, the intensity of immunofluorescence increased from 15 min and persisted until 2 h after phagocytosis. These results suggest that the 22.5-kDa protein of A. proteus is a Prx protein and that it has an antioxidant property responding to phagocytosis.
Johnson, Ulf; Engquist, Henrik; Howells, Tim; Nilsson, Pelle; Ronne-Engström, Elisabeth; Lewén, Anders; Rostami, Elham; Enblad, Per
2016-08-01
Subarachnoid hemorrhage (SAH) is a disease with a high rate of unfavorable outcome, often related to delayed cerebral ischemia (DCI), i.e., ischemic injury that develops days-weeks after onset, with a multifactorial etiology. Disturbances in cerebral pressure autoregulation, the ability to maintain a steady cerebral blood flow (CBF), despite fluctuations in systemic blood pressure, have been suggested to play a role in the development of DCI. Pressure reactivity index (PRx) is a well-established measure of cerebral pressure autoregulation that has been used to study traumatic brain injury, but not extensively in SAH. To study the relation between PRx and CBF in SAH patients, and to examine if PRx can be used to predict DCI. Retrospective analysis of prospectively collected data. PRx was calculated as the correlation coefficient between mean arterial blood pressure (MABP) and intracranial pressure (ICP) in a 5 min moving window. CBF was measured using bedside Xenon-CT (Xe-CT). DCI was diagnosed clinically. 47 poor-grade mechanically ventilated patients were studied. Patients with disturbed pressure autoregulation (high PRx values) had lower CBF, as measured by bedside Xe-CT; both in the early (day 0-3) and late (day 4-14) acute phase of the disease. PRx did not differ significantly between patients who developed DCI or not. In mechanically ventilated and sedated SAH patients, high PRx (more disturbed CBF pressure autoregulation) is associated with low CBF, both day 0-3 and day 4-14 after onset. The role of PRx as a monitoring tool in SAH patients needs further studying.
Emami, Shahram; Adibkia, Khosro; Barzegar-Jalali, Mohammad; Siahi-Shadbad, Mohammadreza
2018-04-04
This study explores the preparation and investigation of dissolution properties of piroxicam cocrystals. Differential scanning calorimetry (DSC) was used to determine the capability of resorcinol (RES), methylparaben (MPB), and vanillin (VAN) to form cocrystals with piroxicam (PRX). Generation of cocrystals was attempted by liquid assisted grinding and slurry methods. Cocrystals were characterized by thermal methods, powder X-ray diffraction, and Fourier-transform infrared spectroscopy. Apparent solubility, intrinsic dissolution rate (IDR), and powder dissolution profile of cocrystals were compared with anhydrous piroxicam, piroxicam monohydrate (PRXMH), and previously reported piroxicam-succinic acid cocrystal. Contact angles and particle sizes of the studied solids were also measured. Based on the DSC screening results, we prepared and characterized PRX-RES and PRX-MPB cocrystals. Interestingly, the cocrystals not only failed to improve apparent solubility and IDR of PRX but also showed lower values than PRX that were attributed to induction of phase transformation of PRX to PRXMH. In contrary, cocrystals performed better than PRX in powder dissolution studies. The higher dissolution rates of cocrystals were explained by improved wettability and reduced sizes. This study has highlighted the complexity of solid state properties of cocrystals and has provided new evidence for the in-solution stability issues of cocrystals.
Brod, J M; Demasi, Ana Paula Dias; Montalli, V A; Teixeira, L N; Furuse, C; Aguiar, M C; Soares, A B; Sperandio, M; Araujo, V C
2017-12-01
Polymorphous adenocarcinoma (PAC) is a malignant epithelial neoplasm that affects almost exclusively the minor salivary glands, generally described as having a relatively good prognosis. Aberrant nuclear factor erythroid 2 (NF-E2)-related factor (Nrf2) activation in tumor cells has been associated with induction of antioxidant enzymes, such as peroxiredoxin I (Prx I) and increased matrix metalloproteinase (MMP) expression. In this context, the aim of the present study was to evaluate the expression of Nrf2 and correlate it with Prx I and MMP-2 secretion in PAC. Thirty-one cases of PAC from oral biopsies were selected and immunohistochemically analyzed for Nrf2 and Prx I. MMP-2 quantification was performed on primary cell cultures derived from PAC. Oral squamous cell carcinoma (OSCC) cell cultures were used as control. A high immunoexpression of Nrf2 was observed in both the cytoplasm and the nucleus of neoplastic cells from PAC. Nuclear staining for Nrf2 suggested its activation in the majority of the PAC cells, which was confirmed by the high expression of its target gene, Prx I. Quantification of MMP-2 secretion showed lower levels in PAC cell cultures when compared to OSCC cell cultures (p < 0.05). In conclusion, although Nrf2 overexpression has been frequently associated with high-grade malignancies, such relationship is not infallible and, in fact, the opposite may occur in low-grade tumors, such as PAC of minor salivary glands.
Monitoring cerebrovascular pressure reactivity with rheoencephalography
NASA Astrophysics Data System (ADS)
Brady, K. M.; Mytar, J. O.; Kibler, K. K.; Easley, R. B.; Koehler, R. C.; Czosnyka, M.; Smielewski, P.; Zweifel, C.; Bodo, M.; Pearce, F. J.; Armonda, R. A.
2010-04-01
Determining optimal perfusion pressure for patients with traumatic brain injury can be accomplished by monitoring the pressure reactivity index, or PRx, which requires an intracranial pressure monitor. We hypothesized that pressure reactivity could be quantified using a rheoencephalography index, or REGx. We measured the REGx and PRx as repetitive, low-frequency linear correlation between arterial blood pressure and intracranial pressure (PRx) or arterial blood pressure and REG pulse amplitude (REGx) in a piglet model of progressive hypotension. We compared the PRx and REGx against a gold standard determination of the lower limit of autoregulation using laser-Doppler measurements of cortical red cell flux. The PRx produced an accurate metric of vascular reactivity in this cohort, with area under the receiver-operator characteristic curves of 0.91. REGx was moderately correlated to the PRx, (Spearman r = 0.63, p < 0.0001; Bland-Altman bias-0.13). The area under the receiver-operator curve for the REGx was 0.86. Disagreement occurred at extremes of hypotension.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moon, Jeong Chan; Jang, Ho Hee; Chae, Ho Byoung
2006-09-22
2-Cys peroxiredoxins (Prxs) play important roles in the antioxidative defense systems of plant chloroplasts. In order to determine the interaction partner for these proteins in Arabidopsis, we used a yeast two-hybrid screening procedure with a C175S-mutant of Arabidopsis 2-Cys Prx-A as bait. A cDNA encoding an NADPH-dependent thioredoxin reductase (NTR) isotype C was identified and designated ANTR-C. We demonstrated that this protein effected efficient transfer of electrons from NADPH to the 2-Cys Prxs of chloroplasts. Interaction between 2-Cys Prx-A and ANTR-C was confirmed by a pull-down experiment. ANTR-C contained N-terminal TR and C-terminal Trx domains. It exhibited both TR andmore » Trx activities and co-localized with 2-Cys Prx-A in chloroplasts. These results suggest that ANTR-C functions as an electron donor for plastidial 2-Cys Prxs and represents the NADPH-dependent TR/Trx system in chloroplasts.« less
Tian, Fei; Wu, Mengrui; Deng, Lianfu; Zhu, Guochun; Ma, Junqing; Gao, Bo; Wang, Lin; Li, Yi-Ping; Chen, Wei
2014-07-01
Core binding factor beta (Cbfβ) is essential for embryonic bone morphogenesis. Yet the mechanisms by which Cbfβ regulates chondrocyte proliferation and differentiation as well as postnatal cartilage and bone formation remain unclear. Hence, using paired-related homeobox transcription factor 1-Cre (Prx1-Cre) mice, mesenchymal stem cell-specific Cbfβ-deficient (Cbfβ(f/f) Prx1-Cre) mice were generated to study the role of Cbfβ in postnatal cartilage and bone development. These mutant mice survived to adulthood but exhibited severe sternum and limb malformations. Sternum ossification was largely delayed in the Cbfβ(f/f) Prx1-Cre mice and the xiphoid process was noncalcified and enlarged. In newborn and 7-day-old Cbfβ(f/f) Prx1-Cre mice, the resting zone was dramatically elongated, the proliferation zone and hypertrophic zone of the growth plates were drastically shortened and disorganized, and trabecular bone formation was reduced. Moreover, in 1-month-old Cbfβ(f/f) Prx1-Cre mice, the growth plates were severely deformed and trabecular bone was almost absent. In addition, Cbfβ deficiency impaired intramembranous bone formation both in vivo and in vitro. Interestingly, although the expression of Indian hedgehog (Ihh) was largely reduced, the expression of parathyroid hormone-related protein (PTHrP) receptor (PPR) was dramatically increased in the Cbfβ(f/f) Prx1-Cre growth plate, indicating that that Cbfβ deficiency disrupted the Ihh-PTHrP negative regulatory loop. Chromatin immunoprecipitation (ChIP) analysis and promoter luciferase assay demonstrated that the Runx/Cbfβ complex binds putative Runx-binding sites of the Ihh promoter regions, and also the Runx/Cbfβ complex directly upregulates Ihh expression at the transcriptional level. Consistently, the expressions of Ihh target genes, including CyclinD1, Ptc, and Pthlh, were downregulated in Cbfβ-deficient chondrocytes. Taken together, our study reveals not only that Cbfβ is essential for chondrocyte proliferation and differentiation for the growth and maintenance of the skeleton in postnatal mice, but also that it functions in upregulating Ihh expression to promoter chondrocyte proliferation and osteoblast differentiation, and inhibiting PPR expression to enhance chondrocyte differentiation. © 2014 American Society for Bone and Mineral Research.
Klein, Samuel Patrick; Bruyninckx, Dominike; Callebaut, Ina; Depreitere, Bart
2018-01-01
We investigated the effect of cerebrospinal fluid (CSF) drainage on the intracranial pressure (ICP) signal measured in the parenchyma and the ventricle as well as the effect on the pressure reactivity index (PRx) calculated from both signals. Ten patients were included in this prospective study. All patients received a parenchymal ICP sensor and an external ventricular drain (EVD) for CSF drainage. ICP signals (ICP-p and ICP-evd) were captured. Part of the study was a period of 90 min during which the patient was free from any manipulation, consisting of 30 min of drainage (O1), 30 min EVD closed (C) and 30 min of drainage (O2). Mean ICP-evd and mean AMP-evd increased (3.03 and 0.46 mmHg) from O1 to C and decreased (2.12 and 0.43 mmHg) from C to O2. ICP-p and AMP-p changes were less pronounced (closing EVD: +0.81 mmHg/+0.22 mmHg; opening EVD: -0.22 mmHg/-0.05 mmHg). Mean difference between PRx-evd and PRx-p was 0.12 for O1, 0.02 for C and -0.02 for O2. The intraclass correlation coefficient for absolute agreement of single measures was 0.66 for O1, 0.77 for C and 0.69 for O2. Mean PRx differences demonstrated a significant difference between O1 versus C and O1 versus O2 but not between C versus O2. Drainage of CSF reduces ICP magnitude and amplitude through the EVD. This effect was only marginal in parenchymal ICP measurements. In manipulation-free circumstances, agreement of PRx obtained through parenchymal and ventricular measurements was moderate to good, depending on the statistical method, and was not necessarily influenced by drainage.
NASA Astrophysics Data System (ADS)
Schroeder, T.; Lupina, G.; Sohal, R.; Lippert, G.; Wenger, Ch.; Seifarth, O.; Tallarida, M.; Schmeisser, D.
2007-07-01
Engineered dielectrics combined with compatible metal electrodes are important materials science approaches to scale three-dimensional trench dynamic random access memory (DRAM) cells. Highly insulating dielectrics with high dielectric constants were engineered in this study on TiN metal electrodes by partly substituting Al in the wide band gap insulator Al2O3 by Pr cations. High quality PrAlO3 metal-insulator-metal capacitors were processed with a dielectric constant of 19, three times higher than in the case of Al2O3 reference cells. As a parasitic low dielectric constant interface layer between PrAlO3 and TiN limits the total performance gain, a systematic nondestructive synchrotron x-ray photoelectron spectroscopy study on the interface chemistry of PrxAl2-xO3 (x =0-2) dielectrics on TiN layers was applied to unveil its chemical origin. The interface layer results from the decreasing chemical reactivity of PrxAl2-xO3 dielectrics with increasing Pr content x to reduce native Ti oxide compounds present on unprotected TiN films. Accordingly, PrAlO3 based DRAM capacitors require strict control of the surface chemistry of the TiN electrode, a parameter furthermore of importance to engineer the band offsets of PrxAl2-xO3/TiN heterojunctions.
Joly, Jean-Stephane; Bourrat, Franck; Nguyen, Van; Chourrout, Daniel
1997-01-01
Large-scale genetic screens for mutations affecting early neurogenesis of vertebrates have recently been performed with an aquarium fish, the zebrafish. Later stages of neural morphogenesis have attracted less attention in small fish species, partly because of the lack of molecular markers of developing structures that may facilitate the detection of discrete structural alterations. In this context, we report the characterization of Ol-Prx 3 (Oryzias latipes-Prx 3). This gene was isolated in the course of a large-scale screen for brain cDNAs containing a highly conserved DNA binding region, the homeobox helix-three. Sequence analysis revealed that this gene belongs to another class of homeobox genes, together with a previously isolated mouse ortholog, called OG-12 [Rovescalli, A. C., Asoh, S. & Nirenberg, M. (1996) Proc. Natl. Acad. Sci. USA 93, 10691–10696] and with the human SHOX gene [Rao, E., Weiss, B., Fukami, M., Rump, A., Niesler, B., et al. (1997) Nat. Genet. 16, 54–62], thought to be involved in the short-stature phenotype of Turner syndrome patients. These three genes exhibit a moderate level of identity in the homeobox with the other genes of the paired-related (PRX) gene family. Ol-Prx 3, as well as the PRX genes, are expressed in various cartilaginous structures of head and limbs. These genes might thus be involved in common regulatory pathways during the morphogenesis of these structures. Moreover, this paper reports a complex and monophasic pattern of Ol-Prx 3 expression in the central nervous system, which differs markedly from the patterns reported for the PRX genes, Prx 3 excluded: this gene begins to be expressed in a variety of central nervous system territories at late neurula stage. Strikingly, it remains turned on in some of the derivatives of each territory during the entire life of the fish. We hope this work will thus help identify common features for the PRX 3 family of homeobox genes. PMID:9371787
Gurung, Arun Bahadur; Das, Amit Kumar; Bhattacharjee, Atanu
2017-04-01
Mycobacterium tuberculosis has distinctive ability to detoxify various microbicidal superoxides and hydroperoxides via a redox catalytic cycle involving thiol reductants of peroxiredoxin (Prx) and thioredoxin (Trx) systems which has conferred on it resistance against oxidative killing and survivability within host. We have used computational approach to disrupt catalytic functions of Prx-Trx complex which can possibly render the pathogen vulnerable to oxidative killing in the host. Using protein-protein docking method, we have successfully constructed the Prx-Trx complex. Statistics of interface region revealed contact area of each monomer less than 1500Å 2 and enriched in polar amino acids indicating transient interaction between Prx and Trx. We have identified ZINC40139449 as a potent interface binding molecule through virtual screening of drug-like compounds from ZINC database. Molecular dynamics (MD) simulation studies showed differences in structural properties of Prx-Trx complex both in apo and ligand bound states with regard to root mean square deviation (RMSD), radius of gyration (Rg), root mean square fluctuations (RMSF), solvent accessible surface area (SASA) and number of hydrogen bonds (NHBs). Interestingly, we found stability of two conserved catalytic residues Cys61 and Cys174 of Prx and conserved catalytic motif, WCXXC of Trx upon binding of ZINC40139449. The time dependent displacement study reveals that the compound is quite stable in the interface binding region till 30ns of MD simulation. The structural properties were further validated by principal component analysis (PCA). We report ZINC40139449 as promising lead which can be further evaluated by in vitro or in vivo enzyme inhibition assays. Copyright © 2016 Elsevier Ltd. All rights reserved.
Increased localized delivery of piroxicam by cationic nanoparticles after intra-articular injection.
Kim, Sung Rae; Ho, Myoung Jin; Kim, Sang Hyun; Cho, Ha Ra; Kim, Han Sol; Choi, Yong Seok; Choi, Young Wook; Kang, Myung Joo
2016-01-01
Piroxicam (PRX), a potent nonsteroidal anti-inflammatory drug, is prescribed to relieve postoperative and/or chronic joint pain. However, its oral administration often results in serious gastrointestinal adverse effects including duodenal ulceration. Thus, a novel cationic nanoparticle (NP) was explored to minimize the systemic exposure and increase the retention time of PRX in the joint after intra-articular (IA) injection, by forming micrometer-sized electrostatic clusters with endogenous hyaluronic acid (HA) in the synovial cavity. PRX-loaded NPs consisting of poly(lactic- co -glycolic acid), Eudragit RL, and polyvinyl alcohol were constructed with the following characteristics: particle size of 220 nm, zeta potential of 11.5 mV in phosphate-buffered saline, and loading amount of 4.0% (w/w) of PRX. In optical and hyperspectral observations, the cationic NPs formed more than 50 μm-sized aggregates with HA, which was larger than the intercellular gaps between synoviocytes. In an in vivo pharmacokinetic study in rats, area under the plasma concentration-time curve (AUC 0-24 h ) and maximum plasma concentration ( C max ) of PRX after IA injection of the cationic NPs were <70% ( P <0.05) and 60% ( P <0.05), respectively, compared to those obtained from drug solution. Moreover, the drug concentration in joint tissue 24 h after dosing with the cationic NPs was 3.2-fold ( P <0.05) and 1.8-fold ( P <0.05) higher than that from drug solution and neutrally charged NPs, respectively. Therefore, we recommend the IA cationic NP therapy as an effective alternative to traditional oral therapy with PRX, as it increases drug retention selectively in the joint.
Dkk1 haploinsufficiency requires expression of Bmp2 for bone anabolic activity.
Intini, Giuseppe; Nyman, Jeffry S
2015-06-01
Bone fractures remain a serious health burden and prevention and enhanced healing of fractures have been obtained by augmenting either BMP or Wnt signaling. However, whether BMP and Wnt signaling are both required or are self-sufficient for anabolic and fracture healing activities has never been fully elucidated. Mice haploinsufficient for Dkk1 (Dkk1(+/-)) exhibit a high bone mass phenotype due to an up-regulation of canonical Wnt signaling while mice lacking Bmp2 expression in the limbs (Bmp2(c/c);Prx1::cre) succumb to spontaneous fracture and are unable to initiate fracture healing; combined, these mice offer an opportunity to examine the requirement for activated BMP signaling on the anabolic and fracture healing activity of Wnts. When Dkk1(+/-) mice were crossed with Bmp2(c/c);Prx1::cre mice, the offspring bearing both genetic alterations were unable to increase bone mass and heal fractures, indicating that increased canonical Wnt signaling is unable to exploit its activity in absence of Bmp2. Thus, our data suggest that BMP signaling is required for Wnt-mediated anabolic activity and that therapies aimed at preventing fractures and fostering fracture repair may need to target both pathways for maximal efficacy. Copyright © 2015 Elsevier Inc. All rights reserved.
Dkk1 haploinsufficiency requires expression of Bmp2 for bone anabolic activity
Intini, Giuseppe; Nyman, Jeffry S.
2015-01-01
Bone fractures remain a serious health burden and prevention and enhanced healing of fractures has been obtained by augmenting either BMP or Wnt signaling. However, whether BMP and Wnt signaling are both required or are self-sufficient for anabolic and fracture healing activities has never been fully elucidated. Mice haploinsufficient for Dkk1 (Dkk1+/−) exhibit a high bone mass phenotype due to an up-regulation of canonical Wnt signaling while mice lacking Bmp2 expression in the limbs (Bmp2c/c;Prx1::cre) succumb to spontaneous fracture and are unable to initiate fracture healing; combined, these mice offer an opportunity to examine the requirement for activated BMP signaling on the anabolic and fracture healing activity of Wnts. When Dkk1+/− mice were crossed with Bmp2c/c;Prx1::cre mice, the offspring bearing both genetic alterations were unable to increase bone mass and heal fractures, indicating that increased canonical Wnt signaling is unable to exploit its activity in absence of Bmp2. Thus, our data suggest that BMP signaling is required for Wnt-mediated anabolic activity and that therapies aimed at preventing fractures and fostering fracture repair may need to target both pathways for maximal efficacy. PMID:25603465
Harper, Angela F; Leuthaeuser, Janelle B; Babbitt, Patricia C; Morris, John H; Ferrin, Thomas E; Poole, Leslie B; Fetrow, Jacquelyn S
2017-02-01
Peroxiredoxins (Prxs or Prdxs) are a large protein superfamily of antioxidant enzymes that rapidly detoxify damaging peroxides and/or affect signal transduction and, thus, have roles in proliferation, differentiation, and apoptosis. Prx superfamily members are widespread across phylogeny and multiple methods have been developed to classify them. Here we present an updated atlas of the Prx superfamily identified using a novel method called MISST (Multi-level Iterative Sequence Searching Technique). MISST is an iterative search process developed to be both agglomerative, to add sequences containing similar functional site features, and divisive, to split groups when functional site features suggest distinct functionally-relevant clusters. Superfamily members need not be identified initially-MISST begins with a minimal representative set of known structures and searches GenBank iteratively. Further, the method's novelty lies in the manner in which isofunctional groups are selected; rather than use a single or shifting threshold to identify clusters, the groups are deemed isofunctional when they pass a self-identification criterion, such that the group identifies itself and nothing else in a search of GenBank. The method was preliminarily validated on the Prxs, as the Prxs presented challenges of both agglomeration and division. For example, previous sequence analysis clustered the Prx functional families Prx1 and Prx6 into one group. Subsequent expert analysis clearly identified Prx6 as a distinct functionally relevant group. The MISST process distinguishes these two closely related, though functionally distinct, families. Through MISST search iterations, over 38,000 Prx sequences were identified, which the method divided into six isofunctional clusters, consistent with previous expert analysis. The results represent the most complete computational functional analysis of proteins comprising the Prx superfamily. The feasibility of this novel method is demonstrated by the Prx superfamily results, laying the foundation for potential functionally relevant clustering of the universe of protein sequences.
Babbitt, Patricia C.; Ferrin, Thomas E.
2017-01-01
Peroxiredoxins (Prxs or Prdxs) are a large protein superfamily of antioxidant enzymes that rapidly detoxify damaging peroxides and/or affect signal transduction and, thus, have roles in proliferation, differentiation, and apoptosis. Prx superfamily members are widespread across phylogeny and multiple methods have been developed to classify them. Here we present an updated atlas of the Prx superfamily identified using a novel method called MISST (Multi-level Iterative Sequence Searching Technique). MISST is an iterative search process developed to be both agglomerative, to add sequences containing similar functional site features, and divisive, to split groups when functional site features suggest distinct functionally-relevant clusters. Superfamily members need not be identified initially—MISST begins with a minimal representative set of known structures and searches GenBank iteratively. Further, the method’s novelty lies in the manner in which isofunctional groups are selected; rather than use a single or shifting threshold to identify clusters, the groups are deemed isofunctional when they pass a self-identification criterion, such that the group identifies itself and nothing else in a search of GenBank. The method was preliminarily validated on the Prxs, as the Prxs presented challenges of both agglomeration and division. For example, previous sequence analysis clustered the Prx functional families Prx1 and Prx6 into one group. Subsequent expert analysis clearly identified Prx6 as a distinct functionally relevant group. The MISST process distinguishes these two closely related, though functionally distinct, families. Through MISST search iterations, over 38,000 Prx sequences were identified, which the method divided into six isofunctional clusters, consistent with previous expert analysis. The results represent the most complete computational functional analysis of proteins comprising the Prx superfamily. The feasibility of this novel method is demonstrated by the Prx superfamily results, laying the foundation for potential functionally relevant clustering of the universe of protein sequences. PMID:28187133
Mardor, Y; Last, D; Daniels, D; Shneor, R; Maier, S E; Nass, D; Ram, Z
2009-08-01
Convection-enhanced drug delivery (CED) enables achieving a drug concentration within brain tissue and brain tumors that is orders of magnitude higher than by systemic administration. Previous phase I/II clinical trials using intratumoral convection of interleukin-4 Pseudomonas exotoxin (PRX321) have demonstrated an acceptable safety and toxicity profile with promising signs of therapeutic activity. The present study was designed to assess the distribution efficiency and toxicity of this PRX321 using magnetic resonance imaging (MRI) and to test whether reformulation with increased viscosity could enhance drug distribution. Convection of low- [0.02% human serum albumin (HSA)] and high-viscosity (3% HSA) infusates mixed with gadolinium-diethylenetriamine pentaacetic acid and PRX321 were compared with low- and high-viscosity infusates without the drug, in normal rat brains. MRI was used for assessment of drug distribution and detection of early and late toxicity. Representative brain samples were subjected to histological examination. Distribution volumes calculated from the magnetic resonance images showed that the average distribution of 0.02% HSA was larger than that of 0.02% HSA with PRX321 by a factor of 1.98 (p < 0.02). CED of 3.0% HSA, with or without PRX321, tripled the volume of distribution compared with 0.02% HSA with PRX321 (p < 0.015). No drug-related toxicity was detected. These results suggest that the impeded convection of the PRX321 infusate used in previous clinical trials can be reversed by increasing infusate viscosity and lead to tripling of the volume of distribution. This effect was not associated with any detectable toxicity. A similar capability to reverse impeded convection was also demonstrated in a CED model using acetic acid. These results will be implemented in an upcoming phase IIb PRX321 CED trial with a high-viscosity infusate.
Rahantaniaina, Marie-Sylviane; Li, Shengchun; Chatel-Innocenti, Gilles; Tuzet, Andrée; Mhamdi, Amna; Vanacker, Hélène; Noctor, Graham
2017-08-03
Glutathione is a pivotal molecule in oxidative stress, during which it is potentially oxidized by several pathways linked to H 2 O 2 detoxification. We have investigated the response and functional importance of 3 potential routes for glutathione oxidation pathways mediated by glutathione S-transferases (GST), glutaredoxin-dependent peroxiredoxins (PRXII), and dehydroascorbate reductases (DHAR) in Arabidopsis during oxidative stress. Loss-of-function gstU8, gstU24, gstF8, prxIIE and prxIIF mutants as well as double gstU8 gstU24, gstU8 gstF8, gstU24 gstF8, prxIIE prxIIF mutants were obtained. No mutant lines showed marked changes in their phenotype and glutathione profiles in comparison to the wild-type plants in either optimal conditions or oxidative stress triggered by catalase inhibition. By contrast, multiple loss of DHAR functions markedly decreased glutathione oxidation triggered by catalase deficiency. To assess whether this effect was mediated directly by loss of DHAR enzyme activity, or more indirectly by upregulation of other enzymes involved in glutathione and ascorbate recycling, we measured expression of glutathione reductase (GR) and expression and activity of monodehydroascorbate reductases (MDHAR). No evidence was obtained that either GRs or MDHARs were upregulated in plants lacking DHAR function. Hence, interplay between different DHARs appears to be necessary to couple ascorbate and glutathione pools and to allow glutathione-related signaling during enhanced H 2 O 2 metabolism.
Ardini, Matteo; Golia, Giordana; Passaretti, Paolo; Cimini, Annamaria; Pitari, Giuseppina; Giansanti, Francesco; Di Leandro, Luana; Ottaviano, Luca; Perrozzi, Francesco; Santucci, Sandro; Morandi, Vittorio; Ortolani, Luca; Christian, Meganne; Treossi, Emanuele; Palermo, Vincenzo; Angelucci, Francesco; Ippoliti, Rodolfo
2016-03-28
Graphene oxide (GO) is rapidly emerging worldwide as a breakthrough precursor material for next-generation devices. However, this requires the transition of its two-dimensional layered structure into more accessible three-dimensional (3D) arrays. Peroxiredoxins (Prx) are a family of multitasking redox enzymes, self-assembling into ring-like architectures. Taking advantage of both their symmetric structure and function, 3D reduced GO-based composites are hereby built up. Results reveal that the "double-faced" Prx rings can adhere flat on single GO layers and partially reduce them by their sulfur-containing amino acids, driving their stacking into 3D multi-layer reduced GO-Prx composites. This process occurs in aqueous solution at a very low GO concentration, i.e. 0.2 mg ml(-1). Further, protein engineering allows the Prx ring to be enriched with metal binding sites inside its lumen. This feature is exploited to both capture presynthesized gold nanoparticles and grow in situ palladium nanoparticles paving the way to straightforward and "green" routes to 3D reduced GO-metal composite materials.
Gravina, Giovanni Luca; Mancini, Andrea; Marampon, Francesco; Colapietro, Alessandro; Delle Monache, Simona; Sferra, Roberta; Vitale, Flora; Richardson, Peter J; Patient, Lee; Burbidge, Stephen; Festuccia, Claudio
2017-01-05
Glioblastoma recurrence after treatment with the anti-vascular endothelial growth factor (VEGF) antibody bevacizumab is characterized by a highly infiltrative and malignant behavior that renders surgical excision and chemotherapy ineffective. It has been demonstrated that anti-VEGF/VEGFR therapies control the invasive phenotype and that relapse occurs through the increased activity of CXCR4. We therefore hypothesized that combining bevacizumab or sunitinib with the novel CXCR4 antagonist, PRX177561, would have superior antitumor activity. The effects of bevacizumab, sunitinib, and PRX177561 were tested alone or in combination in subcutaneous xenografts of U87MG, U251, and T98G cells as well as on intracranial xenografts of luciferase tagged U87MG cells injected in CD1-nu/nu mice. Animals were randomized to receive vehicle, bevacizumab (4 mg/kg iv every 4 days), sunitinib (40 mg/kg po qd), or PRX177561 (50 mg/kg po qd). The in vivo experiments demonstrated that bevacizumab and sunitinib increase the in vivo expression of CXCR4, SDF-1α, and TGFβ1. In addition, we demonstrate that the co-administration of the novel brain-penetrating CXCR4 antagonist, PRX177561, with bevacizumab or sunitinib inhibited tumor growth and reduced the inflammation. The combination of PRX177561 with bevacizumab resulted in a synergistic reduction of tumor growth with an increase of disease-free survival (DSF) and overall survival (OS), whereas the combination of PRX177561 with sunitinib showed a mild additive effect. The CXC4 antagonist PRX177561 may be a valid therapeutic complement to anti-angiogenic therapy, particularly when used in combination with VEGF/VEGFR inhibitors. Therefore, this compound deserves to be considered for future clinical evaluation.
Yang, Haisheng; Albiol, Laia; Chan, Wing-Lee; Wulsten, Dag; Seliger, Anne; Thelen, Michael; Thiele, Tobias; Spevak, Lyudmila; Boskey, Adele; Kornak, Uwe; Checa, Sara; Willie, Bettina M
2017-12-08
Gerodermia osteodysplastica (GO) is a segmental progeroid disorder caused by loss-of-function mutations in the GORAB gene, associated with early onset osteoporosis and bone fragility. A conditional mouse model of GO (Gorab Prx1 ) was generated in which the Gorab gene was deleted in long bones. We examined the biomechanical/functional relevance of the Gorab Prx1 mutants as a premature aging model by characterizing bone composition, tissue-level strains, and whole-bone morphology and mechanical properties of the tibia. MicroCT imaging showed that Gorab Prx1 tibiae had an increased anterior convex curvature and decreased cortical cross-sectional area, cortical thickness and moments of inertia, compared to littermate control (LC) tibiae. Fourier transform infrared (FTIR) imaging indicated a 34% decrease in mineral/matrix ratio and a 27% increase in acid phosphate content in the posterior metaphyseal cortex of the Gorab Prx1 tibiae (p < .05), suggesting delayed mineralization. In vivo strain gauge measurement and finite element analysis showed ∼two times higher tissue-level strains within the Gorab Prx1 tibiae relative to LC tibiae when subjected to axial compressive loads of the same magnitude. Three-point bending tests suggested that Gorab Prx1 tibiae were weaker and more brittle, as indicated by decreasing whole-bone strength (46%), stiffness (55%), work-to-fracture (61%) and post-yield displacement (47%). Many of these morphological and biomechanical characteristics of the Gorab Prx1 tibia recapitulated changes in other animal models of skeletal aging. Future studies are necessary to confirm how our observations might guide the way to a better understanding and treatment of GO. Copyright © 2017 Elsevier Ltd. All rights reserved.
Inhibition of Estrogen-induced Growth of Breast Cancer by Targeting Mitochondrial Oxidants
2009-04-01
chemical antioxidants, [N- acetylcysteine (NAC) and ebselen], inhibits estrogen induced expression of cell cycle genes as well as prevention of...the original First Task (i) both antioxidants, N- acetylcysteine and ebselen, overexpression of ROS lowering genes, such as, catalase or PrxIII; and... acetylcysteine and ebselen; overexpression of MnSOD, catalase, PrxIII, Trx2, or mtTFA silencing. Major findings are described in detail below: 1
Aran, Martín; Ferrero, Diego; Wolosiuk, Alejandro; Mora-García, Santiago; Wolosiuk, Ricardo A.
2011-01-01
2-Cys peroxiredoxins (2-Cys Prxs) are ubiquitous peroxidases with important roles in cellular antioxidant defense and hydrogen peroxide-mediated signaling. Post-translational modifications of conserved cysteines cause the transition from low to high molecular weight oligomers, triggering the functional change from peroxidase to molecular chaperone. However, it remains unclear how non-covalent interactions of 2-Cys Prx with metabolites modulate the quaternary structure. Here, we disclose that ATP and Mg2+ (ATP/Mg) promote the self-polymerization of chloroplast 2-Cys Prx (polypeptide 23.5 kDa) into soluble higher order assemblies (>2 MDa) that proceed to insoluble aggregates beyond 5 mm ATP. Remarkably, the withdrawal of ATP or Mg2+ brings soluble oligomers and insoluble aggregates back to the native conformation without compromising the associated functions. As confirmed by transmission electron microscopy, ATP/Mg drive the toroid-like decamers (diameter 13 nm) to the formation of large sphere-like particles (diameter ∼30 nm). Circular dichroism studies on ATP-labeled 2-Cys Prx reveal that ATP/Mg enhance the proportion of β-sheets with the concurrent decrease in the content of α-helices. In line with this observation, the formation of insoluble aggregates is strongly prevented by 2,2,2-trifluoroethanol, a cosolvent employed to induce α-helical conformations. We further find that the response of self-polymerization to ATP/Mg departs abruptly from that of the associated peroxidase and chaperone activities when two highly conserved residues, Arg129 and Arg152, are mutated. Collectively, our data uncover that non-covalent interactions of ATP/Mg with 2-Cys Prx modulate dynamically the quaternary structure, thereby coupling the non-redox chemistry of cell energy with redox transformations at cysteine residues. PMID:21525006
Chan, Wing Lee; Steiner, Magdalena; Egerer, Johannes; Mizumoto, Shuji; Pestka, Jan M.; Zhang, Haikuo; Khayal, Layal Abo; Ott, Claus-Eric; Kolanczyk, Mateusz; Schinke, Thorsten; Paganini, Chiara; Rossi, Antonio; Sugahara, Kazuyuki; Amling, Michael; Knaus, Petra; Chan, Danny; Mundlos, Stefan
2018-01-01
Gerodermia osteodysplastica (GO) is characterized by skin laxity and early-onset osteoporosis. GORAB, the responsible disease gene, encodes a small Golgi protein of poorly characterized function. To circumvent neonatal lethality of the GorabNull full knockout, Gorab was conditionally inactivated in mesenchymal progenitor cells (Prx1-cre), pre-osteoblasts (Runx2-cre), and late osteoblasts/osteocytes (Dmp1-cre), respectively. While in all three lines a reduction in trabecular bone density was evident, only GorabPrx1 and GorabRunx2 mutants showed dramatically thinned, porous cortical bone and spontaneous fractures. Collagen fibrils in the skin of GorabNull mutants and in bone of GorabPrx1 mutants were disorganized, which was also seen in a bone biopsy from a GO patient. Measurement of glycosaminoglycan contents revealed a reduction of dermatan sulfate levels in skin and cartilage from GorabNull mutants. In bone from GorabPrx1 mutants total glycosaminoglycan levels and the relative percentage of dermatan sulfate were both strongly diminished. Accordingly, the proteoglycans biglycan and decorin showed reduced glycanation. Also in cultured GORAB-deficient fibroblasts reduced decorin glycanation was evident. The Golgi compartment of these cells showed an accumulation of decorin, but reduced signals for dermatan sulfate. Moreover, we found elevated activation of TGF-β in GorabPrx1 bone tissue leading to enhanced downstream signalling, which was reproduced in GORAB-deficient fibroblasts. Our data suggest that the loss of Gorab primarily perturbs pre-osteoblasts. GO may be regarded as a congenital disorder of glycosylation affecting proteoglycan synthesis due to delayed transport and impaired posttranslational modification in the Golgi compartment. PMID:29561836
Othman, Rahimah; Vladisavljević, Goran T; Simone, Elena; Nagy, Zoltan K; Holdich, Richard G
2017-12-06
Microcrystals of piroxicam (PRX) monohydrate with a narrow size distribution were prepared from acetone/PRX solutions by antisolvent crystallization via metallic membranes with ordered pore arrays. Crystallization was achieved by controlled addition of the feed solution through the membrane pores into a well-stirred antisolvent. A complete transformation of an anhydrous form I into a monohydrate form of PRX was confirmed by Raman spectroscopy and differential scanning calorimetry. The size of the crystals was 7-34 μm and was controlled by the PRX concentration in the feed solution (15-25 g L -1 ), antisolvent/solvent volume ratio (5-30), and type of antisolvent (Milli-Q water or 0.1-0.5 wt % aqueous solutions of hydroxypropyl methyl cellulose (HPMC), poly(vinyl alcohol) or Pluronic P-123). The smallest crystals were obtained by injecting 25 g L -1 PRX solution through a stainless-steel membrane with a pore size of 10 μm into a 0.06 wt % HPMC solution stirred at 1500 rpm using an antisolvent/solvent ratio of 20. HPMC provided better steric stabilization of microcrystals against agglomeration than poly(vinyl alcohol) and Pluronic P-123, due to hydrogen bonding interactions with PRX and water. A continuous production of large PRX monohydrate microcrystals with a volume-weighted mean diameter above 75 μm was achieved in a continuous stirred membrane crystallizer. Rapid pouring of Milli-Q water into the feed solution resulted in a mixture of highly polydispersed prism-shaped and needle-shaped crystals.
2017-01-01
Microcrystals of piroxicam (PRX) monohydrate with a narrow size distribution were prepared from acetone/PRX solutions by antisolvent crystallization via metallic membranes with ordered pore arrays. Crystallization was achieved by controlled addition of the feed solution through the membrane pores into a well-stirred antisolvent. A complete transformation of an anhydrous form I into a monohydrate form of PRX was confirmed by Raman spectroscopy and differential scanning calorimetry. The size of the crystals was 7–34 μm and was controlled by the PRX concentration in the feed solution (15–25 g L–1), antisolvent/solvent volume ratio (5–30), and type of antisolvent (Milli-Q water or 0.1–0.5 wt % aqueous solutions of hydroxypropyl methyl cellulose (HPMC), poly(vinyl alcohol) or Pluronic P-123). The smallest crystals were obtained by injecting 25 g L–1 PRX solution through a stainless-steel membrane with a pore size of 10 μm into a 0.06 wt % HPMC solution stirred at 1500 rpm using an antisolvent/solvent ratio of 20. HPMC provided better steric stabilization of microcrystals against agglomeration than poly(vinyl alcohol) and Pluronic P-123, due to hydrogen bonding interactions with PRX and water. A continuous production of large PRX monohydrate microcrystals with a volume-weighted mean diameter above 75 μm was achieved in a continuous stirred membrane crystallizer. Rapid pouring of Milli-Q water into the feed solution resulted in a mixture of highly polydispersed prism-shaped and needle-shaped crystals. PMID:29234241
Wound healing in mammals and amphibians: toward limb regeneration in mammals.
Kawasumi, Aiko; Sagawa, Natsume; Hayashi, Shinichi; Yokoyama, Hitoshi; Tamura, Koji
2013-01-01
Mammalian fetal skin regenerates perfectly, but adult skin repairs by the formation of scar tissue. The cause of this imperfect repair by adult skin is not understood. In contrast, wounded adult amphibian (urodeles and anurans) skin is like mammalian fetal skin in that it repairs by regeneration, not scarring. Scar-free wound repair in adult Xenopus is associated with expression of the paired homeobox transcription factor Prx1 by mesenchymal cells of the wound, a feature shared by mesenchymal cells of the regeneration blastema of the axolotl limb. Furthermore, mesenchymal cells of Xenopus skin wounds that harbor the mouse Prx1-limb-enhancer as a transgene exhibit activation of the enhancer despite the fact that they are Xenopus cells, suggesting that the mouse Prx1 enhancer possesses all elements required for its activation in skin wound healing, even though activation of the same enhancer in the mouse is not seen in the wounded skin of an adult mouse. Elucidation of the role of the Prx1 gene in amphibian skin wound healing will help to clarify the molecular mechanisms of scarless wound healing. Shifting the molecular mechanism of wound repair in mammals to that of amphibians, including reactivation of the Prx1-limb-enhancer, will be an important clue to stimulate scarless wound repair in mammalian adult skin. Finding or creating Prx1-positive stem cells in adult mammal skin by activating the Prx1-limb-enhancer may be a fast and reliable way to provide for scarless skin wound repair, and even directly lead to limb regeneration in mammals.
Wang, Lingyan; Duan, Qi; Wang, Tingting; Ahmed, Mohamed; Zhang, Na; Li, Yongmei; Li, Lanying; Yao, Xiaomei
2015-01-01
A major source of reactive oxygen species (ROS) generation is the mitochondria. By using flow cytometry of the mitochondrial fluorescent probe, MitoSOX Red, western blot of mitochondrial ROS scavenger Peroxiredoxin (Prx) 3 and fluorescence immunostaining, ELISA of cleaved caspases 3 and 9, and TUNEL staining, we demonstrated that exposure to 100 μM KI for 2 hours significantly increased mitochondrial superoxide production and Prx 3 protein expression with increased expressions of cleaved caspases 3 and 9. Besides, we indicated that superoxide dismutase (SOD) at 1000 unit/mL attenuated the increase in mitochondrial superoxide production, Prx 3 protein expression, and lactate dehydrogenase (LDH) release and improved the relative cell viability at 100 μM KI exposure. However, SOD inhibitor diethyldithiocarbamic acid (DETC) (2 mM), Rotenone (0.5 μM), a mitochondrial complex I inhibitor, and Antimycin A (10 μM), a complex III inhibitor, caused an increase in mitochondrial superoxide production, Prx 3 protein expression, and LDH release and decreased the relative cell viability. We conclude that the inhibitors of mitochondrial respiratory chain complex I or III may be involved in oxidative stress caused by elevated concentrations of iodide, and SOD demonstrates its protective effect on the Fischer rat thyroid cell line (FRTL) cells. PMID:26294939
Kusakisako, Kodai; Hernandez, Emmanuel Pacia; Talactac, Melbourne Rio; Yoshii, Kentaro; Umemiya-Shirafuji, Rika; Fujisaki, Kozo; Tanaka, Tetsuya
2018-03-17
Ticks are obligate hematophagous ectoparasites, as they need to feed blood from vertebrate hosts for development. Host blood contains high levels of iron. Host-derived iron may lead to high levels of reactive oxygen species (ROS), including hydrogen peroxide (H 2 O 2 ). Since a high concentration of H 2 O 2 causes serious damage to organisms, this molecule is known to be a harmful chemical compound for aerobic organisms. On the other hand, the transparent method is compatible with chemical fluorescent probes. Therefore, we tried to establish the visualizing method for H 2 O 2 in unfed tick tissues. The combination method of a chemical fluorescent probe (BES-H 2 O 2 -Ac) with the transparent method, Scale, demonstrated in unfed tick tissues that H 2 O 2 and paraquat could induce oxidative stress in the tissues, such as the midgut and ovary. In addition, an H 2 O 2 detection method using BES-H 2 O 2 -Ac was established in Ixodes scapularis embryo-derived cell line (ISE6) in vitro to evaluate the antioxidant activity of peroxiredoxins (PRXs), H 2 O 2 scavenging enzymes, against H 2 O 2 in the cells. The effects of paraquat in ISE6 cells were also observed in the PRXs gene-silenced ISE6 cells. A high intensity of H 2 O 2 fluorescence induced by paraquat was observed in the PRX gene-knockdowned cells. These results suggest that H 2 O 2 and paraquat act as an H 2 O 2 inducer, and PRX genes are important for the regulation of the H 2 O 2 concentration in unfed ticks and ISE6 cells. Therefore, this study contributes to the search for H 2 O 2 visualization in ticks and tick cell line and furthers understanding of the tick's oxidative stress induced by H 2 O 2 . Copyright © 2018 Elsevier GmbH. All rights reserved.
Evolution of Fermi Surface Properties in CexLa1-xB6 and PrxLa1-xB6
NASA Astrophysics Data System (ADS)
Endo, Motoki; Nakamura, Shintaro; Isshiki, Toshiyuki; Kimura, Noriaki; Nojima, Tsutomu; Aoki, Haruyoshi; Harima, Hisatomo; Kunii, Satoru
2006-11-01
We report the de Haas-van Alphen (dHvA) effect measurements of the Fermi surface properties in LaB6, CexLa1-xB6 (x = 0.1, 0.25, 0.5, 0.75, 1.0) and PrxLa1-xB6 (x = 0.25, 0.5, 0.75, 1.0) with particular attention to the spin dependence of the Fermi surface properties. The Fermi surface shape and dimension of CexLa1-xB6 change considerably with Ce concentration, while those of PrxLa1-xB6 change very slightly up to x = 0.75, and in PrB6 the Fermi surface splits into the up and down spin Fermi surfaces. The effective mass of CexLa1-xB6 increases considerably with Ce concentration and is nearly proportional to the number of Ce ions, whereas that of PrxLa1-xB6 increases slightly with Pr concentration. In CexLa1-xB6 the effective mass depends very strongly on field and increases divergently with decreasing field, while that of PrxLa1-xB6 increases slightly with decreasing field. The contribution to the dHvA signal from the conduction electrons of one spin direction diminishes with Ce concentration and appears to disappear somewhere around x = 0.25--0.5. A weak spin dependence is also found in PrxLa1-xB6. The behaviors of CexLa1-xB6 and PrxLa1-xB6 are compared to discuss the origin of the spin dependence of the Fermi surface properties.
