Sample records for ps full width

  1. Probe-pulse optimization for nonresonant suppression in hybrid fs/ps coherent anti-Stokes Raman scattering at high temperature.

    PubMed

    Miller, Joseph D; Slipchenko, Mikhail N; Meyer, Terrence R

    2011-07-04

    Hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering (fs/ps CARS) offers accurate thermometry at kHz rates for combustion diagnostics. In high-temperature flames, selection of probe-pulse characteristics is key to simultaneously optimizing signal-to-nonresonant-background ratio, signal strength, and spectral resolution. We demonstrate a simple method for enhancing signal-to-nonresonant-background ratio by using a narrowband Lorentzian filter to generate a time-asymmetric probe pulse with full-width-half-maximum (FWHM) pulse width of only 240 fs. This allows detection within just 310 fs after the Raman excitation for eliminating nonresonant background while retaining 45% of the resonant signal at 2000 K. The narrow linewidth is comparable to that of a time-symmetric sinc2 probe pulse with a pulse width of ~2.4 ps generated with a conventional 4-f pulse shaper. This allows nonresonant-background-free, frequency-domain vibrational spectroscopy at high temperature, as verified using comparisons to a time-dependent theoretical fs/ps CARS model.

  2. Time-of-flight spectroscopy of positronium emission from quartz and magnesium oxide

    NASA Astrophysics Data System (ADS)

    Sferlazzo, P.; Berko, S.; Canter, K. F.

    1987-04-01

    The energy distribution of Ps emitted from SiO2 and MgO single crystals bombarded by 500-900-eV positrons was measured. For SiO2 a nearly monoenergetic component at 3.27(4) is observed and is consistent with a bulk excitonlike Ps emitted from the surface. A broader component of ~1.5 eV full width at half maximum is also observed. For MgO the Ps spectrum is characterized by a high-energy tail extending up to 6-7 eV. Possible models which would explain the MgO results are discussed.

  3. High-speed microstrip multi-anode multichannel plate detector system

    NASA Astrophysics Data System (ADS)

    Riedo, Andreas; Tulej, Marek; Rohner, Urs; Wurz, Peter

    2017-04-01

    High-speed detector systems with high dynamic range and pulse width characteristics in the sub-nanosecond regime are mandatory for high resolution and highly sensitive time-of-flight mass spectrometers. Typically, for a reasonable detector area, an impedance-matched anode design is necessary to transmit the registered signal fast and distortion-free from the anode to the signal acquisition system. In this report, a high-speed microstrip multi-anode multichannel plate detector is presented and discussed. The anode consists of four separate active concentric anode segments allowing a simultaneous readout of signal with a dynamic range of about eight orders of magnitude. The impedance matched anode segments show pulse width of about 250 ps, measured at full width at half maximum, and rise time of ˜170 ps, measured with an oscilloscope with a sampling rate of 20 GS/s and 4 GHz analogue bandwidth. The usage of multichannel plates as signal amplifier allowed the design of a lightweight, low power consuming, and compact detector system, suitable, e.g., for the integration into space instrumentation or portable systems where size, weight, and power consumption are limited parameters.

  4. 1.55-μm mode-locked quantum-dot lasers with 300 MHz frequency tuning range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadeev, T., E-mail: tagir@mailbox.tu-berlin.de; Arsenijević, D.; Bimberg, D.

    2015-01-19

    Passive mode-locking of two-section quantum-dot mode-locked lasers grown by metalorganic vapor phase epitaxy on InP is reported. 1250-μm long lasers exhibit a wide tuning range of 300 MHz around the fundamental mode-locking frequency of 33.48 GHz. The frequency tuning is achieved by varying the reverse bias of the saturable absorber from 0 to −2.2 V and the gain section current from 90 to 280 mA. 3 dB optical spectra width of 6–7 nm leads to ex-facet optical pulses with full-width half-maximum down to 3.7 ps. Single-section quantum-dot mode-locked lasers show 0.8 ps broad optical pulses after external fiber-based compression. Injection current tuning from 70 tomore » 300 mA leads to 30 MHz frequency tuning.« less

  5. Demonstration of an 8*10-Gb/s OTDM system

    NASA Astrophysics Data System (ADS)

    Huo, Li; Yang, Yanfu; Lou, Caiyun; Gao, Yizhi

    2005-03-01

    An 8*10 Gb/s optical time-division-multiplexing (OTDM) system was demonstrated with an electroabsorption modulator (EAM) based short pulse generator followed by a two-stage nonlinear compression scheme which generated stable 10-GHz, 2-ps full-width at half-maximum (FWHM) pulse train, an opto-electronic oscillator (OEO) that extracted 10-GHz clock with a timing jitter of 300 fs from 80-Gb/s OTDM signal and a self cascaded EAM which produced a switching window of about 10 ps. A back-to-back error free demultiplexing experiment with a power penalty of 3.25 dB was carried out to verify the system performance.

  6. An ultrafast X-ray scintillating detector made of ZnO(Ga)

    NASA Astrophysics Data System (ADS)

    Zhang, Qingmin; Yan, Jun; Deng, Bangjie; Zhang, Jingwen; Lv, Jinge; Wen, Xin; Gao, Keqing

    2017-12-01

    Owing to its ultrafast scintillation, quite high light yield, strong radiation resistance, and non-deliquescence, ZnO(Ga) is a highly promising choice for an ultrafast X-ray detector. Because of its high deposition rate, good production repeatability and strong adhesive force, reactive magnetron sputtering was used to produce a ZnO(Ga) crystal on a quartz glass substrate, after the production conditions were optimized. The fluorescence lifetime of the sample was 173 ps. An ultrafast X-ray scintillating detector, equipped with a fast microchannel plate (MCP) photomultiplier tube (PMT), was developed and the X-ray tests show a signal full width at half maximum (FWHM) of only 385.5 ps. Moreover, derivation from the previous measurement shows the ZnO(Ga) has an ultrafast time response (FWHM = 355.1 ps) and a high light yield (14740 photons/MeV).

  7. The role of defects in laser-induced modifications of silica coatings and fused silica using picosecond pulses at 1053 nm: I Damage morphology

    DOE PAGES

    Laurence, T. A.; Ly, S.; Shen, N.; ...

    2017-06-22

    Laser-induced damage with ps pulse widths straddles the transition from intrinsic, multi-photon ionization and avalanche ionization-based ablation with fs pulses to defect-dominated, thermal-based damage with ns pulses. We investigated the morphology of damage for fused silica and silica coatings between 1 ps and 60 ps at 1053 nm. Using calibrated laser-induced damage experiments, in situ imaging, and high-resolution optical microscopy, atomic force microscopy, and scanning electron microscopy, we show that defects play an important role in laser-induced damage down to 1 ps. Three types of damage are observed: ablation craters, ultra-high density pits, and smooth, circular depressions with central pits.more » For 10 ps and longer, the smooth, circular depressions limit the damage performance of fused silica and silica coatings. The observed high-density pits and material removal down to 3 ps indicate that variations in surface properties limit the laser-induced damage onset to a greater extent than expected below 60 ps. Below 3 ps, damage craters are smoother although there is still evidence as seen by AFM of inhomogeneous laser-induced damage response very near the damage onset. These results show that modeling the damage onset only as a function of pulse width does not capture the convoluted processes leading to laser induced damage with ps pulses. It is necessary to account for the effects of defects on the processes leading to laser-induced damage. In conclusion, the effects of isolated defects or inhomogeneities are most pronounced above 3 ps but are still discernible and possibly important down to the shortest pulse width investigated here.« less

  8. The role of defects in laser-induced modifications of silica coatings and fused silica using picosecond pulses at 1053 nm: I Damage morphology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laurence, T. A.; Ly, S.; Shen, N.

    Laser-induced damage with ps pulse widths straddles the transition from intrinsic, multi-photon ionization and avalanche ionization-based ablation with fs pulses to defect-dominated, thermal-based damage with ns pulses. We investigated the morphology of damage for fused silica and silica coatings between 1 ps and 60 ps at 1053 nm. Using calibrated laser-induced damage experiments, in situ imaging, and high-resolution optical microscopy, atomic force microscopy, and scanning electron microscopy, we show that defects play an important role in laser-induced damage down to 1 ps. Three types of damage are observed: ablation craters, ultra-high density pits, and smooth, circular depressions with central pits.more » For 10 ps and longer, the smooth, circular depressions limit the damage performance of fused silica and silica coatings. The observed high-density pits and material removal down to 3 ps indicate that variations in surface properties limit the laser-induced damage onset to a greater extent than expected below 60 ps. Below 3 ps, damage craters are smoother although there is still evidence as seen by AFM of inhomogeneous laser-induced damage response very near the damage onset. These results show that modeling the damage onset only as a function of pulse width does not capture the convoluted processes leading to laser induced damage with ps pulses. It is necessary to account for the effects of defects on the processes leading to laser-induced damage. In conclusion, the effects of isolated defects or inhomogeneities are most pronounced above 3 ps but are still discernible and possibly important down to the shortest pulse width investigated here.« less

  9. Comparison of symmetric and asymmetric double quantum well extended-cavity diode lasers for broadband passive mode-locking at 780  nm.

    PubMed

    Christopher, Heike; Kovalchuk, Evgeny V; Wenzel, Hans; Bugge, Frank; Weyers, Markus; Wicht, Andreas; Peters, Achim; Tränkle, Günther

    2017-07-01

    We present a compact, mode-locked diode laser system designed to emit a frequency comb in the wavelength range around 780 nm. We compare the mode-locking performance of symmetric and asymmetric double quantum well ridge-waveguide diode laser chips in an extended-cavity diode laser configuration. By reverse biasing a short section of the diode laser chip, passive mode-locking at 3.4 GHz is achieved. Employing an asymmetric double quantum well allows for generation of a mode-locked optical spectrum spanning more than 15 nm (full width at -20  dB) while the symmetric double quantum well device only provides a bandwidth of ∼2.7  nm (full width at -20  dB). Analysis of the RF noise characteristics of the pulse repetition rate shows an RF linewidth of about 7 kHz (full width at half-maximum) and of at most 530 Hz (full width at half-maximum) for the asymmetric and symmetric double quantum well devices, respectively. Investigation of the frequency noise power spectral density at the pulse repetition rate shows a white noise floor of approximately 2100  Hz 2 /Hz and of at most 170  Hz 2 /Hz for the diode laser employing the asymmetric and symmetric double quantum well structures, respectively. The pulse width is less than 10 ps for both devices.

  10. Simple ps microchip Nd:YVO4 laser with 3.3-ps pulses at 0.2 to 1.4 MHz and single-stage amplification to the microjoule level

    NASA Astrophysics Data System (ADS)

    Türkyilmaz, Erdal; Lohbreier, Jan; Günther, Christian; Mehner, Eva; Kopf, Daniel; Giessen, Harald; Braun, Bernd

    2016-06-01

    Commercial picosecond sources have found widespread applications. Typical system parameters are pulse widths below 20 ps, repetition rates between 0.1 and 2 MHz, and microjoule level pulse energies. Most systems are based on short pulse mode-locked oscillators, regenerative amplifiers, and pockel cells as active beam switches. In contrast, we present a completely passive system, consisting of a passively Q-switched microchip laser, a single-stage amplifier, and a pulse compressor. The Q-switched microchip laser has a 50-μm-long Nd:YVO4 gain material optically bonded to a 4.6-mm-thick undoped YVO4 crystal. It delivers pulse widths of 40 ps and repetition rates of 0.2 to 1.4 MHz at a wavelength of 1.064 μm. The pulse energy is a few nanojoule. These 40-ps pulses are spectrally broadened in a standard single-mode fiber and then compressed in a 24-mm-long chirped Bragg grating to as low as 3.3 ps. The repetition rate can be tuned from ˜0.2 to 1.4 MHz by changing the pump power, while the pulse width and the pulse energy from the microchip laser are unchanged. The spectral broadening in the fiber is observed throughout the pulse repetition rate, supporting sub-10-ps pulses. Finally, the pulses are amplified in a single-stage Nd:YVO4 amplifier up to the microjoule level (up to 4 μJ pulse energy). As a result, the system delivers sub-10-ps pulses at a microjoule level with about 1 MHz repetition rate, and thus fulfills the requirements for ps-micromachining. It does not contain any active switching elements and can be integrated in a very compact setup.

  11. Simple ps microchip Nd:YVO4 laser with 3.3 ps pulses at 0.2 - 1.4 MHz and single-stage amplification to the microjoule level

    NASA Astrophysics Data System (ADS)

    Türkyilmaz, Erdal; Lohbreier, Jan; Günther, Christian; Mehner, Eva; Kopf, Daniel; Giessen, Harald; Braun, Bernd

    2016-03-01

    Commercial picosecond sources have found widespread applications. Typical system parameters are pulse widths below 20 ps, repetition rates between 0.1 to 2 MHz, and micro Joule level pulse energies. Most systems are based on short pulse modelocked oscillators, regenerative amplifiers, and pockel cells as active beam switches. In contrast we present a completely passive system, consisting of a passively Q-switched microchip laser, a single-stage amplifier, and a pulse compressor. The Q-switched microchip laser has a 50 μm long Nd:YVO4-gain material optically bonded to a 4.6 mm thick undoped YVO4-crystal. It delivers pulse widths of 40 ps and repetition rates of 0.2 - 1.4 MHz at a wavelength of 1.064 μm. The pulse energy is a few nJ. These 40-ps pulses are spectrally broadened in a standard single mode fibre and then compressed in a 24 mm long chirped Bragg grating to as low as 3.3 ps. The repetition rate can be tuned from app. 0.2 to 1.4 MHz by changing the pump power while the pulse width and the pulse energy from the microchip laser are unchanged. The spectral broadening in the fibre is observed throughout the pulse repetition rate, supporting sub-10- ps pulses. Finally, the pulses are amplified in a single-stage Nd:YVO4-amplifier up to the microjoule level (up to 4 μJ pulse energy). As a result the system delivers sub-10-ps pulses at a microjoule level with about 1 MHz repetition rate, and thus fulfills the requirements for ps-micromachining. It does not contain any active switching elements and can be integrated in a very compact setup.

  12. Studies on laser material processing with nanosecond and sub-nanosecond and picosecond and sub-picosecond pulses

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; Tao, Sha; Wang, Brian; Zhao, Jay

    2016-03-01

    In this paper, laser ablation of widely used metal (Al, Cu. stainless-steel), semiconductor (Si), transparent material (glass, sapphire), ceramic (Al2O3, AlN) and polymer (PI, PMMA) in industry were systematically studied with pulse width from nanosecond (5-100ns), picosecond (6-10ps) to sub-picosecond (0.8-0.95ps). A critical damage zone (CDZ) of up to 100um with ns laser, <=50um with ps laser, and <=20um with sub-ps laser, respectively was observed as a criteria of selecting the laser pulse width. The effects of laser processing parameters on speed and efficiency were also investigated. This is to explore how to provide industry users the best laser solution for device micro-fabrication with best price. Our studies of cutting and drilling with ns, ps, and sub-ps lasers indicate that it is feasible to achieve user accepted quality and speed with cost-effective and reliable laser by optimizing processing conditions.

  13. Picosecond resolution on relativistic heavy ions' time-of-flight measurement

    NASA Astrophysics Data System (ADS)

    Ebran, A.; Taieb, J.; Belier, G.; Chatillon, A.; Laurent, B.; Martin, J.-F.; Pellereau, E.

    2013-11-01

    We developed a time-of-flight measurement system for relativistic heavy ions with a requested resolution of 40 ps Full Width Half Maximum. Such a resolution is mandatory to assign the correct mass number to every fission fragment, identified using the Bρ-ToF-ΔE method with the recoil spectrometer designed for the SOFIA experiment-which hold very recently at GSI. To achieve such a performance, fast plastic scintillators read-out by dedicated photomultiplier tubes were chosen among other possible options. We have led several test-measurements from 2009 to 2011, in order to investigate: the effect of the addition of a quenching molecule in the scintillator's matrix, the influence of the detector's size and the impact of the photomultiplier tube. The contribution of the dedicated electronics is also characterized. Time-of-flight measurements were performed realized with electron pulses and relativistic heavy ions, respectively provided by the LASER driven electron-accelerator (ELSA) at CEA-DAM Ile-de-France and by the SIS18/FRS facility at GSI. The reported results exhibit a time resolution better than 20 ps Full Width Half Maximum reached with the last prototype at GSI with an Uranium beam. These results confirm that the SOFIA experiment should enable the measurement of the relativistic fission fragments' time-of-flight with the requested resolution.

  14. 980 nm all-fiber NPR mode-locking Yb-doped phosphate fiber oscillator and its amplifier

    NASA Astrophysics Data System (ADS)

    Li, Pingxue; Yao, Yifei; Chi, Junjie; Hu, Haowei; Yang, Chun; Zhao, Ziqiang; Zhang, Guangju

    2014-12-01

    We report on a 980 nm all-fiber passively mode-locking Yb-doped phosphate fiber oscillator with the nonlinear polarization rotation (NPR) technique and its amplifier. In order to obtaining the stable self-starting mode-locking oscillator at 980 nm, a bandpass filter with 30 nm transmission bandwidth around 980 nm is inserted into the cavity. The oscillator generates the average output power of 26.1 mW with the repetition rate of 20.38 MHz, corresponding to the single pulse energy of 1.28 nJ. The pulse width is 159.48 ps. The output spectrum of the pulses is centered at 977 nm with a full width half maximum (FWHM) of 10 nm and has the characteristic steep spectral edges of dissipative soliton. No undesired ASE and harmful oscillation around 1030 nm is observed. Moreover, through two stage all-fiber-integrated amplifier by using the 980 nm oscillator as seed source, an amplified output power of 205 mW at 980 nm and pulse duration of 178.10 ps is achieved.

  15. Time and spatial evolution of spin-orbit torque-induced magnetization switching in W/CoFeB/MgO structures with various sizes

    NASA Astrophysics Data System (ADS)

    Zhang, Chaoliang; Fukami, Shunsuke; DuttaGupta, Samik; Sato, Hideo; Ohno, Hideo

    2018-04-01

    We study spin-orbit torque (SOT) switching in W/CoFeB/MgO structures with various dot sizes (120-3500 nm) using pulsed current of various widths τ (800 ps-100 ms) to examine the time and spatial evolution of magnetization switching. We show that the switching behavior and the resultant threshold switching current density J th strongly depend on device size and pulse width. The switching mode in a 3500 nm dot device changes from probabilistic switching to reproducible partial switching as τ decreases. At τ = 800 ps, J th becomes more than 3 times larger than that in the long-pulse regime. A decrease in dot size to 700 nm does not significantly change the switching characteristics, suggesting that domain-wall propagation among the nucleated multiple domains governs switching. In contrast, devices with further reduced size (120 nm) show normal full switching with increasing probability with current and insignificant dependence of J th on τ, indicating that nucleation governs switching.

  16. Broadband tunable integrated CMOS pulser with 80-ps minimum pulse width for gain-switched semiconductor lasers.

    PubMed

    Chen, Shaoqiang; Diao, Shengxi; Li, Pengtao; Nakamura, Takahiro; Yoshita, Masahiro; Weng, Guoen; Hu, Xiaobo; Shi, Yanling; Liu, Yiqing; Akiyama, Hidefumi

    2017-07-31

    High power pulsed lasers with tunable pulse widths are highly favored in many applications. When combined with power amplification, gain-switched semiconductor lasers driven by broadband tunable electric pulsers can meet such requirements. For this reason, we designed and produced a low-cost integrated CMOS pulse generator with a minimum pulse width of 80 ps and a wide tuning range of up to 270 ns using a 40-nm microelectronic process technique. We used this pulser to drive a 1.3-µm semiconductor laser diode directly, and thereafter investigated the gain-switching properties of the laser system. The optical pulses consist of a spike followed by a steady state region. Tuning the width of the electrical pulse down to approximately 1.5 ns produces optical pulses consisting only of the spike, which has a minimum pulse-width of 100 ps. Moreover, the duration of the steady state can be tuned continuously by tuning the electrical pulse width, with a peak power of approximately 5 mW. The output voltage of the electric pulser has a tuning range of 0.8-1.5 V that can be used to directly drive semiconductor laser diodes with wavelengths in the near-infrared spectrum, which are suitable for power amplification with rare-earth doped fiber amplifiers.

  17. Role of defects in laser-induced modifications of silica coatings and fused silica using picosecond pulses at 1053 nm: II Scaling laws and the density of precursors

    DOE PAGES

    Laurence, T. A.; Negres, R. A.; Ly, S.; ...

    2017-06-22

    Here, we investigate the role of defects in laser-induced damage of fused silica and of silica coatings produced by e-beam and PIAD processes which are used in damage resistant, multi-layer dielectric, reflective optics. We perform experiments using 1053 nm, 1–60 ps laser pulses with varying beam size, number of shots, and pulse widths in order to understand the characteristics of defects leading to laser-induced damage. This pulse width range spans a transition in mechanisms from intrinsic material ablation for short pulses to defect-dominated damage for longer pulses. We show that for pulse widths as short as 10 ps, laser-induced damagemore » properties of fused silica and silica films are dominated by isolated absorbers. The density of these precursors and their fluence dependence of damage initiation suggest a single photon process for initial energy absorption in these precursors. Higher density precursors that initiate close to the ablation threshold at shorter pulse widths are also observed in fused silica, whose fluence and pulse width scaling suggest a multiphoton initiation process. We also show that these initiated damage sites grow with subsequent laser pulses. We show that scaling laws obtained in more conventional ways depend on the beam size and on the definition of damage for ps pulses. For this reason, coupling scaling laws with the density of precursors are critical to understanding the damage limitations of optics in the ps regime.« less

  18. Role of defects in laser-induced modifications of silica coatings and fused silica using picosecond pulses at 1053 nm: II Scaling laws and the density of precursors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laurence, T. A.; Negres, R. A.; Ly, S.

    Here, we investigate the role of defects in laser-induced damage of fused silica and of silica coatings produced by e-beam and PIAD processes which are used in damage resistant, multi-layer dielectric, reflective optics. We perform experiments using 1053 nm, 1–60 ps laser pulses with varying beam size, number of shots, and pulse widths in order to understand the characteristics of defects leading to laser-induced damage. This pulse width range spans a transition in mechanisms from intrinsic material ablation for short pulses to defect-dominated damage for longer pulses. We show that for pulse widths as short as 10 ps, laser-induced damagemore » properties of fused silica and silica films are dominated by isolated absorbers. The density of these precursors and their fluence dependence of damage initiation suggest a single photon process for initial energy absorption in these precursors. Higher density precursors that initiate close to the ablation threshold at shorter pulse widths are also observed in fused silica, whose fluence and pulse width scaling suggest a multiphoton initiation process. We also show that these initiated damage sites grow with subsequent laser pulses. We show that scaling laws obtained in more conventional ways depend on the beam size and on the definition of damage for ps pulses. For this reason, coupling scaling laws with the density of precursors are critical to understanding the damage limitations of optics in the ps regime.« less

  19. Minimum line width of ion beam-modified polystyrene by negative carbon ions for nerve-cell attachment and neurite extension

    NASA Astrophysics Data System (ADS)

    Sommani, P.; Tsuji, H.; Sato, H.; Kitamura, T.; Hattori, M.; Gotoh, Y.; Ishikawa, J.

    2007-04-01

    The minimum line width of the negative-ion-modified polystyrene (PS) for guidance and immobilizations of nerve-cell body and neurite extension have been investigated. Carbon negative ions were implanted into PS at fluence of 3 × 1015 ions/cm2 and energy of 5-20 keV through the various triangle apertures of the micro-pattern mask. After in vitro culture of the nerve-like cells of rat adrenal pheochromocytoma (PC12h), results showed that the minimum line widths for a single cell attachment and for neurite extension were 5-7 and 3-5 μm, respectively. While the minimum line width for attachment of cell group with long neurite was about 20 μm. The suitable widths for a large number of cells and for neurite extension were 20 and 5 μm, respectively. Therefore, the guidance for a clear separation of the attachment size of cell body and neurite extension could be achieved by the different modified line widths.

  20. Frequency-doubled green picosecond laser based on K3B6O10Br nonlinear optical crystal

    NASA Astrophysics Data System (ADS)

    Meng, Luping; Zhang, Ling; Hou, Zhanyu; Wang, Lirong; Xu, Hui; Shi, Meng; Wang, Lingwu; Yang, Yingying; Qi, Yaoyao; He, Chaojian; Yu, Haijuan; Lin, Xuechun; Su, Fufang; Xia, Mingjun; Li, Rukang

    2018-05-01

    We report a frequency-doubled green picosecond (ps) laser based on K3B6O10Br (KBB) nonlinear optical crystal with cutting angle of θ = 34.7° and φ = 30°. Through intracavity frequency doubling using a type I phase-matched KBB crystal with dimensions of 4 mm × 4 mm × 13.2 mm, the average output power of 185.00 mW green ps laser was obtained with a repetition rate of 80 MHz and pulse width of 25.0 ps. In addition, we present external frequency doubling using KBB crystal. The average output power of 3.00 W green ps laser was generated with a repetition rate of 10 kHz and pulse width of 38.1 ps, which corresponds to a pulse energy of 0.30 mJ and a peak power 7.89 MW, respectively. The experimental results show that KBB crystal is a promising nonlinear optical material.

  1. A simple sub-nanosecond ultraviolet light pulse generator with high repetition rate and peak power.

    PubMed

    Binh, P H; Trong, V D; Renucci, P; Marie, X

    2013-08-01

    We present a simple ultraviolet sub-nanosecond pulse generator using commercial ultraviolet light-emitting diodes with peak emission wavelengths of 290 nm, 318 nm, 338 nm, and 405 nm. The generator is based on step recovery diode, short-circuited transmission line, and current-shaping circuit. The narrowest pulses achieved have 630 ps full width at half maximum at repetition rate of 80 MHz. Optical pulse power in the range of several hundreds of microwatts depends on the applied bias voltage. The bias voltage dependences of the output optical pulse width and peak power are analysed and discussed. Compared to commercial UV sub-nanosecond generators, the proposed generator can produce much higher pulse repetition rate and peak power.

  2. Temporal measurement on and using pulses from spectrally narrowed emission in styrylpyridinium cyanine dye

    NASA Astrophysics Data System (ADS)

    Dharmadhikari, Aditya K.; Bhowmik, Achintya K.; Ahyi, Ayayi C.; Thakur, Mrinal

    2001-11-01

    Highly efficient spectrally narrowed emission (SNE) was observed in the solution of strylpyridinium cyanine dye (SPCD) pumped by fundamental and second harmonic of a picosecond Nd:YAG laser in two separate arrangements. A highly directional emission was observed in both the pumping arrangements without incorporating any mirrors. The pulse duration of the SNE was measured by background free SHG intensity autocorrelation technique. The measured duration of the pulses was 40 ps. These pulses, having a spectral linewidth of 10 nm (full width at half maximum), were used as a probe to measure the transient changes in the transmission in SPCD solution using a pump-probe setup. The transient optical transmission indicated a gain at the overlap and no gain was observed beyond a delay of 40 ps.

  3. Surface ablation of aluminum and silicon by ultrashort laser pulses of variable width

    NASA Astrophysics Data System (ADS)

    Zayarny, D. A.; Ionin, A. A.; Kudryashov, S. I.; Makarov, S. V.; Kuchmizhak, A. A.; Vitrik, O. B.; Kulchin, Yu. N.

    2016-06-01

    Single-shot thresholds of surface ablation of aluminum and silicon via spallative ablation by infrared (IR) and visible ultrashort laser pulses of variable width τlas (0.2-12 ps) have been measured by optical microscopy. For increasing laser pulse width τlas < 3 ps, a drastic (threefold) drop of the ablation threshold of aluminum has been observed for visible pulses compared to an almost negligible threshold variation for IR pulses. In contrast, the ablation threshold in silicon increases threefold with increasing τlas for IR pulses, while the corresponding thresholds for visible pulses remained almost constant. In aluminum, such a width-dependent decrease in ablation thresholds has been related to strongly diminished temperature gradients for pulse widths exceeding the characteristic electron-phonon thermalization time. In silicon, the observed increase in ablation thresholds has been ascribed to two-photon IR excitation, while in the visible range linear absorption of the material results in almost constant thresholds.

  4. Note: Fully integrated active quenching circuit achieving 100 MHz count rate with custom technology single photon avalanche diodes.

    PubMed

    Acconcia, G; Labanca, I; Rech, I; Gulinatti, A; Ghioni, M

    2017-02-01

    The minimization of Single Photon Avalanche Diodes (SPADs) dead time is a key factor to speed up photon counting and timing measurements. We present a fully integrated Active Quenching Circuit (AQC) able to provide a count rate as high as 100 MHz with custom technology SPAD detectors. The AQC can also operate the new red enhanced SPAD and provide the timing information with a timing jitter Full Width at Half Maximum (FWHM) as low as 160 ps.

  5. An ultrafast programmable electrical tester for enabling time-resolved, sub-nanosecond switching dynamics and programming of nanoscale memory devices.

    PubMed

    Shukla, Krishna Dayal; Saxena, Nishant; Manivannan, Anbarasu

    2017-12-01

    Recent advancements in commercialization of high-speed non-volatile electronic memories including phase change memory (PCM) have shown potential not only for advanced data storage but also for novel computing concepts. However, an in-depth understanding on ultrafast electrical switching dynamics is a key challenge for defining the ultimate speed of nanoscale memory devices that demands for an unconventional electrical setup, specifically capable of handling extremely fast electrical pulses. In the present work, an ultrafast programmable electrical tester (PET) setup has been developed exceptionally for unravelling time-resolved electrical switching dynamics and programming characteristics of nanoscale memory devices at the picosecond (ps) time scale. This setup consists of novel high-frequency contact-boards carefully designed to capture extremely fast switching transient characteristics within 200 ± 25 ps using time-resolved current-voltage measurements. All the instruments in the system are synchronized using LabVIEW, which helps to achieve various programming characteristics such as voltage-dependent transient parameters, read/write operations, and endurance test of memory devices systematically using short voltage pulses having pulse parameters varied from 1 ns rise/fall time and 1.5 ns pulse width (full width half maximum). Furthermore, the setup has successfully demonstrated strikingly one order faster switching characteristics of Ag 5 In 5 Sb 60 Te 30 (AIST) PCM devices within 250 ps. Hence, this novel electrical setup would be immensely helpful for realizing the ultimate speed limits of various high-speed memory technologies for future computing.

  6. An ultrafast programmable electrical tester for enabling time-resolved, sub-nanosecond switching dynamics and programming of nanoscale memory devices

    NASA Astrophysics Data System (ADS)

    Shukla, Krishna Dayal; Saxena, Nishant; Manivannan, Anbarasu

    2017-12-01

    Recent advancements in commercialization of high-speed non-volatile electronic memories including phase change memory (PCM) have shown potential not only for advanced data storage but also for novel computing concepts. However, an in-depth understanding on ultrafast electrical switching dynamics is a key challenge for defining the ultimate speed of nanoscale memory devices that demands for an unconventional electrical setup, specifically capable of handling extremely fast electrical pulses. In the present work, an ultrafast programmable electrical tester (PET) setup has been developed exceptionally for unravelling time-resolved electrical switching dynamics and programming characteristics of nanoscale memory devices at the picosecond (ps) time scale. This setup consists of novel high-frequency contact-boards carefully designed to capture extremely fast switching transient characteristics within 200 ± 25 ps using time-resolved current-voltage measurements. All the instruments in the system are synchronized using LabVIEW, which helps to achieve various programming characteristics such as voltage-dependent transient parameters, read/write operations, and endurance test of memory devices systematically using short voltage pulses having pulse parameters varied from 1 ns rise/fall time and 1.5 ns pulse width (full width half maximum). Furthermore, the setup has successfully demonstrated strikingly one order faster switching characteristics of Ag5In5Sb60Te30 (AIST) PCM devices within 250 ps. Hence, this novel electrical setup would be immensely helpful for realizing the ultimate speed limits of various high-speed memory technologies for future computing.

  7. Ultra-narrow pulse generator with precision-adjustable pulse width

    NASA Astrophysics Data System (ADS)

    Fu, Zaiming; Liu, Hanglin

    2018-05-01

    In this paper, a novel ultra-narrow pulse generation approach is proposed. It is based on the decomposition and synthesis of pulse edges. Through controlling their relative delay, an ultra-narrow pulse could be generated. By employing field programmable gate array digital synthesis technology, the implemented pulse generator is with programmable ability. The amplitude of pulse signals is controlled by the radio frequency amplifiers and bias tees, and high precision can be achieved. More importantly, the proposed approach can break through the limitation of device's propagation delay and optimize the resolution and the accuracy of the pulse width significantly. The implemented pulse generator has two channels, whose minimum pulse width, frequency range, and amplitude range are 100 ps, 15 MHz-1.5 GHz, and 0.1 Vpp-1.8 Vpp, respectively. Both resolution of pulse width and channel delay are 1 ps, and amplitude resolution is 10 mVpp.

  8. Image-based evaluation of contraction-relaxation kinetics of human-induced pluripotent stem cell-derived cardiomyocytes: Correlation and complementarity with extracellular electrophysiology.

    PubMed

    Hayakawa, Tomohiro; Kunihiro, Takeshi; Ando, Tomoko; Kobayashi, Seiji; Matsui, Eriko; Yada, Hiroaki; Kanda, Yasunari; Kurokawa, Junko; Furukawa, Tetsushi

    2014-12-01

    In this study, we used high-speed video microscopy with motion vector analysis to investigate the contractile characteristics of hiPS-CM monolayer, in addition to further characterizing the motion with extracellular field potential (FP), traction force and the Ca(2+) transient. Results of our traction force microscopy demonstrated that the force development of hiPS-CMs correlated well with the cellular deformation detected by the video microscopy with motion vector analysis. In the presence of verapamil and isoproterenol, contractile motion of hiPS-CMs showed alteration in accordance with the changes in fluorescence peak of the Ca(2+) transient, i.e., upstroke, decay, amplitude and full-width at half-maximum. Simultaneously recorded hiPS-CM motion and FP showed that there was a linear correlation between changes in the motion and field potential duration in response to verapamil (30-150nM), isoproterenol (0.1-10μM) and E-4031 (10-50nM). In addition, tetrodotoxin (3-30μM)-induced delay of sodium current was corresponded with the delay of the contraction onset of hiPS-CMs. These results indicate that the electrophysiological and functional behaviors of hiPS-CMs are quantitatively reflected in the contractile motion detected by this image-based technique. In the presence of 100nM E-4031, the occurrence of early after-depolarization-like negative deflection in FP was also detected in the hiPS-CM motion as a characteristic two-step relaxation pattern. These findings offer insights into the interpretation of the motion kinetics of the hiPS-CMs, and are relevant for understanding electrical and mechanical relationship in hiPS-CMs. Copyright © 2014. Published by Elsevier Ltd.

  9. Experimental demonstration of wavelength conversion between ps-pulses based on cascaded sum- and difference frequency generation (SFG+DFG) in LiNbO3 waveguides

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Sun, Junqiang; Lou, Chuanhong; Sun, Qizhen

    2005-09-01

    All-optical wavelength conversion between ps-pulses based on cascaded sum- and difference frequency generation (SFG+DFG) is proposed and experimentally demonstrated in periodically poled LiNbO3 (PPLN) waveguides. The signal pulse with 40-GHz repetition rate and 1.57- ps pulse width is adopted. The converted idler wavelength can be tuned from 1527.4 to 1540.5nm as the signal wavelength is varied from 1561.9 to 1548.4nm. No obvious changes of the pulse shape and width, also no chirp are observed in the converted idler pulse. The results imply that single-to-multiple channel wavelength conversions can be achieved by appropriately tuning the two pump wavelengths.

  10. Experimental demonstration of wavelength conversion between ps-pulses based on cascaded sum- and difference frequency generation (SFG+DFG) in LiNbO3 waveguides.

    PubMed

    Wang, Jian; Sun, Junqiang; Lou, Chuanhong; Sun, Qizhen

    2005-09-19

    All-optical wavelength conversion between ps-pulses based on cascaded sum- and difference frequency generation (SFG+DFG) is proposed and experimentally demonstrated in periodically poled LiNbO3 (PPLN) waveguides. The signal pulse with 40-GHz repetition rate and 1.57- ps pulse width is adopted. The converted idler wavelength can be tuned from 1527.4 to 1540.5nm as the signal wavelength is varied from 1561.9 to 1548.4nm. No obvious changes of the pulse shape and width, also no chirp are observed in the converted idler pulse. The results imply that single-to-multiple channel wavelength conversions can be achieved by appropriately tuning the two pump wavelengths.

  11. Sub-200 ps CRT in monolithic scintillator PET detectors using digital SiPM arrays and maximum likelihood interaction time estimation.

    PubMed

    van Dam, Herman T; Borghi, Giacomo; Seifert, Stefan; Schaart, Dennis R

    2013-05-21

    Digital silicon photomultiplier (dSiPM) arrays have favorable characteristics for application in monolithic scintillator detectors for time-of-flight positron emission tomography (PET). To fully exploit these benefits, a maximum likelihood interaction time estimation (MLITE) method was developed to derive the time of interaction from the multiple time stamps obtained per scintillation event. MLITE was compared to several deterministic methods. Timing measurements were performed with monolithic scintillator detectors based on novel dSiPM arrays and LSO:Ce,0.2%Ca crystals of 16 × 16 × 10 mm(3), 16 × 16 × 20 mm(3), 24 × 24 × 10 mm(3), and 24 × 24 × 20 mm(3). The best coincidence resolving times (CRTs) for pairs of identical detectors were obtained with MLITE and measured 157 ps, 185 ps, 161 ps, and 184 ps full-width-at-half-maximum (FWHM), respectively. For comparison, a small reference detector, consisting of a 3 × 3 × 5 mm(3) LSO:Ce,0.2%Ca crystal coupled to a single pixel of a dSiPM array, was measured to have a CRT as low as 120 ps FWHM. The results of this work indicate that the influence of the optical transport of the scintillation photons on the timing performance of monolithic scintillator detectors can at least partially be corrected for by utilizing the information contained in the spatio-temporal distribution of the collection of time stamps registered per scintillation event.

  12. Sub-200 ps CRT in monolithic scintillator PET detectors using digital SiPM arrays and maximum likelihood interaction time estimation

    NASA Astrophysics Data System (ADS)

    van Dam, Herman T.; Borghi, Giacomo; Seifert, Stefan; Schaart, Dennis R.

    2013-05-01

    Digital silicon photomultiplier (dSiPM) arrays have favorable characteristics for application in monolithic scintillator detectors for time-of-flight positron emission tomography (PET). To fully exploit these benefits, a maximum likelihood interaction time estimation (MLITE) method was developed to derive the time of interaction from the multiple time stamps obtained per scintillation event. MLITE was compared to several deterministic methods. Timing measurements were performed with monolithic scintillator detectors based on novel dSiPM arrays and LSO:Ce,0.2%Ca crystals of 16 × 16 × 10 mm3, 16 × 16 × 20 mm3, 24 × 24 × 10 mm3, and 24 × 24 × 20 mm3. The best coincidence resolving times (CRTs) for pairs of identical detectors were obtained with MLITE and measured 157 ps, 185 ps, 161 ps, and 184 ps full-width-at-half-maximum (FWHM), respectively. For comparison, a small reference detector, consisting of a 3 × 3 × 5 mm3 LSO:Ce,0.2%Ca crystal coupled to a single pixel of a dSiPM array, was measured to have a CRT as low as 120 ps FWHM. The results of this work indicate that the influence of the optical transport of the scintillation photons on the timing performance of monolithic scintillator detectors can at least partially be corrected for by utilizing the information contained in the spatio-temporal distribution of the collection of time stamps registered per scintillation event.

  13. Nano-optical single-photon response mapping of waveguide integrated molybdenum silicide (MoSi) superconducting nanowires.

    PubMed

    Li, Jian; Kirkwood, Robert A; Baker, Luke J; Bosworth, David; Erotokritou, Kleanthis; Banerjee, Archan; Heath, Robert M; Natarajan, Chandra M; Barber, Zoe H; Sorel, Marc; Hadfield, Robert H

    2016-06-27

    We present low temperature nano-optical characterization of a silicon-on-insulator (SOI) waveguide integrated SNSPD. The SNSPD is fabricated from an amorphous Mo83Si17 thin film chosen to give excellent substrate conformity. At 350 mK, the SNSPD exhibits a uniform photoresponse under perpendicular illumination, corresponding to a maximum system detection efficiency of approximately 5% at 1550 nm wavelength. Under these conditions 10 Hz dark count rate and 51 ps full width at half maximum (FWHM) timing jitter is observed.

  14. Frequency-resolved optical gating system with a tellurium crystal for characterizing free-electron lasers in the wavelength range of 10-30 {mu}m

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iijima, Hokuto; Nagai, Ryoji; Nishimori, Nobuyuki

    2009-12-15

    A second-harmonic generation frequency-resolved optical gating (SHG-FROG) system has been developed for the complete characterization of laser pulses in the wavelength range of 10-30 {mu}m. A tellurium crystal is used so that spectrally resolved autocorrelation signals with a good signal-to-noise ratio are obtained. Pulses (wavelength {approx}22 {mu}m) generated from a free-electron laser are measured by the SHG-FROG system. The SHG intensity profile and the spectrum obtained by FROG measurements are well consistent with those of independent measurements of the pulse length and spectrum. The pulse duration and spectral width determined from the FROG trace are 0.6 ps and 5.2 THzmore » at full width half maximum, respectively.« less

  15. Ultrafast time measurements by time-correlated single photon counting coupled with superconducting single photon detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shcheslavskiy, V., E-mail: vis@becker-hickl.de; Becker, W.; Morozov, P.

    Time resolution is one of the main characteristics of the single photon detectors besides quantum efficiency and dark count rate. We demonstrate here an ultrafast time-correlated single photon counting (TCSPC) setup consisting of a newly developed single photon counting board SPC-150NX and a superconducting NbN single photon detector with a sensitive area of 7 × 7 μm. The combination delivers a record instrument response function with a full width at half maximum of 17.8 ps and system quantum efficiency ∼15% at wavelength of 1560 nm. A calculation of the root mean square value of the timing jitter for channels withmore » counts more than 1% of the peak value yielded about 7.6 ps. The setup has also good timing stability of the detector–TCSPC board.« less

  16. A 780 × 800 μm2 Multichannel Digital Silicon Photomultiplier With Column-Parallel Time-to-Digital Converter and Basic Characterization

    NASA Astrophysics Data System (ADS)

    Mandai, Shingo; Jain, Vishwas; Charbon, Edoardo

    2014-02-01

    This paper presents a digital silicon photomultiplier (SiPM) partitioned in columns, whereas each column is connected to a column-parallel time-to-digital converter (TDC), in order to improve the timing resolution of single-photon detection. By reducing the number of pixels per TDC using a sharing scheme with three TDCs per column, the pixel-to-pixel skew is reduced. We report the basic characterization of the SiPM, comprising 416 single-photon avalanche diodes (SPADs); the characterization includes photon detection probability, dark count rate, afterpulsing, and crosstalk. We achieved 264-ps full-width at half maximum timing resolution of single-photon detection using a 48-fold column-parallel TDC with a temporal resolution of 51.8 ps (least significant bit), fully integrated in standard complementary metal-oxide semiconductor technology.

  17. The One-Pot Directed Assembly of Cylinder-Forming Block Copolymer on Adjacent Chemical Patterns for Bimodal Patterning.

    PubMed

    Chang, Tzu-Hsuan; Xiong, Shisheng; Liu, Chi-Chun; Liu, Dong; Nealey, Paul F; Ma, Zhenqiang

    2017-09-01

    The direct self-assembly of cylinder-forming poly(styrene-block-methyl-methacrylate) (PS-b-PMMA) block copolymer is successfully assembled into two orientations, according to the underlying guiding pattern in different areas. Lying-down and perpendicular cylinders are formed, respectively, depending on the design of chemical pattern: sparse line/space pattern or hexagonal dot array. The first chemical pattern composed of prepatterned cross-linked polystyrene (XPS) line/space structure has a period (L S ) equal to twice the intercylinder period of the block copolymer (L 0 ). The PS-b-PMMA thin film on the prepared chemical template after thermal annealing forms a lying-down cylinder morphology when the width of the PS strips is less than the width of PS block in the PS-b-PMMA block copolymer. The morphology is only applicable at the discrete thickness of the PS-b-PMMA film. In addition to forming the lying-down cylinders directly on the XPS guiding pattern, the cylinder-forming block copolymer can also be assembled in a perpendicular way on the second guiding pattern (the hexagonal dot array). The block copolymer films are registered into two orientations in a single directed self-assembly process. The features of the assembled patterns are successfully transferred down to the silicon oxide substrate. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Comparison of Sonar Discrimination by an Echolocating Dolphin and a Counterpropagation Neural Network

    DTIC Science & Technology

    1992-09-01

    having a Roitblat et al. (1989) used a counterpropaga- half-power width of 264 ps. A width of 264 ps was tion network to emulate a d6lphin performing a...46- iis sfo M ) t ( ,, -oore. P.U S., Roitblat , HL., Penner, RN., and 0 44 0+ 0; 0 00 -06 -04 4)2 Nachtl lli, P,, (11191). Neural Networks 4, 11t1 J...wAtt tHIC5NtG:5tttlt~tN WmmI Roitblat , H L , Monte, P.W.I-, Nachtlgall. P It.i ~ Penner, •,H_, and Au. V.W.L (1949), Intern D i~tiby +---- Wig 1

  19. Picosecond 1064-nm fiber laser with tunable pulse width and low timing jitter

    NASA Astrophysics Data System (ADS)

    Tian, Wenyan; Zhang, Shukui

    2018-02-01

    We report an all-fiber, linearly polarized, 1.1-W, 1064-nm fiber laser based on a two-stage Ytterbium-doped fiber amplifier seeded by a gain-switched diode laser with tunable pulse width from 21 to 200 ps at repetition rates of 0.5-1.5 GHz. Timing jitter of our 1064-nm fiber laser was measured to be 0.60 ps over 10 Hz-40 MHz when the gain-switched diode laser was operated at a repetition rate of 0.5, 1, and 1.5 GHz. The fiber laser offers an excellent long term power stability of +/- 0.3% and wavelength stability of +/- 0.01 nm over 8 hours

  20. Compressed 6 ps pulse in nonlinear amplification of a Q-switched microchip laser

    NASA Astrophysics Data System (ADS)

    Diao, Ruxin; Liu, Zuosheng; Niu, Fuzeng; Wang, Aimin; Taira, Takunori; Zhang, Zhigang

    2017-02-01

    We present a passively Q-switched Nd:YVO4 crystal microchip laser with a 6 ps pulse width, which is based on SPM-induced spectral broadening and pulse compression. The passive Q-switching is obtained by a semiconductor saturable absorber mirror. The laser’s seed source centered at 1064 nm pulses with a duration of 80 ps, at a repetition rate of 600 kHz corresponding to an average output power of 10 mW. After amplification and compression, the pulses were compressed to 6 ps with a maximum pulse energy of 0.5 µJ.

  1. CVD diamond detector with interdigitated electrode pattern for time-of-flight energy-loss measurements of low-energy ion bunches

    NASA Astrophysics Data System (ADS)

    Cayzac, W.; Pomorski, M.; Blažević, A.; Canaud, B.; Deslandes, D.; Fariaut, J.; Gontier, D.; Lescoute, E.; Marmouget, J. G.; Occelli, F.; Oudot, G.; Reverdin, C.; Sauvestre, J. E.; Sollier, A.; Soullié, G.; Varignon, C.; Villette, B.

    2018-05-01

    Ion stopping experiments in plasma for beam energies of few hundred keV per nucleon are of great interest to benchmark the stopping-power models in the context of inertial confinement fusion and high-energy-density physics research. For this purpose, a specific ion detector on chemical-vapor-deposition diamond basis has been developed for precise time-of-flight measurements of the ion energy loss. The electrode structure is interdigitated for maximizing its sensitivity to low-energy ions, and it has a finger width of 100 μm and a spacing of 500 μm. A short single α-particle response is obtained, with signals as narrow as 700 ps at full width at half maximum. The detector has been tested with α-particle bunches at a 500 keV per nucleon energy, showing an excellent time-of-flight resolution down to 20 ps. In this way, beam energy resolutions from 0.4 keV to a few keV have been obtained in an experimental configuration using a 100 μg/cm2 thick carbon foil as an energy-loss target and a 2 m time-of-flight distance. This allows a highly precise beam energy measurement of δE/E ≈ 0.04%-0.2% and a resolution on the energy loss of 0.6%-2.5% for a fine testing of stopping-power models.

  2. Subpicosecond surface dynamics in genomic DNA from in vitro-grown plant species: a SERS assessment.

    PubMed

    Muntean, Cristina M; Bratu, Ioan; Leopold, Nicolae; Morari, Cristian; Buimaga-Iarinca, Luiza; Purcaru, Monica A P

    2015-09-07

    In this work the surface-enhanced Raman total half band widths of seven genomic DNAs from leaves of chrysanthemum (Dendranthema grandiflora Ramat.), common sundew (Drosera rotundifolia L.), edelweiss (Leontopodium alpinum Cass), Epilobium hirsutum L., Hypericum richeri ssp. transsilvanicum (Čelak) Ciocârlan, rose (Rosa x hybrida L.) and redwood (Sequoia sempervirens D. Don. Endl.) have been measured. We have shown that surface-enhanced Raman spectroscopy (SERS) can be used to study the fast subpicosecond dynamics of DNA in the proximity of a metallic surface. The dependencies of the total half band widths and the global relaxation times, on the DNA molecular subgroup structure and on the type of genomic DNA, are reported. In our study, the full widths at half-maximum (FWHMs) for the SERS bands of genomic DNAs from different leaf tissues are typically in the wavenumber range from 15 to 55 cm(-1). Besides, it can be observed that molecular relaxation processes studied in this work have a global relaxation time smaller than 0.71 ps and larger than 0.19 ps. A comparison between different ranges of FT-Raman and SERS band parameters, respectively, corresponding to DNA extracted from leaf tissues is given. It is shown that the interaction between DNA and a metallic surface has the potential to lead to a shortening of the global relaxation times, as compared with molecular dynamics in solution. We have found that the surface dynamics of molecular subgroups in plant DNA is, in some cases, about two times faster than the solution dynamics of nucleic acids. This can be rationalized in a qualitative manner by invoking the complex landscape of the interaction energy between the molecule and the silver surface.

  3. Exploiting solitons in all-optical networks

    NASA Astrophysics Data System (ADS)

    Atieh, Ahmad K.

    Two key components, the pulse generator and optical signal demultiplexer, needed for the implementation of all-optical soliton-based local area and wide area networks are investigated. The technology of generating a bright soliton pulse train from a sinusoidal pulse train produced as the beat signal of two distributed feedback laser diodes passed through a so-called comblike fiber structure is developed. A design methodology for this structure is discussed, and using this approach a soliton pulse source is constructed generating 1553 nm pulses at a repetition rate of 50 GHz, with pulses of full width at half maximum of 2.0 ps. The fiber structure used to generate the bright soliton pulse train employs the lowest average power for the beat signal ever reported in the literature, and the shortest length of fiber. The same structure (with a different design) is also used to produce a 47.6 GHz dark soliton pulse train with a full width at half maximum of 3.8 ps. This is the first reported use of this structure to generate dark solitons. It is shown that the comblike dispersion profile fiber structures may also be exploited for soliton pulse compression producing widths as short as 200 fs. Two approaches to implementation of optical signal demultiplexing are discussed. These are the nonlinear optical loop mirror (NOLM) and the separation of multilevel time division multiplexed signal pulses in the frequency domain by exploiting the relationship between the pulse's energy (i.e. pulse amplitude and width) and the Raman self-frequency shift. A modification of the NOLM scheme is investigated where feedback that adjusts the power of the control signal (by controlling the gain of an erbium-doped fiber amplifier introduced into the control signal input path) is employed to make the structure insensitive to the state of polarization of the signal and control pulses. In order to better understand the physical phenomena exploited in optical fiber soliton transmission and the above schemes, two experiments are conducted to measure the fiber nonlinear ratio (n2/Aeff) and the Raman time constant (TR) in single-mode fibers at 1550 nm. The fiber nonlinear ratio was measured for standard telecommunication fiber, dispersion shifted fiber, and dispersion compensating fiber. A value of 3.0 fs for the Raman time constant was measured and is recommended for soliton pulse propagation modeling in single-mode optical fibers.

  4. Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set

    NASA Astrophysics Data System (ADS)

    Aaltonen, T.; Álvarez González, B.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J. A.; Arisawa, T.; Artikov, A.; Asaadi, J.; Ashmanskas, W.; Auerbach, B.; Aurisano, A.; Azfar, F.; Badgett, W.; Bae, T.; Barbaro-Galtieri, A.; Barnes, V. E.; Barnett, B. A.; Barria, P.; Bartos, P.; Bauce, M.; Bedeschi, F.; Behari, S.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Beretvas, A.; Bhatti, A.; Bisello, D.; Bizjak, I.; Bland, K. R.; Blumenfeld, B.; Bocci, A.; Bodek, A.; Bortoletto, D.; Boudreau, J.; Boveia, A.; Brigliadori, L.; Bromberg, C.; Brucken, E.; Budagov, J.; Budd, H. S.; Burkett, K.; Busetto, G.; Bussey, P.; Buzatu, A.; Calamba, A.; Calancha, C.; Camarda, S.; Campanelli, M.; Campbell, M.; Canelli, F.; Carls, B.; Carlsmith, D.; Carosi, R.; Carrillo, S.; Carron, S.; Casal, B.; Casarsa, M.; Castro, A.; Catastini, P.; Cauz, D.; Cavaliere, V.; Cavalli-Sforza, M.; Cerri, A.; Cerrito, L.; Chen, Y. C.; Chertok, M.; Chiarelli, G.; Chlachidze, G.; Chlebana, F.; Cho, K.; Chokheli, D.; Chung, W. H.; Chung, Y. S.; Ciocci, M. A.; Clark, A.; Clarke, C.; Compostella, G.; Convery, M. E.; Conway, J.; Corbo, M.; Cordelli, M.; Cox, C. A.; Cox, D. J.; Crescioli, F.; Cuevas, J.; Culbertson, R.; Dagenhart, D.; d'Ascenzo, N.; Datta, M.; de Barbaro, P.; Dell'Orso, M.; Demortier, L.; Deninno, M.; Devoto, F.; d'Errico, M.; Di Canto, A.; Di Ruzza, B.; Dittmann, J. R.; D'Onofrio, M.; Donati, S.; Dong, P.; Dorigo, M.; Dorigo, T.; Ebina, K.; Elagin, A.; Eppig, A.; Erbacher, R.; Errede, S.; Ershaidat, N.; Eusebi, R.; Farrington, S.; Feindt, M.; Fernandez, J. P.; Field, R.; Flanagan, G.; Forrest, R.; Frank, M. J.; Franklin, M.; Freeman, J. C.; Funakoshi, Y.; Furic, I.; Gallinaro, M.; Garcia, J. E.; Garfinkel, A. F.; Garosi, P.; Gerberich, H.; Gerchtein, E.; Giagu, S.; Giakoumopoulou, V.; Giannetti, P.; Gibson, K.; Ginsburg, C. M.; Giokaris, N.; Giromini, P.; Giurgiu, G.; Glagolev, V.; Glenzinski, D.; Gold, M.; Goldin, D.; Goldschmidt, N.; Golossanov, A.; Gomez, G.; Gomez-Ceballos, G.; Goncharov, M.; González, O.; Gorelov, I.; Goshaw, A. T.; Goulianos, K.; Grillo, L.; Grinstein, S.; Grosso-Pilcher, C.; Group, R. C.; Guimaraes da Costa, J.; Hahn, S. R.; Halkiadakis, E.; Hamaguchi, A.; Han, J. Y.; Happacher, F.; Hara, K.; Hare, D.; Hare, M.; Harr, R. F.; Hatakeyama, K.; Hays, C.; Heck, M.; Heinrich, J.; Herndon, M.; Hewamanage, S.; Hocker, A.; Hopkins, W.; Horn, D.; Hou, S.; Hughes, R. E.; Hurwitz, M.; Husemann, U.; Hussain, N.; Hussein, M.; Huston, J.; Introzzi, G.; Iori, M.; Ivanov, A.; James, E.; Jang, D.; Jayatilaka, B.; Jeon, E. J.; Jindariani, S.; Jones, M.; Joo, K. K.; Jun, S. Y.; Junk, T. R.; Kamon, T.; Karchin, P. E.; Kasmi, A.; Kato, Y.; Ketchum, W.; Keung, J.; Khotilovich, V.; Kilminster, B.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, M. J.; Kim, S. B.; Kim, S. H.; Kim, Y. K.; Kim, Y. J.; Kimura, N.; Kirby, M.; Klimenko, S.; Knoepfel, K.; Kondo, K.; Kong, D. J.; Konigsberg, J.; Kotwal, A. V.; Kreps, M.; Kroll, J.; Krop, D.; Kruse, M.; Krutelyov, V.; Kuhr, T.; Kurata, M.; Kwang, S.; Laasanen, A. T.; Lami, S.; Lammel, S.; Lancaster, M.; Lander, R. L.; Lannon, K.; Lath, A.; Latino, G.; LeCompte, T.; Lee, E.; Lee, H. S.; Lee, J. S.; Lee, S. W.; Leo, S.; Leone, S.; Lewis, J. D.; Limosani, A.; Lin, C.-J.; Lindgren, M.; Lipeles, E.; Lister, A.; Litvintsev, D. O.; Liu, C.; Liu, H.; Liu, Q.; Liu, T.; Lockwitz, S.; Loginov, A.; Lucchesi, D.; Lueck, J.; Lujan, P.; Lukens, P.; Lungu, G.; Lys, J.; Lysak, R.; Madrak, R.; Maeshima, K.; Maestro, P.; Malik, S.; Manca, G.; Manousakis-Katsikakis, A.; Margaroli, F.; Marino, C.; Martínez, M.; Mastrandrea, P.; Matera, K.; Mattson, M. E.; Mazzacane, A.; Mazzanti, P.; McFarland, K. S.; McIntyre, P.; McNulty, R.; Mehta, A.; Mehtala, P.; Mesropian, C.; Miao, T.; Mietlicki, D.; Mitra, A.; Miyake, H.; Moed, S.; Moggi, N.; Mondragon, M. N.; Moon, C. S.; Moore, R.; Morello, M. J.; Morlock, J.; Movilla Fernandez, P.; Mukherjee, A.; Muller, Th.; Murat, P.; Mussini, M.; Nachtman, J.; Nagai, Y.; Naganoma, J.; Nakano, I.; Napier, A.; Nett, J.; Neu, C.; Neubauer, M. S.; Nielsen, J.; Nodulman, L.; Noh, S. Y.; Norniella, O.; Oakes, L.; Oh, S. H.; Oh, Y. D.; Oksuzian, I.; Okusawa, T.; Orava, R.; Ortolan, L.; Pagan Griso, S.; Pagliarone, C.; Palencia, E.; Papadimitriou, V.; Paramonov, A. A.; Patrick, J.; Pauletta, G.; Paulini, M.; Paus, C.; Pellett, D. E.; Penzo, A.; Phillips, T. J.; Piacentino, G.; Pianori, E.; Pilot, J.; Pitts, K.; Plager, C.; Pondrom, L.; Poprocki, S.; Potamianos, K.; Prokoshin, F.; Pranko, A.; Ptohos, F.; Punzi, G.; Rahaman, A.; Ramakrishnan, V.; Ranjan, N.; Redondo, I.; Renton, P.; Rescigno, M.; Riddick, T.; Rimondi, F.; Ristori, L.; Robson, A.; Rodrigo, T.; Rodriguez, T.; Rogers, E.; Rolli, S.; Roser, R.; Ruffini, F.; Ruiz, A.; Russ, J.; Rusu, V.; Safonov, A.; Sakumoto, W. K.; Sakurai, Y.; Santi, L.; Sato, K.; Saveliev, V.; Savoy-Navarro, A.; Schlabach, P.; Schmidt, A.; Schmidt, E. E.; Schwarz, T.; Scodellaro, L.; Scribano, A.; Scuri, F.; Seidel, S.; Seiya, Y.; Semenov, A.; Sforza, F.; Shalhout, S. Z.; Shears, T.; Shepard, P. F.; Shimojima, M.; Shochet, M.; Shreyber-Tecker, I.; Simonenko, A.; Sinervo, P.; Sliwa, K.; Smith, J. R.; Snider, F. D.; Soha, A.; Sorin, V.; Song, H.; Squillacioti, P.; Stancari, M.; St. Denis, R.; Stelzer, B.; Stelzer-Chilton, O.; Stentz, D.; Strologas, J.; Strycker, G. L.; Sudo, Y.; Sukhanov, A.; Suslov, I.; Takemasa, K.; Takeuchi, Y.; Tang, J.; Tecchio, M.; Teng, P. K.; Thom, J.; Thome, J.; Thompson, G. A.; Thomson, E.; Toback, D.; Tokar, S.; Tollefson, K.; Tomura, T.; Tonelli, D.; Torre, S.; Torretta, D.; Totaro, P.; Trovato, M.; Ukegawa, F.; Uozumi, S.; Varganov, A.; Vázquez, F.; Velev, G.; Vellidis, C.; Vidal, M.; Vila, I.; Vilar, R.; Vizán, J.; Vogel, M.; Volpi, G.; Wagner, P.; Wagner, R. L.; Wakisaka, T.; Wallny, R.; Wang, S. M.; Warburton, A.; Waters, D.; Wester, W. C., III; Whiteson, D.; Wicklund, A. B.; Wicklund, E.; Wilbur, S.; Wick, F.; Williams, H. H.; Wilson, J. S.; Wilson, P.; Winer, B. L.; Wittich, P.; Wolbers, S.; Wolfe, H.; Wright, T.; Wu, X.; Wu, Z.; Yamamoto, K.; Yamato, D.; Yang, T.; Yang, U. K.; Yang, Y. C.; Yao, W.-M.; Yeh, G. P.; Yi, K.; Yoh, J.; Yorita, K.; Yoshida, T.; Yu, G. B.; Yu, I.; Yu, S. S.; Yun, J. C.; Zanetti, A.; Zeng, Y.; Zhou, C.; Zucchelli, S.

    2012-10-01

    We report a measurement of the bottom-strange meson mixing phase βs using the time evolution of Bs0→J/ψ(→μ+μ-)ϕ(→K+K-) decays in which the quark-flavor content of the bottom-strange meson is identified at production. This measurement uses the full data set of proton-antiproton collisions at s=1.96TeV collected by the Collider Detector experiment at the Fermilab Tevatron, corresponding to 9.6fb-1 of integrated luminosity. We report confidence regions in the two-dimensional space of βs and the Bs0 decay-width difference ΔΓs and measure βs∈[-π/2,-1.51]∪[-0.06,0.30]∪[1.26,π/2] at the 68% confidence level, in agreement with the standard model expectation. Assuming the standard model value of βs, we also determine ΔΓs=0.068±0.026(stat)±0.009(syst)ps-1 and the mean Bs0 lifetime τs=1.528±0.019(stat)±0.009(syst)ps, which are consistent and competitive with determinations by other experiments.

  5. Measurement of the bottom-strange meson mixing phase in the full CDF data set.

    PubMed

    Aaltonen, T; Álvarez González, B; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Appel, J A; Arisawa, T; Artikov, A; Asaadi, J; Ashmanskas, W; Auerbach, B; Aurisano, A; Azfar, F; Badgett, W; Bae, T; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Barria, P; Bartos, P; Bauce, M; Bedeschi, F; Behari, S; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Bhatti, A; Bisello, D; Bizjak, I; Bland, K R; Blumenfeld, B; Bocci, A; Bodek, A; Bortoletto, D; Boudreau, J; Boveia, A; Brigliadori, L; Bromberg, C; Brucken, E; Budagov, J; Budd, H S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Calamba, A; Calancha, C; Camarda, S; Campanelli, M; Campbell, M; Canelli, F; Carls, B; Carlsmith, D; Carosi, R; Carrillo, S; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavaliere, V; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, K; Chokheli, D; Chung, W H; Chung, Y S; Ciocci, M A; Clark, A; Clarke, C; Compostella, G; Convery, M E; Conway, J; Corbo, M; Cordelli, M; Cox, C A; Cox, D J; Crescioli, F; Cuevas, J; Culbertson, R; Dagenhart, D; d'Ascenzo, N; Datta, M; de Barbaro, P; Dell'Orso, M; Demortier, L; Deninno, M; Devoto, F; d'Errico, M; Di Canto, A; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dong, P; Dorigo, M; Dorigo, T; Ebina, K; Elagin, A; Eppig, A; Erbacher, R; Errede, S; Ershaidat, N; Eusebi, R; Farrington, S; Feindt, M; Fernandez, J P; Field, R; Flanagan, G; Forrest, R; Frank, M J; Franklin, M; Freeman, J C; Funakoshi, Y; Furic, I; Gallinaro, M; Garcia, J E; Garfinkel, A F; Garosi, P; Gerberich, H; Gerchtein, E; Giagu, S; Giakoumopoulou, V; Giannetti, P; Gibson, K; Ginsburg, C M; Giokaris, N; Giromini, P; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldin, D; Goldschmidt, N; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Grillo, L; Grinstein, S; Grosso-Pilcher, C; Group, R C; Guimaraes da Costa, J; Hahn, S R; Halkiadakis, E; Hamaguchi, A; Han, J Y; Happacher, F; Hara, K; Hare, D; Hare, M; Harr, R F; Hatakeyama, K; Hays, C; Heck, M; Heinrich, J; Herndon, M; Hewamanage, S; Hocker, A; Hopkins, W; Horn, D; Hou, S; Hughes, R E; Hurwitz, M; Husemann, U; Hussain, N; Hussein, M; Huston, J; Introzzi, G; Iori, M; Ivanov, A; James, E; Jang, D; Jayatilaka, B; Jeon, E J; Jindariani, S; Jones, M; Joo, K K; Jun, S Y; Junk, T R; Kamon, T; Karchin, P E; Kasmi, A; Kato, Y; Ketchum, W; Keung, J; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kim, Y J; Kimura, N; Kirby, M; Klimenko, S; Knoepfel, K; Kondo, K; Kong, D J; Konigsberg, J; Kotwal, A V; Kreps, M; Kroll, J; Krop, D; Kruse, M; Krutelyov, V; Kuhr, T; Kurata, M; Kwang, S; Laasanen, A T; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; LeCompte, T; Lee, E; Lee, H S; Lee, J S; Lee, S W; Leo, S; Leone, S; Lewis, J D; Limosani, A; Lin, C-J; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, C; Liu, H; Liu, Q; Liu, T; Lockwitz, S; Loginov, A; Lucchesi, D; Lueck, J; Lujan, P; Lukens, P; Lungu, G; Lys, J; Lysak, R; Madrak, R; Maeshima, K; Maestro, P; Malik, S; Manca, G; Manousakis-Katsikakis, A; Margaroli, F; Marino, C; Martínez, M; Mastrandrea, P; Matera, K; Mattson, M E; Mazzacane, A; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Mesropian, C; Miao, T; Mietlicki, D; Mitra, A; Miyake, H; Moed, S; Moggi, N; Mondragon, M N; Moon, C S; Moore, R; Morello, M J; Morlock, J; Movilla Fernandez, P; Mukherjee, A; Muller, Th; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Naganoma, J; Nakano, I; Napier, A; Nett, J; Neu, C; Neubauer, M S; Nielsen, J; Nodulman, L; Noh, S Y; Norniella, O; Oakes, L; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Orava, R; Ortolan, L; Pagan Griso, S; Pagliarone, C; Palencia, E; Papadimitriou, V; Paramonov, A A; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Pianori, E; Pilot, J; Pitts, K; Plager, C; Pondrom, L; Poprocki, S; Potamianos, K; Prokoshin, F; Pranko, A; Ptohos, F; Punzi, G; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Renton, P; Rescigno, M; Riddick, T; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rodriguez, T; Rogers, E; Rolli, S; Roser, R; Ruffini, F; Ruiz, A; Russ, J; Rusu, V; Safonov, A; Sakumoto, W K; Sakurai, Y; Santi, L; Sato, K; Saveliev, V; Savoy-Navarro, A; Schlabach, P; Schmidt, A; Schmidt, E E; Schwarz, T; Scodellaro, L; Scribano, A; Scuri, F; Seidel, S; Seiya, Y; Semenov, A; Sforza, F; Shalhout, S Z; Shears, T; Shepard, P F; Shimojima, M; Shochet, M; Shreyber-Tecker, I; Simonenko, A; Sinervo, P; Sliwa, K; Smith, J R; Snider, F D; Soha, A; Sorin, V; Song, H; Squillacioti, P; Stancari, M; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Strycker, G L; Sudo, Y; Sukhanov, A; Suslov, I; Takemasa, K; Takeuchi, Y; Tang, J; Tecchio, M; Teng, P K; Thom, J; Thome, J; Thompson, G A; Thomson, E; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Totaro, P; Trovato, M; Ukegawa, F; Uozumi, S; Varganov, A; Vázquez, F; Velev, G; Vellidis, C; Vidal, M; Vila, I; Vilar, R; Vizán, J; Vogel, M; Volpi, G; Wagner, P; Wagner, R L; Wakisaka, T; Wallny, R; Wang, S M; Warburton, A; Waters, D; Wester, W C; Whiteson, D; Wicklund, A B; Wicklund, E; Wilbur, S; Wick, F; Williams, H H; Wilson, J S; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, H; Wright, T; Wu, X; Wu, Z; Yamamoto, K; Yamato, D; Yang, T; Yang, U K; Yang, Y C; Yao, W-M; Yeh, G P; Yi, K; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanetti, A; Zeng, Y; Zhou, C; Zucchelli, S

    2012-10-26

    We report a measurement of the bottom-strange meson mixing phase β(s) using the time evolution of B(s)(0)→J/ψ(→μ(+)μ(-))φ(→K(+)K(-)) decays in which the quark-flavor content of the bottom-strange meson is identified at production. This measurement uses the full data set of proton-antiproton collisions at √s=1.96 TeV collected by the Collider Detector experiment at the Fermilab Tevatron, corresponding to 9.6 fb(-1) of integrated luminosity. We report confidence regions in the two-dimensional space of β(s) and the B(s)(0) decay-width difference ΔΓ(s) and measure β(s)∈[-π/2,-1.51]∪[-0.06,0.30]∪[1.26,π/2] at the 68% confidence level, in agreement with the standard model expectation. Assuming the standard model value of β(s), we also determine ΔΓ(s)=0.068±0.026(stat)±0.009(syst) ps(-1) and the mean B(s)(0) lifetime τ(s)=1.528±0.019(stat)±0.009(syst) ps, which are consistent and competitive with determinations by other experiments.

  6. High-voltage integrated active quenching circuit for single photon count rate up to 80 Mcounts/s.

    PubMed

    Acconcia, Giulia; Rech, Ivan; Gulinatti, Angelo; Ghioni, Massimo

    2016-08-08

    Single photon avalanche diodes (SPADs) have been subject to a fast improvement in recent years. In particular, custom technologies specifically developed to fabricate SPAD devices give the designer the freedom to pursue the best detector performance required by applications. A significant breakthrough in this field is represented by the recent introduction of a red enhanced SPAD (RE-SPAD) technology, capable of attaining a good photon detection efficiency in the near infrared range (e.g. 40% at a wavelength of 800 nm) while maintaining a remarkable timing resolution of about 100ps full width at half maximum. Being planar, the RE-SPAD custom technology opened the way to the development of SPAD arrays particularly suited for demanding applications in the field of life sciences. However, to achieve such excellent performance custom SPAD detectors must be operated with an external active quenching circuit (AQC) designed on purpose. Next steps toward the development of compact and practical multichannel systems will require a new generation of monolithically integrated AQC arrays. In this paper we present a new, fully integrated AQC fabricated in a high-voltage 0.18 µm CMOS technology able to provide quenching pulses up to 50 Volts with fast leading and trailing edges. Although specifically designed for optimal operation of RE-SPAD devices, the new AQC is quite versatile: it can be used with any SPAD detector, regardless its fabrication technology, reaching remarkable count rates up to 80 Mcounts/s and generating a photon detection pulse with a timing jitter as low as 119 ps full width at half maximum. The compact design of our circuit has been specifically laid out to make this IC a suitable building block for monolithically integrated AQC arrays.

  7. Research progress at the Slow Positron Facility in the Institute of Materials Structure Science, KEK

    NASA Astrophysics Data System (ADS)

    Hyodo, T.; Wada, K.; Mochizuki, I.; Kimura, M.; Toge, N.; Shidara, T.; Fukaya, Y.; Maekawa, M.; Kawasuso, A.; Iida, S.; Michishio, K.; Nagashima, Y.

    2017-01-01

    Recent results at the Slow Positron Facility (SPF), Institute of Materials Structure Science (IMSS), KEK are reported. Studies using the total-reflection high-energy positron diffraction (TRHEPD) station revealed the structures of rutile-TiO2(110) (1×2), graphene on Cu (111) and Co (0001), and germanene on Al (111). First observations of the shape resonance in the Ps- photodetachment process were made using the positronium negative ion (Ps-) station. Experiments using the positronium time-of-flight (Ps-TOF) station showed significant enhancement of the Ps formation efficiency and the energy loss in the Ps formation-emission process. A pulse-stretching section has been implemented, which stretches the positron pulse width from 1.2 μs up to almost 20 ms.

  8. Fabrication of disposable topographic silicon oxide from sawtoothed patterns: control of arrays of gold nanoparticles.

    PubMed

    Cho, Heesook; Yoo, Hana; Park, Soojin

    2010-05-18

    Disposable topographic silicon oxide patterns were fabricated from polymeric replicas of sawtoothed glass surfaces, spin-coating of poly(dimethylsiloxane) (PDMS) thin films, and thermal annealing at certain temperature and followed by oxygen plasma treatment of the thin PDMS layer. A simple imprinting process was used to fabricate the replicated PDMS and PS patterns from sawtoothed glass surfaces. Next, thin layers of PDMS films having different thicknesses were spin-coated onto the sawtoothed PS surfaces and annealed at 60 degrees C to be drawn the PDMS into the valley of the sawtoothed PS surfaces, followed by oxygen plasma treatment to fabricate topographic silicon oxide patterns. By control of the thickness of PDMS layers, silicon oxide patterns having various line widths were fabricated. The silicon oxide topographic patterns were used to direct the self-assembly of polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP) block copolymer thin films via solvent annealing process. A highly ordered PS-b-P2VP micellar structure was used to let gold precursor complex with P2VP chains, and followed by oxygen plasma treatment. When the PS-b-P2VP thin films containing gold salts were exposed to oxygen plasma environments, gold salts were reduced to pure gold nanoparticles without changing high degree of lateral order, while polymers were completely degraded. As the width of trough and crest in topographic patterns increases, the number of gold arrays and size of gold nanoparticles are tuned. In the final step, the silicon oxide topographic patterns were selectively removed by wet etching process without changing the arrays of gold nanoparticles.

  9. Optical diagnostic suite (schlieren, interferometry, and grid image refractometry) on OMEGA EP using a 10-ps, 263-nm probe beam.

    PubMed

    Froula, D H; Boni, R; Bedzyk, M; Craxton, R S; Ehrne, F; Ivancic, S; Jungquist, R; Shoup, M J; Theobald, W; Weiner, D; Kugland, N L; Rushford, M C

    2012-10-01

    A 10-ps, 263-nm (4ω) laser is being built to probe plasmas produced on the OMEGA EP [J. H. Kelly, L. J. Waxer, V. Bagnoud, I. A. Begishev, J. Bromage, B. E. Kruschwitz, T. E. Kessler, S. J. Loucks, D. N. Maywar, R. L. McCrory et al., J. Phys. IV France 133, 75-80 (2006)]. A suite of optical diagnostics (schlieren, interferometry, and grid image refractometry) has been designed to diagnose and characterize a wide variety of plasmas. Light scattered by the probe beam is collected by an f/4 catadioptric telescope and a transport system is designed to image with a near-diffraction-limited resolution (~1 - μm full width at half maximum) over a 5-mm field of view to a diagnostic table. The transport system provides a contrast greater than 1 : 10(4) with respect to all wavelengths outside of the 263 ± 2 nm measurement range.

  10. Amplitude and timing properties of a Geiger discharge in a SiPM cell

    NASA Astrophysics Data System (ADS)

    Popova, E.; Buzhan, P.; Pleshko, A.; Vinogradov, S.; Stifutkin, A.; Ilyin, A.; Besson, D.; Mirzoyan, R.

    2015-07-01

    The amplitude and timing properties of a Geiger discharge in a stand-alone SiPM cell have been investigated in detail. Use of a single stand-alone SiPM cell allows us to perform measurements with better accuracy than the multicell structure of conventional SiPMs. We have studied the dependence of the output charge and amplitude from an SiPM cell illuminated by focused light vs the number of primary photoelectrons. We propose a SPICE model which explains the amplitude over saturation (when the SiPM's amplitude is greater than the sum over all cells) characteristics of SiPM signals for more than one initial photoelectrons. The time resolutions of a SiPM cell have been measured for the case of single (SPTR) and multiphoton light pulses. The Full Width Half Max (FWHM) for SPTR has been found to be at the level of 30 ps for focused and 40 ps for unfocused light (100 μm cell size).

  11. Optical diagnostic suite (schlieren, interferometry, and grid image refractometry) on OMEGA EP using a 10-ps, 263-nm probe beama)

    NASA Astrophysics Data System (ADS)

    Froula, D. H.; Boni, R.; Bedzyk, M.; Craxton, R. S.; Ehrne, F.; Ivancic, S.; Jungquist, R.; Shoup, M. J.; Theobald, W.; Weiner, D.; Kugland, N. L.; Rushford, M. C.

    2012-10-01

    A 10-ps, 263-nm (4ω) laser is being built to probe plasmas produced on the OMEGA EP [J. H. Kelly, L. J. Waxer, V. Bagnoud, I. A. Begishev, J. Bromage, B. E. Kruschwitz, T. E. Kessler, S. J. Loucks, D. N. Maywar, R. L. McCrory et al., J. Phys. IV France 133, 75-80 (2006)], 10.1051/jp4:2006133015. A suite of optical diagnostics (schlieren, interferometry, and grid image refractometry) has been designed to diagnose and characterize a wide variety of plasmas. Light scattered by the probe beam is collected by an f/4 catadioptric telescope and a transport system is designed to image with a near-diffraction-limited resolution (˜1 - μm full width at half maximum) over a 5-mm field of view to a diagnostic table. The transport system provides a contrast greater than 1 : 104 with respect to all wavelengths outside of the 263 ± 2 nm measurement range.

  12. The accuracy of the lateral vertebral notch-referred pedicle screw insertion technique in subaxial cervical spine: a human cadaver study.

    PubMed

    Luo, Jiaquan; Wu, Chunyang; Huang, Zhongren; Pan, Zhimin; Li, Zhiyun; Zhong, Junlong; Chen, Yiwei; Han, Zhimin; Cao, Kai

    2017-04-01

    This is a cadaver specimen study to confirm new pedicle screw (PS) entry point and trajectory for subaxial cervical PS insertion. To assess the accuracy of the lateral vertebral notch-referred PS insertion technique in subaxial cervical spine in cadaver cervical spine. Reported morphometric landmarks used to guide the surgeon in PS insertion show significant variability. In the previous study, we proposed a new technique (as called "notch-referred" technique) primarily based on coronal multiplane reconstruction images (CMRI) and cortical integrity after PS insertion in cadavers. However, the PS position in cadaveric cervical segment was not confirmed radiologically. Therefore, the difference between the pedicle trajectory and the PS trajectory using the notch-referred technique needs to be illuminated. Twelve cadaveric cervical spines were conducted with PS insertion using the lateral vertebral notch-referred technique. The guideline for entry point and trajectory for each vertebra was established based on the morphometric data from our previous study. After 3.5-mm diameter screw insertion, each vertebra was dissected and inspected for pedicle trajectory by CT scan. The pedicle trajectory and PS trajectory were measured and compared in axial plane. The perforation rate was assessed radiologically and was graded from ideal to unacceptable: Grade 0 = screw in pedicle; Grade I = perforation of pedicle wall less than one-fourth of the screw diameter; Grade II = perforation more than one-fourth of the screw diameter but less than one-second; Grade III = perforation more than one-second outside of the screw diameter. In addition, pedicle width between the acceptable and unacceptable screws was compared. A total of 120 pedicle screws were inserted. The perforation rate of pedicle screws was 78.3% in grade 0 (excellent PS position), 10.0% in grade I (good PS position), 8.3% in grade II (fair PS position), and 3.3% in grade III (poor PS position). The overall accepted accuracy of pedicle screws was 96.7% (Grade 0 + Grade I + Grade II), and only 3.3% had critical breach. There was no statistical difference between the pedicle trajectory and PS trajectory (p > 0.05). Compared to the pedicle width (4.4 ± 0.7 mm) in acceptably inserted screw, the unacceptably screw is 3.2 ± 0.3 mm which was statistically different (p < 0.05). The accuracy of the notch-referred PS insertion in cadaveric subaxial cervical spine is satisfactory.

  13. Generation of subnanosecond electron beams in air at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Kostyrya, I. D.; Tarasenko, V. F.; Baksht, E. Kh.; Burachenko, A. G.; Lomaev, M. I.; Rybka, D. V.

    2009-11-01

    Optimum conditions for the generation of runaway electron beams with maximum current amplitudes and densities in nanosecond pulsed discharges in air at atmospheric pressure are determined. A supershort avalanche electron beam (SAEB) with a current amplitude of ˜30 A, a current density of ˜20 A/cm2, and a pulse full width at half maximum (FWHM) of ˜100 ps has been observed behind the output foil of an air-filled diode. It is shown that the position of the SAEB current maximum relative to the voltage pulse front exhibits a time shift that varies when the small-size collector is moved over the foil surface.

  14. Laser fabrication of porous silicon-based platforms for cell culturing.

    PubMed

    Peláez, Ramón-J; Afonso, Carmen-N; Vega, Fidel; Recio-Sánchez, Gonzalo; Torres-Costa, Vicente; Manso-Silván, Miguel; García-Ruiz, Josefa-P; Martín-Palma, Raúl-J

    2013-11-01

    In this study, we explore the selective culturing of human mesenchymal stem cells (hMSCs) on Si-based diffractive platforms. We demonstrate a single-step and flexible method for producing platforms on nanostructured porous silicon (nanoPS) based on the use of single pulses of an excimer laser to expose phase masks. The resulting patterns are typically 1D patterns formed by fringes or 2D patterns formed by circles. They are formed by alternate regions of almost unmodified nanoPS and regions where the nanoPS surface has melted and transformed into Si nanoparticles. The patterns are produced in relatively large areas (a few square millimeters) and can have a wide range of periodicities and aspect ratios. Direct binding, that is, with no previous functionalization of the pattern, alignment, and active polarization of hMSCs are explored. The results show the preferential direct binding of the hMSCs along the transformed regions whenever their width compares with the dimensions of the cells and they escape from patterns for smaller widths suggesting that the selectivity can be tailored through the pattern period. Copyright © 2013 Wiley Periodicals, Inc.

  15. Laser processing of sapphire with picosecond and sub-picosecond pulses

    NASA Astrophysics Data System (ADS)

    Ashkenasi, D.; Rosenfeld, A.; Varel, H.; Wähmer, M.; Campbell, E. E. B.

    1997-11-01

    Laser processing of sapphire using a Ti:sapphire laser at 790 and 395 nm and pulse widths varying between 0.2 and 5 ps is reported. A clear improvement in quality is demonstrated for multi-shot processing with sub-ps laser pulses. For fluences between 3 and 12 J/cm 2 two ablation phases were observed, in agreement with previous work from Tam et al. using 30 ps, 266 nm laser pulses [A.C. Tam, J.L. Brand, D.C. Cheng, W. Zapka, Appl. Phys. Lett. 55 (20) (1994) 2045]. During the `gentle ablation' phase periodic wavelike structures, i.e. ripples, were observed on the Al 2O 3 surface, perpendicular to the laser polarisation and with a spacing almost equalling the laser wavelength, indicating metallic-like behaviour. The ripple modulation depth was in the order of a few tens of nm. For fluences between 1 and 2.5 J/cm 2, below the single-shot surface damage threshold and at a pulse width above 200 fs, microstructures could be produced at the rear side of a 1 mm thick sapphire substrate without affecting the front surface.

  16. Comparison of implosion core metrics: A 10 ps dilation X-ray imager vs a 100 ps gated microchannel plate [Comparison of implosion core shape observations, 10 ps dilation X-ray imager vs 100 ps gated microchannel plate

    DOE PAGES

    Nagel, S. R.; Benedetti, L. R.; Bradley, D. K.; ...

    2016-08-05

    The dilation x-ray imager (DIXI) is a high-speed x-ray framing camera that uses the pulse-dilation technique to achieve a temporal resolution of less than 10 ps. This is a 10× improvement over conventional framing cameras currently employed on the National Ignition Facility (NIF) (100 ps resolution), and otherwise only achievable with 1D streaked imaging. A side effect of the dramatically reduced gate width is the comparatively lower detected signal level. Therefore we implement a Poisson noise reduction with non-local principal component analysis method to improve the robustness of the DIXI data analysis. Furthermore, we present results on ignition-relevant experiments atmore » the NIF using DIXI. In particular we focus on establishing that/when DIXI gives reliable shape metrics (P 0, P 2 and P 4 Legendre modes, and their temporal evolution/swings).« less

  17. Comparison of implosion core metrics: A 10 ps dilation X-ray imager vs a 100 ps gated microchannel plate [Comparison of implosion core shape observations, 10 ps dilation X-ray imager vs 100 ps gated microchannel plate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagel, S. R.; Benedetti, L. R.; Bradley, D. K.

    The dilation x-ray imager (DIXI) is a high-speed x-ray framing camera that uses the pulse-dilation technique to achieve a temporal resolution of less than 10 ps. This is a 10× improvement over conventional framing cameras currently employed on the National Ignition Facility (NIF) (100 ps resolution), and otherwise only achievable with 1D streaked imaging. A side effect of the dramatically reduced gate width is the comparatively lower detected signal level. Therefore we implement a Poisson noise reduction with non-local principal component analysis method to improve the robustness of the DIXI data analysis. Furthermore, we present results on ignition-relevant experiments atmore » the NIF using DIXI. In particular we focus on establishing that/when DIXI gives reliable shape metrics (P 0, P 2 and P 4 Legendre modes, and their temporal evolution/swings).« less

  18. Note: measurement of extreme-short current pulse duration of runaway electron beam in atmospheric pressure air.

    PubMed

    Tarasenko, V F; Rybka, D V; Burachenko, A G; Lomaev, M I; Balzovsky, E V

    2012-08-01

    This note reports the time-amplitude characteristic of the supershort avalanche electron beam with up to 20 ps time resolution. For the first time it is shown that the electron beam downstream of small-diameter diaphragms in atmospheric pressure air has a complex structure which depends on the interelectrode gap width and cathode design. With a spherical cathode and collimator the minimum duration at half maximum of the supershort avalanche electron beam current pulse was shown to be ~25 ps. The minimum duration at half maximum of one peak in the pulses with two peaks can reach ~25 ps too.

  19. Systems for measuring response statistics of gigahertz bandwidth photomultipliers

    NASA Technical Reports Server (NTRS)

    Abshire, J. B.; Rowe, H. E.

    1977-01-01

    New systems have been developed for measuring the average impulse response, the pulse-height spectrum, the transit-time statistics as a function of signal level, and the dark-count spectrum of gigahertz bandwidth photomultipliers. Measurements showed that the 0.53 microns pulse used as an optical test source had a 30 picoseconds and less than 70 ps pulse width. Calibration data showed the system resolution to be less than 20 ps for root mean square transit-time measurements. Test data for a static crossed-field photomultiplier showed 2-photoelectron resolution and less than 30-ps time jitter over the 1- to 100-photoelectron range.

  20. Biodegradation and Mineralization of Polystyrene by Plastic-Eating Mealworms: Part 2. Role of Gut Microorganisms.

    PubMed

    Yang, Yu; Yang, Jun; Wu, Wei-Min; Zhao, Jiao; Song, Yiling; Gao, Longcheng; Yang, Ruifu; Jiang, Lei

    2015-10-20

    The role of gut bacteria of mealworms (the larvae of Tenebrio molitor Linnaeus) in polystyrene (PS) degradation was investigated. Gentamicin was the most effective inhibitor of gut bacteria among six antibiotics tested. Gut bacterial activities were essentially suppressed by feeding gentamicin food (30 mg/g) for 10 days. Gentamicin-feeding mealworms lost the ability to depolymerize PS and mineralize PS into CO2, as determined by characterizing worm fecula and feeding with (13)C-labeled PS. A PS-degrading bacterial strain was isolated from the guts of the mealworms, Exiguobacterium sp. strain YT2, which could form biofilm on PS film over a 28 day incubation period and made obvious pits and cavities (0.2-0.3 mm in width) on PS film surfaces associated with decreases in hydrophobicity and the formation of C-O polar groups. A suspension culture of strain YT2 (10(8) cells/mL) was able to degrade 7.4 ± 0.4% of the PS pieces (2500 mg/L) over a 60 day incubation period. The molecular weight of the residual PS pieces was lower, and the release of water-soluble daughter products was detected. The results indicated the essential role of gut bacteria in PS biodegradation and mineralization, confirmed the presence of PS-degrading gut bacteria, and demonstrated the biodegradation of PS by mealworms.

  1. Measurement of Lifetime and Decay-Width Difference in B_{s};{0}-->J/psivarphi Decays.

    PubMed

    Aaltonen, T; Abulencia, A; Adelman, J; Akimoto, T; Albrow, M G; Alvarez González, B; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Apresyan, A; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Aurisano, A; Azfar, F; Azzi-Bacchetta, P; Azzurri, P; Bacchetta, N; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Baroiant, S; Bartsch, V; Bauer, G; Beauchemin, P-H; Bedeschi, F; Bednar, P; Behari, S; Bellettini, G; Bellinger, J; Belloni, A; Benjamin, D; Beretvas, A; Beringer, J; Berry, T; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bolshov, A; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Byrum, K L; Cabrera, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carlsmith, D; Carosi, R; Carrillo, S; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Compostella, G; Convery, M E; Conway, J; Cooper, B; Copic, K; Cordelli, M; Cortiana, G; Crescioli, F; Cuenca Almenar, C; Cuevas, J; Culbertson, R; Cully, J C; Dagenhart, D; Datta, M; Davies, T; de Barbaro, P; De Cecco, S; Deisher, A; De Lentdecker, G; De Lorenzo, G; Dell'orso, M; Demortier, L; Deng, J; Deninno, M; De Pedis, D; Derwent, P F; Di Giovanni, G P; Dionisi, C; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dong, P; Donini, J; Dorigo, T; Dube, S; Efron, J; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Ferrazza, C; Field, R; Flanagan, G; Forrest, R; Forrester, S; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garberson, F; Garcia, J E; Garfinkel, A F; Gerberich, H; Gerdes, D; Giagu, S; Giannetti, P; Gibson, K; Gimmell, J L; Ginsburg, C M; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Grundler, U; Guimaraes da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Hamilton, A; Han, B-Y; Han, J Y; Handler, R; Happacher, F; Hara, K; Hare, D; Hare, M; Harper, S; Harr, R F; Harris, R M; Hartz, M; Hatakeyama, K; Hauser, J; Hays, C; Heck, M; Heijboer, A; Heinemann, B; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hewamanage, S; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Husemann, U; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ivanov, A; Iyutin, B; James, E; Jayatilaka, B; Jeans, D; Jeon, E J; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Kar, D; Karchin, P E; Kato, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Klute, M; Knuteson, B; Ko, B R; Koay, S A; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kraus, J; Kreps, M; Kroll, J; Krumnack, N; Kruse, M; Krutelyov, V; Kubo, T; Kuhlmann, S E; Kuhr, T; Kulkarni, N P; Kusakabe, Y; Kwang, S; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; Lecompte, T; Lee, J; Lee, J; Lee, Y J; Lee, S W; Lefèvre, R; Leonardo, N; Leone, S; Levy, S; Lewis, J D; Lin, C; Lin, C S; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Lovas, L; Lu, R-S; Lucchesi, D; Lueck, J; Luci, C; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; Mack, P; Macqueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maki, T; Maksimovic, P; Malde, S; Malik, S; Manca, G; Manousakis, A; Margaroli, F; Marino, C; Marino, C P; Martin, A; Martin, M; Martin, V; Martínez, M; Martínez-Ballarín, R; Maruyama, T; Mastrandrea, P; Masubuchi, T; Mattson, M E; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; Miao, T; Miladinovic, N; Miles, J; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyake, H; Moed, S; Moggi, N; Moon, C S; Moore, R; Morello, M; Movilla Fernandez, P; Mülmenstädt, J; Mukherjee, A; Muller, Th; Mumford, R; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Nagano, A; Naganoma, J; Nakamura, K; Nakano, I; Napier, A; Necula, V; Neu, C; Neubauer, M S; Nielsen, J; Nodulman, L; Norman, M; Norniella, O; Nurse, E; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Oldeman, R; Orava, R; Osterberg, K; Pagan Griso, S; Pagliarone, C; Palencia, E; Papadimitriou, V; Papaikonomou, A; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Piedra, J; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Portell, X; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Reisert, B; Rekovic, V; Renton, P; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Roy, P; Ruiz, A; Russ, J; Rusu, V; Saarikko, H; Safonov, A; Sakumoto, W K; Salamanna, G; Saltó, O; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savard, P; Savoy-Navarro, A; Scheidle, T; Schlabach, P; Schmidt, E E; Schmidt, M A; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scott, A L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sfyrla, A; Shalhout, S Z; Shapiro, M D; Shears, T; Shepard, P F; Sherman, D; Shimojima, M; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakyan, A; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soderberg, M; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spinella, F; Spreitzer, T; Squillacioti, P; Stanitzki, M; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Stuart, D; Suh, J S; Sukhanov, A; Sun, H; Suslov, I; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Thom, J; Thompson, A S; Thompson, G A; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Tourneur, S; Trischuk, W; Tu, Y; Turini, N; Ukegawa, F; Uozumi, S; Vallecorsa, S; van Remortel, N; Varganov, A; Vataga, E; Vázquez, F; Velev, G; Vellidis, C; Veszpremi, V; Vidal, M; Vidal, R; Vila, I; Vilar, R; Vine, T; Vogel, M; Volobouev, I; Volpi, G; Würthwein, F; Wagner, P; Wagner, R G; Wagner, R L; Wagner, J; Wagner, W; Wakisaka, T; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Wynne, S M; Yagil, A; Yamamoto, K; Yamaoka, J; Yamashita, T; Yang, C; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zhang, X; Zheng, Y; Zucchelli, S

    2008-03-28

    We measure the mean lifetime tau=2/(Gamma_{L}+Gamma_{H}) and the decay-width difference DeltaGamma=Gamma_{L}-Gamma_{H} of the light and heavy mass eigenstates of the B_{s}{0} meson, B_{sL}{0} and B_{sH}{0}, in B_{s}{0}-->J/psivarphi decays using 1.7 fb;{-1} of data collected with the CDF II detector at the Fermilab Tevatron pp[over ] collider. Assuming CP conservation, a good approximation for the B_{s}{0} system in the standard model, we obtain DeltaGamma=0.076_{-0.063}{+0.059}(stat)+/-0.006(syst) ps{-1} and tau=1.52+/-0.04(stat)+/-0.02(syst) ps, the most precise measurements to date. Our constraints on the weak phase and DeltaGamma are consistent with CP conservation.

