Nakamura, Ryosuke; Hamada, Norio
2015-05-14
Vibrational energy flow in the electronic ground state of photoactive yellow protein (PYP) is studied by ultrafast infrared (IR) pump-visible probe spectroscopy. Vibrational modes of the chromophore and the surrounding protein are excited with a femtosecond IR pump pulse, and the subsequent vibrational dynamics in the chromophore are selectively probed with a visible probe pulse through changes in the absorption spectrum of the chromophore. We thus obtain the vibrational energy flow with four characteristic time constants. The vibrational excitation with an IR pulse at 1340, 1420, 1500, or 1670 cm(-1) results in ultrafast intramolecular vibrational redistribution (IVR) with a time constant of 0.2 ps. The vibrational modes excited through the IVR process relax to the initial ground state with a time constant of 6-8 ps in parallel with vibrational cooling with a time constant of 14 ps. In addition, upon excitation with an IR pulse at 1670 cm(-1), we observe the energy flow from the protein backbone to the chromophore that occurs with a time constant of 4.2 ps.
NASA Astrophysics Data System (ADS)
Fantola Lazzarini, Anna L.; Lazzarini, Ennio
The o-Ps quenching reactions promoted in aqueous solutions by the following six cyanocomplexes: [Fe(CN) 6] 4-; [Co(CN) 6] 3-; [Zn(CN) 4] 2-; [Cd(CN) 6] 2-; [Fe(CN) 6] 3-; [Ni(CN) 4] 2- were investigated. The first four reactions probably consist in o-Ps addition across the CN bond, their rate constants at room temperature, Tr, being ⩽(0.04±0.02) × 10 9 M -1 s -1, i.e. almost at the limit of experimental errors. The rate constant of the fifth reaction, in o-Ps oxydation, at Tr is (20.3±0.4) × 10 9 M -1 s -1. The [Ni(CN) 4] 2-k value at Tr, is (0.27±0.01) × 10 9 M -1 s -1, i.e. 100 times less than the rate constants of o-Ps oxydation, but 10 times larger than those of the o-Ps addition across the CN bond. The [Ni(CN) 4] 2- reaction probably results in formation of the following positronido complex: [Ni(CN) 4Ps] 2-. However, it is worth noting that the existence of such a complex is only indirectly deduced. In fact it arises from comparison of the [Ni(CN) 4] 2- rate constant with those of the Fe(II), Zn(II), Cd(II), and Co(III) cyanocomplexes, which, like the Ni(II) cyanocomplex, do not promote o-Ps oxydation or spin exchange reactions.
High Frequency Active Auroral Research Program (HAARP) Imager
1993-09-30
T-3 HCTL!; *WR-EN HCTL@ F- 3 HC7L! ; * HACK H(TL-@ F-4 HCTL!; ]NIiT-HOST 00 HB! F8 HCrL!; DSP-RESET INIT-HOST HCTL@ DUP F-6 HCTh! T-6 HCTU! DSP-IRQB...CONSTANTPS2 PI_HI P2-11 OR 3_-1O OR TG..LO OR CONSTANT PS3 P1I.,O P2_.i OR P3..LO OR TG_.LO OR CONSTANT PS4 PlLO P21-1I OR P3_H1 OR TGIIl OR CONSTANTPS5 P1_LO...CONSTANT PSTATEI PS2 SER-IDLE OR CONSTANT PSTATE2 PS3 SERIDLE OR CONSTANT PSTATE3 PS4 SERIDLE OR CONSTANT PSTATE4 PS5 SERIDLE OR CONSTANT PSTATES PS6
Excited state proton transfer in the lysosome of live lung cells: normal and cancer cells.
Chowdhury, Rajdeep; Saha, Abhijit; Mandal, Amit Kumar; Jana, Batakrishna; Ghosh, Surajit; Bhattacharyya, Kankan
2015-02-12
Dynamics of excited state proton transfer (ESPT) in the lysosome region of live lung cells (normal and cancer) is studied by picosecond time-resolved confocal microscopy. For this, we used a fluorescent probe, pyranine (8-hydroxy-pyrene-1,3,6-trisulfonate, HPTS). From the colocalization of HPTS with a lysotracker dye (lysotracker yellow), we confirmed that HPTS resides in the lysosome for both of the cells. The diffusion coefficient (Dt) in the lysosome region was obtained from fluorescence correlation spectroscopy (FCS). From Dt, the viscosity of lysosome is estimated to be ∼40 and ∼30 cP in the cancer and normal cells, respectively. The rate constants of the elementary steps of ESPT in a normal lung cell (WI38) are compared with those in a lung cancer cell (A549). It is observed that the time constant of the initial proton transfer process in a normal cell (τ(PT) = 40 ps) is similar to that in a cancer cell. The recombination of the geminate ion pair is slightly faster (τ(rec) = 25 ps) in the normal cell than that (τ(rec) = 30 ps) in a cancer cell. The time constant of the dissociation (τ(diss)) of the geminate ion pair for the cancer cell (τ(diss) = 80 ps) is 1.5 times faster compared to that (τ(diss) = 120 ps) in a normal cell.
Ueno, A; Oguri, H; Ikegami, K; Namekawa, Y; Ohkoshi, K; Tokuchi, A
2010-02-01
An innovative high-power constant-current (CC) pulsed-arc (PA) power-supply (PS) indispensable for a high-density PA plasma ion-source using a lanthanum hexaboride (LaB(6)) filament was devised by combining a constant-voltage (CV) PA-PS, which is composed of an insulated gate bipolar transistor (IGBT) switch, a CV direct-current (dc) PS and a 270 mF capacitor with a CC-PA-PS, which is composed of an IGBT-switch, a CC-dc-PS and a 400 microH inductor, through the inductor. The hybrid-CC-PA-PS succeeded in producing a flat arc-pulse with a peak power of 56 kW (400 A x 140 V) and a duty factor of more than 1.5% (600 micros x 25 Hz) for Japan Proton Accelerator Research Complex (J-PARC) H(-) ion-source stably. It also succeeded in shortening the 99% rising-time of the arc-pulse-current to about 20 micros and tilting up or down the arc-pulse-current arbitrarily and almost linearly by changing the setting voltage of its CV-dc-PS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nishide, Hiroyuki; Suzuki, Takayuki; Kawakami, Hiroyoshi
1994-05-12
New derivatives of (meso-[alpha],[alpha],[alpha],[alpha]-tetrakis(o-pivalamidophenyl)porphinato)cobalt (CoPs) were characterized by oxygen-binding equilibrium and rate constants of the cobalt centered in the porphyrins. They depended on the structure of the porphyrin; for example, the rate constants of oxygen binding and dissociation (k[sub on] and k[sub off]) for [alpha][sup 3][beta]-CoP[sub 4]P were 3 and 20 times as large as those for [alpha][sup 4]-CoB[sub 4]P, respectively. Oxygen transport through the polymer membranes containing CoPs as the fixed oxygen carriers was facilitated and was affected by the oxygen-binding character or the structure of CoPs. The logarithmically linear correlation of the oxygen-dissociation rate constant of CoPs (k[submore » off] = (3-66) x 10[sup 3] S[sup [minus]1]) with the diffusion constant of oxygen via CoPs fixed in the membranes (D[sub cc] = (3-140) x 10[sup [minus]9] cm[sup 2] s[sup [minus]1]) was given for those six CoP derivatives. 26 refs., 5 figs., 2 tabs.« less
NASA Astrophysics Data System (ADS)
von Benten, R.; Charvat, A.; Link, O.; Abel, B.; Schwarzer, D.
2004-03-01
Femtosecond pump probe spectroscopy was employed to measure intramolecular vibrational energy redistribution (IVR) and intermolecular vibrational energy transfer (VET) of benzene in the gas phase and in supercritical (sc) CO 2. We observe two IVR time scales the faster of which proceeds within τ IVR(1)<0.5 ps. The slower IVR component has a time constant of τ IVR(2)=(48±5) ps in the gas phase and in scCO 2 is accelerated by interactions with the solvent. At the highest CO 2 density it is reduced to τ IVR(2)=(6±1) ps. The corresponding IVR rate constants show a similar density dependence as the VET rate constants. Model calculations suggest that both quantities correlate with the local CO 2 density in the immediate surrounding of the benzene molecule.
NASA Astrophysics Data System (ADS)
Toigawa, Tomohiro; Gohdo, Masao; Norizawa, Kimihiro; Kondoh, Takafumi; Kan, Koichi; Yang, Jinfeng; Yoshida, Yoichi
2016-06-01
The formation process of pre-solvated and solvated electron in methanol (MeOH), ethanol (EtOH), n-butanol (BuOH), and n-octanol (OcOH) were investigated using a fs-pulse radiolysis technique by observing the pre-solvated electron at 1400 nm. The formation time constants of the pre-solvated electrons were determined to be 1.2, 2.2, 3.1, and 6.3 ps for MeOH, EtOH, BuOH, and OcOH, respectively. The formation time constants of the solvated electrons were determined to be 6.7, 13.6, 22.2, and 32.9 ps for MeOH, EtOH, BuOH, and OcOH, respectively. The formation dynamics and structure of the pre-solvated and solvated electrons in n-alcohols were discussed based on relation between the obtained time constant and dielectric relaxation time constant from the view point of kinetics. The observed formation time constants of the solvated electrons seemed to be strongly correlated with the second component of the dielectric relaxation time constants, which are related to single molecule motion. On the other hand, the observed formation time constants of the pre-solvated electrons seemed to be strongly correlated with the third component of the dielectric relaxation time constants, which are related to dynamics of hydrogen bonds.
Femtosecond/picosecond time-resolved fluorescence study of hydrophilic polymer fine particles.
Nanjo, Daisuke; Hosoi, Haruko; Fujino, Tatsuya; Tahara, Tahei; Korenaga, Takashi
2007-03-22
Femtosecond/picosecond time-resolved fluorescence study of hydrophilic polymer fine particles (polyacrylamide, PAAm) was reported. Ultrafast fluorescence dynamics of polymer/water solution was monitored using a fluorescent probe molecule (C153). In the femtosecond time-resolved fluorescence measurement at 480 nm, slowly decay components having lifetimes of tau(1) approximately 53 ps and tau(2) approximately 5 ns were observed in addition to rapid fluorescence decay. Picosecond time-resolved fluorescence spectra of C153/PAAm/H2O solution were also measured. In the time-resolved fluorescence spectra of C153/PAAm/H2O, a peak shift from 490 to 515 nm was measured, which can be assigned to the solvation dynamics of polymer fine particles. The fluorescence peak shift was related to the solvation response function and two time constants were determined (tau(3) approximately 50 ps and tau(4) approximately 467 ps). Therefore, the tau(1) component observed in the femtosecond time-resolved fluorescence measurement was assigned to the solvation dynamics that was observed only in the presence of polymer fine particles. Rotational diffusion measurements were also carried out on the basis of the picosecond time-resolved fluorescence spectra. In the C153/PAAm/H2O solution, anisotropy decay having two different time constants was also derived (tau(6) approximately 76 ps and tau(7) approximately 676 ps), indicating the presence of two different microscopic molecular environments around the polymer surface. Using the Stokes-Einstein-Debye (SED) equation, microscopic viscosity around the polymer surface was evaluated. For the area that gave a rotational diffusion time of tau(6) approximately 76 ps, the calculated viscosity is approximately 1.1 cP and for tau(7) approximately 676 ps, it is approximately 10 cP. The calculated viscosity values clearly revealed that there are two different molecular environments around the polyacrylamide fine particles.
Excited state dynamics of the astaxanthin radical cation
NASA Astrophysics Data System (ADS)
Amarie, Sergiu; Förster, Ute; Gildenhoff, Nina; Dreuw, Andreas; Wachtveitl, Josef
2010-07-01
Femtosecond transient absorption spectroscopy in the visible and NIR and ultrafast fluorescence spectroscopy were used to examine the excited state dynamics of astaxanthin and its radical cation. For neutral astaxanthin, two kinetic components corresponding to time constants of 130 fs (decay of the S 2 excited state) and 5.2 ps (nonradiative decay of the S 1 excited state) were sufficient to describe the data. The dynamics of the radical cation proved to be more complex. The main absorption band was shifted to 880 nm (D 0 → D 3 transition), showing a weak additional band at 1320 nm (D 0 → D 1 transition). We found, that D 3 decays to the lower-lying D 2 within 100 fs, followed by a decay to D 1 with a time constant of 0.9 ps. The D 1 state itself exhibited a dual behavior, the majority of the population is transferred to the ground state in 4.9 ps, while a small population decays on a longer timescale of 40 ps. Both transitions from D 1 were found to be fluorescent.
NASA Astrophysics Data System (ADS)
Roscioli, Jerome D.; Ghosh, Soumen; Bishop, Michael M.; Lafountain, Amy M.; Frank, Harry A.; Beck, Warren F.
Transient grating spectroscopy was used to study the dynamics of nonradiative decay of the S1 (21Ag-) state in ß-carotene and peridinin after optical preparation of the S2) state. The kinetics of the recovery of the absorption and dispersion components of the third-order signal exhibit significantly different time constants. For β-carotene in benzonitrile, the absorption and dispersion recovery time constants are 11.6 and 10.2 ps. For peridinin in methanol, the time constants are 9.9 and 7.4 ps. These results indicate that the initial product of the decay of the S1 state is a conformationally displaced structure. The decay rate for the S1 state and the conformational relaxation rate are both slowed in peridinin as the polarity of the solvent decreases; in ethyl acetate, the conformational relaxation time constant is 45 ps, which rules out a dominant contribution from vibrational cooling. These results indicate that the S1 state develops intramolecular charge transfer character owing to distortions along torsional and out-of-plane coordinates, with a pyramidal structure favored as the most stable conformation. Recovery of the photoselected ground state conformation involves a reverse charge-transfer event followed by relaxation to a planar structure. Work supported by Photosynthetic Systems Program of the U.S. Department of Energy under Grant DE-SC0010847.
Ujj, L; Devanathan, S; Meyer, T E; Cusanovich, M A; Tollin, G; Atkinson, G H
1998-07-01
Previous studies have shown that the room temperature photocycle of the photoactive yellow protein (PYP) from Ectothiorhodospira halophila involves at least two intermediate species: I1, which forms in <10 ns and decays with a 200-micros lifetime to I2, which itself subsequently returns to the ground state with a 140-ms time constant at pH 7 (Genick et al. 1997. Biochemistry. 36:8-14). Picosecond transient absorption spectroscopy has been used here to reveal a photophysical relaxation process (stimulated emission) and photochemical intermediates in the PYP photocycle that have not been reported previously. The first new intermediate (I0) exhibits maximum absorption at approximately 510 nm and appears in =3 ps after 452 nm excitation (5 ps pulse width) of PYP. Kinetic analysis shows that I0 decays with a 220 +/- 20 ps lifetime, forming another intermediate (Idouble dagger0) that has a similar difference wavelength maximum, but with lower absorptivity. Idouble dagger0 decays with a 3 +/- 0.15 ns time constant to form I1. Stimulated emission from an excited electronic state of PYP is observed both within the 4-6-ps cross-correlation times used in this work, and with a 16-ps delay for all probe wavelengths throughout the 426-525-nm region studied. These transient absorption and emission data provide a more detailed understanding of the mechanistic dynamics occurring during the PYP photocycle.
27ps DFT Molecular Dynamics Simulation of a-maltose: A Reduced Basis Set Study.
USDA-ARS?s Scientific Manuscript database
DFT molecular dynamics simulations are time intensive when carried out on carbohydrates such as alpha-maltose, requiring up to three or more weeks on a fast 16-processor computer to obtain just 5ps of constant energy dynamics. In a recent publication [1] forces for dynamics were generated from B3LY...
Photo-dynamics of roseoflavin and riboflavin in aqueous and organic solvents
NASA Astrophysics Data System (ADS)
Zirak, P.; Penzkofer, A.; Mathes, T.; Hegemann, P.
2009-03-01
Roseoflavin (8-dimethylamino-8-demethyl- D-riboflavin) and riboflavin in aqueous and organic solvents are studied by optical absorption spectroscopy, fluorescence spectroscopy, and fluorescence decay kinetics. Solvent polarity dependent absorption shifts are observed. The fluorescence quantum yields are solvent dependent. For roseoflavin the fluorescence decay shows a bi-exponential dependence (ps to sub-ps time constant, and 100 ps to a few ns time constant). The roseoflavin photo-dynamics is explained in terms of fast intra-molecular charge transfer (diabatic electron transfer) from the dimethylamino electron donor group to the pteridin carbonyl electron acceptor followed by intra-molecular charge recombination. The fast fluorescence component is due to direct locally-excited-state emission, and the slow fluorescence component is due to delayed locally-excited-state emission and charge transfer state emission. The fluorescence decay of riboflavin is mono-exponential. The S 1-state potential energy surface is determined by vibronic relaxation and solvation dynamics due to excited-state dipole moment changes (adiabatic optical electron transfer).
Miller; Lammi; Prathapan; Holten; Lindsey
2000-10-06
We have prepared a linear array of chromophores consisting of a perylene input unit, a bis(free base porphyrin) transmission unit, and a free base phthalocyanine output unit for studies in artificial photosynthesis and molecular photonics. The synthesis involved four stages: (1) a rational synthesis of trans-AB2C-porphyrin building blocks each bearing one meso-unsubstituted position, (2) oxidative, meso,meso coupling of the zinc porphyrin monomers to afford a bis(zinc porphyrin) bearing one phthalonitrile group and one iodophenyl group, (3) preparation of a bis(porphyrin)-phthalocyanine array via a mixed cyclization involving the bis(free base porphyrin) and 4-tert-butylphthalonitrile, and (4) Pd-mediated coupling of an ethynylperylene to afford a perylene-bis(porphyrin)-phthalocyanine linear array. The perylene-bis(porphyrin)-phthalocyanine array absorbs strongly across the visible spectrum. Excitation at 490 nm, where the perylene absorbs preferentially, results in fluorescence almost exclusively from the phthalocyanine (phi(f) = 0.78). The excited phthalocyanine forms with time constants of 2 ps (90%) and 13 ps (10%). The observed time constants resemble those of corresponding phenylethyne-linked dyads, including a perylene-porphyrin (< or = 0.5 ps) and a porphyrin-phthalocyanine (1.1 ps (70%) and 8 ps (30%)). The perylene-bis(porphyrin)-phthalocyanine architecture exhibits efficient light-harvesting properties and rapid funneling of energy in a cascade from perylene to bis(porphyrin) to phthalocyanine.
NASA Astrophysics Data System (ADS)
Solomonov, Alexey V.; Shipitsyna, Maria K.; Vashurin, Arthur S.; Rumyantsev, Evgeniy V.; Timin, Alexander S.; Ivanov, Sergey P.
2016-11-01
An interaction between 5,10,15,20-tetrakis-(N-methyl-x-pyridyl)porphyrins, x = 2; 4 (TMPyPs) with bovine serum albumin (BSA) and its bilirubin (BR) complex was investigated by UV-Viz and fluorescence spectroscopy under imitated physiological conditions involving molecular docking studies. The parameters of forming intermolecular complexes (binding constants, quenching rate constants, quenching sphere radius etc.) were determined. It was showed that the interaction between proteins and TMPyPs occurs via static quenching of protein fluorescence and has predominantly hydrophobic and electrostatic character. It was revealed that obtained complexes are relatively stable, but in the case of TMPyP4 binding with proteins occurs better than TMPyP2. Nevertheless, both TMPyPs have better binding ability with free protein compared to BRBSA at the same time. The influence of TMPyPs on the conformational changes in protein molecules was studied using synchronous fluorescence spectroscopy. It was found that there is no competition of BR with TMPyPs for binging sites on protein molecule and BR displacement does not occur. Molecular docking calculations have showed that TMPyPs can bind with albumin via tryptophan residue in the hydrophilic binding site of protein molecule but it is not one possible interaction way.
Measurement of tritium with plastic scintillator surface improvement with plasma treatment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoshihara, Y.; Furuta, E.; Ohyama, R.I.
2015-03-15
Tritium is usually measured by using a liquid scintillation counter. However, liquid scintillator used for measurement will become radioactive waste fluid. To solve this issue, we have developed a method of measuring tritium samples with plasma-treated plastic scintillator (PS)sheets (Plasma method). The radioactive sample is held between 2 PS sheets and the whole is enclosed in a a low-potassium glass vial. With the Plasma method of 2-min plasma treatment, we have obtained measurement efficiency of 48 ± 2 % for 2 min measurement of tritium except for tritiated water. The plasma treatment makes the PS surface rough and hydrophilic whichmore » contributes to improve the contact between tritium and PS. On the other hand, it needed almost 6 hours to obtain constant measurement efficiency. The reason was that the dry-up handling in the vial needed longer time to vaporize H{sub 2}O molecules than in the air. We tried putting silica gel beads into vials to remove H{sub 2}O molecules from PS sheet surface quickly. The silica gel beads worked well and we got constant measurement efficiency within 1-3 hours. Also, we tried using other kinds of PS treated with plasma to obtain higher measurement efficiencies of tritium samples.« less
Mukherjee, Puspal; Biswas, Somnath; Sen, Pratik
2015-08-27
Fluorescence quenching studies through steady-state and time-resolved measurements are inadequate to quantify the bimolecular electron transfer rate in bulk homogeneous solution due to constraints from diffusion. To nullify the effect of diffusion, direct evaluation of the rate of formation of a transient intermediate produced upon the electron transfer is essential. Methyl viologen, a well-known electron acceptor, produces a radical cation after accepting an electron, which has a characteristic strong and broad absorption band centered at 600 nm. Hence it is a good choice to evaluate the rate of photoinduced electron transfer reaction employing femtosecond broadband transient absorption spectroscopy. The time constant of the aforementioned process between pyrene and methyl viologen in methanol has been estimated to be 2.5 ± 0.4 ps using the same technique. The time constant for the backward reaction was found to be 14 ± 1 ps. These values did not change with variation of concentration of quencher, i.e., methyl viologen. Hence, we can infer that diffusion has no contribution in the estimation of rate constants. However, on changing the solvent from methanol to ethanol, the time constant of the electron transfer reaction has been found to increase and has accounted for the change in solvent reorganization energy.
1979-01-01
Frog sartorius muscles tetanized isometrically were released at a constant velocity from lengths lL to lS (delta l = lL -lS; Ls greater than lO). The tension PS redeveloped after the release was lower than the isometric tension PS at LS, and higher than the isometric tension PL at lL. The tension deficit D is defined as the difference PS-PS. The timing of the release during the tetanus did not influence D. D/PO was proportional to delta l/lO. The proportionality constant k was equal to 1.35 +/- 0.19 (n = 8) when the velocity of release was 2.5 mm/s. When the muscles were released the same delta l, D was found to be an exponential decreasing function of the velocity. The tension deficit was also found in experiments performed in the region lS less than lO. The proportionality constant k was smaller, but the influence of the velocity of the release on D was not modified. When the velocity of the release was changed during the release, D changed accordingly, showing that the effects of delta l and V are multiplicative. These facts suggest a working hypothesis based on the concept that the actin filaments which enter the overlap region during a release are strained by the tetanic stress and therefore unable to make normal cross-bridges. PMID:312915
NASA Astrophysics Data System (ADS)
Li, Zhongyu; Jin, Zhaohui; Kasatani, Kazuo
2005-01-01
The third-order optical nonlinearities and responses of thin films containing the J-aggregates of a cyanine dye or a squarylium dye were measured using the degenerate four-wave mixing (DFWM) technique under resonant conditions. The sol-gel silica coating films containing the J-aggregates of the cyanine dye, NK-3261, are stable at room temperature and durable against laser beam irradiation. The temporal profiles of the DFWM signal were measured with a time resolution of 0.3 ps, and were found to consist of at least three components, i.e., the coherent instantaneous nonlinear response and the two slow responses with delay time constants of ca. 1.0 ps and ca. 5.6 ps. The contribution of the later was small. The electronic component of the effective third-order optical nonlinear susceptibility of the film had value of as high as ca. 3.0 x 10-7 esu. We also studied the neat film of a squarylium dye J-aggregates. The temporal profile of the DFWM signal of the neat film of squarylium dye was also found to consist of at least three components, the coherent instantaneous nonlinear response and the delayed response with decay time constants of ca. 0.6 ps and ca. 6.5 ps. The contribution of the slow tail was also very small. The electronic component of effective third-order optical nonlinear susceptibility of the neat film of squarylium dye had value of as high as ca. 3.6 x 10-8 esu.
Charge displacement in bacteriorhodopsin during the forward and reverse bR-K phototransition.
Groma, G I; Hebling, J; Ludwig, C; Kuhl, J
1995-01-01
Dried oriented purple membrane samples of Halobacterium salinarium were excited by 150 fs laser pulses of 620 nm with a 7 kHz repetition rate. An unusual complex picosecond electric response signal consisting of a positive and a negative peak was detected by a sampling oscilloscope. The ratio of the two peaks was changed by 1) reducing the repetition rate, 2) varying the intensity of the excitation beam, and 3) applying background illumination by light of 647 nm or 511 nm. All of these features can be explained by the simultaneous excitation of the bacteriorhodopsin ground form and the K intermediate. The latter was populated by the (quasi)continuous excitation attributable to its prolonged lifetime in a dehydrated state. Least-square analysis resulted in a 5 ps upper and 2.5 ps lower limit for the time constant of the charge displacement process, corresponding to the forward reaction. That is in good agreement with the formation time of K. The charge separation driven by the reverse phototransition was faster, having a time constant of a 3.5 ps upper limit. The difference in the rates indicates the existence of different routes for the forward and the reverse photoreactions. PMID:8580349
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yandell, Margaret A.; King, Sarah B.; Neumark, Daniel M., E-mail: dneumark@berkeley.edu
2014-05-14
Decay dynamics of nascent dipole bound states of acetonitrile and nitromethane are examined using time-resolved photoelectron imaging of iodide-acetonitrile (I{sup −}·CH{sub 3}CN) and iodide-nitromethane (I{sup −}·CH{sub 3}NO{sub 2}) complexes. Dipole-bound anions are created by UV-initiated electron transfer to the molecule of interest from the associated iodide ion at energies just below the vertical detachment energy of the halide-molecule complex. The acetonitrile anion is observed to decay biexponentially with time constants in the range of 4–900 ps. In contrast, the dipole bound state of nitromethane decays rapidly over 400 fs to form the valence bound anion. The nitromethane valence anion speciesmore » then decays biexponentially with time constants of 2 ps and 1200 ps. The biexponential decay dynamics in acetonitrile are interpreted as iodine atom loss and autodetachment from the excited dipole-bound anion, followed by slower autodetachment of the relaxed metastable ion, while the dynamics of the nitromethane system suggest that a dipole-bound anion to valence anion transition proceeds via intramolecular vibrational energy redistribution to nitro group modes in the vicinity of the iodine atom.« less
Yandell, Margaret A; King, Sarah B; Neumark, Daniel M
2014-05-14
Decay dynamics of nascent dipole bound states of acetonitrile and nitromethane are examined using time-resolved photoelectron imaging of iodide-acetonitrile (I(-)·CH3CN) and iodide-nitromethane (I(-)·CH3NO2) complexes. Dipole-bound anions are created by UV-initiated electron transfer to the molecule of interest from the associated iodide ion at energies just below the vertical detachment energy of the halide-molecule complex. The acetonitrile anion is observed to decay biexponentially with time constants in the range of 4-900 ps. In contrast, the dipole bound state of nitromethane decays rapidly over 400 fs to form the valence bound anion. The nitromethane valence anion species then decays biexponentially with time constants of 2 ps and 1200 ps. The biexponential decay dynamics in acetonitrile are interpreted as iodine atom loss and autodetachment from the excited dipole-bound anion, followed by slower autodetachment of the relaxed metastable ion, while the dynamics of the nitromethane system suggest that a dipole-bound anion to valence anion transition proceeds via intramolecular vibrational energy redistribution to nitro group modes in the vicinity of the iodine atom.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Justin C; Pace, Natalie A; Arias, Dylan H
We employ a combination of linear spectroscopy, electrochemistry, and transient absorption spectroscopy to characterize the interplay between electron transfer and singlet fission dynamics in polyacene-based dyes attached to nanostructured TiO2. For triisopropyl silylethynyl (TIPS)-pentacene, we find that the singlet fission time constant increases to 6.5 ps on a nanostructured TiO2 surface relative to a thin film time constant of 150 fs, and that triplets do not dissociate after they are formed. In contrast, TIPS-tetracene singlets quickly dissociate in 2 ps at the molecule/TiO2 interface, and this dissociation outcompetes the relatively slow singlet fission process. The addition of an alumina layermore » slows down electron injection, allowing the formation of triplets from singlet fission in 40 ps. However, the triplets do not inject electrons, which is likely due to a lack of sufficient driving force for triplet dissociation. These results point to the critical balance required between efficient singlet fission and appropriate energetics for interfacial charge transfer.« less
Time-resolved study of formate on Ni( 1 1 1 ) by picosecond SFG spectroscopy
NASA Astrophysics Data System (ADS)
Kusafuka, K.; Noguchi, H.; Onda, K.; Kubota, J.; Domen, K.; Hirose, C.; Wada, A.
2002-04-01
Time-resolved vibrational measurements were carried out on formate (HCOO) adsorbed on Ni(1 1 1) surface by combining the sum-frequency generation method and picosecond laser system (time resolution of 6 ps). Rapid intensity decrease (within the time resolution) followed by intensity recovery (time constant of several tens of ps) of CH stretching signal was observed when picosecond 800 nm pulse was irradiated on the sample surface. From the results of temperature and pump fluence dependences of temporal behaviour of signal intensity, we concluded that the observed intensity change was induced by non-thermal process. Mechanism of the temporal intensity change was discussed.
Chen, Kaisheng; Hou, Jie; Huang, Zhuyang; Cao, Tong; Zhang, Jihua; Yu, Yuan; Zhang, Xinliang
2015-02-09
We experimentally demonstrate an all-optical temporal computation scheme for solving 1st- and 2nd-order linear ordinary differential equations (ODEs) with tunable constant coefficients by using Fabry-Pérot semiconductor optical amplifiers (FP-SOAs). By changing the injection currents of FP-SOAs, the constant coefficients of the differential equations are practically tuned. A quite large constant coefficient tunable range from 0.0026/ps to 0.085/ps is achieved for the 1st-order differential equation. Moreover, the constant coefficient p of the 2nd-order ODE solver can be continuously tuned from 0.0216/ps to 0.158/ps, correspondingly with the constant coefficient q varying from 0.0000494/ps(2) to 0.006205/ps(2). Additionally, a theoretical model that combining the carrier density rate equation of the semiconductor optical amplifier (SOA) with the transfer function of the Fabry-Pérot (FP) cavity is exploited to analyze the solving processes. For both 1st- and 2nd-order solvers, excellent agreements between the numerical simulations and the experimental results are obtained. The FP-SOAs based all-optical differential-equation solvers can be easily integrated with other optical components based on InP/InGaAsP materials, such as laser, modulator, photodetector and waveguide, which can motivate the realization of the complicated optical computing on a single integrated chip.
Relaxation times measurement in single and multiply excited xenon clusters
NASA Astrophysics Data System (ADS)
Serdobintsev, P. Yu.; Melnikov, A. S.; Pastor, A. A.; Timofeev, N. A.; Khodorkovskiy, M. A.
2018-05-01
Direct measurement of the rates of nonradiative relaxation processes in electronically excited xenon clusters was carried out. The clusters were created in a pulsed supersonic beam and two-photon excited by femtosecond laser pulses with a wavelength of 263 nm. The measurements were performed using the pump-probe method and electron spectroscopy. It is shown that relaxation of light clusters XeN (N < 15) predominantly occurs by desorption of excited xenon atoms with a characteristic time constant of 3 ps. Heavier electronically excited clusters (N > 10) vibrationally relax to the lowest electronically excited state at a rate of about 0.075 eV/ps. Multiply excited clusters are deactivated via energy exchange between excited centers with the ionization of one of them. The production of electrons in this process occurs with a delay of ˜4 ps from the pump pulse, and the process is completed in 10 ps.
Straub, Steffen; Lindner, Jörg; Vöhringer, Peter
2017-07-06
Femtosecond UV-pump/mid-infrared-probe spectroscopy was used to explore in detail the primary photochemical events of the free radical initiator, (2,4,6-trimethylbenzoyl)diphenylphosphine oxide, in liquid dichloromethane solution at room temperature. Following electronic excitation of its lowest excited singlet state, S 1 , the radical initiator undergoes an intersystem crossing to the triplet ground state, T 1 , with a time constant of 135 ps. A subsequent α-cleavage occurs from the triplet state with a time constant of 15 ps and yields a trimethylbenzoyl radical together with a diphenylphosphinoyl radical. Transient absorptions from the S 1 and T 1 states are observed that can be assigned to the P═O stretching mode and the symmetric in-plane deformation mode of the trimethylphenyl moiety of the radical initiator.
NASA Astrophysics Data System (ADS)
Wu, Honglin; Song, Yunfei; Yu, Guoyang; Wang, Yang; Wang, Chang; Yang, Yanqiang
2016-05-01
Femtosecond time-resolved transient grating (TG) technique was employed to get insight into the photodissociation mechanism of liquid nitromethane (NM). Broadband white-light continuum was introduced as the probe to observe the evolution of electronic excited states of NM molecules and the formation of photodissociation products simultaneously. The reaction channel of liquid NM under 266 nm excitation was obtained that NM molecules in excited state S2 relax through two channels: about 73% relax to low lying S1 state through S2/S1 internal conversion with a time constant of 0.24 ps and then go back to the ground state through S1/S0 internal conversion; the other 27% will dissociate with a time constant of 2.56 ps. NO2 was found to be one of the products from the experimental TG spectra, which confirmed that C-N bond rupture was the primary dissociation channel of liquid NM.
Using convolutional neural networks to estimate time-of-flight from PET detector waveforms
NASA Astrophysics Data System (ADS)
Berg, Eric; Cherry, Simon R.
2018-01-01
Although there have been impressive strides in detector development for time-of-flight positron emission tomography, most detectors still make use of simple signal processing methods to extract the time-of-flight information from the detector signals. In most cases, the timing pick-off for each waveform is computed using leading edge discrimination or constant fraction discrimination, as these were historically easily implemented with analog pulse processing electronics. However, now with the availability of fast waveform digitizers, there is opportunity to make use of more of the timing information contained in the coincident detector waveforms with advanced signal processing techniques. Here we describe the application of deep convolutional neural networks (CNNs), a type of machine learning, to estimate time-of-flight directly from the pair of digitized detector waveforms for a coincident event. One of the key features of this approach is the simplicity in obtaining ground-truth-labeled data needed to train the CNN: the true time-of-flight is determined from the difference in path length between the positron emission and each of the coincident detectors, which can be easily controlled experimentally. The experimental setup used here made use of two photomultiplier tube-based scintillation detectors, and a point source, stepped in 5 mm increments over a 15 cm range between the two detectors. The detector waveforms were digitized at 10 GS s-1 using a bench-top oscilloscope. The results shown here demonstrate that CNN-based time-of-flight estimation improves timing resolution by 20% compared to leading edge discrimination (231 ps versus 185 ps), and 23% compared to constant fraction discrimination (242 ps versus 185 ps). By comparing several different CNN architectures, we also showed that CNN depth (number of convolutional and fully connected layers) had the largest impact on timing resolution, while the exact network parameters, such as convolutional filter size and number of feature maps, had only a minor influence.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Le Guyader, L.; Chase, T.; Reid, A. H.
Transitions between different charge density wave (CDW) states in quasi-two-dimensional materials may be accompanied also by changes in the inter-layer stacking of the CDW. Using MeV ultrafast electron diffraction, the out-of-plane stacking order dynamics in the quasi-two-dimensional dichalcogenide 1 T-TaS 2 is investigated for the first time. From the intensity of the CDW satellites aligned around the commensurate l = 1/6 characteristic stacking order, it is found out that this phase disappears with a 0.3 ps time constant. Simultaneously, in the same experiment, the emergence of the incommensurate phase, with a slightly slower 2.0 ps time constant, is determined frommore » the intensity of the CDW satellites aligned around the incommensurate l = 1/3 characteristic stacking order. Finally, these results might be of relevance in understanding the metallic character of the laser-induced metastable “hidden” state recently discovered in this compound.« less
Ho, Jr-Wei; Chen, Wei-Kan; Cheng, Po-Yuan
2009-10-07
We report studies of ultrafast dynamics of azobenzene cation using femtosecond photoionization-photofragmentation spectroscopy. In our experiments, a femtosecond pump pulse first produces an ensemble of azobenzene cations via photoionization of the neutrals. A delayed probe pulse then brings the evolving ionic system to excited states that ultimately undergo ion fragmentation. The dynamics is followed by monitoring either the parent-ion depletion or fragment-ion formation as a function of the pump-probe delay time. The observed transients for azobenzene cation are characterized by a constant ion depletion modulated by a rapidly damped oscillatory signal with a period of about 1 ps. Theoretical calculations suggest that the oscillation arises from a vibration motion along the twisting inversion coordinate involving displacements in CNNC and phenyl-ring torsions. The oscillation is damped rapidly with a time constant of about 1.2 ps, suggesting that energy dissipation from the active mode to bath modes takes place in this time scale.
Le Guyader, L; Chase, T; Reid, A H; Li, R K; Svetin, D; Shen, X; Vecchione, T; Wang, X J; Mihailovic, D; Dürr, H A
2017-07-01
Transitions between different charge density wave (CDW) states in quasi-two-dimensional materials may be accompanied also by changes in the inter-layer stacking of the CDW. Using MeV ultrafast electron diffraction, the out-of-plane stacking order dynamics in the quasi-two-dimensional dichalcogenide 1 T -TaS 2 is investigated for the first time. From the intensity of the CDW satellites aligned around the commensurate l = 1/6 characteristic stacking order, it is found out that this phase disappears with a 0.3 ps time constant. Simultaneously, in the same experiment, the emergence of the incommensurate phase, with a slightly slower 2.0 ps time constant, is determined from the intensity of the CDW satellites aligned around the incommensurate l = 1/3 characteristic stacking order. These results might be of relevance in understanding the metallic character of the laser-induced metastable "hidden" state recently discovered in this compound.
Le Guyader, L.; Chase, T.; Reid, A. H.; ...
2017-05-03
Transitions between different charge density wave (CDW) states in quasi-two-dimensional materials may be accompanied also by changes in the inter-layer stacking of the CDW. Using MeV ultrafast electron diffraction, the out-of-plane stacking order dynamics in the quasi-two-dimensional dichalcogenide 1 T-TaS 2 is investigated for the first time. From the intensity of the CDW satellites aligned around the commensurate l = 1/6 characteristic stacking order, it is found out that this phase disappears with a 0.3 ps time constant. Simultaneously, in the same experiment, the emergence of the incommensurate phase, with a slightly slower 2.0 ps time constant, is determined frommore » the intensity of the CDW satellites aligned around the incommensurate l = 1/3 characteristic stacking order. Finally, these results might be of relevance in understanding the metallic character of the laser-induced metastable “hidden” state recently discovered in this compound.« less
Controllable Fabrication of Non-Close-Packed Colloidal Nanoparticle Arrays by Ion Beam Etching
NASA Astrophysics Data System (ADS)
Yang, Jie; Zhang, Mingling; Lan, Xu; Weng, Xiaokang; Shu, Qijiang; Wang, Rongfei; Qiu, Feng; Wang, Chong; Yang, Yu
2018-06-01
Polystyrene (PS) nanoparticle films with non-close-packed arrays were prepared by using ion beam etching technology. The effects of etching time, beam current, and voltage on the size reduction of PS particles were well investigated. A slow etching rate, about 9.2 nm/min, is obtained for the nanospheres with the diameter of 100 nm. The rate does not maintain constant with increasing the etching time. This may result from the thermal energy accumulated gradually in a long-time bombardment of ion beam. The etching rate increases nonlinearly with the increase of beam current, while it increases firstly then reach its saturation with the increase of beam voltage. The diameter of PS nanoparticles can be controlled in the range from 34 to 88 nm. Based on the non-close-packed arrays of PS nanoparticles, the ordered silicon (Si) nanopillars with their average diameter of 54 nm are fabricated by employing metal-assisted chemical etching technique. Our results pave an effective way to fabricate the ordered nanostructures with the size less than 100 nm.
Femtosecond transient absorption spectroscopy of silanized silicon quantum dots
NASA Astrophysics Data System (ADS)
Kuntermann, Volker; Cimpean, Carla; Brehm, Georg; Sauer, Guido; Kryschi, Carola; Wiggers, Hartmut
2008-03-01
Excitonic properties of colloidal silicon quantum dots (Si qdots) with mean sizes of 4nm were examined using stationary and time-resolved optical spectroscopy. Chemically stable silicon oxide shells were prepared by controlled surface oxidation and silanization of HF-etched Si qdots. The ultrafast relaxation dynamics of photogenerated excitons in Si qdot colloids were studied on the picosecond time scale from 0.3psto2.3ns using femtosecond-resolved transient absorption spectroscopy. The time evolution of the transient absorption spectra of the Si qdots excited with a 150fs pump pulse at 390nm was observed to consist of decays of various absorption transitions of photoexcited electrons in the conduction band which overlap with both the photoluminescence and the photobleaching of the valence band population density. Gaussian deconvolution of the spectroscopic data allowed for disentangling various carrier relaxation processes involving electron-phonon and phonon-phonon scatterings or arising from surface-state trapping. The initial energy and momentum relaxation of hot carriers was observed to take place via scattering by optical phonons within 0.6ps . Exciton capturing by surface states forming shallow traps in the amorphous SiOx shell was found to occur with a time constant of 4ps , whereas deeper traps presumably localized in the Si-SiOx interface gave rise to exciton trapping processes with time constants of 110 and 180ps . Electron transfer from initially populated, higher-lying surface states to the conduction band of Si qdots (>2nm) was observed to take place within 400 or 700fs .
NASA Astrophysics Data System (ADS)
Caruso, Angelo; Pais, Vicente A.
1998-07-01
We discuss two issues relevant for the feasibility of the scheme in which a heavy ion pulse is used to ignite a DT fuel spherically compressed, by laser induced ablation, along a low adiabat (no self-ignition). The discussed issues are (i) the degree of synchronism between the laser driven implosion and the trigger pulse; (ii) the requirements on focusing for the trigger beam. The numerical simulation have been made by using cylindrical heavy ion beams with gaussian radial distribution, truncated where the intensity is {1}/{e-4} of the maximum. The parameter ( dbeam), used to measure the focusing, is the diameter of the circle where the intensity is {1}/{e} of the maximum (energy content ≈ 64% of the total energy). Requirements on focusing have been first explored by simulating (2D) the irradiation of static DT cylinders at 200 g/cm 3 by coaxially impinging 15 GeV Bi ions. The ignition conditions have been studied for pulses having 10 ps or 50 ps duration. For both the cases, the ignition energy ( Emin) is constant for spot radii smaller than 50 μm. In the range 50-140 μm the ignition energy increases linearly (3 × Emin at 140 μm, with Emin = 40 kJ for 10 ps pulses, Emin = 100 kJ for 50 ps pulses). The study on synchronism has been performed by simulating (2D) the irradiation, by a heavy ion beam, of a laser imploded spherical DT shell (initial aspect ratio 10). The trigger beam was started at different times near the stagnation, and the initial fuel state (field of velocity, density, temperature, etc.) was that computed by a 1D simulation. It has been found that ignition, and almost constant thermonuclear energy release, can be obtained by triggering within a temporal window of the order of 1 ns, around the stagnation. The interplay between focusing and synchronization for the ignition of the spherical imploding fuel has also been studied. The heavy ion pulse duration was maintained constant at 50 ps (FWHM). Ignition conditions have been studied for trigger energies below 38% of the laser energy used to compress the target (1 MJ), for focusing spot diameters ranging from 30 to 150 μm (full beam diameter, 60 and 300 μm respectively). Useful timing ranges of 400-900 ps in which the overall gain (that is, thermonuclear energy /(laser energy + trigger energy) is greater than 200 have been found.
Pace, Natalie A.; Arias, Dylan H.; Granger, Devin B.; Christensen, Steven; Anthony, John E.
2018-01-01
We employ a combination of linear spectroscopy, electrochemistry, and transient absorption spectroscopy to characterize the interplay between electron transfer and singlet fission dynamics in polyacene-based dyes attached to nanostructured TiO2. For triisopropyl silylethynyl (TIPS)-pentacene, we find that the singlet fission time constant increases to 6.5 ps on a nanostructured TiO2 surface relative to a thin film time constant of 150 fs, and that triplets do not dissociate after they are formed. In contrast, TIPS-tetracene singlets quickly dissociate in 2 ps at the molecule/TiO2 interface, and this dissociation outcompetes the relatively slow singlet fission process. The addition of an alumina layer slows down electron injection, allowing the formation of triplets from singlet fission in 40 ps. However, the triplets do not inject electrons, which is likely due to a lack of sufficient driving force for triplet dissociation. These results point to the critical balance required between efficient singlet fission and appropriate energetics for interfacial charge transfer. PMID:29732084
Mesoporous aluminium organophosphonates: a reusable chemsensor for the detection of explosives
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Dongdong, E-mail: lidongdong@jlu.edu.cn; Yu, Xiang
Rapid and sensitive detection of explosives is in high demand for homeland security and public safety. In this work, electron-rich of anthracene functionalized mesoporous aluminium organophosphonates (En-AlPs) were synthesized by a one-pot condensation process. The mesoporous structure and strong blue emission of En-AlPs were confirmed by the N{sub 2} adsorption-desorption isotherms, transmission electron microscopy images and fluorescence spectra. The materials En-AlPs can serve as sensitive chemosensors for various electron deficient nitroderivatives, with the quenching constant and the detection limit up to 1.5×10{sup 6} M{sup −1} and 0.3 ppm in water solution. More importantly, the materials can be recycled for manymore » times by simply washed with ethanol, showing potential applications in explosives detection. - Graphical abstract: Electron-rich of anthracene functionalized mesoporous aluminium organophosphonates can serve as sensitive and recycled chemosensors for nitroderivatives with the quenching constant up to 1.5×10{sup 6} M{sup −1} in water solution. Display Omitted - Highlights: • Anthracene functionalized mesoporous aluminium organophosphonates were synthesized. • The materials serve as sensitive chemosensors for nitroderivatives. • The materials can be recycled for many times by simply washed with ethanol. • The materials show potential applications in explosives detection.« less
Mesoporous aluminium organophosphonates: a reusable chemsensor for the detection of explosives
NASA Astrophysics Data System (ADS)
Li, Dongdong; Yu, Xiang
2016-07-01
Rapid and sensitive detection of explosives is in high demand for homeland security and public safety. In this work, electron-rich of anthracene functionalized mesoporous aluminium organophosphonates (En-AlPs) were synthesized by a one-pot condensation process. The mesoporous structure and strong blue emission of En-AlPs were confirmed by the N2 adsorption-desorption isotherms, transmission electron microscopy images and fluorescence spectra. The materials En-AlPs can serve as sensitive chemosensors for various electron deficient nitroderivatives, with the quenching constant and the detection limit up to 1.5×106 M-1 and 0.3 ppm in water solution. More importantly, the materials can be recycled for many times by simply washed with ethanol, showing potential applications in explosives detection.
Schwalb, Nina K; Michalak, Thomas; Temps, Friedrich
2009-12-24
The optically excited electronic states of hydrogen-bonded homo- and heterodimers of guanosine (G) and deoxycytidine (C) were investigated by femtosecond fluorescence up-conversion spectroscopy. The base pairs were prepared in CHCl(3) solution by employing tert-butyldimethylsilyl (TBDMS) groups at the OH positions of the ribose (G) or deoxyribose (C) moieties to enhance the solubilities of the nucleosides in organic solvents. The H-bonded complexes that were obtained were characterized by FTIR spectroscopy. Fluorescence lifetime measurements were performed following electronic excitation at a series of UV wavelengths from lambda(pump) = 294 nm, close to the electronic origins of the bases, to lambda(pump) = 262 nm, where significant excess vibronic energy is deposited in the molecules, at nucleoside concentrations of c(0) = 0.1 and 1.0 mM. The experimental results revealed the existence of an ultrafast deactivation pathway for the optically prepared electronically excited state(s) of the G.C Watson-Crick base pair, which was found to have a lifetime of tau(GC) = 0.30(3) ps (with 2sigma error limits) irrespective of the pump wavelength. A similar short decay time, tau(GG) = 0.32(2) ps, was observed for the respective excited G.G homodimer. In contrast, the excited G monomer displayed a significantly longer-lived and wavelength-dependent deactivation, requiring three time constants, between 0.43(6) ps < or = tau(G,1) < or = 1.2(1) ps, 4.2(8) ps < or = tau(G,2) < or = 8(1) ps, and tau(G,3) = 195(32) ps. Self-complexation of C, on the other hand, led to a longer-lived excited state with a lifetime estimated between 1 ps < or = tau(CC) < or = 10 ps, compared to the dominant initial subpicosecond decay time of the C monomer of tau(C,1) = 0.80(4) ps.
Cordes, Thorben; Schadendorf, Torsten; Priewisch, Beate; Rück-Braun, Karola; Zinth, Wolfgang
2008-01-31
The photochemical reaction dynamics of a set of photochromic compounds based on thioindigo and stilbene molecular parts (hemithioindigos, HTI) are presented. Photochemical Z/E isomerization around the central double bond occurs with time constants of 216 ps (Z --> E) and 10 ps (E --> Z) for a 5-methyl-hemithioindigo. Chemical substitution on the stilbene moiety causes unusually strong changes in the reaction rate. Electron-donating substituents in the position para to the central double bond (e.g., para-methoxy) strongly accelerate the reaction, while the reaction is drastically slowed by electron-withdrawing groups in this position (e.g., para-nitrile). We correlate the experimental data of seven HTI-compounds in a quantitative manner using the Hammett equation and present a qualitative explanation for the application of ground-state Hammett constants to describe the photoisomerization reaction.