Guo, Jun-Hui; Xing, Guo-Lan; Fang, Xin-Hui; Wu, Hui-Fang; Zhang, Bo; Yu, Jin-Zhong; Fan, Zong-Min; Wang, Li-Dong
2017-01-01
AIM To understand the molecular mechanism of esophageal cancer development and provide molecular markers for screening high-risk populations and early diagnosis. METHODS Two-dimensional electrophoresis combined with mass spectrometry were adopted to screen differentially expressed proteins in nine cases of fetal esophageal epithelium, eight cases of esophageal cancer, and eight cases of tumor-adjacent normal esophageal epithelium collected from fetuses of different gestational age, or esophageal cancer patients from a high-risk area of esophageal cancer in China. Immunohistochemistry (avidin-biotin-horseradish peroxidase complex method) was used to detect the expression of peroxiredoxin (PRX)6 in 91 cases of esophageal cancer, tumor-adjacent normal esophageal tissue, basal cell hyperplasia, dysplasia, and carcinoma in situ, as well as 65 cases of esophageal epithelium from fetuses at a gestational age of 3-9 mo. RESULTS After peptide mass fingerprint analysis and search of protein databases, 21 differential proteins were identified; some of which represent a protein isoform. Varying degrees of expression of PRX6 protein, which was localized mainly in the cytoplasm, were detected in adult and fetal normal esophageal tissues, precancerous lesions, and esophageal cancer. With the progression of esophageal lesions, PRX6 protein expression showed a declining trend (P < 0.05). In fetal epithelium from fetuses at gestational age 3-6 mo, PRX6 protein expression showed a declining trend with age (P < 0.05). PRX6 protein expression was significantly higher in well-differentiated esophageal cancer tissues than in poorly differentiated esophageal cancer tissues (P < 0.05). CONCLUSION Development and progression of esophageal cancer result from interactions of genetic changes (accumulation or superposition). PRX6 protein is associated with fetal esophageal development and cancer differentiation. PMID:28293090
Guo, Jun-Hui; Xing, Guo-Lan; Fang, Xin-Hui; Wu, Hui-Fang; Zhang, Bo; Yu, Jin-Zhong; Fan, Zong-Min; Wang, Li-Dong
2017-02-28
To understand the molecular mechanism of esophageal cancer development and provide molecular markers for screening high-risk populations and early diagnosis. Two-dimensional electrophoresis combined with mass spectrometry were adopted to screen differentially expressed proteins in nine cases of fetal esophageal epithelium, eight cases of esophageal cancer, and eight cases of tumor-adjacent normal esophageal epithelium collected from fetuses of different gestational age, or esophageal cancer patients from a high-risk area of esophageal cancer in China. Immunohistochemistry (avidin-biotin-horseradish peroxidase complex method) was used to detect the expression of peroxiredoxin (PRX)6 in 91 cases of esophageal cancer, tumor-adjacent normal esophageal tissue, basal cell hyperplasia, dysplasia, and carcinoma in situ , as well as 65 cases of esophageal epithelium from fetuses at a gestational age of 3-9 mo. After peptide mass fingerprint analysis and search of protein databases, 21 differential proteins were identified; some of which represent a protein isoform. Varying degrees of expression of PRX6 protein, which was localized mainly in the cytoplasm, were detected in adult and fetal normal esophageal tissues, precancerous lesions, and esophageal cancer. With the progression of esophageal lesions, PRX6 protein expression showed a declining trend ( P < 0.05). In fetal epithelium from fetuses at gestational age 3-6 mo, PRX6 protein expression showed a declining trend with age ( P < 0.05). PRX6 protein expression was significantly higher in well-differentiated esophageal cancer tissues than in poorly differentiated esophageal cancer tissues ( P < 0.05). Development and progression of esophageal cancer result from interactions of genetic changes (accumulation or superposition). PRX6 protein is associated with fetal esophageal development and cancer differentiation.
The effect of A-site substitution on the structure and magnetism of Sr2-xPrxFeCoO6 (x = 0, 1, 2)
NASA Astrophysics Data System (ADS)
Haripriya, G. R.; Chakraborty, Debamitra; Pradheesh, R.; Sankaranarayanan, V.; Sethupathi, K.
2018-05-01
The paper presents the variation of structure and magnetism observed with the A-site composition of the double perovskite oxide Sr2-xPrxFeCoO6 (x = 0, 1, 2). The lattice symmetry was found to be lowered from tetragonal (x = 0) to orthorhombic (x = 2). With a ratio 1:1 of Sr and Pr, a highly asymmetric monoclinic structure is observed. The magnetic behavior of the middle member (x = 1) shows resemblance with that of Sr2FeCoO6, indicating the effect of Sr in the dilution of rare earth magnetism.
Matsui, Takeshi; Tabayashi, Ayako; Iwano, Megumi; Shinmyo, Atsuhiko; Kato, Ko; Nakayama, Hideki
2011-02-01
Plant class III peroxidase (PRX) catalyzes the oxidation and oxidative polymerization of a variety of phenolic compounds while reducing hydrogen peroxide. PRX proteins are classified into apoplast type and vacuole type based on the absence or the presence of C-terminal propeptides, which probably function as vacuolar sorting signals (VSSs). In this study, in order to improve our understanding of vacuole-type PRX, we analyzed regulatory mechanisms of vacuolar sorting of a model vacuole-type PRX, the C1a isozyme of horseradish (Armoracia rusticana) (HRP C1a). Using cultured transgenic tobacco cells and protoplasts derived from horseradish leaves, we characterized HRP C1a's VSS, which is a 15 amino acid C-terminal propeptide (C15). We found that the C-terminal hexapeptide of C15 (C6), which is well conserved among vacuole-type PRX proteins, forms the core of the C-terminal-dependent VSS. We also found that the function of C6 is enhanced by the remaining N-terminal part of C15 which probably folds into an amphiphilic α-helix.
Mapping the active site helix-to-strand conversion of CxxxxC peroxiredoxin Q enzymes.
Perkins, Arden; Gretes, Michael C; Nelson, Kimberly J; Poole, Leslie B; Karplus, P Andrew
2012-09-25
Peroxiredoxins (Prx) make up a family of enzymes that reduce peroxides using a peroxidatic cysteine residue; among these, members of the PrxQ subfamily are proposed to be the most ancestral-like yet are among the least characterized. In many PrxQ enzymes, a second "resolving" cysteine is located five residues downstream from the peroxidatic Cys, and these residues form a disulfide during the catalytic cycle. Here, we describe three hyperthermophilic PrxQ crystal structures originally determined by the RIKEN structural genomics group. We reprocessed the diffraction data and conducted further refinement to yield models with R(free) values lowered by 2.3-7.2% and resolution extended by 0.2-0.3 Å, making one, at 1.4 Å, one of the best resolved peroxiredoxins to date. Comparisons of two matched thiol and disulfide forms reveal that the active site conformational change required for disulfide formation involves a transition of ~20 residues from a pair of α-helices to a β-hairpin and 3(10)-helix. Each conformation has ~10 residues with a high level of disorder providing slack that allows the dramatic shift, and the two conformations are anchored to the protein core by distinct nonpolar side chains that fill three hydrophobic pockets. Sequence conservation patterns confirm the importance of these and a few additional residues for function. From a broader perspective, this study raises the provocative question of how to make use of the valuable information in the Protein Data Bank generated by structural genomics projects but not described in the literature, perhaps remaining unrecognized and certainly underutilized.
Mapping the Active Site Helix-to-Strand Conversion of CxxxxC Peroxiredoxin Q Enzymes †
Perkins, Arden; Gretes, Michael C.; Nelson, Kimberly J.; Poole, Leslie B.; Karplus, P. Andrew
2012-01-01
Peroxiredoxins (Prx) are a family of enzymes which reduce peroxides using a peroxidatic cysteine residue; among these, the PrxQ subfamily members are proposed to be the most ancestral-like yet are among the least characterized. In many PrxQ enzymes, a second “resolving” cysteine is located six residues downstream from the peroxidatic Cys, and these residues form a disulfide during the catalytic cycle. Here, we describe three hyperthermophilic PrxQ crystal structures originally solved by the RIKEN structural genomics group. We reprocessed the diffraction data and carried out further refinement to yield models with Rfree lowered by 2.3–7.2% and resolution extended by 0.2–0.3 Å, making one, at 1.4 Å, the best resolved peroxiredoxin to date. Comparisons of two matched thiol and disulfide forms reveal that the active site conformational change required for disulfide formation involves a transition of about 20 residues from a pair of α-helices to a β-hairpin and 310-helix. Each conformation has about 10 residues with high disorder providing slack that enables the dramatic shift, and the two conformations are anchored to the protein core by distinct non-polar side chains that fill three hydrophobic pockets. Sequence conservation patterns confirm the importance of these and a few additional residues for function. From a broader perspective, this study raises the provocative question of how to make use of the valuable information in the protein data bank generated by structural genomics projects but not described in the literature, perhaps remaining unrecognized and certainly underutilized. PMID:22928725
Sangpairoj, Kant; Changklungmoa, Narin; Vanichviriyakit, Rapeepun; Sobhon, Prasert; Chaithirayanon, Kulathida
2014-05-01
2-Cys peroxiredoxin (Prx) is the main antioxidant enzyme in Fasciola species for detoxifying hydrogen peroxide which is generated from the hosts' immune effector cells and the parasites' own metabolism. In this study, the recombinant Prx protein from Fasciola gigantica (rFgPrx-2) was expressed and purified in a prokaryotic expression system. This recombinant protein with molecular weight of 26 kDa was enzymatically active in reduction of hydrogen peroxide both in presence of thioredoxin and glutathione systems, and also protected the supercoiled plasmid DNA from oxidative damage in metal-catalyzed oxidation (MCO) system in a concentration-dependent manner. By immunoblotting, using antibody against rFgPrx-2 as probe, a native FgPrxs, whose MW at 25 kDa, was detected in all developmental stages of the parasite. Concentrations of native FgPrxs were increasing in all stages reaching highest level in adult stage. The antibody also showed cross reactivities with corresponding proteins in some cattle helminthes. Natural antibody to FgPrxs could be detected in the sera of mice at 3 and 4 weeks after infection with F. gigantica metacercariae. By immunofluorescence, FgPrxs was highly expressed in tegument and tegumental cells, parenchyma, moderately expressed in cecal epithelial cells in early, juvenile and adult worms. Furthermore, FgPrxs was also detected in the female reproductive organs, including eggs, ovary, vitelline cells, and testis, suggesting that FgPrxs might play an essential role in protecting parasite's tissues from free radical attack during their life cycle. Thus, FgPrxs is one potential candidate for drug therapy and vaccine development. Copyright © 2014 Elsevier Inc. All rights reserved.
The antiandrogenic effect of finasteride against a mutant androgen receptor
Chhipa, Rishi Raj; Zhang, Haitao; Ip, Clement
2011-01-01
Finasteride is known to inhibit Type 2 5α-reductase and thus block the conversion of testosterone to dihydrotestosterone (DHT). The structural similarity of finasteride to DHT raises the possibility that finasteride may also interfere with the function of the androgen receptor (AR). Experiments were carried out to evaluate the antiandrogenic effect of finasteride in LNCaP, C4-2 and VCaP human prostate cancer cells. Finasteride decreased DHT binding to AR, and DHT-stimulated AR activity and cell growth in LNCaP and C4-2 cells, but not in VCaP cells. LNCaP and C4-2 (derived from castration-resistant LNCaP) cells express the T877A mutant AR, while VCaP cells express the wild-type AR. When PC-3 cells, which are AR-null, were transfected with either the wild-type or the T877A mutant AR, only the mutant AR-expressing cells were sensitive to finasteride inhibition of DHT binding. Peroxiredoxin-1 (Prx1) is a novel endogenous facilitator of AR binding to DHT. In Prx1-rich LNCaP cells, the combination of Prx1 knockdown and finasteride was found to produce a greater inhibitory effect on AR activity and cell growth than either treatment alone. The observation suggests that cells with a low expression of Prx1 are likely to be more responsive to the antiandrogenic effect of finasteride. Additional studies showed that the efficacy of finasteride was comparable to that of bicalutamide (a widely used non-steroidal antiandrogen). The implication of the above findings is discussed in the context of developing strategies to improve the outcome of androgen deprivation therapy. PMID:21386657
Radyuk, Svetlana N.; Michalak, Katarzyna; Klichko, Vladimir I.; Benes, Judith; Rebrin, Igor; Sohal, Rajindar S.; Orr, William C.
2010-01-01
Peroxiredoxin 5 is a distinct isoform of the peroxiredoxin gene family. The antioxidative and anti-apoptotic functions of peroxiredoxin 5 have been extensively demonstrated in cell culture experiments. In the present paper, we provide the first functional analysis of peroxiredoxin 5 in a multicellular organism, Drosophila melanogaster. Similar to its mammalian, yeast or human counterparts, dPrx5 (Drosophila peroxiredoxin 5) is expressed in several cellular compartments, including the cytosol, nucleus and the mitochondrion. Global overexpression of dPrx5 in flies increased resistance to oxidative stress and extended their life span by up to 30% under normal conditions. The dprx5−/− null flies were comparatively more susceptible to oxidative stress, had higher incidence of apoptosis, and a shortened life span. TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling) analysis revealed that the dprx5−/− null mutant had discernible tissue-specific apoptotic patterns, similar to those observed in control flies exposed to paraquat. In addition, apoptosis was particularly notable in oenocytes. During development the dPrx5 levels co-varied with ecdysone pulses, suggesting inter-relationship between ecdystreroids and dPrx5 expression. The importance of dPrx5 for development was further underscored by the embryonic lethal phenotype of progeny derived from the dprx5−/− null mutant. Results from the present study suggest that the antioxidant and anti-apoptotic activities of dPrx5 play a critical role in development and aging of the fly. PMID:19128239
Radjainia, Mazdak; Venugopal, Hariprasad; Desfosses, Ambroise; Phillips, Amy J; Yewdall, N Amy; Hampton, Mark B; Gerrard, Juliet A; Mitra, Alok K
2015-05-05
Peroxiredoxins (Prxs) are a ubiquitous class of thiol-dependent peroxidases that play an important role in the protection and response of cells to oxidative stress. The catalytic unit of typical 2-Cys Prxs are homodimers, which can self-associate to form complex assemblies that are hypothesized to have signaling and chaperone activity. Mitochondrial Prx3 forms dodecameric toroids, which can further stack to form filaments, the so-called high-molecular-weight (HMW) form that has putative holdase activity. We used single-particle analysis and helical processing of electron cryomicroscopy images of human Prx3 filaments induced by low pH to generate a ∼7-Å resolution 3D structure of the HMW form, the first such structure for a 2-Cys Prx. The pseudo-atomic model reveals interactions that promote the stacking of the toroids and shows that unlike previously reported data, the structure can accommodate a partially folded C terminus. The HMW filament lumen displays hydrophobic patches, which we hypothesize bestow holdase activity. Copyright © 2015 Elsevier Ltd. All rights reserved.
Reactive oxygen species in response of plants to gravity stress
NASA Astrophysics Data System (ADS)
Jadko, Sergiy
2016-07-01
Reactive oxygen species (ROS) as second messengers can induce stress response of plants. Thioredoxins (Trx) and peroxiredoxins (Prx) can function as sensors and transmitters of the ROS in stress signaling and antioxidant response. 12-14 days old tissue culture of Arabidopsis thaliana have been investigated. Hypergravity stress was induced by centrifugation at 10 and 20 g during 30 and 90 min and than intensity of spontaneous chemiluminescence (SChL/ROS content), Trx and Prx activities were determined. All experiments were repeated from 3 to 5 times and the obtained data were statistically treated. In the tissue culture under development of the stress there were an increase in intensity of SChL and Trx and Prx activities. Thus, under hypergravity stress in the plant occurred early increase in the ROS level and the ROS induced the increase in the Trx and Prx activities. Prx and Trx can also participate in the formation of stress respons as acceptors and transducers of the redox signals. Increase in the activity of these enzymes primarily aimed at increasing of the total antioxidant activity in the cells to prevent of the plant to development of oxidative degradation by ROS.
Magnetic properties and magnetostriction of PrxNd1-xFe1.9 (0 <= x <= 1.0) alloys at low temperature
NASA Astrophysics Data System (ADS)
Wang, Yong; Tang, Shao-Long; Li, Yu-Long; Xie, Ren; Du, You-Wei
2013-03-01
The crystal structure, magnetic and magnetostrictive properties of high-pressure synthesized PrxNd1-xFe1.9 (0 <= x <= 1.0) alloys were studied. The alloys exhibit single cubic Laves phase with MgCu2-type structure. The initial magnetization curve reveals that Pr0.2Nd0.8Fe1.9 has a minimum magnetocrystalline anisotropy at 5 K. The magnetostriction curve at 5 K shows that Pr0.2Nd0.8Fe1.9 has a very good low-field magnetostrictive property, and the magnetostriction of the PrxNd1-xFe1.9 alloy in high magnetic field is attributable mainly to Pr. The temperature dependence of the magnetostriction (λ‖) at the field of 5 kOe shows that the substitution of Nd reduces the K1 remarkably, and the values of λ‖ of Pr0.2Nd0.8Fe1.9 and Pr0.8Nd0.2Fe1.9 alloys are nearly five times larger than that of the PrFe1.9 alloy below 50 K; the λ‖ of Pr0.8Nd0.2Fe1.9 reaches up to 1082 ppm at 100 K, which makes it a potential candidate for application in this temperature range.
Tailor, Vijay; Ballal, Anand
2017-05-01
The Peroxiredoxin Q (PrxQ) proteins are thiol-based peroxidases that are important for maintaining redox homeostasis in several organisms. Activity of PrxQs is mediated by two cysteines, peroxidatic (C p ) and resolving (C r ), in association with a reducing partner. A PrxQ, Alr3183, from the cyanobacterium, Anabaena PCC 7120, was characterized in this study. Alr3183, which required thioredoxin A (TrxA) for peroxidase activity, was an intramolecular disulfide bond-containing monomeric protein. However, Alr3183 lacking C p (Alr3183C46S) or C r (Alr3183C51S) formed intermolecular disulfide linkages and was dimeric. Alr3183C46S was completely inactive, while Alr3183C51S required higher concentration of TrxA for peroxidase activity. Surface plasmon resonance analysis showed that unlike Alr3183 or Alr3183C46S, Alr3183C51S bound rather poorly to TrxA. Also, compared to the oxidized protein, the DTT-treated (reduced) Alr3183 displayed decreased interaction with TrxA. In vivo, Alr3183 was found to be induced in response to γ-radiation. On exposure to H 2 O 2 , Anabaena strain over-expressing Alr3183 showed reduced formation of ROS, intact photosynthetic pigments and consequently better survival than the wild-type, whereas overproduction of Alr3183C46S did not provide any protection. Significantly, this study (1) reveals the importance of C r for interaction with thioredoxins and (2) demonstrates that over-expression of PrxQs can protect cyanobacteria from oxidative stresses. Copyright © 2017 Elsevier Inc. All rights reserved.
Gretes, Michael C.; Poole, Leslie B.
2012-01-01
Abstract Significance: Parasite survival and virulence relies on effective defenses against reactive oxygen and nitrogen species produced by the host immune system. Peroxiredoxins (Prxs) are ubiquitous enzymes now thought to be central to such defenses and, as such, have potential value as drug targets and vaccine antigens. Recent Advances: Plasmodial and kinetoplastid Prx systems are the most extensively studied, yet remain inadequately understood. For many other parasites our knowledge is even less well developed. Through parasite genome sequencing efforts, however, the key players are being discovered and characterized. Here we describe what is known about the biochemistry, regulation, and cell biology of Prxs in parasitic protozoa, helminths, and fungi. At least one Prx is found in each parasite with a sequenced genome, and a notable theme is the common patterns of expression, localization, and functionality among sequence-similar Prxs in related species. Critical Issues: The nomenclature of Prxs from parasites is in a state of disarray, causing confusion and making comparative inferences difficult. Here we introduce a systematic Prx naming convention that is consistent between organisms and informative about structural and evolutionary relationships. Future Directions: The new nomenclature should stimulate the crossfertilization of ideas among parasitologists and with the broader redox research community. The diverse parasite developmental stages and host environments present complex systems in which to explore the variety of roles played by Prxs, with a view toward parlaying what is learned into novel therapies and vaccines that are urgently needed. Antioxid. Redox Signal. 17, 608–633. PMID:22098136
Yokoyama, Hitoshi; Maruoka, Tamae; Aruga, Akio; Amano, Takanori; Ohgo, Shiro; Shiroishi, Toshihiko; Tamura, Koji
2011-12-01
Despite a strong clinical need for inducing scarless wound healing, the molecular factors required to accomplish it are unknown. Although skin-wound healing in adult mammals often results in scarring, some amphibians can regenerate injured body parts, even an amputated limb, without it. To understand the mechanisms of perfect skin-wound healing in regenerative tetrapods, we studied the healing process in young adult Xenopus "froglets" after experimental skin excision. We found that the excision wound healed completely in Xenopus froglets, without scarring. Mononuclear cells expressing a homeobox gene, prx1, accumulated under the new epidermis of skin wounds on the limb and trunk and at the regenerating limb. In transgenic Xenopus froglets expressing a reporter for the mouse prx1 limb-specific enhancer, activity was seen in the healing skin and in the regenerating limb. Comparable activity did not accompany skin-wound healing in adult mice. Our results suggest that scarless skin-wound healing may require activation of the prx1 limb enhancer, and competence to activate the enhancer is probably a prerequisite for epimorphic regeneration, such as limb regeneration. Finally, the induction of this prx1 enhancer activity may be useful as a reliable marker for therapeutically induced scarless wound healing in mammals.
Lang, Erhard W; Kasprowicz, Magdalena; Smielewski, Peter; Pickard, John; Czosnyka, Marek
2015-08-01
Plateau waves in intracranial pressure (ICP) are frequently recorded in neuro intensive care and are not yet fully understood. To further investigate this phenomenon, we analyzed partial pressure of cerebral oxygen (pbtO2) and a moving correlation coefficient between ICP and mean arterial blood pressure (ABP), called PRx, along with the cerebral oxygen reactivity index (ORx), which is a moving correlation coefficient between cerebral perfusion pressure (CPP) and pbtO2 in an observational study. We analyzed 55 plateau waves in 20 patients after severe traumatic brain injury. We calculated ABP, ABP pulse amplitude (ampABP), ICP, CPP, pbtO2, heart rate (HR), ICP pulse amplitude (ampICP), PRx, and ORx, before, during, and after each plateau wave. The analysis of variance with Bonferroni post hoc test was used to compare the differences in the variables before, during, and after the plateau wave. We considered all plateau waves, even in the same patient, independent because they are separated by long intervals. We found increases for ICP and ampICP according to our operational definitions for plateau waves. PRx increased significantly (p = 0.00026), CPP (p < 0.00001) and pbtO2 (p = 0.00007) decreased significantly during the plateau waves. ABP, ampABP, and HR remained unchanged. PRx during the plateau was higher than before the onset of wave in 40 cases (73 %) with no differences in baseline parameters for those with negative and positive ΔPRx (difference during and after). ORx showed an increase during and a decrease after the plateau waves, however, not statistically significant. PbtO2 overshoot after the wave occurred in 35 times (64 %), the mean difference was 4.9 ± 4.6 Hg (mean ± SD), and we found no difference in baseline parameters between those who overshoot and those who did not overshoot. Arterial blood pressure remains stable in ICP plateau waves, while cerebral autoregulatory indices show distinct changes, which indicate cerebrovascular reactivity impairment at the top of the wave. PbtO2 decreases during the waves and may show a slight overshoot after normalization. We assume that this might be due to different latencies of the cerebral blood flow and oxygen level control mechanisms. Other factors may include baseline conditions, such as pre-plateau wave cerebrovascular reactivity or pbtO2 levels, which differ between studies.
Parallel digital modem using multirate digital filter banks
NASA Technical Reports Server (NTRS)
Sadr, Ramin; Vaidyanathan, P. P.; Raphaeli, Dan; Hinedi, Sami
1994-01-01
A new class of architectures for an all-digital modem is presented in this report. This architecture, referred to as the parallel receiver (PRX), is based on employing multirate digital filter banks (DFB's) to demodulate, track, and detect the received symbol stream. The resulting architecture is derived, and specifications are outlined for designing the DFB for the PRX. The key feature of this approach is a lower processing rate then either the Nyquist rate or the symbol rate, without any degradation in the symbol error rate. Due to the freedom in choosing the processing rate, the designer is able to arbitrarily select and use digital components, independent of the speed of the integrated circuit technology. PRX architecture is particularly suited for high data rate applications, and due to the modular structure of the parallel signal path, expansion to even higher data rates is accommodated with each. Applications of the PRX would include gigabit satellite channels, multiple spacecraft, optical links, interactive cable-TV, telemedicine, code division multiple access (CDMA) communications, and others.
Requirement for ErbB2/ErbB signaling in developing cartilage and bone.
Fisher, Melanie C; Clinton, Gail M; Maihle, Nita J; Dealy, Caroline N
2007-08-01
During endochondral ossification, the skeletal elements of vertebrate limbs form and elongate via coordinated control of chondrocyte and osteoblast differentiation and proliferation. The role of signaling by the ErbB family of receptor tyrosine kinases, which consists of ErbB1 (epidermal growth factor receptor or EGFR), ErbB2, ErbB3 and ErbB4, has been little studied during cartilage and bone development. Signaling by the ErbB network generates a diverse array of cellular responses via formation of ErbB dimers activated by distinct ligands that produce distinct signal outputs. Herstatin is a soluble ErbB2 receptor that acts in a dominant negative fashion to inhibit ErbB signaling by binding to endogenous ErbB receptors, preventing functional dimer formation. Here, we examine the effects of Herstatin on limb skeletal element development in transgenic mice, achieved via Prx1 promoter-driven expression in limb cartilage and bone. The limb skeletal elements of Prx1-Herstatin embryos are shortened, and chondrocyte maturation and osteoblast differentiation are delayed. In addition, proliferation by chondrocytes and periosteal cells of Prx1-Herstatin limb skeletal elements is markedly reduced. Our study identifies requirements for ErbB signaling in the maintenance of chondrocyte and osteoblast proliferation involved in the timely progression of chondrocyte maturation and periosteal osteoblast differentiation.
Park, Sun-Ji; Kim, Tae-Shin; Kim, Jin-Man; Chang, Kyu-Tae; Lee, Hyun-Shik; Lee, Dong-Seok
2015-12-01
Superovulation induced by exogenous gonadotropin treatment (PMSG/hCG) increases the number of available oocytes in humans and animals. However, Superovulatory PMSG/hCG treatment is known to affect maternal environment, and these effects may result from PMSG/hCG treatment-induced oxidative stress. 2-Cys peroxiredoxins (2-Cys Prxs) act as antioxidant enzymes that protect cells from oxidative stress induced by various exogenous stimuli. Therefore, the objective of this study was to test the hypothesis that repeated PMSG/hCG treatment induces 2-Cys Prx expression and overoxidation in the reproductive tracts of female mice. Immunohistochemistry and western blotting analyses further demonstrated that, after PMSG/hCG treatment, the protein expression levels of 2-Cys Prxs increased most significantly in the ovaries, while that of Prx1 was most affected by PMSG/hCG stimulation in all tissues of the female reproductive tract. Repeated PMSG/hCG treatment eventually leads to 2-Cys Prxs overoxidation in all reproductive organs of female mice, and the abundance of the 2-Cys Prxs-SO2/3 proteins reported here supports the hypothesis that repeated superovulation induces strong oxidative stress and damage to the female reproductive tract. Our data suggest that excessive oxidative stress caused by repeated PMSG/hCG stimulation increases 2-Cys Prxs expression and overoxidation in the female reproductive organs. Intracellular 2-Cys Prx therefore plays an important role in maintaining the reproductive organ environment of female mice upon exogenous gonadotropin treatment.
Two Novel Mutations in the GDAP1 and PRX Genes in Early Onset Charcot-Marie-Tooth Syndrome
Auer-Grumbach, M.; Fischer, C.; Papić, L.; John, E.; Plecko, B.; Bittner, R. E.; Bernert, G.; Pieber, T. R.; Miltenberger, G.; Schwarz, R.; Windpassinger, C.; Grill, F.; Timmerman, V.; Speicher, M. R.; Janecke, A. R.
2011-01-01
Autosomal recessive Charcot-Marie-Tooth syndrome (AR-CMT) is often characterised by an infantile disease onset and a severe phenotype. Mutations in the ganglioside-induced differentiation-associated protein 1 (GDAP1) gene are thought to be a common cause of AR-CMT. Mutations in the periaxin (PRX) gene are rare. They are associated with severe demyelination of the peripheral nerves and sometimes lead to prominent sensory disturbances. To evaluate the frequency of GDAP1 and PRX mutations in early onset CMT, we examined seven AR-CMT families and 12 sporadic CMT patients, all presenting with progressive distal muscle weakness and wasting. In one family also prominent sensory abnormalities and sensory ataxia were apparent from early childhood. In three families we detected four GDAP1 mutations (L58LfsX4, R191X, L239F and P153L), one of which is novel and is predicted to cause a loss of protein function. In one additional family with prominent sensory abnormalities a novel homozygous PRX mutation was found (A700PfsX17). No mutations were identified in 12 sporadic cases. This study suggests that mutations in the GDAP1 gene are a common cause of early-onset AR-CMT. In patients with early-onset demyelinating AR-CMT and severe sensory loss PRX is one of the genes to be tested. PMID:18504680
Fierro, Camila; López-Cristoffanini, Camilo; Meynard, Andrés; Lovazzano, Carlos; Castañeda, Francisco; Guajardo, Eduardo; Contreras-Porcia, Loretto
2017-06-01
The transcriptional modulation of desiccation tolerance factors in P. orbicularis explains its successful recuperation after water deficit. Differential responses to air exposure clarify seaweed distribution along intertidal rocky zones. Desiccation-tolerant seaweed species, such as Pyropia orbicularis, can tolerate near 96% water loss during air exposure. To understand the phenotypic plasticity of P. orbicularis to desiccation, several tolerance factors were assessed by RT-qPCR, Western-blot analysis, and enzymatic assays during the natural desiccation-rehydration cycle. Comparative enzymatic analyses were used to evidence differential responses between P. orbicularis and desiccation-sensitive species. The results showed that during desiccation, the relative mRNA levels of genes associated with basal metabolism [trehalose phosphate synthase (tps) and pyruvate dehydrogenase (pdh)] were overexpressed in P. orbicularis. Transcript levels related to antioxidant metabolism [peroxiredoxin (prx); thioredoxin (trx); catalase (cat); lipoxygenase (lox); ferredoxin (fnr); glutathione S-transferase (gst)], cellular detoxification [ABC transporter (abc) and ubiquitin (ubq)], and signal transduction [calmodulin (cam)] increased approximately 15- to 20-fold, with the majority returning to basal levels during the final hours of rehydration. In contrast, actin (act) and transcription factor 1 (tf1) transcripts were down-regulated. ABC transporter protein levels increased in P. orbicularis during desiccation, whereas PRX transcripts decreased. The antioxidant enzymes showed higher specific activity in P. orbicularis under desiccation, and sensitive species exhibited enzymatic inactivation and scarce ABC and PRX protein detection following prolonged desiccation. In conclusion, the reported findings contribute towards understanding the ecological distribution of intertidal seaweeds at the molecular and functional levels.
Involvement of Redox State in the Aging of Drosophila melanogaster
Radyuk, Svetlana N.; Sohal, Rajindar S.
2013-01-01
Abstract Significance: The main objective of this review was to provide an exposition of investigations, conducted in Drosophila melanogaster, on the role of reactive oxygen species and redox state in the aging process. While early transgenic studies did not clearly support the validity of the oxidative stress hypothesis of aging, predicated on the accumulation of structural damage, they spawned a broader search for redox-related effects that might impact the aging process. Recent Advances: Initial evidence implicating the thiol redox state as a possible causative factor in aging has been obtained in Drosophila. Overexpression of genes, such as GCL, G6PD, Prx2, and Prx5, which are involved in the maintenance of thiol redox homeostasis, has strong positive effects on longevity. Further, the depletion of peroxiredoxin activity in the mitochondria through the double knockdown of Prx5 and Prx3 not only results in a redox crisis but also elicits a rapid aging phenotype. Critical Issues: Herein, we summarize the present status of knowledge about the main components of the machinery controlling thiol redox homeostasis and describe how age-related redox fluctuations might impact aging more acutely through disruption of the redox-sensitive signaling mechanisms rather than via the simple accumulation of structural damage. Future Directions: Based on these initial insights into the plausible impact of redox fluctuations on redox signaling, future studies should focus on the pathways that have been explicitly implicated in aging, such as insulin signaling, TOR, and JNK/FOXO, with particular attention to elements that are redox sensitive. Antioxid. Redox Signal. 19, 788–803. PMID:23458359
Park, Sun-Ji; Kim, Tae-Shin; Kim, Jin-Man; Chang, Kyu-Tae; Lee, Hyun-Shik; Lee, Dong-Seok
2015-01-01
Superovulation induced by exogenous gonadotropin treatment (PMSG/hCG) increases the number of available oocytes in humans and animals. However, Superovulatory PMSG/hCG treatment is known to affect maternal environment, and these effects may result from PMSG/hCG treatment-induced oxidative stress. 2-Cys peroxiredoxins (2-Cys Prxs) act as antioxidant enzymes that protect cells from oxidative stress induced by various exogenous stimuli. Therefore, the objective of this study was to test the hypothesis that repeated PMSG/hCG treatment induces 2-Cys Prx expression and overoxidation in the reproductive tracts of female mice. Immunohistochemistry and western blotting analyses further demonstrated that, after PMSG/hCG treatment, the protein expression levels of 2-Cys Prxs increased most significantly in the ovaries, while that of Prx1 was most affected by PMSG/hCG stimulation in all tissues of the female reproductive tract. Repeated PMSG/hCG treatment eventually leads to 2-Cys Prxs overoxidation in all reproductive organs of female mice, and the abundance of the 2-Cys Prxs-SO2/3 proteins reported here supports the hypothesis that repeated superovulation induces strong oxidative stress and damage to the female reproductive tract. Our data suggest that excessive oxidative stress caused by repeated PMSG/hCG stimulation increases 2-Cys Prxs expression and overoxidation in the female reproductive organs. Intracellular 2-Cys Prx therefore plays an important role in maintaining the reproductive organ environment of female mice upon exogenous gonadotropin treatment. PMID:26486164
NASA Astrophysics Data System (ADS)
Li, F.; Liu, J. J.; Zhu, X. Y.; Shen, W. C.; Lin, L. L.; Du, J.; Si, P. Z.
2018-07-01
Alloys of Tb0.2Dy0.8-xPrx(Fe0.8Co0.2)1.93 (0 ≤ x ≤ 0.40) are arc melted and investigated for structural, magnetic and magnetoelastic properties by means of X-ray diffraction (XRD), a vibrating sample magnetometer and a standard strain technique. The 20 at.% Co substitution for Fe is shown to enable the formation of the single Laves phase with a high Pr content up to x = 0.25. Experimental evidence for magnetocrystalline-anisotropy compensation between Pr3+ and Dy3+ ions is obtained in the Laves phase system. The easy magnetization direction (EMD) at room temperature rotates from <100> to <110> axis when x increases from 0 to 0.40. The linear anisotropic magnetostriction λa (=λ||-λ⊥) increases with increasing Pr content when x ≤ 0.25 ascribed to both the larger magnetostriction of PrFe2 than that of DyFe2 and the decrease of the resulted anisotropy due to compensation. The composition anisotropy compensation is found to be around x = 0.25, shifting to the Pr-rich side at room temperature as compared to the Co-free counterpart Tb0.2Dy0.8-xPrxFe1.93 system. The Tb0.2Dy0.55Pr0.25(Fe0.8Co0.2)1.93 alloy has good magnetoelastic properties at room temperature, that is, a low anisotropy and a high low-field magnetostriction λa ∼140 ppm at 1 kOe.
Tang, Sung-Chun; Lin, Ru-Jen; Shieh, Jiann-Shing; Wu, An-Yeu; Lai, Dar-Ming; Huang, Sheng-Jean; Jeng, Jiann-Shing
2015-09-01
Mannitol is commonly used in patients with increased intracranial pressure (ICP), but its effect on cerebrovascular pressure reactivity (CVPR) is uncertain. We analyzed the changes of pressure reactivity index (PRx) during the course of mannitol treatment. Twenty-one patients who received mannitol treatment for increased ICP were recruited prospectively. Continuous waveforms of arterial blood pressure (ABP) and ICP were collected simultaneously for 60 minutes (10 minutes at baseline and 50 minutes since mannitol administration) during 37 events of mannitol treatment. The correlation coefficients between the mean ABP and ICP were averaged every 10 minutes and labeled as the PRx. The linear correlation of six time points of PRx in each event was calculated to represent the trend of CVPR changes. The negative slope of correlation was defined as improvement in CVPR under mannitol treatment and vice versa. At baseline, the average of ICP was 26.0 ± 9.1 mmHg and the values of PRx were significantly correlated with ICP (p = 0.0044, r = 0.46). After mannitol administration, the average of ICP decreased significantly to 21.2 ± 11.1 mmHg (p = 0.036), and CVPR improved in 59.4 % of all events. Further analysis showed that low baseline cerebral perfusion pressure was the only hemodynamic parameter significant association with the improvement of CVPR after mannitol treatment (p = 0.039). Despite lowering ICP, mannitol may have diverse effects on CVPR in patients with intracranial hypertension. Our study suggests that mannitol infusion may have a beneficial effect on CVPR, particularly in those with a low cerebral perfusion pressure at baseline. Copyright © 2013. Published by Elsevier B.V.
Positron trapping in Y1-xPrxBa2Cu3O7-δ and the Fermi surface of YBa2Cu3O7-δ
NASA Astrophysics Data System (ADS)
Shukla, A.; Hoffmann, L.; Manuel, A. A.; Walker, E.; Barbiellini, B.; Peter, M.
1995-03-01
Temperature-dependent positron lifetime measurements in ceramic Y1-xPrxBa2Cu3O7-δ samples reveal positron trapping, in particular at low temperature and for small x. Positrons appear to be completely delocalized for T~400 K and higher. At high temperatures the lifetime for YBa2Cu3O7-δ and PrBa2Cu3O7-δ is identical (~165 ps) and close to the theoretical value. For these reasons a two-dimensional angular correlation of annihilation radiation (2D-ACAR) spectrum was measured in YBa2Cu3O7 at T=400 K. The spectrum width confirms the delocalization of the positron and the 2D-ACAR shows, apart from the one-dimensional Fermi surface due to CuO chains, a smaller Fermi surface sheet centered around the S point, in the first Brillouin zone.
Fusarium oxysporum Triggers Tissue-Specific Transcriptional Reprogramming in Arabidopsis thaliana
Lyons, Rebecca; Stiller, Jiri; Powell, Jonathan; Rusu, Anca; Manners, John M.; Kazan, Kemal
2015-01-01
Some of the most devastating agricultural diseases are caused by root-infecting pathogens, yet the majority of studies on these interactions to date have focused on the host responses of aerial tissues rather than those belowground. Fusarium oxysporum is a root-infecting pathogen that causes wilt disease on several plant species including Arabidopsis thaliana. To investigate and compare transcriptional changes triggered by F. oxysporum in different Arabidopsis tissues, we infected soil-grown plants with F. oxysporum and subjected root and leaf tissue harvested at early and late timepoints to RNA-seq analyses. At least half of the genes induced or repressed by F. oxysporum showed tissue-specific regulation. Regulators of auxin and ABA signalling, mannose binding lectins and peroxidases showed strong differential expression in root tissue. We demonstrate that ARF2 and PRX33, two genes regulated in the roots, promote susceptibility to F. oxysporum. In the leaves, defensins and genes associated with the response to auxin, cold and senescence were strongly regulated while jasmonate biosynthesis and signalling genes were induced throughout the plant. PMID:25849296
Effects of Oxygen Deficiency and Dopping of pr in Gd1-x Prx Ba2Cu3O7-y
NASA Astrophysics Data System (ADS)
Zolfagharkhani, G.; Daadmehr, V.; Farzaneh, M.; Sedighiani, A.; Akhavan, M.
2000-09-01
Single phase crystalline samples of Gd1-x Prx Ba2Cu3O7-y with 0.0 ≤ x ≤ 0.2 have been prepared by standard solid state reaction technique and characterized by SEM and XRD. The electrical measurements show two plateaus in Tc versus y curve for GdBa2Cu3O7-y (0
Lust, Andres; Lakio, Satu; Vintsevits, Julia; Kozlova, Jekaterina; Veski, Peep; Heinämäki, Jyrki; Kogermann, Karin
2013-11-01
During aqueous drug-layer coating, drug substance(s) are exposed to water and elevated temperatures which can lead to water-mediated process induced transformations (PITs). The effects of aqueous drug-layer coating of pellets (Cellets(®)) on the anhydrous piroxicam, PRX, were investigated in the miniaturized coating equipment and with free films. Hydroxypropyl methylcellulose (HPMC) was used as a carrier coating polymer. Free films were prepared by using an in-house small-scale rotating plate system equipped with an atomization air nozzle. Raman spectroscopy, X-ray powder diffraction (XRPD), differential scanning calorimetry (DSC), and scanning electron microscopy (SEM) were used to characterize the solid-state properties and surface morphology of the pellets and free films. The results showed that anhydrous PRX form I (AH) and monohydrate (MH) were stable during drug-layer coating, but amorphous PRX in solid dispersion (SD) crystallized as MH already after 10 min of coating. Furthermore, the increase in a dissolution rate was achieved from the drug-layer coated inert pellets compared to powder forms. In conclusion, water-mediated solid-state PITs of amorphous PRX is evident during aqueous-based drug-layer coating of pellets, and solid-state change can be verified using Raman spectroscopy. Copyright © 2013 Elsevier B.V. All rights reserved.
Slade, Liam; Chalker, Julia; Kuksal, Nidhi; Young, Adrian; Gardiner, Danielle; Mailloux, Ryan J
2017-08-01
Pyruvate dehydrogenase (PDHC) and α-ketoglutarate dehydrogenase complex (KGDHC) are important sources of reactive oxygen species (ROS). In addition, it has been found that mitochondria can also serve as sinks for cellular hydrogen peroxide (H 2 O 2 ). However, the ROS forming and quenching capacity of liver mitochondria has never been thoroughly examined. Here, we show that mouse liver mitochondria use catalase, glutathione (GSH), and peroxiredoxin (PRX) systems to quench ROS. Incubation of mitochondria with catalase inhibitor 3-amino-1,2,4-triazole (triazole) induced a significant increase in pyruvate or α-ketoglutarate driven O 2 - /H 2 O 2 formation. 1-Choro-2,4-dinitrobenzene (CDNB), which depletes glutathione (GSH), elicited a similar effect. Auranofin (AF), a thioredoxin reductase-2 (TR2) inhibitor which disables the PRX system, did not significantly change O 2 - /H 2 O 2 formation. By contrast catalase, GSH, and PRX were all required to scavenging extramitochondrial H 2 O 2 . In this study, the ROS forming potential of PDHC, KGDHC, Complex I, and Complex III was also profiled. Titration of mitochondria with 3-methyl-2-oxovaleric acid (KMV), a specific inhibitor for O 2 - /H 2 O 2 production by KGDHC, induced a ~86% and ~84% decrease in ROS production during α-ketoglutarate and pyruvate oxidation. Titration of myxothiazol, a Complex III inhibitor, decreased O 2 - /H 2 O 2 formation by ~45%. Rotenone also lowered ROS production in mitochondria metabolizing pyruvate or α-ketoglutarate indicating that Complex I does not contribute to ROS production during forward electron transfer from NADH. Taken together, our results indicate that KGDHC and Complex III are high capacity sites for O 2 - /H 2 O 2 production in mouse liver mitochondria. We also confirm that catalase plays a role in quenching either exogenous or intramitochondrial H 2 O 2 . Copyright © 2017 Elsevier B.V. All rights reserved.
Müller, Sara M; Wang, Shanshan; Telman, Wilena; Liebthal, Michael; Schnitzer, Helena; Viehhauser, Andrea; Sticht, Carsten; Delatorre, Carolina; Wirtz, Markus; Hell, Rüdiger; Dietz, Karl-Josef
2017-09-01
The integration of redox- and reactive oxygen species-dependent signaling and metabolic activities is fundamental to plant acclimation to biotic and abiotic stresses. Previous data suggest the existence of a dynamically interacting module in the chloroplast stroma consisting of cyclophilin 20-3 (Cyp20-3), O-acetylserine(thiol)lyase B (OASTL-B), 2-cysteine peroxiredoxins A/B (2-CysPrx) and serine acetyltransferase 2;1 (SERAT2;1). The functionality of this COPS module is influenced by redox stimuli and oxophytodienoic acid (OPDA), which is the precursor for jasmonic acid. The concept of an integrating function of these proteins in stress signaling was challenged by combining transcriptome and biochemical analyses in Arabidopsis mutants devoid of oastlB, serat2;1, cyp20-3 and 2-cysprxA/B, and wild-type (WT). Leaf transcriptomes were analyzed 6 h after transfer to light intensity 10-fold in excess of growth light or under growth light. The survey of KEGG-based gene ontology groups showed common upregulation of translation- and protein homeostasis-associated transcripts under control conditions in all mutants compared with WT. The results revealed that the interference of the module was accompanied with disturbance of carbohydrate, sulfur and nitrogen metabolism, and also citric acid cycle intermediates. Apart from common regulation, specific responses at the transcriptome and metabolite level linked Cyp20-3 to cell wall-bound carbohydrates and oxylipin signaling, and 2-CysPrx to photosynthesis, sugar and amino acid metabolism. Deletion of either OASTL-B or SERAT2;1 frequently induced antagonistic changes in biochemical or molecular features. Enhanced sensitivity of mutant seedlings to OPDA and leaf discs to NaHS-administration confirmed the presumed functional interference of the COPS module in redox and oxylipin signaling. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.
Ito, Minako; Kondo, Taisuke; Shichita, Takashi; Yoshimura, Akihiko
2013-07-01
Stroke or brain ischemia is one of the major causes of death and disability worldwide. Post-ischemic inflammation is an essential step in the progression of brain ischemia-reperfusion injury. In a mouse stroke model, we have reported that IL-23 produced from infiltrating macrophages induces IL-17 producing T cells. IL-17 is mainly produced from gammadeltaT cells and promotes delayed (day 3-4) ischemic brain damage. We also demonstrated that peroxiredoxin (Prx) family proteins released extracellularly from necrotic brain cells induce expression of inflammatory cytokines including IL-23 in macrophages through activation of Toll-like receptor 2(TLR2) and TLR4, thereby promoting neural cell death. We thus propose that regulation of the IL-23-IL-17 axis including gammadeltaT cells, macrophages, and extracellular Prxs could be a potent neuroprotective tool.