  2. Measurement of Bs0 and Ds- Meson Lifetimes

    NASA Astrophysics Data System (ADS)

    Aaij, R.; Adeva, B.; Adinolfi, M.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Alvarez Cartelle, P.; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Andreassi, G.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Archilli, F.; d'Argent, P.; Arnau Romeu, J.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Babuschkin, I.; Bachmann, S.; Back, J. J.; Badalov, A.; Baesso, C.; Baker, S.; Balagura, V.; Baldini, W.; Baranov, A.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Baryshnikov, F.; Baszczyk, M.; Batozskaya, V.; Batsukh, B.; Battista, V.; Bay, A.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Beiter, A.; Bel, L. J.; Bellee, V.; Belloli, N.; Belous, K.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Benson, S.; Beranek, S.; Berezhnoy, A.; Bernet, R.; Bertolin, A.; Betancourt, C.; Betti, F.; Bettler, M.-O.; van Beuzekom, M.; Bezshyiko, Ia.; Bifani, S.; Billoir, P.; Birnkraut, A.; Bitadze, A.; Bizzeti, A.; Blake, T.; Blanc, F.; Blouw, J.; Blusk, S.; Bocci, V.; Boettcher, T.; Bondar, A.; Bondar, N.; Bonivento, W.; Bordyuzhin, I.; Borgheresi, A.; Borghi, S.; Borisyak, M.; Borsato, M.; Bossu, F.; Boubdir, M.; Bowcock, T. J. V.; Bowen, E.; Bozzi, C.; Braun, S.; Britton, T.; Brodzicka, J.; Buchanan, E.; Burr, C.; Bursche, A.; Buytaert, J.; Cadeddu, S.; Calabrese, R.; Calvi, M.; Calvo Gomez, M.; Camboni, A.; Campana, P.; Campora Perez, D. H.; Capriotti, L.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carniti, P.; Carson, L.; Carvalho Akiba, K.; Casse, G.; Cassina, L.; Castillo Garcia, L.; Cattaneo, M.; Cavallero, G.; Cenci, R.; Chamont, D.; Charles, M.; Charpentier, Ph.; Chatzikonstantinidis, G.; Chefdeville, M.; Chen, S.; Cheung, S.-F.; Chobanova, V.; Chrzaszcz, M.; Chubykin, A.; Cid Vidal, X.; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Coco, V.; Cogan, J.; Cogneras, E.; Cogoni, V.; Cojocariu, L.; Collins, P.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coombs, G.; Coquereau, S.; Corti, G.; Corvo, M.; Costa Sobral, C. M.; Couturier, B.; Cowan, G. A.; Craik, D. C.; Crocombe, A.; Cruz Torres, M.; Cunliffe, S.; Currie, R.; D'Ambrosio, C.; Da Cunha Marinho, F.; Dall'Occo, E.; Dalseno, J.; David, P. N. Y.; Davis, A.; De Bruyn, K.; De Capua, S.; De Cian, M.; De Miranda, J. M.; De Paula, L.; De Serio, M.; De Simone, P.; Dean, C. T.; Decamp, D.; Deckenhoff, M.; Del Buono, L.; Dembinski, H.-P.; Demmer, M.; Dendek, A.; Derkach, D.; Deschamps, O.; Dettori, F.; Dey, B.; Di Canto, A.; Di Nezza, P.; Dijkstra, H.; Dordei, F.; Dorigo, M.; Dosil Suárez, A.; Dovbnya, A.; Dreimanis, K.; Dufour, L.; Dujany, G.; Dungs, K.; Durante, P.; Dzhelyadin, R.; Dziewiecki, M.; Dziurda, A.; Dzyuba, A.; Déléage, N.; Easo, S.; Ebert, M.; Egede, U.; Egorychev, V.; Eidelman, S.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; Ely, S.; Esen, S.; Evans, H. M.; Evans, T.; Falabella, A.; Farley, N.; Farry, S.; Fay, R.; Fazzini, D.; Ferguson, D.; Fernandez, G.; Fernandez Prieto, A.; Ferrari, F.; Ferreira Rodrigues, F.; Ferro-Luzzi, M.; Filippov, S.; Fini, R. A.; Fiore, M.; Fiorini, M.; Firlej, M.; Fitzpatrick, C.; Fiutowski, T.; Fleuret, F.; Fohl, K.; Fontana, M.; Fontanelli, F.; Forshaw, D. C.; Forty, R.; Franco Lima, V.; Frank, M.; Frei, C.; Fu, J.; Funk, W.; Furfaro, E.; Färber, C.; Gallas Torreira, A.; Galli, D.; Gallorini, S.; Gambetta, S.; Gandelman, M.; Gandini, P.; Gao, Y.; Garcia Martin, L. M.; García Pardiñas, J.; Garra Tico, J.; Garrido, L.; Garsed, P. J.; Gascon, D.; Gaspar, C.; Gavardi, L.; Gazzoni, G.; Gerick, D.; Gersabeck, E.; Gersabeck, M.; Gershon, T.; Ghez, Ph.; Gianı, S.; Gibson, V.; Girard, O. G.; Giubega, L.; Gizdov, K.; Gligorov, V. V.; Golubkov, D.; Golutvin, A.; Gomes, A.; Gorelov, I. V.; Gotti, C.; Govorkova, E.; Graciani Diaz, R.; Granado Cardoso, L. A.; Graugés, E.; Graverini, E.; Graziani, G.; Grecu, A.; Greim, R.; Griffith, P.; Grillo, L.; Gruberg Cazon, B. R.; Grünberg, O.; Gushchin, E.; Guz, Yu.; Gys, T.; Göbel, C.; Hadavizadeh, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S. C.; Hamilton, B.; Han, X.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Harrison, J.; Hatch, M.; He, J.; Head, T.; Heister, A.; Hennessy, K.; Henrard, P.; Henry, L.; van Herwijnen, E.; Heß, M.; Hicheur, A.; Hill, D.; Hombach, C.; Hopchev, H.; Huard, Z.-C.; Hulsbergen, W.; Humair, T.; Hushchyn, M.; Hutchcroft, D.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jalocha, J.; Jans, E.; Jawahery, A.; Jiang, F.; John, M.; Johnson, D.; Jones, C. R.; Joram, C.; Jost, B.; Jurik, N.; Kandybei, S.; Karacson, M.; Kariuki, J. M.; Karodia, S.; Kecke, M.; Kelsey, M.; Kenzie, M.; Ketel, T.; Khairullin, E.; Khanji, B.; Khurewathanakul, C.; Kirn, T.; Klaver, S.; Klimaszewski, K.; Klimkovich, T.; Koliiev, S.; Kolpin, M.; Komarov, I.; Kopecna, R.; Koppenburg, P.; Kosmyntseva, A.; Kotriakhova, S.; Kozachuk, A.; Kozeiha, M.; Kravchuk, L.; Kreps, M.; Krokovny, P.; Kruse, F.; Krzemien, W.; Kucewicz, W.; Kucharczyk, M.; Kudryavtsev, V.; Kuonen, A. K.; Kurek, K.; Kvaratskheliya, T.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lanfranchi, G.; Langenbruch, C.; Latham, T.; Lazzeroni, C.; Le Gac, R.; van Leerdam, J.; Leflat, A.; Lefrançois, J.; Lefèvre, R.; Lemaitre, F.; Lemos Cid, E.; Leroy, O.; Lesiak, T.; Leverington, B.; Li, T.; Li, Y.; Li, Z.; Likhomanenko, T.; Lindner, R.; Lionetto, F.; Liu, X.; Loh, D.; Longstaff, I.; Lopes, J. H.; Lucchesi, D.; Lucio Martinez, M.; Luo, H.; Lupato, A.; Luppi, E.; Lupton, O.; Lusiani, A.; Lyu, X.; Machefert, F.; Maciuc, F.; Maev, O.; Maguire, K.; Malde, S.; Malinin, A.; Maltsev, T.; Manca, G.; Mancinelli, G.; Manning, P.; Maratas, J.; Marchand, J. F.; Marconi, U.; Marin Benito, C.; Marinangeli, M.; Marino, P.; Marks, J.; Martellotti, G.; Martin, M.; Martinelli, M.; Martinez Santos, D.; Martinez Vidal, F.; Martins Tostes, D.; Massacrier, L. M.; Massafferri, A.; Matev, R.; Mathad, A.; Mathe, Z.; Matteuzzi, C.; Mauri, A.; Maurice, E.; Maurin, B.; Mazurov, A.; McCann, M.; McNab, A.; McNulty, R.; Meadows, B.; Meier, F.; Melnychuk, D.; Merk, M.; Merli, A.; Michielin, E.; Milanes, D. A.; Minard, M.-N.; Mitzel, D. S.; Mogini, A.; Molina Rodriguez, J.; Monroy, I. A.; Monteil, S.; Morandin, M.; Morello, M. J.; Morgunova, O.; Moron, J.; Morris, A. B.; Mountain, R.; Muheim, F.; Mulder, M.; Mussini, M.; Müller, D.; Müller, J.; Müller, K.; Müller, V.; Naik, P.; Nakada, T.; Nandakumar, R.; Nandi, A.; Nasteva, I.; Needham, M.; Neri, N.; Neubert, S.; Neufeld, N.; Neuner, M.; Nguyen, T. D.; Nguyen-Mau, C.; Nieswand, S.; Niet, R.; Nikitin, N.; Nikodem, T.; Nogay, A.; Novoselov, A.; O'Hanlon, D. P.; Oblakowska-Mucha, A.; Obraztsov, V.; Ogilvy, S.; Oldeman, R.; Onderwater, C. J. G.; Ossowska, A.; Otalora Goicochea, J. M.; Owen, P.; Oyanguren, A.; Pais, P. R.; Palano, A.; Palutan, M.; Papanestis, A.; Pappagallo, M.; Pappalardo, L. L.; Pappenheimer, C.; Parker, W.; Parkes, C.; Passaleva, G.; Pastore, A.; Patel, M.; Patrignani, C.; Pearce, A.; Pellegrino, A.; Penso, G.; Pepe Altarelli, M.; Perazzini, S.; Perret, P.; Pescatore, L.; Petridis, K.; Petrolini, A.; Petrov, A.; Petruzzo, M.; Picatoste Olloqui, E.; Pietrzyk, B.; Pikies, M.; Pinci, D.; Pistone, A.; Piucci, A.; Placinta, V.; Playfer, S.; Plo Casasus, M.; Poikela, T.; Polci, F.; Poli Lener, M.; Poluektov, A.; Polyakov, I.; Polycarpo, E.; Pomery, G. J.; Ponce, S.; Popov, A.; Popov, D.; Popovici, B.; Poslavskii, S.; Potterat, C.; Price, E.; Prisciandaro, J.; Prouve, C.; Pugatch, V.; Puig Navarro, A.; Punzi, G.; Qian, C.; Qian, W.; Quagliani, R.; Rachwal, B.; Rademacker, J. H.; Rama, M.; Ramos Pernas, M.; Rangel, M. S.; Raniuk, I.; Ratnikov, F.; Raven, G.; Redi, F.; Reichert, S.; dos Reis, A. C.; Remon Alepuz, C.; Renaudin, V.; Ricciardi, S.; Richards, S.; Rihl, M.; Rinnert, K.; Rives Molina, V.; Robbe, P.; Rodrigues, A. B.; Rodrigues, E.; Rodriguez Lopez, J. A.; Rodriguez Perez, P.; Rogozhnikov, A.; Roiser, S.; Rollings, A.; Romanovskiy, V.; Romero Vidal, A.; Ronayne, J. W.; Rotondo, M.; Rudolph, M. S.; Ruf, T.; Ruiz Valls, P.; Saborido Silva, J. J.; Sadykhov, E.; Sagidova, N.; Saitta, B.; Salustino Guimaraes, V.; Sanchez Gonzalo, D.; Sanchez Mayordomo, C.; Sanmartin Sedes, B.; Santacesaria, R.; Santamarina Rios, C.; Santimaria, M.; Santovetti, E.; Sarti, A.; Satriano, C.; Satta, A.; Saunders, D. M.; Savrina, D.; Schael, S.; Schellenberg, M.; Schiller, M.; Schindler, H.; Schlupp, M.; Schmelling, M.; Schmelzer, T.; Schmidt, B.; Schneider, O.; Schopper, A.; Schreiner, H. F.; Schubert, K.; Schubiger, M.; Schune, M.-H.; Schwemmer, R.; Sciascia, B.; Sciubba, A.; Semennikov, A.; Sergi, A.; Serra, N.; Serrano, J.; Sestini, L.; Seyfert, P.; Shapkin, M.; Shapoval, I.; Shcheglov, Y.; Shears, T.; Shekhtman, L.; Shevchenko, V.; Siddi, B. G.; Silva Coutinho, R.; Silva de Oliveira, L.; Simi, G.; Simone, S.; Sirendi, M.; Skidmore, N.; Skwarnicki, T.; Smith, E.; Smith, I. T.; Smith, J.; Smith, M.; Soares Lavra, l.; Sokoloff, M. D.; Soler, F. J. P.; Souza De Paula, B.; Spaan, B.; Spradlin, P.; Sridharan, S.; Stagni, F.; Stahl, M.; Stahl, S.; Stefko, P.; Stefkova, S.; Steinkamp, O.; Stemmle, S.; Stenyakin, O.; Stevens, H.; Stoica, S.; Stone, S.; Storaci, B.; Stracka, S.; Stramaglia, M. E.; Straticiuc, M.; Straumann, U.; Sun, L.; Sutcliffe, W.; Swientek, K.; Syropoulos, V.; Szczekowski, M.; Szumlak, T.; T'Jampens, S.; Tayduganov, A.; Tekampe, T.; Tellarini, G.; Teubert, F.; Thomas, E.; van Tilburg, J.; Tilley, M. J.; Tisserand, V.; Tobin, M.; Tolk, S.; Tomassetti, L.; Tonelli, D.; Topp-Joergensen, S.; Toriello, F.; Tourinho Jadallah Aoude, R.; Tournefier, E.; Tourneur, S.; Trabelsi, K.; Traill, M.; Tran, M. T.; Tresch, M.; Trisovic, A.; Tsaregorodtsev, A.; Tsopelas, P.; Tully, A.; Tuning, N.; Ukleja, A.; Ustyuzhanin, A.; Uwer, U.; Vacca, C.; Vagnoni, V.; Valassi, A.; Valat, S.; Valenti, G.; Vazquez Gomez, R.; Vazquez Regueiro, P.; Vecchi, S.; van Veghel, M.; Velthuis, J. J.; Veltri, M.; Veneziano, G.; Venkateswaran, A.; Verlage, T. A.; Vernet, M.; Vesterinen, M.; Viana Barbosa, J. V.; Viaud, B.; Vieira, D.; Vieites Diaz, M.; Viemann, H.; Vilasis-Cardona, X.; Vitti, M.; Volkov, V.; Vollhardt, A.; Voneki, B.; Vorobyev, A.; Vorobyev, V.; Voß, C.; de Vries, J. A.; Vázquez Sierra, C.; Waldi, R.; Wallace, C.; Wallace, R.; Walsh, J.; Wang, J.; Ward, D. R.; Wark, H. M.; Watson, N. K.; Websdale, D.; Weiden, A.; Whitehead, M.; Wicht, J.; Wilkinson, G.; Wilkinson, M.; Williams, M.; Williams, M. P.; Williams, M.; Williams, T.; Wilson, F. F.; Wimberley, J.; Winn, M. A.; Wishahi, J.; Wislicki, W.; Witek, M.; Wormser, G.; Wotton, S. A.; Wraight, K.; Wyllie, K.; Xie, Y.; Xing, Z.; Xu, Z.; Yang, Z.; Yang, Z.; Yao, Y.; Yin, H.; Yu, J.; Yuan, X.; Yushchenko, O.; Zarebski, K. A.; Zavertyaev, M.; Zhang, L.; Zhang, Y.; Zhelezov, A.; Zheng, Y.; Zhu, X.; Zhukov, V.; Zucchelli, S.; LHCb Collaboration

    2017-09-01

    We report on a measurement of the flavor-specific Bs0 lifetime and of the Ds- lifetime using proton-proton collisions at center-of-mass energies of 7 and 8 TeV, collected by the LHCb experiment and corresponding to 3.0 fb-1 of integrated luminosity. Approximately 407 000 Bs0→Ds(*)-μ+νμ decays are partially reconstructed in the K+K-π-μ+ final state. The Bs0 and Ds- natural widths are determined using, as a reference, kinematically similar B0→D(*)-μ+νμ decays reconstructed in the same final state. The resulting differences between widths of Bs0 and B0 mesons and of Ds- and D- mesons are ΔΓ(B )=-0.0115 ±0.0053 (stat ) ±0.0041 (syst ) ps-1 and ΔΓ(D )=1.0131 ±0.0117 (stat ) ±0.0065 (syst ) ps-1, respectively. Combined with the known B0 and D- lifetimes, these yield the flavor-specific Bs0 lifetime, τBs 0 fs =1.547 ±0.013 (stat ) ±0.010 (syst ) ±0.004 (τB) ps and the Ds- lifetime, τDs-=0.5064 ±0.0030 (stat ) ±0.0017 (syst ) ±0.0017 (τD) ps . The last uncertainties originate from the limited knowledge of the B0 and D- lifetimes. The results improve upon current determinations.

  3. Low-noise low-jitter 32-pixels CMOS single-photon avalanche diodes array for single-photon counting from 300 nm to 900 nm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scarcella, Carmelo; Tosi, Alberto, E-mail: alberto.tosi@polimi.it; Villa, Federica

    2013-12-15

    We developed a single-photon counting multichannel detection system, based on a monolithic linear array of 32 CMOS SPADs (Complementary Metal-Oxide-Semiconductor Single-Photon Avalanche Diodes). All channels achieve a timing resolution of 100 ps (full-width at half maximum) and a photon detection efficiency of 50% at 400 nm. Dark count rate is very low even at room temperature, being about 125 counts/s for 50 μm active area diameter SPADs. Detection performance and microelectronic compactness of this CMOS SPAD array make it the best candidate for ultra-compact time-resolved spectrometers with single-photon sensitivity from 300 nm to 900 nm.

  4. Experimental study of the third-order nonlinearity of atomic and molecular gases using 10-μm laser pulses

    NASA Astrophysics Data System (ADS)

    Pigeon, J. J.; Tochitsky, S. Ya.; Welch, E. C.; Joshi, C.

    2018-04-01

    We present measurements of the third-order optical nonlinearity of Kr, Xe, N2, O2, and air at a wavelength near 10 µm by using four-wave mixing of ˜15 -GW /c m2 , 200-ps (full width at half maximum) C O2 laser pulses. Measurements in molecular gases resulted in an asymmetric four-wave mixing spectrum indicating that the nonlinear response is strongly affected by the delayed, rotational contribution to the effective nonlinear refractive index. Within the uncertainty of our measurements, we have found that the long-wavelength nonlinear refractive indices of these gases are consistent with measurements performed in the near IR.

  5. Effective regimes of runaway electron beam generation in helium, hydrogen, and nitrogen

    NASA Astrophysics Data System (ADS)

    Tarasenko, V. F.; Baksht, E. Kh.; Burachenko, A. G.; Lomaev, M. I.; Sorokin, D. A.; Shut'ko, Yu. V.

    2010-04-01

    Runaway electron beam parameters and current-voltage characteristics of discharge in helium, hydrogen, and nitrogen at pressures in the range of several Torr to several hundred Torr have been studied. It is found that the maximum amplitudes of supershort avalanche electron beams (SAEBs) with a pulse full width at half maximum (FWHM) of ˜100 ps are achieved in helium, hydrogen, and nitrogen at a pressure of ˜60, ˜30, and ˜10 Torr, respectively. It is shown that, as the gas pressure is increased in the indicated range, the breakdown voltage of the gas-filled gap decreases, which leads to a decrease in the SAEB current amplitude. At pressures of helium within 20-60 Torr, hydrogen within 10-30 Torr, and nitrogen within 3-10 Torr, the regime of the runaway electron beam generation changes and, by varying the pressure in the gas-filled diode in the indicated intervals, it is possible to smoothly control the current pulse duration (FWHM) from ˜100 to ˜500 ps, while the beam current amplitude increases by a factor of 1.5-3.

  6. 2D IR spectra of cyanide in water investigated by molecular dynamics simulations

    USGS Publications Warehouse

    Lee, Myung Won; Carr, Joshua K.; Göllner, Michael; Hamm, Peter; Meuwly, Markus

    2013-01-01

    Using classical molecular dynamics simulations, the 2D infrared (IR) spectroscopy of CN− solvated in D2O is investigated. Depending on the force field parametrizations, most of which are based on multipolar interactions for the CN− molecule, the frequency-frequency correlation function and observables computed from it differ. Most notably, models based on multipoles for CN− and TIP3P for water yield quantitatively correct results when compared with experiments. Furthermore, the recent finding that T 1 times are sensitive to the van der Waals ranges on the CN− is confirmed in the present study. For the linear IR spectrum, the best model reproduces the full widths at half maximum almost quantitatively (13.0 cm−1 vs. 14.9 cm−1) if the rotational contribution to the linewidth is included. Without the rotational contribution, the lines are too narrow by about a factor of two, which agrees with Raman and IR experiments. The computed and experimental tilt angles (or nodal slopes) α as a function of the 2D IR waiting time compare favorably with the measured ones and the frequency fluctuation correlation function is invariably found to contain three time scales: a sub-ps, 1 ps, and one on the 10-ps time scale. These time scales are discussed in terms of the structural dynamics of the surrounding solvent and it is found that the longest time scale (≈10 ps) most likely corresponds to solvent exchange between the first and second solvation shell, in agreement with interpretations from nuclear magnetic resonance measurements.

  7. Polarization-sensitive optical coherence tomography-based imaging, parameterization, and quantification of human cartilage degeneration

    NASA Astrophysics Data System (ADS)

    Brill, Nicolai; Wirtz, Mathias; Merhof, Dorit; Tingart, Markus; Jahr, Holger; Truhn, Daniel; Schmitt, Robert; Nebelung, Sven

    2016-07-01

    Polarization-sensitive optical coherence tomography (PS-OCT) is a light-based, high-resolution, real-time, noninvasive, and nondestructive imaging modality yielding quasimicroscopic cross-sectional images of cartilage. As yet, comprehensive parameterization and quantification of birefringence and tissue properties have not been performed on human cartilage. PS-OCT and algorithm-based image analysis were used to objectively grade human cartilage degeneration in terms of surface irregularity, tissue homogeneity, signal attenuation, as well as birefringence coefficient and band width, height, depth, and number. Degeneration-dependent changes were noted for the former three parameters exclusively, thereby questioning the diagnostic value of PS-OCT in the assessment of human cartilage degeneration.

  8. 1030-nm diode-laser-based light source delivering pulses with nanojoule energies and picosecond duration adjustable by mode locking or pulse gating operation

    NASA Astrophysics Data System (ADS)

    Klehr, A.; Liero, A.; Wenzel, H.; Bugge, F.; Brox, O.; Fricke, J.; Ressel, P.; Knigge, A.; Heinrich, W.; Tränkle, G.

    2017-02-01

    A new compact 1030 nm picosecond light source which can be switched between pulse gating and mode locking operation is presented. It consists of a multi-section distributed Bragg reflector (DBR) laser, an ultrafast multisection optical gate and a flared power amplifier (PA), mounted together with high frequency electronics and optical elements on a 5×4 cm micro bench. The master oscillator (MO) is a 10 mm long ridge wave-guide (RW) laser consisting of 200 μm long saturable absorber, 1500 μm long gain, 8000 μm long cavity, 200 μm long DBR and 100 μm long monitor sections. The 2 mm long optical gate consisting of several RW sections is monolithically integrated with the 4 mm long gain-guided tapered amplifier on a single chip. The light source can be switched between pulse gating and passive mode locking operation. For pulse gating all sections of the MO (except of the DBR and monitor sections) are forward biased and driven by a constant current. By injecting electrical pulses into one section of the optical gate the CW beam emitted by the MO is converted into a train of optical pulses with adjustable widths between 250 ps and 1000 ps. Peak powers of 20 W and spectral linewidths in the MHz range are achieved. Shorter pulses with widths between 4 ps and 15 ps and peak powers up to 50 W but larger spectral widths of about 300 pm are generated by mode locking where the saturable absorber section of the MO is reversed biased. The repetition rate of 4.2 GHz of the pulse train emitted by the MO can be reduced to values between 1 kHz and 100 MHz by utilizing the optical gate as pulse picker. The pulse-to-pulse distance can be controlled by an external trigger source.

  9. Measurement of Spectral Broadening in PTS-Polydiacetylene

    NASA Astrophysics Data System (ADS)

    Bhowmik, Achintya; Thakur, Mrinal

    1998-03-01

    PTS-polydiacetylene has significant potential for future applications in ultrafast all-optical switches and logic gates.(R. Quintero-Torres and M. Thakur, Appl. Phys. Lett., 66, 1310 (1995).) In this work, we have made detailed measurements of the instantaneous spectral line broadening in a 500 μm thick PTS single-crystal as a function of intensity and wavelength. A mode-locked Ti-Sapphire laser with 2 ps pulse-width at 82 MHz repetition rate, and a Nd:YAG laser with 60 ps pulse-width at 10 Hz repetition rate were used for measurements at 720-840 nm and 1064 nm wavelength respectively. The spectral bandwidth of the beam was recorded before and after passing through the PTS single-crystal by a high-resolution spectrometer. The nonlinear refractive index (n_2) of PTS as a function of wavelength has been determined from the spectral broadening data.

  10. In-depth study of single photon time resolution for the Philips digital silicon photomultiplier

    NASA Astrophysics Data System (ADS)

    Liu, Z.; Gundacker, S.; Pizzichemi, M.; Ghezzi, A.; Auffray, E.; Lecoq, P.; Paganoni, M.

    2016-06-01

    The digital silicon photomultiplier (SiPM) has been commercialised by Philips as an innovative technology compared to analog silicon photomultiplier devices. The Philips digital SiPM, has a pair of time to digital converters (TDCs) connected to 12800 single photon avalanche diodes (SPADs). Detailed measurements were performed to understand the low photon time response of the Philips digital SiPM. The single photon time resolution (SPTR) of every single SPAD in a pixel consisting of 3200 SPADs was measured and an average value of 85 ps full width at half maximum (FWHM) was observed. Each SPAD sends the signal to the TDC with different signal propagation time, resulting in a so called trigger network skew. This distribution of the trigger network skew for a pixel (3200 SPADs) has been measured and a variation of 50 ps FWHM was extracted. The SPTR of the whole pixel is the combination of SPAD jitter, trigger network skew, and the SPAD non-uniformity. The SPTR of a complete pixel was 103 ps FWHM at 3.3 V above breakdown voltage. Further, the effect of the crosstalk at a low photon level has been studied, with the two photon time resolution degrading if the events are a combination of detected (true) photons and crosstalk events. Finally, the time response to multiple photons was investigated.

  11. Broadband optical frequency comb generator based on driving N-cascaded modulators by Gaussian-shaped waveform

    NASA Astrophysics Data System (ADS)

    Hmood, Jassim K.; Harun, Sulaiman W.

    2018-05-01

    A new approach for realizing a wideband optical frequency comb (OFC) generator based on driving cascaded modulators by a Gaussian-shaped waveform, is proposed and numerically demonstrated. The setup includes N-cascaded MZMs, a single Gaussian-shaped waveform generator, and N-1 electrical time delayer. The first MZM is driven directly by a Gaussian-shaped waveform, while delayed replicas of the Gaussian-shaped waveform drive the other MZMs. An analytical model that describes the proposed OFC generator is provided to study the effect of number and chirp factor of cascaded MZM as well as pulse width on output spectrum. Optical frequency combs at frequency spacing of 1 GHz are generated by applying Gaussian-shaped waveform at pulse widths ranging from 200 to 400 ps. Our results reveal that, the number of comb lines is inversely proportional to the pulse width and directly proportional to both number and chirp factor of cascaded MZMs. At pulse width of 200 ps and chirp factor of 4, 67 frequency lines can be measured at output spectrum of two-cascaded MZMs setup. Whereas, increasing the number of cascaded stages to 3, 4, and 5, the optical spectra counts 89, 109 and 123 frequency lines; respectively. When the delay time is optimized, 61 comb lines can be achieved with power fluctuations of less than 1 dB for five-cascaded MZMs setup.

  12. Measurement of B_{s}^{0} and D_{s}^{-} Meson Lifetimes.

    PubMed

    Aaij, R; Adeva, B; Adinolfi, M; Ajaltouni, Z; Akar, S; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amerio, S; Amhis, Y; An, L; Anderlini, L; Andreassi, G; Andreotti, M; Andrews, J E; Appleby, R B; Archilli, F; d'Argent, P; Arnau Romeu, J; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Baalouch, M; Babuschkin, I; Bachmann, S; Back, J J; Badalov, A; Baesso, C; Baker, S; Balagura, V; Baldini, W; Baranov, A; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Baryshnikov, F; Baszczyk, M; Batozskaya, V; Batsukh, B; Battista, V; Bay, A; Beaucourt, L; Beddow, J; Bedeschi, F; Bediaga, I; Beiter, A; Bel, L J; Bellee, V; Belloli, N; Belous, K; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Beranek, S; Berezhnoy, A; Bernet, R; Bertolin, A; Betancourt, C; Betti, F; Bettler, M-O; van Beuzekom, M; Bezshyiko, Ia; Bifani, S; Billoir, P; Birnkraut, A; Bitadze, A; Bizzeti, A; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Boettcher, T; Bondar, A; Bondar, N; Bonivento, W; Bordyuzhin, I; Borgheresi, A; Borghi, S; Borisyak, M; Borsato, M; Bossu, F; Boubdir, M; Bowcock, T J V; Bowen, E; Bozzi, C; Braun, S; Britton, T; Brodzicka, J; Buchanan, E; Burr, C; Bursche, A; Buytaert, J; Cadeddu, S; Calabrese, R; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Campora Perez, D H; Capriotti, L; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carniti, P; Carson, L; Carvalho Akiba, K; Casse, G; Cassina, L; Castillo Garcia, L; Cattaneo, M; Cavallero, G; Cenci, R; Chamont, D; Charles, M; Charpentier, Ph; Chatzikonstantinidis, G; Chefdeville, M; Chen, S; Cheung, S-F; Chobanova, V; Chrzaszcz, M; Chubykin, A; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coco, V; Cogan, J; Cogneras, E; Cogoni, V; Cojocariu, L; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombs, G; Coquereau, S; Corti, G; Corvo, M; Costa Sobral, C M; Couturier, B; Cowan, G A; Craik, D C; Crocombe, A; Cruz Torres, M; Cunliffe, S; Currie, R; D'Ambrosio, C; Da Cunha Marinho, F; Dall'Occo, E; Dalseno, J; David, P N Y; Davis, A; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Serio, M; De Simone, P; Dean, C T; Decamp, D; Deckenhoff, M; Del Buono, L; Dembinski, H-P; Demmer, M; Dendek, A; Derkach, D; Deschamps, O; Dettori, F; Dey, B; Di Canto, A; Di Nezza, P; Dijkstra, H; Dordei, F; Dorigo, M; Dosil Suárez, A; Dovbnya, A; Dreimanis, K; Dufour, L; Dujany, G; Dungs, K; Durante, P; Dzhelyadin, R; Dziewiecki, M; Dziurda, A; Dzyuba, A; Déléage, N; Easo, S; Ebert, M; Egede, U; Egorychev, V; Eidelman, S; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; Ely, S; Esen, S; Evans, H M; Evans, T; Falabella, A; Farley, N; Farry, S; Fay, R; Fazzini, D; Ferguson, D; Fernandez, G; Fernandez Prieto, A; Ferrari, F; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fini, R A; Fiore, M; Fiorini, M; Firlej, M; Fitzpatrick, C; Fiutowski, T; Fleuret, F; Fohl, K; Fontana, M; Fontanelli, F; Forshaw, D C; Forty, R; Franco Lima, V; Frank, M; Frei, C; Fu, J; Funk, W; Furfaro, E; Färber, C; Gallas Torreira, A; Galli, D; Gallorini, S; Gambetta, S; Gandelman, M; Gandini, P; Gao, Y; Garcia Martin, L M; García Pardiñas, J; Garra Tico, J; Garrido, L; Garsed, P J; Gascon, D; Gaspar, C; Gavardi, L; Gazzoni, G; Gerick, D; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gianì, S; Gibson, V; Girard, O G; Giubega, L; Gizdov, K; Gligorov, V V; Golubkov, D; Golutvin, A; Gomes, A; Gorelov, I V; Gotti, C; Govorkova, E; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graverini, E; Graziani, G; Grecu, A; Greim, R; Griffith, P; Grillo, L; Gruberg Cazon, B R; Grünberg, O; Gushchin, E; Guz, Yu; Gys, T; Göbel, C; Hadavizadeh, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hamilton, B; Han, X; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; Hatch, M; He, J; Head, T; Heister, A; Hennessy, K; Henrard, P; Henry, L; van Herwijnen, E; Heß, M; Hicheur, A; Hill, D; Hombach, C; Hopchev, H; Huard, Z-C; Hulsbergen, W; Humair, T; Hushchyn, M; Hutchcroft, D; Idzik, M; Ilten, P; Jacobsson, R; Jalocha, J; Jans, E; Jawahery, A; Jiang, F; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Jurik, N; Kandybei, S; Karacson, M; Kariuki, J M; Karodia, S; Kecke, M; Kelsey, M; Kenzie, M; Ketel, T; Khairullin, E; Khanji, B; Khurewathanakul, C; Kirn, T; Klaver, S; Klimaszewski, K; Klimkovich, T; Koliiev, S; Kolpin, M; Komarov, I; Kopecna, R; Koppenburg, P; Kosmyntseva, A; Kotriakhova, S; Kozachuk, A; Kozeiha, M; Kravchuk, L; Kreps, M; Krokovny, P; Kruse, F; Krzemien, W; Kucewicz, W; Kucharczyk, M; Kudryavtsev, V; Kuonen, A K; Kurek, K; Kvaratskheliya, T; Lacarrere, D; Lafferty, G; Lai, A; Lanfranchi, G; Langenbruch, C; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Leflat, A; Lefrançois, J; Lefèvre, R; Lemaitre, F; Lemos Cid, E; Leroy, O; Lesiak, T; Leverington, B; Li, T; Li, Y; Li, Z; Likhomanenko, T; Lindner, R; Lionetto, F; Liu, X; Loh, D; Longstaff, I; Lopes, J H; Lucchesi, D; Lucio Martinez, M; Luo, H; Lupato, A; Luppi, E; Lupton, O; Lusiani, A; Lyu, X; Machefert, F; Maciuc, F; Maev, O; Maguire, K; Malde, S; Malinin, A; Maltsev, T; Manca, G; Mancinelli, G; Manning, P; Maratas, J; Marchand, J F; Marconi, U; Marin Benito, C; Marinangeli, M; Marino, P; Marks, J; Martellotti, G; Martin, M; Martinelli, M; Martinez Santos, D; Martinez Vidal, F; Martins Tostes, D; Massacrier, L M; Massafferri, A; Matev, R; Mathad, A; Mathe, Z; Matteuzzi, C; Mauri, A; Maurice, E; Maurin, B; Mazurov, A; McCann, M; McNab, A; McNulty, R; Meadows, B; Meier, F; Melnychuk, D; Merk, M; Merli, A; Michielin, E; Milanes, D A; Minard, M-N; Mitzel, D S; Mogini, A; Molina Rodriguez, J; Monroy, I A; Monteil, S; Morandin, M; Morello, M J; Morgunova, O; Moron, J; Morris, A B; Mountain, R; Muheim, F; Mulder, M; Mussini, M; Müller, D; Müller, J; Müller, K; Müller, V; Naik, P; Nakada, T; Nandakumar, R; Nandi, A; Nasteva, I; Needham, M; Neri, N; Neubert, S; Neufeld, N; Neuner, M; Nguyen, T D; Nguyen-Mau, C; Nieswand, S; Niet, R; Nikitin, N; Nikodem, T; Nogay, A; Novoselov, A; O'Hanlon, D P; Oblakowska-Mucha, A; Obraztsov, V; Ogilvy, S; Oldeman, R; Onderwater, C J G; Ossowska, A; Otalora Goicochea, J M; Owen, P; Oyanguren, A; Pais, P R; Palano, A; Palutan, M; Papanestis, A; Pappagallo, M; Pappalardo, L L; Pappenheimer, C; Parker, W; Parkes, C; Passaleva, G; Pastore, A; Patel, M; Patrignani, C; Pearce, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perret, P; Pescatore, L; Petridis, K; Petrolini, A; Petrov, A; Petruzzo, M; Picatoste Olloqui, E; Pietrzyk, B; Pikies, M; Pinci, D; Pistone, A; Piucci, A; Placinta, V; Playfer, S; Plo Casasus, M; Poikela, T; Polci, F; Poli Lener, M; Poluektov, A; Polyakov, I; Polycarpo, E; Pomery, G J; Ponce, S; Popov, A; Popov, D; Popovici, B; Poslavskii, S; Potterat, C; Price, E; Prisciandaro, J; Prouve, C; Pugatch, V; Puig Navarro, A; Punzi, G; Qian, C; Qian, W; Quagliani, R; Rachwal, B; Rademacker, J H; Rama, M; Ramos Pernas, M; Rangel, M S; Raniuk, I; Ratnikov, F; Raven, G; Redi, F; Reichert, S; Dos Reis, A C; Remon Alepuz, C; Renaudin, V; Ricciardi, S; Richards, S; Rihl, M; Rinnert, K; Rives Molina, V; Robbe, P; Rodrigues, A B; Rodrigues, E; Rodriguez Lopez, J A; Rodriguez Perez, P; Rogozhnikov, A; Roiser, S; Rollings, A; Romanovskiy, V; Romero Vidal, A; Ronayne, J W; Rotondo, M; Rudolph, M S; Ruf, T; Ruiz Valls, P; Saborido Silva, J J; Sadykhov, E; Sagidova, N; Saitta, B; Salustino Guimaraes, V; Sanchez Gonzalo, D; Sanchez Mayordomo, C; Sanmartin Sedes, B; Santacesaria, R; Santamarina Rios, C; Santimaria, M; Santovetti, E; Sarti, A; Satriano, C; Satta, A; Saunders, D M; Savrina, D; Schael, S; Schellenberg, M; Schiller, M; Schindler, H; Schlupp, M; Schmelling, M; Schmelzer, T; Schmidt, B; Schneider, O; Schopper, A; Schreiner, H F; Schubert, K; Schubiger, M; Schune, M-H; Schwemmer, R; Sciascia, B; Sciubba, A; Semennikov, A; Sergi, A; Serra, N; Serrano, J; Sestini, L; Seyfert, P; Shapkin, M; Shapoval, I; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, V; Siddi, B G; Silva Coutinho, R; Silva de Oliveira, L; Simi, G; Simone, S; Sirendi, M; Skidmore, N; Skwarnicki, T; Smith, E; Smith, I T; Smith, J; Smith, M; Soares Lavra, L; Sokoloff, M D; Soler, F J P; Souza De Paula, B; Spaan, B; Spradlin, P; Sridharan, S; Stagni, F; Stahl, M; Stahl, S; Stefko, P; Stefkova, S; Steinkamp, O; Stemmle, S; Stenyakin, O; Stevens, H; Stoica, S; Stone, S; Storaci, B; Stracka, S; Stramaglia, M E; Straticiuc, M; Straumann, U; Sun, L; Sutcliffe, W; Swientek, K; Syropoulos, V; Szczekowski, M; Szumlak, T; T'Jampens, S; Tayduganov, A; Tekampe, T; Tellarini, G; Teubert, F; Thomas, E; van Tilburg, J; Tilley, M J; Tisserand, V; Tobin, M; Tolk, S; Tomassetti, L; Tonelli, D; Topp-Joergensen, S; Toriello, F; Tourinho Jadallah Aoude, R; Tournefier, E; Tourneur, S; Trabelsi, K; Traill, M; Tran, M T; Tresch, M; Trisovic, A; Tsaregorodtsev, A; Tsopelas, P; Tully, A; Tuning, N; Ukleja, A; Ustyuzhanin, A; Uwer, U; Vacca, C; Vagnoni, V; Valassi, A; Valat, S; Valenti, G; Vazquez Gomez, R; Vazquez Regueiro, P; Vecchi, S; van Veghel, M; Velthuis, J J; Veltri, M; Veneziano, G; Venkateswaran, A; Verlage, T A; Vernet, M; Vesterinen, M; Viana Barbosa, J V; Viaud, B; Vieira, D; Vieites Diaz, M; Viemann, H; Vilasis-Cardona, X; Vitti, M; Volkov, V; Vollhardt, A; Voneki, B; Vorobyev, A; Vorobyev, V; Voß, C; de Vries, J A; Vázquez Sierra, C; Waldi, R; Wallace, C; Wallace, R; Walsh, J; Wang, J; Ward, D R; Wark, H M; Watson, N K; Websdale, D; Weiden, A; Whitehead, M; Wicht, J; Wilkinson, G; Wilkinson, M; Williams, M; Williams, M P; Williams, M; Williams, T; Wilson, F F; Wimberley, J; Winn, M A; Wishahi, J; Wislicki, W; Witek, M; Wormser, G; Wotton, S A; Wraight, K; Wyllie, K; Xie, Y; Xing, Z; Xu, Z; Yang, Z; Yang, Z; Yao, Y; Yin, H; Yu, J; Yuan, X; Yushchenko, O; Zarebski, K A; Zavertyaev, M; Zhang, L; Zhang, Y; Zhelezov, A; Zheng, Y; Zhu, X; Zhukov, V; Zucchelli, S

    2017-09-08

    We report on a measurement of the flavor-specific B_{s}^{0} lifetime and of the D_{s}^{-} lifetime using proton-proton collisions at center-of-mass energies of 7 and 8 TeV, collected by the LHCb experiment and corresponding to 3.0  fb^{-1} of integrated luminosity. Approximately 407 000 B_{s}^{0}→D_{s}^{(*)-}μ^{+}ν_{μ} decays are partially reconstructed in the K^{+}K^{-}π^{-}μ^{+} final state. The B_{s}^{0} and D_{s}^{-} natural widths are determined using, as a reference, kinematically similar B^{0}→D^{(*)-}μ^{+}ν_{μ} decays reconstructed in the same final state. The resulting differences between widths of B_{s}^{0} and B^{0} mesons and of D_{s}^{-} and D^{-} mesons are Δ_{Γ}(B)=-0.0115±0.0053(stat)±0.0041(syst)  ps^{-1} and Δ_{Γ}(D)=1.0131±0.0117(stat)±0.0065(syst)  ps^{-1}, respectively. Combined with the known B^{0} and D^{-} lifetimes, these yield the flavor-specific B_{s}^{0} lifetime, τ_{B_{s}^{0}}^{fs}=1.547±0.013(stat)±0.010(syst)±0.004(τ_{B})  ps and the D_{s}^{-} lifetime, τ_{D_{s}^{-}}=0.5064±0.0030(stat)±0.0017(syst)±0.0017(τ_{D})  ps. The last uncertainties originate from the limited knowledge of the B^{0} and D^{-} lifetimes. The results improve upon current determinations.

  13. Changes in temporomandibular joint spaces after arthroscopic disc repositioning: a self-control study

    PubMed Central

    Kai Hu, Ying; Abdelrehem, Ahmed; Yang, Chi; Cai, Xie Yi; Xie, Qian Yang; Sah, Manoj Kumar

    2017-01-01

    Disc repositioning is a common procedure for patients with anterior disc displacement (ADD). The purpose of this retrospective record-based study was to evaluate changes in the widths of joint spaces and condylar position changes in patients with unilateral ADD following arthroscopic disc repositioning, with the healthy sides as self-control, using magnetic resonance images (MRI).Widths of anterior, superior, and posterior joint spaces (AS, SS, and PS) were measured. The condylar position was described as anterior, centric or posterior, expressed as . Paired-t test and Chi-square test were used to analyze the data. Fifty-four records conformed to the inclusion criteria (mean age of 21.02 years). Widths of SS and PS increased significantly after surgery (P < 0.001) on the operative sides, while joint spaces of healthy sides and AS of operative sides had no significant changes. Dominant location of condyles of operative sides changed from a posterior position to an anterior position, while healthy sides were mostly centric condylar position no matter preoperatively or postoperatively. Therefore, the results of this study indicate that unilateral arthroscopic disc repositioning significantly increases the posterior and superior spaces of the affected joints, without affecting spaces of the healthy sides. PMID:28361905

  14. Miniaturized Retrodirective Arrays for a Nanosatellite Platform

    DTIC Science & Technology

    2012-01-01

    TABLE I ABBREVIATED CONTROL MODULE LOOKUP TABLE PS2 PS3 PS4 e B4 B3 82 81 84 83 82 81 84 83 82 81 30.00 1 1 0 0 I 0 0 0 0 I 0 0 22.02 l l 0 1 l 0 I...is controlled by bit values in columns PS2, PS3 , and PS4 of Table I. 4.3.2 Experimental Results Full-Duplex Operation To show the full-duplex

  15. First results of the front-end ASIC for the strip detector of the PANDA MVD

    NASA Astrophysics Data System (ADS)

    Quagli, T.; Brinkmann, K.-T.; Calvo, D.; Di Pietro, V.; Lai, A.; Riccardi, A.; Ritman, J.; Rivetti, A.; Rolo, M. D.; Stockmanns, T.; Wheadon, R.; Zambanini, A.

    2017-03-01

    PANDA is a key experiment of the future FAIR facility and the Micro Vertex Detector (MVD) is the innermost part of its tracking system. PASTA (PAnda STrip ASIC) is the readout chip for the strip part of the MVD. The chip is designed to provide high resolution timestamp and charge information with the Time over Threshold (ToT) technique. Its architecture is based on Time to Digital Converters with analog interpolators, with a time bin width of 50 ps. The chip implements Single Event Upset (SEU) protection techniques for its digital parts. A first full-size prototype with 64 channels was produced in a commercial 110 nm CMOS technology and the first characterizations of the prototype were performed.

  16. Phosphatidylserine directly and positively regulates fusion of myoblasts into myotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeong, Jaemin, E-mail: jmj1103@kirams.re.kr; Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul; Conboy, Irina M., E-mail: iconboy@berkeley.edu

    2011-10-14

    Highlights: {yields} PS broadly and persistently trans-locates to the outer leaflet of plasma membrane during myoblast fusion into myotubes. {yields} Robust myotubes are formed when PS liposomes are added exogenously. {yields} PS increases the width of de novo myotubes and the numbers of myonuclei, but not the myotube length. {yields} Annexin V or PS antibody inhibits myotube formation by masking exposed PS. -- Abstract: Cell membrane consists of various lipids such as phosphatidylserine (PS), phosphatidylcholine (PC), and phosphatidylethanolamine (PE). Among them, PS is a molecular marker of apoptosis, because it is located to the inner leaflet of plasma membrane generallymore » but it is moved to the outer leaflet during programmed cell death. The process of apoptosis has been implicated in the fusion of muscle progenitor cells, myoblasts, into myotubes. However, it remained unclear whether PS regulates muscle cell differentiation directly. In this paper, localization of PS to the outer leaflet of plasma membrane in proliferating primary myoblasts and during fusion of these myoblasts into myotubes is validated using Annexin V. Moreover, we show the presence of PS clusters at the cell-cell contact points, suggesting the importance of membrane ruffling and PS exposure for the myogenic cell fusion. Confirming this conclusion, experimentally constructed PS, but not PC liposomes dramatically enhance the formation of myotubes from myoblasts, thus demonstrating a direct positive effect of PS on the muscle cell fusion. In contrast, myoblasts exposed to PC liposomes produce long myotubes with low numbers of myonuclei. Moreover, pharmacological masking of PS on the myoblast surface inhibits fusion of these cells into myotubes in a dose-dependent manner.« less

  17. Molecular orbital imaging of the acetone S2 excited state using time-resolved (e, 2e) electron momentum spectroscopy.

    PubMed

    Yamazaki, Masakazu; Oishi, Keiya; Nakazawa, Hiroyuki; Zhu, Chaoyuan; Takahashi, Masahiko

    2015-03-13

    We report a time-resolved (e, 2e) experiment on the deuterated acetone molecule in the S2 Rydberg state with a lifetime of 13.5 ps. The acetone S2 state was prepared by a 195 nm pump laser and probed with electron momentum spectroscopy using a 1.2 keV incident electron beam of 1 ps temporal width. In spite of the low data statistics as well as of the limited time resolution (±35  ps) due to velocity mismatch, the experimental results clearly demonstrate that electron momentum spectroscopy measurements of short-lived transient species are feasible, opening the door to time-resolved orbital imaging in momentum space.

  18. Hybrid mode-locked fiber ring laser using graphene and charcoal nanoparticles as saturable absorbers

    NASA Astrophysics Data System (ADS)

    Hu, Hongyu; Zhang, Xiang; Li, Wenbo; Dutta, Niloy K.

    2016-05-01

    A fiber ring laser which implements hybrid mode locking technique has been proposed and experimentally demonstrated to generate pulse train at 20 GHz repetition rate with ultrashort pulse width. Graphene and charcoal nano-particles acting as passive mode lockers are inserted into a rational harmonic mode-locked fiber laser to improve the performance. With graphene saturable absorbers, the pulse duration is shortened from 5.3 ps to 2.8 ps, and with charcoal nano-particles, it is shortened to 3.2 ps. The RF spectra show that supermode noise can be removed in the presence of the saturable absorbers. Numerical simulation of the pulse transmission has also been carried out, which shows good agreement with the experimental results.

  19. 35 GHz mode-locking of 1.3 μm quantum dot lasers

    NASA Astrophysics Data System (ADS)

    Kuntz, M.; Fiol, G.; Lämmlin, M.; Bimberg, D.; Thompson, M. G.; Tan, K. T.; Marinelli, C.; Penty, R. V.; White, I. H.; Ustinov, V. M.; Zhukov, A. E.; Shernyakov, Yu. M.; Kovsh, A. R.

    2004-08-01

    35GHz passive mode-locking of 1.3μm (InGa)As/GaAs quantum dot lasers is reported. Hybrid mode-locking was achieved at frequencies up to 20GHz. The minimum pulse width of the Fourier-limited pulses was 7ps with a peak power of 6mW. Low uncorrelated timing jitter below 1ps was found in cross correlation experiments. High-frequency operation of the lasers was eased by a ridge waveguide design that includes etching through the active layer.

  20. Rydberg wave packets in static electric fields initiated with far infrared pulses

    NASA Astrophysics Data System (ADS)

    Robicheaux, F.; Lankhuijzen, G. M.; Rella, C.; Noordam, L. D.

    1998-05-01

    We perform experimental and theoretical studies of transitions from bound atomic Rydberg Stark states in a static electric field to autoionizing states. The transitions are induced by a broadband, tunable free electron laser pulse (1-5 ps width). The systematics of the wave packet properties are investigated when the initial state is the lowest energy state or highest energy state of the n-manifold. We show that the recently proposed electron gun is realized for Rb giving an AC electron current with a 20 ps period.

  1. Active frequency matching in stimulated Brillouin amplification for production of a 2.4  J, 200  ps laser pulse.

    PubMed

    Yuan, Hang; Wang, Yulei; Lu, Zhiwei; Zheng, Zhenxing

    2018-02-01

    A frequency matching Brillouin amplification in high-power solid-state laser systems is proposed. The energy extraction efficiency could be maintained at a high level in a non-collinear Brillouin amplification structure using an exact Stokes frequency shift. Laser pulses having a width of 200 ps and energy of 2.4 J were produced. This method can be used to transfer energy from a long pulse to a short pulse through a high-power solid-state laser system.

  2. Performance of a 512 x 512 Gated CMOS Imager with a 250 ps Exposure Time

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teruya, A T; Moody, J D; Hsing, W W

    2012-10-01

    We describe the performance of a 512x512 gated CMOS read out integrated circuit (ROIC) with a 250 ps exposure time. A low-skew, H-tree trigger distribution system is used to locally generate individual pixel gates in each 8x8 neighborhood of the ROIC. The temporal width of the gate is voltage controlled and user selectable via a precision potentiometer. The gating implementation was first validated in optical tests of a 64x64 pixel prototype ROIC developed as a proof-of-concept during the early phases of the development program. The layout of the H-Tree addresses each quadrant of the ROIC independently and admits operation ofmore » the ROIC in two modes. If “common mode” triggering is used, the camera provides a single 512x512 image. If independent triggers are used, the camera can provide up to four 256x256 images with a frame separation set by the trigger intervals. The ROIC design includes small (sub-pixel) optical photodiode structures to allow test and characterization of the ROIC using optical sources prior to bump bonding. Reported test results were obtained using short pulse, second harmonic Ti:Sapphire laser systems operating at λ~ 400 nm at sub-ps pulse widths.« less

  3. Wide-band fanned-out supercontinuum source covering O-, E-, S-, C-, L- and U-bands

    NASA Astrophysics Data System (ADS)

    Ahmad, H.; Latif, A. A.; Awang, N. A.; Zulkifli, M. Z.; Thambiratnam, K.; Ghani, Z. A.; Harun, S. W.

    2012-10-01

    A wide-band supercontinuum source generated by mode-locked pulses injected into a Highly Non-Linear Fiber (HNLF) is proposed and demonstrated. A 49 cm long Bismuth-Erbium Doped Fiber (Bi-EDF) pumped by two 1480 nm laser diodes acts as the active gain medium for a ring fiber laser, from which mode-locked pulses are obtained using the Non-Polarization Rotation (NPR) technique. The mode-locked pulses are then injected into a 100 m long HLNF with a dispersion of 0.15 ps/nm km at 1550 nm to generate a supercontinuum spectrum spanning from 1340 nm to more than 1680 nm with a pulse width of 0.08 ps and an average power of -17 dBm. The supercontinuum spectrum is sliced using a 24 channel Arrayed Waveguide Grating (AWG) with a channel spacing of 100 GHz to obtain a fanned-out laser output covering the O-, E-, S-, C-, L- and U-bands. The lasing wavelengths obtained have an average pulse width of 9 ps with only minor fluctuations and a mode-locked repetition rate of 40 MHz, and is sufficiently stable to be used in a variety of sensing and communication applications, most notably as cost-effective sources for Fiber-to-the-Home (FTTH) networks.

  4. Electrophoresis in ice surface grooves for probing protein affinity to a specific plane of ice crystal.

    PubMed

    Inagawa, Arinori; Okada, Yusuke; Okada, Tetsuo

    2018-06-01

    Channel-like grooves are formed on the surface of frozen aqueous sucrose. They are filled with a freeze concentrated solution (FCS) and act as an efficient size-tunable separation field for micro and nanoparticles. The width of the channel can be easily varied by changing the temperature. Because the channel width decreases with decreasing temperature, particles become immobilized due to physical interference from the ice wall when the temperature reaches a threshold point specific to the particle size. Surface modification of particles can add a factor of chemical interaction between the particles and ice walls. In this study, anti-freeze proteins (AFPs) are anchored on 1µm-polystyrene (PS) particles, and their behavior in the surface grooves on the ice is studied. The threshold temperature is an effective criterion for evaluating chemical interactions between particles and ice walls. The AFP binding on 1µm PS particles lowers the threshold temperature by 2.5°C, indicating interactions between AFPs on the PS particles and the ice wall. Because the AFPs studied here show selectivity towards the prism plane, it is critical that the prism plane of the ice crystal is in contact with the FCS in the surface grooves. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. On the use of a chirped Bragg grating as a cavity mirror of a picosecond Nd : YAG laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zubko, A E; Shashkov, E V; Smirnov, A V

    2016-02-28

    The first experimental evidence is presented that the use of a chirped volume Bragg grating (CVBG) as a cavity mirror of a Q-switched picosecond Nd : YAG laser with self-mode-locking leads to significant changes in the temporal parameters of the laser output. Measurements have been performed at two positions of the CVBG: with the grating placed so that shorter wavelengths reflected from its front part lead longer wavelengths or with the grating rotated through 180°, so that longer wavelengths are reflected first. In the former case, the duration of individual pulses in a train increased from ∼35 to ∼300 ps,more » whereas the pulse train shape and duration remained the same as in the case of a conventional laser with a mirror cavity. In the latter case, the full width at half maximum of pulse trains increased from ∼70 ns (Nd : YAG laser with a mirror cavity) to ∼1 ms, and the duration of individual pulses increased from 35 ps to ∼1.2 ns, respectively, which is more typical of free-running laser operation. (laser crystals and braggg ratings)« less

  6. Hybrid femtosecond/picosecond rotational coherent anti-Stokes Raman scattering temperature and concentration measurements using two different picosecond-duration probes.

    PubMed

    Kearney, Sean P; Scoglietti, Daniel J; Kliewer, Christopher J

    2013-05-20

    A hybrid fs/ps pure-rotational CARS scheme is characterized in furnace-heated air at temperatures from 290 to 800 K. Impulsive femtosecond excitation is used to prepare a rotational Raman coherence that is probed with a ps-duration beam generated from an initially broadband fs pulse that is bandwidth limited using air-spaced Fabry-Perot etalons. CARS spectra are generated using 1.5- and 7.0-ps duration probe beams with corresponding coarse and narrow spectral widths. The spectra are fitted using a simple phenomenological model for both shot-averaged and single-shot measurements of temperature and oxygen mole fraction. Our single-shot temperature measurements exhibit high levels of precision and accuracy when the spectrally coarse 1.5-ps probe beam is used, demonstrating that high spectral resolution is not required for thermometry. An initial assessment of concentration measurements in air is also provided, with best results obtained using the higher resolution 7.0-ps probe. This systematic assessment of the hybrid CARS technique demonstrates its utility for practical application in low-temperature gas-phase systems.

  7. Measurement of the CP-violating phase ϕ(s) in the decay B(s)(0) → J/ψϕ.

    PubMed

    Aaij, R; Abellan Beteta, C; Adeva, B; Adinolfi, M; Adrover, C; Affolder, A; Ajaltouni, Z; Albrecht, J; Alessio, F; Alexander, M; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amhis, Y; Anderson, J; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Arrabito, L; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Bachmann, S; Back, J J; Bailey, D S; Balagura, V; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Bates, A; Bauer, C; Bauer, Th; Bay, A; Bediaga, I; Belogurov, S; Belous, K; Belyaev, I; Ben-Haim, E; Benayoun, M; Bencivenni, G; Benson, S; Benton, J; Bernet, R; Bettler, M-O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blanks, C; Blouw, J; Blusk, S; Bobrov, A; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Bowcock, T J V; Bozzi, C; Brambach, T; van den Brand, J; Bressieux, J; Brett, D; Britsch, M; Britton, T; Brook, N H; Brown, H; Büchler-Germann, A; Burducea, I; Bursche, A; Buytaert, J; Cadeddu, S; Callot, O; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carson, L; Carvalho Akiba, K; Casse, G; Cattaneo, M; Cauet, Ch; Charles, M; Charpentier, Ph; Chiapolini, N; Ciba, K; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coca, C; Coco, V; Cogan, J; Collins, P; Comerma-Montells, A; Constantin, F; Contu, A; Cook, A; Coombes, M; Corti, G; Cowan, G A; Currie, R; D'Ambrosio, C; David, P; David, P N Y; De Bonis, I; De Capua, S; De Cian, M; De Lorenzi, F; De Miranda, J M; De Paula, L; De Simone, P; Decamp, D; Deckenhoff, M; Degaudenzi, H; Del Buono, L; Deplano, C; Derkach, D; Deschamps, O; Dettori, F; Dickens, J; Dijkstra, H; Diniz Batista, P; Bonal, F; Domingo Donleavy, S; Dordei, F; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dupertuis, F; Dzhelyadin, R; Dziurda, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; van Eijk, D; Eisele, F; Eisenhardt, S; Ekelhof, R; Eklund, L; Elsasser, Ch; Elsby, D; Esperante Pereira, D; Estève, L; Falabella, A; Fanchini, E; Färber, C; Fardell, G; Farinelli, C; Farry, S; Fave, V; Fernandez Albor, V; Ferro-Luzzi, M; Filippov, S; Fitzpatrick, C; Fontana, M; Fontanelli, F; Forty, R; Frank, M; Frei, C; Frosini, M; Furcas, S; Gallas Torreira, A; Galli, D; Gandelman, M; Gandini, P; Gao, Y; Garnier, J-C; Garofoli, J; Garra Tico, J; Garrido, L; Gascon, D; Gaspar, C; Gauvin, N; Gersabeck, M; Gershon, T; Ghez, Ph; Gibson, V; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gordon, H; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Haefeli, G; Haen, C; Haines, S C; Hampson, T; Hansmann-Menzemer, S; Harji, R; Harnew, N; Harrison, J; Harrison, P F; Hartmann, T; He, J; Heijne, V; Hennessy, K; Henrard, P; Hernando Morata, J A; van Herwijnen, E; Hicks, E; Holubyev, K; Hopchev, P; Hulsbergen, W; Hunt, P; Huse, T; Huston, R S; Hutchcroft, D; Hynds, D; Iakovenko, V; Ilten, P; Imong, J; Jacobsson, R; Jaeger, A; Jahjah Hussein, M; Jans, E; Jansen, F; Jaton, P; Jean-Marie, B; Jing, F; John, M; Johnson, D; Jones, C R; Jost, B; Kaballo, M; Kandybei, S; Karacson, M; Karbach, T M; Keaveney, J; Kenyon, I R; Kerzel, U; Ketel, T; Keune, A; Khanji, B; Kim, Y M; Knecht, M; Koppenburg, P; Kozlinskiy, A; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kruzelecki, K; Kucharczyk, M; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanciotti, E; Lanfranchi, G; Langenbruch, C; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J-P; Lefèvre, R; Leflat, A; Lefrançois, J; Leroy, O; Lesiak, T; Li, L; Li Gioi, L; Lieng, M; Liles, M; Lindner, R; Linn, C; Liu, B; Liu, G; von Loeben, J; Lopes, J H; Lopez Asamar, E; Lopez-March, N; Lu, H; Luisier, J; Mac Raighne, A; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Magnin, J; Malde, S; Mamunur, R M D; Manca, G; Mancinelli, G; Mangiafave, N; Marconi, U; Märki, R; Marks, J; Martellotti, G; Martens, A; Martin, L; Martín Sánchez, A; Martinez Santos, D; Massafferri, A; Mathe, Z; Matteuzzi, C; Matveev, M; Maurice, E; Maynard, B; Mazurov, A; McGregor, G; McNulty, R; Meissner, M; Merk, M; Merkel, J; Messi, R; Miglioranzi, S; Milanes, D A; Minard, M-N; Molina Rodriguez, J; Monteil, S; Moran, D; Morawski, P; Mountain, R; Mous, I; Muheim, F; Müller, K; Muresan, R; Muryn, B; Muster, B; Musy, M; Mylroie-Smith, J; Naik, P; Nakada, T; Nandakumar, R; Nasteva, I; Nedos, M; Needham, M; Neufeld, N; Nguyen-Mau, C; Nicol, M; Niess, V; Nikitin, N; Nomerotski, A; Novoselov, A; Oblakowska-Mucha, A; Obraztsov, V; Oggero, S; Ogilvy, S; Okhrimenko, O; Oldeman, R; Orlandea, M; Otalora Goicochea, J M; Owen, P; Pal, K; Palacios, J; Palano, A; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Parkes, C; Parkinson, C J; Passaleva, G; Patel, G D; Patel, M; Paterson, S K; Patrick, G N; Patrignani, C; Pavel-Nicorescu, C; Pazos Alvarez, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perego, D L; Perez Trigo, E; Pérez-Calero Yzquierdo, A; Perret, P; Perrin-Terrin, M; Pessina, G; Petrella, A; Petrolini, A; Phan, A; Picatoste Olloqui, E; Pie Valls, B; Pietrzyk, B; Pilař, T; Pinci, D; Plackett, R; Playfer, S; Plo Casasus, M; Polok, G; Poluektov, A; Polycarpo, E; Popov, D; Popovici, B; Potterat, C; Powell, A; Prisciandaro, J; Pugatch, V; Puig Navarro, A; Qian, W; Rademacker, J H; Rakotomiaramanana, B; Rangel, M S; Raniuk, I; Raven, G; Redford, S; Reid, M M; dos Reis, A C; Ricciardi, S; Rinnert, K; Roa Romero, D A; Robbe, P; Rodrigues, E; Rodrigues, F; Rodriguez Perez, P; Rogers, G J; Roiser, S; Romanovsky, V; Rosello, M; Rouvinet, J; Ruf, T; Ruiz, H; Sabatino, G; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salzmann, C; Sannino, M; Santacesaria, R; Santamarina Rios, C; Santinelli, R; Santovetti, E; Sapunov, M; Sarti, A; Satriano, C; Satta, A; Savrie, M; Savrina, D; Schaack, P; Schiller, M; Schleich, S; Schlupp, M; Schmelling, M; Schmidt, B; Schneider, O; Schopper, A; Schune, M-H; Schwemmer, R; Sciascia, B; Sciubba, A; Seco, M; Semennikov, A; Senderowska, K; Sepp, I; Serra, N; Serrano, J; Seyfert, P; Shapkin, M; Shapoval, I; Shatalov, P; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, O; Shevchenko, V; Shires, A; Silva Coutinho, R; Skwarnicki, T; Smith, A C; Smith, N A; Smith, E; Sobczak, K; Soler, F J P; Solomin, A; Soomro, F; Souza De Paula, B; Spaan, B; Sparkes, A; Spradlin, P; Stagni, F; Stahl, S; Steinkamp, O; Stoica, S; Stone, S; Storaci, B; Straticiuc, M; Straumann, U; Subbiah, V K; Swientek, S; Szczekowski, M; Szczypka, P; Szumlak, T; T'Jampens, S; Teodorescu, E; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Topp-Joergensen, S; Torr, N; Tournefier, E; Tran, M T; Tsaregorodtsev, A; Tuning, N; Ubeda Garcia, M; Ukleja, A; Urquijo, P; Uwer, U; Vagnoni, V; Valenti, G; Vazquez Gomez, R; Vazquez Regueiro, P; Vecchi, S; Velthuis, J J; Veltri, M; Viaud, B; Videau, I; Vilasis-Cardona, X; Visniakov, J; Vollhardt, A; Volyanskyy, D; Voong, D; Vorobyev, A; Voss, H; Wandernoth, S; Wang, J; Ward, D R; Watson, N K; Webber, A D; Websdale, D; Whitehead, M; Wiedner, D; Wiggers, L; Wilkinson, G; Williams, M P; Williams, M; Wilson, F F; Wishahi, J; Witek, M; Witzeling, W; Wotton, S A; Wyllie, K; Xie, Y; Xing, F; Xing, Z; Yang, Z; Young, R; Yushchenko, O; Zavertyaev, M; Zhang, F; Zhang, L; Zhang, W C; Zhang, Y; Zhelezov, A; Zhong, L; Zverev, E; Zvyagin, A

    2012-03-09

    We present a measurement of the time-dependent CP-violating asymmetry in B(s)(0) → J/ψϕ decays, using data collected with the LHCb detector at the LHC. The decay time distribution of B(s)(0) → J/ψϕ is characterized by the decay widths Γ(H) and Γ(L) of the heavy and light mass eigenstates, respectively, of the B(s)(0) - B(s)(0) system and by a CP-violating phase ϕ(s). In a sample of about 8500 B(s)(0) → J/ψϕ events isolated from 0.37  fb(-1) of pp collisions at sqrt[s] = 7  TeV, we measure ϕ(s) = 0.15 ± 0.18(stat) ± 0.06(syst)  rad. We also find an average B(s)(0) decay width Γ(s) ≡ (Γ(L) + Γ(H))/2 = 0.657 ± 0.009(stat) ± 0.008(syst)  ps(-1) and a decay width difference ΔΓ(s) ≡ Γ(L) - Γ(H) = 0.123 ± 0.029(stat) ± 0.011(syst)  ps(-1). Our measurement is insensitive to the transformation (ϕ(s),ΔΓ(s)) ↦ (π - ϕ(s), -ΔΓ(s)).

  8. Modulation of electromagnetic local density of states by coupling of surface phonon-polariton

    NASA Astrophysics Data System (ADS)

    Li, Yao; Zhang, Chao-Jie; Wang, Tong-Biao; Liu, Jiang-Tao; Yu, Tian-Bao; Liao, Qing-Hua; Liu, Nian-Hua

    2017-02-01

    We studied the electromagnetic local density of state (EM-LDOS) near the surface of a one-dimensional multilayer structure (1DMS) alternately stacked by SiC and Si. EM-LDOS of a semi-infinite bulk appears two intrinsic peaks due to the resonance of surface phonon-polariton (SPhP) in SiC. In contrast with that of SiC bulk, SPhP can exist at the interface of SiC and Si for the 1DMS. The SPhPs from different interfaces can couple together, which can lead to a significant modulation of EM-LDOS. When the component widths of 1DMS are large, the spectrum of EM-LDOS exhibits oscillation behavior in the frequency regime larger than the resonance frequency of SPhP. While the component widths are small, due to the strong coupling of SPhPs, another peak appears in the EM-LDOS spectrum besides the two intrinsic ones. And the position of the new peak move toward high frequency when the width ratio of SiC and Si increases. The influences of distance from the surfaces and period of 1DMS on EM-LDOS have also been studied in detail. The results are helpful in studying the near-field radiative heat transfer and spontaneous emission.

  9. High-definition micropatterning method for hard, stiff and brittle polymers.

    PubMed

    Zhao, Yiping; Truckenmuller, Roman; Levers, Marloes; Hua, Wei-Shu; de Boer, Jan; Papenburg, Bernke

    2017-02-01

    Polystyrene (PS) is the most commonly used material in cell culture devices, such as Petri dishes, culture flasks and well plates. Micropatterning of cell culture substrates can significantly affect cell-material interactions leading to an increasing interest in the fabrication of topographically micro-structured PS surfaces. However, the high stiffness combined with brittleness of PS (elastic modulus 3-3.5GPa) makes high-quality patterning into PS difficult when standard hard molds, e.g. silicon and nickel, are used as templates. A new and robust scheme for easy processing of large-area high-density micro-patterning into PS film is established using nanoimprinting lithography and standard hot embossing techniques. Including an extra step through an intermediate PDMS mold alone does not result in faithful replication of the large area, high-density micropattern into PS. Here, we developed an approach using an additional intermediate mold out of OrmoStamp, which allows for high-quality and large-area micro-patterning into PS. OrmoStamp was originally developed for UV nanoimprint applications; this work demonstrates for the first time that OrmoStamp is a highly adequate material for micro-patterning of PS through hot embossing. Our proposed processing method achieves high-quality replication of micropatterns in PS, incorporating features with high aspect ratio (4:1, height:width), high density, and over a large pattern area. The proposed scheme can easily be adapted for other large-area and high-density micropatterns of PS, as well as other stiff and brittle polymers. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Effect of the doped fibre length on soliton pulses of a bidirectional mode-locked fibre laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmad, H; Alwi Kutty, N A; Zulkifli, M Z

    A passively bidirectional mode-locked fibre laser is demonstrated using a highly concentrated erbium-doped fibre (EDF) as a gain medium. To accomplish mode-locked operation in a short cavity, use is made of carbon nanotubes (CNTs) as a saturable absorber. Soliton pulses are obtained at a wavelength of 1560 nm with a repetition rate ranging from 43.92 MHz to 46.97 MHz and pulse width stretching from 0.56 ps to 0.41 ps as the EDF length is reduced from 60 cm to 30 cm. (lasers)

  11. Decoherence processes during optical manipulation of excitonic qubits in semiconductor quantum dots

    NASA Astrophysics Data System (ADS)

    Wang, Q. Q.; Muller, A.; Bianucci, P.; Rossi, E.; Xue, Q. K.; Takagahara, T.; Piermarocchi, C.; MacDonald, A. H.; Shih, C. K.

    2005-07-01

    Using photoluminescence spectroscopy, we have investigated the nature of Rabi oscillation damping during optical manipulation of excitonic qubits in self-assembled quantum dots. Rabi oscillations were recorded by varying the pulse amplitude for fixed pulse durations between 4ps and 10ps . Up to five periods are visible, making it possible to quantify the excitation dependent damping. We find that this damping is more pronounced for shorter pulse widths and show that its origin is the nonresonant excitation of carriers in the wetting layer, most likely involving bound-to-continuum and continuum-to-bound transitions.

  12. Pulse repetition rate multiplication by Talbot effect in a coaxial fiber

    NASA Astrophysics Data System (ADS)

    Dhingra, Nikhil; Saxena, Geetika Jain; Anand, Jyoti; Sharma, Enakshi K.

    2018-03-01

    We use a coaxial fiber, which is a cylindrical coupled waveguide structure consisting of two concentric cores, the inner rod and an outer ring core as a first order dispersive media to achieve temporal Talbot effect for pulse repetition rate multiplication (PRRM) in high bit rate optical fiber communication. It is observed that for an input Gaussian pulse train with pulse width, 2τ0=1ps at a repetition rate of 40 Gbps (repetition period, T=25ps), an output repetition rate of 640 Gbps can be achieved without significant distortion at a length of 40.92 m.

  13. Zero percolation threshold in electric conductivity of aluminum nanowire network fabricated by chemical etching using an electrospun nanofiber mask

    NASA Astrophysics Data System (ADS)

    Azuma, Keisuke; Sakajiri, Koichi; Okabe, Takashi; Matsumoto, Hidetoshi; Kang, Sungmin; Watanabe, Junji; Tokita, Masatoshi

    2017-09-01

    We investigated the sheet resistance (R s) and transmittance (T) of seamless two-dimensional networks of 50-nm-thick aluminum (Al) nanowires (NWs) with widths (W) ranging from 380 to 1410 nm. The Al NWs were fabricated by wet-etching of Al metalized polyester films with using polystyrene (PS) nanofibers as the mask. The PS nanofibers were deposited by the electrospinning of a PS solution and adhered to the film by annealing. W and the area coverage (φ) were increased with increasing PS solution concentration and deposition time, respectively. With increasing φ from 3 to 34%, T and R s decreased from 99 to 75% and from 800 to 10 Ω/sq, respectively, and the network with W = 878 nm at φ = 0.21 attained values of T = 91% and R s = 31 Ω/sq. The conductivity increases with φ with an exponent of 2, demonstrating that seamless NW networks are characterized by the zero percolation threshold.

  14. Reduction of Line Edge Roughness of Polystyrene-block-Poly(methyl methacrylate) Copolymer Nanopatterns By Introducing Hydrogen Bonding at the Junction Point of Two Block Chains.

    PubMed

    Lee, Kyu Seong; Lee, Jaeyong; Kwak, Jongheon; Moon, Hong Chul; Kim, Jin Kon

    2017-09-20

    To apply well-defined block copolymer nanopatterns to next-generation lithography or high-density storage devices, small line edge roughness (LER) of nanopatterns should be realized. Although polystyrene-block-poly(methyl methacrylate) copolymer (PS-b-PMMA) has been widely used to fabricate nanopatterns because of easy perpendicular orientation of the block copolymer nanodomains and effective removal of PMMA block by dry etching, the fabricated nanopatterns show poorer line edge roughness (LER) due to relatively small Flory-Huggins interaction parameter (χ) between PS and PMMA chains. Here, we synthesized PS-b-PMMA with urea (U) and N-(4-aminomethyl-benzyl)-4-hydroxymethyl-benzamide (BA) moieties at junction of PS and PMMA chains (PS-U-BA-PMMA) to improve the LER. The U-BA moieties serves as favorable interaction (hydrogen bonding) sites. The LER of PS line patterns obtained from PS-U-BA-PMMA was reduced ∼25% compared with that obtained from neat PS-b-PMMA without BA and U moieties. This is attributed to narrower interfacial width induced by hydrogen bonding between two blocks, which is confirmed by small-angle X-ray scattering. This result implies that the introduction of hydrogen bonding into block copolymer interfaces offers an opportunity to fabricate well-defined nanopatterns with improved LER by block copolymer self-assembly, which could be a promising alternative to next-generation extreme ultraviolet lithography.

  15. Efficient extreme ultraviolet plasma source generated by a CO2 laser and a liquid xenon microjet target

    NASA Astrophysics Data System (ADS)

    Ueno, Yoshifumi; Ariga, Tatsuya; Soumagne, George; Higashiguchi, Takeshi; Kubodera, Shoichi; Pogorelsky, Igor; Pavlishin, Igor; Stolyarov, Daniil; Babzien, Marcus; Kusche, Karl; Yakimenko, Vitaly

    2007-05-01

    We demonstrated efficacy of a CO2-laser-produced xenon plasma in the extreme ultraviolet (EUV) spectral region at 13.5nm at variable laser pulse widths between 200ps and 25ns. The plasma target was a 30μm liquid xenon microjet. To ensure the optimum coupling of CO2 laser energy with the plasma, they applied a prepulse yttrium aluminum garnet laser. The authors measured the conversion efficiency (CE) of the 13.5nm EUV emission for different pulse widths of the CO2 laser. A maximum CE of 0.6% was obtained for a CO2 laser pulse width of 25ns at an intensity of 5×1010W/cm2.

  16. An 18-ps TDC using timing adjustment and bin realignment methods in a Cyclone-IV FPGA

    NASA Astrophysics Data System (ADS)

    Cao, Guiping; Xia, Haojie; Dong, Ning

    2018-05-01

    The method commonly used to produce a field-programmable gate array (FPGA)-based time-to-digital converter (TDC) creates a tapped delay line (TDL) for time interpolation to yield high time precision. We conduct timing adjustment and bin realignment to implement a TDC in the Altera Cyclone-IV FPGA. The former tunes the carry look-up table (LUT) cell delay by changing the LUT's function through low-level primitives according to timing analysis results, while the latter realigns bins according to the timing result obtained by timing adjustment so as to create a uniform TDL with bins of equivalent width. The differential nonlinearity and time resolution can be improved by realigning the bins. After calibration, the TDC has a 18 ps root-mean-square timing resolution and a 45 ps least-significant bit resolution.

  17. Tuning excitation laser wavelength for secondary resonance in low-intensity phase-selective laser-induced breakdown spectroscopy for in-situ analytical measurement of nanoaerosols

    NASA Astrophysics Data System (ADS)

    Xiong, Gang; Li, Shuiqing; Tse, Stephen D.

    2018-02-01

    In recent years, a novel low-intensity phase-selective laser-induced breakdown spectroscopy (PS-LIBS) technique has been developed for unique elemental-composition identification of aerosolized nanoparticles, where only the solid-phase nanoparticles break down, forming nanoplasmas, without any surrounding gas-phase breakdown. Additional work has demonstrated that PS-LIBS emissions can be greatly enhanced with secondary resonant excitation by matching the excitation laser wavelength with an atomic transition line in the formed nanoplasma, thereby achieving low limits of detection. In this work, a tunable dye laser is employed to investigate the effects of excitation wavelength and irradiance on in-situ PS-LIBS measurements of TiO2 nanoaerosols. The enhancement factor by resonant excitation can be 220 times greater than that for non-resonant cases under similar conditions. Moreover, the emitted spectra are unique for the selected resonant transition lines for a given element, suggesting the potential to make precise phase-selective and analyte-selective measurements of nanoparticles in a multicomponent multiphase system. The enhancement factor by resonant excitation is highly sensitive to excitation laser wavelength, with narrow excitation spectral windows, i.e., 0.012 to 0.023 nm (FWHM, full width at half maximum) for Ti (I) neutral atomic lines, and 0.051 to 0.139 nm (FWHM) for Ti (II) single-ionized atomic lines. Boltzmann analysis of the emission intensities, temporal response of emissions, and emission dependence on excitation irradiance are investigated to understand aspects of the generated nanoplasmas such as temperature, local thermodynamic equilibrium (LTE), and excitation mechanism.

  18. Picosecond laser system with 30-W average power via cavity dumping and amplifying

    NASA Astrophysics Data System (ADS)

    Fu, J.; Pang, Q. S.; Chang, L.; Bai, Z. A.; Ai, Q. K.; Chen, L. Y.; Chen, M.; Li, G.; Ma, Y. F.; Fan, Z. W.; Niu, G.; Yu, J.; Liu, Y.; Zhang, X.; Kang, W. Y.; He, K.

    2011-06-01

    We present a picosecond laser system with high energy by technologies of cavity dumping and amplifying. Firstly, pulses with 10 ps and ˜520 nJ were obtained by cavity-dumped mode-locked laser at 10 kHz repetition rate. Secondly those pulses were seeded into a side-pumped regenerative amplifier (RA). Then pulses output from the regenerative amplifier were amplified by two four-pass post amplifiers. From the laser system pulses with an average power of 30 W corresponding to 3 mJ pulse energy were achieved with the pulse-width of 25.4 ps at repetition rate of 10 kHz.

  19. Highly efficient passive mode locking of Nd:Lu2.9Gd0.1Al5O12 garnet crystal

    NASA Astrophysics Data System (ADS)

    Di, J. Q.; Xu, X. D.; Xia, C. T.; Tan, W. D.; Zhang, J.; Tang, D. Y.; Li, D. Z.; Zhou, D. H.; Wu, F.; Xu, J.

    2013-05-01

    Passive mode locking of Nd:Lu2.9Gd0.1Al5O12 (Nd:LuGdAG) crystal lasers was experimentally investigated. Stable mode-locked pulses with pulse widths as short as 9.7 ps were obtained for the Nd:LuGdAG crystal; the corresponding maximum output powers were 0.93 W while the mode-locked slope efficiencies were 43%, among the highest efficiencies ever reported for Nd3+ ps lasers. The results demonstrate that Nd:LuGdAG garnet crystal is a promising gain medium for efficient picosecond laser use.

  20. Supermode-noise-free eighth-order femtosecond soliton from a backward dark-optical-comb-injection mode-locked semiconductor optical amplifier fiber laser.

    PubMed

    Lin, Gong-Ru; Pan, Ci-Ling; Chiu, I-Hsiang

    2006-03-15

    A backward dark-optical-comb-injection mode-locked semiconductor optical amplifier fiber laser (SOAFL) with a femtosecond pulse width and an ultrahigh supermode-noise suppressing ratio (SMSR) is primarily demonstrated. The mode-locked SOAFL pulse with a spectral linewidth of 0.45 nm is shortened from 15 to 8.6 ps under chirp compensation in a 420 m long dispersion-compensated fiber, corresponding to a time-bandwidth product of 0.48. The eighth-order soliton is obtained by the nonlinearly soliton's compression of the chirp-compensated SOAFL pulse in a 112 m long single-mode fiber at an input peak power of 51 W, providing the pulse width, the linewidth, and the nearly transform-limited time-bandwidth product are <200 fs, 13.8 nm, and 0.34, respectively. The phase noise and integrated timing jitter at an offset frequency below 1 MHz are -105 dBc/Hz and 0.8 ps, respectively. An ultrahigh pulse-compression ratio of 43 and a SMSR of 87 dB for the eighth-order SOAFL soliton are reported.

  1. Proposal for fabrication-tolerant SOI polarization splitter-rotator based on cascaded MMI couplers and an assisted bi-level taper

    PubMed Central

    Wang, Jing; Qi, Minghao; Xuan, Yi; Huang, Haiyang; Li, You; Li, Ming; Chen, Xin; Jia, Qi; Sheng, Zhen; Wu, Aimin; Li, Wei; Wang, Xi; Zou, Shichang; Gan, Fuwan

    2014-01-01

    A novel silicon-on-insulator (SOI) polarization splitter-rotator (PSR) with a large fabrication tolerance is proposed based on cascaded multimode interference (MMI) couplers and an assisted mode-evolution taper. The tapers are designed to adiabatically convert the input TM0 mode into the TE1 mode, which will output as the TE0 mode after processed by the subsequent MMI mode converter, 90-degree phase shifter (PS) and MMI 3 dB coupler. The numerical simulation results show that the proposed device has a < 0.5 dB insertion loss with < −17 dB crosstalk in C optical communication band. Fabrication tolerance analysis is also performed with respect to the deviations of MMI coupler width, PS width, slab height and upper-cladding refractive index, showing that this device could work well even when affected by considerable fabrication errors. With such a robust performance with a large bandwidth, this device offers potential applications for CMOS-compatible polarization diversity, especially in the booming 100 Gb/s coherent optical communications based on silicon photonics technology. PMID:25402029

  2. Proposal for fabrication-tolerant SOI polarization splitter-rotator based on cascaded MMI couplers and an assisted bi-level taper.

    PubMed

    Wang, Jing; Qi, Minghao; Xuan, Yi; Huang, Haiyang; Li, You; Li, Ming; Chen, Xin; Jia, Qi; Sheng, Zhen; Wu, Aimin; Li, Wei; Wang, Xi; Zou, Shichang; Gan, Fuwan

    2014-11-17

    A novel silicon-on-insulator (SOI) polarization splitter-rotator (PSR) with a large fabrication tolerance is proposed based on cascaded multimode interference (MMI) couplers and an assisted mode-evolution taper. The tapers are designed to adiabatically convert the input TM(0) mode into the TE(1) mode, which will output as the TE(0) mode after processed by the subsequent MMI mode converter, 90-degree phase shifter (PS) and MMI 3 dB coupler. The numerical simulation results show that the proposed device has a < 0.5 dB insertion loss with < -17 dB crosstalk in C optical communication band. Fabrication tolerance analysis is also performed with respect to the deviations of MMI coupler width, PS width, slab height and upper-cladding refractive index, showing that this device could work well even when affected by considerable fabrication errors. With such a robust performance with a large bandwidth, this device offers potential applications for CMOS-compatible polarization diversity, especially in the booming 100 Gb/s coherent optical communications based on silicon photonics technology.

  3. Time-resolved optical emission spectroscopic studies of picosecond laser produced Cr plasma

    NASA Astrophysics Data System (ADS)

    Rao, Kavya H.; Smijesh, N.; Klemke, N.; Philip, R.; Litvinyuk, I. V.; Sang, R. T.

    2018-06-01

    Time-resolved optical emission spectroscopic measurements of a plasma generated by irradiating a Cr target using 60 picosecond (ps) and 300 ps laser pulses are carried out to investigate the variation in the line width (δλ) of emission from neutrals and ions for increasing ambient pressures. Measurements ranging from 10-6 Torr to 102 Torr show a distinctly different variation in the δλ of neutrals (Cr I) compared to that of singly ionized Cr (Cr II), for both irradiations. δλ increases monotonously with pressure for Cr II, but an oscillation is evident at intermediate pressures for Cr I. This oscillation does not depend on the laser pulse widths used. In spite of the differences in the plasma formation mechanisms, it is experimentally found that there is an optimum intermediate background pressure for which δλ of neutrals drops to a minimum. Importantly, these results underline the fact that for intermediate pressures, the usual practice of calculating the plasma number density from the δλ of neutrals needs to be judiciously done, to avoid reaching inaccurate conclusions.

  4. Presenilin expression during induced differentiation of the human neuroblastoma SH-SY5Y cell line.

    PubMed

    Flood, Fiona; Sundström, Erik; Samuelsson, Eva-Britt; Wiehager, Birgitta; Seiger, Ake; Johnston, Janet A; Cowburn, Richard F

    2004-06-01

    Human neuroblastoma SH-SY5Y cells stably transfected with both wild-type and exon-9 deleted (deltaE9) presenilin constructs were used to study the role of the presenilin proteins during differentiation. Cells transfected with either wild-type or deltaE9 PS1, of which the latter abolishes normal endoproteolytic cleavage of the protein, showed no obvious differences in their ability to differentiate to a neuronal-like phenotype upon treatment with retinoic acid (RA). A defined pattern of PS1 expression was observed during differentiation with both RA and the phorbol ester TPA. Full-length PS1 was shown to increase dramatically within 5-24 h of RA treatment. TPA gave an earlier and longer lasting increase in full-length PS1 levels. The intracellular distribution pattern of PS1 was markedly altered following RA treatment. Within 24h PS1 was highly up-regulated throughout the cell body around the nucleus. Between 2 and 4 weeks PS1 staining appeared punctate and also localised to the nucleus. Increases in PS1 expression upon treatment with RA and TPA were blocked by treatment with cycloheximide, indicating a role of de-novo protein synthesis in this effect. PS2 expression remained unchanged during differentiation. Levels of full-length PS1 were also seen to increase during neurogenesis and neuronal differentiation in the forebrain of first trimester human foetuses between 6.5 and 11 weeks. These combined observations support the idea that PS1 is involved in neuronal differentiation by a mechanism likely independent of endoproteolysis of the protein.

  5. Dynamics of short-pulse generation via spectral filtering from intensely excited gain-switched 1.55-μm distributed-feedback laser diodes.

    PubMed

    Chen, Shaoqiang; Yoshita, Masahiro; Sato, Aya; Ito, Takashi; Akiyama, Hidefumi; Yokoyama, Hiroyuki

    2013-05-06

    Picosecond-pulse-generation dynamics and pulse-width limiting factors via spectral filtering from intensely pulse-excited gain-switched 1.55-μm distributed-feedback laser diodes were studied. The spectral and temporal characteristics of the spectrally filtered pulses indicated that the short-wavelength component stems from the initial part of the gain-switched main pulse and has a nearly linear down-chirp of 5.2 ps/nm, whereas long-wavelength components include chirped pulse-lasing components and steady-state-lasing components. Rate-equation calculations with a model of linear change in refractive index with carrier density explained the major features of the experimental results. The analysis of the expected pulse widths with optimum spectral widths was also consistent with the experimental data.

  6. Diffusion length of positrons and positronium investigated using a positronbeam with longitudinal geometry

    NASA Astrophysics Data System (ADS)

    van Petegem, S.; Dauwe, C.; van Hoecke, T.; de Baerdemaeker, J.; Segers, D.

    2004-09-01

    Positronium emission from single crystalline Al2O3 , MgO and vitreous a-SiO2 surfaces was studied as a function of the positron implantation energy E by means of Doppler broadening spectroscopy and Compton-to-peak ratio analysis. When the Ge-detector is in-line with the positron beam, the emission of para-positronium yields a red-shifted fly-away peak with intensity IpPse . An analysis of IpPse versus E for Al2O3 and MgO where no Ps is formed in the bulk (fPs=0) results in positron diffusion lengths L+(Al2O3)=(18±1)nm and L+(MgO)=(14±1)nm , and efficiencies for the emission of Ps by picking up of a surface electron of fpu(Al2O3)=(0.28±0.2) and fpu(MgO)=(0.24±0.2) . For a-SiO2 the bulk Ps fraction is fPs(a-SiO2)=(0.72±0.01) , fpu(a-SiO2)=(0.12±0.01) and the diffusion lengths of positrons, para-positronium and ortho-positronium are L+(SiO2)=(8±2)nm , LpPs(SiO2)=(14.5±2)nm and LoPs(SiO2)=(11±2)=nm . Depending on the specimen-detector geometry the emission of Ps at low implantation energy may cause either an increase or a decrease of the width of the annihilation line shape at low implantation energies.

  7. Performance of a hard X-ray split-and-delay optical system with a wavefront division

    DOE PAGES

    Hirano, Takashi; Osaka, Taito; Morioka, Yuki; ...

    2018-01-01

    The performance of a hard X-ray split-and-delay optical (SDO) system with a wavefront division scheme was investigated at the hard X-ray free-electron laser facility SACLA. For the wavefront division, beam splitters made of edge-polished perfect Si(220) crystals were employed. We characterized the beam properties of the SDO system, and investigated its capabilities for beam manipulation and diagnostics. First, it was confirmed that shot-to-shot non-invasive diagnostics of pulse energies for both branches in the SDO system was feasible. Second, nearly ideal and identical focal profiles for both branches were obtained with a spot size of ~1.5 µm in full width atmore » half-maximum. Third, a spatial overlap of the two focused beams with a sub-µm accuracy was achieved by fine tuning of the SDO system. Finally, a reliable tunability of the delay time between two pulses was confirmed. The time interval was measured with an X-ray streak camera by changing the path length of the variable-delay branch. As a result, errors from the fitted line were evaluated to be as small as ±0.4 ps over a time range of 60 ps.« less

  8. Performance of a hard X-ray split-and-delay optical system with a wavefront division

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirano, Takashi; Osaka, Taito; Morioka, Yuki

    The performance of a hard X-ray split-and-delay optical (SDO) system with a wavefront division scheme was investigated at the hard X-ray free-electron laser facility SACLA. For the wavefront division, beam splitters made of edge-polished perfect Si(220) crystals were employed. We characterized the beam properties of the SDO system, and investigated its capabilities for beam manipulation and diagnostics. First, it was confirmed that shot-to-shot non-invasive diagnostics of pulse energies for both branches in the SDO system was feasible. Second, nearly ideal and identical focal profiles for both branches were obtained with a spot size of ~1.5 µm in full width atmore » half-maximum. Third, a spatial overlap of the two focused beams with a sub-µm accuracy was achieved by fine tuning of the SDO system. Finally, a reliable tunability of the delay time between two pulses was confirmed. The time interval was measured with an X-ray streak camera by changing the path length of the variable-delay branch. As a result, errors from the fitted line were evaluated to be as small as ±0.4 ps over a time range of 60 ps.« less

  9. Role of MRI T2-DRIVE in the assessment of pituitary stalk abnormalities without gadolinium in pituitary diseases.

    PubMed

    Godano, Elisabetta; Morana, Giovanni; Di Iorgi, Natascia; Pistorio, Angela; Allegri, Anna Elsa Maria; Napoli, Flavia; Gastaldi, Roberto; Calcagno, Annalisa; Patti, Giuseppa; Gallizia, Annalisa; Notarnicola, Sara; Giaccardi, Marta; Noli, Serena; Severino, Mariasavina; Tortora, Domenico; Rossi, Andrea; Maghnie, Mohamad

    2018-06-01

    To investigate the role of T2-DRIVE MRI sequence in the accurate measurement of pituitary stalk (PS) size and the identification of PS abnormalities in patients with hypothalamic-pituitary disorders without the use of gadolinium. This was a retrospective study conducted on 242 patients who underwent MRI due to pituitary dysfunction between 2006 and 2015. Among 135 eligible patients, 102 showed eutopic posterior pituitary (PP) gland and 33 showed 'ectopic' PP (EPP). Two readers independently measured the size of PS in patients with eutopic PP at the proximal, midpoint and distal levels on pre- and post-contrast T1-weighted as well as T2-DRIVE images; PS visibility was assessed on pre-contrast T1 and T2-DRIVE sequences in those with EPP. The length, height, width and volume of the anterior pituitary (AP), PP height and length and PP area were analyzed. Significant agreement between the two readers was obtained for T2-DRIVE PS measurements in patients with 'eutopic' PP; a significant difference was demonstrated between the intraclass correlation coefficient calculated on the T2-DRIVE and the T1-pre- and post-contrast sequences. The percentage of PS identified by T2-DRIVE in EPP patients was 72.7% compared to 30.3% of T1 pre-contrast sequences. A significant association was found between the visibility of PS on T2-DRIVE and the height of AP. T2-DRIVE sequence is extremely precise and reliable for the evaluation of PS size and the recognition of PS abnormalities; the use of gadolinium-based contrast media does not add significant information and may thus be avoided. © 2018 European Society of Endocrinology.

  10. Towards dosimetry for photodynamic diagnosis with the low-level dose of photosensitizer.

    PubMed

    Buzalewicz, Igor; Hołowacz, Iwona; Ulatowska-Jarża, Agnieszka; Podbielska, Halina

    2017-08-01

    Contemporary medicine does not concern the issue of dosimetry in photodynamic diagnosis (PDD) but follows the photosensitizer (PS) producers recommendation. Most preclinical and clinical PDD studies indicate a considerable variation in the possibility of visualization and treatment, as e.g. in case of cervix lesions. Although some of these variations can be caused by the different histological subtypes or various tumor geometries, the issue of varying PS concentration in the tumor tissue volume is definitely an important factor. Therefore, there is a need to establish the objective and systematic PDD dosimetry protocol regarding doses of light and photosensitizers. Four different irradiation sources investigated in PDD (literature) were used for PS excitation. The PS luminescence was examined by means of the non-imaging (spectroscopic) and imaging (wide- and narrow-field of view) techniques. The methodology for low-level intensity photoluminescence (PL) characterization and dedicated image processing algorithm for PS luminescence images analysis were proposed. Further, HeLa cells' cultures penetration by PS was studied by a confocal microscopy. Reducing the PS dose with the choice of proper photoexcitation conditions decreases the PDD procedure costs and the side effects, not affecting the diagnostic efficiency. We determined in vitro the minimum incubation time and photosensitizer concentration of Photolon for diagnostic purposes, for which the Photolon PL can still be observed. It was demonstrated that quantification of PS concentration, choice of proper photoexcitation source, appropriate adjustment of light dose and PS penetration of cancer cells may improve the low-level luminescence photodynamic diagnostics performance. Practical effectiveness of the PDD strongly depends on irradiation source parameters (bandwidth, maximum intensity, half-width) and their optimization is the main conditioning factor for low-level intensity and low-cost PDD. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Directed Self-Assembly on Photo-Crosslinked Polystyrene Sub-Layers: Nanopattern Uniformity and Orientation

    PubMed Central

    Koh, Haeng-Deog; Kim, Mi-Jeong

    2016-01-01

    A photo-crosslinked polystyrene (PS) thin film is investigated as a potential guiding sub-layer for polystyrene-block-poly (methyl methacrylate) block copolymer (BCP) cylindrical nanopattern formation via topographic directed self-assembly (DSA). When compared to a non-crosslinked PS brush sub-layer, the photo-crosslinked PS sub-layer provided longer correlation lengths of the BCP nanostructure, resulting in a highly uniform DSA nanopattern with a low number of BCP dislocation defects. Depending on the thickness of the sub-layer used, parallel or orthogonal orientations of DSA nanopattern arrays were obtained that covered the entire surface of patterned Si substrates, including both trench and mesa regions. The design of DSA sub-layers and guide patterns, such as hardening the sub-layer by photo-crosslinking, nano-structuring on mesas, the relation between trench/mesa width, and BCP equilibrium period, were explored with a view to developing defect-reduced DSA lithography technology. PMID:28773768

  12. Fabrication of Super-Hydrophobic Microchannels via Strain-Recovery Deformations of Polystyrene and Oxygen Reactive Ion Etch.

    PubMed

    Chakraborty, Anirban; Xiang, Mingming; Luo, Cheng

    2013-08-19

    In this article, we report a simple approach to generate micropillars (whose top portions are covered by sub-micron wrinkles) on the inner surfaces of polystyrene (PS) microchannels, as well as on the top surface of the PS substrate, based on strain-recovery deformations of the PS and oxygen reactive ion etch (ORIE). Using this approach, two types of micropillar-covered microchannels are fabricated. Their widths range from 118 μm to 132 μm, depths vary from 40 μm to 44 μm, and the inclined angles of their sidewalls are from 53° to 64°. The micropillars enable these microchannels to have super-hydrophobic properties. The contact angles observed on the channel-structured surfaces are above 162°, and the tilt angles to make water drops roll off from these channel-structured substrates can be as small as 1°.