Direct Observation of Photoexcited Hole Localization in CdSe Nanorods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Ye; Wu, Kaifeng; Shabaev, Andrew
Quantum-confined 1D semiconductor nanostructures are being investigated for hydrogen generation photocatalysts. In the photoreaction, after fast electron transfer, holes that remain in the nanostructure play an important role in the total quantum yield of hydrogen production. Unfortunately, knowledge of hole dynamics is limited due to lack of convenient spectroscopic signatures. Here, we directly probe hole localization dynamics within CdSe nanorods (NRs) by combining transient absorption (TA) and time-resolved terahertz (TRTS) spectroscopy. We show that when methylene blue is used as an electron acceptor, the resulting electron transfer occurs with a time constant of 3.5 +/- 0.1 ps and leaves behindmore » a delocalized hole. However, the hole quickly localizes in the Coulomb potential well generated by the reduced electron acceptor near the NR surface with time constant of 11.7 +/- 0.2 ps. Our theoretical investigation suggests that the hole becomes confined to a ~ +/-0.8 nm region near the reduced electron acceptor and the activation energy to detrap the hole from the potential well can be as large as 235 meV.« less
Pathways of energy transfer in LHCII revealed by room-temperature 2D electronic spectroscopy.
Wells, Kym L; Lambrev, Petar H; Zhang, Zhengyang; Garab, Gyözö; Tan, Howe-Siang
2014-06-21
We present here the first room-temperature 2D electronic spectroscopy study of energy transfer in the plant light-harvesting complex II, LHCII. Two-dimensional electronic spectroscopy has been used to study energy transfer dynamics in LHCII trimers from the chlorophyll b Qy band to the chlorophyll a Qy band. Observing cross-peak regions corresponding to couplings between different excitonic states reveals partially resolved fine structure at the exciton level that cannot be isolated by pump-probe or linear spectroscopy measurements alone. Global analysis of the data has been performed to identify the pathways and time constants of energy transfer. The measured waiting time (Tw) dependent 2D spectra are found to be composed of 2D decay-associated spectra with three timescales (0.3 ps, 2.3 ps and >20 ps). Direct and multistep cascading pathways from the high-energy chlorophyll b states to the lowest-energy chlorophyll a states have been resolved occurring on time scales of hundreds of femtoseconds to picoseconds.
Liotta, Flavia; d'Antonio, Giuseppe; Esposito, Giovanni; Fabbricino, Massimiliano; Frunzo, Luigi; van Hullebusch, Eric D; Lens, Piet N L; Pirozzi, Francesco
2014-01-01
The role of the moisture content and particle size (PS) on the disintegration of complex organic matter during the wet anaerobic digestion (AD) process was investigated. A range of total solids (TS) from 5% to 11.3% and PS from 0.25 to 15 mm was evaluated using carrot waste as model complex organic matter. The experimental results showed that the methane production rate decreased with higher TS and PS. A modified version of the AD model no.1 for complex organic substrates was used to model the experimental data. The simulations showed a decrease of the disintegration rate constants with increasing TS and PS. The results of the biomethanation tests were used to calibrate and validate the applied model. In particular, the values of the disintegration constant for various TS and PS were determined. The simulations showed good agreement between the numerical and observed data.
Early photosensitizer uptake kinetics predict optimum drug-light interval for photodynamic therapy
NASA Astrophysics Data System (ADS)
Sinha, Lagnojita; Elliott, Jonathan T.; Hasan, Tayyaba; Pogue, Brian W.; Samkoe, Kimberley S.; Tichauer, Kenneth M.
2015-03-01
Photodynamic therapy (PDT) has shown promising results in targeted treatment of cancerous cells by developing localized toxicity with the help of light induced generation of reactive molecular species. The efficiency of this therapy depends on the product of the intensity of light dose and the concentration of photosensitizer (PS) in the region of interest (ROI). On account of this, the dynamic and variable nature of PS delivery and retention depends on many physiological factors that are known to be heterogeneous within and amongst tumors (e.g., blood flow, blood volume, vascular permeability, and lymph drainage rate). This presents a major challenge with respect to how the optimal time and interval of light delivery is chosen, which ideally would be when the concentration of PS molecule is at its maximum in the ROI. In this paper, a predictive algorithm is developed that takes into consideration the variability and dynamic nature of PS distribution in the body on a region-by-region basis and provides an estimate of the optimum time when the PS concentration will be maximum in the ROI. The advantage of the algorithm lies in the fact that it predicts the time in advance as it takes only a sample of initial data points (~12 min) as input. The optimum time calculated using the algorithm estimated a maximum dose that was only 0.58 +/- 1.92% under the true maximum dose compared to a mean dose error of 39.85 +/- 6.45% if a 1 h optimal light deliver time was assumed for patients with different efflux rate constants of the PS, assuming they have the same plasma function. Therefore, if the uptake values of PS for the blood and the ROI is known for only first 12 minutes, the entire curve along with the optimum time of light radiation can be predicted with the help of this algorithm.
Lu, Xian; Shao, Yisheng; Gao, Naiyun; Chen, Juxiang; Zhang, Yansen; Xiang, Huiming; Guo, Youluo
2017-07-01
Diclofenac (DCF) is the frequently detected non-steroidal pharmaceuticals in the aquatic environment. In this study, the degradation of DCF was evaluated by UV-254nm activated persulfate (UV/PS). The degradation of DCF followed the pseudo first-order kinetics pattern. The degradation rate constant (k obs ) was accelerated by UV/PS compared to UV alone and PS alone. Increasing the initial PS dosage or solution pH significantly enhanced the degradation efficiency. Presence of various natural water constituents had different effects on DCF degradation, with an enhancement or inhibition in the presence of inorganic anions (HCO 3 - or Cl - ) and a significant inhibition in the presence of NOM. In addition, preliminary degradation mechanisms and major products were elucidated using LC-MS/MS. Hydroxylation, decarbonylation, ring-opening and cyclation reaction involving the attack of SO 4 • - or other substances, were the main degradation mechanism. TOC analyzer and Microtox bioassay were employed to evaluate the mineralization and cytotoxicity of solutions treated by UV/PS at different times, respectively. Limited elimination of TOC (32%) was observed during the mineralization of DCF. More toxic degradation products and their related intermediate species were formed, and the UV/PS process was suitable for removing the toxicity. Of note, longer degradation time may be considered for the final toxicity removal. Copyright © 2017. Published by Elsevier Inc.
Miyazaki, Mitsuhiko; Fujii, Masaaki
2015-10-21
We observed the real-time excimer (EXC) formation dynamics of a gas phase benzene dimer (Bz2) cluster after photo-excitation to the S1 state by applying an ionization detected picosecond transient absorption method for probing the visible EXC absorption for the first time. The time evolution of the EXC absorption from the S1 0(0) level shows a rise that is well fitted by a single exponential function with a time constant of 18 ± 2 ps. The structure of the Bz dimer has a T-shaped structure in the ground electronic state, and that in the EXC state is a parallel sandwich (SW) structure. Thus, the observed rise time corresponds to the structural change from the T to the SW structures, which directly shows the EXC formation. On the other hand, the EXC formation after excitation of the S1 6(1) vibrational level of the stem site showed a faster rise of the time constant of 10 ± 2 ps. Supposing equilibrium between the EXC and the local excited states, it followed that the intramolecular vibrational energy redistribution rate of the 6(1) level is largely enhanced and becomes faster than the EXC formation reaction.
Sulfide response analysis for sulfide control using a pS electrode in sulfate reducing bioreactors.
Villa-Gomez, D K; Cassidy, J; Keesman, K J; Sampaio, R; Lens, P N L
2014-03-01
Step changes in the organic loading rate (OLR) through variations in the influent chemical oxygen demand (CODin) concentration or in the hydraulic retention time (HRT) at constant COD/SO4(2-) ratio (0.67) were applied to create sulfide responses for the design of a sulfide control in sulfate reducing bioreactors. The sulfide was measured using a sulfide ion selective electrode (pS) and the values obtained were used to calculate proportional-integral-derivative (PID) controller parameters. The experiments were performed in an inverse fluidized bed bioreactor with automated operation using the LabVIEW software version 2009(®). A rapid response and high sulfide increment was obtained through a stepwise increase in the CODin concentration, while a stepwise decrease to the HRT exhibited a slower response with smaller sulfide increment. Irrespective of the way the OLR was decreased, the pS response showed a time-varying behavior due to sulfide accumulation (HRT change) or utilization of substrate sources that were not accounted for (CODin change). The pS electrode response, however, showed to be informative for applications in sulfate reducing bioreactors. Nevertheless, the recorded pS values need to be corrected for pH variations and high sulfide concentrations (>200 mg/L). Copyright © 2013 Elsevier Ltd. All rights reserved.
Surface streamer propagations on an alumina bead: experimental observation and numerical modeling
NASA Astrophysics Data System (ADS)
Kang, Woo Seok; Kim, Hyun-Ha; Teramoto, Yoshiyuki; Ogata, Atsushi; Lee, Jin Young; Kim, Dae-Woong; Hur, Min; Song, Young-Hoon
2018-01-01
A surface streamer in a simplified packed-bed reactor has been studied both experimentally (through time-resolved ICCD imaging) and theoretically (through two-dimensional numerical modeling). The propagation of streamers on an alumina spherical bead without catalytic coating shows three distinct phases—the generation and propagation of a primary streamer (PS) with a moderate velocity and electric field, fast PS acceleration with an enhanced electric field, and slow secondary streamer (SS) propagation. The velocity of the streamer is less than that of propagation in a gaseous media. The electric field and velocity at the streamer front are maximized when a PS propagates during the interval from the midpoint of the bead to the bottom electrode. The SS exhibits a much lower velocity and electric field compared with the PS. The PS velocity is affected by an external applied voltage, especially when it approaches the ground electrode. However, that of the SS remains constant regardless of the voltage change. The simulation shows that the PS exhibits a high electric field mainly created by the space charge induced by electrons, whereas the SS relies on ion movement with electron decay in a charge-filled thin streamer body.
Sex-specific impact of prenatal stress on growth and reproductive parameters of guinea pigs.
Schöpper, Hanna; Klaus, Teresa; Palme, Rupert; Ruf, Thomas; Huber, Susanne
2012-12-01
Body condition and reproductive maturation are parameters of reproductive success that are influenced by sexual hormones rising in the circulation during the time of puberty. Various endocrine systems can be programmed by conditions experienced during early life. Stress for instance is supposed to be capable of influencing fetal development, leading to adjustments of offspring's later physiology. We examined whether prenatal stress (induced by exposure to strobe light) during early- to mid-gestation was capable of affecting later reproductive parameters in guinea pigs (Cavia aperea f. porcellus). Therefore, we measured the levels of testosterone and progesterone from the age of day 12-124 in prenatally stressed (PS, n = 20) and unaffected control animals (n = 24). Furthermore, we determined the timing of puberty and growth. Body weight development revealed significantly faster growth in PS females compared to control animals. The onset of first estrus was slightly earlier in PS females, however not significantly so. Cycle lengths and levels of progesterone differed between groups over the course of time with higher progesterone levels and more constant cycles among PS females compared to control females who displayed marked differences between first and subsequent cycles. Levels of testosterone did not differ between groups. We conclude that prenatal stress accelerates growth and maturity in females, but not in males.
NASA Technical Reports Server (NTRS)
Kleinherenbrink, F. A.; Cheng, P.; Amesz, J.; Blankenship, R. E.
1993-01-01
Fluorescence lifetimes of isolated membranes of Rhodopseudomonas viridis were measured in the temperature range of 77 K to 25 K. At room temperature, the main component of the fluorescence decay of bacteriochlorophyll (BChl) b had a time constant of 50 ps. In contrast to other purple bacteria, the emission at low temperature was spectrally homogeneous and showed essentially single lifetimes of 140 ps at 77 K and 180 ps at 25 K, with the primary electron donor in the oxidized state. Taking into account the relative fluorescence yields with open and closed reaction centers, we arrive at numbers of 125 ps and 215 ps, respectively, for open reaction centers. These numbers are significantly smaller than expected on the basis of measurements of the efficiency of charge separation, perhaps suggesting that the excitation decay in the absence of reaction centers is considerably faster at low temperature than at room temperature. At least four different spectral components with different lifetimes were observed at 25 K in the emission of Heliobacterium chlorum, a short-wavelength component of about 30 ps and three longer-wavelength components of about 100 ps, 300 ps, and 900 ps. This indicates a strong heterogeneity in the emitting pigment, BChl g-808. The component with the shortest lifetime does not appear to be affected by the redox state of the reaction center and might reflect energy transfer to BChl g species which are connected to the reaction center.
The bar PANDA Barrel-TOF Detector at FAIR
NASA Astrophysics Data System (ADS)
Zimmermann, S.; Suzuki, K.; Steinschaden, D.; Chirita, M.; Ahmed, G.; Dutta, K.; Kalita, K.; Lehmann, A.; Böhm, M.; Schwarz, K.; Orth, H.; Brinkmann, K.-Th.
2017-08-01
The barrel-Time-of-Flight subdetector is one of the outer layers of the multi-layer design of the \\panda target spectrometer. It is designed with a minimal material budget in mind mainly consisting of 90×30×5 mm3 thin plastic scintillator tiles read out on each end by a serial connection of 4 SiPMs. 120 such tiles are placed on 16 2460 × 180 mm2 PCB boards forming a barrel covering an azimuthal angle from 22.5o to 150o. The detector is designed to achieve a time resolution below σ< 100 ps which allows to distinguish events in the constant stream of hits, as well as particle identification below the Cherenkov threshold via the time-of-flight; simultaneously providing the interaction times of events. The current prototype achieved a time resolution of ~54 ps, well below the design goal.
Direct observation of vibrational energy flow in cytochrome c.
Fujii, Naoki; Mizuno, Misao; Mizutani, Yasuhisa
2011-11-10
Vibrational energy flow in ferric cytochrome c has been examined by picosecond time-resolved anti-Stokes ultraviolet resonance Raman (UVRR) measurements. By taking advantage of the extremely short nonradiative excited state lifetime of heme in the protein (< ps), excess vibrational energy of 20000-25000 cm(-1) was optically deposited selectively at the heme site. Subsequent energy relaxation in the protein moiety was investigated by monitoring the anti-Stokes UVRR intensities of the Trp59 residue, which is a single tryptophan residue involved in the protein that is located close to the heme group. It was found from temporal changes of the anti-Stokes UVRR intensities that the energy flow from the heme to Trp59 and the energy release from Trp59 took place with the time constants of 1-3 and ~8 ps, respectively. These data are consistent with the time constants for the vibrational relaxation of the heme and heating of water reported for hemeproteins. The kinetics of the energy flow were not affected by the amount of excess energy deposited at the heme group. These results demonstrate that the present technique is a powerful tool for studying the vibrational energy flow in proteins.
Solution Phase Exciton Diffusion Dynamics of a Charge-Transfer Copolymer PTB7 and a Homopolymer P3HT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cho, Sung; Rolczynski, Brian S.; Xu, Tao
2015-06-18
Using ultrafast polarization-controlled transient absorption (TA) measurements, dynamics of the initial exciton states were investigated on the time scale of tens of femtoseconds to about 80 ps in two different types of conjugated polymers extensively used in active layers of organic photovoltaic devices. These polymers are poly(3-fluorothienothiophenebenzodithiophene) (PTB7) and poly-3-hexylthiophene (P3HT), which are charge-transfer polymers and homopolymers, respectively. In PTB7, the initial excitons with excess vibrational energy display two observable ultrafast time constants, corresponding to coherent exciton diffusion before the vibrational relaxation, and followed by incoherent exciton diffusion processes to a neighboring local state after the vibrational relaxation. In contrast,more » P3HT shows only one exciton diffusion or conformational motion time constant of 34 ps, even though its exciton decay kinetics are multiexponential. Based on the experimental results, an exciton dynamics mechanism is conceived taking into account the excitation energy and structural dependence in coherent and incoherent exciton diffusion processes, as well as other possible deactivation processes including the formation of the pseudo-charge-transfer and charge separate states, as well as interchain exciton hopping or coherent diffusion.« less
Cho, Sung; Rolczynski, Brian S; Xu, Tao; Yu, Luping; Chen, Lin X
2015-06-18
Using ultrafast polarization-controlled transient absorption (TA) measurements, dynamics of the initial exciton states were investigated on the time scale of tens of femtoseconds to about 80 ps in two different types of conjugated polymers extensively used in active layers of organic photovoltaic devices. These polymers are poly(3-fluorothienothiophenebenzodithiophene) (PTB7) and poly-3-hexylthiophene (P3HT), which are charge-transfer polymers and homopolymers, respectively. In PTB7, the initial excitons with excess vibrational energy display two observable ultrafast time constants, corresponding to coherent exciton diffusion before the vibrational relaxation, and followed by incoherent exciton diffusion processes to a neighboring local state after the vibrational relaxation. In contrast, P3HT shows only one exciton diffusion or conformational motion time constant of 34 ps, even though its exciton decay kinetics are multiexponential. Based on the experimental results, an exciton dynamics mechanism is conceived taking into account the excitation energy and structural dependence in coherent and incoherent exciton diffusion processes, as well as other possible deactivation processes including the formation of the pseudo-charge-transfer and charge separate states, as well as interchain exciton hopping or coherent diffusion.
Yang, Ke; Huang, Xingyi; Xie, Liyuan; Wu, Chao; Jiang, Pingkai; Tanaka, Toshikatsu
2012-11-23
A novel route to prepare core-shell structured nanocomposites with excellent dielectric performance is reported. This approach involves the grafting of polystyrene (PS) from the surface of BaTiO(3) by an in situ RAFT polymerization. The core-shell structured PS/BaTiO(3) nanocomposites not only show significantly increased dielectric constant and very low dielectric loss, but also have a weak frequency dependence of dielectric properties over a wide range of frequencies. In addition, the dielectric constant of the nanocomposites can also be easily tuned by varying the thickness of the PS shell. Our method is very promising for preparing high-performance nanocomposites used in energy-storage devices. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Du, Chengxiao; Wei, Tongbo; Zheng, Haiyang; Wang, Liancheng; Geng, Chong; Yan, Qingfeng; Wang, Junxi; Li, Jinmin
2013-10-21
Size-controllable p-GaN hexagonal nanopyramids (HnPs)-photonic crystal (PhC) structures were selectively grown on flat p-GaN layer for the elimination of total internal reflection of light-emitting diodes (LEDs). The LEDs with HnPs-PhC of 46.3% bottom fill factor (PhC lattice constant is 730 nm) showed an improved light output power by 99.9% at forward current of 350 mA compared to the reference LEDs with flat p-GaN layer. We confirmed the effect of HnPs-PhC with different bottom fill factors and the effect of nanopyramid-shaped and nanocolumn-shaped PhC on the light-extraction of LEDs was also investigated by using three-dimensional finite-difference time-domain simulations.
NASA Astrophysics Data System (ADS)
Régis, J.-M.; Saed-Samii, N.; Rudigier, M.; Ansari, S.; Dannhoff, M.; Esmaylzadeh, A.; Fransen, C.; Gerst, R.-B.; Jolie, J.; Karayonchev, V.; Müller-Gatermann, C.; Stegemann, S.
2016-07-01
The electronic γ-γ fast-timing technique using arrays consisting of many LaBr3(Ce) detectors is a powerful method to determine lifetimes of nuclear excited states with a lower limit of about 5 ps. This method requires the determination of the energy-dependent time walk of the zero time which is represented by the centroid of a prompt γ-γ time distribution. The full-energy peak versus full-energy peak prompt response difference which represents the linearly combined mean γ-γ time walk of a fast-timing array consisting of 8 LaBr3(Ce) detectors was measured using a standard 152Eu γ-ray source for the energy region of 40-1408 keV. The data were acquired using a "multiplexed-start and multiplexed-stop" analogue electronics circuitry and analysed by employing the generalized centroid difference method. Concerning the cylindrical 1.5 in.×1.5 in. LaBr3(Ce) crystals which are coupled to the Hamamatsu R9779 photomultiplier tubes, the best fast-timing array time resolution of 202(3) ps is obtained for the two prompt γ lines of 60Co by using the leading-edge timing principle. When using the zero-crossover timing principle the time resolution is degraded by up to 30%, dependent on the energy and the shaping delay time of the constant fraction discriminator model Ortec 935. The smallest γ-γ time walk to below 50 ps is obtained by using a shaping delay time of about 17 ns and an optimum "time-walk adjustment" needed for detector output pulses with amplitudes smaller than 400 mV.
Wang, Bing; Baby, Varghese; Tong, Wilson; Xu, Lei; Friedman, Michelle; Runser, Robert; Glesk, Ivan; Prucnal, Paul
2002-01-14
A novel optical switch based on cascading two terahertz optical asymmetric demultiplexers (TOAD) is presented. By utilizing the sharp edge of the asymmetric TOAD switching window profile, two TOAD switching windows are overlapped to produce a narrower aggregate switching window, not limited by the pulse propagation time in the SOA of the TOAD. Simulations of the cascaded TOAD switching window show relatively constant window amplitude for different window sizes. Experimental results on cascading two TOADs, each with a switching window of 8ps, but with the SOA on opposite sides of the fiber loop, show a minimum switching window of 2.7ps.
Measurement of the Density of Base Fluids at Pressures 0.422 to 2.20 Gpa
NASA Technical Reports Server (NTRS)
Hamrock, B. J.; Jacobson, B. O.; Bergstroem, S. I.
1985-01-01
The influence of pressure on the density of six base fluids is experimentally studied for a range of pressures from 0.422 to 2.20 GPa. An important parameter used to describe the results is the change in relative volume with change in pressure dv sub r/dp. For pressures less than the solidification pressure (p ps) a small change in pressure results in a large change in dv sub r/ps. For pressures greater than the solidification pressure (p ps) there is no change in dv sub r/dp with changing pressure. The solidification pressures of the base fluids varies considerably, as do the slopes that the experimental data assumes for p ps. A new formula is developed that describes the effect of pressure on density in terms of four constants. These constants vary for the different base fluids tested.
NASA Astrophysics Data System (ADS)
Kasatani, Kazuo; Okamoto, Hiroaki; Takenaka, Shunsuke
2003-11-01
Third-order optical nonlinearities of sol-gel silica coating films containing metal porphyrin derivatives were measured under resonant conditions by the femtosecond degenerate four-wave mixing (DFWM) technique. Temporal profiles of the DFWM signal were measured with a time resolution of 0.3 ps, and were found to consist of two components, the coherent instantaneous nonlinear response and the delayed response with a decay time constant of several to several hundred ps. The latter can be attributed to population grating of an excited state, and contribution of slow component was very little for a zinc porphyrin derivative. The values of electronic component of the optical nonlinear susceptibility, χ(3) xxxx, for these films were ca. 2 x 10-10 esu.
Zhao, Xiaodong; Zhao, Jun; Cao, Jian-Ping; Wang, Xiaoyan; Chen, Min; Dang, Zhi-Min
2013-02-28
In this work, the dielectric properties of immiscible polystyrene (PS)/poly(vinylidene fluoride) (PVDF) blends are tuned by selectively localizing carbon black (CB) nanoparticles in different phases. The PS/PVDF blends have a wide window of cocontinuity (ca. 30-80 vol % in terms of the volume fraction of PS component (v(PS))). The selective localization of CB nanoparticles is achieved by using the masterbatch process during melt mixing. For the volume ratio PS/PVDF 1/1 and the volume fraction of CB nanoparticles (v(CB)) below but close to the percolation threshold (v(c)(CB)), the selective localization of CB nanoparticles in PVDF phase produces higher dielectric constant (ε) than that in PS phase, whereas the ε of the ternary mixtures without selective localization of fillers is in the middle. For the volume ratios PS/PVDF 1/2 and 2/1, the selective location of CB nanoparticles in different phases can be used to easily tune the system from conductive to insulating or inverse, which might have potential applications in industry. The fillers are found to be "fixed" in the masterbatch of PS or PVDF component and there is no migration of the fillers to another phase occurring during the further mixing process for the mixing time up to 30 min. Furthermore, the addition of CB nanoparticles to the polymer matrix is found to induce the brittle-ductile transition in the system and increase the compatibility between the immiscible PS and PVDF components, which should benefit the mechanical properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kahlau, R.; Bock, D.; Schmidtke, B.
2014-01-28
Dielectric spectroscopy as well as {sup 2}H and {sup 31}P nuclear magnetic resonance spectroscopy (NMR) are applied to probe the component dynamics of the binary glass former tripropyl phosphate (TPP)/polystyrene (PS/PS-d{sub 3}) in the full concentration (c{sub TPP}) range. In addition, depolarized light scattering and differential scanning calorimetry experiments are performed. Two glass transition temperatures are found: T{sub g1}(c{sub TPP}) reflects PS dynamics and shows a monotonic plasticizer effect, while the lower T{sub g2}(c{sub TPP}) exhibits a maximum and is attributed to (faster) TPP dynamics, occurring in a slowly moving or immobilized PS matrix. Dielectric spectroscopy probing solely TPP identifiesmore » two different time scales, which are attributed to two sub-ensembles. One of them, again, shows fast TPP dynamics (α{sub 2}-process), the other (α{sub 1}-process) displays time constants identical with those of the slow PS matrix. Upon heating the α{sub 1}-fraction of TPP decreases until above some temperature T{sub c} only a single α{sub 2}-population exists. Inversely, below T{sub c} a fraction of the TPP molecules is trapped by the PS matrix. At low c{sub TPP} the α{sub 2}-relaxation does not follow frequency-temperature superposition (FTS), instead it is governed by a temperature independent distribution of activation energies leading to correlation times which follow Arrhenius laws, i.e., the α{sub 2}-relaxation resembles a secondary process. Yet, {sup 31}P NMR demonstrates that it involves isotropic reorientations of TPP molecules within a slowly moving or rigid matrix of PS. At high c{sub TPP} the super-Arrhenius temperature dependence of τ{sub 2}(T), as well as FTS are recovered, known as typical of the glass transition in neat systems.« less
Surface ablation of aluminum and silicon by ultrashort laser pulses of variable width
NASA Astrophysics Data System (ADS)
Zayarny, D. A.; Ionin, A. A.; Kudryashov, S. I.; Makarov, S. V.; Kuchmizhak, A. A.; Vitrik, O. B.; Kulchin, Yu. N.
2016-06-01
Single-shot thresholds of surface ablation of aluminum and silicon via spallative ablation by infrared (IR) and visible ultrashort laser pulses of variable width τlas (0.2-12 ps) have been measured by optical microscopy. For increasing laser pulse width τlas < 3 ps, a drastic (threefold) drop of the ablation threshold of aluminum has been observed for visible pulses compared to an almost negligible threshold variation for IR pulses. In contrast, the ablation threshold in silicon increases threefold with increasing τlas for IR pulses, while the corresponding thresholds for visible pulses remained almost constant. In aluminum, such a width-dependent decrease in ablation thresholds has been related to strongly diminished temperature gradients for pulse widths exceeding the characteristic electron-phonon thermalization time. In silicon, the observed increase in ablation thresholds has been ascribed to two-photon IR excitation, while in the visible range linear absorption of the material results in almost constant thresholds.
Lagutchev, Alexei S; Patterson, James E; Huang, Wentao; Dlott, Dana D
2005-03-24
Laser-driven approximately 1 GPa shock waves are used to dynamically compress self-assembled monolayers (SAMs) consisting of octadecanethiol (ODT) on Au and Ag, and pentanedecanethiol (PDT) and benzyl mercaptan (BMT) on Au. The SAM response to <4 ps shock loading and approximately 25 ps shock unloading is monitored by vibrational sum-frequency generation spectroscopy (SFG), which is sensitive to the instantaneous tilt angle of the SAM terminal group relative to the surface normal. Arrival of the shock front causes SFG signal loss in all SAMs with a material time constant <3.5 ps. Thermal desorption and shock recovery experiments show that SAMs remain adsorbed on the substrate, so signal loss is attributed to shock tilting of the methyl or phenyl groups to angles near 90 degrees. When the shock unloads, PDT/Au returns elastically to its native structure whereas ODT/Au does not. ODT evidences a complicated viscoelastic response that arises from at least two conformers, one that remains kinetically trapped in a large-tilt-angle conformation for times >250 ps and one that relaxes in approximately 30 ps to a nearly upright conformation. Although the shock responses of PDT/Au, ODT/Ag, and BMT/Au are primarily elastic, a small portion of the molecules, 10-20%, evidence viscoelastic response, either becoming kinetically trapped in large-tilt states or by relaxing in approximately 30 ps back to the native structure. The implications of the observed large-amplitude monolayer dynamics for lubrication under extreme conditions of high strain rates are discussed briefly.
Ohta, Kaoru; Tokonami, Shunrou; Takahashi, Kotaro; Tamura, Yuto; Yamada, Hiroko; Tominaga, Keisuke
2017-11-02
To improve the power conversion efficiency of solar cells, it is important to understand the underlying relaxation mechanisms of photogenerated charge carriers in organic semiconductors. In this work, we studied the charge carrier dynamics of diketopyrrolopyrrole-linked tetrabenzoporphyrin thin films where the diketopyrrolopyrrole unit has two n-butyl groups, abbreviated as C4-DPP-BP. We used time-resolved terahertz (THz) spectroscopy to track charge carrier dynamics with excitations at 800 and 400 nm. Compared with tetrabenzoporphyrin (BP), the extension of π-electron delocalization to the diketopyrrolopyrrole peripherals leads to an increase in absorption in the near-infrared region. Following the excitation at 800 nm, we found that the transient THz signals in C4-DPP-BP thin films decay with time constants of 0.5 and 9.1 ps, with small residual components. With excitation at 400 nm, we found that the transient THz signals decay with time constants of 0.4 and 7.5 ps. On the basis of the similarity of the decay profiles of the transient THz signals obtained with excitations at 400 and 800 nm, we considered that the decaying components are due to charge carrier recombination and/or trapping at defect sites, which do not depend on the excess energy of the photoexcitation. In contrast to BP, even without an electron acceptor, we observed the finite offset of the transient THz signals at 100 ps, demonstrating the existence of long-lived charge carriers. We also measured the photoconductivity spectra of C4-DPP-BP thin films with the excitation at both 800 and 400 nm. It was found that the spectra can be fitted by the Drude-Smith model. From these results, it was determined that the charge carriers are localized right after photoexcitation. At 0.4 ps, the product of the quantum yield of charge generation and mobility of charge carriers at 400 nm is approximately twice that obtained at 800 nm. We discuss the implications of the excess excitation energy in organic semiconductor-based devices.
Paschenko, V Z; Churin, A A; Gorokhov, V V; Grishanova, N P; Korvatovskii, B N; Maksimov, E G; Mamedov, M D
2016-12-01
In a direct experiment, the rate constants of photochemical k p and non-photochemical k p + quenching of the chlorophyll fluorescence have been determined in spinach photosystem II (PS II) membrane fragments, oxygen-evolving PS II core, as well as manganese-depleted PS II particles using pulse fluorimetry. In the dark-adapted reaction center(s) (RC), the fluorescence decay kinetics of the antenna were measured at low-intensity picosecond pulsed excitation. To create a "closed" P680 + Q A - state, RCs were illuminated by high-intensity actinic flash 8 ns prior to the measuring flash. The obtained data were approximated by the sum of two decaying exponents. It was found that the antennae fluorescence quenching efficiency by the oxidized photoactive pigment of RC P680 + was about 1.5 times higher than that of the neutral P680 state. These results were confirmed by a single-photon counting technique, which allowed to resolve the additional slow component of the fluorescence decay. Slow component was assigned to the charge recombination of P680 + Pheo - in PS II RC. Thus, for the first time, the ratio k p + /k p ≅ 1.5 was found directly. The mechanism of the higher efficiency of non-photochemical quenching comparing to photochemical quenching is discussed.
Degradation of florfenicol in water by UV/Na2S 2O 8 process.
Gao, Yu-Qiong; Gao, Nai-Yun; Deng, Yang; Yin, Da-Qiang; Zhang, Yan-Sen
2015-06-01
UV irradiation-activated sodium persulfate (UV/PS) was studied to degrade florfenicol (FLO), a phenicol antibiotic commonly used in aquaculture, in water. Compared with UV/H2O2 process, UV/PS process achieves a higher FLO degradation efficiency, greater mineralization, and less cost. The quantum yield for direct photolysis of FLO and the second-order rate constant of FLO with sulfate radicals were determined. The effects of various factors, namely PS concentration, anions (NO3 (-), Cl(-), and HCO3 (-)), ferrous ion, and humic acid (HA), on FLO degradation were investigated. The results showed that the pseudo-first-order rate constant increased linearly with increased PS concentration. The tested anions all adversely affected FLO degradation performance with the order of HCO3 (-) > Cl(-) > NO3 (-). Coexisting ferrous ions enhanced FLO degradation at a Fe(2+)/PS molar ratio under 1:1. HA significantly inhibited FLO degradation due to radical scavenging and light-screening effect. Toxicity assessment showed that it is capable of controlling the toxicity for FLO degradation. These findings indicated that UV/PS is a promising technology for water polluted by antibiotics, and the treatment is optimized only after the impacts of water characteristics are carefully considered.
Properties of glutamate-gated ion channels in horizontal cells of the perch retina.
Schmidt, K F
1997-08-01
The effect of two different concentrations of L-glutamate and kainate on the gating kinetics of amino acid-sensitive non-NMDA channels were studied in cultured teleost retinal horizontal cells by single-channel recording and by noise analysis of whole-cell currents. When the glutamate agonist kainate was applied clearly parabolic mean-variance relations of whole-cell membrane currents (up to 3000 pA) indicated that this agonist was acting on one type of channels with a conductance of 5-10 pS. The cells were less sensitive when L-glutamate was used as the agonist and in most cases whole-cell currents amounted to less than 200 pA. The mean-variance relation of glutamate induced currents was complex, indicating that more than one type of channel opening could be involved. Power spectra of whole-cell currents were fitted with two Lorentzians with time constants of approx. 1 and 5-20 msec. Effects on amplitudes and time constants of agonist concentrations are demonstrated. Two categories of unitary events with mean open times of approx. 1 and 7 msec and conductances of approx. 7 and 12 pS, respectively, were obtained in single-channel recordings from cell-attached patches at different concentrations of glutamate in the pipette.
Ultrafast primary processes of an iron-(III) azido complex in solution induced with 266 nm light.
Vennekate, Hendrik; Schwarzer, Dirk; Torres-Alacan, Joel; Krahe, Oliver; Filippou, Alexander C; Neese, Frank; Vöhringer, Peter
2012-05-14
The ultrafast photo-induced primary processes of the iron-(III) azido complex, [Fe(III)N(3)(cyclam-acetato)] PF(6) (1), in acetonitrile solution at room temperature were studied using femtosecond spectroscopy with ultraviolet (UV) excitation and mid-infrared (MIR) detection. Following the absorption of a 266 nm photon, the complex undergoes an internal conversion back to the electronic doublet ground state at a time scale below 2 ps. Subsequently, the electronic ground state vibrationally cools with a characteristic time constant of 13 ps. A homolytic bond cleavage was also observed by the appearance of ground state azide radicals, which were identified by their asymmetric stretching vibration at 1659 cm(-1). The azide radical recombines in a geminate fashion with the iron containing fragment within 20 ps. The cage escape leading to well separated fragments after homolytic Fe-N bond breakage was found to occur with a quantum yield of 35%. Finally, non-geminate recombination at nanosecond time scales was seen to further reduce the photolytic quantum yield to below 20% at a wavelength of 266 nm. This journal is © the Owner Societies 2012
A molecular dynamics study of the relaxation of an excited molecule in crystalline nitromethane
NASA Astrophysics Data System (ADS)
Rivera-Rivera, Luis A.; Siavosh-Haghighi, Ali; Sewell, Thomas D.; Thompson, Donald L.
2014-07-01
Classical molecular dynamics simulations were used to study the relaxation of an excited nitromethane molecule in perfect crystalline nitromethane at 250 K and 1 atm pressure. The molecule was instantaneously excited by statistically distributing energy E∗ between 25.0 kcal/mol and 125.0 kcal/mol among the 21 degrees of freedom of the molecule. The relaxation occurs exponentially with time constants between 11.58 ps and 13.57 ps. Energy transfer from the excited molecule to surrounding quasi-spherical shells of molecules occurs concurrently to both the nearest and next-nearest neighbor shells, but with more energy per molecule transferred more rapidly to the first shell.
Brack, T L; Delaney, J K; Atkinson, G H; Albeck, A; Sheves, M; Ottolenghi, M
1993-08-01
The picosecond molecular dynamics in an artificial bacteriorhodopsin (BR) pigment containing a structurally modified all-trans retinal chromphore with a six-membered ring bridging the C11=C12-C13 positions (BR6.11) are measured by picosecond transient absorption and picosecond time-resolved fluorescence spectroscopy. Time-dependent intensity and spectral changes in absorption in the 570-650-nm region are monitored for delays as long as 5 ns after the 7-ps, 573-nm excitation of BR6.11. Two intermediates, J6.11 and K6.11/1, both with enhanced absorption to the red (> 600 nm) of the BR6.11 spectrum are observed within approximately 50 ps. The J6.11 intermediate decays with a time constant of 12 +/- 3 ps to form K6.11/1. The K6.11/1 intermediate decays with an approximately 100-ps time constant to form a third intermediate, K6.11/2, which is observed through diminished 650-nm absorption (relative to that of K6.11/1). No other transient absorption changes are found during the remainder of the initial 5-ns period of the BR6.11 photoreaction. Fluorescence in the 650-900-nm region is observed from BR6.11, K6.11/1, and K6.11/2, but no emission assignable to J6.11 is found. The BR6.11 fluroescence spectrum has a approximately 725-nm maximum which is blue-shifted by approximately 15 nm relative to that of native BR-570 and is 4.2 +/- 1.5 times larger in intensity (same sample optical density). No differences in the profile of the fluorescence spectra of BR6.11 and the intermediates K6.11/1 and K6.11/2 are observed. Following ground-state depletion of the BR6.11 population, the time-resolved fluroescence intensity monitored at 725 nm increases with two time constants, 12 +/- 3 and approximately 100 ps, both of which correlate well with changes in the picosecond transient absorption data. The resonance Raman spectrum of ground-state BR6.11, measured with low-energy, 560-nm excitation, is significantly different from the spectrum of native BR-570, thus confirming that the picosecond transient absorption and picosecond time resolved fluorescence data are assignable to BR6.11 and its photoreaction alone and not to BR-570 reformed during there constitution process (<5% of the BR6.11 sample could be attributed to native BR-570).The J6.11 and K6.11 absorption and fluorescence data presented here are generally analogous to those measured for native J-625 and K-590, respectively, and therefore, the primary events in the BR6.11 photoreaction can be correlated with those in the native BR photocycle. The BR6.11 photoreaction, however, exhibits important differences including slower formation rates for J and K intermediates as well as the presence of a second K intermediate. These results demonstrate that the restricted motion in the C11=C12-C13 region of retinal found in BR6.11 does not greatly change the overall photoreaction mechanism,but does alter the rates at which processes occur.
Dynamics of the OH stretching mode in crystalline Ba(ClO4)2.3H2O
NASA Astrophysics Data System (ADS)
Hutzler, Daniel; Brunner, Christian; Petkov, Petko St.; Heine, Thomas; Fischer, Sighart F.; Riedle, Eberhard; Kienberger, Reinhard; Iglev, Hristo
2018-02-01
The vibrational dynamics of the OH stretching mode in Ba(ClO4)2 trihydrate are investigated by means of femtosecond infrared spectroscopy. The sample offers plane cyclic water trimers in the solid phase that feature virtually no hydrogen bond interaction between the water molecules. Selective excitation of the symmetric and asymmetric stretching leads to fast population redistribution, while simultaneous excitation yields quantum beats, which are monitored via a combination tone that dominates the overtone spectrum. The combination of steady-state and time-resolved spectroscopy with quantum chemical simulations and general theoretical considerations gives indication of various aspects of symmetry breakage. The system shows a joint population lifetime of 8 ps and a long-lived coherence between symmetric and asymmetric stretching, which decays with a time constant of 0.6 ps.
Salverda, Jante M; Vengris, Mikas; Krueger, Brent P; Scholes, Gregory D; Czarnoleski, Adam R; Novoderezhkin, Vladimir; van Amerongen, Herbert; van Grondelle, Rienk
2003-01-01
Three pulse echo peak shift and transient grating (TG) measurements on the plant light-harvesting complexes LHCII and CP29 are reported. The LHCII complex is by far the most abundant light-harvesting complex in higher plants and fulfills several important physiological functions such as light-harvesting and photoprotection. Our study is focused on the light-harvesting function of LHCII and the very similar CP29 complex and reveals hitherto unresolved excitation energy transfer processes. All measurements were performed at room temperature using detergent isolated complexes from spinach leaves. Both complexes were excited in their Chl b band at 650 nm and in the blue shoulder of the Chl a band at 670 nm. Exponential fits to the TG and three pulse echo peak shift decay curves were used to estimate the timescales of the observed energy transfer processes. At 650 nm, the TG decay can be described with time constants of 130 fs and 2.2 ps for CP29, and 300 fs and 2.8 ps for LHCII. At 670 nm, the TG shows decay components of 230 fs and 6 ps for LHCII, and 300 fs and 5 ps for CP29. These time constants correspond to well-known energy transfer processes, from Chl b to Chl a for the 650 nm TG and from blue (670 nm) Chl a to red (680 nm) Chl a for the 670 nm TG. The peak shift decay times are entirely different. At 650 nm we find times of 150 fs and 0.5-1 ps for LHCII, and 360 fs and 3 ps for CP29, which we can associate mainly with Chl b <--> Chl b energy transfer. At 670 nm we find times of 140 fs and 3 ps for LHCII, and 3 ps for CP29, which we can associate with fast (only in LHCII) and slow transfer between relatively blue Chls a or Chl a states. From the occurrence of both fast Chl b <--> Chl b and fast Chl b --> Chl a transfer in CP29, we conclude that at least two mixed binding sites are present in this complex. A detailed comparison of our observed rates with exciton calculations on both CP29 and LHCII provides us with more insight in the location of these mixed sites. Most importantly, for CP29, we find that a Chl b pair must be present in some, but not all, complexes, on sites A(3) and B(3). For LHCII, the observed rates can best be understood if the same pair, A(3) and B(3), is involved in both fast Chl b <--> Chl b and fast Chl a <--> Chl a transfer. Hence, it is likely that mixed sites also occur in the native LHCII complex. Such flexibility in chlorophyll binding would agree with the general flexibility in aggregation form and xanthophyll binding of the LHCII complex and could be of use for optimizing the role of LHCII under specific circumstances, for example under high-light conditions. Our study is the first to provide spectroscopic evidence for mixed binding sites, as well as the first to show their existence in native complexes.
NASA Astrophysics Data System (ADS)
Swami, M. B.; Hudge, P. G.; Pawar, V. P.
The dielectric properties of binary mixtures of benzylamine-1,2,6-hexantriol mixtures at different volume fractions of 1,2,6-hexanetriol have been measured using Time Domain Reflectometry (TDR) technique in the frequency range of 10 MHz to 30 GHz. Complex permittivity spectra were fitted using Havriliak-Negami equation. By using least square fit method the dielectric parameters such as static dielectric constant (ɛ0), dielectric constant at high frequency (ɛ∞), relaxation time τ (ps) and relaxation distribution parameter (β) were extracted from complex permittivity spectra at 25∘C. The intramolecular interaction of different molecules has been discussed using the Kirkwood correlation factor, Bruggeman factor. The Kirkwood correlation factor (gf) and effective Kirkwood correlation factor (geff) indicate the dipole ordering of the binary mixtures.
Shen, Huan; Chen, Jianjun; Hua, Linqiang; Zhang, Bing
2014-06-26
The photodissociation dynamics of allyl chloride at 200 and 266 nm has been studied by femtosecond time-resolved mass spectrometry coupled with photoelectron imaging. The molecule was prepared to different excited states by selectively pumping with 400 or 266 nm pulse. The dissociated products were then probed by multiphoton ionization with 800 nm pulse. After absorbing two photons at 400 nm, several dissociation channels were directly observed from the mass spectrum. The two important channels, C-Cl fission and HCl elimination, were found to decay with multiexponential functions. For C-Cl fission, two time constants, 48 ± 1 fs and 85 ± 40 ps, were observed. The first one was due to the fast predissociation process on the repulsive nσ*/πσ* state. The second one could be ascribed to dissociation on the vibrationally excited ground state which is generated after internal conversion from the initially prepared ππ* state. HCl elimination, which is a typical example of a molecular elimination reaction, was found to proceed with two time constants, 600 ± 135 fs and 14 ± 2 ps. We assigned the first one to dissociation on the excited state and the second one to the internal conversion from the ππ* state to the ground state and then dissociation on the ground state. As we excited the molecule with 266 nm light, the transient signals decayed exponentially with a time constant of ∼48 fs, which is coincident with the time scale of C-halogen direct dissociation. Photoelectron images, which provided translational and angular distributions of the generated electron, were also recorded. Detailed analysis of the kinetic energy distribution strongly suggested that C3H4(+) and C3H5(+) were generated from ionization of the neutral radical. The present study reveals the dissociation dynamics of allyl chloride in a time-resolved way.
NASA Astrophysics Data System (ADS)
Ali, Hiba M.; Makki, Sameer A.; Abd, Ahmed N.
2018-05-01
Porous silicon (n-PS) films can be prepared by photoelectochemical etching (PECE) Silicon chips n - types with 15 (mA / cm2), in 15 minutes etching time on the fabrication nano-sized pore arrangement. By using X-ray diffraction measurement and atomic power microscopy characteristics (AFM), PS was investigated. It was also evaluated the crystallites size from (XRD) for the PS nanoscale. The atomic force microscopy confirmed the nano-metric size chemical fictionalization through the electrochemical etching that was shown on the PS surface chemical composition. The atomic power microscopy checks showed the roughness of the silicon surface. It is also notified (TiO2) preparation nano-particles that were prepared by pulse laser eradication in ethanol (PLAL) technique through irradiation with a Nd:YAG laser pulses TiO2 target that is sunk in methanol using 400 mJ of laser energy. It has been studied the structural, optical and morphological of TiO2NPs. It has been detected that through XRD measurement, (TiO2) NPs have been Tetragonal crystal structure. While with AFM measurements, it has been realized that the synthesized TiO2 particles are spherical with an average particle size in the (82 nm) range. It has been determined that the energy band gap of TiO2 NPs from optical properties and set to be in (5eV) range.The transmittance and reflectance spectra have determined the TiO2 NPs optical constants. It was reported the effectiveness of TiO2 NPs expansion on the PS Photodetector properties which exposes the benefits in (Al/PS/Si/Al). The built-in tension values depend on the etching time current density and laser flounce. Al/TiO2/PS/Si/Al photo-detector heterojunction have two response peaks that are situated at 350 nm and (700 -800nm) with max sensitivity ≈ 0.7 A/W. The maximum given detectivity is 9.38at ≈ 780 nm wavelength.
Wehling, Axel; Walla, Peter J
2005-12-29
We present time-resolved fs two-photon pump-probe data measured with photosystem I (PS I) of Thermosynechococcus elongatus. Two-photon excitation (lambda(exc)/2 = 575 nm) in the spectral region of the optically forbidden first excited singlet state of the carotenoids, Car S1, gives rise to a 800 fs and a 9 ps decay component of the Car S1 --> S(n) excited-state absorption with an amplitude of about 47 +/- 16% and 53 +/- 10%, respectively. By measuring a solution of pure beta-carotene under exactly the same conditions, only a 9 ps decay component can be observed. Exciting PS I at exactly the same spectral region via one-photon excitation (lambda(exc) = 575 nm) also does not show any sub-ps component. We ascribe the observed constant of 800 fs to a portion of about 47 +/- 16% beta-carotene states that can potentially transfer their energy efficiently to chlorophyll pigments via the optically dark Car S1 state. We compared these data with conventional one-photon pump-probe data, exciting the optically allowed second excited state, Car S2. This comparison demonstrates that the fast dynamics of the optically forbidden state can hardly be unravelled via conventional one-photon excitation only because the corresponding Car S1 populations are too small after Car S2 --> Car S1 internal conversion. A direct comparison of the amplitudes of the Car S1 --> S(n) excited-state absorption of PS I and beta-carotene observed after Car S2 excitation allows determination of a quantum yield for the Car S1 formation in PS I of 44 +/- 5%. In conclusion, an overall Car S2 --> Chl energy-transfer efficiency of approximately 69 +/- 5% is observed at room temperature with 56 +/- 5% being transferred via Car S2 and probably very hot Car S1 states and 13 +/- 5% being transferred via hot and "cold" Car S1 states.