Kinetic and stoichiometric constraints determine the pathway of H2O2 consumption by red blood cells.
Orrico, Florencia; Möller, Matías N; Cassina, Adriana; Denicola, Ana; Thomson, Leonor
2018-05-09
Red blood cells (RBC) are considered as a circulating sink of H 2 O 2 , but a significant debate remains over the role of the different intraerythocyte peroxidases. Herein we examined the kinetic of decomposition of exogenous H 2 O 2 by human RBC at different cell densities, using fluorescent and oxymetric methods, contrasting the results against a mathematical model. Fluorescent measurements as well as oxygen production experiments showed that catalase was responsible for most of the decomposition of H 2 O 2 at cell densities suitable for both experimental settings (0.1-10 × 10 10 cell L -1 ), since sodium azide but not N-ethylmaleimide (NEM) inhibited H 2 O 2 consumption. Oxygen production decreased at high cell densities until none was detected above 1.1 × 10 12 cell L- 1 , being recovered after inhibition of the thiol dependent systems by NEM. This result underlined that the consumption of H 2 O 2 by catalase prevail at RBC densities regularly used for research, while the thiol dependent systems predominate when the cell density increases, approaching the normal number in blood (5 × 10 12 cell L- 1 ). The mathematical model successfully reproduced experimental results and at low cell number it showed a time sequence involving Prx as the first line of defense, followed by catalase, with a minor role by Gpx. The turning points were given by the total consumption of reduced Prx in first place and reduced GSH after that. However, Prx alone was able to account for the added H 2 O 2 (50µM) at physiological RBC density, calling attention to the importance of cell density in defining the pathway of H 2 O 2 consumption and offering an explanation to current apparently conflicting results in the literature. Copyright © 2018. Published by Elsevier Inc.
Howells, Tim; Johnson, Ulf; McKelvey, Tomas; Enblad, Per
2015-02-01
The objective of this study was to identify the optimal frequency range for computing the pressure reactivity index (PRx). PRx is a clinical method for assessing cerebral pressure autoregulation based on the correlation of spontaneous variations of arterial blood pressure (ABP) and intracranial pressure (ICP). Our hypothesis was that optimizing the methodology for computing PRx in this way could produce a more stable, reliable and clinically useful index of autoregulation status. The patients studied were a series of 131 traumatic brain injury patients. Pressure reactivity indices were computed in various frequency bands during the first 4 days following injury using bandpass filtering of the input ABP and ICP signals. Patient outcome was assessed using the extended Glasgow Outcome Scale (GOSe). The optimization criterion was the strength of the correlation with GOSe of the mean index value over the first 4 days following injury. Stability of the indices was measured as the mean absolute deviation of the minute by minute index value from 30-min moving averages. The optimal index frequency range for prediction of outcome was identified as 0.018-0.067 Hz (oscillations with periods from 55 to 15 s). The index based on this frequency range correlated with GOSe with ρ=-0.46 compared to -0.41 for standard PRx, and reduced the 30-min variation by 23%.
Preiksaitis, Aidanas; Krakauskaite, Solventa; Petkus, Vytautas; Rocka, Saulius; Chomskis, Romanas; Dagi, Teodoro Forcht; Ragauskas, Arminas
2016-07-01
Cerebrovascular autoregulation (CA) is an important hemodynamic mechanism that protects the brain against inappropriate fluctuations in cerebral blood flow in the face of changing cerebral perfusion pressure. Temporal CA failure is associated with worse outcomes in various acute neurological diseases. An integrative approach is presently used according to the existing paradigm for the association of series of temporal CA impairments with the outcomes of patients with traumatic brain injury (TBI). To explore the influence of the duration of CA impairment events on severe TBI patient outcomes. Patient age was also included in the analysis of the prospectively collected clinical data. CA monitoring included 33 prospective severe TBI patients. The pressure reactivity index [PRx(t)] was continuously monitored to collect information on the dynamics of CA status and to analyze associations between the duration of the longest CA impairment event and patient outcomes. The Glasgow outcome scale and the duration of the longest CA impairment were negatively correlated. The duration of autoregulation impairment significantly correlated with worse outcomes. Multidimensional representation of Glasgow outcome scale plots showed that better outcomes were obtained for younger patients (age < 47 years) and those whose longest CA impairment event was shorter than 40 minutes if PRx(t) was above 0.7 in the CA impairment event. Unfavorable outcomes for TBI patients are more significantly associated with the duration of the single longest CA impairment episode at a high PRx(t) value, rather than with averaged PRx(t) values or the average time of all CA impairment episodes. ABP, arterial blood pressureABP(t), continuous reference arterial blood pressureCA, cerebrovascular autoregulationCBF, cerebral blood flowCPP, cerebral perfusion pressureGOS, Glasgow outcome scaleGOSHD, Glasgow outcome scale after hospital dischargeGOS6M, Glasgow outcome scale at 6 months after dischargeICP, intracranial pressureICP(t), continuously monitored intracranial pressureLCAI, longest CA impairmentoptCPP, optimal cerebral perfusion pressurePRx(t), pressure reactivity indexTBI, traumatic brain injury.
Si, Mei-Ru; Zhang, Lei; Yang, Zhi-Fang; Xu, Yi-Xiang; Liu, Ying-Bao; Jiang, Cheng-Ying; Wang, Yao; Liu, Shuang-Jiang
2014-01-01
NrdH redoxins are small protein disulfide oxidoreductases behaving like thioredoxins but sharing a high amino acid sequence similarity to glutaredoxins. Although NrdH redoxins are supposed to be another candidate in the antioxidant system, their physiological roles in oxidative stress remain unclear. In this study, we confirmed that the Corynebacterium glutamicum NrdH redoxin catalytically reduces the disulfides in the class Ib ribonucleotide reductases (RNR), insulin and 5,5′-dithiobis-(2-nitrobenzoic acid) (DTNB), by exclusively receiving electrons from thioredoxin reductase. Overexpression of NrdH increased the resistance of C. glutamicum to multiple oxidative stresses by reducing ROS accumulation. Accordingly, elevated expression of the nrdH gene was observed when the C. glutamicum wild-type strain was exposed to oxidative stress conditions. It was discovered that the NrdH-mediated resistance to oxidative stresses was largely dependent on the presence of the thiol peroxidase Prx, as the increased resistance to oxidative stresses mediated by overexpression of NrdH was largely abrogated in the prx mutant. Furthermore, we showed that NrdH facilitated the hydroperoxide reduction activity of Prx by directly targeting and serving as its electron donor. Thus, we present evidence that the NrdH redoxin can protect against the damaging effects of reactive oxygen species (ROS) induced by various exogenous oxidative stresses by acting as a peroxidase cofactor. PMID:24375145
Development of Oromucosal Dosage Forms by Combining Electrospinning and Inkjet Printing.
Palo, Mirja; Kogermann, Karin; Laidmäe, Ivo; Meos, Andres; Preis, Maren; Heinämäki, Jyrki; Sandler, Niklas
2017-03-06
Printing technology has been shown to enable flexible fabrication of solid dosage forms for personalized drug therapy. Several methods can be applied for tailoring the properties of the printed pharmaceuticals. In this study, the use of electrospun fibrous substrates in the fabrication of inkjet-printed dosage forms was investigated. A single-drug formulation with lidocaine hydrochloride (LH) and a combination drug system containing LH and piroxicam (PRX) for oromucosal administration were prepared. The LH was deposited on the electrospun and cross-linked gelatin substrates by inkjet printing, whereas PRX was incorporated within the substrate fibers during electrospinning. The solid state analysis of the electrospun substrates showed that PRX was in an amorphous state within the fibers. Furthermore, the results indicated the entrapment and solidification of the dissolved LH within the fibrous gelatin matrix. The printed drug amount (2-3 mg) was in good correlation with the theoretical dose calculated based on the printing parameters. However, a noticeable degradation of the printed LH was detected after a few months. An immediate release (over 85% drug release after 8 min) of both drugs from the printed dosage forms was observed. In conclusion, the prepared electrospun gelatin scaffolds were shown to be suitable substrates for inkjet printing of oromucosal formulations. The combination of electrospinning and inkjet printing allowed the preparation of a dual drug system.
Learning SAS’s Perl Regular Expression Matching the Easy Way: By Doing
2015-01-12
Doing 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Paul Genovesi 5d. PROJECT NUMBER 5e. TASK NUMBER 5f...regex_learning_tool allows both beginner and expert to efficiently practice PRX matching by selecting and processing only the match records that the user is interested...perl regular expression and/or source string. The regex_learning_tool allows both beginner and expert to efficiently practice PRX matching by
Floerl, Saskia; Majcherczyk, Andrzej; Possienke, Mareike; Feussner, Kirstin; Tappe, Hella; Gatz, Christiane; Feussner, Ivo; Kües, Ursula; Polle, Andrea
2012-01-01
Verticillium longisporum (VL) is one of the most devastating diseases in important oil crops from the family of Brassicaceae. The fungus resides for much time of its life cycle in the extracellular fluid of the vascular system, where it cannot be controlled by conventional fungicides. To obtain insights into the biology of VL-plant interaction in the apoplast, the secretome consisting of the extracellular proteome and metabolome as well as cell wall properties were studied in the model Brassicaceae, Arabidopsis thaliana. VL infection resulted in increased production of cell wall material with an altered composition of carbohydrate polymers and increased lignification. The abundance of several hundred soluble metabolites changed in the apoplast of VL-infected plants including signalling and defence compounds such as glycosides of salicylic acid, lignans and dihydroxybenzoic acid as well as oxylipins. The extracellular proteome of healthy leaves was enriched in antifungal proteins. VL caused specific increases in six apoplast proteins (three peroxidases PRX52, PRX34, P37, serine carboxypeptidase SCPL20, α-galactosidase AGAL2 and a germin-like protein GLP3), which have functions in defence and cell wall modification. The abundance of a lectin-like, chitin-inducible protein (CILLP) was reduced. Since the transcript levels of most of the induced proteins were not elevated until late infection time points (>20 dpi), whereas those of CILLP and GLP3 were reduced at earlier time points, our results may suggest that VL enhances its virulence by rapid down-regulation and delay of induction of plant defence genes. PMID:22363647
Structure of the horseradish peroxidase isozyme C genes.
Fujiyama, K; Takemura, H; Shibayama, S; Kobayashi, K; Choi, J K; Shinmyo, A; Takano, M; Yamada, Y; Okada, H
1988-05-02
We have isolated, cloned and characterized three cDNAs and two genomic DNAs corresponding to the mRNAs and genes for the horseradish (Armoracia rusticana) peroxidase isoenzyme C (HPR C). The amino acid sequence of HRP C1, deduced from the nucleotide sequence of one of the cDNA clone, pSK1, contained the same primary sequence as that of the purified enzyme established by Welinder [FEBS Lett. 72, 19-23 (1976)] with additional sequences at the N and C terminal. All three inserts in the cDNA clones, pSK1, pSK2 and pSK3, coded the same size of peptide (308 amino acid residues) if these are processed in the same way, and the amino acid sequence were homologous to each other by 91-94%. Functional amino acids, including His40, His170, Tyr185 and Arg183 and S-S-bond-forming Cys, were conserved in the three isozymes, but a few N-glycosylation sites were not the same. Two HRP C isoenzyme genomic genes, prxC1 and prxC2, were tandem on the chromosomal DNA and each gene consisted of four exons and three introns. The positions in the exons interrupted by introns were the same in two genes. We observed a putative promoter sequence 5' upstream and a poly(A) signal 3' downstream in both genes. The gene product of prxC1 might be processed with a signal sequence of 30 amino acid residues at the N terminus and a peptide consisting of 15 amino acid residues at the C terminus.
The Prx1 limb enhancers: targeted gene expression in developing zebrafish pectoral fins.
Hernández-Vega, Amayra; Minguillón, Carolina
2011-08-01
Limbs represent an excellent model to study the induction, growth, and patterning of several organs. A breakthrough to study gene function in various tissues has been the characterization of regulatory elements that allow tissue-specific interference of gene function. The mouse Prx1 promoter has been used to generate limb-specific mutants and overexpress genes in tetrapod limbs. Although zebrafish possess advantages that favor their use to study limb morphogenesis, there is no driver described suitable for specifically interfering with gene function in developing fins. We report the generation of zebrafish lines that express enhanced green fluorescent protein (EGFP) driven by the mouse Prx1 enhancer in developing pectoral fins. We also describe the expression pattern of the zebrafish prrx1 genes and identify three conserved non-coding elements (CNEs) that we use to generate fin-specific EGFP reporter lines. Finally, we show that the mouse and zebrafish regulatory elements may be used to modify gene function in pectoral fins. Copyright © 2011 Wiley-Liss, Inc.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-15
... to the local maritime community via broadcast notice to mariners. 2. Impact on Small Entities Under...-AA08 Special Local Regulation; Low Country Splash, Wando River, Cooper River, and Charleston Harbor... establishing a special local regulation on the waters of the Wando River, Cooper River, and Charleston Harbor...
NASA Astrophysics Data System (ADS)
Bitar, Z.; El-Said Bakeer, D.; Awad, R.
2017-07-01
Zinc Cobalt nano ferrite doped with Praseodymium, Zn0.5Co0.5Fe2-xPrxO4 (0 ≤ x ≤ 0.2), were prepared by co-precipitation method from an aqueous solution containing metal chlorides and two concentrations of poly(vinylpyrrolidone) (PVP) 0 and 30g/L as capping agent. The samples were characterized using X-ray powder diffraction (XRD), Transmission Electron Microscope (TEM), UV-visible optical spectroscopy, Fourier transform infrared (FTIR) and Electron Paramagnetic Resonance (EPR). XRD results display the formation of cubic spinel structure with space group Fd3m and the lattice parameter (a) is slightly decreased for PVP capping samples. The particle size that determined by TEM, decreases for PVP capping samples. The optical band energy Eg increases for PVP capping samples, confirming the variation of energy gap with the particle size. The FTIR results indicate that the metal oxide bands were shifted for the PVP capping samples. EPR data shows that the PVP addition increases the magnetic resonance field and hence decreases the g-factor.
Morais, Mariana A B; Giuseppe, Priscila O; Souza, Tatiana A C B; Castro, Helena; Honorato, Rodrigo V; Oliveira, Paulo S L; Netto, Luis E S; Tomas, Ana M; Murakami, Mario T
2017-04-28
Leishmania parasites have evolved a number of strategies to cope with the harsh environmental changes during mammalian infection. One of these mechanisms involves the functional gain that allows mitochondrial 2-Cys peroxiredoxins to act as molecular chaperones when forming decamers. This function is critical for parasite infectivity in mammals, and its activation has been considered to be controlled exclusively by the enzyme redox state under physiological conditions. Herein, we have revealed that magnesium and calcium ions play a major role in modulating the ability of these enzymes to act as molecular chaperones, surpassing the redox effect. These ions are directly involved in mitochondrial metabolism and participate in a novel mechanism to stabilize the decameric form of 2-Cys peroxiredoxins in Leishmania mitochondria. Moreover, we have demonstrated that a constitutively dimeric Prx1m mutant impairs the survival of Leishmania under heat stress, supporting the central role of the chaperone function of Prx1m for Leishmania parasites during the transition from insect to mammalian hosts. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Trending autoregulatory indices during treatment for traumatic brain injury.
Kim, Nam; Krasner, Alex; Kosinski, Colin; Wininger, Michael; Qadri, Maria; Kappus, Zachary; Danish, Shabbar; Craelius, William
2016-12-01
Our goal is to use automatic data monitoring for reliable prediction of episodes of intracranial hypertension in patients with traumatic brain injury. Here we test the validity of our method on retrospective patient data. We developed the Continuous Hemodynamic Autoregulatory Monitor (CHARM), that siphons and stores signals from existing monitors in the surgical intensive care unit (SICU), efficiently compresses them, and standardizes the search for statistical relationships between any proposed index and adverse events. CHARM uses an automated event detector to reliably locate episodes of elevated intracranial pressure (ICP), while eliminating artifacts within retrospective patient data. A graphical user interface allowed data scanning, selection of criteria for events, and calculating indices. The pressure reactivity index (PRx), defined as the least square linear regression slope of intracranial pressure versus arterial BP, was calculated for a single case that spanned 259 h. CHARM collected continuous records of ABP, ICP, ECG, SpO2, and ventilation from 29 patients with TBI over an 18-month period. Analysis of a single patient showed that PRx data distribution in the single hours immediately prior to all 16 intracranial hypertensive events, significantly differed from that in the 243 h that did not precede such events (p < 0.0001). The PRx index, however, lacked sufficient resolution as a real-time predictor of IH in this patient. CHARM streamlines the search for reliable predictors of intracranial hypertension. We report statistical evidence supporting the predictive potential of the pressure reactivity index.
Lázaro, Juan J.; Jiménez, Ana; Camejo, Daymi; Iglesias-Baena, Iván; Martí, María del Carmen; Lázaro-Payo, Alfonso; Barranco-Medina, Sergio; Sevilla, Francisca
2013-01-01
Mitochondrial respiration provides the energy needed to drive metabolic and transport processes in cells. Mitochondria are a significant site of reactive oxygen species (ROS) production in plant cells, and redox-system components obey fine regulation mechanisms that are essential in protecting the mitochondrial integrity. In addition to ROS, there are compelling indications that nitric oxide can be generated in this organelle by both reductive and oxidative pathways. ROS and reactive nitrogen species play a key role in signaling but they can also be deleterious via oxidation of macromolecules. The high production of ROS obligates mitochondria to be provided with a set of ROS scavenging mechanisms. The first line of mitochondrial antioxidants is composed of superoxide dismutase and the enzymes of the ascorbate-glutathione cycle, which are not only able to scavenge ROS but also to repair cell damage and possibly serve as redox sensors. The dithiol-disulfide exchanges form independent signaling nodes and act as antioxidant defense mechanisms as well as sensor proteins modulating redox signaling during development and stress adaptation. The presence of thioredoxin (Trx), peroxiredoxin (Prx) and sulfiredoxin (Srx) in the mitochondria has been recently reported. Cumulative results obtained from studies in salt stress models have demonstrated that these redox proteins play a significant role in the establishment of salt tolerance. The Trx/Prx/Srx system may be subjected to a fine regulated mechanism involving post-translational modifications, among which S-glutathionylation and S-nitrosylation seem to exhibit a critical role that is just beginning to be understood. This review summarizes our current knowledge in antioxidative systems in plant mitochondria, their interrelationships, mechanisms of compensation and some unresolved questions, with special focus on their response to abiotic stress. PMID:24348485
Ghosh Dasgupta, Modhumita; George, Blessan Santhosh; Bhatia, Anil; Sidhu, Om Prakash
2014-01-01
Withania somnifera (L.) Dunal is a valued medicinal plant with pharmaceutical applications. The present study was undertaken to analyze the salicylic acid induced leaf transcriptome of W. somnifera. A total of 45.6 million reads were generated and the de novo assembly yielded 73,523 transcript contig with average transcript contig length of 1620 bp. A total of 71,062 transcripts were annotated and 53,424 of them were assigned GO terms. Mapping of transcript contigs to biological pathways revealed presence of 182 pathways. Seventeen genes representing 12 pathogenesis-related (PR) families were mined from the transcriptome data and their pattern of expression post 17 and 36 hours of salicylic acid treatment was documented. The analysis revealed significant up-regulation of all families of PR genes by 36 hours post treatment except WsPR10. The relative fold expression of transcripts ranged from 1 fold to 6,532 fold. The two families of peroxidases including the lignin-forming anionic peroxidase (WsL-PRX) and suberization-associated anionic peroxidase (WsS-PRX) recorded maximum expression of 377 fold and 6532 fold respectively, while the expression of WsPR10 was down-regulated by 14 fold. Additionally, the most stable reference gene for normalization of qRT-PCR data was also identified. The effect of SA on the accumulation of major secondary metabolites of W. somnifera including withanoside V, withaferin A and withanolide A was also analyzed and an increase in content of all the three metabolites were detected. This is the first report on expression patterns of PR genes during salicylic acid signaling in W. somnifera. PMID:24739900
Kawaoka, Akiyoshi; Matsunaga, Etsuko; Endo, Saori; Kondo, Shinkichi; Yoshida, Kazuya; Shinmyo, Atsuhiko; Ebinuma, Hiroyasu
2003-01-01
We previously demonstrated that overexpression of the horseradish (Armoracia rusticana) peroxidase prxC1a gene stimulated the growth rate of tobacco (Nicotiana tabacum) plants. Here, the cauliflower mosaic virus 35S::prxC1a construct was introduced into hybrid aspen (Populus sieboldii × Populus grandidentata). The growth rate of these transformed hybrid aspen plants was substantially increased under greenhouse conditions. The average stem length of transformed plants was 25% greater than that of control plants. There was no other obvious phenotypic difference between the transformed and control plants. Fast-growing transformed hybrid aspen showed high levels of expression of prxC1a and had elevated peroxidase activities toward guaiacol and ascorbate. However, there was no increase of the endogenous class I ascorbate peroxidase activities in the transformed plants by separate assay and activity staining of native polyacrylamide gel electrophoresis. Furthermore, calli derived from the transformed hybrid aspen grew faster than those from control plants and were resistant to the oxidative stress imposed by hydrogen peroxide. Therefore, enhanced peroxidase activity affects plant growth rate and oxidative stress resistance. PMID:12857800
Kawaoka, Akiyoshi; Matsunaga, Etsuko; Endo, Saori; Kondo, Shinkichi; Yoshida, Kazuya; Shinmyo, Atsuhiko; Ebinuma, Hiroyasu
2003-07-01
We previously demonstrated that overexpression of the horseradish (Armoracia rusticana) peroxidase prxC1a gene stimulated the growth rate of tobacco (Nicotiana tabacum) plants. Here, the cauliflower mosaic virus 35S::prxC1a construct was introduced into hybrid aspen (Populus sieboldii x Populus grandidentata). The growth rate of these transformed hybrid aspen plants was substantially increased under greenhouse conditions. The average stem length of transformed plants was 25% greater than that of control plants. There was no other obvious phenotypic difference between the transformed and control plants. Fast-growing transformed hybrid aspen showed high levels of expression of prxC1a and had elevated peroxidase activities toward guaiacol and ascorbate. However, there was no increase of the endogenous class I ascorbate peroxidase activities in the transformed plants by separate assay and activity staining of native polyacrylamide gel electrophoresis. Furthermore, calli derived from the transformed hybrid aspen grew faster than those from control plants and were resistant to the oxidative stress imposed by hydrogen peroxide. Therefore, enhanced peroxidase activity affects plant growth rate and oxidative stress resistance.
Fernandez-Rio, Javier; Cecchini, Jose A.; Méndez-Gimenez, Antonio; Mendez-Alonso, David; Prieto, Jose A.
2017-01-01
Learning to learn and learning to cooperate are two important goals for individuals. Moreover, self regulation has been identified as fundamental to prevent school failure. The goal of the present study was to assess the interactions between self-regulated learning, cooperative learning and academic self-efficacy in secondary education students experiencing cooperative learning as the main pedagogical approach for at least one school year. 2.513 secondary education students (1.308 males, 1.205 females), 12–17 years old (M = 13.85, SD = 1.29), enrolled in 17 different schools belonging to the National Network of Schools on Cooperative Learning in Spain agreed to participate. They all had experienced this pedagogical approach a minimum of one school year. Participants were asked to complete the cooperative learning questionnaire, the strategies to control the study questionnaire and the global academic self-efficacy questionnaire. Participants were grouped based on their perceptions on cooperative learning and self-regulated learning in their classes. A combination of hierarchical and κ-means cluster analyses was used. Results revealed a four-cluster solution: cluster one included students with low levels of cooperative learning, self-regulated learning and academic self-efficacy, cluster two included students with high levels of cooperative learning, self-regulated learning and academic self-efficacy, cluster three included students with high levels of cooperative learning, low levels of self-regulated learning and intermediate-low levels of academic self-efficacy, and, finally, cluster four included students with high levels of self-regulated learning, low levels of cooperative learning, and intermediate-high levels of academic self-efficacy. Self-regulated learning was found more influential than cooperative learning on students’ academic self-efficacy. In cooperative learning contexts students interact through different types of regulations: self, co, and shared. Educators should be aware of these interactions, symmetrical or asymmetrical, because they determine the quality and quantity of the students’ participation and achievements, and they are key elements to prevent school failure. PMID:28154544
Fernandez-Rio, Javier; Cecchini, Jose A; Méndez-Gimenez, Antonio; Mendez-Alonso, David; Prieto, Jose A
2017-01-01
Learning to learn and learning to cooperate are two important goals for individuals. Moreover, self regulation has been identified as fundamental to prevent school failure. The goal of the present study was to assess the interactions between self-regulated learning, cooperative learning and academic self-efficacy in secondary education students experiencing cooperative learning as the main pedagogical approach for at least one school year. 2.513 secondary education students (1.308 males, 1.205 females), 12-17 years old ( M = 13.85, SD = 1.29), enrolled in 17 different schools belonging to the National Network of Schools on Cooperative Learning in Spain agreed to participate. They all had experienced this pedagogical approach a minimum of one school year. Participants were asked to complete the cooperative learning questionnaire, the strategies to control the study questionnaire and the global academic self-efficacy questionnaire. Participants were grouped based on their perceptions on cooperative learning and self-regulated learning in their classes. A combination of hierarchical and κ -means cluster analyses was used. Results revealed a four-cluster solution: cluster one included students with low levels of cooperative learning, self-regulated learning and academic self-efficacy, cluster two included students with high levels of cooperative learning, self-regulated learning and academic self-efficacy, cluster three included students with high levels of cooperative learning, low levels of self-regulated learning and intermediate-low levels of academic self-efficacy, and, finally, cluster four included students with high levels of self-regulated learning, low levels of cooperative learning, and intermediate-high levels of academic self-efficacy. Self-regulated learning was found more influential than cooperative learning on students' academic self-efficacy. In cooperative learning contexts students interact through different types of regulations: self, co, and shared. Educators should be aware of these interactions, symmetrical or asymmetrical, because they determine the quality and quantity of the students' participation and achievements, and they are key elements to prevent school failure.
Kohn, Anat; Dong, Yufeng; Mirando, Anthony J.; Jesse, Alana M.; Honjo, Tasuku; Zuscik, Michael J.; O’Keefe, Regis J.; Hilton, Matthew J.
2012-01-01
The Notch signaling pathway has emerged as an important regulator of endochondral bone formation. Although recent studies have examined the role of Notch in mesenchymal and chondro-osteo progenitor cell populations, there has yet to be a true examination of Notch signaling specifically within developing and committed chondrocytes, or a determination of whether cartilage and bone formation are regulated via RBPjκ-dependent or -independent Notch signaling mechanisms. To develop a complete understanding of Notch signaling during cartilage and bone development we generated and compared general Notch gain-of-function (Rosa-NICDf/+), RBPjκ-deficient (Rbpjκf/f), and RBPjκ-deficient Notch gain-of-function (Rosa-NICDf/+;Rbpjκf/f) conditional mutant mice, where activation or deletion of floxed alleles were specifically targeted to mesenchymal progenitors (Prx1Cre) or committed chondrocytes (inducible Col2CreERT2). These data demonstrate, for the first time, that Notch regulation of chondrocyte maturation is solely mediated via the RBPjκ-dependent pathway, and that the perichodrium or osteogenic lineage probably influences chondrocyte terminal maturation and turnover of the cartilage matrix. Our study further identifies the cartilage-specific RBPjκ-independent pathway as crucial for the proper regulation of chondrocyte proliferation, survival and columnar chondrocyte organization. Unexpectedly, the RBPjκ-independent Notch pathway was also identified as an important long-range cell non-autonomous regulator of perichondral bone formation and an important cartilage-derived signal required for coordinating chondrocyte and osteoblast differentiation during endochondral bone development. Finally, cartilage-specific RBPjκ-independent Notch signaling likely regulates Ihh responsiveness during cartilage and bone development. PMID:22354840
Spinal Cord Swelling and Alterations in Hydrostatic Pressure After Acute Injury
2016-10-01
8217 started’ surgeries ’ as’ part’ of’ Aim’ 2’ to’ determine...and!to!guide!optimal!perfusion!support! based !on!that.!The! PRx! has! not! been! investigated! in! SCI,! but! given! that! the! cord! also! swells! and...2.!Animal!training!/! Surgery ! ! ! ! ! ! ! ! ! ! ! ! ! 3.!Spinal!cord!monitoring!of!pressure,! oxygenation,!SCBF!and! microdiaysis
Cheong, Hoon; Barbosa Dos Santos, Izailda; Liu, Wenshan; Gosse, Heather N; Park, Sang-Wook
2017-09-02
The jasmonate family of phytohormones plays central roles in plant development and stress acclimation. However, the regulatory modes of their signaling circuitry remain largely unknown. Here we describe that cyclophilin 20-3 (CYP20-3), a binding protein of (+)-12-oxo-phytodienoic acid (OPDA), crisscrosses stress responses with light-dependent redox reactions, which fine-tunes the activity of key enzymes in the plastid photosynthetic carbon assimilation and sulfur assimilation pathways. Under stressed states, OPDA - accumulated in the chloroplasts - binds and promotes CYP20-3 to transfer electron (e - ) from thioredoxins (i.e., type-f2 and -x) to 2-Cys peroxiredoxin B (2-CysPrxB) or serine acetyltransferase 1 (SAT1). Reduction (activation) of 2-CysPrxB then optimizes peroxide detoxification and carbon metabolisms in the photosynthesis, whereas the activation of SAT1 stimulates sulfur assimilation which in turn coordinates redox-resolved nucleus gene expressions in defense responses against biotic and abiotic stresses. Thus, we conclude that CYP20-3 is positioned as a unique metabolic hub in the interface between photosynthesis (light) and OPDA signaling, where controls resource (e - ) allocations between plant growth and defense responses.
The Role of NOX4 and TRX2 in Angiogenesis and Their Potential Cross-Talk
Chen, Chaofei; Li, Li; Zhou, Huanjiao Jenny; Min, Wang
2017-01-01
The nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) family is the major source of reactive oxygen species (ROS) in the vascular system. In this family, NOX4, a constitutive active form of NOXs, plays an important role in angiogenesis. Thioredoxin 2 (TRX2) is a key mitochondrial redox protein that maintains normal protein function and also provides electrons to peroxiredoxin 3 (PRX3) to scavenge H2O2 in mitochondria. Angiogenesis, a process of new blood vessel formation, is involved in a variety of physiological processes and pathological conditions. It seems to be paradoxical for ROS-producing NOX4 and ROS-scavenging TRX2 to have a similar role in promoting angiogenesis. In this review, we will focus on data supporting the role of NOX4 and TRX2 in angiogenesis and their cross-talks and discuss how ROS can positively or negatively regulate angiogenesis, depending on their species, levels and locations. NOX4 and TRX2-mediated ROS signaling could be promising targets for the treatment of angiogenesis-related diseases. PMID:28594389
Plateau Waves of Intracranial Pressure and Partial Pressure of Cerebral Oxygen.
Lang, Erhard W; Kasprowicz, Magdalena; Smielewski, Peter; Pickard, John; Czosnyka, Marek
2016-01-01
This study investigates 55 intracranial pressure (ICP) plateau waves recorded in 20 patients after severe traumatic brain injury (TBI) with a focus on a moving correlation coefficient between mean arterial pressure (ABP) and ICP, called PRx, which serves as a marker of cerebrovascular reactivity, and a moving correlation coefficient between ABP and cerebral partial pressure of oxygen (pbtO2), called ORx, which serves as a marker for cerebral oxygen reactivity. ICP and ICPamplitude increased significantly during the plateau waves, whereas CPP and pbtO2 decreased significantly. ABP, ABP amplitude, and heart rate remained unchanged. In 73 % of plateau waves PRx increased during the wave. ORx showed an increase during and a decrease after the plateau waves, which was not statistically significant. Our data show profound cerebral vasoparalysis on top of the wave and, to a lesser extent, impairment of cerebral oxygen reactivity. The different behavior of the indices may be due to the different latencies of the cerebral blood flow and oxygen level control mechanisms. While cerebrovascular reactivity is a rapidly reacting mechanism, cerebral oxygen reactivity is slower.
Ucer, Serra; Iyer, Srividhya; Kim, Ha-Neui; Han, Li; Rutlen, Christine; Allison, Kelly; Thostenson, Jeff D; de Cabo, Rafael; Jilka, Robert L; O’Brien, Charles; Almeida, Maria; Manolagas, Stavros C
2017-01-01
Old age and sex steroid deficiency are the two most critical factors for the development of osteoporosis. It remains unknown, however, whether the molecular culprits of the two conditions are similar or distinct. We show herein that at 19.5 months of age —a time by which the age-dependent decline of cortical and cancellous bone mass and cortical porosity were fully manifested in C57BL/6J mice—these animals remained functionally estrogen sufficient. Transgenic mice with conditional expression of mitochondria-targeted catalase—a potent H2O2 inactivating enzyme—in cells of the myeloid lineage (mitoCAT;LysM-Cre mice) were protected from the loss of cortical, but not cancellous, bone caused by gonadectomy in either sex. Consistent with these findings, in vitro studies with ERα-deficient Prx1+ cells and gonadectomized young adult mice showed that in both sexes decreased ERα signaling in Prx1+ cells leads to an increase in SDF1, a.k.a. CXCL12, an osteoclastogenic cytokine whose effects were abrogated in macrophages from mitoCAT;LysM-Cre mice. In contrast to sex steroid deficiency, the adverse effects of aging on either cortical or cancellous bone were unaffected in mitoCAT;LysM-Cre mice. On the other hand, attenuation of H2O2 generation in cells of the mesenchymal lineage targeted by Prx1-Cre partially prevented the loss of cortical bone caused by old age. Our results suggest the effects of sex steroid deficiency and aging on the murine skeleton are independent and result from distinct mechanisms. In the former, the prevailing mechanism of the cortical bone loss in both sexes is increased osteoclastogenesis caused by estrogen deficiency; this is likely driven, at least in part, by mesenchymal/stromal cell–derived SDF1. Decreased osteoblastogenesis, owing in part to increased H2O2, combined with increased osteoclastogenesis caused by aging mechanisms independent of estrogen deficiency, are the prevailing mechanisms of the loss of cortical bone with old age. PMID:27714847
Begara-Morales, Juan C.; Sánchez-Calvo, Beatriz; Chaki, Mounira; Valderrama, Raquel; Mata-Pérez, Capilla; Padilla, María N.; Corpas, Francisco J.; Barroso, Juan B.
2016-01-01
Nitric oxide (NO) is a biological messenger that orchestrates a plethora of plant functions, mainly through post-translational modifications (PTMs) such as S-nitrosylation or tyrosine nitration. In plants, hundreds of proteins have been identified as potential targets of these NO-PTMs under physiological and stress conditions indicating the relevance of NO in plant-signaling mechanisms. Among these NO protein targets, there are different antioxidant enzymes involved in the control of reactive oxygen species (ROS), such as H2O2, which is also a signal molecule. This highlights the close relationship between ROS/NO signaling pathways. The major plant antioxidant enzymes, including catalase, superoxide dismutases (SODs) peroxiredoxins (Prx) and all the enzymatic components of the ascorbate-glutathione (Asa-GSH) cycle, have been shown to be modulated to different degrees by NO-PTMs. This mini-review will update the recent knowledge concerning the interaction of NO with these antioxidant enzymes, with a special focus on the components of the Asa-GSH cycle and their physiological relevance. PMID:26909095
Daems, Caroline; Di-Luoffo, Mickaël; Paradis, Élise; Tremblay, Jacques J
2015-07-01
In Leydig cells, steroidogenic acute regulatory protein (STAR) participates in cholesterol shuttling from the outer to the inner mitochondrial membrane, the rate-limiting step in steroidogenesis. Steroid hormone biosynthesis and steroidogenic gene expression are regulated by LH, which activates various signaling pathways and transcription factors, including cAMP/Ca(2+)/CAMK (Ca(2+)/calmodulin-dependent kinase)-myocyte enhancer factor 2 (MEF2). The 4 MEF2 transcription factors are essential regulators of cell differentiation and organogenesis in numerous tissues. Recently, MEF2 was identified in Sertoli and Leydig cells of the testis. Here, we report that MEF2 regulates steroidogenesis in mouse MA-10 Leydig cells by acting on the Star gene. In MA-10 cells depleted of MEF2 using siRNAs (small interfering RNAs), STAR protein levels, Star mRNA levels, and promoter activity were significantly decreased. On its own, MEF2 did not activate the mouse Star promoter but was found to cooperate with forskolin/cAMP. By chromatin immunoprecipitation and DNA precipitation assays, we confirmed MEF2 binding to a consensus element located at -232 bp of the Star promoter. Mutation or deletion of the MEF2 element reduced but did not abrogate the MEF2/cAMP cooperation, indicating that MEF2 cooperates with other DNA-bound transcription factor(s). We identified GATA4 (GATA binding protein 4) as a partner for MEF2 in Leydig cells, because mutation of the GATA element abrogated the MEF2/cAMP cooperation on a reporter lacking a MEF2 element. MEF2 and GATA4 interact as revealed by coimmunoprecipitation, and MEF2 and GATA4 transcriptionally cooperate on the Star promoter. Altogether, our results define MEF2 as a novel regulator of steroidogenesis and Star transcription in Leydig cells and identify GATA4 as a key partner for MEF2-mediated action.
Mir, Albely Afifa; Park, Sook-Young; Sadat, Md. Abu; Kim, Seongbeom; Choi, Jaeyoung; Jeon, Junhyun; Lee, Yong-Hwan
2015-01-01
Fungal pathogens have evolved antioxidant defense against reactive oxygen species produced as a part of host innate immunity. Recent studies proposed peroxidases as components of antioxidant defense system. However, the role of fungal peroxidases during interaction with host plants has not been explored at the genomic level. Here, we systematically identified peroxidase genes and analyzed their impact on fungal pathogenesis in a model plant pathogenic fungus, Magnaporthe oryzae. Phylogeny reconstruction placed 27 putative peroxidase genes into 15 clades. Expression profiles showed that majority of them are responsive to in planta condition and in vitro H2O2. Our analysis of individual deletion mutants for seven selected genes including MoPRX1 revealed that these genes contribute to fungal development and/or pathogenesis. We identified significant and positive correlations among sensitivity to H2O2, peroxidase activity and fungal pathogenicity. In-depth analysis of MoPRX1 demonstrated that it is a functional ortholog of thioredoxin peroxidase in Saccharomyces cerevisiae and is required for detoxification of the oxidative burst within host cells. Transcriptional profiling of other peroxidases in ΔMoprx1 suggested interwoven nature of the peroxidase-mediated antioxidant defense system. The results from this study provide insight into the infection strategy built on evolutionarily conserved peroxidases in the rice blast fungus. PMID:26134974
Hidalgo, Pedro I; Ullán, Ricardo V; Albillos, Silvia M; Montero, Olimpio; Fernández-Bodega, María Ángeles; García-Estrada, Carlos; Fernández-Aguado, Marta; Martín, Juan-Francisco
2014-01-01
The PR-toxin is a potent mycotoxin produced by Penicillium roqueforti in moulded grains and grass silages and may contaminate blue-veined cheese. The PR-toxin derives from the 15 carbon atoms sesquiterpene aristolochene formed by the aristolochene synthase (encoded by ari1). We have cloned and sequenced a four gene cluster that includes the ari1 gene from P. roqueforti. Gene silencing of each of the four genes (named prx1 to prx4) resulted in a reduction of 65-75% in the production of PR-toxin indicating that the four genes encode enzymes involved in PR-toxin biosynthesis. Interestingly the four silenced mutants overproduce large amounts of mycophenolic acid, an antitumor compound formed by an unrelated pathway suggesting a cross-talk of PR-toxin and mycophenolic acid production. An eleven gene cluster that includes the above mentioned four prx genes and a 14-TMS drug/H(+) antiporter was found in the genome of Penicillium chrysogenum. This eleven gene cluster has been reported to be very poorly expressed in a transcriptomic study of P. chrysogenum genes under conditions of penicillin production (strongly aerated cultures). We found that this apparently silent gene cluster is able to produce PR-toxin in P. chrysogenum under static culture conditions on hydrated rice medium. Noteworthily, the production of PR-toxin was 2.6-fold higher in P. chrysogenum npe10, a strain deleted in the 56.8kb amplifiable region containing the pen gene cluster, than in the parental strain Wisconsin 54-1255 providing another example of cross-talk between secondary metabolite pathways in this fungus. A detailed PR-toxin biosynthesis pathway is proposed based on all available evidence. Copyright © 2013 Elsevier Inc. All rights reserved.
Intrahospital Transfer of Patients with Traumatic Brain Injury: Increase in Intracranial Pressure.
Trofimov, Alex; Kalentiev, George; Yuriev, Michail; Pavlov, Vladislav; Grigoryeva, Vera
2016-01-01
To assess the dynamic of intracranial pressure (ICP), cerebral perfusion pressure (CPP), and dynamic pressure reactivity index (PRx) during intrahospital transport. There were 33 comatose patients with severe traumatic brain injury (TBI). The mean age was 36.3 ± 4.8 years (range 19-45 years), and there were 17 men and 16 women. The median Glasgow Coma Scale score at admission was 6.2 ± 0.7. Computed tomography (CT) included native CT, perfusion CT, and CT angiography. The mean CPPs before and after the CT scans were 95.9 ± 10.7 and 81.5 ± 12.5 mmHg respectively. The mean ICP before transport was 19.98 ± 5.3 mmHg (minimum 11.7; maximum 51.7). It was statistically significantly lower (p < 0.001) than during the transfer (26.1 ± 13.5 mmHg). During the period described all patients had increased ICP, especially during vertical movement in an elevator. During horizontal movement on the floor ICP remained higher (p < 0.05). The mean dynamic PRx before and after intrahospital transport was 0.23 ± 0.14 and 0.52 ± 0.04, respectively (p < 0.001). Average duration of the transfer and CT study was 15.3 ± 3.4 min. Intrahospital transport of patients with TBI may lead to a significant increase in ICP, dynamic PRx, and decreased CPP. The results suppose that the decision to perform brain CT in comatose patients with TBI should be carefully considered by clinicians.
Prolonged fasting increases glutathione biosynthesis in postweaned northern elephant seals.
Vázquez-Medina, José Pablo; Zenteno-Savín, Tania; Forman, Henry Jay; Crocker, Daniel E; Ortiz, Rudy M
2011-04-15
Northern elephant seals experience prolonged periods of absolute food and water deprivation (fasting) while breeding, molting or weaning. The postweaning fast in elephant seals is characterized by increases in the renin-angiotensin system, expression of the oxidant-producing protein Nox4, and NADPH oxidase activity; however, these increases are not correlated with increased oxidative damage or inflammation. Glutathione (GSH) is a potent reductant and a cofactor for glutathione peroxidases (GPx), glutathione-S transferases (GST) and 1-cys peroxiredoxin (PrxVI) and thus contributes to the removal of hydroperoxides, preventing oxidative damage. The effects of prolonged food deprivation on the GSH system are not well described in mammals. To test our hypothesis that GSH biosynthesis increases with fasting in postweaned elephant seals, we measured circulating and muscle GSH content at the early and late phases of the postweaning fast in elephant seals along with the activity/protein content of glutamate-cysteine ligase [GCL; catalytic (GCLc) and modulatory (GCLm) subunits], γ-glutamyl transpeptidase (GGT), glutathione disulphide reductase (GR), glucose-6-phosphate dehydrogenase (G6PDH), GST and PrxVI, as well as plasma changes in γ-glutamyl amino acids, glutamate and glutamine. GSH increased two- to four-fold with fasting along with a 40-50% increase in the content of GCLm and GCLc, a 75% increase in GGT activity, a two- to 2.5-fold increase in GR, G6PDH and GST activities and a 30% increase in PrxVI content. Plasma γ-glutamyl glutamine, γ-glutamyl isoleucine and γ-glutamyl methionine also increased with fasting whereas glutamate and glutamine decreased. Results indicate that GSH biosynthesis increases with fasting and that GSH contributes to counteracting hydroperoxide production, preventing oxidative damage in fasting seals.
Prolonged fasting increases glutathione biosynthesis in postweaned northern elephant seals
Vázquez-Medina, José Pablo; Zenteno-Savín, Tania; Forman, Henry Jay; Crocker, Daniel E.; Ortiz, Rudy M.
2011-01-01
SUMMARY Northern elephant seals experience prolonged periods of absolute food and water deprivation (fasting) while breeding, molting or weaning. The postweaning fast in elephant seals is characterized by increases in the renin–angiotensin system, expression of the oxidant-producing protein Nox4, and NADPH oxidase activity; however, these increases are not correlated with increased oxidative damage or inflammation. Glutathione (GSH) is a potent reductant and a cofactor for glutathione peroxidases (GPx), glutathione-S transferases (GST) and 1-cys peroxiredoxin (PrxVI) and thus contributes to the removal of hydroperoxides, preventing oxidative damage. The effects of prolonged food deprivation on the GSH system are not well described in mammals. To test our hypothesis that GSH biosynthesis increases with fasting in postweaned elephant seals, we measured circulating and muscle GSH content at the early and late phases of the postweaning fast in elephant seals along with the activity/protein content of glutamate-cysteine ligase [GCL; catalytic (GCLc) and modulatory (GCLm) subunits], γ-glutamyl transpeptidase (GGT), glutathione disulphide reductase (GR), glucose-6-phosphate dehydrogenase (G6PDH), GST and PrxVI, as well as plasma changes in γ-glutamyl amino acids, glutamate and glutamine. GSH increased two- to four-fold with fasting along with a 40–50% increase in the content of GCLm and GCLc, a 75% increase in GGT activity, a two- to 2.5-fold increase in GR, G6PDH and GST activities and a 30% increase in PrxVI content. Plasma γ-glutamyl glutamine, γ-glutamyl isoleucine and γ-glutamyl methionine also increased with fasting whereas glutamate and glutamine decreased. Results indicate that GSH biosynthesis increases with fasting and that GSH contributes to counteracting hydroperoxide production, preventing oxidative damage in fasting seals. PMID:21430206
Vijayakumar, Priya; Datta, Sourav; Dolan, Liam
2016-12-01
ROOT HAIR DEFECTIVE SIX-LIKE4 (RSL4) is necessary and sufficient for root hair elongation in Arabidopsis thaliana. Root hair length is determined by the duration for which RSL4 protein is present in the developing root hair. The aim of this research was to identify genes regulated by RSL4 that affect root hair growth. To identify genes regulated by RSL4, we identified genes whose expression was elevated by induction of RSL4 activity in the presence of an inhibitor of translation. Thirty-four genes were identified as putative targets of RSL transcriptional regulation, and the results suggest that the activities of SUPPRESSOR OF ACTIN (SAC1), EXOCSYT SUBUNIT 70A1 (EXO70A1), PEROXIDASE7 (PRX7) and CALCIUM-DEPENDENT PROTEIN KINASE11 (CPK11) are required for root hair elongation. These data indicate that RSL4 controls cell growth by controlling the expression of genes encoding proteins involved in cell signalling, cell wall modification and secretion. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
Characterization of the Arabidopsis thaliana 2-Cys peroxiredoxin interactome.