  13. Effect of public symphysiodesis on pelvic development in the skeletally immature greyhound.

    PubMed

    Swainson, S W; Conzemius, M G; Riedesel, E A; Smith, G K; Riley, C B

    2000-01-01

    To evaluate the effect of pubic symphysiodesis (PS) on pelvic development in skeletally immature dogs. Prospective randomized clinical trial. Eight 4 month-old, sexually intact female Greyhounds. Initial PS was performed at 4 months of age using a powered stapling device. Because of failure of the initial surgery, a second PS was performed 1 month later by resecting the pubic symphysis with a rongeur followed by placement of handmade bone staples in four dogs. Sham PS was performed in four control dogs at 4 months of age. Pubic growth rate and pelvic development were evaluated using standard plane radiography and computed tomography. Specific measurements included acetabular ventroversion, Norberg angle, lateral center-edge angle, and pelvic inlet dimensions. Hip distraction indices were determined as well. PS at 4 months of age using a stapling device failed. Pubic symphysiodesis using hand made staples was successful at 5 months of age and did not result in any clinically significant intraoperative or postoperative complications. Pubic symphysiodesis markedly decreased pubic symphysis growth in the treatment group. Hip distraction indices and pelvic inlet circumference, area, and width significantly decreased in treated dogs compared to those in the control group. Acetabular ventroversion was significantly increased in treated dogs compared to those in the control group. PS decreases pelvic canal size, increases acetabular ventroversion, and does not appear to have any clinically significant complications. PS performed in skeletally immature dogs with hip dysplasia may provide an effect similar to a triple pelvic osteotomy and warrants further investigation.

  14. Single-Molecule Tracking Study of the Permeability and Transverse Width of Individual Cylindrical Microdomains in Solvent-Swollen Polystyrene-block-poly(ethylene oxide) Films.

    PubMed

    Sapkota, Dol Raj; Tran-Ba, Khanh-Hoa; Elwell-Cuddy, Trevor; Higgins, Daniel A; Ito, Takashi

    2016-12-01

    Understanding the properties of solvent-swollen block copolymer (BCP) microdomains is important for better solvent-based control of microdomain morphology, orientation, and permeability. In this study, single-molecule tracking (SMT) was explored to assess the permeability and transverse width of individual cylindrical microdomains in solvent-swollen polystyrene-block-poly(ethylene oxide) (PS-b-PEO) films. PS-b-PEO films comprising shear-elongated cylindrical PEO microdomains were prepared by sandwiching its benzene or tetrahydrofuran (THF) solution between two glass substrates. SMT measurements were performed at different drying times to investigate the effects of solvent evaporation on the microdomain properties. SMT data showed one-dimensional (1D) motions of single fluorescent molecules (sulforhodamine B) based on their diffusion within the cylindrical microdomains. Microdomain permeability and transverse width were assessed from the single-molecule diffusion coefficients (D SMT ) and transverse variance of the 1D trajectories (σ δ 2 ), respectively. The D SMT and σ δ 2 values from individual 1D trajectories were widely distributed with no evidence of correlation on a single molecule basis, possibly because the individual microdomains in a film were swollen to different extents. On average, microdomain permeability (D) and effective radius (r) gradually decreased within the first 3 days of drying due to solvent evaporation, and changed negligibly thereafter. PS-b-PEO films prepared from THF solutions exhibited larger changes in D and r as compared with those from benzene solutions due to the better swelling of the PEO microdomains by THF. Importantly, changes in D were more prominent than those in r, suggesting that the permeability of the PEO microdomains is very susceptible to the presence of solvent. These results reveal the unique capability of SMT to assess the properties of individual cylindrical microdomains in a solvent-swollen BCP film.

  15. Single-molecule tracking study of the permeability and transverse width of individual cylindrical microdomains in solvent-swollen polystyrene- block-poly(ethylene oxide) films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sapkota, Dol Raj; Tran-Ba, Khanh-Hoa; Elwell-Cuddy, Trevor

    Understanding the properties of solvent-swollen block copolymer (BCP) microdomains is important for better solvent-based control of microdomain morphology, orientation, and permeability. In this study, single-molecule tracking (SMT) was explored to assess the permeability and transverse width of individual cylindrical microdomains in solvent-swollen polystyrene- block-poly(ethylene oxide) (PS-b-PEO) films. PS-b-PEO films comprising shear-elongated cylindrical PEO microdomains were prepared by sandwiching its benzene or tetrahydrofuran (THF) solution between two glass substrates. In this paper, SMT measurements were performed at different drying times to investigate the effects of solvent evaporation on the microdomain properties. SMT data showed one-dimensional (1D) motions of single fluorescent moleculesmore » (sulforhodamine B) based on their diffusion within the cylindrical microdomains. Microdomain permeability and transverse width were assessed from the single-molecule diffusion coefficients (D SMT) and transverse variance of the 1D trajectories (σ δ 2), respectively. The D SMT and σ δ 2 values from individual 1D trajectories were widely distributed with no evidence of correlation on a single molecule basis, possibly because the individual microdomains in a film were swollen to different extents. On average, microdomain permeability (D) and effective radius (r) gradually decreased within the first 3 days of drying due to solvent evaporation, and changed negligibly thereafter. PS-b-PEO films prepared from THF solutions exhibited larger changes in D and r as compared with those from benzene solutions due to the better swelling of the PEO microdomains by THF. Importantly, changes in D were more prominent than those in r, suggesting that the permeability of the PEO microdomains is very susceptible to the presence of solvent. Finally, these results reveal the unique capability of SMT to assess the properties of individual cylindrical microdomains in a solvent-swollen BCP film.« less

  16. Single-molecule tracking study of the permeability and transverse width of individual cylindrical microdomains in solvent-swollen polystyrene- block-poly(ethylene oxide) films

    DOE PAGES

    Sapkota, Dol Raj; Tran-Ba, Khanh-Hoa; Elwell-Cuddy, Trevor; ...

    2016-11-04

    Understanding the properties of solvent-swollen block copolymer (BCP) microdomains is important for better solvent-based control of microdomain morphology, orientation, and permeability. In this study, single-molecule tracking (SMT) was explored to assess the permeability and transverse width of individual cylindrical microdomains in solvent-swollen polystyrene- block-poly(ethylene oxide) (PS-b-PEO) films. PS-b-PEO films comprising shear-elongated cylindrical PEO microdomains were prepared by sandwiching its benzene or tetrahydrofuran (THF) solution between two glass substrates. In this paper, SMT measurements were performed at different drying times to investigate the effects of solvent evaporation on the microdomain properties. SMT data showed one-dimensional (1D) motions of single fluorescent moleculesmore » (sulforhodamine B) based on their diffusion within the cylindrical microdomains. Microdomain permeability and transverse width were assessed from the single-molecule diffusion coefficients (D SMT) and transverse variance of the 1D trajectories (σ δ 2), respectively. The D SMT and σ δ 2 values from individual 1D trajectories were widely distributed with no evidence of correlation on a single molecule basis, possibly because the individual microdomains in a film were swollen to different extents. On average, microdomain permeability (D) and effective radius (r) gradually decreased within the first 3 days of drying due to solvent evaporation, and changed negligibly thereafter. PS-b-PEO films prepared from THF solutions exhibited larger changes in D and r as compared with those from benzene solutions due to the better swelling of the PEO microdomains by THF. Importantly, changes in D were more prominent than those in r, suggesting that the permeability of the PEO microdomains is very susceptible to the presence of solvent. Finally, these results reveal the unique capability of SMT to assess the properties of individual cylindrical microdomains in a solvent-swollen BCP film.« less

  17. Direct Measurement of the Photoelectric Response Time of Bacteriorhodopsin via Electro-Optic Sampling

    PubMed Central

    Xu, J.; Stickrath, A. B.; Bhattacharya, P.; Nees, J.; Váró, G.; Hillebrecht, J. R.; Ren, L.; Birge, R. R.

    2003-01-01

    The photovoltaic signal associated with the primary photochemical event in an oriented bacteriorhodopsin film is measured by directly probing the electric field in the bacteriorhodopsin film using an ultrafast electro-optic sampling technique. The inherent response time is limited only by the laser pulse width of 500 fs, and permits a measurement of the photovoltage with a bandwidth of better than 350 GHz. All previous published studies have been carried out with bandwidths of 50 GHz or lower. We observe a charge buildup with an exponential formation time of 1.68 ± 0.05 ps and an initial decay time of 31.7 ps. Deconvolution with a 500-fs Gaussian excitation pulse reduces the exponential formation time to 1.61 ± 0.04 ps. The photovoltaic signal continues to rise for 4.5 ps after excitation, and the voltage profile corresponds well with the population dynamics of the K state. The origin of the fast photovoltage is assigned to the partial isomerization of the chromophore and the coupled motion of the Arg-82 residue during the primary event. PMID:12885657

  18. Methods of Optimal Control of Laser-Plasma Instabilities Using Spike Trains of Uneven Duration and Delay (STUD Pulses)

    NASA Astrophysics Data System (ADS)

    Afeyan, Bedros

    2013-10-01

    We have recently introduced and extensively studied a new adaptive method of LPI control. It promises to extend the effectiveness of laser as inertial fusion drivers by allowing active control of stimulated Raman and Brillouin scattering and crossed beam energy transfer. It breaks multi-nanosecond pulses into a series of picosecond (ps) time scale spikes with comparable gaps in between. The height and width of each spike as well as their separations are optimization parameters. In addition, the spatial speckle patterns are changed after a number of successive spikes as needed (from every spike to never). The combination of these parameters allows the taming of parametric instabilities to conform to any desired reduced reflectivity profile, within the bounds of the performance limitations of the lasers. Instead of pulse shaping on hydrodynamical time scales, far faster (from 1 ps to 10 ps) modulations of the laser profile will be needed to implement the STUD pulse program for full LPI control. We will show theoretical and computational evidence for the effectiveness of the STUD pulse program to control LPI. The physics of why STUD pulses work and how optimization can be implemented efficiently using statistical nonlinear optical models and techniques will be explained. We will also discuss a novel diagnostic system employing STUD pulses that will allow the boosted measurement of velocity distribution function slopes on a ps time scale in the small crossing volume of a pump and a probe beam. Various regimes from weak to strong coupling and weak to strong damping will be treated. Novel pulse modulation schemes and diagnostic tools based on time-lenses used in both microscope and telescope modes will be suggested for the execution of the STUD pule program. Work Supported by the DOE NNSA-OFES Joint Program on HEDLP and DOE OFES SBIR Phase I Grants.

  19. Prelaunch testing of the laser geodynamic satellite (LAGEOS)

    NASA Technical Reports Server (NTRS)

    Fitzmaurice, M. W.; Minott, P. O.; Abshire, J. B.; Rowe, H. E.

    1977-01-01

    The LAGEOS was extensively tested optically prior to launch. The measurement techniques used are described and resulting data is presented. Principal emphasis was placed on pulse spreading characteristics, range correction for center of mass tracking, and pulse distortion due to coherent effects. A mode-locked freqeuncy doubled Nd:YAG laser with a pulse width of about 60 ps was used as the ranging transmitter and a crossfield photo-multiplier was used in the receiver. High speed sampling electronics were employed to increase receiver bandwidth. LAGEOS reflected pulses typically had a width of 250 ps with a variability in the range correction of less than 2 mm rms. Pulse distortion due to coherent effects was inferred from average waveforms and appears to introduce less than + or - 50 ps jitter in the location of the pulse peak. Analytic results on this effect based on computer simulations are also presented. Theoretical and experimental data on the lidar cross section were developed in order to predict the strength of lidar echoes from the satellite. Cross section was measured using a large aperture laser collimating system to illuminate the LAGEOS. Reflected radiation far-field patterns were measured using the collimator in an autocollimating mode. Data were collected with an optical data digitzer and displayed as a three-dimensional plot of intensity versus the two far-field coordinates. Measurements were made at several wavelengths, for several types of polarizations, and as a function of satellite orientation.

  20. Dynamics of electron solvation in I(-)(CH3OH)n clusters (4 ≤ n ≤ 11).

    PubMed

    Young, Ryan M; Yandell, Margaret A; Neumark, Daniel M

    2011-03-28

    The dynamics of electron solvation following excitation of the charge-transfer-to-solvent precursor state in iodide-doped methanol clusters, I(-)(CH(3)OH)(n = 4-11), are studied with time-resolved photoelectron imaging. This excitation produces a I···(CH(3)OH)(n)(-) cluster that is unstable with respect to electron autodetachment and whose autodetachment lifetime increases monotonically from ~800 fs to 85 ps as n increases from 4 to 11. The vertical detachment energy (VDE) and width of the excited state feature in the photoelectron spectrum show complex time dependence during the lifetime of this state. The VDE decreases over the first 100-400 fs, then rises exponentially to a maximum with a ~1 ps time constant, and finally decreases by as much as 180 meV with timescales of 3-20 ps. The early dynamics are associated with electron transfer from the iodide to the methanol cluster, while the longer-time changes in VDE are attributed to solvent reordering, possibly in conjunction with ejection of neutral iodine from the cluster. Changes in the observed width of the spectrum largely follow those of the VDEs; the dynamics of both are attributed to the major rearrangement of the solvent cluster during relaxation. The relaxation dynamics are interpreted as a reorientation of at least one methanol molecule and the disruption and formation of the solvent network in order to accommodate the excess charge.

  1. Over 10-watt pico-second diffraction-limited output from a Nd:YVO4 slab amplifier with a phase conjugate mirror.

    PubMed

    Ojima, Yasukuni; Nawata, Kouji; Omatsu, Takashige

    2005-10-31

    We have produced a high beam quality pico-second laser based on a continuous-wave diode pumped Nd:YVO4 slab amplifier with a photorefractive phase conjugate mirror. 12.8W diffraction-limited output with a pulse width of 8.7ps was obtained.

  2. Detection of Ammonia-Oxidizing Bacteria (AOB) Using a Porous Silicon Optical Biosensor Based on a Multilayered Double Bragg Mirror Structure.

    PubMed

    Zhang, Hongyan; Lv, Jie; Jia, Zhenhong

    2018-01-01

    We successfully demonstrate a porous silicon (PS) double Bragg mirror by electrochemical etching at room temperature as a deoxyribonucleic acid (DNA) label-free biosensor for detecting ammonia-oxidizing bacteria (AOB). Compared to various other one-dimension photonic crystal configurations of PS, the double Bragg mirror structure is quite easy to prepare and exhibits interesting optical properties. The width of high reflectivity stop band of the PS double Bragg mirror is about 761 nm with a sharp and deep resonance peak at 1328 nm in the reflectance spectrum, which gives a high sensitivity and distinguishability for sensing performance. The detection sensitivity of such a double Bragg mirror structure is illustrated through the investigation of AOB DNA hybridization in the PS pores. The redshifts of the reflectance spectra show a good linear relationship with both complete complementary and partial complementary DNA. The lowest detection limit for complete complementary DNA is 27.1 nM and the detection limit of the biosensor for partial complementary DNA is 35.0 nM, which provides the feasibility and effectiveness for the detection of AOB in a real environment. The PS double Bragg mirror structure is attractive for widespread biosensing applications and provides great potential for the development of optical applications.

  3. Studies of ˜ps laser driven plasmas in line focus geometry

    NASA Astrophysics Data System (ADS)

    Tallents, G. J.; Al-Hadithi, Y.; Dwivedi, L.; Behjat, A.; Demir, A.; Holden, M.; Krishnan, J.; Zhang, J.; Key, M. H.; Neely, D.; Norreys, P. A.; Lewis, C. L. S.; MacPhee, A. G.

    1995-05-01

    Measurements of X-ray emission along linear plasmas produced in short pulse (2-12 ps) experiments using the Rutherford Appleton Laboratory glass (1.06 μm) and KrF (0.268 μm) lasers are interpreted to provide information about the uniformity and lateral and axial energy transport of X-ray laser gain media. For fiber targets, the difficulties of achieving uniform irradiation and accurate plasma length measurements are illustrated and discussed. For slab targets, it is shown that the ratio of the distance between the critical density surface and the ablation surface to the laser focal width controls lateral transport in a similar manner as for spot focus experiments.

  4. Single-shot temporal characterization of kilojoule-level, picosecond pulses on OMEGA EP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waxer, Leon; Dorrer, Christophe; Kalb, Adam

    To achieve a variety of experimental conditions, the OMEGA EP laser provides kilojoule-level pulses over a pulse-width range of 0.6 to 100 ps. Precise knowledge of the pulse width is important for laser system safety and the interpretation of experimental results. This paper describes the development and implementation of a single-shot, ultrashort-pulse measurement diagnostic, which provides an accurate characterization of the output pulse shape. We also present a brief overview of the measurement algorithm; discuss design considerations necessary for implementation in a complex, user-facility environment; and review the results of the diagnostic commissioning shots, which demonstrated excellent agreement with predictions.

  5. Single-shot temporal characterization of kilojoule-level, picosecond pulses on OMEGA EP

    DOE PAGES

    Waxer, Leon; Dorrer, Christophe; Kalb, Adam; ...

    2018-02-19

    To achieve a variety of experimental conditions, the OMEGA EP laser provides kilojoule-level pulses over a pulse-width range of 0.6 to 100 ps. Precise knowledge of the pulse width is important for laser system safety and the interpretation of experimental results. This paper describes the development and implementation of a single-shot, ultrashort-pulse measurement diagnostic, which provides an accurate characterization of the output pulse shape. We also present a brief overview of the measurement algorithm; discuss design considerations necessary for implementation in a complex, user-facility environment; and review the results of the diagnostic commissioning shots, which demonstrated excellent agreement with predictions.

  6. Photosensitized Chemically Amplified Resist (PSCAR) 2.0 for high-throughput and high-resolution EUV lithography: dual photosensitization of acid generation and quencher decomposition by flood exposure

    NASA Astrophysics Data System (ADS)

    Nagahara, Seiji; Carcasi, Michael; Shiraishi, Gosuke; Nakagawa, Hisashi; Dei, Satoshi; Shiozawa, Takahiro; Nafus, Kathleen; De Simone, Danilo; Vandenberghe, Geert; Stock, Hans-Jürgen; Küchler, Bernd; Hori, Masafumi; Naruoka, Takehiko; Nagai, Tomoki; Minekawa, Yukie; Iseki, Tomohiro; Kondo, Yoshihiro; Yoshihara, Kosuke; Kamei, Yuya; Tomono, Masaru; Shimada, Ryo; Biesemans, Serge; Nakashima, Hideo; Foubert, Philippe; Buitrago, Elizabeth; Vockenhuber, Michaela; Ekinci, Yasin; Oshima, Akihiro; Tagawa, Seiichi

    2017-03-01

    A new type of Photosensitized Chemically Amplified Resist (PSCAR) **: "PSCAR 2.0," is introduced in this paper. PSCAR 2.0 is composed of a protected polymer, a "photo acid generator which can be photosensitized" (PS-PAG), a "photo decomposable base (quencher) which can be photosensitized" (PS-PDB) and a photosensitizer precursor (PP). With this PSCAR 2.0, a photosensitizer (PS) is generated by an extreme ultra-violet (EUV) pattern exposure. Then, during a subsequent flood exposure, PS selectively photosensitizes the EUV exposed areas by the decomposition of a PS-PDB in addition to the decomposition of PS-PAG. As these pattern-exposed areas have the additional acid and reduced quencher concentration, the initial quencher loading in PSCAR 2.0 can be increased in order to get the same target critical dimensions (CD). The quencher loading is to be optimized simultaneously with a UV flood exposure dose to achieve the best lithographic performance and resolution. In this work, the PSCAR performance when different quenchers are used is examined by simulation and exposure experiments with the 16 nm half-pitch (HP) line/space (L/S, 1:1) patterns. According to our simulation results among resists with the different quencher types, the best performance was achieved by PSCAR 2.0 using PS-PDB with the highest possible chemical gradient resulting in the lowest line width roughness (LWR). PSCAR 2.0 performance has furthermore been confirmed on ASML's NXE:3300 with TEL's standalone pre-alpha flood exposure tool at imec. The initial PSCAR 2.0 patterning results on NXE:3300 showed the accelerated photosensitization performance with PS-PDB. From these results, we concluded that the dual sensitization of PS-PAG and PS-PDB in PSCAR 2.0 have a potential to realize a significantly improved resist performance in EUV lithography.

  7. InGaAs/InAlAs single photon avalanche diode for 1550 nm photons.

    PubMed

    Meng, Xiao; Xie, Shiyu; Zhou, Xinxin; Calandri, Niccolò; Sanzaro, Mirko; Tosi, Alberto; Tan, Chee Hing; Ng, Jo Shien

    2016-03-01

    A single photon avalanche diode (SPAD) with an InGaAs absorption region, and an InAlAs avalanche region was designed and demonstrated to detect 1550 nm wavelength photons. The characterization included leakage current, dark count rate and single photon detection efficiency as functions of temperature from 210 to 294 K. The SPAD exhibited good temperature stability, with breakdown voltage dependence of approximately 45 mV K(-1). Operating at 210 K and in a gated mode, the SPAD achieved a photon detection probability of 26% at 1550 nm with a dark count rate of 1 × 10(8) Hz. The time response of the SPAD showed decreasing timing jitter (full width at half maximum) with increasing overbias voltage, with 70 ps being the smallest timing jitter measured.

  8. InGaAs/InAlAs single photon avalanche diode for 1550 nm photons

    PubMed Central

    Xie, Shiyu; Zhou, Xinxin; Calandri, Niccolò; Sanzaro, Mirko; Tosi, Alberto; Tan, Chee Hing; Ng, Jo Shien

    2016-01-01

    A single photon avalanche diode (SPAD) with an InGaAs absorption region, and an InAlAs avalanche region was designed and demonstrated to detect 1550 nm wavelength photons. The characterization included leakage current, dark count rate and single photon detection efficiency as functions of temperature from 210 to 294 K. The SPAD exhibited good temperature stability, with breakdown voltage dependence of approximately 45 mV K−1. Operating at 210 K and in a gated mode, the SPAD achieved a photon detection probability of 26% at 1550 nm with a dark count rate of 1 × 108 Hz. The time response of the SPAD showed decreasing timing jitter (full width at half maximum) with increasing overbias voltage, with 70 ps being the smallest timing jitter measured. PMID:27069647

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Froula, D. H.; Boni, R.; Bedzyk, M.

    A 10-ps, 263-nm (4{omega}) laser is being built to probe plasmas produced on the OMEGA EP [J. H. Kelly, L. J. Waxer, V. Bagnoud, I. A. Begishev, J. Bromage, B. E. Kruschwitz, T. E. Kessler, S. J. Loucks, D. N. Maywar, R. L. McCrory et al., J. Phys. IV France 133, 75-80 (2006)]. A suite of optical diagnostics (schlieren, interferometry, and grid image refractometry) has been designed to diagnose and characterize a wide variety of plasmas. Light scattered by the probe beam is collected by an f/4 catadioptric telescope and a transport system is designed to image with a near-diffraction-limitedmore » resolution ({approx}1 -{mu}m full width at half maximum) over a 5-mm field of view to a diagnostic table. The transport system provides a contrast greater than 1 : 10{sup 4} with respect to all wavelengths outside of the 263 {+-} 2 nm measurement range.« less

  10. Effects of heat induced by two-photon absorption and free-carrier absorption in silicon-on-insulator nanowaveguides operating as all-optical wavelength converters.

    PubMed

    Abdollahi, Siamak; Moravvej-Farshi, Mohammad Kazem

    2009-05-01

    We propose a new numerical model to analyze heat induced by two-photon absorption and free-carrier absorption, while high intensity optical pulses propagate along silicon-on-insulator (SOI) nanowaveguides (NWGs). Using this model, we demonstrate that such induced heat causes a shift in the amount of wavelength conversion and hence deteriorates the converter output characteristics for pulses in the picosecond regime. The wavelength shift induced by a pulse with maximum input intensity and full width at half-maximum of I(max)=1.5x10(10) W x cm(-2) and T(FWHM)=30 ps, propagating along a SOI NWG with an effective cross-sectional area of a(eff)=0.15 microm(2), is shown to be Delta lambda(s) approximately 8 pm. We also demonstrate that such a shift can be compensated by tuning the pump intensity down by approximately 6.33%.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Göries, D., E-mail: dennis.goeries@desy.de; Roedig, P.; Stübe, N.

    We report about the development and implementation of a new setup for time-resolved X-ray absorption fine structure spectroscopy at beamline P11 utilizing the outstanding source properties of the low-emittance PETRA III synchrotron storage ring in Hamburg. Using a high intensity micrometer-sized X-ray beam in combination with two positional feedback systems, measurements were performed on the transition metal complex fac-Tris[2-phenylpyridinato-C2,N]iridium(III) also referred to as fac-Ir(ppy){sub 3}. This compound is a representative of the phosphorescent iridium(III) complexes, which play an important role in organic light emitting diode (OLED) technology. The experiment could directly prove the anticipated photoinduced charge transfer reaction. Our resultsmore » further reveal that the temporal resolution of the experiment is limited by the PETRA III X-ray bunch length of ∼103 ps full width at half maximum (FWHM).« less

  12. A weak electric field-assisted ultrafast electrical switching dynamics in In3SbTe2 phase-change memory devices

    NASA Astrophysics Data System (ADS)

    Pandey, Shivendra Kumar; Manivannan, Anbarasu

    2017-07-01

    Prefixing a weak electric field (incubation) might enhance the crystallization speed via pre-structural ordering and thereby achieving faster programming of phase change memory (PCM) devices. We employed a weak electric field, equivalent to a constant small voltage (that is incubation voltage, Vi of 0.3 V) to the applied voltage pulse, VA (main pulse) for a systematic understanding of voltage-dependent rapid threshold switching characteristics and crystallization (set) process of In3SbTe2 (IST) PCM devices. Our experimental results on incubation-assisted switching elucidate strikingly one order faster threshold switching, with an extremely small delay time, td of 300 ps, as compared with no incubation voltage (Vi = 0 V) for the same VA. Also, the voltage dependent characteristics of incubation-assisted switching dynamics confirm that the initiation of threshold switching occurs at a lower voltage of 0.82 times of VA. Furthermore, we demonstrate an incubation assisted ultrafast set process of IST device for a low VA of 1.7 V (˜18 % lesser compared to without incubation) within a short pulse-width of 1.5 ns (full width half maximum, FWHM). These findings of ultrafast switching, yet low power set process would immensely be helpful towards designing high speed PCM devices with low power operation.

  13. Slow positron applications at slow positron facility of institute of materials structure science, KEK

    NASA Astrophysics Data System (ADS)

    Hyodo, Toshio; Mochizuki, Izumi; Wada, Ken; Toge, Nobukazu; Shidara, Tetsuo

    2018-05-01

    Slow Positron Facility at High Energy Accelerator Research Organization (KEK) is a user dedicated facility with an energy-tunable (0.1 - 35 keV) slow positron beam created by a dedicated ˜ 50 MeV linac. It operates in a short pulse (width 1-12 ns, variable, 5×106 e+/s) and a long pulse (width 1.2 µs, 5×107 e+/s) modes of 50 Hz. High energy positrons from pair creation are moderated by reemission after thermalization in W foils. The reemitted positrons are then electrostatically accelerated to a desired energy up to 35 keV and magnetically transported. A pulse-stretching section (pulse stretcher) is installed in the middle of the beamline. It stretches the slow positron pulse for the experiments where too many positrons annihilating in the sample at the same time has to be avoided. Four experiment stations for TRHEPD (total-reflection high-energy positron diffraction), LEPD (low-energy positron diffraction), Ps- (positronium negative ion), and Ps-TOF (positronium time-of-flight) experiments are connected to the beamline branches, SPF-A3, SPF-A4, SPF-B1 and SPF-B2, respectively. Recent results of these stations are briefly described.

  14. Ultra short laser pulse modification of wave guides

    NASA Astrophysics Data System (ADS)

    Rosenfeld, Arkadi; Ashkenasi, David

    2003-11-01

    The high peak powers of ultra short (ps and sub-ps) pulsed lasers available at relatively low single pulse energies potentially allow for a precise localization of photon energy, either on the surface or inside (transparent) materials. Three dimensional micro structuring of bulk transparent media without any sign of mechanical cracking has shown the potential of ultra short laser processing. In this study, the micro structuring of bulk transparent media was used to modify fused silica and especially the cladding-core interface in normal fused silica wave guides. The idea behind this technique is to enforce a local mismatch for total reflection at the interface at minimal mechanic stress to overcome the barrier for enhanced optical out-coupling. The laser-induced modifications were studied in dependence of pulse width, focal alignment, single pulse energy and pulse overlap. Micro traces with a thickness between 3 and 8 μm were generated with a spacing of 10 μm in the subsurface region using sub-ps and ps laser pulses at a wavelength of 800 nm. The optical leakage enforced by a micro spiral pattern is significant and can be utilized for medical applications or potentially also for telecommunications and fiber laser technology.

  15. Ultrashort laser pulse processing of wave guides for medical applications

    NASA Astrophysics Data System (ADS)

    Ashkenasi, David; Rosenfeld, Arkadi; Spaniol, Stefan B.; Terenji, Albert

    2003-06-01

    The availability of ultra short (ps and sub-ps) pulsed lasers has stimulated a growing interest in exploiting the enhanced flexibility of femtosecond and/or picosecond laser technology for micro-machining. The high peak powers available at relatively low single pulse energies potentially allow for a precise localization of photon energy, either on the surface or inside (transparent) materials. Three dimensional micro structuring of bulk transparent media without any sign of mechanical cracking has been demonstrated. In this study, the potential of ultra short laser processing was used to modify the cladding-core interface in normal fused silica wave guides. The idea behind this technique is to enforce a local mismatch for total reflection at the interface at minimal mechanic stress. The laser-induced modifications were studied in dependence of pulse width, focal alignment, single pulse energy and pulse overlap. Micro traces with a thickness between 3 and 8 μm were generated with a spacing of 10 μm in the sub-surface region using sub-ps and ps laser pulses at a wavelength of 800 nm. The optical leakage enforced by a micro spiral pattern is significant and can be utilized for medical applications or potentially also for telecommunications and fiber laser technology.

  16. Time-resolved photon echoes from donor-bound excitons in ZnO epitaxial layers

    NASA Astrophysics Data System (ADS)

    Poltavtsev, S. V.; Kosarev, A. N.; Akimov, I. A.; Yakovlev, D. R.; Sadofev, S.; Puls, J.; Hoffmann, S. P.; Albert, M.; Meier, C.; Meier, T.; Bayer, M.

    2017-07-01

    The coherent optical response from 140 nm and 65 nm thick ZnO epitaxial layers is studied using four-wave-mixing spectroscopy with picosecond temporal resolution. Resonant excitation of neutral donor-bound excitons results in two-pulse and three-pulse photon echoes. For the donor-bound A exciton (D0XA ) at temperature of 1.8 K we evaluate optical coherence times T2=33 -50 ps corresponding to homogeneous line widths of 13 -19 μ eV , about two orders of magnitude smaller as compared with the inhomogeneous broadening of the optical transitions. The coherent dynamics is determined mainly by the population decay with time T1=30 -40 ps, while pure dephasing is negligible. Temperature increase leads to a significant shortening of T2 due to interaction with acoustic phonons. In contrast, the loss of coherence of the donor-bound B exciton (D0XB ) is significantly faster (T2=3.6 ps ) and governed by pure dephasing processes.

  17. Performance Enhancement of a GaAs Detector with a Vertical Field and an Embedded Thin Low-Temperature Grown Layer

    PubMed Central

    Currie, Marc; Dianat, Pouya; Persano, Anna; Martucci, Maria Concetta; Quaranta, Fabio; Cola, Adriano; Nabet, Bahram

    2013-01-01

    Low temperature growth of GaAs (LT-GaAs) near 200 °C results in a recombination lifetime of nearly 1 ps, compared with approximately 1 ns for regular temperature ∼600 °C grown GaAs (RT-GaAs), making it suitable for ultra high speed detection applications. However, LT-GaAs detectors usually suffer from low responsivity due to low carrier mobility. Here we report electro-optic sampling time response measurements of a detector that employs an AlGaAs heterojunction, a thin layer of LT-GaAs, a channel of RT-GaAs, and a vertical electric field that together facilitate collection of optically generated electrons while suppressing collection of lower mobility holes. Consequently, these devices have detection efficiency near that of RT-GaAs yet provide pulse widths nearly an order of magnitude faster—∼6 ps for a cathode-anode separation of 1.3 μm and ∼12 ps for distances more than 3 μm. PMID:23429510

  18. Laser excitation of the n =3 level of positronium for antihydrogen production

    NASA Astrophysics Data System (ADS)

    Aghion, S.; Amsler, C.; Ariga, A.; Ariga, T.; Bonomi, G.; Bräunig, P.; Bremer, J.; Brusa, R. S.; Cabaret, L.; Caccia, M.; Caravita, R.; Castelli, F.; Cerchiari, G.; Chlouba, K.; Cialdi, S.; Comparat, D.; Consolati, G.; Demetrio, A.; Di Noto, L.; Doser, M.; Dudarev, A.; Ereditato, A.; Evans, C.; Ferragut, R.; Fesel, J.; Fontana, A.; Forslund, O. K.; Gerber, S.; Giammarchi, M.; Gligorova, A.; Gninenko, S.; Guatieri, F.; Haider, S.; Holmestad, H.; Huse, T.; Jernelv, I. L.; Jordan, E.; Kellerbauer, A.; Kimura, M.; Koettig, T.; Krasnicky, D.; Lagomarsino, V.; Lansonneur, P.; Lebrun, P.; Lehner, S.; Liberadzka, J.; Malbrunot, C.; Mariazzi, S.; Marx, L.; Matveev, V.; Mazzotta, Z.; Nebbia, G.; Nedelec, P.; Oberthaler, M.; Pacifico, N.; Pagano, D.; Penasa, L.; Petracek, V.; Pistillo, C.; Prelz, F.; Prevedelli, M.; Ravelli, L.; Resch, L.; Rienäcker, B.; Røhne, O. M.; Rotondi, A.; Sacerdoti, M.; Sandaker, H.; Santoro, R.; Scampoli, P.; Smestad, L.; Sorrentino, F.; Spacek, M.; Storey, J.; Strojek, I. M.; Testera, G.; Tietje, I.; Vamosi, S.; Widmann, E.; Yzombard, P.; Zmeskal, J.; Zurlo, N.; AEgIS Collaboration

    2016-07-01

    We demonstrate the laser excitation of the n =3 state of positronium (Ps) in vacuum. A combination of a specially designed pulsed slow positron beam and a high-efficiency converter target was used to produce Ps. Its annihilation was recorded by single-shot positronium annihilation lifetime spectroscopy. Pulsed laser excitation of the n =3 level at a wavelength λ ≈205 nm was monitored via Ps photoionization induced by a second intense laser pulse at λ =1064 nm. About 15% of the overall positronium emitted into vacuum was excited to n =3 and photoionized. Saturation of both the n =3 excitation and the following photoionization was observed and explained by a simple rate equation model. The positronium's transverse temperature was extracted by measuring the width of the Doppler-broadened absorption line. Moreover, excitation to Rydberg states n =15 and 16 using n =3 as the intermediate level was observed, giving an independent confirmation of excitation to the 3 3P state.

  19. Observation of a shape resonance of the positronium negative ion

    PubMed Central

    Michishio, Koji; Kanai, Tsuneto; Kuma, Susumu; Azuma, Toshiyuki; Wada, Ken; Mochizuki, Izumi; Hyodo, Toshio; Yagishita, Akira; Nagashima, Yasuyuki

    2016-01-01

    When an electron binds to its anti-matter counterpart, the positron, it forms the exotic atom positronium (Ps). Ps can further bind to another electron to form the positronium negative ion, Ps− (e−e+e−). Since its constituents are solely point-like particles with the same mass, this system provides an excellent testing ground for the three-body problem in quantum mechanics. While theoretical works on its energy level and dynamics have been performed extensively, experimental investigations of its characteristics have been hampered by the weak ion yield and short annihilation lifetime. Here we report on the laser spectroscopy study of Ps−, using a source of efficiently produced ions, generated from the bombardment of slow positrons onto a Na-coated W surface. A strong shape resonance of 1Po symmetry has been observed near the Ps (n=2) formation threshold. The resonance energy and width measured are in good agreement with the result of three-body calculations. PMID:26983496

  20. Pump-probe STM light emission spectroscopy for detection of photo-induced semiconductor-metal phase transition of VO2

    NASA Astrophysics Data System (ADS)

    Sakai, Joe; Katano, Satoshi; Kuwahara, Masashi; Uehara, Yoichi

    2017-10-01

    We attempted to observe pump-probe scanning tunneling microscopy (STM)-light emission (LE) from a VO2 thin film grown on a rutile TiO2(0 0 1) substrate, with an Ag tip fixed over a semiconducting domain. Laser pulses from a Ti:sapphire laser (wavelength 920 nm pulse width less than 1.5 ps) irradiated the tip-sample gap as pump and probe light sources. With a photon energy of 2.7 eV, suggesting phase transition from semiconducting monoclinic (M) to metallic rutile (R) phases in relation to the electronic band structure, faint LE was observed roughly 30 ps after the irradiation of the pump pulse, followed by retention for roughly 20 ps. The incident energy fluence of the pump pulse at the gap was five orders of magnitude lower than the threshold value for reported photo-induced M-R phase transition. The mechanism that makes it possible to reduce the threshold fluence is discussed.

  1. Pump-probe STM light emission spectroscopy for detection of photo-induced semiconductor-metal phase transition of VO2.

    PubMed

    Sakai, Joe; Katano, Satoshi; Kuwahara, Masashi; Uehara, Yoichi

    2017-10-11

    We attempted to observe pump-probe scanning tunneling microscopy (STM)-light emission (LE) from a VO 2 thin film grown on a rutile TiO 2 (0 0 1) substrate, with an Ag tip fixed over a semiconducting domain. Laser pulses from a Ti:sapphire laser (wavelength 920 nm; pulse width less than 1.5 ps) irradiated the tip-sample gap as pump and probe light sources. With a photon energy of 2.7 eV, suggesting phase transition from semiconducting monoclinic (M) to metallic rutile (R) phases in relation to the electronic band structure, faint LE was observed roughly 30 ps after the irradiation of the pump pulse, followed by retention for roughly 20 ps. The incident energy fluence of the pump pulse at the gap was five orders of magnitude lower than the threshold value for reported photo-induced M-R phase transition. The mechanism that makes it possible to reduce the threshold fluence is discussed.

  2. 10 kHz ps 1342 nm laser generation by an electro-optically cavity-dumped mode-locked Nd:YVO4 laser

    NASA Astrophysics Data System (ADS)

    Chen, Ying; Liu, Ke; He, Li-jiao; Yang, Jing; Zong, Nan; Yang, Feng; Gao, Hong-wei; Liu, Zhao; Yuan, Lei; Lan, Ying-jie; Bo, Yong; Peng, Qin-jun; Cui, Da-fu; Xu, Zu-yan

    2017-01-01

    We have demonstrated an electro-optically cavity-dumped mode-locked (CDML) picosecond Nd:YVO4 laser at 1342 nm with 880 nm diode-laser direct pumping. At a repetition rate of 10 kHz, an average output power of 0.119 W was achieved, corresponding to a pulse energy of 11.9 μJ. Compared with the continuous wave mode-locking pulse energy of 17.5 nJ, the CDML pulse energy was 680 times higher. The pulse width was measured to be 33.4 ps, resulting in the peak power of 356 kW. Meanwhile, the beam quality was nearly diffraction limited with an average beam quality factor M2 of 1.29.

  3. New photocycle intermediates in the photoactive yellow protein from Ectothiorhodospira halophila: picosecond transient absorption spectroscopy.

    PubMed

    Ujj, L; Devanathan, S; Meyer, T E; Cusanovich, M A; Tollin, G; Atkinson, G H

    1998-07-01

    Previous studies have shown that the room temperature photocycle of the photoactive yellow protein (PYP) from Ectothiorhodospira halophila involves at least two intermediate species: I1, which forms in <10 ns and decays with a 200-micros lifetime to I2, which itself subsequently returns to the ground state with a 140-ms time constant at pH 7 (Genick et al. 1997. Biochemistry. 36:8-14). Picosecond transient absorption spectroscopy has been used here to reveal a photophysical relaxation process (stimulated emission) and photochemical intermediates in the PYP photocycle that have not been reported previously. The first new intermediate (I0) exhibits maximum absorption at approximately 510 nm and appears in

  4. Pico-second laser materials interactions: mechanisms, material lifetime and performance optimization Ted Laurence(14-ERD-014)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laurence, Ted A.

    2016-12-14

    Laser-induced damage with ps pulse widths straddles the transition from intrinsic, multiphoton ionization- and avalanche ionization-based ablation with fs pulses to defectdominated, thermal-based damage with ns pulses. We investigated the morphology and scaling of damage for commonly used silica and hafnia coatings as well as fused silica. Using carefully calibrated laser-induced damage experiments, in situ imaging, and high-resolution optical microscopy, atomic force microscopy, and scanning electron microscopy, we showed that defects play an important role in laser-induced damage for pulse durations as short as 1 ps. Three damage morphologies were observed: standard material ablation, ultra-high density pits, and isolated absorbers.more » For 10 ps and longer, the isolated absorbers limited the damage performance of the coating materials. We showed that damage resulting from the isolated absorbers grows dramatically with subsequent pulses for sufficient fluences. For hafnia coatings, we used electric field modeling and experiments to show that isolated absorbers near the surface were affected by the chemical environment (vacuum vs. air) for pulses as short as 10 ps. Coupled with the silica results, these results suggested that improvements in the performance in the 10 -60 ps range have not reached fundamental limits. These findings motivate new efforts, including a new SI LDRD in improving the laser-damage performance of multi-layer dielectric coatings. A damage test facility for ps pulses was developed and automated, and was used for testing production optics for ARC. The resulting software was transferred to other laser test facilities for fs pulses and multiple wavelengths with 30 ps pulses. Additionally, the LDRD supported the retention and promotion of an important staff scientist in high-resolution dynamic microscopy and laser-damage testing.« less

  5. Measurement of $B/s$ lifetime, decay width difference and polarization amplitude of the $$B/s\\to J/\\Psi \\phi$$ decays at CDF II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grillo, Lucia

    2011-11-01

    In this thesis the update of the measurement of the Bmore » $$^{0}_{s}$$ lifetime, the decay width difference between its heavy and light mass eigenstates and the polarization amplitudes of B$$^{0}_{s}$$ $$\\rightarrow$$ J/$$\\psi\\phi$$ decays of the $$^{0}_{s}$$ meson is presented. About 9600 B$$^{0}_{s}$$ → J/ψφ decays have been reconstructed in the final state [$$\\mu^{+}$$ $$\\mu^{−}$$ ][K$$^{+}$$K$$^{-}$$ ] using a dataset of p ̄$$\\overline{p}$$ collisions at $$\\sqrt{s}$$ = 1.96 TeV corresponding to 8.4 fb$$^{-1}$$ integrated luminosity collected by the CDFII detector at the Fermilab Tevatron collider. The results are extracted from an analysis of the angular distributions of muons and kaons as a function of the decay time through an unbinned maximum likelihood fit which exploits identification of the quark content (b or $$\\overline{b}$$ of the strange bottom meson at the time of production. Assuming the Standard Model prediction for the size of CP violation occurring in the B$$^{0}_ {s}$$ mixing, the estimated lifetime, decay width difference, polarization amplitudes and strong phase of the perpendicular amplitude are: τ (B$$^{0}_{s}$$) = 1.527 $$\\pm$$ 0.021(stat.)ps, $$\\Delta\\Gamma$$ = 0.063 $$\\pm$$ 0.029(stat.)ps$$^{-1}$$, $$\\mid$$A$$_{parallel}$$ (0)$$\\mid^{2}$$ = 0.233 $$\\pm$$ 0.014(stat.), $$\\mid$$A$$_[0}$$ $$\\mid^{2}$$ = 0.514 $$\\pm$$ 0.012(stat.), $$\\delta_{perpendicular}$$ = 2.95 $$\\pm$$ 0.61(stat.)« less

  6. Photodissociation resonances of jet-cooled NO2 at the dissociation threshold by CW-CRDS

    NASA Astrophysics Data System (ADS)

    Dupré, Patrick

    2015-05-01

    Around 398 nm, the jet-cooled-spectrum of NO2 exhibits a well identified dissociation threshold (D0). Combining the continuous-wave absorption-based cavity ringdown spectroscopy technique and laser induced fluorescence detection, an energy range of ˜25 cm-1 is analyzed at high resolution around D0. In addition to the usual molecular transitions to long-lived energy levels, ˜115 wider resonances are observed. The position, amplitude, and width of these resonances are determined. The resonance width spreads from ˜0.006 cm-1 (i.e., ˜450 ps) to ˜0.7 cm-1 (˜4 ps) with large fluctuations. The identification of at least two ranges of resonance width versus the excess energy can be associated with the opening of the dissociation channels NO 2 → NO (X 2 Π 1 / 2 , v = 0 , J = 1 / 2) + O (3 P 2) and NO 2 → NO (X 2 Π 1 / 2 , v = 0 , J = 3 / 2) + O (3 P 2). This analysis corroborates the existence of loose transition states close to the dissociation threshold as reported previously and in agreement with the phase space theory predictions as shown by Tsuchiya's group [Miyawaki et al., J. Chem. Phys. 99, 254-264 (1993)]. The data are analyzed in the light of previously reported frequency- and time-resolved data to provide a robust determination of averaged unimolecular dissociation rate coefficients. The density of reactant levels deduced (ρreac ˜ 11 levels/cm-1) is discussed versus the density of transitions, the density of resonances, and the density of vibronic levels.

  7. Pick-off annihilation of positronium in matter using full correlation single particle potentials: solid He.

    PubMed

    Zubiaga, A; Tuomisto, F; Puska, M J

    2015-01-29

    We investigate the modeling of positronium (Ps) states and their pick-off annihilation trapped at open volumes pockets in condensed molecular matter. Our starting point is the interacting many-body system of Ps and a He atom because it is the smallest entity that can mimic the energy gap between the highest occupied and lowest unoccupied molecular orbitals of molecules, and yet the many-body structure of the HePs system can be calculated accurately enough. The exact-diagonalization solution of the HePs system enables us to construct a pairwise full-correlation single-particle potential for the Ps-He interaction, and the total potential in solids is obtained as a superposition of the pairwise potentials. We study in detail Ps states and their pick-off annihilation rates in voids inside solid He and analyze experimental results for Ps-induced voids in liquid He obtaining the radii of the voids. More importantly, we generalize our conclusions by testing the validity of the Tao-Eldrup model, widely used to analyze ortho-Ps annihilation measurements for voids in molecular matter, against our theoretical results for the solid He. Moreover, we discuss the influence of the partial charges of polar molecules and the strength of the van der Waals interaction on the pick-off annihilation rate.

  8. [PS II photochemical efficiency in flag leaf of wheat varieties and its adaptation to strong sun- light intensity on farmland of Xiangride in Qinghai Province, Northwest China].

    PubMed

    Shi, Sheng-Bo; Chen, Wen-Jie; Shi, Rui; Li, Miao; Zhang, Huai-Gang; Sun, Ya-Nan

    2014-09-01

    Taking four wheat varieties developed by Northwest Institute of Plateau Biology, Chinese Academy of Sciences, as test materials, with the measurement of content of photosynthetic pigments, leaf area, fresh and dry mass of flag leaf, the PS II photochemistry efficiency of abaxial and adaxial surface of flag leaf and its adaptation to strong solar radiation during the period of heading stage in Xiangride region were investigated with the pulse-modulated in-vivo chlorophyll fluorescence technique. The results indicated that flag leaf angle mainly grew in horizontal state in Gaoyuan 314, Gaoyuan 363 and Gaoyuan 584, and mainly in vertical state in Gaoyuan 913 because of its smaller leaf area and larger width. Photosynthetic pigments were different among the 4 varieties, and positively correlated with intrinsic PS II photochemistry efficiencies (Fv/Fm). In clear days, especially at noon, the photosynthetic photoinhibition was more serious in abaxial surface of flag leaf due to directly facing the solar radiation, but it could recover after reduction of sunlight intensity in the afternoon, which meant that no inactive damage happened in PS II reaction centers. There were significant differences of PS II actual and maximum photochemical efficiencies at the actinic light intensity (ΦPS II and Fv'/Fm') between abaxial and adaxial surface, and their relative variation trends were on the contrary. The photochemical and non-photochemical quenching coefficients (qP and NPQ) had a similar tendency in both abaxial and adaxial surfaces. Although ΦPS II and qP were lower in adaxial surface of flag leaf, the Fv'/Fm' was significantly higher, which indicated that the potential PS II capture efficiency of excited energy was higher. The results demonstrated that process of photochemical and non-photochemical quenching could effectively dissipate excited energy caused by strong solar radiation, and there were higher adaptation capacities in wheat varieties natively cultivated in Qinghai-Tibetan Plateau area.

  9. Time-resolved K α spectroscopy measurements of hot-electron equilibration dynamics in thin-foil solid targets: collisional and collective effects

    NASA Astrophysics Data System (ADS)

    Nilson, P. M.; Solodov, A. A.; Davies, J. R.; Theobald, W.; Mileham, C.; Stoeckl, C.; Begishev, I. A.; Zuegel, J. D.; Froula, D. H.; Betti, R.; Meyerhofer, D. D.

    2015-11-01

    Time-resolved K α spectroscopy measurements from high-intensity laser interactions with thin-foil solid targets are reviewed. Thin Cu foils were irradiated with 1-10 J, 1 ps pulses at focused intensities from 1018 to 1019 W cm-2. The experimental data show K α -emission pulse widths from 3 to 6 ps, increasing with laser intensity. The time-resolved K α -emission data are compared to a hot-electron transport and K α -production model that includes collisional electron-energy coupling, resistive heating, and electromagnetic field effects. The experimental data show good agreement with the model when a reduced ponderomotive scaling is used to describe the initial mean hot-electron energy over the relevant intensity range.

  10. Fiber Optic Picosecond Laser Pulse Transmission Line for Hydrogen Ion Beam Profile Measurement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yun; Huang, Chunning; Aleksandrov, Alexander V

    2013-01-01

    We present a fiber optic laser pulse transmission line for non-intrusive longitudinal profile measurement of the hydrogen ion (H-) beam at the front-end of the Spallation Neutron Source (SNS) accelerator. The 80.5 MHz, 2.5 ps, multi-killowatt optical pulses are delivered to the accelerator beam line through a large mode area polarization maintaining optical fiber to ensure a high measurement stability. The transmission efficiency, output laser beam quality, pulse jitter and pulse width broadening over a 100-ft fiber line are experimentally investigated. A successful measurement of the H- beam microbunch (~130 ps) profile is obtained. Our experiment is the first demonstrationmore » of particle beam profile diagnostics using fiber optic laser pulse transmission line.« less

  11. All solid-state high power microwave source with high repetition frequency.

    PubMed

    Bragg, J-W B; Sullivan, W W; Mauch, D; Neuber, A A; Dickens, J C

    2013-05-01

    An all solid-state, megawatt-class high power microwave system featuring a silicon carbide (SiC) photoconductive semiconductor switch (PCSS) and a ferrimagnetic-based, coaxial nonlinear transmission line (NLTL) is presented. A 1.62 cm(2), 50 kV 4H-SiC PCSS is hard-switched to produce electrical pulses with 7 ns full width-half max (FWHM) pulse widths at 2 ns risetimes in single shot and burst-mode operation. The PCSS resistance drops to sub-ohm when illuminated with approximately 3 mJ of laser energy at 355 nm (tripled Nd:YAG) in a single pulse. Utilizing a fiber optic based optical delivery system, a laser pulse train of four 7 ns (FWHM) signals was generated at 65 MHz repetition frequency. The resulting electrical pulse train from the PCSS closely follows the optical input and is utilized to feed the NLTL generating microwave pulses with a base microwave-frequency of about 2.1 GHz at 65 MHz pulse repetition frequency (prf). Under typical experimental conditions, the NLTL produces sharpened output risetimes of 120 ps and microwave oscillations at 2-4 GHz that are generated due to damped gyromagnetic precession of the ferrimagnetic material's axially pre-biased magnetic moments. The complete system is discussed in detail with its output matched into 50 Ω, and results covering MHz-prf in burst-mode operation as well as frequency agility in single shot operation are discussed.

  12. Fabrication of narrow pulse passively Q-switched self-stimulated Raman laser with c-cut Nd:GdVO4

    NASA Astrophysics Data System (ADS)

    Shen, Gao; Li, Zuo-han; Han, Ming

    2016-11-01

    Combining the self-stimulated Raman scattering technology and saturable absorber of Cr4+:YAG, a 1.17 μm c-cut Nd:GdVO4 picosecond Q-switched laser is demonstrated in this paper. With an incident pump power of 10 W, the Q-switched laser with average power of 430 mW for 1.17 μm, pulse width of 270 ps, repetition rate of 13 kHz and the first order Stokes conversion efficiency of 4.3% is obtained. The Q-switched pulse width can be the narrowest in our research. In addition, the yellow laser at 0.58 μm is also achieved by using the LiB3O5 frequency doubling crystal.

  13. Interacting steps with finite-range interactions: Analytical approximation and numerical results

    NASA Astrophysics Data System (ADS)

    Jaramillo, Diego Felipe; Téllez, Gabriel; González, Diego Luis; Einstein, T. L.

    2013-05-01

    We calculate an analytical expression for the terrace-width distribution P(s) for an interacting step system with nearest- and next-nearest-neighbor interactions. Our model is derived by mapping the step system onto a statistically equivalent one-dimensional system of classical particles. The validity of the model is tested with several numerical simulations and experimental results. We explore the effect of the range of interactions q on the functional form of the terrace-width distribution and pair correlation functions. For physically plausible interactions, we find modest changes when next-nearest neighbor interactions are included and generally negligible changes when more distant interactions are allowed. We discuss methods for extracting from simulated experimental data the characteristic scale-setting terms in assumed potential forms.

  14. Time-Resolved Photoluminescence Spectroscopy Of The Carrier Dynamics In GaAs/AlxGa1-xAs Quantum Wells

    NASA Astrophysics Data System (ADS)

    Polland, Hans J.; Kuhl, Jurgen; Gobel, Ernst O.

    1988-08-01

    Picosecond photoluminescence experiments at low temperature (6K) have been employed to study the trapping dynamics of photoexcited carriers in GaAs/AlGaAs single quantum wells for different shapes of the AlxGai_xAs confinement layers. We have obtained the following results by analyzing the spectral and temporal distribution of the photoluminescence after picosecond pulse excitation: Trapping efficiency is ==, 40% for a standard ungraded cladding layer (A10.3G1.7As with constant band gap and 5nm thick wells) but increases to ,-, 60% and 100% for samp es with a spatially parabolic or linear band gap profile of the confinement layers, respectively. Trapping times are appreciably shorter than the luminescence risetime which is between 60ps to 100ps. Thus carrier trapping does not impose severe limitations on the modulation speed of single quantum well devices up to frequencies in the order of 10GHz. Similar results are obtained for a well with a width of 1.2nm. Inhomogeneities in the carrier trapping mechanism due to well width fluctuations are not observed in our samples. In the second part we describe the photoluminescence properties of GaAs/A1,Gai_x As quantum wells (x=0.3) under the influence of electric fields perpendicular to the layers. We observe a drastic red shift and a concomitant strong increase of the electron-hole recombination lifetime for well widths > lOnm due to the quantum-confined Stark effect. At high fields (50-100kV/cm) field ionization due to tunneling leads to a decrease of both the photoluminescence yield and decay time, in accordance with a simple WKB theory

  15. A multiplexed TOF and DOI capable PET detector using a binary position sensitive network.

    PubMed

    Bieniosek, M F; Cates, J W; Levin, C S

    2016-11-07

    Time of flight (TOF) and depth of interaction (DOI) capabilities can significantly enhance the quality and uniformity of positron emission tomography (PET) images. Many proposed TOF/DOI PET detectors require complex readout systems using additional photosensors, active cooling, or waveform sampling. This work describes a high performance, low complexity, room temperature TOF/DOI PET module. The module uses multiplexed timing channels to significantly reduce the electronic readout complexity of the PET detector while maintaining excellent timing, energy, and position resolution. DOI was determined using a two layer light sharing scintillation crystal array with a novel binary position sensitive network. A 20 mm effective thickness LYSO crystal array with four 3 mm  ×  3 mm silicon photomultipliers (SiPM) read out by a single timing channel, one energy channel and two position channels achieved a full width half maximum (FWHM) coincidence time resolution of 180  ±  2 ps with 10 mm of DOI resolution and 11% energy resolution. With sixteen 3 mm  ×  3 mm SiPMs read out by a single timing channel, one energy channel and four position channels a coincidence time resolution 204  ±  1 ps was achieved with 10 mm of DOI resolution and 15% energy resolution. The methods presented here could significantly simplify the construction of high performance TOF/DOI PET detectors.

  16. Picosecond timing resolution detection of ggr-photons utilizing microchannel-plate detectors: experimental tests of quantum nonlocality and photon localization

    NASA Astrophysics Data System (ADS)

    Irby, Victor D.

    2004-09-01

    The concept and subsequent experimental verification of the proportionality between pulse amplitude and detector transit time for microchannel-plate detectors is presented. This discovery has led to considerable improvement in the overall timing resolution for detection of high-energy ggr-photons. Utilizing a 22Na positron source, a full width half maximum (FWHM) timing resolution of 138 ps has been achieved. This FWHM includes detector transit-time spread for both chevron-stack-type detectors, timing spread due to uncertainties in annihilation location, all electronic uncertainty and any remaining quantum mechanical uncertainty. The first measurement of the minimum quantum uncertainty in the time interval between detection of the two annihilation photons is reported. The experimental results give strong evidence against instantaneous spatial localization of ggr-photons due to measurement-induced nonlocal quantum wavefunction collapse. The experimental results are also the first that imply momentum is conserved only after the quantum uncertainty in time has elapsed (Yukawa H 1935 Proc. Phys. Math. Soc. Japan 17 48).

  17. Passively mode-locked Yb fiber laser with PbSe colloidal quantum dots as saturable absorber.

    PubMed

    Wei, Kaihua; Fan, Shanhui; Chen, Qingguang; Lai, Xiaomin

    2017-10-16

    A passively mode-locked Yb fiber laser using PbSe colloidal quantum dots (CQDs) as saturable absorber (SA) is experimentally demonstrated. An all-fiber experimental scheme was designed to understand the SA property of PbSe CQDs. The non-saturable loss, modulation depth, and saturable intensity of SA measured were 23%, 7%, and 12 MW/cm 2 , respectively. The PbSe CQDs were sandwiched in a fiber connector, which was further inserted into the Yb fiber laser for mode-locking. As the pump power up to 110 mW, the self-starting mode-locking pulses were observed. Under the pump power of 285 mW, a maximum average laser power with fundamental mode-locking operation was obtained to be 21.3 mW. In this situation, the pulse full width at half maximum (FWHM), pulse repetition rate, and spectral FWHM were measured to be 70 ps, 8.3 MHz, and 4.5 nm, respectively.

  18. Timing Results Using an FPGA-Based TDC with Large Arrays of 144 SiPMs

    NASA Astrophysics Data System (ADS)

    Aguilar, A.; González, A. J.; Torres, J.; García-Olcina, R.; Martos, J.; Soret, J.; Conde, P.; Hernández, L.; Sánchez, F.; Benlloch, J. M.

    2015-02-01

    Silicon photomultipliers (SiPMs) have become an alternative to traditional tubes due to several features. However, their implementation to form large arrays is still a challenge especially due to their relatively high intrinsic noise, depending on the chosen readout. In this contribution, two modules composed of 12 ×12 SiPMs with an area of roughly 50 mm×50 mm are used in coincidence. Coincidence resolving time (CRT) results with a field-programmable gate array, in combination with a time to digital converter, are shown as a function of both the sensor bias voltage and the digitizer threshold. The dependence of the CRT on the sensor matrix temperature, the amount of SiPM active area and the crystal type is also analyzed. Measurements carried out with a crystal array of 2 mm pixel size and 10 mm height have shown time resolutions for the entire 288 SiPM two-detector set-up as good as 800 ps full width at half maximum (FWHM).

  19. Single-photon imager based on a superconducting nanowire delay line

    NASA Astrophysics Data System (ADS)

    Zhao, Qing-Yuan; Zhu, Di; Calandri, Niccolò; Dane, Andrew E.; McCaughan, Adam N.; Bellei, Francesco; Wang, Hao-Zhu; Santavicca, Daniel F.; Berggren, Karl K.

    2017-03-01

    Detecting spatial and temporal information of individual photons is critical to applications in spectroscopy, communication, biological imaging, astronomical observation and quantum-information processing. Here we demonstrate a scalable single-photon imager using a single continuous superconducting nanowire that is not only a single-photon detector but also functions as an efficient microwave delay line. In this context, photon-detection pulses are guided in the nanowire and enable the readout of the position and time of photon-absorption events from the arrival times of the detection pulses at the nanowire's two ends. Experimentally, we slowed down the velocity of pulse propagation to ∼2% of the speed of light in free space. In a 19.7 mm long nanowire that meandered across an area of 286 × 193 μm2, we were able to resolve ∼590 effective pixels with a temporal resolution of 50 ps (full width at half maximum). The nanowire imager presents a scalable approach for high-resolution photon imaging in space and time.

  20. Brain regions implicated in inhibitory control and appetite regulation are activated in response to food portion size and energy density in children.

    PubMed

    English, L K; Fearnbach, S N; Lasschuijt, M; Schlegel, A; Anderson, K; Harris, S; Wilson, S J; Fisher, J O; Savage, J S; Rolls, B J; Keller, K L

    2016-10-01

    Large portions of energy-dense foods drive energy intake but the brain mechanisms underlying this effect are not clear. Our main objective was to investigate brain function in response to food images varied by portion size (PS) and energy density (ED) in children using functional magnetic resonance imaging (fMRI). Blood-oxygen-level-dependent (BOLD) fMRI was completed in 36 children (ages 7-10 years) after a 2-h fast while viewing food images at two levels of PS (Large PS, Small PS) and two levels of ED (High ED, Low ED). Children rated perceived fullness pre- and post-fMRI, as well as liking of images on visual analog scales post-fMRI. Anthropometrics were completed 4 weeks before the fMRI. Large PS vs Small PS and High ED vs Low ED were compared with region-of-interest analyses using Brain Voyager v 2.8. Region-of-interest analyses revealed that activation in the right inferior frontal gyrus (P=0.03) was greater for Large PS vs Small PS. Activation was reduced for High ED vs Low ED in the left hypothalamus (P=0.03). Main effects were no longer significant after adjustment for pre-fMRI fullness and liking ratings (PS, P=0.92; ED, P=0.58). This is the first fMRI study to report increased activation to large portions in a brain region that is involved in inhibitory control. These findings may contribute to understanding why some children overeat when presented with large portions of palatable food.

  1. Time-resolved K α spectroscopy measurements of hot-electron equilibration dynamics in thin-foil solid targets: Collisional and collective effects

    DOE PAGES

    Nilson, P. M.; Solodov, A. A.; Davies, J. R.; ...

    2015-09-25

    Time-resolved K α spectroscopy measurements from high-intensity laser interactions with thin-foil solid targets are reviewed. Thin Cu foils were irradiated with 1- to 10-J, 1-ps pulses at focused intensities from 10 18 to 10 19 W/cm 2. The experimental data show K α-emission pulse widths from 3 to 6 ps, increasing with laser intensity. The time-resolved K α-emission data are compared to a hot-electron transport and K α-production model that includes collisional electron-energy coupling, resistive heating, and electromagnetic field effects. The experimental data show good agreement with the model when a reduced ponderomotive scaling is used to describe the initialmore » mean hot-electron energy over the relevant intensity range.« less

  2. Amide I SFG Spectral Line Width Probes the Lipid-Peptide and Peptide-Peptide Interactions at Cell Membrane In Situ and in Real Time.

    PubMed

    Zhang, Baixiong; Tan, Junjun; Li, Chuanzhao; Zhang, Jiahui; Ye, Shuji

    2018-06-13

    The balance of lipid-peptide and peptide-peptide interactions at cell membrane is essential to a large variety of cellular processes. In this study, we have experimentally demonstrated for the first time that sum frequency generation vibrational spectroscopy can be used to probe the peptide-peptide and lipid-peptide interactions in cell membrane in situ and in real time by determination of the line width of amide I band of protein backbone. Using a "benchmark" model of α-helical WALP23, it is found that the dominated lipid-peptide interaction causes a narrow line width of the amide I band, whereas the peptide-peptide interaction can markedly broaden the line width. When WALP23 molecules insert into the lipid bilayer, a quite narrow line width of the amide I band is observed because of the lipid-peptide interaction. In contrast, when the peptide lies down on the bilayer surface, the line width of amide I band becomes very broad owing to the peptide-peptide interaction. In terms of the real-time change in the line width, the transition from peptide-peptide interaction to lipid-peptide interaction is monitored during the insertion of WALP23 into 1,2-dipalmitoyl- sn-glycero-3-phospho-(1'- rac-glycerol) (DPPG) lipid bilayer. The dephasing time of a pure α-helical WALP23 in 1-palmitoyl-2-oleoyl- sn-glycero-3-phospho-(1'- rac-glycerol) and DPPG bilayer is determined to be 2.2 and 0.64 ps, respectively. The peptide-peptide interaction can largely accelerate the dephasing time.

  3. Generation of 70 fs broadband pulses in a hybrid nonlinear amplification system with mode-locked Yb:YAG ceramic oscillator

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Wang, Chao; Luo, Daping; Yang, Chao; Li, Jiang; Ge, Lin; Pan, Yubai; Li, Wenxue

    2017-12-01

    We demonstrate the passively mode-locked laser performances of bulk Yb:YAG ceramic prepared by non-aqueous tape casting, which generates initial pulses in temporal width of 3 ps and spectrum width of 3 nm without intra-cavity dispersion management. The ceramic laser is further used as seeding oscillator in a fiber nonlinear amplification system, where ultrashort pulses in maximum output power of ˜100 W and pulse duration of 70 fs are achieved. Moreover, the laser spectrum is broadened to be ˜41 nm due to self-phase modulation effects in the gain fiber, overcoming the narrow spectrum limitations of ceramic materials. Our approach opens a new avenue for power-scaling and spectrum-expanding of femtosecond ceramic lasers.

  4. Time-Domain Full-Wave Modeling of Nonlinear Air Breakdown in High-Power Microwave Devices and Systems

    DTIC Science & Technology

    2017-09-30

    AFRL-RD-PS- AFRL-RD-PS- TR-2017-0047 TR-2017-0047 TIME -DOMAIN FULL-WAVE MODELING OF NONLINEAR AIR BREAKDOWN IN HIGH-POWER MICROWAVE...Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions...TITLE AND SUBTITLE Time -Domain Full-Wave Modeling of Nonlinear Air Breakdown in High-Power Microwave Devices and Systems 5a. CONTRACT NUMBER 5b

  5. In vitro kinematic measurements of the patellar tendon in two different types of posterior-stabilized total knee arthroplasties.

    PubMed

    Zhu, Zhonglin; Ding, Hui; Dang, Xiao; Tang, Jing; Zhou, Yixin; Wang, Guangzhi

    2010-01-01

    Fixed-bearing posterior-stabilized (PS) total knee arthroplasty (TKA) has been used in Asian countries for several years, but few studies have investigated differences in the kinematic properties of the patellar tendon after standard PS TKA as compared to high-flex PS TKA. To quantify the in vitro three-dimensional (3D) kinematics of the patellar tendon during passive high flexion and full extension before and after two different types of PS TKAs. Six fresh-frozen cadaveric knees were tested under the following conditions: the unaltered state, status-post traditional PS prostheses (Simth-nephew GENESIS II) replacement, and status-post high-flexion PS prostheses replacement. The soft tissue around the knee and the quadriceps muscle were preserved, then tested under the load of a specific weight in an Oxford knee rig. We designed a specialized rigid body with four active markers fixed to each bone to track the 3D passive motion of the cadaveric knees. Flexion and extension was controlled by the knee rig and captured by an Optotrak Certus high precision optical tracking system. The attachment sites of the patellar tendon were registered as virtual markers to calculate the 3D kinematics. The patellar tendon of the unaltered knee and both TKA knees showed similar deformation. We found the length of the patellar tendon changed significantly during a motion from full extension to 30°, but there was no significant change in length while undergoing a motion from 30° to full flexion. Both the sagittal plane and coronal plane angles of the patellar tendon decreased after PS TKAs. There was no significant difference in patellar tendon kinematics between the two types of PS TKAs. We believe the changes observed in the sagittal plane and coronal plane angles of the patellar tendon after PS TKAs may influence the extensor mechanism and be an important cause of patella-femoral complications. These data may be used to assess patella-femoral complications after surgery so as to improve the design of high-flexion TKAs for Asians and achieve long-term stability.

  6. PP and PS interferometric images of near-seafloor sediments

    USGS Publications Warehouse

    Haines, S.S.

    2011-01-01

    I present interferometric processing examples from an ocean-bottom cable OBC dataset collected at a water depth of 800 m in the Gulf of Mexico. Virtual source and receiver gathers created through cross-correlation of full wavefields show clear PP reflections and PS conversions from near-seafloor layers of interest. Virtual gathers from wavefield-separated data show improved PP and PS arrivals. PP and PS brute stacks from the wavefield-separated data compare favorably with images from a non-interferometric processing flow. ?? 2011 Society of Exploration Geophysicists.

  7. Synthesis of Phosphatidylserine and Its Stereoisomers: Their Role in Activation of Blood Coagulation.

    PubMed

    Mallik, Suman; Prasad, Ramesh; Bhattacharya, Anindita; Sen, Prosenjit

    2018-05-10

    Natural phosphatidylserine (PS), which contains two chiral centers, enhances blood coagulation. However, the process by which PS enhanced blood coagulation is not completely understood. An efficient and flexible synthetic route has been developed to synthesize all of the possible stereoisomers of PS. In this study, we examined the role of PS chiral centers in modulating the activity of the tissue factor (TF)-factor VIIa coagulation initiation complex. Full length TF was relipidated with phosphatidylcholine, and the synthesized PS isomers were individually used to estimate the procoagulant activity of the TF-FVIIa complex via a FXa generation assay. The results revealed that the initiation complex activity was stereoselective and had increased sensitivity to the configuration of the PS glycerol backbone due to optimal protein-lipid interactions.

  8. Folded inflatable protective device and method for making same

    DOEpatents

    Behr, V.L.; Nelsen, J.M.; Gwinn, K.W.

    1998-10-20

    An apparatus and method are disclosed for making an inflatable protective device made of lightweight material that can withstand the initial stress from inflation and enhance radial inflation. The device includes a cushion and an inflator port. The invention further includes several stacks of folded cushion material including a combination of full-width stacks and half-width stacks: a first full-width stack defined by one or more fan folds in a first lateral half of the cushion wherein the folds are substantially centered above a first center line and are substantially over the inflator port; a second full-width stack defined by one or more fan folds in a second lateral half of the cushion wherein the folds are substantially centered above the first center line and substantially over the inflator port in the first full-width stack; a first half-width stack defined by a plurality of fan folds in the bottom of the cushion where neither edge of each fold extends substantially over the second center line; and a second half-width stack defined by a plurality of fan folds in the top of the cushion wherein neither edge of each fold extends substantially over the second center line. 22 figs.

  9. Folded inflatable protective device and method for making same

    DOEpatents

    Behr, Vance L.; Nelsen, James M.; Gwinn, Kenneth W.

    1998-01-01

    An apparatus and method for making an inflatable protective device made of lightweight material that can withstand the initial stress from inflation and enhance radial inflation. The device includes a cushion and an inflator port. The invention further includes several stacks of folded cushion material including a combination of full-width stacks and half-width stacks: a first full-width stack defined by one or more fan folds in a first lateral half of the cushion wherein the folds are substantially centered above a first center line and are substantially over the inflator port; a second full-width stack defined by one or more fan folds in a second lateral half of the cushion wherein the folds are substantially centered above the first center line and substantially over the inflator port in the first full-width stack; a first half-width stack defined by a plurality of fan folds in the bottom of the cushion where neither edge of each fold extends substantially over the second center line; and a second half-width stack defined by a plurality of fan folds in the top of the cushion wherein neither edge of each fold extends substantially over the second center line.

  10. Fast Pb-glass neutron-to-light converter for ICF (Inertial Confinement Fusion) target burn history measurements

    NASA Astrophysics Data System (ADS)

    Lerche, R. A.; Cable, M. D.; Phillion, D. W.

    1990-09-01

    We are developing a streak camera based instrument to diagnose the fusion reaction rate (burn history) within laser-driven ICF targets filled with D-T fuel. Recently, we attempted measurements using the 16.7 MeV gamma ray emitted in the T(d,gamma)He(5) fusion reaction. Pb glass which has a large cross section for pair production acts as a gamma-ray-to-light converter. Gamma rays interact within the glass to form electron-positron pairs that produce large amounts (1000 photons/gamma ray) of prompt (less than 10 ps) Cerenkov light as they slow down. In our experimental instrument, an f/10 Cassegrain telescope optically couples light produced within the converter to a streak camera having 20-ps resolution. Experiments using high-yield (10(exp 13) D-T neutrons), direct-drive targets at Nova produced good signals with widths of 200 ps. Time-of-flight measurements show the signals to be induced by neutrons rather than gamma rays. The Pb glass appears to act as a fast neutron-to-light converter. We continue to study the interactions process and the possibility of using the 16.7 MeV gamma rays for burn time measurements.

  11. Three-dimensional impedance engineering for mixed-signal system-on-chip applications

    NASA Astrophysics Data System (ADS)

    Chong, Kyuchul

    A novel approach for three-dimensional substrate impedance engineering of p-/p+ epi substrate is proposed for mixed-signal integrated circuit applications. This technology requires minimum intrusion to conventional Si CMOS processing, but offers astounding improvements with regard to RF crosstalk via substrate and RF passive device performance. The engineered substrate consists of conducting as well as semi-insulating regions strategically placed three-dimensionally throughout the volume of the substrate. The p-/p+ epi substrate is used to prevent latch-up at tight design rules in high performance digital CMOS. Metal vias are fabricated from the front side using electroless plating method for Faraday cage isolation structure as well as "true ground" contacts. A self-limiting micro-PS formation process is employed to allow the insertion of semi-insulating regions from the backside of the wafer and RIE etch to remove p- layer is performed from the front side completely eliminating any parasitic pathways for crosstalk. The crosstalk isolation methods in this study are based on the principle of RF noise shielding in addition to insulating. Both the suppression of crosstalk by the metal vias and micro-PS trench isolation are so significant that the crosstalk goes down to the noise floor of the conventional measurement instruments. The use of micro-PS layer effectively can reduce the parasitic substrate effect. These reductions result in higher Q and fr of inductors on micro-PS region. Inductors located on micro-PS are subjected to a much less stringent set of constraints than that on bulk Si substrates, allowing for much higher inductance without severe sacrifice in Q and fr, and much higher Q for with reasonable inductance and fr. The bond pad structure using micro-PS can significantly reduce the parasitic bond pad capacitance and increases the crosstalk isolation characteristic. Reducing the parasitic pad capacitance by using micro-PS results in high bond pad resonant frequency of up to 56.2 GHz. The crosstalk between bond pads becomes much smaller than that of conventional p- bulk substrate by using micro-PS. In addition, the use of micro-PS leads to greatly improved transformer performances including higher Q and fr, mutual reactive coupling coefficients with larger useable band-width and maximum available gain by reducing the substrate effect.

  12. Adsorption of copolymers at polymer/air and polymer/solid interfaces

    NASA Astrophysics Data System (ADS)

    Oslanec, Robert

    Using mainly low-energy forward recoil spectrometry (LE-FRES) and neutron reflectivity (NR), copolymer behavior at polymer/air and polymer/solid interfaces is investigated. For a miscible blend of poly(styrene-ran-acrylonitrile) copolymers, the volume fraction profile of the copolymer with lower acrylonitrile content is flat near the surface in contrast to mean field predictions. Including copolymer polydispersity into a self consistent mean field (SCMF) model does not account for this profile shape. LE-FRES and NR is also used to study poly(deuterated styrene-block-methyl-methacrylate) (dPS-b-PMMA) adsorption from a polymer matrix to a silicon oxide substrate. The interfacial excess, zsp*, layer thickness, L, and layer-matrix width, w, depend strongly on the number of matrix segments, P, for P 2N, the matrix chains are repelled from the adsorbed layer and the layer characteristics become independent of P. An SCMF model of block copolymer adsorption is developed. SCMF predictions are in qualitative agreement with the experimental behavior of zsp*, L, and w as a function of P. Using this model, the interaction energy of the MMA block with the oxide substrate is found to be -8ksb{B}T. In a subsequent experiment, the matrix/dPS interaction is made increasingly unfavorable by increasing the 4-bromostyrene mole fraction, x, in a poly(styrene-ran-4-bromostyrene) (PBrsbxS) matrix. Whereas experiments show that zsp* slightly decreases as x increases, the SCMF model predicts that zsp* should increase as the matrix becomes more unfavorable. Upon including a small matrix attraction for the substrate, the SCMF model shows that zsp* decreases with x because of competition between PBrsbxS and dPS-b-PMMA for adsorbing sites. In thin film dewetting experiments on silicon oxide, the addition of dPS-b-PMMA to PS coatings acts to slow hole growth and prevent holes from impinging. Dewetting studies show that longer dPS-b-PMMA chains are more effective stabilizing agents than shorter ones and that 3 volume percent dPS-b-PMMA is the optimum additive concentration for this system. For a dPS-b-PMMA:PS blend, atomic force microscopy of the hole floor reveals mounds of residual polymer and a modulated contact line where the rim meets the substrate.

  13. $$B^{0}_{s}$$ Lifetime Measurement in the CP-odd Decay Channel $$B^{0}_{s} \\to J/\\psi\\mbox{ }f_{0}(980)$$

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abazov, V. M.

    Here, the lifetime of the B s 0 meson is measured in the decay channel B s 0→J/ψπ +π - with 880 ≤ M π+π- ≤ 1080 MeV/c 2, which is mainly a CP-odd state and dominated by the f 0(980) resonance. In 10.4 fb -1 of data collected with the D0 detector in Run II of the Tevatron, the lifetime of the B s 0 meson is measured to be τ(B s 0) = 1.70 ± 0.14(stat) ± 0.05(syst) ps. Neglecting CP violation in B s 0/more » $$\\bar{B}$$ 0 s mixing, the measurement can be translated into the width of the heavy mass eigenstate of the B s 0, Γ H = 0.59 ± 0.05(stat) ± 0.02(syst) ps -1.« less

  14. $$B^{0}_{s}$$ Lifetime Measurement in the CP-odd Decay Channel $$B^{0}_{s} \\to J/\\psi\\mbox{ }f_{0}(980)$$

    DOE PAGES

    Abazov, V. M.

    2016-07-06

    Here, the lifetime of the B s 0 meson is measured in the decay channel B s 0→J/ψπ +π - with 880 ≤ M π+π- ≤ 1080 MeV/c 2, which is mainly a CP-odd state and dominated by the f 0(980) resonance. In 10.4 fb -1 of data collected with the D0 detector in Run II of the Tevatron, the lifetime of the B s 0 meson is measured to be τ(B s 0) = 1.70 ± 0.14(stat) ± 0.05(syst) ps. Neglecting CP violation in B s 0/more » $$\\bar{B}$$ 0 s mixing, the measurement can be translated into the width of the heavy mass eigenstate of the B s 0, Γ H = 0.59 ± 0.05(stat) ± 0.02(syst) ps -1.« less

  15. Generation of Healthy Mice from Gene-Corrected Disease-Specific Induced Pluripotent Stem Cells

    PubMed Central

    Rittelmeyer, Ina; Sharma, Amar Deep; Sgodda, Malte; Zaehres, Holm; Bleidißel, Martina; Greber, Boris; Gentile, Luca; Han, Dong Wook; Rudolph, Cornelia; Steinemann, Doris; Schambach, Axel; Ott, Michael; Schöler, Hans R.; Cantz, Tobias

    2011-01-01

    Using the murine model of tyrosinemia type 1 (fumarylacetoacetate hydrolase [FAH] deficiency; FAH −/− mice) as a paradigm for orphan disorders, such as hereditary metabolic liver diseases, we evaluated fibroblast-derived FAH −/−-induced pluripotent stem cells (iPS cells) as targets for gene correction in combination with the tetraploid embryo complementation method. First, after characterizing the FAH −/− iPS cell lines, we aggregated FAH −/−-iPS cells with tetraploid embryos and obtained entirely FAH −/−-iPS cell–derived mice that were viable and exhibited the phenotype of the founding FAH −/− mice. Then, we transduced FAH cDNA into the FAH −/−-iPS cells using a third-generation lentiviral vector to generate gene-corrected iPS cells. We could not detect any chromosomal alterations in these cells by high-resolution array CGH analysis, and after their aggregation with tetraploid embryos, we obtained fully iPS cell–derived healthy mice with an astonishing high efficiency for full-term development of up to 63.3%. The gene correction was validated functionally by the long-term survival and expansion of FAH-positive cells of these mice after withdrawal of the rescuing drug NTBC (2-(2-nitro-4-fluoromethylbenzoyl)-1,3-cyclohexanedione). Furthermore, our results demonstrate that both a liver-specific promoter (transthyretin, TTR)-driven FAH transgene and a strong viral promoter (from spleen focus-forming virus, SFFV)-driven FAH transgene rescued the FAH-deficiency phenotypes in the mice derived from the respective gene-corrected iPS cells. In conclusion, our data demonstrate that a lentiviral gene repair strategy does not abrogate the full pluripotent potential of fibroblast-derived iPS cells, and genetic manipulation of iPS cells in combination with tetraploid embryo aggregation provides a practical and rapid approach to evaluate the efficacy of gene correction of human diseases in mouse models. PMID:21765802

  16. Free Electron Laser Analysis For the Innovative Navy Prototype

    DTIC Science & Technology

    2008-03-01

    important measure of electron beam quality is transverse emittance, which is the product of the RMS width and the angular spread of the beam, as measured...respect to s . This is possible because the electron’s position in s is uniquely defined for any given time by s = vst ≈ ct , therefore d 2 dt 2...Longitudinal emittance (keV ps) 70 dgog Beam energy spread (%) 0.37 dthetax Beam angular spread, x rms (mrad) 0.17 dthetay Beam angular spread, y rms (mrad

  17. Temperature dependence of photoluminescence peaks of porous silicon structures

    NASA Astrophysics Data System (ADS)

    Brunner, Róbert; Pinčík, Emil; Kučera, Michal; Greguš, Ján; Vojtek, Pavel; Zábudlá, Zuzana

    2017-12-01

    Evaluation of photoluminescence spectra of porous silicon (PS) samples prepared by electrochemical etching is presented. The samples were measured at temperatures 30, 70 and 150 K. Peak parameters (energy, intensity and width) were calculated. The PL spectrum was approximated by a set of Gaussian peaks. Their parameters were fixed using fitting a procedure in which the optimal number of peeks included into the model was estimated using the residuum of the approximation. The weak thermal dependence of the spectra indicates the strong influence of active defects.

  18. Ring-shaped active mode-locked tunable laser using quantum-dot semiconductor optical amplifier

    NASA Astrophysics Data System (ADS)

    Zhang, Mingxiao; Wang, Yongjun; Liu, Xinyu

    2018-03-01

    In this paper, a lot of simulations has been done for ring-shaped active mode-locked lasers with quantum-dot semiconductor optical amplifier (QD-SOA). Based on the simulation model of QD-SOA, we discussed about the influence towards mode-locked waveform frequency and pulse caused by QD-SOA maximum mode peak gain, active layer loss coefficient, bias current, incident light pulse, fiber nonlinear coefficient. In the meantime, we also take the tunable performance of the laser into consideration. Results showed QD-SOA a better performance than original semiconductor optical amplifier (SOA) in recovery time, line width, and nonlinear coefficients, which makes it possible to output a locked-mode impulse that has a higher impulse power, narrower impulse width as well as the phase is more easily controlled. After a lot of simulations, this laser can realize a 20GHz better locked-mode output pulse after 200 loops, where the power is above 17.5mW, impulse width is less than 2.7ps, moreover, the tunable wavelength range is between 1540nm-1580nm.

  19. Determination of the threshold dose distribution in photodynamic action from in vitro experiments.

    PubMed

    de Faria, Clara Maria Gonçalves; Inada, Natalia Mayumi; Kurachi, Cristina; Bagnato, Vanderlei Salvador

    2016-09-01

    The concept of threshold in photodynamic action on cells or microorganisms is well observed in experiments but not fully explored on in vitro experiments. The intercomparison between light and used photosensitizer among many experiments is also poorly evaluated. In this report, we present an analytical model that allows extracting from the survival rate experiments the data of the threshold dose distribution, ie, the distribution of energies and photosensitizer concentration necessary to produce death of cells. Then, we use this model to investigate photodynamic therapy (PDT) data previously published in literature. The concept of threshold dose distribution instead of "single value of threshold" is a rich concept for the comparison of photodynamic action in different situations, allowing analyses of its efficiency as well as determination of optimized conditions for PDT. We observed that, in general, as it becomes more difficult to kill a population, the distribution tends to broaden, which means it presents a large spectrum of threshold values within the same cell type population. From the distribution parameters (center peak and full width), we also observed a clear distinction among cell types regarding their response to PDT that can be quantified. Comparing data obtained from the same cell line and used photosensitizer (PS), where the only distinct condition was the light source's wavelength, we found that the differences on the distribution parameters were comparable to the differences on the PS absorption. At last, we observed evidence that the threshold dose distribution matches the curve of apoptotic activity for some PSs. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Theoretical and numerical analyses of a slit-masked chicane for modulated bunch generation

    DOE PAGES

    Zhu, Xiaofang; Broemmelsiek, Daniel R.; Shin, Young -Min; ...

    2015-10-28

    Density modulations on electron beams can improve machine performance of beam-driven accelerators and FELs with resonance beam-wave coupling. The beam modulation is studied with a masked chicane by the analytic model and simulations with the beam parameters of the Fermilab Accelerator Science and Technology (FAST) facility. With the chicane design parameters (bending angle of 18o, bending radius of 0.95 m and R 56 ~ –0.19 m) and a nominal beam of 3 ps bunch length, the analytic model showed that a slit-mask with slit period 900 μ m and aperture width 300 μ m induces a modulation of bunch-to-bunch spacingmore » ~ 100 μ m to the bunch with 2.4% correlated energy spread. With the designed slit mask and a 3 ps bunch, particle-in-cell (PIC) simulations, including nonlinear energy distributions, space charge force, and coherent synchrotron radiation (CSR) effect, also result in beam modulation with bunch-to-bunch distance around 100 μ m and a corresponding modulation frequency of 3 THz. The beam modulation has been extensively examined with three different beam conditions, 2.25 ps (0.25 nC), 3.25 ps (1 nC), and 4.75 ps (3.2 nC), by tracking code Elegant. The simulation analysis indicates that the sliced beam by the slit-mask with 3 ~ 6% correlated energy spread has modulation lengths about 187 μ m (0.25 nC), 270 μ m (1 nC) and 325 μ m (3.2 nC). As a result, the theoretical and numerical data proved the capability of the designed masked chicane in producing modulated bunch train with micro-bunch length around 100 fs.« less

  1. The study of optical properties and proteoglycan content of tendons by PS-OCT

    NASA Astrophysics Data System (ADS)

    Yang, Ying; Rupani, Asha; Weightman, Alan; Wimpenny, Ian; Bagnaninchi, Pierre; Ahearne, Mark

    2011-03-01

    Tendons are load-bearing collagenous tissues consisting mainly of type I collagen and various proteoglycans (PGs) including decorin and versican. It is widely accepted that highly orientated collagen fibers in tendons a play critical role for transferring tensile stress and demonstrate birefringent optical properties. However, the influence that proteoglycans have on the optical properties of tendons is yet to be fully elucidated. Tendinopathy (defined as a syndrome of tendon pain, tenderness and swelling that affects the normal function of the tissue) is a common disease associated with sporting injuries or degeneration. PG's are the essential components of the tendon extracellular matrix; changes in their quantities and compositions have been associated with tendinopathy. In this study, polarization sensitive optical coherence tomography (PS-OCT) has been used to reveal the relationship between proteoglycan content/location and birefringent properties of tendons. Tendons dissected from freshly slaughtered chickens were imaged at regular intervals by PS-OCT and polarizing light microscope during the extraction of PGs or glycosaminoglycans using established protocols (guanidine hydrochloride (GuHCl) or proteinase K solution). The macroscopic and microscopic time lapsed images are complimentary; mutually demonstrating that there was a higher concentration of PG's in the outer sheath region than in the fascicles; and the integrity of the sheath affected extraction process and the OCT birefringence bands. Extraction of PGs using GuHCl disturbed the organization of local collagen bundles, which corresponded to a reduction in the frequency of birefringence bands and the band width by PS-OCT. The feature of OCT penetration depth helped us to define the heterogeneous distribution of PG's in tendon, which was complimented by polarizing light microscopy. The results provide new insight of tendon structure and also demonstrate a great potential for using PS-OCT as a diagnostic tool to examine tendon pathology.

  2. Theoretical and numerical analyses of a slit-masked chicane for modulated bunch generation

    NASA Astrophysics Data System (ADS)

    Zhu, X.; Broemmelsiek, D. R.; Shin, Y.-M.

    2015-10-01

    Density modulations on electron beams can improve machine performance of beam-driven accelerators and FELs with resonance beam-wave coupling. The beam modulation is studied with a masked chicane by the analytic model and simulations with the beam parameters of the Fermilab Accelerator Science and Technology (FAST) facility. With the chicane design parameters (bending angle of 18o, bending radius of 0.95 m and R56 ~ -0.19 m) and a nominal beam of 3 ps bunch length, the analytic model showed that a slit-mask with slit period 900 μ m and aperture width 300 μ m induces a modulation of bunch-to-bunch spacing ~ 100 μ m to the bunch with 2.4% correlated energy spread. With the designed slit mask and a 3 ps bunch, particle-in-cell (PIC) simulations, including nonlinear energy distributions, space charge force, and coherent synchrotron radiation (CSR) effect, also result in beam modulation with bunch-to-bunch distance around 100 μ m and a corresponding modulation frequency of 3 THz. The beam modulation has been extensively examined with three different beam conditions, 2.25 ps (0.25 nC), 3.25 ps (1 nC), and 4.75 ps (3.2 nC), by tracking code Elegant. The simulation analysis indicates that the sliced beam by the slit-mask with 3 ~ 6% correlated energy spread has modulation lengths about 187 μ m (0.25 nC), 270 μ m (1 nC) and 325 μ m (3.2 nC). The theoretical and numerical data proved the capability of the designed masked chicane in producing modulated bunch train with micro-bunch length around 100 fs.

  3. Evaluation of a clinical TOF-PET detector design that achieves ⩽100 ps coincidence time resolution

    NASA Astrophysics Data System (ADS)

    Cates, Joshua W.; Levin, Craig S.

    2018-06-01

    Commercially available clinical positron emission tomography (PET) detectors employ scintillation crystals that are long (20 mm length) and narrow (4–5 mm width) optically coupled on their narrow end to a photosensor. The aspect ratio of this traditional crystal rod configuration and 511 keV photon attenuation properties yield significant variances in scintillation light collection efficiency and transit time to the photodetector, due to variations in the 511 keV photon interaction depth in the crystal. These variances contribute significant to coincidence time resolution degradation. If instead, crystals are coupled to a photosensor on their long side, near-complete light collection efficiency can be achieved, and scintillation photon transit time jitter is reduced. In this work, we compare the achievable coincidence time resolution (CTR) of LGSO:Ce(0.025 mol%) crystals 3–20 mm in length when optically coupled to silicon photomultipliers (SiPMs) on either their short end or long side face. In this ‘side readout’ configuration, a CTR of 102  ±  2 ps FWHM was measured with mm3 crystals coupled to rows of mm2 SensL-J SiPMs using leading edge time pickoff and a single timing channel. This is in contrast to a CTR of 137  ±  3 ps FWHM when the same crystals were coupled to single mm2 SiPMs on their narrow ends. We further study the statistical limit on CTR using side readout via the Cramér–Rao lower bound (CRLB), with consideration given to ongoing work to further improve photosensor technologies and exploit fast phenomena to ultimately achieve 10 ps FWHM CTR. Potential design aspects of scalable front-end signal processing readout electronics using this side readout configuration are discussed. Altogether, we demonstrate that the side readout configuration offers an immediate solution for 100 ps CTR clinical PET detectors and mitigates factors prohibiting future efforts to achieve 10 ps FWHM CTR.

  4. Generic amyloidogenicity of mammalian prion proteins from species susceptible and resistant to prions.

    PubMed

    Nyström, Sofie; Hammarström, Per

    2015-05-11

    Prion diseases are lethal, infectious diseases associated with prion protein (PrP) misfolding. A large number of mammals are susceptible to both sporadic and acquired prion diseases. Although PrP is highly conserved and ubiquitously expressed in all mammals, not all species exhibit prion disease. By employing full length recombinant PrP from five known prion susceptible species (human, cattle, cat, mouse and hamster) and two species considered to be prion resistant (pig and dog) the amyloidogenicity of these PrPs has been delineated. All the mammalian PrPs, even from resistant species, were swiftly converted from the native state to amyloid-like structure when subjected to a native condition conversion assay. The PrPs displayed amyloidotypic tinctorial and ultrastructural hallmarks. Self-seeded conversion of the PrPs displayed significantly decreased lag phases demonstrating that nucleation dependent polymerization is a dominating mechanism in the fibrillation process. Fibrils from Aβ1-40, Aβ1-42, Lysozyme, Insulin and Transthyretin did not accelerate conversion of HuPrP whereas fibrils from HuPrP90-231 and HuPrP121-231 as well as full length PrPs of all PrPs efficiently seeded conversion showing specificity of the assay requiring the C-terminal PrP sequence. Our findings have implications for PrP misfolding and could have ramifications in the context of prion resistant species and silent carriers.

  5. Numerical study on the maximum small-signal gain coefficient in passively mode-locked fiber lasers

    NASA Astrophysics Data System (ADS)

    Tang, Xin; Wang, Jian; Chen, Zhaoyang; Lin, Chengyou; Ding, Yingchun

    2017-06-01

    Ultrashort pulses have been found to have important applications in many fields, such as ultrafast diagnosis, biomedical engineering, and optical imaging. Passively mode-locked fiber lasers have become a tool for generating picosecond and femtosecond pulses. In this paper, the evolution of a picosecond laser pulse in different stable passively mode-locked fiber laser is analyzed using nonlinear Schrödinger equation. Firstly, different mode-locked regimes are calculated with different net cavity dispersion (from -0.3 ps2 to +0.3 ps2 ). Then we calculate the maximum small-signal gain on the different net cavity dispersion conditions, and estimate the pulse width, 3 dB bandwidth and time bandwidth product (TBP) when the small-signal gain coefficient is selected as the maximum value. The results show that the small signal gain coefficient is approximately proportional to the net cavity. Moreover, when the small signal gain coefficient reaches the maximum value, the pulse width of the output pulse and their corresponding TBP show a trend of increase gradually, and 3dB bandwidth shows a trend of increase firstly and then decrease. In addition, in the case that the net dispersion is positive, because of the pulse with quite large frequency chirp, the revolution to dechirp the pulse is researched and the output of the pulse is compressed and its compression ratio reached more than 10 times. The results provide a reference for the optimization of passively mode-locked fiber lasers.

  6. A new time calibration method for switched-capacitor-array-based waveform samplers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, H.; Chen, C. -T.; Eclov, N.

    2014-08-24

    Here we have developed a new time calibration method for the DRS4 waveform sampler that enables us to precisely measure the non-uniform sampling interval inherent in the switched-capacitor cells of the DRS4. The method uses the proportionality between the differential amplitude and sampling interval of adjacent switched-capacitor cells responding to a sawtooth-shape pulse. In the experiment, a sawtooth-shape pulse with a 40 ns period generated by a Tektronix AWG7102 is fed to a DRS4 evaluation board for calibrating the sampling intervals of all 1024 cells individually. The electronic time resolution of the DRS4 evaluation board with the new time calibrationmore » is measured to be ~2.4 ps RMS by using two simultaneous Gaussian pulses with 2.35 ns full-width at half-maximum and applying a Gaussian fit. The time resolution dependencies on the time difference with the new time calibration are measured and compared to results obtained by another method. Ultimately, the new method could be applicable for other switched-capacitor-array technology-based waveform samplers for precise time calibration.« less

  7. Coaxial CVD diamond detector for neutron diagnostics at ShenGuang III laser facility.

    PubMed

    Yu, Bo; Liu, Shenye; Chen, Zhongjing; Huang, Tianxuan; Jiang, Wei; Chen, Bolun; Pu, Yudong; Yan, Ji; Zhang, Xing; Song, Zifeng; Tang, Qi; Hou, Lifei; Ding, Yongkun; Zheng, Jian

    2017-06-01

    A coaxial, high performance diamond detector has been developed for neutron diagnostics of inertial confinement fusion at ShenGuangIII laser facility. A Φ10 mm × 1 mm "optical grade" chemical-vapor deposition diamond wafer is assembled in coaxial-designing housing, and the signal is linked to a SubMiniature A connector by the cathode cone. The coaxial diamond detector performs excellently for neutron measurement with the full width at half maximum of response time to be 444 ps for a 50 Ω measurement system. The average sensitivity is 0.677 μV ns/n for 14 MeV (DT fusion) neutrons at an electric field of 1000 V/mm, and the linear dynamic range is beyond three orders of magnitude. The ion temperature results fluctuate widely from the neutron time-of-flight scintillator detector results because of the short flight length. These characteristics of small size, large linear dynamic range, and insensitive to x-ray make the diamond detector suitable to measure the neutron yield, ion temperature, and neutron emission time.