Ultrafast hole carrier relaxation dynamics in p-type CuO nanowires
2011-01-01
Ultrafast hole carrier relaxation dynamics in CuO nanowires have been investigated using transient absorption spectroscopy. Following femtosecond pulse excitation in a non-collinear pump-probe configuration, a combination of non-degenerate transmission and reflection measurements reveal initial ultrafast state filling dynamics independent of the probing photon energy. This behavior is attributed to the occupation of states by photo-generated carriers in the intrinsic hole region of the p-type CuO nanowires located near the top of the valence band. Intensity measurements indicate an upper fluence threshold of 40 μJ/cm2 where carrier relaxation is mainly governed by the hole dynamics. The fast relaxation of the photo-generated carriers was determined to follow a double exponential decay with time constants of 0.4 ps and 2.1 ps. Furthermore, time-correlated single photon counting measurements provide evidence of three exponential relaxation channels on the nanosecond timescale. PMID:22151927
Martellet, Lionel; Sow, Samba O; Diallo, Aldiouma; Hodgson, Abraham; Kampmann, Beate; Hirve, Siddhivinayak; Tapia, Milagritos; Haidara, Fadima Cheick; Ndiaye, Assane; Diarra, Bou; Ansah, Patrick Odum; Akinsola, Adebayo; Idoko, Olubukola T; Adegbola, Richard A; Bavdekar, Ashish; Juvekar, Sanjay; Viviani, Simonetta; Enwere, Godwin C; Marchetti, Elisa; Chaumont, Julie; Makadi, Marie-Francoise; Pallardy, Flore; Kulkarni, Prasad S; Preziosi, Marie-Pierre; LaForce, F Marc
2015-11-15
The group A meningococcal vaccine (PsA-TT) clinical development plan included clinical trials in India and in the West African region between 2005 and 2013. During this period, the Meningitis Vaccine Project (MVP) accumulated substantial experience in the ethical conduct of research to the highest standards. Because of the public-private nature of the sponsorship of these trials and the extensive international collaboration with partners from a diverse setting of countries, the ethical review process was complex and required strategic, timely, and attentive communication to ensure the smooth review and approval for the clinical studies. Investigators and their site teams fostered strong community relationships prior to, during, and after the studies to ensure the involvement and the ownership of the research by the participating populations. As the clinical work proceeded, investigators and sponsors responded to specific questions of informed consent, pregnancy testing, healthcare, disease prevention, and posttrial access. Key factors that led to success included (1) constant dialogue between partners to explore and answer all ethical questions; (2) alertness and preparedness for emerging ethical questions during the research and in the context of evolving international ethics standards; and (3) care to assure that approaches were acceptable in the diverse community contexts. Many of the ethical issues encountered during the PsA-TT clinical development are familiar to groups conducting field trials in different cultural settings. The successful approaches used by the MVP clinical team offer useful examples of how these problems were resolved. ISRCTN17662153 (PsA-TT-001); ISRTCN78147026 (PsA-TT-002); ISRCTN87739946 (PsA-TT-003); ISRCTN46335400 (PsA-TT-003a); ISRCTN82484612 (PsA-TT-004); CTRI/2009/091/000368 (PsA-TT-005); PACTR ATMR2010030001913177 (PsA-TT-006); PACTR201110000328305 (PsA-TT-007). © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America.
Is energy pooling necessary in ultraviolet matrix-assisted laser desorption/ionization?
Lin, Hou-Yu; Song, Botao; Lu, I-Chung; Hsu, Kuo-Tung; Liao, Chih-Yu; Lee, Yin-Yu; Tseng, Chien-Ming; Lee, Yuan-Tseh; Ni, Chi-Kung
2014-01-15
Energy pooling has been suggested as the key process for generating the primary ions during ultraviolet matrix-assisted laser desorption/ionization (UV-MALDI). In previous studies, decreases in fluorescence quantum yields as laser fluence increased for 2-aminobenzoic acid, 2,5-dihydroxybenzoic acid (2,5-DHB), and 3-hydroxypicolinic acid were used as evidence of energy pooling. This work extends the research to other matrices and addresses whether energy pooling is a universal property in UV-MALDI. Energy pooling was investigated in a time-resolved fluorescence experiment by using a short laser pulse (355 nm, 20 ps pulse width) for excitation and a streak camera (1 ps time resolution) for fluorescence detection. The excited-state lifetime of 2,5-DHB decreased with increases in laser fluence. This suggests that a reaction occurs between two excited molecules, and that energy pooling may be one of the possible reactions. However, the excited-state lifetime of 2,4,6-trihydroxyacetophenone (THAP) did not change with increases in laser fluence. The upper limit of the energy pooling rate constant for THAP is estimated to be approximately 100-500 times smaller than that of 2,5-DHB. The small energy pooling rate constant for THAP indicates that the potential contribution of the energy pooling mechanism to the generation of THAP matrix primary ions should be reconsidered. Copyright © 2013 John Wiley & Sons, Ltd.
Capturing local structure modulations of photoexcited BiVO4 by ultrafast transient XAFS.
Uemura, Yohei; Kido, Daiki; Koide, Akihiro; Wakisaka, Yuki; Niwa, Yasuhiro; Nozawa, Shunsuke; Ichiyanagi, Kohei; Fukaya, Ryo; Adachi, Shin-Ichi; Katayama, Tetsuo; Togashi, Tadashi; Owada, Shigeki; Yabashi, Makina; Hatada, Keisuke; Iwase, Akihide; Kudo, Akihiko; Takakusagi, Satoru; Yokoyama, Toshihiko; Asakura, Kiyotaka
2017-06-29
Ultrafast excitation of photocatalytically active BiVO 4 was characterized by femto- and picosecond transient X-ray absorption fine structure spectroscopy. An initial photoexcited state (≪500 fs) changed to a metastable state accompanied by a structural change with a time constant of ∼14 ps. The structural change might stabilize holes on oxygen atoms since the interaction between Bi and O increases.
GABAA receptor-mediated currents in interneurons and pyramidal cells of rat visual cortex
Xiang, Zixiu; Huguenard, John R; Prince, David A
1998-01-01
We compared γ-aminobutyric acid (GABA)-mediated responses of identified pyramidal cells and fast spiking interneurons in layer V of visual cortical slices from young rats (P11-14). The frequency of spontaneous inhibitory postsynaptic currents (sIPSCs) was similar in pyramidal cells and interneurons (1.7 vs. 1.9 Hz). For events with 10-90 % rise times less than 0.9 ms, no significant differences were found in mean amplitude (61 vs. 65 pA), mean rise time (0.58 vs. 0.61 ms), or the first time constant of decay (τ1, 6.4 vs. 6.5 ms) between pyramidal cells and interneurons. The second decay time constant (τ2) was significantly longer in interneurons than in pyramidal cells (49 vs. 22 ms). The difference in sIPSC decay kinetics between two cell types also existed in adult rats (P36-42), suggesting the kinetic difference is not due to differential development of GABAA receptors in these cell types. The decay kinetics of monosynaptic evoked IPSCs were also longer in interneurons. As in the case of sIPSCs, the difference was accounted for by the second decay time constant. τ1 and τ2 were, respectively, 13 and 64 ms for interneurons and 12 and 47 ms for pyramidal cells. Cell-attached patch recordings revealed that the mean open time for single Cl− channels in response to 2 μM GABA was significantly longer in interneurons than pyramidal cells (5.0 vs. 2.8 ms). The chord conductance of these channels in interneurons (12 pS) was significantly smaller than in pyramidal cells (15 pS). Single channel currents reversed polarity when the pipette potential was approximately -10 mV for both cell types. These results show that there is a functional diversity of GABAA receptors in electrophysiologically and morphologically identified cortical pyramidal cells and interneurons. This diversity might derive from the different molecular composition of the receptors in these two cell types. PMID:9503333
Mukherjee, Kallol; Das, Anuradha; Choudhury, Samiran; Barman, Anjan; Biswas, Ranjit
2015-06-25
Dielectric relaxation (DR) measurements in the frequency range 0.2 ≤ ν/GHz ≤ 50 have been carried out for neat molten acetamide and six different (acetamide + electrolyte) deep eutectic solvents (DESs) for investigating ion effects on DR dynamics in these ionic DESs. Electrolytes used are lithium salts of bromide (LiBr), nitrate (LiNO3), and perchlorate (LiClO4); sodium salts of perchlorate (NaClO4) and thiocyante (NaSCN); and potassium thiocyanate (KSCN). With these electrolytes acetamide forms DESs approximately at an 80:20 mol ratio. Simultaneous fits to the measured permittivity (ε′) and loss (ε″) spectra of these DESs at ∼293 K require a sum of four Debye (4-D) processes with relaxation times spread over picosecond to nanosecond regime. In contrast, DR spectra for neat molten acetamide (∼354 K) depict 2-D relaxation with time constants ∼50 ps and ∼5 ps. For both the neat and ionic systems, the undetected dispersion, ε∞ – n(D)2, remains to be ∼3–4. Upon comparison, measured DR dynamics reveal pronounced anion and cation effects. Estimated static dielectric constants (ε0) from fits for these DESs cover the range 12 < ε0 < 30 and are remarkably lower than that (ε0 ∼ 64) measured for molten acetamide at ∼354 K. Hydrodynamic effective rotation volumes (Veff) estimated from the slowest DR relaxation time constants vary with ion identity and are much smaller than the molecular volume of acetamide. This decrease of ε0 and Veff is attributed respectively to the pinning of acetamide molecules by ions and orientation jumps and undetected portion to the limited frequency coverage employed in these measurements
Wu, Kaifeng; Song, Nianhui; Liu, Zheng; Zhu, Haiming; Rodríguez-Córdoba, William; Lian, Tianquan
2013-08-15
Recent studies of group II-VI colloidal semiconductor heterostuctures, such as CdSe/CdS core/shell quantum dots (QDs) or dot-in-rod nanorods, show that type II and quasi-type II band alignment can facilitate electron transfer and slow down charge recombination in QD-molecular electron acceptor complexes. To explore the general applicability of this wave function engineering approach for controlling charge transfer properties, we investigate exciton relaxation and dissociation dynamics in InP (a group III-V semiconductor) and InP/CdS core/shell (a heterostructure beween group III-V and II-VI semiconductors) QDs by transient absorption spectroscopy. We show that InP/CdS QDs exhibit a quasi-type II band alignment with the 1S electron delocalized throughout the core and shell and the 1S hole confined in the InP core. In InP-methylviologen (MV(2+)) complexes, excitons in the QD can be dissociated by ultrafast electron transfer to MV(2+) from the 1S electron level (with an average time constant of 11.4 ps) as well as 1P and higher electron levels (with a time constant of 0.39 ps), which is followed by charge recombination to regenerate the complex in its ground state (with an average time constant of 47.1 ns). In comparison, InP/CdS-MV(2+) complexes show similar ultrafast charge separation and 5-fold slower charge recombination rates, consistent with the quasi-type II band alignment in these heterostructures. This result demonstrates that wave function engineering in nanoheterostructures of group III-V and II-VI semiconductors provides a promising approach for optimizing their light harvesting and charge separation for solar energy conversion applications.
Belyaeva, N E; Schmitt, F-J; Paschenko, V Z; Riznichenko, G Yu; Rubin, A B; Renger, G
2011-02-01
Our recently presented PS II model (Belyaeva et al., 2008) was improved in order to permit a consistent simulation of Single Flash Induced Transient Fluorescence Yield (SFITFY) traces that were earlier measured by Steffen et al. (2005) on whole leaves of Arabidopsis (A.) thaliana at four different energies of the actinic flash. As the essential modification, the shape of the actinic flash was explicitly taken into account assuming that an exponentially decaying rate simulates the time dependent excitation of PS II by the 10 ns actinic flash. The maximum amplitude of this excitation exceeds that of the measuring light by 9 orders of magnitude. A very good fit of the SFITFY data was achieved in the time domain from 100 ns to 10s for all actinic flash energies (the maximum energy of 7.5 × 10¹⁶ photons/(cm²flash) is set to 100%, the relative energies of weaker actinic flashes were of ∼8%, 4%, ∼1%). Our model allows the calculation and visualization of the transient PS II redox state populations ranging from the dark adapted state, via excitation energy and electron transfer steps induced by pulse excitation, followed by final relaxation into the stationary state eventually attained under the measuring light. It turned out that the rate constants of electron transfer steps are invariant to intensity of the actinic laser flash. In marked contrast, an increase of the actinic flash energy by more than two orders of magnitude from 5.4×10¹⁴ photons/(cm²flash) to 7.5×10¹⁶ photons/(cm²flash), leads to an increase of the extent of fluorescence quenching due to carotenoid triplet (³Car) formation by a factor of 14 and of the recombination reaction between reduced primary pheophytin (Phe(-)) and P680(+) by a factor of 3 while the heat dissipation in the antenna complex remains virtually constant. The modified PS II model offers new opportunities to compare electron transfer and dissipative parameters for different species (e.g. for the green algae and the higher plant) under varying illumination conditions. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
Homma, Akira
2011-07-01
A novel annular parallel-strip transmission line was devised to construct high-voltage high-speed pulse isolation transformers. The transmission lines can easily realize stable high-voltage operation and good impedance matching between primary and secondary circuits. The time constant for the step response of the transformer was calculated by introducing a simple low-frequency equivalent circuit model. Results show that the relation between the time constant and low-cut-off frequency of the transformer conforms to the theory of the general first-order linear time-invariant system. Results also show that the test transformer composed of the new transmission lines can transmit about 600 ps rise time pulses across the dc potential difference of more than 150 kV with insertion loss of -2.5 dB. The measured effective time constant of 12 ns agreed exactly with the theoretically predicted value. For practical applications involving the delivery of synchronized trigger signals to a dc high-voltage electron gun station, the transformer described in this paper exhibited advantages over methods using fiber optic cables for the signal transfer system. This transformer has no jitter or breakdown problems that invariably occur in active circuit components.
Zhao, Liyan; Odaka, Hideho; Ono, Hiroshi; Kajimoto, Shinji; Hatanaka, Koji; Hobley, Jonathan; Fukumura, Hiroshi
2005-01-01
The dynamics of Re(2,2'-bipyridine)(CO)3Cl MLCT state formation and decay were determined after femtosecond UV laser excitation and picosecond pulsed X-ray excitation, in an N,N-dimethylformamide (DMF) solution as well as in its solid form. At room temperature, after UV excitation, this MLCT excited state emits both in DMF solution and in the solid form. Transient absorption spectra were measured in solution at various delay times following excitation by a 160 fs, 390 nm laser pulse. There was a prompt absorption increase at around 460 nm occurring within the pump probe convolution (<1 ps), which was assigned to the formation of the 3MLCT state. This transient absorbance was constant over 100 ps. In contrast to the solution state, in the solid state, the emission maximum slightly red-shifts with increasing time after laser excitation. In both solid and solution the emission rises within the system response time. The solid sample exhibited a 1.4 ns emission decay that was not observed for the solution sample. The emission rise from a solid sample after 20 ps pulsed X-ray excitation was significantly slower than the system's time resolution. It is proposed that kinetically energetic electrons are ejected following X-ray induced ionisation, creating ionised tracks in which energetic cations and electrons take time to recombine yielding delayed 3MLCT states that emit.
Rippling ultrafast dynamics of suspended 2D monolayers, graphene
Hu, Jianbo; Vanacore, Giovanni M.; Cepellotti, Andrea; Marzari, Nicola; Zewail, Ahmed H.
2016-01-01
Here, using ultrafast electron crystallography (UEC), we report the observation of rippling dynamics in suspended monolayer graphene, the prototypical and most-studied 2D material. The high scattering cross-section for electron/matter interaction, the atomic-scale spatial resolution, and the ultrafast temporal resolution of UEC represent the key elements that make this technique a unique tool for the dynamic investigation of 2D materials, and nanostructures in general. We find that, at early time after the ultrafast optical excitation, graphene undergoes a lattice expansion on a time scale of 5 ps, which is due to the excitation of short-wavelength in-plane acoustic phonon modes that stretch the graphene plane. On a longer time scale, a slower thermal contraction with a time constant of 50 ps is observed and associated with the excitation of out-of-plane phonon modes, which drive the lattice toward thermal equilibrium with the well-known negative thermal expansion coefficient of graphene. From our results and first-principles lattice dynamics and out-of-equilibrium relaxation calculations, we quantitatively elucidate the deformation dynamics of the graphene unit cell. PMID:27791028
Rippling ultrafast dynamics of suspended 2D monolayers, graphene.
Hu, Jianbo; Vanacore, Giovanni M; Cepellotti, Andrea; Marzari, Nicola; Zewail, Ahmed H
2016-10-25
Here, using ultrafast electron crystallography (UEC), we report the observation of rippling dynamics in suspended monolayer graphene, the prototypical and most-studied 2D material. The high scattering cross-section for electron/matter interaction, the atomic-scale spatial resolution, and the ultrafast temporal resolution of UEC represent the key elements that make this technique a unique tool for the dynamic investigation of 2D materials, and nanostructures in general. We find that, at early time after the ultrafast optical excitation, graphene undergoes a lattice expansion on a time scale of 5 ps, which is due to the excitation of short-wavelength in-plane acoustic phonon modes that stretch the graphene plane. On a longer time scale, a slower thermal contraction with a time constant of 50 ps is observed and associated with the excitation of out-of-plane phonon modes, which drive the lattice toward thermal equilibrium with the well-known negative thermal expansion coefficient of graphene. From our results and first-principles lattice dynamics and out-of-equilibrium relaxation calculations, we quantitatively elucidate the deformation dynamics of the graphene unit cell.
Coherent frequency combs produced by self frequency modulation in quantum cascade lasers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khurgin, J. B.; Dikmelik, Y.; Hugi, A.
2014-02-24
One salient characteristic of Quantum Cascade Laser (QCL) is its very short τ ∼ 1 ps gain recovery time that so far thwarted the attempts to achieve self-mode locking of the device into a train of single pulses. We show theoretically that four wave mixing, combined with the short gain recovery time causes QCL to operate in the self-frequency-modulated regime characterized by a constant power in time domain and stable coherent comb in the frequency domain. Coherent frequency comb may enable many potential applications of QCL's in sensing and measurement.
Shin, Jae Yoon; Yamada, Steven A; Fayer, Michael D
2017-01-11
Supported ionic liquid membranes (SILMs) are membranes that have ionic liquids impregnated in their pores. SILMs have been proposed for advanced carbon capture materials. Two-dimensional infrared (2D IR) and polarization selective IR pump-probe (PSPP) techniques were used to investigate the dynamics of reorientation and spectral diffusion of the linear triatomic anion, SeCN - , in poly(ether sulfone) (PES) membranes and room-temperature ionic liquid (RTIL), 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EmimNTf 2 ). The dynamics in the bulk EmimNTf 2 were compared to its dynamics in the SILM samples. Two PES membranes, PES200 and PES30, have pores with average sizes, ∼300 nm and ∼100 nm, respectively. Despite the relatively large pore sizes, the measurements reveal that the reorientation of SeCN - and the RTIL structural fluctuations are substantially slower in the SILMs than in the bulk liquid. The complete orientational randomization, slows from 136 ps in the bulk to 513 ps in the PES30. 2D IR measurements yield three time scales for structural spectral diffusion (SSD), that is, the time evolution of the liquid structure. The slowest decay constant increases from 140 ps in the bulk to 504 ps in the PES200 and increases further to 1660 ps in the PES30. The results suggest that changes at the interface propagate out and influence the RTIL structural dynamics even more than a hundred nanometers from the polymer surface. The differences between the IL dynamics in the bulk and in the membranes suggest that studies of bulk RTIL properties may be poor guides to their use in SILMs in carbon capture applications.
Excited-state dynamics of the medicinal pigment curcumin in a hydrogel.
Harada, Takaaki; Lincoln, Stephen F; Kee, Tak W
2016-10-12
Curcumin is a yellow polyphenol with multiple medicinal effects. These effects, however, are limited due to its poor aqueous stability and solubility. A hydrogel of 3% octadecyl randomly substituted polyacrylate (PAAC18) has been shown to provide high aqueous stability for curcumin under physiological conditions, offering a route for photodynamic therapy. In this study, the excited-state photophysics of curcumin in the PAAC18 hydrogel is investigated using a combination of femtosecond transient absorption and fluorescence upconversion spectroscopy. The transient absorption results reveal a multiexponential decay in the excited-state kinetics with fast (1 ps & 15 ps) and slow (110 ps & ≈5 ns) components. The fast decay component exhibits a deuterium isotope effect with D 2 O in the hydrogel, indicating that the 15 ps decay component is attributable to excited-state intramolecular hydrogen atom transfer of curcumin in the PAAC18 hydrogel. In addition, solvent reorganisation of excited-state curcumin is investigated using multiwavelength femtosecond fluorescence upconversion spectroscopy. The results show that the dominant solvation response (τ = 0.08 ps) is a fast inertial motion owing to the presence of bulk-like water in the vicinity of the hydrophobic octadecyl substituents of the PAAC18 hydrogel. The results also show an additional response with longer time constants of 1 and 6 ps, which is attributable to translational diffusion of confined water molecules in the three-dimensional, cross-linking network of the octadecyl substituents of PAAC18. Overall, we show that excited-state intramolecular hydrogen atom transfer and solvent reorganisation are major photophysical events for curcumin in the PAAC18 hydrogel.
High-performance electronics for time-of-flight PET systems
NASA Astrophysics Data System (ADS)
Choong, W.-S.; Peng, Q.; Vu, C. Q.; Turko, B. T.; Moses, W. W.
2013-01-01
We have designed and built a high-performance readout electronics system for time-of-flight positron emission tomography (TOF PET) cameras. The electronics architecture is based on the electronics for a commercial whole-body PET camera (Siemens/CPS Cardinal electronics), modified to improve the timing performance. The fundamental contributions in the electronics that can limit the timing resolution include the constant fraction discriminator (CFD), which converts the analog electrical signal from the photo-detector to a digital signal whose leading edge is time-correlated with the input signal, and the time-to-digital converter (TDC), which provides a time stamp for the CFD output. Coincident events are identified by digitally comparing the values of the time stamps. In the Cardinal electronics, the front-end processing electronics are performed by an Analog subsection board, which has two application-specific integrated circuits (ASICs), each servicing a PET block detector module. The ASIC has a built-in CFD and TDC. We found that a significant degradation in the timing resolution comes from the ASIC's CFD and TDC. Therefore, we have designed and built an improved Analog subsection board that replaces the ASIC's CFD and TDC with a high-performance CFD (made with discrete components) and TDC (using the CERN high-performance TDC ASIC). The improved Analog subsection board is used in a custom single-ring LSO-based TOF PET camera. The electronics system achieves a timing resolution of 60 ps FWHM. Prototype TOF detector modules are read out with the electronics system and give coincidence timing resolutions of 259 ps FWHM and 156 ps FWHM for detector modules coupled to LSO and LaBr3 crystals respectively.
High-performance electronics for time-of-flight PET systems.
Choong, W-S; Peng, Q; Vu, C Q; Turko, B T; Moses, W W
2013-01-01
We have designed and built a high-performance readout electronics system for time-of-flight positron emission tomography (TOF PET) cameras. The electronics architecture is based on the electronics for a commercial whole-body PET camera (Siemens/CPS Cardinal electronics), modified to improve the timing performance. The fundamental contributions in the electronics that can limit the timing resolution include the constant fraction discriminator (CFD), which converts the analog electrical signal from the photo-detector to a digital signal whose leading edge is time-correlated with the input signal, and the time-to-digital converter (TDC), which provides a time stamp for the CFD output. Coincident events are identified by digitally comparing the values of the time stamps. In the Cardinal electronics, the front-end processing electronics are performed by an Analog subsection board, which has two application-specific integrated circuits (ASICs), each servicing a PET block detector module. The ASIC has a built-in CFD and TDC. We found that a significant degradation in the timing resolution comes from the ASIC's CFD and TDC. Therefore, we have designed and built an improved Analog subsection board that replaces the ASIC's CFD and TDC with a high-performance CFD (made with discrete components) and TDC (using the CERN high-performance TDC ASIC). The improved Analog subsection board is used in a custom single-ring LSO-based TOF PET camera. The electronics system achieves a timing resolution of 60 ps FWHM. Prototype TOF detector modules are read out with the electronics system and give coincidence timing resolutions of 259 ps FWHM and 156 ps FWHM for detector modules coupled to LSO and LaBr 3 crystals respectively.
NASA Astrophysics Data System (ADS)
Bernabe, Y.; Evans, J.
2012-12-01
In a previous work we investigated stress transfer in a pair of grain contacts undergoing pressure solution (PS) creep, showed that stress transfer resulted in a significant decrease in overall strain rate, and concluded that PS creep rates of a randomly packed granular aggregate should be affected by packing evolution and the formation of new contacts during creep. To test these conclusions further, we are numerically simulating the "elastic" hydrostatic compression of a random pack of spheres, using a numerical method similar to that of Cundall and Strack [1979]. We assumed that the spheres were frictionless (i.e., spheres in contact only interacted through normal forces) and that the contact forces obeyed the non-linear Digby [1981] model. In order to determine the PS creep compression of the sphere pack subjected to a constant confining pressure pc, we calculated the thicknesses of the dissolved layers at each individual grain contact during a small time increment and, from these, the overall deformation of the sphere pack. We used an analytical expression discussed in our previous paper and originating from Lehner and Leroy [2004]. During these simulations, we also computed the mean coordination number of the grain contact z, the effective bulk modulus K of the sphere pack and others parameters characterizing the topological and mechanical properties of the sphere assembly. Our results show strong non-linear increase of z and K with pc during "elastic" compression and, with time, during PS creep. The packing rearrangements associated with PS creep produce complex time dependence of the overall deformation ɛ(t). We observed a regular transition from ɛ∝t^3/4 at early times (i.e., less than 0.1 years) and ɛ∝t^1/3 at late times (i.e., more than 1000 years). Cundall, P.A., and O.D.L. Strack (1979), A discrete numerical model for granular assemblies, Geotech., 29, 47-65. Digby, P.J. (1981), The effective elastic moduli of porous rocks, J. Appl. Mech., 48, 803-808. Lehner, F.K., and Y. Leroy (2004), Sandstone compaction by intergranular pressure solution, In Mech. Fluid Saturated Rocks (eds. Y. Guéguen and M. Boutéca), Elsevier.
Wing-Alone Aerodynamic Characteristics to High Angles of Attack at Subsonic and Transonic Speeds.
1982-11-01
support subsystems, the test- ing of these models consumes a disproportionate amount of model construction effort and wind-tunnel testing time compared...constant taper ratio with the exception of the aspect ratio 4, taper ratio 0.5 wing at subsonic speeds; the anomalous behavior of this wing is likely...0000000 ...... 0 0 0i 010... 0.. .......... .. .............. tt.. 4t t * PS4 Oft* .. MM.~0o004.0 s.t~o.4
Dynamics of electron solvation in I(-)(CH3OH)n clusters (4 ≤ n ≤ 11).
Young, Ryan M; Yandell, Margaret A; Neumark, Daniel M
2011-03-28
The dynamics of electron solvation following excitation of the charge-transfer-to-solvent precursor state in iodide-doped methanol clusters, I(-)(CH(3)OH)(n = 4-11), are studied with time-resolved photoelectron imaging. This excitation produces a I···(CH(3)OH)(n)(-) cluster that is unstable with respect to electron autodetachment and whose autodetachment lifetime increases monotonically from ~800 fs to 85 ps as n increases from 4 to 11. The vertical detachment energy (VDE) and width of the excited state feature in the photoelectron spectrum show complex time dependence during the lifetime of this state. The VDE decreases over the first 100-400 fs, then rises exponentially to a maximum with a ~1 ps time constant, and finally decreases by as much as 180 meV with timescales of 3-20 ps. The early dynamics are associated with electron transfer from the iodide to the methanol cluster, while the longer-time changes in VDE are attributed to solvent reordering, possibly in conjunction with ejection of neutral iodine from the cluster. Changes in the observed width of the spectrum largely follow those of the VDEs; the dynamics of both are attributed to the major rearrangement of the solvent cluster during relaxation. The relaxation dynamics are interpreted as a reorientation of at least one methanol molecule and the disruption and formation of the solvent network in order to accommodate the excess charge.
NASA Astrophysics Data System (ADS)
Zhang, Yuanyuan; Wang, Lili; Ma, Xiumei; Ren, Junfeng; Sun, Qinxing; Shi, Yongsheng; Li, Lin; Shi, Jinsheng
2018-03-01
A novel porous monolayer inverse opal (IO) structure was prepared by a simple sol-gel method combined with a self-assembly PS photonic crystal (PC) as template. By prolonging deposition time of PS spheres, three-dimensional multilayer TiO2 IOPC was also fabricated. Up-conversion nanoparticles (UCNPs) were selected to sensitize TiO2 IOPCs. Photocatalytic activity of as-prepared materials was investigated by disinfection of bacteria and organic pollutant degradation. Under NIR light irradiation, a large improvement in bacterial inactivation and photodegradation efficiency could be seen for NYF/TiO2 composites in comparison with other samples. As for monolayer NYF/TiO2, water disinfection of 100% inactivation of bacteria is realized within 11 h and kinetic constant of RhB degradation is 0.133 h-1, which is about 10 times higher than that of pure TiO2 IOPCs. Reasons of enhanced photocatalytic activity were systematically investigated and a possible mechanism for NIR-driven photocatalysis was reasonably proposed.
Parry, Ingrid; Carbullido, Clarissa; Kawada, Jason; Bagley, Anita; Sen, Soman; Greenhalgh, David; Palmieri, Tina
2014-08-01
Commercially available interactive video games are commonly used in rehabilitation to aide in physical recovery from a variety of conditions and injuries, including burns. Most video games were not originally designed for rehabilitation purposes and although some games have shown therapeutic potential in burn rehabilitation, the physical demands of more recently released video games, such as Microsoft Xbox Kinect™ (Kinect) and Sony PlayStation 3 Move™ (PS Move), have not been objectively evaluated. Video game technology is constantly evolving and demonstrating different immersive qualities and interactive demands that may or may not have therapeutic potential for patients recovering from burns. This study analyzed the upper extremity motion demands of Kinect and PS Move using three-dimensional motion analysis to determine their applicability in burn rehabilitation. Thirty normal children played each video game while real-time movement of their upper extremities was measured to determine maximal excursion and amount of elevation time. Maximal shoulder flexion, shoulder abduction and elbow flexion range of motion were significantly greater while playing Kinect than the PS Move (p≤0.01). Elevation time of the arms above 120° was also significantly longer with Kinect (p<0.05). The physical demands for shoulder and elbow range of motion while playing the Kinect, and to a lesser extent PS Move, are comparable to functional motion needed for daily tasks such as eating with a utensil and hair combing. Therefore, these more recently released commercially available video games show therapeutic potential in burn rehabilitation. Objectively quantifying the physical demands of video games commonly used in rehabilitation aides clinicians in the integration of them into practice and lays the framework for further research on their efficacy. Copyright © 2013 Elsevier Ltd and ISBI. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zylstra, A. B.; Frenje, J. A.; Séguin, F. H.
The effects of shock dynamics on compressibility of indirect-drive ignition-scale surrogate implosions, CH shells filled with D 3He gas, have been studied using charged-particle spectroscopy. Spectral measurements of D 3He protons produced at the shock-bang time probe the shock dynamics and in-flight characteristics of an implosion. The proton shock yield is found to vary by over an order of magnitude. A simple model relates the observed yield to incipient hot-spot adiabat, suggesting that implosions with rapid radiation-power increase during the main drive pulse may have a 2x higher hot-spot adiabat, potentially reducing compressibility. A self-consistent 1-D implosion model was usedmore » to infer the areal density (pR) and the shell center-of-mass radius (R cm) from the downshift of the shock-produced D 3He protons. The observed pR at shock-bang time is substantially higher for implosions, where the laser drive is on until near the compression bang time ('short-coast'), while longer-coasting implosions have lower pR. This corresponds to a much larger temporal difference between the shock- and compression-bang time in the long-coast implosions (~800 ps) than in the short-coast (~400 ps); this will be verified with a future direct bang-time diagnostic. This model-inferred differential bang time contradicts radiation-hydrodynamic simulations, which predict constant 700–800 ps differential independent of coasting time. This result is potentially explained by uncertainties in modeling late-time ablation drive on the capsule. In an ignition experiment, an earlier shock-bang time resulting in an earlier onset of shell deceleration, potentially reducing compression and, thus, fuel pR.« less
Zylstra, A. B.; Frenje, J. A.; Séguin, F. H.; ...
2014-11-03
The effects of shock dynamics on compressibility of indirect-drive ignition-scale surrogate implosions, CH shells filled with D 3He gas, have been studied using charged-particle spectroscopy. Spectral measurements of D 3He protons produced at the shock-bang time probe the shock dynamics and in-flight characteristics of an implosion. The proton shock yield is found to vary by over an order of magnitude. A simple model relates the observed yield to incipient hot-spot adiabat, suggesting that implosions with rapid radiation-power increase during the main drive pulse may have a 2x higher hot-spot adiabat, potentially reducing compressibility. A self-consistent 1-D implosion model was usedmore » to infer the areal density (pR) and the shell center-of-mass radius (R cm) from the downshift of the shock-produced D 3He protons. The observed pR at shock-bang time is substantially higher for implosions, where the laser drive is on until near the compression bang time ('short-coast'), while longer-coasting implosions have lower pR. This corresponds to a much larger temporal difference between the shock- and compression-bang time in the long-coast implosions (~800 ps) than in the short-coast (~400 ps); this will be verified with a future direct bang-time diagnostic. This model-inferred differential bang time contradicts radiation-hydrodynamic simulations, which predict constant 700–800 ps differential independent of coasting time. This result is potentially explained by uncertainties in modeling late-time ablation drive on the capsule. In an ignition experiment, an earlier shock-bang time resulting in an earlier onset of shell deceleration, potentially reducing compression and, thus, fuel pR.« less
Yu, Yang-Yen; Chien, Wen-Chen; Chen, Shih-Ting
2010-07-01
Nanoporous silica films were prepared through the templating of amphiphilic block copolymer, poly(styrene-2-vinyl pyridine) (PS-b-P2VP), and monodispersed colloidal silica nanoparticles. The experimental and theoretical studies suggested that the intermolecular hydrogen bonding existes between the colloidal silica nanoparticles and PS-b-P2VP. The effects of the loading ratio and P2VP chain length on the morphology and properties of the prepared nanoporous silica films were investigated. TEM and AFM studies showed that the uniform pore size could be achieved and the pore size increased with increasing porogen loading. The refractive index and dielectric constant of the prepared nanoporous films decreased with an increase in PS-b-P2VP loading. On the other hand, the porosity increased with an increasing PS-b-P2VP loading. This study demonstrated a methodology to control pore morphology and properties of the nanoporous silica films through the templating of PS-b-P2VP.
NASA Astrophysics Data System (ADS)
Tsubaki, Kenji; Komoda, Takuya; Koshida, Nobuyoshi
2006-04-01
It is shown that the dc-superimposed driving mode is more useful for the efficient operation of a novel thermally induced ultrasonic emitter based on nanocrystalline porous silicon (nc-PS) than the conventional simple ac-voltage driving mode. The nc-PS device is composed of a patterned heater electrode, an nc-PS layer and a single crystalline silicon (c-Si) substrate. The almost complete thermally insulating property of nc-PS as a quantum-sized system makes it possible to apply the nc-PS device as an ultrasonic generator by efficient thermo acoustic conversion without any mechanical vibrations. In the dc-superimposed driving mode, the output frequency is the same as the input frequency and a stationary temperature rise is kept constant independent of input peak-to-peak voltage. In addition, power efficiency is significantly increases compared with that in the ac-voltage driving mode without affecting on the temperature rise. The present results suggest the further possibility of the nc-PS device being used as a functional speaker.
Chuntonov, Lev; Pazos, Ileana M; Ma, Jianqiang; Gai, Feng
2015-03-26
It has recently been shown that the ester carbonyl stretching vibration can be used as a sensitive probe of local electrostatic field in molecular systems. To further characterize this vibrational probe and extend its potential applications, we studied the kinetics of chemical exchange between differently hydrogen-bonded (H-bonded) ester carbonyl groups of methyl acetate (MA) and ethyl acetate (EA) in methanol. We found that, while both MA and EA can form zero, one, or two H-bonds with the solvent, the population of the 2hb state in MA is significantly smaller than that in EA. Using a combination of linear and nonlinear infrared measurements and numerical simulations, we further determined the rate constants for the exchange between these differently H-bonded states. We found that for MA the chemical exchange reaction between the two dominant states (i.e., 0hb and 1hb states) has a relaxation rate constant of 0.14 ps(-1), whereas for EA the three-state chemical exchange reaction occurs in a predominantly sequential manner with the following relaxation rate constants: 0.11 ps(-1) for exchange between 0hb and 1hb states and 0.12 ps(-1) for exchange between 1hb and 2hb states.
Femtosecond Measurements Of Size-Dependent Spin Crossover In FeII(pyz)Pt(CN)4 Nanocrystals
Sagar, D. M.; Baddour, Frederick G.; Konold, Patrick; ...
2016-01-07
We report a femtosecond time-resolved spectroscopic study of size-dependent dynamics in nanocrystals (NCs) of Fe(pyz)Pt(CN) 4. We observe that smaller NCs (123 or 78 nm cross section and < 25 nm thickness) exhibit signatures of spin crossover (SCO) with time constants of ~ 5-10 ps whereas larger NCs with 375 nm cross section and 43 nm thickness exhibit a weaker SCO signature accompanied by strong spectral shifting on a ~20 ps time scale. For the small NCs, the fast dynamics appear to result from thermal promotion of residual low-spin states to high-spin states following nonradiative decay, and the size dependencemore » is postulated to arise from differing high-spin vs low-spin fractions in domains residing in strained surface regions. The SCO is less efficient in larger NCs owing to their larger size and hence lower residual LS/HS fractions. Our results suggest that size-dependent dynamics can be controlled by tuning surface energy in NCs with dimensions below ~25 nm for use in energy harvesting, spin switching, and other applications.« less
Cabido, Christian E T; Bergamini, Juliana C; Andrade, André G P; Lima, Fernando V; Menzel, Hans J; Chagas, Mauro H
2014-04-01
The aim of the present study was to compare the acute effects of constant torque (CT) and constant angle (CA) stretching exercises on the maximum range of motion (ROMmax), passive stiffness (PS), and ROM corresponding to the first sensation of tightness in the posterior thigh (FSTROM). Twenty-three sedentary men (age, 19-33 years) went through 1 familiarization session and afterward proceeded randomly to both CA and CT treatment stretching conditions, on separate days. An isokinetic dynamometer was used to analyze hamstring muscles during passive knee extension. The subjects performed 4 stretches of 30 seconds each with a 15-second interval between them. In the CA stretching, the subject reached a certain ROM (95% of ROMmax), and the angle was kept constant. However, in the CT stretching exercise, the volunteer reached a certain resistance torque (corresponding to 95% of ROMmax) and it was kept constant. The results showed an increase in ROMmax for both CA and CT (p < 0.001), but the increase was greater for CT than for CA (CA vs. CT in poststretching, p = 0.002). Although the PS decreased for both CA and CT (p < 0.001), the decrease was greater for CT than for CA (CA vs. CT in poststretching, p = 0.002). The FSTROM increased for both CA and CT, but the increase for CT was greater than that for CA (CA vs. CT in poststretching, p = 0.003). The greater increase in ROMmax for the CT stretch may be explained by greater changes in the biomechanical properties of the muscle-tendon unit and stretch tolerance, as indicated by the results of PS and FSTROM.
Smeigh, Amanda L; Creelman, Mark; Mathies, Richard A; McCusker, James K
2008-10-29
A combination of femtosecond electronic absorption and stimulated Raman spectroscopies has been employed to determine the kinetics associated with low-spin to high-spin conversion following charge-transfer excitation of a FeII spin-crossover system in solution. A time constant of tau = 190 +/- 50 fs for the formation of the 5T2 ligand-field state was assigned based on the establishment of two isosbestic points in the ultraviolet in conjunction with changes in ligand stretching frequencies and Raman scattering amplitudes; additional dynamics observed in both the electronic and vibrational spectra further indicate that vibrational relaxation in the high-spin state occurs with a time constant of ca. 10 ps. The results set an important precedent for extremely rapid, formally forbidden (DeltaS = 2) nonradiative relaxation as well as defining the time scale for intramolecular optical switching between two electronic states possessing vastly different spectroscopic, geometric, and magnetic properties.
Transformation kinetics for the shock wave induced phase transition in cadmium sulfide crystals
NASA Astrophysics Data System (ADS)
Knudson, M. D.; Gupta, Y. M.
2002-06-01
Initial stage kinetics of the cadmium sulfide (CdS) phase transition was investigated using picosecond time-resolved electronic spectroscopy in plate-impact shock wave experiments. Real-time changes in the electronic spectra were observed, with 100 ps time resolution, in CdS single crystals shocked along a and c axes to stresses ranging between 35 and 90 kbar, which is above the phase-transition threshold stress of approximately 30 kbar. Significant difference in the transformation kinetics was observed for the two crystal orientations. At sufficiently high instantaneous stress, above approximately 60 to 70 kbar for a axis and 50 kbar for c axis, transformation to a metastable state appears to reach a constant state within the 100 ps time resolution. At lower instantaneous stresses, an incubation period on the order of several nanoseconds is observed prior to the onset of electronic changes that mark the onset of the structural change. The subsequent increase in absorbance was quite rapid, with a constant state being reached within the first few nanoseconds after the onset of the structural changes. These results suggest that the nucleation process determines the transformation rate. This insight into transformation kinetics, along with the transformation mechanism obtained from the high-stress experiments, was used to develop a phenomenological model, incorporating ideas of nucleation and growth in martensitic transformations, to simulate the time-dependent extinction of light observed in our experiments. The calculational results incorporating both extinction due to light absorption by the daughter phase volumes and scattering of light by small volumes of the daughter phase were in good agreement with experimental observations. Finally, the orientational differences observed in the transformation kinetics were interpreted in terms of the differences in the elastic-plastic response for the two orientations.
High-speed absorption recovery in quantum well diodes by diffusive electrical conduction
NASA Astrophysics Data System (ADS)
Livescu, G.; Miller, D. A. B.; Sizer, T.; Burrows, D. J.; Cunningham, J. E.
1989-02-01
Picosecond time-resolved electroabsorption measurements in GaAs quantum well p-i-n diode structures are presented. While the dynamics of the vertical transport is not completely understood at present, the data reveal the importance of the 'lateral' propagatin of the photoexcited voltage pulse over the area of the doped regions. A two-dimensional 'diffusive conduction' mechanism is proposed which predicts a fast relaxation of the electrical pulse, with time constants ranging from 50 fs to 500 ps, determined by the size of the exciting spot, the resistivity of the doped regions, and the capacitance of the intrinsic region.
NASA Astrophysics Data System (ADS)
Berti, Matteo; Corsini, Alessandro; Franceschini, Silvia; Iannacone, Jean Pascal
2013-04-01
The application of space borne synthetic aperture radar interferometry has progressed, over the last two decades, from the pioneer use of single interferograms for analyzing changes on the earth's surface to the development of advanced multi-interferogram techniques to analyze any sort of natural phenomena which involves movements of the ground. The success of multi-interferograms techniques in the analysis of natural hazards such as landslides and subsidence is widely documented in the scientific literature and demonstrated by the consensus among the end-users. Despite the great potential of this technique, radar interpretation of slope movements is generally based on the sole analysis of average displacement velocities, while the information embraced in multi interferogram time series is often overlooked if not completely neglected. The underuse of PS time series is probably due to the detrimental effect of residual atmospheric errors, which make the PS time series characterized by erratic, irregular fluctuations often difficult to interpret, and also to the difficulty of performing a visual, supervised analysis of the time series for a large dataset. In this work is we present a procedure for automatic classification of PS time series based on a series of statistical characterization tests. The procedure allows to classify the time series into six distinctive target trends (0=uncorrelated; 1=linear; 2=quadratic; 3=bilinear; 4=discontinuous without constant velocity; 5=discontinuous with change in velocity) and retrieve for each trend a series of descriptive parameters which can be efficiently used to characterize the temporal changes of ground motion. The classification algorithms were developed and tested using an ENVISAT datasets available in the frame of EPRS-E project (Extraordinary Plan of Environmental Remote Sensing) of the Italian Ministry of Environment (track "Modena", Northern Apennines). This dataset was generated using standard processing, then the time series are typically affected by a significant noise to signal ratio. The results of the analysis show that even with such a rough-quality dataset, our automated classification procedure can greatly improve radar interpretation of mass movements. In general, uncorrelated PS (type 0) are concentrated in flat areas such as fluvial terraces and valley bottoms, and along stable watershed divides; linear PS (type 1) are mainly located on slopes (both inside or outside mapped landslides) or near the edge of scarps or steep slopes; non-linear PS (types 2 to 5) typically fall inside landslide deposits or in the surrounding areas. The spatial distribution of classified PS allows to detect deformation phenomena not visible by considering the average velocity alone, and provide important information on the temporal evolution of the phenomena such as acceleration, deceleration, seasonal fluctuations, abrupt or continuous changes of the displacement rate. Based on these encouraging results we integrated all the classification algorithms into a Graphical User Interface (called PSTime) which is freely available as a standalone application.
Error analysis for fast scintillator-based inertial confinement fusion burn history measurements
NASA Astrophysics Data System (ADS)
Lerche, R. A.; Ognibene, T. J.
1999-01-01
Plastic scintillator material acts as a neutron-to-light converter in instruments that make inertial confinement fusion burn history measurements. Light output for a detected neutron in current instruments has a fast rise time (<20 ps) and a relatively long decay constant (1.2 ns). For a burst of neutrons whose duration is much shorter than the decay constant, instantaneous light output is approximately proportional to the integral of the neutron interaction rate with the scintillator material. Burn history is obtained by deconvolving the exponential decay from the recorded signal. The error in estimating signal amplitude for these integral measurements is calculated and compared with a direct measurement in which light output is linearly proportional to the interaction rate.
DOI Determination by Rise Time Discrimination in Single-Ended Readout for TOF PET Imaging
Wiener, R.I.; Surti, S.; Karp, J.S.
2013-01-01
Clinical TOF PET systems achieve detection efficiency using thick crystals, typically of thickness 2–3cm. The resulting dispersion in interaction depths degrades spatial resolution for increasing radial positions due to parallax error. Furthermore, interaction depth dispersion results in time pickoff dispersion and thus in degraded timing resolution, and is therefore of added concern in TOF scanners. Using fast signal digitization, we characterize the timing performance, pulse shape and light output of LaBr3:Ce, CeBr3 and LYSO. Coincidence timing resolution is shown to degrade by ~50ps/cm for scintillator pixels of constant cross section and increasing length. By controlling irradiation depth in a scintillator pixel, we show that DOI-dependence of time pickoff is a significant factor in the loss of timing performance in thick detectors. Using the correlated DOI-dependence of time pickoff and charge collection, we apply a charge-based correction to the time pickoff, obtaining improved coincidence timing resolution of <200ps for a uniform 4×4×30mm3 LaBr3 pixel. In order to obtain both DOI identification and improved timing resolution, we design a two layer LaBr3[5%Ce]/LaBr3[30%Ce] detector of total size 4×4×30mm3, exploiting the dependence of scintillator rise time on [Ce] in LaBr3:Ce. Using signal rise time to determine interaction layer, excellent interaction layer discrimination is achieved, while maintaining coincidence timing resolution of <250ps and energy resolution <7% using a R4998 PMT. Excellent layer separation and timing performance is measured with several other commercially-available TOF photodetectors, demonstrating the practicality of this design. These results indicate the feasibility of rise time discrimination as a technique for measuring event DOI while maintaining sensitivity, timing and energy performance, in a well-known detector architecture. PMID:24403611
DOI Determination by Rise Time Discrimination in Single-Ended Readout for TOF PET Imaging.
Wiener, R I; Surti, S; Karp, J S
2013-06-01
Clinical TOF PET systems achieve detection efficiency using thick crystals, typically of thickness 2-3cm. The resulting dispersion in interaction depths degrades spatial resolution for increasing radial positions due to parallax error. Furthermore, interaction depth dispersion results in time pickoff dispersion and thus in degraded timing resolution, and is therefore of added concern in TOF scanners. Using fast signal digitization, we characterize the timing performance, pulse shape and light output of LaBr 3 :Ce, CeBr 3 and LYSO. Coincidence timing resolution is shown to degrade by ~50ps/cm for scintillator pixels of constant cross section and increasing length. By controlling irradiation depth in a scintillator pixel, we show that DOI-dependence of time pickoff is a significant factor in the loss of timing performance in thick detectors. Using the correlated DOI-dependence of time pickoff and charge collection, we apply a charge-based correction to the time pickoff, obtaining improved coincidence timing resolution of <200ps for a uniform 4×4×30mm 3 LaBr 3 pixel. In order to obtain both DOI identification and improved timing resolution, we design a two layer LaBr 3 [5%Ce]/LaBr 3 [30%Ce] detector of total size 4×4×30mm 3 , exploiting the dependence of scintillator rise time on [Ce] in LaBr 3 :Ce. Using signal rise time to determine interaction layer, excellent interaction layer discrimination is achieved, while maintaining coincidence timing resolution of <250ps and energy resolution <7% using a R4998 PMT. Excellent layer separation and timing performance is measured with several other commercially-available TOF photodetectors, demonstrating the practicality of this design. These results indicate the feasibility of rise time discrimination as a technique for measuring event DOI while maintaining sensitivity, timing and energy performance, in a well-known detector architecture.