Cerveau, Delphine; Kraut, Alexandra; Stotz, Henrik U; Mueller, Martin J; Couté, Yohann; Rey, Pascal
2016-11-01
Peroxiredoxins are ubiquitous thiol-dependent peroxidases for which chaperone and signaling roles have been reported in various types of organisms in recent years. In plants, the peroxidase function of the two typical plastidial 2-Cys peroxiredoxins (2-Cys PRX A and B) has been highlighted while the other functions, particularly in ROS-dependent signaling pathways, are still elusive notably due to the lack of knowledge of interacting partners. Using an ex vivo approach based on co-immunoprecipitation of leaf extracts from Arabidopsis thaliana wild-type and mutant plants lacking 2-Cys PRX expression followed by mass spectrometry-based proteomics, 158 proteins were found associated with 2-Cys PRXs. Already known partners like thioredoxin-related electron donors (Chloroplastic Drought-induced Stress Protein of 32kDa, Atypical Cysteine Histidine-rich Thioredoxin 2) and enzymes involved in chlorophyll synthesis (Protochlorophyllide OxidoReductase B) or carbon metabolism (Fructose-1,6-BisPhosphatase) were identified, validating the relevance of the approach. Bioinformatic and bibliographic analyses allowed the functional classification of the identified proteins and revealed that more than 40% are localized in plastids. The possible roles of plant 2-Cys PRXs in redox signaling pathways are discussed in relation with the functions of the potential partners notably those involved in redox homeostasis, carbon and amino acid metabolisms as well as chlorophyll biosynthesis. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Pang, Chun; Sheng, Yu-chen; Jiang, Ping; Wei, Hai; Ji, Li-li
2015-01-01
Chlorogenic acid (CGA), a polyphenolic compound, is abundant in fruits, dietary vegetables, and some medicinal herbs. This study investigated the prevention of CGA against acetaminophen (AP)-induced hepatotoxicity and its engaged mechanisms. CGA reversed the decreased cell viability induced by AP in L-02 cells in vitro. In addition, CGA reduced the AP-induced increased serum levels of alanine/aspartate aminotransferase (ALT/AST) in vivo. The effect of CGA on cytochrome P450 (CYP) enzymatic (CYP2E1, CYP1A2, and CYP3A4) activities showed that CGA caused very little inhibition on CYP2E1 and CYP1A2 enzymatic activities, but not CYP3A4. The measurement of liver malondialdehyde (MDA), reactive oxygen species (ROS), and glutathione (GSH) levels showed that CGA prevented AP-induced liver oxidative stress injury. Further, CGA increased the AP-induced decreased mRNA expression of peroxiredoxin (Prx) 1, 2, 3, 5, 6, epoxide hydrolase (Ephx) 2, and polymerase (RNA) II (DNA directed) polypeptide K (Polr2k), and nuclear factor erythroid-2-related factor 2 (Nrf2). In summary, CGA ameliorates the AP-induced liver injury probably by slightly inhibiting CYP2E1 and CYP1A2 enzymatic properties. In addition, cellular important antioxidant signals such as Prx1, 2, 3, 5, 6, Ephx2, Polr2k, and Nrf2 also contributed to the protection of CGA against AP-induced oxidative stress injury. PMID:26160718
Penkina, Anna; Semjonov, Kristian; Hakola, Maija; Vuorinen, Sirpa; Repo, Timo; Yliruusi, Jouko; Aruväli, Jaan; Kogermann, Karin; Veski, Peep; Heinämäki, Jyrki
2016-01-01
Amorphous solid dispersions (SDs) open up exciting opportunities in formulating poorly water-soluble active pharmaceutical ingredients (APIs). In the present study, novel catalytic pretreated softwood cellulose (CPSC) and polyvinylpyrrolidone (PVP) were investigated as carrier polymers for preparing and stabilizing cryogenic co-ground SDs of poorly water-soluble piroxicam (PRX). CPSC was isolated from pine wood (Pinus sylvestris). Raman and Fourier transform infrared (FTIR) spectroscopy, X-ray powder diffraction (XRPD) and differential scanning calorimetry (DSC) were used for characterizing the solid-state changes and drug-polymer interactions. High-resolution scanning electron microscope (SEM) was used to analyze the particle size and surface morphology of starting materials and final cryogenic co-ground SDs. In addition, the molecular aspects of drug-polymer interactions and stabilization mechanisms are presented. The results showed that the carrier polymer influenced both the degree of amorphization of PRX and stabilization against crystallization. The cryogenic co-ground SDs prepared from PVP showed an enhanced dissolution rate of PRX, while the corresponding SDs prepared from CPSC exhibited a clear sustained release behavior. In conclusion, cryogenic co-grinding provides a versatile method for preparing amorphous SDs of poorly water-soluble APIs. The solid-state stability and dissolution behavior of such co-ground SDs are to a great extent dependent on the carrier polymer used.
Czosnyka, Z; van den Boogaard, F; Czosnyka, M; Momjian, S; Gelling, L; Pickard, J D
2005-01-01
Previously, we documented association between CSF circulation and transcranial-Doppler derived autoregulation in non-shunted patients suffering from hydrocephalus. In the present study we sought to investigate the relationship between the resistance to CSF outflow and pressure-reactivity both in shunted and non-shunted NPH patients. Sixty-eight patients (47 non-shunted and 21 shunted) with NPH have been examined as a part of routine diagnostic procedure. Resistance to CSF outflow (Rcsf) was measured using a ventricular constant rate infusion test. Cerebrovascular pressure-reactivity was assessed as a moving correlation coefficient (PRx) between coherent 'slow waves' of ICP and arterial blood pressure (ABP). This variable has previously been demonstrated to correlate with the autoregulation of CBF in patients following head injury. Results. In non-shunted patients cerebrovascular pressure-reactivity (PRx) was negatively correlated with Rcsf (R = -0.5; p < 0.0005). This relationship was inverted in shunted patients: a positive correlation between PRx and Rcsf was found (R = 0.51; p < 0.03). Cerebrovascular pressure-reactivity is disturbed in patients with normal resistance to CSF outflow, suggesting underlying cerebrovascular disease. This result confirms our previous finding where transcranial Doppler autoregulation was investigated. After shunting the pressure-reactivity strongly depends on shunt functioning and deteriorates when the shunt is blocked.
2 CFR 1401.220 - Cooperative agreement.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 2 Grants and Agreements 1 2013-01-01 2013-01-01 false Cooperative agreement. 1401.220 Section 1401.220 Grants and Agreements Federal Agency Regulations for Grants and Agreements DEPARTMENT OF THE... agreement. Cooperative agreement means an award of financial assistance that, consistent with 31 U.S.C. 6305...
Sautel, Céline F; Ortet, Philippe; Saksouk, Nehmé; Kieffer, Sylvie; Garin, Jérôme; Bastien, Olivier; Hakimi, Mohamed-Ali
2009-01-01
The ability of living cells to alter their gene expression patterns in response to environmental changes is essential for viability. Oxidative stress represents a common threat for all aerobic life. In normally growing cells, in which hydrogen peroxide generation is transient or pulsed, the antioxidant systems efficiently control its concentration. Intracellular parasites must also protect themselves against the oxidative burst imposed by the host. In this work, we have investigated the role of KMTox, a new histone lysine methyltransferase, in the obligate intracellular parasite Toxoplasma gondii. KMTox is a nuclear protein that holds a High Mobility Group domain, which is thought to recognize bent DNA. The enzyme methylates both histones H4 and H2A in vitro with a great preference for the substrate in reduced conditions. Importantly, KMTox interacts specifically with the typical 2-cys peroxiredoxin-1 and the binding is to some extent enhanced upon oxidation. It appears that the cellular functions that are primarily regulated by the KMTox are antioxidant defences and maintenance of cellular homeostasis. KMTox may regulate gene expression in T. gondii by providing the rapid re-arrangement of chromatin domains and by interacting with the redox-sensor TgPrx1 contribute to establish the antioxidant 'firewall' in T. gondii.
Explosive Tandem and Segmental Duplications of Multigenic Families in Eucalyptus grandis
Li, Qiang; Yu, Hong; Cao, Phi Bang; Fawal, Nizar; Mathé, Catherine; Azar, Sahar; Cassan-Wang, Hua; Myburg, Alexander A.; Grima-Pettenati, Jacqueline; Marque, Christiane; Teulières, Chantal; Dunand, Christophe
2015-01-01
Plant organisms contain a large number of genes belonging to numerous multigenic families whose evolution size reflects some functional constraints. Sequences from eight multigenic families, involved in biotic and abiotic responses, have been analyzed in Eucalyptus grandis and compared with Arabidopsis thaliana. Two transcription factor families APETALA 2 (AP2)/ethylene responsive factor and GRAS, two auxin transporter families PIN-FORMED and AUX/LAX, two oxidoreductase families (ascorbate peroxidases [APx] and Class III peroxidases [CIII Prx]), and two families of protective molecules late embryogenesis abundant (LEA) and DNAj were annotated in expert and exhaustive manner. Many recent tandem duplications leading to the emergence of species-specific gene clusters and the explosion of the gene numbers have been observed for the AP2, GRAS, LEA, PIN, and CIII Prx in E. grandis, while the APx, the AUX/LAX and DNAj are conserved between species. Although no direct evidence has yet demonstrated the roles of these recent duplicated genes observed in E. grandis, this could indicate their putative implications in the morphological and physiological characteristics of E. grandis, and be the key factor for the survival of this nondormant species. Global analysis of key families would be a good criterion to evaluate the capabilities of some organisms to adapt to environmental variations. PMID:25769696
Structure-based Insights into the Catalytic Power and Conformational Dexterity of Peroxiredoxins
Hall, Andrea; Nelson, Kimberly; Poole, Leslie B.
2011-01-01
Abstract Peroxiredoxins (Prxs), some of nature's dominant peroxidases, use a conserved Cys residue to reduce peroxides. They are highly expressed in organisms from all kingdoms, and in eukaryotes they participate in hydrogen peroxide signaling. Seventy-two Prx structures have been determined that cover much of the diversity of the family. We review here the current knowledge and show that Prxs can be effectively classified by a structural/evolutionary organization into six subfamilies followed by specification of a 1-Cys or 2-Cys mechanism, and for 2-Cys Prxs, the structural location of the resolving Cys. We visualize the varied catalytic structural transitions and highlight how they differ depending on the location of the resolving Cys. We also review new insights into the question of how Prxs are such effective catalysts: the enzyme activates not only the conserved Cys thiolate but also the peroxide substrate. Moreover, the hydrogen-bonding network created by the four residues conserved in all Prx active sites stabilizes the transition state of the peroxidatic SN2 displacement reaction. Strict conservation of the peroxidatic active site along with the variation in structural transitions provides a fascinating picture of how the diverse Prxs function to break down peroxide substrates rapidly. Antioxid. Redox Signal. 15, 795–815. PMID:20969484
Impurity quadrupole Kondo ground state in a dilute Pr system Y1-xPrxIr2Zn20
NASA Astrophysics Data System (ADS)
Yamane, Yu; Onimaru, Takahiro; Uenishi, Kazuto; Wakiya, Kazuhei; Matsumoto, Keisuke T.; Umeo, Kazunori; Takabatake, Toshiro
2018-05-01
The electrical resistivity ρ and specific heat C of a dilute Pr system Y1-xPrxIr2Zn20 for 0 ≤ x ≤ 0.44 were measured to study the phenomena arising from active quadrupoles of the Pr3+ ion with 4f2 configuration. On cooling, ρ's of all samples monotonically decrease, while the residual resistivity ratio ρ(300 K)/ρ(3 K) drastically decreases with x. In the whole range x ≤ 0.44, the magnetic contribution to the specific heat divided by temperature Cm/T shows a broad maximum at around 10 K, which can be reproduced by a two-level model with a first-excited triplet separated by 30 K from a ground state doublet. This indicates that the crystalline electric field ground state of the Pr ions remains in the Γ3 doublet for the cubic Td point group. On cooling, the Cm/T data for x = 0.085 and 0.44 approach constant values at T<0.3 K as expected from the random two-level model. By contrast, Cm/T for x = 0.044 increases continuously down to 0.08 K, suggesting a non-Fermi liquid state due to the impurity quadrupole Kondo effect.
Martí, María C; Florez-Sarasa, Igor; Camejo, Daymi; Ribas-Carbó, Miquel; Lázaro, Juan J; Sevilla, Francisca; Jiménez, Ana
2011-07-01
Mitochondria play an essential role in reactive oxygen species (ROS) signal transduction in plants. Redox regulation is an essential feature of mitochondrial function, with thioredoxin (Trx), involved in disulphide/dithiol interchange, playing a prominent role. To explore the participation of mitochondrial PsTrxo1, Mn-superoxide dismutase (Mn-SOD), peroxiredoxin (PsPrxII F), and alternative oxidase (AOX) under salt stress, their transcriptional and protein levels were analysed in pea plants growing under 150 mM NaCl for a short and a long period. The activities of mitochondrial Mn-SOD and Trx together with the in vivo activities of the alternative pathway (AP) and the cytochrome pathway (CP) were also determined, combined with the characterization of the plant physiological status as well as the mitochondrial oxidative indicators. The analysis of protein and mRNA levels and activities revealed the importance of the post-transcriptional and post-translational regulation of these proteins in the response to salt stress. Increases in AOX protein amount correlated with increases in AP capacity, whereas in vivo AP activity was maintained under salt stress. Similarly, Mn-SOD activity was also maintained. Under all the stress treatments, photosynthesis, stomatal conductance, and CP activity were decreased although the oxidative stress in leaves was only moderate. However, an increase in lipid peroxidation and protein oxidation was found in mitochondria isolated from leaves under the short-term salinity conditions. In addition, an increase in mitochondrial Trx activity was produced in response to the long-term NaCl treatment. The results support a role for PsTrxo1 as a component of the defence system induced by NaCl in pea mitochondria, providing the cell with a mechanism by which it can respond to changing environment protecting mitochondria from oxidative stress together with Mn-SOD, AOX, and PrxII F.
Mello, Danielle F.; de Oliveira, Eliza S.; Vieira, Renato C.; Simoes, Erik; Trevisan, Rafael; Dafre, Alcir Luiz; Barracco, Margherita Anna
2012-01-01
Hemocytes mediate a series of immune reactions essential for bivalve survival in the environment, however, the impact of harmful algal species and their associated phycotoxins upon bivalve immune system is under debate. To better understand the possible toxic effects of these toxins, Crassostrea gigas hemocytes were exposed to brevetoxin (PbTx-2). Hemocyte viability, monitored through the neutral red retention and MTT reduction assays, and apoptosis (Hoechst staining) remained unchanged during 12 h of exposure to PbTx-2 in concentrations up to 1000 µg/L. Despite cell viability and apoptosis remained stable, hemocytes incubated for 4 h with 1000 µg/L of PbTx-2 revealed higher expression levels of Hsp70 (p < 0.01) and CYP356A1 (p < 0.05) transcripts and a tendency to increase FABP expression, as evaluated by Real-Time quantitative PCR. The expression of other studied genes (BPI, IL-17, GSTO, EcSOD, Prx6, SOD and GPx) remained unchanged. The results suggest that the absence of cytotoxic effects of PbTx-2 in Crassostrea gigas hemocytes, even at high concentrations, allow early defense responses to be produced by activating protective mechanisms associated to detoxification (CYP356A1 and possibly FABP) and stress (Hsp70), but not to immune or to antioxidant (BPI, IL-17, EcSOD, Prx6, GPx and SOD) related genes. PMID:22611355
24 CFR 213.275 - Nature of the Cooperative Management Housing Insurance Fund.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 24 Housing and Urban Development 2 2014-04-01 2014-04-01 false Nature of the Cooperative Management Housing Insurance Fund. 213.275 Section 213.275 Housing and Urban Development Regulations Relating... Nature of the Cooperative Management Housing Insurance Fund. The Cooperative Management Housing Insurance...
24 CFR 213.275 - Nature of the Cooperative Management Housing Insurance Fund.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 24 Housing and Urban Development 2 2013-04-01 2013-04-01 false Nature of the Cooperative Management Housing Insurance Fund. 213.275 Section 213.275 Housing and Urban Development Regulations Relating... Nature of the Cooperative Management Housing Insurance Fund. The Cooperative Management Housing Insurance...
24 CFR 213.275 - Nature of the Cooperative Management Housing Insurance Fund.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 24 Housing and Urban Development 2 2011-04-01 2011-04-01 false Nature of the Cooperative Management Housing Insurance Fund. 213.275 Section 213.275 Housing and Urban Development Regulations Relating... Nature of the Cooperative Management Housing Insurance Fund. The Cooperative Management Housing Insurance...
24 CFR 213.275 - Nature of the Cooperative Management Housing Insurance Fund.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 24 Housing and Urban Development 2 2012-04-01 2012-04-01 false Nature of the Cooperative Management Housing Insurance Fund. 213.275 Section 213.275 Housing and Urban Development Regulations Relating... Nature of the Cooperative Management Housing Insurance Fund. The Cooperative Management Housing Insurance...
24 CFR 213.275 - Nature of the Cooperative Management Housing Insurance Fund.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 24 Housing and Urban Development 2 2010-04-01 2010-04-01 false Nature of the Cooperative Management Housing Insurance Fund. 213.275 Section 213.275 Housing and Urban Development Regulations Relating... Nature of the Cooperative Management Housing Insurance Fund. The Cooperative Management Housing Insurance...
Spin-split fermi surfaces in CexLa1-xB6 and PrxLa1-xB6
NASA Astrophysics Data System (ADS)
Isshiki, T.; Endo, M.; Sugi, M.; Kimura, N.; Nakamura, S.; Nojima, T.; Aoki, H.; Kunii, S.
2006-05-01
We have performed the dHvA measurements on CexLa1-xB6 and PrxLa1-xB6 compounds to study spin splitting of the Fermi surfaces. In PrB 6 we have found new frequency branches to confirm that the Fermi surface splits into up and down spin Fermi surfaces, whereas no spin splitting has been found for x=0.25,0.5,0.75. We have also found several new frequency branches in CeB6. The new frequency branches imply that the Fermi surfaces of up and down spin conduction electrons are significantly different in CeB6 as well as in PrB6.
Han, Shuan; Fang, Lin; Ren, Xuejian; Wang, Wenle; Jiang, Jing
2015-01-01
Mitogen-activated protein kinases (MPKs) play critical roles in signalling and growth, and Ca(2+) and H2 O2 control plant growth processes associated with abscisic acid (ABA). However, it remains unclear how MPKs are involved in H2 O2 - and Ca(2+) -mediated root elongation. Root elongation in seedlings of the loss-of-function mutant Atmpk6 (Arabidopsis thaliana MPK6) was less sensitive to moderate H2 O2 or ABA than that in wild-type (WT) plants. The enhanced elongation was a result of root cell expansion. This effect disappeared when ABA-induced H2 O2 accumulation or the cytosolic Ca(2+) increase were defective. Molecular and biochemical evidence showed that increased expression of the cell wall peroxidase PRX34 in Atmpk6 root cells enhanced apoplastic H2 O2 generation; this promoted a cytosolic Ca(2+) increase and Ca(2+) influx across the plasma membrane. The plasma membrane damage caused by high levels of H2 O2 was ameliorated in a Ca(2+) -dependent manner. These results suggested that there was intensified PRX34-mediated H2 O2 generation in the apoplast and increased Ca(2+) flux into the cytosol of Atmpk6 root cells; that is, the spatial separation of apoplastic H2 O2 from cytosolic Ca(2+) in root cells prevented H2 O2 -induced inhibition of root elongation in Atmpk6 seedlings. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.
43 CFR 3192.12 - What activities may Tribes or States perform under cooperative agreements?
Code of Federal Regulations, 2012 CFR
2012-10-01
... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false What activities may Tribes or States perform under cooperative agreements? 3192.12 Section 3192.12 Public Lands: Interior Regulations Relating... Cooperative Agreements § 3192.12 What activities may Tribes or States perform under cooperative agreements...
43 CFR 3192.12 - What activities may Tribes or States perform under cooperative agreements?
Code of Federal Regulations, 2011 CFR
2011-10-01
... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false What activities may Tribes or States perform under cooperative agreements? 3192.12 Section 3192.12 Public Lands: Interior Regulations Relating... Cooperative Agreements § 3192.12 What activities may Tribes or States perform under cooperative agreements...
A transcriptome analysis of two grapevine populations segregating for tendril phyllotaxy
Arro, Jie; Cuenca, Jose; Yang, Yingzhen; Liang, Zhenchang; Cousins, Peter; Zhong, Gan-Yuan
2017-01-01
The shoot structure of cultivated grapevine Vitis vinifera L. typically exhibits a three-node modular repetitive pattern, two sequential leaf-opposed tendrils followed by a tendril-free node. In this study, we investigated the molecular basis of this pattern by characterizing differentially expressed genes in 10 bulk samples of young tendril tissue from two grapevine populations showing segregation of mutant or wild-type shoot/tendril phyllotaxy. One population was the selfed progeny and the other one, an outcrossed progeny of a Vitis hybrid, ‘Roger’s Red’. We analyzed 13 375 expressed genes and carried out in-depth analyses of 324 of them, which were differentially expressed with a minimum of 1.5-fold changes between the mutant and wild-type bulk samples in both selfed and cross populations. A significant portion of these genes were direct cis-binding targets of 14 transcription factor families that were themselves differentially expressed. Network-based dependency analysis further revealed that most of the significantly rewired connections among the 10 most connected hub genes involved at least one transcription factor. TCP3 and MYB12, which were known important for plant-form development, were among these transcription factors. More importantly, TCP3 and MYB12 were found in this study to be involved in regulating the lignin gene PRX52, which is important to plant-form development. A further support evidence for the roles of TCP3-MYB12-PRX52 in contributing to tendril phyllotaxy was the findings of two other lignin-related genes uniquely expressed in the mutant phyllotaxy background. PMID:28713572
Lust, Andres; Strachan, Clare J; Veski, Peep; Aaltonen, Jaakko; Heinämäki, Jyrki; Yliruusi, Jouko; Kogermann, Karin
2015-01-01
The conversion of active pharmaceutical ingredient (API) from amorphous to crystalline form is the primary stability issue in formulating amorphous solid dispersions (SDs). The aim of the present study was to carry out qualitative and quantitative analysis of the physical solid-state stability of the SDs of poorly water-soluble piroxicam (PRX) and polyvinyl caprolactam-polyvinyl acetate-polyethylene-glycol graft copolymer (Soluplus(®)). The SDs were prepared by a solvent evaporation method and stored for six months at 0% RH/6 °C, 0% RH/25 °C, 40% RH/25 °C and 75% RH/25 °C. Fourier transform infrared spectroscopy equipped with attenuated total reflection accessory (ATR-FTIR) and Raman spectroscopy were used for characterizing the physical solid-state changes and drug-polymer interactions. The principal component analysis (PCA) and multivariate curve resolution alternating least squares (MCR-ALS) were used for the qualitative and quantitative analysis of Raman spectra collected during storage. When stored at 0% RH/6 °C and at 0% RH/25 °C, PRX in SDs remained in an amorphous form since no recrystallization was observed by ATR-FTIR and Raman spectroscopy. Raman spectroscopy coupled with PCA and MCR-ALS and ATR-FTIR spectroscopy enabled to detect the recrystallization of amorphous PRX in the samples stored at higher humidity. Copyright © 2015 Elsevier B.V. All rights reserved.
Bragin, Denis E.; Statom, Gloria; Nemoto, Edwin M.
2016-01-01
SUMMARY We previously suggested that the discrepancy between the critical cerebral perfusion pressures (CPP) of 30 mmHg, obtained by increasing intracranial pressure (ICP), and 60 mmHg, obtained by decreasing arterial pressure, was due to pathological microvascular shunting at high ICP [1] and that the determination of the critical CPP by the static cerebral blood flow (CBF) autoregulation curve is not valid with intracranial hypertension. Here we demonstrated that critical CPP, measured by induced dynamic ICP reactivity (iPRx) and cerebrovascular reactivity (CVRx), accurately identifies the critical CPP in the hypertensive rat brain which differs from that obtained by the static autoregulation curve. Step changes in CPP from 70 to 50 and 30 mmHg were made by increasing ICP using an artificial cerebrospinal fluid reservoir connected to the cisterna magna. At each CPP, a transient 10-mmHg rise in arterial pressure was induced by bolus i.v. dopamine. iPRx and iCVRx were calculated as ΔICP/ΔMAP and as ΔCBF/ΔMAP, respectively. The critical CPP at high ICP, obtained by iPRx and iCVRx, is 50 mmHg, where compromised capillary flow, transition of blood flow to non-nutritive microvascular shunts, tissue hypoxia and BBB leakage begin to occur, which is higher than the 30 mmHg determined by static autoregulation. PMID:27165917
Bragin, Denis E; Statom, Gloria; Nemoto, Edwin M
2016-01-01
We previously suggested that the discrepancy between a critical cerebral perfusion pressure (CPP) of 30 mmHg, obtained by increasing intracranial pressure (ICP), and 60 mmHg, obtained by decreasing arterial pressure, was due to pathological microvascular shunting at high ICP [1], and that the determination of the critical CPP by the static cerebral blood flow (CBF) autoregulation curve is not valid with intracranial hypertension. Here, we demonstrated that induced dynamic ICP reactivity (iPRx), and cerebrovascular reactivity (CVRx) tests accurately identify the critical CPP in the hypertensive rat brain, which differs from that obtained by the static autoregulation curve. Step changes in CPP from 70 to 50 and 30 mmHg were made by increasing ICP using an artificial cerebrospinal fluid reservoir connected to the cisterna magna. At each CPP, a transient 10-mmHg increase in arterial pressure was induced by bolus intravenous dopamine. iPRx and iCVRx were calculated as ΔICP/Δ mean arterial pressure (MAP) and as ΔCBF/ΔMAP, respectively. The critical CPP at high ICP, obtained by iPRx and iCVRx, is 50 mmHg, where compromised capillary flow, transition of blood flow to nonnutritive microvascular shunts, tissue hypoxia, and brain-blood barrier leakage begin to occur, which is higher than the 30 mmHg determined by static autoregulation.
A step toward development of printable dosage forms for poorly soluble drugs.
Raijada, Dhara; Genina, Natalja; Fors, Daniela; Wisaeus, Erik; Peltonen, Jouko; Rantanen, Jukka; Sandler, Niklas
2013-10-01
The purpose of this study was to formulate printable dosage forms for a poorly soluble drug (piroxicam; PRX) and to gain understanding of critical parameters to be considered during development of such dosage forms. Liquid formulations of PRX were printed on edible paper using piezoelectric inkjet printing (PIJ) and impression printing (flexography). The printed dosage forms were characterized using scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX) and the amount of drug was determined using high-performance liquid chromatography. Solutions of PRX in polyethylene glycol 400 (PEG-400):ethanol (40:60) and in PEG-400 were found to be optimal formulations for PIJ and flexography, respectively. SEM-EDX analysis revealed no visible solid particles on the printed dosage forms indicating the drug most likely remained in solution after printing. More accurate drug deposition was obtained by PIJ as compared with flexography. More than 90% drug release was achieved within 5 min regardless of printing method used. The solubility of drug in solvents/cosolvents, rheological properties of formulations, properties of substrate, feasibility and accuracy of the printing methods, and detection limit of analytical techniques for characterization of printed dosage forms are some of the concerns that need to be addressed for development of printable dosage forms of poorly soluble drugs. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association.
Lai, Xin; Gupta, Shailendra K; Schmitz, Ulf; Marquardt, Stephan; Knoll, Susanne; Spitschak, Alf; Wolkenhauer, Olaf; Pützer, Brigitte M; Vera, Julio
2018-01-01
High rates of lethal outcome in tumour metastasis are associated with the acquisition of invasiveness and chemoresistance. Several clinical studies indicate that E2F1 overexpression across high-grade tumours culminates in unfavourable prognosis and chemoresistance in patients. Thus, fine-tuning the expression of E2F1 could be a promising approach for treating patients showing chemoresistance. Methods: We integrated bioinformatics, structural and kinetic modelling, and experiments to study cooperative regulation of E2F1 by microRNA (miRNA) pairs in the context of anticancer chemotherapy resistance. Results: We showed that an enhanced E2F1 repression efficiency can be achieved in chemoresistant tumour cells through two cooperating miRNAs. Sequence and structural information were used to identify potential miRNA pairs that can form tertiary structures with E2F1 mRNA. We then employed molecular dynamics simulations to show that among the identified triplexes, miR-205-5p and miR-342-3p can form the most stable triplex with E2F1 mRNA. A mathematical model simulating the E2F1 regulation by the cooperative miRNAs predicted enhanced E2F1 repression, a feature that was verified by in vitro experiments. Finally, we integrated this cooperative miRNA regulation into a more comprehensive network to account for E2F1-related chemoresistance in tumour cells. The network model simulations and experimental data indicate the ability of enhanced expression of both miR-205-5p and miR-342-3p to decrease tumour chemoresistance by cooperatively repressing E2F1. Conclusions: Our results suggest that pairs of cooperating miRNAs could be used as potential RNA therapeutics to reduce E2F1-related chemoresistance. PMID:29464002
Code of Federal Regulations, 2014 CFR
2014-01-01
... FUNDING REGULATIONS International Cooperation Assistance § 917.30 General. (a) 33 U.S.C. 1124a sets up a... for and receive International Cooperation Assistance funding. (b) International Cooperation Assistance funding proposals will be expected to address: (1) The nature and focus of the proposed project, (2) the...
Code of Federal Regulations, 2010 CFR
2010-01-01
... FUNDING REGULATIONS International Cooperation Assistance § 917.30 General. (a) 33 U.S.C. 1124a sets up a... for and receive International Cooperation Assistance funding. (b) International Cooperation Assistance funding proposals will be expected to address: (1) The nature and focus of the proposed project, (2) the...
Code of Federal Regulations, 2011 CFR
2011-01-01
... FUNDING REGULATIONS International Cooperation Assistance § 917.30 General. (a) 33 U.S.C. 1124a sets up a... for and receive International Cooperation Assistance funding. (b) International Cooperation Assistance funding proposals will be expected to address: (1) The nature and focus of the proposed project, (2) the...
Code of Federal Regulations, 2012 CFR
2012-01-01
... FUNDING REGULATIONS International Cooperation Assistance § 917.30 General. (a) 33 U.S.C. 1124a sets up a... for and receive International Cooperation Assistance funding. (b) International Cooperation Assistance funding proposals will be expected to address: (1) The nature and focus of the proposed project, (2) the...
Identification of plant glutaredoxin targets.
Rouhier, Nicolas; Villarejo, Arsenio; Srivastava, Manoj; Gelhaye, Eric; Keech, Olivier; Droux, Michel; Finkemeier, Iris; Samuelsson, Göran; Dietz, Karl Josef; Jacquot, Jean-Pierre; Wingsle, Gunnar
2005-01-01
Glutaredoxins (Grxs) are small ubiquitous proteins of the thioredoxin (Trx) family, which catalyze dithiol-disulfide exchange reactions or reduce protein-mixed glutathione disulfides. In plants, several Trx-interacting proteins have been isolated from different compartments, whereas very few Grx-interacting proteins are known. We describe here the determination of Grx target proteins using a mutated poplar Grx, various tissular and subcellular plant extracts, and liquid chromatography coupled to tandem mass spectrometry detection. We have identified 94 putative targets, involved in many processes, including oxidative stress response [peroxiredoxins (Prxs), ascorbate peroxidase, catalase], nitrogen, sulfur, and carbon metabolisms (methionine synthase, alanine aminotransferase, phosphoglycerate kinase), translation (elongation factors E and Tu), or protein folding (heat shock protein 70). Some of these proteins were previously found to interact with Trx or to be glutathiolated in other organisms, but others could be more specific partners of Grx. To substantiate further these data, Grx was shown to support catalysis of the stroma beta-type carbonic anhydrase and Prx IIF of Arabidopsis thaliana, but not of poplar 2-Cys Prx. Overall, these data suggest that the interaction could occur randomly either with exposed cysteinyl disulfide bonds formed within or between target proteins or with mixed disulfides between a protein thiol and glutathione.
Gill, Tejpal; Levine, Alan D
2013-09-06
T cell receptor (TCR)-initiated signal transduction is reported to increase production of intracellular reactive oxygen species, such as superoxide (O2˙(-)) and hydrogen peroxide (H2O2), as second messengers. Although H2O2 can modulate signal transduction by inactivating protein phosphatases, the mechanism and the subcellular localization of intracellular H2O2 as a second messenger of the TCR are not known. The antioxidant enzyme superoxide dismutase (SOD) catalyzes the dismutation of highly reactive O2˙(-) into H2O2 and thus acts as an intracellular generator of H2O2. As charged O2˙(-) is unable to diffuse through intracellular membranes, cells express distinct SOD isoforms in the cytosol (Cu,Zn-SOD) and mitochondria (Mn-SOD), where they locally scavenge O2˙(-) leading to production of H2O2. A 2-fold organelle-specific overexpression of either SOD in Jurkat T cell lines increases intracellular production of H2O2 but does not alter the levels of intracellular H2O2 scavenging enzymes such as catalase, membrane-bound peroxiredoxin1 (Prx1), and cytosolic Prx2. We report that overexpression of Mn-SOD enhances tyrosine phosphorylation of TCR-associated membrane proximal signal transduction molecules Lck, LAT, ZAP70, PLCγ1, and SLP76 within 1 min of TCR cross-linking. This increase in mitochondrial H2O2 specifically modulates MAPK signaling through the JNK/cJun pathway, whereas overexpressing Cu,Zn-SOD had no effect on any of these TCR-mediated signaling molecules. As mitochondria translocate to the immunological synapse during TCR activation, we hypothesize this translocation provides the effective concentration of H2O2 required to selectively modulate downstream signal transduction pathways.
43 CFR 3400.4 - Federal/state government cooperation.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Federal/state government cooperation. 3400.4 Section 3400.4 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF... Introduction: General § 3400.4 Federal/state government cooperation. (a) In order to implement the requirements...
Canalis, Ernesto; Zanotti, Stefano; Beamer, Wesley G; Economides, Aris N; Smerdel-Ramoya, Anna
2010-08-01
Connective tissue growth factor (CTGF), a member of the cysteine-rich 61 (Cyr 61), CTGF, nephroblastoma overexpressed (NOV) (CCN) family of proteins, is synthesized by osteoblasts, and its overexpression inhibits osteoblastogenesis and causes osteopenia. The global inactivation of Ctgf leads to defective endochondral bone formation and perinatal lethality; therefore, the consequences of Ctgf inactivation on the postnatal skeleton are not known. To study the function of CTGF, we generated Ctgf(+/LacZ) heterozygous null mice and tissue-specific null Ctgf mice by mating Ctgf conditional mice, where Ctgf is flanked by lox sequences with mice expressing the Cre recombinase under the control of the paired-related homeobox gene 1 (Prx1) enhancer (Prx1-Cre) or the osteocalcin promoter (Oc-Cre). Ctgf(+/LacZ) heterozygous mice exhibited transient osteopenia at 1 month of age secondary to decreased trabecular number. A similar osteopenic phenotype was observed in 1-month-old Ctgf conditional null male mice generated with Prx1-Cre, suggesting that the decreased trabecular number was secondary to impaired endochondral bone formation. In contrast, when the conditional deletion of Ctgf was achieved by Oc-Cre, an osteopenic phenotype was observed only in 6-month-old male mice. Osteoblast and osteoclast number, bone formation, and eroded surface were not affected in Ctgf heterozygous or conditional null mice. In conclusion, CTGF is necessary for normal skeletal development but to a lesser extent for postnatal skeletal homeostasis.
Occurrence of CPPopt Values in Uncorrelated ICP and ABP Time Series.
Cabeleira, M; Czosnyka, M; Liu, X; Donnelly, J; Smielewski, P
2018-01-01
Optimal cerebral perfusion pressure (CPPopt) is a concept that uses the pressure reactivity (PRx)-CPP relationship over a given period to find a value of CPP at which PRx shows best autoregulation. It has been proposed that this relationship be modelled by a U-shaped curve, where the minimum is interpreted as being the CPP value that corresponds to the strongest autoregulation. Owing to the nature of the calculation and the signals involved in it, the occurrence of CPPopt curves generated by non-physiological variations of intracranial pressure (ICP) and arterial blood pressure (ABP), termed here "false positives", is possible. Such random occurrences would artificially increase the yield of CPPopt values and decrease the reliability of the methodology.In this work, we studied the probability of the random occurrence of false-positives and we compared the effect of the parameters used for CPPopt calculation on this probability. To simulate the occurrence of false-positives, uncorrelated ICP and ABP time series were generated by destroying the relationship between the waves in real recordings. The CPPopt algorithm was then applied to these new series and the number of false-positives was counted for different values of the algorithm's parameters. The percentage of CPPopt curves generated from uncorrelated data was demonstrated to be 11.5%. This value can be minimised by tuning some of the calculation parameters, such as increasing the calculation window and increasing the minimum PRx span accepted on the curve.
Merino, Felipe; Bouvier, Benjamin; Cojocaru, Vlad
2015-01-01
Highly specific transcriptional regulation depends on the cooperative association of transcription factors into enhanceosomes. Usually, their DNA-binding cooperativity originates from either direct interactions or DNA-mediated allostery. Here, we performed unbiased molecular simulations followed by simulations of protein-DNA unbinding and free energy profiling to study the cooperative DNA recognition by OCT4 and SOX2, key components of enhanceosomes in pluripotent cells. We found that SOX2 influences the orientation and dynamics of the DNA-bound configuration of OCT4. In addition SOX2 modifies the unbinding free energy profiles of both DNA-binding domains of OCT4, the POU specific and POU homeodomain, despite interacting directly only with the first. Thus, we demonstrate that the OCT4-SOX2 cooperativity is modulated by an interplay between protein-protein interactions and DNA-mediated allostery. Further, we estimated the change in OCT4-DNA binding free energy due to the cooperativity with SOX2, observed a good agreement with experimental measurements, and found that SOX2 affects the relative DNA-binding strength of the two OCT4 domains. Based on these findings, we propose that available interaction partners in different biological contexts modulate the DNA exploration routes of multi-domain transcription factors such as OCT4. We consider the OCT4-SOX2 cooperativity as a paradigm of how specificity of transcriptional regulation is achieved through concerted modulation of protein-DNA recognition by different types of interactions. PMID:26067358
Merino, Felipe; Bouvier, Benjamin; Cojocaru, Vlad
2015-06-01
Highly specific transcriptional regulation depends on the cooperative association of transcription factors into enhanceosomes. Usually, their DNA-binding cooperativity originates from either direct interactions or DNA-mediated allostery. Here, we performed unbiased molecular simulations followed by simulations of protein-DNA unbinding and free energy profiling to study the cooperative DNA recognition by OCT4 and SOX2, key components of enhanceosomes in pluripotent cells. We found that SOX2 influences the orientation and dynamics of the DNA-bound configuration of OCT4. In addition SOX2 modifies the unbinding free energy profiles of both DNA-binding domains of OCT4, the POU specific and POU homeodomain, despite interacting directly only with the first. Thus, we demonstrate that the OCT4-SOX2 cooperativity is modulated by an interplay between protein-protein interactions and DNA-mediated allostery. Further, we estimated the change in OCT4-DNA binding free energy due to the cooperativity with SOX2, observed a good agreement with experimental measurements, and found that SOX2 affects the relative DNA-binding strength of the two OCT4 domains. Based on these findings, we propose that available interaction partners in different biological contexts modulate the DNA exploration routes of multi-domain transcription factors such as OCT4. We consider the OCT4-SOX2 cooperativity as a paradigm of how specificity of transcriptional regulation is achieved through concerted modulation of protein-DNA recognition by different types of interactions.
Lopert, Pamela; Patel, Manisha
2014-05-30
Mitochondrial reactive oxygen species are implicated in the etiology of multiple neurodegenerative diseases, including Parkinson disease. Mitochondria are known to be net producers of ROS, but recently we have shown that brain mitochondria can consume mitochondrial hydrogen peroxide (H2O2) in a respiration-dependent manner predominantly by the thioredoxin/peroxiredoxin system. Here, we sought to determine the mechanism linking mitochondrial respiration with H2O2 catabolism in brain mitochondria and dopaminergic cells. We hypothesized that nicotinamide nucleotide transhydrogenase (Nnt), which utilizes the proton gradient to generate NADPH from NADH and NADP(+), provides the link between mitochondrial respiration and H2O2 detoxification through the thioredoxin/peroxiredoxin system. Pharmacological inhibition of Nnt in isolated brain mitochondria significantly decreased their ability to consume H2O2 in the presence, but not absence, of respiration substrates. Nnt inhibition in liver mitochondria, which do not require substrates to detoxify H2O2, had no effect. Pharmacological inhibition or lentiviral knockdown of Nnt in N27 dopaminergic cells (a) decreased H2O2 catabolism, (b) decreased NADPH and increased NADP(+) levels, and (c) decreased basal, spare, and maximal mitochondrial oxygen consumption rates. Nnt-deficient cells possessed higher levels of oxidized mitochondrial Prx, which rendered them more susceptible to steady-state increases in H2O2 and cell death following exposure to subtoxic levels of paraquat. These data implicate Nnt as the critical link between the metabolic and H2O2 antioxidant function in brain mitochondria and suggests Nnt as a potential therapeutic target to improve the redox balance in conditions of oxidative stress associated with neurodegenerative diseases. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Cirilli, Marco; Caruso, Giovanni; Gennai, Clizia; Urbani, Stefania; Frioni, Eleonora; Ruzzi, Maurizio; Servili, Maurizio; Gucci, Riccardo; Poerio, Elia; Muleo, Rosario
2017-01-01
Olive fruits and oils contain an array of compounds that contribute to their sensory and nutritional properties. Phenolic compounds in virgin oil and olive-derived products have been proven to be highly beneficial for human health, eliciting increasing attention from the food industry and consumers. Although phenolic compounds in olive fruit and oil have been extensively investigated, allowing the identification of the main classes of metabolites and their accumulation patterns, knowledge of the molecular and biochemical mechanisms regulating phenolic metabolism remains scarce. We focused on the role of polyphenoloxidase (PPO), peroxidase (PRX) and β-glucosidase (β-GLU) gene families and their enzyme activities in the accumulation of phenolic compounds during olive fruit development (35–146 days after full bloom), under either full irrigation (FI) or rain-fed (RF) conditions. The irrigation regime affected yield, maturation index, mesocarp oil content, fruit size, and pulp-to-pit ratio. Accumulation of fruit phenolics was higher in RF drupes than in FI ones. Members of each gene family were developmentally regulated, affected by water regime, and their transcript levels were correlated with the respective enzyme activities. During the early phase of drupe growth (35–43 days after full bloom), phenolic composition appeared to be linked to β-GLU and PRX activities, probably through their effects on oleuropein catabolism. Interestingly, a higher β-GLU activity was measured in immature RF drupes, as well as a higher content of the oleuropein derivate 3,4-DHPEA-EDA and verbascoside. Activity of PPO enzymes was slightly affected by the water status of trees during ripening (from 120 days after full bloom), but was not correlated with phenolics content. Overall, the main changes in phenolics content appeared soon after the supply of irrigation water and remained thereafter almost unchanged until maturity, despite fruit growth and the progressive decrease in pre-dawn leaf water potential. We suggest that enzymes involved in phenolic catabolism in the olive fruit have a differential sensitivity to soil water availability depending on fruit developmental stage. PMID:28536589
Hypoxia and Prx1 in Malignant Progression of Prostate Cancer
2006-09-01
Species (ROS) Formation The rate of ROS formation was determined by flow cytometry analysis using the probe 20,70-dichlorofluorescin diacetate (DCFH-DA...DA were subjected to 4-h hypoxia treatment. After the indicated time, fluorescent cells were analyzed by flow cytometry . Western Blot Analysis Equal...species (ROS) generation was measured by flow cytometry at 0.5, 1, 2, 3, 6, 12, or 24 h after hypoxia treatment. The rate of ROS generation increased
2 CFR 1401.220 - Cooperative agreement.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 2 Grants and Agreements 1 2011-01-01 2011-01-01 false Cooperative agreement. 1401.220 Section 1401.220 Grants and Agreements Federal Agency Regulations for Grants and Agreements DEPARTMENT OF THE INTERIOR REQUIREMENTS FOR DRUG-FREE WORKPLACE (FINANCIAL ASSISTANCE) (Eff. 1-21-2011) Definitions § 1401...