  8. A new time calibration method for switched-capacitor-array-based waveform samplers

    NASA Astrophysics Data System (ADS)

    Kim, H.; Chen, C.-T.; Eclov, N.; Ronzhin, A.; Murat, P.; Ramberg, E.; Los, S.; Moses, W.; Choong, W.-S.; Kao, C.-M.

    2014-12-01

    We have developed a new time calibration method for the DRS4 waveform sampler that enables us to precisely measure the non-uniform sampling interval inherent in the switched-capacitor cells of the DRS4. The method uses the proportionality between the differential amplitude and sampling interval of adjacent switched-capacitor cells responding to a sawtooth-shape pulse. In the experiment, a sawtooth-shape pulse with a 40 ns period generated by a Tektronix AWG7102 is fed to a DRS4 evaluation board for calibrating the sampling intervals of all 1024 cells individually. The electronic time resolution of the DRS4 evaluation board with the new time calibration is measured to be 2.4 ps RMS by using two simultaneous Gaussian pulses with 2.35 ns full-width at half-maximum and applying a Gaussian fit. The time resolution dependencies on the time difference with the new time calibration are measured and compared to results obtained by another method. The new method could be applicable for other switched-capacitor-array technology-based waveform samplers for precise time calibration.

  9. Photon-trapping microstructures enable high-speed high-efficiency silicon photodiodes

    NASA Astrophysics Data System (ADS)

    Gao, Yang; Cansizoglu, Hilal; Polat, Kazim G.; Ghandiparsi, Soroush; Kaya, Ahmet; Mamtaz, Hasina H.; Mayet, Ahmed S.; Wang, Yinan; Zhang, Xinzhi; Yamada, Toshishige; Devine, Ekaterina Ponizovskaya; Elrefaie, Aly F.; Wang, Shih-Yuan; Islam, M. Saif

    2017-04-01

    High-speed, high-efficiency photodetectors play an important role in optical communication links that are increasingly being used in data centres to handle higher volumes of data traffic and higher bandwidths, as big data and cloud computing continue to grow exponentially. Monolithic integration of optical components with signal-processing electronics on a single silicon chip is of paramount importance in the drive to reduce cost and improve performance. We report the first demonstration of micro- and nanoscale holes enabling light trapping in a silicon photodiode, which exhibits an ultrafast impulse response (full-width at half-maximum) of 30 ps and a high efficiency of more than 50%, for use in data-centre optical communications. The photodiode uses micro- and nanostructured holes to enhance, by an order of magnitude, the absorption efficiency of a thin intrinsic layer of less than 2 µm thickness and is designed for a data rate of 20 gigabits per second or higher at a wavelength of 850 nm. Further optimization can improve the efficiency to more than 70%.

  10. A New Time Calibration Method for Switched-capacitor-array-based Waveform Samplers.

    PubMed

    Kim, H; Chen, C-T; Eclov, N; Ronzhin, A; Murat, P; Ramberg, E; Los, S; Moses, W; Choong, W-S; Kao, C-M

    2014-12-11

    We have developed a new time calibration method for the DRS4 waveform sampler that enables us to precisely measure the non-uniform sampling interval inherent in the switched-capacitor cells of the DRS4. The method uses the proportionality between the differential amplitude and sampling interval of adjacent switched-capacitor cells responding to a sawtooth-shape pulse. In the experiment, a sawtooth-shape pulse with a 40 ns period generated by a Tektronix AWG7102 is fed to a DRS4 evaluation board for calibrating the sampling intervals of all 1024 cells individually. The electronic time resolution of the DRS4 evaluation board with the new time calibration is measured to be ~2.4 ps RMS by using two simultaneous Gaussian pulses with 2.35 ns full-width at half-maximum and applying a Gaussian fit. The time resolution dependencies on the time difference with the new time calibration are measured and compared to results obtained by another method. The new method could be applicable for other switched-capacitor-array technology-based waveform samplers for precise time calibration.

  11. A New Time Calibration Method for Switched-capacitor-array-based Waveform Samplers

    PubMed Central

    Kim, H.; Chen, C.-T.; Eclov, N.; Ronzhin, A.; Murat, P.; Ramberg, E.; Los, S.; Moses, W.; Choong, W.-S.; Kao, C.-M.

    2014-01-01

    We have developed a new time calibration method for the DRS4 waveform sampler that enables us to precisely measure the non-uniform sampling interval inherent in the switched-capacitor cells of the DRS4. The method uses the proportionality between the differential amplitude and sampling interval of adjacent switched-capacitor cells responding to a sawtooth-shape pulse. In the experiment, a sawtooth-shape pulse with a 40 ns period generated by a Tektronix AWG7102 is fed to a DRS4 evaluation board for calibrating the sampling intervals of all 1024 cells individually. The electronic time resolution of the DRS4 evaluation board with the new time calibration is measured to be ~2.4 ps RMS by using two simultaneous Gaussian pulses with 2.35 ns full-width at half-maximum and applying a Gaussian fit. The time resolution dependencies on the time difference with the new time calibration are measured and compared to results obtained by another method. The new method could be applicable for other switched-capacitor-array technology-based waveform samplers for precise time calibration. PMID:25506113

  12. Systematic assignment of Feshbach resonances via an asymptotic bound state model

    NASA Astrophysics Data System (ADS)

    Goosen, Maikel; Kokkelmans, Servaas

    2008-05-01

    We present an Asymptotic Bound state Model (ABM), which is useful to predict Feshbach resonances. The model utilizes asymptotic properties of the interaction potentials to represent coupled molecular wavefunctions. The bound states of this system give rise to Feshbach resonances, localized at the magnetic fields of intersection of these bound states with the scattering threshold. This model was very successful to assign measured Feshbach resonances in an ultra cold mixture of ^6Li and ^40K atomsootnotetextE. Wille, F.M. Spiegelhalder, G. Kerner, D. Naik, A. Trenkwalder, G. Hendl, F. Schreck, R. Grimm, T.G. Tiecke, J.T.M. Walraven, S.J.J.M.F. Kokkelmans, E. Tiesinga, P.S. Julienne, arXiv:0711.2916. For this system, the accuracy of the determined scattering lengths is comparable to full coupled channels results. However, it was not possible to predict the width of the resonances. We discuss how an incorporation of threshold effects will improve the model, and we apply it to a mixture of ^87Rb and ^133Cs atoms, where recently Feshbach resonances have been measured.

  13. Characterisation of a MeV Bremsstrahlung x-ray source produced from a high intensity laser for high areal density object radiography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Courtois, C.; Compant La Fontaine, A.; Bazzoli, S.

    2013-08-15

    Results of an experiment to characterise a MeV Bremsstrahlung x-ray emission created by a short (<10 ps) pulse, high intensity (1.4 × 10{sup 19} W/cm{sup 2}) laser are presented. X-ray emission is characterized using several diagnostics; nuclear activation measurements, a calibrated hard x-ray spectrometer, and dosimeters. Results from the reconstructed x-ray energy spectra are consistent with numerical simulations using the PIC and Monte Carlo codes between 0.3 and 30 MeV. The intense Bremsstrahlung x-ray source is used to radiograph an image quality indicator (IQI) heavily filtered with thick tungsten absorbers. Observations suggest that internal features of the IQI can bemore » resolved up to an external areal density of 85 g/cm{sup 2}. The x-ray source size, inferred by the radiography of a thick resolution grid, is estimated to be approximately 400 μm (full width half maximum of the x-ray source Point Spread Function)« less

  14. Two Cytoplasmic Effectors of Phytophthora sojae Regulate Plant Cell Death via Interactions with Plant Catalases1

    PubMed Central

    Zhang, Meixiang; Li, Qi; Liu, Tingli; Liu, Li; Shen, Danyu; Zhu, Ye; Liu, Peihan; Zhou, Jian-Min; Dou, Daolong

    2015-01-01

    Plant pathogenic oomycetes, such as Phytophthora sojae, secrete an arsenal of host cytoplasmic effectors to promote infection. We have shown previously that P. sojae PsCRN63 (for crinkling- and necrosis-inducing proteins) induces programmed cell death (PCD) while PsCRN115 blocks PCD in planta; however, they are jointly required for full pathogenesis. Here, we find that PsCRN63 alone or PsCRN63 and PsCRN115 together might suppress the immune responses of Nicotiana benthamiana and demonstrate that these two cytoplasmic effectors interact with catalases from N. benthamiana and soybean (Glycine max). Transient expression of PsCRN63 increases hydrogen peroxide (H2O2) accumulation, whereas PsCRN115 suppresses this process. Transient overexpression of NbCAT1 (for N. benthamiana CATALASE1) or GmCAT1 specifically alleviates PsCRN63-induced PCD. Suppression of the PsCRN63-induced PCD by PsCRN115 is compromised when catalases are silenced in N. benthamiana. Interestingly, the NbCAT1 is recruited into the plant nucleus in the presence of PsCRN63 or PsCRN115; NbCAT1 and GmCAT1 are destabilized when PsCRN63 is coexpressed, and PsCRN115 inhibits the processes. Thus, PsCRN63/115 manipulates plant PCD through interfering with catalases and perturbing H2O2 homeostasis. Furthermore, silencing of catalase genes enhances susceptibility to Phytophthora capsici, indicating that catalases are essential for plant resistance. Taken together, we suggest that P. sojae secretes these two effectors to regulate plant PCD and H2O2 homeostasis through direct interaction with catalases and, therefore, overcome host immune responses. PMID:25424308

  15. Two cytoplasmic effectors of Phytophthora sojae regulate plant cell death via interactions with plant catalases.

    PubMed

    Zhang, Meixiang; Li, Qi; Liu, Tingli; Liu, Li; Shen, Danyu; Zhu, Ye; Liu, Peihan; Zhou, Jian-Min; Dou, Daolong

    2015-01-01

    Plant pathogenic oomycetes, such as Phytophthora sojae, secrete an arsenal of host cytoplasmic effectors to promote infection. We have shown previously that P. sojae PsCRN63 (for crinkling- and necrosis-inducing proteins) induces programmed cell death (PCD) while PsCRN115 blocks PCD in planta; however, they are jointly required for full pathogenesis. Here, we find that PsCRN63 alone or PsCRN63 and PsCRN115 together might suppress the immune responses of Nicotiana benthamiana and demonstrate that these two cytoplasmic effectors interact with catalases from N. benthamiana and soybean (Glycine max). Transient expression of PsCRN63 increases hydrogen peroxide (H(2)O(2)) accumulation, whereas PsCRN115 suppresses this process. Transient overexpression of NbCAT1 (for N. benthamiana CATALASE1) or GmCAT1 specifically alleviates PsCRN63-induced PCD. Suppression of the PsCRN63-induced PCD by PsCRN115 is compromised when catalases are silenced in N. benthamiana. Interestingly, the NbCAT1 is recruited into the plant nucleus in the presence of PsCRN63 or PsCRN115; NbCAT1 and GmCAT1 are destabilized when PsCRN63 is coexpressed, and PsCRN115 inhibits the processes. Thus, PsCRN63/115 manipulates plant PCD through interfering with catalases and perturbing H(2)O(2) homeostasis. Furthermore, silencing of catalase genes enhances susceptibility to Phytophthora capsici, indicating that catalases are essential for plant resistance. Taken together, we suggest that P. sojae secretes these two effectors to regulate plant PCD and H(2)O(2) homeostasis through direct interaction with catalases and, therefore, overcome host immune responses. © 2015 American Society of Plant Biologists. All Rights Reserved.

  16. P700+- and 3P700-induced quenching of the fluorescence at 760 nm in trimeric Photosystem I complexes from the cyanobacterium Arthrospira platensis.

    PubMed

    Schlodder, Eberhard; Cetin, Marianne; Byrdin, Martin; Terekhova, Irina V; Karapetyan, Navassard V

    2005-01-07

    The 5 K absorption spectrum of Photosystem I (PS I) trimers from Arthrospira platensis (old name: Spirulina platensis) exhibits long-wavelength antenna (exciton) states absorbing at 707 nm (called C707) and at 740 nm (called C740). The lowest energy state (C740) fluoresces around 760 nm (F760) at low temperature. The analysis of the spectral properties (peak position and line width) of the lowest energy transition (C740) as a function of temperature within the linear electron-phonon approximation indicates a large optical reorganization energy of approximately 110 cm(-1) and a broad inhomogeneous site distribution characterized by a line width of approximately 115 cm(-1). Linear dichroism (LD) measurements indicate that the transition dipole moment of the red-most state is virtually parallel to the membrane plane. The relative fluorescence yield at 760 nm of PS I with P700 oxidized increases only slightly when the temperature is lowered to 77 K, whereas in the presence of reduced P700 the fluorescence yield increases nearly 40-fold at 77 K as compared to that at room temperature (RT). A fluorescence induction effect could not be resolved at RT. At 77 K the fluorescence yield of PS I trimers frozen in the dark in the presence of sodium ascorbate decreases during illumination by about a factor of 5 due to the irreversible formation of (P700+)F(A/B-) in about 60% of the centers and the reversible accumulation of the longer-lived state (P700+)FX-. The quenching efficiency of different functionally relevant intermediate states of the photochemistry in PS I has been studied. The redox state of the acceptors beyond A(0) does not affect F760. Direct kinetic evidence is presented that the fluorescence at 760 nm is strongly quenched not only by P700+ but also by 3P700. Similar kinetics were observed for flash-induced absorbance changes attributed to the decay of 3P700 or P700+, respectively, and flash-induced fluorescence changes at 760 nm measured under identical conditions. A nonlinear relationship between the variable fluorescence around 760 nm and the [P700red]/[P700total] ratio was derived from titration curves of the absorbance change at 826 nm and the variable fluorescence at 760 nm as a function of the redox potential imposed on the sample solution at room temperature before freezing. The result indicates that the energy exchange between the antennae of different monomers within a PS I trimer stimulates quenching of F760 by P700+.

  17. 8-Channel acquisition system for Time-Correlated Single-Photon Counting.

    PubMed

    Antonioli, S; Miari, L; Cuccato, A; Crotti, M; Rech, I; Ghioni, M

    2013-06-01

    Nowadays, an increasing number of applications require high-performance analytical instruments capable to detect the temporal trend of weak and fast light signals with picosecond time resolution. The Time-Correlated Single-Photon Counting (TCSPC) technique is currently one of the preferable solutions when such critical optical signals have to be analyzed and it is fully exploited in biomedical and chemical research fields, as well as in security and space applications. Recent progress in the field of single-photon detector arrays is pushing research towards the development of high performance multichannel TCSPC systems, opening the way to modern time-resolved multi-dimensional optical analysis. In this paper we describe a new 8-channel high-performance TCSPC acquisition system, designed to be compact and versatile, to be used in modern TCSPC measurement setups. We designed a novel integrated circuit including a multichannel Time-to-Amplitude Converter with variable full-scale range, a D∕A converter, and a parallel adder stage. The latter is used to adapt each converter output to the input dynamic range of a commercial 8-channel Analog-to-Digital Converter, while the integrated DAC implements the dithering technique with as small as possible area occupation. The use of this monolithic circuit made the design of a scalable system of very small dimensions (95 × 40 mm) and low power consumption (6 W) possible. Data acquired from the TCSPC measurement are digitally processed and stored inside an FPGA (Field-Programmable Gate Array), while a USB transceiver allows real-time transmission of up to eight TCSPC histograms to a remote PC. Eventually, the experimental results demonstrate that the acquisition system performs TCSPC measurements with high conversion rate (up to 5 MHz/channel), extremely low differential nonlinearity (<0.04 peak-to-peak of the time bin width), high time resolution (down to 20 ps Full-Width Half-Maximum), and very low crosstalk between channels.

  18. An infrared optical pacing system for high-throughput screening of cardiac electrophysiology in human cardiomyocytes (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    McPheeters, Matt T.; Wang, Yves T.; Laurita, Kenneth R.; Jenkins, Michael W.

    2017-02-01

    Cardiomyocytes derived from human induced pluripotent stem cells (hiPS-HCM) have the potential to provide individualized therapies for patients and to test drug candidates for cardiac toxicity. In order for hiPS-CM to be useful for such applications, there is a need for high-throughput technology to rapidly assess cardiac electrophysiology parameters. Here, we designed and tested a fully contactless optical mapping (OM) and optical pacing (OP) system capable of imaging and point stimulation of hiPS-CM in small wells. OM allowed us to characterize cardiac electrophysiological parameters (conduction velocity, action potential duration, etc.) using voltage-sensitive dyes with high temporal and spatial resolution over the entire well. To improve OM signal-to-noise ratio, we tested a new voltage-sensitive dye (Fluovolt) for accuracy and phototoxicity. Stimulation is essential because most electrophysiological parameters are rate dependent; however, traditional methods utilizing electrical stimulation is difficult in small wells. To overcome this limitation, we utilized OP (λ = 1464 nm) to precisely control heart rate with spatial precision without the addition of exogenous agents. We optimized OP parameters (e.g., well size, pulse width, spot size) to achieve robust pacing and minimize the threshold radiant exposure. Finally, we tested system sensitivity using Flecainide, a drug with well described action on multiple electrophysiological properties.

  19. Ultrastable, high efficiency picosecond green light generation using K3B6O10Br series nonlinear optical crystals

    NASA Astrophysics Data System (ADS)

    Hou, Z. Y.; Xia, M. J.; Wang, L. R.; Xu, B.; Yan, D. X.; Meng, L. P.; Liu, L. J.; Xu, D. G.; Zhang, L.; Wang, X. Y.; Li, R. K.; Chen, C. T.

    2017-09-01

    Two perovskite-structure K3B6O10Br1-x Cl x (x  =  0 and 0.5) series nonlinear optical crystals were thoroughly investigated for their picosecond 532 nm laser pulses abilities and high power outputs were achieved via second harmonic generation (SHG) technique for the first time. SHG conversion efficiency of 57.3% with a 13.2 mm length K3B6O10Br (KBB) crystal was achieved using a laser source of pulse repetition rate of 10 Hz and pulse width of 25 ps, which is the highest conversion efficiency of ps visible laser based on KBB crystal. And by employing an 80 MHz, 10 ps fundamental laser beam, maximum power outputs of 12 W with K3B6O10Br0.5Cl0.5 (KBBC) and 11.86 W with KBB crystals were successfully demonstrated. Furthermore, the standard deviation jitters of the average power outputs are less than 0.6% and 1.17% by KBB and KBBC, respectively, showing ultrastable power stabilities favorable for practical applications. In addition, the other optical parameters including acceptance angle and temperature bandwidth were also investigated.

  20. Characterization of a transmission positron/positronium converter for antihydrogen production

    NASA Astrophysics Data System (ADS)

    Aghion, S.; Amsler, C.; Ariga, T.; Bonomi, G.; Brusa, R. S.; Caccia, M.; Caravita, R.; Castelli, F.; Cerchiari, G.; Comparat, D.; Consolati, G.; Demetrio, A.; Di Noto, L.; Doser, M.; Ereditato, A.; Evans, C.; Ferragut, R.; Fesel, J.; Fontana, A.; Gerber, S.; Giammarchi, M.; Gligorova, A.; Guatieri, F.; Haider, S.; Hinterberger, A.; Holmestad, H.; Kellerbauer, A.; Krasnický, D.; Lagomarsino, V.; Lansonneur, P.; Lebrun, P.; Malbrunot, C.; Mariazzi, S.; Matveev, V.; Mazzotta, Z.; Müller, S. R.; Nebbia, G.; Nedelec, P.; Oberthaler, M.; Pacifico, N.; Pagano, D.; Penasa, L.; Petracek, V.; Povolo, L.; Prelz, F.; Prevedelli, M.; Ravelli, L.; Resch, L.; Rienäcker, B.; Robert, J.; Røhne, O. M.; Rotondi, A.; Sacerdoti, M.; Sandaker, H.; Santoro, R.; Scampoli, P.; Simon, M.; Smestad, L.; Sorrentino, F.; Testera, G.; Tietje, I. C.; Widmann, E.; Yzombard, P.; Zimmer, C.; Zmeskal, J.; Zurlo, N.; Andersen, S. L.; Chevallier, J.; Uggerhøj, U. I.; Lyckegaard, F.

    2017-09-01

    In this work a characterization study of forward emission from a thin, meso-structured silica positron/positronium (Ps) converter following implantation of positrons in light of possible antihydrogen production is presented. The target consisted of a ∼1 μm thick ultraporous silica film e-gun evaporated onto a 20 nm carbon foil. The Ps formation and emission was studied via Single Shot Positron Annihilation Lifetime Spectroscopy measurements after implantation of pulses with 3 - 4 ·107 positrons and 10 ns temporal width. The forward emission of implanted positrons and secondary electrons was investigated with a micro-channel plate - phosphor screen assembly, connected either to a CCD camera for imaging of the impinging particles, or to a fast photomultiplier tube to extract information about their time of flight. The maximum Ps formation fraction was estimated to be ∼10%. At least 10% of the positrons implanted with an energy of 3.3 keV are forward-emitted with a scattering angle smaller than 50° and maximum kinetic energy of 1.2 keV. At least 0.1-0.2 secondary electrons per implanted positron were also found to be forward-emitted with a kinetic energy of a few eV. The possible application of this kind of positron/positronium converter for antihydrogen production is discussed.

  1. Estimation of Local Orientations in Fibrous Structures With Applications to the Purkinje System

    PubMed Central

    Plank, Gernot; Trayanova, Natalia A.; Vidal, René

    2011-01-01

    The extraction of the cardiac Purkinje system (PS) from intensity images is a critical step toward the development of realistic structural models of the heart. Such models are important for uncovering the mechanisms of cardiac disease and improving its treatment and prevention. Unfortunately, the manual extraction of the PS is a challenging and error-prone task due to the presence of image noise and numerous fiber junctions. To deal with these challenges, we propose a framework that estimates local fiber orientations with high accuracy and reconstructs the fibers via tracking. Our key contribution is the development of a descriptor for estimating the orientation distribution function (ODF), a spherical function encoding the local geometry of the fibers at a point of interest. The fiber/branch orientations are identified as the modes of the ODFs via spherical clustering and guide the extraction of the fiber centerlines. Experiments on synthetic data evaluate the sensitivity of our approach to image noise, width of the fiber, and choice of the mode detection strategy, and show its superior performance compared to those of the existing descriptors. Experiments on the free-running PS in an MR image also demonstrate the accuracy of our method in reconstructing such sparse fibrous structures. PMID:21335301

  2. Simulations of High-Gain Shock-Ignited Inertial-Confinement-Fusion Implosions Using Less Than 1 MJ of Direct KrF Laser Energy

    DTIC Science & Technology

    2009-05-01

    transport, and thermonuclear burn. Using FAST, three classes of shock-ignited targets were designed that achieve one-dimensional fusion - energy gains in the...MJ) G a in Figure 1: Results of one-dimensional simulations showing the fusion energy gain as a function of KrF laser energy for three classes of...rises smoothly (according to a double power (a) Spike width: 160 ps (b) Spike power: 1530 TW Figure 4: Examples of fusion - energy gain contours for a shock

  3. InGaAs/InP SPAD photon-counting module with auto-calibrated gate-width generation and remote control

    NASA Astrophysics Data System (ADS)

    Tosi, Alberto; Ruggeri, Alessandro; Bahgat Shehata, Andrea; Della Frera, Adriano; Scarcella, Carmelo; Tisa, Simone; Giudice, Andrea

    2013-01-01

    We present a photon-counting module based on InGaAs/InP SPAD (Single-Photon Avalanche Diode) for detecting single photons up to 1.7 μm. The module exploits a novel architecture for generating and calibrating the gate width, along with other functions (such as module supervision, counting and processing of detected photons, etc.). The gate width, i.e. the time interval when the SPAD is ON, is user-programmable in the range from 500 ps to 1.5 μs, by means of two different delay generation methods implemented with an FPGA (Field-Programmable Gate Array). In order to compensate chip-to-chip delay variation, an auto-calibration circuit picks out a combination of delays in order to match at best the selected gate width. The InGaAs/InP module accepts asynchronous and aperiodic signals and introduces very low timing jitter. Moreover the photon counting module provides other new features like a microprocessor for system supervision, a touch-screen for local user interface, and an Ethernet link for smart remote control. Thanks to the fullyprogrammable and configurable architecture, the overall instrument provides high system flexibility and can easily match all requirements set by many different applications requiring single photon-level sensitivity in the near infrared with very low photon timing jitter.

  4. Members of the aquaporin family in the developing pea seed coat include representatives of the PIP, TIP, and NIP subfamilies.

    PubMed

    Schuurmans, Jolanda A M J; van Dongen, Joost T; Rutjens, Bas P W; Boonman, Alex; Pieterse, Corné M J; Borstlap, Adrianus C

    2003-11-01

    Water and nutrients required by developing seeds are mainly supplied by the phloem and have to be released from a maternal parenchyma tissue before being utilized by the filial tissues of embryo and endosperm. To identify aquaporins that could be involved in this process four full-length cDNAs were cloned and sequenced from a cDNA library of developing seed coats of pea (Pisum sativum L.). The cDNA of PsPIP1-1 appeared to be identical to that of clone 7a/TRG-31, a turgor-responsive gene cloned previously from pea roots. PsPIP1-1, PsPIP2-1, and PsTIP1-1, or their possible close homologues, were also expressed in cotyledons of developing and germinating seeds, and in roots and shoots of seedlings, but transcripts of PsNIP-1 were only detected in the seed coat. In mature dry seeds, high hybridization signals were observed with the probe for PsPIP1-1, but transcripts of PsPIP2-1, PsTIP1-1, and PsNIP-1 were not detected. Functional characterization after heterologous expression in Xenopus oocytes showed that PsPIP2-1 and PsTIP1-1 are aquaporins whereas PsNIP-1 is an aquaglyceroporin. PsNIP-1, like several other NIPs, contains a tryptophan residue corresponding with Trp-48 in GlpF (the glycerol facilitator of Escherichia coli) that borders the selectivity filter in the permeation channel. It is suggested that PsPIP1-1 and/or its possible close homologues could play a role in water absorption during seed imbibition, and that PsPIP2-1, possibly together with PsPIP1-1, could be involved in the release of phloem water from the seed coat symplast, which is intimately connected with the release of nutrients for the embryo.

  5. Laser micro-machining strategies for transparent brittle materials using ultrashort pulsed lasers

    NASA Astrophysics Data System (ADS)

    Bernard, Benjamin; Matylitsky, Victor

    2017-02-01

    Cutting and drilling of transparent materials using short pulsed laser systems are important industrial production processes. Applications ranging from sapphire cutting, hardened glass processing, and flat panel display cutting, to diamond processing are possible. The ablation process using a Gaussian laser beam incident on the topside of a sample with several parallel overlapping lines leads to a V-shaped structured groove. This limits the structuring depth for a given kerf width. The unique possibility for transparent materials to start the ablation process from the backside of the sample is a well-known strategy to improve the aspect ratio of the ablated features. This work compares the achievable groove depth depending on the kerf width for front-side and back-side ablation and presents the best relation between the kerf width and number of overscans. Additionally, the influence of the number of pulses in one burst train on the ablation efficiency is investigated. The experiments were carried out using Spirit HE laser from Spectra-Physics, with the features of adjustable pulse duration from <400 fs to 10 ps, three different repetition rates (100 kHz, 200 kHz and 400 kHz) and average output powers of >16 W ( at 1040 nm wavelength).

  6. Measurement of the CP-violating weak phase ϕs and the decay width difference ΔΓs using the Bs0 → J / ψ ϕ (1020) decay channel in pp collisions at √{ s} = 8 TeV

    NASA Astrophysics Data System (ADS)

    Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; Flechl, M.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hartl, C.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Knünz, V.; König, A.; Krammer, M.; Krätschmer, I.; Liko, D.; Matsushita, T.; Mikulec, I.; Rabady, D.; Rahbaran, B.; Rohringer, H.; Schieck, J.; Schöfbeck, R.; Strauss, J.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Alderweireldt, S.; Cornelis, T.; de Wolf, E. A.; Janssen, X.; Knutsson, A.; Lauwers, J.; Luyckx, S.; Ochesanu, S.; Rougny, R.; van de Klundert, M.; van Haevermaet, H.; van Mechelen, P.; van Remortel, N.; van Spilbeeck, A.; Abu Zeid, S.; Blekman, F.; D'Hondt, J.; Daci, N.; de Bruyn, I.; Deroover, K.; Heracleous, N.; Keaveney, J.; Lowette, S.; Moreels, L.; Olbrechts, A.; Python, Q.; Strom, D.; Tavernier, S.; van Doninck, W.; van Mulders, P.; van Onsem, G. P.; van Parijs, I.; Barria, P.; Brun, H.; Caillol, C.; Clerbaux, B.; de Lentdecker, G.; Delannoy, H.; Fasanella, G.; Favart, L.; Gay, A. P. R.; Grebenyuk, A.; Karapostoli, G.; Lenzi, T.; Léonard, A.; Maerschalk, T.; Marinov, A.; Perniè, L.; Randle-Conde, A.; Reis, T.; Seva, T.; Vander Velde, C.; Vanlaer, P.; Yonamine, R.; Zenoni, F.; Zhang, F.; Beernaert, K.; Benucci, L.; Cimmino, A.; Crucy, S.; Dobur, D.; Fagot, A.; Garcia, G.; Gul, M.; McCartin, J.; Ocampo Rios, A. A.; Poyraz, D.; Ryckbosch, D.; Salva, S.; Sigamani, M.; Strobbe, N.; Tytgat, M.; van Driessche, W.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Beluffi, C.; Bondu, O.; Brochet, S.; Bruno, G.; Castello, R.; Caudron, A.; Ceard, L.; da Silveira, G. G.; Delaere, C.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Jafari, A.; Jez, P.; Komm, M.; Lemaitre, V.; Mertens, A.; Nuttens, C.; Perrini, L.; Pin, A.; Piotrzkowski, K.; Popov, A.; Quertenmont, L.; Selvaggi, M.; Vidal Marono, M.; Beliy, N.; Hammad, G. H.; Aldá Júnior, W. L.; Alves, G. A.; Brito, L.; Correa Martins Junior, M.; Hamer, M.; Hensel, C.; Mora Herrera, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.; Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Custódio, A.; da Costa, E. M.; de Jesus Damiao, D.; de Oliveira Martins, C.; Fonseca de Souza, S.; Huertas Guativa, L. M.; Malbouisson, H.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Prado da Silva, W. L.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.; Ahuja, S.; Bernardes, C. A.; de Souza Santos, A.; Dogra, S.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Moon, C. S.; Novaes, S. F.; Padula, Sandra S.; Romero Abad, D.; Ruiz Vargas, J. C.; Aleksandrov, A.; Hadjiiska, R.; Iaydjiev, P.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.; Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Cheng, T.; Du, R.; Jiang, C. H.; Plestina, R.; Romeo, F.; Shaheen, S. M.; Tao, J.; Wang, C.; Wang, Z.; Zhang, H.; Asawatangtrakuldee, C.; Ban, Y.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Zou, W.; Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; Gomez Moreno, B.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Puljak, I.; Ribeiro Cipriano, P. M.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Kadija, K.; Luetic, J.; Micanovic, S.; Sudic, L.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Bodlak, M.; Finger, M.; Finger, M.; El Sawy, M.; El-Khateeb, E.; Elkafrawy, T.; Mohamed, A.; Radi, A.; Salama, E.; Calpas, B.; Kadastik, M.; Murumaa, M.; Raidal, M.; Tiko, A.; Veelken, C.; Eerola, P.; Pekkanen, J.; Voutilainen, M.; Härkönen, J.; Jarvinen, T.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Machet, M.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Zghiche, A.; Antropov, I.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Chapon, E.; Charlot, C.; Dahms, T.; Davignon, O.; Filipovic, N.; Florent, A.; Granier de Cassagnac, R.; Lisniak, S.; Mastrolorenzo, L.; Miné, P.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Pigard, P.; Regnard, S.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Strebler, T.; Yilmaz, Y.; Zabi, A.; Agram, J.-L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J.-M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Coubez, X.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Goetzmann, C.; Le Bihan, A.-C.; Merlin, J. A.; Skovpen, K.; van Hove, P.; Gadrat, S.; Beauceron, S.; Bernet, C.; Boudoul, G.; Bouvier, E.; Carrillo Montoya, C. A.; Chierici, R.; Contardo, D.; Courbon, B.; Depasse, P.; El Mamouni, H.; Fan, J.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Lagarde, F.; Laktineh, I. B.; Lethuillier, M.; Mirabito, L.; Pequegnot, A. L.; Perries, S.; Ruiz Alvarez, J. D.; Sabes, D.; Sgandurra, L.; Sordini, V.; Vander Donckt, M.; Verdier, P.; Viret, S.; Xiao, H.; Toriashvili, T.; Tsamalaidze, Z.; Autermann, C.; Beranek, S.; Edelhoff, M.; Feld, L.; Heister, A.; Kiesel, M. K.; Klein, K.; Lipinski, M.; Ostapchuk, A.; Preuten, M.; Raupach, F.; Schael, S.; Schulte, J. F.; Verlage, T.; Weber, H.; Wittmer, B.; Zhukov, V.; Ata, M.; Brodski, M.; Dietz-Laursonn, E.; Duchardt, D.; Endres, M.; Erdmann, M.; Erdweg, S.; Esch, T.; Fischer, R.; Güth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Klingebiel, D.; Knutzen, S.; Kreuzer, P.; Merschmeyer, M.; Meyer, A.; Millet, P.; Olschewski, M.; Padeken, K.; Papacz, P.; Pook, T.; Radziej, M.; Reithler, H.; Rieger, M.; Scheuch, F.; Sonnenschein, L.; Teyssier, D.; Thüer, S.; Cherepanov, V.; Erdogan, Y.; Flügge, G.; Geenen, H.; Geisler, M.; Hoehle, F.; Kargoll, B.; Kress, T.; Kuessel, Y.; Künsken, A.; Lingemann, J.; Nehrkorn, A.; Nowack, A.; Nugent, I. M.; Pistone, C.; Pooth, O.; Stahl, A.; Aldaya Martin, M.; Asin, I.; Bartosik, N.; Behnke, O.; Behrens, U.; Bell, A. J.; Borras, K.; Burgmeier, A.; Cakir, A.; Calligaris, L.; Campbell, A.; Choudhury, S.; Costanza, F.; Diez Pardos, C.; Dolinska, G.; Dooling, S.; Dorland, T.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Flucke, G.; Gallo, E.; Garay Garcia, J.; Geiser, A.; Gizhko, A.; Gunnellini, P.; Hauk, J.; Hempel, M.; Jung, H.; Kalogeropoulos, A.; Karacheban, O.; Kasemann, M.; Katsas, P.; Kieseler, J.; Kleinwort, C.; Korol, I.; Lange, W.; Leonard, J.; Lipka, K.; Lobanov, A.; Lohmann, W.; Mankel, R.; Marfin, I.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Naumann-Emme, S.; Nayak, A.; Ntomari, E.; Perrey, H.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Roland, B.; Sahin, M. Ö.; Saxena, P.; Schoerner-Sadenius, T.; Schröder, M.; Seitz, C.; Spannagel, S.; Trippkewitz, K. D.; Walsh, R.; Wissing, C.; Blobel, V.; Centis Vignali, M.; Draeger, A. R.; Erfle, J.; Garutti, E.; Goebel, K.; Gonzalez, D.; Görner, M.; Haller, J.; Hoffmann, M.; Höing, R. S.; Junkes, A.; Klanner, R.; Kogler, R.; Lapsien, T.; Lenz, T.; Marchesini, I.; Marconi, D.; Meyer, M.; Nowatschin, D.; Ott, J.; Pantaleo, F.; Peiffer, T.; Perieanu, A.; Pietsch, N.; Poehlsen, J.; Rathjens, D.; Sander, C.; Schettler, H.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Schwandt, J.; Seidel, M.; Sola, V.; Stadie, H.; Steinbrück, G.; Tholen, H.; Troendle, D.; Usai, E.; Vanelderen, L.; Vanhoefer, A.; Vormwald, B.; Akbiyik, M.; Barth, C.; Baus, C.; Berger, J.; Böser, C.; Butz, E.; Chwalek, T.; Colombo, F.; de Boer, W.; Descroix, A.; Dierlamm, A.; Fink, S.; Frensch, F.; Giffels, M.; Gilbert, A.; Hartmann, F.; Heindl, S. M.; Husemann, U.; Katkov, I.; Kornmayer, A.; Lobelle Pardo, P.; Maier, B.; Mildner, H.; Mozer, M. U.; Müller, T.; Müller, Th.; Plagge, M.; Quast, G.; Rabbertz, K.; Röcker, S.; Roscher, F.; Simonis, H. J.; Stober, F. M.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weber, M.; Weiler, T.; Wöhrmann, C.; Wolf, R.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Psallidas, A.; Topsis-Giotis, I.; Agapitos, A.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Tziaferi, E.; Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Loukas, N.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Strologas, J.; Bencze, G.; Hajdu, C.; Hazi, A.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.; Beni, N.; Czellar, S.; Karancsi, J.; Molnar, J.; Szillasi, Z.; Bartók, M.; Makovec, A.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Mal, P.; Mandal, K.; Sahoo, N.; Swain, S. K.; Bansal, S.; Beri, S. B.; Bhatnagar, V.; Chawla, R.; Gupta, R.; Bhawandeep, U.; Kalsi, A. K.; Kaur, A.; Kaur, M.; Kumar, R.; Mehta, A.; Mittal, M.; Singh, J. B.; Walia, G.; Kumar, Ashok; Bhardwaj, A.; Choudhary, B. C.; Garg, R. B.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Nishu, N.; Ranjan, K.; Sharma, R.; Sharma, V.; Banerjee, S.; Bhardwaj, R.; Bhattacharya, S.; Chatterjee, K.; Dey, S.; Dutta, S.; Jain, Sa.; Majumdar, N.; Modak, A.; Mondal, K.; Mukherjee, S.; Mukhopadhyay, S.; Roy, A.; Roy, D.; Roy Chowdhury, S.; Sarkar, S.; Sharan, M.; Abdulsalam, A.; Chudasama, R.; Dutta, D.; Jha, V.; Kumar, V.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Banerjee, S.; Bhowmik, S.; Chatterjee, R. M.; Dewanjee, R. K.; Dugad, S.; Ganguly, S.; Ghosh, S.; Guchait, M.; Gurtu, A.; Kole, G.; Kumar, S.; Mahakud, B.; Maity, M.; Majumder, G.; Mazumdar, K.; Mitra, S.; Mohanty, G. B.; Parida, B.; Sarkar, T.; Sudhakar, K.; Sur, N.; Sutar, B.; Wickramage, N.; Chauhan, S.; Dube, S.; Sharma, S.; Bakhshiansohi, H.; Behnamian, H.; Etesami, S. M.; Fahim, A.; Goldouzian, R.; Khakzad, M.; Mohammadi Najafabadi, M.; Naseri, M.; Paktinat Mehdiabadi, S.; Rezaei Hosseinabadi, F.; Safarzadeh, B.; Zeinali, M.; Felcini, M.; Grunewald, M.; Abbrescia, M.; Calabria, C.; Caputo, C.; Colaleo, A.; Creanza, D.; Cristella, L.; de Filippis, N.; de Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; Miniello, G.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Ranieri, A.; Selvaggi, G.; Silvestris, L.; Venditti, R.; Verwilligen, P.; Abbiendi, G.; Battilana, C.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Chhibra, S. S.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.; Cappello, G.; Chiorboli, M.; Costa, S.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Gonzi, S.; Gori, V.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.; Viliani, L.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Primavera, F.; Calvelli, V.; Ferro, F.; Lo Vetere, M.; Monge, M. R.; Robutti, E.; Tosi, S.; Brianza, L.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Gerosa, R.; Ghezzi, A.; Govoni, P.; Malvezzi, S.; Manzoni, R. A.; Marzocchi, B.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; Tabarelli de Fatis, T.; Buontempo, S.; Cavallo, N.; di Guida, S.; Esposito, M.; Fabozzi, F.; Iorio, A. O. M.; Lanza, G.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.; Sciacca, C.; Thyssen, F.; Azzi, P.; Bacchetta, N.; Benato, L.; Bisello, D.; Boletti, A.; Carlin, R.; Checchia, P.; Dall'Osso, M.; Dorigo, T.; Gasparini, F.; Gasparini, U.; Gonella, F.; Gozzelino, A.; Kanishchev, K.; Lacaprara, S.; Margoni, M.; Maron, G.; Meneguzzo, A. T.; Michelotto, M.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Tosi, M.; Zanetti, M.; Zotto, P.; Zucchetta, A.; Zumerle, G.; Braghieri, A.; Magnani, A.; Montagna, P.; Ratti, S. P.; Re, V.; Riccardi, C.; Salvini, P.; Vai, I.; Vitulo, P.; Alunni Solestizi, L.; Biasini, M.; Bilei, G. M.; Ciangottini, D.; Fanò, L.; Lariccia, P.; Mantovani, G.; Menichelli, M.; Saha, A.; Santocchia, A.; Spiezia, A.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Broccolo, G.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Donato, S.; Fedi, G.; Foà, L.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Serban, A. T.; Spagnolo, P.; Squillacioti, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Barone, L.; Cavallari, F.; D'Imperio, G.; Del Re, D.; Diemoz, M.; Gelli, S.; Jorda, C.; Longo, E.; Margaroli, F.; Meridiani, P.; Organtini, G.; Paramatti, R.; Preiato, F.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Traczyk, P.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bellan, R.; Biino, C.; Cartiglia, N.; Costa, M.; Covarelli, R.; Degano, A.; Dellacasa, G.; Demaria, N.; Finco, L.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Monteil, E.; Musich, M.; Obertino, M. M.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Pinna Angioni, G. L.; Ravera, F.; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Tamponi, U.; Belforte, S.; Candelise, V.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; La Licata, C.; Marone, M.; Schizzi, A.; Zanetti, A.; Kropivnitskaya, A.; Nam, S. K.; Kim, D. H.; Kim, G. N.; Kim, M. S.; Kong, D. J.; Lee, S.; Oh, Y. D.; Sakharov, A.; Son, D. C.; Brochero Cifuentes, J. A.; Kim, H.; Kim, T. J.; Ryu, M. S.; Song, S.; Choi, S.; Go, Y.; Gyun, D.; Hong, B.; Jo, M.; Kim, H.; Kim, Y.; Lee, B.; Lee, K.; Lee, K. S.; Lee, S.; Park, S. K.; Roh, Y.; Yoo, H. D.; Choi, M.; Kim, H.; Kim, J. H.; Lee, J. S. H.; Park, I. C.; Ryu, G.; Choi, Y.; Choi, Y. K.; Goh, J.; Kim, D.; Kwon, E.; Lee, J.; Yu, I.; Juodagalvis, A.; Vaitkus, J.; Ahmed, I.; Ibrahim, Z. A.; Komaragiri, J. R.; Md Ali, M. A. B.; Mohamad Idris, F.; Wan Abdullah, W. A. T.; Yusli, M. N.; Casimiro Linares, E.; Castilla-Valdez, H.; de La Cruz-Burelo, E.; Heredia-de La Cruz, I.; Hernandez-Almada, A.; Lopez-Fernandez, R.; Sanchez-Hernandez, A.; Carrillo Moreno, S.; Vazquez Valencia, F.; Pedraza, I.; Salazar Ibarguen, H. A.; Morelos Pineda, A.; Krofcheck, D.; Butler, P. H.; Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Khan, W. A.; Khurshid, T.; Shoaib, M.; Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Zalewski, P.; Brona, G.; Bunkowski, K.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Walczak, M.; Bargassa, P.; Beirão da Cruz E Silva, C.; di Francesco, A.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Leonardo, N.; Lloret Iglesias, L.; Nguyen, F.; Rodrigues Antunes, J.; Seixas, J.; Toldaiev, O.; Vadruccio, D.; Varela, J.; Vischia, P.; Afanasiev, S.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Konoplyanikov, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Shulha, S.; Skatchkov, N.; Smirnov, V.; Zarubin, A.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Kuznetsova, E.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Karneyeu, A.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Spiridonov, A.; Vlasov, E.; Zhokin, A.; Bylinkin, A.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Vinogradov, A.; Baskakov, A.; Belyaev, A.; Boos, E.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Myagkov, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Snigirev, A.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Ekmedzic, M.; Milosevic, J.; Rekovic, V.; Alcaraz Maestre, J.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; de La Cruz, B.; Delgado Peris, A.; Domínguez Vázquez, D.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Navarro de Martino, E.; Pérez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Soares, M. S.; Albajar, C.; de Trocóniz, J. F.; Missiroli, M.; Moran, D.; Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Palencia Cortezon, E.; Vizan Garcia, J. M.; Cabrillo, I. J.; Calderon, A.; Castiñeiras de Saa, J. R.; de Castro Manzano, P.; Duarte Campderros, J.; Fernandez, M.; Garcia-Ferrero, J.; Gomez, G.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Munoz Sanchez, F. J.; Piedra Gomez, J.; Rodrigo, T.; Rodríguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Benaglia, A.; Bendavid, J.; Benhabib, L.; Benitez, J. F.; Berruti, G. M.; Bloch, P.; Bocci, A.; Bonato, A.; Botta, C.; Breuker, H.; Camporesi, T.; Cerminara, G.; Colafranceschi, S.; D'Alfonso, M.; D'Enterria, D.; Dabrowski, A.; Daponte, V.; David, A.; de Gruttola, M.; de Guio, F.; de Roeck, A.; de Visscher, S.; di Marco, E.; Dobson, M.; Dordevic, M.; Dorney, B.; Du Pree, T.; Dünser, M.; Dupont, N.; Elliott-Peisert, A.; Franzoni, G.; Funk, W.; Gigi, D.; Gill, K.; Giordano, D.; Girone, M.; Glege, F.; Guida, R.; Gundacker, S.; Guthoff, M.; Hammer, J.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Kirschenmann, H.; Kortelainen, M. J.; Kousouris, K.; Krajczar, K.; Lecoq, P.; Lourenço, C.; Lucchini, M. T.; Magini, N.; Malgeri, L.; Mannelli, M.; Martelli, A.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moortgat, F.; Morovic, S.; Mulders, M.; Nemallapudi, M. V.; Neugebauer, H.; Orfanelli, S.; Orsini, L.; Pape, L.; Perez, E.; Peruzzi, M.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Piparo, D.; Racz, A.; Rolandi, G.; Rovere, M.; Ruan, M.; Sakulin, H.; Schäfer, C.; Schwick, C.; Sharma, A.; Silva, P.; Simon, M.; Sphicas, P.; Spiga, D.; Steggemann, J.; Stieger, B.; Stoye, M.; Takahashi, Y.; Treille, D.; Triossi, A.; Tsirou, A.; Veres, G. I.; Wardle, N.; Wöhri, H. K.; Zagozdzinska, A.; Zeuner, W. D.; Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Renker, D.; Rohe, T.; Bachmair, F.; Bäni, L.; Bianchini, L.; Buchmann, M. A.; Casal, B.; Dissertori, G.; Dittmar, M.; Donegà, M.; Eller, P.; Grab, C.; Heidegger, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Lustermann, W.; Mangano, B.; Marionneau, M.; Martinez Ruiz Del Arbol, P.; Masciovecchio, M.; Meister, D.; Micheli, F.; Musella, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pata, J.; Pauss, F.; Perrozzi, L.; Quittnat, M.; Rossini, M.; Starodumov, A.; Takahashi, M.; Tavolaro, V. R.; Theofilatos, K.; Wallny, R.; Aarrestad, T. K.; Amsler, C.; Caminada, L.; Canelli, M. F.; Chiochia, V.; de Cosa, A.; Galloni, C.; Hinzmann, A.; Hreus, T.; Kilminster, B.; Lange, C.; Ngadiuba, J.; Pinna, D.; Robmann, P.; Ronga, F. J.; Salerno, D.; Yang, Y.; Cardaci, M.; Chen, K. H.; Doan, T. H.; Jain, Sh.; Khurana, R.; Konyushikhin, M.; Kuo, C. M.; Lin, W.; Lu, Y. J.; Yu, S. S.; Kumar, Arun; Bartek, R.; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Chen, P. H.; Dietz, C.; Fiori, F.; Grundler, U.; Hou, W.-S.; Hsiung, Y.; Liu, Y. F.; Lu, R.-S.; Miñano Moya, M.; Petrakou, E.; Tsai, J. F.; Tzeng, Y. M.; Asavapibhop, B.; Kovitanggoon, K.; Singh, G.; Srimanobhas, N.; Suwonjandee, N.; Adiguzel, A.; Cerci, S.; Demiroglu, Z. S.; Dozen, C.; Girgis, S.; Gokbulut, G.; Guler, Y.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Kayis Topaksu, A.; Onengut, G.; Ozdemir, K.; Ozturk, S.; Tali, B.; Topakli, H.; Vergili, M.; Zorbilmez, C.; Akin, I. V.; Bilin, B.; Bilmis, S.; Isildak, B.; Karapinar, G.; Yalvac, M.; Zeyrek, M.; Albayrak, E. A.; Gülmez, E.; Kaya, M.; Kaya, O.; Yetkin, T.; Cankocak, K.; Sen, S.; Vardarlı, F. I.; Grynyov, B.; Levchuk, L.; Sorokin, P.; Aggleton, R.; Ball, F.; Beck, L.; Brooke, J. J.; Clement, E.; Cussans, D.; Flacher, H.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Meng, Z.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Sakuma, T.; Seif El Nasr-Storey, S.; Senkin, S.; Smith, D.; Smith, V. J.; Barducci, D.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Cieri, D.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Thomas, L.; Tomalin, I. R.; Williams, T.; Womersley, W. J.; Worm, S. D.; Baber, M.; Bainbridge, R.; Buchmuller, O.; Bundock, A.; Burton, D.; Casasso, S.; Citron, M.; Colling, D.; Corpe, L.; Cripps, N.; Dauncey, P.; Davies, G.; de Wit, A.; Della Negra, M.; Dunne, P.; Elwood, A.; Ferguson, W.; Fulcher, J.; Futyan, D.; Hall, G.; Iles, G.; Kenzie, M.; Lane, R.; Lucas, R.; Lyons, L.; Magnan, A.-M.; Malik, S.; Nash, J.; Nikitenko, A.; Pela, J.; Pesaresi, M.; Petridis, K.; Raymond, D. M.; Richards, A.; Rose, A.; Seez, C.; Tapper, A.; Uchida, K.; Vazquez Acosta, M.; Virdee, T.; Zenz, S. C.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leggat, D.; Leslie, D.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Borzou, A.; Call, K.; Dittmann, J.; Hatakeyama, K.; Kasmi, A.; Liu, H.; Pastika, N.; Charaf, O.; Cooper, S. I.; Henderson, C.; Rumerio, P.; Avetisyan, A.; Bose, T.; Fantasia, C.; Gastler, D.; Lawson, P.; Rankin, D.; Richardson, C.; Rohlf, J.; St. John, J.; Sulak, L.; Zou, D.; Alimena, J.; Berry, E.; Bhattacharya, S.; Cutts, D.; Dhingra, N.; Ferapontov, A.; Garabedian, A.; Hakala, J.; Heintz, U.; Laird, E.; Landsberg, G.; Mao, Z.; Narain, M.; Piperov, S.; Sagir, S.; Sinthuprasith, T.; Syarif, R.; Breedon, R.; Breto, G.; Calderon de La Barca Sanchez, M.; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Gardner, M.; Ko, W.; Lander, R.; Mulhearn, M.; Pellett, D.; Pilot, J.; Ricci-Tam, F.; Shalhout, S.; Smith, J.; Squires, M.; Stolp, D.; Tripathi, M.; Wilbur, S.; Yohay, R.; Cousins, R.; Everaerts, P.; Farrell, C.; Hauser, J.; Ignatenko, M.; Saltzberg, D.; Takasugi, E.; Valuev, V.; Weber, M.; Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Hanson, G.; Heilman, J.; Ivova Paneva, M.; Jandir, P.; Kennedy, E.; Lacroix, F.; Long, O. R.; Luthra, A.; Malberti, M.; Olmedo Negrete, M.; Shrinivas, A.; Wei, H.; Wimpenny, S.; Yates, B. R.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; D'Agnolo, R. T.; Holzner, A.; Kelley, R.; Klein, D.; Letts, J.; MacNeill, I.; Olivito, D.; Padhi, S.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Tadel, M.; Vartak, A.; Wasserbaech, S.; Welke, C.; Würthwein, F.; Yagil, A.; Zevi Della Porta, G.; Barge, D.; Bradmiller-Feld, J.; Campagnari, C.; Dishaw, A.; Dutta, V.; Flowers, K.; Franco Sevilla, M.; Geffert, P.; George, C.; Golf, F.; Gouskos, L.; Gran, J.; Incandela, J.; Justus, C.; McColl, N.; Mullin, S. D.; Richman, J.; Stuart, D.; Suarez, I.; To, W.; West, C.; Yoo, J.; Anderson, D.; Apresyan, A.; Bornheim, A.; Bunn, J.; Chen, Y.; Duarte, J.; Mott, A.; Newman, H. B.; Pena, C.; Pierini, M.; Spiropulu, M.; Vlimant, J. R.; Xie, S.; Zhu, R. Y.; Andrews, M. B.; Azzolini, V.; Calamba, A.; Carlson, B.; Ferguson, T.; Paulini, M.; Russ, J.; Sun, M.; Vogel, H.; Vorobiev, I.; Cumalat, J. P.; Ford, W. T.; Gaz, A.; Jensen, F.; Johnson, A.; Krohn, M.; Mulholland, T.; Nauenberg, U.; Stenson, K.; Wagner, S. R.; Alexander, J.; Chatterjee, A.; Chaves, J.; Chu, J.; Dittmer, S.; Eggert, N.; Mirman, N.; Nicolas Kaufman, G.; Patterson, J. R.; Rinkevicius, A.; Ryd, A.; Skinnari, L.; Soffi, L.; Sun, W.; Tan, S. M.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Weng, Y.; Wittich, P.; Abdullin, S.; Albrow, M.; Anderson, J.; Apollinari, G.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gottschalk, E.; Gray, L.; Green, D.; Grünendahl, S.; Gutsche, O.; Hanlon, J.; Hare, D.; Harris, R. M.; Hirschauer, J.; Hu, Z.; Jindariani, S.; Johnson, M.; Joshi, U.; Jung, A. W.; Klima, B.; Kreis, B.; Kwan, S.; Lammel, S.; Linacre, J.; Lincoln, D.; Lipton, R.; Liu, T.; Lopes de Sá, R.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Martinez Outschoorn, V. I.; Maruyama, S.; Mason, D.; McBride, P.; Merkel, P.; Mishra, K.; Mrenna, S.; Nahn, S.; Newman-Holmes, C.; O'Dell, V.; Pedro, K.; Prokofyev, O.; Rakness, G.; Sexton-Kennedy, E.; Soha, A.; Spalding, W. J.; Spiegel, L.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vernieri, C.; Verzocchi, M.; Vidal, R.; Weber, H. A.; Whitbeck, A.; Yang, F.; Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Carnes, A.; Carver, M.; Curry, D.; Das, S.; di Giovanni, G. P.; Field, R. D.; Furic, I. K.; Hugon, J.; Konigsberg, J.; Korytov, A.; Low, J. F.; Ma, P.; Matchev, K.; Mei, H.; Milenovic, P.; Mitselmakher, G.; Rank, D.; Rossin, R.; Shchutska, L.; Snowball, M.; Sperka, D.; Terentyev, N.; Wang, J.; Wang, S.; Yelton, J.; Hewamanage, S.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.; Ackert, A.; Adams, J. R.; Adams, T.; Askew, A.; Bochenek, J.; Diamond, B.; Haas, J.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Khatiwada, A.; Prosper, H.; Veeraraghavan, V.; Weinberg, M.; Baarmand, M. M.; Bhopatkar, V.; Hohlmann, M.; Kalakhety, H.; Noonan, D.; Roy, T.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Bucinskaite, I.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Kurt, P.; O'Brien, C.; Sandoval Gonzalez, I. D.; Silkworth, C.; Turner, P.; Varelas, N.; Wu, Z.; Zakaria, M.; Bilki, B.; Clarida, W.; Dilsiz, K.; Durgut, S.; Gandrajula, R. P.; Haytmyradov, M.; Khristenko, V.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Snyder, C.; Tan, P.; Tiras, E.; Wetzel, J.; Yi, K.; Anderson, I.; Barnett, B. A.; Blumenfeld, B.; Fehling, D.; Feng, L.; Gritsan, A. V.; Maksimovic, P.; Martin, C.; Osherson, M.; Swartz, M.; Xiao, M.; Xin, Y.; You, C.; Baringer, P.; Bean, A.; Benelli, G.; Bruner, C.; Kenny, R. P., III; Majumder, D.; Malek, M.; Murray, M.; Sanders, S.; Stringer, R.; Wang, Q.; Ivanov, A.; Kaadze, K.; Khalil, S.; Makouski, M.; Maravin, Y.; Mohammadi, A.; Saini, L. K.; Skhirtladze, N.; Toda, S.; Lange, D.; Rebassoo, F.; Wright, D.; Anelli, C.; Baden, A.; Baron, O.; Belloni, A.; Calvert, B.; Eno, S. C.; Ferraioli, C.; Gomez, J. A.; Hadley, N. J.; Jabeen, S.; Kellogg, R. G.; Kolberg, T.; Kunkle, J.; Lu, Y.; Mignerey, A. C.; Shin, Y. H.; Skuja, A.; Tonjes, M. B.; Tonwar, S. C.; Apyan, A.; Barbieri, R.; Baty, A.; Bierwagen, K.; Brandt, S.; Busza, W.; Cali, I. A.; Demiragli, Z.; Di Matteo, L.; Gomez Ceballos, G.; Goncharov, M.; Gulhan, D.; Iiyama, Y.; Innocenti, G. M.; Klute, M.; Kovalskyi, D.; Lai, Y. S.; Lee, Y.-J.; Levin, A.; Luckey, P. D.; Marini, A. C.; McGinn, C.; Mironov, C.; Niu, X.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Salfeld-Nebgen, J.; Stephans, G. S. F.; Sumorok, K.; Varma, M.; Velicanu, D.; Veverka, J.; Wang, J.; Wang, T. W.; Wyslouch, B.; Yang, M.; Zhukova, V.; Dahmes, B.; Finkel, A.; Gude, A.; Hansen, P.; Kalafut, S.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Lesko, Z.; Mans, J.; Nourbakhsh, S.; Ruckstuhl, N.; Rusack, R.; Tambe, N.; Turkewitz, J.; Acosta, J. G.; Oliveros, S.; Avdeeva, E.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Fangmeier, C.; Gonzalez Suarez, R.; Kamalieddin, R.; Keller, J.; Knowlton, D.; Kravchenko, I.; Lazo-Flores, J.; Meier, F.; Monroy, J.; Ratnikov, F.; Siado, J. E.; Snow, G. R.; Alyari, M.; Dolen, J.; George, J.; Godshalk, A.; Harrington, C.; Iashvili, I.; Kaisen, J.; Kharchilava, A.; Kumar, A.; Rappoccio, S.; Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Hortiangtham, A.; Massironi, A.; Morse, D. M.; Nash, D.; Orimoto, T.; Teixeira de Lima, R.; Trocino, D.; Wang, R.-J.; Wood, D.; Zhang, J.; Hahn, K. A.; Kubik, A.; Mucia, N.; Odell, N.; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Sung, K.; Trovato, M.; Velasco, M.; Brinkerhoff, A.; Dev, N.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Lynch, S.; Marinelli, N.; Meng, F.; Mueller, C.; Musienko, Y.; Pearson, T.; Planer, M.; Reinsvold, A.; Ruchti, R.; Smith, G.; Taroni, S.; Valls, N.; Wayne, M.; Wolf, M.; Woodard, A.; Antonelli, L.; Brinson, J.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Hart, A.; Hill, C.; Hughes, R.; Ji, W.; Kotov, K.; Ling, T. Y.; Liu, B.; Luo, W.; Puigh, D.; Rodenburg, M.; Winer, B. L.; Wulsin, H. W.; Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Koay, S. A.; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Palmer, C.; Piroué, P.; Quan, X.; Saka, H.; Stickland, D.; Tully, C.; Werner, J. S.; Zuranski, A.; Malik, S.; Barnes, V. E.; Benedetti, D.; Bortoletto, D.; Gutay, L.; Jha, M. K.; Jones, M.; Jung, K.; Kress, M.; Miller, D. H.; Neumeister, N.; Radburn-Smith, B. C.; Shi, X.; Shipsey, I.; Silvers, D.; Sun, J.; Svyatkovskiy, A.; Wang, F.; Xie, W.; Xu, L.; Parashar, N.; Stupak, J.; Adair, A.; Akgun, B.; Chen, Z.; Ecklund, K. M.; Geurts, F. J. M.; Guilbaud, M.; Li, W.; Michlin, B.; Northup, M.; Padley, B. P.; Redjimi, R.; Roberts, J.; Rorie, J.; Tu, Z.; Zabel, J.; Betchart, B.; Bodek, A.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Ferbel, T.; Galanti, M.; Garcia-Bellido, A.; Han, J.; Harel, A.; Hindrichs, O.; Khukhunaishvili, A.; Petrillo, G.; Verzetti, M.; Demortier, L.; Arora, S.; Barker, A.; Chou, J. P.; Contreras-Campana, C.; Contreras-Campana, E.; Duggan, D.; Ferencek, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Hughes, E.; Kaplan, S.; Kunnawalkam Elayavalli, R.; Lath, A.; Nash, K.; Panwalkar, S.; Park, M.; Salur, S.; Schnetzer, S.; Sheffield, D.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Foerster, M.; Riley, G.; Rose, K.; Spanier, S.; York, A.; Bouhali, O.; Castaneda Hernandez, A.; Dalchenko, M.; de Mattia, M.; Delgado, A.; Dildick, S.; Eusebi, R.; Flanagan, W.; Gilmore, J.; Kamon, T.; Krutelyov, V.; Mueller, R.; Osipenkov, I.; Pakhotin, Y.; Patel, R.; Perloff, A.; Rose, A.; Safonov, A.; Tatarinov, A.; Ulmer, K. A.; Akchurin, N.; Cowden, C.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Faulkner, J.; Kunori, S.; Lamichhane, K.; Lee, S. W.; Libeiro, T.; Undleeb, S.; Volobouev, I.; Appelt, E.; Delannoy, A. G.; Greene, S.; Gurrola, A.; Janjam, R.; Johns, W.; Maguire, C.; Mao, Y.; Melo, A.; Ni, H.; Sheldon, P.; Snook, B.; Tuo, S.; Velkovska, J.; Xu, Q.; Arenton, M. W.; Boutle, S.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Li, H.; Lin, C.; Neu, C.; Wolfe, E.; Wood, J.; Xia, F.; Clarke, C.; Harr, R.; Karchin, P. E.; Kottachchi Kankanamge Don, C.; Lamichhane, P.; Sturdy, J.; Belknap, D. A.; Carlsmith, D.; Cepeda, M.; Christian, A.; Dasu, S.; Dodd, L.; Duric, S.; Friis, E.; Gomber, B.; Hall-Wilton, R.; Herndon, M.; Hervé, A.; Klabbers, P.; Lanaro, A.; Levine, A.; Long, K.; Loveless, R.; Mohapatra, A.; Ojalvo, I.; Perry, T.; Pierro, G. A.; Polese, G.; Ross, I.; Ruggles, T.; Sarangi, T.; Savin, A.; Sharma, A.; Smith, N.; Smith, W. H.; Taylor, D.; Woods, N.

    2016-06-01

    The CP-violating weak phase ϕs of the Bs0 meson and the decay width difference ΔΓs of the Bs0 light and heavy mass eigenstates are measured with the CMS detector at the LHC using a data sample of Bs0 → J / ψ ϕ (1020) →μ+μ-K+K- decays. The analysed data set corresponds to an integrated luminosity of 19.7fb-1 collected in pp collisions at a centre-of-mass energy of 8TeV. A total of 49 200 reconstructed Bs0 decays are used to extract the values of ϕs and ΔΓs by performing a time-dependent and flavour-tagged angular analysis of the μ+μ-K+K- final state. The weak phase is measured to be ϕs = - 0.075 ± 0.097 (stat) ± 0.031 (syst) rad, and the decay width difference is ΔΓs = 0.095 ± 0.013 (stat) ± 0.007 (syst) ps-1.

  7. An experimental and theoretical investigation into the ``worm-hole'' effect

    NASA Astrophysics Data System (ADS)

    Zhao, Liang; Su, Jiancang; Zhang, Xibo; Pan, Yafeng; Wang, Limin; Fang, Jinpeng; Sun, Xu; Li, Rui; Zeng, Bo; Cheng, Jie

    2013-08-01

    On a nanosecond time scale, solid insulators abnormally fail in bulk rather than on surface, which is termed as the "worm-hole" effect. By using a generator with adjustable output pulse width and dozens of organic glass (PMMA) and polystyrene (PS) samples, experiments to verify this effect are conducted. The results show that under short pulses of 10 ns, all the samples fail due to bulk breakdown, whereas when the pulse width is tuned to a long pulse of 7 μs, the samples fail as a result of surface flashover. The experimental results are interpreted by analyzing the conditions for the bulk breakdown and the surface flashover. It is found that under short pulses, the flashover threshold would be as high as the bulk breakdown strength (EBD) and the flashover time delay (td) would be longer than the pulse width (τ), both of which make the dielectrics' cumulative breakdown occur easily; whereas under long pulses, that Ef is much lower than EBD and td is smaller than τ is advantageous to the occurrence of the surface flashover. In addition, a general principle on solid insulation design under short pulse condition is proposed based on the experimental results and the theoretical analysis.

  8. Laser Pulse Width Dependence and Ionization Mechanism of Matrix-Assisted Laser Desorption/Ionization

    NASA Astrophysics Data System (ADS)

    Liang, Sheng-Ping; Lu, I.-Chung; Tsai, Shang-Ting; Chen, Jien-Lian; Lee, Yuan Tseh; Ni, Chi-Kung

    2017-10-01

    Ultraviolet laser pulses at 355 nm with variable pulse widths in the region from 170 ps to 1.5 ns were used to investigate the ionization mechanism of matrix-assisted laser desorption/ionization (MALDI) for matrices 2,5-dihydroxybenzoic acid (DHB), α-cyano-4-hydroxycinnamic acid (CHCA), and sinapinic acid (SA). The mass spectra of desorbed ions and the intensity and velocity distribution of desorbed neutrals were measured simultaneously for each laser shot. These quantities were found to be independent of the laser pulse width. A comparison of the experimental measurements and numerical simulations according to the multiphoton ionization, coupled photophysical and chemical dynamics (CPCD), and thermally induced proton transfer models showed that the predictions of thermally induced proton transfer model were in agreement with the experimental data, but those of the multiphoton ionization model were not. Moreover, the predictions of the CPCD model based on singlet-singlet energy pooling were inconsistent with the experimental data of CHCA and SA, but were consistent with the experimental data of DHB only when some parameters used in the model were adjusted to extreme values. [Figure not available: see fulltext.

  9. Study of Electric Explosion of Flat Micron-Thick Foils at Current Densities of (5-50)×108 A/cm2

    NASA Astrophysics Data System (ADS)

    Shelkovenko, T. A.; Pikuz, S. A.; Tilikin, I. N.; Mingaleev, A. R.; Atoyan, L.; Hammer, D. A.

    2018-02-01

    Electric explosions of flat Al, Ti, Ni, Cu, and Ta foils with thicknesses of 1-16 μm, widths of 1-8 mm, and lengths of 5-11 mm were studied experimentally on the BIN, XP, and COBRA high-current generators at currents of 40-1000 kA and current densities of (5-50) × 108 A/cm2. The images of the exploded foils were taken at different angles to the foil surface by using point projection radiography with an X-pinch hot spot as the radiation source, the spatial resolution and exposure time being 3 μm and 50 ps, respectively, as well by the laser probing method with a spatial resolution of 20 μm and an exposure time of 180 ps. In the course of foil explosion, rapidly expanding objects resembling the core and corona of an exploded wire were observed. It is shown that the core of the exploded foil has a complicated time-varying structure.

  10. Sub-20-ps pulses from a passively Q-switched microchip laser at 1  MHz repetition rate.

    PubMed

    Mehner, Eva; Bernard, Benjamin; Giessen, Harald; Kopf, Daniel; Braun, Bernd

    2014-05-15

    We present a 50 μm Nd3+:YVO4 microchip laser that is passively Q-switched by a semiconductor saturable absorber mirror. To reduce handling problems caused by the small crystal dimensions, the 50 μm Nd3+:YVO4 crystal is optically bonded to an undoped YVO4 crystal of a length of about 500 μm. By using a saturable absorber mirror with an effective modulation depth of >10% the system is able to deliver 16 ps pulses at a repetition rate of up to 1.0 MHz. The average laser power is 16 mW at 1064 nm. To our knowledge these are the shortest Q-switched pulses ever reported from a solid-state laser. The limits in terms of pulse width, repetition rate, output power, and system stability are discussed. Additionally, continuous-wave behavior is analyzed. Experimental data is compared with the simulation results of the coupled rate equations.

  11. B s 0 lifetime measurement in the C P -odd decay channel B s 0 → J / ψ f 0 ( 980 )

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abazov, V. M.; Abbott, B.; Acharya, B. S.

    2016-07-01

    Here, the lifetime of the Bmore » $$0\\atop{S}$$ meson is measured in the decay channel B$$0\\atop{S}$$→J/ψπ +π - with 880 ≤ M π+π- ≤ 1080 MeV/c 2, which is mainly a CP-odd state and dominated by the f 0(980) resonance. In 10.4 fb -1 of data collected with the D0 detector in Run II of the Tevatron, the lifetime of the B$$0\\atop{S}$$ meson is measured to be τ(B$$0\\atop{S}$$) = 1.70 ± 0.14(stat) ± 0.05(syst) ps. Neglecting CP violation in B$$0\\atop{S}/$$\\bar{B}$ 0 s mixing, the measurement can be translated into the width of the heavy mass eigenstate of the B$$0\\atop{S}$$, Γ H = 0.59 ± 0.05(stat) ± 0.02(syst) ps -1.« less

  12. Criteria for implementing full-width/depth shoulders to accommodate hard shoulder running.

    DOT National Transportation Integrated Search

    2011-08-22

    "WisDOT is considering constructing full-width/depth shoulders along certain freeway segments to carry traffic : during future freeway resurfacing or construction projects. The goal of this measure is to minimize lane closures and : congestion. WisDO...

  13. Evaluation of a clinical TOF-PET detector design that achieves ⩽100 ps coincidence time resolution.

    PubMed

    Cates, Joshua W; Levin, Craig S

    2018-06-07

    Commercially available clinical positron emission tomography (PET) detectors employ scintillation crystals that are long ([Formula: see text]20 mm length) and narrow (4-5 mm width) optically coupled on their narrow end to a photosensor. The aspect ratio of this traditional crystal rod configuration and 511 keV photon attenuation properties yield significant variances in scintillation light collection efficiency and transit time to the photodetector, due to variations in the 511 keV photon interaction depth in the crystal. These variances contribute significant to coincidence time resolution degradation. If instead, crystals are coupled to a photosensor on their long side, near-complete light collection efficiency can be achieved, and scintillation photon transit time jitter is reduced. In this work, we compare the achievable coincidence time resolution (CTR) of LGSO:Ce(0.025 mol%) crystals 3-20 mm in length when optically coupled to silicon photomultipliers (SiPMs) on either their short end or long side face. In this 'side readout' configuration, a CTR of 102  ±  2 ps FWHM was measured with [Formula: see text] mm 3 crystals coupled to rows of [Formula: see text] mm 2 SensL-J SiPMs using leading edge time pickoff and a single timing channel. This is in contrast to a CTR of 137  ±  3 ps FWHM when the same crystals were coupled to single [Formula: see text] mm 2 SiPMs on their narrow ends. We further study the statistical limit on CTR using side readout via the Cramér-Rao lower bound (CRLB), with consideration given to ongoing work to further improve photosensor technologies and exploit fast phenomena to ultimately achieve 10 ps FWHM CTR. Potential design aspects of scalable front-end signal processing readout electronics using this side readout configuration are discussed. Altogether, we demonstrate that the side readout configuration offers an immediate solution for 100 ps CTR clinical PET detectors and mitigates factors prohibiting future efforts to achieve 10 ps FWHM CTR.

  14. Gravistimulation changes expression of genes encoding putative carrier proteins of auxin polar transport in etiolated pea epicotyls

    NASA Astrophysics Data System (ADS)

    Hoshino, T.; Hitotsubashi, R.; Miyamoto, K.; Tanimoto, E.; Ueda, J.

    STS-95 space experiment has showed that auxin polar transport in etiolated epicotyls of pea (Pisum sativum L. cv. Alaska) seedlings is controlled by gravistimulation. In Arabidopsis thaliana auxin polar transport has considered to be regulated by efflux and influx carrier proteins in plasma membranes, AtPIN1 and AtAUX1, respectively. In order to know how gravistimuli control auxin polar transport in etiolated pea epicotyls at molecular levels, strenuous efforts have been made, resulting in successful isolation of full-length cDNAs of a putative auxin efflux and influx carriers, PsPIN2 and PsAUX1, respectively. Significantly high levels in homology were found on nucleotide and deduced amino acid sequences among PsPIN2, PsPIN1 (accession no. AY222857, Chawla and DeMason, 2003) and AtPINs, and also among PsAUX1, AtAUX1 and their related genes. Phylogenetic analyses based on the deduced amino acid sequences revealed that PsPIN2 belonged to a subclade including AtPIN3, AtPIN4 relating to lateral transport of auxin, while PsPIN1 belonged to the same clade as AtPIN1 relating to auxin polar transport. In the present study, we examined the effects of gravistimuli on the expression of PsPINs and PsAUX1 in etiolated pea seedlings by northern blot analysis. Expression of PsPIN1, PsPIN2 and PsAUX1 in hook region of 3.5-d-old etiolated pea seedlings grown under simulated microgravity conditions on a 3-D clinostat increased as compared with that of the seedlings grown under 1 g conditions. On the other hand, that of PsPIN1 and PsAUX1 in the 1st internode region under simulated microgravity conditions on a 3-D clinostat also increased, while that of PsPIN2 was affected little. These results suggest that expression of PsPIN1, PsPIN2 and PsAUX1 regulating polar/lateral transport of auxin is substantially under the control of gravity. A possible role of PsPINs and PsAUX1 of auxin polar transport in etiolated pea seedlings will also be discussed.

  15. Immobilization and functional reconstitution of antibody Fab fragment by solid-phase refolding.

    PubMed

    Kumada, Yoichi; Hamasaki, Kyoto; Nakagawa, Aya; Sasaki, Eiju; Shirai, Tatsunori; Okumura, Masahiro; Inoue, Manami; Kishimoto, Michimasa

    2013-12-31

    In this study, we demonstrated the successful preparation of a Fab antibody-immobilized hydrophilic polystyrene (phi-PS) plate via one- and two-step solid-phase refolding methods. Both polystyrene-binding peptide (PS-tag)-fused Fd fragment of heavy chain (Fab H-PS) and full-length of light-chain (Fab L-PS) were individually produced in insoluble fractions of Escherichia coli cells, and they were highly purified in the presence of 8M of urea. Antigen-binding activities of Fab antibody immobilized were correctly recovered by the one-step solid-phase refolding method that a mixture of Fab H-PS and Fab L-PS was immobilized in the presence of 0.5-2M urea, followed by surface washing of the phi-PS plate with PBST. These results indicate that by genetic fusion of a PS-tag, a complex between Fab H and Fab L was efficiently immobilized on the surface of a phi-PS plate even in the presence of a low concentration of urea, and was then correctly refolded to retain its high antigen-binding activity via removal of the urea. A two-step solid-phase refolding method whereby Fab H-PS and Fab L-PS were successively refolded on the surface of a phi-PS plate also resulted in Fab antibody formation on the plate. Furthermore, both the binding affinity and the specificity of the Fab antibody produced by the two-step method were highly maintained, according to the results of sandwich ELISA and competitive ELISA using Fab antibody-immobilized plate via two-step solid-phase refolding. Thus, the solid-phase refolding method demonstrated in this study should be quite useful for the preparation of a Fab antibody-immobilized PS surface with high efficiency from individually produced Fab H-PS and Fab L-PS. This method will be applicable to the preparation of a large Fab antibody library on the surface of a PS plate for use in antibody screening. © 2013. Published by Elsevier B.V. All rights reserved.

  16. I-125 ROPES eye plaque dosimetry: Validation of a commercial 3D ophthalmic brachytherapy treatment planning system and independent dose calculation software with GafChromic{sup ®} EBT3 films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poder, Joel; Corde, Stéphanie

    Purpose: The purpose of this study was to measure the dose distributions for different Radiation Oncology Physics and Engineering Services, Australia (ROPES) type eye plaques loaded with I-125 (model 6711) seeds using GafChromic{sup ®} EBT3 films, in order to verify the dose distributions in the Plaque Simulator™ (PS) ophthalmic 3D treatment planning system. The brachytherapy module of RADCALC{sup ®} was used to independently check the dose distributions calculated by PS. Correction factors were derived from the measured data to be used in PS to account for the effect of the stainless steel ROPES plaque backing on the 3D dose distribution.Methods:more » Using GafChromic{sup ®} EBT3 films inserted in a specially designed Solid Water™ eye ball phantom, dose distributions were measured three-dimensionally both along and perpendicular to I-125 (model 6711) loaded ROPES eye plaque's central axis (CAX) with 2 mm depth increments. Each measurement was performed in full scatter conditions both with and without the stainless steel plaque backing attached to the eye plaque, to assess its effect on the dose distributions. Results were compared to the dose distributions calculated by Plaque Simulator™ and checked independently with RADCALC{sup ®}.Results: The EBT3 film measurements without the stainless steel backing were found to agree with PS and RADCALC{sup ®} to within 2% and 4%, respectively, on the plaque CAX. Also, RADCALC{sup ®} was found to agree with PS to within 2%. The CAX depth doses measured using EBT3 film with the stainless steel backing were observed to result in a 4% decrease relative to when the backing was not present. Within experimental uncertainty, the 4% decrease was found to be constant with depth and independent of plaque size. Using a constant dose correction factor of T= 0.96 in PS, where the calculated dose for the full water scattering medium is reduced by 4% in every voxel in the dose grid, the effect of the plaque backing was accurately modeled in the planning system. Off-axis profiles were also modeled in PS by taking into account the three-dimensional model of the plaque backing.Conclusions: The doses calculated by PS and RADCALC{sup ®} for uniformly loaded ROPES plaques in full and uniform scattering conditions were validated by the EBT3 film measurements. The stainless steel plaque backing was observed to decrease the measured dose by 4%. Through the introduction of a scalar correction factor (0.96) in PS, the dose homogeneity effect of the stainless steel plaque backing was found to agree with the measured EBT3 film measurements.« less

  17. I-125 ROPES eye plaque dosimetry: validation of a commercial 3D ophthalmic brachytherapy treatment planning system and independent dose calculation software with GafChromic® EBT3 films.

    PubMed

    Poder, Joel; Corde, Stéphanie

    2013-12-01

    The purpose of this study was to measure the dose distributions for different Radiation Oncology Physics and Engineering Services, Australia (ROPES) type eye plaques loaded with I-125 (model 6711) seeds using GafChromic(®) EBT3 films, in order to verify the dose distributions in the Plaque Simulator™ (PS) ophthalmic 3D treatment planning system. The brachytherapy module of RADCALC(®) was used to independently check the dose distributions calculated by PS. Correction factors were derived from the measured data to be used in PS to account for the effect of the stainless steel ROPES plaque backing on the 3D dose distribution. Using GafChromic(®) EBT3 films inserted in a specially designed Solid Water™ eye ball phantom, dose distributions were measured three-dimensionally both along and perpendicular to I-125 (model 6711) loaded ROPES eye plaque's central axis (CAX) with 2 mm depth increments. Each measurement was performed in full scatter conditions both with and without the stainless steel plaque backing attached to the eye plaque, to assess its effect on the dose distributions. Results were compared to the dose distributions calculated by Plaque Simulator™ and checked independently with RADCALC(®). The EBT3 film measurements without the stainless steel backing were found to agree with PS and RADCALC(®) to within 2% and 4%, respectively, on the plaque CAX. Also, RADCALC(®) was found to agree with PS to within 2%. The CAX depth doses measured using EBT3 film with the stainless steel backing were observed to result in a 4% decrease relative to when the backing was not present. Within experimental uncertainty, the 4% decrease was found to be constant with depth and independent of plaque size. Using a constant dose correction factor of T = 0.96 in PS, where the calculated dose for the full water scattering medium is reduced by 4% in every voxel in the dose grid, the effect of the plaque backing was accurately modeled in the planning system. Off-axis profiles were also modeled in PS by taking into account the three-dimensional model of the plaque backing. The doses calculated by PS and RADCALC(®) for uniformly loaded ROPES plaques in full and uniform scattering conditions were validated by the EBT3 film measurements. The stainless steel plaque backing was observed to decrease the measured dose by 4%. Through the introduction of a scalar correction factor (0.96) in PS, the dose homogeneity effect of the stainless steel plaque backing was found to agree with the measured EBT3 film measurements.

  18. A framed, 16-image Kirkpatrick–Baez x-ray microscope

    DOE PAGES

    Marshall, F. J.; Bahr, R. E.; Goncharov, V. N.; ...

    2017-09-08

    A 16-image Kirkpatrick–Baez (KB)–type x-ray microscope consisting of compact KB mirrors has been assembled for the first time with mirrors aligned to allow it to be coupled to a high-speed framing camera. The high-speed framing camera has four independently gated strips whose emission sampling interval is ~30 ps. Images are arranged four to a strip with ~60-ps temporal spacing between frames on a strip. By spacing the timing of the strips, a frame spacing of ~15 ps is achieved. A framed resolution of ~6-um is achieved with this combination in a 400-um region of laser–plasma x-ray emission in the 2-more » to 8-keV energy range. A principal use of the microscope is to measure the evolution of the implosion stagnation region of cryogenic DT target implosions on the University of Rochester’s OMEGA Laser System. The unprecedented time and spatial resolution achieved with this framed, multi-image KB microscope have made it possible to accurately determine the cryogenic implosion core emission size and shape at the peak of stagnation. In conclusion, these core size measurements, taken in combination with those of ion temperature, neutron-production temporal width, and neutron yield allow for inference of core pressures, currently exceeding 50 GBar in OMEGA cryogenic target implosions.« less

  19. Optoelectronic Picosecond Detection of Synchrotron X-rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Durbin, Stephen M.

    2017-08-04

    The goal of this research program was to develop a detector that would measure x-ray time profiles with picosecond resolution. This was specifically aimed for use at x-ray synchrotrons, where x-ray pulse profiles have Gaussian time spreads of 50-100 ps (FWHM), so the successful development of such a detector with picosecond resolution would permit x-ray synchrotron studies to break through the pulse width barrier. That is, synchrotron time-resolved studies are currently limited to pump-probe studies that cannot reveal dynamics faster than ~50 ps, whereas the proposed detector would push this into the physically important 1 ps domain. The results ofmore » this research effort, described in detail below, are twofold: 1) the original plan to rely on converting electronic signals from a semiconductor sensor into an optical signal proved to be insufficient for generating signals with the necessary time resolution and sensitivity to be widely applicable; and 2) an all-optical method was discovered whereby the x-rays are directly absorbed in an optoelectronic material, lithium tantalate, which can then be probed by laser pulses with the desired picosecond sensitivity for detection of synchrotron x-rays. This research program has also produced new fundamental understanding of the interaction of x-rays and optical lasers in materials that has now created a viable path for true picosecond detection of synchrotron x-rays.« less

  20. A framed, 16-image Kirkpatrick–Baez x-ray microscope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marshall, F. J.; Bahr, R. E.; Goncharov, V. N.

    A 16-image Kirkpatrick–Baez (KB)–type x-ray microscope consisting of compact KB mirrors has been assembled for the first time with mirrors aligned to allow it to be coupled to a high-speed framing camera. The high-speed framing camera has four independently gated strips whose emission sampling interval is ~30 ps. Images are arranged four to a strip with ~60-ps temporal spacing between frames on a strip. By spacing the timing of the strips, a frame spacing of ~15 ps is achieved. A framed resolution of ~6-um is achieved with this combination in a 400-um region of laser–plasma x-ray emission in the 2-more » to 8-keV energy range. A principal use of the microscope is to measure the evolution of the implosion stagnation region of cryogenic DT target implosions on the University of Rochester’s OMEGA Laser System. The unprecedented time and spatial resolution achieved with this framed, multi-image KB microscope have made it possible to accurately determine the cryogenic implosion core emission size and shape at the peak of stagnation. In conclusion, these core size measurements, taken in combination with those of ion temperature, neutron-production temporal width, and neutron yield allow for inference of core pressures, currently exceeding 50 GBar in OMEGA cryogenic target implosions.« less

  1. A High Performance 50% Clock Duty Cycle Regulator

    NASA Astrophysics Data System (ADS)

    Huang, Peng; Deng, Hong-Hui; Yin, Yong-Sheng

    A low-jitter clock duty cycle corrector circuit applied in high performance ADC is presented in the paper, such circuits can change low accuracy input signals with different frequencies into 50% pulse width clock. The result have show that the circuit could lock duty cycle rapidly with an accuracy of 50% ± 1% in 200ns. This circuit have 10%-90% of duty cycle input, and clock jitter could be suppressed to less than 5ps. The method used in the circuit, which provides little relationship with the noise and process mismatch, is widely used Implemented in 0.18μm CMOS process.

  2. Third-order nonlinear optical property of a polyphenylene oligomer: poly(2,5-dialkozyphenylene)

    NASA Astrophysics Data System (ADS)

    Wu, Jianyao; Yan, Jun; Sun, Diechi; Li, Fuming; Zhou, Luwei; Sun, Meng

    1997-02-01

    The third-order nonlinear optical (NLO) property of a soluble, π-backbone conjugated polymer poly(2,5-dialkozyphenylene) (for abbreviation called dialkozy-PP) is studied at the picosecond time region. The near resonance third-order hyperpolarizability γxxxx at 532 nm is 8.2×10 -30 esu, and the corresponding macroscopic third-order susceptibility χ(3)(- ω, ω, ω, - ω) and nonlinear refractive index n2 are estimated to be 6.3×10 -10 esu and 1.4×10 -8 esu, respectively. The half-width of the laser pulse is 35 ps.

  3. 1.34 µm picosecond self-mode-locked Nd:GdVO4 watt-level laser

    NASA Astrophysics Data System (ADS)

    Han, Ming; Peng, Jiying; Li, Zuohan; Cao, Qiuyuan; Yuan, Ruixia

    2017-01-01

    With a simple linear configuration, a diode-pumped, self-mode-locked Nd:GdVO4 laser at 1.34 µm is experimentally demonstrated for the first time. Based on the aberrationless theory of self-focusing and thermal lensing effect, through designing and optimizing the resonator, a pulse width as short as 9.1 ps is generated at a repetition rate of 2.0 GHz and the average output power is 2.51 W. The optical conversion efficiency and the slope efficiency for the stable mode-locked operation are approximately 16.7% and 19.2%, respectively.

  4. Molecular Characterization of Two Fatty Acyl-CoA Reductase Genes From Phenacoccus solenopsis (Hemiptera: Pseudococcidae).

    PubMed

    Li, Xiaolong; Zheng, Tianxiang; Zheng, Xiaowen; Han, Na; Chen, Xuexin; Zhang, Dayu

    2016-01-01

    Fatty acyl-CoA reductases (FARs) are key enzymes involved in fatty alcohol synthesis. Here, we cloned and characterized full-length cDNAs of two FAR genes from the cotton mealybug, Phenacoccus solenopsis. The results showed PsFAR I and PsFAR II cDNAs were 1,584 bp and 1,515 bp in length respectively. Both PsFAR I and PsFAR II were predicted to be located in the endoplasmic reticulum by Euk-mPLoc 2.0 approach. Both of them had a Rossmann folding region and a FAR_C region. Two conservative motifs were discovered in Rossmann folding region by sequence alignment including a NADPH combining motif, TGXXGG, and an active site motif, YXXXK. A phylogenetic tree made using MEGA 6.06 indicated that PsFAR I and PsFAR II were placed in two different branches. Gene expression analysis performed at different developmental stages showed that the expression of PsFar I is significantly higher than that of PsFar II in first and second instar nymphs and in male adults. Spirotetramat treatment at 125 mg/liter significantly increased the expression of PsFar I in third instar nymphs, but there was no effect in the expression of PsFar II Our results indicated these two FAR genes showed different expression patterns during insect development and after pesticide treatment, suggesting they play different roles in insect development and detoxification against pesticides. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America.

  5. Towards monolithic scintillator based TOF-PET systems: practical methods for detector calibration and operation.

    PubMed

    Borghi, Giacomo; Tabacchini, Valerio; Schaart, Dennis R

    2016-07-07

    Gamma-ray detectors based on thick monolithic scintillator crystals can achieve spatial resolutions  <2 mm full-width-at-half-maximum (FWHM) and coincidence resolving times (CRTs) better than 200 ps FWHM. Moreover, they provide high sensitivity and depth-of-interaction (DOI) information. While these are excellent characteristics for clinical time-of-flight (TOF) positron emission tomography (PET), the application of monolithic scintillators has so far been hampered by the lengthy and complex procedures needed for position- and time-of-interaction estimation. Here, the algorithms previously developed in our group are revised to make the calibration and operation of a large number of monolithic scintillator detectors in a TOF-PET system practical. In particular, the k-nearest neighbor (k-NN) classification method for x,y-position estimation is accelerated with an algorithm that quickly preselects only the most useful reference events, reducing the computation time for position estimation by a factor of ~200 compared to the previously published k-NN 1D method. Also, the procedures for estimating the DOI and time of interaction are revised to enable full detector calibration by means of fan-beam or flood irradiations only. Moreover, a new technique is presented to allow the use of events in which some of the photosensor pixel values and/or timestamps are missing (e.g. due to dead time), so as to further increase system sensitivity. The accelerated methods were tested on a monolithic scintillator detector specifically developed for clinical PET applications, consisting of a 32 mm  ×  32 mm  ×  22 mm LYSO : Ce crystal coupled to a digital photon counter (DPC) array. This resulted in a spatial resolution of 1.7 mm FWHM, an average DOI resolution of 3.7 mm FWHM, and a CRT of 214 ps. Moreover, the possibility of using events missing the information of up to 16 out of 64 photosensor pixels is shown. This results in only a small deterioration of the detector performance.

  6. Cardiac Overexpression of Antioxidant Catalase Attenuates Aging-Induced Cardiomyocyte Relaxation Dysfunction

    PubMed Central

    Ren, Jun; Li, Qun; Wu, Shan; Li, Shi-Yan; Babcock, Sara A.

    2007-01-01

    Catalase, an enzyme which detoxifies H2O2, may interfere with cardiac aging. To test this hypothesis, contractile and intracellular Ca2+ properties were evaluated in cardiomyocytes from young (3–4 mo) and old (26–28 mo) FVB and transgenic mice with cardiac overexpression of catalase. Contractile indices analyzed included peak shortening (PS), time-to-90% PS (TPS90), time-to-90% relengthening (TR90), half-width duration (HWD), maximal velocity of shortening/relengthening (± dL/dt) and intracellular Ca2+ levels or decay rate. Levels of advanced glycation endproduct (AGE), Na+/Ca2+ exchanger (NCX), sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA2a), phospholamban (PLB), myosin heavy chain (MHC), membrane Ca2+ and K+ channels were measured by western blot. Catalase transgene prolonged survival while did not alter myocyte function by itself. Aging depressed ± dL/dt, prolonged HWD, TR90 and intracellular Ca2+ decay without affecting other indices in FVB myocytes. Aged FVB myocytes exhibited a stepper decline in PS in response to elevated stimulus or a dampened rise in PS in response to elevated extracellular Ca2+ levels. Interestingly, aging-induced defects were nullified or significantly attenuated by catalase. AGE level was elevated by 5-fold in aged FVB compared with young FVB mice, which was reduced by catalase. Expression of SERCA2a, NCX and Kv1.2 K+ channel was significantly reduced although levels of PLB, L-type Ca2+ channel dihydropyridine receptor and β-MHC isozyme remained unchanged in aged FVB hearts. Catalase restored NCX and Kv1.2 K+ channel but not SERCA2a level in aged mice. In summary, our data suggested that catalase protects cardiomyocytes from aging-induced contractile defect possibly via improved intracellular Ca2+ handling. PMID:17250874

  7. Qualification of a Quantitative Laryngeal Imaging System Using Videostroboscopy and Videokymography

    PubMed Central

    Popolo, Peter S.; Titze, Ingo R.

    2008-01-01

    Objectives: We sought to determine whether full-cycle glottal width measurements could be obtained with a quantitative laryngeal imaging system using videostroboscopy, and whether glottal width and vocal fold length measurements were repeatable and reliable. Methods: Synthetic vocal folds were phonated on a laboratory bench, and dynamic images were obtained in repeated trials by use of videostroboscopy and videokymography (VKG) with an imaging system equipped with a 2-point laser projection device for measuring absolute dimensions. Video images were also obtained with an industrial videoscope system with a built-in laser measurement capability. Maximum glottal width and vocal fold length were compared among these 3 methods. Results: The average variation in maximum glottal width measurements between stroboscopic data and VKG data was 3.10%. The average variations in width measurements between the clinical system and the industrial system were 1.93% (stroboscopy) and 3.49% (VKG). The variations in vocal fold length were similarly small. The standard deviations across trials were 0.29 mm for width and 0.48 mm for length (stroboscopy), 0.18 mm for width (VKG), and 0.25 mm for width and 0.84 mm for length (industrial). Conclusions: For stable, periodic vibration, the full extent of the glottal width can be reliably measured with the quantitative videostroboscopy system. PMID:18646436

  8. Compact pulse width modulation circuitry for silicon photomultiplier readout.

    PubMed

    Bieniosek, M F; Olcott, P D; Levin, C S

    2013-08-07

    The adoption of solid-state photodetectors for positron emission tomography (PET) system design and the interest in 3D interaction information from PET detectors has lead to an increasing number of readout channels in PET systems. To handle these additional readout channels, PET readout electronics should be simplified to reduce the power consumption, cost, and size of the electronics for a single channel. Pulse-width modulation (PWM), where detector pulses are converted to digital pulses with width proportional to the detected photon energy, promises to simplify PET readout by converting the signals to digital form at the beginning of the processing chain, and allowing a single time-to-digital converter to perform the data acquisition for many channels rather than routing many analogue channels and digitizing in the back end. Integrator based PWM systems, also known as charge-to-time converters (QTCs), are especially compact, reducing the front-end electronics to an op-amp integrator with a resistor discharge, and a comparator. QTCs, however, have a long dead-time during which dark count noise is integrated, reducing the output signal-to-noise ratio. This work presents a QTC based PWM circuit with a gated integrator that shows performance improvements over existing QTC based PWM. By opening and closing an analogue switch on the input of the integrator, the circuit can be controlled to integrate only the portions of the signal with a high signal-to-noise ratio. It also allows for multiplexing different detectors into the same PWM circuit while avoiding uncorrelated noise propagation between photodetector channels. Four gated integrator PWM circuits were built to readout the spatial channels of two position sensitive solid-state photomultiplier (PS-SSPM). Results show a 4 × 4 array 0.9 mm × 0.9 mm × 15 mm of LYSO crystals being identified on the 5 mm × 5 mm PS-SSPM at room temperature with no degradation for twofold multiplexing. In principle, much larger multiplexing ratios are possible, limited only by count rate issues.

  9. Continuously tunable photonic fractional Hilbert transformer using a high-contrast germanium-doped silica-on-silicon microring resonator.

    PubMed

    Shahoei, Hiva; Dumais, Patrick; Yao, Jianping

    2014-05-01

    We propose and experimentally demonstrate a continuously tunable fractional Hilbert transformer (FHT) based on a high-contrast germanium-doped silica-on-silicon (SOS) microring resonator (MRR). The propagation loss of a high-contrast germanium-doped SOS waveguide can be very small (0.02 dB/cm) while the lossless bend radius can be less than 1 mm. These characteristics lead to the fabrication of an MRR with a high Q-factor and a large free-spectral range (FSR), which is needed to implement a Hilbert transformer (HT). The SOS MRR is strongly polarization dependent. By changing the polarization direction of the input signal, the phase shift introduced at the center of the resonance spectrum is changed. The tunable phase shift at the resonance wavelength can be used to implement a tunable FHT. A germanium-doped SOS MRR with a high-index contrast of 3.8% is fabricated. The use of the fabricated MRR for the implementation of a tunable FHT with tunable orders at 1, 0.85, 0.95, 1.05, and 1.13 for a Gaussian pulse with the temporal full width at half-maximum of 80 ps is experimentally demonstrated.