Surface dynamics of micellar diblock copolymer films
NASA Astrophysics Data System (ADS)
Song, Sanghoon; Cha, Wonsuk; Kim, Hyunjung; Jiang, Zhang; Narayanan, Suresh
2011-03-01
We studied the structure and surface dynamics of poly(styrene)-b-poly(dimethylsiloxane) (PS-b-PDMS) diblock copolymer films with micellar PDMS surrounded by PS shells. By `in-situ' high resolution synchrotron x-ray reflectivity and diffuse scattering, we obtained exact thickness, electron density and surface tension. A segregation layer near the top surface was appeared with increasing temperature Surface dynamics were measured as a function of film thickness and temperature by x-ray photon correlation spectroscopy. The best fit to relaxation time constants as a function of in-plane wavevectors were analyzed with a theory based on capillary waves with hydrodynamics with bilayer model Finally the viscosities for the top segregated layer as well as for the bottom layer are obtained at given temperatures This work was supported by National Research Foundation of Korea (R15-2008-006-01001-0), Seoul Research and Business Development Program (10816), and Sogang University Research Grant (2010).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flores-Martinez, E; Malin, M; DeWerd, L
2014-06-01
Purpose: To identify the variables limiting the resolution of a Michelson interferometer used to measure phase shifts (PS) in water as part of a radiometric calorimeter. Methods: We investigated the output stability of a He-Ne laser and a laser diode. The short and long term stability of the fringe pattern in a Michelson interferometer was tested with different types of lasers, thermal insulation arrangements, damping systems and optical mounts to optimize system performance. PS were induced by electrically heating water in a 1 cm quartz cuvette located in one of the interferometer arms. The PS was calculated from fringe intensitymore » changes and compared to a calculated PS using thermocouple-measured temperature changes in the water. Results: The intensity of the laser diode is more stable, but the gas laser’s profile is more suitable for fringe analysis and has better temporal coherence. The laser requires a warm-up time of 4 hours before its output is stabilized (SNR>95). The fringe’s stability strongly depends on the thermal insulation. When the interferometer is exposed to ambient temperature swings of 0.7 K, it is not possible to stabilize the fringe pattern. Enclosing the system in a 2.5 cm-thick Styrofoam box improves the SNR, but further insulation will be needed to increase the SNR above 50. High frequency noise is significantly reduced by damping the system.Inducing a temperature rise in water, starting at 299 K, the average temperature increase for a 2π PS is 0.29 ± 0.02 K and the proportionality constant is -21.1 ± 0.8 radians/K. This is 5.8% lower than the calculated value using the thermocouple. Conclusion: Interferometric PS measurements of temperature may provide an alternative to thermistors for water calorimetry. The resolution of the current prototype is limited by ambient temperature stability. Calculated and measured thermally-induced PS in water agreed to within 5.8%.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shavorskiy, Andrey; Slaughter, Daniel S.; Zegkinoglou, Ioannis
2014-09-15
An apparatus for sub-nanosecond time-resolved ambient-pressure X-ray photoelectron spectroscopy studies with pulsed and constant wave X-ray light sources is presented. A differentially pumped hemispherical electron analyzer is equipped with a delay-line detector that simultaneously records the position and arrival time of every single electron at the exit aperture of the hemisphere with ∼0.1 mm spatial resolution and ∼150 ps temporal accuracy. The kinetic energies of the photoelectrons are encoded in the hit positions along the dispersive axis of the two-dimensional detector. Pump-probe time-delays are provided by the electron arrival times relative to the pump pulse timing. An average time-resolution ofmore » (780 ± 20) ps (FWHM) is demonstrated for a hemisphere pass energy E{sub p} = 150 eV and an electron kinetic energy range KE = 503–508 eV. The time-resolution of the setup is limited by the electron time-of-flight (TOF) spread related to the electron trajectory distribution within the analyzer hemisphere and within the electrostatic lens system that images the interaction volume onto the hemisphere entrance slit. The TOF spread for electrons with KE = 430 eV varies between ∼9 ns at a pass energy of 50 eV and ∼1 ns at pass energies between 200 eV and 400 eV. The correlation between the retarding ratio and the TOF spread is evaluated by means of both analytical descriptions of the electron trajectories within the analyzer hemisphere and computer simulations of the entire trajectories including the electrostatic lens system. In agreement with previous studies, we find that the by far dominant contribution to the TOF spread is acquired within the hemisphere. However, both experiment and computer simulations show that the lens system indirectly affects the time resolution of the setup to a significant extent by inducing a strong dependence of the angular spread of electron trajectories entering the hemisphere on the retarding ratio. The scaling of the angular spread with the retarding ratio can be well approximated by applying Liouville's theorem of constant emittance to the electron trajectories inside the lens system. The performance of the setup is demonstrated by characterizing the laser fluence-dependent transient surface photovoltage response of a laser-excited Si(100) sample.« less
Scholz, Mirko; Flender, Oliver; Boschloo, Gerrit; Oum, Kawon; Lenzer, Thomas
2017-03-08
The stability of dye cations against recombination with conduction band electrons in mesoporous TiO 2 electrodes is a key property for improving light harvesting in dye-sensitised solar cells. Using ultrafast transient broadband absorption spectroscopy, we monitor efficient intramolecular hole transfer in the solar cell dye E6 having two peripheral triarylamine acceptors. After photoexcitation, two hole transfer mechanisms are identified: a concerted mechanism for electron injection and hole transfer (2.4 ps) and a sequential mechanism with time constants of 3.9 ps and 30 ps. This way the dye retards unwanted recombination with a TiO 2 conduction band electron by quickly moving the hole further away from the surface. Contact of the E6/TiO 2 surface with the solvent acetonitrile has almost no influence on the electron injection and hole transfer kinetics. Fast hole transfer (2.8 ps) is also observed on a "non-injecting" Al 2 O 3 surface generating a radical cation-radical anion species with a lifetime of 530 ps. The findings confirm the good intramolecular hole transfer properties of this dye on both thin films. In contrast, intramolecular hole transfer does not occur in the mid-polar organic solvent methyl acetate. This is confirmed by TDDFT calculations suggesting a polarity-induced reduction of the driving force for hole transfer. In methyl acetate, only the relaxation of the initially photoexcited core chromophore is observed including solvent relaxation processes of the electronically excited state S 1 /ICT.
Single channel properties of human α3 AChRs: impact of β2, β4 and α5 subunits
Nelson, Mark E; Lindstrom, Jon
1999-01-01
We performed single channel analysis on human α3 acetylcholine receptors (AChRs) in Xenopus oocytes and native AChRs from the human neuroblastoma cell line IMR-32. α3 AChRs exhibit channel properties that reflect subunit composition.α3β2 AChR open times were 0.71 ± 0.14 and 3.5 ± 0.4 ms with a predominant conductance of 26 pS. α3β4 AChRs had open times of 1.4 ± 0.2 and 6.5 ± 0.8 ms and a predominant conductance of 31 pS. Burst times were 0.82 ± 0.12 and 5.3 ± 0.7 ms for α3β2 and 1.7 ± 0.1 and 16 ± 1 ms for α3β4. Desensitization was faster for AChRs with the β2 subunit than for those with the β4 subunit.One open time for α3α5β2 AChRs (5.5 ± 0.3 ms) was different from those of α3β2 AChRs. For α3α5β4 AChRs, an additional conductance, open time and burst time (36 pS, 22 ± 3 ms and 43 ± 4 ms, respectively) were different from those for α3β4 AChRs.α3 AChRs were inhibited by hexamethonium or mecamylamine. The rate constants for block of α3β4 by hexamethonium and of α3β2 by mecamylamine were 1.2 × 107 and 4.6 × 107 M−1 s−1, respectively.AChRs from IMR-32 cells had a predominant conductance of 32 pS and open times of 1.5 ± 0.3 and 9.6 ± 1.2 ms. These properties were most similar to those of α3β4 AChRs expressed in oocytes. Antibodies revealed that 5 ± 2% of IMR-32 α3 AChRs contained α5 subunits and 6 ± 2% contained β2 subunits. IMR-32 α3 AChRs are primarily α3β4 AChRs. PMID:10200416
On the positronium spin conversion reactions caused by some macrocyclic Co II complexes
NASA Astrophysics Data System (ADS)
Fantola-Lazzarini, Anna L.; Lazzarini, Ennio
2002-08-01
The rate constants, kCR, of ortho- into para-positronium ( o-Ps→ p-Ps) spin conversion reactions, CR, caused by the high-spin [Co IIsep] 2+, [Co IIdinosar] 2+ and [Co IIdiamsar] 2+ macrocyclic complexes and also by high-spin [Co II sen] 2+ tripod complex were measured at several temperatures. The delocalizations, β, of Co II unpaired electrons, promoted by the mentioned ligands, were determined by using the previously established correlations between kCR and the electron delocalization β of unpaired metal electrons. β is given by the ratio between the Racah inter-electronic repulsion parameters of complexes, B, and that of the free ions, B0. The β values are compared with those of the Co II complexes with en (1,2-ethanediamine), pn (1,2 propanediamine) and dien (2,2' diamino diethylamine) ligands. The kCR rate constants are also compared with those of the Ps oxidation reactions, OR, promoted by the corresponding Co III complexes. It is concluded that, unlike OR's, the CR's do not occur by formation of hepta-coordinate adducts with Ps atoms.
King, Albert W; Jin, Yuhuan; Engle, James T; Ziegler, Christopher J; Rack, Jeffrey J
2013-02-18
The complex [Ru(bpy)(2)(bpSO)](PF(6))(2), where bpy is 2,2'-bipydine and bpSO is 1,2-bis(phenylsulfinyl)ethane, exhibits three distinct isomers which are accessible upon metal-to-ligand charge-transfer (MLCT) irradiation. This complex and its parent, [Ru(bpy)(2)(bpte)](PF(6))(2), where bpte is 1,2-bis(phenylthio)ethane, have been synthesized and characterized by UV-visible spectroscopy, NMR, X-ray crystallography, and femtosecond transient absorption spectroscopy. A novel method of 2-color Pump-Repump-Probe spectroscopy has been employed to investigate all three isomers of the bis-sulfoxide complex. This method allows for observation of the isomerization dynamics of sequential isomerizations of each sulfoxide from MLCT irradiation of the S,S-bonded complex to ultimately form the O,O-bonded metastable complex. One-dimensional (1-D) and two-dimensional (2-D) (COSY, NOESY, and TOCSY) (1)H NMR data show the thioether and ground state S,S-bonded sulfoxide complexes to be rigorously C(2) symmetric and are consistent with the crystal structures. Transient absorption spectroscopy reveals that the S,S to S,O isomerization occurs with an observed time constant of 56.8 (±7.4) ps. The S,O to O,O isomerization time constant was found to be 59 (±4) ps by pump-repump-probe spectroscopy. The composite S,S- to O,O-isomer quantum yield is 0.42.
Ultrafast Multi-Level Logic Gates with Spin-Valley Coupled Polarization Anisotropy in Monolayer MoS2
Wang, Yu-Ting; Luo, Chih-Wei; Yabushita, Atsushi; Wu, Kaung-Hsiung; Kobayashi, Takayoshi; Chen, Chang-Hsiao; Li, Lain-Jong
2015-01-01
The inherent valley-contrasting optical selection rules for interband transitions at the K and K′ valleys in monolayer MoS2 have attracted extensive interest. Carriers in these two valleys can be selectively excited by circularly polarized optical fields. The comprehensive dynamics of spin valley coupled polarization and polarized exciton are completely resolved in this work. Here, we present a systematic study of the ultrafast dynamics of monolayer MoS2 including spin randomization, exciton dissociation, free carrier relaxation, and electron-hole recombination by helicity- and photon energy-resolved transient spectroscopy. The time constants for these processes are 60 fs, 1 ps, 25 ps, and ~300 ps, respectively. The ultrafast dynamics of spin polarization, valley population, and exciton dissociation provides the desired information about the mechanism of radiationless transitions in various applications of 2D transition metal dichalcogenides. For example, spin valley coupled polarization provides a promising way to build optically selective-driven ultrafast valleytronics at room temperature. Therefore, a full understanding of the ultrafast dynamics in MoS2 is expected to provide important fundamental and technological perspectives. PMID:25656222
Hydrodynamic interactions in metachronal paddling: effects of varying stroke kinematics
NASA Astrophysics Data System (ADS)
Samaee, Milad; Kasoju, Vishwa; Lai, Hong Kuan; Santhanakrishnan, Arvind
2017-11-01
Crustaceans such as shrimp and krill use a drag-based technique for propulsion, in which multiple pairs of limbs are paddled rhythmically from the tail to the head. Each limb is phase-shifted in time relative to its neighbor. Most studies of this type of metachronal swimming have focused on the jet formed in the animal's wake. However, synergistic hydrodynamic interactions between adjacent limbs in metachrony have received minimal attention. We used a dynamically scaled robotic model to experimentally investigate how variations in stroke kinematics impact inter-paddle hydrodynamic interactions and thrust generation. Physical models of limbs were fitted to the robot and paddled with two different motion profiles (MPs)-1) MP1: metachronal power stroke (PS) and metachronal recovery stroke (RS); and 2) MP2: metachronal PS and synchronous RS. Stroke frequency and amplitude were maintained constant across both MPs. Our results show that MP2 produced faster jets in the thrust-generating direction as compared to MP1. The necessity for a pause in MP2 after completion of PS by the paddles leading the motion, prior to executing the synchronous RS, aided in further downstream flow propagation. The effect of using asymmetric stroke kinematics on thrust generated will be discussed.
NASA Astrophysics Data System (ADS)
Tripathi, D.; Dey, T. K.
2014-12-01
A series of MgB2 pellets with and without addition of carbon from different sources (viz. starch, polystyrene and carbon nanotubes) have been synthesized by solid state reaction under argon atmosphere. XRD analysis indicates a decrease in lattice parameters of MgB2 with addition of starch, polystyrene (PS) and MWCNT and confirms substitution of carbon in boron sites. The presence of nanosized carbon inclusions between the grain boundaries in the present set of samples is evident in TEM photographs. Resistivity data confirms a decrease in superconducting transition temperature (Tc0) for MgB2 doped with starch/PS/MWCNT. The effect of different field cooling heights (HIFC) at 20 K on maximum levitation force (FMLF) and maximum attractive force (FMAF) of pure MgB2 and MgB2 doped with starch/PS/MWCNT have been investigated. Except for MWCNT, doping of starch and PS in MgB2 is found to improve FMLF and FMAF and the best result is obtained for MgB2 doped with 1 wt.% PS. Levitation force measured as a function of decreasing initial field cooling height indicates exponential dependence of both maximum levitation force (FMLF) and maximum attractive force (FMAF). However, the gap distance between PM and the sample (H0AF and HMAF) corresponding to maximum attractive force (FMAF) and zero attractive force (F0AF) varies linearly and their difference remains constant. This constancy in (HMAF - H0AF) is understood in terms of constant reduction rate of magnetic flux density between H0AF and HMAF.
A multi-threshold sampling method for TOF-PET signal processing
NASA Astrophysics Data System (ADS)
Kim, H.; Kao, C. M.; Xie, Q.; Chen, C. T.; Zhou, L.; Tang, F.; Frisch, H.; Moses, W. W.; Choong, W. S.
2009-04-01
As an approach to realizing all-digital data acquisition for positron emission tomography (PET), we have previously proposed and studied a multi-threshold sampling method to generate samples of a PET event waveform with respect to a few user-defined amplitudes. In this sampling scheme, one can extract both the energy and timing information for an event. In this paper, we report our prototype implementation of this sampling method and the performance results obtained with this prototype. The prototype consists of two multi-threshold discriminator boards and a time-to-digital converter (TDC) board. Each of the multi-threshold discriminator boards takes one input and provides up to eight threshold levels, which can be defined by users, for sampling the input signal. The TDC board employs the CERN HPTDC chip that determines the digitized times of the leading and falling edges of the discriminator output pulses. We connect our prototype electronics to the outputs of two Hamamatsu R9800 photomultiplier tubes (PMTs) that are individually coupled to a 6.25×6.25×25 mm3 LSO crystal. By analyzing waveform samples generated by using four thresholds, we obtain a coincidence timing resolution of about 340 ps and an ˜18% energy resolution at 511 keV. We are also able to estimate the decay-time constant from the resulting samples and obtain a mean value of 44 ns with an ˜9 ns FWHM. In comparison, using digitized waveforms obtained at a 20 GSps sampling rate for the same LSO/PMT modules we obtain ˜300 ps coincidence timing resolution, ˜14% energy resolution at 511 keV, and ˜5 ns FWHM for the estimated decay-time constant. Details of the results on the timing and energy resolutions by using the multi-threshold method indicate that it is a promising approach for implementing digital PET data acquisition.
Hydrophilic solute transport across the rat blood-brain barrier
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lucchesi, K.J.
1987-01-01
Brain capillary permeability-surface area products (PS) of hydrophilic solutes ranging in size from 180 to 5,500 Daltons were measured in rats according to the method of Ohno, Pettigrew and Rapoport. The distribution volume of 70 KD dextran at 10 minutes after i.v. injection was also measured to determine the residual volume of blood in brain tissue at the time of sacrifice. Small test solutes were injected in pairs in order to elucidate whether their transfer into the brain proceeds by diffusion through water- or lipid-filled channels or by vesicular transport. This issue was examined in rats whose blood-brain barrier (BBB)more » was presumed to be intact (untreated) and in rats that received intracarotid infusions to open the BBB (isosmotic salt (ISS) and hyperosmolar arabinose). Ohno PS values of {sup 3}H-inulin and {sup 14}C-L-glucose in untreated rats were found to decrease as the labelling time was lengthened. This was evidence that a rapidly equilibrating compartment exists between blood and brain that renders the Ohno two-compartment model inadequate for computing true transfer rate constants. When the data were reanalyzed using a multi-compartment graphical analysis, solutes with different molecular radii were found to enter the brain at approximately equal rates. Furthermore, unidirectional transport is likely to be initiated by solute adsorption to a glycocalyx coat on the luminal surface of brain capillary endothelium. Apparently, more inulin than L-glucose was adsorbed, which may account for its slightly faster transfer across the BBB. After rats were treated with intracarotid infusions of ISS or hyperosmolar arabinose, solute PS values were significantly increased, but the ratio of PS for each of the solute pairs approached that of their free-diffusion coefficients.« less
Ultrafast carrier dynamics in a GaN/Al 0.18Ga0.82N superlattice
NASA Astrophysics Data System (ADS)
Mahler, Felix; Tomm, Jens W.; Reimann, Klaus; Woerner, Michael; Elsaesser, Thomas; Flytzanis, Christos; Hoffmann, Veit; Weyers, Markus
2018-04-01
Relaxation processes of photoexcited carriers in a GaN /Al0.18Ga0.82N superlattice are studied in femtosecond spectrally resolved reflectivity measurements at ambient temperature. The transient reflectivity reveals electron trapping into defect states close to the conduction-band minimum with a 150-200 fs time constant, followed by few-picosecond carrier cooling. A second slower trapping process into a different manifold of defect states is observed on a time scale of approximately 10 ps. Our results establish the prominent role of structural defects and disorder for ultrafast carrier dynamics in nitride semiconductor structures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dang, Liem X.; Schenter, Gregory K.
To enhance our understanding of the solvent exchange mechanism in liquid methanol, we report a systematic study of this process using molecular dynamics simulations. We use transition state theory, the Impey-Madden-McDonald method, the reactive flux method, and Grote-Hynes theory to compute the rate constants for this process. Solvent coupling was found to dominate, resulting in a significantly small transmission coefficient. We predict a positive activation volume for the methanol exchange process. The essential features of the dynamics of the system as well as the pressure dependence are recovered from a Generalized Langevin Equation description of the dynamics. We find thatmore » the dynamics and response to anharmonicity can be decomposed into two time regimes, one corresponding to short time response (< 0.1 ps) and long time response (> 5 ps). An effective characterization of the process results from launching dynamics from the planar hypersurface corresponding to Grote-Hynes theory. This results in improved numerical convergence of correlation functions. This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. The calculations were carried out using computer resources provided by the Office of Basic Energy Sciences.« less
van Wilderen, Luuk J G W; Clark, Ian P; Towrie, Michael; van Thor, Jasper J
2009-12-24
Multipulse picosecond mid-infrared spectroscopy has been used to study photochemical reactions of the cyanobacterial phytochrome photoreceptor Cph1. Different photophysical schemes have been discussed in the literature to describe the pathways after photoexcitation, particularly, to identify reaction phases that are linked to photoisomerisation and electronic decay in the 1566-1772 cm(-1) region that probes C=C and C=O stretching modes of the tetrapyrrole chromophore. Here, multipulse spectroscopy is employed, where, compared to conventional visible pump-mid-infrared probe spectroscopy, an additional visible pulse is incorporated that interacts with populations that are evolving on the excited- and ground-state potential energy surfaces. The time delays between the pump and the dump pulse are chosen such that the dump pulse interacts with different phases in the reaction process. The pump and dump pulses are at the same wavelength, 640 nm, and are resonant with the Pr ground state as well as with the excited state and intermediates. Because the dump pulse additionally pumps the remaining, partially recovered, and partially oriented ground-state population, theory is developed for estimating the fraction of excited-state molecules. The calculations take into account the model-dependent ground-state recovery fraction, the angular dependence of the population transfer resulting from the finite bleach that occurs with linearly polarized intense femtosecond optical excitation, and the partially oriented population for the dump field. Distinct differences between the results from the experiments that use a 1 or a 14 ps dump time favor a branching evolution from S1 to an excited state or reconfigured chromophore and to a newly identified ground-state intermediate (GSI). Optical dumping at 1 ps shows the instantaneous induced absorption of a delocalized C=C stretching mode at 1608 cm(-1), where the increased cross section is associated with the electronic ground-state structure of the ZZZ configuration of the linear tetrapyrrole chromophore. The dump-induced absorption decays with time constants of 5 and 19 ps to the Pr ground state. Employing a dump pulse at 14 ps results in an instantaneous decrease of the absorption of the 1608 cm(-1) band, indicating repumping of the GSI. The dump-induced absorption recovers back to the GSI with a 6 ps lifetime. A spectral similarity is observed between the 6 ps phase in the dump experiment and the 3 ps component found in the two-pulse pump-probe measurement. Combined with the dominance of ground-state absorption bands in the dump-induced spectrum, this indicates the presence of a GSI, which is additionally characterized by previously unidentified induced absorption at 1710 and 1570-80 cm(-1). The metastable photoproduct Lumi-R, which is in the electronic ground state and populated at 500 ps after excitation of Pr, is highly efficiently repumped into the Pr ground state with the power density used. After repumping, Lumi-R is not recovered on the 500 ps time scale of the experiment and is distinct from the GSI of Pr since it is not associated with its characteristic induced absorption at 1710 and 1570-80 cm(-1).
Ruyssen-Witrand, A; Fernandez-Lopez, C J; Gossec, L; Anract, P; Courpied, J P; Dougados, M
2011-01-01
To evaluate the psychometric properties of the OARSI-OMERACT questionnaires in comparison to the existing validated scales. Consecutive hip or knee osteoarthritis patients consulting in an orthopedic department were enrolled in the study. Data collected were pain using the Intermittent and Constant Osteoarthritis Pain (ICOAP), a Numeric Rating Scale (NRS), the Western Ontario McMaster Universities' Osteoarthritis Index (WOMAC) pain subscale, the Lequesne pain subscale; functional impairment using the Knee disability and Osteoarthritis Outcome Score-Physical Function Shortform (KOOS-PS), the Hip disability and Osteoarthritis Outcome Score-Physical Function Shortform (HOOS-PS), a NRS, the WOMAC function sub-scale, the Lequesne function subscale. Validity was assessed by calculating the Spearman's correlation coefficient between all the scales. Reliability was assessed in out-patients with stable disease comparing the data collected within 2 weeks using the intra-class correlation coefficient (ICC). Responsiveness was assessed on the data from hospitalised patients prior to and 12 weeks after a total joint replacement (TJR) using the standardised response mean. Three hundred patients (mean age=68 years, females=62%, hip OA=57%) were included. There was a moderate to good correlation between ICOAP, KOOS-PS, HOOS-PS and the WOMAC, NRS and Lequesne scales. Reliability of the ICOAP hip OA HOOS-PS and KOOS-PS was good (ICC range 0.80-0.81) whereas it was moderate for knee ICOAP (ICC=0.65). Responsiveness of the ICOAP, KOOS-PS and HOOS-PS 12 weeks after TJR was comparable to responsiveness of other scales (SRM range: 0.54-1.82). The psychometric properties of the ICOAP, KOOS-PS and HOOS-PS were comparable to those of the WOMAC, Lequesne and NRS.
NASA Astrophysics Data System (ADS)
Malpathak, Shreyas; Ma, Xinyou; Hase, William L.
2018-04-01
In a previous UB3LYP/6-31G* direct dynamics simulation, non-Rice-Ramsperger-Kassel-Marcus (RRKM) unimolecular dynamics was found for vibrationally excited 1,2-dioxetane (DO); [R. Sun et al., J. Chem. Phys. 137, 044305 (2012)]. In the work reported here, these dynamics are studied in more detail using the same direct dynamics method. Vibrational modes of DO were divided into 4 groups, based on their characteristic motions, and each group excited with the same energy. To compare with the dynamics of these groups, an additional group of trajectories comprising a microcanonical ensemble was also simulated. The results of these simulations are consistent with the previous study. The dissociation probability, N(t)/N(0), for these excitation groups were all different. Groups A, B, and C, without initial excitation in the O-O stretch reaction coordinate, had a time lag to of 0.25-1.0 ps for the first dissociation to occur. Somewhat surprisingly, the C-H stretch Group A and out-of-plane motion Group C excitations had exponential dissociation probabilities after to, with a rate constant ˜2 times smaller than the anharmonic RRKM value. Groups B and D, with excitation of the H-C-H bend and wag, and ring bend and stretch modes, respectively, had bi-exponential dissociation probabilities. For Group D, with excitation localized in the reaction coordinate, the initial rate constant is ˜7 times larger than the anharmonic RRKM value, substantial apparent non-RRKM dynamics. N(t)/N(0) for the random excitation trajectories was non-exponential, indicating intrinsic non-RRKM dynamics. For the trajectory integration time of 13.5 ps, 9% of these trajectories did not dissociate in comparison to the RRKM prediction of 0.3%. Classical power spectra for these trajectories indicate they have regular intramolecular dynamics. The N(t)/N(0) for the excitation groups are well described by a two-state coupled phase space model. From the intercept of N(t)/N(0) with random excitation, the anharmonic correction to the RRKM rate constant is approximately a factor of 1.5.
Roles of Segmental and Oligomeric Diffusion on the Gel Effect in Free Radical Polymerization
NASA Astrophysics Data System (ADS)
Wisnudel, M. B.; Torkelson, J. M.
1996-03-01
Termination between radicals has been simulated by phosphorescence quenching, showing strong roles for segmental and oligomeric radical self-diffusion in the origin of the gel effect. Quenching rate constants (k_q) were measured between benzil-terminated polymer as a function of anthracene-terminated polymer in polymer solutions. In dilute solution, interactions between 10k or 73k MW benzil-terminated polystyrene (PS- B) and anthracence-terminated polystyrene (PS-A) of varying MW, the MW effect is weaker than the Smoluchowski eq. prediction (kq MW^- 0.5). At higher concentration, interactions of PS-B and PS-A of like MW show only weak dependence of kq on MW and a concentration dependence similar to that of segmental mobility, indicating that segmental diffusion is important in termination. Finally, with interactions between 73k MW PS-B and PS-A of varying MW at 35 wt% PS, kq decreases by a factor of 10 in going from MW's of 100 to 1000 g/mol; beyond 1000 g/mol, kq is MW independent. Such effects cannot be explained by polymer-radical self-diffusion. However, they support the notion that the gel effect onset is associated with the concentration dependence of oligomeric radical self-diffusion and polymer radical chain-end segmental mobility.
Di Donato, Mariangela; Stahl, Andreas D; van Stokkum, Ivo H M; van Grondelle, Rienk; Groot, Marie-Louise
2011-02-01
Photosystem I is one of the key players in the conversion of solar energy into chemical energy. While the chlorophyll dimer P(700) has long been identified as the primary electron donor, the components involved in the primary charge separation process in PSI remain undetermined. Here, we have studied the charge separation dynamics in Photosystem I trimers from Synechococcus elongatus by femtosecond vis-pump/mid-infrared-probe spectroscopy upon excitation at 700, 710, and 715 nm. Because of the high specificity of the infrared region for the redox state and small differences in the molecular structure of pigments, we were able to clearly identify specific marker bands indicating chlorophyll (Chl) oxidation. Magnitudes of chlorophyll cation signals are observed to increase faster than the time resolution of the experiment (~0.2 ps) upon both excitation conditions: 700 nm and selective red excitation. Two models, involving either ultrafast charge separation or charge transfer character of the red pigments in PSI, are discussed to explain this observation. A further increase in the magnitudes of cation signals on a subpicosecond time scale (0.8-1 ps) indicates the formation of the primary radical pair. Evolution in the cation region with time constants of 7 and 40 ps reveals the formation of the secondary radical pair, involving a secondary electron donor. Modeling of the data allows us to extract the spectra of the two radical pairs, which have IR signatures consistent with A+A₀- and P₇₀₀+A₁-. We conclude that the cofactor chlorophyll A acts as the primary donor in PSI. The existence of an equilibrium between the two radical pairs we interpret as concerted hole/electron transfer between the pairs of electron donors and acceptors, until after 40 ps, relaxation leads to a full population of the P₇₀₀+A₁. radical pair.
Photoluminescence Dynamics of Aryl sp 3 Defect States in Single-Walled Carbon Nanotubes
Hartmann, Nicolai F.; Velizhanin, Kirill A.; Haroz, Erik H.; ...
2016-08-16
Photoluminescent defect states introduced by sp 3 functionalization of semiconducting carbon nanotubes are rapidly emerging as important routes for boosting emission quantum yields and introducing new functionality. Knowledge of the relaxation dynamics of these states is required for understanding how functionalizing agents (molecular dopants) may be designed to access specific behaviors. We measure photoluminescence (PL) decay dynamics of sp 3 defect states introduced by aryl functionalization of the carbon nanotube surface. Results are given for five different nanotube chiralities, each doped with a range of aryl functionality. We find the PL decays of these sp 3 defect states are biexponential,more » with both components relaxing on timescales of ~ 100 ps. Exciton trapping at defects is found to increases PL lifetimes by a factor of 5-10, in comparison to those for the free exciton. A significant chirality dependence is observed in the decay times, ranging from 77 ps for (7,5) nanotubes to > 600 ps for (5,4) structures. The strong correlation of time constants with emission energy indicates relaxation occurs via multiphonon decay processes, with close agreement to theoretical expectations. Variation of the aryl dopant further modulates decay times by 10-15%. The aryl defects also affect PL lifetimes of the free E 11 exciton. Shortening of the E 11 bright state lifetime as defect density increases provides further confirmation that defects act as exciton traps. A similar shortening of the E11 dark exciton lifetime is found as defect density increases, providing strong experimental evidence that dark excitons are also trapped at such defect sites.« less
Photoluminescence Dynamics of Aryl sp 3 Defect States in Single-Walled Carbon Nanotubes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hartmann, Nicolai F.; Velizhanin, Kirill A.; Haroz, Erik H.
Photoluminescent defect states introduced by sp 3 functionalization of semiconducting carbon nanotubes are rapidly emerging as important routes for boosting emission quantum yields and introducing new functionality. Knowledge of the relaxation dynamics of these states is required for understanding how functionalizing agents (molecular dopants) may be designed to access specific behaviors. We measure photoluminescence (PL) decay dynamics of sp 3 defect states introduced by aryl functionalization of the carbon nanotube surface. Results are given for five different nanotube chiralities, each doped with a range of aryl functionality. We find the PL decays of these sp 3 defect states are biexponential,more » with both components relaxing on timescales of ~ 100 ps. Exciton trapping at defects is found to increases PL lifetimes by a factor of 5-10, in comparison to those for the free exciton. A significant chirality dependence is observed in the decay times, ranging from 77 ps for (7,5) nanotubes to > 600 ps for (5,4) structures. The strong correlation of time constants with emission energy indicates relaxation occurs via multiphonon decay processes, with close agreement to theoretical expectations. Variation of the aryl dopant further modulates decay times by 10-15%. The aryl defects also affect PL lifetimes of the free E 11 exciton. Shortening of the E 11 bright state lifetime as defect density increases provides further confirmation that defects act as exciton traps. A similar shortening of the E11 dark exciton lifetime is found as defect density increases, providing strong experimental evidence that dark excitons are also trapped at such defect sites.« less
Carbon dioxide exchange of lettuce plants under hypobaric conditions
NASA Technical Reports Server (NTRS)
Corey, K. A.; Bates, M. E.; Adams, S. L.; MacElroy, R. D. (Principal Investigator)
1996-01-01
Growth of plants in a Controlled Ecological Life Support System (CELSS) may involve the use of hypobaric pressures enabling lower mass requirements for atmospheres and possible enhancement of crop productivity. A controlled environment plant growth chamber with hypobaric capability designed and built at Ames Research Center was used to determine if reduced pressures influence the rates of photosynthesis (Ps) and dark respiration (DR) of hydroponically grown lettuce plants. The chamber, referred to as a plant volatiles chamber (PVC), has a growing area of about 0.2 m2, a total gas volume of about 0.7 m3, and a leak rate at 50 kPa of <0.1%/day. When the pressure in the chamber was reduced from ambient to 51 kPa, the rate of net Ps increased by 25% and the rate of DR decreased by 40%. The rate of Ps increased linearly with decreasing pressure. There was a greater effect of reduced pressure at 41 Pa CO2 than at 81 Pa CO2. This is consistent with reports showing greater inhibition of photorespiration (Pr) in reduced O2 at low CO2 concentrations. When the partial pressure of O2 was held constant but the total pressure was varied between 51 and 101 kPa, the rate of CO2 uptake was nearly constant, suggesting that low pressure enhancement of Ps may be mainly attributable to lowered partial pressure of O2 and the accompanying reduction in Pr. The effects of lowered partial pressure of O2 on Ps and DR could result in substantial increases in the rates of biomass production, enabling rapid throughput of crops or allowing flexibility in the use of mass and energy resources for a CELSS.
Weidlich, O; Ujj, L; Jäger, F; Atkinson, G H
1997-05-01
Time-resolved vibrational spectra are used to elucidate the structural changes in the retinal chromophore within the K-590 intermediate that precedes the formation of the L-550 intermediate in the room-temperature (RT) bacteriorhodopsin (BR) photocycle. Measured by picosecond time-resolved coherent anti-Stokes Raman scattering (PTR/CARS), these vibrational data are recorded within the 750 cm-1 to 1720 cm-1 spectral region and with time delays of 50-260 ns after the RT/BR photocycle is optically initiated by pulsed (< 3 ps, 1.75 nJ) excitation. Although K-590 remains structurally unchanged throughout the 50-ps to 1-ns time interval, distinct structural changes do appear over the 1-ns to 260-ns period. Specifically, comparisons of the 50-ps PTR/CARS spectra with those recorded with time delays of 1 ns to 260 ns reveal 1) three types of changes in the hydrogen-out-of-plane (HOOP) region: the appearance of a strong, new feature at 984 cm-1; intensity decreases for the bands at 957 cm-1, 952 cm-1, and 939 cm-1; and small changes intensity and/or frequency of bands at 855 cm-1 and 805 cm-1; and 2) two types of changes in the C-C stretching region: the intensity increase in the band at 1196 cm-1 and small intensity changes and/or frequency shifts for bands at 1300 cm-1 and 1362 cm-1. No changes are observed in the C = C stretching region, and no bands assignable to the Schiff base stretching mode (C = NH+) mode are found in any of the PTR/CARS spectra assignable to K-590. These PTR/CARS data are used, together with vibrational mode assignments derived from previous work, to characterize the retinal structural changes in K-590 as it evolves from its 3.5-ps formation (ps/K-590) through the nanosecond time regime (ns/K-590) that precedes the formation of L-550. The PTR/CARS data suggest that changes in the torsional modes near the C14-C15 = N bonds are directly associated with the appearance of ns/K-590, and perhaps with the KL intermediate proposed in earlier studies. These vibrational data can be primarily interpreted in terms of the degree of twisting of the C14-C15 retinal bond. Such twisting may be accompanied by changes in the adjacent protein. Other smaller, but nonetheless clear, spectral changes indicate that alterations along the retinal polyene chain also occur. The changes in the retinal structure are preliminary to the deprotonation of the Schiff base nitrogen during the formation of M-412. The time constant for the ps/ns K-590 transformation is estimated from the amplitude change of four vibrational bands in the HOOP region to be 40-70 ns.
Collective hydration dynamics in some amino acid solutions: A combined GHz-THz spectroscopic study
NASA Astrophysics Data System (ADS)
Samanta, Nirnay; Das Mahanta, Debasish; Choudhury, Samiran; Barman, Anjan; Kumar Mitra, Rajib
2017-03-01
A detailed understanding of hydration of amino acids, the building units of protein, is a key step to realize the overall solvation processes in proteins. In the present contribution, we have made a combined GHz (0.2-50) to THz (0.3-2.0) experimental spectroscopic study to investigate the dynamics of water at room temperature in the presence of different amino acids (glycine, L-serine, L-lysine, L-tryptophan, L-arginine, and L-aspartic acid). The THz absorption coefficient, α(ν), of amino acids follows a trend defined by their solvent accessible surface area. The imaginary and real dielectric constants obtained in GHz and THz regions are fitted into multiple Debye model to obtain various relaxation times. The ˜100 ps time scale obtained in the GHz frequency region is attributed to the rotational motion of the amino acids. In the THz region, we obtain ˜8 ps and ˜200 fs time scales which are related to the cooperative dynamics of H-bond network and partial rotation or sudden jump of the under-coordinated water molecules. These time scales are found to be dependent on the amino acid type and the cooperative motion is found to be dependent on both the hydrophobic as well as the hydrophilic residue of amino acids.
Yoom, Hoonsik; Shin, Jaedon; Ra, Jiwoon; Son, Heejong; Ryu, Dongchoon; Kim, Changwon; Lee, Yunho
2018-09-01
The reaction kinetics, products, and pathways of methylparaben (MeP) during water chlorination with and without bromide (Br - ) were investigated to better understand the fate of parabens in chlorinated waters. During the chlorination of MeP-spiked waters without Br - , MeP was transformed into mono-Cl-MeP and di-Cl-MeP with apparent second-order rate constants (k app ) of 64M -1 s -1 and 243M -1 s -1 at pH7, respectively, while further chlorination of di-Cl-MeP was relatively slower (k app =1.3M -1 s -1 at pH7). With increasing Br - concentration, brominated MePs, such as mono-Br-MeP, Br-Cl-MeP, and di-Br-MeP, became major transformation products. The di-halogenated MePs (di-Cl-MeP, Br,Cl-MeP, and di-Br-MeP) showed relatively low reactivity to chlorine at pH7 (k app =1.3-4.6M -1 s -1 ) and bromine (k app =32-71M -1 s -1 ), which explains the observed high stability of di-halogenated MePs in chlorinated waters. With increasing pH from 7 to 8.5, the transformation of di-halogenated MePs was further slowed due to the decreasing reactivity of di-MePs to chlorine. The formation of the di-halogenated MePs and their further transformation become considerably faster at Br - concentrations higher than 0.5μM (40μg/L). Nonetheless, the accelerating effect of Br - diminishes in the presence of dissolved organic matter (DOM) extract (Suwannee River humic acid (SRHA)) due to a more rapid consumption of bromine by DOM than chlorine. The effect of Br - on the fate of MeP was less in the tested real water matrices, possibly due to a more rapid bromine consumption by the real water DOM compared to SRHA. A kinetic model was developed based on the determined species-specific second-order rate constants for chlorination/bromination of MeP and its chlorinated and brominated MePs and the transformation pathway information, which could reasonably simulate the transformation of MePs during the chlorination of water in the presence of Br - and selected DOM. Copyright © 2017 Elsevier B.V. All rights reserved.
Yasaka, Yoshiro; Klein, Michael L; Nakahara, Masaru; Matubayasi, Nobuyuki
2012-02-21
The rotational dynamics of benzene and water in the ionic liquid (IL) 1-butyl-3-methylimidazolium chloride are studied using molecular dynamics (MD) simulation and NMR T(1) measurements. MD trajectories based on an effective potential are used to calculate the (2)H NMR relaxation time, T(1) via Fourier transform of the relevant rotational time correlation function, C(2R)(t). To compensate for the lack of polarization in the standard fixed-charge modeling of the IL, an effective ionic charge, which is smaller than the elementary charge is employed. The simulation results are in closest agreement with NMR experiments with respect to the temperature and Larmor frequency dependencies of T(1) when an effective charge of ±0.5e is used for the anion and the cation, respectively. The computed C(2R)(t) of both solutes shows a bi-modal nature, comprised of an initial non-diffusive ps relaxation plus a long-time ns tail extending to the diffusive regime. Due to the latter component, the solute dynamics is not under the motional narrowing condition with respect to the prevalent Larmor frequency. It is shown that the diffusive tail of the C(2R)(t) is most important to understand frequency and temperature dependencies of T(1) in ILs. On the other hand, the effect of the initial ps relaxation is an increase of T(1) by a constant factor. This is equivalent to an "effective" reduction of the quadrupolar coupling constant (QCC). Thus, in the NMR T(1) analysis, the rotational time correlation function can be modeled analytically in the form of aexp (-t/τ) (Lipari-Szabo model), where the constant a, the Lipari-Szabo factor, contains the integrated contribution of the short-time relaxation and τ represents the relaxation time of the exponential (diffusive) tail. The Debye model is a special case of the Lipari-Szabo model with a = 1, and turns out to be inappropriate to represent benzene and water dynamics in ILs since a is as small as 0.1. The use of the Debye model would result in an underestimation of the QCC by a factor of 2-3 as a compensation for the neglect of the Lipari-Szabo factor. © 2012 American Institute of Physics
NASA Astrophysics Data System (ADS)
Yasaka, Yoshiro; Klein, Michael L.; Nakahara, Masaru; Matubayasi, Nobuyuki
2012-02-01
The rotational dynamics of benzene and water in the ionic liquid (IL) 1-butyl-3-methylimidazolium chloride are studied using molecular dynamics (MD) simulation and NMR T1 measurements. MD trajectories based on an effective potential are used to calculate the 2H NMR relaxation time, T1 via Fourier transform of the relevant rotational time correlation function, C2R(t). To compensate for the lack of polarization in the standard fixed-charge modeling of the IL, an effective ionic charge, which is smaller than the elementary charge is employed. The simulation results are in closest agreement with NMR experiments with respect to the temperature and Larmor frequency dependencies of T1 when an effective charge of ±0.5e is used for the anion and the cation, respectively. The computed C2R(t) of both solutes shows a bi-modal nature, comprised of an initial non-diffusive ps relaxation plus a long-time ns tail extending to the diffusive regime. Due to the latter component, the solute dynamics is not under the motional narrowing condition with respect to the prevalent Larmor frequency. It is shown that the diffusive tail of the C2R(t) is most important to understand frequency and temperature dependencies of T1 in ILs. On the other hand, the effect of the initial ps relaxation is an increase of T1 by a constant factor. This is equivalent to an "effective" reduction of the quadrupolar coupling constant (QCC). Thus, in the NMR T1 analysis, the rotational time correlation function can be modeled analytically in the form of aexp (-t/τ) (Lipari-Szabo model), where the constant a, the Lipari-Szabo factor, contains the integrated contribution of the short-time relaxation and τ represents the relaxation time of the exponential (diffusive) tail. The Debye model is a special case of the Lipari-Szabo model with a = 1, and turns out to be inappropriate to represent benzene and water dynamics in ILs since a is as small as 0.1. The use of the Debye model would result in an underestimation of the QCC by a factor of 2-3 as a compensation for the neglect of the Lipari-Szabo factor.
Ahmed, Samia A; Mostafa, Faten A; Ouis, Mona A
2018-06-01
α-Amylase enzyme was immobilized on bioactive phospho-silicate glass (PS-glass) as a novel inorganic support by physical adsorption and covalent binding methods using glutaraldehyde and poly glutaraldehyde as a spacer. Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM) studies confirmed the glass-enzyme linkage. Dissolution of PS-glass in acidic and neutral pH is higher than that of alkaline pH. Some immobilization variables were optimized using statistical factorial design (Central Composite Design). Optimized immobilization variables enhanced the immobilization yield (IY) from 27.9 to 79.9% (2.9-fold). It was found that the immobilized enzyme had higher optimum temperature, higher half-life time (t 1/2 ), lower activation energy (E a ), lower deactivation constant rate (k d ) and higher decimal reduction time (D-values) within the temperature range of 40-60°C. Differential scanning calorimetry analysis (DSC) confirmed the thermalstability of the immobilized enzyme. The immobilized enzyme was stable at a wide pH range (5.0-8.0). Kinetic studies of starch hydrolysis demonstrated that immobilized enzyme had lower Michaelis constant (K m ), maximum velocity (V max ) and catalytic efficiency (V max /K m ) values. The storage stability and reusability of the immobilized enzyme were found to be about 74.7 and 62.5% of its initial activity after 28days and 11cycles, respectively. Enhanced α-amylase stabilities upon immobilization make it suitable for industrial application. Copyright © 2018 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Kyung Hwan; Muniyappan, Srinivasan; Oang, Key Young
2012-05-29
Proteins serve as molecular machines in performing their biological functions, but the detailed structural transitions are difficult to observe in their native aqueous environments in real time. For example, despite extensive studies, the solution-phase structures of the intermediates along the allosteric pathways for the transitions between the relaxed (R) and tense (T) forms have been elusive. In this work, we employed picosecond X-ray solution scattering and novel structural analysis to track the details of the structural dynamics of wild-type homodimeric hemoglobin (HbI) from the clam Scapharca inaequivalvis and its F97Y mutant over a wide time range from 100 ps tomore » 56.2 ms. From kinetic analysis of the measured time-resolved X-ray solution scattering data, we identified three structurally distinct intermediates (I 1, I 2, and I 3) and their kinetic pathways common for both the wild type and the mutant. The data revealed that the singly liganded and unliganded forms of each intermediate share the same structure, providing direct evidence that the ligand photolysis of only a single subunit induces the same structural change as the complete photolysis of both subunits does. In addition, by applying novel structural analysis to the scattering data, we elucidated the detailed structural changes in the protein, including changes in the heme-heme distance, the quaternary rotation angle of subunits, and interfacial water gain/loss. The earliest, R-like I 1 intermediate is generated within 100 ps and transforms to the R-like I 2 intermediate with a time constant of 3.2 ± 0.2 ns. Subsequently, the late, T-like I 3 intermediate is formed via subunit rotation, a decrease in the heme-heme distance, and substantial gain of interfacial water and exhibits ligation-dependent formation kinetics with time constants of 730 ± 120 ns for the fully photolyzed form and 5.6 ± 0.8 μs for the partially photolyzed form. For the mutant, the overall kinetics are accelerated, and the formation of the T-like I 3 intermediate involves interfacial water loss (instead of water entry) and lacks the contraction of the heme-heme distance, thus underscoring the dramatic effect of the F97Y mutation. The ability to keep track of the detailed movements of the protein in aqueous solution in real time provides new insights into the protein structural dynamics.« less
Molecular dynamics of bacteriorhodopsin.
Lupo, J A; Pachter, R
1997-02-01
A model of bacteriorhodopsin (bR), with a retinal chromophore attached, has been derived for a molecular dynamics simulation. A method for determining atomic coordinates of several ill-defined strands was developed using a structure prediction algorithm based on a sequential Kalman filter technique. The completed structure was minimized using the GROMOS force field. The structure was then heated to 293 K and run for 500 ps at constant temperature. A comparison with the energy-minimized structure showed a slow increase in the all-atom RMS deviation over the first 200 ps, leveling off to approximately 2.4 A relative to the starting structure. The final structure yielded a backbone-atom RMS deviation from the crystallographic structure of 2.8 A. The residue neighbors of the chromophore atoms were followed as a function of time. The set of persistent near-residue neighbors supports the theory that differences in pKa values control access to the Schiff base proton, rather than formation of a counterion complex.
Jin, Qi; Pehrson, Steen; Jacobsen, Peter Karl; Chen, Xu
2015-11-01
The objectives of this study were to assess the procedural outcomes of persistent and long-standing persistent atrial fibrillation (PsAF and L-PsAF) ablation guided by remote magnetic navigation (RMN), and to detect factors predicting acute restoration of sinus rhythm (SR) by ablation with RMN. A total of 313 patients (275 male, age 59 ± 9.5 years) with PsAF (187/313) or L-PsAF (126/313) undergoing ablation using RMN were included. Patients' disease history, pulmonary venous anatomy, left atrial (LA) volume, procedure time, mapping plus ablation time, radiofrequency (RF) ablation time, fluoroscopy time, radiation dose, and complications were assessed. Stepwise regression was used to predict which variable could best predict acute restoration from AF to SR by ablation. Compared to PsAF, procedure time and RF ablation time were significantly increased in patients with L-PsAF (P = 0.01 and P < 0.001, respectively). No major complications occurred during the procedures in either PsAF or L-PsAF patients. Fifty five of 313 patients converted directly to SR by ablation. Compared to L-PsAF, the rate of SR restoration was significantly higher in PsAF (21 vs 12%, P = 0.03). Stepwise regression analysis showed LA volume was the primary parameter affecting SR restoration (P = 0.01). The LA volume of patients without direct SR restoration by ablation was 24% greater than that of patients with SR restoration (P < 0.001). Catheter ablation using RMN is a safe and effective method for PsAF and L-PsAF. LA volume could be a predictor of direct restoration of SR from sustaining AF by ablation using RMN.
Nanoscale elastic modulus variation in loaded polymeric micelle reactors.
Solmaz, Alim; Aytun, Taner; Deuschle, Julia K; Ow-Yang, Cleva W
2012-07-17
Tapping mode atomic force microscopy (TM-AFM) enables mapping of chemical composition at the nanoscale by taking advantage of the variation in phase angle shift arising from an embedded second phase. We demonstrate that phase contrast can be attributed to the variation in elastic modulus during the imaging of zinc acetate (ZnAc)-loaded reverse polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP) diblock co-polymer micelles less than 100 nm in diameter. Three sample configurations were characterized: (i) a 31.6 μm thick polystyrene (PS) support film for eliminating the substrate contribution, (ii) an unfilled PS-b-P2VP micelle supported by the same PS film, and (iii) a ZnAc-loaded PS-b-P2VP micelle supported by the same PS film. Force-indentation (F-I) curves were measured over unloaded micelles on the PS film and over loaded micelles on the PS film, using standard tapping mode probes of three different spring constants, the same cantilevers used for imaging of the samples before and after loading. For calibration of the tip geometry, nanoindentation was performed on the bare PS film. The resulting elastic modulus values extracted by applying the Hertz model were 8.26 ± 3.43 GPa over the loaded micelles and 4.17 ± 1.65 GPa over the unloaded micelles, confirming that phase contrast images of a monolayer of loaded micelles represent maps of the nanoscale chemical and mechanical variation. By calibrating the tip geometry indirectly using a known soft material, we are able to use the same standard tapping mode cantilevers for both imaging and indentation.