Isaac, J; Erthal, J; Gordon, J; Duverger, O; Sun, H-W; Lichtler, A C; Stein, G S; Lian, J B; Morasso, M I
2014-01-01
Human mutations and in vitro studies indicate that DLX3 has a crucial function in bone development, however, the in vivo role of DLX3 in endochondral ossification has not been established. Here, we identify DLX3 as a central attenuator of adult bone mass in the appendicular skeleton. Dynamic bone formation, histologic and micro-computed tomography analyses demonstrate that in vivo DLX3 conditional loss of function in mesenchymal cells (Prx1-Cre) and osteoblasts (OCN-Cre) results in increased bone mass accrual observed as early as 2 weeks that remains elevated throughout the lifespan owing to increased osteoblast activity and increased expression of bone matrix genes. Dlx3OCN-conditional knockout mice have more trabeculae that extend deeper in the medullary cavity and thicker cortical bone with an increased mineral apposition rate, decreased bone mineral density and increased cortical porosity. Trabecular TRAP staining and site-specific Q-PCR demonstrated that osteoclastic resorption remained normal on trabecular bone, whereas cortical bone exhibited altered osteoclast patterning on the periosteal surface associated with high Opg/Rankl ratios. Using RNA sequencing and chromatin immunoprecipitation-Seq analyses, we demonstrate that DLX3 regulates transcription factors crucial for bone formation such as Dlx5, Dlx6, Runx2 and Sp7 as well as genes important to mineral deposition (Ibsp, Enpp1, Mepe) and bone turnover (Opg). Furthermore, with the removal of DLX3, we observe increased occupancy of DLX5, as well as increased and earlier occupancy of RUNX2 on the bone-specific osteocalcin promoter. Together, these findings provide novel insight into mechanisms by which DLX3 attenuates bone mass accrual to support bone homeostasis by osteogenic gene pathway regulation. PMID:24948010
Metabolic molecular markers of the tidal clock in the marine crustacean Eurydice pulchra
O’Neill, John Stuart; Lee, Kate D.; Zhang, Lin; Feeney, Kevin; Webster, Simon George; Blades, Matthew James; Kyriacou, Charalambos Panayiotis; Hastings, Michael Harvey; Wilcockson, David Charles
2015-01-01
Summary In contrast to the well mapped molecular orchestration of circadian timekeeping in terrestrial organisms, the mechanisms that direct tidal and lunar rhythms in marine species are entirely unknown. Using a combination of biochemical and molecular approaches we have identified a series of metabolic markers of the tidal clock of the intertidal isopod Eurydice pulchra. Specifically, we show that the overoxidation of peroxiredoxin (PRX), a conserved marker of circadian timekeeping in terrestrial eukaryotes [1], follows a circatidal (approximately 12.4 hours) pattern in E. pulchra, in register with the tidal pattern of swimming. In parallel, we show that mitochondrially encoded genes are expressed with a circatidal rhythm. Together, these findings demonstrate that PRX overoxidation rhythms are not intrinsically circadian; rather they appear to resonate with the dominant metabolic cycle of an organism, regardless of its frequency. Moreover, they provide the first molecular leads for dissecting the tidal clockwork. PMID:25898100
Feist, Maren; Schwarzfischer, Philipp; Heinrich, Paul; Sun, Xueni; Kemper, Judith; von Bonin, Frederike; Perez-Rubio, Paula; Taruttis, Franziska; Rehberg, Thorsten; Dettmer, Katja; Gronwald, Wolfram; Reinders, Jörg; Engelmann, Julia C; Dudek, Jan; Klapper, Wolfram; Trümper, Lorenz; Spang, Rainer; Oefner, Peter J; Kube, Dieter
2018-04-17
Knowledge of stromal factors that have a role in the transcriptional regulation of metabolic pathways aside from c-Myc is fundamental to improvements in lymphoma therapy. Using a MYC-inducible human B-cell line, we observed the cooperative activation of STAT3 and NF-κB by IL10 and CpG stimulation. We show that IL10 + CpG-mediated cell proliferation of MYC low cells depends on glutaminolysis. By 13 C- and 15 N-tracing of glutamine metabolism and metabolite rescue experiments, we demonstrate that GOT2 provides aspartate and nucleotides to cells with activated or aberrant Jak/STAT and NF-κB signaling. A model of GOT2 transcriptional regulation is proposed, in which the cooperative phosphorylation of STAT3 and direct joint binding of STAT3 and p65/NF-κB to the proximal GOT2 promoter are important. Furthermore, high aberrant GOT2 expression is prognostic in diffuse large B-cell lymphoma underscoring the current findings and importance of stromal factors in lymphoma biology.
ERIC Educational Resources Information Center
Kuhn, Bill
2008-01-01
Cooperative behaviors among private investors, local entities and a county can create significant efficiencies and resources to achieve a countywide vision. A county willing to take on this leadership role can provide technology and creates incentives for cooperation, supports opportunistic action, and regulates a balance between private sector…
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-18
...-AA08 Special Local Regulations; Lowcountry Splash Open Water Swim, Wando River and Cooper River, Mount... at Patriots Point on the Cooper River. Approximately 600 swimmers will be participating in the swim... Special Local Regulations; Lowcountry Splash Open Water Swim, Wando River and Cooper River, Mount Pleasant...
Glenn, Katie
2015-01-01
ABSTRACT Xylulose 5-phosphate/fructose 6-phosphate phosphoketolase (Xfp), which catalyzes the conversion of xylulose 5-phosphate (X5P) or fructose 6-phosphate (F6P) to acetyl phosphate, plays a key role in carbohydrate metabolism in a number of bacteria. Recently, we demonstrated that the fungal Cryptococcus neoformans Xfp2 exhibits both substrate cooperativity for all substrates (X5P, F6P, and Pi) and allosteric regulation in the forms of inhibition by phosphoenolpyruvate (PEP), oxaloacetic acid (OAA), and ATP and activation by AMP (K. Glenn, C. Ingram-Smith, and K. S. Smith. Eukaryot Cell 13:657–663, 2014). Allosteric regulation has not been reported previously for the characterized bacterial Xfps. Here, we report the discovery of substrate cooperativity and allosteric regulation among bacterial Xfps, specifically the Lactobacillus plantarum Xfp. L. plantarum Xfp is an allosteric enzyme inhibited by PEP, OAA, and glyoxylate but unaffected by the presence of ATP or AMP. Glyoxylate is an additional inhibitor to those previously reported for C. neoformans Xfp2. As with C. neoformans Xfp2, PEP and OAA share the same or possess overlapping sites on L. plantarum Xfp. Glyoxylate, which had the lowest half-maximal inhibitory concentration of the three inhibitors, binds at a separate site. This study demonstrates that substrate cooperativity and allosteric regulation may be common properties among bacterial and eukaryotic Xfp enzymes, yet important differences exist between the enzymes in these two domains. IMPORTANCE Xylulose 5-phosphate/fructose 6-phosphate phosphoketolase (Xfp) plays a key role in carbohydrate metabolism in a number of bacteria. Although we recently demonstrated that the fungal Cryptococcus Xfp is subject to substrate cooperativity and allosteric regulation, neither phenomenon has been reported for a bacterial Xfp. Here, we report that the Lactobacillus plantarum Xfp displays substrate cooperativity and is allosterically inhibited by phosphoenolpyruvate and oxaloacetate, as is the case for Cryptococcus Xfp. The bacterial enzyme is unaffected by the presence of AMP or ATP, which act as a potent activator and inhibitor of the fungal Xfp, respectively. Our results demonstrate that substrate cooperativity and allosteric regulation may be common properties among bacterial and eukaryotic Xfps, yet important differences exist between the enzymes in these two domains. PMID:25605308
Glenn, Katie; Smith, Kerry S
2015-04-01
Xylulose 5-phosphate/fructose 6-phosphate phosphoketolase (Xfp), which catalyzes the conversion of xylulose 5-phosphate (X5P) or fructose 6-phosphate (F6P) to acetyl phosphate, plays a key role in carbohydrate metabolism in a number of bacteria. Recently, we demonstrated that the fungal Cryptococcus neoformans Xfp2 exhibits both substrate cooperativity for all substrates (X5P, F6P, and Pi) and allosteric regulation in the forms of inhibition by phosphoenolpyruvate (PEP), oxaloacetic acid (OAA), and ATP and activation by AMP (K. Glenn, C. Ingram-Smith, and K. S. Smith. Eukaryot Cell 13: 657-663, 2014). Allosteric regulation has not been reported previously for the characterized bacterial Xfps. Here, we report the discovery of substrate cooperativity and allosteric regulation among bacterial Xfps, specifically the Lactobacillus plantarum Xfp. L. plantarum Xfp is an allosteric enzyme inhibited by PEP, OAA, and glyoxylate but unaffected by the presence of ATP or AMP. Glyoxylate is an additional inhibitor to those previously reported for C. neoformans Xfp2. As with C. neoformans Xfp2, PEP and OAA share the same or possess overlapping sites on L. plantarum Xfp. Glyoxylate, which had the lowest half-maximal inhibitory concentration of the three inhibitors, binds at a separate site. This study demonstrates that substrate cooperativity and allosteric regulation may be common properties among bacterial and eukaryotic Xfp enzymes, yet important differences exist between the enzymes in these two domains. Xylulose 5-phosphate/fructose 6-phosphate phosphoketolase (Xfp) plays a key role in carbohydrate metabolism in a number of bacteria. Although we recently demonstrated that the fungal Cryptococcus Xfp is subject to substrate cooperativity and allosteric regulation, neither phenomenon has been reported for a bacterial Xfp. Here, we report that the Lactobacillus plantarum Xfp displays substrate cooperativity and is allosterically inhibited by phosphoenolpyruvate and oxaloacetate, as is the case for Cryptococcus Xfp. The bacterial enzyme is unaffected by the presence of AMP or ATP, which act as a potent activator and inhibitor of the fungal Xfp, respectively. Our results demonstrate that substrate cooperativity and allosteric regulation may be common properties among bacterial and eukaryotic Xfps, yet important differences exist between the enzymes in these two domains. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 15 2010-01-01 2010-01-01 false Applicability. 3015.2 Section 3015.2 Agriculture Regulations of the Department of Agriculture (Continued) OFFICE OF THE CHIEF FINANCIAL OFFICER, DEPARTMENT OF AGRICULTURE UNIFORM FEDERAL ASSISTANCE REGULATIONS General § 3015.2 Applicability. (a) Grants and cooperative...
Hypoxia and Prx1 in Malignant Progression of Prostate Cancer
2007-09-01
previously (31). Briefly, the culture medium was replaced with deoxygenated RPMI 1640 before hypoxia treatment at 37jC in a hypoxic chamber ( Forma Scientific...oxygen indicator ( Forma Scientific). All experiments were done at 70–80% confluency, and the medium pH was maintained between 7.2 and 7.4 for the...tolerated dose (MTD) of iri - notecan (100 mg/kg/week x 4). With selenium pre-treatment, complete cure rate (100%) was achieved for both xenografts
Eph receptor interclass cooperation is required for the regulation of cell proliferation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jurek, Aleksandra; Genander, Maria; Kundu, Parag
2016-10-15
Cancer often arises by the constitutive activation of mitogenic pathways by mutations in stem cells. Eph receptors are unusual in that although they regulate the proliferation of stem/progenitor cells in many adult organs, they typically fail to transform cells. Multiple ephrins and Eph receptors are often co-expressed and are thought to be redundant, but we here describe an unexpected dichotomy with two homologous ligands, ephrin-B1 and ephrin-B2, regulating specifically migration or proliferation in the intestinal stem cell niche. We demonstrate that the combined activity of two different coexpressed Eph receptors of the A and B class assembled into common signalingmore » clusters in response to ephrin-B2 is required for mitogenic signaling. The requirement of two different Eph receptors to convey mitogenic signals identifies a new type of cooperation within this receptor family and helps explain why constitutive activation of a single receptor fails to transform cells. - Highlights: • We demonstrate that ephrin-B1 and ephrin-B2 have largely non-overlapping functions in the intestinal stem cell niche. • Ephrin-B1 regulates cell positioning and ephrin-B2 regulates cell proliferation in the intestinal stem cell niche. • EphA4/B2 receptor cooperation in response to ephrin-B2 binding is obligatory to convey mitogenic signals in the intestine. • EphA4 facilitates EphB2 phosphorylation in response to ephrin-B2 in SW480 adenocarcinoma cells. • Ephrin-B1 and ephrin-B2 induce phosphorylation and degradation of the EphB2 receptor with different kinetics.« less
48 CFR 702.170-4 - Cooperating country.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Cooperating country. 702.170-4 Section 702.170-4 Federal Acquisition Regulations System AGENCY FOR INTERNATIONAL DEVELOPMENT GENERAL DEFINITIONS OF WORDS AND TERMS Definitions 702.170-4 Cooperating country. Cooperating country...
Mini-thin filaments regulated by troponin–tropomyosin
Gong, Huiyu; Hatch, Victoria; Ali, Laith; Lehman, William; Craig, Roger; Tobacman, Larry S.
2005-01-01
Striated muscle thin filaments contain hundreds of actin monomers and scores of troponins and tropomyosins. To study the cooperative mechanism of thin filaments, “mini-thin filaments” were generated by isolating particles nearly matching the minimal structural repeat of thin filaments: a double helix of actin subunits with each strand approximately seven actins long and spanned by a troponin–tropomyosin complex. One end of the particles was capped by a gelsolin (segment 1–3)–TnT fusion protein (substituting for normal TnT), and the other end was capped by tropomodulin. EM showed that the particles were 46 ± 9 nm long, with a knob-like mass attributable to gelsolin at one end. Average actin, tropomyosin, and gelsolin–troponin composition indicated one troponin–tropomyosin attached to each strand of the two-stranded actin filament. The minifilaments thus nearly represent single regulatory units of thin filaments. The myosin S1 MgATPase rate stimulated by the minifilaments was Ca2+-sensitive, indicating that single regulatory length particles are sufficient for regulation. Ca2+ bound cooperatively to cardiac TnC in conventional thin filaments but noncooperatively to cardiac TnC in minifilaments in the absence of myosin. This suggests that thin filament Ca2+-binding cooperativity reflects indirect troponin–troponin interactions along the long axis of conventional filaments, which do not occur in minifilaments. Despite noncooperative Ca2+ binding to minifilaments in the absence of myosin, Ca2+ cooperatively activated the myosin S1-particle ATPase rate. Two-stranded single regulatory units therefore may be sufficient for myosin-mediated Ca2+-binding cooperativity. Functional mini-thin filaments are well suited for biochemical and structural analysis of thin-filament regulation. PMID:15644437
48 CFR 225.7902 - Defense Trade Cooperation Treaties.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 48 Federal Acquisition Regulations System 3 2013-10-01 2013-10-01 false Defense Trade Cooperation Treaties. 225.7902 Section 225.7902 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT OF DEFENSE SOCIOECONOMIC PROGRAMS FOREIGN ACQUISITION EXPORT CONTROL 225.7902 Defense Trade Cooperation Treaties. This...
48 CFR 225.7902 - Defense Trade Cooperation Treaties.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 48 Federal Acquisition Regulations System 3 2014-10-01 2014-10-01 false Defense Trade Cooperation Treaties. 225.7902 Section 225.7902 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT OF DEFENSE SOCIOECONOMIC PROGRAMS FOREIGN ACQUISITION EXPORT CONTROL 225.7902 Defense Trade Cooperation Treaties. This...
78 FR 20662 - Preparation for International Cooperation on Cosmetics Regulation; Public Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-05
...] Preparation for International Cooperation on Cosmetics Regulation; Public Meeting AGENCY: Food and Drug... public meeting entitled, ``International Cooperation on Cosmetics Regulation (ICCR)--Preparation for ICCR... Maria Rossana (Rosemary) Cook (see Contact Person) by May 1, 2013. You may present data, information, or...
77 FR 14405 - Preparation for International Cooperation on Cosmetics Regulations; Public Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-09
...] Preparation for International Cooperation on Cosmetics Regulations; Public Meeting AGENCY: Food and Drug... public meeting entitled ``International Cooperation on Cosmetics Regulations (ICCR)-Preparation for ICCR.... Interested persons may present data, information, or views orally or in writing, on issues pending at the...
50 CFR 81.3 - Cooperative Agreement.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Project Agreement can be approved for endangered or threatened species projects. A cooperative agreement under § 81.2 must be reconfirmed annually to reflect new laws, species lists, rules and regulations, and...) FINANCIAL ASSISTANCE-WILDLIFE AND SPORT FISH RESTORATION PROGRAM CONSERVATION OF ENDANGERED AND THREATENED...
50 CFR 81.3 - Cooperative Agreement.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Project Agreement can be approved for endangered or threatened species projects. A cooperative agreement under § 81.2 must be reconfirmed annually to reflect new laws, species lists, rules and regulations, and...) FINANCIAL ASSISTANCE-WILDLIFE SPORT FISH RESTORATION PROGRAM CONSERVATION OF ENDANGERED AND THREATENED...
50 CFR 81.3 - Cooperative Agreement.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Project Agreement can be approved for endangered or threatened species projects. A cooperative agreement under § 81.2 must be reconfirmed annually to reflect new laws, species lists, rules and regulations, and...) FINANCIAL ASSISTANCE-WILDLIFE SPORT FISH RESTORATION PROGRAM CONSERVATION OF ENDANGERED AND THREATENED...
Su, Tzu-Chieh; Lin, Shu-Hui; Lee, Pin-Tse; Yeh, Shiu-Hwa; Hsieh, Tsung-Hsun; Chou, Szu-Yi; Su, Tsung-Ping; Hung, Jan-Jong; Chang, Wen-Chang; Lee, Yi-Chao; Chuang, Jian-Ying
2017-01-01
The accumulation of reactive oxygen species (ROS) have implicated the pathogenesis of several human diseases including neurodegenerative disorders, stroke, and traumatic brain injury, hence protecting neurons against ROS is very important. In this study, we focused on sigma-1 receptor (Sig-1R), a chaperone at endoplasmic reticulum, and investigated its protective functions. Using hydrogen peroxide (H2O2)-induced ROS accumulation model, we verified that apoptosis-signaling pathways were elicited by H2O2 treatment. However, the Sig-1R agonists, dehydroepiandrosterone (DHEA) and DHEA sulfate (DHEAS), reduced the activation of apoptotic pathways significantly. By performing protein-protein interaction assays and shRNA knockdown of Sig-1R, we identified the brain Zinc finger protein 179 (Znf179) as a downstream target of Sig-1R regulation. The neuroprotective effect of Znf179 overexpression was similar to that of DHEAS treatment, and likely mediated by affecting the levels of antioxidant enzymes. We also quantified the levels of peroxiredoxin 3 (Prx3) and superoxide dismutase 2 (SOD2) in the hippocampi of wild-type and Znf179 knockout mice, and found both enzymes to be reduced in the knockout versus the wild-type mice. In summary, these results reveal that Znf179 plays a novel role in neuroprotection, and Sig-1R agonists may be therapeutic candidates to prevent ROS-induced damage in neurodegenerative and neurotraumatic diseases. PMID:26792191
Parathyroid Hormone Directs Bone Marrow Mesenchymal Cell Fate.
Fan, Yi; Hanai, Jun-Ichi; Le, Phuong T; Bi, Ruiye; Maridas, David; DeMambro, Victoria; Figueroa, Carolina A; Kir, Serkan; Zhou, Xuedong; Mannstadt, Michael; Baron, Roland; Bronson, Roderick T; Horowitz, Mark C; Wu, Joy Y; Bilezikian, John P; Dempster, David W; Rosen, Clifford J; Lanske, Beate
2017-03-07
Intermittent PTH administration builds bone mass and prevents fractures, but its mechanism of action is unclear. We genetically deleted the PTH/PTHrP receptor (PTH1R) in mesenchymal stem cells using Prx1Cre and found low bone formation, increased bone resorption, and high bone marrow adipose tissue (BMAT). Bone marrow adipocytes traced to Prx1 and expressed classic adipogenic markers and high receptor activator of nuclear factor kappa B ligand (Rankl) expression. RANKL levels were also elevated in bone marrow supernatant and serum, but undetectable in other adipose depots. By cell sorting, Pref1 + RANKL + marrow progenitors were twice as great in mutant versus control marrow. Intermittent PTH administration to control mice reduced BMAT significantly. A similar finding was noted in male osteoporotic patients. Thus, marrow adipocytes exhibit osteogenic and adipogenic characteristics, are uniquely responsive to PTH, and secrete RANKL. These studies reveal an important mechanism for PTH's therapeutic action through its ability to direct mesenchymal cell fate. Copyright © 2017 Elsevier Inc. All rights reserved.
Martins, Dorival; Bakas, Iolie; McIntosh, Kelly; English, Ann M
2015-08-01
Peroxynitrite [ONOO(H)] is an oxidant associated with deleterious effects in cells. Because it is an inorganic peroxide that reacts rapidly with peroxidases, we speculated that cells may respond to ONOO(H) and H2O2 challenge in a similar manner. We exposed yeast cells to SIN-1, a well-characterized ONOO(H) generator, and observed stimulation of catalase and peroxiredoxin (Prx) activities. Previously, we reported that H2O2 challenge increases these activities in wild-type cells and in cells producing the hyperactive mutant H2O2 sensor Ccp1(W191F) but not in Ccp1-knockout cells (ccp1Δ). We find here that the response of ccp1Δ and ccp1(W191F) cells to SIN-1 mirrors that to H2O2, identifying Ccp1 as a sensor of both peroxides. SIN-1 simultaneously releases (•)NO and O2(•-), which react to form ONOO(H), but exposure of the three strains separately to an (•)NO donor (spermine-NONOate) or an O2(•-) generator (paraquat) mainly depresses catalase or Prx activity, whereas co-challenge with the NONOate and paraquat stimulates these activities. Because Ccp1 appears to sense ONOO(H) in cells, we examined its reaction with ONOO(H) in vitro and found that peroxynitrous acid (ONOOH) rapidly (k2>10(6)M(-1)s(-1)) oxidizes purified Ccp1 to an intermediate with spectral and ferrocytochrome-oxidizing properties indistinguishable from those of its well-characterized compound I formed with H2O2. Importantly, the nitrite released from ONOOH is not oxidized to (•)NO2 by Ccp1(׳)s compound I, unlike peroxidases involved in immune defense. Overall, our results reveal that yeast cells mount a common antioxidant response to ONOO(H) and H2O2, with Ccp1 playing a pivotal role as an inorganic peroxide sensor. Copyright © 2015 Elsevier Inc. All rights reserved.
Kiebish, Michael A.; Yang, Kui; Han, Xianlin; Gross, Richard W.; Chuang, Jeffrey
2012-01-01
The regulation and maintenance of the cellular lipidome through biosynthetic, remodeling, and catabolic mechanisms are critical for biological homeostasis during development, health and disease. These complex mechanisms control the architectures of lipid molecular species, which have diverse yet highly regulated fatty acid chains at both the sn1 and sn2 positions. Phosphatidylcholine (PC) and phosphatidylethanolamine (PE) serve as the predominant biophysical scaffolds in membranes, acting as reservoirs for potent lipid signals and regulating numerous enzymatic processes. Here we report the first rigorous computational dissection of the mechanisms influencing PC and PE molecular architectures from high-throughput shotgun lipidomic data. Using novel statistical approaches, we have analyzed multidimensional mass spectrometry-based shotgun lipidomic data from developmental mouse heart and mature mouse heart, lung, brain, and liver tissues. We show that in PC and PE, sn1 and sn2 positions are largely independent, though for low abundance species regulatory processes may interact with both the sn1 and sn2 chain simultaneously, leading to cooperative effects. Chains with similar biochemical properties appear to be remodeled similarly. We also see that sn2 positions are more regulated than sn1, and that PC exhibits stronger cooperative effects than PE. A key aspect of our work is a novel statistically rigorous approach to determine cooperativity based on a modified Fisher's exact test using Markov Chain Monte Carlo sampling. This computational approach provides a novel tool for developing mechanistic insight into lipidomic regulation. PMID:22662143
Code of Federal Regulations, 2014 CFR
2014-07-01
... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Special Local Regulations; Low Country Splash, Wando River, Cooper River, and Charleston Harbor, Charleston, SC. 100.T07-0110 Section 100... Splash, Wando River, Cooper River, and Charleston Harbor, Charleston, SC. (a) Regulated Areas. The...
ERIC Educational Resources Information Center
Schoor, Cornelia; Narciss, Susanne; Körndle, Hermann
2015-01-01
This article reviews the terms and concepts that have been used for describing regulation of learning during cooperative and collaborative learning and suggests differentiating them on the basis of which parts of a regulatory feedback loop model are being shared. During cooperative and collaborative learning, not only self-regulation but also the…
Ko, Sang-Bae; Choi, H. Alex; Parikh, Gunjan; Helbok, Raimund; Schmidt, J. Michael; Lee, Kiwon; Badjatia, Neeraj; Claassen, Jan; Connolly, E. Sander; Mayer, Stephan A.
2011-01-01
Background and Purpose Limited data exists to recommend specific cerebral perfusion pressure (CPP) targets in patients with intracerebral hemorrhage (ICH). We sought to determine the feasibility of brain multimodality monitoring (MMM) for optimizing CPP and potentially reducing secondary brain injury after ICH. Methods We retrospectively analyzed brain MMM data targeted at perihematomal brain tissue in 18 comatose ICH patients (median monitoring: 164 hours). Physiological measures were averaged over one-hour intervals corresponding to each microdialysis sample. Metabolic crisis (MC) was defined as a lactate/pyruvate ratio (LPR) >40 with a brain glucose concentration <0.7 mmol/L. Brain tissue hypoxia (BTH) was defined as PbtO2 <15 mm Hg. Pressure reactivity index (PRx) and oxygen reactivity index (ORx) were calculated. Results Median age was 59 years, median GCS score 6, and median ICH volume was 37.5 ml. The risk of BTH, and to a lesser extent MC, increased with lower CPP values. Multivariable analyses showed that CPP <80 mm Hg was associated with a greater risk of BTH (OR 1.5, 95% CI 1.1–2.1, P=0.01) compared to CPP >100 mm Hg as a reference range. Six patients died (33%). Survivors had significantly higher CPP and PbtO2 and lower ICP values starting on post-bleed day 4, whereas LPR and PRx values were lower, indicating preservation of aerobic metabolism and pressure autoregulation. Conclusions PbtO2 monitoring can be used to identify CPP targets for optimal brain tissue oxygenation. In patients who do not undergo MMM, maintaining CPP >80 mm Hg may reduce the risk of BTH. PMID:21852615
34 CFR 364.26 - What are the requirements for cooperation, coordination, and working relationships?
Code of Federal Regulations, 2010 CFR
2010-07-01
... EDUCATION STATE INDEPENDENT LIVING SERVICES PROGRAM AND CENTERS FOR INDEPENDENT LIVING PROGRAM: GENERAL... 34 Education 2 2010-07-01 2010-07-01 false What are the requirements for cooperation, coordination, and working relationships? 364.26 Section 364.26 Education Regulations of the Offices of the...
34 CFR 364.26 - What are the requirements for cooperation, coordination, and working relationships?
Code of Federal Regulations, 2011 CFR
2011-07-01
... EDUCATION STATE INDEPENDENT LIVING SERVICES PROGRAM AND CENTERS FOR INDEPENDENT LIVING PROGRAM: GENERAL... 34 Education 2 2011-07-01 2010-07-01 true What are the requirements for cooperation, coordination, and working relationships? 364.26 Section 364.26 Education Regulations of the Offices of the...
7 CFR 1124.18 - Cooperative association.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 9 2010-01-01 2009-01-01 true Cooperative association. 1124.18 Section 1124.18 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing... Regulating Handling Definitions § 1124.18 Cooperative association. See § 1000.18. ...
7 CFR 1030.18 - Cooperative association.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 9 2010-01-01 2009-01-01 true Cooperative association. 1030.18 Section 1030.18 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing... Regulating Handling Definitions § 1030.18 Cooperative association. See § 1000.18. ...
7 CFR 1005.18 - Cooperative association.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 9 2010-01-01 2009-01-01 true Cooperative association. 1005.18 Section 1005.18 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing... Regulating Handling Definitions § 1005.18 Cooperative association. See § 1000.18. ...
Mediator MED23 cooperates with RUNX2 to drive osteoblast differentiation and bone development.
Liu, Zhen; Yao, Xiao; Yan, Guang; Xu, YiChi; Yan, Jun; Zou, Weiguo; Wang, Gang
2016-04-01
How lineage specifiers are regulated during development is an outstanding question, and the molecular regulation of osteogenic factor RUNX2 remains to be fully understood. Here we report that the Mediator subunit MED23 cooperates with RUNX2 to regulate osteoblast differentiation and bone development. Med23 deletion in mesenchymal stem cells or osteoblast precursors results in multiple bone defects similar to those observed in Runx2(+/-) mice. In vitro, Med23-deficient progenitor cells are refractory to osteoblast differentiation, and Med23 deficiency reduces Runx2-target gene activity without changing Runx2 expression. Mechanistically, MED23 binds to RUNX2 and modulates its transcriptional activity. Moreover, Med23 deficiency in osteoprogenitor cells exacerbates the skeletal abnormalities observed in Runx2(+/-) mice. Collectively, our results establish a genetic and physical interaction between RUNX2 and MED23, suggesting that MED23 constitutes a molecular node in the regulatory network of anabolic bone formation and related diseases.
Regulation of Hoxb2 by APL-associated PLZF protein.
Ivins, Sarah; Pemberton, Kieran; Guidez, Fabien; Howell, Louise; Krumlauf, Robb; Zelent, Arthur
2003-06-12
The PLZF gene is translocated in a subset of all-trans-retinoic acid resistant acute promyelocytic leukaemia (APL) cases, encodes a DNA binding transcription factor and is expressed highly in haematopoietic progenitor cells as well-developing central nervous system (CNS). The spatially restricted and temporally dynamic pattern of PLZF expression in the developing CNS suggested that it might play a role in the circuitry regulating hindbrain segmentation. We have now identified a PLZF binding site (PLZF-RE) in an enhancer region of Hoxb2 that itself is required for directing high-level expression in rhombomers 3 and 5 of the developing hindbrain. The wild-type r3/r5 enhancer linked to a heterologous promoter was responsive to regulation by PLZF, and this activity was lost in variants containing a mutated PLZF-RE. Compared with the wild-type protein, the binding of the APL-associated reciprocal RARalpha-PLZF fusion to PLZF-RE was much stronger, suggesting that the N-terminal PLZF sequences missing from the fusion may play a role in the regulation of DNA binding. Consistent with this, the N-terminal POZ domain was required for cooperative binding of PLZF to a multimerized PLZF-RE. In the context of the r3/r5 enhancer, the PLZF-RE cooperated for PLZF binding with an additional A/T-rich motif positioned downstream of the PLZF-RE. This A/T motif was previously shown to be essential for the regulation of Hoxb2 expression in r3 and r5 in cooperation with another Krüppel-like zinc finger protein Krox 20. The presence of both the PLZF-RE and the A/T-rich motif was required for a maximal effect of PLZF on a heterologous promoter and was essential in vivo to direct the expression of a lacZ reporter in the chick neural tube. Hence, both PLZF and Krox20 cooperate with a common A/T motif in mediating in vivo activity of the Hoxb2 enhancer. Our findings indicate that Hoxb2 is a direct target for regulation by PLZF in the developing CNS and suggest that deregulation of Hox gene expression may contribute to APL pathogenesis.
Genetic spectrum of hereditary neuropathies with onset in the first year of life
Baets, Jonathan; Deconinck, Tine; De Vriendt, Els; Zimoń, Magdalena; Yperzeele, Laetitia; Van Hoorenbeeck, Kim; Peeters, Kristien; Spiegel, Ronen; Parman, Yesim; Ceulemans, Berten; Van Bogaert, Patrick; Pou-Serradell, Adolf; Bernert, Günther; Dinopoulos, Argirios; Auer-Grumbach, Michaela; Sallinen, Satu-Leena; Fabrizi, Gian Maria; Pauly, Fernand; Van den Bergh, Peter; Bilir, Birdal; Battaloglu, Esra; Madrid, Ricardo E.; Kabzińska, Dagmara; Kochanski, Andrzej; Topaloglu, Haluk; Miller, Geoffrey; Jordanova, Albena; Timmerman, Vincent
2011-01-01
Early onset hereditary motor and sensory neuropathies are rare disorders encompassing congenital hypomyelinating neuropathy with disease onset in the direct post-natal period and Dejerine–Sottas neuropathy starting in infancy. The clinical spectrum, however, reaches beyond the boundaries of these two historically defined disease entities. De novo dominant mutations in PMP22, MPZ and EGR2 are known to be a typical cause of very early onset hereditary neuropathies. In addition, mutations in several other dominant and recessive genes for Charcot–Marie–Tooth disease may lead to similar phenotypes. To estimate mutation frequencies and to gain detailed insights into the genetic and phenotypic heterogeneity of early onset hereditary neuropathies, we selected a heterogeneous cohort of 77 unrelated patients who presented with symptoms of peripheral neuropathy within the first year of life. The majority of these patients were isolated in their family. We performed systematic mutation screening by means of direct sequencing of the coding regions of 11 genes: MFN2, PMP22, MPZ, EGR2, GDAP1, NEFL, FGD4, MTMR2, PRX, SBF2 and SH3TC2. In addition, screening for the Charcot–Marie–Tooth type 1A duplication on chromosome 17p11.2-12 was performed. In 35 patients (45%), mutations were identified. Mutations in MPZ, PMP22 and EGR2 were found most frequently in patients presenting with early hypotonia and breathing difficulties. The recessive genes FGD4, PRX, MTMR2, SBF2, SH3TC2 and GDAP1 were mutated in patients presenting with early foot deformities and variable delay in motor milestones after an uneventful neonatal period. Several patients displaying congenital foot deformities but an otherwise normal early development carried the Charcot–Marie–Tooth type 1A duplication. This study clearly illustrates the genetic heterogeneity underlying hereditary neuropathies with infantile onset. PMID:21840889
7 CFR 4285.81 - Cooperative agreement awards.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Agriculture Regulations of the Department of Agriculture (Continued) RURAL BUSINESS-COOPERATIVE SERVICE AND RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE COOPERATIVE AGREEMENTS Federal-State Research on... the methods identified in approved application and budget, the regulations of this part, the terms and...
Rac1 Dosage Is Crucial for Normal Endochondral Bone Growth.
Suzuki, Dai; Bush, Jason R; Bryce, Dawn-Marie; Kamijo, Ryutaro; Beier, Frank
2017-10-01
Rac1, a member of the small Rho GTPase family, plays multiple cellular roles. Studies of mice conditionally lacking Rac1 have revealed essential roles for Rac1 in various tissues, including cartilage and limb mesenchyme, where Rac1 loss produces dwarfism and long bone shortening. To gain further insight into the role of Rac1 in skeletal development, we have used transgenic mouse lines to express a constitutively active (ca) Rac1 mutant protein in a Cre recombinase-dependent manner. Overexpression of caRac1 in limb bud mesenchyme or chondrocytes leads to reduced body weight and shorter bones compared with control mice. Histological analysis of growth plates showed that caRac1;Col2-Cre mice displayed ectopic hypertrophic chondrocytes in the proliferative zone and enlarged hypertrophic zones. These mice also displayed a reduced proportion of proliferating cell nuclear antigen-positive cells in the proliferative zone and nuclear β-catenin localization in the ectopic hypertrophic chondrocytes. Importantly, overexpression of caRac1 partially rescued the phenotypes of Rac1fl/fl;Col2-Cre and Rac1fl/fl;Prx1-Cre conditional knockout mice, including body weight, bone length, and growth plate disorganization. These results suggest that tight regulation of Rac1 activity is necessary for normal cartilage development. Copyright © 2017 Endocrine Society.
Mammarella, Nicole D; Cheng, Zhenyu; Fu, Zheng Qing; Daudi, Arsalan; Bolwell, G Paul; Dong, Xinnian; Ausubel, Frederick M
2015-04-01
Reactive oxygen species (ROS) generated by NADPH oxidases or apoplastic peroxidases play an important role in the plant defense response. Diminished expression of at least two Arabidopsis thaliana peroxidase encoding genes, PRX33 (At3g49110) and PRX34 (At3g49120), as a consequence of anti-sense expression of a heterologous French bean peroxidase gene (asFBP1.1), were previously shown to result in reduced levels of ROS following pathogen attack, enhanced susceptibility to a variety of bacterial and fungal pathogens, and reduced levels of callose production and defense-related gene expression in response to the microbe associated molecular pattern (MAMP) molecules flg22 and elf26. These data demonstrated that the peroxidase-dependent oxidative burst plays an important role in the elicitation of pattern-triggered immunity (PTI). Further work reported in this paper, however, shows that asFBP1.1 antisense plants are not impaired in all PTI-associated responses. For example, some but not all flg22-elicited genes are induced to lower levels by flg22 in asFPB1.1, and callose deposition in asFPB1.1 is similar to wild-type following infiltration with a Pseudomonas syringae hrcC mutant or with non-host P. syringae pathovars. Moreover, asFPB1.1 plants did not exhibit any apparent defect in their ability to mount a hypersensitive response (HR). On the other hand, salicylic acid (SA)-mediated activation of PR1 was dramatically impaired in asFPB1.1 plants. In addition, P. syringae-elicited expression of many genes known to be SA-dependent was significantly reduced in asFBP1.1 plants. Consistent with this latter result, in asFBP1.1 plants the key regulator of SA-mediated responses, NPR1, showed both dramatically decreased total protein abundance and a failure to monomerize, which is required for its translocation into the nucleus. Copyright © 2014 Elsevier Ltd. All rights reserved.
Dubey, Neeraj K.; Eizenberg, Hanan; Leibman, Diana; Wolf, Dalia; Edelstein, Menahem; Abu-Nassar, Jackline; Marzouk, Sally; Gal-On, Amit; Aly, Radi
2017-01-01
RNA silencing refers to diverse mechanisms that control gene expression at transcriptional and post-transcriptional levels which can also be used in parasitic pathogens of plants that Broomrapes (Orobanche/Phelipanche spp.) are holoparasitic plants that subsist on the roots of a variety of agricultural crops and cause severe negative effects on the yield and yield quality of those crops. Effective methods for controlling parasitic weeds are scarce, with only a few known cases of genetic resistance. In the current study, we suggest an improved strategy for the control of parasitic weeds based on trans-specific gene-silencing of three parasite genes at once. We used two strategies to express dsRNA containing selected sequences of three Phelipanche aegyptiaca genes PaACS, PaM6PR, and PaPrx1 (pma): transient expression using Tobacco rattle virus (TRV:pma) as a virus-induced gene-silencing vector and stable expression in transgenic tomato Solanum lycopersicum (Mill.) plants harboring a hairpin construct (pBINPLUS35:pma). siRNA-mediated transgene-silencing (20–24 nt) was detected in the host plants. Our results demonstrate that the quantities of PaACS and PaM6PR transcripts from P. aegyptiaca tubercles grown on transgenic tomato or on TRV-infected Nicotiana benthamiana plants were significantly reduced. However, only partial reductions in the quantity of PaPrx1 transcripts were observed in the parasite tubercles grown on tomato and on N. benthamiana plants. Concomitant with the suppression of the target genes, there were significant decreases in the number and weight of the parasite tubercles that grew on the host plants, in both the transient and the stable experimental systems. The results of the work carried out using both strategies point to the movement of mobile exogenous siRNA from the host to the parasite, leading to the impaired expression of essential parasite target genes. PMID:28955363
30 CFR 280.23 - How must I cooperate with inspection activities?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 2 2011-07-01 2011-07-01 false How must I cooperate with inspection activities? 280.23 Section 280.23 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, REGULATION, AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE PROSPECTING FOR MINERALS OTHER THAN OIL, GAS, AND SULPHUR ON THE OUTER...
76 FR 37690 - CooperVision, Inc.; Filing of Color Additive Petitions
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-28
... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration 21 CFR Part 73 [Docket Nos. FDA-2011-C-0344 and FDA-2011-C-0463] CooperVision, Inc.; Filing of Color Additive Petitions AGENCY... additive regulations be amended to provide for the safe use of 1,4- bis[4-(2-methacryloxyethyl)phenlyamino...
Ståhl, Christian; Svensson, Tommy; Ekberg, Kerstin
2011-09-01
This article analyses Swedish rehabilitation professionals' experiences of interorganizational cooperation in return-to-work and labour market reintegration. Two groups (n = 15) from different organizations met on a regular basis to discuss their practice from a cooperation perspective. The participants had experience of cooperation in the organizational setting of Coordination Associations. The groups worked with a tutor according to a problem-based methodology, to discuss how their practice is influenced by new structures for cooperation. The material was analysed inductively using qualitative content analysis. Interorganizational cooperation in rehabilitation is generally perceived as promoting coherence and communication. Nevertheless, there are several contradictory factors in the implementation of such work forms, primarily inflexible sickness insurance regulations and inability of managers to implement cooperation in regular practice. While interorganizational cooperation promotes professional discretion and tailored solutions, the insurance system contradicts such ambitions through increased governance. Ultimately, the contradictory tendencies of cooperative initiatives and the stricter governance of sickness insurance regulations are political matters. If political attempts to promote interorganizational cooperation are to succeed, the increasing sectorization that results from strict governance of sickness insurance regulations needs to be targeted on a system level.
BMP7 and SHH regulate Pax2 in mouse retinal astrocytes by relieving TLX repression.
Sehgal, Rachna; Sheibani, Nader; Rhodes, Simon J; Belecky Adams, Teri L
2009-08-15
Pax2 is essential for development of the neural tube, urogenital system, optic vesicle, optic cup and optic tract. In the eye, Pax2 deficiency is associated with coloboma, a loss of astrocytes in the optic nerve and retina, and abnormal axonal pathfinding of the ganglion cell axons at the optic chiasm. Thus, appropriate expression of Pax2 is essential for astrocyte determination and differentiation. Although BMP7 and SHH have been shown to regulate Pax2 expression, the molecular mechanism by which this regulation occurs is not well understood. In this study, we determined that BMP7 and SHH activate Pax2 expression in mouse retinal astrocyte precursors in vitro. SHH appeared to play a dual role in Pax2 regulation; 1) SHH may regulate BMP7 expression, and 2) the SHH pathway cooperates with the BMP pathway to regulate Pax2 expression. BMP and SHH pathway members can interact separately or together with TLX, a repressor protein in the tailless transcription factor family. Here we show that the interaction of both pathways with TLX relieves the repression of Pax2 expression in mouse retinal astrocytes. Together these data reveal a new mechanism for the cooperative actions of signaling pathways in astrocyte determination and differentiation and suggest interactions of regulatory pathways that are applicable to other developmental programs.
Fukasawa, Rikiya; Iida, Satoshi; Tsutsui, Taiki; Hirose, Yutaka; Ohkuma, Yoshiaki
2015-11-01
The Mediator complex (Mediator) plays key roles in transcription and functions as the nexus for integration of various transcriptional signals. Previously, we screened for Mediator cyclin-dependent kinase (CDK)-interacting factors and identified three proteins related to chromatin regulation. One of them, SUZ12 is required for both stability and activity of Polycomb Repressive Complex 2 (PRC2). PRC2 primarily suppresses gene expression through histone H3 lysine 27 trimethylation, resulting in stem cell maintenance and differentiation; perturbation of this process leads to oncogenesis. Recent work showed that Mediator contributes to the embryonic stem cell state through DNA loop formation, which is strongly associated with chromatin architecture; however, it remains unclear how Mediator regulates gene expression in cooperation with chromatin regulators (i.e. writers, readers and remodelers). We found that Mediator CDKs interact directly with the PRC2 subunit EZH2, as well as SUZ12. Known PRC2 target genes were deregulated by Mediator CDK knockdown during neuronal differentiation, and both Mediator and PRC2 complexes co-occupied the promoters of developmental genes regulated by retinoic acid. Our results provide a mechanistic link between Mediator and PRC2 during neuronal differentiation. © The Authors 2015. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.
Chakrapani, Harinath; Saavedra, Joseph E.; Morris, Nicole L.; Holland, Ryan J.; Kosak, Ken M.; Shami, Paul J.; Anderson, Lucy M.; Keefer, Larry K.
2011-01-01
Non–small-cell lung cancer is among the most common and deadly forms of human malignancies. Early detection is unusual, and there are no curative therapies in most cases. Diazeniumdiolate-based nitric oxide (NO)-releasing prodrugs are a growing class of promising NO-based therapeutics. Here, we show that O2-(2,4-dinitrophenyl)-1-[(4-ethoxycarbonyl)piperazin-1-yl]diazen-1-ium-1,2-diolate (JS-K) is a potent cytotoxic agent against a subset of human non–small-cell lung cancer cell lines both in vitro and as xenografts in mice. JS-K treatment led to 75% reduction in the growth of H1703 lung adenocarcinoma cells in vivo. Differences in sensitivity to JS-K in different lung cancer cell lines seem to be related to their endogenous levels of reactive oxygen species (ROS)/reactive nitrogen species (RNS). Other related factors, levels of peroxiredoxin 1 (PRX1) and 8-oxo-deoxyguanosine glycosylase (OGG1), also correlated with drug sensitivity. Treatment of the lung adenocarcinoma cells with JS-K resulted in oxidative/nitrosative stress in cells with high basal levels of ROS/RNS, which, combined with the arylating properties of the compound, was reflected in glutathione depletion and alteration in cellular redox potential, mitochondrial membrane permeabilization, and cytochrome c release. Inactivation of manganese superoxide dismutase by nitration was associated with increased superoxide and significant DNA damage. Apoptosis followed these events. Taken together, the data suggest that diazeniumdiolate-based NO-releasing prodrugs may have application as a personalized therapy for lung cancers characterized by high levels of ROS/RNS. PRX1 and OGG1 proteins, which can be easily measured, could function as biomarkers for identifying tumors sensitive to the therapy. PMID:20962031
Maciag, Anna E; Chakrapani, Harinath; Saavedra, Joseph E; Morris, Nicole L; Holland, Ryan J; Kosak, Ken M; Shami, Paul J; Anderson, Lucy M; Keefer, Larry K
2011-02-01
Non-small-cell lung cancer is among the most common and deadly forms of human malignancies. Early detection is unusual, and there are no curative therapies in most cases. Diazeniumdiolate-based nitric oxide (NO)-releasing prodrugs are a growing class of promising NO-based therapeutics. Here, we show that O(2)-(2,4-dinitrophenyl)-1-[(4-ethoxycarbonyl)piperazin-1-yl]diazen-1-ium-1,2-diolate (JS-K) is a potent cytotoxic agent against a subset of human non-small-cell lung cancer cell lines both in vitro and as xenografts in mice. JS-K treatment led to 75% reduction in the growth of H1703 lung adenocarcinoma cells in vivo. Differences in sensitivity to JS-K in different lung cancer cell lines seem to be related to their endogenous levels of reactive oxygen species (ROS)/reactive nitrogen species (RNS). Other related factors, levels of peroxiredoxin 1 (PRX1) and 8-oxo-deoxyguanosine glycosylase (OGG1), also correlated with drug sensitivity. Treatment of the lung adenocarcinoma cells with JS-K resulted in oxidative/nitrosative stress in cells with high basal levels of ROS/RNS, which, combined with the arylating properties of the compound, was reflected in glutathione depletion and alteration in cellular redox potential, mitochondrial membrane permeabilization, and cytochrome c release. Inactivation of manganese superoxide dismutase by nitration was associated with increased superoxide and significant DNA damage. Apoptosis followed these events. Taken together, the data suggest that diazeniumdiolate-based NO-releasing prodrugs may have application as a personalized therapy for lung cancers characterized by high levels of ROS/RNS. PRX1 and OGG1 proteins, which can be easily measured, could function as biomarkers for identifying tumors sensitive to the therapy.
Left ventricular hypertrophy does not prevent heart failure in experimental hypertension.