  10. Toward compact and ultra-intense laser-based soft x-ray lasers

    NASA Astrophysics Data System (ADS)

    Sebban, S.; Depresseux, A.; Oliva, E.; Gautier, J.; Tissandier, F.; Nejdl, J.; Kozlova, M.; Maynard, G.; Goddet, J. P.; Tafzi, A.; Lifschitz, A.; Kim, H. T.; Jacquemot, S.; Rousseau, P.; Zeitoun, P.; Rousse, A.

    2018-01-01

    We report here recent work on an optical field ionized (OFI), high-order harmonic-seeded EUV laser. The amplifying medium is a plasma of nickel-like krypton obtained by OFI when focusing a 1 J, 30 fs, circularly-polarized, infrared pulse into a krypton-filled gas cell or krypton gas jet. The lasing transition is the 3d94d (J = 0) → 3d94p (J = 1) transition of Ni-like krypton ions at 32.8 nm and is pumped by collisions with hot electrons. The gain dynamics was probed by seeding the amplifier with a high-order harmonic pulse at different delays. The gain duration monotonically decreased from 7 ps to an unprecedented shortness of 450 fs full width at half-maximum as the amplification peak rose from 150 to 1200 with an increase of the plasma density from 3 × 1018 to 1.2 × 1020 cm-3. The integrated energy of the EUV laser pulse was also measured, and found to be around 2 μJ. It is to be noted that in the ASE mode, longer amplifiers were achieved (up to 2 cm), yielding EUV outputs up to 14 μJ.

  11. Reflectively Coupled Waveguide Photodetector for High Speed Optical Interconnection

    PubMed Central

    Hsu*, Shih-Hsiang

    2010-01-01

    To fully utilize GaAs high drift mobility, techniques to monolithically integrate In0.53Ga0.47As p-i-n photodetectors with GaAs based optical waveguides using total internal reflection coupling are reviewed. Metal coplanar waveguides, deposited on top of the polyimide layer for the photodetector’s planarization and passivation, were then uniquely connected as a bridge between the photonics and electronics to illustrate the high-speed monitoring function. The photodetectors were efficiently implemented and imposed on the echelle grating circle for wavelength division multiplexing monitoring. In optical filtering performance, the monolithically integrated photodetector channel spacing was 2 nm over the 1,520–1,550 nm wavelength range and the pass band was 1 nm at the −1 dB level. For high-speed applications the full-width half-maximum of the temporal response and 3-dB bandwidth for the reflectively coupled waveguide photodetectors were demonstrated to be 30 ps and 11 GHz, respectively. The bit error rate performance of this integrated photodetector at 10 Gbit/s with 27-1 long pseudo-random bit sequence non-return to zero input data also showed error-free operation. PMID:22163502

  12. Cloning, expression, purification, and characterization of glutaredoxin from Antarctic sea-ice bacterium Pseudoalteromonas sp. AN178.

    PubMed

    Wang, Quanfu; Hou, Yanhua; Shi, Yonglei; Han, Xiao; Chen, Qian; Hu, Zhiguo; Liu, Yuanping; Li, YuJin

    2014-01-01

    Glutaredoxins (Grxs) are small ubiquitous redox enzymes that catalyze glutathione-dependent reactions to reduce protein disulfide. In this study, a full-length Grx gene (PsGrx) with 270 nucleotides was isolated from Antarctic sea-ice bacterium Pseudoalteromonas sp. AN178. It encoded deduced 89 amino acid residues with the molecular weight 9.8 kDa. Sequence analysis of the amino acid sequence revealed the catalytic motif CPYC. Recombinant PsGrx (rPsGrx) stably expressed in E. coli BL21 was purified to apparent homogeneity by Ni-affinity chromatography. rPsGrx exhibited optimal activity at 30°C and pH 8.0 and showed 25.5% of the activity at 0°C. It retained 65.0% of activity after incubation at 40°C for 20 min and still exhibited 37.0% activity in 1.0 M NaCl. These results indicated that rPsGrx was a typical cold active protein with low thermostability.

  13. Capacitor charging FET switcher with controller to adjust pulse width

    DOEpatents

    Mihalka, Alex M.

    1986-01-01

    A switching power supply includes an FET full bridge, a controller to drive the FETs, a programmable controller to dynamically control final output current by adjusting pulse width, and a variety of protective systems, including an overcurrent latch for current control. Power MOSFETS are switched at a variable frequency from 20-50 kHz to charge a capacitor load from 0 to 6 kV. A ferrite transformer steps up the DC input. The transformer primary is a full bridge configuration with the FET switches and the secondary is fed into a high voltage full wave rectifier whose output is connected directly to the energy storage capacitor. The peak current is held constant by varying the pulse width using predetermined timing resistors and counting pulses. The pulse width is increased as the capacitor charges to maintain peak current. A digital ripple counter counts pulses, and after the desired number is reached, an up-counter is clocked. The up-counter output is decoded to choose among different resistors used to discharge a timing capacitor, thereby determining the pulse width. A current latch shuts down the supply on overcurrent due to either excessive pulse width causing transformer saturation or a major bridge fault, i.e., FET or transformer failure, or failure of the drive circuitry.

  14. Bulk and monolayer ordering of block copolymer blends

    NASA Astrophysics Data System (ADS)

    Onikoyi, Adetunji J.

    The control of the nanoscale structure or morphology of a block copolymer is a desired goal for nanolithography applications. In this work, we are particularly interested in providing guides for controlling domain size, domain shape and defect densities in block copolymers and their blends for thin film applications. To reach this goal, a sphere forming PS-b-P2VP (having a PS majority block) and its blends with PS homopolymer or cylinder forming PS-b-P2VP are studied in both the bulk and thin films. Structure characterization is performed using a variety of experimental techniques including small angle X-ray scattering, scanning force microscopy and transmission electron microscopy. In the bulk, the spherical domains of the pure, sphere forming PS-b-P2VP arrange on a BCC lattice. On adding PS homopolymer (hPS), the lattice parameter of the BCC spheres increases, while the order-to-disorder temperature (ODT) of the BCC lattice simultaneously decreases. At a given hPS composition, the use of larger sized hPS leads to larger increases in the lattice parameter and larger decreases in the ODT. In bulk blends of cylinder forming PS-b-P2VP with sphere forming PS-b-P2VP, the ordered morphology changes (e.g., cylindrical morphology → coexisting spherical and cylindrical morphologies → spherical morphology) as the sphere forming PS-b-P2VP volume fraction phis increases, while the ODT of the cylindrical morphology decreases. The phase boundaries of these morphologies in monolayers shift to lower phis compared to those of the bulk, apparently caused by a selective adsorption of the cylindrical PS-b-P2VP to form a brush on the substrate. This selective adsorption leads to a preference for spherical domains in diamond-shaped lateral confinements when cylindrical domains are stabilized outside the confinements on the same substrate. Finally, we explore the use of graphoepitaxy to order monolayers of sphere forming PS-b-P2VP and its blends with hPS. The probability of forming isolated dislocations, or of adding (or removing) a full row of spherical domains, in diamond-shaped lateral confinements is shown to be higher when the well size is incommensurate with the lattice parameter. Square-shaped lateral confinement leads to a preference for square sphere packing if the PS-b-P2VP is blended with appropriate amounts of hPS.

  15. Calibration approach for fluorescence lifetime determination for applications using time-gated detection and finite pulse width excitation.

    PubMed

    Keller, Scott B; Dudley, Jonathan A; Binzel, Katherine; Jasensky, Joshua; de Pedro, Hector Michael; Frey, Eric W; Urayama, Paul

    2008-10-15

    Time-gated techniques are useful for the rapid sampling of excited-state (fluorescence) emission decays in the time domain. Gated detectors coupled with bright, economical, nanosecond-pulsed light sources like flashlamps and nitrogen lasers are an attractive combination for bioanalytical and biomedical applications. Here we present a calibration approach for lifetime determination that is noniterative and that does not assume a negligible instrument response function (i.e., a negligible excitation pulse width) as does most current rapid lifetime determination approaches. Analogous to a transducer-based sensor, signals from fluorophores of known lifetime (0.5-12 ns) serve as calibration references. A fast avalanche photodiode and a GHz-bandwidth digital oscilloscope is used to detect transient emission from reference samples excited using a nitrogen laser. We find that the normalized time-integrated emission signal is proportional to the lifetime, which can be determined with good reproducibility (typically <100 ps) even for data with poor signal-to-noise ratios ( approximately 20). Results are in good agreement with simulations. Additionally, a new time-gating scheme for fluorescence lifetime imaging applications is proposed. In conclusion, a calibration-based approach is a valuable analysis tool for the rapid determination of lifetime in applications using time-gated detection and finite pulse width excitation.

  16. Measurement of the CP-violating weak phase $$\\mathrm{ \\phi_s }$$ and the decay width difference $$ \\Delta \\Gamma_{ \\mathrm{s} }$$ using the $$ \\mathrm{B^0_s} \\to \\mathrm{J} / \\psi \\phi(1020) $$ decay channel in pp collisions at $$\\sqrt{s} =$$ 8 TeV

    DOE PAGES

    Khachatryan, Vardan

    2016-03-23

    The CP-violating weak phase φ s of the B 0 s meson and the decay width difference ΔΓs of the B 0 s light and heavy mass eigenstates are measured with the CMS detector at the LHC using a data sample of B 0 s →J/ψ φ(1020) → µ +µ -K +K - decays. Our analysed data set corresponds to an integrated luminosity of 19.7 fb -1 collected in pp collisions at a centre-of-mass energy of 8 TeV. Additionally, a total of 49 200 reconstructed B 0 s decays are used to extract the values of φs and ΔΓ smore » by performing a time-dependent and flavourtagged angular analysis of the µ +µ -K +K - final state. The weak phase is measured to be φ s = -0.075 ± 0.097 (stat) ± 0.031 (syst) rad, and the decay width difference is ΔΓ s = 0.095 ± 0.013 (stat) ± 0.007 (syst) ps -1 .« less

  17. Measurement of the CP-violating weak phase $$\\mathrm{ \\phi_s }$$ and the decay width difference $$ \\Delta \\Gamma_{ \\mathrm{s} }$$ using the $$ \\mathrm{B^0_s} \\to \\mathrm{J} / \\psi \\phi(1020) $$ decay channel in pp collisions at $$\\sqrt{s} =$$ 8 TeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khachatryan, Vardan

    The CP-violating weak phase φ s of the B 0 s meson and the decay width difference ΔΓs of the B 0 s light and heavy mass eigenstates are measured with the CMS detector at the LHC using a data sample of B 0 s →J/ψ φ(1020) → µ +µ -K +K - decays. Our analysed data set corresponds to an integrated luminosity of 19.7 fb -1 collected in pp collisions at a centre-of-mass energy of 8 TeV. Additionally, a total of 49 200 reconstructed B 0 s decays are used to extract the values of φs and ΔΓ smore » by performing a time-dependent and flavourtagged angular analysis of the µ +µ -K +K - final state. The weak phase is measured to be φ s = -0.075 ± 0.097 (stat) ± 0.031 (syst) rad, and the decay width difference is ΔΓ s = 0.095 ± 0.013 (stat) ± 0.007 (syst) ps -1 .« less

  18. Nano-sized polystyrene affects feeding, behavior and physiology of brine shrimp Artemia franciscana larvae.

    PubMed

    Bergami, Elisa; Bocci, Elena; Vannuccini, Maria Luisa; Monopoli, Marco; Salvati, Anna; Dawson, Kenneth A; Corsi, Ilaria

    2016-01-01

    Nano-sized polymers as polystyrene (PS) constitute one of the main challenges for marine ecosystems, since they can distribute along the whole water column affecting planktonic species and consequently disrupting the energy flow of marine ecosystems. Nowadays very little knowledge is available on the impact of nano-sized plastics on marine organisms. Therefore, the present study aims to evaluate the effects of 40nm anionic carboxylated (PS-COOH) and 50nm cationic amino (PS-NH2) polystyrene nanoparticles (PS NPs) on brine shrimp Artemia franciscana larvae. No signs of mortality were observed at 48h of exposure for both PS NPs at naplius stage but several sub-lethal effects were evident. PS-COOH (5-100μg/ml) resulted massively sequestered inside the gut lumen of larvae (48h) probably limiting food intake. Some of them were lately excreted as fecal pellets but not a full release was observed. Likewise, PS-NH2 (5-100µg/ml) accumulated in larvae (48h) but also adsorbed at the surface of sensorial antennules and appendages probably hampering larvae motility. In addition, larvae exposed to PS-NH2 undergo multiple molting events during 48h of exposure compared to controls. The activation of a defense mechanism based on a physiological process able to release toxic cationic NPs (PS-NH2) from the body can be hypothesized. The general observed accumulation of PS NPs within the gut during the 48h of exposure indicates a continuous bioavailability of nano-sized PS for planktonic species as well as a potential transfer along the trophic web. Therefore, nano-sized PS might be able to impair food uptake (feeding), behavior (motility) and physiology (multiple molting) of brine shrimp larvae with consequences not only at organism and population level but on the overall ecosystem based on the key role of zooplankton on marine food webs. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Structural, electronic and magnetic properties of metal thiophosphate InPS4

    NASA Astrophysics Data System (ADS)

    Rajpoot, Priyanka; Nayak, Vikas; Kumari, Meena; Yadav, Priya; Nautiyal, Shashank; Verma, U. P.

    2017-05-01

    The non-centrosymmetric crystal, InPS4, has been investigated by means of density functional theory (DFT). In this paper we have calculated the structural parameters, electronic band structures, density of states plot and magnetic properties using full potential linearized augmented plane wave (FP-LAPW) method. The exchange correlation has been solved employing the generalised gradient approximation due to Perdew-Burke-Ernzerhof. The calculations are performed both without spin as well as spin polarized. The results show that InPS4 is an indirect band gap semiconductor with (N-Г) energy gap of 2.32eV (without spin) and 1.86eV in spin up and down channels.The obtained lattice parameters and energy gap agree well with the experimental results. Our reported magnetic moment results show that the property of InPS4is nonmagnetic.

  20. Functional analysis of the isoforms of an ABI3-like factor of Pisum sativum generated by alternative splicing.

    PubMed

    Gagete, Andrés P; Riera, Marta; Franco, Luis; Rodrigo, M Isabel

    2009-01-01

    At least seven isoforms (PsABI3-1 to PsABI3-7) of a putative, pea ABI3-like factor, originated by alternative splicing, have been identified after cDNA cloning. A similar variability had previously only been described for monocot genes. The full-length isoform, PsABI3-1, contains the typical N-terminal acidic domains and C-terminal basic subdomains, B1 to B3. Reverse transcriptase-PCR analysis revealed that the gene is expressed just in seeds, starting at middle embryogenesis; no gene products are observed in embryo axes after 18 h post-imbibition although they are more persistent in cotyledons. The activity of the isoforms was studied by yeast one-hybrid assays. When yeast was transformed with the isoforms fused to the DNA binding domain of Gal4p, only the polypeptides PsABI3-2 and PsABI3-7 failed to complement the activity of Gal4p. Acidic domains A1 and A2 exhibit transactivating activity, but the former requires a small C-terminal extension to be active. Yeast two-hybrid analysis showed that PsABI3 is able to heterodimerize with Arabidopsis thaliana ABI5, thus proving that PsABI3 is functionally active. The minimum requirement for the interaction PsABI3-AtABI5 is the presence of the subdomain B1 with an extension, 81 amino acids long, at their C-terminal side. Finally, a transient onion transformation assay showed that both the active PsABI3-1 and the inactive PsABI3-2 isoforms are localized to nuclei. Considering that the major isoforms remain approximately constant in developing seeds although their relative proportion varied, the possible role of splicing in the regulatory network of ABA signalling is discussed.

  1. Switchable thulium-doped fiber laser from polarization rotation vector to scalar soliton

    NASA Astrophysics Data System (ADS)

    Wu, Zhichao; Fu, Songnian; Jiang, Kai; Song, Jue; Li, Huizi; Tang, Ming; Shum, Ping; Liu, Deming

    2016-10-01

    We experimentally demonstrate switchable temporal soliton generation from a thulium-doped fiber laser (TDFL), using carbon nanotubes as the mode-locker. With the help of residual polarization dependent loss of a wavelength division multiplexer, a weak nonlinear polarization rotation (NPR) effect can be achieved within the laser cavity, which may provide joint contribution for passive mode-locking operation. By finely adjusting the polarization to alter the strength of NPR-based saturable absorption, the TDFL either approaches the operation regime of scalar soliton with strong NPR effect, or generates polarization rotation locked vector soliton (PRLVS) with weak NPR effect. The scalar solitons and PRLVSs possess 3-dB optical spectrum bandwidth of 2.2 nm and 2 nm, pulse-width of 1.8 ps and 2 ps, respectively. Moreover, the PRLVSs demonstrate a typical energy exchange between two polarized components on optical spectra and a period-doubling feature in time domain. Such operation principle can also be used in 1550 nm band fiber lasers and other nonlinear systems.

  2. Switchable thulium-doped fiber laser from polarization rotation vector to scalar soliton

    PubMed Central

    Wu, Zhichao; Fu, Songnian; Jiang, Kai; Song, Jue; Li, Huizi; Tang, Ming; Shum, Ping; Liu, Deming

    2016-01-01

    We experimentally demonstrate switchable temporal soliton generation from a thulium-doped fiber laser (TDFL), using carbon nanotubes as the mode-locker. With the help of residual polarization dependent loss of a wavelength division multiplexer, a weak nonlinear polarization rotation (NPR) effect can be achieved within the laser cavity, which may provide joint contribution for passive mode-locking operation. By finely adjusting the polarization to alter the strength of NPR-based saturable absorption, the TDFL either approaches the operation regime of scalar soliton with strong NPR effect, or generates polarization rotation locked vector soliton (PRLVS) with weak NPR effect. The scalar solitons and PRLVSs possess 3-dB optical spectrum bandwidth of 2.2 nm and 2 nm, pulse-width of 1.8 ps and 2 ps, respectively. Moreover, the PRLVSs demonstrate a typical energy exchange between two polarized components on optical spectra and a period-doubling feature in time domain. Such operation principle can also be used in 1550 nm band fiber lasers and other nonlinear systems. PMID:27708427

  3. Switchable thulium-doped fiber laser from polarization rotation vector to scalar soliton.

    PubMed

    Wu, Zhichao; Fu, Songnian; Jiang, Kai; Song, Jue; Li, Huizi; Tang, Ming; Shum, Ping; Liu, Deming

    2016-10-06

    We experimentally demonstrate switchable temporal soliton generation from a thulium-doped fiber laser (TDFL), using carbon nanotubes as the mode-locker. With the help of residual polarization dependent loss of a wavelength division multiplexer, a weak nonlinear polarization rotation (NPR) effect can be achieved within the laser cavity, which may provide joint contribution for passive mode-locking operation. By finely adjusting the polarization to alter the strength of NPR-based saturable absorption, the TDFL either approaches the operation regime of scalar soliton with strong NPR effect, or generates polarization rotation locked vector soliton (PRLVS) with weak NPR effect. The scalar solitons and PRLVSs possess 3-dB optical spectrum bandwidth of 2.2 nm and 2 nm, pulse-width of 1.8 ps and 2 ps, respectively. Moreover, the PRLVSs demonstrate a typical energy exchange between two polarized components on optical spectra and a period-doubling feature in time domain. Such operation principle can also be used in 1550 nm band fiber lasers and other nonlinear systems.

  4. An 11-bit and 39 ps resolution time-to-digital converter for ADPLL in digital television

    NASA Astrophysics Data System (ADS)

    Liu, Wei; (Ruth) Li, Wei; Ren, P.; Lin, C. L.; Zhang, Shengdong; Wang, Yangyuan

    2010-04-01

    We propose and demonstrate an 11-bit time-to-digital converter (TDC) for all-digital phase-locked loops (ADPLLs) in digital television. The proposed TDC converts the width of the input pulse into digital output with the tap space of the outputs of a free-running ring oscillator (FRO) being the conversion resolution. The FRO is in a structure of coiled cell array and the TDC core is symmetrical in the input structure. This leads to equally spaced taps in the reference clocks and thereby a high TDC conversion linearity. The TDC is fabricated in 0.13 μm CMOS process and the chip area is 0.025 mm2. The measurement results show that the TDC has a conversion resolution of 39 ps at 1.2 V power supply and a 4.5 ns dead time in the 11-bits output case. Both the differential non-linearity (DNL) and integral non-linearity (INL) are below 0.5 LSB. The power consumption of the whole circuit is 4.2 mW.

  5. In vivo imaging of human burn injuries with polarization-sensitive optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Kim, Ki Hean; Pierce, Mark C.; Maguluri, Gopi; Park, B. Hyle; Yoon, Sang June; Lydon, Martha; Sheridan, Robert; de Boer, Johannes F.

    2012-06-01

    The accurate determination of burn depth is critical in the clinical management of burn wounds. Polarization-sensitive optical coherence tomography (PS-OCT) has been proposed as a potentially non-invasive method for determining burn depth by measuring thermally induced changes in the structure and birefringence of skin, and has been investigated in pre-clinical burn studies with animal models and ex vivo human skin. In this study, we applied PS-OCT to the in-vivo imaging of two pediatric burn patients. Deep and superficial burned skins along with contralateral controls were imaged in 3D. The imaging size was 8 mm×6 mm×2 mm in width, length, and depth in the air respectively, and the imaging time was approximately 6 s per volume. Superficially burned skins exhibited the same layered structure as the contralateral controls, but more visible vasculature and reduced birefringence compared to the contralateral controls. In contrast, a deeply burned skin showed loss of the layered structure, almost absent vasculature, and smaller birefringence compared to superficial burns. This study suggested the vasculature and birefringence as parameters for characterizing burn wounds.

  6. Time domain diffuse Raman spectrometer based on a TCSPC camera for the depth analysis of diffusive media.

    PubMed

    Konugolu Venkata Sekar, S; Mosca, S; Tannert, S; Valentini, G; Martelli, F; Binzoni, T; Prokazov, Y; Turbin, E; Zuschratter, W; Erdmann, R; Pifferi, A

    2018-05-01

    We present a time domain diffuse Raman spectrometer for depth probing of highly scattering media. The system is based on, to the best of our knowledge, a novel time-correlated single-photon counting (TCSPC) camera that simultaneously acquires both spectral and temporal information of Raman photons. A dedicated non-contact probe was built, and time domain Raman measurements were performed on a tissue mimicking bilayer phantom. The fluorescence contamination of the Raman signal was eliminated by early time gating (0-212 ps) the Raman photons. Depth sensitivity is achieved by time gating Raman photons at different delays with a gate width of 106 ps. Importantly, the time domain can provide time-dependent depth sensitivity leading to a high contrast between two layers of Raman signal. As a result, an enhancement factor of 2170 was found for our bilayer phantom which is much higher than the values obtained by spatial offset Raman spectroscopy (SORS), frequency offset Raman spectroscopy (FORS), or hybrid FORS-SORS on a similar phantom.

  7. Bound and resonance states of positronic copper atoms

    NASA Astrophysics Data System (ADS)

    Yamashita, Takuma; Umair, Muhammad; Kino, Yasushi

    2017-10-01

    We report a theoretical calculation for the bound and S-wave resonance states of the positronic copper atom (e+Cu). A positron is a positively charged particle; therefore, a positronic atom has an attractive correlation between the positron and electron. A Gaussian expansion method is adopted to directly describe this correlation as well as the strong repulsive interaction with the nucleus. The correlation between the positron and electron is much more important than that between electrons in an analogous system of Cu-, although the formation of a positronium (Ps) in e+Cu is not expressed in the ground state structure explicitly. Resonance states are calculated with a complex scaling method and identified above the first excited state of the copper atom. Resonance states below Ps (n = 2) + Cu+ classified to a dipole series show agreement with a simple analytical law. Comparison of the resonance energies and widths of e+Cu with those of e+K, of which the potential energy of the host atom resembles that of e+Cu, reveals that the positions of the resonance for the e+Cu dipole series deviate equally from those of e+K.

  8. Study of Electric Explosion of Flat Micron-Thick Foils at Current Densities of (5-50)×10 8A/cm 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shelkovenko, T. A.; Pikuz, S. A.; Tilikin, I. N.

    Electric explosions of flat Al, Тi, Ni, Cu, and Та foils with thicknesses of 1-16 μm, widths of 1-8 mm, and lengths of 5-11 mm were studied experimentally on the BIN, XP, and COBRA high-current generators at currents of 40-1000 kA and current densities of (5–50) × 10 8 A/cm 2. The images of the exploded foils were taken at different angles to the foil surface by using point projection radiography with an X-pinch hot spot as the radiation source, the spatial resolution and exposure time being 3 μm and 50 ps, respectively, as well by the laser probing methodmore » with a spatial resolution of 20 μm and an exposure time of 180 ps. In the course of foil explosion, rapidly expanding objects resembling the core and corona of an exploded wire were observed. It is shown that the core of the exploded foil has a complicated time-varying structure.« less

  9. Study of Electric Explosion of Flat Micron-Thick Foils at Current Densities of (5-50)×10 8A/cm 2

    DOE PAGES

    Shelkovenko, T. A.; Pikuz, S. A.; Tilikin, I. N.; ...

    2018-01-01

    Electric explosions of flat Al, Тi, Ni, Cu, and Та foils with thicknesses of 1-16 μm, widths of 1-8 mm, and lengths of 5-11 mm were studied experimentally on the BIN, XP, and COBRA high-current generators at currents of 40-1000 kA and current densities of (5–50) × 10 8 A/cm 2. The images of the exploded foils were taken at different angles to the foil surface by using point projection radiography with an X-pinch hot spot as the radiation source, the spatial resolution and exposure time being 3 μm and 50 ps, respectively, as well by the laser probing methodmore » with a spatial resolution of 20 μm and an exposure time of 180 ps. In the course of foil explosion, rapidly expanding objects resembling the core and corona of an exploded wire were observed. It is shown that the core of the exploded foil has a complicated time-varying structure.« less

  10. High-power graphene mode-locked Tm/Ho co-doped fiber laser with evanescent field interaction.

    PubMed

    Li, Xiaohui; Yu, Xuechao; Sun, Zhipei; Yan, Zhiyu; Sun, Biao; Cheng, Yuanbing; Yu, Xia; Zhang, Ying; Wang, Qi Jie

    2015-11-16

    Mid-infrared ultrafast fiber lasers are valuable for various applications, including chemical and biomedical sensing, material processing and military applications. Here, we report all-fiber high-power graphene mode-locked Tm/Ho co-doped fiber laser at long wavelength with evanescent field interaction. Ultrafast pulses up to 7.8 MHz are generated at a center wavelength of 1879.4 nm, with a pulse width of 4.7 ps. A graphene absorber integrated with a side-polished fiber can increase the damage threshold significantly. Harmonics mode-locking can be obtained till to the 21(th) harmonics at a pump power of above 500 mW. By using one stage amplifier in the anomalous dispersion regime, the laser can be amplified up to 450 mW and the narrowest pulse duration of 1.4 ps can be obtained simultaneously. Our work paves the way to graphene Tm/Ho co-doped mode-locked all-fiber master oscillator power amplifiers as potentially efficient and economic laser sources for high-power laser applications, such as special material processing and nonlinear optical studies.

  11. Characterization methodology for lead zirconate titanate thin films with interdigitated electrode structures

    NASA Astrophysics Data System (ADS)

    Nigon, R.; Raeder, T. M.; Muralt, P.

    2017-05-01

    The accurate evaluation of ferroelectric thin films operated with interdigitated electrodes is quite a complex task. In this article, we show how to correct the electric field and the capacitance in order to obtain identical polarization and CV loops for all geometrical variants. The simplest model is compared with corrections derived from Schwartz-Christoffel transformations, and with finite element simulations. The correction procedure is experimentally verified, giving almost identical curves for a variety of gaps and electrode widths. It is shown that the measured polarization change corresponds to the average polarization change in the center plane between the electrode fingers, thus at the position where the electric field is most homogeneous with respect to the direction and size. The question of maximal achievable polarization in the various possible textures, and compositional types of polycrystalline lead zirconate titanate thin films is revisited. In the best case, a soft (110) textured thin film with the morphotropic phase boundary composition should yield a value of 0.95Ps, and in the worst case, a rhombohedral (100) textured thin film should deliver a polarization of 0.74Ps.

  12. Picosecond imaging of inertial confinement fusion plasmas using electron pulse-dilation

    NASA Astrophysics Data System (ADS)

    Hilsabeck, T. J.; Nagel, S. R.; Hares, J. D.; Kilkenny, J. D.; Bell, P. M.; Bradley, D. K.; Dymoke-Bradshaw, A. K. L.; Piston, K.; Chung, T. M.

    2017-02-01

    Laser driven inertial confinement fusion (ICF) plasmas typically have burn durations on the order of 100 ps. Time resolved imaging of the x-ray self emission during the hot spot formation is an important diagnostic tool which gives information on implosion symmetry, transient features and stagnation time. Traditional x-ray gated imagers for ICF use microchannel plate detectors to obtain gate widths of 40-100 ps. The development of electron pulse-dilation imaging has enabled a 10X improvement in temporal resolution over legacy instruments. In this technique, the incoming x-ray image is converted to electrons at a photocathode. The electrons are accelerated with a time-varying potential that leads to temporal expansion as the electron signal transits the tube. This expanded signal is recorded with a gated detector and the effective temporal resolution of the composite system can be as low as several picoseconds. An instrument based on this principle, known as the Dilation X-ray Imager (DIXI) has been constructed and fielded at the National Ignition Facility. Design features and experimental results from DIXI will be presented.

  13. Two-body decays of gluino at full one-loop level in the quark-flavour violating MSSM.

    PubMed

    Eberl, Helmut; Ginina, Elena; Hidaka, Keisho

    2017-01-01

    We study the two-body decays of the gluino at full one-loop level in the Minimal Supersymmetric Standard Model with quark-flavour violation (QFV) in the squark sector. The renormalisation is done in the [Formula: see text] scheme. The gluon and photon radiations are included by adding the corresponding three-body decay widths. We discuss the dependence of the gluino decay widths on the QFV parameters. The main dependence stems from the [Formula: see text]-[Formula: see text] mixing in the decays to up-type squarks, and from the [Formula: see text]-[Formula: see text] mixing in the decays to down-type squarks due to the strong constraints from B-physics on the other quark-flavour-mixing parameters. The full one-loop corrections to the gluino decay widths are mostly negative and of the order of about -10%. The QFV part stays small in the total width but can vary up to -8% for the decay width into the lightest [Formula: see text] squark. For the corresponding branching ratio the effect is somehow washed out by at least a factor of two. The electroweak corrections can be as large as 35% of the SUSY QCD corrections.

  14. TDC Array Tradeoffs in Current and Upcoming Digital SiPM Detectors for Time-of-Flight PET

    NASA Astrophysics Data System (ADS)

    Tétrault, Marc-André; Therrien, Audrey Corbeil; Lemaire, William; Fontaine, Réjean; Pratte, Jean-François

    2017-03-01

    Radiation detection used in positron emission tomography (PET) exploits the timing information to remove background noise and refine position measurement through time-of-flight information. Fine time resolution in the order of 10 ps full-width at half-maximum (FWHM) would not only improve contrast in the image, but would also enable direct image reconstruction without iterative or back-projected algorithms. Currently, PET experimental setups based on silicon photomultipliers (SiPMs) reach 73 ps FWHM, where the scintillation process plays the larger role in spreading the timing resolution. This will change with the optimization of faster light emission mechanisms (prompt photons), where readout optoelectronics will once more have a noticeable contribution to the timing resolution limit. In addition to reducing electronic jitter as much as possible, other aspects of the design space must also explored, especially for digital SiPMs. Unlike traditional SiPMs, digital SiPMs can integrate circuits like time-to-digital converters (TDCs) directly with individual or groups of light sensing cells. Designers should consider the number of TDCs to integrate, the area they occupy, their power consumption, their resolution, and the impact of signal processing algorithms and find a compromise with the figure of merit and the coincidence timing resolution (CTR). This paper presents a parametric simulation flow for digital SiPM microsystems that evaluates CTR based on these aspects and on the best linear unbiased estimator (BLUE) in order to guide their design for present and future PET systems. For a small 1.1 × 1.1 × 3.0 mm3 LYSO crystal, the simulations indicate that for a low jitter digital SiPM microsystem with 18.2% photon detection efficiency, fewer than four timestamps with any multi-TDC configuration scheme nearly obtain the optimal CTR with BLUE (just below 100 ps FWHM), but with limited 5% improvement over only using the first observed photon. On the other hand, if a similar crystal but with 2.5% prompt photon fraction is considered, BLUE provides an improvement between 80% and 200% (depending on electronic jitter) over using only the first observed photon. In this case, a few tens of timestamps are required, yielding very different design guidelines than for standard LYSO scintillators.

  15. Generation of an ICF syndrome model by efficient genome editing of human induced pluripotent stem cells using the CRISPR system.

    PubMed

    Horii, Takuro; Tamura, Daiki; Morita, Sumiyo; Kimura, Mika; Hatada, Izuho

    2013-09-30

    Genome manipulation of human induced pluripotent stem (iPS) cells is essential to achieve their full potential as tools for regenerative medicine. To date, however, gene targeting in human pluripotent stem cells (hPSCs) has proven to be extremely difficult. Recently, an efficient genome manipulation technology using the RNA-guided DNase Cas9, the clustered regularly interspaced short palindromic repeats (CRISPR) system, has been developed. Here we report the efficient generation of an iPS cell model for immunodeficiency, centromeric region instability, facial anomalies syndrome (ICF) syndrome using the CRISPR system. We obtained iPS cells with mutations in both alleles of DNA methyltransferase 3B (DNMT3B) in 63% of transfected clones. Our data suggest that the CRISPR system is highly efficient and useful for genome engineering of human iPS cells.

  16. Figures of merit for laser beam quality

    NASA Technical Reports Server (NTRS)

    Milster, T. D.; Walker, E. P.

    1993-01-01

    It was shown how full-width at half maximum (FWHM), full-width at 1/e(sup 2) (FW1/e(sup 2)), Strehl ratio, and encircled energy figures of merit vary with different types of aberration and measurement methods. The array sampling method and the slit-scan method are examined in detail. Our irradiance in the exit pupil of the optical system is a simple gaussian. It was found that in general the slit-scan method and the array method do not yield the same result. The width measurements for the central lobe of the diffraction pattern are very insensitive to aberration.

  17. Cladding-pumped passively mode-locked fiber laser generating femtosecond and picosecond pulses

    NASA Astrophysics Data System (ADS)

    Fermann, M. E.; Harter, D.; Minelly, J. D.; Vienne, G. G.

    1996-07-01

    Passively mode-locked fiber lasers cladding pumped by broad-area diode-laser arrays are described. With a dispersion-compenstated erbium-ytterbium fiber oscillator, 200-fs pulses with pulse energies up to 100 pJ are generated at a wavelength of 1560 nm. In a highly dispersive cavity, pulse widths of 3 ps with pulse energies up to 1 nJ are obtained. A saturable absorber is used for pulse startup, whereas nonlinear polarization evolution is exploited for steady-state pulse shaping. An environmentally stable design is ensured by use of a compensation scheme for linear polarization drifts in the cavity.

  18. Cladding-pumped passively mode-locked fiber laser generating femtosecond and picosecond pulses.

    PubMed

    Fermann, M E; Harter, D; Minelly, J D; Vienne, G G

    1996-07-01

    Passively mode-locked fiber lasers cladding pumped by broad-area diode-laser arrays are described. With a dispersion-compenstated erbium-ytterbium fiber oscillator, 200-fs pulses with pulse energies up to 100 pJ are generated at a wavelength of 1560 nm. In a highly dispersive cavity, pulse widths of 3 ps with pulse energies up to 1 nJ are obtained. A saturable absorber is used for pulse startup, whereas nonlinear polarization evolution is exploited for steady-state pulse shaping. An environmentally stable design is ensured by use of a compensation scheme for linear polarization drifts in the cavity.

  19. Optically activated switches for the generation of complex electrical waveforms with multigigahertz bandwidth

    NASA Astrophysics Data System (ADS)

    Skeldon, Mark D.; Okishev, Andrey V.; Letzring, Samuel A.; Donaldson, William R.; Green, Kenton; Seka, Wolf D.; Fuller, Lynn F.

    1995-01-01

    An electrical pulse-generation system using two optically activated Si photoconductive switches can generate shaped electrical pulses with multigigahertz bandwidth. The Si switches are activated by an optical pulse whose leading edge is steepened by stimulated Brillouin scattering (SBS) in CCl4. With the bandwidth generated by the SBS process, a laser having a 1- to 3-ns pulse width is used to generate electrical pulses with approximately 80-ps rise times (approximately 4-GHz bandwidth). Variable impedance microstrip lines are used to generate complex electrical waveforms that can be transferred to a matched load with minimal loss of bandwidth.

  20. Passively mode-locked high power Nd:GdVO4 laser with direct in-band pumping at 912 nm

    NASA Astrophysics Data System (ADS)

    Nadimi, Mohammad; Waritanant, Tanant; Major, Arkady

    2018-01-01

    We report on the first semiconductor saturable absorber mirror mode-locked Nd:GdVO4 laser directly diode-pumped at 912 nm. The laser generated 10.14 W of averaged output power at 1063 nm with the pulse width of 16 ps at the repetition rate of 85.2 MHz. The optical-to-optical efficiency and slope efficiency in the mode-locked regime were calculated to be 49.6% and 67.4% with respect to the absorbed pump power, respectively. Due to the low quantum defect pumping the output power was limited only by the available pump power.

  1. Time-to-space mapping of a continuous light wave with picosecond time resolution based on an electrooptic beam deflection.

    PubMed

    Hisatake, S; Kobayashi, T

    2006-12-25

    We demonstrate a time-to-space mapping of an optical signal with a picosecond time resolution based on an electrooptic beam deflection. A time axis of the optical signal is mapped into a spatial replica by the deflection. We theoretically derive a minimum time resolution of the time-to-space mapping and confirm it experimentally on the basis of the pulse width of the optical pulses picked out from the deflected beam through a narrow slit which acts as a temporal window. We have achieved the minimum time resolution of 1.6+/-0.2 ps.

  2. Observing shape resonances in ultraslow H^++H elastic scattering

    NASA Astrophysics Data System (ADS)

    Macek, J. H.; Schultz, D. R.; Ovchinnikov, S. Yu.; Krstic, P. S.

    2004-05-01

    We have calculated highly accurate elastic and charge transfer cross sections for proton-hydrogen scattering at energies 0.0001-10 eV, using fully quantal approach (P.S. Krstic and D.R. Schultz, J. Phys. B 32, 3485 (1999)). A number of resonances are observed. We calculate the positions and widths of the shape resonances in the effective potentials for various orbital angular momenta (J. H. Macek and S. Yu. Ovchinnikov, Phys. Rev. A 50, 468 (1994)). These correlate well with the observed resonances. We acknowledge support from the US DOE through ORNL, managed by UT-Battelle, LLC under contract DE-AC05-00OR22725.

  3. Efficient second to ninth harmonic generation using megawatt peak power microchip laser.

    PubMed

    Bhandari, R; Tsuji, N; Suzuki, T; Nishifuji, M; Taira, T

    2013-11-18

    We report the design and use of a megawatt peak power Nd:YAG/Cr4+:YAG microchip laser for efficient second to ninth harmonic generation. We show that the sub-nanosecond pulse width region, between 100 ps and 1 ns, is ideally suited for efficient wavelength conversion. Using this feature, we report 85% second harmonic generation efficiency using lithium triborate (LBO), 60% fourth harmonic generation efficiency usingß-barium borate, and 44% IR to UV third harmonic generation efficiency using Type I and Type II LBO. Finally, we report the first demonstration of 118 nm VUV generation in xenon gas using a microchip laser.

  4. Picosecond vibrational spectroscopy of shocked energetic materials

    NASA Astrophysics Data System (ADS)

    Franken, Jens; Hambir, Selezion A.; Dlott, Dana D.

    1998-07-01

    The dynamic response of a thin film of the insensitive high explosive 5-nitro-2,4-dihydro-3H-1,2,4-triazol-3-one (NTO) to ultrafast shock compression has been investigated by picosecond coherent anti-Stokes Raman spectroscopy (CARS). Vibrational spectra were obtained in the 1200 cm-1 to 1450 cm-1 region with a time resolution on the order of 100 ps. The frequency shifts and widths of the two vibrational transitions in this region show an entirely different behavior when subjected to a shock load of about 5 GPa. An additional weak band at 1293 cm-1 appears temporarily while the shock front is within the NTO layer.

  5. Highly efficient implementation of pseudospectral time-dependent density-functional theory for the calculation of excitation energies of large molecules.

    PubMed

    Cao, Yixiang; Hughes, Thomas; Giesen, Dave; Halls, Mathew D; Goldberg, Alexander; Vadicherla, Tati Reddy; Sastry, Madhavi; Patel, Bhargav; Sherman, Woody; Weisman, Andrew L; Friesner, Richard A

    2016-06-15

    We have developed and implemented pseudospectral time-dependent density-functional theory (TDDFT) in the quantum mechanics package Jaguar to calculate restricted singlet and restricted triplet, as well as unrestricted excitation energies with either full linear response (FLR) or the Tamm-Dancoff approximation (TDA) with the pseudospectral length scales, pseudospectral atomic corrections, and pseudospectral multigrid strategy included in the implementations to improve the chemical accuracy and to speed the pseudospectral calculations. The calculations based on pseudospectral time-dependent density-functional theory with full linear response (PS-FLR-TDDFT) and within the Tamm-Dancoff approximation (PS-TDA-TDDFT) for G2 set molecules using B3LYP/6-31G*(*) show mean and maximum absolute deviations of 0.0015 eV and 0.0081 eV, 0.0007 eV and 0.0064 eV, 0.0004 eV and 0.0022 eV for restricted singlet excitation energies, restricted triplet excitation energies, and unrestricted excitation energies, respectively; compared with the results calculated from the conventional spectral method. The application of PS-FLR-TDDFT to OLED molecules and organic dyes, as well as the comparisons for results calculated from PS-FLR-TDDFT and best estimations demonstrate that the accuracy of both PS-FLR-TDDFT and PS-TDA-TDDFT. Calculations for a set of medium-sized molecules, including Cn fullerenes and nanotubes, using the B3LYP functional and 6-31G(**) basis set show PS-TDA-TDDFT provides 19- to 34-fold speedups for Cn fullerenes with 450-1470 basis functions, 11- to 32-fold speedups for nanotubes with 660-3180 basis functions, and 9- to 16-fold speedups for organic molecules with 540-1340 basis functions compared to fully analytic calculations without sacrificing chemical accuracy. The calculations on a set of larger molecules, including the antibiotic drug Ramoplanin, the 46-residue crambin protein, fullerenes up to C540 and nanotubes up to 14×(6,6), using the B3LYP functional and 6-31G(**) basis set with up to 8100 basis functions show that PS-FLR-TDDFT CPU time scales as N(2.05) with the number of basis functions. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  6. Sensitivity encoded silicon photomultiplier--a new sensor for high-resolution PET-MRI.

    PubMed

    Schulz, Volkmar; Berker, Yannick; Berneking, Arne; Omidvari, Negar; Kiessling, Fabian; Gola, Alberto; Piemonte, Claudio

    2013-07-21

    Detectors for simultaneous positron emission tomography and magnetic resonance imaging in particular with sub-mm spatial resolution are commonly composed of scintillator crystal arrays, readout via arrays of solid state sensors, such as avalanche photo diodes (APDs) or silicon photomultipliers (SiPMs). Usually a light guide between the crystals and the sensor is used to enable the identification of crystals which are smaller than the sensor elements. However, this complicates crystal identification at the gaps and edges of the sensor arrays. A solution is to use as many sensors as crystals with a direct coupling, which unfortunately increases the complexity and power consumption of the readout electronics. Since 1997, position-sensitive APDs have been successfully used to identify sub-mm crystals. Unfortunately, these devices show a limitation in their time resolution and a degradation of spatial resolution when placed in higher magnetic fields. To overcome these limitations, this paper presents a new sensor concept that extends conventional SiPMs by adding position information via the spatial encoding of the channel sensitivity. The concept allows a direct coupling of high-resolution crystal arrays to the sensor with a reduced amount of readout channels. The theory of sensitivity encoding is detailed and linked to compressed sensing to compute unique sparse solutions. Two devices have been designed using one- and two-dimensional linear sensitivity encoding with eight and four readout channels, respectively. Flood histograms of both devices show the capability to precisely identify all 4 × 4 LYSO crystals with dimensions of 0.93 × 0.93 × 10 mm(3). For these crystals, the energy and time resolution (MV ± SD) of the devices with one (two)-dimensional encoding have been measured to be 12.3 · (1 ± 0.047)% (13.7 · (1 ± 0.047)%) around 511 keV with a paired coincidence time resolution (full width at half maximum) of 462 · (1 ± 0.054) ps (452 · (1 ± 0.078) ps).

  7. Sensitivity encoded silicon photomultiplier—a new sensor for high-resolution PET-MRI

    NASA Astrophysics Data System (ADS)

    Schulz, Volkmar; Berker, Yannick; Berneking, Arne; Omidvari, Negar; Kiessling, Fabian; Gola, Alberto; Piemonte, Claudio

    2013-07-01

    Detectors for simultaneous positron emission tomography and magnetic resonance imaging in particular with sub-mm spatial resolution are commonly composed of scintillator crystal arrays, readout via arrays of solid state sensors, such as avalanche photo diodes (APDs) or silicon photomultipliers (SiPMs). Usually a light guide between the crystals and the sensor is used to enable the identification of crystals which are smaller than the sensor elements. However, this complicates crystal identification at the gaps and edges of the sensor arrays. A solution is to use as many sensors as crystals with a direct coupling, which unfortunately increases the complexity and power consumption of the readout electronics. Since 1997, position-sensitive APDs have been successfully used to identify sub-mm crystals. Unfortunately, these devices show a limitation in their time resolution and a degradation of spatial resolution when placed in higher magnetic fields. To overcome these limitations, this paper presents a new sensor concept that extends conventional SiPMs by adding position information via the spatial encoding of the channel sensitivity. The concept allows a direct coupling of high-resolution crystal arrays to the sensor with a reduced amount of readout channels. The theory of sensitivity encoding is detailed and linked to compressed sensing to compute unique sparse solutions. Two devices have been designed using one- and two-dimensional linear sensitivity encoding with eight and four readout channels, respectively. Flood histograms of both devices show the capability to precisely identify all 4 × 4 LYSO crystals with dimensions of 0.93 × 0.93 × 10 mm3. For these crystals, the energy and time resolution (MV ± SD) of the devices with one (two)-dimensional encoding have been measured to be 12.3 · (1 ± 0.047)% (13.7 · (1 ± 0.047)%) around 511 keV with a paired coincidence time resolution (full width at half maximum) of 462 · (1 ± 0.054) ps (452 · (1 ± 0.078) ps).

  8. Advanced Orion Optimized Laser System Analysis

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Contractor shall perform a complete analysis of the potential of the solid state laser in the very long pulse mode (100 ns pulse width, 10-30 hz rep-rate) and in the very short pulse mode (100 ps pulse width 10-30 hz rep rate) concentrating on the operation of the device in the 'hot-rod' mode, where no active cooling the laser operation is attempted. Contractor's calculations shall be made of the phase aberrations which develop during the repped-pulse train, and the results shall feed into the adaptive optics analyses. The contractor shall devise solutions to work around ORION track issues. A final report shall be furnished to the MSFC COTR including all calculations and analysis of estimates of bulk phase and intensity aberration distribution in the laser output beam as a function of time during the repped-pulse train for both wave forms (high-energy/long-pulse, as well as low-energy/short-pulse). Recommendations shall be made for mitigating the aberrations by laser re-design and/or changes in operating parameters of optical pump sources and/or designs.

  9. Excited stilbene: intramolecular vibrational redistribution and solvation studied by femtosecond stimulated Raman spectroscopy.

    PubMed

    Weigel, A; Ernsting, N P

    2010-06-17

    Excited-state relaxation of cis- and trans-stilbene is traced with femtosecond stimulated Raman spectroscopy, exploiting S(n) <-- S(1) resonance conditions. For both isomers, decay in Raman intensity, shift of spectral positions, and broadening of the bands indicate intramolecular vibrational redistribution (IVR). In n-hexane this process effectively takes 0.5-0.7 ps. Analysis of the intensity decay allows us to further distinguish two phases for trans-stilbene: fast IVR within a subset of modes (approximately 0.3 ps) followed by slower equilibration over the full vibrational manifold (approximately 0.9 ps). In acetonitrile IVR completes with 0.15 ps; this acceleration may originate from symmetry breakage induced by the polar solvent. Another process, dynamic solvation by acetonitrile, is seen as spectral narrowing and characteristic band shifts of the C=C stretch and phenyl bending modes with 0.69 ps. Wavepacket motion is observed in both isomers as oscillation of low-frequency bands with their pertinent mode frequency (90 or 195 cm(-1) in trans-stilbene; 250 cm(-1) in cis-stilbene). Anharmonic coupling shows up as a modulation of high-frequency peak positions by phenyl/ethylene torsion modes of 57 and 90 cm(-1). Decay and shift of the 90 cm(-1) inverse Raman band within the first 0.3 ps suggests a gradual involvement of phenyl/ethylene torsion in relaxation. In cis- and trans-stilbene, low-frequency spectral changes are found within 0.15 ps, indicating an additional ultrafast process.

  10. Investment opportunity : the FPL EGAR lumber manufacturing system

    Treesearch

    George B. Harpole; Ed Williston; Hiram H. Hallock

    1979-01-01

    A model of present-day computer-controlled sawmilling technology is modified for the manufacture of any desired width of EGAR dimension lumber from small logs. EGAR lumber is manufactured via headrig production of 2-inch-thick flitches which are in turn dried, edged full width, edge-glued, and gang-novelty-ripped to wide widths (EGAR). The EGAR system is compared to...

  11. Long-Term Teduglutide for the Treatment of Patients With Intestinal Failure Associated With Short Bowel Syndrome.

    PubMed

    Schwartz, Lauren K; O'Keefe, Stephen J D; Fujioka, Ken; Gabe, Simon M; Lamprecht, Georg; Pape, Ulrich-Frank; Li, Benjamin; Youssef, Nader N; Jeppesen, Palle B

    2016-02-04

    In the pivotal 24-week, phase III, placebo-controlled trial, teduglutide significantly reduced parenteral support (PS) requirements in patients with short bowel syndrome (SBS). STEPS-2 was a 2-year, open-label extension of that study designed to evaluate long-term safety and efficacy of teduglutide. Enrolled patients had completed 24 weeks of either teduglutide (TED/TED) or placebo (PBO/TED) in the initial placebo-controlled study or qualified for that study, but were not treated (NT/TED) because of full enrollment. Patients received subcutaneous teduglutide 0.05 mg/kg/day for up to 24 months (NT/TED and PBO/TED) or up to 30 months (TED/TED). Clinical response was defined as 20-100% reduction from baseline in weekly PS volume; baseline was considered the beginning of teduglutide treatment in the initial placebo-controlled study (TED/TED) or STEPS-2 (NT/TED and PBO/TED). Descriptive statistics summarized changes in efficacy and safety variables. Of 88 enrolled patients, 65 (74%) completed STEPS-2. The most common treatment-emergent adverse events were abdominal pain (34%), catheter sepsis (28%), and decreased weight (25%). Mean weight, body mass index, and serum albumin remained stable. In patients who completed the study, clinical response was achieved in 28/30 (93%) TED/TED, 16/29 (55%) PBO/TED, and 4/6 (67%) NT/TED patients. Mean PS volume reductions from baseline were 7.6 (66%), 3.1 (28%), and 4.0 (39%) l/week in the TED/TED, PBO/TED, and NT/TED groups, respectively. Thirteen patients achieved full enteral autonomy. In patients with SBS, long-term teduglutide treatment resulted in sustained, continued reductions in PS requirements. Overall health and nutritional status was maintained despite PS reductions.

  12. Long-Term Teduglutide for the Treatment of Patients With Intestinal Failure Associated With Short Bowel Syndrome

    PubMed Central

    Schwartz, Lauren K; O'Keefe, Stephen J D; Fujioka, Ken; Gabe, Simon M; Lamprecht, Georg; Pape, Ulrich-Frank; Li, Benjamin; Youssef, Nader N; Jeppesen, Palle B

    2016-01-01

    OBJECTIVES: In the pivotal 24-week, phase III, placebo-controlled trial, teduglutide significantly reduced parenteral support (PS) requirements in patients with short bowel syndrome (SBS). STEPS-2 was a 2-year, open-label extension of that study designed to evaluate long-term safety and efficacy of teduglutide. METHODS: Enrolled patients had completed 24 weeks of either teduglutide (TED/TED) or placebo (PBO/TED) in the initial placebo-controlled study or qualified for that study, but were not treated (NT/TED) because of full enrollment. Patients received subcutaneous teduglutide 0.05 mg/kg/day for up to 24 months (NT/TED and PBO/TED) or up to 30 months (TED/TED). Clinical response was defined as 20–100% reduction from baseline in weekly PS volume; baseline was considered the beginning of teduglutide treatment in the initial placebo-controlled study (TED/TED) or STEPS-2 (NT/TED and PBO/TED). Descriptive statistics summarized changes in efficacy and safety variables. RESULTS: Of 88 enrolled patients, 65 (74%) completed STEPS-2. The most common treatment-emergent adverse events were abdominal pain (34%), catheter sepsis (28%), and decreased weight (25%). Mean weight, body mass index, and serum albumin remained stable. In patients who completed the study, clinical response was achieved in 28/30 (93%) TED/TED, 16/29 (55%) PBO/TED, and 4/6 (67%) NT/TED patients. Mean PS volume reductions from baseline were 7.6 (66%), 3.1 (28%), and 4.0 (39%) l/week in the TED/TED, PBO/TED, and NT/TED groups, respectively. Thirteen patients achieved full enteral autonomy. CONCLUSIONS: In patients with SBS, long-term teduglutide treatment resulted in sustained, continued reductions in PS requirements. Overall health and nutritional status was maintained despite PS reductions. PMID:26844839

  13. Laser acceleration of quasi-monoenergetic MeV ion beams.

    PubMed

    Hegelich, B M; Albright, B J; Cobble, J; Flippo, K; Letzring, S; Paffett, M; Ruhl, H; Schreiber, J; Schulze, R K; Fernández, J C

    2006-01-26

    Acceleration of particles by intense laser-plasma interactions represents a rapidly evolving field of interest, as highlighted by the recent demonstration of laser-driven relativistic beams of monoenergetic electrons. Ultrahigh-intensity lasers can produce accelerating fields of 10 TV m(-1) (1 TV = 10(12) V), surpassing those in conventional accelerators by six orders of magnitude. Laser-driven ions with energies of several MeV per nucleon have also been produced. Such ion beams exhibit unprecedented characteristics--short pulse lengths, high currents and low transverse emittance--but their exponential energy spectra have almost 100% energy spread. This large energy spread, which is a consequence of the experimental conditions used to date, remains the biggest impediment to the wider use of this technology. Here we report the production of quasi-monoenergetic laser-driven C5+ ions with a vastly reduced energy spread of 17%. The ions have a mean energy of 3 MeV per nucleon (full-width at half-maximum approximately 0.5 MeV per nucleon) and a longitudinal emittance of less than 2 x 10(-6) eV s for pulse durations shorter than 1 ps. Such laser-driven, high-current, quasi-monoenergetic ion sources may enable significant advances in the development of compact MeV ion accelerators, new diagnostics, medical physics, inertial confinement fusion and fast ignition.

  14. Passively synchronized Q-switched and mode-locked dual-band Tm3+:ZBLAN fiber lasers using a common graphene saturable absorber

    NASA Astrophysics Data System (ADS)

    Jia, Chenglai; Shastri, Bhavin J.; Abdukerim, Nurmemet; Rochette, Martin; Prucnal, Paul R.; Saad, Mohammed; Chen, Lawrence R.

    2016-11-01

    Dual-band fiber lasers are emerging as a promising technology to penetrate new industrial and medical applications from their dual-band properties, in addition to providing compactness and environmental robustness from the waveguide structure. Here, we demonstrate the use of a common graphene saturable absorber and a single gain medium (Tm3+:ZBLAN fiber) to implement (1) a dual-band fiber ring laser with synchronized Q-switched pulses at wavelengths of 1480 nm and 1840 nm, and (2) a dual-band fiber linear laser with synchronized mode-locked pulses at wavelengths of 1480 nm and 1845 nm. Q-switched operation at 1480 nm and 1840 nm is achieved with a synchronized repetition rate from 20 kHz to 40.5 kHz. For synchronous mode-locked operation, pulses with full-width at half maximum durations of 610 fs and 1.68 ps at wavelengths of 1480 nm and 1845 nm, respectively, are obtained at a repetition rate of 12.3 MHz. These dual-band pulsed sources with an ultra-broadband wavelength separation of ~360 nm will add new capabilities in applications including optical sensing, spectroscopy, and communications.

  15. Passively synchronized Q-switched and mode-locked dual-band Tm3+:ZBLAN fiber lasers using a common graphene saturable absorber.

    PubMed

    Jia, Chenglai; Shastri, Bhavin J; Abdukerim, Nurmemet; Rochette, Martin; Prucnal, Paul R; Saad, Mohammed; Chen, Lawrence R

    2016-11-02

    Dual-band fiber lasers are emerging as a promising technology to penetrate new industrial and medical applications from their dual-band properties, in addition to providing compactness and environmental robustness from the waveguide structure. Here, we demonstrate the use of a common graphene saturable absorber and a single gain medium (Tm 3+ :ZBLAN fiber) to implement (1) a dual-band fiber ring laser with synchronized Q-switched pulses at wavelengths of 1480 nm and 1840 nm, and (2) a dual-band fiber linear laser with synchronized mode-locked pulses at wavelengths of 1480 nm and 1845 nm. Q-switched operation at 1480 nm and 1840 nm is achieved with a synchronized repetition rate from 20 kHz to 40.5 kHz. For synchronous mode-locked operation, pulses with full-width at half maximum durations of 610 fs and 1.68 ps at wavelengths of 1480 nm and 1845 nm, respectively, are obtained at a repetition rate of 12.3 MHz. These dual-band pulsed sources with an ultra-broadband wavelength separation of ~360 nm will add new capabilities in applications including optical sensing, spectroscopy, and communications.

  16. Two octaves spanning supercontinuum in highly nonlinear As2Se3 nanophotonic crystal fiber for midinfrared applications

    NASA Astrophysics Data System (ADS)

    Baili, Amira; Cherif, Rim; Zghal, Mourad

    2015-01-01

    A new design of all-normal and near-zero flattened dispersion based on chalcogenide nanophotonic crystal fiber (PCF) has been proposed to generate smooth and ultra-broadband supercontinuum (SC) in the midinfrared (IR) region. With the optimized geometric parameters, the As2Se3 nano-PCF has been found to be suitable for two-octave supercontinuum generation (SCG). We designed a nano-PCF having a flat top dispersion curve with a maximum value of -2.3 [ps/(nm km)] and a large nonlinear coefficient equal to 7250 W around the wavelength of 5.24 μm. By numerical simulations, we predict the generation of a very broadband SC in the mid-IR region extending from 2 to 10 μm in only 2-mm fiber lengths by using a femtosecond laser having a full-width at half-maximum of 50 fs and a relatively low energy of E=80 pJ. The generated SC demonstrates perfect coherence property over the entire bandwidth. SC generation extended into the mid-IR spectral region has potential usefulness in a variety of applications requiring a broad and mid-IR spectrum, such as WDM sources, fiber sensing, IR spectroscopy, fiber laser, and optical tomography coherence.

  17. Measurement of laser spot quality

    NASA Technical Reports Server (NTRS)

    Milster, T. D.; Treptau, J. P.

    1991-01-01

    Several ways of measuring spot quality are compared. We examine in detail various figures of merit such as full width at half maximum (FWHM), full width at 1/(e exp 2) maximum, Strehl ratio, and encircled energy. Our application is optical data storage, but results can be applied to other areas like space communications and high energy lasers. We found that the optimum figure of merit in many cases is Strehl ratio.

  18. A systematic review of measurement properties of patient reported outcome measures in psoriatic arthritis: A GRAPPA-OMERACT initiative.

    PubMed

    Højgaard, Pil; Klokker, Louise; Orbai, Ana-Maria; Holmsted, Kim; Bartels, Else M; Leung, Ying Ying; Goel, Niti; de Wit, Maarten; Gladman, Dafna D; Mease, Philip; Dreyer, Lene; Kristensen, Lars E; FitzGerald, Oliver; Tillett, William; Gossec, Laure; Helliwell, Philip; Strand, Vibeke; Ogdie, Alexis; Terwee, Caroline B; Christensen, Robin

    2018-04-01

    An updated psoriatic arthritis (PsA) core outcome set (COS) for randomized controlled trials (RCTs) was endorsed at the Outcome Measures in Rheumatology (OMERACT) meeting in 2016. To synthesize the evidence on measurement properties of patient reported outcome measures (PROMs) for PsA and thereby contribute to development of a PsA core outcome measurement set (COMS) as described by the OMERACT Filter 2.0. A systematic literature search was performed in EMBASE, MEDLINE and PsycINFO on Jan 1, 2017 to identify full-text articles with an aim of assessing the measurement properties of PROMs in PsA. Two independent reviewers rated the quality of studies using the COnsensus based standards for the Selection of health Measurement INstruments (COSMIN) checklist, and performed a qualitative evidence synthesis. Fifty-five studies were included in the systematic review. Forty-four instruments and a total of 89 scales were analyzed. PROMs measuring COS domains with at least fair quality evidence for good validity and reliability (and no evidence for poor properties) included the Stockerau Activity Score for PsA (German), Psoriasis Symptom Inventory, visual analogue scale for Patient Global, 36 Item Short Form Health Survey Physical Function subscale, Health Assessment Questionnaire Disability Index, Bath Ankylosing Spondylitis Functional Index, PsA Impact of Disease questionnaire, PsA Quality of Life questionnaire, VITACORA-19, Functional Assessment of Chronic Illness Therapy Fatigue scale and Social Role Participation Questionnaire. At least one PROM with some evidence for aspects of validity and reliability was available for six of the eight mandatory domains of the PsA COS. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Low-Noise Free-Running High-Rate Photon-Counting for Space Communication and Ranging

    NASA Technical Reports Server (NTRS)

    Lu, Wei; Krainak, Michael A.; Yang, Guangning; Sun, Xiaoli; Merritt, Scott

    2016-01-01

    We present performance data for low-noise free-running high-rate photon counting method for space optical communication and ranging. NASA GSFC is testing the performance of two types of novel photon-counting detectors 1) a 2x8 mercury cadmium telluride (HgCdTe) avalanche array made by DRS Inc., and a 2) a commercial 2880-element silicon avalanche photodiode (APD) array. We successfully measured real-time communication performance using both the 2 detected-photon threshold and logic AND-gate coincidence methods. Use of these methods allows mitigation of dark count, after-pulsing and background noise effects without using other method of Time Gating The HgCdTe APD array routinely demonstrated very high photon detection efficiencies ((is) greater than 50%) at near infrared wavelength. The commercial silicon APD array exhibited a fast output with rise times of 300 ps and pulse widths of 600 ps. On-chip individually filtered signals from the entire array were multiplexed onto a single fast output. NASA GSFC has tested both detectors for their potential application for space communications and ranging. We developed and compare their performances using both the 2 detected photon threshold and coincidence methods.

  20. Low-Noise Free-Running High-Rate Photon-Counting for Space Communication and Ranging

    NASA Technical Reports Server (NTRS)

    Lu, Wei; Krainak, Michael A.; Yang, Guan; Sun, Xiaoli; Merritt, Scott

    2016-01-01

    We present performance data for low-noise free-running high-rate photon counting method for space optical communication and ranging. NASA GSFC is testing the performance of two types of novel photon-counting detectors 1) a 2x8 mercury cadmium telluride (HgCdTe) avalanche array made by DRS Inc., and a 2) a commercial 2880-element silicon avalanche photodiode (APD) array. We successfully measured real-time communication performance using both the 2 detected-photon threshold and logic AND-gate coincidence methods. Use of these methods allows mitigation of dark count, after-pulsing and background noise effects without using other method of Time Gating The HgCdTe APD array routinely demonstrated very high photon detection efficiencies (50) at near infrared wavelength. The commercial silicon APD array exhibited a fast output with rise times of 300 ps and pulse widths of 600 ps. On-chip individually filtered signals from the entire array were multiplexed onto a single fast output. NASA GSFC has tested both detectors for their potential application for space communications and ranging. We developed and compare their performances using both the 2 detected photon threshold and coincidence methods.

  1. High-power graphene mode-locked Tm/Ho co-doped fiber laser with evanescent field interaction

    PubMed Central

    Li, Xiaohui; Yu, Xuechao; Sun, Zhipei; Yan, Zhiyu; Sun, Biao; Cheng, Yuanbing; Yu, Xia; Zhang, Ying; Wang, Qi Jie

    2015-01-01

    Mid-infrared ultrafast fiber lasers are valuable for various applications, including chemical and biomedical sensing, material processing and military applications. Here, we report all-fiber high-power graphene mode-locked Tm/Ho co-doped fiber laser at long wavelength with evanescent field interaction. Ultrafast pulses up to 7.8 MHz are generated at a center wavelength of 1879.4 nm, with a pulse width of 4.7 ps. A graphene absorber integrated with a side-polished fiber can increase the damage threshold significantly. Harmonics mode-locking can be obtained till to the 21th harmonics at a pump power of above 500 mW. By using one stage amplifier in the anomalous dispersion regime, the laser can be amplified up to 450 mW and the narrowest pulse duration of 1.4 ps can be obtained simultaneously. Our work paves the way to graphene Tm/Ho co-doped mode-locked all-fiber master oscillator power amplifiers as potentially efficient and economic laser sources for high-power laser applications, such as special material processing and nonlinear optical studies. PMID:26567536

  2. Backplane photonic interconnect modules with optical jumpers

    NASA Astrophysics Data System (ADS)

    Glebov, Alexei L.; Lee, Michael G.; Yokouchi, Kishio

    2005-03-01

    Prototypes of optical interconnect (OI) modules for backplane applications are presented. The transceivers attached to the linecards E/O convert the signals that are passed to and from the backplane by optical jumpers terminated with MTP-type connectors. The connectors plug into adaptors attached to the backplane and the microlens arrays mounted in the adaptors couple the light between the fibers and waveguides. Planar polymer channel waveguides with 30-50 μm cross-sections route the optical signals across the board with propagation losses as low as 0.05 dB/cm @ 850 nm. The 45¦-tapered integrated micromirrors reflect the light in and out of the waveguide plane with the loss of 0.8 dB per mirror. The connector displacement measurements indicate that the adaptor lateral assembly accuracy can be at least +/-10 μm for the excess loss not exceeding 1 dB. Insertion losses of the test modules with integrated waveguides, 45¦ mirrors, and pluggable optical jumper connectors are about 5 dB. Eye diagrams at 10.7 Gb/s have typical width and height of 70 ps and 400 mV, respectively, and jitter of about 20 ps.

  3. Neutron temporal diagnostic for high-yield deuterium-tritium cryogenic implosions on OMEGA

    DOE PAGES

    Stoeckl, C.; Boni, R.; Ehrne, F.; ...

    2016-05-10

    A next-generation neutron temporal diagnostic (NTD) capable of recording high-quality data for the highest anticipated yield cryogenic DT implosion experiments was recently installed at the Omega Laser Facility. A high-quality measurement of the neutron production width is required to determine the hot-spot pressure achieved in inertial confinement fusion experiments—a key metric in assessing the quality of these implosions. The design of this NTD is based on a fast-rise-time plastic scintillator, which converts the neutron kinetic energy to 350- to 450-nm-wavelength light. The light from the scintillator inside the nose-cone assembly is relayed ~16 m to a streak camera in amore » well-shielded location. An ~200× reduction in neutron background was observed during the first high-yield DT cryogenic implosions compared to the current NTD installation on OMEGA. An impulse response of ~40±10 ps was measured in a dedicated experiment using hard x rays from a planar target irradiated with a 10-ps short pulse from the OMEGA EP laser. Furthermore, the measured instrument response includes contributions from the scintillator rise time, optical relay, and streak camera.« less

  4. Neutron temporal diagnostic for high-yield deuterium–tritium cryogenic implosions on OMEGA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoeckl, C.; Boni, R.; Ehrne, F.

    A next-generation neutron temporal diagnostic (NTD) capable of recording high-quality data for the highest anticipated yield cryogenic deuterium–tritium (DT) implosion experiments was recently installed at the Omega Laser Facility. A high-quality measurement of the neutron production width is required to determine the hot-spot pressure achieved in inertial confinement fusion experiments—a key metric in assessing the quality of these implosions. The design of this NTD is based on a fast-rise-time plastic scintillator, which converts the neutron kinetic energy to 350- to 450-nm-wavelength light. The light from the scintillator inside the nose-cone assembly is relayed ∼16 m to a streak camera inmore » a well-shielded location. An ∼200× reduction in neutron background was observed during the first high-yield DT cryogenic implosions compared to the current NTD installation on OMEGA. An impulse response of ∼40 ± 10 ps was measured in a dedicated experiment using hard x-rays from a planar target irradiated with a 10-ps short pulse from the OMEGA EP laser. The measured instrument response includes contributions from the scintillator rise time, optical relay, and streak camera.« less

  5. Neutron temporal diagnostic for high-yield deuterium-tritium cryogenic implosions on OMEGA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoeckl, C.; Boni, R.; Ehrne, F.

    A next-generation neutron temporal diagnostic (NTD) capable of recording high-quality data for the highest anticipated yield cryogenic DT implosion experiments was recently installed at the Omega Laser Facility. A high-quality measurement of the neutron production width is required to determine the hot-spot pressure achieved in inertial confinement fusion experiments—a key metric in assessing the quality of these implosions. The design of this NTD is based on a fast-rise-time plastic scintillator, which converts the neutron kinetic energy to 350- to 450-nm-wavelength light. The light from the scintillator inside the nose-cone assembly is relayed ~16 m to a streak camera in amore » well-shielded location. An ~200× reduction in neutron background was observed during the first high-yield DT cryogenic implosions compared to the current NTD installation on OMEGA. An impulse response of ~40±10 ps was measured in a dedicated experiment using hard x rays from a planar target irradiated with a 10-ps short pulse from the OMEGA EP laser. Furthermore, the measured instrument response includes contributions from the scintillator rise time, optical relay, and streak camera.« less

  6. Ultrafast Spectral Diffusion of the First Subband Exciton in Single-Wall Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Schilling, Daniel; Hertel, Tobias

    2013-03-01

    The width of optical transitions in semiconductors is determined by homogeneous and inhomogeneous contributions. Here, we report on the determination of homogeneous linewidths for the first exciton subband transition and the dynamics of spectral diffusion in single-wall carbon nanotubes (SWNTs) using one- and two-dimensional time resolved spectral hole burning spectroscopy. Our investigation of highly purified semiconducting (6,5)-SWNTs suggests that room temperature homogeneous linewidths are on the order of 4 meV and are rapidly broadened by an ultrafast sub-ps spectral diffusion process. These findings are supported by our off-resonant excitation experiments where we observe sub-ps population transfer reflecting the thermal distribution of energy levels around the first subband exciton transition. The results of temperature-dependent spectral hole burning experiments between 17 K and 293 K suggest that homogeneous linewidths are due to exciton interaction with low energy optical phonons, most likely of the radial breathing mode type. In contrast, we find that inhomogeneous broadening is determined by an electronic degree of freedom such as ultrafast intra-tube exciton diffusion which is characteristic and unique for excitons in these one-dimensional semiconductors.

  7. A systematic review of clinical outcomes in surgical treatment of adult isthmic spondylolisthesis.

    PubMed

    Noorian, Shaya; Sorensen, Karen; Cho, Woojin

    2018-05-07

    A variety of surgical methods are available for the treatment of adult isthmic spondylolisthesis, but there is no consensus regarding their relative effects on clinical outcomes. To compare the effects of different surgical techniques on clinical outcomes in adult isthmic spondylolisthesis. Systematic Review PATIENT SAMPLE: A total of 1,538 patients from six randomized clinical trials and nine observational studies comparing different surgical treatments in adult isthmic spondylolisthesis. Primary outcome measures of interest included differences in pre- versus post-surgical assessments of pain, functional disability, and overall health as assessed by validated pain rating scales and questionnaires. Secondary outcome measures of interest included intraoperative blood loss, length of hospital stay, surgery duration, reoperation rates, and complication rates. A search of the literature was performed in September, 2017 for relevant comparative studies published in the prior 10-year period in the following databases: PubMed, Embase, Web of Science, and ClinicalTrials.Gov. PRISMA guidelines were followed and studies were included/excluded based on strict predetermined criteria. Quality appraisal was conducted using the Newcastle-Ottawa Scale (NOS) for observational studies and the Cochrane Collaboration's risk of bias assessment tool for randomized clinical trials. The authors received no funding support to conduct this review. A total of 15 studies (6 randomized clinical trials and 9 observational studies) were included for full text review, a majority of which only included cases of low-grade isthmic spondylolisthesis. 1 study examined the effects of adding pedicle screw fixation (PS) to posterolateral fusion (PLF) and 2 studies examined the effects of adding reduction to interbody fusion (IF) + PS on clinical outcomes. 5 studies compared PLF, 4 with and 1 without PS, to IF + PS. Additionally, 3 studies compared circumferential fusion (IF + PS + PLF) to IF + PS and 1 study compared circumferential fusion to PLF + PS. 3 studies compared clinical outcomes among different IF + PS techniques (ALIF + PS vs. PLIF + PS vs TLIF + PS) without PLF. As per the Cochrane Collaboration's risk of bias assessment tool, 4 randomized clinical trials had an overall low risk of bias, 1 randomized clinical trial had an unclear risk of bias, and 1 randomized clinical trial had a high risk of bias. As per the Newcastle-Ottawa scale, 3 observational studies were of overall good quality, 4 observational studies were of fair quality, and 2 observational studies were of poor quality. Available studies provide strong evidence that the addition of reduction to fusion does not result in better clinical outcomes of pain and function in low-grade isthmic spondylolisthesis. Evidence also suggests that there is no significant difference between interbody fusion (IF + PS) and posterior fusion (PLF +/- PS) in outcomes of pain, function, and complication rates at follow-up points up to approximately 3 years in cases of low-grade slips. However, studies with longer follow-up points suggest that interbody fusion (IF + PS) may perform better in these same measures at later follow-up points. Available evidence also suggests no difference between circumferential fusion (IF + PS + PLF) and interbody fusion (IF + PS) in outcomes of pain and function in low-grade slips, but circumferential fusion has been associated with greater intraoperative blood loss, longer surgery duration, and longer hospital stays. In terms of clinical outcomes, insufficient evidence is available to assess the utility of adding PS to PLF, the relative efficacy of different interbody fusion (IF + PS) techniques (ALIF + PS vs. TLIF + PS vs. PLIF + PS), and the relative efficacy of circumferential fusion and posterior fusion (PLF + PS). Copyright © 2018. Published by Elsevier Inc.

  8. Resonances in Positronium Hydride

    NASA Technical Reports Server (NTRS)

    DiRienzi, Joseph; Drachman, Richard J.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    We re-examine the problem of calculating the positions and widths of the lowest-lying resonances in the Ps + H scattering system which consists of two electrons, one positron and one proton. The first of these resonances, for L=0, was found by the methods of complex rotation and stabilization, and later described as a Feshbach resonance lying close to a bound state in the closed-channel e (+) + H (-) system. Recently, results for the L=1 and 2 scattering states were published, and it was found, surprisingly, that there is a larae shift in the positions of these resonances. In this work we repeat the analysis for L=1 and find an unexpected explanation for the shift.

  9. Measurement of the branching fraction for ψ(3770) → γχ c0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ablikim, M.

    2015-12-09

    In this study, by analyzing a data set of 2.92 fb -1 of e +e - collision data taken at ps = 3.773 GeV and 106.41×10 6 ψ(3686) decays taken at √s = 3.686 GeV with the BESIII detector at the BEPCII collider, we measure the branching fraction and the partial decay width for ψ(3770) → γχ c0 to be B(ψ(3770) → γχ c0) = (6.88 ± 0.28 ± 0.67) × 10 -3 and Γ[Ψ(3770) → γχ c0] = (187 ± 8 ± 19) keV, respectively. These are the most precise measurements to date.

  10. Wavelength tunable ultrafast fiber laser via reflective mirror with taper structure.

    PubMed

    Fang, Li; Huang, Chuyun; Liu, Ting; Gogneau, Noelle; Bourhis, Eric; Gierak, Jacques; Oudar, Jean-Louis

    2016-12-20

    Laser sources with a controllable flexible wavelength have found widespread applications in optical fiber communication, optical sensing, and microscopy. Here, we report a tunable mode-locked fiber laser using a graphene-based saturable absorber and a tapered mirror as an end mirror in the cavity. The phase layer in the mirror is precisely etched by focused ion beam (FIB) milling technology, and the resonant wavelength of the mirror shifts correspond to the different etch depths. By scanning the tapered mirror mechanically, the center wavelength of a mode-locked fiber laser can be continuously tuned from 1562 to 1532 nm, with a pulse width in the sub-ps level and repetition rate of 27 MHz.

  11. Ultra-wide band electromagnetic radiation does not affect UV-induced recombination and mutagenesis in yeast.

    PubMed

    Pakhomova, O N; Belt, M L; Mathur, S P; Lee, J C; Akyel, Y

    1998-01-01

    Cell samples of the yeast Saccharomyces cerevisiae were exposed to 100 J/m2 of 254 nm ultraviolet (UV) radiation followed by a 30 min treatment with ultra-wide band (UWB) electromagnetic pulses. The UWB pulses (101-104 kV/m, 1.0 ns width, 165 ps rise time) were applied at the repetition rates of 0 Hz (sham), 16 Hz, or 600 Hz. The effect of exposures was evaluated from the colony-forming ability of the cells on complete and selective media and the number of aberrant colonies. The experiments established no effect of UWB exposure on the UV-induced reciprocal and non-reciprocal recombination, mutagenesis, or cell survival.

  12. Versatile multi-wavelength ultrafast fiber laser mode-locked by carbon nanotubes

    PubMed Central

    Liu, Xueming; Han, Dongdong; Sun, Zhipei; Zeng, Chao; Lu, Hua; Mao, Dong; Cui, Yudong; Wang, Fengqiu

    2013-01-01

    Multi-wavelength lasers have widespread applications (e.g. fiber telecommunications, pump-probe measurements, terahertz generation). Here, we report a nanotube-mode-locked all-fiber ultrafast oscillator emitting three wavelengths at the central wavelengths of about 1540, 1550, and 1560 nm, which are tunable by stretching fiber Bragg gratings. The output pulse duration is around 6 ps with a spectral width of ~0.5 nm, agreeing well with the numerical simulations. The triple-laser system is controlled precisely and insensitive to environmental perturbations with <0.04% amplitude fluctuation. Our method provides a simple, stable, low-cost, multi-wavelength ultrafast-pulsed source for spectroscopy, biomedical research and telecommunications. PMID:24056500

  13. 152 fs nanotube-mode-locked thulium-doped all-fiber laser

    PubMed Central

    Wang, Jinzhang; Liang, Xiaoyan; Hu, Guohua; Zheng, Zhijian; Lin, Shenghua; Ouyang, Deqin; Wu, Xu; Yan, Peiguang; Ruan, Shuangchen; Sun, Zhipei; Hasan, Tawfique

    2016-01-01

    Ultrafast fiber lasers with broad bandwidth and short pulse duration have a variety of applications, such as ultrafast time-resolved spectroscopy and supercontinuum generation. We report a simple and compact all-fiber thulium-doped femtosecond laser mode-locked by carbon nanotubes. The oscillator operates in slightly normal cavity dispersion at 0.055 ps2, and delivers 152 fs pulses with 52.8 nm bandwidth and 0.19 nJ pulse energy. This is the shortest pulse duration and the widest spectral width demonstrated from Tm-doped all-fiber lasers based on 1 or 2 dimensional nanomaterials, underscoring their growing potential as versatile saturable absorber materials. PMID:27374764

  14. Fast and wide tuning wavelength-swept source based on dispersion-tuned fiber optical parametric oscillator.

    PubMed

    Zhou, Yue; Cheung, Kim K Y; Li, Qin; Yang, Sigang; Chui, P C; Wong, Kenneth K Y

    2010-07-15

    We demonstrate a dispersion-tuned fiber optical parametric oscillator (FOPO)-based swept source with a sweep rate of 40 kHz and a wavelength tuning range of 109 nm around 1550 nm. The cumulative speed exceeds 4,000,000 nm/s. The FOPO is pumped by a sinusoidally modulated pump, which is driven by a clock sweeping linearly from 1 to 1.0006 GHz. A spool of dispersion-compensating fiber is added inside the cavity to perform dispersion tuning. The instantaneous linewidth is 0.8 nm without the use of any wavelength selective element inside the cavity. 1 GHz pulses with pulse width of 150 ps are generated.

  15. Reaching 200-ps timing resolution in a time-of-flight and depth-of-interaction positron emission tomography detector using phosphor-coated crystals and high-density silicon photomultipliers

    PubMed Central

    Kwon, Sun Il; Ferri, Alessandro; Gola, Alberto; Berg, Eric; Piemonte, Claudio; Cherry, Simon R.; Roncali, Emilie

    2016-01-01

    Abstract. Current research in the field of positron emission tomography (PET) focuses on improving the sensitivity of the scanner with thicker detectors, extended axial field-of-view, and time-of-flight (TOF) capability. These create the need for depth-of-interaction (DOI) encoding to correct parallax errors. We have proposed a method to encode DOI using phosphor-coated crystals. Our initial work using photomultiplier tubes (PMTs) demonstrated the possibilities of the proposed method, however, a major limitation of PMTs for this application is poor quantum efficiency in yellow light, corresponding to the wavelengths of the converted light by the phosphor coating. In contrast, the red-green-blue-high-density (RGB-HD) silicon photomultipliers (SiPMs) have a high photon detection efficiency across the visible spectrum. Excellent coincidence resolving time (CRT; <210  ps) was obtained by coupling RGB-HD SiPMs and  3 × 3 × 20  mm3 lutetium fine silicate crystals coated on a third of one of their lateral sides. Events were classified in three DOI bins (∼6.7-mm width) with an average sensitivity of 83.1%. A CRT of ∼200  ps combined with robust DOI encoding is a marked improvement in the phosphor-coated approach that we pioneered. For the first time, we read out these crystals with SiPMs and clearly demonstrated the potential of the RGB-HD SiPMs for this TOF-DOI PET detector. PMID:27921069

  16. Quasi-relativistic electron precipitation due to interactions with coherent VLF waves in the magnetosphere

    NASA Technical Reports Server (NTRS)

    Chang, H. C.; Inan, U. S.

    1983-01-01

    The equations of motion for the cyclotron resonance interaction between coherent whistler mode waves and energetic particles are rederived with the inclusion of relativistic effects. The pitch angle scattering of the near-loss-cone quasi-relativistic electrons trapped in the magnetosphere is studied using a test particle method employing these relativistic equations, and the precipitated energy spectrum due to the wave-induced perturbations of a full distribution of particles is computed. Results show that the full width at half maximum peak width of the rms scattering pattern of the near-loss-cone particles would give an upper bound to the peak width of the associated precipitated energy spectrum under the conditions of moderate wave intensities in the low L shell region. In addition, it is found that the peak widths are within the upper limit values measured by recent satellite experiments. It is concluded that interactions of inner radiation belt particles with monochromatic waves could produce precipitated fluxes with relatively sharp spectral widths, and that therefore the L-dependent narrow peaks observed by low altitude satellite particle detectors could be caused by such interactions.

  17. Solubilization and Stabilization of Isolated Photosystem I Complex with Lipopeptide Detergents

    PubMed Central

    Wang, Xiaoqiang; Huang, Guihong; Yu, Daoyong; Ge, Baosheng; Wang, Jiqian; Xu, Fengxi; Huang, Fang; Xu, Hai; Lu, Jian R.

    2013-01-01

    It is difficult to maintain a target membrane protein in a soluble and functional form in aqueous solution without biological membranes. Use of surfactants can improve solubility, but it remains challenging to identify adequate surfactants that can improve solubility without damaging their native structures and biological functions. Here we report the use of a new class of lipopeptides to solubilize photosystem I (PS-I), a well known membrane protein complex. Changes in the molecular structure of these surfactants affected their amphiphilicity and the goal of this work was to exploit a delicate balance between detergency and biomimetic performance in PS-I solubilization via their binding capacity. Meanwhile, the effects of these surfactants on the thermal and structural stability and functionality of PS-I in aqueous solution were investigated by circular dichroism, fluorescence spectroscopy, SDS-PAGE analysis and O2 uptake measurements, respectively. Our studies showed that the solubility of PS-I depended on both the polarity and charge in the hydrophilic head of the lipopeptides and the length of its hydrophobic tail. The best performing lipopeptides in favour of PS-I solubility turned out to be C14DK and C16DK, which were comparable to the optimal amphiphilicity of the conventional chemical surfactants tested. Lipopeptides showed obvious advantages in enhancing PS-I thermostability over sugar surfactant DDM and some full peptide amphiphiles reported previously. Fluorescence spectroscopy along with SDS-PAGE analysis demonstrated that lipopeptides did not undermine the polypeptide composition and conformation of PS-I after solubilization; instead they showed better performance in improving the structural stability and integrity of this multi-subunit membrane protein than conventional detergents. Furthermore, O2 uptake measurements indicated that PS-I solubilized with lipopeptides maintained its functionality. The underlying mechanism for the favorable actions of lipopeptide in PS-I solubilization and stabilization is discussed. PMID:24098786

  18. Accuracy of AFM force distance curves via direct solution of the Euler-Bernoulli equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eppell, Steven J., E-mail: steven.eppell@case.edu; Liu, Yehe; Zypman, Fredy R.

    2016-03-15

    In an effort to improve the accuracy of force-separation curves obtained from atomic force microscope data, we compare force-separation curves computed using two methods to solve the Euler-Bernoulli equation. A recently introduced method using a direct sequential forward solution, Causal Time-Domain Analysis, is compared against a previously introduced Tikhonov Regularization method. Using the direct solution as a benchmark, it is found that the regularization technique is unable to reproduce accurate curve shapes. Using L-curve analysis and adjusting the regularization parameter, λ, to match either the depth or the full width at half maximum of the force curves, the two techniquesmore » are contrasted. Matched depths result in full width at half maxima that are off by an average of 27% and matched full width at half maxima produce depths that are off by an average of 109%.« less

  19. Multichannel low power time-to-digital converter card with 21 ps precision and full scale range up to 10 μs

    NASA Astrophysics Data System (ADS)

    Tamborini, D.; Portaluppi, D.; Villa, F.; Tisa, S.; Tosi, A.

    2014-11-01

    We present a Time-to-Digital Converter (TDC) card with a compact form factor, suitable for multichannel timing instruments or for integration into more complex systems. The TDC Card provides 10 ps timing resolution over the whole measurement range, which is selectable from 160 ns up to 10 μs, reaching 21 ps rms precision, 1.25% LSB rms differential nonlinearity, up to 3 Mconversion/s with 400 mW power consumption. The I/O edge card connector provides timing data readout through either a parallel bus or a 100 MHz serial interface and further measurement information like input signal rate and valid conversion rate (typically useful for time-correlated single-photon counting application) through an independent serial link.

  20. Multichannel low power time-to-digital converter card with 21 ps precision and full scale range up to 10 μs.

    PubMed

    Tamborini, D; Portaluppi, D; Villa, F; Tisa, S; Tosi, A

    2014-11-01

    We present a Time-to-Digital Converter (TDC) card with a compact form factor, suitable for multichannel timing instruments or for integration into more complex systems. The TDC Card provides 10 ps timing resolution over the whole measurement range, which is selectable from 160 ns up to 10 μs, reaching 21 ps rms precision, 1.25% LSB rms differential nonlinearity, up to 3 Mconversion/s with 400 mW power consumption. The I/O edge card connector provides timing data readout through either a parallel bus or a 100 MHz serial interface and further measurement information like input signal rate and valid conversion rate (typically useful for time-correlated single-photon counting application) through an independent serial link.

  1. Decision Making Training in the Mission Operations Directorate

    NASA Technical Reports Server (NTRS)

    O'Keefe, William S.

    2013-01-01

    At JSC, we train our new flight controllers on a set of team skills that we call Space Flight Resource Management (SFRM). SFRM is akin to Crew Resource Management for the airlines and trains flight controllers to work as an effective team to reduce errors and improve safety. We have developed this training over the years with the assistance of Ames Research Center, Wyle Labs and University of Central Florida. One of the skills we teach is decision making/ problem solving (DM/PS). We teach DM/PS first in several classroom sessions, reinforce it in several part task training environments, and finally practice it in full-mission, full-team simulations. What I am proposing to talk about is this training flow: its content and how we teach it.

  2. Numerical analysis of breakdown dynamics dependence on pulse width in laser-induced damage in fused silica: Role of optical system

    NASA Astrophysics Data System (ADS)

    Hamam, Kholoud A.; Gamal, Yosr E. E.-D.

    2018-06-01

    We report a numerical investigation of the breakdown and damage in fused silica caused by ultra-short laser pulses. The study based on a modified model (Gaabour et al., 2012) that solves the rate equation numerically for the electron density evolution during the laser pulse, under the combined effect of both multiphoton and electron impact ionization processes. Besides, electron loss processes due to diffusion out of the focal volume and recombination are also considered in this analysis. The model is applied to investigate the threshold intensity dependence on laser pulse width in the experimental measurements that are given by Liu et al. (2005). In this experiment, a Ti-sapphire laser source operating at 800 nm with pulse duration varies between 240 fs and 2.5 ps is used to irradiate a bulk of fused silica with dimensions 10 × 5 × 3 mm. The laser beam was focused into the bulk using two optical systems with effective numerical apertures (NA) 0.126 and 0.255 to give beam spot radius at the focus of the order 2.0 μm and 0.95 μm respectively. Reasonable agreement between the calculated thresholds and the measured ones is attained. Moreover, a study is performed to examine the respective role of the physical processes of the breakdown of fused silica in relation to the pulse width and focusing optical system. The analysis revealed a real picture of the location and size of the generated plasma.

  3. Conversion of partially reprogrammed cells to fully pluripotent stem cells is associated with further activation of stem cell maintenance- and gamete generation-related genes.

    PubMed

    Kim, Jong Soo; Choi, Hyun Woo; Choi, Sol; Seo, Han Geuk; Moon, Sung-Hwan; Chung, Hyung-Min; Do, Jeong Tae

    2014-11-01

    Somatic cells are reprogrammed to induced pluripotent stem cells (iPSCs) by overexpression of a combination of defined transcription factors. We generated iPSCs from mouse embryonic fibroblasts (with Oct4-GFP reporter) by transfection of pCX-OSK-2A (Oct4, Sox2, and Klf4) and pCX-cMyc vectors. We could generate partially reprogrammed cells (XiPS-7), which maintained more than 20 passages in a partially reprogrammed state; the cells expressed Nanog but were Oct4-GFP negative. When the cells were transferred to serum-free medium (with serum replacement and basic fibroblast growth factor), the XiPS-7 cells converted to Oct4-GFP-positive iPSCs (XiPS-7c, fully reprogrammed cells) with ESC-like properties. During the conversion of XiPS-7 to XiPS-7c, we found several clusters of slowly reprogrammed genes, which were activated at later stages of reprogramming. Our results suggest that partial reprogrammed cells can be induced to full reprogramming status by serum-free medium, in which stem cell maintenance- and gamete generation-related genes were upregulated. These long-term expandable partially reprogrammed cells can be used to verify the mechanism of reprogramming.

  4. NANOG priming before full reprogramming may generate germ cell tumours.

    PubMed

    Grad, I; Hibaoui, Y; Jaconi, M; Chicha, L; Bergström-Tengzelius, R; Sailani, M R; Pelte, M F; Dahoun, S; Mitsiadis, T A; Töhönen, V; Bouillaguet, S; Antonarakis, S E; Kere, J; Zucchelli, M; Hovatta, O; Feki, A

    2011-11-09

    Reprogramming somatic cells into a pluripotent state brings patient-tailored, ethical controversy-free cellular therapy closer to reality. However, stem cells and cancer cells share many common characteristics; therefore, it is crucial to be able to discriminate between them. We generated two induced pluripotent stem cell (iPSC) lines, with NANOG pre-transduction followed by OCT3/4, SOX2, and LIN28 overexpression. One of the cell lines, CHiPS W, showed normal pluripotent stem cell characteristics, while the other, CHiPS A, though expressing pluripotency markers, failed to differentiate and gave rise to germ cell-like tumours in vivo. Comparative genomic hybridisation analysis of the generated iPS lines revealed that they were genetically more stable than human embryonic stem cell counterparts. This analysis proved to be predictive for the differentiation potential of analysed cells. Moreover, the CHiPS A line expressed a lower ratio of p53/p21 when compared to CHiPS W. NANOG pre-induction followed by OCT3/4, SOX2, MYC, and KLF4 induction resulted in the same tumour-inducing phenotype. These results underline the importance of a re-examination of the role of NANOG during reprogramming. Moreover, this reprogramming method may provide insights into primordial cell tumour formation and cancer stem cell transformation.

  5. Comparison of Cyberware PX and PS 3D human head scanners

    NASA Astrophysics Data System (ADS)

    Carson, Jeremy; Corner, Brian D.; Crockett, Eric; Li, Peng; Paquette, Steven

    2008-02-01

    A common limitation of laser line three-Dimensional (3D) scanners is the inability to scan objects with surfaces that are either parallel to the laser line or that self-occlude. Filling in missing areas adds some unwanted inaccuracy to the 3D model. Capturing the human head with a Cyberware PS Head Scanner is an example of obtaining a model where the incomplete areas are difficult to fill accurately. The PS scanner uses a single vertical laser line to illuminate the head and is unable to capture data at top of the head, where the line of sight is tangent to the surface, and under the chin, an area occluded by the chin when the subject looks straight forward. The Cyberware PX Scanner was developed to obtain this missing 3D head data. The PX scanner uses two cameras offset at different angles to provide a more detailed head scan that captures surfaces missed by the PS scanner. The PX scanner cameras also use new technology to obtain color maps that are of higher resolution than the PS Scanner. The two scanners were compared in terms of amount of surface captured (surface area and volume) and the quality of head measurements when compared to direct measurements obtained through standard anthropometry methods. Relative to the PS scanner, the PX head scans were more complete and provided the full set of head measurements, but actual measurement values, when available from both scanners, were about the same.

  6. Fabrication of novel structures to enhance the performance of microwave, millimeter wave and optical radiators

    NASA Astrophysics Data System (ADS)

    Gbele, Kokou

    This dissertation has three parts which are distinctive from the perspective of their frequency regime of operation and from the nature of their contributions to the science and engineering communities. The first part describes work that was conducted on a vertical-external-cavity surface emitting-laser (VECSEL) in the optical frequency regime. We designed, fabricated, and tested a hybrid distributed Bragg reflector (DBR) mirror for a VECSEL sub-cavity operating at the laser emission wavelength of 1057 nm. The DBR mirror was terminated with a highly reflecting gold surface and integrated with an engineered pattern of titanium. This hybrid mirror achieved a reduction in half of the number of DBR layer pairs in comparison to a previously reported, successful VECSEL chip. Moreover, the output power of our VECSEL chip was measured to be beyond 4.0Wwith an optical-to-optical efficiency of 19.4%. Excellent power output stability was demonstrated; a steady 1.0 W output at 15.0 W pump power was measured for over an hour. The second part reports on an ultrafast in situ pump-probing of the nonequlibrium dynamics of the gain medium of a VECSEL under mode-locked conditions. We proposed and successfully tested a novel approach to measure the response of the inverted carriers in the active region of a VECSEL device while it was operating under passively mode-locked conditions. We employed the dual-frequency-comb spectroscopy (DFCS) technique using an asynchronous optical sampling (ASOPS) method based on modified time-domain spectroscopy (TDS) to measure the nonequilibrium dynamics of the gain medium of a phase-locked VECSEL that we designed and fabricated to operate at the 1030 nm emission wavelength. Our spectroscopic studies used a probe pulse of 100 fs and an in situ pump pulse of 13 ps. We probed the gain medium of the VECSEL and recorded a depletion time of 13 ps, a fast recovery period of 17 ps, and 110 ps for the slow recovery time. Our scans thus demonstrated a 140 ps full depletion-recovery cycle in the nonequilibrium state. The third part discusses work in the microwave and millimeter wave frequency regimes. A new method to fabricate Luneburg lenses was proposed and demonstrated. This type of lens is well known; it is versatile and has been used for many applications, including high power radars, satellite communications, and remote sensing systems. Because the fabrication of such a lens requires intricate and time consuming processes, we demonstrated the design, fabrication and testing of a Luneburg lens prototype using a 3-D printing rapid prototyping technique both at the X and Ka-V frequency bands. The measured results were in very good agreement with their simulated values. The fabricated X-band lens had a 12 cm diameter and produced a beam having a maximum gain of 20 dB and a beam directivity (half-power beam width (HPBW)) ranging from 12° to 19°). The corresponding Ka-V band lens had a 7 cm diameter; it produced a beam with a HPBW about the same as the X-band lens, but with a maximum gain of more than 20 dB.