Cao, Xu; Pan, Guoshun; Huang, Peng; Guo, Dan; Xie, Guoxin
2017-08-22
The core-shell structured PS/SiO 2 composite nanospheres were synthesized on the basis of a modified Stöber method. The mechanical properties of monodisperse nanospheres were characterized with nanoindentation on the basis of the atomic force microscopy (AFM). The surface morphologies of PS/SiO 2 composite nanospheres was scanned with the tapping mode of AFM, and the force-distance curves were measured with the contact mode of AFM. Different contact models were compared for the analyses of experimental data. The elastic moduli of PS/SiO 2 composite nanosphere (4-40 GPa) and PS nanosphere (∼3.4 GPa) were obtained with the Hertz and Johnson-Kendall-Roberts (JKR) models, respectively, and the JKR model was proven to be more appropriate for calculating the elastic modulus of PS/SiO 2 nanospheres. The elastic modulus of SiO 2 shell gradually approached a constant value (∼46 GPa) with the increase of SiO 2 shell thickness. A core-shell model was proposed for describing the relationship between PS/SiO 2 composite nanosphere's elastic modulus and shell thickness. The mechanical properties of the composite nanospheres were reasonably explained on the basis of the growth mechanism of PS/SiO 2 composite nanospheres, in particular the SiO 2 shell's formation process. Available research data of PS/SiO 2 composite nanospheres in this work can provide valuable guidance for their effective application in surface engineering, micro/nanomanufacturing, lubrication, and so on.
Directly probing spin dynamics in insulating antiferromagnets using ultrashort terahertz pulses
Bowlan, Pamela Renee; Trugman, Stuart Alan; Wang, X.; ...
2016-11-22
We investigate spin dynamics in the antiferromagnetic (AFM) multiferroic TbMnO3 using opticalpump, terahertz (THz)-probe spectroscopy. Photoexcitation results in a broadband THz transmission change, with an onset time of 25 ps at 6 K that becomes faster at higher temperatures. We attribute this time constant to spin-lattice thermalization. The excellent agreement between our measurements and previous ultrafast resonant x-ray diffraction measurements on the same material confirms that our THz pulse directly probes spin order. We suggest that this could be the case in general for insulating AFM materials, if the origin of the static absorption in the THz spectral range ismore » magnetic.« less
Gagete, Andrés P; Riera, Marta; Franco, Luis; Rodrigo, M Isabel
2009-01-01
At least seven isoforms (PsABI3-1 to PsABI3-7) of a putative, pea ABI3-like factor, originated by alternative splicing, have been identified after cDNA cloning. A similar variability had previously only been described for monocot genes. The full-length isoform, PsABI3-1, contains the typical N-terminal acidic domains and C-terminal basic subdomains, B1 to B3. Reverse transcriptase-PCR analysis revealed that the gene is expressed just in seeds, starting at middle embryogenesis; no gene products are observed in embryo axes after 18 h post-imbibition although they are more persistent in cotyledons. The activity of the isoforms was studied by yeast one-hybrid assays. When yeast was transformed with the isoforms fused to the DNA binding domain of Gal4p, only the polypeptides PsABI3-2 and PsABI3-7 failed to complement the activity of Gal4p. Acidic domains A1 and A2 exhibit transactivating activity, but the former requires a small C-terminal extension to be active. Yeast two-hybrid analysis showed that PsABI3 is able to heterodimerize with Arabidopsis thaliana ABI5, thus proving that PsABI3 is functionally active. The minimum requirement for the interaction PsABI3-AtABI5 is the presence of the subdomain B1 with an extension, 81 amino acids long, at their C-terminal side. Finally, a transient onion transformation assay showed that both the active PsABI3-1 and the inactive PsABI3-2 isoforms are localized to nuclei. Considering that the major isoforms remain approximately constant in developing seeds although their relative proportion varied, the possible role of splicing in the regulatory network of ABA signalling is discussed.
NASA Astrophysics Data System (ADS)
Rumble, Christopher A.; Maroncelli, Mark
2018-05-01
Time-resolved emission techniques were used to study the excited-state intramolecular electron transfer of 9-(4-biphenyl)-10-methylacridinium (BPAc+) in mixtures of 1-butyl-3-methylimidizolium tetrafluoroborate ([Im41][BF4])+ acetonitrile (ACN), a mixture previously shown to be of nearly constant polarity and nearly ideal mixing behavior. Reaction times (τrxn) track solvation times (τsolv) as a function of mixture composition over a range of more than 3 orders of magnitude in τsolv. This same correlation extends to a variety of neat dipolar solvents and ionic liquids. Reaction times are ˜2-fold larger than τsolv over most of the range studied but appear to reach a limiting value of ˜3 ps in the fastest solvents.
Timing performance comparison of digital methods in positron emission tomography
NASA Astrophysics Data System (ADS)
Aykac, Mehmet; Hong, Inki; Cho, Sanghee
2010-11-01
Accurate timing information is essential in positron emission tomography (PET). Recent improvements in high speed electronics made digital methods more attractive to find alternative solutions to create a time mark for an event. Two new digital methods (mean PMT pulse model, MPPM, and median filtered zero crossing method, MFZCM) were introduced in this work and compared to traditional methods such as digital leading edge (LE) and digital constant fraction discrimination (CFD). In addition, the performances of all four digital methods were compared to analog based LE and CFD. The time resolution values for MPPM and MFZCM were measured below 300 ps at 1.6 GS/s and above that was similar to the analog based coincidence timing results. In addition, the two digital methods were insensitive to the changes in threshold setting that might give some improvement in system dead time.
Schilling, Brian K.; Falvo, Michael J.; Chiu, Loren Z.F.
2008-01-01
The purpose of this brief review is to explain the mechanical relationship between impulse and momentum when resistance exercise is performed in a purposefully slow manner (PS). PS is recognized by ~10s concentric and ~4-10s eccentric actions. While several papers have reviewed the effects of PS, none has yet explained such resistance training in the context of the impulse-momentum relationship. A case study of normal versus PS back squats was also performed. An 85kg man performed both normal speed (3 sec eccentric action and maximal acceleration concentric action) and PS back squats over a several loads. Normal speed back squats produced both greater peak and mean propulsive forces than PS action when measured across all loads. However, TUT was greatly increased in the PS condition, with values fourfold greater than maximal acceleration repetitions. The data and explanation herein point to superior forces produced by the neuromuscular system via traditional speed training indicating a superior modality for inducing neuromuscular adaptation. Key pointsAs velocity approaches zero, propulsive force approaches zero, therefore slow moving objects only require force approximately equal to the weight of the resistance.As mass is constant during resistance training, a greater impulse will result in a greater velocity.The inferior propulsive forces accompanying purposefully slow training suggest other methods of resistance training have a greater potential for adaptation. PMID:24149464
Sazanovich, Igor V; Best, Jonathan; Scattergood, Paul A; Towrie, Michael; Tikhomirov, Sergei A; Bouganov, Oleg V; Meijer, Anthony J H M; Weinstein, Julia A
2014-12-21
Visible light-induced charge transfer dynamics were investigated in a novel transition metal triad acceptor-chromophore-donor, (NDI-phen)Pt(II)(-C≡C-Ph-CH2-PTZ)2 (1), designed for photoinduced charge separation using a combination of time-resolved infrared (TRIR) and femtosecond electronic transient absorption (TA) spectroscopy. In 1, the electron acceptor is 1,4,5,8-naphthalene diimide (NDI), and the electron donor is phenothiazine (PTZ), and [(phen)Pt(-C≡C-Ph-)], where phen is 1,10-phenanthroline, represents the chromophoric core. The first excited state observed in 1 is a (3)MLCT/LL'CT, with {Pt(II)-acetylide}-to-phen character. Following that, charge transfer from the phen-anion onto the NDI subunit to form NDI(-)-phen-[Pt-(C≡C)2](+)-PTZ2 occurs with a time constant of 2.3 ps. This transition is characterised by appearance of the prominent NDI-anion features in both TRIR and TA spectra. The final step of the charge separation in 1 proceeds with a time constant of ∼15 ps during which the hole migrates from the [Pt-(C≡C)2] subunit to one of the PTZ groups. Charge recombination in 1 then occurs with two distinct time constants of 36 ns and 107 ns, corresponding to the back electron transfer to each of the two donor groups; a rather rare occurrence which manifests that the hole in the final charge-separated state is localised on one of the two donor PTZ groups. The assignment of the nature of the excited states and dynamics in 1 was assisted by TRIR investigations of the analogous previously reported ((COOEt)2bpy)Pt(C≡C-Ph-CH2-PTZ)2 (2), (J. E. McGarrah and R. Eisenberg, Inorg. Chem., 2003, 42, 4355; J. E. McGarrah, J. T. Hupp and S. N. Smirnov, J. Phys. Chem. A, 2009, 113, 6430) as well as (bpy)Pt(C≡C-Ph-C7H15)2, which represent the acceptor-free dyad, and the chromophoric core, respectively. Thus, the step-wise formation of the full charge-separated state on the picosecond time scale and charge recombination via tunnelling have been established; and the presence of two distinct charge recombination pathways has been observed.
Fitzpatrick, Ann E; Lincoln, Craig N; van Wilderen, Luuk J G W; van Thor, Jasper J
2012-01-26
The primary photoreactions of the red absorbing ground state (Pr) of the cyanobacterial phytochrome Cph1 from Synechocystis PCC 6803 involve C15═C16 Z-E photoisomerization of its phycocyanobilin chromophore. The first observable product intermediate in pump-probe measurements of the photocycle, "Lumi-R", is formed with picosecond kinetics and involves excited state decay reactions that have 3 and 14 ps time constants. Here, we have studied the photochemical formation of the Lumi-R intermediate using multipulse picosecond visible spectroscopy. Pump-dump-probe (PDP) and pump-repump-probe (PRP) experiments were carried out by employing two femtosecond visible pulses with 1, 14, and 160 ps delays, together with a broadband dispersive visible probe. The time delays between the two excitation pulses have been selected to allow interaction with the dominant (3 and 14 ps) kinetic phases of Lumi-R formation. The frequency dependence of the PDP and PRP amplitudes was investigated at 620, 640, 660, and 680 nm, covering excited state absorption (λ(max) = 620 nm), ground state absorption (λ(max) = 660 nm), and stimulated emission (λ(max) = 680 nm) cross sections. Experimental double difference transient absorbance signals (ΔΔOD), from the PDP and PRP measurements, required corrections to remove contributions from ground state repumping. The sensitivity of the resulting ΔΔOD signals was systematically investigated for possible connectivity schemes and photochemical parameters. When applying a homogeneous (sequentially decaying) connectivity scheme in both the 3 and 14 ps kinetic phases, evidence for repumping of an intermediate that has an electronic ground state configuration (GSI) is taken from the dump-induced S1 formation with 620, 640, and 660 nm wavelengths and 1 and 14 ps repump delays. Evidence for repumping a GSI is also seen, for the same excitation wavelengths, when imposing a target connectivity scheme proposed in the literature for the 1 ps repump delay. In contrast, using a 680 nm dump pulse, ground state formation is observed for all models examined. The ΔΔOD signals were dominated by stimulated emission, at both 1 and 14 ps delays for the longer wavelength excitation. The GSI, which is revealed by the PRP measurements and not resolved from pump-probe measurements, is found to be directly formed from the excited state of Pr, and its formation is considered using heterogeneous, homogeneous, and target models to globally fit the data.
Timing of PMMA cement application for pedicle screw augmentation affects screw anchorage.
Schmoelz, Werner; Heinrichs, Christian Heinz; Schmidt, Sven; Piñera, Angel R; Tome-Bermejo, Felix; Duart, Javier M; Bauer, Marlies; Galovich, Luis Álvarez
2017-11-01
Cement augmentation is an established method to increase the pedicle screw (PS) anchorage in osteoporotic vertebral bodies. The ideal timing for augmentation when a reposition maneuver is necessary is controversial. While augmentation of the PS before reposition maneuver may increase the force applied it on the vertebrae, it bears the risk to impair PS anchorage, whereas augmenting the PS after the maneuver may restore this anchorage and prevent early screw loosening. The purpose of the present study was to evaluate the effect of cement application timing on PS anchorage in the osteoporotic vertebral body. Ten lumbar vertebrae (L1-L5) were used for testing. The left and right pedicles of each vertebra were instrumented with the same PS size and used for pairwise comparison of the two timing points for augmentation. For the reposition maneuver, the left PS was loaded axially under displacement control (2 × ±2 mm, 3 × ±6 mm, 3 × ±10 mm) to simulate a reposition maneuver. Subsequently, both PS were augmented with 2 ml PMMA cement. The same force as measured during the left PS maneuver was applied to the previously augmented right hand side PS [2 × F (±2 mm), 3 × F (±6 mm), 3 × F (±10 mm)]. Both PS were cyclically loaded with initial forces of +50 and -50 N, while the lower force was increased by 5 N every 100 cycles until total failure of the PS. The PS motion was measured with a 3D motion analysis system. After cyclic loading stress, X-rays were taken to identify the PS loosening mechanism. In comparison with PS augmented prior to the reposition maneuver, PS augmented after the reposition maneuver showed a significant higher number of load cycles until failure (5930 ± 1899 vs 3830 ± 1706, p = 0.015). The predominant loosening mechanism for PS augmented after the reposition maneuver was PS toggling with the attached cement cloud within the trabecular bone. While PS augmented prior to the reposition, maneuver showed a motion of the screw within the cement cloud. The time of cement application has an effect on PS anchorage in the osteoporotic vertebral body if a reposition maneuver of the instrumented vertebrae is carried out. PS augmented after the reposition maneuver showed a significant higher number of load cycles until screw loosening.
Picosecond phase-velocity dispersion of hypersonic phonons imaged with ultrafast electron microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cremons, Daniel R.; Du, Daniel X.; Flannigan, David J.
We describe the direct imaging—with four-dimensional ultrafast electron microscopy—of the emergence, evolution, dispersion, and decay of photoexcited, hypersonic coherent acoustic phonons in nanoscale germanium wedges. Coherent strain waves generated via ultrafast in situ photoexcitation were imaged propagating with initial phase velocities of up to 35 km/s across discrete micrometer-scale crystal regions. We then observe that, while each wave front travels at a constant velocity, the entire wave train evolves with a time-varying phase-velocity dispersion, displaying a single-exponential decay to the longitudinal speed of sound (5 km/s) and with a mean lifetime of 280 ps. We also find that the wavemore » trains propagate along a single in-plane direction oriented parallel to striations introduced during specimen preparation, independent of crystallographic direction. Elastic-plate modeling indicates the dynamics arise from excitation of a single, symmetric (dilatational) guided acoustic mode. Further, by precisely determining the experiment time-zero position with a plasma-lensing method, we find that wave-front emergence occurs approximately 100 ps after femtosecond photoexcitation, which matches well with Auger recombination times in germanium. We conclude by discussing the similarities between the imaged hypersonic strain-wave dynamics and electron/hole plasma-wave dynamics in strongly photoexcited semiconductors.« less
Picosecond phase-velocity dispersion of hypersonic phonons imaged with ultrafast electron microscopy
Cremons, Daniel R.; Du, Daniel X.; Flannigan, David J.
2017-12-05
We describe the direct imaging—with four-dimensional ultrafast electron microscopy—of the emergence, evolution, dispersion, and decay of photoexcited, hypersonic coherent acoustic phonons in nanoscale germanium wedges. Coherent strain waves generated via ultrafast in situ photoexcitation were imaged propagating with initial phase velocities of up to 35 km/s across discrete micrometer-scale crystal regions. We then observe that, while each wave front travels at a constant velocity, the entire wave train evolves with a time-varying phase-velocity dispersion, displaying a single-exponential decay to the longitudinal speed of sound (5 km/s) and with a mean lifetime of 280 ps. We also find that the wavemore » trains propagate along a single in-plane direction oriented parallel to striations introduced during specimen preparation, independent of crystallographic direction. Elastic-plate modeling indicates the dynamics arise from excitation of a single, symmetric (dilatational) guided acoustic mode. Further, by precisely determining the experiment time-zero position with a plasma-lensing method, we find that wave-front emergence occurs approximately 100 ps after femtosecond photoexcitation, which matches well with Auger recombination times in germanium. We conclude by discussing the similarities between the imaged hypersonic strain-wave dynamics and electron/hole plasma-wave dynamics in strongly photoexcited semiconductors.« less
Ultrafast dynamics of defect-assisted electron-hole recombination in monolayer MoS2.
Wang, Haining; Zhang, Changjian; Rana, Farhan
2015-01-14
In this Letter, we present nondegenerate ultrafast optical pump-probe studies of the carrier recombination dynamics in MoS2 monolayers. By tuning the probe to wavelengths much longer than the exciton line, we make the probe transmission sensitive to the total population of photoexcited electrons and holes. Our measurement reveals two distinct time scales over which the photoexcited electrons and holes recombine; a fast time scale that lasts ∼ 2 ps and a slow time scale that lasts longer than ∼ 100 ps. The temperature and the pump fluence dependence of the observed carrier dynamics are consistent with defect-assisted recombination as being the dominant mechanism for electron-hole recombination in which the electrons and holes are captured by defects via Auger processes. Strong Coulomb interactions in two-dimensional atomic materials, together with strong electron and hole correlations in two-dimensional metal dichalcogenides, make Auger processes particularly effective for carrier capture by defects. We present a model for carrier recombination dynamics that quantitatively explains all features of our data for different temperatures and pump fluences. The theoretical estimates for the rate constants for Auger carrier capture are in good agreement with the experimentally determined values. Our results underscore the important role played by Auger processes in two-dimensional atomic materials.
NASA Astrophysics Data System (ADS)
Yakovlev, Andrey G.; Jones, Michael R.; Potter, Jane A.; Fyfe, Paul K.; Vasilieva, Lyudmila G.; Shkuropatov, Anatoli Ya.; Shuvalov, Vladimir A.
2005-12-01
Coherent components in the dynamics of decay of stimulated emission from the primary electron donor excited state P*, and of population of the product charge-separated states P+BA- and P+HA-, were studied in GM203L mutant reaction centers (RCs) of Rhodobacter (Rb.) sphaeroides by measuring oscillations in the kinetics of absorbance changes at 940 nm (P* stimulated emission region), 1020 nm ( BA- absorption region) and 760 nm (H A bleaching region). Absorbance changes were induced by excitation of P (870 nm) with 18 fs pulses at 90 K. In the GM203L mutant, replacement of Gly M203 by Leu results in exclusion of the crystallographically defined water molecule (HOH55) located close to the oxygen of the 13 1-keto carbonyl group of B A and to His M202, which provides the axial ligand to the Mg of the P B bacteriochlorophyll. The results of femtosecond measurements were compared with those obtained with Rb. sphaeroides R-26 RCs containing an intact water HOH55. The main consequences of the GM203L mutation were found to be as follows: (i) a low-frequency oscillation at 32 cm -1, which is characteristic of the HOH55-containing RCs, disappears from the kinetics of absorbance changes at 1020 and 760 nm in the mutant RC; (ii) electron transfer from P* to B A in the wild type RC was characterized by two time constants of 1.1 ps (80%) and 4.3 ps (20%), but in the GM203L mutant was characterized by a single time constant of 4.3 ps, demonstrating a slowing of primary charge separation. The previously postulated rotation of water HOH55 with a fundamental frequency of 32 cm -1, triggered by electron transfer from P* to B A, was confirmed by observation of an isotopic shift of the 32 cm -1 oscillation in the kinetics of P+BA- population in deuterated, pheophytin-modified RCs of Rb. sphaeroides R-26, by a factor of 1.6. These data are discussed in terms of the influence of water HOH55 on the energetics of the P∗→P+BA- reaction, and protein dynamic events that occur on the time scale of this reaction.
Zhang, Luoying; Chung, Brian Y; Lear, Bridget C; Kilman, Valerie L; Liu, Yixiao; Mahesh, Guruswamy; Meissner, Rose-Anne; Hardin, Paul E; Allada, Ravi
2010-04-13
Daily behaviors in animals are determined by the interplay between internal timing signals from circadian clocks and environmental stimuli such as light. How these signals are integrated to produce timely and adaptive behavior is unclear. The fruit fly Drosophila exhibits clock-driven activity increases that anticipate dawn and dusk and free-running rhythms under constant conditions. Flies also respond to the onset of light and dark with acute increases in activity. Mutants of a novel ion channel, narrow abdomen (na), lack a robust increase in activity in response to light and show reduced anticipatory behavior and free-running rhythms, providing a genetic link between photic responses and circadian clock function. We used tissue-specific rescue of na to demonstrate a role for approximately 16-20 circadian pacemaker neurons, a subset of the posterior dorsal neurons 1 (DN1(p)s), in mediating the acute response to the onset of light as well as morning anticipatory behavior. Circadian pacemaker neurons expressing the neuropeptide PIGMENT-DISPERSING FACTOR (PDF) are especially important for morning anticipation and free-running rhythms and send projections to the DN1(p)s. We also demonstrate that DN1(p)Pdfr expression is sufficient to rescue, at least partially, Pdfr morning anticipation defects as well as defects in free-running rhythms, including those in DN1 molecular clocks. Additionally, these DN1 clocks in wild-type flies are more strongly reset to timing changes in PDF clocks than other pacemaker neurons, suggesting that they are direct targets. Taking these results together, we demonstrate that the DN1(p)s lie at the nexus of PDF and photic signaling to produce appropriate daily behavior.
Zhao, Xin; Zhao, Jie; Xie, Youzhuan; Mi, Jie
2016-01-01
This study assessed the utility of three-dimensional preoperative image reconstruction as digital virtual templating for junior surgeons in placing a pedicle screw (PS) in the lumbar spine. Twenty-three patients of lumbar disease were operated on with bilateral PS fixation in our hospital. The two sides of lumbar pedicles were randomly divided into "hand-free group" (HFG) and "digital virtual template group" (DVTG) in each patient. Two junior surgeons preoperatively randomly divided into these two groups finished the placement of PSs. The accuracy of PS and the procedure time of PS insertion were recorded. The accuracy of PS in DVTG was 91.8% and that in HFG was 87.7%. The PS insertion procedure time of DVTG was 74.5 ± 8.1 s and that of HFG was 90.9 ± 9.9 s. Although no significant difference was reported in the accurate rate of PS between the two groups, the PS insertion procedure time was significantly shorter in DVTG than in HFG (P < 0.05). Digital virtual template is simple and can reduce the procedure time of PS placement.
Dimeric molecular association of dimethyl sulfoxide in solutions of nonpolar liquids.
Shikata, Toshiyuki; Sugimoto, Natsuki
2012-01-26
Although many vibrational spectroscopic studies using infrared (IR) absorption and Raman scattering (RS) techniques revealed that dimethyl sulfoxide (DMSO) forms intermolecular dimeric associations in the pure liquid state and in solutions, the results of a number of dielectric relaxation studies did not clearly show the presence of such dimers. Recently, we found the presence of dimeric DMSO associations in not only the pure liquid but also in solutions of nonpolar solvents, such as tetrachloromethane (CCl(4)) and benzene (Bz), using dielectric relaxation (DR) techniques, which ranged from 50 MHz to 50 GHz at 25 °C. The dimeric DMSO associations cause a slow dielectric relaxation process with a relaxation time of ca. 23 ps for solutions in CCl(4) (ca. 17 ps in Bz) due to the dissociation into monomeric DMSO molecules, while the other fast relaxation is caused by monomeric DMSO molecules with a relaxation time of ca. 5.0 ps (ca. 5.5 ps in Bz) at 25 °C. A comparison of DR and vibrational spectroscopic data for DMSO solutions demonstrated that the concentration dependence of the relative magnitude of the slow and fast DR strength corresponds well to the two IR and RS bands assigned to the vibrational stretching modes of the sulfoxide groups (S═O) of the dimeric associations and the monomeric DMSO molecules, respectively. Moreover, the concentrations of the dimeric associations ([DIM]) and monomeric DMSO molecules ([MON]) were governed by a chemical equilibrium and an equilibrium constant (K(d) = [DIM](2)[MON](-1)) that was markedly dependent on the concentration of DMSO and the solvent species (K(d) = 2.5 ± 0.5 M(-1) and 0.7 ± 0.1 M(-1) in dilute CCl(4) and Bz solutions, respectively, and dramatically increased to 20-40 M(-1) in pure DMSO at 25 °C).
Kuzmin, Michael G; Soboleva, Irina V
2014-05-01
Representation of the experimental reaction kinetics in the form of rate distribution is shown to be an effective method for the analysis of the mechanisms of these reactions and for comparisons of the kinetics with QC calculations, as well as with the experimental data on the medium mobility. The rate constant distribution function P(k) can be obtained directly from the experimental kinetics N(t) by an inverse Laplace transform. The application of this approach to kinetic data for several excited-state electron transfer reactions reveals the transformations of their rate control factors in the time domain of 1-1000 ps. In neat electron donating solvents two components are observed. The fastest component (k > 1 ps(-1)) was found to be controlled by the fluctuations of the overall electronic coupling matrix element, involving all the reactant molecules, located inside the interior of the solvent shell, rather than for specific pairs of reactant molecules. The slower component (1 > k > 0.1 ps(-1)) is controlled by the medium reorganization (longitudinal relaxation times, τL). A substantial contribution from the non-stationary diffusion controlled reaction is observed in diluted solutions ([Q] < 1 M). No contribution from the long-distance electron transfer (electron tunneling) proposed earlier for the excited-state electron transfer between perylene and tetracyanoethylene in acetonitrile is observed. The rate distribution approach provides a simple and efficient method for the quantitative analysis of the reaction mechanism and transformation of the rate control factors in the course of the reactions.
Diffusion of liquid polystyrene into glassy poly(phenylene oxide) characterized by DSC
NASA Astrophysics Data System (ADS)
Li, Linling; Wang, Xiaoliang; Zhou, Dongshan; Xue, Gi
2013-03-01
We report a diffusion study on the polystyrene/poly(phenylene oxide) (PS/PPO) mixture consisted by the PS and PPO nanoparticles. Diffusion of liquid PS into glassy PPO (l-PS/g-PPO) is promoted by annealing the PS/PPO mixture at several temperatures below Tg of the PPO. By tracing the Tgs of the PS-rich domain behind the diffusion front using DSC, we get the relationships of PS weight fractions and diffusion front advances with the elapsed diffusion times at different diffusion temperatures using the Gordon-Taylor equation and core-shell model. We find that the plots of weight fraction of PS vs. elapsed diffusion times at different temperatures can be converted to a master curve by Time-Temperature superposition, and the shift factors obey the Arrhenius equation. Besides, the diffusion front advances of l-PS into g-PPO show an excellent agreement with the t1/2 scaling law at the beginning of the diffusion process, and the diffusion coefficients of different diffusion temperatures also obey the Arrhenius equation. We believe the diffusion mechanism for l-PS/g-PPO should be the Fickean law rather than the Case II, though there are departures of original linearity at longer diffusion times due to the limited liquid supply system. Diffusion of liquid polystyrene into glassy poly(phenylene oxide) characterized by DSC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poder, Joel; Corde, Stéphanie
Purpose: The purpose of this study was to measure the dose distributions for different Radiation Oncology Physics and Engineering Services, Australia (ROPES) type eye plaques loaded with I-125 (model 6711) seeds using GafChromic{sup ®} EBT3 films, in order to verify the dose distributions in the Plaque Simulator™ (PS) ophthalmic 3D treatment planning system. The brachytherapy module of RADCALC{sup ®} was used to independently check the dose distributions calculated by PS. Correction factors were derived from the measured data to be used in PS to account for the effect of the stainless steel ROPES plaque backing on the 3D dose distribution.Methods:more » Using GafChromic{sup ®} EBT3 films inserted in a specially designed Solid Water™ eye ball phantom, dose distributions were measured three-dimensionally both along and perpendicular to I-125 (model 6711) loaded ROPES eye plaque's central axis (CAX) with 2 mm depth increments. Each measurement was performed in full scatter conditions both with and without the stainless steel plaque backing attached to the eye plaque, to assess its effect on the dose distributions. Results were compared to the dose distributions calculated by Plaque Simulator™ and checked independently with RADCALC{sup ®}.Results: The EBT3 film measurements without the stainless steel backing were found to agree with PS and RADCALC{sup ®} to within 2% and 4%, respectively, on the plaque CAX. Also, RADCALC{sup ®} was found to agree with PS to within 2%. The CAX depth doses measured using EBT3 film with the stainless steel backing were observed to result in a 4% decrease relative to when the backing was not present. Within experimental uncertainty, the 4% decrease was found to be constant with depth and independent of plaque size. Using a constant dose correction factor of T= 0.96 in PS, where the calculated dose for the full water scattering medium is reduced by 4% in every voxel in the dose grid, the effect of the plaque backing was accurately modeled in the planning system. Off-axis profiles were also modeled in PS by taking into account the three-dimensional model of the plaque backing.Conclusions: The doses calculated by PS and RADCALC{sup ®} for uniformly loaded ROPES plaques in full and uniform scattering conditions were validated by the EBT3 film measurements. The stainless steel plaque backing was observed to decrease the measured dose by 4%. Through the introduction of a scalar correction factor (0.96) in PS, the dose homogeneity effect of the stainless steel plaque backing was found to agree with the measured EBT3 film measurements.« less
Poder, Joel; Corde, Stéphanie
2013-12-01
The purpose of this study was to measure the dose distributions for different Radiation Oncology Physics and Engineering Services, Australia (ROPES) type eye plaques loaded with I-125 (model 6711) seeds using GafChromic(®) EBT3 films, in order to verify the dose distributions in the Plaque Simulator™ (PS) ophthalmic 3D treatment planning system. The brachytherapy module of RADCALC(®) was used to independently check the dose distributions calculated by PS. Correction factors were derived from the measured data to be used in PS to account for the effect of the stainless steel ROPES plaque backing on the 3D dose distribution. Using GafChromic(®) EBT3 films inserted in a specially designed Solid Water™ eye ball phantom, dose distributions were measured three-dimensionally both along and perpendicular to I-125 (model 6711) loaded ROPES eye plaque's central axis (CAX) with 2 mm depth increments. Each measurement was performed in full scatter conditions both with and without the stainless steel plaque backing attached to the eye plaque, to assess its effect on the dose distributions. Results were compared to the dose distributions calculated by Plaque Simulator™ and checked independently with RADCALC(®). The EBT3 film measurements without the stainless steel backing were found to agree with PS and RADCALC(®) to within 2% and 4%, respectively, on the plaque CAX. Also, RADCALC(®) was found to agree with PS to within 2%. The CAX depth doses measured using EBT3 film with the stainless steel backing were observed to result in a 4% decrease relative to when the backing was not present. Within experimental uncertainty, the 4% decrease was found to be constant with depth and independent of plaque size. Using a constant dose correction factor of T = 0.96 in PS, where the calculated dose for the full water scattering medium is reduced by 4% in every voxel in the dose grid, the effect of the plaque backing was accurately modeled in the planning system. Off-axis profiles were also modeled in PS by taking into account the three-dimensional model of the plaque backing. The doses calculated by PS and RADCALC(®) for uniformly loaded ROPES plaques in full and uniform scattering conditions were validated by the EBT3 film measurements. The stainless steel plaque backing was observed to decrease the measured dose by 4%. Through the introduction of a scalar correction factor (0.96) in PS, the dose homogeneity effect of the stainless steel plaque backing was found to agree with the measured EBT3 film measurements.
NASA Astrophysics Data System (ADS)
Ferris, Thomas D.; Farrar, Thomas C.
The temperature dependence of the hydroxyl proton chemical shift and deuterium quadrupolar relaxation time of neat ethanol were measured over the temperature range 190-350 K. The proton isotropic chemical shift varies from 6.2 ppm at 190 K to 4.7 ppm at 350 K. The deuterium NMR relaxation time in ethanol- d 1 varies from 6.2 ms to 309 ms over the same range. Ab initio calculations performed on various ethanol clusters ranging in size from monomer to hexamer show a linear correlation ( R 2 = 0.99) between ≤D, the deuterium quadrupole coupling parameter, and δH, the isotropic proton chemical shift in ppm relative to TMS: ≤D(kHz) = 297.60 - 15.28 δH. The temperature dependence of ≤D ranges from 199.5 kHz at 190 K to 221.4 kHz at 350 K. Using the values for ≤D and the relaxation time data, the temperature dependence of the OD rotational correlation time was found to vary from 282 ps at 190 K to 4.5 ps near the boiling point (350 K). Using these correlation times and bulk viscosity data, the Gierer-Wirtz model predicts a supramolecular cluster volume of about 317 A 3 , the approximate volume of a cyclic pentamer cluter of ethanol molecules. The cluster volume was nearly constant from 340 K to about 290 K.
Measurement of the energy and time resolution of a undoped CsI + MPPC array for the Mu2e experiment
Atanova, O.; Cordelli, M.; Corradi, G.; ...
2017-02-13
This paper describes the measurements of energy and time response and resolution of a 3 x 3 array made of undoped CsI crystals coupled to large area Hamamatsu Multi Pixel Photon Counters. The measurements have been performed using the electron beam of the Beam Test Facility in Frascati (Rome, Italy) in the energy range 80-120 MeV. The measured energy resolution, estimated with the FWHM, at 100 MeV is 16.4%. This resolution is dominated by the energy leakage due to the small dimensions of the prototype. The time is reconstructed by fitting the leading edge of the digitized signals and applyingmore » a digital constant fraction discrimination technique. A time resolution of about 110 ps at 100 MeV is achieved.« less
Ultrafast carrier dynamics in the large-magnetoresistance material WTe 2
Dai, Y. M.; Bowlan, J.; Li, H.; ...
2015-10-07
In this study, ultrafast optical pump-probe spectroscopy is used to track carrier dynamics in the large-magnetoresistance material WTe 2. Our experiments reveal a fast relaxation process occurring on a subpicosecond time scale that is caused by electron-phonon thermalization, allowing us to extract the electron-phonon coupling constant. An additional slower relaxation process, occurring on a time scale of ~5–15 ps, is attributed to phonon-assisted electron-hole recombination. As the temperature decreases from 300 K, the time scale governing this process increases due to the reduction of the phonon population. However, below ~50 K, an unusual decrease of the recombination time sets in,more » most likely due to a change in the electronic structure that has been linked to the large magnetoresistance observed in this material.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Kyung-Koo; Park, Kwang-Hee; Kwon, Donghyun
2011-02-14
Ultrafast two-dimensional infrared (2DIR) spectroscopy has been proven to be an exceptionally useful method to study chemical exchange processes between different vibrational chromophores under thermal equilibria. Here, we present experimental results on the thermal equilibrium ion pairing dynamics of Li{sup +} and SCN{sup -} ions in N,N-dimethylformamide. Li{sup +} and SCN{sup -} ions can form a contact ion pair (CIP). Varying the relative concentration of Li{sup +} in solution, we could control the equilibrium CIP and free SCN{sup -} concentrations. Since the CN stretch frequency of Li-SCN CIP is blue-shifted by about 16 cm{sup -1} from that of free SCN{supmore » -} ion, the CN stretch IR spectrum is a doublet. The temperature-dependent IR absorption spectra reveal that the CIP formation is an endothermic (0.57 kJ/mol) process and the CIP state has larger entropy by 3.12 J/(K mol) than the free ion states. Since the two ionic configurations are spectrally distinguishable, this salt solution is ideally suited for nonlinear IR spectroscopic investigations to study ion pair association and dissociation dynamics. Using polarization-controlled IR pump-probe methods, we first measured the lifetimes and orientational relaxation times of these two forms of ionic configurations. The vibrational population relaxation times of both the free ion and CIP are about 32 ps. However, the orientational relaxation time of the CIP, which is {approx}47 ps, is significantly longer than that of the free SCN{sup -}, which is {approx}7.7 ps. This clearly indicates that the effective moment of inertia of the CIP is much larger than that of the free SCN{sup -}. Then, using chemical exchange 2DIR spectroscopy and analyzing the diagonal peak and cross-peak amplitude changes with increasing the waiting time, we determined the contact ion pair association and dissociation time constants that are found to be 165 and 190 ps, respectively. The results presented and discussed in this paper are believed to be important, not only because the ion-pairing dynamics is one of the most fundamental physical chemistry problems but also because such molecular ion-ion interactions are of critical importance in understanding Hofmeister effects on protein stability.« less
Prall, Bradley S; Parkinson, Dilworth Y; Ishikawa, Naoto; Fleming, Graham R
2005-12-08
We exploit a coherently excited nuclear wave packet to study nuclear motion modulation of electronic structure in a metal bridged phthalocyanine dimer, lutetium bisphthalocyanine, which displays two visible absorption bands. We find that the nuclear coordinate influences the energies of the underlying exciton and charge resonance states as well as their interaction; the interplay of the various couplings creates unusual anti-correlated spectral motion in the two bands. Excited state relaxation dynamics are the same regardless of which transition is pumped, with decay time constants of 1.5 and 11 ps. The dynamics are analyzed using a three-state kinetic model after relaxation from one or two additional states faster than the experimental time resolution of 50-100 fs.
NASA Astrophysics Data System (ADS)
Rosales, Daniel; Gil, Bernard; Monavarian, Morteza; Zhang, Fan; Okur, Serdal; Izyumskaya, Natalia; Avrutin, Vitaliy; Özgür, Ümit; Morkoç, Hadis
2015-03-01
We studied the temperature dependence and the recombination dynamics of the photoluminescence of (1-101)-oriented semi-polar Al0.2Ga0.8N/GaN multiple quantum wells (MQW). The polarized low-temperature PL measurements reveal that radiative recombination exhibit an anisotropic behavior. The PL intensity at room temperature is reduced by one order of magnitude with respect to low temperature. The radiative decay time exhibits a mixed behavior: it is roughly constant between 8K to ranging near 140-150K and then rapidly increases with a slope of 10 ps.K-1. This behavior is indicative of coexistence of localized excitons and free excitons which relative proportion are statistically computed.
Timing properties of phosphor-coated polished LSO crystals.
Schmall, Jeffrey P; Roncali, Emilie; Berg, Eric; Viswanath, Varsha; Du, Junwei; Cherry, Simon R
2014-08-07
This study investigates a time-of-flight (TOF)-depth-of-interaction (DOI) detector design for positron emission tomography (PET), based on phosphor-coated lutetium oxyorthosilicate (LSO) scintillator crystals coupled to fast single channel photomultiplier tubes. Interaction of the scintillation light with the phosphor coating changes the pulse shape in a depth-dependent manner. 3 × 3 × 10 mm(3) LSO scintillation crystals with polished surfaces were characterized, with and without phosphor coating, to assess DOI capability and timing properties. Two different phosphor coating geometries were studied: coating of the top surface of the crystal, and the top plus half of the crystal sides. There was negligible depth dependency in the decay time when coating only the top surface, however there was a ∼10 ns difference in end-to-end decay time when coating the top plus half of the crystal sides, sufficient to support the use of three DOI bins (3.3 mm DOI bin width). The rise time of the half-coated phosphor crystal was slightly faster at all depths, compared to uncoated crystals, however the signal amplitude was lower. Phosphor coating resulted in depth-dependent photopeak positions with an energy resolution of 13.7%, at a depth of 1 mm, and 15.3%, at a depth of 9 mm, for the half-coated crystal. Uncoated LSO crystals showed no change in photopeak position as a function of depth, with an energy resolution of 10.4%. The head-on coincidence timing resolution (CTR) of two uncoated LSO crystals was 287 ps using constant fraction discrimination for time pick-off. With phosphor coating, the CTR of the top-coated crystal was 314 ps, compared to 384 ps for the half-coated crystal. We demonstrate that the trade-off between timing resolution and DOI resolution can be controlled by the phosphor coating geometry. Here we present preliminary results demonstrating that good DOI resolution can be achieved with only a modest 26% degradation in CTR.
Jia, Menghui; Yi, Hua; Chang, Mengfang; Cao, Xiaodan; Li, Lei; Zhou, Zhongneng; Pan, Haifeng; Chen, Yan; Zhang, Sanjun; Xu, Jianhua
2015-08-01
Ultrafast fluorescence dynamics of Tryptophan-Tryptophan (Trp-Trp/Trp2) dipeptide and its derivatives in water have been investigated using a picosecond resolved time correlated single photon counting (TCSPC) apparatus together with a femtosecond resolved upconversion spectrophotofluorometer. The fluorescence decay profiles at multiple wavelengths were fitted by a global analysis technique. Nanosecond fluorescence kinetics of Trp2, N-tert-butyl carbonyl oxygen-N'-aldehyde group-l-tryptophan-l-tryptophan (NBTrp2), l-tryptophan-l-tryptophan methyl ester (Trp2Me), and N-acetyl-l-tryptophan-l-tryptophan methyl ester (NATrp2Me) exhibit multi-exponential decays with the average lifetimes of 1.99, 3.04, 0.72 and 1.22ns, respectively. Due to the intramolecular interaction between two Trp residues, the "water relaxation" lifetime was observed around 4ps, and it is noticed that Trp2 and its derivatives also exhibit a new decay with a lifetime of ∼100ps, while single-Trp fluorescence decay in dipeptides/proteins shows 20-30ps. The intramolecular interaction lifetime constants of Trp2, NBTrp2, Trp2Me and NATrp2Me were then calculated to be 3.64, 0.93, 11.52 and 2.40ns, respectively. Candidate mechanisms (including heterogeneity, solvent relaxation, quasi static self-quenching or ET/PT quenching) have been discussed. Copyright © 2015. Published by Elsevier B.V.
Liu, Yiqing; He, Xuexiang; Fu, Yongsheng; Dionysiou, Dionysios D
2016-03-15
Oxytetracycline (OTC), an important broad-spectrum antibiotic, has been detected extensively in various environmental systems, which may have a detrimental impact on ecosystem and human health through the development of drug resistant bacteria and pathogens. In this study, the degradation of OTC was evaluated by UV-254nm activated persulfate (PS). The observed UV fluence based pseudo first-order rate constant (kobs) was found to be the highest at near neutral pH conditions (pH 5.5-8.5). Presence of various natural water constituents had different effects on OTC degradation, with a significant enhancement in the presence of bicarbonate or Cu(2+). Limited elimination of total organic carbon (TOC) and PS was observed during the mineralization of OTC. Transformation byproducts in the presence and absence of hydroxyl radical scavenging agent tert-butanol (t-BuOH) were identified using ultra-high definition accurate-mass quadrupole time-of-flight liquid chromatography/mass spectrometer (LC-QTOF/MS). Potential OTC degradation mechanism was subsequently proposed revealing four different reaction pathways by SO4(-) reaction including hydroxylation (+16Da), demethylation (-14Da), decarbonylation (-28Da) and dehydration (-18Da). This study suggests that UV-254nm/PS is a promising treatment technology for the control of water pollution caused by emerging contaminants such as OTC. Copyright © 2015 Elsevier B.V. All rights reserved.
Batinic-Haberle, Ines; Tovmasyan, Artak; Spasojevic, Ivan
2015-08-01
Most of the SOD mimics thus far developed belong to the classes of Mn-(MnPs) and Fe porphyrins(FePs), Mn(III) salens, Mn(II) cyclic polyamines and metal salts. Due to their remarkable stability we have predominantly explored Mn porphyrins, aiming initially at mimicking kinetics and thermodynamics of the catalysis of O2(-) dismutation by SOD enzymes. Several MnPs are of potency similar to SOD enzymes. The in vivo bioavailability and toxicity of MnPs have been addressed also. Numerous in vitro and in vivo studies indicate their impressive therapeutic efficacy. Increasing insight into complex cellular redox biology has been accompanied by increasing awareness of complex redox chemistry of MnPs. During O2(-) dismutation process, the most powerful Mn porphyrin-based SOD mimics reduce and oxidize O2(-) with close to identical rate constants. MnPs reduce and oxidize other reactive species also (none of them specific to MnPs), acting as reductants (antioxidant) and pro-oxidants. Distinction must be made between the type of reactions of MnPs and the favorable therapeutic effects we observe; the latter may be of either anti- or pro-oxidative nature. H2O2/MnP mediated oxidation of protein thiols and its impact on cellular transcription seems to dominate redox biology of MnPs. It has been thus far demonstrated that the ability of MnPs to catalyze O2(-) dismutation parallels all other reactivities (such as ONOO(-) reduction) and in turn their therapeutic efficacies. Assuming that all diseases have in common the perturbation of cellular redox environment, developing SOD mimics still seems to be the appropriate strategy for the design of potent redox-active therapeutics. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
Ultrafast All-Optical Switching of Germanium-Based Flexible Metaphotonic Devices.
Lim, Wen Xiang; Manjappa, Manukumara; Srivastava, Yogesh Kumar; Cong, Longqing; Kumar, Abhishek; MacDonald, Kevin F; Singh, Ranjan
2018-03-01
Incorporating semiconductors as active media into metamaterials offers opportunities for a wide range of dynamically switchable/tunable, technologically relevant optical functionalities enabled by strong, resonant light-matter interactions within the semiconductor. Here, a germanium-thin-film-based flexible metaphotonic device for ultrafast optical switching of terahertz radiation is experimentally demonstrated. A resonant transmission modulation depth of 90% is achieved, with an ultrafast full recovery time of 17 ps. An observed sub-picosecond decay constant of 670 fs is attributed to the presence of trap-assisted recombination sites in the thermally evaporated germanium film. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Raines, Alexander; Garwe, Tabitha; Adeseye, Ademola; Ruiz-Elizalde, Alejandro; Churchill, Warren; Tuggle, David; Mantor, Cameron; Lees, Jason
2015-06-01
Adding fellows to surgical departments with residency programs can affect resident education. Our specific aim was to evaluate the effect of adding a pediatric surgery (PS) fellow on the number of index PS cases logged by the general surgery (GS) residents. At a single institution with both PS and GS programs, we examined the number of logged cases for the fellows and residents over 10 years [5 years before (Time 1) and 5 years after (Time 2) the addition of a PS fellow]. Additionally, the procedure related relative value units (RVUs) recorded by the faculty were evaluated. The fellows averaged 752 and 703 cases during Times 1 and 2, respectively, decreasing by 49 (P = 0.2303). The residents averaged 172 and 161 cases annually during Time 1 and Time 2, respectively, decreasing by 11 (P = 0.7340). The total number of procedure related RVUs was 4627 and 6000 during Times 1 and 2, respectively. The number of cases logged by the PS fellows and GS residents decreased after the addition of a PS fellow; however, the decrease was not significant. Programs can reasonably add an additional PS fellow, but care should be taken especially in programs that are otherwise static in size.
NASA Astrophysics Data System (ADS)
Tsibidis, George D.
2018-04-01
We present a theoretical study of the ultrafast electron dynamics in transition metals of large electron-phonon coupling constant using ultrashort pulsed laser beams. The significant influence of the dynamics of produced nonthermal electrons to electron thermalisation and electron-phonon interaction is thoroughly investigated for various values of the pulse duration (i.e., from 10 fs to 2.3 ps). The model correlates the role of nonthermal electrons, relaxation processes and induced stress-strain fields. Simulations are presented by choosing Nickel (Ni) as a test material to compute electron-phonon relaxation time due to its large electron-phonon coupling constant. We demonstrate that the consideration of the aforementioned factors leads to significant changes compared to the results the traditional two-temperature model provides. The proposed model predicts a substantially ( 33%) smaller damage threshold and a large increase of the stress ( 20%, at early times) which first underlines the role of the nonthermal electron interactions and second enhances its importance with respect to the precise determination of laser specifications in material micromachining techniques.
Di Donato, Danielle M; West, Daniel W D; Churchward-Venne, Tyler A; Breen, Leigh; Baker, Steven K; Phillips, Stuart M
2014-05-01
Aerobic exercise is typically associated with expansion of the mitochondrial protein pool and improvements in muscle oxidative capacity. The impact of aerobic exercise intensity on the synthesis of specific skeletal muscle protein subfractions is not known. We aimed to study the effect of aerobic exercise intensity on rates of myofibrillar (MyoPS) and mitochondrial (MitoPS) protein synthesis over an early (0.5-4.5 h) and late (24-28 h) period during postexercise recovery. Using a within-subject crossover design, eight males (21 ± 1 yr, Vo2peak 46.7 ± 2.0 ml·kg(-1)·min(-1)) performed two work-matched cycle ergometry exercise trials (LOW: 60 min at 30% Wmax; HIGH: 30 min at 60% Wmax) in the fasted state while undergoing a primed constant infusion of l-[ring-(13)C6]phenylalanine. Muscle biopsies were obtained at rest and 0.5, 4.5, 24, and 28 h postexercise to determine both the "early" and "late" response of MyoPS and MitoPS and the phosphorylation status of selected proteins within both the Akt/mTOR and MAPK pathways. Over 24-28 h postexercise, MitoPS was significantly greater after the HIGH vs. LOW exercise trial (P < 0.05). Rates of MyoPS were increased equivalently over 0.5-4.5 h postexercise recovery (P < 0.05) but remained elevated at 24-28 h postexercise only following the HIGH trial. In conclusion, an acute bout of high- but not low-intensity aerobic exercise in the fasted state resulted in a sustained elevation of both MitoPS and MyoPS at 24-28 h postexercise recovery.
Di Donato, Danielle M.; West, Daniel W. D.; Churchward-Venne, Tyler A.; Breen, Leigh; Baker, Steven K.