Hernán Gómez Llambí, H; Cao, G; Donato, M; Suárez, D; Ottaviano, G; Müller, A; Buchholz, B; Gelpi, R; Otero-Losada, M; Milei, J
2017-07-01
Left ventricular hypertrophy (LVH) secondary to hypertension has been accepted to prevent heart failure (HF) while paradoxically increasing cardiovascular morbi-mortality. To evaluate whether antihypertensive treatment inhibits LVH, restores beta-adrenergic response and affects myocardial oxidative metabolism. Ninety spontaneously hypertensive rats (SHR) were distributed into groups and treated (mg/kg, p.o.) with: losartan 30 (L), hydralazine 11 (H), rosuvastatin 10 (R), carvedilol 20 (C). Hypertension control group comprised 18 normotensive rats (Wistar-Kyoto, WKY). Following euthanasia at 16months, contractility was measured in 50% of rats (Langendorff system) before and after isoproterenol (Iso) 10 -9 M, 10 -7 M and 10 -5 M stimulation. Left ventricular weight (LVW) was measured in the remaining hearts, and normalized by BW. Expression of thioredoxin 1 (Trx-1), peroxyredoxin 2 (Prx-2), glutaredoxin 3 (Grx-3), caspase-3 and brain natriuretic peptide (BNP) was determined. Systolic blood pressure (mmHg): 154±3 (L), 137±1 (H), 190±3 (R)*, 206±3 (SHR)*, 183±1 (C)**, and 141±1 (WKY) (*p<0.05 vs. L, H, WKY, **p<0.05 vs. L, H, WKY, SHR). LVW/BW was higher in SHR and R (p<0.05). Groups SHR, R and C evidenced baseline contractile depression. Response to Iso 10 -5 M was similar in WKY and L. Expression of Trx-1, Prx-2 and Grx-3 increased in C, H, R and L (p<0.01). Present findings argue against the traditional idea and support that LVH might not be required to prevent HF. Increased expression of thioredoxins by antihypertensive treatment might be involved in protection from HF. Copyright © 2017 Elsevier B.V. All rights reserved.
7 CFR 4285.93 - Other Federal statutes and regulations that apply.
Code of Federal Regulations, 2010 CFR
2010-01-01
... BUSINESS-COOPERATIVE SERVICE AND RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE COOPERATIVE AGREEMENTS Federal-State Research on Cooperatives Program § 4285.93 Other Federal statutes and regulations that apply...—National Agricultural, Research, Extension, and Teaching Policy Act Amendments of 1981 if the project...
48 CFR 702.170-5 - Cooperating country national (CCN).
Code of Federal Regulations, 2010 CFR
2010-10-01
... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Cooperating country national (CCN). 702.170-5 Section 702.170-5 Federal Acquisition Regulations System AGENCY FOR INTERNATIONAL DEVELOPMENT GENERAL DEFINITIONS OF WORDS AND TERMS Definitions 702.170-5 Cooperating country national (CCN...
Synergistic cooperation of MDM2 and E2F1 contributes to TAp73 transcriptional activity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kasim, Vivi, E-mail: vivikasim78@gmail.com; Huang, Can; Zhang, Jing
2014-07-04
Highlights: • MDM2 is a novel positive regulator of TAp73 transcriptional activity. • MDM2 colocalizes together and physically interacts with E2F1. • Synergistic cooperation of MDM2 and E2F1 is crucial for TAp73 transcription. • MDM2 regulates TAp73 transcriptional activity in a p53-independent manner. - Abstract: TAp73, a structural homologue of p53, plays an important role in tumorigenesis. E2F1 had been reported as a transcriptional regulator of TAp73, however, the detailed mechanism remains to be elucidated. Here we reported that MDM2-silencing reduced the activities of the TAp73 promoters and the endogenous TAp73 expression level significantly; while MDM2 overexpression upregulated them. Wemore » further revealed that the regulation of TAp73 transcriptional activity occurs as a synergistic effect of MDM2 and E2F1, most probably through their physical interaction in the nuclei. Furthermore, we also suggested that MDM2 might be involved in DNA damage-induced TAp73 transcriptional activity. Finally, we elucidated that MDM2-silencing reduced the proliferation rate of colon carcinoma cells regardless of the p53 status. Our data show a synergistic effect of MDM2 and E2F1 on TAp73 transcriptional activity, suggesting a novel regulation pathway of TAp73.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-14
... Procedures for Delegation of Administration of Grants and Cooperative Agreements AGENCY: National Aeronautics... regulation agency procedures for the delegation of administration of grants and cooperative agreements. Simultaneous with the removal of the delegation of administration procedures from the regulation, NASA will...
Development of Mixed Ion-Electron Conducting Metal Oxides for Solid Oxide Fuel Cells
NASA Astrophysics Data System (ADS)
Kan, Wang Hay
A solid oxide fuel cell (SOFC) is an energy conversion device, which directly converts chemical fuels (e.g., H2, C xHy) into electricity and heat with high efficiency up to 90%. The by-product of CO2 can be safely sequestrated or subsequently chemically transformed back into fuels (e.g., CO, CH 4) by electrolysis using renewable energy sources such as solar and wind. The state-of-the-art Ni-YSZ anode is de-activated in the presence of ppm level of H2S and forming coke in hydrocarbons. Currently, mixed ion and electron conductors (MIECs) are considered as alternatives for Ni-YSZ in SOFCs. The key goal of the research was to develop mixed ion-electron conducting metal oxides based on B-site disordered perovskite-type Ba(Ca,Nb)1-x MxO3-delta (M = Mn, Fe, Co), the B-site 1:1 ordered perovskite-type (M = Mn, Fe, Co) and the Sr2PbO4-type Sr2Ce1-xPrxO4 for SOFCs. Ba2(Ca,Nb)2-xMxO6-delta was chemically stable in 30 ppm levels of H2S at 600 °C for 24 h and in pure CO2 at 800 °C for 24 h. The thermal expansion coefficients (TEC) of the as-prepared ordered perovskites was found to be comparable to Zr0.84Y0.16O1.92 (YSZ). The near-surface concentration of Fe2+ in Ba2Ca 0.67Fe0.33NbO6-delta was found to be about 3 times higher than that in the bulk sample. The electrochemical performance of Ba2Ca0.67M0.33NbO6-delta was assessed by ac impedance spectroscopy using a YSZ supported half-cell. The area specific polarization resistance (ASR) of all samples was found to decrease with increasing temperature. The ASR for H2 gas oxidation can be correlated to the higher concentration of low valence Fe2+ species near-surface (nano-scale). BaCa0.335M0.165Nb0.5O3-delta crystallizes in the B-site disordered primitive perovskite (space group Pm-3m) at 900 °C in air, which can be converted into the B-site 1:2 ordered perovskite (space group P-3m1) at 1200 °C and the B-site 1:1 ordered double perovskite phase (space group Fm-3m ) at 1300 °C. The chemical stability of the perovskites in CO 2 and H2 highly depends on the B-site cations ordering. The B-site disordered primitive perovskite phase is more readily reduced in dry and 3% H2O in 10% H2 balanced with 90% N2, and is less stable in CO2 at elevated temperatures, compared to the B-site 1:1 ordered double perovskite phase. The thermal decomposition is highly suppressed in Sr2Ce1--xPrxO 4 compounds for Pr > 0, suggesting that Pr improves the thermal stability of the compounds. Rietveld analysis of PXRD and SAED supported that both Pr and Ce ions are located on the 2a site in Pbam. Conductivity increases with Pr content in Sr2Ce1-xPrxO4. The highest total conductivity of 1.24 x 10--1 S cm--1 was observed for Sr2Ce0.2Pr0.8O 4 at 663 °C in air.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Regulations of the Department of Agriculture (Continued) RURAL BUSINESS-COOPERATIVE SERVICE AND RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE COOPERATIVE AGREEMENTS Federal-State Research on Cooperatives... for providing Federal-State Research on Cooperatives cooperative agreement funds to finance programs...
Wakabayashi, Kazuyuki; Soga, Kouichi; Hoson, Takayuki; Kotake, Toshihisa; Yamazaki, Takashi; Higashibata, Akira; Ishioka, Noriaki; Shimazu, Toru; Fukui, Keiji; Osada, Ikuko; Kasahara, Haruo; Kamada, Motoshi
2015-01-01
Network structures created by hydroxycinnamate cross-links within the cell wall architecture of gramineous plants make the cell wall resistant to the gravitational force of the earth. In this study, the effects of microgravity on the formation of cell wall-bound hydroxycinnamates were examined using etiolated rice shoots simultaneously grown under artificial 1 g and microgravity conditions in the Cell Biology Experiment Facility on the International Space Station. Measurement of the mechanical properties of cell walls showed that shoot cell walls became stiff during the growth period and that microgravity suppressed this stiffening. Amounts of cell wall polysaccharides, cell wall-bound phenolic acids, and lignin in rice shoots increased as the shoot grew. Microgravity did not influence changes in the amounts of cell wall polysaccharides or phenolic acid monomers such as ferulic acid (FA) and p-coumaric acid, but it suppressed increases in diferulic acid (DFA) isomers and lignin. Activities of the enzymes phenylalanine ammonia-lyase (PAL) and cell wall-bound peroxidase (CW-PRX) in shoots also increased as the shoot grew. PAL activity in microgravity-grown shoots was almost comparable to that in artificial 1 g-grown shoots, while CW-PRX activity increased less in microgravity-grown shoots than in artificial 1 g-grown shoots. Furthermore, the increases in expression levels of some class III peroxidase genes were reduced under microgravity conditions. These results suggest that a microgravity environment modifies the expression levels of certain class III peroxidase genes in rice shoots, that the resultant reduction of CW-PRX activity may be involved in suppressing DFA formation and lignin polymerization, and that this suppression may cause a decrease in cross-linkages within the cell wall architecture. The reduction in intra-network structures may contribute to keeping the cell wall loose under microgravity conditions. PMID:26378793
Quantitative High-Throughput Screen Identifies Inhibitors of the Schistosoma mansoni Redox Cascade
Simeonov, Anton; Jadhav, Ajit; Sayed, Ahmed A.; Wang, Yuhong; Nelson, Michael E.; Thomas, Craig J.; Inglese, James; Williams, David L.; Austin, Christopher P.
2008-01-01
Schistosomiasis is a tropical disease associated with high morbidity and mortality, currently affecting over 200 million people worldwide. Praziquantel is the only drug used to treat the disease, and with its increased use the probability of developing drug resistance has grown significantly. The Schistosoma parasites can survive for up to decades in the human host due in part to a unique set of antioxidant enzymes that continuously degrade the reactive oxygen species produced by the host's innate immune response. Two principal components of this defense system have been recently identified in S. mansoni as thioredoxin/glutathione reductase (TGR) and peroxiredoxin (Prx) and as such these enzymes present attractive new targets for anti-schistosomiasis drug development. Inhibition of TGR/Prx activity was screened in a dual-enzyme format with reducing equivalents being transferred from NADPH to glutathione via a TGR-catalyzed reaction and then to hydrogen peroxide via a Prx-catalyzed step. A fully automated quantitative high-throughput (qHTS) experiment was performed against a collection of 71,028 compounds tested as 7- to 15-point concentration series at 5 µL reaction volume in 1536-well plate format. In order to generate a robust data set and to minimize the effect of compound autofluorescence, apparent reaction rates derived from a kinetic read were utilized instead of end-point measurements. Actives identified from the screen, along with previously untested analogues, were subjected to confirmatory experiments using the screening assay and subsequently against the individual targets in secondary assays. Several novel active series were identified which inhibited TGR at a range of potencies, with IC50s ranging from micromolar to the assay response limit (∼25 nM). This is, to our knowledge, the first report of a large-scale HTS to identify lead compounds for a helminthic disease, and provides a paradigm that can be used to jump-start development of novel therapeutics for other neglected tropical diseases. PMID:18235848
Basic Principles and Emerging Concepts in the Redox Control of Transcription Factors
Flohé, Leopold
2011-01-01
Abstract Convincing concepts of redox control of gene transcription have been worked out for prokaryotes and lower eukaryotes, whereas the knowledge on complex mammalian systems still resembles a patchwork of poorly connected findings. The article, therefore, reviews principles of redox regulation with special emphasis on chemical feasibility, kinetic requirements, specificity, and physiological context, taking well investigated mammalian transcription factor systems, nuclear transcription factor of bone marrow-derived lymphocytes (NF-κB), and kelch-like ECH-associated protein-1 (Keap1)/Nrf2, as paradigms. Major conclusions are that (i) direct signaling by free radicals is restricted to O2•− and •NO and can be excluded for fast reacting radicals such as •OH, •OR, or Cl•; (ii) oxidant signals are H2O2, enzymatically generated lipid hydroperoxides, and peroxynitrite; (iii) free radical damage is sensed via generation of Michael acceptors; (iv) protein thiol oxidation/alkylation is the prominent mechanism to modulate function; (v) redox sensors must be thiol peroxidases by themselves or proteins with similarly reactive cysteine or selenocysteine (Sec) residues to kinetically compete with glutathione peroxidase (GPx)- and peroxiredoxin (Prx)-type peroxidases or glutathione-S-transferases, respectively, a postulate that still has to be verified for putative mammalian sensors. S-transferases and Prxs are considered for system complementation. The impact of NF-κB and Nrf2 on hormesis, management of inflammatory diseases, and cancer prevention is critically discussed. Antioxid. Redox Signal. 15, 2335–2381. PMID:21194351
7 CFR 1150.119 - Cooperative association.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 9 2010-01-01 2009-01-01 true Cooperative association. 1150.119 Section 1150.119 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing... Order Definitions § 1150.119 Cooperative association. Cooperative association means any cooperative...
7 CFR 1425.2 - Administration.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 10 2010-01-01 2010-01-01 false Administration. 1425.2 Section 1425.2 Agriculture Regulations of the Department of Agriculture (Continued) COMMODITY CREDIT CORPORATION, DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS COOPERATIVE MARKETING ASSOCIATIONS § 1425.2 Administration...
7 CFR 1425.2 - Administration.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 10 2014-01-01 2014-01-01 false Administration. 1425.2 Section 1425.2 Agriculture Regulations of the Department of Agriculture (Continued) COMMODITY CREDIT CORPORATION, DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS COOPERATIVE MARKETING ASSOCIATIONS § 1425.2 Administration...
7 CFR 1425.2 - Administration.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 10 2013-01-01 2013-01-01 false Administration. 1425.2 Section 1425.2 Agriculture Regulations of the Department of Agriculture (Continued) COMMODITY CREDIT CORPORATION, DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS COOPERATIVE MARKETING ASSOCIATIONS § 1425.2 Administration...
7 CFR 1425.2 - Administration.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 10 2011-01-01 2011-01-01 false Administration. 1425.2 Section 1425.2 Agriculture Regulations of the Department of Agriculture (Continued) COMMODITY CREDIT CORPORATION, DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS COOPERATIVE MARKETING ASSOCIATIONS § 1425.2 Administration...
NASA Astrophysics Data System (ADS)
Popovic, Djordje; Bodo, Michael; Pearce, Frederick; van Albert, Stephen; Garcia, Alison; Settle, Tim; Armonda, Rocco
2013-04-01
The ability of cerebral vasculature to regulate cerebral blood flow (CBF) in the face of changes in arterial blood pressure (SAP) or intracranial pressure (ICP) is an important guard against secondary ischemia in acute brain injuries, and official guidelines recommend that therapeutic decisions be guided by continuous monitoring of CBF autoregulation (AR). The common method for CBF AR monitoring, which rests on real-time derivation of the correlation coefficient (PRx) between slow oscillations in SAP and ICP is, however, rarely used in clinical practice because it requires invasive ICP measurements. This study investigated whether the correlation coefficient between SAP and the pulsatile component of the non-invasive transcranial bioimpedance signal (rheoencephalography, REG) could be used to assess the state and lower limit of CBF AR. The results from pigs and rhesus macaques affirm the utility of REG; however, additional animal and clinical studies are warranted to assess selectivity of automatic REG-based evaluation of CBF AR.
7 CFR 989.12a - Cooperative bargaining association.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 8 2010-01-01 2010-01-01 false Cooperative bargaining association. 989.12a Section... PRODUCED FROM GRAPES GROWN IN CALIFORNIA Order Regulating Handling Definitions § 989.12a Cooperative bargaining association. Cooperative bargaining association means a nonprofit cooperative association of...
Schmitz, Ulf; Lai, Xin; Winter, Felix; Wolkenhauer, Olaf; Vera, Julio; Gupta, Shailendra K.
2014-01-01
MicroRNAs (miRNAs) are an integral part of gene regulation at the post-transcriptional level. Recently, it has been shown that pairs of miRNAs can repress the translation of a target mRNA in a cooperative manner, which leads to an enhanced effectiveness and specificity in target repression. However, it remains unclear which miRNA pairs can synergize and which genes are target of cooperative miRNA regulation. In this paper, we present a computational workflow for the prediction and analysis of cooperating miRNAs and their mutual target genes, which we refer to as RNA triplexes. The workflow integrates methods of miRNA target prediction; triplex structure analysis; molecular dynamics simulations and mathematical modeling for a reliable prediction of functional RNA triplexes and target repression efficiency. In a case study we analyzed the human genome and identified several thousand targets of cooperative gene regulation. Our results suggest that miRNA cooperativity is a frequent mechanism for an enhanced target repression by pairs of miRNAs facilitating distinctive and fine-tuned target gene expression patterns. Human RNA triplexes predicted and characterized in this study are organized in a web resource at www.sbi.uni-rostock.de/triplexrna/. PMID:24875477
Identifying cooperative transcriptional regulations using protein–protein interactions
Nagamine, Nobuyoshi; Kawada, Yuji; Sakakibara, Yasubumi
2005-01-01
Cooperative transcriptional activations among multiple transcription factors (TFs) are important to understand the mechanisms of complex transcriptional regulations in eukaryotes. Previous studies have attempted to find cooperative TFs based on gene expression data with gene expression profiles as a measure of similarity of gene regulations. In this paper, we use protein–protein interaction data to infer synergistic binding of cooperative TFs. Our fundamental idea is based on the assumption that genes contributing to a similar biological process are regulated under the same control mechanism. First, the protein–protein interaction networks are used to calculate the similarity of biological processes among genes. Second, we integrate this similarity and the chromatin immuno-precipitation data to identify cooperative TFs. Our computational experiments in yeast show that predictions made by our method have successfully identified eight pairs of cooperative TFs that have literature evidences but could not be identified by the previous method. Further, 12 new possible pairs have been inferred and we have examined the biological relevances for them. However, since a typical problem using protein–protein interaction data is that many false-positive data are contained, we propose a method combining various biological data to increase the prediction accuracy. PMID:16126847
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 12 2010-01-01 2010-01-01 false [Reserved] 1924.2 Section 1924.2 Agriculture Regulations of the Department of Agriculture (Continued) RURAL HOUSING SERVICE, RURAL BUSINESS-COOPERATIVE... CONSTRUCTION AND REPAIR Planning and Performing Construction and Other Development § 1924.2 [Reserved] ...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 15 2010-01-01 2010-01-01 false Purpose. 3431.2 Section 3431.2 Agriculture Regulations of the Department of Agriculture (Continued) COOPERATIVE STATE RESEARCH, EDUCATION, AND EXTENSION SERVICE, DEPARTMENT OF AGRICULTURE VETERINARY MEDICINE LOAN REPAYMENT PROGRAM Designation of Veterinarian...
Schuchardt, Brett J.; Mikles, David C.; Hoang, Lawrence M.; Bhat, Vikas; McDonald, Caleb B.; Sudol, Marius; Farooq, Amjad
2014-01-01
YAP2 transcriptional regulator drives a multitude of cellular processes, including the newly discovered Hippo tumor suppressor pathway, by virtue of the ability of its WW domains to bind and recruit PPXY-containing ligands to specific subcellular compartments. Herein, we employ an array of biophysical tools to investigate allosteric communication between the WW tandem domains of YAP2. Our data show that the WW tandem domains of YAP2 negatively cooperate when binding to their cognate ligands. Moreover, the molecular origin of such negative cooperativity lies in an unfavorable entropic contribution to the overall free energy relative to ligand binding to isolated WW domains. Consistent with this notion, the WW tandem domains adopt a fixed spatial orientation such that the WW1 domain curves outwards and stacks onto the binding groove of WW2 domain, thereby sterically hindering ligand binding to both itself and its tandem partner. Although ligand binding to both WW domains disrupts such interdomain stacking interaction, they reorient themselves and adopt an alternative fixed spatial orientation in the liganded state by virtue of their ability to engage laterally so as to allow their binding grooves to point outwards and away from each other. In short, while the ability of WW tandem domains to aid ligand binding is well-documented, our demonstration that they may also be subject to negative binding cooperativity represents a paradigm shift in our understanding of the molecular action of this ubiquitous family of protein modules. PMID:25283809
Peng, Zhen-sheng; Wang, Zhi-he
2004-04-01
Ceramics of Eu1+xBa2-xCu3O7-delta with x = 0.0, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5 and EuBa2-xPrxCu3O7-delta with x=0.0, 0.05, 0.1, 0.2, 0.3, 0.4 have been synthesized and investigated by X-ray diffraction, resistivity, and Raman spectroscopy. The results show that the transition of crystal structure from orthorhombic to tetragonal occurs and the criticaltemperature decreases withthe increase in doping concentration x. The Raman spectra show that the frequency of the Cu(1)-O(4) stretching mode andthe Cu(2)-(2, 3) out-of-phase mode shifts to higher wave number with increasing doping concentration x.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 4 2012-01-01 2012-01-01 false Applicability. 602.2 Section 602.2 Energy DEPARTMENT OF ENERGY (CONTINUED) ASSISTANCE REGULATIONS EPIDEMIOLOGY AND OTHER HEALTH STUDIES FINANCIAL ASSISTANCE PROGRAM § 602.2 Applicability. (a) This part applies to all grants and cooperative agreements awarded...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 4 2013-01-01 2013-01-01 false Applicability. 602.2 Section 602.2 Energy DEPARTMENT OF ENERGY (CONTINUED) ASSISTANCE REGULATIONS EPIDEMIOLOGY AND OTHER HEALTH STUDIES FINANCIAL ASSISTANCE PROGRAM § 602.2 Applicability. (a) This part applies to all grants and cooperative agreements awarded...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 4 2014-01-01 2014-01-01 false Applicability. 602.2 Section 602.2 Energy DEPARTMENT OF ENERGY (CONTINUED) ASSISTANCE REGULATIONS EPIDEMIOLOGY AND OTHER HEALTH STUDIES FINANCIAL ASSISTANCE PROGRAM § 602.2 Applicability. (a) This part applies to all grants and cooperative agreements awarded...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 4 2011-01-01 2011-01-01 false Applicability. 602.2 Section 602.2 Energy DEPARTMENT OF ENERGY (CONTINUED) ASSISTANCE REGULATIONS EPIDEMIOLOGY AND OTHER HEALTH STUDIES FINANCIAL ASSISTANCE PROGRAM § 602.2 Applicability. (a) This part applies to all grants and cooperative agreements awarded...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 4 2010-01-01 2010-01-01 false Applicability. 602.2 Section 602.2 Energy DEPARTMENT OF ENERGY (CONTINUED) ASSISTANCE REGULATIONS EPIDEMIOLOGY AND OTHER HEALTH STUDIES FINANCIAL ASSISTANCE PROGRAM § 602.2 Applicability. (a) This part applies to all grants and cooperative agreements awarded...
7 CFR 3430.1 - Applicability of regulations.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Agriculture Regulations of the Department of Agriculture (Continued) COOPERATIVE STATE RESEARCH, EDUCATION... evaluation, award, and post-award administration of, Cooperative State Research, Education, and Extension... 3016 (State, local, and tribal governments), 3019 (institutions of higher education, hospitals, and...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-11
...: Cooper Tire & Rubber Company (Cooper),\\1\\ has determined that certain Cooper brand tires manufactured... brand standard load tires manufactured in Mexico by Cooper's affiliate, Corporaci[oacute]n de Occidente... Docket Management System (FDMS) Web site at http://www.regulations.gov/ . Follow the online instructions...
Brawanski, Alexander
2017-01-01
Multimodal brain monitoring has been utilized to optimize treatment of patients with critical neurological diseases. However, the amount of data requires an integrative tool set to unmask pathological events in a timely fashion. Recently we have introduced a mathematical model allowing the simulation of pathophysiological conditions such as reduced intracranial compliance and impaired autoregulation. Utilizing a mathematical tool set called selected correlation analysis (sca), correlation patterns, which indicate impaired autoregulation, can be detected in patient data sets (scp). In this study we compared the results of the sca with the pressure reactivity index (PRx), an established marker for impaired autoregulation. Mean PRx values were significantly higher in time segments identified as scp compared to segments showing no selected correlations (nsc). The sca based approach predicted cerebral autoregulation failure with a sensitivity of 78.8% and a specificity of 62.6%. Autoregulation failure, as detected by the results of both analysis methods, was significantly correlated with poor outcome. Sca of brain monitoring data detects impaired autoregulation with high sensitivity and sufficient specificity. Since the sca approach allows the simultaneous detection of both major pathological conditions, disturbed autoregulation and reduced compliance, it may become a useful analysis tool for brain multimodal monitoring data. PMID:28255331
Proescholdt, Martin A; Faltermeier, Rupert; Bele, Sylvia; Brawanski, Alexander
2017-01-01
Multimodal brain monitoring has been utilized to optimize treatment of patients with critical neurological diseases. However, the amount of data requires an integrative tool set to unmask pathological events in a timely fashion. Recently we have introduced a mathematical model allowing the simulation of pathophysiological conditions such as reduced intracranial compliance and impaired autoregulation. Utilizing a mathematical tool set called selected correlation analysis (sca), correlation patterns, which indicate impaired autoregulation, can be detected in patient data sets (scp). In this study we compared the results of the sca with the pressure reactivity index (PRx), an established marker for impaired autoregulation. Mean PRx values were significantly higher in time segments identified as scp compared to segments showing no selected correlations (nsc). The sca based approach predicted cerebral autoregulation failure with a sensitivity of 78.8% and a specificity of 62.6%. Autoregulation failure, as detected by the results of both analysis methods, was significantly correlated with poor outcome. Sca of brain monitoring data detects impaired autoregulation with high sensitivity and sufficient specificity. Since the sca approach allows the simultaneous detection of both major pathological conditions, disturbed autoregulation and reduced compliance, it may become a useful analysis tool for brain multimodal monitoring data.
Ormazabal, Valeska; Zuñiga, Felipe A; Escobar, Elizabeth; Aylwin, Carlos; Salas-Burgos, Alexis; Godoy, Alejandro; Reyes, Alejandro M; Vera, Juan Carlos; Rivas, Coralia I
2010-11-19
Na(+)-coupled ascorbic acid transporter-2 (SVCT2) activity is impaired at acid pH, but little is known about the molecular determinants that define the transporter pH sensitivity. SVCT2 contains six histidine residues in its primary sequence, three of which are exofacial in the transporter secondary structure model. We used site-directed mutagenesis and treatment with diethylpyrocarbonate to identify histidine residues responsible for SVCT2 pH sensitivity. We conclude that five histidine residues, His(109), His(203), His(206), His(269), and His(413), are central regulators of SVCT2 function, participating to different degrees in modulating pH sensitivity, transporter kinetics, Na(+) cooperativity, conformational stability, and subcellular localization. Our results are compatible with a model in which (i) a single exofacial histidine residue, His(413), localized in the exofacial loop IV that connects transmembrane helices VII-VIII defines the pH sensitivity of SVCT2 through a mechanism involving a marked attenuation of the activation by Na(+) and loss of Na(+) cooperativity, which leads to a decreased V(max) without altering the transport K(m); (ii) exofacial histidine residues His(203), His(206), and His(413) may be involved in maintaining a functional interaction between exofacial loops II and IV and influence the general folding of the transporter; (iii) histidines 203, 206, 269, and 413 affect the transporter kinetics by modulating the apparent transport K(m); and (iv) histidine 109, localized at the center of transmembrane helix I, might be fundamental for the interaction of SVCT2 with the transported substrate ascorbic acid. Thus, histidine residues are central regulators of SVCT2 function.
Manzano, Concepción; Pallero-Baena, Mercedes; Silva-Navas, J; Navarro Neila, Sara; Casimiro, Ilda; Casero, Pedro; Garcia-Mina, Jose M; Baigorri, Roberto; Rubio, Lourdes; Fernandez, Jose A; Norris, Matthew; Ding, Yiliang; Moreno-Risueno, Miguel A; Del Pozo, Juan C
2017-11-02
Plant roots have the potential capacity to grow almost indefinitely if meristematic and lateral branching is sustained. In a genetic screen we identified an Arabidopsis mutant showing limited root growth (lrg1) due to defects in cell division and elongation in the root meristem. Positional cloning determined that lrg1 affects an alpha-1,2-mannosyltransferase gene, LEW3, involved in protein N-glycosylation. The lrg1 mutation causes a synonymous substitution that alters the correct splicing of the fourth intron in LEW3, causing a mix of wild-type and truncated protein. LRG1 RNA missplicing in roots and short root phenotypes in lrg1 are light-intensity dependent. This mutation disrupts a GC-base pair in a three-base-pair stem with a four-nucleotide loop, which seems to be necessary for correct LEW3 RNA splicing. We found that the lrg1 short root phenotype correlates with high levels of reactive oxygen species and low pH in the apoplast. Proteomic analyses of N-glycosylated proteins identified GLU23/PYK10 and PRX34 as N-glycosylation targets of LRG1 activity. The lrg1 mutation reduces the positive interaction between Arabidopsis and Serendipita indica. A prx34 mutant showed a significant reduction in root growth, which is additive to lrg1. Taken together our work highlights the important role of N-glycosylation in root growth and development. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 14 2012-01-01 2012-01-01 false Policy. 1955.2 Section 1955.2 Agriculture Regulations of the Department of Agriculture (Continued) RURAL HOUSING SERVICE, RURAL BUSINESS-COOPERATIVE... Real and Chattel Property § 1955.2 Policy. When it has been determined in accordance with applicable...
Lee, Susie A; Ladu, Sara; Evert, Matthias; Dombrowski, Frank; De Murtas, Valentina; Chen, Xin; Calvisi, Diego F
2010-08-01
Sprouty2 (Spry2), a negative feedback regulator of the Ras/mitogen-activated protein kinase (MAPK) pathway, is frequently down-regulated in human hepatocellular carcinoma (HCC). We tested the hypothesis that loss of Spry2 cooperates with unconstrained activation of the c-Met protooncogene to induce hepatocarcinogenesis via in vitro and in vivo approaches. We found coordinated down-regulation of Spry2 protein expression and activation of c-Met as well as its downstream effectors extracellular signal-regulated kinase (ERK) and v-akt murine thymoma viral oncogene homolog (AKT) in a subset of human HCC samples with poor outcome. Mechanistic studies revealed that Spry2 function is disrupted in human HCC via multiple mechanisms at both transcriptional and post-transcriptional level, including promoter hypermethylation, loss of heterozygosity, and proteosomal degradation by neural precursor cell expressed, developmentally down-regulated 4 (NEDD4). In HCC cell lines, Spry2 overexpression inhibits c-Met-induced cell proliferation as well as ERK and AKT activation, whereas loss of Spry2 potentiates c-Met signaling. Most importantly, we show that blocking Spry2 activity via a dominant negative form of Spry2 cooperates with c-Met to promote hepatocarcinogenesis in the mouse liver by sustaining proliferation and angiogenesis. The tumors exhibited high levels of activated ERK and AKT, recapitulating the subgroup of human HCC with a clinically aggressive phenotype. The occurrence of frequent genetic, epigenetic, and biochemical events leading to Spry2 inactivation provides solid evidence that Spry2 functions as a tumor suppressor gene in liver cancer. Coordinated deregulation of Spry2 and c-Met signaling may be a pivotal oncogenic mechanism responsible for unrestrained activation of ERK and AKT pathways in human hepatocarcinogenesis.
18 CFR Appendix A to Part 1302 - Federal Financial Assistance to Which These Regulations Apply
Code of Federal Regulations, 2010 CFR
2010-04-01
... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Federal Financial Assistance to Which These Regulations Apply A Appendix A to Part 1302 Conservation of Power and Water... a cooperative program utilizing test-demonstration farms to test experimental fertilizers developed...
18 CFR Appendix A to Part 1302 - Federal Financial Assistance to Which These Regulations Apply
Code of Federal Regulations, 2011 CFR
2011-04-01
... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Federal Financial Assistance to Which These Regulations Apply A Appendix A to Part 1302 Conservation of Power and Water... a cooperative program utilizing test-demonstration farms to test experimental fertilizers developed...
18 CFR Appendix A to Part 1302 - Federal Financial Assistance to Which These Regulations Apply
Code of Federal Regulations, 2013 CFR
2013-04-01
... 18 Conservation of Power and Water Resources 2 2013-04-01 2012-04-01 true Federal Financial Assistance to Which These Regulations Apply A Appendix A to Part 1302 Conservation of Power and Water... a cooperative program utilizing test-demonstration farms to test experimental fertilizers developed...
Hazra, Suratna; Henderson, J Nathan; Liles, Kevin; Hilton, Matthew T; Wachter, Rebekka M
2015-10-02
In many photosynthetic organisms, tight-binding Rubisco inhibitors are released by the motor protein Rubisco activase (Rca). In higher plants, Rca plays a pivotal role in regulating CO2 fixation. Here, the ATPase activity of 0.005 mm tobacco Rca was monitored under steady-state conditions, and global curve fitting was utilized to extract kinetic constants. The kcat was best fit by 22.3 ± 4.9 min(-1), the Km for ATP by 0.104 ± 0.024 mm, and the Ki for ADP by 0.037 ± 0.007 mm. Without ADP, the Hill coefficient for ATP hydrolysis was extracted to be 1.0 ± 0.1, indicating noncooperative behavior of homo-oligomeric Rca assemblies. However, the addition of ADP was shown to introduce positive cooperativity between two or more subunits (Hill coefficient 1.9 ± 0.2), allowing for regulation via the prevailing ATP/ADP ratio. ADP-mediated activation was not observed, although larger amounts led to competitive product inhibition of hydrolytic activity. The catalytic efficiency increased 8.4-fold upon cooperative binding of a second magnesium ion (Hill coefficient 2.5 ± 0.5), suggesting at least three conformational states (ATP-bound, ADP-bound, and empty) within assemblies containing an average of about six subunits. The addition of excess Rubisco (24:1, L8S8/Rca6) and crowding agents did not modify catalytic rates. However, high magnesium provided for thermal Rca stabilization. We propose that magnesium mediates the formation of closed hexameric toroids capable of high turnover rates and amenable to allosteric regulation. We suggest that in vivo, the Rca hydrolytic activity is tuned by fluctuating [Mg(2+)] in response to changes in available light. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
[DAMPs (damage-associated molecular patterns) and inflammation].
Ooboshi, Hiroaki; Shichita, Takashi
2016-04-01
Post-ischemic inflammation is re-appraised as an important player in the progression of ischemic stroke. Activation of inflammatory cells via Toll-like receptor 2 (TLR2) and TLR4 is caused by several damage-associated molecular patterns (DAMPs), including high mobility group box-1 (HMGB-1) and heat shock proteins. We have recently found that peroxiredoxin (Prx) is one of the strong DAMPs and activates infiltrating macrophages in brain ischemia. We have also found that interleukin-23 (IL-23) from the activated macrophages stimulates γδT cells which release IL-17, thereby causing the delayed expansion of infarct lesions. Further investigation of the innate immune response would lead to development of novel stroke treatment with a broad therapeutic time window.
Schuchardt, Brett J; Mikles, David C; Hoang, Lawrence M; Bhat, Vikas; McDonald, Caleb B; Sudol, Marius; Farooq, Amjad
2014-12-01
YES-associated protein 2 (YAP2) transcriptional regulator drives a multitude of cellular processes, including the newly discovered Hippo tumor suppressor pathway, by virtue of the ability of its WW domains to bind and recruit PPXY-containing ligands to specific subcellular compartments. Herein, we employ an array of biophysical tools to investigate allosteric communication between the WW tandem domains of YAP2. Our data show that the WW tandem domains of YAP2 negatively cooperate when binding to their cognate ligands. Moreover, the molecular origin of such negative cooperativity lies in an unfavorable entropic contribution to the overall free energy relative to ligand binding to isolated WW domains. Consistent with this notion, the WW tandem domains adopt a fixed spatial orientation such that the WW1 domain curves outwards and stacks onto the binding groove of the WW2 domain, thereby sterically hindering ligand binding to both itself and its tandem partner. Although ligand binding to both WW domains disrupts such interdomain stacking interaction, they reorient themselves and adopt an alternative fixed spatial orientation in the liganded state by virtue of their ability to engage laterally so as to allow their binding grooves to point outwards and away from each other. In short, while the ability of WW tandem domains to aid ligand binding is well documented, our demonstration that they may also be subject to negative binding cooperativity represents a paradigm shift in our understanding of the molecular action of this ubiquitous family of protein modules. © 2014 FEBS.
10 CFR 607.620 - Cooperative agreement.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 4 2010-01-01 2010-01-01 false Cooperative agreement. 607.620 Section 607.620 Energy DEPARTMENT OF ENERGY (CONTINUED) ASSISTANCE REGULATIONS GOVERNMENTWIDE REQUIREMENTS FOR DRUG-FREE WORKPLACE (FINANCIAL ASSISTANCE) Definitions § 607.620 Cooperative agreement. Cooperative agreement means an award of...
50 CFR 401.9 - Payments to cooperators.
Code of Federal Regulations, 2010 CFR
2010-10-01
..., DEPARTMENT OF COMMERCE); ENDANGERED SPECIES COMMITTEE REGULATIONS SUBCHAPTER A ANADROMOUS FISHERIES... 50 Wildlife and Fisheries 7 2010-10-01 2010-10-01 false Payments to cooperators. 401.9 Section 401.9 Wildlife and Fisheries JOINT REGULATIONS (UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF...
7 CFR 1001.18 - Cooperative association.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 9 2010-01-01 2009-01-01 true Cooperative association. 1001.18 Section 1001.18 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and Orders; Milk), DEPARTMENT OF AGRICULTURE MILK IN THE NORTHEAST MARKETING AREA Order Regulating...
Zerenturk, Eser J; Sharpe, Laura J; Brown, Andrew J
2012-10-01
3β-Hydroxysterol Δ24-reductase (DHCR24) catalyzes a final step in cholesterol synthesis, and has been ascribed diverse functions, such as being anti-apoptotic and anti-inflammatory. How this enzyme is regulated transcriptionally by sterols is currently unclear. Some studies have suggested that its expression is regulated by Sterol Regulatory Element Binding Proteins (SREBPs) while another suggests it is through the Liver X Receptor (LXR). However, these transcription factors have opposing effects on cellular sterol levels, so it is likely that one predominates. Here we establish that sterol regulation of DHCR24 occurs predominantly through SREBP-2, and identify the particular region of the DHCR24 promoter to which SREBP-2 binds. We demonstrate that sterol regulation is mediated by two sterol regulatory elements (SREs) in the promoter of the gene, assisted by two nearby NF-Y binding sites. Moreover, we present evidence that the dual SREs work cooperatively to regulate DHCR24 expression by comparison to two known SREBP target genes, the LDL receptor with one SRE, and farnesyl-diphosphate farnesyltransferase 1, with two SREs. Copyright © 2012 Elsevier B.V. All rights reserved.
7 CFR 1.76 - Department cooperation.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 1 2011-01-01 2011-01-01 false Department cooperation. 1.76 Section 1.76 Agriculture Office of the Secretary of Agriculture ADMINISTRATIVE REGULATIONS Cooperative Production of Television Films § 1.76 Department cooperation. When the producer agrees to meet the above stipulations to the...
7 CFR 1.76 - Department cooperation.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 1 2014-01-01 2014-01-01 false Department cooperation. 1.76 Section 1.76 Agriculture Office of the Secretary of Agriculture ADMINISTRATIVE REGULATIONS Cooperative Production of Television Films § 1.76 Department cooperation. When the producer agrees to meet the above stipulations to the...
7 CFR 1.76 - Department cooperation.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 1 2012-01-01 2012-01-01 false Department cooperation. 1.76 Section 1.76 Agriculture Office of the Secretary of Agriculture ADMINISTRATIVE REGULATIONS Cooperative Production of Television Films § 1.76 Department cooperation. When the producer agrees to meet the above stipulations to the...
7 CFR 1.76 - Department cooperation.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 1 2010-01-01 2010-01-01 false Department cooperation. 1.76 Section 1.76 Agriculture Office of the Secretary of Agriculture ADMINISTRATIVE REGULATIONS Cooperative Production of Television Films § 1.76 Department cooperation. When the producer agrees to meet the above stipulations to the...
Pietraszewski, David; Cosmides, Leda; Tooby, John
2014-01-01
Humans in all societies form and participate in cooperative alliances. To successfully navigate an alliance-laced world, the human mind needs to detect new coalitions and alliances as they emerge, and predict which of many potential alliance categories are currently organizing an interaction. We propose that evolution has equipped the mind with cognitive machinery that is specialized for performing these functions: an alliance detection system. In this view, racial categories do not exist because skin color is perceptually salient; they are constructed and regulated by the alliance system in environments where race predicts social alliances and divisions. Early tests using adversarial alliances showed that the mind spontaneously detects which individuals are cooperating against a common enemy, implicitly assigning people to rival alliance categories based on patterns of cooperation and competition. But is social antagonism necessary to trigger the categorization of people by alliance--that is, do we cognitively link A and B into an alliance category only because they are jointly in conflict with C and D? We report new studies demonstrating that peaceful cooperation can trigger the detection of new coalitional alliances and make race fade in relevance. Alliances did not need to be marked by team colors or other perceptually salient cues. When race did not predict the ongoing alliance structure, behavioral cues about cooperative activities up-regulated categorization by coalition and down-regulated categorization by race, sometimes eliminating it. Alliance cues that sensitively regulated categorization by coalition and race had no effect on categorization by sex, eliminating many alternative explanations for the results. The results support the hypothesis that categorizing people by their race is a reversible product of a cognitive system specialized for detecting alliance categories and regulating their use. Common enemies are not necessary to erase important social boundaries; peaceful cooperation can have the same effect.
Pietraszewski, David; Cosmides, Leda; Tooby, John
2014-01-01
Humans in all societies form and participate in cooperative alliances. To successfully navigate an alliance-laced world, the human mind needs to detect new coalitions and alliances as they emerge, and predict which of many potential alliance categories are currently organizing an interaction. We propose that evolution has equipped the mind with cognitive machinery that is specialized for performing these functions: an alliance detection system. In this view, racial categories do not exist because skin color is perceptually salient; they are constructed and regulated by the alliance system in environments where race predicts social alliances and divisions. Early tests using adversarial alliances showed that the mind spontaneously detects which individuals are cooperating against a common enemy, implicitly assigning people to rival alliance categories based on patterns of cooperation and competition. But is social antagonism necessary to trigger the categorization of people by alliance—that is, do we cognitively link A and B into an alliance category only because they are jointly in conflict with C and D? We report new studies demonstrating that peaceful cooperation can trigger the detection of new coalitional alliances and make race fade in relevance. Alliances did not need to be marked by team colors or other perceptually salient cues. When race did not predict the ongoing alliance structure, behavioral cues about cooperative activities up-regulated categorization by coalition and down-regulated categorization by race, sometimes eliminating it. Alliance cues that sensitively regulated categorization by coalition and race had no effect on categorization by sex, eliminating many alternative explanations for the results. The results support the hypothesis that categorizing people by their race is a reversible product of a cognitive system specialized for detecting alliance categories and regulating their use. Common enemies are not necessary to erase important social boundaries; peaceful cooperation can have the same effect. PMID:24520394
43 CFR 1784.2-1 - Composition.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR GENERAL MANAGEMENT (1000) COOPERATIVE RELATIONS Advisory Committees § 1784.2-1... counsel and advice about public land and resource planning, retention, management and disposal. No person...
43 CFR 1784.2-1 - Composition.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR GENERAL MANAGEMENT (1000) COOPERATIVE RELATIONS Advisory Committees § 1784.2-1... counsel and advice about public land and resource planning, retention, management and disposal. No person...
43 CFR 1784.2-1 - Composition.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR GENERAL MANAGEMENT (1000) COOPERATIVE RELATIONS Advisory Committees § 1784.2-1... counsel and advice about public land and resource planning, retention, management and disposal. No person...
Code of Federal Regulations, 2010 CFR
2010-01-01
... Regulations of the Department of Agriculture (Continued) COOPERATIVE STATE RESEARCH, EDUCATION, AND EXTENSION... from a school providing secondary education, or the recognized equivalent of such a certificate, (2) Is legally authorized within such State to provide a program of education beyond secondary education, (3...
Code of Federal Regulations, 2010 CFR
2010-01-01
... of the Department of Agriculture (Continued) RURAL HOUSING SERVICE, RURAL BUSINESS-COOPERATIVE... REGULATIONS (CONTINUED) PERSONAL PROPERTY Servicing and Liquidation of Chattel Security § 1962.2 Policy. Chattel security, EO property and note only loans will be serviced to accomplish the loan objectives and...
Code of Federal Regulations, 2010 CFR
2010-01-01
... training and experience in particular scientific or technical fields to give expert advice, in accordance... Regulations of the Department of Agriculture (Continued) COOPERATIVE STATE RESEARCH, EDUCATION, AND EXTENSION SERVICE, DEPARTMENT OF AGRICULTURE SPECIAL RESEARCH GRANTS PROGRAM General § 3400.2 Definitions. As used...
Ucer, Serra; Iyer, Srividhya; Bartell, Shoshana M; Martin-Millan, Marta; Han, Li; Kim, Ha-Neui; Weinstein, Robert S; Jilka, Robert L; O’Brien, Charles A; Almeida, Maria; Manolagas, Stavros C
2016-01-01
In men, androgens are critical for the acquisition and maintenance of bone mass in both the cortical and cancellous bone compartment. Male mice with targeted deletion of the androgen receptor (AR) in mature osteoblasts or osteocytes have lower cancellous bone mass, but no cortical bone phenotype. We have investigated the possibility that the effects of androgens on the cortical compartment result from AR signaling in osteoprogenitors or cells of the osteoclast lineage; or via estrogen receptor alpha (ERα) signaling in either or both of these two cell types upon conversion of testosterone to estradiol. To this end, we generated mice with targeted deletion of an AR or an ERα allele in the mesenchymal (ARf/y;Prx1-Cre or ERαf/f;Osx1-Cre) or myeloid cell lineage (ARf/y; LysM-Cre or ERαf/f;LysM-Cre) and their descendants. Male ARf/y;Prx1-Cre mice exhibited decreased bone volume and trabecular number, and increased osteoclast number in the cancellous compartment. Moreover, they did not undergo the loss of cancellous bone volume and trabecular number caused by orchidectomy (ORX) in their littermate controls. In contrast, ARf/y;LysM-Cre, ERαf/f; Osx1-Cre, or ERαf/f;LysM-Cre mice had no cancellous bone phenotype at baseline and lost the same amount of cancellous bone as their controls following ORX. Most unexpectedly, adult males of all four models had no discernible cortical bone phenotype at baseline, and lost the same amount of cortical bone as their littermate controls after ORX. Recapitulation of the effects of ORX by AR deletion only in the ARf/y;Prx1-Cre mice indicates that the effects of androgens on cancellous bone result from AR signaling in osteoblasts—not on osteoclasts or via aromatization. The effects of androgens on cortical bone mass, on the other hand, do not require AR or ERα signaling in any cell type across the osteoblast or osteoclast differentiation lineage. Therefore, androgens must exert their effects indirectly by actions on some other cell type(s) or tissue(s). PMID:25704845
28 CFR 34.100 - Purpose and applicability.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 262(d)(2) of the Juvenile Justice and Delinquency Prevention Act of 1974, as amended. This provision... proposed program. (b) This subpart of the regulation applies to all applications for grants, cooperative...