  7. Immunosuppressive Mesenchymal Stromal Cells Derived from Human-Induced Pluripotent Stem Cells Induce Human Regulatory T Cells In Vitro and In Vivo

    PubMed Central

    Roux, Clémence; Saviane, Gaëlle; Pini, Jonathan; Belaïd, Nourhène; Dhib, Gihen; Voha, Christine; Ibáñez, Lidia; Boutin, Antoine; Mazure, Nathalie M.; Wakkach, Abdelilah; Blin-Wakkach, Claudine; Rouleau, Matthieu

    2018-01-01

    Despite mesenchymal stromal cells (MSCs) are considered as a promising source of cells to modulate immune functions on cells from innate and adaptive immune systems, their clinical use remains restricted (few number, limited in vitro expansion, absence of a full phenotypic characterization, few insights on their in vivo fate). Standardized MSCs derived in vitro from human-induced pluripotent stem (huIPS) cells, remediating part of these issues, are considered as well as a valuable tool for therapeutic approaches, but their functions remained to be fully characterized. We generated multipotent MSCs derived from huiPS cells (huiPS-MSCs), and focusing on their immunosuppressive activity, we showed that human T-cell activation in coculture with huiPS-MSCs was significantly reduced. We also observed the generation of functional CD4+ FoxP3+ regulatory T (Treg) cells. Further tested in vivo in a model of human T-cell expansion in immune-deficient NSG mice, huiPS-MSCs immunosuppressive activity prevented the circulation and the accumulation of activated human T cells. Intracytoplasmic labeling of cytokines produced by the recovered T cells showed reduced percentages of human-differentiated T cells producing Th1 inflammatory cytokines. By contrast, T cells producing IL-10 and FoxP3+-Treg cells, absent in non-treated animals, were detected in huiPS-MSCs treated mice. For the first time, these results highlight the immunosuppressive activity of the huiPS-MSCs on human T-cell stimulation with a concomitant generation of human Treg cells in vivo. They may favor the development of new tools and strategies based on the use of huiPS cells and their derivatives for the induction of immune tolerance. PMID:29422893

  8. Immunosuppressive Mesenchymal Stromal Cells Derived from Human-Induced Pluripotent Stem Cells Induce Human Regulatory T Cells In Vitro and In Vivo.

    PubMed

    Roux, Clémence; Saviane, Gaëlle; Pini, Jonathan; Belaïd, Nourhène; Dhib, Gihen; Voha, Christine; Ibáñez, Lidia; Boutin, Antoine; Mazure, Nathalie M; Wakkach, Abdelilah; Blin-Wakkach, Claudine; Rouleau, Matthieu

    2017-01-01

    Despite mesenchymal stromal cells (MSCs) are considered as a promising source of cells to modulate immune functions on cells from innate and adaptive immune systems, their clinical use remains restricted (few number, limited in vitro expansion, absence of a full phenotypic characterization, few insights on their in vivo fate). Standardized MSCs derived in vitro from human-induced pluripotent stem (huIPS) cells, remediating part of these issues, are considered as well as a valuable tool for therapeutic approaches, but their functions remained to be fully characterized. We generated multipotent MSCs derived from huiPS cells (huiPS-MSCs), and focusing on their immunosuppressive activity, we showed that human T-cell activation in coculture with huiPS-MSCs was significantly reduced. We also observed the generation of functional CD4 + FoxP3 + regulatory T (Treg) cells. Further tested in vivo in a model of human T-cell expansion in immune-deficient NSG mice, huiPS-MSCs immunosuppressive activity prevented the circulation and the accumulation of activated human T cells. Intracytoplasmic labeling of cytokines produced by the recovered T cells showed reduced percentages of human-differentiated T cells producing Th1 inflammatory cytokines. By contrast, T cells producing IL-10 and FoxP3 + -Treg cells, absent in non-treated animals, were detected in huiPS-MSCs treated mice. For the first time, these results highlight the immunosuppressive activity of the huiPS-MSCs on human T-cell stimulation with a concomitant generation of human Treg cells in vivo . They may favor the development of new tools and strategies based on the use of huiPS cells and their derivatives for the induction of immune tolerance.

  9. Localization in roots and flowers of pea chloroplastic thioredoxin f and thioredoxin m proteins reveals new roles in nonphotosynthetic organs.

    PubMed

    de Dios Barajas-López, Juan; Serrato, Antonio Jesús; Olmedilla, Adela; Chueca, Ana; Sahrawy, Mariam

    2007-11-01

    Plant thioredoxins (TRXs) are involved in redox regulation of a wide variety processes and usually exhibit organ specificity. We report strong evidence that chloroplastic TRXs are localized in heterotrophic tissues and suggest some ways in which they might participate in several metabolic and developmental processes. The promoter regions of the chloroplastic f and m1 TRX genes were isolated from a pea (Pisum sativum) plant genomic bank. Histochemical staining for beta-glucuronidase (GUS) in transgenic homozygous Arabidopsis (Arabidopsis thaliana) plants showed preferential expression of the 444-bp PsTRXf1 promoter in early seedlings, stems, leaves, and roots, as well as in flowers, stigma, pollen grains, and filaments. GUS activity under the control of the 1,874-bp PsTRXm1 promoter was restricted to the leaves, roots, seeds, and flowers. To gain insight into the translational regulation of these genes, a series of deletions of 5' elements in both TRX promoters were analyzed. The results revealed that a 126-bp construct of the PsTRXf2 promoter was unable to reproduce the expression pattern observed with the full promoter. The differences in expression and tissue specificity between PsTRXm1 and the deleted promoters PsTRXm2 and PsTRXm3 suggest the existence of upstream positive or negative regulatory regions that affect tissue specificity, sucrose metabolism, and light regulation. PsTRXm1 expression is finely regulated by light and possibly by other metabolic factors. In situ hybridization experiments confirmed new localizations of these chloroplastic TRX transcripts in vascular tissues and flowers, and therefore suggest possible new functions in heterotrophic tissues related to cell division, germination, and plant reproduction.

  10. Impact of platform switching on marginal peri-implant bone-level changes. A systematic review and meta-analysis

    PubMed Central

    Strietzel, Frank Peter; Neumann, Konrad; Hertel, Moritz

    2015-01-01

    Objective To address the focused question, is there an impact of platform switching (PS) on marginal bone level (MBL) changes around endosseous implants compared to implants with platform matching (PM) implant-abutment configurations? Material and methods A systematic literature search was conducted using electronic databases PubMed, Web of Science, Journals@Ovid Full Text and Embase, manual search for human randomized clinical trials (RCTs) and prospective clinical controlled cohort studies (PCCS) reporting on MBL changes at implants with PS-, compared with PM-implant-abutment connections, published between 2005 and June 2013. Results Twenty-two publications were eligible for the systematic review. The qualitative analysis of 15 RCTs and seven PCCS revealed more studies (13 RCTs and three PCCS) showing a significantly less mean marginal bone loss around implants with PS- compared to PM-implant-abutment connections, indicating a clear tendency favoring the PS technique. A meta-analysis including 13 RCTs revealed a significantly less mean MBL change (0.49 mm [CI95% 0.38; 0.60]) at PS implants, compared with PM implants (1.01 mm [CI95% 0.62; 1.40] (P < 0.0001). Conclusions The meta-analysis revealed a significantly less mean MBL change at implants with a PS compared to PM-implant-abutment configuration. Studies included herein showed an unclear as well as high risk of bias mostly, and relatively short follow-up periods. The qualitative analysis revealed a tendency favoring the PS technique to prevent or minimize peri-implant marginal bone loss compared with PM technique. Due to heterogeneity of the included studies, their results require cautious interpretation. PMID:24438506

  11. Multichannel low power time-to-digital converter card with 21 ps precision and full scale range up to 10 μs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tamborini, D., E-mail: davide.tamborini@polimi.it; Portaluppi, D.; Villa, F.

    We present a Time-to-Digital Converter (TDC) card with a compact form factor, suitable for multichannel timing instruments or for integration into more complex systems. The TDC Card provides 10 ps timing resolution over the whole measurement range, which is selectable from 160 ns up to 10 μs, reaching 21 ps rms precision, 1.25% LSB rms differential nonlinearity, up to 3 Mconversion/s with 400 mW power consumption. The I/O edge card connector provides timing data readout through either a parallel bus or a 100 MHz serial interface and further measurement information like input signal rate and valid conversion rate (typically usefulmore » for time-correlated single-photon counting application) through an independent serial link.« less

  12. All-optical 40Gbit/s format conversion from NRZ to RZ based on SFG in a PPLN waveguide

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Sun, Junqiang

    2006-01-01

    A novel all-optical 40Gbit/s NRZ-to-RZ data format conversion scheme based on sum-frequency generation (SFG) interaction in a periodically poled LiNbO 3 (PPLN) waveguide is presented for the first time, using a Mach-Zehnder interferometer (MZI). The conversion mechanism relies on the combination of attenuation and nonlinear phase shift Φ NL induced on the signal field. The performance of the conversion is numerically evaluated, with the result showing that it is more effective to yield Φ NL when appropriately phase mismatched for SFG process but Φ NL~0 when quasi-phase-matching (QPM). Compared with the cascaded second-order nonlinear interactions (SHG+DFG) with the influence of walk-off effect, a high conversion efficiency and good performance are achieved with peak power 500mw and width 2ps of the pump, which can be used in super high-speed situation (40Gbit/s and above). Finally, the inverse process of SFG and corresponding walk-off effect are analyzed and the optimum arrangement of power is proposed, showing that proper power, pump width, and waveguide length are necessary for achieving a satisfied conversion effect.

  13. Transverse Mode Dynamics of VCSELs Undergoing Current Modulation

    NASA Technical Reports Server (NTRS)

    Goorjian, Peter M.; Ning, C. Z.; Agrawal, Govind

    2000-01-01

    Transverse mode dynamics of a 20-micron-diameter vertical-cavity surface-emitting laser (VCSEL) undergoing gain switching by deep current modulation is studied numerically. The direct current (dc) level is set slightly below threshold and is modulated by a large alternating current (ac). The resulting optical pulse train and transverse-mode patterns are obtained numerically. The ac frequency is varied from 2.5 GHz to 10 GHz, and the ac amplitude is varied from one-half to four times that of the dc level. At high modulation frequencies, a regular pulse train is not generated unless the ac amplitude is large enough. At all modulation frequencies, the transverse spatial profile switches from single-mode to multiple-mode pattern as the ac pumping level is increased. Optical pulse widths vary in the range 5-30 ps. with the pulse width decreasing when either the frequency is increased or the ac amplitude is decreased. The numerical modeling uses an approximation form of the semiconductor Maxwell-Bloch equations. Temporal evolution of the spatial profiles of the laser (and of carrier density) is determined without any assumptions about the type or number of modes. Keywords: VCSELs, current modulation, gain switching, transverse mode dynamics, computational modeling

  14. 1164.4  nm and 1174.7  nm dual-wavelength Nd : GdVO4/Cr4+ : YAG/YVO4 passively Q-switched Raman microchip laser.

    PubMed

    Wang, Xiaojie; Wang, Xiaolei; Zheng, Zhifen; Qiao, Xihao; Dong, Jun

    2018-04-20

    A synchronous pulsed, dual-wavelength Raman laser at 1164.4 nm and 1174.7 nm has been demonstrated in a Nd:GdVO 4 /Cr 4+ :YAG/YVO 4 passively Q-switched Raman microchip laser (PQSRML). The 1164.4 nm and 1174.7 nm dual-wavelength first-order Stokes laser oscillation is attributed to the conversion of the 1063.2 nm and 1063.43 nm two-longitudinal-mode fundamental lasers with Raman frequency shifts of 816  cm -1 and 890  cm -1 , respectively. Stable dual-wavelength Raman laser pulses with nearly equal spectral intensities have been achieved independent of the pump power. A pulse repetition rate as high as 139.4 kHz has been achieved with T 0 =85%, and the pulse width has been shortened to 825 ps with T 0 =70%. A dual-wavelength Raman laser with sub-nanosecond pulse width and peak power of over 1 kW has been achieved in the Nd:GdVO 4 /Cr 4+ :YAG/YVO 4 PQSRML.

  15. Diagnostics for the optimization of an 11 keV inverse Compton scattering x-ray source

    NASA Astrophysics Data System (ADS)

    Chauchat, A.-S.; Brasile, J.-P.; Le Flanchec, V.; Nègre, J.-P.; Binet, A.; Ortega, J.-M.

    2013-04-01

    In a scope of a collaboration between Thales Communications & Security and CEA DAM DIF, 11 keV Xrays were produced by inverse Compton scattering on the ELSA facility. In this type of experiment, X-ray observation lies in the use of accurate electron and laser beam interaction diagnostics and on fitted X-ray detectors. The low interaction probability between < 100 μm width, 12 ps [rms] length electron and photon pulses requires careful optimization of pulse spatial and temporal covering. Another issue was to observe 11 keV X-rays in the ambient radioactive noise of the linear accelerator. For that, we use a very sensitive detection scheme based on radio luminescent screens.

  16. Electron spectra of xenon clusters irradiated with a laser-driven plasma soft-x-ray laser pulse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Namba, S.; Takiyama, K.; Hasegawa, N.

    Xenon clusters were irradiated with plasma soft-x-ray laser pulses (having a wavelength of 13.9 nm, time duration of 7 ps, and intensities of up to 10 GW/cm{sup 2}). The laser photon energy was high enough to photoionize 4d core electrons. The cross section is large due to a giant resonance. The interaction was investigated by measuring the electron energy spectra. The photoelectron spectra for small clusters indicate that the spectral width due to the 4d hole significantly broadens with increasing cluster size. For larger clusters, the electron energy spectra evolve into a Maxwell-Boltzmann distribution, as a strongly coupled cluster nanoplasmamore » is generated.« less

  17. Laser-hole boring into overdense plasmas measured with soft X-Ray laser probing

    PubMed

    Takahashi; Kodama; Tanaka; Hashimoto; Kato; Mima; Weber; Barbee; Da Silva LB

    2000-03-13

    A laser self-focused channel formation into overdense plasmas was observed using a soft x-ray laser probe system with a grid image refractometry (GIR) technique. 1.053 &mgr;m laser light with a 100 ps pulse duration was focused onto a preformed plasma at an intensity of 2x10(17) W/cm (2). Cross sections of the channel were obtained which show a 30 &mgr;m diameter in overdense plasmas. The channel width in the overdense region was kept narrow as a result of self-focusing. Conically diverging density ridges were also observed along the channel, indicating a Mach cone created by a shock wave due to the supersonic propagation of the channel front.

  18. Ar 3p photoelectron sideband spectra in two-color XUV + NIR laser fields

    NASA Astrophysics Data System (ADS)

    Minemoto, Shinichirou; Shimada, Hiroyuki; Komatsu, Kazma; Komatsubara, Wataru; Majima, Takuya; Mizuno, Tomoya; Owada, Shigeki; Sakai, Hirofumi; Togashi, Tadashi; Yoshida, Shintaro; Yabashi, Makina; Yagishita, Akira

    2018-04-01

    We performed photoelectron spectroscopy using femtosecond XUV pulses from a free-electron laser and femtosecond near-infrared pulses from a synchronized laser, and succeeded in measuring Ar 3p photoelectron sideband spectra due to the two-color above-threshold ionization. In our calculations of the first-order time-dependent perturbation theoretical model based on the strong field approximation, the photoelectron sideband spectra and their angular distributions are well reproduced by considering the timing jitter between the XUV and the NIR pulses, showing that the timing jitter in our experiments was distributed over the width of {1.0}+0.4-0.2 ps. The present approach can be used as a method to evaluate the timing jitter inevitable in FEL experiments.

  19. A 250 MHz, high power mode-locked Nd:GdVO4 oscillator with low timing jitter under 879 nm direct pumping

    NASA Astrophysics Data System (ADS)

    Zhang, F. F.; Zuo, J. W.; Wang, Z. M.; Yang, J.; Cheng, H. L.; Zong, N.; Yang, F.; Peng, Q. J.; Xu, Z. Y.

    2013-04-01

    We developed a high power mode-locked Nd:GdVO4 oscillator with low timing jitter directly pumped by an 879 nm diode. Under the absorbed pump power of 13.8 W, a maximum output power of 5.68 W at 1063 nm was obtained with a repetition rate of ˜250 MHz, corresponding to a slope efficiency of 78.7%. The measured pulse width and root mean square timing jitter at the output power of 5.35 W were 7.4 ps and 286 fs, respectively. To the best of our knowledge, this is the highest output power for a picosecond Nd:GdVO4 oscillator with low timing jitter.

  20. Mode-locked fiber laser using SU8 resist incorporating carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Hernandez-Romano, Ivan; Mandridis, Dimitrios; May-Arrioja, Daniel A.; Sanchez-Mondragon, Jose J.; Delfyett, Peter J.

    2011-06-01

    We report the fabrication of a saturable absorber made of a novel polymer SU8 doped with Single Wall Carbon Nanotubes (SWCNTs). A passive mode-locked ring cavity fiber laser was built with a 100 μm thick SU8/SWCNT film inserted between two FC/APC connectors. Self-starting passively mode-locked lasing operation was observed at 1572.04 nm, with a FWHM of 3.26 nm. The autocorrelation trace was 1.536 ps corresponding to a pulse-width of 871 fs. The time-bandwidth product was 0.344, which is close enough to transform-limited sech squared pulses. The repetition rate was 21.27 MHz, and a maximum average output power of 1 mW was also measured.

  1. Ultra-fast magnetic vortex core reversal by a local field pulse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rückriem, R.; Albrecht, M., E-mail: manfred.albrecht@physik.uni-augsburg.de; Schrefl, T.

    2014-02-03

    Magnetic vortex core reversal of a 20-nm-thick permalloy disk with a diameter of 100 nm was studied by micromagnetic simulations. By applying a global out-of-plane magnetic field pulse, it turned out that the final core polarity is very sensitive to pulse width and amplitude, which makes it hard to control. The reason for this phenomenon is the excitation of radial spin waves, which dominate the reversal process. The excitation of spin waves can be strongly suppressed by applying a local field pulse within a small area at the core center. With this approach, ultra-short reversal times of about 15 ps weremore » achieved, which are ten times faster compared to a global pulse.« less

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukharamova, Nastasia; Lazarev, Sergey; Meijer, Janne -Mieke

    We present results of the studies of dynamics in colloidal crystals performed by pump-probe experiments using an X-ray free-electron laser (XFEL). Colloidal crystals were pumped with an infrared laser at a wavelength of 800 nm with varying power and probed by XFEL pulses at an energy of 8 keV with a time delay up to 1000 ps. The positions of the Bragg peaks, and their radial and azimuthal widths were analyzed as a function of the time delay. The spectral analysis of the data did not reveal significant enhancement of frequencies expected in this experiment. As a result, this allowedmore » us to conclude that the amplitude of vibrational modes excited in colloidal crystals was less than the systematic error caused by the noise level.« less

  3. Line-frequency doubling of directed self-assembly patterns for single-digit bit pattern media lithography

    NASA Astrophysics Data System (ADS)

    Patel, K. C.; Ruiz, R.; Lille, J.; Wan, L.; Dobiz, E.; Gao, H.; Robertson, N.; Albrecht, T. R.

    2012-03-01

    Directed self-assembly is emerging as a promising technology to define sub-20nm features. However, a straightforward path to scale block copolymer lithography to single-digit fabrication remains challenging given the diverse material properties found in the wide spectrum of self-assembling materials. A vast amount of block copolymer research for industrial applications has been dedicated to polystyrene-b-methyl methacrylate (PS-b-PMMA), a model system that displays multiple properties making it ideal for lithography, but that is limited by a weak interaction parameter that prevents it from scaling to single-digit lithography. Other block copolymer materials have shown scalability to much smaller dimensions, but at the expense of other material properties that could delay their insertion into industrial lithographic processes. We report on a line doubling process applied to block copolymer patterns to double the frequency of PS-b-PMMA line/space features, demonstrating the potential of this technique to reach single-digit lithography. We demonstrate a line-doubling process that starts with directed self-assembly of PS-b-PMMA to define line/space features. This pattern is transferred into an underlying sacrificial hard-mask layer followed by a growth of self-aligned spacers which subsequently serve as hard-masks for transferring the 2x frequency doubled pattern to the underlying substrate. We applied this process to two different block copolymer materials to demonstrate line-space patterns with a half pitch of 11nm and 7nm underscoring the potential to reach single-digit critical dimensions. A subsequent patterning step with perpendicular lines can be used to cut the fine line patterns into a 2-D array of islands suitable for bit patterned media. Several integration challenges such as line width control and line roughness are addressed.

  4. Coupled phase field, heat conduction, and elastodynamic simulations of kinetic superheating and nanoscale melting of aluminum nanolayer irradiated by picosecond laser.

    PubMed

    Hwang, Yong Seok; Levitas, Valery I

    2015-12-21

    An advanced continuum model for nanoscale melting and kinetic superheating of an aluminum nanolayer irradiated by a picosecond laser is formulated. Barrierless nucleation of surface premelting and melting occurs, followed by a propagation of two solid-melt interfaces toward each other and their collision. For a slow heating rate of Q = 0.015 K ps(-1) melting occurs at the equilibrium melting temperature under uniaxial strain conditions T = 898.1 K (i.e., below equilibrium melting temperature Teq = 933.67 K) and corresponding biaxial stresses, which relax during melting. For a high heating rate of Q = 0.99-84 K ps(-1), melting occurs significantly above Teq. Surprisingly, an increase in heating rate leads to temperature reduction at the 3 nm wide moving interfaces due to fast absorption of the heat of fusion. A significant, rapid temperature drop (100-500 K, even below melting temperature) at the very end of melting is revealed, which is caused by the collision of two finite-width interfaces and accelerated melting in about the 5 nm zone. For Q = 25-84 K ps(-1), standing elastic stress waves are observed in a solid with nodal points at the moving solid-melt interfaces, which, however, do not have a profound effect on melting time or temperatures. When surface melting is suppressed, barrierless bulk melting occurs in the entire sample, and elastodynamic effects are more important. Good correspondence with published, experimentally-determined melting time is found for a broad range of heating rates. Similar approaches can be applied to study various phase transformations in different materials and nanostructures under high heating rates.

  5. Dispersed three-pulse infrared photon echoes of nitrous oxide in water and octanol.

    PubMed

    Shattuck, J T; Schneck, J R; Chieffo, L R; Erramilli, S; Ziegler, L D

    2013-12-12

    Dispersed IR three-pulse photon echoes due to the antisymmetric (ν3) stretch mode of N2O dissolved in H2O and 1-octanol at room temperature are reported and analyzed. The experimentally determined transition frequency-frequency correlation function (FFCF) in these two solvents is explained in terms of inertial solvent contributions, hydrogen bond network fluctuations, and, for octanol, the motions of the alkyl chains. The H2O hydrogen bond fluctuations result in 1.5 ps FFCF decay, in agreement with relaxation rates determined from photon echo based measurements of other aqueous solutions including salt solutions. In octanol, hydrogen bond fluctuations decay on a slower time scale of 3.3 ps and alkyl chain motions result in an inhomogeneous broadening contribution to the ν3 absorption spectrum that decays on a 35 ps time scale. Rotational reorientation of N2O is nearly 3 times faster in octanol as compared to water. Although the vibrational ν3 N2O absorption line shapes in water and octanol are similar, the line widths result from different coherence loss mechanisms. A hot band contribution in the N2O in octanol solution is found to have a significant effect on the echo spectrum due to its correspondingly stronger transition moment than that of the fundamental transition. The dephasing dynamics of the N2O ν3 stretch mode is of interest as a probe in ultrafast studies of complex or nanoconfined systems with both hydrophobic and hydrophilic regions such as phospholipids, nucleic acids, and proteins. These results demonstrate the value of the N2O molecule to act as a reporter of equilibrium fluctuations in such complex systems particularly due to its solubility characteristics and long vibrational lifetime.

  6. Large format geiger-mode avalanche photodiode LADAR camera

    NASA Astrophysics Data System (ADS)

    Yuan, Ping; Sudharsanan, Rengarajan; Bai, Xiaogang; Labios, Eduardo; Morris, Bryan; Nicholson, John P.; Stuart, Gary M.; Danny, Harrison

    2013-05-01

    Recently Spectrolab has successfully demonstrated a compact 32x32 Laser Detection and Range (LADAR) camera with single photo-level sensitivity with small size, weight, and power (SWAP) budget for threedimensional (3D) topographic imaging at 1064 nm on various platforms. With 20-kHz frame rate and 500- ps timing uncertainty, this LADAR system provides coverage down to inch-level fidelity and allows for effective wide-area terrain mapping. At a 10 mph forward speed and 1000 feet above ground level (AGL), it covers 0.5 square-mile per hour with a resolution of 25 in2/pixel after data averaging. In order to increase the forward speed to fit for more platforms and survey a large area more effectively, Spectrolab is developing 32x128 Geiger-mode LADAR camera with 43 frame rate. With the increase in both frame rate and array size, the data collection rate is improved by 10 times. With a programmable bin size from 0.3 ps to 0.5 ns and 14-bit timing dynamic range, LADAR developers will have more freedom in system integration for various applications. Most of the special features of Spectrolab 32x32 LADAR camera, such as non-uniform bias correction, variable range gate width, windowing for smaller arrays, and short pixel protection, are implemented in this camera.

  7. Geometry of phase-separated domains in phospholipid bilayers by diffraction-contrast electron microscopy.

    PubMed Central

    Hui, S W

    1981-01-01

    The sizes and shapes of solidus (gel) phase domains in the hydrated molecular bilayers of dilauroylphosphatidylcholine/dipalmitoylphasphatidylcholine (DLPC/DPPC) (1:1) and phosphatidylserine (PS)/DPPC (1:2) are visualized directly by low dose diffraction-contrast electron microscopy. The temperature and humidity of the bilayers are controlled by an environmental chamber set in an electron microscope. The contrast between crystalline domains is enhanced by electron optical filtering of the diffraction patterns of the bilayers. The domains are seen as a patchwork in the plane of the bilayer, with an average width of 0.2-0.5 micrometer. The percentage of solidus area measured from diffraction-contrast micrographs at various temperatures agrees in general with those depicted by known phase diagrams. The shape and size of the domains resemble those seen by freeze-fracture in multilamellar vesicles. Temperature-related changes in domain size and in phase boundary per unit area are more pronounced in the less miscible DLPC/DPPC mixture. No significant change in these geometric parameters with temperature is found in the PS/DPPC mixture. Mapping domains by their molecular diffraction signals not only verifies the existance of areas of different molecular packing during phase separation but also provides a quantitative measurement of structural boundaries and defects in lipid bilayers. Images FIGURE 1 FIGURE 3 FIGURE 6 PMID:6894707

  8. A hybrid artificial bee colony algorithm and pattern search method for inversion of particle size distribution from spectral extinction data

    NASA Astrophysics Data System (ADS)

    Wang, Li; Li, Feng; Xing, Jian

    2017-10-01

    In this paper, a hybrid artificial bee colony (ABC) algorithm and pattern search (PS) method is proposed and applied for recovery of particle size distribution (PSD) from spectral extinction data. To be more useful and practical, size distribution function is modelled as the general Johnson's ? function that can overcome the difficulty of not knowing the exact type beforehand encountered in many real circumstances. The proposed hybrid algorithm is evaluated through simulated examples involving unimodal, bimodal and trimodal PSDs with different widths and mean particle diameters. For comparison, all examples are additionally validated by the single ABC algorithm. In addition, the performance of the proposed algorithm is further tested by actual extinction measurements with real standard polystyrene samples immersed in water. Simulation and experimental results illustrate that the hybrid algorithm can be used as an effective technique to retrieve the PSDs with high reliability and accuracy. Compared with the single ABC algorithm, our proposed algorithm can produce more accurate and robust inversion results while taking almost comparative CPU time over ABC algorithm alone. The superiority of ABC and PS hybridization strategy in terms of reaching a better balance of estimation accuracy and computation effort increases its potentials as an excellent inversion technique for reliable and efficient actual measurement of PSD.

  9. Timing Characterization of Helium-4 Fast Neutron Detector with EJ-309 Organic Liquid Scintillator

    NASA Astrophysics Data System (ADS)

    Liang, Yinong; Zhu, Ting; Enqvist, Andreas

    2018-01-01

    Recently, the Helium-4 gas fast neutron scintillation detectors is being used in time-sensitive measurements, such time-of-flight and multiplicity counting. In this paper, a set of time aligned signals was acquired in a coincidence measurement using the Helium-4 gas detectors and EJ-309 liquid scintillators. The high-speed digitizer system is implanted with a trigger moving average window (MAW) unit combing with its constant fraction discriminator (CFD) feature. It can calculate a "time offset" to the timestamp value to get a higher resolution timestamp (up to 50 ps), which is better than the digitizer's time resolution (4 ns) [1]. The digitized waveforms were saved to the computer hard drive and post processed with digital analysis code to determine the difference of their arrival times. The full-width at half-maximum (FWHM) of the Gaussian fit was used as to examine the resolution. For the cascade decay of Cobalt-60 (1.17 and 1.33 MeV), the first version of the Helium-4 detector with two Hamamatsu R580 photomultipliers (PMT) installed at either end of the cylindrical gas chamber (20 cm in length and 4.4 cm in diameter) has a time resolution which is about 3.139 ns FWHM. With improved knowledge of the timing performance, the Helium-4 scintillation detectors are excellent for neutron energy spectrometry applications requiring high temporal and energy resolutions.

  10. Fluorescent properties of a hybrid cadmium sulfide-dendrimer nanocomposite and its quenching with nitromethane.

    PubMed

    Campos, Bruno B; Algarra, Manuel; Esteves da Silva, Joaquim C G

    2010-01-01

    A fluorescent hybrid cadmium sulphide quantum dots (QDs) dendrimer nanocomposite (DAB-CdS) synthesised in water and stable in aqueous solution is described. The dendrimer, DAB-G5 dendrimer (polypropylenimine tetrahexacontaamine) generation 5, a diaminobutene core with 64 amine terminal primary groups. The maximum of the excitation and emission spectra, Stokes' shift and the emission full width of half maximum of this nanocomposite are, respectively: 351, 535, 204 and 212 nm. The fluorescence time decay was complex and a four component decay time model originated a good fit (chi = 1.20) with the following lifetimes: tau (1) = 657 ps; tau (2) = 10.0 ns; tau (3) = 59.42 ns; and tau (4) = 265 ns. The fluorescence intensity of the nanocomposite is markedly quenched by the presence of nitromethane with a dynamic Stern-Volmer constant of 25 M(-1). The quenching profiles show that about 81% of the CdS QDs are located in the external layer of the dendrimer accessible to the quencher. PARAFAC analysis of the excitation emission matrices (EEM) acquired as function of the nitromethane concentration showed a trilinear data structure with only one linearly independent component describing the quenching which allows robust estimation of the excitation and emission spectra and of the quenching profiles. This water soluble and fluorescent nanocomposite shows a set of favourable properties to its use in sensor applications.

  11. High quality ultrafast transmission electron microscopy using resonant microwave cavities.

    PubMed

    Verhoeven, W; van Rens, J F M; Kieft, E R; Mutsaers, P H A; Luiten, O J

    2018-05-01

    Ultrashort, low-emittance electron pulses can be created at a high repetition rate by using a TM 110 deflection cavity to sweep a continuous beam across an aperture. These pulses can be used for time-resolved electron microscopy with atomic spatial and temporal resolution at relatively large average currents. In order to demonstrate this, a cavity has been inserted in a transmission electron microscope, and picosecond pulses have been created. No significant increase of either emittance or energy spread has been measured for these pulses. At a peak current of 814 ± 2 pA, the root-mean-square transverse normalized emittance of the electron pulses is ɛ n,x =(2.7±0.1)·10 -12  m rad in the direction parallel to the streak of the cavity, and ɛ n,y =(2.5±0.1)·10 -12  m rad in the perpendicular direction for pulses with a pulse length of 1.1-1.3 ps. Under the same conditions, the emittance of the continuous beam is ɛ n,x =ɛ n,y =(2.5±0.1)·10 -12  m rad. Furthermore, for both the pulsed and the continuous beam a full width at half maximum energy spread of 0.95 ± 0.05 eV has been measured. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Time- and frequency-dependent model of time-resolved coherent anti-Stokes Raman scattering (CARS) with a picosecond-duration probe pulse

    NASA Astrophysics Data System (ADS)

    Stauffer, Hans U.; Miller, Joseph D.; Slipchenko, Mikhail N.; Meyer, Terrence R.; Prince, Benjamin D.; Roy, Sukesh; Gord, James R.

    2014-01-01

    The hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering (fs/ps CARS) technique presents a promising alternative to either fs time-resolved or ps frequency-resolved CARS in both gas-phase thermometry and condensed-phase excited-state dynamics applications. A theoretical description of time-dependent CARS is used to examine this recently developed probe technique, and quantitative comparisons of the full time-frequency evolution show excellent accuracy in predicting the experimental vibrational CARS spectra obtained for two model systems. The interrelated time- and frequency-domain spectral signatures of gas-phase species produced by hybrid fs/ps CARS are explored with a focus on gas-phase N2 vibrational CARS, which is commonly used as a thermometric diagnostic of combusting flows. In particular, we discuss the merits of the simple top-hat spectral filter typically used to generate the ps-duration hybrid fs/ps CARS probe pulse, including strong discrimination against non-resonant background that often contaminates CARS signal. It is further demonstrated, via comparison with vibrational CARS results on a time-evolving solvated organic chromophore, that this top-hat probe-pulse configuration can provide improved spectral resolution, although the degree of improvement depends on the dephasing timescales of the observed molecular modes and the duration and timing of the narrowband final pulse. Additionally, we discuss the virtues of a frequency-domain Lorentzian probe-pulse lineshape and its potential for improving the hybrid fs/ps CARS technique as a diagnostic in high-pressure gas-phase thermometry applications.

  13. Time- and frequency-dependent model of time-resolved coherent anti-Stokes Raman scattering (CARS) with a picosecond-duration probe pulse.

    PubMed

    Stauffer, Hans U; Miller, Joseph D; Slipchenko, Mikhail N; Meyer, Terrence R; Prince, Benjamin D; Roy, Sukesh; Gord, James R

    2014-01-14

    The hybrid femtosecond∕picosecond coherent anti-Stokes Raman scattering (fs∕ps CARS) technique presents a promising alternative to either fs time-resolved or ps frequency-resolved CARS in both gas-phase thermometry and condensed-phase excited-state dynamics applications. A theoretical description of time-dependent CARS is used to examine this recently developed probe technique, and quantitative comparisons of the full time-frequency evolution show excellent accuracy in predicting the experimental vibrational CARS spectra obtained for two model systems. The interrelated time- and frequency-domain spectral signatures of gas-phase species produced by hybrid fs∕ps CARS are explored with a focus on gas-phase N2 vibrational CARS, which is commonly used as a thermometric diagnostic of combusting flows. In particular, we discuss the merits of the simple top-hat spectral filter typically used to generate the ps-duration hybrid fs∕ps CARS probe pulse, including strong discrimination against non-resonant background that often contaminates CARS signal. It is further demonstrated, via comparison with vibrational CARS results on a time-evolving solvated organic chromophore, that this top-hat probe-pulse configuration can provide improved spectral resolution, although the degree of improvement depends on the dephasing timescales of the observed molecular modes and the duration and timing of the narrowband final pulse. Additionally, we discuss the virtues of a frequency-domain Lorentzian probe-pulse lineshape and its potential for improving the hybrid fs∕ps CARS technique as a diagnostic in high-pressure gas-phase thermometry applications.

  14. Intrauterine Exposure to Methylmercury and Neurocognitive Functions: Minamata Disease.

    PubMed

    Yorifuji, Takashi; Kato, Tsuguhiko; Kado, Yoko; Tokinobu, Akiko; Yamakawa, Michiyo; Tsuda, Toshihide; Sanada, Satoshi

    2015-01-01

    A large-scale food poisoning caused by methylmercury was identified in Minamata, Japan, in the 1950s. The severe intrauterine exposure cases are well known, although the possible impact of low-to-moderate methylmercury exposure in utero are rarely investigated. We examined neurocognitive functions among 22 participants in Minamata, mainly using an intelligence quotient test (Wechsler Adults Intelligent Scale III), in 2012/2013. The participants tended to score low on the Index score of processing speed (PS) relative to full-scale IQ, and discrepancies between PS and other scores within each participant were observed. The lower score on PS was due to deficits in digit symbol-coding and symbol search and was associated with methylmercury concentration in umbilical cords. The residents who experienced low-to-moderate methylmercury exposure including prenatal one in Minamata manifested deficits in their cognitive functions, processing speed in particular.

  15. Potentials and Limits of Sar Permanent Scatterers In Ground Deformation Monitoring

    NASA Astrophysics Data System (ADS)

    Rocca, F.; Colesanti, C.; Ferretti, A.; Prati, C.

    The Permanent Scatterers (PS) technique allows the identification of individual radar targets particularly suitable for SAR interferometric measurements. In fact, despite its remarkable potential, spaceborne SAR Differential Interferometry (DInSAR) has not been fully exploited as a reference tool for ground deformation mapping, due to the presence of atmospheric artefacts as well as geometrical and temporal phase decorrelation. Both drawbacks are overcome in a multi-image framework of interfer- ometric data (>25-30 images) jointly used in order to properly identify and exploit the subset of image pixels corresponding to privileged reflectors, the so-called Per- manent Scatterers. Provided that at least 3-4 PS/sqkm are available, accurate phase measurements carried out on the sparse PS grid allow one to compensate data for the atmospheric phase contributions. Average ground deformation rate as well as full dis- placement time series (both along the satellite Line of Sight, LOS) are estimated with millimetric accuracy on individual PS locations. The PS subset of image pixels can be thought of as a high density (100-400 PS/sqkm, in urban areas) "natural" geode- tic network. This study aims at discussing in detail potentials and limits of the PS approach in monitoring ground deformation phenomena characterised by a complex time non-uniform evolution (Non-Linear Motion, NLM). PS results highlighting sea- sonal displacement effects beneath San Jose (Santa Clara Valley, California) are going to be discussed. The deformation occurring there is related to the seasonal variation of the ground water level in the area delimited by the Silver Creek and the San Jose fault. The San Jose PS analysis is exploited as a significant case study to assess the main requirements for a successful detection of NLM phenomena (by means of PS), and to analyse their impact on the quality of results. Particular attention will be de- voted to the effect of irregularly sampled data and missing acquisitions. The strategies used in order to isolate the phase contribution relative to time non-uniform displace- ment phenomena from other phase terms (mainly atmospheric artefacts and residual topography) are going to be illustrated. Moreover, the main aspects to be considered envisaging a synergistic use of PS results and both GPS and optical levelling data are going to be outlined. Finally, attention will be paid to key issues to be taken into account for designing future SAR missions dedicated to detection and monitoring of ground deformation phenomena.

  16. Nanoscale characterization of local structures and defects in photonic crystals using synchrotron-based transmission soft X-ray microscopy

    PubMed Central

    Nho, Hyun Woo; Kalegowda, Yogesh; Shin, Hyun-Joon; Yoon, Tae Hyun

    2016-01-01

    For the structural characterization of the polystyrene (PS)-based photonic crystals (PCs), fast and direct imaging capabilities of full field transmission X-ray microscopy (TXM) were demonstrated at soft X-ray energy. PS-based PCs were prepared on an O2-plasma treated Si3N4 window and their local structures and defects were investigated using this label-free TXM technique with an image acquisition speed of ~10 sec/frame and marginal radiation damage. Micro-domains of face-centered cubic (FCC (111)) and hexagonal close-packed (HCP (0001)) structures were dominantly found in PS-based PCs, while point and line defects, FCC (100), and 12-fold symmetry structures were also identified as minor components. Additionally, in situ observation capability for hydrated samples and 3D tomographic reconstruction of TXM images were also demonstrated. This soft X-ray full field TXM technique with faster image acquisition speed, in situ observation, and 3D tomography capability can be complementally used with the other X-ray microscopic techniques (i.e., scanning transmission X-ray microscopy, STXM) as well as conventional characterization methods (e.g., electron microscopic and optical/fluorescence microscopic techniques) for clearer structure identification of self-assembled PCs and better understanding of the relationship between their structures and resultant optical properties. PMID:27087141

  17. Poster — Thur Eve — 02: Measurement of CT radiation profile width using Fuji CR imaging plate raw data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bjarnason, T A; Department of Radiology, University of British Columbia, Vancouver; Yang, C J

    2014-08-15

    Measuring the CT collimation width and assessing the shape of the overall profile is a relatively straightforward quality control (QC) measure that impacts both image quality and patient dose, and is often required at acceptance and routine testing. Most CT facilities have access to computed radiography (CR) systems, so performing CT collimation profile assessments using CR plates requires no additional equipment. Previous studies have shown how to effectively use CR plates to measure the radiation profile width. However, a major limitation of the previous work is that the full dynamic range of CR detector plates are not used, since themore » CR processing technology reduces the dynamic range of the DICOM output to 2{sup 10}, requiring the sensitivity and latitude settings of CR reader to be adjusted to prevent clipping of the CT profile data. Such adjustments to CR readers unnecessarily complicate the QC procedure. These clipping artefacts hinder the ability to accurately assess CT collimation width because the full-width at half maximum value of the penumbras are not properly determined if the maximum dose of the profile is not available. Furthermore, any inconsistencies in the radiation profile shape are lost if the profile plateau is clipped off. In this work we developed an opensource Matlab script for straightforward CT profile width measurements using raw CR data that also allows assessment of the profile shape without clipping, and applied this approach during CT QC.« less

  18. A 32 mm  ×  32 mm  ×  22 mm monolithic LYSO:Ce detector with dual-sided digital photon counter readout for ultrahigh-performance TOF-PET and TOF-PET/MRI

    NASA Astrophysics Data System (ADS)

    Borghi, Giacomo; Peet, Bart Jan; Tabacchini, Valerio; Schaart, Dennis R.

    2016-07-01

    New applications for positron emission tomography (PET) and combined PET/magnetic resonance imaging (MRI) are currently emerging, for example in the fields of neurological, breast, and pediatric imaging. Such applications require improved image quality, reduced dose, shorter scanning times, and more precise quantification. This can be achieved by means of dedicated scanners based on ultrahigh-performance detectors, which should provide excellent spatial resolution, precise depth-of-interaction (DOI) estimation, outstanding time-of-flight (TOF) capability, and high detection efficiency. Here, we introduce such an ultrahigh-performance TOF/DOI PET detector, based on a 32 mm  ×  32 mm  ×  22 mm monolithic LYSO:Ce crystal. The 32 mm  ×  32 mm front and back faces of the crystal are coupled to a digital photon counter (DPC) array, in so-called dual-sided readout (DSR) configuration. The fully digital detector offers a spatial resolution of ~1.1 mm full width at half maximum (FWHM)/~1.2 mm mean absolute error, together with a DOI resolution of ~2.4 mm FWHM, an energy resolution of 10.2% FWHM, and a coincidence resolving time of 147 ps FWHM. The time resolution closely approaches the best results (135 ps FWHM) obtained to date with small crystals made from the same material coupled to the same DPC arrays, illustrating the excellent correction for optical and electronic transit time spreads that can be achieved in monolithic scintillators using maximum-likelihood techniques for estimating the time of interaction. The performance barely degrades for events with missing data (up to 6 out of 32 DPC dies missing), permitting the use of almost all events registered under realistic acquisition conditions. Moreover, the calibration procedures and computational methods used for position and time estimation follow recently made improvements that make them fast and practical, opening up realistic perspectives for using DSR monolithic scintillator detectors in TOF-PET and TOF-PET/MRI systems.

  19. Bipolar patients with vascular risk display a steeper age-related negative slope in inhibitory performance but not processing speed: A preliminary study

    PubMed Central

    Dev, Sheena I.; Eyler, Lisa T.

    2017-01-01

    Objective Bipolar disorder (BD) is associated with cognitive deficits, yet little is known about associations between cognition, vascular risk (VR) and age in this population. This study investigated whether BD patients with VR demonstrate stronger apparent age-related decline in inhibitory performance and processing speed (PS). Methods A full medical history was obtained for 34 euthymic BD and 41 healthy comparison (HC) individuals. The Delis-Kaplan Executive Functions Color Word Interference Subtests was administered to all participants to assess for inhibitory performance (condition 3) and PS (condition 1 and 2). VR positive (VRPos) and VR negative (VRNeg) groups were created based on the presence of one or more VR factors. Results VRPos-BD participants demonstrated significantly worse inhibitory performance with older age, while age and inhibition were not significantly related in the VRPOS-HC group or in those who were VRNeg. The same was not true for PS. Conclusion BD patients with VR may also be at risk for greater decline in inhibitory performance, but not PS, with age. Longitudinal studies are needed to further investigate the contributions of VR to cognitive decline among older BD patients. PMID:28041763

  20. Synthesis, biophysical properties and biological activity of second generation antisense oligonucleotides containing chiral phosphorothioate linkages

    PubMed Central

    Wan, W. Brad; Migawa, Michael T.; Vasquez, Guillermo; Murray, Heather M.; Nichols, Josh G.; Gaus, Hans; Berdeja, Andres; Lee, Sam; Hart, Christopher E.; Lima, Walt F.; Swayze, Eric E.; Seth, Punit P.

    2014-01-01

    Bicyclic oxazaphospholidine monomers were used to prepare a series of phosphorothioate (PS)-modified gapmer antisense oligonucleotides (ASOs) with control of the chirality of each of the PS linkages within the 10-base gap. The stereoselectivity was determined to be 98% for each coupling. The objective of this work was to study how PS chirality influences biophysical and biological properties of the ASO including binding affinity (Tm), nuclease stability, activity in vitro and in vivo, RNase H activation and cleavage patterns (both human and E. coli) in a gapmer context. Compounds that had nine or more Sp-linkages in the gap were found to be poorly active in vitro, while compounds with uniform Rp-gaps exhibited activity very similar to that of the stereo-random parent ASOs. Conversely, when tested in vivo, the full Rp-gap compound was found to be quickly metabolized resulting in low activity. A total of 31 ASOs were prepared with control of the PS chirally of each linkage within the gap in an attempt to identify favorable Rp/Sp positions. We conclude that a mix of Rp and Sp is required to achieve a balance between good activity and nuclease stability. PMID:25398895

  1. Reduced γ-γ time walk to below 50 ps using the multiplexed-start and multiplexed-stop fast-timing technique with LaBr3(Ce) detectors

    NASA Astrophysics Data System (ADS)

    Régis, J.-M.; Saed-Samii, N.; Rudigier, M.; Ansari, S.; Dannhoff, M.; Esmaylzadeh, A.; Fransen, C.; Gerst, R.-B.; Jolie, J.; Karayonchev, V.; Müller-Gatermann, C.; Stegemann, S.

    2016-07-01

    The electronic γ-γ fast-timing technique using arrays consisting of many LaBr3(Ce) detectors is a powerful method to determine lifetimes of nuclear excited states with a lower limit of about 5 ps. This method requires the determination of the energy-dependent time walk of the zero time which is represented by the centroid of a prompt γ-γ time distribution. The full-energy peak versus full-energy peak prompt response difference which represents the linearly combined mean γ-γ time walk of a fast-timing array consisting of 8 LaBr3(Ce) detectors was measured using a standard 152Eu γ-ray source for the energy region of 40-1408 keV. The data were acquired using a "multiplexed-start and multiplexed-stop" analogue electronics circuitry and analysed by employing the generalized centroid difference method. Concerning the cylindrical 1.5 in.×1.5 in. LaBr3(Ce) crystals which are coupled to the Hamamatsu R9779 photomultiplier tubes, the best fast-timing array time resolution of 202(3) ps is obtained for the two prompt γ lines of 60Co by using the leading-edge timing principle. When using the zero-crossover timing principle the time resolution is degraded by up to 30%, dependent on the energy and the shaping delay time of the constant fraction discriminator model Ortec 935. The smallest γ-γ time walk to below 50 ps is obtained by using a shaping delay time of about 17 ns and an optimum "time-walk adjustment" needed for detector output pulses with amplitudes smaller than 400 mV.

  2. Phonon Lifetime Observation in Epitaxial ScN Film with Inelastic X-Ray Scattering Spectroscopy.

    PubMed

    Uchiyama, H; Oshima, Y; Patterson, R; Iwamoto, S; Shiomi, J; Shimamura, K

    2018-06-08

    Phonon-phonon scattering dominates the thermal properties in nonmetallic materials, and it directly influences device performance in applications. The understanding of the scattering has been progressing using computational approaches, and the direct and systematic observation of phonon modes that include momentum dependences is desirable. We report experimental data on the phonon dispersion curves and lifetimes in an epitaxially grown ScN film using inelastic x-ray scattering measurements. The momentum dependence of the optical phonon lifetimes is estimated from the spectral width, and the highest-energy phonon mode around the zone center is found to possess a short lifetime of 0.21 ps. A comparison with first-principles calculations shows that our observed phonon lifetimes are quantitatively explained by three-body phonon-phonon interactions.

  3. Generation of strongly coupled Xe cluster nanoplasmas by low intensive soft x-ray laser irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Namba, S.; Hasegawa, N.; Kishimoto, M.

    A seeding gas jet including Xe clusters was irradiated with a laser-driven plasma soft x-ray laser pulse ({lambda}=13.9 nm, {approx}7 ps, {<=}5 Multiplication-Sign 10{sup 9} W/cm{sup 2}), where the laser photon energy is high enough to ionize 4d core electrons. In order to clarify how the innershell ionization followed by the Auger electron emission is affected under the intense laser irradiation, the electron energy distribution was measured. Photoelectron spectra showed that the peak position attributed to 4d hole shifted to lower energy and the spectral width was broadened with increasing cluster size. Moreover, the energy distribution exhibited that a stronglymore » coupled cluster nanoplasma with several eV was generated.« less

  4. The characteristics of Kerr-lens mode-locked self-Raman Nd:YVO4 1176 nm laser

    NASA Astrophysics Data System (ADS)

    Li, Zuohan; Peng, Jiying; Yao, Jianquan; Han, Ming

    2017-03-01

    In this paper we report on a compact and feasible dual-concave cavity CW Kerr-lens mode-locked self-Raman Nd:YVO4 laser. A self-starting diode-pumped picosecond Nd:YVO4 1176 nm laser is demonstrated without any additional components, where the stimulated Stokes Raman scattering and Kerr-lens-induced mode locking are operated in the same crystal. With an incident pump power of 12 W, the average output power at 1176 nm is up to 643 mW. Meanwhile, the repetition rate and the pulse width of the fundamental laser are measured to be 1.53 GHz and 8.6 ps, respectively. In addition, the yellow laser output at 588 nm is realized by frequency doubling with a LiB3O5 crystal.

  5. Passive mode-locking of a diode-pumped Nd:YVO(4) laser by intracavity SHG in PPKTP.

    PubMed

    Iliev, Hristo; Chuchumishev, Danail; Buchvarov, Ivan; Petrov, Valentin

    2010-03-15

    Experimental results on passive mode-locking of a Nd:YVO(4) laser using intracavity frequency doubling in periodically poled KTP (PPKTP) crystal are reported. Both, negative cascaded chi((2)) lensing and frequency doubling nonlinear mirror (FDNLM) are exploited for the laser mode-locking. The FDNLM based on intensity dependent reflection in the laser cavity ensures self-starting and self-sustaining mode-locking while the cascaded chi((2)) lens process contributes to substantial pulse shortening. This hybrid technique enables generation of stable trains of pulses at high-average output power with several picoseconds pulse width. The pulse repetition rate of the laser is 117 MHz with average output power ranging from 0.5 to 3.1 W and pulse duration from 2.9 to 5.2 ps.

  6. Phonon Lifetime Observation in Epitaxial ScN Film with Inelastic X-Ray Scattering Spectroscopy

    NASA Astrophysics Data System (ADS)

    Uchiyama, H.; Oshima, Y.; Patterson, R.; Iwamoto, S.; Shiomi, J.; Shimamura, K.

    2018-06-01

    Phonon-phonon scattering dominates the thermal properties in nonmetallic materials, and it directly influences device performance in applications. The understanding of the scattering has been progressing using computational approaches, and the direct and systematic observation of phonon modes that include momentum dependences is desirable. We report experimental data on the phonon dispersion curves and lifetimes in an epitaxially grown ScN film using inelastic x-ray scattering measurements. The momentum dependence of the optical phonon lifetimes is estimated from the spectral width, and the highest-energy phonon mode around the zone center is found to possess a short lifetime of 0.21 ps. A comparison with first-principles calculations shows that our observed phonon lifetimes are quantitatively explained by three-body phonon-phonon interactions.

  7. Phase noise characterization of a QD-based diode laser frequency comb.

    PubMed

    Vedala, Govind; Al-Qadi, Mustafa; O'Sullivan, Maurice; Cartledge, John; Hui, Rongqing

    2017-07-10

    We measure, simultaneously, the phases of a large set of comb lines from a passively mode locked, InAs/InP, quantum dot laser frequency comb (QDLFC) by comparing the lines to a stable comb reference using multi-heterodyne coherent detection. Simultaneity permits the separation of differential and common mode phase noise and a straightforward determination of the wavelength corresponding to the minimum width of the comb line. We find that the common mode and differential phases are uncorrelated, and measure for the first time for a QDLFC that the intrinsic differential-mode phase (IDMP) between adjacent subcarriers is substantially the same for all subcarrier pairs. The latter observation supports an interpretation of 4.4ps as the standard deviation of IDMP on a 200µs time interval for this laser.

  8. Determination of Cross-Sectional Area of Focused Picosecond Gaussian Laser Beam

    NASA Technical Reports Server (NTRS)

    Ledesma, Rodolfo; Fitz-Gerald, James; Palmieri, Frank; Connell, John

    2018-01-01

    Measurement of the waist diameter of a focused Gaussian-beam at the 1/e(sup 2) intensity, also referred to as spot size, is key to determining the fluence in laser processing experiments. Spot size measurements are also helpful to calculate the threshold energy and threshold fluence of a given material. This work reports an application of a conventional method, by analyzing single laser ablated spots for different laser pulse energies, to determine the cross-sectional area of a focused Gaussian-beam, which has a nominal pulse width of approx. 10 ps. Polished tungsten was used as the target material, due to its low surface roughness and low ablation threshold, to measure the beam waist diameter. From the ablative spot measurements, the ablation threshold fluence of the tungsten substrate was also calculated.

  9. Scaling of graphene integrated circuits.

    PubMed

    Bianchi, Massimiliano; Guerriero, Erica; Fiocco, Marco; Alberti, Ruggero; Polloni, Laura; Behnam, Ashkan; Carrion, Enrique A; Pop, Eric; Sordan, Roman

    2015-05-07

    The influence of transistor size reduction (scaling) on the speed of realistic multi-stage integrated circuits (ICs) represents the main performance metric of a given transistor technology. Despite extensive interest in graphene electronics, scaling efforts have so far focused on individual transistors rather than multi-stage ICs. Here we study the scaling of graphene ICs based on transistors from 3.3 to 0.5 μm gate lengths and with different channel widths, access lengths, and lead thicknesses. The shortest gate delay of 31 ps per stage was obtained in sub-micron graphene ROs oscillating at 4.3 GHz, which is the highest oscillation frequency obtained in any strictly low-dimensional material to date. We also derived the fundamental Johnson limit, showing that scaled graphene ICs could be used at high frequencies in applications with small voltage swing.

  10. High-pulse energy-stabilized passively mode-locked external cavity inverse bow-tie 980nm laser diode for space applications

    NASA Astrophysics Data System (ADS)

    Krakowski, M.; Resneau, P.; Garcia, M.; Vinet, E.; Robert, Y.; Lecomte, M.; Parillaud, O.; Gerard, B.; Kundermann, S.; Torcheboeuf, N.; Boiko, D. L.

    2018-02-01

    We report on multi-section inverse bow-tie laser producing mode-locked pulses of 90 pJ energy and 6.5 ps width (895 fs after compression) at 1.3 GHz pulse repetition frequency (PRF) and consuming 2.9 W of electric power. The laser operates in an 80 mm long external cavity. By translation of the output coupling mirror, the PRF was continuously tuned over 37 MHz range without additional adjustments. Active stabilization with a phase lock loop actuating on the driving current has allowed us to reach the PRF relative stability at a 2·10-10 level on 10 s intervals, as required by the European Space Agency (ESA) for inter-satellite long distance measurements.

  11. A CMOS Time-Resolved Fluorescence Lifetime Analysis Micro-System

    PubMed Central

    Rae, Bruce R.; Muir, Keith R.; Gong, Zheng; McKendry, Jonathan; Girkin, John M.; Gu, Erdan; Renshaw, David; Dawson, Martin D.; Henderson, Robert K.

    2009-01-01

    We describe a CMOS-based micro-system for time-resolved fluorescence lifetime analysis. It comprises a 16 × 4 array of single-photon avalanche diodes (SPADs) fabricated in 0.35 μm high-voltage CMOS technology with in-pixel time-gated photon counting circuitry and a second device incorporating an 8 × 8 AlInGaN blue micro-pixellated light-emitting diode (micro-LED) array bump-bonded to an equivalent array of LED drivers realized in a standard low-voltage 0.35 μm CMOS technology, capable of producing excitation pulses with a width of 777 ps (FWHM). This system replaces instrumentation based on lasers, photomultiplier tubes, bulk optics and discrete electronics with a PC-based micro-system. Demonstrator lifetime measurements of colloidal quantum dot and Rhodamine samples are presented. PMID:22291564

  12. Full Waveform Modelling for Subsurface Characterization with Converted-Wave Seismic Reflection

    NASA Astrophysics Data System (ADS)

    Triyoso, Wahyu; Oktariena, Madaniya; Sinaga, Edycakra; Syaifuddin, Firman

    2017-04-01

    While a large number of reservoirs have been explored using P-waves seismic data, P-wave seismic survey ceases to provide adequate result in seismically and geologically challenging areas, like gas cloud, shallow drilling hazards, strong multiples, highly fractured, anisotropy. Most of these reservoir problems can be addressed using P and PS seismic data combination. Multicomponent seismic survey records both P-wave and S-wave unlike conventional survey that only records compressional P-wave. Under certain conditions, conventional energy source can be used to record P and PS data using the fact that compressional wave energy partly converts into shear waves at the reflector. Shear component can be recorded using down going P-wave and upcoming S-wave by placing a horizontal component geophone on the ocean floor. A synthetic model is created based on real data to analyze the effect of gas cloud existence to PP and PS wave reflections which has a similar characteristic to Sub-Volcanic imaging. The challenge within the multicomponent seismic is the different travel time between P-wave and S-wave, therefore the converted-wave seismic data should be processed with different approach. This research will provide a method to determine an optimum converted point known as Common Conversion Point (CCP) that can solve the Asymmetrical Conversion Point of PS data. The value of γ (Vp/Vs) is essential to estimate the right CCP that will be used in converted-wave seismic processing. This research will also continue to the advanced processing method of converted-wave seismic by applying Joint Inversion to PP&PS seismic. Joint Inversion is a simultaneous model-based inversion that estimates the P&S-wave impedance which are consistent with the PP&PS amplitude data. The result reveals a more complex structure mirrored in PS data below the gas cloud area. Through estimated γ section resulted from Joint Inversion, we receive a better imaging improvement below gas cloud area tribute to the converted-wave seismic as additional constrain.

  13. Effects of aggregation of drug and diagnostic codes on the performance of the high-dimensional propensity score algorithm: an empirical example.

    PubMed

    Le, Hoa V; Poole, Charles; Brookhart, M Alan; Schoenbach, Victor J; Beach, Kathleen J; Layton, J Bradley; Stürmer, Til

    2013-11-19

    The High-Dimensional Propensity Score (hd-PS) algorithm can select and adjust for baseline confounders of treatment-outcome associations in pharmacoepidemiologic studies that use healthcare claims data. How hd-PS performance is affected by aggregating medications or medical diagnoses has not been assessed. We evaluated the effects of aggregating medications or diagnoses on hd-PS performance in an empirical example using resampled cohorts with small sample size, rare outcome incidence, or low exposure prevalence. In a cohort study comparing the risk of upper gastrointestinal complications in celecoxib or traditional NSAIDs (diclofenac, ibuprofen) initiators with rheumatoid arthritis and osteoarthritis, we (1) aggregated medications and International Classification of Diseases-9 (ICD-9) diagnoses into hierarchies of the Anatomical Therapeutic Chemical classification (ATC) and the Clinical Classification Software (CCS), respectively, and (2) sampled the full cohort using techniques validated by simulations to create 9,600 samples to compare 16 aggregation scenarios across 50% and 20% samples with varying outcome incidence and exposure prevalence. We applied hd-PS to estimate relative risks (RR) using 5 dimensions, predefined confounders, ≤ 500 hd-PS covariates, and propensity score deciles. For each scenario, we calculated: (1) the geometric mean RR; (2) the difference between the scenario mean ln(RR) and the ln(RR) from published randomized controlled trials (RCT); and (3) the proportional difference in the degree of estimated confounding between that scenario and the base scenario (no aggregation). Compared with the base scenario, aggregations of medications into ATC level 4 alone or in combination with aggregation of diagnoses into CCS level 1 improved the hd-PS confounding adjustment in most scenarios, reducing residual confounding compared with the RCT findings by up to 19%. Aggregation of codes using hierarchical coding systems may improve the performance of the hd-PS to control for confounders. The balance of advantages and disadvantages of aggregation is likely to vary across research settings.

  14. Dynamics of asymmetric binary glass formers. I. A dielectric and nuclear magnetic resonance spectroscopy study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kahlau, R.; Bock, D.; Schmidtke, B.

    2014-01-28

    Dielectric spectroscopy as well as {sup 2}H and {sup 31}P nuclear magnetic resonance spectroscopy (NMR) are applied to probe the component dynamics of the binary glass former tripropyl phosphate (TPP)/polystyrene (PS/PS-d{sub 3}) in the full concentration (c{sub TPP}) range. In addition, depolarized light scattering and differential scanning calorimetry experiments are performed. Two glass transition temperatures are found: T{sub g1}(c{sub TPP}) reflects PS dynamics and shows a monotonic plasticizer effect, while the lower T{sub g2}(c{sub TPP}) exhibits a maximum and is attributed to (faster) TPP dynamics, occurring in a slowly moving or immobilized PS matrix. Dielectric spectroscopy probing solely TPP identifiesmore » two different time scales, which are attributed to two sub-ensembles. One of them, again, shows fast TPP dynamics (α{sub 2}-process), the other (α{sub 1}-process) displays time constants identical with those of the slow PS matrix. Upon heating the α{sub 1}-fraction of TPP decreases until above some temperature T{sub c} only a single α{sub 2}-population exists. Inversely, below T{sub c} a fraction of the TPP molecules is trapped by the PS matrix. At low c{sub TPP} the α{sub 2}-relaxation does not follow frequency-temperature superposition (FTS), instead it is governed by a temperature independent distribution of activation energies leading to correlation times which follow Arrhenius laws, i.e., the α{sub 2}-relaxation resembles a secondary process. Yet, {sup 31}P NMR demonstrates that it involves isotropic reorientations of TPP molecules within a slowly moving or rigid matrix of PS. At high c{sub TPP} the super-Arrhenius temperature dependence of τ{sub 2}(T), as well as FTS are recovered, known as typical of the glass transition in neat systems.« less

  15. Broad-spectrum Antibiotic Plus Metronidazole May Not Prevent the Deterioration of Necrotizing Enterocolitis From Stage II to III in Full-term and Near-term Infants

    PubMed Central

    Luo, Li-Juan; Li, Xin; Yang, Kai-Di; Lu, Jiang-Yi; Li, Lu-Quan

    2015-01-01

    Abstract Necrotizing enterocolitis (NEC) is the most common and frequently dangerous neonatal gastrointestinal disease. Studies have shown broad-spectrum antibiotics plus anaerobic antimicrobial therapy did not prevent the deterioration of NEC among very low birth preterm infants. However, few studies about this therapy which focused on full-term and near-term infant with NEC has been reported. The aim of this study was to evaluate the effect of broad-spectrum antibiotic plus metronidazole in preventing the deterioration of NEC from stage II to III in full-term and near-term infants. A retrospective cohort study based on the propensity score (PS) 1:1 matching was performed among the full-term and near-term infants with NEC (Bell stage ≥II). All infants who received broad-spectrum antibiotics were divided into 2 groups: group with metronidazole treatment (metronidazole was used ≥4 days continuously, 15 mg/kg/day) and group without metronidazole treatment. The depraved rates of stage II NEC between the 2 groups were compared. Meanwhile, the risk factors associated with the deterioration of stage II NEC were analyzed by case-control study in the PS-matched cases. A total of 229 infants met the inclusion criteria. Before PS-matching, we found the deterioration of NEC rate in the group with metronidazole treatment was higher than that in the group without metronidazole treatment (18.1% [28/155] vs 8.1% [6/74]; P = 0.048). After PS-matching, 73 pairs were matched, and the depraved rate of NEC in the group with metronidazole treatment was not lower than that in the group without metronidazole treatment (15.1% vs 8.2%; P = 0.2). Binary logistic regression analysis showed that sepsis after NEC (odds ratio [OR] 3.748, 95% confidence interval [CI] 1.171–11.998, P = 0.03), the need to use transfusion of blood products after diagnosis of NEC (OR 8.003, 95% CI 2.365–27.087, P = 0.00), and the need of longer time for nasogastric suction were risk factors for stage II NEC progressing to stage III (OR 1.102, 95% CI 1.004–1.21, P = 0.04). Broad-spectrum antibiotic plus metronidazole may not prevent the deterioration of NEC in full-term and near-term infants. Those infants who had sepsis required transfusion of blood products, and needed longer time for nasogastric suction after stage II NEC was more likely to progress to stage III. PMID:26496340

  16. The Tip of the Four N-Terminal α-Helices of Clostridium sordellii Lethal Toxin Contains the Interaction Site with Membrane Phosphatidylserine Facilitating Small GTPases Glucosylation

    PubMed Central

    Varela Chavez, Carolina; Haustant, Georges Michel; Baron, Bruno; England, Patrick; Chenal, Alexandre; Pauillac, Serge; Blondel, Arnaud; Popoff, Michel-Robert

    2016-01-01

    Clostridium sordellii lethal toxin (TcsL) is a powerful virulence factor responsible for severe toxic shock in man and animals. TcsL belongs to the large clostridial glucosylating toxin (LCGT) family which inactivates small GTPases by glucosylation with uridine-diphosphate (UDP)-glucose as a cofactor. Notably, TcsL modifies Rac and Ras GTPases, leading to drastic alteration of the actin cytoskeleton and cell viability. TcsL enters cells via receptor-mediated endocytosis and delivers the N-terminal glucosylating domain (TcsL-cat) into the cytosol. TcsL-cat was found to preferentially bind to phosphatidylserine (PS)-containing membranes and to increase the glucosylation of Rac anchored to the lipid membrane. We have previously reported that the N-terminal four helical bundle structure (1–93 domain) recognizes a broad range of lipids, but that TcsL-cat specifically binds to PS and phosphatidic acid. Here, we show using mutagenesis that the PS binding site is localized on the tip of the four-helix bundle which is rich in positively-charged amino acids. Residues Y14, V15, F17, and R18 on loop 1, between helices 1 and 2, in coordination with R68 from loop 3, between helices 3 and 4, form a pocket which accommodates L-serine. The functional PS-binding site is required for TcsL-cat binding to the plasma membrane and subsequent cytotoxicity. TcsL-cat binding to PS facilitates a high enzymatic activity towards membrane-anchored Ras by about three orders of magnitude as compared to Ras in solution. The PS-binding site is conserved in LCGTs, which likely retain a common mechanism of binding to the membrane for their full activity towards membrane-bound GTPases. PMID:27023605

  17. Preoperative varus-valgus kinematic pattern throughout flexion persists more strongly after cruciate-retaining than after posterior-stabilized total knee arthroplasty.

    PubMed

    Hino, Kazunori; Oonishi, Yoshio; Kutsuna, Tatsuhiko; Watamori, Kunihiko; Iseki, Yasutake; Kiyomatsu, Hiroshi; Watanabe, Seiji; Miura, Hiromasa

    2016-08-01

    Restoration of normal knee kinematics is key to improving patient satisfaction and functional outcomes after total knee arthroplasty (TKA). However, the effect of preoperative varus-valgus kinematics due to knee osteoarthritis on the postoperative kinematics is unclear. The function of the knee ligament contributes to both knee stability and kinematics. The aim of this study was to evaluate changes in varus-valgus kinematics before and after TKA using a navigation system, in addition to comparing the pre- and postoperative changes in kinematic patterns between cruciate-retaining (CR)- and posterior-stabilized (PS)-TKAs. Forty knees treated with TKA were evaluated (CR-TKA 20; PS-TKA 20). Manual mild passive knee flexion was applied while moving the leg from full extension to flexion. The varus-valgus angle was automatically measured by a navigation system at every 10° of the flexion angle, and the kinematics were evaluated. Kinematic patterns throughout flexion can be classified into five types. The pre- and postoperative kinematic patterns were similar in 60% of patients who underwent CR-TKA, whereas they were similar in only 25% of those who underwent PS-TKA. The mean change in the size of the varus-valgus angle throughout flexion did not differ between CR-TKA and PS-TKA. However, the distribution of changes in the size of the varus-valgus angle differed between CR-TKA and PS-TKA. We obtained the following results: 1) some patterns of varus-valgus kinematics are noted under unloading conditions despite recovery of neutral alignment in extension and 2) the preoperative varus-valgus kinematic pattern persisted more strongly after CR-TKA than after PS-TKA. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Trials Against Conqueror Tanks with Additional Ballistic Protection. Part 2: The Use of Large Hollow-Charge Warheads

    DTIC Science & Technology

    1957-05-01

    4 Ears. Ism could not be examined on account of bilateral chronic suppurative otitis media (C. SO.M.). (The middle ear full of thick pus and drum, if...examined on account of chronic suppurative otitis media (C. S.0. K.). (Middle ear full of thick ps.) Would have survived. Driver’s Seat Upper Rabbit

  19. IR luminescence of tellurium-doped silica-based optical fibre

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dianov, Evgenii M; Alyshev, S V; Shubin, Aleksei V

    2012-03-31

    Tellurium-doped germanosilicate fibre has been fabricated by the MCVD process. In contrast to Te-containing glasses studied earlier, it has a broad luminescence band (full width at half maximum of {approx}350 nm) centred at 1500 nm, with a lifetime of {approx}2 {mu}s. The luminescence of the fibre has been studied before and after gamma irradiation in a {sup 60}Co source to 309 and 992 kGy. The irradiation produced a luminescence band around 1100 nm, with a full width at half maximum of {approx}400 nm and lifetime of {approx}5 {mu}s. (letters)

  20. Image improvement from a sodium-layer laser guide star adaptive optics system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Max, C. E., LLNL

    1997-06-01

    A sodium-layer laser guide star beacon with high-order adaptive optics at Lick Observatory produced a factor of 2.4 intensity increase and a factor of 2 decrease in full width at half maximum for an astronomical point source, compared with image motion compensation alone. Image full widths at half maximum were identical for laser and natural guide stars (0.3 arc seconds). The Strehl ratio with the laser guide star was 65% of that with a natural guide star. This technique should allow ground-based telescopes to attain the diffraction limit, by correcting for atmospheric distortions.

  1. Single-shot transient absorption spectroscopy with a 45  ps pump-probe time delay range.

    PubMed

    Wilson, Kelly S; Wong, Cathy Y

    2018-02-01

    We report a single-shot transient absorption apparatus that successfully uses a tilted pump pulse to spatially encode a 45 ps pump-probe time delay. The time delay range is significantly improved over other reported instruments by using a spatial light modulator to flatten the intensity of the excitation field at the sample position. The full time delay range of the instrument is demonstrated by measuring a long-lived dye. A signal-to-noise ratio of >35 is attained in 8 s. This advance will enable the measurement of excited state dynamics of systems that are not at structural equilibrium.

  2. Ultrastrong exciton-photon coupling in single and coupled organic microcavities

    NASA Astrophysics Data System (ADS)

    Liu, Bin; Bramante, Rosemary; Valle, Brent; Singer, Kenneth; Khattab, Tawfik; Williams, Jarrod; Twieg, Robert

    2015-03-01

    We have demonstrated ultrastrong light-matter coupling in organic planar microcavities composed of a neat glassy organic dye film between two metallic (aluminum) mirrors in a half-cavity configuration. Such cavities are characterized by Q factors around 10. Tuning the thickness of the organic layer enables the observation of the ultrastrong coupling regime. Via reflectivity measurements, we observe a very large Rabi splitting around 1.227 eV between upper and lower polariton branches at room temperature, and we detect polariton emission from the lower polariton branch via photoluminescence measurements. The large splitting is due to the large oscillator strength of the neat dye glass, and to the match of the low-Q cavity spectral width to the broad absorption width of the dye film material. We also study the interaction between excitonic states of neat glassy organic dye and cavity modes within coupled microcavity structures. The high-reflectivity mirrors are formed from distributed Bragg reflectors (DBR), which are multilayer films fabricated using the coextrusion process, containing alternating layers of high (SAN25, n =1.57) and low (Dyneon THV 220G, n =1.37) refractive index dielectric polymers. Nonlinear optical measurements will be discussed. This research was supported by the National Science Foundation Center for Layered Polymer Systems (CLiPS) under Grant Number DMR-0423914.

  3. Picosecond pulsed micro-module emitting near 560 nm using a frequency doubled gain-switched DBR ridge waveguide semiconductor laser

    NASA Astrophysics Data System (ADS)

    Kaltenbach, André; Hofmann, Julian; Seidel, Dirk; Lauritsen, Kristian; Bugge, Frank; Fricke, Jörg; Paschke, Katrin; Erdmann, Rainer; Tränkle, Günther

    2017-02-01

    A miniaturized picosecond pulsed semiconductor laser source in the spectral range around 560nm is realized by integrating a frequency doubled distributed Bragg reflector ridge waveguide laser (DBR-RWL) into a micromodule. Such compact laser sources are suitable for mobile application, e.g. in microscopes. The picosecond optical pulses are generated by gain-switching which allows for arbitrary pulse repetition frequencies. For frequency conversion a periodically poled magnesium doped lithium niobate ridge waveguide crystal (PPLN) is used to provide high conversion efficiency with single-pass second harmonic generation (SHG). The coupling of the pulsed radiation into the PPLN crystal is realized by a GRIN-lens. Such types of lenses collect the divergent laser radiation and focus it into the crystal waveguide providing high coupling efficiency at a minimum of space compared to the usage of fast axis collimator(FAC)/slow axis collimator (SAC) lens combinations. The frequency doubled output pulses show a pulse width of about 60 ps FWHM and a spectral width around 0.06nm FWHM at a central wavelength of 557nm at 15Å. The pulse peak power could be determined to be more than 300mW at a repetition frequency of 40 MHz.

  4. Defining the minimal structural requirements for partial agonism at the type I myo-inositol 1,4,5-trisphosphate receptor.

    PubMed

    Wilcox, R A; Fauq, A; Kozikowski, A P; Nahorski, S R

    1997-02-03

    The novel synthetic analogues D-3-fluoro-myo-inositol 1,5-bisphosphate-4-phosphorothioate, [3F-Ins(1,5)P2-4PS], D-3-fluoro-myo-inositol 1,4-bisphosphate-5-phosphorothioate [3F-Ins(1,4)P2-5PS], and D-3-fluoro-myo-inositol 1-phosphate-4,5-bisphosphorothioate [3F-Ins(1)P-(4,5)PS2] were utilised to define the structure-activity relationships which could produce partial agonism at the Ca2+ mobilising myo-inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] receptor. Based on prior structure-activity data we hypothesised that the minimal structural requirements for lns(1,4,5)P3 receptor partial agonism, were phosphorothioate substitution of the crucial vicinal 4,5-bisphosphate pair accompanied by another structural perturbation, such fluorination of 3-position of the myo-inositol ring. All the analogues fully displaced [3H]Ins(1,4,5)P3 from a single Ins(1,4,5)P3 binding site in pig cerebellar membranes [3F-Ins(1,5)P2-4PS (1C50 = 26 nM), 3F-Ins(1,4)P2-5PS (IC50 = 80 nM) and 3F-Ins(1)P-(4,5)PS2 (IC50 = 109 nM) cf. Ins(1,4,5)P3 (IC50 = 11 nM)]. In contrast, 3F-Ins(1,5)P2-4PS (IC50 = 424 nM) and 3F-Ins(1,4)P2-5PS (IC50 = 3579 nM) were weak full agonists at the Ca2+ mobilising Ins(1,4,5)P3 receptor of permeabilised SH-SY5Y neuroblastoma cells, being respectively 4- and 36-fold less potent than Ins(1,4,5)P3 (EC50 = 99 nM). While 3F-Ins(1)P-(4,5)PS2 (EC50 = 11345 nM) was a partial agonist releasing only 64.3 +/- 1.9% of the Ins(1,4,5)P3-sensitive intracellular Ca2+ pools. 3F-Ins(1)P-(4,5)PS2 was unique among the Ins(1,4,5)P3 receptor partial agonists so far identified in having a relatively high affinity for the Ins(1,4,5)P3 binding site, accompanied by a significant loss of intrinsic activity for Ca2+ mobilisation. This improved affinity was probably due to the retention of the 1-position phosphate, which enhances interaction with the Ins-(1,4,5)P3 receptor. 3F-Ins(1)P-(4,5)PS2 may be an important lead compound for the development of efficient Ins(1,4,5)P3 receptor antagonists.

  5. Full waveform seismic AVAZ signatures of anisotropic shales by integrated rock physics and the reflectivity method

    NASA Astrophysics Data System (ADS)

    Liu, Xiwu; Guo, Zhiqi; Han, Xu

    2018-06-01

    A set of parallel vertical fractures embedded in a vertically transverse isotropy (VTI) background leads to orthorhombic anisotropy and corresponding azimuthal seismic responses. We conducted seismic modeling of full waveform amplitude variations versus azimuth (AVAZ) responses of anisotropic shale by integrating a rock physics model and a reflectivity method. The results indicate that the azimuthal variation of P-wave velocity tends to be more complicated for orthorhombic medium compared to the horizontally transverse isotropy (HTI) case, especially at high polar angles. Correspondingly, for the HTI layer in the theoretical model, the short axis of the azimuthal PP amplitudes at the top interface is parallel to the fracture strike, while the long axis at the bottom reflection directs the fracture strike. In contrast, the orthorhombic layer in the theoretical model shows distinct AVAZ responses in terms of PP reflections. Nevertheless, the azimuthal signatures of the R- and T-components of the mode-converted PS reflections show similar AVAZ features for the HTI and orthorhombic layers, which may imply that the PS responses are dominated by fractures. For the application to real data, a seismic-well tie based on upscaled data and a reflectivity method illustrate good agreement between the reference layers and the corresponding reflected events. Finally, the full waveform seismic AVAZ responses of the Longmaxi shale formation are computed for the cases of HTI and orthorhombic anisotropy for comparison. For the two cases, the azimuthal features represent differences mainly in amplitudes, while slightly in the phases of the reflected waveforms. Azimuth variations in the PP reflections from the reference layers show distinct behaviors for the HTI and orthorhombic cases, while the mode-converted PS reflections in terms of the R- and T-components show little differences in azimuthal features. It may suggest that the behaviors of the PS waves are dominated by vertically aligned fractures. This work provides further insight into the azimuthal seismic response of orthorhombic shales. The proposed method may help to improve the seismic-well tie, seismic interpretation, and inversion results using an azimuth anisotropy dataset.

  6. Detector Sampling of Optical/IR Spectra: How Many Pixels per FWHM?

    NASA Astrophysics Data System (ADS)

    Robertson, J. Gordon

    2017-08-01

    Most optical and IR spectra are now acquired using detectors with finite-width pixels in a square array. Each pixel records the received intensity integrated over its own area, and pixels are separated by the array pitch. This paper examines the effects of such pixellation, using computed simulations to illustrate the effects which most concern the astronomer end-user. It is shown that coarse sampling increases the random noise errors in wavelength by typically 10-20 % at 2 pixels per Full Width at Half Maximum, but with wide variation depending on the functional form of the instrumental Line Spread Function (i.e. the instrumental response to a monochromatic input) and on the pixel phase. If line widths are determined, they are even more strongly affected at low sampling frequencies. However, the noise in fitted peak amplitudes is minimally affected by pixellation, with increases less than about 5%. Pixellation has a substantial but complex effect on the ability to see a relative minimum between two closely spaced peaks (or relative maximum between two absorption lines). The consistent scale of resolving power presented by Robertson to overcome the inadequacy of the Full Width at Half Maximum as a resolution measure is here extended to cover pixellated spectra. The systematic bias errors in wavelength introduced by pixellation, independent of signal/noise ratio, are examined. While they may be negligible for smooth well-sampled symmetric Line Spread Functions, they are very sensitive to asymmetry and high spatial frequency sub-structure. The Modulation Transfer Function for sampled data is shown to give a useful indication of the extent of improperly sampled signal in an Line Spread Function. The common maxim that 2 pixels per Full Width at Half Maximum is the Nyquist limit is incorrect and most Line Spread Functions will exhibit some aliasing at this sample frequency. While 2 pixels per Full Width at Half Maximum is nevertheless often an acceptable minimum for moderate signal/noise work, it is preferable to carry out simulations for any actual or proposed Line Spread Function to find the effects of various sampling frequencies. Where spectrograph end-users have a choice of sampling frequencies, through on-chip binning and/or spectrograph configurations, it is desirable that the instrument user manual should include an examination of the effects of the various choices.

  7. Antibacterial activity of silver nanoparticles obtained by pulsed laser ablation in pure water and in chloride solution.

    PubMed

    Perito, Brunella; Giorgetti, Emilia; Marsili, Paolo; Muniz-Miranda, Maurizio

    2016-01-01

    Silver nanoparticles (AgNPs) have increasingly gained importance as antibacterial agents with applications in several fields due to their strong, broad-range antimicrobial properties. AgNP synthesis by pulsed laser ablation in liquid (PLAL) permits the preparation of stable Ag colloids in pure solvents without capping or stabilizing agents, producing AgNPs more suitable for biomedical applications than those prepared with common, wet chemical preparation techniques. To date, only a few investigations into the antimicrobial effect of AgNPs produced by PLAL have been performed. These have mainly been performed by ablation in water with nanosecond pulse widths. We previously observed a strong surface-enhanced Raman scattering (SERS) signal from such AgNPs by "activating" the NP surface by the addition of a small quantity of LiCl to the colloid. Such surface effects could also influence the antimicrobial activity of the NPs. Their activity, on the other hand, could also be affected by other parameters linked to the ablation conditions, such as the pulse width. The antibacterial activity of AgNPs was evaluated for NPs obtained either by nanosecond (ns) or picosecond (ps) PLAL using a 1064 nm ablation wavelength, in pure water or in LiCl aqueous solution, with Escherichia coli and Bacillus subtilis as references for Gram-negative and Gram-positive bacteria, respectively. In all cases, AgNPs with an average diameter less than 10 nm were obtained, which has been shown in previous works to be the most effective size for bactericidal activity. The measured zeta-potential values were very negative, indicating excellent long-term colloidal stability. Antibacterial activity was observed against both microorganisms for the four AgNP formulations, but the ps-ablated nanoparticles were shown to more effectively inhibit the growth of both microorganisms. Moreover, LiCl modified AgNPs were the most effective, showing minimum inhibitory concentration (MIC) values in a restricted range of 1.0-3.7 µg/mL. An explanation is proposed for this result based on the increased surface reactivity of the metal surface due to the presence of positively charged active sites.

  8. Examining P-Wave Arrivals of Low-Frequency Earthquakes for Evidence of Attenuation and its Effects on Moment-Duration Scaling

    NASA Astrophysics Data System (ADS)

    Gerzina, J.; Rubin, A. M.

    2017-12-01

    Bostock et. al. (2015) found that low-frequency earthquake (LFE) duration is nearly independent of moment, a result that is surprising enough to warrant investigating whether it might be an artifact of attenuation. Bostock et. al. (2017) found that bulk crustal attenuation could not be the culprit, but suggested that near-source attenuation might cause pronounced depletion of high frequency S-waves. Despite their lower signal-to noise ratio, looking at the P-waves might be enlightening because they aren't expected to attenuate as much as S-waves in the high Vp/Vs region near the tremor source. We have examined P-wave arrivals of LFEs that occurred during episodic tremor in the Cascadia subduction zone with the goal of refining the relationship between LFE magnitude and duration.Bostock et. al's duration measurements were made on stacked templates rather than individual arrivals. Because members of Bostock's LFE families vary in location, and therefore in P-S delay time, aligning the stacks primarily on the S arrival may artificially widen the P pulse. To circumvent this, we used cross-station cross correlations on Bostock's detections to identify and stack events with similar locations and therefore similar P-S delay times, until P arrivals became visible. We then stacked these stacks based on cross-correlating the optimal P component in a small window surrounding the P arrival. Although this procedure narrowed both the P and S pulse widths, it did not dramatically narrow P in relation to S, nor did we observe different P pulse widths for small and large events.We also compared the frequency spectra of small windows around the expected P and S arrivals for each amplitude bin. Although there is more high-frequency content in P-waves than S-waves, we have not yet been able to resolve a difference in P-wave corner frequency for different event sizes. Thus our preliminary results support the notion that LFEs are intrinsically low frequency.

  9. Cherenkov radiation-based three-dimensional position-sensitive PET detector: A Monte Carlo study.

    PubMed

    Ota, Ryosuke; Yamada, Ryoko; Moriya, Takahiro; Hasegawa, Tomoyuki

    2018-05-01

    Cherenkov radiation has recently received attention due to its prompt emission phenomenon, which has the potential to improve the timing performance of radiation detectors dedicated to positron emission tomography (PET). In this study, a Cherenkov-based three-dimensional (3D) position-sensitive radiation detector was proposed, which is composed of a monolithic lead fluoride (PbF 2 ) crystal and a photodetector array of which the signals can be readout independently. Monte Carlo simulations were performed to estimate the performance of the proposed detector. The position- and time resolution were evaluated under various practical conditions. The radiator size and various properties of the photodetector, e.g., readout pitch and single photon timing resolution (SPTR), were parameterized. The single photon time response of the photodetector was assumed to be a single Gaussian for the simplification. The photo detection efficiency of the photodetector was ideally 100% for all wavelengths. Compton scattering was included in simulations, but partly analyzed. To estimate the position at which a γ-ray interacted in the Cherenkov radiator, the center-of-gravity (COG) method was employed. In addition, to estimate the depth-of-interaction (DOI) principal component analysis (PCA), which is a multivariate analysis method and has been used to identify the patterns in data, was employed. The time-space distribution of Cherenkov photons was quantified to perform PCA. To evaluate coincidence time resolution (CTR), the time difference of two independent γ-ray events was calculated. The detection time was defined as the first photon time after the SPTR of the photodetector was taken into account. The position resolution on the photodetector plane could be estimated with high accuracy, by using a small number of Cherenkov photons. Moreover, PCA showed an ability to estimate the DOI. The position resolution heavily depends on the pitch of the photodetector array and the radiator thickness. If the readout pitch were ideally 0 and practically 3 mm, a full-width at half-maximum (FWHM) of 0.348 and 1.92 mm was achievable with a 10-mm-thick PbF 2 crystal, respectively. Furthermore, first-order correlation could be observed between the primary principal component and the true DOI. To obtain a coincidence timing resolution better than 100-ps FWHM with a 20-mm-thick PbF 2 crystal, a photodetector with SPTR of better than σ = 30 ps was necessary. From these results, the improvement of SPTR allows us to achieve CTR better than 100-ps FWHM, even in the case where a 20-mm-thick radiator is used. Our proposed detector has the potential to estimate the 3D interaction position of γ-rays in the radiator, using only time and space information of Cherenkov photons. © 2018 American Association of Physicists in Medicine.

  10. Polymer Coatings in 3D-Printed Fluidic Device Channels for Improved Cellular Adherence Prior to Electrical Lysis.

    PubMed

    Gross, Bethany C; Anderson, Kari B; Meisel, Jayda E; McNitt, Megan I; Spence, Dana M

    2015-06-16

    This paper describes the design and fabrication of a polyjet-based three-dimensional (3D)-printed fluidic device where poly(dimethylsiloxane) (PDMS) or polystyrene (PS) were used to coat the sides of a fluidic channel within the device to promote adhesion of an immobilized cell layer. The device was designed using computer-aided design software and converted into an .STL file prior to printing. The rigid, transparent material used in the printing process provides an optically transparent path to visualize endothelial cell adherence and supports integration of removable electrodes for electrical cell lysis in a specified portion of the channel (1 mm width × 0.8 mm height × 2 mm length). Through manipulation of channel geometry, a low-voltage power source (500 V max) was used to selectively lyse adhered endothelial cells in a tapered region of the channel. Cell viability was maintained on the device over a 5 day period (98% viable), though cell coverage decreased after day 4 with static media delivery. Optimal lysis potentials were obtained for the two fabricated device geometries, and selective cell clearance was achieved with cell lysis efficiencies of 94 and 96%. The bottleneck of unknown surface properties from proprietary resin use in fabricating 3D-printed materials is overcome through techniques to incorporate PDMS and PS.

  11. Resonant Soft X-ray Scattering as a Powerful Probe of Buried Polymer Interfaces

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Jiang, Zhang; Tirrell, Matthew

    Elucidation of polymer interfacial structures provides insights into interfacial molecular mechanisms for coating protection, adhesion, lubrication, friction, wettability, biocompatibility, and even charge transport properties. Resonant Soft X-ray Scattering (RSoXS) offers a unique element, site and valence specific probe to study spatial modulations of molecular orbital degrees of freedom on the nanoscopic length scale. This unique sensitivity is achieved by merging small angle x-ray scattering and x-ray absorption spectroscopy into a single experiment, where the scattering provides information about spatial modulations and the spectroscopy provides sensitivity to the molecular anisotropy. Here we applied RSoXS to polystyrene (PS) films at solid-solid interfaces and poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC) brushes at solid-liquid interfaces. It is found that the interfacial width of PS thin film is about one order of magnitude large than those observed by traditional scattering techniques. In addition, although the ion-induced changes of PMPC thickness are not apparent in aqueous solutions, their chain conformations like polyzwitterion distribution and correlation varied, dependent on salt types, ionic strengths and ion valences. Consequently, it is evident that RSoXS is a powerful probe of buried polymer interlaces with both spatial and chemical sensitivities. This work was supported by the U.S. Department of Energy, Office of Science, Program in Basic Energy Sciences, Division of Materials Science and Engineering.

  12. Physical stability of arginine-glycine-aspartic acid peptide coated on anodized implants after installation.

    PubMed

    Huh, Jung-Bo; Lee, Jeong-Yeol; Jeon, Young-Chan; Shin, Sang-Wan; Ahn, Jin-Soo; Ryu, Jae-Jun

    2013-05-01

    The aim of this study was to evaluate the stability of arginine-glycine-aspartic acid (RGD) peptide coatings on implants by measuring the amount of peptide remaining after installation. Fluorescent isothiocyanate (FITC)-fixed RGD peptide was coated onto anodized titanium implants (width 4 mm, length 10 mm) using a physical adsorption method (P) or a chemical grafting method (C). Solid Rigid Polyurethane Foam (SRPF) was classified as either hard bone (H) or soft bone (S) according to its density. Two pieces of artificial bone were fixed in a customized jig, and coated implants were installed at the center of the boundary between two pieces of artificial bone. The test groups were classified as: P-H, P-S, C-H, or C-S. After each installation, implants were removed from the SRPF, and the residual amounts and rates of RGD peptide in implants were measured by fluorescence spectrometry. The Kruskal-Wallis test was used for the statistical analysis (α=0.05). Peptide-coating was identified by fluorescence microscopy and XPS. Total coating amount was higher for physical adsorption than chemical grafting. The residual rate of peptide was significantly larger in the P-S group than in the other three groups (P<.05). The result of this study suggests that coating doses depend on coating method. Residual amounts of RGD peptide were greater for the physical adsorption method than the chemical grafting method.

  13. A study of airway smooth muscle in asthmatic and non-asthmatic airways using PS-OCT (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Adams, David C.; Holz, Jasmin A.; Szabari, Margit V.; Hariri, Lida P.; Harris, R. Scott; Cho, Jocelyn L.; Hamilos, Daniel L.; Luster, Andrew D.; Medoff, Benjamin D.; Suter, Melissa J.

    2016-03-01

    Present understanding of the pathophysiological mechanisms of asthma has been severely limited by the lack of an imaging modality capable of assessing airway conditions of asthma patients in vivo. Of particular interest is the role that airway smooth muscle (ASM) plays in the development of asthma and asthma related symptoms. With standard Optical Coherence Tomography (OCT), imaging ASM is often not possible due to poor structural contrast between the muscle and surrounding tissues. A potential solution to this problem is to utilize additional optical contrast factors intrinsic to the tissue, such as birefringence. Due to its highly ordered structure, ASM is strongly birefringent. Previously, we demonstrated that Polarization Sensitive OCT(PS-OCT) has the potential to be used to visualize ASM as well as easily segment it from the surrounding (weakly) birefringent tissue by exploiting a property which allows it to discriminate the orientation of birefringent fibers. We have already validated our technology with a substantial set of histological comparisons made against data obtained ex vivo. In this work we present a comprehensive comparison of ASM distributions in asthmatic and non-asthmatic human volunteers. By isolating the ASM we parameterize its distribution in terms of both thickness and band width, calculated volumetrically over centimeters of airway. Using this data we perform analyses of the asthmatic and non-asthmatic airways using a broad number and variety and subjects.

  14. Nuclear resonant scattering experiment with fast time response: Photonuclear excitation of 201Hg

    NASA Astrophysics Data System (ADS)

    Yoshimi, A.; Hara, H.; Hiraki, T.; Kasamatsu, Y.; Kitao, S.; Kobayashi, Y.; Konashi, K.; Masuda, R.; Masuda, T.; Miyamoto, Y.; Okai, K.; Okubo, S.; Ozaki, R.; Sasao, N.; Sato, O.; Seto, M.; Schumm, T.; Shigekawa, Y.; Stellmer, S.; Suzuki, K.; Uetake, S.; Watanabe, M.; Yamaguchi, A.; Yasuda, Y.; Yoda, Y.; Yoshimura, K.; Yoshimura, M.

    2018-02-01

    Nuclear resonant excitation and detection of its decay signal for the 26.27-keV level of 201Hg is demonstrated with high-brilliance synchrotron radiation (SR) and a fast x-ray detector system. This SR-based photonuclear excitation scheme, known as nuclear resonant scattering (NRS) in the field of materials science, is also useful for investigating nuclear properties, such as the half-lives and radiative widths of excited nuclear levels. To date, because of the limited time response of the x-ray detector, the nuclear levels to which this method could be applied have been limited to the one whose half-lives are longer than ˜1 ns. The faster time response of the NRS measurement makes possible NRS experiments on nuclear levels with much shorter half-lives. We have fabricated an x-ray detector system that has a time resolution of 56 ps and a shorter tail function than that reported previously. With the implemented detector system, the NRS signal of the 26.27-keV state of 201Hg could be clearly discriminated from the electronic scattering signal at an elapsed time of 1 ns after the SR pulse. The half-life of the state was determined as 629 ± 18 ps, which has better precision by a factor of three compared with that reported to date obtained from nuclear decay spectroscopy.

  15. Is energy pooling necessary in ultraviolet matrix-assisted laser desorption/ionization?

    PubMed

    Lin, Hou-Yu; Song, Botao; Lu, I-Chung; Hsu, Kuo-Tung; Liao, Chih-Yu; Lee, Yin-Yu; Tseng, Chien-Ming; Lee, Yuan-Tseh; Ni, Chi-Kung

    2014-01-15

    Energy pooling has been suggested as the key process for generating the primary ions during ultraviolet matrix-assisted laser desorption/ionization (UV-MALDI). In previous studies, decreases in fluorescence quantum yields as laser fluence increased for 2-aminobenzoic acid, 2,5-dihydroxybenzoic acid (2,5-DHB), and 3-hydroxypicolinic acid were used as evidence of energy pooling. This work extends the research to other matrices and addresses whether energy pooling is a universal property in UV-MALDI. Energy pooling was investigated in a time-resolved fluorescence experiment by using a short laser pulse (355 nm, 20 ps pulse width) for excitation and a streak camera (1 ps time resolution) for fluorescence detection. The excited-state lifetime of 2,5-DHB decreased with increases in laser fluence. This suggests that a reaction occurs between two excited molecules, and that energy pooling may be one of the possible reactions. However, the excited-state lifetime of 2,4,6-trihydroxyacetophenone (THAP) did not change with increases in laser fluence. The upper limit of the energy pooling rate constant for THAP is estimated to be approximately 100-500 times smaller than that of 2,5-DHB. The small energy pooling rate constant for THAP indicates that the potential contribution of the energy pooling mechanism to the generation of THAP matrix primary ions should be reconsidered. Copyright © 2013 John Wiley & Sons, Ltd.