2014-01-01
Aerobic exercise is typically associated with expansion of the mitochondrial protein pool and improvements in muscle oxidative capacity. The impact of aerobic exercise intensity on the synthesis of specific skeletal muscle protein subfractions is not known. We aimed to study the effect of aerobic exercise intensity on rates of myofibrillar (MyoPS) and mitochondrial (MitoPS) protein synthesis over an early (0.5–4.5 h) and late (24–28 h) period during postexercise recovery. Using a within-subject crossover design, eight males (21 ± 1 yr, V̇o2peak 46.7 ± 2.0 ml·kg−1·min−1) performed two work-matched cycle ergometry exercise trials (LOW: 60 min at 30% Wmax; HIGH: 30 min at 60% Wmax) in the fasted state while undergoing a primed constant infusion of l-[ring-13C6]phenylalanine. Muscle biopsies were obtained at rest and 0.5, 4.5, 24, and 28 h postexercise to determine both the “early” and “late” response of MyoPS and MitoPS and the phosphorylation status of selected proteins within both the Akt/mTOR and MAPK pathways. Over 24–28 h postexercise, MitoPS was significantly greater after the HIGH vs. LOW exercise trial (P < 0.05). Rates of MyoPS were increased equivalently over 0.5–4.5 h postexercise recovery (P < 0.05) but remained elevated at 24–28 h postexercise only following the HIGH trial. In conclusion, an acute bout of high- but not low-intensity aerobic exercise in the fasted state resulted in a sustained elevation of both MitoPS and MyoPS at 24–28 h postexercise recovery. PMID:24595306
Keşan, Gürkan; Litvín, Radek; Bína, David; Durchan, Milan; Šlouf, Václav; Polívka, Tomáš
2016-04-01
Violaxanthin-chlorophyll a protein (VCP) from Nannochloropsis oceanica is a Chl a-only member of the LHC family of light-harvesting proteins. VCP binds carotenoids violaxanthin (Vio), vaucheriaxanthin (Vau), and vaucheriaxanthin-ester (Vau-ester). Here we report on energy transfer pathways in the VCP complex. The overall carotenoid-to-Chla energy transfer has efficiency over 90%. Based on their energy transfer properties, the carotenoids in VCP can be divided into two groups; blue carotenoids with the lowest energy absorption band around 480nm and red carotenoids with absorption extended up to 530nm. Both carotenoid groups transfer energy efficiently from their S2 states, reaching efficiencies of ~70% (blue) and ~60% (red). The S1 pathway, however, is efficient only for the red carotenoid pool for which two S1 routes characterized by 0.33 and 2.4ps time constants were identified. For the blue carotenoids the S1-mediated pathway is represented only by a minor route likely involving a hot S1 state. The relaxed S1 state of blue carotenoids decays to the ground state within 21ps. Presence of a fraction of non-transferring red carotenoids with the S1 lifetime of 13ps indicates some specific carotenoid-protein interaction that must shorten the intrinsic S1 lifetime of Vio and/or Vau whose S1 lifetimes in methanol are 26 and 29ps, respectively. The VCP complex from N. oceanica is the first example of a light-harvesting complex binding only non-carbonyl carotenoids with carotenoid-to-chlorophyll energy transfer efficiency over 90%. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arlt, T.; Penzkofer H.; Zinth, W.
The energetics of the primary electron donor (the special pair P) in reaction centers from Rhodopseudomonas viridis were modified by site-directed mutagenesis of histidine L168 to phenylalanine. This leads to the loss of a hydrogen bond between the amino acid side chain and the ring I acetyl carbonyl oxygen of the bacteriochlorophyll molecule BChl{sub LP}. As a result of the mutation, a 35 nm blue shift of the Q{sub y} band of the special pair and a decrease of 80 mV in the P/P{sup +} oxidation-reduction potential occur. Femtosecond spectroscopy revealed an acceleration of the first electron transfer step frommore » 3.5 ps in wild type to 1.1 ps in mutant. Analysis of change in the bacteriochlorophyll monomer (B) band of the mutant reaction centers showed strong bleaching. This is direct evidence that bacteriochlorophyll b is real intermediate in electron transfer. The changes in redox potential and time constants allow one to estimate the energetics in the wild-type and mutated reaction centers according to the Marcus electron transfer theory. 32 refs., 6 figs.« less
NASA Astrophysics Data System (ADS)
Nie, X. C.; Song, Hai-Ying; Zhang, Xiu; Gu, Peng; Liu, Shi-Bing; Li, Fan; Meng, Jian-Qiao; Duan, Yu-Xia; Liu, H. Y.
2018-03-01
We present systematic studies of the transient dynamics of GaAs by ultrafast time-resolved reflectivity. In photoexcited non-equilibrium states, we found a sign reverse in reflectivity change ΔR/R, from positive around room temperature to negative at cryogenic temperatures. The former corresponds to a free carrier metallic state, while the latter is attributed to an exciton insulating state, in which the transient electronic properties is mostly dominated by excitons, resulting in a transient metal–insulator transition (MIT). Two transition temperatures (T 1 and T 2) are well identified by analyzing the intensity change of the transient reflectivity. We found that photoexcited MIT starts emerging at T 1 as high as ∼ 230 K, in terms of a dip feature at 0.4 ps, and becomes stabilized below T 2 that is up to ∼ 180 K, associated with a negative constant after 40 ps. Our results address a phase diagram that provides a framework for the inducing of MIT through temperature and photoexcitation, and may shed light on the understanding of light-semiconductor interaction and exciton physics.
NASA Astrophysics Data System (ADS)
Makhlouf, Houssin; Karam, Chantal; Lamouchi, Amina; Tingry, Sophie; Miele, Philippe; Habchi, Roland; Chtourou, Radhouane; Bechelany, Mikhael
2018-06-01
In this work, ZnO nanowires (ZnO NWs) and urchin-like ZnO nanowires (U-ZnO NWs) based on self-assembled ordered polystyrene sphere (PS) were successfully prepared by combining atomic layer deposition (ALD) and electrochemical deposition (ECD) processes to build UV photosensors. The photo-response of the prepared samples was investigated and compared. The growth of the nanowires on self-assembled, ordered PS introduces a significant modification on the morphology, crystal orientation and grain size of U-ZnO NWs compared to randomly, vertically aligned ZnO NWs, and therefore improves the photo-response of U-ZnO NWs. The photocurrent may be produced by either a surface or bulk-related process. For ZnO NW-based photosensors, the photocurrent was monitored by a surface related process, whereas, it was mainly governed by a bulk related process for U-ZnO NWs, resulting in a higher and faster photo-response. The study of the rise and decay time constants for both materials showed that these parameters were strikingly sensitive to the optical properties.
Transferable ordered ni hollow sphere arrays induced by electrodeposition on colloidal monolayer.
Duan, Guotao; Cai, Weiping; Li, Yue; Li, Zhigang; Cao, Bingqiang; Luo, Yuanyuan
2006-04-13
We report an electrochemical synthesis of two-dimensionally ordered porous Ni arrays based on polystyrene sphere (PS) colloidal monolayer. The morphology can be controlled from bowl-like to hollow sphere-like structure by changing deposition time under a constant current. Importantly, such ordered Ni arrays on a conducting substrate can be transferred integrally to any other desired substrates, especially onto an insulting substrate or curved surface. The magnetic measurements of the two-dimensional hollow sphere array show the coercivity values of 104 Oe for the applied field parallel to the film, and 87 Oe for the applied field perpendicular to the film, which is larger than those of bulk Ni and hollow Ni submicrometer-sized spheres. The formation of hollow sphere arrays is attributed to preferential nucleation on the interstitial sites between PS in the colloidal monolayer and substrate, and growth along PSs' surface. The transferability of the arrays originates from partial contact between the Ni hollow spheres and substrate. Such novel Ni ordered nanostructured arrays with transferability and high magnetic properties should be useful in applications such as data storage, catalysis, and magnetics.
Simulation on Melting Process of Water Using Molecular Dynamics Method
NASA Astrophysics Data System (ADS)
Okawa, Seiji; Saito, Akio; Kang, Chaedong
Simulation on phase change from ice to water was presented using molecular dynamics method. 576molecules were placed in a cell at ice forming arrangement. The volume of the cell was fixed so that the density of ice was kept at 923 kg/m3. Periodic boundary condition was used. According to the phase diagram of water, melting point of ice at the density of 923 kg/m3 is about 400 K. In order to perform melting process from surface, only the molecules near the boundary were scaled at each time step to keep its average temperature at 420 K, and the average temperature of other molecules were set to 350 K as initial condition. By observing time variation of the change in molecular arrangement, it was found that the hydrogen bond network near the boundary surface started to break its configuration and the melting surface moved towards the center until no more ice forming configuration was observed. This phenomenon was also discussed in a form of temperature and energy variation. The total energy increased and reached to a steady state at the time around 6.5 ps. This increment was due to the energy supplied from the boundary at a constant temperature. The temperature in the cell kept almost constant at 380 K during the period between 0.6 and 5.5 ps. This period coincides with melting process observed in molecular arrangement. Hence, it can be said that 380 K corresponds to the melting point. The total energy stored in the cell consisted of sensible and latent heat. Specific heat of water and ice were calculated, and they were found to be 5.6 kJ/kg·K and 3.7 kJ/kg·K, respectively. Hence, latent heat was found to be 316kJ/kg. These values agreed quite well to the physical properties of water.
1986-01-01
Functional calcium channels present in purified skeletal muscle transverse tubules were inserted into planar phospholipid bilayers composed of the neutral lipid phosphatidylethanolamine (PE), the negatively charged lipid phosphatidylserine (PS), and mixtures of both. The lengthening of the mean open time and stabilization of single channel fluctuations under constant holding potentials was accomplished by the use of the agonist Bay K8644. It was found that the barium current carried through the channel saturates as a function of the BaCl2 concentration at a maximum current of 0.6 pA (at a holding potential of 0 mV) and a half-saturation value of 40 mM. Under saturation, the slope conductance of the channel is 20 pS at voltages more negative than -50 mV and 13 pS at a holding potential of 0 mV. At barium concentrations above and below the half-saturation point, the open channel currents were independent of the bilayer mole fraction of PS from XPS = 0 (pure PE) to XPS = 1.0 (pure PS). It is shown that in the absence of barium, the calcium channel transports sodium or potassium ions (P Na/PK = 1.4) at saturating rates higher than those for barium alone. The sodium conductance in pure PE bilayers saturates as a function of NaCl concentration, following a curve that can be described as a rectangular hyperbola with a half-saturation value of 200 mM and a maximum conductance of 68 pS (slope conductance at a holding potential of 0 mV). In pure PS bilayers, the sodium conductance is about twice that measured in PE at concentrations below 100 mM NaCl. The maximum channel conductance at high ionic strength is unaffected by the lipid charge. This effect at low ionic strength was analyzed according to J. Bell and C. Miller (1984. Biophysical Journal. 45:279- 287) and interpreted as if the conduction pathway of the calcium channel were separated from the bilayer lipid by approximately 20 A. This distance thereby effectively insulates the ion entry to the channel from the bulk of the bilayer lipid surface charge. Current vs. voltage curves measured in NaCl in pure PE and pure PS show that similarly small surface charge effects are present in both inward and outward currents. This suggests that the same conduction insulation is present at both ends of the calcium channel. PMID:2425043
Assembly of acid-functionalized single-walled carbon nanotubes at oil/water interfaces.
Feng, Tao; Hoagland, David A; Russell, Thomas P
2014-02-04
The efficient segregation of water-soluble, acid-functionalized, single-walled carbon nanotubes (SWCNTs) at the oil/water interface was induced by dissolving low-molecular-weight amine-terminated polystyrene (PS-NH2) in the oil phase. Salt-bridge interactions between carboxylic acid groups of SWCNTs and amine groups of PS drove the assembly of SWCNTs at the interface, monitored by pendant drop tensiometry and laser scanning confocal microscopy. The impact of PS end-group functionality, PS and SWCNT concentrations, and the degree of SWCNT acid modification on the interfacial activity was assessed, and a sharp drop in interfacial tension was observed above a critical SWCNT concentration. Interfacial tensions were low enough to support stable oil/water emulsions. Further experiments, including potentiometric titrations and the replacement of SWCNTs by other carboxyl-containing species, demonstrated that the interfacial tension drop reflects the loss of SWCNT charge as the pH falls near/below the intrinsic carboxyl dissociation constant; species lacking multivalent carboxylic acid groups are inactive. The trapped SWCNTs appear to be neither ordered nor oriented.
A new method for testing pile by single-impact energy and P-S curve
NASA Astrophysics Data System (ADS)
Xu, Zhao-Yong; Duan, Yong-Kang; Wang, Bin; Hu, Yi-Li; Yang, Run-Hai; Xu, Jun; Zhao, Jin-Ming
2004-11-01
By studying the pile-formula and stress-wave methods ( e.g., CASE method), the authors propose a new method for testing piles using the single-impact energy and P-S curves. The vibration and wave figures are recorded, and the dynamic and static displacements are measured by different transducers near the top of piles when the pile is impacted by a heavy hammer or micro-rocket. By observing the transformation coefficient of driving energy (total energy), the consumed energy of wave motion and vibration and so on, the vertical bearing capacity for single pile is measured and calculated. Then, using the vibration wave diagram, the dynamic relation curves between the force ( P) and the displacement ( S) is calculated and the yield points are determined. Using the static-loading test, the dynamic results are checked and the relative constants of dynamic-static P-S curves are determined. Then the subsidence quantity corresponding to the bearing capacity is determined. Moreover, the shaped quality of the pile body can be judged from the formation of P-S curves.
Mechanics of an Asymmetric Hard-Soft Lamellar Nanomaterial
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Weichao; Fredrickson, Glenn H.; Kramer, Edward J.
2016-03-24
Nanolayered lamellae are common structures in nanoscience and nanotechnology, but most are nearly symmetric in layer thickness. Here, we report on the structure and mechanics of highly asymmetric and thermodynamically stable soft–hard lamellar structures self-assembled from optimally designed PS 1-(PI-b-PS 2) 3 miktoarm star block copolymers. The remarkable mechanical properties of these strong and ductile PS (polystyrene)-based nanomaterials can be tuned over a broad range by varying the hard layer thickness while maintaining the soft layer thickness constant at 13 nm. Upon deformation, thin PS lamellae (<100 nm) exhibited kinks and predamaged/damaged grains, as well as cavitation in the softmore » layers. In contrast, deformation of thick lamellae (>100 nm) manifests cavitation in both soft and hard nanolayers. In situ tensile-SAXS experiments revealed the evolution of cavities during deformation and confirmed that the damage in such systems reflects both plastic deformation by shear and residual cavities. The aspects of the mechanics should point to universal deformation behavior in broader classes of asymmetric hard–soft lamellar materials, whose properties are just being revealed for versatile applications.« less
Bu, Lingjun; Zhou, Shiqing; Shi, Zhou; Deng, Lin; Li, Guangchao; Yi, Qihang; Gao, Naiyun
2016-02-01
The degradation kinetics and mechanism of the antiepileptic drug oxcarbazepine (OXC) by UV-activated persulfate oxidation were investigated in this study. Results showed that UV/persulfate (UV/PS) process appeared to be more effective in degrading OXC than UV or PS alone. The OXC degradation exhibited a pseudo-first order kinetics pattern and the degradation rate constants (k obs) were affected by initial OXC concentration, PS dosage, initial pH, and humic acid concentration to different degrees. It was found that low initial OXC concentration, high persulfate dosage, and initial pH enhanced the OXC degradation. Additionally, the presence of humic acid in the solution could greatly inhibit the degradation of OXC. Moreover, hydroxyl radical (OH•) and sulfate radical (SO4 (-)••) were identified to be responsible for OXC degradation and SO4 (-)• made the predominant contribution in this study. Finally, major intermediate products were identified and a preliminary degradation pathway was proposed. Results demonstrated that UV/PS system is a potential technology to control the water pollution caused by emerging contaminants such as OXC.
NASA Astrophysics Data System (ADS)
Requena, Michelle B.; Stringasci, Mirian D.; Pratavieira, Sebastião.; Vollet-Filho, José Dirceu; de Nardi, Andrigo B.; Escobar, Andre; da Rocha, Rozana W.; Bagnato, Vanderlei S.; de Menezes, Priscila F. C.
2018-02-01
The photodynamic therapy (PDT) is a therapeutic modality that depends mostly on photosensitizer (PS), light and molecular oxygen species. However, there are still technical limitations in clinical PDT that are under constant development, particularly concerning PS and light delivery. Intense Pulsed Light (IPL) sources are systems able to generate pulses of high energy with polychromatic light. IPL is a technique mainly used in the cosmetic area to perform various skin treatments for therapeutic and aesthetic applications. The goals of this study were to determine temperature variance during the application of IPL in porcine skin model, and the PDT effects using this light source with PS delivery by a commercial high pressure, needle-free injection system. The PSs tested were Indocyanine Green (ICG) and Photodithazine (PDZ), and the results showed an increase bellow 10 °C in the skin surface using a thermographic camera to measure. In conclusion, our preliminary study demonstrated that IPL associated with needle-free injection PS delivery could be a promising alternative to PDT.
Morozova, Kateryna; Clement, Cristina C.; Kaushik, Susmita; Stiller, Barbara; Arias, Esperanza; Ahmad, Atta; Rauch, Jennifer N.; Chatterjee, Victor; Melis, Chiara; Scharf, Brian; Gestwicki, Jason E.; Cuervo, Ana-Maria; Zuiderweg, Erik R. P.; Santambrogio, Laura
2016-01-01
hsc-70 (HSPA8) is a cytosolic molecular chaperone, which plays a central role in cellular proteostasis, including quality control during protein refolding and regulation of protein degradation. hsc-70 is pivotal to the process of macroautophagy, chaperone-mediated autophagy, and endosomal microautophagy. The latter requires hsc-70 interaction with negatively charged phosphatidylserine (PS) at the endosomal limiting membrane. Herein, by combining plasmon resonance, NMR spectroscopy, and amino acid mutagenesis, we mapped the C terminus of the hsc-70 LID domain as the structural interface interacting with endosomal PS, and we estimated an hsc-70/PS equilibrium dissociation constant of 4.7 ± 0.1 μm. This interaction is specific and involves a total of 4–5 lysine residues. Plasmon resonance and NMR results were further experimentally validated by hsc-70 endosomal binding experiments and endosomal microautophagy assays. The discovery of this previously unknown contact surface for hsc-70 in this work elucidates the mechanism of hsc-70 PS/membrane interaction for cytosolic cargo internalization into endosomes. PMID:27405763
Morozova, Kateryna; Clement, Cristina C; Kaushik, Susmita; Stiller, Barbara; Arias, Esperanza; Ahmad, Atta; Rauch, Jennifer N; Chatterjee, Victor; Melis, Chiara; Scharf, Brian; Gestwicki, Jason E; Cuervo, Ana-Maria; Zuiderweg, Erik R P; Santambrogio, Laura
2016-08-26
hsc-70 (HSPA8) is a cytosolic molecular chaperone, which plays a central role in cellular proteostasis, including quality control during protein refolding and regulation of protein degradation. hsc-70 is pivotal to the process of macroautophagy, chaperone-mediated autophagy, and endosomal microautophagy. The latter requires hsc-70 interaction with negatively charged phosphatidylserine (PS) at the endosomal limiting membrane. Herein, by combining plasmon resonance, NMR spectroscopy, and amino acid mutagenesis, we mapped the C terminus of the hsc-70 LID domain as the structural interface interacting with endosomal PS, and we estimated an hsc-70/PS equilibrium dissociation constant of 4.7 ± 0.1 μm. This interaction is specific and involves a total of 4-5 lysine residues. Plasmon resonance and NMR results were further experimentally validated by hsc-70 endosomal binding experiments and endosomal microautophagy assays. The discovery of this previously unknown contact surface for hsc-70 in this work elucidates the mechanism of hsc-70 PS/membrane interaction for cytosolic cargo internalization into endosomes. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
NASA Astrophysics Data System (ADS)
Akdoǧan, E. K.; Kerman, K.; Abazari, M.; Safari, A.
2008-03-01
We study the temperature dependence of dielectric constant (K) and spontaneous polarization (Ps) in the range of -95-200°C. Cubic (C)-tetragonal (T) and T-orthorhombic (O) transitions are observed at 264 and 25°C, respectively. The Curie-Weiss temperature of C-T transition is 249°C, indicating it is first order. X-ray data indicate T-O phase coexistence at 25°C. A singularity in Ps at 25°C and a T-O phase coexistence spanning 25-31°C was observed, wherein Ps increases from 17×10-2C /m2 at 31°Cto23×10-2C/m2 25°C. The transition at 25°C appears diffusionless and polymorphic with martensite start and finish temperatures of 31 and 25°C, respectively. The maximum in d33 is 345pC/N and is attributed to the instability at 25°C, where Ps and K show singularity.
Kwon, Chang-Il; Kim, Gwangil; Jeong, Seok; Lee, Don Haeng; Kim, Kyoung Ah; Ko, Kwang Hyun; Cho, Joo Young; Hong, Sung Pyo
2017-05-01
In research and development of biliary plastic stents (PS), continuous efforts have been made to overcome short patency time and high rate of migration. The aim of this study was to evaluate the patency and migration rate of different PS shapes for a given period of time. Using an in vitro bile phantom model, we compared the patency among different shapes of PS (three straight PS, four double-pigtail PS, and a new screw-shaped PS). We performed an analysis of the degree of luminal narrowing by light microscopic examination. Using an in vivo swine model, we compared the patency and migration rate among the three different types of PS. Eight weeks after the bile exposure in the bile flow phantom model, 80 PS were retrieved and analyzed. The straight PS showed less biofilm formation and luminal narrowing than other types of PS (p < 0.05). Forty-nine PS were inserted into the dilated bile ducts of 10 swine models, and 39 PS were successfully retrieved 8 weeks later. The stent migration occurred less frequently in the double-pigtail PS and the screw-shaped PS than it did in the straight PS (11.1, 10, and 27.3%, respectively). However, there was no statistical difference in stent patency among the different shapes. Stent patency may not be significantly different depending on the shape of PS for 8 weeks. The screw-shaped PS showed similar patency and migration rate to the double-pigtail PS. These results may help guiding future PS development and clinical decisions.
Vibronic relaxation dynamics of o-dichlorobenzene in its lowest excited singlet state
NASA Astrophysics Data System (ADS)
Liu, Benkang; Zhao, Haiyan; Lin, Xiang; Li, Xinxin; Gao, Mengmeng; Wang, Li; Wang, Wei
2018-01-01
Vibronic dynamics of o-dichlorobenzene in its lowest excited singlet state, S1, is investigated in real time by using femtosecond pump-probe method, combined with time-of-flight mass spectroscopy and photoelectron velocity mapping technique. Relaxation processes for the excitation in the range of 276-252 nm can be fitted by single exponential decay model, while in the case of wavelength shorter than 252 nm two-exponential decay model must be adopted for simulating transient profiles. Lifetime constants of the vibrationally excited S1 states change from 651 ± 10 ps for 276 nm excitation to 61 ± 1 ps for 242 nm excitation. Both the internal conversion from the S1 to the highly vibrationally excited ground state S0 and the intersystem crossing from the S1 to the triplet state are supposed to play important roles in de-excitation processes. Exponential fitting of the de-excitation rates on the excitation energy implies such de-excitation process starts from the highly vibrationally excited S0 state, which is validated, by probing the relaxation following photoexcitation at 281 nm, below the S1 origin. Time-dependent photoelectron kinetic energy distributions have been obtained experimentally. As the excitation wavelength changes from 276 nm to 242 nm, different cationic vibronic vibrations can be populated, determined by the Franck-Condon factors between the large geometry distorted excited singlet states and final cationic states.
Miller, Joseph D; Roy, Sukesh; Slipchenko, Mikhail N; Gord, James R; Meyer, Terrence R
2011-08-01
High-repetition-rate, single-laser-shot measurements are important for the investigation of unsteady flows where temperature and species concentrations can vary significantly. Here, we demonstrate single-shot, pure-rotational, hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering (fs/ps RCARS) thermometry based on a kHz-rate fs laser source. Interferences that can affect nanosecond (ns) and ps CARS, such as nonresonant background and collisional dephasing, are eliminated by selecting an appropriate time delay between the 100-fs pump/Stokes pulses and the pulse-shaped 8.4-ps probe. A time- and frequency-domain theoretical model is introduced to account for rotational-level dependent collisional dephasing and indicates that the optimal probe-pulse time delay is 13.5 ps to 30 ps. This time delay allows for uncorrected best-fit N2-RCARS temperature measurements with ~1% accuracy. Hence, the hybrid fs/ps RCARS approach can be performed with kHz-rate laser sources while avoiding corrections that can be difficult to predict in unsteady flows.
NASA Astrophysics Data System (ADS)
Miller, Joseph D.; Roy, Sukesh; Slipchenko, Mikhail N.; Gord, James R.; Meyer, Terrence R.
2011-08-01
High-repetition-rate, single-laser-shot measurements are important for the investigation of unsteady flows where temperature and species concentrations can vary significantly. Here, we demonstrate single-shot, pure-rotational, hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering (fs/ps RCARS) thermometry based on a kHz-rate fs laser source. Interferences that can affect nanosecond (ns) and ps CARS, such as nonresonant background and collisional dephasing, are eliminated by selecting an appropriate time delay between the 100-fs pump/Stokes pulses and the pulse-shaped 8.4-ps probe. A time- and frequency-domain theoretical model is introduced to account for rotational-level dependent collisional dephasing and indicates that the optimal probe-pulse time delay is 13.5 ps to 30 ps. This time delay allows for uncorrected best-fit N2-RCARS temperature measurements with ~1% accuracy. Hence, the hybrid fs/ps RCARS approach can be performed with kHz-rate laser sources while avoiding corrections that can be difficult to predict in unsteady flows.
Peng, Hongjiang; Xu, Liya; Zhang, Wei; Liu, Fuwen; Lu, Xin; Lu, Wei; Danish, Muhammad; Lin, Kuangfei
2017-01-01
The feasibility of using base persulfate (PS) and coupled with other activation methods (heat, ultrasonic and Fe 2+ gluconate) was first explored for the removal of decabromodiphenyl ether (BDE209) in a soil system, and various factors were also investigated. The results showed that the removal of BDE209 followed a pseudo-first-order model. Interestingly, the rate constant (k 1 ) indicated a good power exponential relationship with initial PS (k 1 =0.018×[PS] 0 0.437 , R 2 =0.983, [PS] 0 =0.02-0.5M) or BDE209 (k 1 =0.029×e -0.038×[BDE209] 0 , R 2 =0.999, [BDE209] 0 =10-50mgkg -1 ) concentration, respectively. Additionally, k 1 well fitted the Arrhenius equation at the temperature range of 25 to 55°C, and the calculated activation energy (E a ) approximately was 41.2kJmol -1 . The removal efficiency could be enhanced in the presence of ultrasound due to increasing the amount of BDE209 molecules desorbed from soil and organic matters. Finally, nine intermediate products were identified during the heat and base co-activated PS oxidation process, and the possible reaction pathways were further proposed. Copyright © 2016 Elsevier B.V. All rights reserved.
Zhu, Jingyi; van Stokkum, Ivo H M; Paparelli, Laura; Jones, Michael R; Groot, Marie Louise
2013-06-04
A question at the forefront of biophysical sciences is, to what extent do quantum effects and protein conformational changes play a role in processes such as biological sensing and energy conversion? At the heart of photosynthetic energy transduction lie processes involving ultrafast energy and electron transfers among a small number of tetrapyrrole pigments embedded in the interior of a protein. In the purple bacterial reaction center (RC), a highly efficient ultrafast charge separation takes place between a pair of bacteriochlorophylls: an accessory bacteriochlorophyll (B) and bacteriopheophytin (H). In this work, we applied ultrafast spectroscopy in the visible and near-infrared spectral region to Rhodobacter sphaeroides RCs to accurately track the timing of the electron on BA and HA via the appearance of the BA and HA anion bands. We observed an unexpectedly early rise of the HA⁻ band that challenges the accepted simple picture of stepwise electron transfer with 3 ps and 1 ps time constants. The implications for the mechanism of initial charge separation in bacterial RCs are discussed in terms of a possible adiabatic electron transfer step between BA and HA, and the effect of protein conformation on the electron transfer rate. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Shim, Sangdeok; Mathies, Richard A
2008-04-17
We have developed a tunable femtosecond stimulated Raman spectroscopy (FSRS) apparatus and used it to perform time-resolved resonance Raman experiments with <100 fs temporal and <35 cm(-1) spectral resolution. The key technical change that facilitates this advance is the use of a tunable narrow-bandwidth optical parametric amplifier (NB-OPA) presented recently by Shim et al. (Shim, S.; Mathies, R. A. Appl. Phys. Lett. 2006, 89, 121124). The practicality of tunable FSRS is demonstrated by examining the photophysical dynamics of beta-carotene. Using 560 nm Raman excitation, the resonant S1 state modes are enhanced by a factor of approximately 200 compared with 800 nm FSRS experiments. The improved signal-to-noise ratios facilitate the measurement of definitive time constants for beta-carotene dynamics including the 180 fs appearance of the S1 vibrational features due to direct internal conversion from S2 and their characteristic 9 ps decay to S0. By tuning the FSRS system to 590 nm Raman excitation, we are able to selectively enhance vibrational features of the hot ground state S hot 0 and monitor its approximately 5 ps cooling dynamics. This tunable FSRS system is valuable because it facilitates the direct observation of structural changes of selected resonantly enhanced states and intermediates during photochemical and photobiological reactions.
2012-06-26
s and the PDFs vary with δ as power laws: δB2/δa = I and P/δb = J , where (a,b) are the exponents and (I , J ) are constants – i.e. invariants with...following scaling form for the PDFs: P ( δB2,δ ) δs =Ps ( δB2/δs ) (1) where s = a = −b is the lone scaling exponent , and Ps is a scaling function of the...intermittency in space plasmas 547 The scaling exponent s may be interpreted as the fractal (monofractal) measure for (1). If the PDFs are self-similar
Ghosh, Shirsendu; Nandi, Somen; Ghosh, Catherine; Bhattacharyya, Kankan
2016-09-19
Fluorescence dynamics in the endoplasmic reticulum (ER) of a live non-cancer lung cell (WI38) and a lung cancer cell (A549) are studied by using time-resolved confocal microscopy. To selectively study the organelle, ER, we have used an ER-Tracker dye. From the emission maximum (λmaxem) of the ER-Tracker dye, polarity (i.e. dielectric constant, ϵ) in the ER region of the cells (≈500 nm in WI38 and ≈510 nm in A549) is estimated to be similar to that of chloroform (λmaxem =506 nm, ϵ≈5). The red shift by 10 nm in λmaxem in the cancer cell (A549) suggests a slightly higher polarity compared to the non-cancer cell (WI38). The fluorescence intensity of the ER-Tracker dye exhibits prolonged intermittent oscillations on a timescale of 2-6 seconds for the cancer cell (A549). For the non-cancer cell (WI38), such fluorescence oscillations are much less prominent. The marked fluorescence intensity oscillations in the cancer cell are attributed to enhanced calcium oscillations. The average solvent relaxation time (<τs >) of the ER region in the lung cancer cell (A549, 250±50 ps) is about four times faster than that in the non-cancer cell (WI38, 1000±50 ps). © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Glerean, Enrico; Salmi, Juha; Lahnakoski, Juha M; Jääskeläinen, Iiro P; Sams, Mikko
2012-01-01
Functional brain activity and connectivity have been studied by calculating intersubject and seed-based correlations of hemodynamic data acquired with functional magnetic resonance imaging (fMRI). To inspect temporal dynamics, these correlation measures have been calculated over sliding time windows with necessary restrictions on the length of the temporal window that compromises the temporal resolution. Here, we show that it is possible to increase temporal resolution by using instantaneous phase synchronization (PS) as a measure of dynamic (time-varying) functional connectivity. We applied PS on an fMRI dataset obtained while 12 healthy volunteers watched a feature film. Narrow frequency band (0.04-0.07 Hz) was used in the PS analysis to avoid artifactual results. We defined three metrics for computing time-varying functional connectivity and time-varying intersubject reliability based on estimation of instantaneous PS across the subjects: (1) seed-based PS, (2) intersubject PS, and (3) intersubject seed-based PS. Our findings show that these PS-based metrics yield results consistent with both seed-based correlation and intersubject correlation methods when inspected over the whole time series, but provide an important advantage of maximal single-TR temporal resolution. These metrics can be applied both in studies with complex naturalistic stimuli (e.g., watching a movie or listening to music in the MRI scanner) and more controlled (e.g., event-related or blocked design) paradigms. A MATLAB toolbox FUNPSY ( http://becs.aalto.fi/bml/software.html ) is openly available for using these metrics in fMRI data analysis.
Photophysical properties and photoisomerization processes of Methyl Red embedded in rigid polymer
NASA Astrophysics Data System (ADS)
Lee, Geon Joon; Kim, Dongho; Lee, Minyung
1995-01-01
The photophysical properties of Methyl Red molecules embedded in a poly(methyl methacrylate) (PMMA) matrix were investigated with photoinduced absorption, absorption kinetics, steady-state, and time-resolved luminescence spectroscopy. The excited singlet (S1) state lifetimes for trans and cis isomers of Methyl Red in PMMA at room temperature have been measured as 35 and 420 ps, respectively. The excited triplet (T1) state energy level and its lifetime at 77 K were also obtained. A slow trans-cis isomerization process having a time constant of a few hundred seconds was observed for the illuminated Methyl Red in rigid polymer. Based on measured photophysical properties and dynamic processes, an energy-level diagram for Methyl Red molecules in rigid polymer is introduced to explain these observations.
NASA Astrophysics Data System (ADS)
Li, Ye; Wang, Bei; Ai, Xi-Cheng; Zhang, Xing-Kang; Zhao, Jing-Quan; Jiang, Li-Jin
2004-06-01
In this work, we employ cyanobacteria, Spirulina platensis, and separate their photosynthetic apparatus, phycobilisome (PBS), thylakoid membrane and phycobilisome-thylakoid membrane complex. The steady state absorption spectra, fluorescence spectra and corresponding deconvoluted spectra and picosecond time-resolved spectra are used to investigate the energy transfer process in phycobilisome-thylakoid membrane complex. The results on steady state spectra show chlorophylls of the photosystem II are able to transfer excitation energy to phycobilisome with Chl a molecules selectively excited. The decomposition of the steady state spectra further suggest the uphill energy transfer originate from chlorophylls of photosystem II to cores of phycobilisome, while rods and cores of phycobilisome cannot receive energy from the chlorophylls of photosystem I. The time constant for the back energy transfer process is 18 ps.
Fast Timing for High-Rate Environments with Micromegas
NASA Astrophysics Data System (ADS)
Papaevangelou, Thomas; Desforge, Daniel; Ferrer-Ribas, Esther; Giomataris, Ioannis; Godinot, Cyprien; Diaz, Diego Gonzalez; Gustavsson, Thomas; Kebbiri, Mariam; Oliveri, Eraldo; Resnati, Filippo; Ropelewski, Leszek; Tsiledakis, Georgios; Veenhof, Rob; White, Sebastian
2018-02-01
The current state of the art in fast timing resolution for existing experiments is of the order of 100 ps on the time of arrival of both charged particles and electromagnetic showers. Current R&D on charged particle timing is approaching the level of 10 ps but is not primarily directed at sustained performance at high rates and under high radiation (as would be needed for HL-LHC pileup mitigation). We demonstrate aMicromegas based solution to reach this level of performance. The Micromegas acts as a photomultiplier coupled to a Cerenkovradiator front window, which produces sufficient UV photons to convert the ˜100 ps single-photoelectron jitter into a timing response of the order of 10-20 ps per incident charged particle. A prototype has been built in order to demonstrate this performance. The first laboratory tests with a pico-second laser have shown a time resolution of the order of 27 ps for ˜50 primary photoelectrons, using a bulk Micromegas readout.
Ahmadi, Mehdi; Ghanbari, Farshid
2016-10-01
Greywater (GW) is a potential source for water reuse in various applications. However, GW treatment is still a vital issue in water reuse in cases of environmental standards and risk to public health. This study investigates optimization and modeling of a hybrid process for COD removal from GW. Persulfate (PS) was simultaneously activated by electrogenerated ferrous ion (EC) and UV to generate sulfate radical. Photoelectro-persulfate (PEPS) was optimized by Box-Behnken design and the effects of four variables (pH, PS dosage, current density, and electrolysis time) were evaluated on COD removal. The results and several coefficients showed that the obtained model was acceptable for predicting the COD removal. Moreover, under optimum conditions (pH = 6.9, PS = 8.8 mM, current density = 2.0 mA/cm(2), and 49.3 min electrolysis time), BOD5, turbidity, TSS, phosphate, and UV254 were effectively removed and COD and BOD5 values reached to discharge standards. Different configurations of the processes were assessed for COD removal. The order of COD removal efficiency followed: PS < Fe(II) < UV/PS ≤ Fe(II)/PS < Fe(II)/PS/UV < electrocoagulation ≤ electrocoagulation/UV < electro-PS < PEPS. The monitoring PS concentration during 60 min reaction time in the aforesaid processes indicated that PEPS could remarkably activate PS. The solution pH was also monitored and related results revealed that the presence of PS during the 10 min first time decreased pH value while production of hydroxide ion at cathode increased pH significantly. Finally, the contribution of electrochemical process in the electrical energy consumption was far less than that of photolysis process in hybrid PEPS process.
Screening and identification of novel B cell epitopes of Toxoplasma gondii SAG1.
Wang, Yanhua; Wang, Guangxiang; Zhang, Delin; Yin, Hong; Wang, Meng
2013-04-30
The identification of protein epitopes is useful for diagnostic purposes and for the development of peptide vaccines. In this study, the epitopes of Toxoplasma gondii SAG1 were identified using synthetic peptide techniques with the aid of bioinformatics. Eleven peptides derived from T. gondii SAG1 were assessed by ELISA using pig sera from different time points after infection. Four (PS4, PS6, PS10 and PS11), out of the eleven peptides tested were recognized by all sera. Then, shorter peptides that were derived from PS4, PS6, PS10 and PS11 were predicted using bioinformatics and tested by experimentation. Four out of nine shorter peptides were identified successfully (amino acids 106-120, 166-180, 289-300 and 313-332). We have precisely located the epitopes of T. gondii SAG1 using pig sera collected at different time points after infection. The identified epitopes may be useful for the further study of epitope-based vaccines and diagnostic reagents.
West, Robert G; Bína, David; Fuciman, Marcel; Kuznetsova, Valentyna; Litvín, Radek; Polívka, Tomáš
2018-05-01
We have applied femtosecond transient absorption spectroscopy in pump-probe and pump-dump-probe regimes to study energy transfer between fucoxanthin and Chl a in fucoxanthin-Chl a complex from the pennate diatom Phaeodactylum tricornutum. Experiments were carried out at room temperature and 77 K to reveal temperature dependence of energy transfer. At both temperatures, the ultrafast (<100 fs) energy transfer channel from the fucoxanthin S 2 state is active and is complemented by the second pathway via the combined S 1 /ICT state. The S 1 /ICT-Chl a pathway has two channels, the fast one characterized by sub-picosecond energy transfer, and slow having time constants of 4.5 ps at room temperature and 6.6 ps at 77 K. The overall energy transfer via the S 1 /ICT is faster at 77 K, because the fast component gains amplitude upon lowering the temperature. The pump-dump-probe regime, with the dump pulse centered in the spectral region of ICT stimulated emission at 950 nm and applied at 2 ps after excitation, proved that the S 1 and ICT states of fucoxanthin in FCP are individual, yet coupled entities. Analysis of the pump-dump-probe data suggested that the main energy donor in the slow S 1 /ICT-Chl a route is the S 1 part of the S 1 /ICT potential surface. Copyright © 2018 Elsevier B.V. All rights reserved.
Ren, Xiaohua; Guo, Huanhuan; Feng, Jinkui; Si, Pengchao; Zhang, Lin; Ci, Lijie
2018-01-01
3D porous N-doped reduced graphene oxide (N-rGO) aerogels were synthesized by a hydrothermal reduction of graphene oxide (GO) with urea and following freeze-drying process. N-rGO aerogels have a high BET surface of 499.70 m 2 /g and a high N doping content (5.93-7.46 at%) including three kinds of N (graphitic, pyridinic and pyrrolic). Their high catalytic performance for phenol oxidation in aqueous solution was investigated by catalytic activation of persulfate (PS). We have demonstrated that N-rGO aerogels are promising metal-free catalysts for phenol removal. Kinetics studies indicate that phenol degradation follows first-order reaction kinetics with the reaction rate constant of 0.16799 min -1 for N-rGO-A(1:30). Interestingly, the comparison of direct catalytic oxidation with adsorption-catalytic oxidation experiments indicates that adsorption plays an important role in the catalytic oxidation of phenol by decreasing the phenol degradation time. Spin density and adsorption modeling demonstrates that graphitic N in N-rGO plays the most important role for the catalytic performance by inducing high positive charge densities to adjacent carbon atoms and facilitating phenol adsorption on these carbon sites. Furthermore, the activation mechanism of persulfate (PS) on N-rGO was first investigated by DFT method and PS can be activated to generate strongly oxidative radical (SO 4 · - ) by transferring electrons to N-rGO. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Straton, Alexandru; Gidu, Diana Victoria; Micu, Alexandru
2015-02-01
Poor lateral flexor muscle strength can be an important source of lumbar/thoracic back pain in women. The purpose of this study was to evaluate pelvic stabilization (PS) and no pelvic stabilization (NoPS) lateral flexion strength exercise training on the development of isolated right and left lateral flexion strength. Isometric torque of the isolated right and left lateral flexion muscles was measured at two positions (0° and 30° opposed angle range of motion) on 42 healthy women before and after 8 weeks of PS and NoPS lateral flexion strength exercise training. Subjects were assigned in three groups, the first (n=14) trained 3 times/week with PS lateral flexion strength exercise, the second (n=14) trained 3 times/week with NoPS lateral flexion strength exercise and the third (control, n=14) did not train. Post training isometric strength values describing PS and NoPS lateral flexion strength improved in greater extent for the PS lateral flexion strength exercise group and in lesser extent for the NoPS lateral flexion strength exercise group, in both angles (p<0.05) relative to controls. These data indicate that the most effective way of training the spine lateral flexion muscles is PS lateral flexion strength exercises; NoPS lateral flexion strength exercises can be an effective way of training for the spine lateral flexion muscles, if there is no access to PS lateral flexion strength training machines.
NASA Astrophysics Data System (ADS)
Winter, Jan; Rapp, Stephan; Schmidt, Michael; Huber, Heinz P.
2017-09-01
In this paper, we present ultrafast measurements of the complex refractive index for copper up to a time delay of 20 ps with an accuracy <1% at laser fluences in the vicinity of the ablation threshold. The measured refractive index n and extinction coefficient k are supported by a simulation including the two-temperature model with an accurate description of thermal and optical properties and a thermomechanical model. Comparison of the measured time resolved optical properties with results of the simulation reveals underlying physical mechanisms in three distinct time delay regimes. It is found that in the early stage (-5 ps to 0 ps) the thermally excited d-band electrons make a major contribution to the laser pulse absorption and create a steep increase in transient optical properties n and k. In the second time regime (0-10 ps) the material expansion influences the plasma frequency, which is also reflected in the transient extinction coefficient. In contrast, the refractive index n follows the total collision frequency. Additionally, the electron-ion thermalization time can be attributed to a minimum of the extinction coefficient at ∼10 ps. In the third time regime (10-20 ps) the transient extinction coefficient k indicates the surface cooling-down process.
Long, Fang; Tian, Huiping; Ji, Yuefeng
2010-09-01
A low dispersion photonic crystal waveguide with triangular lattice elliptical airholes is proposed for compact, high-performance optical buffering applications. In the proposed structure, we obtain a negligible-dispersion bandwidth with constant group velocity ranging from c/41 to c/256, by optimizing the major and minor axes of bulk elliptical holes and adjusting the position and the hole size of the first row adjacent to the defect. In addition, the limitations of buffer performance in a dispersion engineering waveguide are well studied. The maximum buffer capacity and the maximum data rate can reach as high as 262bits and 515 Gbits/s, respectively. The corresponding delay time is about 255.4ps.
Ultrafast carrier dynamics in band edge and broad deep defect emission ZnSe nanowires
NASA Astrophysics Data System (ADS)
Othonos, Andreas; Lioudakis, Emmanouil; Philipose, U.; Ruda, Harry E.
2007-12-01
Ultrafast carrier dynamics of ZnSe nanowires grown under different growth conditions have been studied. Transient absorption measurements reveal the dependence of the competing effects of state filling and photoinduced absorption on the probed energy states. The relaxation of the photogenerated carriers occupying defect states in the stoichiometric and Se-rich samples are single exponentials with time constants of 3-4ps. State filling is the main contribution for probe energies below 1.85eV in the Zn-rich grown sample. This ultrafast carrier dynamics study provides an important insight into the role that intrinsic point defects play in the observed photoluminescence from ZnSe nanowires.
NASA Astrophysics Data System (ADS)
Hammond, R. B.; Paulter, N. G.; Wagner, R. S.
1984-08-01
Cross-correlation measurements of the response of photoconductor pulsers and sampling gates excited by a femtosecond laser are reported. The photoconductors were fabricated in microstrip transmission line structures on Si-on-sapphire, semiinsulating GaAs, and semiinsulating InP wafers. The photoconductor sampling gates were ion beam-damaged to produce short carrier lifetimes (less than 3 ps in one case). Damage was introduced with 6 MeV Ne-20 on the Si-on-sapphire, 2 MeV H-2 on the GaAs, and 2 MeV He-4 on the InP. Doses in the range 10 to the 12th - 10 to the 15th were used. Results show circuit limits to the time resolution in correlation measurements from two sources: (1) RC time constants due to photoconductor gap capacitance and transmission line characteristic impedance and (2) dispersion in microstrip transmission lines.
Li, Siyang; Feng, Jinxi; Tian, Shuanghong; Lan, Shenyu; Fan, Chao; Liu, Xiaosheng; Xiong, Ya
2018-02-15
For the first time, paint sludge waste (PS) was used as a pore forming agent in the preparation of sewage sludge derived carbon (SC). The tuning role and mechanism of PS for characteristics of SC were explored. It was found that a sludge carbon (SC PS-Zn ) with rich macro-, meso- and micro- porous could be produced by one-step pyrolytic process of sludge in the presence of PS and ZnCl 2. Its surface area could reach as high as 680.5m 2 g -1 as 88.4 times and 4.8 times of sludge carbon without addition of PS and ZnCl 2 (SC) and only addition of ZnCl 2 (SC Zn ) , respectively. The macro- pores fabricated by PS provided much inner-space for ZnCl 2 to generate meso- and micro- porous, leading to a hierarchical porous structure. SC PS-Zn showed a high adsorption capacity of 685.4mgg -1 for Chrysophenine, which is 1.3 and 1.7 times that of SC PS and SC Zn respectively. The adsorption difference could be simply attributed to the fact that the great molecules were difficult to enter micro- pores of SC Zn . It was also found that the difference was also dependent on orientation of Chrysophenine, which was related to pH value of solution. Copyright © 2017. Published by Elsevier B.V.
Liu, Bochuan; Qiao, Meng; Wang, Yanbin; Wang, Lijuan; Gong, Yan; Guo, Tao; Zhao, Xu
2017-12-01
The enhancement of g-C 3 N 4 photocatalytic degradation of bisphenol A (BPA) via persulfate (PS) addition was investigated under visible light irradiation. The effects of various parameters on the BPA degradation were investigated, such as catalysts dosage, PS concentrations, initial pH value and BPA concentration. The results showed that g-C 3 N 4 nanosheets exhibited superior photocatalytic activity toward BPA degradation as compared with bulk g-C 3 N 4 . The addition of PS can further improve the g-C 3 N 4 photocatalytic performance for BPA degradation. With 5 mM PS, the degradation rate of BPA was increased from 72.5% to 100% at 90 min, and the corresponding first-order kinetic constants were increased from 0.0028 to 0.0140 min -1 . The removal efficiency of BPA increased with the decrease of solution pH value. The active radicals in the reaction system were tested by electron spin resonance (ESR) and radicals quenching experiments. Instead of persulfate radicals' oxidation, it was proposed that the main active radicals for BPA degradation were superoxide radicals and the photogenerated holes. Copyright © 2017. Published by Elsevier Ltd.
Dobbins, T J; Ida, K; Suzuki, C; Yoshinuma, M; Kobayashi, T; Suzuki, Y; Yoshida, M
2017-09-01
A new Motional Stark Effect (MSE) analysis routine has been developed for improved spatial resolution in the core of the Large Helical Device (LHD). The routine was developed to reduce the dependency of the analysis on the Pfirsch-Schlüter (PS) current in the core. The technique used the change in the polarization angle as a function of flux in order to find the value of diota/dflux at each measurement location. By integrating inwards from the edge, the iota profile can be recovered from this method. This reduces the results' dependency on the PS current because the effect of the PS current on the MSE measurement is almost constant as a function of flux in the core; therefore, the uncertainty in the PS current has a minimal effect on the calculation of the iota profile. In addition, the VMEC database was remapped from flux into r/a space by interpolating in mode space in order to improve the database core resolution. These changes resulted in a much smoother iota profile, conforming more to the physics expectations of standard discharge scenarios in the core of the LHD.
Guan, Chaoting; Jiang, Jin; Pang, Suyan; Luo, Congwei; Ma, Jun; Zhou, Yang; Yang, Yi
2017-09-19
This work demonstrated that bromophenols (BrPs) could be readily oxidized by peroxydisulfate (PDS) activated by a commercial carbon nanotube (CNT), while furfuryl alcohol (a chemical probe for singlet oxygen ( 1 O 2 )) was quite refractory. Results obtained by radical quenching experiments, electron paramagnetic resonance spectroscopy, and Fourier transform infrared spectroscopy further confirmed the involvement of nonradical PDS-CNT complexes rather than 1 O 2 . Bicarbonate and chloride ion exhibited negligible impacts on BrPs degradation by the PDS/CNT system, while a significant inhibitory effect was observed for natural organic matter. The oxidation of BrPs was influenced by solution pH with maximum rates occurring at neutral pH. Linear free energy relationships (LFERs) were established between the observed pseudo-first-order oxidation rates of various substituted phenols and the classical descriptor variables (i.e., Hammett constant σ + , and half-wave oxidation potential E 1/2 ). Products analyses by liquid chromatography tandem mass spectrometry clearly showed the formation of hydroxylated polybrominated diphenyl ethers and hydroxylated polybrominated biphenyls on CNT surface. Their formation pathway possibly involved the generation of bromophenoxyl radicals from BrPs one-electron oxidation and their subsequent coupling reactions. These results suggest that the novel nonradical PDS/CNT oxidation technology is a good alternative for selectively eliminating BrPs with alleviating toxic byproducts in treated water effluent.