7 CFR 3404.2 - Public inspection, copying, and indexing.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 15 2010-01-01 2010-01-01 false Public inspection, copying, and indexing. 3404.2 Section 3404.2 Agriculture Regulations of the Department of Agriculture (Continued) COOPERATIVE STATE... inspection, copying, and indexing. 5 U.S.C. 552(a)(2) requires that certain materials be made available for...
Wang, Jun; Lee, Seungsoo; Teh, Charis En-Yi; Bunting, Karen; Ma, Lina; Shannon, M Frances
2009-03-01
Activation of T cells leads to the induction of many cytokine genes that are required for appropriate immune responses, including IL-2, a key cytokine for T cell proliferation and homeostasis. The activating transcription factors such as nuclear factor of activated T cells, nuclear factor kappaB/Rel and activated protein-1 family members that regulate inducible IL-2 gene expression have been well documented. However, negative regulation of the IL-2 gene is less studied. Here we examine the role of zinc finger E-box-binding protein (ZEB) 1, a homeodomain/Zn finger transcription factor, as a repressor of IL-2 gene transcription. We show here that ZEB1 is expressed in non-stimulated and stimulated T cells and using chromatin immunoprecipitation assays we show that ZEB1 binds to the IL-2 promoter. Over-expression of ZEB1 can repress IL-2 promoter activity, as well as endogenous IL-2 mRNA production in EL-4 T cells, and this repression is dependent on the ZEB-binding site at -100. ZEB1 cooperates with the co-repressor C-terminal-binding protein (CtBP) 2 and with histone deacetylase 1 to repress the IL-2 promoter and this cooperation depends on the ZEB-binding site in the promoter as well as the Pro-X-Asp-Leu-Ser protein-protein interaction domain in CtBP2. Thus, ZEB1 may function to recruit a repressor complex to the IL-2 promoter.
7 CFR 3016.2 - Scope of subpart.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 15 2010-01-01 2010-01-01 false Scope of subpart. 3016.2 Section 3016.2 Agriculture Regulations of the Department of Agriculture (Continued) OFFICE OF THE CHIEF FINANCIAL OFFICER, DEPARTMENT OF AGRICULTURE UNIFORM ADMINISTRATIVE REQUIREMENTS FOR GRANTS AND COOPERATIVE AGREEMENTS TO STATE AND LOCAL...
1 CFR 8.7 - Agency cooperation.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 1 General Provisions 1 2011-01-01 2011-01-01 false Agency cooperation. 8.7 Section 8.7 General Provisions ADMINISTRATIVE COMMITTEE OF THE FEDERAL REGISTER SPECIAL EDITIONS OF THE FEDERAL REGISTER CODE OF FEDERAL REGULATIONS § 8.7 Agency cooperation. Each agency shall cooperate in keeping publication of the...
1 CFR 8.7 - Agency cooperation.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 1 General Provisions 1 2010-01-01 2010-01-01 false Agency cooperation. 8.7 Section 8.7 General Provisions ADMINISTRATIVE COMMITTEE OF THE FEDERAL REGISTER SPECIAL EDITIONS OF THE FEDERAL REGISTER CODE OF FEDERAL REGULATIONS § 8.7 Agency cooperation. Each agency shall cooperate in keeping publication of the...
30 CFR 900.15 - Federal lands program cooperative agreements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... INTRODUCTION § 900.15 Federal lands program cooperative agreements. The full text of any State and Federal cooperative agreement for the regulation of coal exploration and mining on Federal lands is published below... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Federal lands program cooperative agreements...
30 CFR 900.15 - Federal lands program cooperative agreements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... INTRODUCTION § 900.15 Federal lands program cooperative agreements. The full text of any State and Federal cooperative agreement for the regulation of coal exploration and mining on Federal lands is published below... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Federal lands program cooperative agreements...
30 CFR 900.15 - Federal lands program cooperative agreements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... INTRODUCTION § 900.15 Federal lands program cooperative agreements. The full text of any State and Federal cooperative agreement for the regulation of coal exploration and mining on Federal lands is published below... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Federal lands program cooperative agreements...
30 CFR 900.15 - Federal lands program cooperative agreements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... INTRODUCTION § 900.15 Federal lands program cooperative agreements. The full text of any State and Federal cooperative agreement for the regulation of coal exploration and mining on Federal lands is published below... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Federal lands program cooperative agreements...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-26
...) 52.222-19, Child Labor--Cooperation with Authorities and Remedies (MAR 2012) (E.O. 13126...) * * * (1) * * * (i) 52.222-19, Child Labor--Cooperation with Authorities and Remedies (MAR 2012) (E.O... Labor--Cooperation with Authorities and Remedies. * * * * * CHILD LABOR--COOPERATION WITH AUTHORITIES...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 8 2010-01-01 2010-01-01 false Independent handler, major cooperative marketing association handler, and small cooperative marketing association handler. 989.115 Section 989.115 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and Orders; Fruits, Vegetables,...
1 CFR 8.7 - Agency cooperation.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 1 General Provisions 1 2013-01-01 2012-01-01 true Agency cooperation. 8.7 Section 8.7 General Provisions ADMINISTRATIVE COMMITTEE OF THE FEDERAL REGISTER SPECIAL EDITIONS OF THE FEDERAL REGISTER CODE OF FEDERAL REGULATIONS § 8.7 Agency cooperation. Each agency shall cooperate in keeping publication of the...
1 CFR 8.7 - Agency cooperation.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 1 General Provisions 1 2012-01-01 2012-01-01 false Agency cooperation. 8.7 Section 8.7 General Provisions ADMINISTRATIVE COMMITTEE OF THE FEDERAL REGISTER SPECIAL EDITIONS OF THE FEDERAL REGISTER CODE OF FEDERAL REGULATIONS § 8.7 Agency cooperation. Each agency shall cooperate in keeping publication of the...
1 CFR 8.7 - Agency cooperation.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 1 General Provisions 1 2014-01-01 2012-01-01 true Agency cooperation. 8.7 Section 8.7 General Provisions ADMINISTRATIVE COMMITTEE OF THE FEDERAL REGISTER SPECIAL EDITIONS OF THE FEDERAL REGISTER CODE OF FEDERAL REGULATIONS § 8.7 Agency cooperation. Each agency shall cooperate in keeping publication of the...
29 CFR 501.21 - Failure to cooperate with investigations.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 29 Labor 3 2010-07-01 2010-07-01 false Failure to cooperate with investigations. 501.21 Section 501.21 Labor Regulations Relating to Labor (Continued) WAGE AND HOUR DIVISION, DEPARTMENT OF LABOR REGULATIONS ENFORCEMENT OF CONTRACTUAL OBLIGATIONS FOR TEMPORARY ALIEN AGRICULTURAL WORKERS ADMITTED UNDER...
29 CFR 501.7 - Cooperation with Federal officials.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 29 Labor 3 2010-07-01 2010-07-01 false Cooperation with Federal officials. 501.7 Section 501.7 Labor Regulations Relating to Labor (Continued) WAGE AND HOUR DIVISION, DEPARTMENT OF LABOR REGULATIONS ENFORCEMENT OF CONTRACTUAL OBLIGATIONS FOR TEMPORARY ALIEN AGRICULTURAL WORKERS ADMITTED UNDER SECTION 218 OF...
Code of Federal Regulations, 2010 CFR
2010-07-01
... texts of State and Federal cooperative agreements for regulation of mining on Federal lands. The... Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE INTRODUCTION § 900.2 Objectives. The objective of...
Code of Federal Regulations, 2010 CFR
2010-01-01
... scientific or technical fields to give expert advice, in accordance with the provisions of this part, on the... Regulations of the Department of Agriculture (Continued) COOPERATIVE STATE RESEARCH, EDUCATION, AND EXTENSION SERVICE, DEPARTMENT OF AGRICULTURE BIOTECHNOLOGY RISK ASSESSMENT RESEARCH GRANTS PROGRAM General § 3415.2...
Code of Federal Regulations, 2010 CFR
2010-01-01
... scientific or technical fields to give expert advice, in accordance with the provisions of this part, on the... Regulations of the Department of Agriculture (Continued) COOPERATIVE STATE RESEARCH, EDUCATION, AND EXTENSION SERVICE, DEPARTMENT OF AGRICULTURE RANGELAND RESEARCH GRANTS PROGRAM General § 3401.2 Definitions. As used...
Silva, Jillian M; Deuker, Marian M; Baguley, Bruce C; McMahon, Martin
2017-05-01
Malignant conversion of BRAF- or NRAS-mutated melanocytes into melanoma cells can be promoted by PI3'-lipid signaling. However, the mechanism by which PI3'-lipid signaling cooperates with mutationally activated BRAF or NRAS has not been adequately explored. Using human NRAS- or BRAF-mutated melanoma cells that co-express mutationally activated PIK3CA, we explored the contribution of PI3'-lipid signaling to cell proliferation. Despite mutational activation of PIK3CA, melanoma cells were more sensitive to the biochemical and antiproliferative effects of broader spectrum PI3K inhibitors than to an α-selective PI3K inhibitor. Combined pharmacological inhibition of MEK1/2 and PI3K signaling elicited more potent antiproliferative effects and greater inhibition of the cell division cycle compared to single-agent inhibition of either pathway alone. Analysis of signaling downstream of MEK1/2 or PI3K revealed that these pathways cooperate to regulate cell proliferation through mTORC1-mediated effects on ribosomal protein S6 and 4E-BP1 phosphorylation in an AKT-dependent manner. Although PI3K inhibition resulted in cytostatic effects on xenografted NRAS Q61H /PIK3CA H1047R melanoma, combined inhibition of MEK1/2 plus PI3K elicited significant melanoma regression. This study provides insights as to how mutationally activated PIK3CA acts in concert with MEK1/2 signaling to cooperatively regulate mTORC1/2 to sustain PIK3CA-mutated melanoma proliferation. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
29 CFR 502.6 - Cooperation with DOL officials.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 29 Labor 3 2010-07-01 2010-07-01 false Cooperation with DOL officials. 502.6 Section 502.6 Labor Regulations Relating to Labor (Continued) WAGE AND HOUR DIVISION, DEPARTMENT OF LABOR REGULATIONS ENFORCEMENT OF CONTRACTUAL OBLIGATIONS FOR TEMPORARY ALIEN AGRICULTURAL WORKERS ADMITTED UNDER SECTION 218 OF THE...
7 CFR 75.4 - Federal and State cooperation.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 3 2011-01-01 2011-01-01 false Federal and State cooperation. 75.4 Section 75.4 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) REGULATIONS AND STANDARDS UNDER THE AGRICULTURAL MARKETING ACT OF 194...
7 CFR 75.4 - Federal and State cooperation.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 3 2010-01-01 2010-01-01 false Federal and State cooperation. 75.4 Section 75.4 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) REGULATIONS AND STANDARDS UNDER THE AGRICULTURAL MARKETING ACT OF 194...
7 CFR 75.4 - Federal and State cooperation.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 3 2012-01-01 2012-01-01 false Federal and State cooperation. 75.4 Section 75.4 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) REGULATIONS AND STANDARDS UNDER THE AGRICULTURAL MARKETING ACT OF 194...
7 CFR 75.4 - Federal and State cooperation.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 3 2013-01-01 2013-01-01 false Federal and State cooperation. 75.4 Section 75.4 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) REGULATIONS AND STANDARDS UNDER THE AGRICULTURAL MARKETING ACT OF 194...
7 CFR 75.4 - Federal and State cooperation.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 3 2014-01-01 2014-01-01 false Federal and State cooperation. 75.4 Section 75.4 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) REGULATIONS AND STANDARDS UNDER THE AGRICULTURAL MARKETING ACT OF 194...
48 CFR 352.222-70 - Contractor cooperation in equal employment opportunity investigations.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 48 Federal Acquisition Regulations System 4 2011-10-01 2011-10-01 false Contractor cooperation in... Regulations System HEALTH AND HUMAN SERVICES CLAUSES AND FORMS SOLICITATION PROVISIONS AND CONTRACT CLAUSES... Agency management, Agency EEO officials, the Equal Employment Opportunity Commission (EEOC), or a court...
48 CFR 352.222-70 - Contractor cooperation in equal employment opportunity investigations.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 48 Federal Acquisition Regulations System 4 2014-10-01 2014-10-01 false Contractor cooperation in... Regulations System HEALTH AND HUMAN SERVICES CLAUSES AND FORMS SOLICITATION PROVISIONS AND CONTRACT CLAUSES... Agency management, Agency EEO officials, the Equal Employment Opportunity Commission (EEOC), or a court...
48 CFR 352.222-70 - Contractor cooperation in equal employment opportunity investigations.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 48 Federal Acquisition Regulations System 4 2012-10-01 2012-10-01 false Contractor cooperation in... Regulations System HEALTH AND HUMAN SERVICES CLAUSES AND FORMS SOLICITATION PROVISIONS AND CONTRACT CLAUSES... Agency management, Agency EEO officials, the Equal Employment Opportunity Commission (EEOC), or a court...
48 CFR 352.222-70 - Contractor cooperation in equal employment opportunity investigations.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 48 Federal Acquisition Regulations System 4 2013-10-01 2013-10-01 false Contractor cooperation in... Regulations System HEALTH AND HUMAN SERVICES CLAUSES AND FORMS SOLICITATION PROVISIONS AND CONTRACT CLAUSES... Agency management, Agency EEO officials, the Equal Employment Opportunity Commission (EEOC), or a court...
48 CFR 352.222-70 - Contractor cooperation in equal employment opportunity investigations.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 48 Federal Acquisition Regulations System 4 2010-10-01 2010-10-01 false Contractor cooperation in... Regulations System HEALTH AND HUMAN SERVICES CLAUSES AND FORMS SOLICITATION PROVISIONS AND CONTRACT CLAUSES... Agency management, Agency EEO officials, the Equal Employment Opportunity Commission (EEOC), or a court...
7 CFR 3021.620 - Cooperative agreement.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Agriculture Regulations of the Department of Agriculture (Continued) OFFICE OF THE CHIEF FINANCIAL OFFICER, DEPARTMENT OF AGRICULTURE GOVERNMENTWIDE REQUIREMENTS FOR DRUG-FREE WORKPLACE (FINANCIAL ASSISTANCE) Definitions § 3021.620 Cooperative agreement. Cooperative agreement means an award of financial assistance...
Structural Basis of Cooperative Ligand Binding by the Glycine Riboswitch
DOE Office of Scientific and Technical Information (OSTI.GOV)
E Butler; J Wang; Y Xiong
2011-12-31
The glycine riboswitch regulates gene expression through the cooperative recognition of its amino acid ligand by a tandem pair of aptamers. A 3.6 {angstrom} crystal structure of the tandem riboswitch from the glycine permease operon of Fusobacterium nucleatum reveals the glycine binding sites and an extensive network of interactions, largely mediated by asymmetric A-minor contacts, that serve to communicate ligand binding status between the aptamers. These interactions provide a structural basis for how the glycine riboswitch cooperatively regulates gene expression.
48 CFR 1815.602 - Policy. (NASA paragraphs (1) and (2))
Code of Federal Regulations, 2012 CFR
2012-10-01
... 48 Federal Acquisition Regulations System 6 2012-10-01 2012-10-01 false Policy. (NASA paragraphs... Proposals 1815.602 Policy. (NASA paragraphs (1) and (2)) (1) An unsolicited proposal may result in the award... is used, the NASA Grant and Cooperative Agreement Handbook (NPR 5800.1) applies. (2) Renewal...
48 CFR 1815.602 - Policy. (NASA paragraphs (1) and (2))
Code of Federal Regulations, 2011 CFR
2011-10-01
... 48 Federal Acquisition Regulations System 6 2011-10-01 2011-10-01 false Policy. (NASA paragraphs... Proposals 1815.602 Policy. (NASA paragraphs (1) and (2)) (1) An unsolicited proposal may result in the award... is used, the NASA Grant and Cooperative Agreement Handbook (NPR 5800.1) applies. (2) Renewal...
48 CFR 1815.602 - Policy. (NASA paragraphs (1) and (2))
Code of Federal Regulations, 2013 CFR
2013-10-01
... 48 Federal Acquisition Regulations System 6 2013-10-01 2013-10-01 false Policy. (NASA paragraphs... Proposals 1815.602 Policy. (NASA paragraphs (1) and (2)) (1) An unsolicited proposal may result in the award... is used, the NASA Grant and Cooperative Agreement Handbook (NPR 5800.1) applies. (2) Renewal...
48 CFR 1815.602 - Policy. (NASA paragraphs (1) and (2))
Code of Federal Regulations, 2014 CFR
2014-10-01
... 48 Federal Acquisition Regulations System 6 2014-10-01 2014-10-01 false Policy. (NASA paragraphs... Proposals 1815.602 Policy. (NASA paragraphs (1) and (2)) (1) An unsolicited proposal may result in the award... is used, the NASA Grant and Cooperative Agreement Handbook (NPR 5800.1) applies. (2) Renewal...
7 CFR 3430.15 - Stakeholder input.
Code of Federal Regulations, 2010 CFR
2010-01-01
... of the future RFAs for the program. ... Agriculture Regulations of the Department of Agriculture (Continued) COOPERATIVE STATE RESEARCH, EDUCATION... Stakeholder input. Section 103(c)(2) of the Agricultural Research, Extension, and Education Reform Act of 1998...
7 CFR 1484.34 - Must Cooperators adhere to specific standards of ethical conduct?
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 10 2010-01-01 2010-01-01 false Must Cooperators adhere to specific standards of ethical conduct? 1484.34 Section 1484.34 Agriculture Regulations of the Department of Agriculture... Cooperators adhere to specific standards of ethical conduct? (a) A Cooperator shall conduct its business in...
Ren, Lin-Ling; Liu, Yan-Jing; Liu, Hai-Jing; Qian, Ting-Ting; Qi, Li-Wang; Wang, Xiao-Ru; Zeng, Qing-Yin
2014-01-01
Gene duplication is the primary source of new genes and novel functions. Over the course of evolution, many duplicate genes lose their function and are eventually removed by deletion. However, some duplicates have persisted and evolved diverse functions. A particular challenge is to understand how this diversity arises and whether positive selection plays a role. In this study, we reconstructed the evolutionary history of the class III peroxidase (PRX) genes from the Populus trichocarpa genome. PRXs are plant-specific enzymes that play important roles in cell wall metabolism and in response to biotic and abiotic stresses. We found that two large tandem-arrayed clusters of PRXs evolved from an ancestral cell wall type PRX to vacuole type, followed by tandem duplications and subsequent functional specification. Substitution models identified seven positively selected sites in the vacuole PRXs. These positively selected sites showed significant effects on the biochemical functions of the enzymes. We also found that positive selection acts more frequently on residues adjacent to, rather than directly at, a critical active site of the enzyme, and on flexible regions rather than on rigid structural elements of the protein. Our study provides new insights into the adaptive molecular evolution of plant enzyme families. PMID:24934172
Anti-DKK1 antibody promotes bone fracture healing through activation of β-catenin signaling
Jin, Hongting; Wang, Baoli; Li, Jia; Xie, Wanqing; Mao, Qiang; Li, Shan; Dong, Fuqiang; Sun, Yan; Ke, Hua-Zhu; Babij, Philip; Tong, Peijian; Chen, Di
2015-01-01
In this study we investigated if Wnt/β-catenin signaling in mesenchymal progenitor cells plays a role in bone fracture repair and if DKK1-Ab promotes fracture healing through activation of β-catenin signaling. Unilateral open transverse tibial fractures were created in CD1 mice and in β-cateninPrx1ER conditional knockout (KO) and Cre-negative control mice (C57BL/6 background). Bone fracture callus tissues were collected and analyzed by radiography, micro-CT (μCT), histology, biomechanical testing and gene expression analysis. The results demonstrated that treatment with DKK1-Ab promoted bone callus formation and increased mechanical strength during the fracture healing processinCD1 mice. DKK1-Ab enhanced fracture repair by activation of endochondral ossification. The normal rate of bone repair was delayed when the β-catenin gene was conditionally deleted in mesenchymal progenitor cells during the early stages of fracture healing. DKK1-Ab appeared to act through β-catenin signaling to enhance bone repair since the beneficial effect of DKK1-Ab was abrogated in β-cateninPrx1ER conditional KO mice. Further understanding of the signaling mechanism of DKK1-Ab in bone formation and bone regeneration may facilitate the clinical translation of this anabolic agent into therapeutic intervention. PMID:25263522
7 CFR 1032.18 - Cooperative association.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 9 2010-01-01 2009-01-01 true Cooperative association. 1032.18 Section 1032.18 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing... Handling Definitions § 1032.18 Cooperative association. See § 1000.18. ...
7 CFR 1006.18 - Cooperative association.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 9 2010-01-01 2009-01-01 true Cooperative association. 1006.18 Section 1006.18 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing... Handling Definitions § 1006.18 Cooperative association. See § 1000.18. ...
7 CFR 1126.18 - Cooperative association.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 9 2010-01-01 2009-01-01 true Cooperative association. 1126.18 Section 1126.18 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing... Handling Definitions § 1126.18 Cooperative association. See § 1000.18. ...
7 CFR 1131.18 - Cooperative association.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 9 2010-01-01 2009-01-01 true Cooperative association. 1131.18 Section 1131.18 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing... Handling Definitions § 1131.18 Cooperative association. See § 1000.18. ...
7 CFR 1007.18 - Cooperative association.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 9 2010-01-01 2009-01-01 true Cooperative association. 1007.18 Section 1007.18 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing... Handling Definitions § 1007.18 Cooperative association. See § 1000.18. ...
7 CFR 1033.18 - Cooperative association.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 9 2010-01-01 2009-01-01 true Cooperative association. 1033.18 Section 1033.18 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing... Handling Definitions § 1033.18 Cooperative association. See § 1000.18. ...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 15 2010-01-01 2010-01-01 false Limitations. 4285.47 Section 4285.47 Agriculture Regulations of the Department of Agriculture (Continued) RURAL BUSINESS-COOPERATIVE SERVICE AND RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE COOPERATIVE AGREEMENTS Federal-State Research on Cooperatives...
CRTC2 Is a Coactivator of GR and Couples GR and CREB in the Regulation of Hepatic Gluconeogenesis.
Hill, Micah J; Suzuki, Shigeru; Segars, James H; Kino, Tomoshige
2016-01-01
Glucocorticoid hormones play essential roles in the regulation of gluconeogenesis in the liver, an adaptive response that is required for the maintenance of circulating glucose levels during fasting. Glucocorticoids do this by cooperating with glucagon, which is secreted from pancreatic islets to activate the cAMP-signaling pathway in hepatocytes. The cAMP-response element-binding protein (CREB)-regulated transcription coactivator 2 (CRTC2) is a coactivator known to be specific to CREB and plays a central role in the glucagon-mediated activation of gluconeogenesis in the early phase of fasting. We show here that CRTC2 also functions as a coactivator for the glucocorticoid receptor (GR). CRTC2 strongly enhances GR-induced transcriptional activity of glucocorticoid-responsive genes. CRTC2 physically interacts with the ligand-binding domain of the GR through a region spanning amino acids 561-693. Further, CRTC2 is required for the glucocorticoid-associated cooperative mRNA expression of the glucose-6-phosphatase, a rate-limiting enzyme for hepatic gluconeogenesis, by facilitating the attraction of GR and itself to its promoter region already occupied by CREB. CRTC2 is required for the maintenance of blood glucose levels during fasting in mice by enhancing the GR transcriptional activity on both the G6p and phosphoenolpyruvate carboxykinase (Pepck) genes. Finally, CRTC2 modulates the transcriptional activity of the progesterone receptor, indicating that it may influence the transcriptional activity of other steroid/nuclear receptors. Taken together, these results reveal that CRTC2 plays an essential role in the regulation of hepatic gluconeogenesis through coordinated regulation of the glucocorticoid/GR- and glucagon/CREB-signaling pathways on the key genes G6P and PEPCK.
Yang, Diqi; Jiang, Tingting; Liu, Jianguo; Hong, Jin; Lin, Pengfei; Chen, Huatao; Zhou, Dong; Tang, Keqiong; Wang, Aihua; Jin, Yaping
2017-12-05
In ruminant, the receptive endometrium and the elongation of the hatched blastocyst are required to complete the process of implantation. However, the mechanisms regulating goat endometrial function during the peri-implantation period of pregnancy are still unclear. In this study, EECs were treated with progesterone, estradiol, and interferon-tau (IFNT). We have found that endoplasmic reticulum (ER) stress was activated under hormones treatment. To identify the cellular mechanism of regulation of endometrial function, we investigated the effect of ER stress activator thapsigargin (TG) and inhibitor 4 phenyl butyric acid (4-PBA) on EECs. We found that TG, which activated the three branches of UPR, increased the expression of genes associated with promoting conceptus elongation and cellular attachment, significantly up-regulated the spheroid attachment rate and PGE 2 /PGF 2α ratio. 4-PBA pre-treatment inhibited UPR and inhibited promoting conceptus elongation and cellular attachment related genes, but the spheroid attachment rate and PGE 2 /PGF 2α ratio were not changed significantly. Moreover, knockdown of ATF6 via shATF6 promoted the conceptus elongation related genes, but increased the dissolution of the corpus luteum. Besides, blocking ATF6 attenuated autophagy by activating mammalian target of rapamycin (mTOR) pathway. Moreover, rapamycin (mTOR inhibitor) pre-treatment inhibited the expression of promoting conceptus elongation and increased PGE 2 /PGF 2α ratio. Taken together, our study indicated that physiological level of ER stress may contribute to early pregnancy success, and ATF6 signaling pathway cooperated with autophagy to regulate endometrial function by modulating mTOR pathway. © 2017 Wiley Periodicals, Inc.
Protist predation can favour cooperation within bacterial species
Friman, Ville-Petri; Diggle, Stephen P.; Buckling, Angus
2013-01-01
Here, we studied how protist predation affects cooperation in the opportunistic pathogen bacterium Pseudomonas aeruginosa, which uses quorum sensing (QS) cell-to-cell signalling to regulate the production of public goods. By competing wild-type bacteria with QS mutants (cheats), we show that a functioning QS system confers an elevated resistance to predation. Surprisingly, cheats were unable to exploit this resistance in the presence of cooperators, which suggests that resistance does not appear to result from activation of QS-regulated public goods. Instead, elevated resistance of wild-type bacteria was related to the ability to form more predation-resistant biofilms. This could be explained by the expression of QS-regulated resistance traits in densely populated biofilms and floating cell aggregations, or alternatively, by a pleiotropic cost of cheating where less resistant cheats are selectively removed from biofilms. These results show that trophic interactions among species can maintain cooperation within species, and have further implications for P. aeruginosa virulence in environmental reservoirs by potentially enriching the cooperative and highly infective strains with functional QS system. PMID:23945212
Policy Direction and Development Trends for Sino-Foreign Partnership Schools
ERIC Educational Resources Information Center
Li, Zhang
2009-01-01
This paper details the background and substance of the "Regulations of the People's Republic of China on Chinese-Foreign Cooperation in Running Schools." It specifies both the contributions and limitations of the regulations for the sound development of such schools. At a time when international cooperation in running schools is…
7 CFR 4285.94 - Other conditions.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 15 2010-01-01 2010-01-01 false Other conditions. 4285.94 Section 4285.94 Agriculture Regulations of the Department of Agriculture (Continued) RURAL BUSINESS-COOPERATIVE SERVICE AND RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE COOPERATIVE AGREEMENTS Federal-State Research on Cooperatives...
Hu, Jianqiang; Li, Yaping; Yong, Taiyou; Cao, Jinde; Yu, Jie; Mao, Wenbo
2014-01-01
Cooperative regulation of multiagent systems has become an active research area in the past decade. This paper reviews some recent progress in distributed coordination control for leader-following multiagent systems and its applications in power system and mainly focuses on the cooperative tracking control in terms of consensus tracking control and containment tracking control. Next, methods on how to rank the network nodes are summarized for undirected/directed network, based on which one can determine which follower should be connected to leaders such that partial followers can perceive leaders' information. Furthermore, we present a survey of the most relevant scientific studies investigating the regulation and optimization problems in power systems based on distributed strategies. Finally, some potential applications in the frequency tracking regulation of smart grids are discussed at the end of the paper.
Li, Yaping; Yong, Taiyou; Yu, Jie; Mao, Wenbo
2014-01-01
Cooperative regulation of multiagent systems has become an active research area in the past decade. This paper reviews some recent progress in distributed coordination control for leader-following multiagent systems and its applications in power system and mainly focuses on the cooperative tracking control in terms of consensus tracking control and containment tracking control. Next, methods on how to rank the network nodes are summarized for undirected/directed network, based on which one can determine which follower should be connected to leaders such that partial followers can perceive leaders' information. Furthermore, we present a survey of the most relevant scientific studies investigating the regulation and optimization problems in power systems based on distributed strategies. Finally, some potential applications in the frequency tracking regulation of smart grids are discussed at the end of the paper. PMID:25243199
33 CFR 334.460 - Cooper River and tributaries at Charleston, SC.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Cooper River and tributaries at... ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.460 Cooper River and tributaries at Charleston, SC. (a) The areas: (1) That portion of the Cooper River beginning on the west shore...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-26
... Carolina Public Service Authority (Also Referred to as Santee Cooper); Combined Licenses for Virgil C... as Santee Cooper), for two Title 10 of the Code of Federal Regulations (10 CFR) part 52 combined... Service Authority (Also Referred to as Santee Cooper) Application for the Virgil C. Summer Nuclear Station...
FoxG1 and TLE2 act cooperatively to regulate ventral telencephalon formation.
Roth, Martin; Bonev, Boyan; Lindsay, Jennefer; Lea, Robert; Panagiotaki, Niki; Houart, Corinne; Papalopulu, Nancy
2010-05-01
FoxG1 is a conserved transcriptional repressor that plays a key role in the specification, proliferation and differentiation of the telencephalon, and is expressed from the earliest stages of telencephalic development through to the adult. How the interaction with co-factors might influence the multiplicity and diversity of FoxG1 function is not known. Here, we show that interaction of FoxG1 with TLE2, a Xenopus tropicalis co-repressor of the Groucho/TLE family, is crucial for regulating the early activity of FoxG1. We show that TLE2 is co-expressed with FoxG1 in the ventral telencephalon from the early neural plate stage and functionally cooperates with FoxG1 in an ectopic neurogenesis assay. FoxG1 has two potential TLE binding sites: an N-terminal eh1 motif and a C-terminal YWPMSPF motif. Although direct binding seems to be mediated by the N-terminal motif, both motifs appear important for functional synergism. In the neurogenesis assay, mutation of either motif abolishes functional cooperation of TLE2 with FoxG1, whereas in the forebrain deletion of both motifs renders FoxG1 unable to induce the ventral telencephalic marker Nkx2.1. Knocking down either FoxG1 or TLE2 disrupts the development of the ventral telencephalon, supporting the idea that endogenous TLE2 and FoxG1 work together to specify the ventral telencephalon.
FoxG1 and TLE2 act cooperatively to regulate ventral telencephalon formation
Roth, Martin; Bonev, Boyan; Lindsay, Jennefer; Lea, Robert; Panagiotaki, Niki; Houart, Corinne; Papalopulu, Nancy
2010-01-01
FoxG1 is a conserved transcriptional repressor that plays a key role in the specification, proliferation and differentiation of the telencephalon, and is expressed from the earliest stages of telencephalic development through to the adult. How the interaction with co-factors might influence the multiplicity and diversity of FoxG1 function is not known. Here, we show that interaction of FoxG1 with TLE2, a Xenopus tropicalis co-repressor of the Groucho/TLE family, is crucial for regulating the early activity of FoxG1. We show that TLE2 is co-expressed with FoxG1 in the ventral telencephalon from the early neural plate stage and functionally cooperates with FoxG1 in an ectopic neurogenesis assay. FoxG1 has two potential TLE binding sites: an N-terminal eh1 motif and a C-terminal YWPMSPF motif. Although direct binding seems to be mediated by the N-terminal motif, both motifs appear important for functional synergism. In the neurogenesis assay, mutation of either motif abolishes functional cooperation of TLE2 with FoxG1, whereas in the forebrain deletion of both motifs renders FoxG1 unable to induce the ventral telencephalic marker Nkx2.1. Knocking down either FoxG1 or TLE2 disrupts the development of the ventral telencephalon, supporting the idea that endogenous TLE2 and FoxG1 work together to specify the ventral telencephalon. PMID:20356955
Functional and morphological changes in endocrine pancreas following cola drink consumption in rats.
Otero-Losada, Matilde; Cao, Gabriel; González, Julián; Muller, Angélica; Ottaviano, Graciela; Lillig, Christopher; Capani, Francisco; Ambrosio, Giuseppe; Milei, José
2015-01-01
We report the effects of long-term cola beverage drinking on glucose homeostasis, endocrine pancreas function and morphology in rats. Wistar rats drank: water (group W), regular cola beverage (group C, sucrose sweetened) or "light" cola beverage (group L, artificially sweetened). After 6 months, 50% of the animals in each group were euthanized and the remaining animals consumed water for the next 6 months when euthanasia was performed. Biochemical assays, insulinemia determination, estimation of insulin resistance (HOMA-IR), morphometry and immunohistochemistry evaluations were performed in pancreas. Hyperglycemia (16%, p<0.05), CoQ10 (coenzyme-Q10) decrease (-52%,p<0.01), strong hypertriglyceridemia (2.8-fold, p<0.01), hyperinsulinemia (2.4 fold, p<0.005) and HOMA-IR increase (2.7 fold, p<0.01) were observed in C. Group C showed a decrease in number of α cells (-42%, p<0.01) and β cells (-58%, p<0.001) and a moderate increase in α cells' size after wash-out (+14%, p<0.001). Group L showed reduction in β cells' size (-9%, p<0.001) and only after wash-out (L12) a 19% increase in size (p<0.0001) with 35% decrease in number of α cells (p<0.01). Groups C and L showed increase in α/β-cell ratio which was irreversible only in C (α/β = +38% in C6,+30% in C12, p<0.001vs.W6). Regular cola induced a striking increase in the cytoplasmic expression of Trx1 (Thioredoxin-1) (2.25-fold in C6 vs. W6; 2.7-fold in C12 vs. W12, p<0.0001) and Prx2 (Peroxiredoxin-2) (3-fold in C6 vs. W6; 2-fold in C12 vs. W12, p<0.0001). Light cola induced increase in Trx1 (3-fold) and Prx2 (2-fold) after wash-out (p<0.0001, L12 vs. W12). Glucotoxicity may contribute to the loss of β cell function with depletion of insulin content. Oxidative stress, suggested by increased expression of thioredoxins and low circulating levels of CoQ10, may follow sustained hyperglycemia. A likely similar panorama may result from the effects of artificially sweetened cola though via other downstream routes.
Functional and Morphological Changes in Endocrine Pancreas following Cola Drink Consumption in Rats
2015-01-01
Aim We report the effects of long-term cola beverage drinking on glucose homeostasis, endocrine pancreas function and morphology in rats. Methods Wistar rats drank: water (group W), regular cola beverage (group C, sucrose sweetened) or “light” cola beverage (group L, artificially sweetened). After 6 months, 50% of the animals in each group were euthanized and the remaining animals consumed water for the next 6 months when euthanasia was performed. Biochemical assays, insulinemia determination, estimation of insulin resistance (HOMA-IR), morphometry and immunohistochemistry evaluations were performed in pancreas. Results Hyperglycemia (16%, p<0.05), CoQ10 (coenzyme-Q10) decrease (−52%,p<0.01), strong hypertriglyceridemia (2.8-fold, p<0.01), hyperinsulinemia (2.4 fold, p<0.005) and HOMA-IR increase (2.7 fold, p<0.01) were observed in C. Group C showed a decrease in number of α cells (−42%, p<0.01) and β cells (−58%, p<0.001) and a moderate increase in α cells’ size after wash-out (+14%, p<0.001). Group L showed reduction in β cells’ size (−9%, p<0.001) and only after wash-out (L12) a 19% increase in size (p<0.0001) with 35% decrease in number of α cells (p<0.01). Groups C and L showed increase in α/β-cell ratio which was irreversible only in C (α/β = +38% in C6,+30% in C12, p<0.001vs.W6). Regular cola induced a striking increase in the cytoplasmic expression of Trx1 (Thioredoxin-1) (2.25-fold in C6 vs. W6; 2.7-fold in C12 vs. W12, p<0.0001) and Prx2 (Peroxiredoxin-2) (3-fold in C6 vs. W6; 2-fold in C12 vs. W12, p<0.0001). Light cola induced increase in Trx1 (3-fold) and Prx2 (2-fold) after wash-out (p<0.0001, L12 vs. W12). Conclusion Glucotoxicity may contribute to the loss of β cell function with depletion of insulin content. Oxidative stress, suggested by increased expression of thioredoxins and low circulating levels of CoQ10, may follow sustained hyperglycemia. A likely similar panorama may result from the effects of artificially sweetened cola though via other downstream routes. PMID:25790473
Implementation of the International Health Regulations (2005) Through Cooperative Bioengagement
Standley, Claire J.; Sorrell, Erin M.; Kornblet, Sarah; Fischer, Julie E.; Katz, Rebecca
2015-01-01
Cooperative bioengagement efforts, as practiced by U.S. government-funded entities, such as the Defense Threat Reduction Agency’s Cooperative Biological Engagement Program, the State Department’s Biosecurity Engagement Program, and parallel programs in other countries, exist at the nexus between public health and security. These programs have an explicit emphasis on developing projects that address the priorities of the partner country as well as the donor. While the objectives of cooperative bioengagement programs focus on reducing the potential for accidental or intentional misuse and/or release of dangerous biological agents, many partner countries are interested in bioengagement as a means to improve basic public health capacities. This article examines the extent to which cooperative bioengagement projects address public health capacity building under the revised International Health Regulations and alignment with the Global Health Security Agenda action packages. PMID:26528463
2 CFR 1401.100 - What does this part do?
Code of Federal Regulations, 2011 CFR
2011-01-01
... 2 Grants and Agreements 1 2011-01-01 2011-01-01 false What does this part do? 1401.100 Section 1401.100 Grants and Agreements Federal Agency Regulations for Grants and Agreements DEPARTMENT OF THE... F of 2 CFR part 182) for DOI's grants and cooperative agreements; and (b) Establishes DOI policies...
48 CFR 1815.602 - Policy. (NASA paragraphs (1) and (2))
Code of Federal Regulations, 2010 CFR
2010-10-01
... 48 Federal Acquisition Regulations System 6 2010-10-01 2010-10-01 true Policy. (NASA paragraphs (1... Proposals 1815.602 Policy. (NASA paragraphs (1) and (2)) (1) An unsolicited proposal may result in the award... is used, the NASA Grant and Cooperative Agreement Handbook (NPR 5800.1) applies. (2) Renewal...
16 CFR 307.10 - Cooperative advertising.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Cooperative advertising. 307.10 Section 307... REGULATIONS UNDER THE COMPREHENSIVE SMOKELESS TOBACCO HEALTH EDUCATION ACT OF 1986 Advertising Disclosures § 307.10 Cooperative advertising. The Act prohibits any manufacturer, packager, or importer of smokeless...
22 CFR 211.5 - Obligations of cooperating sponsor.
Code of Federal Regulations, 2012 CFR
2012-04-01
... Standards promulgated by the International Organization of Supreme Audit Institutions or International... provisions of this regulation. (c) Audits—(1) By nongovernmental cooperating sponsors. A nongovernmental cooperating sponsor shall arrange for periodic audits to be conducted in accordance with OMB Circular A-133...
22 CFR 211.5 - Obligations of cooperating sponsor.
Code of Federal Regulations, 2013 CFR
2013-04-01
... Standards promulgated by the International Organization of Supreme Audit Institutions or International... provisions of this regulation. (c) Audits—(1) By nongovernmental cooperating sponsors. A nongovernmental cooperating sponsor shall arrange for periodic audits to be conducted in accordance with OMB Circular A-133...
22 CFR 211.5 - Obligations of cooperating sponsor.
Code of Federal Regulations, 2010 CFR
2010-04-01
... Standards promulgated by the International Organization of Supreme Audit Institutions or International... provisions of this regulation. (c) Audits—(1) By nongovernmental cooperating sponsors. A nongovernmental cooperating sponsor shall arrange for periodic audits to be conducted in accordance with OMB Circular A-133...
22 CFR 211.5 - Obligations of cooperating sponsor.
Code of Federal Regulations, 2011 CFR
2011-04-01
... Standards promulgated by the International Organization of Supreme Audit Institutions or International... provisions of this regulation. (c) Audits—(1) By nongovernmental cooperating sponsors. A nongovernmental cooperating sponsor shall arrange for periodic audits to be conducted in accordance with OMB Circular A-133...
22 CFR 211.5 - Obligations of cooperating sponsor.
Code of Federal Regulations, 2014 CFR
2014-04-01
... Standards promulgated by the International Organization of Supreme Audit Institutions or International... provisions of this regulation. (c) Audits—(1) By nongovernmental cooperating sponsors. A nongovernmental cooperating sponsor shall arrange for periodic audits to be conducted in accordance with OMB Circular A-133...
A Tool that Uses the SAS (registered trademark) PRX Functions to Fix Delimited Text Files
2015-07-07
service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries...indicates USA registration. Other brand and product names are trademarks of their respective companies. 20 Distribution A: Approved for public release; distribution is unlimited. Case Number: 88ABW-2015-1635, 31 Mar 2015 ...including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services , Directorate for Information
7 CFR 3401.17 - Review criteria.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Regulations of the Department of Agriculture (Continued) COOPERATIVE STATE RESEARCH, EDUCATION, AND EXTENSION.... Overall scientific and technical quality of proposal 10 2. Scientific and technical quality of the.... Feasibility of attaining objectives; adequacy of professional training and experience, facilities and...
Code of Federal Regulations, 2010 CFR
2010-01-01
... allows advances in applied research and from which major conceptual breakthroughs are expected to occur... Regulations of the Department of Agriculture (Continued) COOPERATIVE STATE RESEARCH, EDUCATION, AND EXTENSION SERVICE, DEPARTMENT OF AGRICULTURE NATIONAL RESEARCH INITIATIVE COMPETITIVE GRANTS PROGRAM General § 3411...
Code of Federal Regulations, 2010 CFR
2010-01-01
... of the Department of Agriculture (Continued) RURAL HOUSING SERVICE, RURAL BUSINESS-COOPERATIVE... REGULATIONS (CONTINUED) PROPERTY MANAGEMENT Liquidation of Loans Secured by Real Estate and Acquisition of... sale of the property by the borrower (except for Multiple Family Housing (MFH) loans subject to...
Habte-Tsion, Habte-Michael; Ren, Mingchun; Liu, Bo; Ge, Xianping; Xie, Jun; Chen, Ruli
2016-04-01
A 9-week feeding trial was conducted to investigate the effects of graded dietary threonine (Thr) levels (0.58-2.58%) on the hematological parameters, immune response, antioxidant status and hepatopancreatic gene expression of antioxidant enzymes and antioxidant-immune-cytokine-related signaling molecules in juvenile blunt snout bream. For this purpose, 3 tanks were randomly arranged and assigned to each experimental diet. Fish were fed with their respective diet to apparent satiation 4 times daily. The results indicated that white blood cell, red blood cell and haemoglobin significantly responded to graded dietary Thr levels, while hematocrit didn't. Complement components (C3 and C4), total iron-binding capacity (TIBC), immunoglobulin M (IgM), superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT) increased with increasing dietary Thr levels up to 1.58-2.08% and thereafter tended to decrease. Dietary Thr regulated the gene expressions of Cu/Zn-SOD, Mn-SOD and CAT, GPx1, glutathione S-transferase mu (GST), nuclear factor erythroid 2-related factor 2 (Nrf2), heat shock protein-70 (Hsp70), tumor necrosis factor-alpha (TNF-α), apolipoprotein A-I (ApoA1), glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and fructose-bisphosphate aldolase B (ALDOB); while the gene expression of peroxiredoxin II (PrxII) was not significantly modified by graded Thr levels. These genes are involved in different functions including antioxidant, immune, and defense responses, energy metabolism and protein synthesis. Therefore, this study could provide a new molecular tool for studies in fish immunonutrition and shed light on the regulatory mechanisms that dietary Thr improved the antioxidant and immune capacities of fish. Copyright © 2015 Elsevier Ltd. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-26
...-AA08 Special Local Regulation; Low Country Splash, Wando River, Cooper River, and Charleston Harbor... Harbor in Charleston, SC during the Low Country Splash in Charleston, SC, on June 1, 2013. This special... States during the Low Country Splash. C. Discussion of Proposed Rule On Saturday, June 1, 2013, the Low...
7 CFR 1.76 - Department cooperation.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 1 2013-01-01 2013-01-01 false Department cooperation. 1.76 Section 1.76 Agriculture Office of the Secretary of Agriculture ADMINISTRATIVE REGULATIONS Cooperative Production of Television... satisfaction of the Director of Information, the U.S. Department of Agriculture and its agencies will be...
Legal Considerations in Cooperative Education Administration.
ERIC Educational Resources Information Center
Hunt, Donald C.
The laws, regulations, and rulings that are common to all cooperative education programs and that frequently present problems to coordinators, faculty, administrators, and employers are briefly explained. The objective is to provide coordinators of cooperative programs in education, business, industry, and government with a discussion of the…
Hinnant, J Benjamin; Nelson, Jackie A; O'Brien, Marion; Keane, Susan P; Calkins, Susan D
2013-01-01
We examined mother-child co-operative behaviour, children's emotion regulation and executive function, as well as combinations of these factors, as predictors of moral reasoning in 89 10-year-old children. Dyadic co-operation was coded from videotaped observations of laboratory puzzle and speech tasks. Emotion regulation was derived from maternal report, and executive functioning was assessed with the Tower of London task. Moral reasoning was coded during mother-child conversations about morally ambiguous, peer-conflict situations. Two significant interactions indicated that children from more co-operative dyads who also had higher executive function skills had higher moral reasoning scores than other children, and children lower in both emotion regulation and executive function had lower moral reasoning scores than other children. The results contribute to the literature on the multiple and interactive levels of influence on moral reasoning in childhood.
Hinnant, J. Benjamin; Nelson, Jackie A.; O’Brien, Marion; Keane, Susan P.; Calkins, Susan D.