  16. Single-shot pulse duration and intensity diagnostic for 10-ps MeV gamma pulses based on interferometry

    NASA Astrophysics Data System (ADS)

    Peng, Bo-dong; Hei, Dong-wei; Song, Yan; Liu, Jun; Zhao, Jun

    2018-04-01

    To measure the temporal width and the intensity evolution versus time of a MeV gamma pulse generated by a Compton Scatter Source, a time-space conversion method is proposed. This design is based on the consideration that the temporal length of the MeV pulse is proportional to the spatial length of the pulse in a certain semiconductor. The spatial length and the intensity evolution versus time of the MeV pulse can be obtained by recording the region of the refractive index change that is induced by the MeV pulse. The simulation suggests that the equivalent temporal spread of a mono-energy MeV δ pulse in a bulk semiconductor is on the order of picoseconds and does not vary significantly with photon energy and material type. According to our analysis, the excess carrier generation time, excess carrier diffusion and recombination do not significantly influence the temporal resolution of this method. The temporal response of the refractive index change to a MeV pulse is also fast enough to meet the measurement requirements. The signal generation process for measuring a 10-ps MeV pulse with a 200-fs probe beam is analyzed, revealing that the transverse size of the MeV pulse does not influence the temporal resolution of this method.

  17. Clinical Comparison of Full and Partial Double Pedicle Flaps with Connective Tissue Grafts for Treatment of Gingival Recession

    PubMed Central

    Ranjbari, Ardeshir; Gholami, Gholam Ali; Amid, Reza; Kadkhodazadeh, Mahdi; Youssefi, Navid; Mehdizadeh, Amir Reza; Aghaloo, Maryam

    2016-01-01

    Statement of the Problem Gingival recession has been considered as the most challenging issue in the field of periodontal plastic surgery. Purpose The purpose of this study was to evaluate the clinical efficacy of root coverage procedures by using partial thickness double pedicle graft and compare it with full thickness double pedicle graft. Materials and Method Eight patients, aged 15 to 58 years including 6 females and 2 males with 20 paired (mirror image) defects with class I and II gingival recession were randomly assigned into two groups. Clinical parameters such as recession depth, recession width, clinical attachment level, probing depth, and width of keratinized tissue were measured at the baseline and 6 months post-surgery. A mucosal double papillary flap was elevated and the respective root was thoroughly planed. The connective tissue graft was harvested from the palate, and then adapted over the root. The pedicle flap was secured over the connective tissue graft and sutured. The surgical technique was similar in the control group except for the prepared double pedicle graft which was full thickness. Results The mean root coverage was 88.14% (2.83 mm) in the test group and 85.7% (2.75 mm) in the control group. No statistical differences were found in the mean reduction of vertical recession, width of recession, or probing depth between the test and control groups. In both procedures, the width of keratinized tissue increased after three months and the difference between the two groups was not statistically significant in this respect. Conclusion Connective tissue with partial and full thickness double pedicle grafts can be successfully used for treatment of marginal gingival recession. PMID:27602394

  18. Effects of pre-fermentation and pulsed-electric-field treatment of primary sludge in microbial electrochemical cells.

    PubMed

    Ki, Dongwon; Parameswaran, Prathap; Popat, Sudeep C; Rittmann, Bruce E; Torres, César I

    2015-11-01

    The aim of this study was to investigate the combination of two technologies - pulsed electric field (PEF) pre-treatment and semi-continuous pre-fermentation of primary sludge (PS) - to produce volatile fatty acids (VFAs) as the electron donor for microbial electrolysis cells (MECs). Pre-fermentation with a 3-day solids retention time (SRT) led to the maximum generation of VFAs, with or without pretreatment of the PS through pulsed-electric-fields (PEF). PEF treatment before fermentation enhanced the accumulation of the preferred VFA, acetate, by 2.6-fold. Correspondingly, MEC anodes fed with centrate from 3-day pre-fermentation of PEF-treated PS had a maximum current density ∼3.1 A/m(2), which was 2.4-fold greater than the control pre-fermented centrate. Over the full duration of batch MEC experiments, using pre-fermented centrate led to successful performance in terms of Coulombic efficiency (95%), Coulombic recovery (80%), and COD-removal efficiency (85%). Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Time-to-digital converter card for multichannel time-resolved single-photon counting applications

    NASA Astrophysics Data System (ADS)

    Tamborini, Davide; Portaluppi, Davide; Tisa, Simone; Tosi, Alberto

    2015-03-01

    We present a high performance Time-to-Digital Converter (TDC) card that provides 10 ps timing resolution and 20 ps (rms) timing precision with a programmable full-scale-range from 160 ns to 10 μs. Differential Non-Linearity (DNL) is better than 1.3% LSB (rms) and Integral Non-Linearity (INL) is 5 ps rms. Thanks to the low power consumption (400 mW) and the compact size (78 mm x 28 mm x 10 mm), this card is the building block for developing compact multichannel time-resolved instrumentation for Time-Correlated Single-Photon Counting (TCSPC). The TDC-card outputs the time measurement results together with the rates of START and STOP signals and the number of valid TDC conversions. These additional information are needed by many TCSPC-based applications, such as: Fluorescence Lifetime Imaging (FLIM), Time-of-Flight (TOF) ranging measurements, time-resolved Positron Emission Tomography (PET), single-molecule spectroscopy, Fluorescence Correlation Spectroscopy (FCS), Diffuse Optical Tomography (DOT), Optical Time-Domain Reflectometry (OTDR), quantum optics, etc.

  20. Resolution modeling of dispersive imaging spectrometers

    NASA Astrophysics Data System (ADS)

    Silny, John F.

    2017-08-01

    This paper presents best practices for modeling the resolution of dispersive imaging spectrometers. The differences between sampling, width, and resolution are discussed. It is proposed that the spectral imaging community adopt a standard definition for resolution as the full-width at half maximum of the total line spread function. Resolution should be computed for each of the spectral, cross-scan spatial, and along-scan spatial/temporal dimensions separately. A physical optics resolution model is presented that incorporates the effects of slit diffraction and partial coherence, the result of which is a narrower slit image width and reduced radiometric throughput.

  1. Lunar Sodium and Potassium Exosphere in May 2014

    NASA Astrophysics Data System (ADS)

    Oliversen, R. J.; Kuruppuaratchi, D. C. P.; Mierkiewicz, E. J.; Derr, N. J.; Rosborough, S.; Gallant, M. A.; Roesler, F. L.

    2015-12-01

    We apply high resolution spectroscopy to investigate the lunar exosphere by measuring sodium and potassium spectral line profiles to determine the variations in exospheric effective temperatures and velocities. Observations were made at the National Solar Observatory McMath-Pierce Telescope during May 2014. Data were collected over several nights, centered on full moon (May 14) and covering a waxing phase angle of 67° to a waning phase angle of 75°. We used a dual-etalon Fabry-Perot spectrometer with a resolving power of 184,000 (1.63 km s-1) to measure the line widths and radial velocity shifts of the sodium D2 (5889.951 Å) and potassium D1 (7698.965 Å) emission lines. The field of view was 3 arcmin (~330 km) and positioned at several locations, each centered at 1.5 arcmin (~165 km) off the East and West sunlit limbs. The deconvolved line widths indicate significant differences between the sodium and potassium temperatures. The sodium line widths were mostly symmetric as a function of phase for both the waxing and waning phases. At phase angles > 40º (outside of the magnetotail) the full width half maximum (FWHM) line widths are 1.5 - 2.0 km s-1 or ~1500 K for FWHM = 1.75 km s-1. Inside the magnetotail (phase angle < 40º) and near full moon (phase angle ~6°), the FWHM increased to ~4 km s-1. The implied line width temperature is 8000 K, although some of the observed line width may be due to a dispersion in velocities from many contribution along the extended sodium tail. Unlike sodium, the potassium line widths are wider by 50% during the waxing phase compared to the waning phase at phases > 40º. The potassium temperatures pre-magnetotail passage are ~1000 K while the temperatures post-magnetotail passage are ~2000K. At phase angles < 40º, the potassium intensities decreased dramatically; on consecutive days, when the phase angle changed from 44º to 31º to 20º, the relative intensities dropped by 1.0:0.6:0.15. The potassium intensity in the East and West equatorial regions (latitude < 10º) were similar; however, the potassium intensity was brightest off the limb near Aristarchus (latitude ~24º), which was the crater we observed nearest the KREEP region. This work was partially supported by the NASA Planetary Astronomy programs, NNX11AE38G and NNX13AL30G.

  2. Fabrication of 0.25-um electrode width SAW filters using x-ray lithography with a laser plasma source

    NASA Astrophysics Data System (ADS)

    Bobkowski, Romuald; Li, Yunlei; Fedosejevs, Robert; Broughton, James N.

    1996-05-01

    A process for the fabrication of surface acoustic wave (SAW) devices with line widths of 250 nm and less, based on x-ray lithography using a laser-plasma source has been developed. The x-ray lithography process is based on keV x-ray emission from Cu plasma produced by 15 Hz, 50 ps, 248 nm KrF excimer laser pulses. The full structure of a 2 GHz surface acoustic wave filter with interdigital transducers in a split-electrode geometry has been manufactured. The devices require patterning a 150 nm thick aluminum layer on a LiNbO3 substrate with electrodes 250 nm wide. The manufacturing process has two main steps: x-ray mask fabrication employing e-beam lithography and x-ray lithography to obtain the final device. The x-ray masks are fabricated on 1 micrometers thick membranes of Si2N4. The line patterns on the masks are written into PMMA resist using a scanning electron microscope which has been interfaced to a personal computer equipped to control the x and y scan voltages. The opaque regions of the x-ray mask are then formed by electroplating fine grain gold into the open spaces in the etched PMMA. The mask and sample are mounted in an exposure cassette with a fixed spacer of 10 micrometers separating them. The sample consists of a LiNbO3 substrate coated with Shipley XP90104C x-ray resist which has been previously characterized. The x-ray patterning is carried out in an exposure chamber with flowing helium background gas in order to minimize debris deposition on the filters. After etching the x-ray resist, the final patterns are produced using metallization and a standard lift-off technique. The SAW filters are then bonded and packaged onto impedance matching striplines. The resultant devices are tested using Scalar Network Analyzers. The final devices produced had a center frequency of 1.93 GHz with a bandwidth of 98 MHz, close to the expected performance of our simple design.

  3. High-performance time-resolved fluorescence by direct waveform recording.

    PubMed

    Muretta, Joseph M; Kyrychenko, Alexander; Ladokhin, Alexey S; Kast, David J; Gillispie, Gregory D; Thomas, David D

    2010-10-01

    We describe a high-performance time-resolved fluorescence (HPTRF) spectrometer that dramatically increases the rate at which precise and accurate subnanosecond-resolved fluorescence emission waveforms can be acquired in response to pulsed excitation. The key features of this instrument are an intense (1 μJ/pulse), high-repetition rate (10 kHz), and short (1 ns full width at half maximum) laser excitation source and a transient digitizer (0.125 ns per time point) that records a complete and accurate fluorescence decay curve for every laser pulse. For a typical fluorescent sample containing a few nanomoles of dye, a waveform with a signal/noise of about 100 can be acquired in response to a single laser pulse every 0.1 ms, at least 10(5) times faster than the conventional method of time-correlated single photon counting, with equal accuracy and precision in lifetime determination for lifetimes as short as 100 ps. Using standard single-lifetime samples, the detected signals are extremely reproducible, with waveform precision and linearity to within 1% error for single-pulse experiments. Waveforms acquired in 0.1 s (1000 pulses) with the HPTRF instrument were of sufficient precision to analyze two samples having different lifetimes, resolving minor components with high accuracy with respect to both lifetime and mole fraction. The instrument makes possible a new class of high-throughput time-resolved fluorescence experiments that should be especially powerful for biological applications, including transient kinetics, multidimensional fluorescence, and microplate formats.

  4. Generation of runaway electrons and X-ray emission during breakdown of atmospheric-pressure air by voltage pulses with an ∼0.5-μs front duration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kostyrya, I. D.; Tarasenko, V. F., E-mail: VFT@loi.hcei.tsc.ru

    2015-03-15

    Results are presented from experiments on the generation of runaway electron beams and X-ray emission in atmospheric-pressure air by using voltage pulses with an ∼0.5-μs front duration. It is shown that the use of small-curvature-radius spherical cathodes (or other cathodes with small curvature radii) decreases the intensity of the runaway electron beam and X-ray emission. It is found that, at sufficiently high voltages at the electrode gap (U{sub m} ∼ 100 kV), the gap breakdown, the formation of a spark channel, and the generation of a runaway electron beam occur over less than 10 ns. At high values of U{submore » m} behind the anode that were reached by increasing the cathode size and the electrode gap length, a supershort avalanche electron beam with a full width at half-maximum (FWHM) of up to ∼100 ps was detected. At voltages of ∼50 kV, the second breakdown regime was revealed in which a runaway electron beam with an FWHM of ∼2 ns was generated, whereas the FWHM of the X-ray pulse increased to ∼100 ns. It is established that the energy of the bulk of runaway electrons decreases with increasing voltage front duration and is ⩽30 keV in the first regime and ⩽10 keV in the second regime.« less

  5. Optical delay encoding for fast timing and detector signal multiplexing in PET

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grant, Alexander M.; Levin, Craig S., E-mail: cslevin@stanford.edu; Molecular Imaging Program at Stanford

    2015-08-15

    Purpose: The large number of detector channels in modern positron emission tomography (PET) scanners poses a challenge in terms of readout electronics complexity. Multiplexing schemes are typically implemented to reduce the number of physical readout channels, but often result in performance degradation. Novel methods of multiplexing in PET must be developed to avoid this data degradation. The preservation of fast timing information is especially important for time-of-flight PET. Methods: A new multiplexing scheme based on encoding detector interaction events with a series of extremely fast overlapping optical pulses with precise delays is demonstrated in this work. Encoding events in thismore » way potentially allows many detector channels to be simultaneously encoded onto a single optical fiber that is then read out by a single digitizer. A two channel silicon photomultiplier-based prototype utilizing this optical delay encoding technique along with dual threshold time-over-threshold is demonstrated. Results: The optical encoding and multiplexing prototype achieves a coincidence time resolution of 160 ps full width at half maximum (FWHM) and an energy resolution of 13.1% FWHM at 511 keV with 3 × 3 × 5 mm{sup 3} LYSO crystals. All interaction information for both detectors, including timing, energy, and channel identification, is encoded onto a single optical fiber with little degradation. Conclusions: Optical delay encoding and multiplexing technology could lead to time-of-flight PET scanners with fewer readout channels and simplified data acquisition systems.« less

  6. A novel phoswich imaging detector for simultaneous beta and coincidence-gamma imaging of plant leaves.

    PubMed

    Wu, Heyu; Tai, Yuan-Chuan

    2011-09-07

    To meet the growing demand for functional imaging technology for use in studying plant biology, we are developing a novel technique that permits simultaneous imaging of escaped positrons and coincidence gammas from annihilation of positrons within an intake leaf. The multi-modality imaging system will include two planar detectors: one is a typical PET detector array and the other is a phoswich imaging detector that detects both beta and gamma. The novel phoswich detector is made of a plastic scintillator, a lutetium oxyorthosilicate (LSO) array, and a position sensitive photomultiplier tube (PS-PMT). The plastic scintillator serves as a beta detector, while the LSO array serves as a gamma detector and light guide that couples scintillation light from the plastic detector to the PMT. In our prototype, the PMT signal was fed into the Siemens QuickSilver electronics to achieve shaping and waveform sampling. Pulse-shape discrimination based on the detectors' decay times (2.1 ns for plastic and 40 ns for LSO) was used to differentiate beta and gamma events using the common PMT signals. Using our prototype phoswich detector, we simultaneously measured a beta image and gamma events (in single mode). The beta image showed a resolution of 1.6 mm full-width-at-half-maximum using F-18 line sources. Because this shows promise for plant-scale imaging, our future plans include development of a fully functional simultaneous beta-and-coincidence-gamma imager with sub-millimeter resolution imaging capability for both modalities.

  7. Comparison of full width at half maximum and penumbra of different Gamma Knife models.

    PubMed

    Asgari, Sepideh; Banaee, Nooshin; Nedaie, Hassan Ali

    2018-01-01

    As a radiosurgical tool, Gamma Knife has the best and widespread name recognition. Gamma Knife is a noninvasive intracranial technique invented and developed by Swedish neurosurgeon Lars Leksell. The first commercial Leksell Gamma Knife entered the therapeutic armamentarium at the University of Pittsburgh in the United States on August 1987. Since that time, different generation of Gamma Knife developed. In this study, the technical points and dosimetric parameters including full width at half maximum and penumbra on different generation of Gamma Knife will be reviewed and compared. The results of this review study show that the rotating gamma system provides a better dose conformity.

  8. Probing dynamics in colloidal crystals with pump-probe experiments at LCLS: Methodology and analysis

    DOE PAGES

    Mukharamova, Nastasia; Lazarev, Sergey; Meijer, Janne -Mieke; ...

    2017-05-19

    We present results of the studies of dynamics in colloidal crystals performed by pump-probe experiments using an X-ray free-electron laser (XFEL). Colloidal crystals were pumped with an infrared laser at a wavelength of 800 nm with varying power and probed by XFEL pulses at an energy of 8 keV with a time delay up to 1000 ps. The positions of the Bragg peaks, and their radial and azimuthal widths were analyzed as a function of the time delay. The spectral analysis of the data did not reveal significant enhancement of frequencies expected in this experiment. As a result, this allowedmore » us to conclude that the amplitude of vibrational modes excited in colloidal crystals was less than the systematic error caused by the noise level.« less

  9. Nanoparticle string formation on self-assembled copolymer films

    NASA Astrophysics Data System (ADS)

    Jenczyk, J.; Woźniak-Budych, M.; Jarek, M.; Grzeszkowiak, M.; Nowaczyk, G.; Jurga, S.

    2017-06-01

    Nanoparticles (NP) string formations on self-assembled copolymeric substrates has been observed. These "thread of beads" like structures develop via simple colloidal droplet evaporation during meniscus rim withdrawal on polystyrene-block-poly(ethylene oxide) (PS-PEO) copolymer surfaces. It is shown that the process is triggered by the presence of the substrate impurities, which lead to NP aggregate formations serving as string initiation sites. The growth mechanism of these linear structures seems to be capillarity-driven. Moreover, there is an exceptional alignment coupling between NP strips and the block copolymer (BC) domains observed. BC directed NP assembly stems from a gold nanocrystal surface functionalization, which introduces selective affinity for one particular type of BC domain. The presented results reveal a potential fabrication method of NP wires characterized by remarkably low width and thickness comparable with the size of the individual constituent NP.

  10. Ultra-short pulse generation in the hybridly mode-locked erbium-doped all-fiber ring laser with a distributed polarizer

    NASA Astrophysics Data System (ADS)

    Krylov, Alexander A.; Sazonkin, Stanislav G.; Lazarev, Vladimir A.; Dvoretskiy, Dmitriy A.; Leonov, Stanislav O.; Pnev, Alexey B.; Karasik, Valeriy E.; Grebenyukov, Vyacheslav V.; Pozharov, Anatoly S.; Obraztsova, Elena D.; Dianov, Evgeny M.

    2015-06-01

    We report for the first time to the best of our knowledge on the ultra-short pulse (USP) generation in the dispersion-managed erbium-doped all-fiber ring laser hybridly mode-locked with boron nitride-doped single-walled carbon nanotubes in the co-action with a nonlinear polarization evolution in the ring cavity with a distributed polarizer. Stable 92.6 fs dechirped pulses were obtained via precise polarization state adjustment at a central wavelength of 1560 nm with 11.2 mW average output power, corresponding to the 2.9 kW maximum peak power. We have also observed the laser switching from a USP generation regime to a chirped pulse one with a corresponding pulse-width of 7.1 ps at the same intracavity dispersion.

  11. Ultra-fast HPM detectors improve NAD(P)H FLIM

    NASA Astrophysics Data System (ADS)

    Becker, Wolfgang; Wetzker, Cornelia; Benda, Aleš

    2018-02-01

    Metabolic imaging by NAD(P)H FLIM requires the decay functions in the individual pixels to be resolved into the decay components of bound and unbound NAD(P)H. Metabolic information is contained in the lifetime and relative amplitudes of the components. The separation of the decay components and the accuracy of the amplitudes and lifetimes improves substantially by using ultra-fast HPM-100-06 and HPM-100-07 hybrid detectors. The IRF width in combination with the Becker & Hickl SPC-150N and SPC-150NX TCSPC modules is less than 20 ps. An IRF this fast does not interfere with the fluorescence decay. The usual deconvolution process in the data analysis then virtually becomes a simple curve fitting, and the parameters of the NAD(P)H decay components are obtained at unprecedented accuracy.

  12. Performance enhancement of sub-nanosecond diode-pumped passively Q-switched Yb:YAG microchip laser with diamond surface cooling.

    PubMed

    Zhuang, W Z; Chen, Yi-Fan; Su, K W; Huang, K F; Chen, Y F

    2012-09-24

    We experimentally confirm that diamond surface cooling can significantly enhance the output performance of a sub-nanosecond diode-end-pumped passively Q-switched Yb:YAG laser. It is found that the pulse energy obtained with diamond cooling is approximately 1.5 times greater than that obtained without diamond cooling, where a Cr(4+):YAG absorber with the initial transmission of 84% is employed. Furthermore, the standard deviation of the pulse amplitude peak-to-peak fluctuation is found to be approximately 3 times lower than that measured without diamond cooling. Under a pump power of 3.9 W, the passively Q-switched Yb:YAG laser can generate a pulse train of 3.3 kHz repetition rate with a pulse energy of 287 μJ and with a pulse width of 650 ps.

  13. Time stretch dispersive Fourier transform based single-shot pulse-by-pulse spectrum measurement using a pulse-repetition-frequency-variable gain-switched laser

    NASA Astrophysics Data System (ADS)

    Furukawa, Hideaki; Makino, Takeshi; Wang, Xiaomin; Kobayashi, Tetsuya; Asghari, Mohammad H.; Trinh, Paul; Jalali, Bahram; Man, Wai Sing; Tsang, Kwong Shing; Wada, Naoya

    2018-02-01

    The time stretch dispersive Fourier Transform (TS-DFT) technique based on a fiber chromatic dispersion is a powerful tool for pulse-by-pulse single-shot spectrum measurement for highrepetition rate optical pulses. The distributed feedback laser diode (DFB-LD) with the gain switch operation can flexibly change the pulse repetition frequency (PRF). In this paper, we newly introduce a semiconductor gain-switched DFB-LD operating from 1 MHz up to 1 GHz PRF into the TS-DFT based spectrum measurement system to improve the flexibility and the operability. The pulse width can be below 2 ps with a pulse compression technique. We successfully measure the spectrum of each optical pulse at 1 GHz, 100 MHz, and 10 MHz PRF, and demonstrate the flexibility of the measurement system.

  14. Time-resolved structural dynamics of thin metal films heated with femtosecond optical pulses.

    PubMed

    Chen, Jie; Chen, Wei-Kan; Tang, Jau; Rentzepis, Peter M

    2011-11-22

    We utilize 100 fs optical pulses to induce ultrafast disorder of 35- to 150-nm thick single Au(111) crystals and observe the subsequent structural evolution using 0.6-ps, 8.04-keV X-ray pulses. Monitoring the picosecond time-dependent modulation of the X-ray diffraction intensity, width, and shift, we have measured directly electron/phonon coupling, phonon/lattice interaction, and a histogram of the lattice disorder evolution, such as lattice breath due to a pressure wave propagating at sonic velocity, lattice melting, and recrystallization, including mosaic formation. Results of theoretical simulations agree and support the experimental data of the lattice/liquid phase transition process. These time-resolved X-ray diffraction data provide a detailed description of all the significant processes induced by ultrafast laser pulses impinging on thin metallic single crystals.

  15. The Flare/CME Connection

    NASA Technical Reports Server (NTRS)

    Moore, Ron; Falconer, David; Sterling, Alphonse

    2008-01-01

    We present evidence supporting the view that, while many flares are produced by a confined magnetic explosion that does not produce a CME, every CME is produced by an ejective magnetic explosion that also produces a flare. The evidence is that the observed heliocentric angular width of the full-blown CME plasmoid in the outer corona (at 3 to 20 solar radii) is about that predicted by the standard model for CME production, from the amount of magnetic flux covered by the co-produced flare arcade. In the standard model, sheared and twisted sigmoidal field in the core of an initially closed magnetic arcade erupts. As it erupts, tether-cutting reconnection, starting between the legs of the erupting sigmoid and continuing between the merging stretched legs of the enveloping arcade, simultaneously produces a growing flare arcade and unleashes the erupting sigmoid and arcade to become the low-beta plasmoid (magnetic bubble) that becomes the CME. The flare arcade is the downward product of the reconnection and the CME plasmoid is the upward product. The unleashed, expanding CME plasmoid is propelled into the outer corona and solar wind by its own magnetic field pushing on the surrounding field in the inner and outer corona. This tether-cutting scenario predicts that the amount of magnetic flux in the full-blown CME plasmoid nearly equals that covered by the full-grown flare arcade. This equality predicts (1) the field strength in the flare region from the ratio of the angular width of the CME in the outer corona to angular width of the full-grown flare arcade, and (2) an upper bound on the angular width of the CME in the outer corona from the total magnetic flux in the active region from which the CME explodes. We show that these predictions are fulfilled by observed CMEs. This agreement validates the standard model. The model explains (1) why most CMEs have much greater angular widths than their co-produced flares, and (2) why the radial path of a CME in the outer corona can be laterally far offset from the co-produced flare.

  16. Fast gain recovery rates with strong wavelength dependence in a non-linear SOA.

    PubMed

    Cleary, Ciaran S; Power, Mark J; Schneider, Simon; Webb, Roderick P; Manning, Robert J

    2010-12-06

    We report remarkably fast and strongly wavelength-dependent gain recovery in a single SOA without the aid of an offset filter. Full gain recovery times as short as 9 ps were observed in pump-probe measurements when pumping to the blue wavelength side of a continuous wave probe, in contrast to times of 25 to 30 ps when pumping to the red wavelength side. Experimental and numerical analysis indicate that the long effective length and high gain led to deep saturation of the second half of the SOA by the probe. The consequent absorption of blue-shifted pump pulses in this region resulted in device dynamics analogous to those of the Turbo-Switch.

  17. Clinical Outcomes of Comparing Soft Tissue Alternatives to Free Gingival Graft: A Systematic Review and Meta-Analysis
.

    PubMed

    Dragan, Irina F; Hotlzman, Lucrezia Paterno; Karimbux, Nadeem Y; Morin, Rebecca A; Bassir, Seyed Hossein

    2017-12-01

    This systematic review and meta-analysis aimed to compare clinical outcomes and width of keratinized tissue (KT) around teeth, following the soft tissue alter- natives and free gingival graft (FGG) procedures. The specific graft materials that were explored were extracellular matrix membrane, bilayer collagen membrane, living cellular construct, and acellular dermal matrix. Four different databases were queried to identify human controlled clinical trials and randomized controlled clinical trials that fulfilled the eligibility criteria. Relevant studies were identified by 3 independent reviewers, compiling the results of the electronic and handsearches. Studies identified through electronic and handsearches were reviewed by title, abstract, and full text using Covidence Software. Primary outcome in the present study was change in the width of KT. Results of the included studies were pooled to estimate the effect size, expressed as weighted mean differences and 95% confidence interval. A random-effects model was used to perform the meta-analyses. Six hundred thirty-eight articles were screened by title, 55 articles were screened by abstracts, and 34 full-text articles were reviewed. Data on quantitative changes in width of KT were provided in 7 studies. Quantitative analyses revealed a significant difference in changes in width of KT between patients treated with soft tissue alternatives and patients treated with FGGs (P < .001). The weighted mean difference of changes in the width of KT was 21.39 (95% confidence interval: 21.82 to 20.96; heterogeneity I 5 70.89%), indicating patients who were treated with soft tissue alternatives gained 1.39 mm less KT width compared with the patients who received free gingival graft. Based on the clinical outcomes, the results of this systematic review and meta-analysis showed that soft tissue alternatives result in an increased width of KT. Patients in the soft tissue alternatives group obtained 1.39 mm less KT compared with those in the FGGs group. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Sensory substitution information informs locomotor adjustments when walking through apertures.

    PubMed

    Kolarik, Andrew J; Timmis, Matthew A; Cirstea, Silvia; Pardhan, Shahina

    2014-03-01

    The study assessed the ability of the central nervous system (CNS) to use echoic information from sensory substitution devices (SSDs) to rotate the shoulders and safely pass through apertures of different width. Ten visually normal participants performed this task with full vision, or blindfolded using an SSD to obtain information regarding the width of an aperture created by two parallel panels. Two SSDs were tested. Participants passed through apertures of +0, +18, +35 and +70 % of measured body width. Kinematic indices recorded movement time, shoulder rotation, average walking velocity across the trial, peak walking velocities before crossing, after crossing and throughout a whole trial. Analyses showed participants used SSD information to regulate shoulder rotation, with greater rotation associated with narrower apertures. Rotations made using an SSD were greater compared to vision, movement times were longer, average walking velocity lower and peak velocities before crossing, after crossing and throughout the whole trial were smaller, suggesting greater caution. Collisions sometimes occurred using an SSD but not using vision, indicating that substituted information did not always result in accurate shoulder rotation judgements. No differences were found between the two SSDs. The data suggest that spatial information, provided by sensory substitution, allows the relative position of aperture panels to be internally represented, enabling the CNS to modify shoulder rotation according to aperture width. Increased buffer space indicated by greater rotations (up to approximately 35 % for apertures of +18 % of body width) suggests that spatial representations are not as accurate as offered by full vision.

  19. Laser shock peening studies on SS316LN plate with various sacrificial layers

    NASA Astrophysics Data System (ADS)

    Yella, Pardhu; Venkateswarlu, P.; Buddu, Ramesh K.; Vidyasagar, D. V.; Sankara Rao, K. Bhanu; Kiran, P. Prem; Rajulapati, Koteswararao V.

    2018-03-01

    Laser shock peening (LSP) has been utilized to modify the surface characteristics of SS316LN plates of 6 mm thickness. Laser pulse widths employed are 30 ps and 7 ns and the laser energy was varied in the range 5-90 mJ. Peening was performed in direct ablation mode as well as with various sacrificial layers such as black paint, transparent adhesive tape and absorbing adhesive tape. The surface characteristics were greatly influenced by the type of sacrificial layer employed. The average surface roughness values are about 0.4 μm when the black paint and transparent adhesive tape were used as sacrificial layers. In contrast to this, using absorbent adhesive tape as a sacrificial layer has resulted in an average surface roughness of about 0.04 μm. Irrespective of pulse durations (30 ps or 7 ns), absorbent adhesive tape has always resulted in compressive residual stresses whereas other layers appear to be not that effective. In case of 30 ps pulse, as the laser energy was increased from 5 mJ to 25 mJ, there was a texture observed in (111) reflection of X-ray diffractograms and the center of the peak has also gradually shifted to left. X-ray line profile analysis suggests that with the increase in laser energy, lattice microstrain also has increased. This lattice microstrain appears to be resulting from the increased dislocation density in the peened sample as evidenced during transmission electron microscopic investigations. Cross-sectional scanning electron microscopy performed on peened samples suggests that absorbing adhesive tape brings no surface damage to the samples whereas other sacrificial layers have resulted in some surface damage. Based on all these structural and microstructural details, it is recommended that absorbent tape could be used as a sacrificial layer during LSP process which induces surface residual stresses with no damage to the sample surface.

  20. Dental ablation with 1064 nm, 500 ps, Diode pumped solid state laser: A preliminary study.

    PubMed

    Sozzi, Michele; Fornaini, Carlo; Cucinotta, Annamaria; Merigo, Elisabetta; Vescovi, Paolo; Selleri, Stefano

    2013-01-01

    The Er:YAG laser in conservative dentistry is. good alternative to conventional instruments. Though several studies show the advantages of these devices, some drawbacks and unsolved problems are still present, such as the cost of the device and the large dimensions of the equipment. In the present study, the effectiveness of dental surface ablation with a picosecond infrared diode-pumped solid-state (DPSS) laser was investigated. In vitro tests on extracted human teeth were carried out, with assessment of the ablation quality in the tooth and thermal increase inside the pulp chamber. A solid-state picosecond laser was used for the experiments. The samples were exposed to laser energy at 1064 nm at a frequency of 30 kHz and a 500 ps pulse width. The target teeth were cooled during exposures. The internal temperature of the pulp chamber was monitored with. thermocouple. Optical microscope images showed effective ablation with the absence of carbonisation and micro-cracks. The cooling maintained the temperature rise in the pulp chamber below the permitted 5.5°C. The main problem with the use of lasers in dentistry when teeth are the target is the heat generated in the pulp chamber of the target teeth. With lasers operating in the femtosecond mode, a better management of the internal temperature is possible, but is offset by the high cost of such devices. With the ps domain system used in the present study together with cooling using chilled water, effective and clean ablation could be achieved with a controlled thermal effect in the pulp chamber. In this preliminary study with a picosecond domain DPSS laser using water cooling for the target, effective hard tissue ablation was achieved keeping the thermal increase in the pulp within the permitted range. The results suggest that this system could be used in clinical practice with appropriate modifications.

  1. Impact of Satellite Viewing-Swath Width on Global and Regional Aerosol Optical Thickness Statistics and Trends

    NASA Technical Reports Server (NTRS)

    Colarco, P. R.; Kahn, R. A.; Remer, L. A.; Levy, R. C.

    2014-01-01

    We use the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite aerosol optical thickness (AOT) product to assess the impact of reduced swath width on global and regional AOT statistics and trends. Alongtrack and across-track sampling strategies are employed, in which the full MODIS data set is sub-sampled with various narrow-swath (approximately 400-800 km) and single pixel width (approximately 10 km) configurations. Although view-angle artifacts in the MODIS AOT retrieval confound direct comparisons between averages derived from different sub-samples, careful analysis shows that with many portions of the Earth essentially unobserved, spatial sampling introduces uncertainty in the derived seasonal-regional mean AOT. These AOT spatial sampling artifacts comprise up to 60%of the full-swath AOT value under moderate aerosol loading, and can be as large as 0.1 in some regions under high aerosol loading. Compared to full-swath observations, narrower swath and single pixel width sampling exhibits a reduced ability to detect AOT trends with statistical significance. On the other hand, estimates of the global, annual mean AOT do not vary significantly from the full-swath values as spatial sampling is reduced. Aggregation of the MODIS data at coarse grid scales (10 deg) shows consistency in the aerosol trends across sampling strategies, with increased statistical confidence, but quantitative errors in the derived trends are found even for the full-swath data when compared to high spatial resolution (0.5 deg) aggregations. Using results of a model-derived aerosol reanalysis, we find consistency in our conclusions about a seasonal-regional spatial sampling artifact in AOT Furthermore, the model shows that reduced spatial sampling can amount to uncertainty in computed shortwave top-ofatmosphere aerosol radiative forcing of 2-3 W m(sup-2). These artifacts are lower bounds, as possibly other unconsidered sampling strategies would perform less well. These results suggest that future aerosol satellite missions having significantly less than full-swath viewing are unlikely to sample the true AOT distribution well enough to obtain the statistics needed to reduce uncertainty in aerosol direct forcing of climate.

  2. Pseudomonas aeruginosa Type III Secretory Toxin ExoU and Its Predicted Homologs.

    PubMed

    Sawa, Teiji; Hamaoka, Saeko; Kinoshita, Mao; Kainuma, Atsushi; Naito, Yoshifumi; Akiyama, Koichi; Kato, Hideya

    2016-10-26

    Pseudomonas aeruginosa ExoU, a type III secretory toxin and major virulence factor with patatin-like phospholipase activity, is responsible for acute lung injury and sepsis in immunocompromised patients. Through use of a recently updated bacterial genome database, protein sequences predicted to be homologous to Ps. aeruginosa ExoU were identified in 17 other Pseudomonas species ( Ps. fluorescens , Ps. lundensis , Ps. weihenstephanensis , Ps. marginalis, Ps. rhodesiae, Ps. synxantha , Ps. libanensis , Ps. extremaustralis , Ps. veronii , Ps. simiae , Ps. trivialis , Ps. tolaasii , Ps. orientalis , Ps. taetrolens , Ps. syringae , Ps. viridiflava , and Ps. cannabina ) and 8 Gram-negative bacteria from three other genera ( Photorhabdus , Aeromonas , and Paludibacterium ). In the alignment of the predicted primary amino acid sequences used for the phylogenetic analyses, both highly conserved and nonconserved parts of the toxin were discovered among the various species. Further comparative studies of the predicted ExoU homologs should provide us with more detailed information about the unique characteristics of the Ps. aeruginosa ExoU toxin.

  3. Development of a full ice-cream cone model for halo CME structures

    NASA Astrophysics Data System (ADS)

    Na, Hyeonock; Moon, Yong-Jae

    2015-04-01

    The determination of three dimensional parameters (e.g., radial speed, angular width, source location) of Coronal Mass Ejections (CMEs) is very important for space weather forecast. To estimate these parameters, several cone models based on a flat cone or a shallow ice-cream cone with spherical front have been suggested. In this study, we investigate which cone model is proper for halo CME morphology using 33 CMEs which are identified as halo CMEs by one spacecraft (SOHO or STEREO-A or B) and as limb CMEs by the other ones. From geometrical parameters of these CMEs such as their front curvature, we find that near full ice-cream cone CMEs (28 events) are dominant over shallow ice-cream cone CMEs (5 events). So we develop a new full ice-cream cone model by assuming that a full ice-cream cone consists of many flat cones with different heights and angular widths. This model is carried out by the following steps: (1) construct a cone for given height and angular width, (2) project the cone onto the sky plane, (3) select points comprising the outer boundary, (4) minimize the difference between the estimated projection points with the observed ones. We apply this model to several halo CMEs and compare the results with those from other methods such as a Graduated Cylindrical Shell model and a geometrical triangulation method.

  4. Food portion size and energy density evoke different patterns of brain activation in children12

    PubMed Central

    Fearnbach, S Nicole; Wilson, Stephen J; Fisher, Jennifer O; Savage, Jennifer S; Rolls, Barbara J; Keller, Kathleen L

    2017-01-01

    Background: Large portions of food promote intake, but the mechanisms that drive this effect are unclear. Previous neuroimaging studies have identified the brain-reward and decision-making systems that are involved in the response to the energy density (ED) (kilocalories per gram) of foods, but few studies have examined the brain response to the food portion size (PS). Objective: We used functional MRI (fMRI) to determine the brain response to food images that differed in PSs (large and small) and ED (high and low). Design: Block-design fMRI was used to assess the blood oxygen level–dependent (BOLD) response to images in 36 children (7–10 y old; girls: 50%), which was tested after a 2-h fast. Pre-fMRI fullness and liking were rated on visual analog scales. A whole-brain cluster-corrected analysis was used to compare BOLD activation for main effects of the PS, ED, and their interaction. Secondary analyses were used to associate BOLD contrast values with appetitive traits and laboratory intake from meals for which the portions of all foods were increased. Results: Compared with small-PS cues, large-PS cues were associated with decreased activation in the inferior frontal gyrus (P < 0.01). Compared with low-ED cues, high-ED cues were associated with increased activation in multiple regions (e.g., in the caudate, cingulate, and precentral gyrus) and decreased activation in the insula and superior temporal gyrus (P < 0.01 for all). A PS × ED interaction was shown in the superior temporal gyrus (P < 0.01). BOLD contrast values for high-ED cues compared with low-ED cues in the insula, declive, and precentral gyrus were negatively related to appetitive traits (P < 0.05). There were no associations between the brain response to the PS and either appetitive traits or intake. Conclusions: Cues regarding food PS may be processed in the lateral prefrontal cortex, which is a region that is implicated in cognitive control, whereas ED activates multiple areas involved in sensory and reward processing. Possible implications include the development of interventions that target decision-making and reward systems differently to moderate overeating. PMID:27881393

  5. Design considerations for large woody debris placement in stream enhancement projects. North American Journal of Fisheries Management

    Treesearch

    Robert H. Hilderbrand; A. Dennis Lemly; C. Andrew Dolloff; Kelly L. Harpster

    1998-01-01

    Log length exerted a critical influence in stabilizing large woody debris (LWD) pieces added as an experimental stream restoration technique. Logs longer than the average bank-full channel width (5.5 m) were significantly less likely to be displaced than logs shorter than this width. The longest log in stable log groups was significantly longer than the longest log in...

  6. Adherence to a simplified management algorithm reduces morbidity and mortality after penetrating colon injuries: a 15-year experience.

    PubMed

    Sharpe, John P; Magnotti, Louis J; Weinberg, Jordan A; Parks, Nancy A; Maish, George O; Shahan, Charles P; Fabian, Timothy C; Croce, Martin A

    2012-04-01

    Our previous experience with colon injuries suggested that operative decisions based on a defined algorithm improve outcomes. The purpose of this study was to evaluate the validity of this algorithm in the face of an increased incidence of destructive injuries observed in recent years. Consecutive patients with full-thickness penetrating colon injuries over an 8-year period were evaluated. Per algorithm, patients with nondestructive injuries underwent primary repair. Those with destructive wounds underwent resection plus anastomosis in the absence of comorbidities or large pre- or intraoperative transfusion requirements (more than 6 units packed RBCs); otherwise they were diverted. Outcomes from the current study (CS group) were compared with those from the previous study (PS group). There were 252 patients who had full-thickness penetrating colon injuries: 150 (60%) patients had nondestructive colon wounds treated with primary repair and 102 patients (40%) had destructive wounds (CS). Demographics and intraoperative transfusions were similar between CS and PS groups. Of the 102 patients with destructive injuries, 75% underwent resection plus anastomosis and 25% underwent diversion. Despite more destructive injuries managed in the CS group (41% vs 27%), abscess rate (18% vs 27%) and colon-related mortality (1% vs 5%) were lower in the CS. Suture line failure was similar in CS compared with PS (5% vs 7%). Adherence to the algorithm was >90% in the CS (similar to PS). Despite an increase in the incidence of destructive colon injuries, our management algorithm remains valid. Destructive injuries associated with pre- or intraoperative transfusion requirements of more than 6 units packed RBCs and/or significant comorbidities are best managed with diversion. By managing the majority of other destructive injuries with resection plus anastomosis, acceptably low morbidity and mortality can be achieved. Copyright © 2012 American College of Surgeons. Published by Elsevier Inc. All rights reserved.

  7. Interplay between dewetting and layer inversion in poly(4-vinylpyridine)/polystyrene bilayers.

    PubMed

    Thickett, Stuart C; Harris, Andrew; Neto, Chiara

    2010-10-19

    We investigated the morphology and dynamics of the dewetting of metastable poly(4-vinylpyridine) (P4VP) thin films situated on top of polystyrene (PS) thin films as a function of the molecular weight and thickness of both films. We focused on the competition between the dewetting process, occurring as a result of unfavorable intermolecular interactions at the P4VP/PS interface, and layer inversion due to the lower surface energy of PS. By means of optical and atomic force microscopy (AFM), we observed how both the dynamics of the instability and the morphology of the emerging patterns depend on the ratio of the molecular weights of the polymer films. When the bottom PS layer was less viscous than the top P4VP layer (liquid-liquid dewetting), nucleated holes in the P4VP film typically stopped growing at long annealing times because of a combination of viscous dissipation in the bottom layer and partial layer inversion. Full layer inversion was achieved when the viscosity of the top P4VP layer was significantly greater (>10⁴) than the viscosity of the PS layer underneath, which is attributed to strongly different mobilities of the two layers. The density of holes produced by nucleation dewetting was observed for the first time to depend on the thickness of the top film as well as the polymer molecular weight. The final (completely dewetted) morphology of isolated droplets could be achieved only if the time frame of layer inversion was significantly slower than that of dewetting, which was characteristic of high-viscosity PS underlayers that allowed dewetting to fall into a liquid-solid regime. Assuming a simple reptation model for layer inversion occurring at the dewetting front, the observed surface morphologies could be predicted on the basis of the relative rates of dewetting and layer inversion.

  8. [Effects of plastic film mulching and rain harvesting modes on chlorophyll fluorescence characteristics, yield and water use efficiency of dryland maize].

    PubMed

    Li, Shang-Zhong; Fan, Ting-Lu; Wang, Yong; Zhao, Gang; Wang, Lei; Tang, Xiao-Ming; Dang, Yi; Zhao, Hui

    2014-02-01

    The differences on chlorophyll fluorescence parameters, yield and water use efficiency of dryland maize were compared among full plastic film mulching on double ridges and planting in catchment furrows (FFDRF), half plastic film mulching on double ridges and planting in catchment furrows (HFDRF), plastic film mulching on ridge and planting in film-side (FS), and flat planting with no plastic film mulching (NM) under field conditions in dry highland of Loess Plateau in 2007-2012. The results showed that fluorescence yield (Fo), the maximum fluorescence yield (Fm), light-adapted fluorescence yield when PS II reaction centers were totally open (F), light-adapted fluorescence yield when PS II reaction centers closed (Fm'), the maximal photochemical efficiency of PS II (Fv/Fm), the actual photochemical efficiency of PS II in the light (Phi PS II), the relative electron transport rate (ETR), photochemical quenching (qP) and non-photochemical quenching (qN) in maize leaves of FFDRF were higher than that of control (NM), and the value of 1-qP was lower than that of control, at 13:00, chlorophyll fluorescence parameters values of FFDRF was significantly higher than control, which were increased by 5.3%, 56.8%, 10.7%, 36.3%, 23.6%, 56.7%, 64.4%, 45.5%, 23.6% and -55.6%, respectively, compared with the control. Yield and water use efficiency of FFDRF were the highest in every year no matter dry year, normal year, humid year and hail disaster year. Average yield and water use efficiency of FFDRF were 12,650 kg x hm(-2) and 40.4 kg x mm(-1) x hm(-2) during 2007-2012, increased by 57.8% and 61.6% compared with the control, respectively, and also significantly higher compared with HFDRF and PS. Therefore, it was concluded that FFDRF had significantly increased the efficiency of light energy conversion and improved the production capacity of dryland maize.

  9. Integrated Structural/Control Design via Multiobjective Optimization

    DTIC Science & Technology

    1990-05-10

    motivation is to yield a tractable 0 problem whose solution is readily synthesized and easily implemented. Likewise, the combinatorial approaches to...stations PsI, Ps2, Ps3, Ps4 on arms 3 and 4 and stations Ps5, Ps6, Ps7, Ps8 on arms I and 2. The sensor influence matrix H is 1 oT 0T 0 UoT (psi) T H= 0...t, Ps4 ), v (t,psS) ..... v (t,Ps8) ] T (4-30a) -V = Yp (4-30b) The locations Pul and Pu2 of the torque actuators and Psi, Ps2 .... Ps8 of the sensors

  10. Accuracy of Intraoral Digital Impressions for Whole Upper Jaws, Including Full Dentitions and Palatal Soft Tissues.

    PubMed

    Gan, Ning; Xiong, Yaoyang; Jiao, Ting

    2016-01-01

    Intraoral digital impressions have been stated to meet the clinical requirements for some teeth-supported restorations, though fewer evidences were proposed for larger scanning range. The aim of this study was to compare the accuracy (trueness and precision) of intraoral digital impressions for whole upper jaws, including the full dentitions and palatal soft tissues, as well as to determine the effect of different palatal vault height or arch width on accuracy of intraoral digital impressions. Thirty-two volunteers were divided into three groups according to the palatal vault height or arch width. Each volunteer received three scans with TRIOS intraoral scanner and one conventional impression of whole upper jaw. Three-dimensional (3D) images digitized from conventional gypsum casts by a laboratory scanner were chose as the reference models. All datasets were imported to a specific software program for 3D analysis by "best fit alignment" and "3D compare" process. Color-coded deviation maps showed qualitative visualization of the deviations. For the digital impressions for palatal soft tissues, trueness was (130.54±33.95)μm and precision was (55.26±11.21)μm. For the digital impressions for upper full dentitions, trueness was (80.01±17.78)μm and precision was (59.52±11.29)μm. Larger deviations were found between intraoral digital impressions and conventional impressions in the areas of palatal soft tissues than that in the areas of full dentitions (p<0.001). Precision of digital impressions for palatal soft tissues was slightly better than that for full dentitions (p = 0.049). There was no significant effect of palatal vault height on accuracy of digital impressions for palatal soft tissues (p>0.05), but arch width was found to have a significant effect on precision of intraoral digital impressions for full dentitions (p = 0.016). A linear correlation was found between arch width and precision of digital impressions for whole upper jaws (r = 0.326, p = 0.034 for palatal soft tissues and r = 0.485, p = 0.002 for full dentitions). It was feasible to use the intraoral scanner to obtain digital impressions for whole upper jaws. Wider dental arch contributed to lower precision of an intraoral digital impression. It should be confirmed in further studies that whether accuracy of digital impressions for whole upper jaws is clinically acceptable.

  11. Signatures of Alfvén waves in the polar coronal holes as seen by EIS/Hinode

    NASA Astrophysics Data System (ADS)

    Banerjee, D.; Pérez-Suárez, D.; Doyle, J. G.

    2009-07-01

    Context: We diagnose the properties of the plume and interplume regions in a polar coronal hole and the role of waves in the acceleration of the solar wind. Aims: We attempt to detect whether Alfvén waves are present in the polar coronal holes through variations in EUV line widths. Methods: Using spectral observations performed over a polar coronal hole region with the EIS spectrometer on Hinode, we study the variation in the line width and electron density as a function of height. We use the density sensitive line pairs of Fe xii 186.88 Å and 195.119 Å and Fe xiii 203.82 Å and 202.04 Å. Results: For the polar region, the line width data show that the nonthermal line-of-sight velocity increases from 26~km s-1 at 10´´ above the limb to 42~km s-1 some 150´´ (i.e. ~110 000 km) above the limb. The electron density shows a decrease from 3.3 × 10^9~cm-3 to 1.9 × 10^8~cm-3 over the same distance. Conclusions: These results imply that the nonthermal velocity is inversely proportional to the quadratic root of the electron density, in excellent agreement with what is predicted for undamped radially propagating linear Alfvén waves. Our data provide signatures of Alfvén waves in the polar coronal hole regions, which could be important for the acceleration of the solar wind. Table [see full textsee full textsee full text] and Fig. [see full textsee full textsee full text] are only available in electronic form at http://www.aanda.org

  12. Gestational, perinatal and family findings of patients with Patau syndrome

    PubMed Central

    Rosa, Rafael Fabiano M.; Sarmento, Melina Vaz; Polli, Janaina Borges; Groff, Daniela de Paoli; Petry, Patrícia; de Mattos, Vinícius Freitas; Rosa, Rosana Cardoso M.; Trevisan, Patrícia; Zen, Paulo Ricardo G.

    2013-01-01

    OBJECTIVE: To describe gestational, perinatal and family findings of patients with Patau syndrome (PS). METHODS: The study enrolled patients with PS consecutively evaluated during 38 years in a Clinical Genetics Service of a pediatric referral hospital in Southern Brazil. The clinical data and the results of cytogenetic analysis were collected from the medical records. For statistical analysis, the two-tailed Fisher's exact test and the chi-square test with Yates' correction were used, being significant p<0.05. RESULTS: The sample was composed of 27 patients, 63% were male, with a median age of nine days at the first evaluation. Full trisomy of chromosome 13 was the main cytogenetic finding (74%). Only six patients were submitted to obstetric ultrasound and none had prenatal diagnosis of PS. The patients' demographic characteristics, compared to born alive infants in the same Brazilian state showed a higher frequency of: mothers with 35 years old or more (37.5%); multiparous mothers (92.6%); vaginal delivery (77%); preterm birth (34.6%); birth weight <2500g (33.3%), and Apgar scores <7 in the 1st (75%) and in the 5th minute (42.9%). About half of them (53%) died during the first month of life. CONCLUSIONS: The understanding of the PS patients' gestational, perinatal and family findings has important implications, especially on the decision about the actions to be taken in relation to the management of these patients. PMID:24473950

  13. Polymorphism influences singlet fission rates in tetracene thin films

    DOE PAGES

    Arias, Dylan H.; Ryerson, Joseph L.; Cook, Jasper D.; ...

    2015-11-06

    Here, we report the effect of crystal structure and crystallite grain size on singlet fission (SF) in polycrystalline tetracene, one of the most widely studied SF and organic semiconductor materials. SF has been comprehensively studied in one polymoprh (Tc I), but not in the other, less stable polymorph (Tc II). Using carefully controlled thermal evaporation deposition conditions and high sensitivity ultrafast transient absorption spectroscopy, we found that for large crystallite size samples, SF in nearly pure Tc II films is significantly faster than SF in Tc I films. We also discovered that crystallite size has a minimal impact on themore » SF rate in Tc II films, but a significant influence in Tc I films. Large crystallites exhibit SF times of 125 ps and 22 ps in Tc I and Tc II, respectively, whereas small crystallites have SF times of 31 ps and 33 ps. Our results demonstrate first, that attention must be paid to polymorphism in obtaining a self-consistent rate picture for SF in tetracene and second, that control of polymorphism can play a significant role towards achieving a mechanistic understanding of SF in polycrystalline systems. In this latter context we show that conventional theory based on non-covalent tetracene couplings is insufficient, thus highlighting the need for models that capture the delocalized and highly mobile nature of excited states in elucidating the full photophysical picture.« less

  14. The “Dry-Run” Analysis: A Method for Evaluating Risk Scores for Confounding Control

    PubMed Central

    Wyss, Richard; Hansen, Ben B.; Ellis, Alan R.; Gagne, Joshua J.; Desai, Rishi J.; Glynn, Robert J.; Stürmer, Til

    2017-01-01

    Abstract A propensity score (PS) model's ability to control confounding can be assessed by evaluating covariate balance across exposure groups after PS adjustment. The optimal strategy for evaluating a disease risk score (DRS) model's ability to control confounding is less clear. DRS models cannot be evaluated through balance checks within the full population, and they are usually assessed through prediction diagnostics and goodness-of-fit tests. A proposed alternative is the “dry-run” analysis, which divides the unexposed population into “pseudo-exposed” and “pseudo-unexposed” groups so that differences on observed covariates resemble differences between the actual exposed and unexposed populations. With no exposure effect separating the pseudo-exposed and pseudo-unexposed groups, a DRS model is evaluated by its ability to retrieve an unconfounded null estimate after adjustment in this pseudo-population. We used simulations and an empirical example to compare traditional DRS performance metrics with the dry-run validation. In simulations, the dry run often improved assessment of confounding control, compared with the C statistic and goodness-of-fit tests. In the empirical example, PS and DRS matching gave similar results and showed good performance in terms of covariate balance (PS matching) and controlling confounding in the dry-run analysis (DRS matching). The dry-run analysis may prove useful in evaluating confounding control through DRS models. PMID:28338910

  15. Gestational, perinatal and family findings of patients with Patau syndrome.

    PubMed

    Rosa, Rafael Fabiano M; Sarmento, Melina Vaz; Polli, Janaina Borges; Groff, Daniela de Paoli; Petry, Patrícia; Mattos, Vinícius Freitas de; Rosa, Rosana Cardoso M; Trevisan, Patrícia; Zen, Paulo Ricardo G

    2013-12-01

    To describe gestational, perinatal and family findings of patients with Patau syndrome (PS). The study enrolled patients with PS consecutively evaluated during 38 years in a Clinical Genetics Service of a pediatric referral hospital in Southern Brazil. The clinical data and the results of cytogenetic analysis were collected from the medical records. For statistical analysis, the two-tailed Fisher's exact test and the chi-square test with Yates' correction were used, being significant p<0.05. The sample was composed of 27 patients, 63% were male, with a median age of nine days at the first evaluation. Full trisomy of chromosome 13 was the main cytogenetic finding (74%). Only six patients were submitted to obstetric ultrasound and none had prenatal diagnosis of PS. The patients' demographic characteristics, compared to born alive infants in the same Brazilian state showed a higher frequency of: mothers with 35 years old or more (37.5%); multiparous mothers (92.6%); vaginal delivery (77%); preterm birth (34.6%); birth weight <2500g (33.3%), and Apgar scores <7 in the 1st (75%) and in the 5th minute (42.9%). About half of them (53%) died during the first month of life. The understanding of the PS patients' gestational, perinatal and family findings has important implications, especially on the decision about the actions to be taken in relation to the management of these patients.

  16. Methotrexate loading in chitosan nanoparticles at a novel pH: Response surface modeling, optimization and characterization.

    PubMed

    Hashad, Rania A; Ishak, Rania A H; Geneidi, Ahmed S; Mansour, Samar

    2016-10-01

    The aim of this study was to assess the feasibility of employing a novel but critical formulation pH (6.2) to encapsulate an anionic model drug (methotrexate, MTX) into chitosan(Cs)-tripolyphosphate nanoparticles(NPs). A response surface methodology using a three-level full factorial design was applied studying the effects of two independent variables namely; Cs concentration and MTX concentration. The responses investigated were the entrapment efficiency (EE%), mean hydrodynamic particle size (PS), polydispersity index (PDI) and zeta potential (ZP). In order to simultaneously optimize the series of models obtained, the desirability function approach was applied with a goal to produce high percent of MTX encapsulated into highly charged Cs-TPP NPs of homogenous optimum PS. MTX-loaded CsNPs were successfully prepared at the novel pH applied. The suggested significant models were found quadratic for EE, PS and ZP responses, while 2-factor interaction model for PDI. The optimization overlay graph showed that the maximum global desirability, D=0.856, was reached when the conditions were set at high Cs and MTX concentration. Thus, the use of such optimized conditions, at this novel pH, achieved a maximum drug EE% (73.38%) into NPs characterized by optimum PS (232.6nm), small PDI value (0.195) and highly surface charged (+18.4mV). Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Comparison of treatment with an Alexandrite picosecond laser and Nd:YAG nanosecond laser for removing blue-black Chinese eyeliner tattoos.

    PubMed

    Zhang, Mengli; Huang, Yuqing; Lin, Tong; Wu, Qiuju

    2018-02-28

    To retrospectively evaluate the efficacy of an Alexandrite picosecond laser versus Nd:YAG nanosecond laser for removing blue-black eyeliner tattoos which have existed more than 10 years. A total of 40 patients were treated with an Alexandrite picosecond laser in our department from August 2015 to July 2017, with a fluence of 1.96-6.37J/cm 2 , spot size of 2.0-3.6 mm, and pulse width of 750 ps. Another 32 patients were treated with an Nd:YAG nanosecond laser, with a fluence of 2.80-7.00 J/cm 2 , spot size of 3 mm, and pulse width of 5-20 ns. All analysed patients completed at least one treatment and follow-up. The median number of treatment for all the patients was 1 (range, 1-4). After a single session, no difference was found between the two lasers for the eyeliner removal (p > 0.05). For the people who achieved an excellent response of tattoo clearance, there was still no difference between the two groups (p > 0.05). Transient side effects were observed in two groups, but neither group had significant adverse reactions. To treat blue-black Chinese eyeliner tattoos over 10 years, Alexandrite picosecond laser does not provide better clearance than the Nd:YAG nanosecond laser.

  18. Multichannel FPGA based MVT system for high precision time (20 ps RMS) and charge measurement

    NASA Astrophysics Data System (ADS)

    Pałka, M.; Strzempek, P.; Korcyl, G.; Bednarski, T.; Niedźwiecki, Sz.; Białas, P.; Czerwiński, E.; Dulski, K.; Gajos, A.; Głowacz, B.; Gorgol, M.; Jasińska, B.; Kamińska, D.; Kajetanowicz, M.; Kowalski, P.; Kozik, T.; Krzemień, W.; Kubicz, E.; Mohhamed, M.; Raczyński, L.; Rudy, Z.; Rundel, O.; Salabura, P.; Sharma, N. G.; Silarski, M.; Smyrski, J.; Strzelecki, A.; Wieczorek, A.; Wiślicki, W.; Zieliński, M.; Zgardzińska, B.; Moskal, P.

    2017-08-01

    In this article it is presented an FPGA based Multi-Voltage Threshold (MVT) system which allows of sampling fast signals (1-2 ns rising and falling edge) in both voltage and time domain. It is possible to achieve a precision of time measurement of 20 ps RMS and reconstruct charge of signals, using a simple approach, with deviation from real value smaller than 10%. Utilization of the differential inputs of an FPGA chip as comparators together with an implementation of a TDC inside an FPGA allowed us to achieve a compact multi-channel system characterized by low power consumption and low production costs. This paper describes realization and functioning of the system comprising 192-channel TDC board and a four mezzanine cards which split incoming signals and discriminate them. The boards have been used to validate a newly developed Time-of-Flight Positron Emission Tomography system based on plastic scintillators. The achieved full system time resolution of σ(TOF) ≈ 68 ps is by factor of two better with respect to the current TOF-PET systems.

  19. A new tritiated water measurement method with plastic scintillator pellets.

    PubMed

    Furuta, Etsuko; Iwasaki, Noriko; Kato, Yuka; Tomozoe, Yusuke

    2016-01-01

    A new tritiated water measurement method with plastic scintillator pellets (PS-pellets) by using a conventional liquid scintillation counter was developed. The PS-pellets used were 3 mm in both diameter and length. A low potassium glass vial was filled full with the pellets, and tritiated water was applied to the vial from 5 to 100 μl. Then, the sample solution was scattered in the interstices of the pellets in a vial. This method needs no liquid scintillator, so no liquid organic waste fluid is generated. The counting efficiency with the pellets was approximately 48 % when a 5 μl solution was used, which was higher than that of conventional measurement using liquid scintillator. The relationship between count rate and activity showed good linearity. The pellets were able to be used repeatedly, so few solid wastes are generated with this method. The PS-pellets are useful for tritiated water measurement; however, it is necessary to develop a new device which can be applied to a larger volume and measure low level concentration like an environmental application.

  20. Fabrication of spherical biochar by a two-step thermal process from waste potato peel.

    PubMed

    Yang, Xiao; Kwon, Eilhann E; Dou, Xiaomin; Zhang, Ming; Kim, Ki-Hyun; Tsang, Daniel C W; Ok, Yong Sik

    2018-06-01

    The aim of this study was to develop a new approach for the preparation of spherical biochar (SBC) by employing a two-step thermal technology to potato peel waste (PPW). Potato starch (PS), as a carbon-rich material with microscale spherical shape, was separated from PPW as a precursor to synthesizing SBC. The synthesis process comprised (1) pre-oxidization (preheating under air) of PS at 220 °C and (2) subsequent pyrolysis of the pretreated sample at 700 °C. Results showed that the produced SBC successfully retained the original PS morphology and that pre-oxidization was the key for its shape maintenance, as it reduced surface tension and enhanced structural stability. The SBC possessed excellent chemical inertness (high aromaticity) and uniform particle size (10-30 μm). Zero-cost waste material with a facile and easy-to-control process allows the method to be readily scalable for industrialization, while offering a new perspective on the full use of PPW. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Highly birefringent large negative dispersion-flattened photonic crystal fibre for broadband residual dispersion compensation

    NASA Astrophysics Data System (ADS)

    Faisal, Mohammad; Bala, Animesh; Roy Chowdhury, Kanan; Mia, Md. Borhan

    2018-07-01

    A triangular lattice photonic crystal fibre is presented in this paper for residual dispersion compensation. The fibre exhibits a flattened negative dispersion of -992.01 ± 6.93 ps/(nm-km) over S+C+L wavelength bands and -995.83 ± 0.42 ps/(nm-km) over C-band. The birefringence is about 4.4 × 10-2 at the excitation wavelength of 1550 nm which is also very high. Full vector finite element method (FEM) with a perfectly matched absorbing layer (PML) boundary condition is applied to numerically investigate the guiding properties of this PCF. The fibre operates at fundamental mode only. All these properties endorse this fibre as a suitable candidate for compensating residual dispersion and polarization maintaining applications.

  2. Increased Alzheimer's disease-like pathology in the APP/ PS1ΔE9 mouse model lacking Nrf2 through modulation of autophagy.

    PubMed

    Joshi, Gururaj; Gan, Kok Ann; Johnson, Delinda A; Johnson, Jeffrey A

    2015-02-01

    The presence of senile plaques is one of the major pathologic hallmarks of the brain with Alzheimer's disease (AD). The plaques predominantly contain insoluble amyloid β-peptide, a cleavage product of the larger amyloid precursor protein (APP). Two enzymes, named β and γ secretase, generate the neurotoxic amyloid-β peptide from APP. Mature APP is also turned over endogenously by autophagy, more specifically by the endosomal-lysosomal pathway. A defective lysosomal system is known to be pathogenic in AD. Modulation of NF-E2 related factor 2 (Nrf2) has been shown in several neurodegenerative disorders, and Nrf2 has become a potential therapeutic target for various neurodegenerative disorders, including AD, Parkinson's disease, and amyotrophic lateral sclerosis. In the current study, we explored the effect of genetic ablation of Nrf2 on APP/Aβ processing and/or aggregation as well as changes in autophagic dysfunction in APP/PS1 mice. There was a significant increase in inflammatory response in APP/PS1 mice lacking Nrf2. This was accompanied by increased intracellular levels of APP, Aβ (1-42), and Aβ (1-40), without a change total full-length APP. There was a shift of APP and Aβ into the insoluble fraction, as well as increased poly-ubiquitin conjugated proteins in mice lacking Nrf2. APP/PS1-mediated autophagic dysfunction is also enhanced in Nrf2-deficient mice. Finally, neurons in the APP/PS1/Nrf2-/- mice had increased accumulation of multivesicular bodies, endosomes, and lysosomes. These outcomes provide a better understanding of the role of Nrf2 in modulating autophagy in an AD mouse model and may help design better Nrf2 targeted therapeutics that could be efficacious in the treatment of AD. Published by Elsevier Inc.

  3. Developing the Thai Siriraj Psoriatic Arthritis Screening Tool and validating the Thai Psoriasis Epidemiology Screening Tool and the Early Arthritis for Psoriatic Patients questionnaire.

    PubMed

    Chiowchanwisawakit, Praveena; Wattanamongkolsil, Luksame; Srinonprasert, Varalak; Petcharat, Chonachan; Siriwanarangsun, Palanan; Katchamart, Wanruchada

    2016-10-01

    To validate the Thai language version of the Psoriasis Epidemiology Screening Tool (PEST) and the Early Arthritis for Psoriatic Patients Questionnaire (EARP), as well as also to develop a new tool for screening psoriatic arthritis (PsA) among psoriasis (Ps) patients. This was a cross-sectional study. Ps patients visiting the psoriasis clinic at Siriraj Hospital were recruited. They completed the EARP and PEST. Full musculoskeletal history, examination, and radiography were evaluated. PsA was diagnosed by a rheumatologist's evaluation and fulfillment of the classification criteria for psoriatic arthritis. Receiver operator characteristic (ROC) curves, sensitivity, and specificity were used to evaluate the performances of the tools. The Siriraj Psoriatic Arthritis Screening Tool (SiPAT) contained questions most relevant to peripheral arthritis, axial inflammation, and enthesitis, selected from multivariate analysis. Of a total of 159 patients, the prevalence of PsA was 78.6 %. The ROC curve analyses of Thai EARP, PEST, and SiPAT were 0.90 (95 % CI 0.84, 0.96), 0.85 (0.78, 0.92), and 0.89 (0.83, 0.95), respectively. The sensitivities of SiPAT, Thai EARP, and PEST were 91.0, 83.0, and 72.0 %, respectively, while the specificities were 69.0, 79.3, and 89.7 %, respectively. All screening questionnaires showed good diagnostic performances. SiPAT could be considered as a screening tool with its desirable properties: higher sensitivity and taking less time. Thai PEST and EARP could possibly be sequentially administered for people with a positive test from SiPAT to reduce the number of false positives.

  4. The airglow layer emission altitude cannot be determined unambiguously from temperature comparison with lidars

    NASA Astrophysics Data System (ADS)

    Dunker, Tim

    2018-05-01

    I investigate the nightly mean emission height and width of the OH* (3-1) layer by comparing nightly mean temperatures measured by the ground-based spectrometer GRIPS 9 and the Na lidar at ALOMAR. The data set contains 42 coincident measurements taken between November 2010 and February 2014, when GRIPS 9 was in operation at the ALOMAR observatory (69.3° N, 16.0° E) in northern Norway. To closely resemble the mean temperature measured by GRIPS 9, I weight each nightly mean temperature profile measured by the lidar using Gaussian distributions with 40 different centre altitudes and 40 different full widths at half maximum. In principle, one can thus determine the altitude and width of an airglow layer by finding the minimum temperature difference between the two instruments. On most nights, several combinations of centre altitude and width yield a temperature difference of ±2 K. The generally assumed altitude of 87 km and width of 8 km is never an unambiguous, good solution for any of the measurements. Even for a fixed width of ˜ 8.4 km, one can sometimes find several centre altitudes that yield equally good temperature agreement. Weighted temperatures measured by lidar are not suitable to unambiguously determine the emission height and width of an airglow layer. However, when actual altitude and width data are lacking, a comparison with lidars can provide an estimate of how representative a measured rotational temperature is of an assumed altitude and width. I found the rotational temperature to represent the temperature at the commonly assumed altitude of 87.4 km and width of 8.4 km to within ±16 K, on average. This is not a measurement uncertainty.

  5. Novel Photon-Counting Detectors for Free-Space Communication

    NASA Technical Reports Server (NTRS)

    Krainak, M. A.; Yang, G.; Sun, X.; Lu, W.; Merritt, S.; Beck, J.

    2016-01-01

    We present performance data for novel photon-counting detectors for free space optical communication. NASA GSFC is testing the performance of two types of novel photon-counting detectors 1) a 2x8 mercury cadmium telluride (HgCdTe) avalanche array made by DRS Inc., and a 2) a commercial 2880-element silicon avalanche photodiode (APD) array. We present and compare dark count, photon-detection efficiency, wavelength response and communication performance data for these detectors. We successfully measured real-time communication performance using both the 2 detected-photon threshold and AND-gate coincidence methods. Use of these methods allows mitigation of dark count, after-pulsing and background noise effects. The HgCdTe APD array routinely demonstrated photon detection efficiencies of greater than 50% across 5 arrays, with one array reaching a maximum PDE of 70%. We performed high-resolution pixel-surface spot scans and measured the junction diameters of its diodes. We found that decreasing the junction diameter from 31 micrometers to 25 micrometers doubled the e- APD gain from 470 for an array produced in the year 2010 to a gain of 1100 on an array delivered to NASA GSFC recently. The mean single-photon SNR was over 12 and the excess noise factors measurements were 1.2-1.3. The commercial silicon APD array exhibited a fast output with rise times of 300 ps and pulse widths of 600 ps. On-chip individually filtered signals from the entire array were multiplexed onto a single fast output.

  6. Novel Photon-Counting Detectors for Free-Space Communication

    NASA Technical Reports Server (NTRS)

    Krainak, Michael A.; Yang, Guan; Sun, Xiaoli; Lu, Wei; Merritt, Scott; Beck, Jeff

    2016-01-01

    We present performance data for novel photon counting detectors for free space optical communication. NASA GSFC is testing the performance of three novel photon counting detectors 1) a 2x8 mercury cadmium telluride avalanche array made by DRS Inc. 2) a commercial 2880 silicon avalanche photodiode array and 3) a prototype resonant cavity silicon avalanche photodiode array. We will present and compare dark count, photon detection efficiency, wavelength response and communication performance data for these detectors. We discuss system wavelength trades and architectures for optimizing overall communication link sensitivity, data rate and cost performance. The HgCdTe APD array has photon detection efficiencies of greater than 50 were routinely demonstrated across 5 arrays, with one array reaching a maximum PDE of 70. High resolution pixel-surface spot scans were performed and the junction diameters of the diodes were measured. The junction diameter was decreased from 31 m to 25 m resulting in a 2x increase in e-APD gain from 470 on the 2010 array to 1100 on the array delivered to NASA GSFC. Mean single photon SNRs of over 12 were demonstrated at excess noise factors of 1.2-1.3.The commercial silicon APD array has a fast output with rise times of 300ps and pulse widths of 600ps. Received and filtered signals from the entire array are multiplexed onto this single fast output. The prototype resonant cavity silicon APD array is being developed for use at 1 micron wavelength.

  7. Precision measurement of CP violation in B(S)(0)→J/ΨK+K- decays.

    PubMed

    Aaij, R; Adeva, B; Adinolfi, M; Affolder, A; Ajaltouni, Z; Akar, S; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amerio, S; Amhis, Y; An, L; Anderlini, L; Anderson, J; Andreassen, R; Andreotti, M; Andrews, J E; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Baalouch, M; Bachmann, S; Back, J J; Badalov, A; Baesso, C; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Batozskaya, V; Battista, V; Bay, A; Beaucourt, L; Beddow, J; Bedeschi, F; Bediaga, I; Belogurov, S; Belous, K; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bertolin, A; Bettler, M-O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Borsato, M; Bowcock, T J V; Bowen, E; Bozzi, C; Brett, D; Britsch, M; Britton, T; Brodzicka, J; Brook, N H; Bursche, A; Buytaert, J; Cadeddu, S; Calabrese, R; Calvi, M; Calvo Gomez, M; Campana, P; Campora Perez, D; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carson, L; Carvalho Akiba, K; Casanova Mohr, R C M; Casse, G; Cassina, L; Castillo Garcia, L; Cattaneo, M; Cauet, Ch; Cenci, R; Charles, M; Charpentier, Ph; Chefdeville, M; Chen, S; Cheung, S-F; Chiapolini, N; Chrzaszcz, M; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coco, V; Cogan, J; Cogneras, E; Cogoni, V; Cojocariu, L; Collazuol, G; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Coquereau, S; Corti, G; Corvo, M; Counts, I; Couturier, B; Cowan, G A; Craik, D C; Crocombe, A C; Cruz Torres, M; Cunliffe, S; Currie, R; D'Ambrosio, C; Dalseno, J; David, P; David, P N Y; Davis, A; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Silva, W; De Simone, P; Dean, C-T; Decamp, D; Deckenhoff, M; Del Buono, L; Déléage, N; Derkach, D; Deschamps, O; Dettori, F; Di Canto, A; Di Domenico, A; Dijkstra, H; Donleavy, S; Dordei, F; Dorigo, M; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dreimanis, K; Dujany, G; Dupertuis, F; Durante, P; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; El Rifai, I; Elsasser, Ch; Ely, S; Esen, S; Evans, H-M; Evans, T; Falabella, A; Färber, C; Farinelli, C; Farley, N; Farry, S; Fay, R; Ferguson, D; Fernandez Albor, V; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fiore, M; Fiorini, M; Firlej, M; Fitzpatrick, C; Fiutowski, T; Fol, P; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Fu, J; Furfaro, E; Gallas Torreira, A; Galli, D; Gallorini, S; Gambetta, S; Gandelman, M; Gandini, P; Gao, Y; García Pardiñas, J; Garofoli, J; Garra Tico, J; Garrido, L; Gascon, D; Gaspar, C; Gastaldi, U; Gauld, R; Gavardi, L; Gazzoni, G; Geraci, A; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gianelle, A; Gianì, S; Gibson, V; Giubega, L; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gotti, C; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graverini, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Griffith, P; Grillo, L; Grünberg, O; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hamilton, B; Hampson, T; Han, X; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; He, J; Head, T; Heijne, V; Hennessy, K; Henrard, P; Henry, L; Hernando Morata, J A; van Herwijnen, E; Heß, M; Hicheur, A; Hill, D; Hoballah, M; Hombach, C; Hulsbergen, W; Hussain, N; Hutchcroft, D; Hynds, D; Idzik, M; Ilten, P; Jacobsson, R; Jaeger, A; Jalocha, J; Jans, E; Jaton, P; Jawahery, A; Jing, F; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Jurik, N; Kandybei, S; Kanso, W; Karacson, M; Karbach, T M; Karodia, S; Kelsey, M; Kenyon, I R; Ketel, T; Khanji, B; Khurewathanakul, C; Klaver, S; Klimaszewski, K; Kochebina, O; Kolpin, M; Komarov, I; Koopman, R F; Koppenburg, P; Korolev, M; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kucewicz, W; Kucharczyk, M; Kudryavtsev, V; Kurek, K; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanfranchi, G; Langenbruch, C; Langhans, B; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J-P; Lefèvre, R; Leflat, A; Lefrançois, J; Leroy, O; Lesiak, T; Leverington, B; Li, Y; Likhomanenko, T; Liles, M; Lindner, R; Linn, C; Lionetto, F; Liu, B; Lohn, S; Longstaff, I; Lopes, J H; Lowdon, P; Lucchesi, D; Luo, H; Lupato, A; Luppi, E; Lupton, O; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Malde, S; Malinin, A; Manca, G; Mancinelli, G; Mapelli, A; Maratas, J; Marchand, J F; Marconi, U; Marin Benito, C; Marino, P; Märki, R; Marks, J; Martellotti, G; Martinelli, M; Martinez Santos, D; Martinez Vidal, F; Martins Tostes, D; Massafferri, A; Matev, R; Mathe, Z; Matteuzzi, C; Mazurov, A; McCann, M; McCarthy, J; McNab, A; McNulty, R; McSkelly, B; Meadows, B; Meier, F; Meissner, M; Merk, M; Milanes, D A; Minard, M-N; Moggi, N; Molina Rodriguez, J; Monteil, S; Morandin, M; Morawski, P; Mordà, A; Morello, M J; Moron, J; Morris, A-B; Mountain, R; Muheim, F; Müller, K; Mussini, M; Muster, B; Naik, P; Nakada, T; Nandakumar, R; Nasteva, I; Needham, M; Neri, N; Neubert, S; Neufeld, N; Neuner, M; Nguyen, A D; Nguyen, T D; Nguyen-Mau, C; Nicol, M; Niess, V; Niet, R; Nikitin, N; Nikodem, T; Novoselov, A; O'Hanlon, D P; Oblakowska-Mucha, A; Obraztsov, V; Ogilvy, S; Okhrimenko, O; Oldeman, R; Onderwater, C J G; Orlandea, M; Otalora Goicochea, J M; Otto, A; Owen, P; Oyanguren, A; Pal, B K; Palano, A; Palombo, F; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Pappalardo, L L; Parkes, C; Parkinson, C J; Passaleva, G; Patel, G D; Patel, M; Patrignani, C; Pearce, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perret, P; Pescatore, L; Pesen, E; Petridis, K; Petrolini, A; Picatoste Olloqui, E; Pietrzyk, B; Pilař, T; Pinci, D; Pistone, A; Playfer, S; Plo Casasus, M; Polci, F; Poluektov, A; Polyakov, I; Polycarpo, E; Popov, A; Popov, D; Popovici, B; Potterat, C; Price, E; Price, J D; Prisciandaro, J; Pritchard, A; Prouve, C; Pugatch, V; Puig Navarro, A; Punzi, G; Qian, W; Rachwal, B; Rademacker, J H; Rakotomiaramanana, B; Rama, M; Rangel, M S; Raniuk, I; Rauschmayr, N; Raven, G; Redi, F; Reichert, S; Reid, M M; dos Reis, A C; Ricciardi, S; Richards, S; Rihl, M; Rinnert, K; Rives Molina, V; Robbe, P; Rodrigues, A B; Rodrigues, E; Rodriguez Perez, P; Roiser, S; Romanovsky, V; Romero Vidal, A; Rotondo, M; Rouvinet, J; Ruf, T; Ruiz, H; Ruiz Valls, P; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salustino Guimaraes, V; Sanchez Mayordomo, C; Sanmartin Sedes, B; Santacesaria, R; Santamarina Rios, C; Santovetti, E; Sarti, A; Satriano, C; Satta, A; Saunders, D M; Savrina, D; Schiller, M; Schindler, H; Schlupp, M; Schmelling, M; Schmidt, B; Schneider, O; Schopper, A; Schune, M-H; Schwemmer, R; Sciascia, B; Sciubba, A; Semennikov, A; Sepp, I; Serra, N; Serrano, J; Sestini, L; Seyfert, P; Shapkin, M; Shapoval, I; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, V; Shires, A; Silva Coutinho, R; Simi, G; Sirendi, M; Skidmore, N; Skillicorn, I; Skwarnicki, T; Smith, N A; Smith, E; Smith, E; Smith, J; Smith, M; Snoek, H; Sokoloff, M D; Soler, F J P; Soomro, F; Souza, D; Souza De Paula, B; Spaan, B; Spradlin, P; Sridharan, S; Stagni, F; Stahl, M; Stahl, S; Steinkamp, O; Stenyakin, O; Sterpka, F; Stevenson, S; Stoica, S; Stone, S; Storaci, B; Stracka, S; Straticiuc, M; Straumann, U; Stroili, R; Sun, L; Sutcliffe, W; Swientek, K; Swientek, S; Syropoulos, V; Szczekowski, M; Szczypka, P; Szumlak, T; T'Jampens, S; Teklishyn, M; Tellarini, G; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Todd, J; Tolk, S; Tomassetti, L; Tonelli, D; Topp-Joergensen, S; Torr, N; Tournefier, E; Tourneur, S; Tran, M T; Tresch, M; Trisovic, A; Tsaregorodtsev, A; Tsopelas, P; Tuning, N; Ubeda Garcia, M; Ukleja, A; Ustyuzhanin, A; Uwer, U; Vacca, C; Vagnoni, V; Valenti, G; Vallier, A; Vazquez Gomez, R; Vazquez Regueiro, P; Vázquez Sierra, C; Vecchi, S; Velthuis, J J; Veltri, M; Veneziano, G; Vesterinen, M; Viana Barbosa, J V V B; Viaud, B; Vieira, D; Vieites Diaz, M; Vilasis-Cardona, X; Vollhardt, A; Volyanskyy, D; Voong, D; Vorobyev, A; Vorobyev, V; Voß, C; de Vries, J A; Waldi, R; Wallace, C; Wallace, R; Walsh, J; Wandernoth, S; Wang, J; Ward, D R; Watson, N K; Websdale, D; Whitehead, M; Wiedner, D; Wilkinson, G; Wilkinson, M; Williams, M P; Williams, M; Wilschut, H W; Wilson, F F; Wimberley, J; Wishahi, J; Wislicki, W; Witek, M; Wormser, G; Wotton, S A; Wright, S; Wyllie, K; Xie, Y; Xing, Z; Xu, Z; Yang, Z; Yuan, X; Yushchenko, O; Zangoli, M; Zavertyaev, M; Zhang, L; Zhang, W C; Zhang, Y; Zhelezov, A; Zhokhov, A; Zhong, L

    2015-01-30

    The time-dependent CP asymmetry in B(s)(0)→J/ψK+K- decays is measured using pp collision data, corresponding to an integrated luminosity of 3.0  fb-1, collected with the LHCb detector at center-of-mass energies of 7 and 8 TeV. In a sample of 96,000 B(s)(0)→J/ψK+K- decays, the CP-violating phase ϕs is measured, as well as the decay widths ΓL and ΓH of the light and heavy mass eigenstates of the B(s)(0)-B[over ¯]s0 system. The values obtained are ϕs=-0.058±0.049±0.006  rad, Γs≡(ΓL+ΓH)/2=0.6603±0.0027±0.0015  ps-1, and ΔΓs≡ΓL-ΓH=0.0805±0.0091±0.0032  ps-1, where the first uncertainty is statistical and the second, systematic. These are the most precise single measurements of those quantities to date. A combined analysis with Bs0→J/ψπ+π- decays gives ϕs=-0.010±0.039  rad. All measurements are in agreement with the standard model predictions. For the first time, the phase ϕs is measured independently for each polarization state of the K+K- system and shows no evidence for polarization dependence.

  8. Performances of the Front-End Electronics for the HADES RPC TOF wall on a 12C beam

    NASA Astrophysics Data System (ADS)

    Belver, D.; Cabanelas, P.; Castro, E.; Díaz, J.; Garzón, J. A.; Gil, A.; Gonzalez-Diaz, D.; Koenig, W.; Traxler, M.; Zapata, M.

    2009-05-01

    A Front-End Electronics (FEE) chain for timing accurate measurements has been developed for the RPC wall upgrade of the High-Acceptance DiElectron Spectrometer (HADES). The wall will cover an area of around 8 m with 1122 RPC cells (2244 electronic channels). The FEE chain consists of two boards: a four-channel DaughterBOard (DBO) and a 32-channel MotherBOard (MBO). The DBO uses a fast 2 GHz amplifier feeding a discriminator. The time and the charge information are encoded in the leading and the trailing edge (by a charge to width method) of an LVDS signal. Each MBO houses up to eight DBOs providing them regulated voltage supply, threshold values via DACs, test signals and collection of their trigger outputs. The MBO delivers LVDS signals to a time-to-digital converter readout board (TRB) based on HPTDC for data acquisition. In this work, we present the performance of the FEE measured using: (a) narrow electronic test pulses and (b) real signals read out in a fully instrumented RPC sextant installed in its final position at the HADES. The detector was exposed to particles coming from reactions of a 12C beam on Be and Nb targets at 2 GeV/A kinetic energy. Results for the whole electronic chain (DBO+MBO+TRB) show a timing jitter of around 40 ps/channel for pulses above 100 fC and 80 ps/channel for beam data taken with the RPC.

  9. The thermally reversing window in ternary GexPxS1-2x glasses

    NASA Astrophysics Data System (ADS)

    Vempati, U.; Boolchand, P.

    2004-11-01

    GexPxS1-2x glasses in the compositional range 0.05 \\le x \\le 0.19 have been synthesized and examined in temperature modulated differential scanning calorimetry (MDSC) and Raman scattering experiments. Trends in the non-reversing enthalpy ΔHnr(x) near Tg show the term to almost vanish in the 0.090(5)0.135. In analogy to previous results on chalcogenide glasses, we identify compositions at x<0.09 to be elastically floppy, those in the 0.0900.135 to be stressed rigid. MDSC results also show that the ΔHnr term ages in the stressed-rigid and floppy phases but not in the intermediate phase. The intermediate phase is viewed to be a self-organized phase of a disordered network. It consists of at least four isostatically rigid local structures: corner-sharing GeS4, edge-sharing GeS2, pyramidal P(S1/2)3 and quasi-tetrahedral S = P(S1/2)3 units for which evidence comes from Raman scattering. The latter method also shows the existence of P4S7 and P4S10 molecules in the glasses segregated from the backbone. These aspects of structure contribute to an intermediate phase that is significantly narrower in width than in the corresponding selenide glasses.

  10. Short-pulse controlled optical switch using external cavity based single mode Fabry-Pérot laser diode.

    PubMed

    Nakarmi, Bikash; Hoai, Tran Quoc; Won, Yong-Hyub; Zhang, Xuping

    2014-06-30

    We propose and demonstrate a novel scheme for short pulse controlled all-optical switch using external cavity based single mode Fabry- Pérot laser diode (SMFP-LD). The proposed scheme consists of control unit and switching unit as two essential blocks. The basic principle of the proposed scheme is the optical bistability property of SMFP-LD for the control unit and the suppression of the dominant beam of SMFP-LD with injection locking for the switching unit. We also present the analysis of hysteresis width and rising/falling time with change in wavelength detuning which helps to find the optimum wavelength detuning value and power of light beams at different stages of the proposed scheme that gives wide input dynamic power range, high ON/OFF contrast ratio, and low rising/falling time. Input data of 10 Gb/s Non Return to Zero (NRZ) signal is switched at output ports depending upon the control signal generated by the control unit, which comprises of optical SR latch. Output waveforms, clear eye diagrams with extinction ratio of about 11 dB, rising/falling time of about 30 ps and 40 ps, and bit error rate (BER) are measured to validate proposed scheme. No noise floor is observed at output ports up to BER of 10-(12) and the maximum power penalty recorded is about 1.7 dB at a BER of 10-(9) which shows good performance of the proposed short pulse controlled optical switch using SMFP-LDs.

  11. Effect of electron cyclotron beam width to neoclassical tearing mode stabilization by minimum seeking control in ITER

    NASA Astrophysics Data System (ADS)

    Park, Minho; Na, Yong-Su; Seo, Jaemin; Kim, M.; Kim, Kyungjin

    2018-01-01

    We report the effect of the electron cyclotron (EC) beam width on the full suppression time of neoclassical tearing mode (NTM) using the finite difference method (FDM) based minimum seeking controller in ITER. An integrated numerical system is setup for time-dependent simulations of the NTM evolution in ITER by solving the modified Rutherford equation together with the plasma equilibrium, transport, and EC heating and current drive. The calculated magnetic island width and growth rate is converted to the Mirnov diagnostic signal as an input to the controller to mimic the real experiment. In addition, 10% of the noise is enforced to this diagnostic signal to evaluate the robustness of the controller. To test the dependency of the NTM stabilization time on the EC beam width, the EC beam width scan is performed for a perfectly aligned case first, then for cases with the feedback control using the minimum seeking controller. When the EC beam is perfectly aligned, the narrower the EC beam width, the smaller the NTM stabilization time is observed. As the beam width increases, the required EC power increases exponentially. On the other hand, when the minimum seeking controller is applied, NTM stabilization sometimes fails as the EC beam width decreases. This is consistently observed in the simulation with various representations of the noise as well as without the noise in the Mirnov signal. The higher relative misalignment, misalignment divided by the beam width, is found to be the reason for the failure with the narrower beam widths. The EC stabilization effect can be lower for the narrower beam widths than the broader ones even at the same misalignment due to the smaller ECCD at the island O-point. On the other hand, if the EC beam is too wide, the NTM stabilization time takes too long. Accordingly, the optimal EC beam width range is revealed to exist in the feedback stabilization of NTM.

  12. An Analysis of Maxillary Anterior Teeth Dimensions for the Existence of Golden Proportion: Clinical Study.

    PubMed

    Sandeep, Nalla; Satwalekar, Parth; Srinivas, Siva; Reddy, Chandra Sekhar; Reddy, G Ramaswamy; Reddy, B Anantha

    2015-09-01

    Appearance of the face is a great concern to everyone, as it is a significant part of self-image. The study analyzed the clinical crown dimensions of the maxillary anterior teeth with respect to their apparent mesiodistal widths, width-to-height ratio to determine whether golden proportion existed among the South Indian population. A total of 240 dentulous subjects were chosen for the study (120 males and 120 females) age ranging between 18 and 28 years. Full face and anterior teeth images of the subjects were made on specially designed device resembling a face-bow, mounted onto the wall under a standard light source. The width and height of the maxillary central incisors were measured on the stone casts using a digital caliper. The mean perceived maxillary lateral incisor to central incisor width ratio was 0.67 in males and 0.703 in females. The mean perceived maxillary canine to lateral incisor width ratio was 0.744 in males and 0.714 in females. The mean width-to-height ratio of the maxillary central incisor was 79.49% in males and 79.197% in females. The golden proportion was not found between perceived mesiodistal widths of maxillary central and lateral incisors and nor between perceived mesiodistal widths of maxillary lateral incisors and canines. In the majority of subjects, the width-to-height ratio of maxillary central incisor was within 75-80%. There are no statistically significant differences in maxillary anterior teeth proportions between males and females. The results may serve as guidelines for treatment planning in restorative dentistry and periodontal surgery.

  13. Wavelength tunable L Band polarization-locked vector soliton fiber laser based on SWCNT-SA and CFBG

    NASA Astrophysics Data System (ADS)

    Yan, Yaxi; Wang, Jiaqi; Wang, Liang; Cheng, Zhenzhou

    2018-04-01

    Wavelength tunable L-Band polarization-locked vector soliton fiber laser based on single-walled carbon nanotube saturable absorber (SWCNT-SA) and chirped fiber Bragg grating (CFBG) is presented for the first time. By inserting the SWCNT-SA into an all-fiber laser cavity, polarization-locked vector solitons (PLVS) are obtained. The CFBG glued on a plastic cantilever is used for wavelength tuning. By mechanically bending the cantilever, the center wavelength of the PLVS pulses can be continuously tuned from 1606.8 nm to 1614 nm, while the polarization-locked state is kept stable. The properties and dynamics of PLVSs are experimentally investigated and stable PLVS operation including high-order PLVSs is demonstrated. The pulse width and repetition rate are 7.06 ps and 11.9 MHz at a wavelength of 1611 nm, respectively. This work demonstrates the feasibility of using polarization-insensitive CFBG to realize wavelength tuning in PLVS fiber laser.

  14. Investigation of continuous wave and pulsed laser performance based on Nd3+:Gd0.6Y1.4SiO5 crystal

    NASA Astrophysics Data System (ADS)

    Feng, Chao; Liu, Zhaojun; Cong, Zhenhua; Shen, Hongbin; Li, Yongfu; Wang, Qingpu; Fang, Jiaxiong; Xu, Xiaodong; Xu, Jun; Zhang, Xingyu

    2015-12-01

    We systematically investigated a laser diode (LD) pumped Nd:GYSO (Nd3+:Gd0.6Y1.4SiO5) laser. The output power of the continuous wave laser was as high as 3.5 W with a slope efficiency of 31.8%. In the Q-switched operation; the laser exhibited dual-wavelengths output (1073.6 nm and 1074.7 nm) synchronously with a Cr4+:YAG as the saturable absorber (SA). Additionally, a passively mode-locked laser was demonstrated using a semiconductor SA mirror with a maximum average output power of 510 mW at a central wavelength of 1074 nm, while the pulse width of the laser was as short as 5 ps. Our experiment proved that the Nd:GYSO mixed crystal was a promising material for a solid-state laser.

  15. Exploring the self-mode-locked dynamics of cryogenic diode-pumped Nd:YLF lasers: switching of orthogonal polarizations

    NASA Astrophysics Data System (ADS)

    Huang, T. L.; Y Cho, C.; Liang, H. C.; Huang, K. F.; Chen, Y. F.

    2017-08-01

    The self-mode-locked output for cryogenic Nd:YLF laser at the temperature range of 90 K to 290 K is thoroughly investigated. Linearly polarized self-mode-locked lasing at 1047 nm (1053 nm) with a repetition rate up to 1.59 GHz and a pulse width as short as 52 ps can be realized at temperatures above 155 K (below 135 K). Orthogonally polarized self-mode-locked operation can be observed at temperatures near 145 K. During dual-polarization operation, it is found that the polarized component with higher output power is the fundamental transverse mode, whereas the other component with lower output power becomes the high-order transverse mode. The dominant polarized component can be either π- or σ-polarization, depending on the fine adjustment of the cavity.

  16. Enhancing the Linear Dynamic Range in Multi-Channel Single Photon Detector beyond 7OD

    PubMed Central

    Gudkov, Dmytro; Gudkov, George; Gorbovitski, Boris; Gorfinkel, Vera

    2015-01-01

    We present design, implementation, and characterization of a single photon detector based on 32-channel PMT sensor [model H7260-20, Hamamatsu]. The developed high speed electronics enables the photon counting with linear dynamic range (LDR) up to 108count/s per detector's channel. The experimental characterization and Monte-Carlo simulations showed that in the single photon counting mode the LDR of the PMT sensor is limited by (i) “photon” pulse width (current pulse) of 900ps and (ii) substantial decrease of amplitudes of current pulses for count rates exceeding 108 count/s. The multi-channel architecture of the detector and the developed firm/software allow further expansion of the dynamic range of the device by 32-fold by using appropriate beam shaping. The developed single photon counting detector was tested for the detection of fluorescence labeled microbeads in capillary flow. PMID:27087788

  17. Optical frequency comb generation based on the dual-mode square microlaser and a nonlinear fiber loop

    NASA Astrophysics Data System (ADS)

    Weng, Hai-Zhong; Han, Jun-Yuan; Li, Qing; Yang, Yue-De; Xiao, Jin-Long; Qin, Guan-Shi; Huang, Yong-Zhen

    2018-05-01

    A novel approach using a dual-mode square microlaser as the pump source is demonstrated to produce wideband optical frequency comb (OFC). The enhanced nonlinear frequency conversion processes are accomplished in a nonlinear fiber loop, which can reduce the stimulated Brillouin scattering threshold and then generate a dual-mode Brillouin laser with improved optical signal-to-noise ratio. An OFC with 130 nm bandwidth and 76 GHz repetition rate is successfully generated under the four-wave mixing, and the number of the comb lines is enhanced by 26 times compared with the system without fiber loop. In addition, the repetition rate of the comb can be adjusted by changing the injection current of the microlaser. The pulse width of the comb spectrum is also compressed from 3 to 1 ps with an extra amplification-nonlinear process.

  18. High peak power THz source for ultrafast electron diffraction

    NASA Astrophysics Data System (ADS)

    Liu, Shengguang

    2018-01-01

    Terahertz (THz) science and technology have already become the research highlight at present. In this paper, we put forward a device setup to carry out ultrafast fundamental research. A photocathode RF gun generates electron bunches with ˜MeV energy, ˜ps bunch width and about 25pC charge. The electron bunches inject the designed wiggler, the coherent radiation at THz spectrum emits from these bunches and increases rapidly until the saturation at ˜MW within a short wiggler. THz pulses can be used as pump to stimulate an ultra-short excitation in some kind of sample. Those electron bunches out of wiggler can be handled into bunches with ˜1pC change, small beam spot and energy spread to be probe. Because the pump and probe comes from the same electron source, synchronization between pump and probe is inherent. The whole facility can be compacted on a tabletop.