Interfacial activity of polymeric surfactants at the polystyrene-carbon dioxide interface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harrison, K.L.; Rocha, S.R.P. da; Yates, M.Z.
1998-11-24
The reduction of the interfacial tension at the polystyrene (PS, M{sub n} = 1850)-supercritical CO{sub 2} interface is reported for poly(1,1-dihydroperfluorooctyl acrylate)(PFOA) and the block copolymers PS-b-PFOA(3.7K/27K) and PS-b-poly(dimethylsiloxane) (PDMS) (2K/16K, 500/10K) at 45 C. PS-b-PDMS (2K/16K) lowers the interfacial tension to 0.5 dyn/cm at 45 C and 238 bar, more than that of any of the other copolymers. On the basis of the dynamics of the lowering of the interfacial tension, the apparent diffusion coefficient of PS-b-PDMS (2K/16K) is 8 {times} 10{sup {minus}6} cm{sup 2}/s. The critical micelle concentration of PS-b-PFOA (3.7K/27K) is 9 {times} 10{sup {minus}4} wt %.more » Whereas both the PDMS- and PFOA-based copolymers studied adsorb on the PS surface, PS-b-PFOA is much more effective in stabilizing the PS emulsions. The difference in stabilization is discussed in terms of the surfactant adsorption and the interactions of the anchor and buoy blocks with CO{sub 2} and the PS surface.« less
van Dam, Herman T; Borghi, Giacomo; Seifert, Stefan; Schaart, Dennis R
2013-05-21
Digital silicon photomultiplier (dSiPM) arrays have favorable characteristics for application in monolithic scintillator detectors for time-of-flight positron emission tomography (PET). To fully exploit these benefits, a maximum likelihood interaction time estimation (MLITE) method was developed to derive the time of interaction from the multiple time stamps obtained per scintillation event. MLITE was compared to several deterministic methods. Timing measurements were performed with monolithic scintillator detectors based on novel dSiPM arrays and LSO:Ce,0.2%Ca crystals of 16 × 16 × 10 mm(3), 16 × 16 × 20 mm(3), 24 × 24 × 10 mm(3), and 24 × 24 × 20 mm(3). The best coincidence resolving times (CRTs) for pairs of identical detectors were obtained with MLITE and measured 157 ps, 185 ps, 161 ps, and 184 ps full-width-at-half-maximum (FWHM), respectively. For comparison, a small reference detector, consisting of a 3 × 3 × 5 mm(3) LSO:Ce,0.2%Ca crystal coupled to a single pixel of a dSiPM array, was measured to have a CRT as low as 120 ps FWHM. The results of this work indicate that the influence of the optical transport of the scintillation photons on the timing performance of monolithic scintillator detectors can at least partially be corrected for by utilizing the information contained in the spatio-temporal distribution of the collection of time stamps registered per scintillation event.
NASA Astrophysics Data System (ADS)
van Dam, Herman T.; Borghi, Giacomo; Seifert, Stefan; Schaart, Dennis R.
2013-05-01
Digital silicon photomultiplier (dSiPM) arrays have favorable characteristics for application in monolithic scintillator detectors for time-of-flight positron emission tomography (PET). To fully exploit these benefits, a maximum likelihood interaction time estimation (MLITE) method was developed to derive the time of interaction from the multiple time stamps obtained per scintillation event. MLITE was compared to several deterministic methods. Timing measurements were performed with monolithic scintillator detectors based on novel dSiPM arrays and LSO:Ce,0.2%Ca crystals of 16 × 16 × 10 mm3, 16 × 16 × 20 mm3, 24 × 24 × 10 mm3, and 24 × 24 × 20 mm3. The best coincidence resolving times (CRTs) for pairs of identical detectors were obtained with MLITE and measured 157 ps, 185 ps, 161 ps, and 184 ps full-width-at-half-maximum (FWHM), respectively. For comparison, a small reference detector, consisting of a 3 × 3 × 5 mm3 LSO:Ce,0.2%Ca crystal coupled to a single pixel of a dSiPM array, was measured to have a CRT as low as 120 ps FWHM. The results of this work indicate that the influence of the optical transport of the scintillation photons on the timing performance of monolithic scintillator detectors can at least partially be corrected for by utilizing the information contained in the spatio-temporal distribution of the collection of time stamps registered per scintillation event.
Structure and photoluminescence properties of ZnS films grown on porous Si substrates
NASA Astrophysics Data System (ADS)
Wang, Cai-feng; Hu, Bo; Yi, Hou-hui; Li, Wei-bing
2011-11-01
ZnS films were deposited on porous silicon (PS) substrates with different porosities. With the increase of PS substrate porosity, the XRD diffraction peak intensity decreases and the surface morphology of the ZnS films becomes rougher. Voids appear in the films, due to the increased roughness of PS structure. The photoluminescence (PL) spectra of the samples before and after deposition of ZnS were measured to study the effect of substrate porosity on the luminescence properties of ZnS/PS composites. As-prepared PS substrates emit strong red light. The red PL peak of PS after deposition of ZnS shows an obvious blueshift. As PS substrate porosity increases, the trend of blueshift increases. A green emission at about 550 nm was also observed when the porosity of PS increased, which is ascribed to the defect-center luminescence of ZnS. The effect of annealing time on the structural and luminescence properties of ZnS/PS composites were also studied. With the increase of annealing time, the XRD diffraction peak intensity and the self-activated luminescence intensity of ZnS increase, and, the surface morphology of the ZnS films becomes smooth and compact. However, the red emission intensity of PS decreases, which was associated with a redshift. White light emission was obtained by combining the luminescence of ZnS with the luminescence of PS.
Real-time observation of cascaded electronic relaxation processes in p-Fluorotoluene
NASA Astrophysics Data System (ADS)
Hao, Qiaoli; Deng, Xulan; Long, Jinyou; Wang, Yanmei; Abulimiti, Bumaliya; Zhang, Bing
2017-08-01
Ultrafast electronic relaxation processes following two photoexcitation of 400 nm in p-Fluorotoluene (pFT) have been investigated utilizing time-resolved photoelectron imaging coupled with time-resolved mass spectroscopy. Cascaded electronic relaxation processes started from the electronically excited S2 state are directly imaged in real time and well characterized by two distinct time constants of 85 ± 10 fs and 2.4 ± 0.3 ps. The rapid component corresponds to the lifetime of the initially excited S2 state, including the structure relaxation from the Franck-Condon region to the conical intersection of S2/S1 and the subsequent internal conversion to the highly excited S1 state. While, the slower relaxation constant is attributed to the further internal conversion to the high levels of S0 from the secondarily populated S1 locating in the channel three region. Moreover, dynamical differences with benzene and toluene of analogous structures, including, specifically, the slightly slower relaxation rate of S2 and the evidently faster decay of S1, are also presented and tentatively interpreted as the substituent effects. In addition, photoelectron kinetic energy and angular distributions reveal the feature of accidental resonances with low-lying Rydberg states (the 3p, 4s and 4p states) during the multi-photon ionization process, providing totally unexpected but very interesting information for pFT.
27ps DFTMD Simulations of Maltose using a Reduced Basis Set
USDA-ARS?s Scientific Manuscript database
The disaccharide, a-maltose, has been studied using constant energy density functional molecular dynamics (DFTMD) at the B3LYP/6-31+G*/4-31G+COSMO (solvent) level of theory. Maltose is of particular interest as the variation in glycosidic dihedral angles has been found to be dependent upon the star...
Chen, Wei; Yu, Zunxiong; Pang, Jinshan; Yu, Peng; Tan, Guoxin; Ning, Chengyun
2017-01-01
The discovery of piezoelectricity in natural bone has attracted extensive research in emulating biological electricity for various tissue regeneration. Here, we carried out experiments to build biocompatible potassium sodium niobate (KNN) ceramics. Then, influence substrate surface charges on bovine serum albumin (BSA) protein adsorption and cell proliferation on KNN ceramics surfaces was investigated. KNN ceramics with piezoelectric constant of ~93 pC/N and relative density of ~93% were fabricated. The adsorption of protein on the positive surfaces (Ps) and negative surfaces (Ns) of KNN ceramics with piezoelectric constant of ~93 pC/N showed greater protein adsorption capacity than that on non-polarized surfaces (NPs). Biocompatibility of KNN ceramics was verified through cell culturing and live/dead cell staining of MC3T3. The cells experiment showed enhanced cell growth on the positive surfaces (Ps) and negative surfaces (Ns) compared to non-polarized surfaces (NPs). These results revealed that KNN ceramics had great potential to be used to understand the effect of surface potential on cells processes and would benefit future research in designing piezoelectric materials for tissue regeneration. PMID:28772704
Strong impact of the solvent on the photokinetics of a 2(1H)-pyrimidinone.
Ryseck, G; Villnow, T; Hugenbruch, S; Schaper, K; Gilch, P
2013-08-01
Pyrimidinones are part of the (6-4) photolesions which may be formed from two pyrimidine bases adjacent on a DNA strand. In relation to the secondary photochemistry of the (6-4) lesion, i.e. its transformation into a Dewar valence isomer, photophysical and photochemical properties of 1-methyl-2(1H)-pyrimidinone (1MP) in water, acetonitrile, methanol, and 1,4-dioxane are reported here. As deduced from steady state fluorescence and femtosecond transient absorption spectroscopy the S1 lifetime of 1MP is strongly affected by the solvent. The lifetimes range from 400 ps for water to 40 ps for 1,4-dioxane. Internal conversion (IC) and intersystem crossing (ISC) contribute to the S1 decay. The solvent effect on the IC rate constant is more pronounced than on the ISC constant. The quantum yields for the consumption of 1MP (values for nitrogen purged solvents) are large for methanol (0.35) and 1,4-dioxane (0.24) and small for acetonitrile (0.02) and water (0.003). Hydrogen abstraction from the solvent by the triplet state of 1MP may rationalize this.
Chen, Wei; Yu, Zunxiong; Pang, Jinshan; Yu, Peng; Tan, Guoxin; Ning, Chengyun
2017-03-26
The discovery of piezoelectricity in natural bone has attracted extensive research in emulating biological electricity for various tissue regeneration. Here, we carried out experiments to build biocompatible potassium sodium niobate (KNN) ceramics. Then, influence substrate surface charges on bovine serum albumin (BSA) protein adsorption and cell proliferation on KNN ceramics surfaces was investigated. KNN ceramics with piezoelectric constant of ~93 pC/N and relative density of ~93% were fabricated. The adsorption of protein on the positive surfaces (Ps) and negative surfaces (Ns) of KNN ceramics with piezoelectric constant of ~93 pC/N showed greater protein adsorption capacity than that on non-polarized surfaces (NPs). Biocompatibility of KNN ceramics was verified through cell culturing and live/dead cell staining of MC3T3. The cells experiment showed enhanced cell growth on the positive surfaces (Ps) and negative surfaces (Ns) compared to non-polarized surfaces (NPs). These results revealed that KNN ceramics had great potential to be used to understand the effect of surface potential on cells processes and would benefit future research in designing piezoelectric materials for tissue regeneration.
Screening and identification of novel B cell epitopes of Toxoplasma gondii SAG1
2013-01-01
Background The identification of protein epitopes is useful for diagnostic purposes and for the development of peptide vaccines. In this study, the epitopes of Toxoplasma gondii SAG1 were identified using synthetic peptide techniques with the aid of bioinformatics. Findings Eleven peptides derived from T. gondii SAG1 were assessed by ELISA using pig sera from different time points after infection. Four (PS4, PS6, PS10 and PS11), out of the eleven peptides tested were recognized by all sera. Then, shorter peptides that were derived from PS4, PS6, PS10 and PS11 were predicted using bioinformatics and tested by experimentation. Four out of nine shorter peptides were identified successfully (amino acids 106–120, 166–180, 289–300 and 313–332). Conclusions We have precisely located the epitopes of T. gondii SAG1 using pig sera collected at different time points after infection. The identified epitopes may be useful for the further study of epitope-based vaccines and diagnostic reagents. PMID:23631709
Krasnov, Boris R; Shenbrot, Georgy I; van der Mescht, Luther; Warburton, Elizabeth M; Khokhlova, Irina S
2018-04-12
To understand existence, patterns and mechanisms behind phylogenetic heritability in the geographic range size (GRS) of parasites, we measured phylogenetic signal (PS) in the sizes of both regional (within a region) and continental (within a continent) geographic ranges of fleas in five regions. We asked whether (a) GRS is phylogenetically heritable and (b) the manifestation of PS varies between regions. We also asked whether geographic variation in PS reflects the effects of the environment's spatiotemporal stability (e.g. glaciation disrupting geographic ranges) or is associated with time since divergence (accumulation differences among species over time). Support for the former hypothesis would be indicated by stronger PS in southern than in northern regions, whereas support for the latter hypothesis would be shown by stronger PS in regions with a large proportion of species belonging to the derived lineages than in regions with a large proportion of species belonging to the basal lineages. We detected significant PS in both regional and continental GRSs of fleas from Canada and in continental GRS of fleas from Mongolia. No PS was found in the GRS of fleas from Australia and Southern Africa. Venezuelan fleas demonstrated significant PS in regional GRS only. Local Indicators of Phylogenetic Association detected significant local positive autocorrelations of GRS in some clades even in regions in which PS has not been detected across the entire phylogeny. This was mainly characteristic of younger taxa.
Lanzi, Leandro; Carlà, Marcello; Lanzi, Leonardo; Gambi, Cecilia M C
2009-02-01
Aqueous sodium dodecyl sulfate micellar solutions were investigated by a recently developed double-differential dielectric spectroscopy technique in the frequency range 100 MHz-3 GHz at 22 degrees C, in the surfactant concentration range 29.8-524 mM, explored for the first time above 104 mM. The micellar contribution to dielectric spectra was analyzed according to three models containing, respectively, a single Debye relaxation, a Cole-Cole relaxation and a double Debye relaxation. The single Debye model is not accurate enough. Both Cole-Cole and double Debye models fit well the experimental dielectric spectra. With the double Debye model, two characteristic relaxation times were identified: the slower one, in the range 400-900 ps, is due to the motion of counterions bound to the micellar surface (lateral motion); the faster one, in the range 100-130 ps, is due to interfacial bound water. Time constants and amplitudes of both processes are in fair agreement with Grosse's theoretical model, except at the largest concentration values, where interactions between micelles increase. For each sample, the volume fraction of bulk water and the effect of bound water as well as the conductivity in the low frequency limit were computed. The bound water increases as the surfactant concentration increases, in quantitative agreement with the micellar properties. The number of water molecules per surfactant molecule was also computed. The conductivity values are in agreement with Kallay's model over the whole surfactant concentration range.
Suda, Kayo; Terazima, Masahide; Sato, Hirofumi; Kimura, Yoshifumi
2013-10-17
Excited state intramolecular proton transfer reactions (ESIPT) of 4'-N,N-diethylamino-3-hydroxyflavone (DEAHF) in ionic liquids have been studied by steady-state and time-resolved fluorescence measurements at different excitation wavelengths. Steady-state measurements show the relative yield of the tautomeric form to the normal form of DEAHF decreases as excitation wavelength is increased from 380 to 450 nm. The decrease in yield is significant in ionic liquids that have cations with long alkyl chains. The extent of the decrease is correlated with the number of carbon atoms in the alkyl chains. Time-resolved fluorescence measurements using optical Kerr gate spectroscopy show that ESIPT rate has a strong excitation wavelength dependence. There is a large difference between the spectra at a 200 ps delay from different excitation wavelengths in each ionic liquid. The difference is pronounced in ionic liquids having a long alkyl chain. The equilibrium constant in the electronic excited state obtained at a 200 ps delay and the average reaction rate are also correlated with the alkyl chain length. Considering the results of the steady-state fluorescence and time-resolved measurements, the excitation wavelength dependence of ESIPT is explained by state selective excitation due to the difference of the solvation, and the number of alkyl chain carbon atoms is found to be a good indicator of the effect of inhomogeneity for this reaction.
NASA Astrophysics Data System (ADS)
Zhang, Hong-yan
2016-03-01
CdS nanocrystals have been successfully grown on porous silicon (PS) by sol-gel method. The plan-view field emission scanning electron microscopy (FESEM) shows that the pore size of PS is smaller than 5 μm in diameter and the agglomerates of CdS are broadly distributed on the surface of PS substrate. With the increase of annealing time, the CdS nanoparticles grow in both length and diameter along the preferred orientation. The cross-sectional FESEM images of ZnO/PS show that CdS nanocrystals are uniformly penetrated into all PS layers and adhere to them very well. photoluminescence (PL) spectra demonstrate that the intensity of PL peak located at about 425 nm has almost no change after the annealing time increases. The range of emission wavelength of CdS/PS is from 425 nm to 455 nm and the PL intensity is decreasing with the annealing temperature increasing from 100 °C to 200 °C.
Lin, Gong-Ru; Chiu, I-Hsiang; Wu, Ming-Chung
2005-02-07
Optically harmonic mode-locking of a semiconductor optical amplifier fiber laser (SOAFL) induced by backward injecting a dark-optical comb is demonstrated for the first time. The dark-optical comb with 60-ps pulsewidth is generated from a Mach-Zehnder modulator, which is driven by an electrical comb at a DC offset of 0.3Vn. Theoretical simulation indicates that the backward injection of dark-optical comb results in a narrow gain window of 60 ps within one modulating period, providing a cross-gainmodulation induced mode-locking in the SOAFL with a shortest pulsewidth of 15 ps at repetition frequency of 1 GHz. The mode-locked SOAFL pulsewidth can be slightly shortened to 10.8 ps with a 200m-long dispersion compensating fiber. After nonlinearly soliton compression in a 5km-long single mode fiber, the pulsewidth, linewidth and time-bandwidth product become 1.2 ps, 2.06 nm and 0.31, respectively.
Tillett, William; Charlton, Rachel; Nightingale, Alison; Snowball, Julia; Green, Amelia; Smith, Catherine; Shaddick, Gavin; McHugh, Neil
2017-12-01
To describe the time interval between the onset of psoriasis and PsA in the UK primary care setting and compare with a large, well-classified secondary care cohort. Patients with PsA and/or psoriasis were identified in the UK Clinical Practice Research Datalink (CPRD). The secondary care cohort comprised patients from the Bath PsA longitudinal observational cohort study. For incident PsA patients in the CPRD who also had a record of psoriasis, the time interval between PsA diagnosis and first psoriasis record was calculated. Comparisons were made with the time interval between diagnoses in the Bath cohort. There were 5272 eligible PsA patients in the CPRD and 815 in the Bath cohort. In both cohorts, the majority of patients (82.3 and 61.3%, respectively) had psoriasis before their PsA diagnosis or within the same calendar year (10.5 and 23.8%), with only a minority receiving their PsA diagnosis first (7.1 and 14.8%). Excluding those who presented with arthritis before psoriasis, the median time between diagnoses was 8 years [interquartile range (IQR) 2-15] in the CPRD and 7 years (IQR 0-20) in the Bath cohort. In the CPRD, 60.1 and 75.1% received their PsA diagnosis within 10 and 15 years of their psoriasis diagnosis, respectively; this was comparable with 57.2 and 67.7% in the Bath cohort. A similar distribution for the time interval between psoriasis and arthritis was observed in the CPRD and secondary care cohort. These data can inform screening strategies and support the validity of data from each cohort. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Rheumatology. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Untangling the Herman-infrared spectra of nitrogen atmospheric-pressure dielectric-barrier discharge
NASA Astrophysics Data System (ADS)
Čermák, Peter; Annušová, Adriana; Rakovský, Jozef; Martišovitš, Viktor; Veis, Pavel
2018-05-01
This study presents the first application of the N2 Herman-infrared (HIR) ro-vibrational model for the metrology of the atmospheric-pressure dielectric-barrier discharge. Our recent findings of suitable conditions for observation of the unperturbed HIR system (Annušová et al Contrib. Plasma Phys. 2017) gave us the opportunity to develop and test a numerical representation of this complex system composed of 75 branches. Commonly, the HIR covers a part of the near infrared spectra (690–850 nm) with its bands mixed with the N2 first positive system (1PS), which hinders applications of these systems for optical metrology of the discharge. In this work, we present a complex ro-vibrational model of the 1PS and HIR systems, which allowed us to untangle their spectra and retrieve the rotational temperature and vibrational populations of the systems for the first time. The latter was achieved by coupling the PGHOPHER simulation package with molecular constants obtained from high-resolution experiments. To test the model, the results and precision were compared to the retrievals based on the models of the NO γ and N2 second positive systems using the LIFBASE and SPECAIR programs, respectively.
Oyler-Yaniv, Jennifer; Oyler-Yaniv, Alon; Shakiba, Mojdeh; Min, Nina K; Chen, Ying-Han; Cheng, Sheue-Yann; Krichevsky, Oleg; Altan-Bonnet, Nihal; Altan-Bonnet, Grégoire
2017-06-01
Immune cells constantly survey the host for pathogens or tumors and secrete cytokines to alert surrounding cells of these threats. In vivo, activated immune cells secrete cytokines for several hours, yet an acute immune reaction occurs over days. Given these divergent timescales, we addressed how cytokine-responsive cells translate brief cytokine exposure into phenotypic changes that persist over long timescales. We studied melanoma cell responses to transient exposure to the cytokine interferon γ (IFNγ) by combining a systems-scale analysis of gene expression dynamics with computational modeling and experiments. We discovered that IFNγ is captured by phosphatidylserine (PS) on the surface of viable cells both in vitro and in vivo then slowly released to drive long-term transcription of cytokine-response genes. This mechanism introduces an additional function for PS in dynamically regulating inflammation across diverse cancer and primary cell types and has potential to usher in new immunotherapies targeting PS and inflammatory pathways. Published by Elsevier Inc.
Fitzmorris, Bob C; Patete, Jonathan M; Smith, Jacqueline; Mascorro, Xiomara; Adams, Staci; Wong, Stanislaus S; Zhang, Jin Z
2013-10-01
Much progress has been made in using hematite (α-Fe2 O3 ) as a potentially practical and sustainable material for applications such as solar-energy conversion and photoelectrochemical (PEC) water splitting; however, recent studies have shown that the performance can be limited by a very short charge-carrier diffusion length or exciton lifetime. In this study, we performed ultrafast studies on hematite nanoparticles of different shapes to determine the possible influence of particle shape on the exciton dynamics. Nanorice, multifaceted spheroidal nanoparticles, faceted nanocubes, and faceted nanorhombohedra were synthesized and characterized by using SEM and XRD techniques. Their exciton dynamics were investigated by using femtosecond transient absorption (TA) spectroscopy. Although the TA spectral features differ for the four samples studied, their decay profiles are similar, which can be fitted with time constants of 1-3 ps, approximately 25 ps, and a slow nanosecond component extending beyond the experimental time window that was measured (2 ns). The results indicate that the overall exciton lifetime is weakly dependent on the shape of the hematite nanoparticles, even though the overall optical absorption and scattering are influenced by the particle shape. This study suggests that other strategies need to be developed to increase the exciton lifetime or to lengthen the exciton diffusion length in hematite nanostructures. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wang, Lixiu; Bi, Yayan; Cao, Muhua; Ma, Ruishuang; Wu, Xiaoming; Zhang, Yan; Ding, Wenbo; Liu, Yan; Yu, Qian; Zhang, Yingqian; Jiang, Hua; Sun, Yingchun; Tong, Dongxia; Guo, Li; Dong, Zengxiang; Tian, Ye; Kou, Junjie; Shi, Jialan
2016-11-15
Relatively little is known about the role of phosphatidylserine (PS) in procoagulant activity (PCA) in patients with non-ST-elevated myocardial infarction (NSTEMI) after stent implantation. This study was designed to evaluate whether exposed PS on microparticles (MPs) and blood cells were involved in the hypercoagulable state in NSTEMI patients with stent implantation. NSTEMI patients (n=90) and healthy controls (n=20) were included in our study. PS exposure on MPs and blood cells was analyzed with flow cytometer and confocal microscope. PCA was evaluated by clotting time, purified coagulation complex assays and fibrin production assays. Baseline levels of MPs and PS + blood cells were significantly higher (P<0.001) in the patients than in controls. After stent implantation, a remarkable increase was observed in both MPs and PS + blood cells. Specifically, PS + MPs, PS + platelets and erythrocytes peaked at 18h following stent implantation, while PS + leukocytes peaked on day 2. In addition, circulating MPs (mostly derived from platelets, leukocytes, erythrocytes and endothelial cells) cooperating with PS + blood cells, contributed to markedly shortened coagulation time and markedly increased FXa/thrombin/fibrin (all P<0.01) generation in patient group. Moreover, blockade of exposed PS on MPs and cells with lactadherin inhibited PCA by approximately 70%. Our results suggest that PS + MPs and blood cells play a procoagulant role in NSTEMI patients following stent implantation. Blockade of PS could become a novel therapeutic modality for the prevention of thrombosis in these patients. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
The ultraviolet-bright, slowly declining transient PS1-11af as a partial tidal disruption event
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chornock, R.; Berger, E.; Zauderer, B. A.
2014-01-01
We present the Pan-STARRS1 discovery of the long-lived and blue transient PS1-11af, which was also detected by Galaxy Evolution Explorer with coordinated observations in the near-ultraviolet (NUV) band. PS1-11af is associated with the nucleus of an early type galaxy at redshift z = 0.4046 that exhibits no evidence for star formation or active galactic nucleus activity. Four epochs of spectroscopy reveal a pair of transient broad absorption features in the UV on otherwise featureless spectra. Despite the superficial similarity of these features to P-Cygni absorptions of supernovae (SNe), we conclude that PS1-11af is not consistent with the properties of knownmore » types of SNe. Blackbody fits to the spectral energy distribution are inconsistent with the cooling, expanding ejecta of a SN, and the velocities of the absorption features are too high to represent material in homologous expansion near a SN photosphere. However, the constant blue colors and slow evolution of the luminosity are similar to previous optically selected tidal disruption events (TDEs). The shape of the optical light curve is consistent with models for TDEs, but the minimum accreted mass necessary to power the observed luminosity is only ∼0.002 M {sub ☉}, which points to a partial disruption model. A full disruption model predicts higher bolometric luminosities, which would require most of the radiation to be emitted in a separate component at high energies where we lack observations. In addition, the observed temperature is lower than that predicted by pure accretion disk models for TDEs and requires reprocessing to a constant, lower temperature. Three deep non-detections in the radio with the Very Large Array over the first two years after the event set strict limits on the production of any relativistic outflow comparable to Swift J1644+57, even if off-axis.« less
Rochman, Chelsea M.; Manzano, Carlos; Hentschel, Brian T.; Massey Simonich, Staci L.; Hoh, Eunha
2014-01-01
Polycyclic aromatic hydrocarbons (PAHs) on virgin polystyrene (PS) and PS marine debris led us to examine PS as a source and sink for PAHs in the marine environment. At two locations in San Diego Bay, we measured sorption of PAHs to PS pellets, sampling at 0, 1, 3, 6, 9 and 12 months. We detected 25 PAHs using a new analytical method with comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry. Several congeners were detected on samples before deployment. After deployment, some concentrations decreased (1,3-dimethylnaphthalene and 2,6-methylnaphthalene) while most increased (2-methylanthracene and all parent PAHs (PPAHs) except fluorene and fluoranthene), suggesting PS debris is a source and sink for PAHs. When comparing sorbed concentrations of PPAHs on PS to the five most common polymers (polyethylene terephthalate (PET), high-density polyethylene (HDPE), polyvinyl chloride (PVC), low-density polyethylene (LDPE), and polypropylene (PP)), PS sorbed greater concentrations than PP, PET and PVC, similar to HDPE and LDPE. Most strikingly, at 0 months, PPAHs on PS ranged from 8-200 times greater than on PET, HDPE, PVC, LDPE, and PP. The combination of greater PAHs in virgin pellets and large sorption suggests that PS may pose a greater risk of exposure to PAHs upon ingestion. PMID:24341360
Rochman, Chelsea M; Manzano, Carlos; Hentschel, Brian T; Simonich, Staci L Massey; Hoh, Eunha
2013-12-17
Polycyclic aromatic hydrocarbons (PAHs) on virgin polystyrene (PS) and PS marine debris led us to examine PS as a source and sink for PAHs in the marine environment. At two locations in San Diego Bay, we measured sorption of PAHs to PS pellets, sampling at 0, 1, 3, 6, 9, and 12 months. We detected 25 PAHs using a new analytical method with comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry. Several congeners were detected on samples before deployment. After deployment, some concentrations decreased (1,3-dimethylnaphthalene and 2,6-methylnaphthalene), while most increased [2-methylanthracene and all parent PAHs (PPAHs), except fluorene and fluoranthene], suggesting that PS debris is a source and sink for PAHs. When sorbed concentrations of PPAHs on PS are compared to the five most common polymers [polyethylene terephthalate (PET), high-density polyethylene (HDPE), polyvinyl chloride (PVC), low-density polyethylene (LDPE), and polypropylene (PP)], PS sorbed greater concentrations than PP, PET, and PVC, similar to HDPE and LDPE. Most strikingly, at 0 months, PPAHs on PS ranged from 8 to 200 times greater than on PET, HDPE, PVC, LDPE, and PP. The combination of greater PAHs in virgin pellets and large sorption suggests that PS may pose a greater risk of exposure to PAHs upon ingestion.
Evans, John R.; Jensen, E. Gray; Sell, Russell; Stephens, Christopher D.; Nyman, Douglas J.; Hamilton, Robert C.; Hager, William C.
2006-01-01
In September, 2003, the Alyeska Pipeline Service Company (APSC) and the U.S. Geological Survey (USGS) embarked on a joint effort to extract, test, and calibrate the accelerometers, amplifiers, and bandpass filters from the earthquake monitoring systems (EMS) at Pump Stations 09, 10, and 11 of the Trans-Alaska Pipeline System (TAPS). These were the three closest strong-motion seismographs to the Denali fault when it ruptured in the MW 7.9 earthquake of 03 November 2002 (22:12:41 UTC). The surface rupture is only 3.0 km from PS10 and 55.5 km from PS09 but PS11 is 124.2 km away from a small rupture splay and 126.9 km from the main trace. Here we briefly describe precision calibration results for all three instruments. Included with this report is a link to the seismograms reprocessed using these new calibrations: http://nsmp.wr.usgs.gov/data_sets/20021103_2212_taps.html Calibration information in this paper applies at the time of the Denali fault earthquake (03 November 2002), but not necessarily at other times because equipment at these stations is changed by APSC personnel at irregular intervals. In particular, the equipment at PS09, PS10, and PS11 was changed by our joint crew in September, 2003, so that we could perform these calibrations. The equipment stayed the same from at least the time of the earthquake until that retrieval, and these calibrations apply for that interval.
Panek, Petr; Prochazka, Ivan
2007-09-01
This article deals with the time interval measurement device, which is based on a surface acoustic wave (SAW) filter as a time interpolator. The operating principle is based on the fact that a transversal SAW filter excited by a short pulse can generate a finite signal with highly suppressed spectra outside a narrow frequency band. If the responses to two excitations are sampled at clock ticks, they can be precisely reconstructed from a finite number of samples and then compared so as to determine the time interval between the two excitations. We have designed and constructed a two-channel time interval measurement device which allows independent timing of two events and evaluation of the time interval between them. The device has been constructed using commercially available components. The experimental results proved the concept. We have assessed the single-shot time interval measurement precision of 1.3 ps rms that corresponds to the time of arrival precision of 0.9 ps rms in each channel. The temperature drift of the measured time interval on temperature is lower than 0.5 ps/K, and the long term stability is better than +/-0.2 ps/h. These are to our knowledge the best values reported for the time interval measurement device. The results are in good agreement with the error budget based on the theoretical analysis.
NASA Astrophysics Data System (ADS)
Jia, Man; Lou, Sen Yue
2018-05-01
In natural and social science, many events happened at different space-times may be closely correlated. Two events, A (Alice) and B (Bob) are defined as correlated if one event is determined by another, say, B = f ˆ A for suitable f ˆ operators. A nonlocal AB-KdV system with shifted-parity (Ps, parity with a shift), delayed time reversal (Td, time reversal with a delay) symmetry where B =Ps ˆ Td ˆ A is constructed directly from the normal KdV equation to describe two-area physical event. The exact solutions of the AB-KdV system, including PsTd invariant and PsTd symmetric breaking solutions are shown by different methods. The PsTd invariant solution show that the event happened at A will happen also at B. These solutions, such as single soliton solutions, infinitely many singular soliton solutions, soliton-cnoidal wave interaction solutions, and symmetry reduction solutions etc., show the AB-KdV system possesses rich structures. Also, a special Bäcklund transformation related to residual symmetry is presented via the localization of the residual symmetry to find interaction solutions between the solitons and other types of the AB-KdV system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Zhaoqing; Khangaonkar, Tarang; Chase, Jared M.
2009-12-01
To support marine ecological resource management and emergency response and to enhance scientific understanding of physical and biogeochemical processes in Puget Sound, a real-time Puget Sound Operational Forecast System (PS-OFS) was developed by the Coastal Ocean Dynamics & Ecosystem Modeling group (CODEM) of Pacific Northwest National Laboratory (PNNL). PS-OFS employs the state-of-the-art three-dimensional coastal ocean model and closely follows the standards and procedures established by National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS). PS-OFS consists of four key components supporting the Puget Sound Circulation and Transport Model (PS-CTM): data acquisition, model execution and product archive, model skill assessment,more » and model results dissemination. This paper provides an overview of PS-OFS and its ability to provide vital real-time oceanographic information to the Puget Sound community. PS-OFS supports pacific northwest region’s growing need for a predictive tool to assist water quality management, fish stock recovery efforts, maritime emergency response, nearshore land-use planning, and the challenge of climate change and sea level rise impacts. The structure of PS-OFS and examples of the system inputs and outputs, forecast results are presented in details.« less
O electrolyte for bio-application
NASA Astrophysics Data System (ADS)
Naddaf, M.; Almariri, A.
2014-09-01
Porous silicon (PS) has been prepared in the dark by anodic etching of n+-type (111) silicon substrate in a HF:HCl:C2H5OH:H2O2:H2O electrolyte. The processed PS layer is characterized by means of photoluminescence (PL) spectroscopy, scanning electron microscope (SEM), water contact angle (CA) measurements, Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS) and micro-Raman scattering. The CA of fresh PS layer is found to be ~142°. On aging at ambient conditions, the CA decreases gently to reach ~133° after 3 month, and then it is stabilized for a prolonged time of aging. The visible PL emission from the PS layer also exhibits a good stability against aging time. The FTIR and XPS measurements and analysis show that the stable aged PS layer has rather SiO2-rich surface. The micro/nanostructure nature of the PS layer is revealed from SEM and micro-Raman results and correlated to CA results. Stable hydrophobic surface of oxidized PS layer is attractive for bio-applications. The efficiency of the produced PS layers as an entrapping template for specific immobilization of IgG2a antibody via physical absorption process is demonstrated.
NASA Astrophysics Data System (ADS)
Li, J.; Song, X.; Wang, P.; Zhu, L.
2017-12-01
The H-κ method (Zhu and Kanamori, 2000) has been widely used to estimate the crustal thickness and Vp/Vs ratio with receiver functions. However, in regions where the crustal structure is complicated, the method may produce uncertain or even unrealistic results, arising particularly from dipping Moho and/or crustal anisotropy. Here, we propose an improved H-κ method, which corrects for these effects first before stacking. The effect of dipping Moho and crustal anisotropy on Ps receiver function has been well studied, but not as much on crustal multiples (PpPs and PpSs+PsPs). Synthetic tests show that the effect of crustal anisotropy on the multiples are similar to Ps, while the effect of dipping Moho on the multiples is 5 times that on Ps (same cosine trend but 5 times in time shift). A Harmonic Analysis (HA) method for dipping/anisotropy was developed by Wang et al. (2017) for crustal Ps receiver functions to extract parameters of dipping Moho and crustal azimuthal anisotropy. In real data, the crustal multiples are much more complicated than the Ps. Therefore, we use the HA method (Wang et al., 2017), but apply separately to Ps and the multiples. It shows that although complicated, the trend of multiples can still be reasonably well represented by the HA. We then perform separate azimuthal corrections for Ps and the multiples and stack to obtain a combined receiver function. Lastly, the traditional H-κ procedure is applied to the stacked receiver function. We apply the improved H-κ method on 40 CNDSN (Chinese National Digital Seismic Network) stations distributed in a variety of geological setting across the Chinese continent. The results show apparent improvement compared to the traditional H-κ method, with clearer traces of multiples and stronger stacking energy in the grid search, as well as more reliable H-κ values.
Kirmaier, Christine; Laible, Philip D; Hanson, Deborah K; Holten, Dewey
2003-02-25
We report time-resolved optical measurements of the primary electron transfer reactions in Rhodobacter capsulatus reaction centers (RCs) having four mutations: Phe(L181) --> Tyr, Tyr(M208) --> Phe, Leu(M212) --> His, and Trp(M250) --> Val (denoted YFHV). Following direct excitation of the bacteriochlorophyll dimer (P) to its lowest excited singlet state P, electron transfer to the B-side bacteriopheophytin (H(B)) gives P(+)H(B)(-) in approximately 30% yield. When the secondary quinone (Q(B)) site is fully occupied, P(+)H(B)(-) decays with a time constant estimated to be in the range of 1.5-3 ns. In the presence of excess terbutryn, a competitive inhibitor of Q(B) binding, the observed lifetime of P(+)H(B)(-) is noticeably longer and is estimated to be in the range of 4-8 ns. On the basis of these values, the rate constant for P(+)H(B)(-) --> P(+)Q(B)(-) electron transfer is calculated to be between approximately (2 ns)(-)(1) and approximately (12 ns)(-)(1), making it at least an order of magnitude smaller than the rate constant of approximately (200 ps)(-)(1) for electron transfer between the corresponding A-side cofactors (P(+)H(A)(-) --> P(+)Q(A)(-)). Structural and energetic factors associated with electron transfer to Q(B) compared to Q(A) are discussed. Comparison of the P(+)H(B)(-) lifetimes in the presence and absence of terbutryn indicates that the ultimate (i.e., quantum) yield of P(+)Q(B)(-) formation relative to P is 10-25% in the YFHV RC.
NASA Astrophysics Data System (ADS)
Stauffer, Hans U.; Miller, Joseph D.; Slipchenko, Mikhail N.; Meyer, Terrence R.; Prince, Benjamin D.; Roy, Sukesh; Gord, James R.
2014-01-01
The hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering (fs/ps CARS) technique presents a promising alternative to either fs time-resolved or ps frequency-resolved CARS in both gas-phase thermometry and condensed-phase excited-state dynamics applications. A theoretical description of time-dependent CARS is used to examine this recently developed probe technique, and quantitative comparisons of the full time-frequency evolution show excellent accuracy in predicting the experimental vibrational CARS spectra obtained for two model systems. The interrelated time- and frequency-domain spectral signatures of gas-phase species produced by hybrid fs/ps CARS are explored with a focus on gas-phase N2 vibrational CARS, which is commonly used as a thermometric diagnostic of combusting flows. In particular, we discuss the merits of the simple top-hat spectral filter typically used to generate the ps-duration hybrid fs/ps CARS probe pulse, including strong discrimination against non-resonant background that often contaminates CARS signal. It is further demonstrated, via comparison with vibrational CARS results on a time-evolving solvated organic chromophore, that this top-hat probe-pulse configuration can provide improved spectral resolution, although the degree of improvement depends on the dephasing timescales of the observed molecular modes and the duration and timing of the narrowband final pulse. Additionally, we discuss the virtues of a frequency-domain Lorentzian probe-pulse lineshape and its potential for improving the hybrid fs/ps CARS technique as a diagnostic in high-pressure gas-phase thermometry applications.
Stauffer, Hans U; Miller, Joseph D; Slipchenko, Mikhail N; Meyer, Terrence R; Prince, Benjamin D; Roy, Sukesh; Gord, James R
2014-01-14
The hybrid femtosecond∕picosecond coherent anti-Stokes Raman scattering (fs∕ps CARS) technique presents a promising alternative to either fs time-resolved or ps frequency-resolved CARS in both gas-phase thermometry and condensed-phase excited-state dynamics applications. A theoretical description of time-dependent CARS is used to examine this recently developed probe technique, and quantitative comparisons of the full time-frequency evolution show excellent accuracy in predicting the experimental vibrational CARS spectra obtained for two model systems. The interrelated time- and frequency-domain spectral signatures of gas-phase species produced by hybrid fs∕ps CARS are explored with a focus on gas-phase N2 vibrational CARS, which is commonly used as a thermometric diagnostic of combusting flows. In particular, we discuss the merits of the simple top-hat spectral filter typically used to generate the ps-duration hybrid fs∕ps CARS probe pulse, including strong discrimination against non-resonant background that often contaminates CARS signal. It is further demonstrated, via comparison with vibrational CARS results on a time-evolving solvated organic chromophore, that this top-hat probe-pulse configuration can provide improved spectral resolution, although the degree of improvement depends on the dephasing timescales of the observed molecular modes and the duration and timing of the narrowband final pulse. Additionally, we discuss the virtues of a frequency-domain Lorentzian probe-pulse lineshape and its potential for improving the hybrid fs∕ps CARS technique as a diagnostic in high-pressure gas-phase thermometry applications.
NASA Astrophysics Data System (ADS)
Ichihara, Takashi; George, Richard T.; Silva, Caterina; Lima, Joao A. C.; Lardo, Albert C.
2011-02-01
The purpose of this study was to develop a quantitative method for myocardial blood flow (MBF) measurement that can be used to derive accurate myocardial perfusion measurements from dynamic multidetector computed tomography (MDCT) images by using a compartment model for calculating the first-order transfer constant (K1) with correction for the capillary transit extraction fraction (E). Six canine models of left anterior descending (LAD) artery stenosis were prepared and underwent first-pass contrast-enhanced MDCT perfusion imaging during adenosine infusion (0.14-0.21 mg/kg/min). K1 , which is the first-order transfer constant from left ventricular (LV) blood to myocardium, was measured using the Patlak plot method applied to time-attenuation curve data of the LV blood pool and myocardium. The results were compared against microsphere MBF measurements, and the extraction fraction of contrast agent was calculated. K1 is related to the regional MBF as K1=EF, E=(1-exp(-PS/F)), where PS is the permeability-surface area product and F is myocardial flow. Based on the above relationship, a look-up table from K1 to MBF can be generated and Patlak plot-derived K1 values can be converted to the calculated MBF. The calculated MBF and microsphere MBF showed a strong linear association. The extraction fraction in dogs as a function of flow (F) was E=(1-exp(-(0.2532F+0.7871)/F)) . Regional MBF can be measured accurately using the Patlak plot method based on a compartment model and look-up table with extraction fraction correction from K1 to MBF.
Spin dynamics, electronic, and thermal transport properties of two-dimensional CrPS4 single crystal
NASA Astrophysics Data System (ADS)
Pei, Q. L.; Luo, X.; Lin, G. T.; Song, J. Y.; Hu, L.; Zou, Y. M.; Yu, L.; Tong, W.; Song, W. H.; Lu, W. J.; Sun, Y. P.
2016-01-01
2-Dimensional (2D) CrPS4 single crystals have been grown by the chemical vapor transport method. The crystallographic, magnetic, electronic, and thermal transport properties of the single crystals were investigated by the room-temperature X-ray diffraction, electrical resistivity ρ(T), specific heat CP(T), and the electronic spin response (ESR) measurements. CrPS4 crystals crystallize into a monoclinic structure. The electrical resistivity ρ(T) shows a semiconducting behavior with an energy gap Ea = 0.166 eV. The antiferromagnetic transition temperature is about TN = 36 K. The spin flipping induced by the applied magnetic field is observed along the c axis. The magnetic phase diagram of CrPS4 single crystal has been discussed. The extracted magnetic entropy at TN is about 10.8 J/mol K, which is consistent with the theoretical value R ln(2S + 1) for S = 3/2 of the Cr3+ ion. Based on the mean-field theory, the magnetic exchange constants J1 and Jc corresponding to the interactions of the intralayer and between layers are about 0.143 meV and -0.955 meV are obtained based on the fitting of the susceptibility above TN, which agree with the results obtained from the ESR measurements. With the help of the strain for tuning the magnetic properties, monolayer CrPS4 may be a promising candidate to explore 2D magnetic semiconductors.
Tailor-made dimensions of diblock copolymer truncated micelles on a solid by UV irradiation.
Liou, Jiun-You; Sun, Ya-Sen
2015-09-28
We investigated the structural evolution of truncated micelles in ultrathin films of polystyrene-block-poly(2-vinylpyridine), PS-b-P2VP, of monolayer thickness on bare silicon substrates (SiOx/Si) upon UV irradiation in air- (UVIA) and nitrogen-rich (UVIN) environments. The structural evolution of micelles upon UV irradiation was monitored using GISAXS measurements in situ, while the surface morphology was probed using atomic force microscopy ex situ and the chemical composition using X-ray photoelectron spectroscopy (XPS). This work provides clear evidence for the interpretation of the relationship between the structural evolution and photochemical reactions in PS-b-P2VP truncated micelles upon UVIA and UVIN. Under UVIA treatment, photolysis and cross-linking reactions coexisted within the micelles; photolysis occurred mainly at the top of the micelles, whereas cross-linking occurred preferentially at the bottom. The shape and size of UVIA-treated truncated micelles were controlled predominantly by oxidative photolysis reactions, which depended on the concentration gradient of free radicals and oxygen along the micelle height. Because of an interplay between photolysis and photo-crosslinking, the scattering length densities (SLD) of PS and P2VP remained constant. In contrast, UVIN treatments enhanced the contrast in SLD between the PS shell and the P2VP core as cross-linking dominated over photolysis in the presence of nitrogen. The enhancement of the SLD contrast was due to the various degrees of cross-linking under UVIN for the PS and P2VP blocks.
Addressing Passive Smoking in Children
Hutchinson, Sasha G.; Kuijlaars, Jennifer S.; Mesters, Ilse; Muris, Jean W. M.; van Schayck, Constant P.; Dompeling, Edward; Feron, Frans J. M.
2014-01-01
Background A significant number of parents are unaware or unconvinced of the health consequences of passive smoking (PS) in children. Physicians could increase parental awareness by giving personal advice. Aim To evaluate the current practices of three Dutch health professions (paediatricians, youth health care physicians, and family physicians) regarding parental counselling for passive smoking (PS) in children. Methods All physicians (n = 720) representing the three health professions in Limburg, the Netherlands, received an invitation to complete a self-administered electronic questionnaire including questions on their: sex, work experience, personal smoking habits, counselling practices and education regarding PS in children. Results The response rate was 34%. One tenth (11%) of the responding physicians always addressed PS in children, 32% often, 54% occasionally and 4% reported to never attend to it. The three health professions appeared comparable regarding their frequency of parental counselling for PS in children. Addressing PS was more likely when children had respiratory problems. Lack of time was the most frequently mentioned barrier, being very and somewhat applicable for respectively 14% and 43% of the physicians. One fourth of the responders had received postgraduate education about PS. Additionally, 49% of the responders who did not have any education about PS were interested in receiving it. Conclusions Physicians working in the paediatric field in Limburg, the Netherlands, could more frequently address PS in children with parents. Lack of time appeared to be the most mentioned barrier and physicians were more likely to counsel parents for PS in children with respiratory complaints/diseases. Finally, a need for more education on parental counselling for PS was expressed. PMID:24809443
Eun, Young; Hong, In-Wha; Bruera, Eduardo; Kang, Jung Hun
2017-06-01
Patients with terminal cancer experience refractory symptoms in the last days of life. Although palliative sedation (PS) is recommended for patients suffering unbearable symptoms with imminent death, it requires clear communication between physicians and patients/caregivers. Understanding the demands and perceptions of patients and caregivers in the end-of-life phase are needed for effective communication. To explore patient experiences regarding end-of-life status and PS. The study was performed between October and December, 2013 with eligible terminal cancer patients and their families in a non-religious, tertiary healthcare facility in Korea. Eligibility criteria were a hospitalized cancer patient with a life expectancy of less than three months and who had never experienced PS. Data were collected via face-to-face in-depth interviews and analyzed using the constant comparative method of qualitative analysis. Saturation was achieved after conducting interviews with 13 patients or care-giving family members. Enrolled patients raised the following issues: 1) simultaneously harboring the hope of prolonging life and wishing for a peaceful death, 2) experiencing difficulties in having honest conversations with caregivers regarding death, 3) possessing insufficient knowledge and information regarding PS, and 4) hoping for the decision on PS to be made before suffering becomes too great. Terminally ill cancer patients and their caregivers expressed conflicting desires in hoping to prolong life and simultaneously wishing to experience a peaceful death. Improvements in the communications that occur among physicians, patients, and caregivers on the issues of prognosis and PS are needed. Copyright © 2017 American Academy of Hospice and Palliative Medicine. Published by Elsevier Inc. All rights reserved.
Ultrafast excited-state relaxation of a binuclear Ag(i) phosphine complex in gas phase and solution.