2013-01-01
We examined mother-child cooperative behavior, children’s emotion regulation and executive function, as well as combinations of these factors, as predictors of moral reasoning in 89 10-year-old children. Dyadic cooperation was coded from videotaped observations of laboratory puzzle and speech tasks. Emotion regulation was derived from maternal report, and executive functioning was assessed with the Tower of London task. Moral reasoning was coded during mother-child conversations about morally ambiguous, peer-conflict situations. Two significant interactions indicated that children from more cooperative dyads who also had higher executive function skills had higher moral reasoning scores than other children, and children lower in both emotion regulation and executive function had lower moral reasoning scores than other children. The results contribute to the literature on the multiple and interactive levels of influence on moral reasoning in childhood. PMID:23650955
NASA Astrophysics Data System (ADS)
Grauer, Albert D.; Catalina Sky Survey
2016-10-01
Travelers in the Night is a series of 2 minute audio programs whose topics include Catalina Sky Survey discoveries as well as other current research in astronomy and the space sciences. Each episode is first published on Public Radio Exchange [PRX] which makes it available to NPR and Community Radio Stations free of charge. After about 3 weeks it is published as an audio podcast on the internet via spreaker.com, iHeart Radio, Stitcher, iTunes and a few other outlets. The most interesting aspect of the Travelers In The Night experiment is the insight it provides into the rapidly changing means by which people obtain information in 2016. The demographics, and devices used to obtain more than 175,000 plays and downloads are presented in this poster.
10 CFR 603.1240 - Cooperative agreement.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 4 2014-01-01 2014-01-01 false Cooperative agreement. 603.1240 Section 603.1240 Energy DEPARTMENT OF ENERGY (CONTINUED) ASSISTANCE REGULATIONS TECHNOLOGY INVESTMENT AGREEMENTS Definitions of Terms Used in this Part § 603.1240 Cooperative agreement. A legal instrument which, consistent with 31 U.S.C...
32 CFR 37.1260 - Cooperative agreement.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 32 National Defense 1 2014-07-01 2014-07-01 false Cooperative agreement. 37.1260 Section 37.1260 National Defense Department of Defense OFFICE OF THE SECRETARY OF DEFENSE DoD GRANT AND AGREEMENT REGULATIONS TECHNOLOGY INVESTMENT AGREEMENTS Definitions of Terms Used in This Part § 37.1260 Cooperative...
32 CFR 37.1260 - Cooperative agreement.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 32 National Defense 1 2010-07-01 2010-07-01 false Cooperative agreement. 37.1260 Section 37.1260 National Defense Department of Defense OFFICE OF THE SECRETARY OF DEFENSE DoD GRANT AND AGREEMENT REGULATIONS TECHNOLOGY INVESTMENT AGREEMENTS Definitions of Terms Used in This Part § 37.1260 Cooperative...
10 CFR 603.1240 - Cooperative agreement.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 4 2013-01-01 2013-01-01 false Cooperative agreement. 603.1240 Section 603.1240 Energy DEPARTMENT OF ENERGY (CONTINUED) ASSISTANCE REGULATIONS TECHNOLOGY INVESTMENT AGREEMENTS Definitions of Terms Used in this Part § 603.1240 Cooperative agreement. A legal instrument which, consistent with 31 U.S.C...
33 CFR 117.713 - Cooper River.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Cooper River. 117.713 Section 117.713 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Jersey § 117.713 Cooper River. (a) The drawspans for the...
33 CFR 117.925 - Cooper River.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Cooper River. 117.925 Section 117.925 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements South Carolina § 117.925 Cooper River. The draw of the Seaboard...
Natalia, Dessy; Jumadila, Ozi; Anggraini, Irika Devi; Meutia, Febrina; Puspasari, Fernita; Hasan, Khomaini
2016-07-01
Alkyl hydroperoxide reductase genes (ahpCF) from the soft coral associated Bacillus aquimaris MKSC6.2 have been isolated. The cloned 546 bp ahpC gene encodes a 181 amino acid residues polypeptide. The AhpC belongs to typical 2-Cys peroxiredoxin (Prx) containing conserved peroxidatic cysteine residue (C46 ) required for hydroperoxide reduction and conserved resolving cysteine (C166 ). The isolated 1530 bp ahpF gene encodes a polypeptide of 509 amino acid residues with two conserved C128 HNC131 and C337 PHC340 catalytic residues required for reduction of oxidized-AhpC during catalytic turnover. A survival study with Escherichia coli showed that overexpression of AhpC and AhpF resulted in a total protection against 0.16 mM t-butyl hydroperoxide. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Code of Federal Regulations, 2010 CFR
2010-01-01
... marketing order districts as designated in § 929.20(c). (2) Six qualified persons for members and four... Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... nominations in accordance with this section. (c) Whenever any cooperative marketing organization handles more...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bashline, Logan; Li, Shundai; Zhu, Xiaoyu
Here, cellulose biosynthesis is performed exclusively by plasma membrane-localized cellulose synthases (CESAs). Therefore, the trafficking of CESAs to and from the plasma membrane is an important mechanism for regulating cellulose biosynthesis. CESAs were recently identified as cargo proteins of the classic adaptor protein 2 (AP2) complex of the clathrin-mediated endocytosis (CME) pathway. The AP2 complex of the CME pathway is conserved in yeast, animals, and plants, and has been well-characterized in many systems. In contrast, the recently discovered TPLATE complex (TPC), which is proposed to function as a CME adaptor complex, is only conserved in plants and a few othermore » eukaryotes. In this study, we discovered that the TWD40-2 protein, a putative member of the TPC, is also important for the endocytosis of CESAs. Genetic analysis between TWD40-2 and AP2M of the AP2 complex revealed that the roles of TWD40-2 in CME are both distinct from and cooperative with the AP2 complex. Loss of efficient CME in twd40-2-3 resulted in the unregulated overaccumulation of CESAs at the plasma membrane. In seedlings of twd40-2-3 and other CME-deficient mutants, a direct correlation was revealed between endocytic deficiency and cellulose content deficiency, highlighting the importance of controlled CESA endocytosis in regulating cellulose biosynthesis.« less
Bashline, Logan; Li, Shundai; Zhu, Xiaoyu; ...
2015-09-28
Here, cellulose biosynthesis is performed exclusively by plasma membrane-localized cellulose synthases (CESAs). Therefore, the trafficking of CESAs to and from the plasma membrane is an important mechanism for regulating cellulose biosynthesis. CESAs were recently identified as cargo proteins of the classic adaptor protein 2 (AP2) complex of the clathrin-mediated endocytosis (CME) pathway. The AP2 complex of the CME pathway is conserved in yeast, animals, and plants, and has been well-characterized in many systems. In contrast, the recently discovered TPLATE complex (TPC), which is proposed to function as a CME adaptor complex, is only conserved in plants and a few othermore » eukaryotes. In this study, we discovered that the TWD40-2 protein, a putative member of the TPC, is also important for the endocytosis of CESAs. Genetic analysis between TWD40-2 and AP2M of the AP2 complex revealed that the roles of TWD40-2 in CME are both distinct from and cooperative with the AP2 complex. Loss of efficient CME in twd40-2-3 resulted in the unregulated overaccumulation of CESAs at the plasma membrane. In seedlings of twd40-2-3 and other CME-deficient mutants, a direct correlation was revealed between endocytic deficiency and cellulose content deficiency, highlighting the importance of controlled CESA endocytosis in regulating cellulose biosynthesis.« less
Ucer, Serra; Iyer, Srividhya; Bartell, Shoshana M; Martin-Millan, Marta; Han, Li; Kim, Ha-Neui; Weinstein, Robert S; Jilka, Robert L; O'Brien, Charles A; Almeida, Maria; Manolagas, Stavros C
2015-07-01
In men, androgens are critical for the acquisition and maintenance of bone mass in both the cortical and cancellous bone compartment. Male mice with targeted deletion of the androgen receptor (AR) in mature osteoblasts or osteocytes have lower cancellous bone mass, but no cortical bone phenotype. We have investigated the possibility that the effects of androgens on the cortical compartment result from AR signaling in osteoprogenitors or cells of the osteoclast lineage; or via estrogen receptor alpha (ERα) signaling in either or both of these two cell types upon conversion of testosterone to estradiol. To this end, we generated mice with targeted deletion of an AR or an ERα allele in the mesenchymal (AR(f/y);Prx1-Cre or ERα(f/f);Osx1-Cre) or myeloid cell lineage (AR(f/y);LysM-Cre or ERα(f/f);LysM-Cre) and their descendants. Male AR(f/y);Prx1-Cre mice exhibited decreased bone volume and trabecular number, and increased osteoclast number in the cancellous compartment. Moreover, they did not undergo the loss of cancellous bone volume and trabecular number caused by orchidectomy (ORX) in their littermate controls. In contrast, AR(f/y);LysM-Cre, ERα(f/f);Osx1-Cre, or ERα(f/f);LysM-Cre mice had no cancellous bone phenotype at baseline and lost the same amount of cancellous bone as their controls following ORX. Most unexpectedly, adult males of all four models had no discernible cortical bone phenotype at baseline, and lost the same amount of cortical bone as their littermate controls after ORX. Recapitulation of the effects of ORX by AR deletion only in the AR(f/y);Prx1-Cre mice indicates that the effects of androgens on cancellous bone result from AR signaling in osteoblasts-not on osteoclasts or via aromatization. The effects of androgens on cortical bone mass, on the other hand, do not require AR or ERα signaling in any cell type across the osteoblast or osteoclast differentiation lineage. Therefore, androgens must exert their effects indirectly by actions on some other cell type(s) or tissue(s). © 2015 American Society for Bone and Mineral Research.
Schroeder, Kari B; McElreath, Richard; Nettle, Daniel
2013-03-05
Punishment of free-riding has been implicated in the evolution of cooperation in humans, and yet mechanisms for punishment avoidance remain largely uninvestigated. Individual variation in these mechanisms may stem from variation in the serotonergic system, which modulates processing of aversive stimuli. Functional serotonin gene variants have been associated with variation in the processing of aversive stimuli and widely studied as risk factors for psychiatric disorders. We show that variants at the serotonin transporter gene (SLC6A4) and serotonin 2A receptor gene (HTR2A) predict contributions to the public good in economic games, dependent upon whether contribution behavior can be punished. Participants with a variant at the serotonin transporter gene contribute more, leading to group-level differences in cooperation, but this effect dissipates in the presence of punishment. When contribution behavior can be punished, those with a variant at the serotonin 2A receptor gene contribute more than those without it. This variant also predicts a more stressful experience of the games. The diversity of institutions (including norms) that govern cooperation and punishment may create selective pressures for punishment avoidance that change rapidly across time and space. Variant-specific epigenetic regulation of these genes, as well as population-level variation in the frequencies of these variants, may facilitate adaptation to local norms of cooperation and punishment.
Schroeder, Kari B.; McElreath, Richard; Nettle, Daniel
2013-01-01
Punishment of free-riding has been implicated in the evolution of cooperation in humans, and yet mechanisms for punishment avoidance remain largely uninvestigated. Individual variation in these mechanisms may stem from variation in the serotonergic system, which modulates processing of aversive stimuli. Functional serotonin gene variants have been associated with variation in the processing of aversive stimuli and widely studied as risk factors for psychiatric disorders. We show that variants at the serotonin transporter gene (SLC6A4) and serotonin 2A receptor gene (HTR2A) predict contributions to the public good in economic games, dependent upon whether contribution behavior can be punished. Participants with a variant at the serotonin transporter gene contribute more, leading to group-level differences in cooperation, but this effect dissipates in the presence of punishment. When contribution behavior can be punished, those with a variant at the serotonin 2A receptor gene contribute more than those without it. This variant also predicts a more stressful experience of the games. The diversity of institutions (including norms) that govern cooperation and punishment may create selective pressures for punishment avoidance that change rapidly across time and space. Variant-specific epigenetic regulation of these genes, as well as population-level variation in the frequencies of these variants, may facilitate adaptation to local norms of cooperation and punishment. PMID:23431136
15 CFR 40.5 - Other cooperative arrangements.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 15 Commerce and Foreign Trade 1 2010-01-01 2010-01-01 false Other cooperative arrangements. 40.5 Section 40.5 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade BUREAU OF THE... STATISTICS § 40.5 Other cooperative arrangements. The Bureau of the Census also undertakes the training of...
Code of Federal Regulations, 2010 CFR
2010-07-01
... scientific and technical cooperation, cultural exchanges, and other official visits. 585.212 Section 585.212... BOSNIAN SERB-CONTROLLED AREAS OF THE REPUBLIC OF BOSNIA AND HERZEGOVINA SANCTIONS REGULATIONS Prohibitions § 585.212 Prohibited transactions related to scientific and technical cooperation, cultural exchanges...
32 CFR 21.640 - Cooperative agreement.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 32 National Defense 1 2014-07-01 2014-07-01 false Cooperative agreement. 21.640 Section 21.640 National Defense Department of Defense OFFICE OF THE SECRETARY OF DEFENSE DoD GRANT AND AGREEMENT REGULATIONS DoD GRANTS AND AGREEMENTS-GENERAL MATTERS Definitions § 21.640 Cooperative agreement. A legal...
32 CFR 21.640 - Cooperative agreement.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 32 National Defense 1 2010-07-01 2010-07-01 false Cooperative agreement. 21.640 Section 21.640 National Defense Department of Defense OFFICE OF THE SECRETARY OF DEFENSE DoD GRANT AND AGREEMENT REGULATIONS DoD GRANTS AND AGREEMENTS-GENERAL MATTERS Definitions § 21.640 Cooperative agreement. A legal...
34 CFR 426.1 - What is the Cooperative Demonstration Program?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 34 Education 3 2010-07-01 2010-07-01 false What is the Cooperative Demonstration Program? 426.1 Section 426.1 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF VOCATIONAL AND ADULT EDUCATION, DEPARTMENT OF EDUCATION COOPERATIVE DEMONSTRATION PROGRAM General § 426.1...
7 CFR 1484.32 - Must Cooperators follow specific employment practices?
Code of Federal Regulations, 2011 CFR
2011-01-01
...? 1484.32 Section 1484.32 Agriculture Regulations of the Department of Agriculture (Continued) COMMODITY... DEVELOP FOREIGN MARKETS FOR AGRICULTURAL COMMODITIES Program Operations § 1484.32 Must Cooperators follow... local business community. (c) A Cooperator may pay salaries or fees in any currency (U.S. or foreign) in...
7 CFR 1484.32 - Must Cooperators follow specific employment practices?
Code of Federal Regulations, 2010 CFR
2010-01-01
...? 1484.32 Section 1484.32 Agriculture Regulations of the Department of Agriculture (Continued) COMMODITY... DEVELOP FOREIGN MARKETS FOR AGRICULTURAL COMMODITIES Program Operations § 1484.32 Must Cooperators follow... local business community. (c) A Cooperator may pay salaries or fees in any currency (U.S. or foreign) in...
7 CFR 8.2 - Delegation of authority.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Office of the Secretary of Agriculture 4-H CLUB NAME AND EMBLEM § 8.2 Delegation of authority. The Administrator of the Cooperative State Research, Education, and Extension Service, United States Department of Agriculture, may authorize the use of the 4-H Club Name and Emblem in accordance with the regulations in this...
7 CFR 8.2 - Delegation of authority.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Office of the Secretary of Agriculture 4-H CLUB NAME AND EMBLEM § 8.2 Delegation of authority. The Administrator of the Cooperative State Research, Education, and Extension Service, United States Department of Agriculture, may authorize the use of the 4-H Club Name and Emblem in accordance with the regulations in this...
Hatano, Naoya; Hamada, Tatsuro
2012-08-03
The Nepenthes species are carnivorous plants that have evolved a specialized leaf organ, the 'pitcher', to attract, capture, and digest insects. The digested insects provide nutrients for growth, allowing these plants to grow even in poor soil. Several proteins have been identified in the pitcher fluid, including aspartic proteases (nepenthesin I and II) and pathogenesis-related (PR) proteins (β-1,3-glucanase, class IV chitinase, and thaumatin-like protein). In this study, we collected and concentrated pitcher fluid to identify minor proteins. In addition, we tried to identify the protein secreted in response to trapping the insect. To make a similar situation in which the insect falls into the pitcher, chitin which was a major component of the insect exoskeleton was added to the fluid in the pitcher. Three PR proteins, class III peroxidase (Prx), β-1,3-glucanase, and class III chitinase, were newly identified. Prx was induced after the addition of chitin to the pitcher fluid. Proteins in the pitcher fluid of the carnivorous plant Nepenthes alata probably have two roles in nutrient supply: digestion of prey and the antibacterial effect. These results suggest that the system for digesting prey has evolved from the defense system against pathogens in the carnivorous plant Nepenthes. Copyright © 2012 Elsevier B.V. All rights reserved.
Zhang, Na; Wang, Lingyan; Duan, Qi; Lin, Laixiang; Ahmed, Mohamed; Wang, Tingting; Yao, Xiaomei
2015-01-01
Purpose. We aim to figure out the effect of metallothioneins on iodide excess induced oxidative stress in the thyroid. Methods. Eight-week-old MT-I/II knockout (MT-I/II KO) mice and background-matched wild-type (WT) mice were used. Mitochondrial superoxide production and peroxiredoxin (Prx) 3 expression were measured. Results. In in vitro study, more significant increases in mitochondrial superoxide production and Prx 3 expression were detected in the MT-I/II KO groups. In in vivo study, significantly higher concentrations of urinary iodine level were detected in MT-I/II KO mice in 100 HI group. Compared to the NI group, there was no significant difference existing in serum thyroid hormones level in either groups (P > 0.05), while the mitochondrial superoxide production was significantly increased in 100 HI groups with significantly increased LDH activity and decreased relative cell viability. Compared to WT mice, more significant changes were detected in MT-I/II KO mice in 100 HI groups. No significant differences were detected between the NI group and 10 HI group in both the MT-I/II KO and WT mice groups (P > 0.05). Conclusions. Iodide excess in a thyroid without MT I/II protection may result in strong mitochondrial oxidative stress, which further leads to the damage of thyrocytes. PMID:26101557
Kuo, Yung-Che; Au, Heng-Kien; Hsu, Jue-Liang; Wang, Hsiao-Feng; Lee, Chiung-Ju; Peng, Syue-Wei; Lai, Ssu-Chuan; Wu, Yu-Chih; Ho, Hong-Nerng; Huang, Yen-Hua
2018-02-13
Hypoxia cooperates with endocrine signaling to maintain the symmetric self-renewal proliferation and migration of embryonic germline stem cells (GSCs). However, the lack of an appropriate in vitro cell model has dramatically hindered the understanding of the mechanism underlying this cooperation. Here, using a serum-free system, we demonstrated that hypoxia significantly induced the GSC mesenchymal transition, increased the expression levels of the pluripotent transcription factor OCT4 and migration-associated proteins (SDF-1, CXCR4, IGF-1, and IGF-1R), and activated the cellular expression and translocalization of the CXCR4-downstream proteins ARP3/pFAK. The underlying mechanism involved significant IGF-1/IGF-1R activation of OCT4/CXCR4 expression through HIF-2α regulation. Picropodophyllin-induced inhibition of IGF-1R phosphorylation significantly suppressed hypoxia-induced SDF-1/CXCR4 expression and cell migration. Furthermore, transactivation between IGF-1R and CXCR4 was involved. In summary, we demonstrated that niche hypoxia synergistically cooperates with its associated IGF-1R signaling to regulate the symmetric division (self-renewal proliferation) and cell migration of alkaline phosphatase-positive GSCs through HIF-2α-OCT4/CXCR4 during embryogenesis. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
50 CFR 402.04 - Counterpart regulations.
Code of Federal Regulations, 2012 CFR
2012-10-01
... ADMINISTRATION, DEPARTMENT OF COMMERCE); ENDANGERED SPECIES COMMITTEE REGULATIONS SUBCHAPTER A INTERAGENCY COOPERATION-ENDANGERED SPECIES ACT OF 1973, AS AMENDED General § 402.04 Counterpart regulations. The...
50 CFR 402.04 - Counterpart regulations.
Code of Federal Regulations, 2014 CFR
2014-10-01
... ADMINISTRATION, DEPARTMENT OF COMMERCE); ENDANGERED SPECIES COMMITTEE REGULATIONS SUBCHAPTER A INTERAGENCY COOPERATION-ENDANGERED SPECIES ACT OF 1973, AS AMENDED General § 402.04 Counterpart regulations. The...
50 CFR 402.04 - Counterpart regulations.
Code of Federal Regulations, 2011 CFR
2011-10-01
... ADMINISTRATION, DEPARTMENT OF COMMERCE); ENDANGERED SPECIES COMMITTEE REGULATIONS SUBCHAPTER A INTERAGENCY COOPERATION-ENDANGERED SPECIES ACT OF 1973, AS AMENDED General § 402.04 Counterpart regulations. The...
50 CFR 402.04 - Counterpart regulations.
Code of Federal Regulations, 2010 CFR
2010-10-01
... ADMINISTRATION, DEPARTMENT OF COMMERCE); ENDANGERED SPECIES COMMITTEE REGULATIONS SUBCHAPTER A INTERAGENCY COOPERATION-ENDANGERED SPECIES ACT OF 1973, AS AMENDED General § 402.04 Counterpart regulations. The...
50 CFR 402.04 - Counterpart regulations.
Code of Federal Regulations, 2013 CFR
2013-10-01
... ADMINISTRATION, DEPARTMENT OF COMMERCE); ENDANGERED SPECIES COMMITTEE REGULATIONS SUBCHAPTER A INTERAGENCY COOPERATION-ENDANGERED SPECIES ACT OF 1973, AS AMENDED General § 402.04 Counterpart regulations. The...
7 CFR 981.31 - Membership representation.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Agreements and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE ALMONDS GROWN IN CALIFORNIA Order Regulating Handling Almond Board of California § 981.31 Membership representation. Membership of the Board... who market their almonds through cooperative handlers; and (2) Those growers who market their almonds...
7 CFR 3406.11 - Scope of a teaching proposal.
Code of Federal Regulations, 2010 CFR
2010-01-01
... new subjects, or new applications of knowledge, pertaining to the food and agricultural sciences. (2... new ideas and techniques. (v) Expand competence with new methods of information delivery, such as... Agriculture Regulations of the Department of Agriculture (Continued) COOPERATIVE STATE RESEARCH, EDUCATION...
Code of Federal Regulations, 2010 CFR
2010-01-01
..., education, or technology to give expert advice on the merit of grant applications in such fields, who... Regulations of the Department of Agriculture (Continued) COOPERATIVE STATE RESEARCH, EDUCATION, AND EXTENSION... least one discipline or area of the food and agricultural sciences. The definition includes a research...
32 CFR 21.640 - Cooperative agreement.
Code of Federal Regulations, 2013 CFR
2013-07-01
... REGULATIONS DoD GRANTS AND AGREEMENTS-GENERAL MATTERS Definitions § 21.640 Cooperative agreement. A legal... grant (see definition “grant”), except that substantial involvement is expected between the Department...
32 CFR 21.640 - Cooperative agreement.
Code of Federal Regulations, 2011 CFR
2011-07-01
... REGULATIONS DoD GRANTS AND AGREEMENTS-GENERAL MATTERS Definitions § 21.640 Cooperative agreement. A legal... grant (see definition “grant”), except that substantial involvement is expected between the Department...
32 CFR 21.640 - Cooperative agreement.
Code of Federal Regulations, 2012 CFR
2012-07-01
... REGULATIONS DoD GRANTS AND AGREEMENTS-GENERAL MATTERS Definitions § 21.640 Cooperative agreement. A legal... grant (see definition “grant”), except that substantial involvement is expected between the Department...
Yu, Yebing; Wang, Changhai; Wang, Aimin; Yang, Wenping; Lv, Fu; Liu, Fei; Liu, Bo; Sun, Cunxin
2018-02-01
The present study was conducted to evaluate the effects of various Bacillus coagulans feeding patterns on growth, antioxidant parameter and Nrf2 pathway in juvenile gibel carp. The similar size of gibel carp (initial weight: 14.33 ± 0.15 g) were subjected to three levels of B. coagulans supplementation (0, 500, and 1000 mg/kg) and two feeding modes (supplementing B. coagulans continuously or for two days of B. coagulans after 5 days of a basal diet) according to a 3 × 2 factorial design. The fish that were continuously fed 500 mg/kg B. coagulans (P2) and those fed the first basal diet for 5 days followed by 500 mg/kg or 1000 mg/kg B.coagulans for 2 days (P4 or P5) showed higher weight gain rate and specific growth rate than the other groups. Blood respiratory burst (RB), myeloperoxidase (MPO), and anti-superoxide anion free radical (AFASER) activities in the P4 group were higher than those of the control. White blood cell count (WBC), RB activity, MPO activity, and glutathione (GSH) content in the P5 group were also higher than those of the control. A similar higher trend was observed in the gene expressions of NADPH oxidase 2 (NOX2), NFE2-related factor (Nrf2), Kelch-like-ECH-associated protein(Keap1) in the P4 and NOX2, NRF2, CNC homolog 1 (Bach1), peroxiredoxin 2 (Prx2) in the P5 group compared with the control. Additionally, we observed a significantly lower level of plasma aspartate aminotransferase (AST), lower activity of alanine aminotransferase (ALT), a higher level of MPO, higher GPX activity, and increased NRF2 and Prx2 expression were all observed in the P2 treatment group compared with the control. Furthermore, the malondialdehyde (MDA) content in the P2, P3, and P4 groups was lower than that of the control. These results indicate that a diet supplemented with appropriate levels of B.coagulans could improve the growth, immune response, and antioxidant capability of gibel carp. We concluded that the pattern of two days of 500 or 1000 mg/kg B. coagulans after 5 days of a basal diet was recommended for gibel carp. Copyright © 2017 Elsevier Ltd. All rights reserved.
Bøggild, Andreas; Sofos, Nicholas; Andersen, Kasper R.; Feddersen, Ane; Easter, Ashley D.; Passmore, Lori A.; Brodersen, Ditlev E.
2012-01-01
Summary The bacterial relBE locus encodes a toxin-antitoxin complex in which the toxin, RelE, is capable of cleaving mRNA in the ribosomal A site cotranslationally. The antitoxin, RelB, both binds and inhibits RelE, and regulates transcription through operator binding and conditional cooperativity controlled by RelE. Here, we present the crystal structure of the intact Escherichia coli RelB2E2 complex at 2.8 Å resolution, comprising both the RelB-inhibited RelE and the RelB dimerization domain that binds DNA. RelE and RelB associate into a V-shaped heterotetrameric complex with the ribbon-helix-helix (RHH) dimerization domain at the apex. Our structure supports a model in which relO is optimally bound by two adjacent RelB2E heterotrimeric units, and is not compatible with concomitant binding of two RelB2E2 heterotetramers. The results thus provide a firm basis for understanding the model of conditional cooperativity at the molecular level. PMID:22981948
Turkel, Nezaket; Sahota, Virender K.; Bolden, Jessica E.; Goulding, Karen R.; Doggett, Karen; Willoughby, Lee F.; Blanco, Enrique; Martin-Blanco, Enrique; Corominas, Montserrat; Ellul, Jason; Aigaki, Toshiro; Richardson, Helena E.; Brumby, Anthony M.
2013-01-01
The capacity of tumour cells to maintain continual overgrowth potential has been linked to the commandeering of normal self-renewal pathways. Using an epithelial cancer model in Drosophila melanogaster, we carried out an overexpression screen for oncogenes capable of cooperating with the loss of the epithelial apico-basal cell polarity regulator, scribbled (scrib), and identified the cell fate regulator, Abrupt, a BTB-zinc finger protein. Abrupt overexpression alone is insufficient to transform cells, but in cooperation with scrib loss of function, Abrupt promotes the formation of massive tumours in the eye/antennal disc. The steroid hormone receptor coactivator, Taiman (a homologue of SRC3/AIB1), is known to associate with Abrupt, and Taiman overexpression also drives tumour formation in cooperation with the loss of Scrib. Expression arrays and ChIP-Seq indicates that Abrupt overexpression represses a large number of genes, including steroid hormone-response genes and multiple cell fate regulators, thereby maintaining cells within an epithelial progenitor-like state. The progenitor-like state is characterised by the failure to express the conserved Eyes absent/Dachshund regulatory complex in the eye disc, and in the antennal disc by the failure to express cell fate regulators that define the temporal elaboration of the appendage along the proximo-distal axis downstream of Distalless. Loss of scrib promotes cooperation with Abrupt through impaired Hippo signalling, which is required and sufficient for cooperative overgrowth with Abrupt, and JNK (Jun kinase) signalling, which is required for tumour cell migration/invasion but not overgrowth. These results thus identify a novel cooperating oncogene, identify mammalian family members of which are also known oncogenes, and demonstrate that epithelial tumours in Drosophila can be characterised by the maintenance of a progenitor-like state. PMID:23874226
ERIC Educational Resources Information Center
Wang, Hsin-Hui; Chen, Hsiang-Ting; Lin, Huann-shyang; Huang, Yu-Ning; Hong, Zuway-R
2017-01-01
This longitudinal study explored the effects of a Cooperation-driven Socioscientific Issue (CDSSI) intervention on junior high school students' perceptions of critical thinking (CT) and self-regulation (SR) in Taiwan. Forty-nine grade 7 students were randomly selected as an experimental group (EG) to attend a 3-semester 72-hour intervention; while…
Reindl, Vanessa; Gerloff, Christian; Scharke, Wolfgang; Konrad, Kerstin
2018-05-26
Parent-child synchrony, the coupling of behavioral and biological signals during social contact, may fine-tune the child's brain circuitries associated with emotional bond formation and the child's development of emotion regulation. Here, we examined the neurobiological underpinnings of these processes by measuring parent's and child's prefrontal neural activity concurrently with functional near-infrared spectroscopy hyperscanning. Each child played both a cooperative and a competitive game with the parent, mostly the mother, as well as an adult stranger. During cooperation, parent's and child's brain activities synchronized in the dorsolateral prefrontal and frontopolar cortex (FPC), which was predictive for their cooperative performance in subsequent trials. No significant brain-to-brain synchrony was observed in the conditions parent-child competition, stranger-child cooperation and stranger-child competition. Furthermore, parent-child compared to stranger-child brain-to-brain synchrony during cooperation in the FPC mediated the association between the parent's and the child's emotion regulation, as assessed by questionnaires. Thus, we conclude that brain-to-brain synchrony may represent an underlying neural mechanism of the emotional connection between parent and child, which is linked to the child's development of adaptive emotion regulation. Future studies may uncover whether brain-to-brain synchrony can serve as a neurobiological marker of the dyad's socio-emotional interaction, which is sensitive to risk conditions, and can be modified by interventions. Copyright © 2018 Elsevier Inc. All rights reserved.
7 CFR Exhibit C to Subpart B of... - Cooperative Agreement (Example)
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 14 2010-01-01 2009-01-01 true Cooperative Agreement (Example) C Exhibit C to Subpart B of Part 1955 Agriculture Regulations of the Department of Agriculture (Continued) RURAL HOUSING... Exhibit C to Subpart B of Part 1955—Cooperative Agreement (Example) Editorial Note: Exhibit C is not...
22 CFR 120.33 - Defense Trade Cooperation Treaty between the United States and Australia.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 22 Foreign Relations 1 2014-04-01 2014-04-01 false Defense Trade Cooperation Treaty between the United States and Australia. 120.33 Section 120.33 Foreign Relations DEPARTMENT OF STATE INTERNATIONAL TRAFFIC IN ARMS REGULATIONS PURPOSE AND DEFINITIONS § 120.33 Defense Trade Cooperation Treaty between the...
7 CFR 1484.34 - Must Cooperators adhere to specific standards of ethical conduct?
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 10 2014-01-01 2014-01-01 false Must Cooperators adhere to specific standards of ethical conduct? 1484.34 Section 1484.34 Agriculture Regulations of the Department of Agriculture... specific standards of ethical conduct? (a) A Cooperator shall conduct its business in accordance with the...
7 CFR 1484.34 - Must Cooperators adhere to specific standards of ethical conduct?
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 10 2013-01-01 2013-01-01 false Must Cooperators adhere to specific standards of ethical conduct? 1484.34 Section 1484.34 Agriculture Regulations of the Department of Agriculture... specific standards of ethical conduct? (a) A Cooperator shall conduct its business in accordance with the...
7 CFR 1484.34 - Must Cooperators adhere to specific standards of ethical conduct?
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 10 2012-01-01 2012-01-01 false Must Cooperators adhere to specific standards of ethical conduct? 1484.34 Section 1484.34 Agriculture Regulations of the Department of Agriculture... specific standards of ethical conduct? (a) A Cooperator shall conduct its business in accordance with the...
7 CFR 1484.37 - Must Cooperators adhere to Federal Travel Regulations?
Code of Federal Regulations, 2011 CFR
2011-01-01
... CREDIT CORPORATION, DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS PROGRAMS TO HELP DEVELOP FOREIGN MARKETS FOR AGRICULTURAL COMMODITIES Program Operations § 1484.37 Must Cooperators adhere...
7 CFR 1484.37 - Must Cooperators adhere to Federal Travel Regulations?
Code of Federal Regulations, 2010 CFR
2010-01-01
... CREDIT CORPORATION, DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS PROGRAMS TO HELP DEVELOP FOREIGN MARKETS FOR AGRICULTURAL COMMODITIES Program Operations § 1484.37 Must Cooperators adhere...
East Kentucky Power Cooperative Spurlock Station; Petition to Object to Title V Operating Permit
This document may be of assistance in applying the Title V air operating permit regulations. This document is part of the Title V Petition Database available at www2.epa.gov/title-v-operating-permits/title-v-petition-database.
22 CFR 1203.735-105 - Disciplinary action.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 22 Foreign Relations 2 2010-04-01 2010-04-01 true Disciplinary action. 1203.735-105 Section 1203.735-105 Foreign Relations UNITED STATES INTERNATIONAL DEVELOPMENT COOPERATION AGENCY EMPLOYEE RESPONSIBILITIES AND CONDUCT General Provisions § 1203.735-105 Disciplinary action. A violation of the regulations...
7 CFR 932.25 - Establishment and membership.
Code of Federal Regulations, 2010 CFR
2010-01-01
... representation of the producer members shall be two from District 1, four from District 2, and two from District 3. Allocation of the handler members shall be four members to represent cooperative marketing... Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing...
43 CFR 3217.11 - What are communitization agreements?
Code of Federal Regulations, 2012 CFR
2012-10-01
... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false What are communitization agreements? 3217.11 Section 3217.11 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF... Cooperative Agreements § 3217.11 What are communitization agreements? Under communitization agreements (also...
43 CFR 3217.11 - What are communitization agreements?
Code of Federal Regulations, 2013 CFR
2013-10-01
... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false What are communitization agreements? 3217.11 Section 3217.11 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF... Cooperative Agreements § 3217.11 What are communitization agreements? Under communitization agreements (also...
In vivo collective cell migration requires an LPAR2-dependent increase in tissue fluidity
Kuriyama, Sei; Theveneau, Eric; Benedetto, Alexandre; Parsons, Maddy; Tanaka, Masamitsu; Charras, Guillaume; Kabla, Alexandre
2014-01-01
Collective cell migration (CCM) and epithelial–mesenchymal transition (EMT) are common to cancer and morphogenesis, and are often considered to be mutually exclusive in spite of the fact that many cancer and embryonic cells that have gone through EMT still cooperate to migrate collectively. Here we use neural crest (NC) cells to address the question of how cells that have down-regulated cell–cell adhesions can migrate collectively. NC cell dissociation relies on a qualitative and quantitative change of the cadherin repertoire. We found that the level of cell–cell adhesion is precisely regulated by internalization of N-cadherin downstream of lysophosphatidic acid (LPA) receptor 2. Rather than promoting the generation of single, fully mesenchymal cells, this reduction of membrane N-cadherin only triggers a partial mesenchymal phenotype. This intermediate phenotype is characterized by an increase in tissue fluidity akin to a solid-like–to–fluid-like transition. This change of plasticity allows cells to migrate under physical constraints without abolishing cell cooperation required for collectiveness. PMID:25002680
Social penalty promotes cooperation in a cooperative society.
Ito, Hiromu; Yoshimura, Jin
2015-08-04
Why cooperation is well developed in human society is an unsolved question in biological and human sciences. Vast studies in game theory have revealed that in non-cooperative games selfish behavior generally dominates over cooperation and cooperation can be evolved only under very limited conditions. These studies ask the origin of cooperation; whether cooperation can evolve in a group of selfish individuals. In this paper, instead of asking the origin of cooperation, we consider the enhancement of cooperation in a small already cooperative society. We ask whether cooperative behavior is further promoted in a small cooperative society in which social penalty is devised. We analyze hawk-dove game and prisoner's dilemma introducing social penalty. We then expand it for non-cooperative games in general. The results indicate that cooperation is universally favored if penalty is further imposed. We discuss the current result in terms of the moral, laws, rules and regulations in a society, e.g., criminology and traffic violation.
Social penalty promotes cooperation in a cooperative society
Ito, Hiromu; Yoshimura, Jin
2015-01-01
Why cooperation is well developed in human society is an unsolved question in biological and human sciences. Vast studies in game theory have revealed that in non-cooperative games selfish behavior generally dominates over cooperation and cooperation can be evolved only under very limited conditions. These studies ask the origin of cooperation; whether cooperation can evolve in a group of selfish individuals. In this paper, instead of asking the origin of cooperation, we consider the enhancement of cooperation in a small already cooperative society. We ask whether cooperative behavior is further promoted in a small cooperative society in which social penalty is devised. We analyze hawk-dove game and prisoner’s dilemma introducing social penalty. We then expand it for non-cooperative games in general. The results indicate that cooperation is universally favored if penalty is further imposed. We discuss the current result in terms of the moral, laws, rules and regulations in a society, e.g., criminology and traffic violation. PMID:26238521
Lelièvre, Sophie; Weaver, Valerie M.; Bissell, Mina J.
2010-01-01
It is well established that cells must interact with their microenvironment and that such interaction is crucial for coordinated function and homeostasis. However, how cells receive and integrate external signals leading to gene regulation is far from understood. It is now appreciated that two classes of cooperative signals are implicated: a soluble class including hormones and growth factors and a class of insoluble signals emanating from the extracellular matrix (ECM) directly through contact with the cell surface. Using 3-dimensional culture systems and transgenic mice, we have been able to identify some of the elements of this ECM-signaling pathway responsible for gene regulation in rodent mammary gland differentiation and involution. Our major observations are 1) the requirement for a laminin-rich basement membrane; 2) the existence of a cooperative signaling pathway between basement membrane and the lactogenic hormone prolactin (PRL); 3) the importance of β1-integrins and bHLH transcription factor(s) and the presence of DNA response elements (exemplified by BCE-1, located on a milk protein gene, β-casein); and 4) the induction of mammary epithelial cell programmed cell death following degradation of basement membrane. We hypothesize that this cooperative signaling between ECM and PRL may be achieved through integrin- and laminin-directed restructuring of the cytoskeleton leading to profound changes in nuclear architecture and transcription factor localization. We postulate that the latter changes allow the prolactin signal to activate transcription of the β-casein gene. To further understand the molecular mechanisms underlying ECM and hormonal cooperative signaling, we are currently investigating ECM regulation of a “solid-state” signaling pathway including ECM fiber proteins, plasma membrane receptors, cytoskeleton, nuclear matrix and chromatin. We further postulate that disruption of such a pathway may be implicated in cell disorders including transformation and carcinogenesis. PMID:8701089
NASA Astrophysics Data System (ADS)
Saari, R.; Selin, N. E.
2015-12-01
We examine the effect of state, regional, and national cooperation on the costs and air quality co-benefits of a policy to limit the carbon intensity of existing electricity generation. Electricity generation is a significant source of both greenhouse gases and air pollutant emissions that harm human health. Previous studies have shown that air quality co-benefits can be substantial compared to the costs of limiting carbon emissions in the energy system. The EPA's proposed Clean Power Plan seeks to impose carbon intensity limits for each state, but allows states to cooperate in order to meet combined limits. We explore how such cooperation might produce trade-offs between lower costs, widespread pollution reductions, and local reductions. We employ a new state-level model of the US energy system and economy to examine the costs and emissions as states reduce demand or deploy cleaner generation. We use an advanced air quality impacts modeling system, including SMOKE, CAMx, and BenMAP, to estimate health-related air quality co-benefits and compare these to costs under different levels of cooperation. We draw conclusions about the potential impacts of cooperation on economic welfare at various scales.
GIANT DIELECTRIC TUNABLE BEHAVIOR OF Pr-DOPED SrTiO3 AT LOW TEMPERATURE
NASA Astrophysics Data System (ADS)
Wei, T.; Song, Q. G.; Zhou, Q. J.; Li, Z. P.; Chen, Y. F.; Qi, X. L.; Guo, S. Q.; Liu, J.-M.
2012-03-01
Contrast with conventional dielectric tunable materials such as barium strontium titanate (BST), here, we report one new dielectric tunable behavior for Sr1-xPrxTiO3 system at low temperature. Giant dielectric tunability is confirmed in this system. More importantly, the efficient dielectric tunability can be realized just using small bias field. In addition, critical threshold electric field is also confirmed. This phenomenon may be related with the competition interaction of polar state with quantum fluctuations.
22 CFR 120.34 - Defense Trade Cooperation Treaty between the United States and the United Kingdom.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 22 Foreign Relations 1 2012-04-01 2012-04-01 false Defense Trade Cooperation Treaty between the United States and the United Kingdom. 120.34 Section 120.34 Foreign Relations DEPARTMENT OF STATE INTERNATIONAL TRAFFIC IN ARMS REGULATIONS PURPOSE AND DEFINITIONS § 120.34 Defense Trade Cooperation Treaty...
22 CFR 120.34 - Defense Trade Cooperation Treaty between the United States and the United Kingdom.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 22 Foreign Relations 1 2014-04-01 2014-04-01 false Defense Trade Cooperation Treaty between the United States and the United Kingdom. 120.34 Section 120.34 Foreign Relations DEPARTMENT OF STATE INTERNATIONAL TRAFFIC IN ARMS REGULATIONS PURPOSE AND DEFINITIONS § 120.34 Defense Trade Cooperation Treaty...
7 CFR Exhibit C to Subpart B of... - Cooperative Agreement (Example)
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 14 2012-01-01 2012-01-01 false Cooperative Agreement (Example) C Exhibit C to... Pt. 1955, Subpt. B, Note Exhibit C to Subpart B of Part 1955—Cooperative Agreement (Example) Editorial Note: Exhibit C is not published in the Code of Federal Regulations. It is available in any FmHA...
7 CFR Exhibit C to Subpart B of... - Cooperative Agreement (Example)
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 14 2011-01-01 2011-01-01 false Cooperative Agreement (Example) C Exhibit C to... Pt. 1955, Subpt. B, Note Exhibit C to Subpart B of Part 1955—Cooperative Agreement (Example) Editorial Note: Exhibit C is not published in the Code of Federal Regulations. It is available in any FmHA...
7 CFR Exhibit C to Subpart B of... - Cooperative Agreement (Example)
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 14 2014-01-01 2014-01-01 false Cooperative Agreement (Example) C Exhibit C to... Pt. 1955, Subpt. B, Note Exhibit C to Subpart B of Part 1955—Cooperative Agreement (Example) Editorial Note: Exhibit C is not published in the Code of Federal Regulations. It is available in any FmHA...
Point Defects in Oxides: Tailoring Materials Through Defect Engineering
NASA Astrophysics Data System (ADS)
Tuller, Harry L.; Bishop, Sean R.
2011-08-01
Optimization of electrical, optical, mechanical, and other properties of many advanced, functional materials today relies on precise control of point defects. This article illustrates the progress that has been made in elucidating the often complex equilibria exhibited by many materials by examining two recently well-characterized model systems, TlBr for radiation detection and PrxCe1-xO2-δ, of potential interest in solid-oxide fuel cells. The interplay between material composition, electrical conductivity, and mechanical properties (electrochemomechanics) is discussed, and implications in these relations, for example, enhancing electrical properties through large mechanical strains, are described. The impact of space charge and strain fields at interfaces, particularly important in nanostructure materials, is also emphasized. Key experimental techniques useful in characterizing bulk and surface defects are summarized and reviewed.
34 CFR 400.2 - What programs are governed by these regulations?
Code of Federal Regulations, 2013 CFR
2013-07-01
...). (8) National Network for Curriculum Coordination in Vocational and Technical Education (34 CFR part... Projects for the Integration of Vocational and Academic Learning Program (34 CFR part 425). (21) Cooperative Demonstration Programs (34 CFR part 426). (22) Bilingual Vocational Training Program (34 CFR part...
34 CFR 400.2 - What programs are governed by these regulations?
Code of Federal Regulations, 2014 CFR
2014-07-01
...). (8) National Network for Curriculum Coordination in Vocational and Technical Education (34 CFR part... Projects for the Integration of Vocational and Academic Learning Program (34 CFR part 425). (21) Cooperative Demonstration Programs (34 CFR part 426). (22) Bilingual Vocational Training Program (34 CFR part...
34 CFR 400.2 - What programs are governed by these regulations?
Code of Federal Regulations, 2012 CFR
2012-07-01
...). (8) National Network for Curriculum Coordination in Vocational and Technical Education (34 CFR part... Projects for the Integration of Vocational and Academic Learning Program (34 CFR part 425). (21) Cooperative Demonstration Programs (34 CFR part 426). (22) Bilingual Vocational Training Program (34 CFR part...
78 FR 68375 - Removal of Procedures for Closeout of Grants and Cooperative Agreements
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-14
..., Contract Management Division, Washington, DC 20546. Comments may also be submitted by email to: leigh... Procurement, Contract Management Division (Room 2P77); Telephone: (202) 358-0592; Email: [email protected] encouraged to perform retrospective analysis, reviewing existing regulation for outmoded, ineffective...
24 CFR 213.267 - Effect of insurance endorsement.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 24 Housing and Urban Development 2 2010-04-01 2010-04-01 false Effect of insurance endorsement. 213.267 Section 213.267 Housing and Urban Development Regulations Relating to Housing and Urban... AUTHORITIES COOPERATIVE HOUSING MORTGAGE INSURANCE Contract Rights and Obligations-Projects § 213.267 Effect...
48 CFR 52.203-12 - Limitation on Payments to Influence Certain Federal Transactions.
Code of Federal Regulations, 2010 CFR
2010-10-01
... FEDERAL ACQUISITION REGULATION (CONTINUED) CLAUSES AND FORMS SOLICITATION PROVISIONS AND CONTRACT CLAUSES... following actions: (1) Awarding any Federal contract. (2) Making any Federal grant. (3) Making any Federal... modifying any Federal contract, grant, loan, or cooperative agreement. Indian tribe and tribal organization...
7 CFR 4280.48 - Post selection period.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Agriculture Regulations of the Department of Agriculture (Continued) RURAL BUSINESS-COOPERATIVE SERVICE AND... writing if the application is selected. The documents to be executed by the Intermediary will include: (a) For a loan: (1) A Letter of Conditions with Project-specific terms and conditions; (2) A loan...