  19. A novel source of MeV positron bunches driven by energetic protons for PAS application

    NASA Astrophysics Data System (ADS)

    Tan, Zongquan; Xu, Wenzhen; Liu, Yanfen; Xiao, Ran; Kong, Wei; Ye, Bangjiao

    2014-11-01

    This paper proposes a novel methodology of MeV positrons generation for PAS application. Feasibility of this proposal analyzed by G4Beamline and Transport have shown reasonable success. Using 2 Hz, 1.6 GeV, 100 ns and 1.5 μC/bunch proton bunches for bombarding a graphite target, about 100 ns e+ bunches are generated. Quasi-monochromatic positrons in the range of 1-10 MeV included in these bunches have a flux of >107/s, peak brightness of 1014/s. A magnetic-confinement beamline is utilized to transport the positrons and a "Fast Beam Chopper" is unprecedentedly extended to chop those relativistic bunches. The positron beam can be finally characterized by the energy range of 1-10 MeV and bunch width from one hundred ps up to 1 ns. Such ultrashort bunches can be useful in tomography-type positron annihilation spectroscopy (PAS) as well as other applications.

  20. Ultralow threshold graded-index separate-confinement heterostructure single quantum well (Al, Ga) As lasers

    NASA Technical Reports Server (NTRS)

    Derry, P. L.; Chen, H. Z.; Morkoc, H.; Yariv, A.; Lau, K. Y.

    1988-01-01

    Broad area graded-index separate-confinement heterostructure single quantum well lasers grown by molecular-beam epitaxy (MBE) with threshold current density as low as 93 A/sq cm (520 microns long) have been fabricated. Buried lasers formed from similarly structured MBE material with liquid phase epitaxy regrowth had threshold currents at submilliampere levels when high reflectivity coatings were applied to the end facets. A CW threshold current of 0.55 mA was obtained for a laser with facet reflectivities of about 80 percent, a cavity length of 120 micron, and an active region stripe width of 1 micron. These devices driven directly with logic level signals have switch-on delays less than 50 ps without any current prebias. Such lasers permit fully on-off switching while at the same time obviating the need for bias monitoring and feedback control.

  1. Implications of Satellite Swath Width on Global Aerosol Optical Thickness Statistics

    NASA Technical Reports Server (NTRS)

    Colarco, Peter; Kahn, Ralph; Remer, Lorraine; Levy, Robert; Welton, Ellsworth

    2012-01-01

    We assess the impact of swath width on the statistics of aerosol optical thickness (AOT) retrieved by satellite as inferred from observations made by the Moderate Resolution Imaging Spectroradiometer (MODIS). We sub-sample the year 2009 MODIS data from both the Terra and Aqua spacecraft along several candidate swaths of various widths. We find that due to spatial sampling there is an uncertainty of approximately 0.01 in the global, annual mean AOT. The sub-sampled monthly mean gridded AOT are within +/- 0.01 of the full swath AOT about 20% of the time for the narrow swath sub-samples, about 30% of the time for the moderate width sub-samples, and about 45% of the time for the widest swath considered. These results suggest that future aerosol satellite missions with only a narrow swath view may not sample the true AOT distribution sufficiently to reduce significantly the uncertainty in aerosol direct forcing of climate.

  2. X-ray spectra of Hercules X-1. 1: Iron line fluorescence from a subrelativistic shell

    NASA Technical Reports Server (NTRS)

    Pravdo, S. H.; Becker, R. H.; Boldt, E. A.; Holt, S. S.; Serlemitsos, P. J.; Swank, J. H.

    1977-01-01

    The X-ray spectrum of Hercules X-1 was observed in the energy range 2-24 keV from August 29 to September 3, 1975. A broad iron line feature is observed in the normal high state spectrum. The line equivalent width is given along with its full-width-half-maximum energy. Iron line fluorescence from an opaque, cool shell of material at the Alfven surface provides the necessary luminosity in this feature. The line energy width can be due to Doppler broadening if the shell is forced to corotate with the pulsar at a radius 800 million cm. Implications of this model regarding physical conditions near Her X-1 are discussed.

  3. Application of the T-Matrix Method to the Numerical Modeling of a Linear Active Sonar Array

    DTIC Science & Technology

    2013-06-01

    double sequence over n and m, as follows Ps =  Ps00 Ps1−1 Ps10 Ps11 ...  =  Ps1 Ps2 Ps3 Ps4 ...  . The one

  4. Texture Classification with Change Point Statistics.

    DTIC Science & Technology

    1981-07-01

    it is necessary to let T approach the value of n for an nxn image. This is motivated by the fact that the computation of Ut, T is so costly, and if T...LP4 - - + ML4 + + + pS4 + - + LP5 + - + ML5 + + + PS5 + + + LP6 + - + ML6 + + + PS6 + - + LP7 - + - ML7 - + - PS7 + - + LP8 - + - ML8 - - - PS8...LP2 + + + ML2 - - - PS2 + - - LP3 - + - ML3 - - - PS3 + + + LP4 - + + ML4 + + + PS4 - - - LP5 - - + ML5 - + - PS5 - + + LP6 - + + KL6 - - - PS6

  5. A sub-millimeter resolution PET detector module using a multi-pixel photon counter array

    NASA Astrophysics Data System (ADS)

    Song, Tae Yong; Wu, Heyu; Komarov, Sergey; Siegel, Stefan B.; Tai, Yuan-Chuan

    2010-05-01

    A PET block detector module using an array of sub-millimeter lutetium oxyorthosilicate (LSO) crystals read out by an array of surface-mount, semiconductor photosensors has been developed. The detector consists of a LSO array, a custom acrylic light guide, a 3 × 3 multi-pixel photon counter (MPPC) array (S10362-11-050P, Hamamatsu Photonics, Japan) and a readout board with a charge division resistor network. The LSO array consists of 100 crystals, each measuring 0.8 × 0.8 × 3 mm3 and arranged in 0.86 mm pitches. A Monte Carlo simulation was used to aid the design and fabrication of a custom light guide to control distribution of scintillation light over the surface of the MPPC array. The output signals of the nine MPPC are multiplexed by a charge division resistor network to generate four position-encoded analog outputs. Flood image, energy resolution and timing resolution measurements were performed using standard NIM electronics. The linearity of the detector response was investigated using gamma-ray sources of different energies. The 10 × 10 array of 0.8 mm LSO crystals was clearly resolved in the flood image. The average energy resolution and standard deviation were 20.0% full-width at half-maximum (FWHM) and ±5.0%, respectively, at 511 keV. The timing resolution of a single MPPC coupled to a LSO crystal was found to be 857 ps FWHM, and the value for the central region of detector module was 1182 ps FWHM when ±10% energy window was applied. The nonlinear response of a single MPPC when used to read out a single LSO was observed among the corner crystals of the proposed detector module. However, the central region of the detector module exhibits significantly less nonlinearity (6.5% for 511 keV). These results demonstrate that (1) a charge-sharing resistor network can effectively multiplex MPPC signals and reduce the number of output signals without significantly degrading the performance of a PET detector and (2) a custom light guide to permit light sharing among multiple MPPC and to diffuse and direct scintillation light can reduce the nonlinearity of the detector response within the limited dynamic range of a typical MPPC. As a result, the proposed PET detector module has the potential to be refined for use in high-resolution PET insert applications.

  6. A sub-millimeter resolution PET detector module using a multi-pixel photon counter array.

    PubMed

    Song, Tae Yong; Wu, Heyu; Komarov, Sergey; Siegel, Stefan B; Tai, Yuan-Chuan

    2010-05-07

    A PET block detector module using an array of sub-millimeter lutetium oxyorthosilicate (LSO) crystals read out by an array of surface-mount, semiconductor photosensors has been developed. The detector consists of a LSO array, a custom acrylic light guide, a 3 x 3 multi-pixel photon counter (MPPC) array (S10362-11-050P, Hamamatsu Photonics, Japan) and a readout board with a charge division resistor network. The LSO array consists of 100 crystals, each measuring 0.8 x 0.8 x 3 mm(3) and arranged in 0.86 mm pitches. A Monte Carlo simulation was used to aid the design and fabrication of a custom light guide to control distribution of scintillation light over the surface of the MPPC array. The output signals of the nine MPPC are multiplexed by a charge division resistor network to generate four position-encoded analog outputs. Flood image, energy resolution and timing resolution measurements were performed using standard NIM electronics. The linearity of the detector response was investigated using gamma-ray sources of different energies. The 10 x 10 array of 0.8 mm LSO crystals was clearly resolved in the flood image. The average energy resolution and standard deviation were 20.0% full-width at half-maximum (FWHM) and +/-5.0%, respectively, at 511 keV. The timing resolution of a single MPPC coupled to a LSO crystal was found to be 857 ps FWHM, and the value for the central region of detector module was 1182 ps FWHM when +/-10% energy window was applied. The nonlinear response of a single MPPC when used to read out a single LSO was observed among the corner crystals of the proposed detector module. However, the central region of the detector module exhibits significantly less nonlinearity (6.5% for 511 keV). These results demonstrate that (1) a charge-sharing resistor network can effectively multiplex MPPC signals and reduce the number of output signals without significantly degrading the performance of a PET detector and (2) a custom light guide to permit light sharing among multiple MPPC and to diffuse and direct scintillation light can reduce the nonlinearity of the detector response within the limited dynamic range of a typical MPPC. As a result, the proposed PET detector module has the potential to be refined for use in high-resolution PET insert applications.

  7. A sub-millimeter resolution PET detector module using a multi-pixel photon counter array

    PubMed Central

    Song, Tae Yong; Wu, Heyu; Komarov, Sergey; Siegel, Stefan B; Tai, Yuan-Chuan

    2010-01-01

    A PET block detector module using an array of sub-millimeter lutetium oxyorthosilicate (LSO) crystals read out by an array of surface-mount, semiconductor photosensors has been developed. The detector consists of a LSO array, a custom acrylic light guide, a 3 × 3 multi-pixel photon counter (MPPC) array (S10362-11-050P, Hamamatsu Photonics, Japan) and a readout board with a charge division resistor network. The LSO array consists of 100 crystals, each measuring 0.8 × 0.8 × 3 mm3 and arranged in 0.86 mm pitches. A Monte Carlo simulation was used to aid the design and fabrication of a custom light guide to control distribution of scintillation light over the surface of the MPPC array. The output signals of the nine MPPC are multiplexed by a charge division resistor network to generate four position-encoded analog outputs. Flood image, energy resolution and timing resolution measurements were performed using standard NIM electronics. The linearity of the detector response was investigated using gamma-ray sources of different energies. The 10 × 10 array of 0.8 mm LSO crystals was clearly resolved in the flood image. The average energy resolution and standard deviation were 20.0% full-width at half-maximum (FWHM) and ±5.0%, respectively, at 511 keV. The timing resolution of a single MPPC coupled to a LSO crystal was found to be 857 ps FWHM, and the value for the central region of detector module was 1182 ps FWHM when ±10% energy window was applied. The nonlinear response of a single MPPC when used to read out a single LSO was observed among the corner crystals of the proposed detector module. However, the central region of the detector module exhibits significantly less nonlinearity (6.5% for 511 keV). These results demonstrate that (1) a charge-sharing resistor network can effectively multiplex MPPC signals and reduce the number of output signals without significantly degrading the performance of a PET detector and (2) a custom light guide to permit light sharing among multiple MPPC and to diffuse and direct scintillation light can reduce the nonlinearity of the detector response within the limited dynamic range of a typical MPPC. As a result, the proposed PET detector module has the potential to be refined for use in high-resolution PET insert applications. PMID:20393236

  8. A Robust Deconvolution Method based on Transdimensional Hierarchical Bayesian Inference

    NASA Astrophysics Data System (ADS)

    Kolb, J.; Lekic, V.

    2012-12-01

    Analysis of P-S and S-P conversions allows us to map receiver side crustal and lithospheric structure. This analysis often involves deconvolution of the parent wave field from the scattered wave field as a means of suppressing source-side complexity. A variety of deconvolution techniques exist including damped spectral division, Wiener filtering, iterative time-domain deconvolution, and the multitaper method. All of these techniques require estimates of noise characteristics as input parameters. We present a deconvolution method based on transdimensional Hierarchical Bayesian inference in which both noise magnitude and noise correlation are used as parameters in calculating the likelihood probability distribution. Because the noise for P-S and S-P conversion analysis in terms of receiver functions is a combination of both background noise - which is relatively easy to characterize - and signal-generated noise - which is much more difficult to quantify - we treat measurement errors as an known quantity, characterized by a probability density function whose mean and variance are model parameters. This transdimensional Hierarchical Bayesian approach has been successfully used previously in the inversion of receiver functions in terms of shear and compressional wave speeds of an unknown number of layers [1]. In our method we used a Markov chain Monte Carlo (MCMC) algorithm to find the receiver function that best fits the data while accurately assessing the noise parameters. In order to parameterize the receiver function we model the receiver function as an unknown number of Gaussians of unknown amplitude and width. The algorithm takes multiple steps before calculating the acceptance probability of a new model, in order to avoid getting trapped in local misfit minima. Using both observed and synthetic data, we show that the MCMC deconvolution method can accurately obtain a receiver function as well as an estimate of the noise parameters given the parent and daughter components. Furthermore, we demonstrate that this new approach is far less susceptible to generating spurious features even at high noise levels. Finally, the method yields not only the most-likely receiver function, but also quantifies its full uncertainty. [1] Bodin, T., M. Sambridge, H. Tkalčić, P. Arroucau, K. Gallagher, and N. Rawlinson (2012), Transdimensional inversion of receiver functions and surface wave dispersion, J. Geophys. Res., 117, B02301

  9. Cytotoxic and Antimicrobial Activity of Pseudopterosins and seco-Pseudopterosins Isolated from the Octocoral Pseudopterogorgia elisabethae of San Andrés and Providencia Islands (Southwest Caribbean Sea)

    PubMed Central

    Correa, Hebelin; Aristizabal, Fabio; Duque, Carmenza; Kerr, Russell

    2011-01-01

    To expand the potential of pseudopterosins and seco-pseudopterosins isolated from the octocoral Pseudopterogorgia elisabethae of San Andrés and Providencia islands (southwest Caribbean Sea), we report the anti-microbial profile against four pathogenic microorganisms (Staphylococcus aureus, Enterococcus faecalis, Pseudomonas aeruginosa and Candida albicans) and report a more complete cytotoxic profile against five human cells lines (HeLa, PC-3, HCT116, MCF-7 and BJ) for the compounds PsG, PsP, PsQ, PsS, PsT, PsU, 3-O-acetyl-PsU, seco-PsJ, seco-PsK and IMNGD. For the cytotoxic profiles, all compounds evaluated showed moderate and non-selective activity against both tumor and normal cell lines, where PsQ and PsG were the most active compounds (GI50 values between 5.8 μM to 12.0 μM). With respect to their anti-microbial activity the compounds showed good and selective activity against the Gram-positive bacteria, while they did not show activity against the Gram-negative bacterium or yeast. PsU, PsQ, PsS, seco-PsK and PsG were the most active compounds (IC50 2.9–4.5 μM) against S. aureus and PsG, PsU and seco-PsK showed good activity (IC50 3.1–3.8 μM) against E. faecalis, comparable to the reference drug vancomycin (4.2 μM). PMID:21556163

  10. Full Spectrum Conversion Using Traveling Pulse Wave Quantization

    DTIC Science & Technology

    2017-03-01

    Full Spectrum Conversion Using Traveling Pulse Wave Quantization Michael S. Kappes Mikko E. Waltari IQ-Analog Corporation San Diego, California...temporal-domain quantization technique called Traveling Pulse Wave Quantization (TPWQ). Full spectrum conversion is defined as the complete...pulse width measurements that are continuously generated hence the name “traveling” pulse wave quantization. Our TPWQ-based ADC is composed of a

  11. The Value and Impacts of Alternative Fuel Distribution Concepts. Assessing the Army’s Future Needs for Temporary Fuel Pipelines

    DTIC Science & Technology

    2009-01-01

    PS4 PS5 PS6 Bag farm 19 30 Storage 9 9 9 9 9 9 Pipeline 23 Maint 38 Misc 49 164382354 Miles 0 13 26 39...conduit 1 company ~50 miles “Modular” PPTO Company with RIFTS conduit 2 platoons × ~50 miles each Miles 0 10 20 30 40 50 Sites Terminal PS1 PS2 PS3 PS4 ...Bag farm 19 30 Storage 13 14 14 13 Pipeline 23 Maint 38 Misc 49 164382354 Miles 0 10 20 30 40 50 Sites Terminal PS1 PS2 PS3 PS4 Bag farm Storage 10

  12. Direct Determination of Range from Current Nuclear Overpressure Equations

    DTIC Science & Technology

    1988-03-01

    residual), a term that takes into account the fact that the model does not exactly describe the behavior of the data. A quadratic (second degree) two...HZ1,HZ2,HZ3,HRY,HZRY,MY1,MY2,MY REAL NY,PS1,PS2,PS3, PS4 ,PS,GR,H,M,DEN C C CREATE A NEW FILE, TRIAL1.DAT, TO STORE THE DATA. C OPEN(32,FILE=’TRIALI.DAT...47/(R**AZ) PS3-(DZ*EZ)/(l+FZ*R**GZ) PS4 =MY/ (R**NY) .5, PS=PS1+PS2+PS3+HZRYIPS4 a, C a’C WRITE THE DATA TO FILE 32 USING FORMAT 100 STATEMENT. * C

  13. Clinically insubstantial cognitive side effects of bitemporal electroconvulsive therapy at 0.5 msec pulse width.

    PubMed

    Warnell, Ronald L; Swartz, Conrad M; Thomson, Alice

    2011-11-01

    We measured cognitive side effects from bitemporal electroconvulsive therapy (ECT) using stimuli of 0.5 msec pulse width 900 milliamperes (mA). Mini-Mental State Exam (MMSE) and 21-item Hamilton Rating Scale for Depression (HRSD-21) were rated within 36 hours before and 36 hours after a series of 6 bitemporal ECT sessions on 15 patients age ≥45. MMSE remained high after ECT (pre-ECT mean 29, standard deviation [SD] 1.60, post-ECT mean 28.53, SD 1.36) with no significant change. The mean HRSD-21 fell from 27.5 to 16.3. Post-ECT MMSE was significantly and markedly higher than in previous studies of bitemporal ECT; all had used ECT stimuli of pulse width at least 1 msec. With stimuli of 0.5 msec pulse width and 900 mA, 6 bitemporal ECTs did not decrease MMSE score. This result leaves no opportunity for further decrease in basic cognitive side effects, and complements published reports of stronger physiological effects with stimuli of 0.5 msec pulse width and 900 mA. ECT stimuli of 0.5 msec pulse width and 900 mA are more desirable than wider pulse widths. Six bitemporal ECT sessions using these stimuli generally will not have more cognitive side effects than treatments with other placements, allowing maintenance of full efficacy with clinically insubstantial side effects.

  14. Slow light effect analysis excited by plasmon-induced transparency in metal-dielectric-metal waveguide

    NASA Astrophysics Data System (ADS)

    Jin, Gui; Huang, Xiaoyi

    2018-02-01

    We propose and demonstrate a metal-dielectric-metal(MDM) waveguide side coupled with two stubs to realize plasmon induced transparency (PIT) effect. The dispersion relation of the structure has been plotted by solving the dispersion equation of MDM three layer structure, the transmission spectrum is investigated by coupled mode theory (CMT) and Finite Element Method (FEM) simulation, the CMT results can. The surface plasmon device can also be used as a EIT-like filter with a variable full width of half-maximum (FWHM) and highest transmission over 88%. The maximum group index ng is 42 with a group velocity of 0.023ܿ and transmission of 48%, The normalized delay-bandwidth product (NDBP) can be modulated through changing the gap width of resonators and waveguide bus, the highest is 0.641 at gap width 10 nm, and lowest is 0.246 at 30 nm. The dispersion of group velocity (GVD) changes drastically at narrow gap width and becomes more and more flat at broader gap width, this opens up an avenue for designing optical buffers, switches and modulators.

  15. An investigation into factors affecting the precision of CT radiation dose profile width measurements using radiochromic films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Baojun, E-mail: Baojunli@bu.edu; Behrman, Richard H.

    Purpose: To investigate the impact of x-ray beam energy, exposure intensity, and flat-bed scanner uniformity and spatial resolution on the precision of computed tomography (CT) beam width measurements using Gafchromic XR-QA2 film and an off-the-shelf document scanner. Methods: Small strips of Gafchromic film were placed at isocenter in a CT scanner and exposed at various x-ray beam energies (80–140 kVp), exposure levels (50–400 mA s), and nominal beam widths (1.25, 5, and 10 mm). The films were scanned in reflection mode on a Ricoh MP3501 flat-bed document scanner using several spatial resolution settings (100 to 400 dpi) and at differentmore » locations on the scanner bed. Reflection measurements were captured in digital image files and radiation dose profiles generated by converting the image pixel values to air kerma through film calibration. Beam widths were characterized by full width at half maximum (FWHM) and full width at tenth maximum (FWTM) of dose profiles. Dependences of these parameters on the above factors were quantified in percentage change from the baselines. Results: The uncertainties in both FWHM and FWTM caused by varying beam energy, exposure level, and scanner uniformity were all within 4.5% and 7.6%, respectively. Increasing scanner spatial resolution significantly increased the uncertainty in both FWHM and FWTM, with FWTM affected by almost 8 times more than FWHM (48.7% vs 6.5%). When uncalibrated dose profiles were used, FWHM and FWTM were over-estimated by 11.6% and 7.6%, respectively. Narrower beam width appeared more sensitive to the film calibration than the wider ones (R{sup 2} = 0.68 and 0.85 for FWHM and FWTM, respectively). The global and maximum local background variations of the document scanner were 1.2%. The intrinsic film nonuniformity for an unexposed film was 0.3%. Conclusions: Measurement of CT beam widths using Gafchromic XR-QA2 films is robust against x-ray energy, exposure level, and scanner uniformity. With proper film calibration and scanner resolution setting, it can provide adequate precision for meeting ACR and manufacturer’s tolerances for the measurement of CT dose profiles.« less

  16. Time-resolved single-photon detection module based on silicon photomultiplier: A novel building block for time-correlated measurement systems

    NASA Astrophysics Data System (ADS)

    Martinenghi, E.; Di Sieno, L.; Contini, D.; Sanzaro, M.; Pifferi, A.; Dalla Mora, A.

    2016-07-01

    We present the design and preliminary characterization of the first detection module based on Silicon Photomultiplier (SiPM) tailored for single-photon timing applications. The aim of this work is to demonstrate, thanks to the design of a suitable module, the possibility to easily exploit SiPM in many applications as an interesting detector featuring large active area, similarly to photomultipliers tubes, but keeping the advantages of solid state detectors (high quantum efficiency, low cost, compactness, robustness, low bias voltage, and insensitiveness to magnetic field). The module integrates a cooled SiPM with a total photosensitive area of 1 mm2 together with the suitable avalanche signal read-out circuit, the signal conditioning, the biasing electronics, and a Peltier cooler driver for thermal stabilization. It is able to extract the single-photon timing information with resolution better than 100 ps full-width at half maximum. We verified the effective stabilization in response to external thermal perturbations, thus proving the complete insensitivity of the module to environment temperature variations, which represents a fundamental parameter to profitably use the instrument for real-field applications. We also characterized the single-photon timing resolution, the background noise due to both primary dark count generation and afterpulsing, the single-photon detection efficiency, and the instrument response function shape. The proposed module can become a reliable and cost-effective building block for time-correlated single-photon counting instruments in applications requiring high collection capability of isotropic light and detection efficiency (e.g., fluorescence decay measurements or time-domain diffuse optics systems).

  17. The Stent Patency and Migration Rate of Different Shaped Plastic Stents in Bile Flow Phantom Model and In Vivo Animal Bile Duct Dilation Model.

    PubMed

    Kwon, Chang-Il; Kim, Gwangil; Jeong, Seok; Lee, Don Haeng; Kim, Kyoung Ah; Ko, Kwang Hyun; Cho, Joo Young; Hong, Sung Pyo

    2017-05-01

    In research and development of biliary plastic stents (PS), continuous efforts have been made to overcome short patency time and high rate of migration. The aim of this study was to evaluate the patency and migration rate of different PS shapes for a given period of time. Using an in vitro bile phantom model, we compared the patency among different shapes of PS (three straight PS, four double-pigtail PS, and a new screw-shaped PS). We performed an analysis of the degree of luminal narrowing by light microscopic examination. Using an in vivo swine model, we compared the patency and migration rate among the three different types of PS. Eight weeks after the bile exposure in the bile flow phantom model, 80 PS were retrieved and analyzed. The straight PS showed less biofilm formation and luminal narrowing than other types of PS (p < 0.05). Forty-nine PS were inserted into the dilated bile ducts of 10 swine models, and 39 PS were successfully retrieved 8 weeks later. The stent migration occurred less frequently in the double-pigtail PS and the screw-shaped PS than it did in the straight PS (11.1, 10, and 27.3%, respectively). However, there was no statistical difference in stent patency among the different shapes. Stent patency may not be significantly different depending on the shape of PS for 8 weeks. The screw-shaped PS showed similar patency and migration rate to the double-pigtail PS. These results may help guiding future PS development and clinical decisions.

  18. Genotyping analysis of protein S-Tokushima (K196E) and the involvement of protein S antigen and activity in patients with recurrent pregnancy loss.

    PubMed

    Matsukawa, Yasushi; Asano, Eriko; Tsuda, Tomohide; Kuma, Hiroyuki; Kitaori, Tamao; Katano, Kinue; Ozaki, Yasuhiko; Sugiura-Ogasawara, Mayumi

    2017-04-01

    Preston et al. indicated that Protein S (PS) deficiency was associated with stillbirths but not miscarriages. The PS-Tokushima missense variant was reported to serve as a genetic risk factor for deep vein thrombosis in the Japanese population. A previous cross-sectional study showed no increase in the prevalence of PS-Tokushima in patients with recurrent early pregnancy loss or in patients with intra uterine fetal death and/or fetal growth restriction. There has been limited number of prospective studies examining the pregnancy outcome in patients with both a PS deficiency and recurrent pregnancy loss (RPL). We examined the association between PS deficiency, PS-Tokushima and RPL. The study group consisted of 355 Japanese women with two or more consecutive pregnancy losses and 101 parous women. The frequency of PS-Tokushima and the subsequent live birth rate in relation to a PS deficiency defined as low PS-specific activity (total PS activity/total PS antigen) and the carriage of PS-Tokushima were examined. There was no significant difference in the frequency of PS-Tokushima between patients and controls. The 8 patients carriers of PS-Tokushima variant were capable of a subsequent live birth without the use of heparin. There was no significant difference in subsequent live birth rates between patients with low or normal PS-specific activity/PS activity without heparin prophylaxis after excluding miscarriages caused by an abnormal embryonic karyotype using multivariate logistic regression analysis. There was no association between PS-Tokushima and RPL and a PS deficiency or low PS activity was shown not to serve as a reliable clinical predictor of subsequent miscarriage. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. [Clinical efficacy of porcine pulmonary surfactant combined with budesonide suspension intratracheal instillation in the treatment of neonatal meconium aspiration syndrome].

    PubMed

    Tan, Xiu-Zhen; Wu, Shi-Guang; Zhang, Jian-Hua; Li, Xiao-Fen; Gao, Ping-Ming; Wang, Yu

    2016-12-01

    To study the clinical efficacy of porcine pulmonary surfactant (PS) combined with budesonide suspension intratracheal instillation in the treatment of neonatal meconium aspiration syndrome (MAS). Seventy neonates with MAS were enrolled for a prospective study. The neonates were randomly assigned to PS alone treatment group and PS+budesonide treatment group (n=35 each). The PS alone treatment group was given PS (100 mg/kg) by intratracheal instillation. The treatment group was given budesonide suspension (0.25 mg/kg) combined with PS (100 mg/kg). The rate of repeated use of PS in the PS+ budesonide group was significantly lower than that in the PS alone group 12 hours after treatment (p<0.05). The improvement of PaO 2 /FiO 2 , TcSaO 2 , PaO 2 , and PaCO 2 in the PS+ budesonide group was significantly greater than that in the PS alone group 6, 12, and 24 hours after treatment (p<0.05). The chest X-ray examination showed that the pulmonary inflammation absorption in the PS+ budesonide group was significantly better than that in the PS alone group 48 hours after treatment (p<0.05). The incidence of complications in the PS+budesonide group was significantly lower than that in the PS alone group (p<0.05), and the average hospitalization duration was significantly shorter than that in the PS alone group (p<0.01). PS combined with budesonide suspension intratracheal instillation for the treatment of neonatal MAS is effective and superior to PS alone treatment.

  20. The effect of PS porosity on the structure, optical and electrical properties of ZnS/PS

    NASA Astrophysics Data System (ADS)

    Wang, Cai-Feng; Hu, Bo; Yi, Hou-Hui; Li, Wei-Bing

    2014-03-01

    ZnS films were deposited on porous silicon (PS) substrates with different porosities by pulsed laser deposition (PLD). The crystalline structure, surface morphology of ZnS films on PS substrates and optical, electrical properties of ZnS/PS composites were studied. The results show that, ZnS films deposited on PS substrates were grown in preferred orientation along β-ZnS (111) direction corresponding to crystalline structure of cubic phase. With the increase of PS porosity, the XRD diffraction peak intensity of ZnS films decreases. Some voids and cracks appear in the films. Compared with as-prepared PS, the PL peak of PS for ZnS/PS has a blueshift. The larger the porosity of PS, the greater the blueshift is. A new green light emission located around 550 nm is observed with increasing PS porosity, which is ascribed to defect-center luminescence of ZnS. The blue, green emission of ZnS combined with the red emission of PS, a broad photoluminescence band (450-750 nm) is formed. ZnS/PS composites exhibited intense white light emission. The I-V characteristics of ZnS/PS heterojunctions showed rectifying behavior. Under forward bias conditions, the current density is large. Under reverse bias conditions, the current density nearly to be zero. The forward current increases with increasing PS porosity. This work lay a foundation for the realization of electroluminescence of ZnS/PS and solid white light emission devices.

  1. Scintillating fibres coupled to silicon photomultiplier prototypes for fast beam monitoring and thin timing detectors

    NASA Astrophysics Data System (ADS)

    Papa, A.; Kettle, P.-R.; Ripiccini, E.; Rutar, G.

    2016-07-01

    Several scintillating fibre prototypes (single- and double-layers) made of 250 μm multi-clad square fibres coupled to silicon photomultiplier have been studied using electrons, positrons and muons at different energies. Current measurements show promising results: already for a single fibre layer and minimum ionizing particles we obtain a detection efficiency ≥ 95 % (mean collected light/fibre ≈ 8 phe), a timing resolution of 550 ps/fibre and a foreseen spatial resolution < 100 μm, based on the achieved negligible optical cross-talk between fibres (< 1 %). We will also discuss the performances of a double-layer staggered prototype configuration, for which a full detection efficiency (≥ 99 %) has been measured together with a timing resolution of ≈ 400 ps for double hit events.

  2. Reinjection laser oscillator and method

    DOEpatents

    McLellan, Edward J.

    1984-01-01

    A uv preionized CO.sub.2 oscillator with integral four-pass amplifier capable of providing 1 to 5 GW laser pulses with pulse widths from 0.1 to 0.5 ns full width at half-maximum (FWHM) is described. The apparatus is operated at any pressure from 1 atm to 10 atm without the necessity of complex high voltage electronics. The reinjection technique employed gives rise to a compact, efficient system that is particularly immune to alignment instabilities with a minimal amount of hardware and complexity.

  3. Diffraction effects on angular response of X-ray collimators

    NASA Technical Reports Server (NTRS)

    Blake, R. L.; Barrus, D. M.; Fenimore, E.

    1976-01-01

    Angular responses have been measured for X-ray collimators with half-widths ranging from minutes of arc down to 10 arcsec. In the seconds-of-arc range, diffraction peaks at off-axis angles can masquerade as side lobes of the collimator angular response. Measurements and qualitative physical arguments lead to a rule of thumb for collimator design; namely, the angle of first minimum in the Fraunhofer single-slit diffraction pattern should be less than one-fourth of the collimator geometrical full-width at half-maximum intensity.

  4. The mirrors for the Extreme Ultraviolet Explorer

    NASA Technical Reports Server (NTRS)

    Finley, David S.; Green, James C.; Bowyer, Stuart; Malina, Roger F.

    1986-01-01

    Flight mirrors for the Extreme Ultraviolet Explorer satellite are currently under fabrication. The grazing incidence metal mirrors are Wolter-Schwarzschild Type I and II and are figured by diamond turning. Imaging performance is excellent, with the figure after polishing for the best mirror being such that the full width-half maximum is 1.0 arc seconds and the half energy width is 8 arc seconds measured at visible wavelengths. Surface finish, as determined from scattering measurements in the extreme ultraviolet, is about 20 A rms.

  5. Accuracy of Intraoral Digital Impressions for Whole Upper Jaws, Including Full Dentitions and Palatal Soft Tissues

    PubMed Central

    Gan, Ning; Xiong, Yaoyang; Jiao, Ting

    2016-01-01

    Intraoral digital impressions have been stated to meet the clinical requirements for some teeth-supported restorations, though fewer evidences were proposed for larger scanning range. The aim of this study was to compare the accuracy (trueness and precision) of intraoral digital impressions for whole upper jaws, including the full dentitions and palatal soft tissues, as well as to determine the effect of different palatal vault height or arch width on accuracy of intraoral digital impressions. Thirty-two volunteers were divided into three groups according to the palatal vault height or arch width. Each volunteer received three scans with TRIOS intraoral scanner and one conventional impression of whole upper jaw. Three-dimensional (3D) images digitized from conventional gypsum casts by a laboratory scanner were chose as the reference models. All datasets were imported to a specific software program for 3D analysis by "best fit alignment" and "3D compare" process. Color-coded deviation maps showed qualitative visualization of the deviations. For the digital impressions for palatal soft tissues, trueness was (130.54±33.95)μm and precision was (55.26±11.21)μm. For the digital impressions for upper full dentitions, trueness was (80.01±17.78)μm and precision was (59.52±11.29)μm. Larger deviations were found between intraoral digital impressions and conventional impressions in the areas of palatal soft tissues than that in the areas of full dentitions (p<0.001). Precision of digital impressions for palatal soft tissues was slightly better than that for full dentitions (p = 0.049). There was no significant effect of palatal vault height on accuracy of digital impressions for palatal soft tissues (p>0.05), but arch width was found to have a significant effect on precision of intraoral digital impressions for full dentitions (p = 0.016). A linear correlation was found between arch width and precision of digital impressions for whole upper jaws (r = 0.326, p = 0.034 for palatal soft tissues and r = 0.485, p = 0.002 for full dentitions). It was feasible to use the intraoral scanner to obtain digital impressions for whole upper jaws. Wider dental arch contributed to lower precision of an intraoral digital impression. It should be confirmed in further studies that whether accuracy of digital impressions for whole upper jaws is clinically acceptable. PMID:27383409

  6. A Survey of Hospice and Palliative Care Clinicians' Experiences and Attitudes Regarding the Use of Palliative Sedation.

    PubMed

    Maiser, Samuel; Estrada-Stephen, Karen; Sahr, Natasha; Gully, Jonathan; Marks, Sean

    2017-09-01

    A variety of terms and attitudes surround palliative sedation (PS) with little research devoted to hospice and palliative care (HPC) clinicians' perceptions and experiences with PS. These factors may contribute to the wide variability in the reported prevalence of PS. This study was designed to better identify hospice and palliative care (HPC) clinician attitudes toward, and clinical experiences with palliative sedation (PS). A 32-question survey was distributed to members of the American Academy of Hospice and Palliative Medicine (n = 4678). The questions explored the language clinicians use for PS, and their experiences with PS. Nine hundred thirty-six (20% response rate) responded to the survey. About 83.21% preferred the terminology of PS compared with other terms. A majority felt that PS is a bioethically appropriate treatment for refractory physical and nonphysical symptoms in dying patients. Most felt PS was not an appropriate term in clinical scenarios when sedation occurred as an unintended side effect from standard treatments. Hospice clinicians use PS more consistently and with less distress than nonhospice clinician respondents. Benzodiazepines (63.1%) and barbiturates (18.9%) are most commonly prescribed for PS. PS is the preferred term among HPC clinicians for the proportionate use of pharmacotherapies to intentionally lower awareness for refractory symptoms in dying patients. PS is a bioethically appropriate treatment for refractory symptoms in dying patients. However, there is a lack of clear agreement about what is included in PS and how the practice of PS should be best delivered in different clinical scenarios. Future efforts to investigate PS should focus on describing the clinical scenarios in which PS is utilized and on the level of intended sedation necessary, in an effort to better unify the practice of PS.

  7. Genome-wide Association Analysis of Psoriatic Arthritis and Cutaneous Psoriasis Reveals Differences in Their Genetic Architecture.

    PubMed

    Stuart, Philip E; Nair, Rajan P; Tsoi, Lam C; Tejasvi, Trilokraj; Das, Sayantan; Kang, Hyun Min; Ellinghaus, Eva; Chandran, Vinod; Callis-Duffin, Kristina; Ike, Robert; Li, Yanming; Wen, Xiaoquan; Enerbäck, Charlotta; Gudjonsson, Johann E; Kõks, Sulev; Kingo, Külli; Esko, Tõnu; Mrowietz, Ulrich; Reis, Andre; Wichmann, H Erich; Gieger, Christian; Hoffmann, Per; Nöthen, Markus M; Winkelmann, Juliane; Kunz, Manfred; Moreta, Elvia G; Mease, Philip J; Ritchlin, Christopher T; Bowcock, Anne M; Krueger, Gerald G; Lim, Henry W; Weidinger, Stephan; Weichenthal, Michael; Voorhees, John J; Rahman, Proton; Gregersen, Peter K; Franke, Andre; Gladman, Dafna D; Abecasis, Gonçalo R; Elder, James T

    2015-12-03

    Psoriasis vulgaris (PsV) is a common inflammatory and hyperproliferative skin disease. Up to 30% of people with PsV eventually develop psoriatic arthritis (PsA), an inflammatory musculoskeletal condition. To discern differences in genetic risk factors for PsA and cutaneous-only psoriasis (PsC), we carried out a genome-wide association study (GWAS) of 1,430 PsA case subjects and 1,417 unaffected control subjects. Meta-analysis of this study with three other GWASs and two targeted genotyping studies, encompassing a total of 9,293 PsV case subjects, 3,061 PsA case subjects, 3,110 PsC case subjects, and 13,670 unaffected control subjects of European descent, detected 10 regions associated with PsA and 11 with PsC at genome-wide (GW) significance. Several of these association signals (IFNLR1, IFIH1, NFKBIA for PsA; TNFRSF9, LCE3C/B, TRAF3IP2, IL23A, NFKBIA for PsC) have not previously achieved GW significance. After replication, we also identified a PsV-associated SNP near CDKAL1 (rs4712528, odds ratio [OR] = 1.16, p = 8.4 × 10(-11)). Among identified psoriasis risk variants, three were more strongly associated with PsC than PsA (rs12189871 near HLA-C, p = 5.0 × 10(-19); rs4908742 near TNFRSF9, p = 0.00020; rs10888503 near LCE3A, p = 0.0014), and two were more strongly associated with PsA than PsC (rs12044149 near IL23R, p = 0.00018; rs9321623 near TNFAIP3, p = 0.00022). The PsA-specific variants were independent of previously identified psoriasis variants near IL23R and TNFAIP3. We also found multiple independent susceptibility variants in the IL12B, NOS2, and IFIH1 regions. These results provide insights into the pathogenetic similarities and differences between PsC and PsA. Copyright © 2015 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  8. Ultrafast Multi-Level Logic Gates with Spin-Valley Coupled Polarization Anisotropy in Monolayer MoS2

    PubMed Central

    Wang, Yu-Ting; Luo, Chih-Wei; Yabushita, Atsushi; Wu, Kaung-Hsiung; Kobayashi, Takayoshi; Chen, Chang-Hsiao; Li, Lain-Jong

    2015-01-01

    The inherent valley-contrasting optical selection rules for interband transitions at the K and K′ valleys in monolayer MoS2 have attracted extensive interest. Carriers in these two valleys can be selectively excited by circularly polarized optical fields. The comprehensive dynamics of spin valley coupled polarization and polarized exciton are completely resolved in this work. Here, we present a systematic study of the ultrafast dynamics of monolayer MoS2 including spin randomization, exciton dissociation, free carrier relaxation, and electron-hole recombination by helicity- and photon energy-resolved transient spectroscopy. The time constants for these processes are 60 fs, 1 ps, 25 ps, and ~300 ps, respectively. The ultrafast dynamics of spin polarization, valley population, and exciton dissociation provides the desired information about the mechanism of radiationless transitions in various applications of 2D transition metal dichalcogenides. For example, spin valley coupled polarization provides a promising way to build optically selective-driven ultrafast valleytronics at room temperature. Therefore, a full understanding of the ultrafast dynamics in MoS2 is expected to provide important fundamental and technological perspectives. PMID:25656222

  9. High efficiency and stability of quasi-solid-state dye-sensitized ZnO solar cells using graphene incorporated soluble polystyrene gel electrolytes

    NASA Astrophysics Data System (ADS)

    Bi, Shi-Qing; Meng, Fan-Li; Zheng, Yan-Zhen; Han, Xue; Tao, Xia; Chen, Jian-Feng

    2014-12-01

    We report on the preparation of highly effective composite electrolytes by combining the two-dimensional graphene (Gra) and soluble polystyrene (PS) nanobeads on Pt counter electrode for the quasi-solid-state electrolytes of ZnO based dye-sensitized solar cells (DSCs). Under an optimized Gra/electrolyte ratio of 12 mg mL-1, the ionic conductivity (σ) of Gra-PS electrolyte was significantly improved from 32.8 mS cm-1 to 39.8 mS cm-1. And the electrochemical impedance spectroscopy (EIS) analysis proved that the ZnO-DSC with the optimized composite electrolyte possessed the lowest impedance value. As a result, the overall power conversion efficiencies (PCEs) of quasi-solid-state ZnO-DSCs significantly enhanced to 5.08% from initial 4.09%. Moreover, the results of long-term stability assays showed that the gel-state Gra-PS ZnO-DSC could retain over 90% of its initial PCE after radiation of 1000 h under full sunlight outdoors. It is anticipated that this work may provide an effective way to increase the cell efficiency by the introduction of Gra into gel electrolyte as well as a great potential for practical application.

  10. Method for Assessment of Changes in the Width of Cracks in Cement Composites with Use of Computer Image Processing and Analysis

    NASA Astrophysics Data System (ADS)

    Tomczak, Kamil; Jakubowski, Jacek; Fiołek, Przemysław

    2017-06-01

    Crack width measurement is an important element of research on the progress of self-healing cement composites. Due to the nature of this research, the method of measuring the width of cracks and their changes over time must meet specific requirements. The article presents a novel method of measuring crack width based on images from a scanner with an optical resolution of 6400 dpi, subject to initial image processing in the ImageJ development environment and further processing and analysis of results. After registering a series of images of the cracks at different times using SIFT conversion (Scale-Invariant Feature Transform), a dense network of line segments is created in all images, intersecting the cracks perpendicular to the local axes. Along these line segments, brightness profiles are extracted, which are the basis for determination of crack width. The distribution and rotation of the line of intersection in a regular layout, automation of transformations, management of images and profiles of brightness, and data analysis to determine the width of cracks and their changes over time are made automatically by own code in the ImageJ and VBA environment. The article describes the method, tests on its properties, sources of measurement uncertainty. It also presents an example of application of the method in research on autogenous self-healing of concrete, specifically the ability to reduce a sample crack width and its full closure within 28 days of the self-healing process.

  11. Five-Axis Goniometric Stage

    DTIC Science & Technology

    2011-02-01

    PS4 , Anaheim Automation PSAM24V2.7A) and a custom built variable 24 VDC 5 A power supply (PS5). The input voltage to the variable power supply is...provide power for the four brushless DC motor controllers (Anaheim Automation, MDC050-050051). PS4 supplies power to the optional position sensors...blue) X R15 - (green) 21 R14 + (red) Y R14 - (brown) 22 Z P1 P2 P3 P4 P9 P8 P5 PS1 PS2 PS3 PS4 PS5 19 Pending Distribution A

  12. Bovine serum albumin nanoparticles loaded with Photosens photosensitizer for effective photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Khanadeev, Vitaly; Khlebtsov, Boris; Packirisamy, Gopinath; Khlebtsov, Nikolai

    2017-03-01

    Polymeric nanoparticles (NPs) are widely used for drug delivery applications due to high biodegradability, low toxicity and high loading capacity. The focus of this study is the development of photosensitizer Photosens (PS) loaded albumin NPs for efficient photodynamic therapy (PDT). To fabricate PS-loaded bovine serum albumin nanoparticles (BSA-PS NPs), we used a coacervation method with glutaraldehyde followed by passive loading of PS. Successful loading of PS was confirmed by appearance of characteristic peak in absorption spectrum which allows to determine the PS loading in BSA NPs. The synthesized BSA-PS NPs demonstrated low toxicity to HeLa cells at therapeutic concentrations of loaded PS. Compared to free PS solution, the synthesized BSA-PS NPs generated the singlet oxygen more effectively under laser irradiation at 660 nm. In addition, due to presence of various chemical groups on the surface of BSA-PS NPs, they are capable to adsorb on cell surface and accumulate in cells due to cellular uptake mechanisms. Owing to combination of PD and cell uptake advantages, BSA-PS NPs demonstrated higher efficacy of photodynamic damage to cancer cells as compared to free PS at equivalent concentrations. These results suggest that non-targeted BSA-PS NPs with high PD activity and low-fabrication costs of are promising candidates for transfer to PD clinic treatments.

  13. Doping dependence of the contact resistivity of end-bonded metal contacts to thin heavily doped semiconductor nanowires

    NASA Astrophysics Data System (ADS)

    Shukkoor, Anvar A.; Karmalkar, Shreepad

    2017-12-01

    We study the resistivity, ρcN, of end-bonded contacts to semiconductor NanoWires (NWs) of radius R = 5-10 nm over doping Nd = 1018-1020 cm-3. The study is important for NW device design and characterization. It reports realistic calculations of ρcN and highlights and explains how ρcN differs significantly from the resistivity ρcB of bulk contacts. First, the space-charge width in NW contacts is increased by the surrounding field which depends on R, contact geometry, and ambient dielectric; this width also depends on surface charge and dielectric confinement which reduces dopant ionization. Second, thin NWs have a low effective lifetime, τN, due to surface recombination. Third, NW contacts have a lesser image force barrier lowering due to the higher space-charge width. Due to these factors, apart from tunneling (which decides ρcB), space-charge region generation-recombination current also affects ρcN. As Nd is raised from 1018 to 1020 cm-3, ρcB falls rapidly, but ρcN varies slowly and may even increase up to 3-5 × 1018 and then falls rapidly. Further, ρcN/ρcB can be ≪1 at Nd = 1 × 1018 cm-3, reaches a peak ≫1 around Nd = 1 × 1019 cm-3, and → 1 at Nd = 1 × 1020 cm-3, e.g., for 0.8 V contact barrier on 10 nm thick n-type silicon NWs with τN = 1 ps embedded in SiO2, at T = 300 K, even a 10 nm contact extension yields a peak of 75 at Nd = 8 × 1018 cm-3. We study changes in ρcN/ρcB versus Nd behavior with R, contact geometry, ambient dielectric, surface charge, τN, T, tunneling mass, and barrier height.

  14. All-optical controlled switching of solitons

    NASA Astrophysics Data System (ADS)

    Man, Wai Sing

    1999-11-01

    In this dissertation, we have numerically investigated various method of switching solitons using two different nonlinear optical switching devices, namely the twin core nonlinear directional coupler (TCNLDC) and the nonlinear optical loop mirror (NOLM). In the case of TCNLDC, four different schemes were explored where the polarization of the controlling pulse is either parallel or orthogonal to that of the signal soliton, or the controlling pulse may be launched into either of the input ports or it may have a wavelength different from that of the signal. It has been shown that high switching efficiency and distortionless propagation of the signal pulse through the coupler can only be achieved for the case in which the control pulse is launched into the adjacent port of the directional coupler and that its dispersion has equal magnitude but opposite sign as that of the signal. The effect of varying pulse width, walk-off and timing jitter were also investigated for this particular scheme for signal pulse width of 1 ps wide. In the case of NOLM, a control pulse having central wavelength located at the normal dispersion region is used to switch the soliton. The control pulse width and the NOLM's loop length were varied to obtain the switched soliton with minimum distortion and high switching efficiency. In this analysis, Raman effect is included because the control pulse transfers part of its energy to the co-propagating signal pulse in the optical loop. A compact soliton laser has also been developed for this project and its performance was analyzed experimentally and numerically. In our analysis of this soliton laser, we found that the wavelength of the mode-locked pulse can be tuned by varying the polarization elements in the laser and this is entirely due to the birefringence in the laser cavity. In summary, our works have shown that optical solitons can be switched effectively by TCNLDC and NOLM in the high bit-rate and low switching energy regime. (Abstract shortened by UMI.)

  15. Effectiveness of early adalimumab therapy in psoriatic arthritis patients from Reuma.pt - EARLY PsA.

    PubMed

    Santos, Helena; Eusébio, Mónica; Borges, Joana; Gonçalves, Diana; Ávila-Ribeiro, Pedro; Faria, Daniela Santos; Lopes, Carina; Rovisco, João; Águeda, Ana; Nero, Patrícia; Valente, Paula; Cravo, Ana Rita; Santos, Maria José

    2017-01-01

    Objective To compare outcomes in psoriatic arthritis (PsA) patients initiating adalimumab (ADA), with short- and long-term disease duration and to evaluate the potential effect of concomitant conventional synthetic disease-modifying antirheumatic drugs (csDMARD) or glucocorticoids. Methods Analyses included adult PsA patients registered in the Rheumatic Diseases Portuguese Register (Reuma.pt) between June 2008-June 2016 who received ADA for ≥3 months. Psoriatic Arthritis Response Criteria (PsARC) response, tender and swollen joint count, inflammatory parameters, patient (PtGA) and physician global assessment (PhGA), Disease Activity Score-28 joints (DAS28), and Health Assessment Questionnaire Disability Index (HAQ-DI) were compared between patients with <5 years of disease (early PsA) and those with ≥5 years of disease duration (late PsA). Time to achieving PsARC response was estimated using the Kaplan-Meier method. Results Of 135 PsA patients treated with ADA, 126 had information on disease duration (earlyPsA, n=41). PsARC response was achieved by 72.9% of the patients (88.0% early PsA vs 62.2% late PsA; P=0.022) after 3 months and by 85.4% after 24 months (100% early PsA vs 75.9% late PsA; P=0.044). Early PsA patients achieved significantly less painful joints (2.7 vs 6.7, p=0.006), lower mean C-reactive protein (0.5 mg/dL vs 1.3 mg/dL; P=0.011), and PhGA (18.3 vs 28.1; P=0.020) at 3 months. In the long term, early PsA patients also had fewer swollen joints (0.3 vs 1.7; P=0.030) and lower PhGA (6.3 vs 21.9; P<0.001), C-reactive protein (0.4 mg/dL vs 1.0 mg/dL; P=0.026), and DAS28 (2.2 vs 3.2; P=0.030). HAQ-DI decreased in both groups reaching a mean value at 24 months of 0.4 and 0.8 (P=ns) in early and late PsA, respectively. Early PsA patients obtained PsARC response more rapidly than late PsA (3.8 and 7.4 months, respectively; P=0.008). Concomitant csDMARDs showed clinical benefit (2-year PsARC response, 88.3% vs 60.0%; P=0.044). Concomitant glucocorticoids had no effect on PsARC response over 2 years of follow-up. Persistence on ADA was similar in both groups. Conclusion Early PsA patients had a greater chance of improvement after ADA therapy and better functional outcome, and achieved PsARC response more rapidly than late PsA. In this cohort, comedication with csDMARDs was beneficial over 2 years.

  16. MenAfriVac as an Antitetanus Vaccine

    PubMed Central

    Borrow, Ray; Tang, Yuxiao; Yakubu, Ahmadu; Kulkarni, Prasad S.; LaForce, F. Marc

    2015-01-01

    Background. The group A meningococcal conjugate vaccine, PsA-TT, uses tetanus toxoid (TT) as a carrier protein (PsA-TT). TT as a carrier protein in other conjugate vaccines is known to be immunogenic and generates a robust anti-TT response. Methods. Clinical studies in Africa assessed whether PsA-TT generated tetanus serologic responses when tested in African populations (toddlers to adults). Second, the high acceptance of PsA-TT mass immunization campaigns in the 1- to 29-year age group meant that a sizeable fraction of women of reproductive age received PsA-TT. Incidence data for neonatal tetanus were reviewed for countries with and without PsA-TT campaigns to check whether this had any impact on the incidence. Results. PsA-TT generated robust tetanus serologic responses in 1- to 29-year-olds, similar to those expected after a booster dose of TT. Neonatal cases of tetanus fell by 25% in countries that completed PsA-TT campaigns in 1- to 29-year-olds. Conclusions. Although these data are not yet definitive, they are consistent with the hypothesis that improved community immunity to tetanus as a result of the PsA-TT campaigns may be having an impact on the incidence of neonatal tetanus in sub-Saharan Africa. Clinical Trials Registration. ISRCTN17662153 (PsA-TT 001); ISRTCN78147026 (PsA-TT 002); ISRCTN87739946 (PsA-TT 003); ISRCTN46335400 (PsA-TT 003a); ISRCTN82484612 (PsA-TT 004); CTRI/2009/091/000368 (PsA-TT 005); PACTR ATMR2010030001913177 (PsA-TT 006); and PACTR201110000328305 (PsA-TT 007). PMID:26553690

  17. New Interleukins in Psoriasis and Psoriatic Arthritis Patients: The Possible Roles of Interleukin-33 to Interleukin-38 in Disease Activities and Bone Erosions.

    PubMed

    Li, Jiang; Liu, Lei; Rui, Wenlong; Li, Xiangyu; Xuan, Dandan; Zheng, Shucong; Yu, Yiyun; Zhang, Jiong; Kong, Ning; Zhu, Xiaoxia; Zou, Hejian; Wan, Weiguo; Xue, Yu

    2017-01-01

    New interleukins (ILs), especially members of IL-1 and IL-12 families, have recently been reported to be involved in the development and regulation of autoimmune and inflammatory diseases. In this study, we aimed to explore the impact of these new ILs in psoriasis (Ps) and psoriatic arthritis (PsA). Forty PsA patients, 20 Ps patients, and 20 healthy controls (HCs) were recruited. Blood samples were obtained for detecting the levels of ILs, IL-12/23p40, and tumor necrosis factor α (TNF-α). The severity of skin lesions was assessed by the Psoriasis Area and Severity Index (PASI). Arthritis activities of PsA patients were assessed by the PsA Joint Activity Index. For PsA patients, circulating osteoclastogenesis-related cytokines (osteoprotegerin and receptor activator of nuclear factor-κB ligand) and numbers of osteoclast precursors were evaluated. Radiographic features of affected joints in these patients were scored for erosion, joint-space narrowing, osteolysis, and new bone formation. Correlations among levels of these ILs, Ps, and PsA disease activities and bone erosions were studied. Ps and PsA patients had higher serum levels of TNF-α, IL-12/23p40, and IL-33. Serum levels of IL-34 and IL-35 were higher in PsA patients than in Ps patients and HCs. Patients with pustular Ps had higher serum levels of IL-36α and IL-38 than patients with Ps vulgaris or HCs. Increased serum levels of IL-36α were positively correlated with PASI. Certain ILs were elevated in the circulation of patients with Ps and PsA, which might contribute to the pathogenesis of skin lesions and arthritis. © 2017 S. Karger AG, Basel.

  18. Rediscovered and new perisphaerine cockroaches from SW China with a review of subfamilial diagnosis (Blattodea: Blaberidae).

    PubMed

    Li, Xin-Ran; Wang, Li-Li; Wang, Zong-Qing

    2018-04-17

    The taxonomic records of Chinese perisphaerine cockroaches were scattered in literature, and therefore a dedicated study is desired to update our knowledge. This paper reviews the subfamilial diagnosis and Chinese species, mostly from southwestern China. We provide high-definition habitus photos and drawings, the latter emphasizes the genitalia of both sexes, which are generalized with diagrams, abstracted from specimens examined. A total of 18 species are recorded in four genera, including Perisphaerus, or pill cockroach, the type genus of the subfamily. Two new genera and three new species are proposed: Achatiblatta achates gen. sp. nov., Frumentiforma frumentiformis gen. sp. nov., and Pseudoglomeris montana sp. nov.. Pseudoglomeris has five new junior synonyms: Corydidarum, Trichoblatta, Kurokia, Glomerexis, and Glomeriblatta; the following combinations are thus revived or new: Ps. aerea comb. nov., Ps. angustifolia comb. nov., Ps. beybienkoi comb. nov., Ps. fallax comb. nov., Ps. magnifica comb. rev., Ps. montshadskii comb. nov., Ps. nigra comb. nov., Ps. sculpta comb. nov., Ps. semisulcata comb. rev., Ps. tibetana comb. nov., and Ps. valida moderata comb. nov.. The following species are revalidated and combinations revived: Pe. pygmaeus comb. rev., Ps. dubia comb. sp. rev., and Ps. planiuscla comb. sp. rev.

  19. Coating gigaporous polystyrene microspheres with cross-linked poly(vinyl alcohol) hydrogel as a rapid protein chromatography matrix.

    PubMed

    Qu, Jian-Bo; Huan, Guan-Sheng; Chen, Yan-Li; Zhou, Wei-Qing; Liu, Jian-Guo; Huang, Fang

    2014-08-13

    Gigaporous polystyrene (PS) microspheres were hydrophilized by in situ polymerization to give a stable cross-linked poly(vinyl alcohol) (PVA) hydrogel coating, which can shield proteins from the hydrophobic PS surface underneath. The amination of microspheres (PS-NH2) was first carried out through acetylization, oximation and reduction, and then 4,4'-azobis (4-cyanovaleric acid) (ACV), a polymerization initiator, was covalently immobilized on PS-NH2 through amide bond formation, and the cross-linked poly(vinyl acetate) (PVAc) was prepared by radical polymerization at the surfaces of ACV-immobilized PS microspheres (PS-ACV). Finally, the cross-linked PVA hydrogel coated gigaporous PS microspheres (PS-PVA) was easily achieved through alcoholysis of PVAc. Results suggested that the PS microspheres were effectively coated with cross-linked PVA hydrogel, where the gigaporrous structure remained under optimal conditions. After hydrophilic modification (PS-PVA), the protein-resistant ability of microspheres was greatly improved. The hydroxyl-rich PS-PVA surface can be easily derivatized by classical chemical methods. Performance advantages of the PS-PVA column in flow experiment include good permeability, low backpressure, and mechanical stability. These results indicated that PS-PVA should be promising in rapid protein chromatography.

  20. Voigt deconvolution method and its applications to pure oxygen absorption spectrum at 1270 nm band.

    PubMed

    Al-Jalali, Muhammad A; Aljghami, Issam F; Mahzia, Yahia M

    2016-03-15

    Experimental spectral lines of pure oxygen at 1270 nm band were analyzed by Voigt deconvolution method. The method gave a total Voigt profile, which arises from two overlapping bands. Deconvolution of total Voigt profile leads to two Voigt profiles, the first as a result of O2 dimol at 1264 nm band envelope, and the second from O2 monomer at 1268 nm band envelope. In addition, Voigt profile itself is the convolution of Lorentzian and Gaussian distributions. Competition between thermal and collisional effects was clearly observed through competition between Gaussian and Lorentzian width for each band envelope. Voigt full width at half-maximum height (Voigt FWHM) for each line, and the width ratio between Lorentzian and Gaussian width (ΓLΓG(-1)) have been investigated. The following applied pressures were at 1, 2, 3, 4, 5, and 8 bar, while the temperatures were at 298 K, 323 K, 348 K, and 373 K range. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Direct measurement of the total decay width of the top quark.

    PubMed

    Aaltonen, T; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Appel, J A; Arisawa, T; Artikov, A; Asaadi, J; Ashmanskas, W; Auerbach, B; Aurisano, A; Azfar, F; Badgett, W; Bae, T; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Barria, P; Bartos, P; Bauce, M; Bedeschi, F; Behari, S; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Bhatti, A; Bland, K R; Blumenfeld, B; Bocci, A; Bodek, A; Bortoletto, D; Boudreau, J; Boveia, A; Brigliadori, L; Bromberg, C; Brucken, E; Budagov, J; Budd, H S; Burkett, K; Busetto, G; Bussey, P; Butti, P; Buzatu, A; Calamba, A; Camarda, S; Campanelli, M; Canelli, F; Carls, B; Carlsmith, D; Carosi, R; Carrillo, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavaliere, V; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Cho, K; Chokheli, D; Clark, A; Clarke, C; Convery, M E; Conway, J; Corbo, M; Cordelli, M; Cox, C A; Cox, D J; Cremonesi, M; Cruz, D; Cuevas, J; Culbertson, R; d'Ascenzo, N; Datta, M; de Barbaro, P; Demortier, L; Deninno, M; D'Errico, M; Devoto, F; Di Canto, A; Di Ruzza, B; Dittmann, J R; Donati, S; D'Onofrio, M; Dorigo, M; Driutti, A; Ebina, K; Edgar, R; Elagin, A; Erbacher, R; Errede, S; Esham, B; Farrington, S; Fernández Ramos, J P; Field, R; Flanagan, G; Forrest, R; Franklin, M; Freeman, J C; Frisch, H; Funakoshi, Y; Galloni, C; Garfinkel, A F; Garosi, P; Gerberich, H; Gerchtein, E; Giagu, S; Giakoumopoulou, V; Gibson, K; Ginsburg, C M; Giokaris, N; Giromini, P; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldin, D; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González López, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gramellini, E; Grinstein, S; Grosso-Pilcher, C; Group, R C; Guimaraes da Costa, J; Hahn, S R; Han, J Y; Happacher, F; Hara, K; Hare, M; Harr, R F; Harrington-Taber, T; Hatakeyama, K; Hays, C; Heinrich, J; Herndon, M; Hocker, A; Hong, Z; Hopkins, W; Hou, S; Hughes, R E; Husemann, U; Hussein, M; Huston, J; Introzzi, G; Iori, M; Ivanov, A; James, E; Jang, D; Jayatilaka, B; Jeon, E J; Jindariani, S; Jones, M; Joo, K K; Jun, S Y; Junk, T R; Kambeitz, M; Kamon, T; Karchin, P E; Kasmi, A; Kato, Y; Ketchum, W; Keung, J; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S H; Kim, S B; Kim, Y J; Kim, Y K; Kimura, N; Kirby, M; Knoepfel, K; Kondo, K; Kong, D J; Konigsberg, J; Kotwal, A V; Kreps, M; Kroll, J; Kruse, M; Kuhr, T; Kurata, M; Laasanen, A T; Lammel, S; Lancaster, M; Lannon, K; Latino, G; Lee, H S; Lee, J S; Leo, S; Leone, S; Lewis, J D; Limosani, A; Lipeles, E; Lister, A; Liu, H; Liu, Q; Liu, T; Lockwitz, S; Loginov, A; Lucchesi, D; Lucà, A; Lueck, J; Lujan, P; Lukens, P; Lungu, G; Lys, J; Lysak, R; Madrak, R; Maestro, P; Malik, S; Manca, G; Manousakis-Katsikakis, A; Marchese, L; Margaroli, F; Marino, P; Martínez, M; Matera, K; Mattson, M E; Mazzacane, A; Mazzanti, P; McNulty, R; Mehta, A; Mehtala, P; Mesropian, C; Miao, T; Mietlicki, D; Mitra, A; Miyake, H; Moed, S; Moggi, N; Moon, C S; Moore, R; Morello, M J; Mukherjee, A; Muller, Th; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Naganoma, J; Nakano, I; Napier, A; Nett, J; Neu, C; Nigmanov, T; Nodulman, L; Noh, S Y; Norniella, O; Oakes, L; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Orava, R; Ortolan, L; Pagliarone, C; Palencia, E; Palni, P; Papadimitriou, V; Parker, W; Pauletta, G; Paulini, M; Paus, C; Phillips, T J; Piacentino, G; Pianori, E; Pilot, J; Pitts, K; Plager, C; Pondrom, L; Poprocki, S; Potamianos, K; Pranko, A; Prokoshin, F; Ptohos, F; Punzi, G; Ranjan, N; Redondo Fernández, I; Renton, P; Rescigno, M; Rimondi, F; Ristori, L; Robson, A; Rodriguez, T; Rolli, S; Ronzani, M; Roser, R; Rosner, J L; Ruffini, F; Ruiz, A; Russ, J; Rusu, V; Sakumoto, W K; Sakurai, Y; Santi, L; Sato, K; Saveliev, V; Savoy-Navarro, A; Schlabach, P; Schmidt, E E; Schwarz, T; Scodellaro, L; Scuri, F; Seidel, S; Seiya, Y; Semenov, A; Sforza, F; Shalhout, S Z; Shears, T; Shepard, P F; Shimojima, M; Shochet, M; Shreyber-Tecker, I; Simonenko, A; Sliwa, K; Smith, J R; Snider, F D; Song, H; Sorin, V; St Denis, R; Stancari, M; Stentz, D; Strologas, J; Sudo, Y; Sukhanov, A; Suslov, I; Takemasa, K; Takeuchi, Y; Tang, J; Tecchio, M; Teng, P K; Thom, J; Thomson, E; Thukral, V; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Totaro, P; Trovato, M; Ukegawa, F; Uozumi, S; Vázquez, F; Velev, G; Vellidis, C; Vernieri, C; Vidal, M; Vilar, R; Vizán, J; Vogel, M; Volpi, G; Wagner, P; Wallny, R; Wang, S M; Waters, D; Wester, W C; Whiteson, D; Wicklund, A B; Wilbur, S; Williams, H H; Wilson, J S; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, H; Wright, T; Wu, X; Wu, Z; Yamamoto, K; Yamato, D; Yang, T; Yang, U K; Yang, Y C; Yao, W-M; Yeh, G P; Yi, K; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Zanetti, A M; Zeng, Y; Zhou, C; Zucchelli, S

    2013-11-15

    We present a measurement of the total decay width of the top quark using events with top-antitop quark pair candidates reconstructed in the final state with one charged lepton and four or more hadronic jets. We use the full Tevatron run II data set of sqrt[s]=1.96  TeV proton-antiproton collisions recorded by the CDF II detector. The top quark mass and the mass of the hadronically decaying W boson are reconstructed for each event and compared with distributions derived from simulated signal and background samples to extract the top quark width (Γtop) and the energy scale of the calorimeter jets with in situ calibration. For a top quark mass Mtop=172.5  GeV/c2, we find 1.10<Γtop<4.05  GeV at 68% confidence level, which is in agreement with the standard model expectation of 1.3 GeV and is the most precise direct measurement of the top quark width to date.

  2. Idler-resonant intracavity KTA-based OPO pumped by a dual-loss modulated-Q-switched-laser with AOM and Cr4+:YAG

    NASA Astrophysics Data System (ADS)

    Qiao, Junpeng; Zhao, Shengzhi; Yang, Kejian; Zhao, Jia; Li, Guiqiu; Li, Dechun; Li, Tao; Qiao, Wenchao

    2017-06-01

    An idler-resonant KTiOAsO4 (KTA)-based intracavity optical parametric oscillator (IOPO) pumped by a dual-loss-modulated Q-switched laser with an acousto-optic modulator (AOM) and a Cr4+:YAG saturable absorber (Cr4+:YAG-SA) has been presented. By utilizing a type-II non-critically phase-matched KTA crystal, signal wave at 1535 nm and idler wave at 3467 nm have been generated. Under an incident pump power of 18.3 W, maximum output powers of 615 mW for signal wave and 228 mW for idler wave were obtained at an AOM modulation rate of 10 kHz, corresponding to a whole optical-to-optical conversion efficiency of 4.6%. The shortest pulse widths of signal and idler wave were measured to be 898 ps and 2.9 ns, corresponding to the highest peak powers of 68.4 and 7.9 kW, respectively. In comparison with IOPO pumped by a singly Q-switched laser with an AOM, the IOPO pumped by a doubly Q-switched laser (DIOPO) with an AOM and a Cr4+:YAG-SA can generate signal wave and idler wave with shorter pulse width and higher peak power. By considering the spatial Gaussian distribution of intracavity photon density, a set of coupled rate equations for the idler-resonant DIOPO were built for the first time to the best of our knowledge. The simulation results agreed well with the experimental results.

  3. Lightning Optical Pulse Statistics from Storm Overflights During the Altus Cumulus Electrification Study

    NASA Technical Reports Server (NTRS)

    Mach, D. M.; Blakeslee, R. J.; Bailey, J. C.; Farrell, W. M.; Goldberg, R. A.; Desch, M. D.; Houser, J. G.

    2004-01-01

    The Altus Cumulus Electrification Study (ACES) was conducted during the month of August, 2002 in an area near Key West, Florida. One of the goals of this uninhabited aerial vehicle (UAV) study was to collect time resolved optical pulse data from thunderstorms. During the month long campaign, we acquired 5294 lightning generated optical pulses. Most of these observations were made while close to the top of the storms. We divided our data into two amplitude groups based on prior NASA U2 aircraft optical data and our pulse characteristics. The group of large pulses with radiance greater than 2.1 mW /sq m sr had mean and median 10 - 10% optical pulse widths of 765 and 735 microns respectively, the 50-50% pulse widths of 396 and 355 microns respectively, and 10-90% rise times of 290 and 260 microns. These values are very similar to the previous U2 based optical results The other group of pulses consisting of slightly more than a quarter of the total pulses observed had radiances less than the minimum values detected in the U2 study. The small pulses were narrower than the large pulses with 5040% mean and median values of 198 and 160 ps respectively. Only 12 % of the flashes contained only small pulses, minimizing the impact of this data on the estimates of detection efficiencies of the orbital instruments, the Lightning Imaging Sensor and Optical Transient Detector.

  4. Physicians in Postgraduate Training Characteristics and Support of Palliative Sedation for Existential Distress.

    PubMed

    Cripe, Larry D; Perkins, Susan M; Cottingham, Ann; Tong, Yan; Kozak, Mary Ann; Mehta, Rakesh

    2017-09-01

    Palliative sedation for refractory existential distress (PS-ED) is ethically troubling but potentially critical to quality end-of-life (EOL) care. Physicians' in postgraduate training support toward PS-ED is unknown nor is it known how empathy, hope, optimism, or intrinsic religious motivation (IRM) affect their support. These knowledge gaps hinder efforts to support physicians who struggle with patients' EOL care preferences. One hundred thirty-four postgraduate physicians rated their support of PS for refractory physical pain (PS-PP) or PS-ED, ranked the importance of patient preferences in ethically challenging situations, and completed measures of empathy, hope, optimism, and IRM. Predictors of PS-ED and PS-PP support were examined using binary and multinomial logistic regression. Only 22.7% of residents were very supportive of PS-ED, and 82.0% were very supportive of PS-PP. Support for PS-PP or PS-ED did not correlate with levels of empathy, hope, optimism, or IRM; however, for residents with lower IRM, greater optimism was associated with greater PS-ED support. In contrast, among residents with higher IRM, optimism was not associated with PS-ED support. Comparing current results to published surveys, a similar proportion of residents and practicing physicians support PS-ED and PS-PP. In contrast to practicing physicians, however, IRM does not directly influence residents' supportiveness. The interaction between optimism and IRM suggests residents' beliefs and characteristics are salient to their EOL decisions. End-of-life curricula should provide physicians opportunities to reflect on the personal and ethical factors that influence their support for PS-ED.

  5. Anisotropic thermal conductive MWCNT/polymer composites prepared with an immiscible PS/LDPE blend.

    PubMed

    Kwon, Younghwan

    2014-08-01

    This study focuses on MWCNT/polymer composites with flexible, anisotropic heat transporting properties. For this study, an immiscible polymer blend of MWCNT/PS and LDPE (13.5:86.5 v:v) were used as a template. MWCNT/PS composites were first prepared by a solution process, and then melt-blended with LDPE using a brabender mixer. For achieving an alignment of MWCNT/PS in LDPE matrix, the blends of MWCNT/PS and LDPE were continuously treated under a fixed shear rate of 10 s(-1) at 210 °C. With partial extraction of PS in the aligned blends, FE-SEM images of the aligned blends revealed morphology of MWCNT in the PS/LDPE matrix, indicating local distribution of MWCNT selectively inside PS, where PS was elongated parallel to shear direction in LDPE matrix. The prepared MWCNT/PS and LDPE blends showed an anisotropic heat transporting behavior with anisotropic ratio of thermal conductivity (AR = λx/λz) up to 1.330 at 10 wt% of MWCNT in PS (equivalent to 1.50 wt% of MWCNT in PS/LDPE).

  6. Paper sludge (PS) to bioethanol: Evaluation of virgin and recycle mill sludge for low enzyme, high-solids fermentation.

    PubMed

    Boshoff, Sonja; Gottumukkala, Lalitha Devi; van Rensburg, Eugéne; Görgens, Johann

    2016-03-01

    Paper sludge (PS) from the paper and pulp industry consists primarily of cellulose and ash and has significant potential for ethanol production. Thirty-seven PS samples from 11 South African paper and pulp mills exhibited large variation in chemical composition and resulting ethanol production. Simultaneous saccharification and fermentation (SSF) of PS in fed-batch culture was investigated at high solid loadings and low enzyme dosages. Water holding capacity and viscosity of the PS influenced ethanol production at elevated solid loadings of PS. High viscosity of PS from virgin pulp mills restricted the solid loading to 18% (w/w) at an enzyme dosage of 20 FPU/gram dry PS (gdPS), whereas an optimal solid loading of 27% (w/w) was achieved with corrugated recycle mill PS at 11 FPU/gdPS. Ethanol concentration and yield of virgin pulp and corrugated recycle PS were 34.2g/L at 66.9% and 45.5 g/L at 78.2%, respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Timing properties of phosphor-coated polished LSO crystals.

    PubMed

    Schmall, Jeffrey P; Roncali, Emilie; Berg, Eric; Viswanath, Varsha; Du, Junwei; Cherry, Simon R

    2014-08-07

    This study investigates a time-of-flight (TOF)-depth-of-interaction (DOI) detector design for positron emission tomography (PET), based on phosphor-coated lutetium oxyorthosilicate (LSO) scintillator crystals coupled to fast single channel photomultiplier tubes. Interaction of the scintillation light with the phosphor coating changes the pulse shape in a depth-dependent manner. 3 × 3 × 10 mm(3) LSO scintillation crystals with polished surfaces were characterized, with and without phosphor coating, to assess DOI capability and timing properties. Two different phosphor coating geometries were studied: coating of the top surface of the crystal, and the top plus half of the crystal sides. There was negligible depth dependency in the decay time when coating only the top surface, however there was a ∼10 ns difference in end-to-end decay time when coating the top plus half of the crystal sides, sufficient to support the use of three DOI bins (3.3 mm DOI bin width). The rise time of the half-coated phosphor crystal was slightly faster at all depths, compared to uncoated crystals, however the signal amplitude was lower. Phosphor coating resulted in depth-dependent photopeak positions with an energy resolution of 13.7%, at a depth of 1 mm, and 15.3%, at a depth of 9 mm, for the half-coated crystal. Uncoated LSO crystals showed no change in photopeak position as a function of depth, with an energy resolution of 10.4%. The head-on coincidence timing resolution (CTR) of two uncoated LSO crystals was 287 ps using constant fraction discrimination for time pick-off. With phosphor coating, the CTR of the top-coated crystal was 314 ps, compared to 384 ps for the half-coated crystal. We demonstrate that the trade-off between timing resolution and DOI resolution can be controlled by the phosphor coating geometry. Here we present preliminary results demonstrating that good DOI resolution can be achieved with only a modest 26% degradation in CTR.

  8. Bringing HIV partner services into the age of social media and mobile connectivity.

    PubMed

    Udeagu, Chi-Chi N; Bocour, Angelica; Shah, Sharmila; Ramos, Yasmin; Gutierrez, Rodolfo; Shepard, Colin W

    2014-10-01

    A substantial proportion of recent sex partners named by persons with sexually transmitted infections are not notified about their exposure despite attempts by public health officials. Although text messaging (texting) and Internet-based communications (dating Web sites, e-mail, etc) are used by a large segment of the public for regular communications, these tools have been underused for partner services (PS). We augmented PS for HIV in New York City using texting and Internet-based means to contact persons for whom traditional information (landline telephone number, postal address) was unavailable. We compared traditional PS (traditionalPS), Internet-based PS (IPS) in January 2011 to October 2012, and texting PS (txtPS) from January 2012 (when txtPS was initiated) through October 2012 on outcomes of contact attempts, notification, and HIV testing. From January 2011 to October 2012, of 3319 partners elicited, 2604 and 275 partners had traditional and only Internet-based contact information and were selected for traditionalPS and IPS, respectively. From January to October 2012, 368 of 1569 partners had only texting-enabled cellphone numbers and were selected for txtPS. The contact rate for txtPS (285/368 [77%]) was significantly higher (P < 0.0001) than the contact rates for traditionalPS (1803/2604 [69%]) and IPS (112/275 [41%]). There was a higher likelihood of notifying contacted IPS (odds ratio, 2.1; 1.2-3.4) and txtPS (odds ratio, 2.4; 1.7-3.2) than traditionalPS partners (P ≤ 0.0001). However, among the notified partners, traditionalPS partners were significantly (P < 0.0001) more likely than txtPS or IPS partners to test for HIV after partner notification (69% vs 45% and 34%, respectively). Augmenting traditionalPS with txtPS and IPS enabled notification of hundreds of previously untraceable partners and several new HIV diagnoses.

  9. Effects of plant sterol esters in skimmed milk and vegetable-fat-enriched milk on serum lipids and non-cholesterol sterols in hypercholesterolaemic subjects: a randomised, placebo-controlled, crossover study.

    PubMed

    Casas-Agustench, Patricia; Serra, Mercè; Pérez-Heras, Ana; Cofán, Montserrat; Pintó, Xavier; Trautwein, Elke A; Ros, Emilio

    2012-06-01

    Plant sterol (PS)-supplemented foods are recommended to help in lowering serum LDL-cholesterol (LDL-C). Few studies have examined the efficacy of PS-enriched skimmed milk (SM) or semi-SM enriched with vegetable fat (PS-VFM). There is also insufficient information on factors predictive of LDL-C responses to PS. We examined the effects of PS-SM (0·1 % dairy fat) and PS-VFM (0·1 % dairy fat plus 1·5 % vegetable fat) on serum lipids and non-cholesterol sterols in hypercholesterolaemic individuals. In a placebo-controlled, crossover study, forty-three subjects with LDL-C>1300 mg/l were randomly assigned to three 4-week treatment periods: control SM, PS-SM and PS-VFM, with 500 ml milk with or without 3·4 g PS esters (2 g free PS). Serum concentrations of lipids and non-cholesterol sterols were measured. Compared to control, LDL-C decreased by 8·0 and 7·4 % (P < 0·015, both) in the PS-SM and PS-VFM periods, respectively. Serum lathosterol:cholesterol (C) ratios increased by 11-25 %, while sitosterol:C and campesterol:C ratios increased by 70-120 % with both the PS-fortified milk. Adjusted LDL-C reductions were variably enhanced in participants with basal low serum lathosterol/C or conversely high sitosterol/C and campesterol/C. Subjects with post-treatment serum PS:C ratios above the median showed mean LDL-C changes of - 5·9 to - 10·4 %, compared with 1·7 to - 2·9 % below the median. In conclusion, consumption of 2 g/d of PS as PS-SM and PS-VFM lowered LDL-C in hypercholesterolaemic subjects to a similar extent. Basal and post-treatment changes in markers of cholesterol metabolism indicating low cholesterol synthesis and high cholesterol absorption predicted improved LDL-C responses to PS.

  10. Time-resolved autofluorescence imaging of human donor retina tissue from donors with significant extramacular drusen.

    PubMed

    Schweitzer, Dietrich; Gaillard, Elizabeth R; Dillon, James; Mullins, Robert F; Russell, Stephen; Hoffmann, Birgit; Peters, Sven; Hammer, Martin; Biskup, Christoph

    2012-06-08

    Time and spectrally resolved measurements of autofluorescence have the potential to monitor metabolism at the cellular level. Fluorophores that emit with the same fluorescence intensity can be discriminated from each other by decay time of fluorescence intensity after pulsed excitation. We performed time-resolved autofluorescence measurements on fundus samples from a donor with significant extramacular drusen. Tissue sections from two human donors were prepared and imaged with a laser scanning microscope. The sample was excited with a titanium-sapphire laser, which was tuned to 860 nm, and frequency doubled by a BBO crystal to 430 nm. The repetition rate was 76 MHz and the pulse width was 170 femtoseconds (fs). The time-resolved autofluorescence was recorded simultaneously in 16 spectral channels (445-605 nm) and bi-exponentially fitted. RPE can be discriminated clearly from Bruch's membrane, drusen, and choroidal connective tissue by fluorescence lifetime. In RPE, bright fluorescence of lipofuscin could be detected with a maximum at 510 nm and extending beyond 600 nm. The lifetime was 385 ps. Different types of drusen were found. Most of them did not contain lipofuscin and exhibited a weak fluorescence, with a maximum at 470 nm. The lifetime was 1785 picoseconds (ps). Also, brightly emitting lesions, presumably representing basal laminar deposits, with fluorescence lifetimes longer than those recorded in RPE could be detected. The demonstrated differentiation of fluorescent structures by their fluorescence decay time is important for interpretation of in vivo measurements by the new fluorescence lifetime imaging (FLIM) ophthalmoscopy on healthy subjects as well as on patients.

  11. Optical phonons in nanostructured thin films composed by zincblende zinc selenide quantum dots in strong size-quantization regime: Competition between phonon confinement and strain-related effects

    NASA Astrophysics Data System (ADS)

    Pejova, Biljana

    2014-05-01

    Raman scattering in combination with optical spectroscopy and structural studies by X-ray diffraction was employed to investigate the phonon confinement and strain-induced effects in 3D assemblies of variable-size zincblende ZnSe quantum dots close packed in thin film form. Nanostructured thin films were synthesized by colloidal chemical approach, while tuning of the nanocrystal size was enabled by post-deposition thermal annealing treatment. In-depth insights into the factors governing the observed trends of the position and half-width of the 1LO band as a function of the average QD size were gained. The overall shifts in the position of 1LO band were found to result from an intricate compromise between the influence of phonon confinement and lattice strain-induced effects. Both contributions were quantitatively and exactly modeled. Accurate assignments of the bands due to surface optical (SO) modes as well as of the theoretically forbidden transverse optical (TO) modes were provided, on the basis of reliable physical models (such as the dielectric continuum model of Ruppin and Englman). The size-dependence of the ratio of intensities of the TO and LO modes was studied and discussed as well. Relaxation time characterizing the phonon decay processes in as-deposited samples was found to be approximately 0.38 ps, while upon post-deposition annealing already at 200 °C it increases to about 0.50 ps. Both of these values are, however, significantly smaller than those characteristic for a macrocrystalline ZnSe sample.

  12. First Record of Psorophora albipes in Quintana Roo, Mexico.

    PubMed

    Chan-Chable, Rahuel J; Ortega-Morales, Aldo I; Martínez-Arce, Arely

    2016-09-01

    In Mexico the Psorophora genus includes 24 species divided into 3 subgenera: Grabhamia, Janthinosoma, and Psorophora. Some species occur in the Nearctic region of the country (northern Mexico), whereas other species occur in the Neotropical region (southern Mexico), and a few species occur in both regions. In Quintana Roo, Mexico, 7 species have been previously recorded: Ps. confinnis s.s., Ps. champerico, Ps. cyanescens, Ps. ferox, Ps. lutzii, Ps. ciliata, and Ps. lineata. In October 2013, 24 females of Ps. albipes were collected using CDC light traps. This is the first record of this species in Quintana Roo.

  13. Measuring changes in perception using the Student Perceptions of Physician-Pharmacist Interprofessional Clinical Education (SPICE) instrument.

    PubMed

    Zorek, Joseph A; MacLaughlin, Eric J; Fike, David S; MacLaughlin, Anitra A; Samiuddin, Mohammed; Young, Rodney B

    2014-05-20

    The Student Perceptions of Physician-Pharmacist Interprofessional Clinical Education (SPICE) instrument contains 10 items, 3 factors (interprofessional teamwork and team-based practice, roles/responsibilities for collaborative practice, and patient outcomes from collaborative practice), and utilizes a five-point response scale (1 = strongly disagree, 5 = strongly agree). Given the SPICE instrument's demonstrated validity and reliability, the objective of this study was to evaluate whether it was capable of measuring changes in medical (MS) and pharmacy students' (PS) perceptions following an interprofessional education (IPE) experience. In this prospective cohort study, MS and PS completed the SPICE instrument before and after participation in a predefined IPE experience. Descriptive statistics were used to characterize students and pre-post responses. Independent samples t tests and Fisher's Exact tests were used to assess group difference in demographic variables. Mann Whitney U tests were used to assess between-group differences in item scores. Wilcoxon Signed-Rank tests were used to evaluate post-participation changes in item scores. Spearman correlations were calculated to assess associations between ordinal demographic variables and item scores, and whether the number of clinic visits completed was associated with post-test responses. Paired samples t tests were used to calculate mean score changes for each of the factors. Thirty-four MS and 15 PS were enroled. Baseline differences included age (25.3. ± 1.3 MS vs. 28.7 ± 4.4 PS; p = 0.013), years full-time employment (0.71 ± 0.97 MS vs. 4.60 ± 4.55 PS; p < 0.001), and number of prior IPE rotations (1.41 ± 1.74 MS vs. 3.13 ± 2.1 PS; p < 0.001). Two items generated baseline differences; 1 persisted post-participation: whether MS/PS should be involved in teamwork (3.91 MS vs. 4.60 PS; p < 0.001). For all students, significant mean score increases were observed for role clarity ("my role" [3.72 vs. 4.11; p = 0.001] and "others' roles" [3.87 vs. 4.17; p = 0.001]), impact of teamwork on patient satisfaction (3.72 vs. 4.34; p < 0.001), and ideal curricular location for IPE (4.06 vs. 4.34; p = 0.002). Significant increases were observed for all three factors (teamwork, p = 0.003; roles/responsibilities and patient outcomes, p < 0.001). This study demonstrated the SPICE instrument's ability to measure changes in perception for medical and pharmacy students exposed to an IPE experience, both at the individual item level and at the factor level.

  14. The effect of phytosterol protects rats against 4-nitrophenol-induced liver damage.

    PubMed

    Chen, Jiaqin; Song, Meiyan; Li, Yansen; Zhang, Yonghui; Taya, Kazuyoshi; Li, ChunMei

    2016-01-01

    We investigated the effect of phytosterol (PS) in regard to liver damage induced by 4-nitrophenol (PNP). Twenty rats were randomly divided into four groups (Control, PS, PNP, and PNP+PS). The PS and PNP+PS groups were pretreated with PS for one week. The PNP and PNP+PS groups were injected subcutaneously with PNP for 28 days. The control group received a basal diet and was injected with vehicle alone. Treatment with PS prevented the elevation of the total bilirubin levels, as well as an increase in serum alkaline transaminase and aspartate transaminase, which are typically caused by PNP-induced liver damage. Histopathologically showed that liver damage was significantly mitigated by PS treatment. However, there was no significant change in antioxidant enzyme activities, and the Nrf2-antioxidant system was not activated after treatment with PS. These results suggest that PS could mitigate liver damage induced by PNP, but does not enhance antioxidant capacity. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Palliative Sedation at the End of Life: Patterns of Use in an Israeli Hospice.

    PubMed

    Azoulay, Daniel; Shahal-Gassner, Ruth; Yehezkel, Malka; Eliyahu, Ester; Weigert, Nir; Ein-Mor, Eliana; Jacobs, Jeremy M

    2016-05-01

    Palliative sedation (PS) is indicated for refractory symptoms among dying patients. This retrospective descriptive study examines PS in an Israeli hospice. Palliative sedation was defined as PS to unconsciousness (PSU), PS proportionate to symptoms (proportional palliative sedation [PPS]), or intermittent PS (IPS). Among 179 patients who died during 2012, PS was used among 21.2% (n = 38): (PSU 34.2%, PPS 34.2%, and IPS 31.6%), using midazolam (n = 33/38), halidol (21/38), and concurrent morphine (n = 35/38). Indications included agitation (71%), pain (36.8%), and dyspnea (21%). Survival following initiation of PS was 73 ± standard deviation 54 hours. No differences in survival were observed according to who initiated the decision to use PS (patients/medical staff/family) or type of PS (PSU/PPS/IPS). Survival following PS was longest with higher sedative doses, an observation that may help dispel fears concerning the use of PS to hasten death. © The Author(s) 2015.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caberoy, Nora B.; Zhou, Yixiong; Alvarado, Gabriela

    To efficiently elucidate the biological roles of phosphatidylserine (PS), we developed open-reading-frame (ORF) phage display to identify PS-binding proteins. The procedure of phage panning was optimized with a phage clone expressing MFG-E8, a well-known PS-binding protein. Three rounds of phage panning with ORF phage display cDNA library resulted in {approx}300-fold enrichment in PS-binding activity. A total of 17 PS-binding phage clones were identified. Unlike phage display with conventional cDNA libraries, all 17 PS-binding clones were ORFs encoding 13 real proteins. Sequence analysis revealed that all identified PS-specific phage clones had dimeric basic amino acid residues. GST fusion proteins were expressedmore » for 3 PS-binding proteins and verified for their binding activity to PS liposomes, but not phosphatidylcholine liposomes. These results elucidated previously unknown PS-binding proteins and demonstrated that ORF phage display is a versatile technology capable of efficiently identifying binding proteins for non-protein molecules like PS.« less

  17. Demographics, clinical disease characteristics, and quality of life in a large cohort of psoriasis patients with and without psoriatic arthritis

    PubMed Central

    Truong, B; Rich-Garg, N; Ehst, BD; Deodhar, AA; Ku, JH; Vakil-Gilani, K; Danve, A; Blauvelt, A

    2015-01-01

    Innovation What is already known about the topic: psoriasis (PsO) is a common skin disease with major impact on quality of life (QoL). Patient-reported data on QoL from large number of PsO patients with and without psoriatic arthritis (PsA) are limited. What this study adds: In a large cohort referred to a university psoriasis center, patients with PsO and concomitant PsA (~30% in this group) had greater degrees of skin and nail involvement and experienced greater negative impacts on QoL. Despite large numbers of patients with moderate-to-severe disease, use of systemic therapy by community practitioners was uncommon. Background PsO and PsA are common diseases that have marked adverse impacts on QoL. The disease features and patient-reported QoL data comparing PsO and PsA patients are limited. Objective To identify and compare demographics, clinical disease characteristics, and QoL scores in a large cohort of PsO patients with and without PsA. Methods All PsO patients seen in a psoriasis specialty clinic, named the Center of Excellence for Psoriasis and Psoriatic Arthritis, were enrolled in an observational cohort. Demographic, QoL, and clinical data were collected from patient-reported questionnaires and from physical examinations performed by Center of Excellence for Psoriasis and Psoriatic Arthritis dermatologists and a rheumatologists. Cross sectional descriptive data were collected and comparisons between patients with PsO alone and those with concomitant PsA are presented. Results A total of 568 patients were enrolled in the database. Mean age of PsO onset was 28 years and mean disease duration was 18 years. Those with family history had an earlier onset of PsO by ~7 years. Mean body surface area involvement with PsO was 14%. Mean body mass index was 30.7. Prevalence of PsA was 29.8%. PsA patients had a higher mean body surface area compared to patients with PsO alone (16.7% vs 13.4%, P<0.05), higher prevalence of psoriatic nail changes (54.4% vs 36%, P<0.0002), and worse QoL scores as assessed by the Short Form-12 (67 vs 52, P<0.00001), Psoriasis Quality of Life-12 questionnaire (62 vs 71, P<0.01), and Routine Assessment of Patient Index Data 3 (2.3 vs 4.7, P<0.01). Strikingly, 49% of patients with PsO had never received any systemic therapy. Conclusion These data highlight that PsO has marked negative impacts on QoL, while those patients with concomitant PsA are affected to a much greater degree. Despite large numbers of patients presenting with moderate-to-severe disease, use of systemic therapy for both PsO and PsA was uncommon. PMID:26622188

  18. 1645-nm single-frequency, injection-seeded Q-switched Er:YAG master oscillator and power amplifier

    NASA Astrophysics Data System (ADS)

    Wang, Shuo; Gao, Chunqing; Shi, Yang; Song, Rui; Na, Quanxin; Gao, Mingwei; Wang, Qing

    2018-02-01

    A 1645-nm injection-seeded Q-switched Er:YAG master oscillator and power amplifier system is reported. The master oscillator generates single-frequency pulse energy of 11.10 mJ with a pulse width of 188.8 ns at 200 Hz. An Er:YAG monolithic nonplanar ring oscillator is employed as a seed laser. The output pulse from the master oscillator is amplified to 14.33-mJ pulse energy through an Er:YAG amplifier, with a pulse width of 183.3 ns. The M2-factors behind the amplifier are 1.14 and 1.23 in x- and y-directions, respectively. The full width at half maximum of the fast Fourier transformation spectrum of the heterodyne beating signal is 2.84 MHz.

  19. Antigen processing of glycoconjugate vaccines; the polysaccharide portion of the pneumococcal CRM(197) conjugate vaccine co-localizes with MHC II on the antigen processing cell surface.

    PubMed

    Lai, Zengzu; Schreiber, John R

    2009-05-21

    Pneumococcal (Pn) polysaccharides (PS) are T-independent (TI) antigens and do not induce immunological memory or antibodies in infants. Conjugation of PnPS to the carrier protein CRM(197) induces PS-specific antibody in infants, and memory similar to T-dependent (Td) antigens. Conjugates have improved immunogenicity via antigen processing and presentation of carrier protein with MHC II and recruitment of T cell help, but the fate of the PS attached to the carrier is unknown. To determine the location of the PS component of PnPS-CRM(197) in the APC, we separately labeled PS and protein and tracked their location. The PS of types 14-CRM(197) and 19F-CRM(197) was specifically labeled by Alexa Fluor 594 hydrazide (red). The CRM(197) was separately labeled red in a reaction that did not label PS. Labeled antigens were incubated with APC which were fixed, permeabilized and incubated with anti-MHC II antibody labeled green by Alexa Fluor 488, followed by confocal microscopy. Labeled CRM(197) was presented on APC surface and co-localized with MHC II (yellow). Labeled unconjugated 14 or 19F PS did not go to the APC surface, but PS labeled 14-CRM(197) and 19F-CRM(197) was internalized and co-localized with MHC II. Monoclonal antibody to type 14 PS bound to intracellular type 14 PS and PS-CRM(197). Brefeldin A and chloroquine blocked both CRM(197) and PS labeled 14-CRM(197) and 19F-CRM(197) from co-localizing with MHC II. These data suggest that the PS component of the CRM(197) glycoconjugate enters the endosome, travels with CRM(197) peptides to the APC surface and co-localizes with MHC II.

  20. Pichia stipitis Genes for Alcohol Dehydrogenase with Fermentative and Respiratory Functions

    PubMed Central

    Cho, Jae-yong; Jeffries, Thomas W.

    1998-01-01

    Two genes coding for isozymes of alcohol dehydrogenase (ADH); designated PsADH1 and PsADH2, have been identified and isolated from Pichia stipitis CBS 6054 genomic DNA by Southern hybridization to Saccharomyces cerevisiae ADH genes, and their physiological roles have been characterized through disruption. The amino acid sequences of the PsADH1 and PsADH2 isozymes are 80.5% identical to one another and are 71.9 and 74.7% identical to the S. cerevisiae ADH1 protein. They also show a high level identity with the group I ADH proteins from Kluyveromyces lactis. The PsADH isozymes are presumably localized in the cytoplasm, as they do not possess the amino-terminal extension of mitochondrion-targeted ADHs. Gene disruption studies suggest that PsADH1 plays a major role in xylose fermentation because PsADH1 disruption results in a lower growth rate and profoundly greater accumulation of xylitol. Disruption of PsADH2 does not significantly affect ethanol production or aerobic growth on ethanol as long as PsADH1 is present. The PsADH1 and PsADH2 isozymes appear to be equivalent in the ability to convert ethanol to acetaldehyde, and either is sufficient to allow cell growth on ethanol. However, disruption of both genes blocks growth on ethanol. P. stipitis strains disrupted in either PsADH1 or PsADH2 still accumulate ethanol, although in different amounts, when grown on xylose under oxygen-limited conditions. The PsADH double disruptant, which is unable to grow on ethanol, still produces ethanol from xylose at about 13% of the rate seen in the parental strain. Thus, deletion of both PsADH1 and PsADH2 blocks ethanol respiration but not production, implying a separate path for fermentation. PMID:9546172

Top