Kruppa, S V; Bäppler, F; Klopper, W; Walg, S P; Thiel, W R; Diller, R; Riehn, C
2017-08-30
The binuclear complex [Ag 2 (dcpm) 2 ](PF 6 ) 2 (dcpm = bis(dicyclohexylphosphino)methane) exhibits a structure with a close silver-silver contact mediated by the bridging ligand and thus a weak argentophilic interaction. Upon electronic excitation this cooperative effect is strongly increased and determines the optical and luminescence properties of the compound. We have studied here the ultrafast electronic dynamics in parallel in gas phase by transient photodissociation and in solution by transient absorption. In particular, we report the diverse photofragmentation pathways of isolated [Ag 2 (dcpm) 2 ] 2+ in an ion trap and its gas phase UV photodissociation spectrum. By pump-probe fragmentation action spectroscopy (λ ex = 260 nm) in the gas phase, we have obtained fragment-specific transients which exhibit a common ultrafast multiexponential decay. This is fitted to four time constants (0.6/5.8/100/>1000 ps), highlighting complex intrinsic photophysical processes. Remarkably, multiexponential dynamics (0.9/8.5/73/604 ps) are as well found for the relaxation dynamics in acetonitrile solution. Ab initio calculations at the level of approximate coupled-cluster singles-doubles (CC2) theory of ground and electronically excited states of the reduced model system [Ag 2 (dmpm) 2 ] 2+ (dmpm = bis(dimethylphosphino)methane) indicate a shortening of the Ag-Ag distance upon excitation by 0.3-0.4 Å. In C 2 geometry two close-lying singlet states S 1 ( 1 MC(dσ*-pπ), 1 B, 4.13 eV) and S 2 ( 1 MC(dσ*-pσ), 1 A, 4.45 eV) are found. The nearly dark S 1 state has not been reported so far. The excitation of the S 2 state carries a large oscillator strength for the calculated vertical transition (266 nm). Two related triplets are calculated at T 1 (3.87 eV) and T 2 (3.90 eV). From these findings we suggest possible relaxation pathways with the two short time constants ascribed to ISC/IVR and propose from the obtained similar values in gas phase that the fast solution dynamics is dominated by intramolecular processes. A further relaxation by IC/IVR in the triplet manifold is likely to account for the observed intermediate time constants. For the acetonitrile relaxation dynamics additional modifications are invoked based on solvent-induced shifts of the energy levels and the possible formation of solvent and counterion exciplexes on a longer timescale.
iPS-cell derived dendritic cells and macrophages for cancer therapy.
Senju, Satoru
2016-08-01
Antibody-based anti-cancer immunotherapy was recently recognized as one of the truly effective therapies for cancer patients. Antibodies against cell surface cancer antigens, such as CD20, and also those against immune-inhibitory molecules called "immune checkpoint blockers", such as CTLA4 or PD1, have emerged. Large-scale clinical trials have confirmed that, in some cases, antibody-based drugs are superior to conventional chemotherapeutic agents. These antibody-based drugs are now being manufactured employing a mass-production system by pharmaceutical companies. Anti-cancer therapy by immune cells, i.e. cell-based immunotherapy, is expected to be more effective than antibody therapy, because immune cells can recognize, infiltrate, and act in cancer tissues more directly than antibodies. In order to achieve cell-based anti-cancer immunotherapy, it is necessary to develop manufacturing systems for mass-production of immune cells. Our group has been studying immunotherapy with myeloid cells derived from ES cells or iPS cells. These pluripotent stem cells can be readily propagated under constant culture conditions, with expansion into a large quantity. We consider these stem cells to be the most suitable cellular source for mass-production of immune cells. This review introduces our studies on anti-cancer therapy with iPS cell-derived dendritic cells and iPS cell-derived macrophages.
Biswas, Ranjit; Das, Anuradha; Shirota, Hideaki
2014-10-07
In this study, we have investigated the ion concentration dependent collective dynamics in two series of deep eutectic solvent (DES) systems by femtosecond Raman-induced Kerr effect spectroscopy, as well as some physical properties, e.g., shear viscosity (η), density (ρ), and surface tension (γ). The DES systems studied here are [0.75CH3CONH2 + 0.25{f KSCN + (1 - f )NaSCN}] and [0.78CH3CONH2 + 0.22{f LiBr + (1 - f )LiNO3}] with f = 0, 0.2, 0.4, 0.6, 0.8, and 1.0. γ of these DES systems shows near insensitivity to f, while ρ shows a moderate dependence on f. Interestingly, η exhibits a strong dependence on f. In the low-frequency Kerr spectra, obtained via the Fourier transform of the collected Kerr transients, a characteristic band at ∼70 cm(-1) is clear in [0.78CH3CONH2 + 0.22{f LiBr + (1 - f )LiNO3}] DES especially at the larger f. The band is attributed to the intermolecular hydrogen bond of acetamide. Because of less depolarized Raman activities of intermolecular/interionic vibrational motions, which are mostly translational (collision-induced or interaction-induced) motions, of spherical ions, the intermolecular hydrogen-bonding band is clearly observed. In contrast, the intermolecular hydrogen-bonding band is buried in the other intermolecular/interionic vibrational motions, which includes translational and reorientational (librational) motions and their cross-terms, in [0.75CH3CONH2 + 0.25{f KSCN + (1 - f )NaSCN}] system. The first moment (M1) of the intermolecular/interionic vibrational band in these DES systems is much higher than that in typical neutral molecular liquids and shows a weak but contrasting dependence on the bulk parameter √γ/ρ. The time constants for picosecond overdamped Kerr transients in both the DES systems, which are obtained on the basis of the analysis fitted by a triexponential function, are rather insensitive to f for both the DES systems, but all the three time constants (fast: ∼1-3 ps; intermediate: ∼7-20 ps; and slow: ∼100 ps) are different between the [0.78CH3CONH2 + 0.22{f LiBr + (1 - f )LiNO3}] and [0.75CH3CONH2 + 0.25{f KSCN + (1 - f )NaSCN}] systems. These results indicate that the intermolecular/interionic interactions in DES systems is strongly influenced by the ionic species present in these DES systems.
Zhao, Lu; Wu, Xiaoming; Si, Yu; Yao, Zhipeng; Dong, Zengxiang; Novakovic, Valerie A; Guo, Li; Tong, Dongxia; Chen, He; Bi, Yayan; Kou, Junjie; Shi, Huaizhang; Tian, Ye; Hu, Shaoshan; Zhou, Jin; Shi, Jialan
2017-11-01
OBJECTIVE Phosphatidylserine (PS) is a major component of the inner leaflet of membrane bilayers. During cell activation or apoptosis, PS is externalized to the outer membrane, providing an important physiological signal necessary for the release of the microparticles (MPs) that are generated through the budding of cellular membranes. MPs express PS and membrane antigens that reflect their cellular origin. PS exposure on the cell surface and the release of MPs provide binding sites for factor Xa and prothrombinase complexes that promote thrombin formation. Relatively little is known about the role of PS exposure on blood cells and MPs in patients with internal carotid artery (ICA) stenosis who have undergone carotid artery stenting (CAS). The authors aimed to investigate the extent of PS exposure on blood cells and MPs and to define its role in procoagulant activity (PCA) in the 7 days following CAS. METHODS The study included patients with ICA stenosis who had undergone CAS (n = 70), matched patients who had undergone catheter angiography only (n = 30), and healthy controls (n = 30). Blood samples were collected from all patients just before the procedure after an overnight fast and at 2, 6, 24, 48, and 72 hours and 7 days after the CAS procedure. Blood was collected from healthy controls after an overnight fast. Phosphatidylserine-positive (PS+) MPs and blood cells were analyzed by flow cytometry, while PCA was assessed with clotting time analysis, purified coagulation complex assays, and fibrin formation assays. RESULTS The authors found that levels of PS+ blood cells and PS+ blood cell-derived MPs (platelets and platelet-derived MPs [PMPs], neutrophils and neutrophil-derived MPs [NMPs], monocytes and monocyte-derived MPs [MMPs], erythrocytes and erythrocyte-derived MPs [RMPs], and endothelial cells and endothelial cell-derived MPs [EMPs]) were increased in the 7 days following the CAS procedure. Specifically, elevation of PS exposure on platelets/PMPs, neutrophils/NMPs, and monocytes/MMPs was detected within 2 hours of CAS, whereas PS exposure was delayed on erythrocytes/RMPs and EMPs, with an increase detected 24 hours after CAS. In addition, PS+ platelets/PMPs peaked at 2 hours, while PS+ neutrophils/NMPs, monocytes/MMPs, and erythrocytes/RMPs peaked at 48 hours. After their peak, all persisted at levels above baseline for 7 days post-CAS. Moreover, the level of PS+ blood cells/MPs was correlated with shortened coagulation time and significantly increased intrinsic and extrinsic Xase, thrombin generation, and fibrin formation. Pretreatment of blood cells with lactadherin at their peak time point after CAS blocked PS, resulting in prolonged coagulation times, decreased procoagulant enzyme activation, and fibrin production. CONCLUSIONS The results of this study suggest that increased exposure of PS on blood cells and MPs may contribute to enhanced PCA in patients with ICA stenosis who have undergone CAS, explaining the risk of perioperative thromboembolic complications in these patients. PS on blood cells and MPs may serve as an important biomarker for predicting, and as a pivotal target for monitoring and treating, acute postoperative complications after CAS. ■ CLASSIFICATION OF EVIDENCE Type of question: association; study design: prospective cohort trial; evidence: Class I.
NASA Astrophysics Data System (ADS)
Hogiu, S.; Werncke, W.; Pfeiffer, M.; Dreyer, J.; Elsaesser, T.
2000-07-01
Vibrational relaxation in the electronic ground state initiated by intramolecular back-electron transfer (b-ET) of betaine-30 (B-30) is studied by picosecond time-resolved anti-Stokes Raman spectroscopy. Measurements were carried out with B-30 dissolved in slowly as well as in rapidly relaxing solvents. We observed a risetime of the Raman band with the highest frequency near 1600 cm-1 which is close to the b-ET time τb-ET of B-30. For B-30 dissolved in propylene carbonate (τb-ET˜1 ps), the population of this mode exhibits a rise time of 1 ps whereas vibrational populations between 400 and 1400 cm-1 increase substantially slower. In contrast, in glycerol triacetin (τb-ET˜3.5 ps) and in ethanol (τb-ET˜6 ps) rise times of all modes are close to the respective b-ET times. Within the first few picoseconds, direct vibrational excitation through b-ET is favored for modes with the highest frequencies and high Franck-Condon factors. Later on, indirect channels of population due to vibrational energy redistribution (IVR) become effective. Thermal equilibrium populations of the Raman active modes are established within 10 to 15 ps after optical excitation.
Viers, Boyd R; Viers, Lyndsay D; Hull, Nathan C; Hanson, Theodore J; Mehta, Ramila A; Bergstralh, Eric J; Vrtiska, Terri J; Krambeck, Amy E
2015-11-01
To evaluate the association between clinicoradiographic features and need for prestenting (PS) because of inability of the ureter to accommodate the ureteroscope, or ureteral access sheath, at the time of stone treatment. From 2009 to 2013, 120 consecutive nonstented patients underwent ureteroscopic stone treatment with preoperative computerized tomography urogram. Acute stone events with obstruction or infection were excluded. Preoperative radiographic imaging underwent radiologist review. Clinicoradiographic features were characterized, and multivariable logistic regression models were used to identify covariates independently associated with need for PS. Of the 154 renal units treated, 25 (16%) required PS for failed primary access. PS ureters were less likely to have a history of prior ipsilateral ureteral stent (4% vs 31%) or surgery (8% vs 36%; P <.05). Radiographically, PS ureters had a narrower ureteropelvic junction (4 mm vs 5 mm) and were more likely to have <50% ureteral opacification on computerized tomography urogram (32% vs 9%; P <.05). On multivariable analysis, prior ipsilateral ureteral stent (odds ratio [OR] = 0.11) and stone surgery (OR = 0.15) reduced the need for PS; meanwhile, <50% ureteral opacification (OR = 4.41) was independently associated with an increased risk of access failure. We report a 16% incidence of access failure requiring PS at time of ureteroscopy. Clinically, there was an 89% and 85% risk reduction in the need for PS with prior history of ipsilateral ureteral stent or surgery. Radiographically, there was a 4.4-fold increased risk of PS with <50% ureteral opacification. Accordingly, our findings may assist in counseling and operative management of the difficult ureter. Copyright © 2015 Elsevier Inc. All rights reserved.
Peters, Sanne A E; Dogan, Soner; Meijer, Rudy; Palmer, Mike K; Grobbee, Diederick E; Crouse, John R; O'Leary, Daniel H; Evans, Gregory W; Raichlen, Joel S; Bots, Michiel L
2011-01-01
To evaluate whether plaque scoring measurements are able to track changes in atherosclerotic plaque burden over time and to study whether this is affected by lipid-lowering therapy. Data used were from METEOR (Measuring Effects on Intima-Media Thickness: an Evaluation Of Rosuvastatin), a randomized controlled trial of rosuvastatin 40 mg among 984 low-risk patients with modest carotid intima-media thickening (CIMT). In this analysis, duplicate ultrasound images from 12 carotid sites were collected at the baseline and end of the study from 495 European patients and were evaluated for plaque presence and severity. Plaques were scored from near and far walls of the 12 sites (0= none; 1= minimal; 2= moderate; 3= severe) and plaque scores (PS) were combined into two summary measures for each examination. The MeanMaxPS is the mean over the 12 carotid sites of the maximum score at each site and the MaxMaxPS reflects the most severe lesion at any site. Baseline MeanMaxPS and MaxMaxPS were 0.31 (SD: 0.20) and 1.15 (SD: 0.51), respectively. Changes in MeanMaxPS and MaxMaxPS significantly differed between rosuvastatin and placebo (mean difference: -0.03 [SE: 0.01; p =0.016] and -0.09 [SE: 0.04; p =0.027], respectively). In contrast to rosuvastatin, which demonstrated no change from the baseline, placebo showed significant progression in MeanMaxPS and MaxMaxPS (p =0.002; both). The plaque-scoring method proved capable of assessing the change in atherosclerotic plaque burden over time and proved useful to evaluate lipid-lowering in asymptomatic individuals with a low risk of cardiovascular disease and subclinical atherosclerosis.
A comparative study of the time performance between NINO and FlexToT ASICs
NASA Astrophysics Data System (ADS)
Sarasola, I.; Nemallapudi, M. V.; Gundacker, S.; Sánchez, D.; Gascón, D.; Rato, P.; Marín, J.; Auffray, E.
2017-04-01
Universitat de Barcelona (UB) and CIEMAT have designed the FlexToT ASIC for the front-end readout of SiPM-based scintillator detectors. This ASIC is aimed at time of flight (ToF) positron emission tomography (PET) applications. In this work we have evaluated the time performance of the FlexToT v2 ASIC compared to the NINO ASIC, a fast ASIC developped at CERN. NINO electronics give 64 ps sigma for single-photon time resolution (SPTR) and 93 ps FWHM for coincidence time resolution (CTR) with 2 × 2 × 5 mm3 LSO:Ce,Ca crystals and S13360-3050CS SiPMs. Using the same SiPMs and crystals, the FlexToT v2 ASIC yields 91 ps sigma for SPTR and 123 ps FWHM for CTR. Despite worse time performace than NINO, FlexToT v2 features lower power consumption (11 vs. 27 mW/ch) and linear ToT energy measurement.
Readout Strategy of an Electro-optical Coupled PET Detector for Time-of-Flight PET/MRI
Bieniosek, M F; Olcott, P D; Levin, C S
2013-01-01
Combining PET with MRI in a single system provides clinicians with complementary molecular and anatomical information. However, existing integrated PET/MRI systems do not have time-of-flight PET capabilities. This work describes an MRI-compatible front-end electronic system with ToF capabilities. The approach employs a fast arrival-time pickoff comparator to digitize the timing information, and a laser diode to drive a 10m fiber-optic cable to optically transmit asynchronous timing information to a photodiode receiver readout system. The comparator and this electo-optical link show a combined 11.5ps fwhm jitter in response to a fast digital pulse. When configured with LYSO scintillation crystals and Hamamatsu MPPC silicon photo-multipliers the comparator and electro-optical link achieved a 511keV coincidence time resolution of 254.7ps +/− 8.0ps fwhm with 3×3×20mm crystals and 166.5 +/− 2.5ps fwhm with 3×3×5mm crystals. PMID:24061218
Root exudation of phytosiderophores from soil-grown wheat
Oburger, Eva; Gruber, Barbara; Schindlegger, Yvonne; Schenkeveld, Walter D C; Hann, Stephan; Kraemer, Stephan M; Wenzel, Walter W; Puschenreiter, Markus
2014-01-01
For the first time, phytosiderophore (PS) release of wheat (Triticum aestivum cv Tamaro) grown on a calcareous soil was repeatedly and nondestructively sampled using rhizoboxes combined with a recently developed root exudate collecting tool. As in nutrient solution culture, we observed a distinct diurnal release rhythm; however, the measured PS efflux was c. 50 times lower than PS exudation from the same cultivar grown in zero iron (Fe)-hydroponic culture. Phytosiderophore rhizosphere soil solution concentrations and PS release of the Tamaro cultivar were soil-dependent, suggesting complex interactions of soil characteristics (salinity, trace metal availability) and the physiological status of the plant and the related regulation (amount and timing) of PS release. Our results demonstrate that carbon and energy investment into Fe acquisition under natural growth conditions is significantly smaller than previously derived from zero Fe-hydroponic studies. Based on experimental data, we calculated that during the investigated period (21–47 d after germination), PS release initially exceeded Fe plant uptake 10-fold, but significantly declined after c. 5 wk after germination. Phytosiderophore exudation observed under natural growth conditions is a prerequisite for a more accurate and realistic assessment of Fe mobilization processes in the rhizosphere using both experimental and modeling approaches. PMID:24890330
Liu, Ho-Ling; Chang, Ting-Ting; Yan, Feng-Xian; Li, Cheng-He; Lin, Yu-Shi; Wong, Alex M
2015-06-01
The forward volumetric transfer constant (K(trans)), a physiological parameter extracted from dynamic contrast-enhanced (DCE) MRI, is weighted by vessel permeability and tissue blood flow. The permeability × surface area product per unit mass of tissue (PS) in brain tumors was estimated in this study by combining the blood flow obtained through pseudo-continuous arterial spin labeling (PCASL) and K(trans) obtained through DCE MRI. An analytical analysis and a numerical simulation were conducted to understand how errors in the flow and K(trans) estimates would propagate to the resulting PS. Fourteen pediatric patients with brain tumors were scanned on a clinical 3-T MRI scanner. PCASL perfusion imaging was performed using a three-dimensional (3D) fast-spin-echo readout module to determine blood flow. DCE imaging was performed using a 3D spoiled gradient-echo sequence, and the K(trans) map was obtained with the extended Tofts model. The numerical analysis demonstrated that the uncertainty of PS was predominantly dependent on that of K(trans) and was relatively insensitive to the flow. The average PS values of the whole tumors ranged from 0.006 to 0.217 min(-1), with a mean of 0.050 min(-1) among the patients. The mean K(trans) value was 18% lower than the PS value, with a maximum discrepancy of 25%. When the parametric maps were compared on a voxel-by-voxel basis, the discrepancies between PS and K(trans) appeared to be heterogeneous within the tumors. The PS values could be more than two-fold higher than the K(trans) values for voxels with high K(trans) levels. This study proposes a method that is easy to implement in clinical practice and has the potential to improve the quantification of the microvascular properties of brain tumors. Copyright © 2015 John Wiley & Sons, Ltd.
Kinetic energy of Ps formed by Ore mechanism in Ar gas
NASA Astrophysics Data System (ADS)
Sano, Yosuke; Kino, Yasushi; Oka, Toshitaka; Sekine, Tsutomu
2015-06-01
In order to investigate kinetic energy of positronium(Ps) formed by Ore mechanism, we performed positron annihilation age-momentum correlation (AMOC) measurements in Argas for 5.0 MPa and 7.5 MPa at room temperature. From the time dependence of Doppler broadening of para-Ps (p-Ps) self-annihilation gramma-ray component, we observed Ps slowing down process. Using a simple slowing down model, we obtained the initial kinetic energy of Ps formed by Ore mechanism and Ps-Armomentum transfer cross section. The initial kinetic energy was 3.9 eV which was higher than the kinetic energy of Ps formed at the upper limit of Ore gap. The momentum transfer cross section was 0.019 ± 0.010 nm2 in between 1 eV and 3.9 eV, and was close to the theoretical calculation.
Tidal Disruption Events in Pan-STARRS1
NASA Astrophysics Data System (ADS)
Gezari, Suvi
2018-01-01
The Pan-STARRS1 (PS1) Medium Deep Survey made an important contribution to the study of tidal disruption events (TDEs) by discovering TDEs on the rise to peak and enabling prompt spectroscopic follow-up observations. The two PS1 TDEs, PS1-10jh and PS1-11af, were the first TDEs to have detailed light curves and transient broad line features in their spectra, both of which could be used to constrain the physical parameters of the events. I will describe how cotemporal NUV observations from the GALEX Time Domain Survey were critical in the identification of these relatively rare events as bonifide TDEs among the PS1 transient alert stream. I will also show how we can use the PS1+GALEX data set as a training set to prepare for culling TDEs from the deluge of transients to be produced by the next generation of optical time domain surveys, in order that they may be used as effective probes of supermassive black hole demographics and accretion physics.
Collisional Processes Probed by using Resonant Four-Wave Mixing Spectroscopy
NASA Astrophysics Data System (ADS)
McCormack, E. F.; Stampanoni, A.; Hemmerling, B.
2000-06-01
Collisionally-induced decay processes in excited-state nitric oxide (NO) have been measured by using time-resolved two-color, resonant four-wave mixing (TC-RFWM) spectroscopy and polarization spectroscopy (PS). Markedly different time dependencies were observed in the data obtained by using TC-RFWM when compared to PS. Oscillations in the PS signal as a function of delay between the pump and probe laser pulses were observed and it was determined that their characteristics depend very sensitively on laser polarization. Analysis reveals that the oscillations in the decay curves are due to coherent excitation of unresolved hyperfine structure in the A state of NO. A comparison of beat frequencies obtained by taking Fourier transforms of the time data to the predicted hyperfine structure of the A state support this explanation. Further, based on a time-dependent model of PS as a FWM process, the signal’s dependence as a function of time on polarization configuration and excitation scheme can be predicted. By using the beat frequency values, fits of the model results to experimental decay curves for different pressures allows a study of the quenching rate in the A state due to collisional processes. A comparison of the PS data to laser-induced fluorescence decay measurements reveals different decay rates which suggests that the PS signal decay depends on the orientation and alignment of the excited molecules. The different behavior of the decay curves obtained by using TC-RFWM and PS can be understood in terms of the various contributions to the decay as described by the model and this has a direct bearing on which technique is preferable for a given set of experimental parameters.
NASA Astrophysics Data System (ADS)
Kasatani, Kazuo
2003-01-01
Third-order optical nonlinearities of several cyanine dyes were measured under resonant conditions by the femtosecond degenerate four-wave mixing (DFWM) technique. Temporal profiles of the DFWM signal were measured with a time resolution of 0.3 ps, and were found to consist of at least two components, the coherent instantaneous nonlinear response and the delayed response with a decay time constant of several hundred picoseconds. The latter can be attributed to molecular rotational relaxation of these dyes. The values of electronic component of the optical nonlinear susceptibility, χ e xxxx (3), for these dyes were ≈2×10 -12 esu at the very low concentration of 1×10 -5 mol dm -3. The electronic component of molecular hyperpolarizability, γe, was calculated to be ≈1×10 -28 esu for each dye.
Phase-sensitive dual-inversion recovery for accelerated carotid vessel wall imaging.
Bonanno, Gabriele; Brotman, David; Stuber, Matthias
2015-03-01
Dual-inversion recovery (DIR) is widely used for magnetic resonance vessel wall imaging. However, optimal contrast may be difficult to obtain and is subject to RR variability. Furthermore, DIR imaging is time-inefficient and multislice acquisitions may lead to prolonged scanning times. Therefore, an extension of phase-sensitive (PS) DIR is proposed for carotid vessel wall imaging. The statistical distribution of the phase signal after DIR is probed to segment carotid lumens and suppress their residual blood signal. The proposed PS-DIR technique was characterized over a broad range of inversion times. Multislice imaging was then implemented by interleaving the acquisition of 3 slices after DIR. Quantitative evaluation was then performed in healthy adult subjects and compared with conventional DIR imaging. Single-slice PS-DIR provided effective blood-signal suppression over a wide range of inversion times, enhancing wall-lumen contrast and vessel wall conspicuity for carotid arteries. Multislice PS-DIR imaging with effective blood-signal suppression is enabled. A variant of the PS-DIR method has successfully been implemented and tested for carotid vessel wall imaging. This technique removes timing constraints related to inversion recovery, enhances wall-lumen contrast, and enables a 3-fold increase in volumetric coverage at no extra cost in scanning time.
High-precision two-way optic-fiber time transfer using an improved time code.
Wu, Guiling; Hu, Liang; Zhang, Hao; Chen, Jianping
2014-11-01
We present a novel high-precision two-way optic-fiber time transfer scheme. The Inter-Range Instrumentation Group (IRIG-B) time code is modified by increasing bit rate and defining new fields. The modified time code can be transmitted directly using commercial optical transceivers and is able to efficiently suppress the effect of the Rayleigh backscattering in the optical fiber. A dedicated codec (encoder and decoder) with low delay fluctuation is developed. The synchronization issue is addressed by adopting a mask technique and combinational logic circuit. Its delay fluctuation is less than 27 ps in terms of the standard deviation. The two-way optic-fiber time transfer using the improved codec scheme is verified experimentally over 2 m to100 km fiber links. The results show that the stability over 100 km fiber link is always less than 35 ps with the minimum value of about 2 ps at the averaging time around 1000 s. The uncertainty of time difference induced by the chromatic dispersion over 100 km is less than 22 ps.
Ablation of silicon with bursts of femtosecond laser pulses
NASA Astrophysics Data System (ADS)
Gaudiuso, Caterina; Kämmer, Helena; Dreisow, Felix; Ancona, Antonio; Tünnermann, Andreas; Nolte, Stefan
2016-03-01
We report on an experimental investigation of ultrafast laser ablation of silicon with bursts of pulses. The pristine 1030nm-wavelength 200-fs pulses were split into bursts of up to 16 sub-pulses with time separation ranging from 0.5ps to 4080ps. The total ablation threshold fluence was measured depending on the burst features, finding that it strongly increases with the number of sub-pulses for longer sub-pulse delays, while a slowly increasing trend is observed for shorter separation time. The ablation depth per burst follows two different trends according to the time separation between the sub-pulses, as well as the total threshold fluence. For delays shorter than 4ps it decreases with the number of pulses, while for time separations longer than 510ps, deeper craters were achieved by increasing the number of subpulses in the burst, probably due to a change of the effective penetration depth.
Endoscopic spectral-domain polarization-sensitive optical coherence tomography system
NASA Astrophysics Data System (ADS)
Wang, Yi; Chen, Xiaodong; Hu, Zhiqiang; Li, Qiao; Yu, Daoyin
2008-02-01
In this paper, we introduced a fiber-based endoscopic Spectral-domain Polarization-sensitive OCT (SD-PS-OCT) experimental scheme for detecting the internal organ disease, which is based on low-coherence interferometer and two spectrometers. The SD-PS-OCT has the advantages of both Spectral-domain OCT (SD-OCT) and Polarization-sensitive OCT (PS-OCT). It is able to get the real-time image of reflectivity and birefringence distribution of tissue at the same time. The usage of SD-PS-OCT in endoscopic diagnosing system provides it the possibility to detect the internal organ disease. Since SD-PS-OCT can image the pathological changes of biological tissue below surface (1-3mm) with high resolution (1-15μm), it is able to help diagnosing early diseases of internal organs, which makes it a biomedical technology with bright future.
NASA Astrophysics Data System (ADS)
Pietsch, Kaja; Marzec, Paweł; Kobylarski, Marcin; Danek, Tomasz; Leśniak, Andrzej; Tatarata, Artur; Gruszczyk, Edward
2007-06-01
The thin-layer build of the Carpathian Foredeep Miocene formations and large petrophysical parameter variation cause seismic images of gas-saturated zones to be ambiguous, and the location of prospection wells on the basis of anomalous seismic record is risky. A method that assists reservoir interpretation of standard recorded seismic profiles (P waves) can be a converted wave recording (PS waves). This paper presents the results of application of a multicomponent seismic survey for the reservoir interpretation over the Chałupki Dębniańskie gas deposit, carried out for the first time in Poland by Geofizyka Kraków Ltd. for the Polish Oil and Gas Company. Seismic modeling was applied as the basic research tool, using the SeisMod program based on the finite-difference solution of the acoustic wave equation and equations of motion. Seismogeological models for P waves were developed using Acoustic Logs; S-wave model (records only from part of the well) was developed on the basis of theoretical curves calculated by means of the Estymacja program calibrated with average S-velocities, calculated by correlation of recorded P and PS wavefields with 1D modeling. The conformity between theoretical and recorded wavefields makes it possible to apply the criteria established on the basis of modeling for reservoir interpretation. Direct hydrocarbon indicators (bright spots, phase change, time sag) unambiguously identify gas-prone layers within the ChD-2 prospect. A partial range of the indicators observed in the SW part of the studied profile (bright spot that covers a single, anticlinally bent seismic horizon) points to saturation of the horizon. The proposed location is confirmed by criteria determined for converted waves (continuous seismic horizons with constant, high amplitude) despite poorer agreement between theoretical and recorded wavefields.
Molotokaite, Egle; Remelli, William; Casazza, Anna Paola; Zucchelli, Giuseppe; Polli, Dario; Cerullo, Giulio; Santabarbara, Stefano
2017-10-26
The dynamics of excited state equilibration and primary photochemical trapping have been investigated in the photosystem I-light harvesting complex I isolated from spinach, by the complementary time-resolved fluorescence and transient absorption approaches. The combined analysis of the experimental data indicates that the excited state decay is described by lifetimes in the ranges of 12-16 ps, 32-36 ps, and 64-77 ps, for both detection methods, whereas faster components, having lifetimes of 550-780 fs and 4.2-5.2 ps, are resolved only by transient absorption. A unified model capable of describing both the fluorescence and the absorption dynamics has been developed. From this model it appears that the majority of excited state equilibration between the bulk of the antenna pigments and the reaction center occurs in less than 2 ps, that the primary charge separated state is populated in ∼4 ps, and that the charge stabilization by electron transfer is completed in ∼70 ps. Energy equilibration dynamics associated with the long wavelength absorbing/emitting forms harbored by the PSI external antenna are also characterized by a time mean lifetime of ∼75 ps, thus overlapping with radical pair charge stabilization reactions. Even in the presence of a kinetic bottleneck for energy equilibration, the excited state dynamics are shown to be principally trap-limited. However, direct excitation of the low energy chlorophyll forms is predicted to lengthen significantly (∼2-folds) the average trapping time.
Gaynor, P M; Greenberg, M L
1992-01-01
CDP-diacylglycerol (CDP-DG) is an important branchpoint intermediate in eucaryotic phospholipid biosynthesis and could be a key regulatory site in phospholipid metabolism. Therefore, we examined the effects of growth phase, phospholipid precursors, and the disruption of phosphatidylcholine (PC) synthesis on the membrane-associated phospholipid biosynthetic enzymes CDP-DG synthase, phosphatidylglycerolphosphate (PGP) synthase, phosphatidylinositol (PI) synthase, and phosphatidylserine (PS) synthase in cell extracts of the fission yeast Schizosaccharomyces pombe. In complete synthetic medium containing inositol, maximal expression of CDP-DG synthase, PGP synthase, PI synthase, and PS synthase in wild-type cells occurred in the exponential phase of growth and decreased two- to fourfold in the stationary phase of growth. In cells starved for inositol, this decrease in PGP synthase, PI synthase, and PS synthase expression was not observed. Starvation for inositol resulted in a twofold derepression of PGP synthase and PS synthase expression, while PI synthase expression decreased initially and then remained constant. Upon the addition of inositol to inositol-starved cells, there was a rapid and continued increase in PI synthase expression. We examined expression of these enzymes in cho2 and cho1 mutants, which are blocked in the methylation pathway for synthesis of PC. Choline starvation resulted in a decrease in PS synthase and CDP-DG synthase expression in cho1 but not cho2 cells. Expression of PGP synthase and PI synthase was not affected by choline starvation. Inositol starvation resulted in a 1.7-fold derepression of PGP synthase expression in cho2 but not cho1 cells when PC was synthesized. PS synthase expression was not depressed, while CDP-DG synthase and PI synthase expression decreased in cho2 and cho1 cells in the absence of inositol. These results demonstrate that (i) CDP-DG synthase, PGP synthase, PI synthase, and PS synthase are similarly regulated by growth phase; (ii) inositol affects the expression of PGP synthase, PI synthase, and PS synthase; (iii) disruption of the methylation pathway results in aberrant patterns of regulation of growth phase and phospholipid precursors. Important differences between S. pombe and Saccharomyces cerevisiae with regard to regulation of these enzymes are discussed. PMID:1324908
Kong, Shiao Tong; Gün, Ozgül; Koch, Barbara; Deiseroth, Hans Jörg; Eckert, Hellmut; Reiner, Christof
2010-05-03
Li(7)PS(6) and Li(7)PSe(6) belong to a class of new solids that exhibit high Li(+) mobility. A series of quaternary solid solutions Li(7)PS(6-x)Se(x) (0 < or = x < or = 6) were characterised by X-ray crystallography and magic-angle spinning nuclear magnetic resonance (MAS-NMR) spectroscopy. The high-temperature (HT) modifications were studied by single-crystal investigations (both F43m, Z=4, Li(7)PS(6): a=9.993(1) A, Li(7)PSe(6): a=10.475(1) A) and show the typical argyrodite structures with strongly disordered Li atoms. HT-Li(7)PS(6) and HT-Li(7)PSe(6) transform reversibly into low-temperature (LT) modifications with ordered Li atoms. X-ray powder diagrams show the structures of LT-Li(7)PS(6) and LT-Li(7)PSe(6) to be closely related to orthorhombic LT-alpha-Cu(7)PSe(6). Single crystals of the LT modifications are not available due to multiple twinning and formation of antiphase domains. The gradual substitution of S by Se shows characteristic site preferences closely connected to the functionalities of the different types of chalcogen atoms (S, Se). High-resolution solid-state (31)P NMR is a powerful method to differentiate quantitatively between the distinct (PS(4-n)Se(n))(3-) local environments. Their population distribution differs significantly from a statistical scenario, revealing a pronounced preference for P-S over P-Se bonding. This preference, shown for the series of LT samples, can be quantified in terms of an equilibrium constant specifying the melt reaction Se(P)+S(2-) <==>S(P)+Se(2-), prior to crystallisation. The (77)Se MAS-NMR spectra reveal that the chalcogen distributions in the second and third coordination sphere of the P atoms are essentially statistical. The number of crystallographically independent Li atoms in both LT modifications was analysed by means of (6)Li{(7)Li} cross polarisation magic angle spinning (CPMAS).
Harris, Shannon L.; Tsao, How; Ashton, Lindsey; Goldblatt, David; Fernsten, Philip
2007-01-01
Antibody avidity, the strength of the multivalent interaction between antibodies and their antigens, is an important characteristic of protective immune responses. We have developed an inhibition enzyme-linked immunosorbent assay (ELISA) to measure antibody avidity for the capsular polysaccharide (PS) of Neisseria meningitidis group C (MnC) and determined the avidity constants (KDs) for 100 sera from children immunized with an MnC PS conjugate vaccine. The avidity constants were compared to the avidity indices (AI) obtained for the same sera using a chaotropic ELISA protocol. After the primary immunization series, the geometric mean (GM) KD was 674 nM and did not change in the months following immunization. However, the GM avidity did increase after the booster dose (GM KD, 414 nM 1 month after booster immunization). In contrast, the GM AI increased from an initial value of 118 after the primary immunization series to 147 6 months after the completion of the primary immunization series and then further increased to 178 after booster immunization. At the individual subject level, the avidity constant and AI correlated after the primary immunization series and after booster immunization but not prior to boosting. This work suggests that the AI, as measured by the chaotropic ELISA, in contrast to the KD, reflects changes that render antibody populations less susceptible to disruption by chaotropic agents without directly affecting the strength of the binding interactions. PMID:17287312
Transient Cooperative Processes in Dewetting Polymer Melts.
Chandran, Sivasurender; Reiter, Günter
2016-02-26
We compare the high velocity dewetting behavior, at elevated temperatures, of atactic polystyrene (aPS) and isotactic polystyrene (iPS) films, with the zero shear bulk viscosity (η_{bulk}) of aPS being approximately ten times larger than iPS. As expected, for aPS the apparent viscosity of the films (η_{f}) derived from high-shear dewetting is less than η_{bulk}, displaying a shear thinning behavior. Surprisingly, for iPS films, η_{f} is always larger than η_{bulk}, even at about 50 °C above the melting point, with η_{f}/η_{bulk} following an Arrhenius behavior. The corresponding activation energy of ∼160±10 kJ/mol for iPS films suggests a cooperative motion of segments which are aligned and agglomerated by fast dewetting.
NASA Astrophysics Data System (ADS)
Jiang, Xiao-Pan; Zhang, Zi-Liang; Qin, Xiu-Bo; Yu, Run-Sheng; Wang, Bao-Yi
2010-12-01
Positronium time of flight spectroscopy (Ps-TOF) is an effective technique for porous material research. It has advantages over other techniques for analyzing the porosity and pore tortuosity of materials. This paper describes a design for Ps-TOF apparatus based on the Beijing intense slow positron beam, supplying a new material characterization technique. In order to improve the time resolution and increase the count rate of the apparatus, the detector system is optimized. For 3 eV o-Ps, the time broadening is 7.66 ns and the count rate is 3 cps after correction.
Polymer Thin Film Stabilization.
NASA Astrophysics Data System (ADS)
Costa, A. C.; Oslanec, R.; Composto, R. J.; Vlcek, P.
1998-03-01
We study the dewetting dynamics of thin polystyrene (PS) films deposited on silicon oxide surfaces using optical (OM) and atomic force (AFM) microscopes. Quantitative analysis of the hole diameter as a function of annealing time at 175^oC shows that blending poly(styrene-block-methyl-methacrylate) (PS-b-PMMA) with PS acts to dramatically slow down the dewetting rate and even stops holes growth before they impinge. AFM studies show that the hole floor is smooth for a pure PS film but contains residual polymer for the blend. At 5% vol., a PS-b-PMMA with high molar mass and low PMMA is a more effective stabilizing agent than a low molar mass/high PMMA additive. The optimum copolymer concentration is 3% vol. beyond which film stability doesn't improve. Although dewetting is slowed down relative to pure PS, PS/PS-b-PMMA bilayers dewet at a faster rate than blends having the same overall additive concentration.
Chen, Jianbiao; Mu, Lin; Cai, Jingcheng; Yao, Pikai; Song, Xigeng; Yin, Hongchao; Li, Aimin
2015-12-01
The pyrolysis and oxy-fuel combustion characteristics of petrochemical wastewater sludge (PS) were studied in air (O2/N2) and oxy-fuel (O2/CO2) atmospheres using non-isothermal thermogravimetric analysis (TGA). Pyrolysis experiments showed that the weight loss profiles were almost similar up to 1050K in both N2 and CO2 atmospheres, while further weight loss took place in CO2 atmosphere at higher temperatures due to char-CO2 gasification. Compared with 20%O2/80%N2, the drying and devolatilization stage of PS were delayed in 20%O2/80%CO2 due to the differences in properties of the diluting gases. In oxy-fuel combustion experiments, with O2 concentration increasing, characteristic temperatures decreased, while characteristic combustion rates and combustion performance indexes increased. Kinetic analysis of PS decomposition under various atmospheres was performed using Coats-Redfern approach. The results indicated that, with O2 concentration increasing, the activation energies of Step 1 almost kept constant, while the values of subsequent three steps increased. Copyright © 2015 Elsevier Ltd. All rights reserved.
Spinor Bose-Einstein Condensates of Positronium
NASA Astrophysics Data System (ADS)
Wang, Yi-Hsieh; Anderson, Brandon; Clark, Charles
2014-05-01
Bose-Einstein condensates (BECs) of positronium (Ps) have been of experimental and theoretical interest due to their potential application as the gain medium of a γ-ray laser. Ps BECs are intrinsically spinor due to the presence of ortho-positronium (o-Ps) and para-positronium (p-Ps), whose annihilation lifetimes differ by three orders of magnitude. In this paper, we study the spinor dynamics and annihilation processes in the p-Ps/o-Ps system using both solutions of the time-dependent Gross-Pitaevskii equations and a semiclassical rate-equation approach. The spinor interactions have an O (4) symmetry which is broken to SO (3) by an internal energy difference between o-Ps and p-Ps. For an initially unpolarized condensate, there is a threshold density of ~1019 cm-3 at which spin mixing between o-Ps and p-Ps occurs. Beyond this threshold, there are unstable spatial modes accompanied by spin mixing. To ensure a high production yield above the critical density, a careful choice of external field must be made to avoid the spin mixing instability. NSF Physics Frontiers Center, ARO Atomtronics MURI, DARPA OLE.
Real-Time Observation of Organic Cation Reorientation in Methylammonium Lead Iodide Perovskites.
Bakulin, Artem A; Selig, Oleg; Bakker, Huib J; Rezus, Yves L A; Müller, Christian; Glaser, Tobias; Lovrincic, Robert; Sun, Zhenhua; Chen, Zhuoying; Walsh, Aron; Frost, Jarvist M; Jansen, Thomas L C
2015-09-17
The introduction of a mobile and polarized organic moiety as a cation in 3D lead-iodide perovskites brings fascinating optoelectronic properties to these materials. The extent and the time scales of the orientational mobility of the organic cation and the molecular mechanism behind its motion remain unclear, with different experimental and computational approaches providing very different qualitative and quantitative description of the molecular dynamics. Here we use ultrafast 2D vibrational spectroscopy of methylammonium (MA) lead iodide to directly resolve the rotation of the organic cations within the MAPbI3 lattice. Our results reveal two characteristic time constants of motion. Using ab initio molecular dynamics simulations, we identify these as a fast (∼300 fs) "wobbling-in-a-cone" motion around the crystal axis and a relatively slow (∼3 ps) jump-like reorientation of the molecular dipole with respect to the iodide lattice. The observed dynamics are essential for understanding the electronic properties of perovskite materials.
NASA Astrophysics Data System (ADS)
Ponseca, C. S., Jr.; Sundström, V.
2016-03-01
Ultrafast charge carrier dynamics in organo metal halide perovskite has been probed using time resolved terahertz (THz) spectroscopy (TRTS). Current literature on its early time characteristics is unanimous: sub-ps charge carrier generation, highly mobile charges and very slow recombination rationalizing the exceptionally high power conversion efficiency for a solution processed solar cell material. Electron injection from MAPbI3 to nanoparticles (NP) of TiO2 is found to be sub-ps while Al2O3 NPs do not alter charge dynamics. Charge transfer to organic electrodes, Spiro-OMeTAD and PCBM, is sub-ps and few hundreds of ps respectively, which is influenced by the alignment of energy bands. It is surmised that minimizing defects/trap states is key in optimizing charge carrier extraction from these materials.
NASA Astrophysics Data System (ADS)
Xu, He-Lin; Mao, Kai-Li; Huang, Yin-Ping; Yang, Jing-Jing; Xu, Jie; Chen, Pian-Pian; Fan, Zi-Liang; Zou, Shuang; Gao, Zheng-Zheng; Yin, Jia-Yu; Xiao, Jian; Lu, Cui-Tao; Zhang, Bao-Lin; Zhao, Ying-Zheng
2016-07-01
Multifunctional nanoparticles capable of the specific delivery of therapeutics to diseased cells and the real-time imaging of these sites have the potential to improve cancer treatment through personalized therapy. In this study, we have proposed a multifunctional nanoparticle that integrate magnetic targeting, drug-carrier functionality and real-time MRI imaging capabilities in one platform for the theranostic treatment of tumors. The multifunctional nanoparticle was designed with a superparamagnetic iron oxide core and a multifunctional shell composed of PEG/PEI/polysorbate 80 (Ps 80) and was used to encapsulate DOX. DOX-loaded multifunctional nanoparticles (DOX@Ps 80-SPIONs) with a Dh of 58.0 nm, a zeta potential of 28.0 mV, and a drug loading content of 29.3% presented superior superparamagnetic properties with a saturation magnetization (Ms) of 24.1 emu g-1. The cellular uptake of DOX@Ps 80-SPIONs by C6 cells under a magnetic field was significantly enhanced over that of free DOX in solution, resulting in stronger in vitro cytotoxicity. The real-time therapeutic outcome of DOX@Ps 80-SPIONs was easily monitored by MRI. Furthermore, the negative contrast enhancement effect of the nanoparticles was confirmed in glioma-bearing rats. Prussian blue staining and ex vivo DOX fluorescence assays showed that the magnetic Ps 80-SPIONs and encapsulated DOX were delivered to gliomas by imposing external magnetic fields, indicating effective magnetic targeting. Due to magnetic targeting and Ps 80-mediated endocytosis, DOX@Ps 80-SPIONs in the presence of a magnetic field led to the complete suppression of glioma growth in vivo at 28 days after treatment. The therapeutic mechanism of DOX@Ps 80-SPIONs acted by inducing apoptosis through the caspase-3 pathway. Finally, DOX@Ps 80-SPIONs' safety at therapeutic dosage was verified using pathological HE assays of the heart, liver, spleen, lung and kidney. Multifunctional SPIONs could be used as potential carriers for the theranostic treatment of CNS diseases.Multifunctional nanoparticles capable of the specific delivery of therapeutics to diseased cells and the real-time imaging of these sites have the potential to improve cancer treatment through personalized therapy. In this study, we have proposed a multifunctional nanoparticle that integrate magnetic targeting, drug-carrier functionality and real-time MRI imaging capabilities in one platform for the theranostic treatment of tumors. The multifunctional nanoparticle was designed with a superparamagnetic iron oxide core and a multifunctional shell composed of PEG/PEI/polysorbate 80 (Ps 80) and was used to encapsulate DOX. DOX-loaded multifunctional nanoparticles (DOX@Ps 80-SPIONs) with a Dh of 58.0 nm, a zeta potential of 28.0 mV, and a drug loading content of 29.3% presented superior superparamagnetic properties with a saturation magnetization (Ms) of 24.1 emu g-1. The cellular uptake of DOX@Ps 80-SPIONs by C6 cells under a magnetic field was significantly enhanced over that of free DOX in solution, resulting in stronger in vitro cytotoxicity. The real-time therapeutic outcome of DOX@Ps 80-SPIONs was easily monitored by MRI. Furthermore, the negative contrast enhancement effect of the nanoparticles was confirmed in glioma-bearing rats. Prussian blue staining and ex vivo DOX fluorescence assays showed that the magnetic Ps 80-SPIONs and encapsulated DOX were delivered to gliomas by imposing external magnetic fields, indicating effective magnetic targeting. Due to magnetic targeting and Ps 80-mediated endocytosis, DOX@Ps 80-SPIONs in the presence of a magnetic field led to the complete suppression of glioma growth in vivo at 28 days after treatment. The therapeutic mechanism of DOX@Ps 80-SPIONs acted by inducing apoptosis through the caspase-3 pathway. Finally, DOX@Ps 80-SPIONs' safety at therapeutic dosage was verified using pathological HE assays of the heart, liver, spleen, lung and kidney. Multifunctional SPIONs could be used as potential carriers for the theranostic treatment of CNS diseases. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr02448c
Beam test results of a 16 ps timing system based on ultra-fast silicon detectors
Cartiglia, N.; Staiano, A.; Sola, V.; ...
2017-04-01
In this paper we report on the timing resolution obtained in a beam test with pions of 180 GeV/c momentum at CERN for the first production of 45 μm thick Ultra-Fast Silicon Detectors (UFSD). UFSD are based on the Low- Gain Avalanche Detector (LGAD) design, employing n-on-p silicon sensors with internal charge multiplication due to the presence of a thin, low-resistivity diffusion layer below the junction. The UFSD used in this test had a pad area of 1.7 mm 2. The gain was measured to vary between 5 and 70 depending on the sensor bias voltage. The experimental setup includedmore » three UFSD and a fast trigger consisting of a quartz bar readout by a SiPM. The timing resolution was determined by doing Gaussian fits to the time-of-flight of the particles between one or more UFSD and the trigger counter. For a single UFSD the resolution was measured to be 34 ps for a bias voltage of 200 V, and 27 ps for a bias voltage of 230 V. For the combination of 3 UFSD the timing resolution was 20 ps for a bias voltage of 200 V, and 16 ps for a bias voltage of 230 V.« less
Beam test results of a 16 ps timing system based on ultra-fast silicon detectors
NASA Astrophysics Data System (ADS)
Cartiglia, N.; Staiano, A.; Sola, V.; Arcidiacono, R.; Cirio, R.; Cenna, F.; Ferrero, M.; Monaco, V.; Mulargia, R.; Obertino, M.; Ravera, F.; Sacchi, R.; Bellora, A.; Durando, S.; Mandurrino, M.; Minafra, N.; Fadeyev, V.; Freeman, P.; Galloway, Z.; Gkougkousis, E.; Grabas, H.; Gruey, B.; Labitan, C. A.; Losakul, R.; Luce, Z.; McKinney-Martinez, F.; Sadrozinski, H. F.-W.; Seiden, A.; Spencer, E.; Wilder, M.; Woods, N.; Zatserklyaniy, A.; Pellegrini, G.; Hidalgo, S.; Carulla, M.; Flores, D.; Merlos, A.; Quirion, D.; Cindro, V.; Kramberger, G.; Mandić, I.; Mikuž, M.; Zavrtanik, M.
2017-04-01
In this paper we report on the timing resolution obtained in a beam test with pions of 180 GeV/c momentum at CERN for the first production of 45 μm thick Ultra-Fast Silicon Detectors (UFSD). UFSD are based on the Low-Gain Avalanche Detector (LGAD) design, employing n-on-p silicon sensors with internal charge multiplication due to the presence of a thin, low-resistivity diffusion layer below the junction. The UFSD used in this test had a pad area of 1.7 mm2. The gain was measured to vary between 5 and 70 depending on the sensor bias voltage. The experimental setup included three UFSD and a fast trigger consisting of a quartz bar readout by a SiPM. The timing resolution was determined by doing Gaussian fits to the time-of-flight of the particles between one or more UFSD and the trigger counter. For a single UFSD the resolution was measured to be 34 ps for a bias voltage of 200 V, and 27 ps for a bias voltage of 230 V. For the combination of 3 UFSD the timing resolution was 20 ps for a bias voltage of 200 V, and 16 ps for a bias voltage of 230 V.
An 18-ps TDC using timing adjustment and bin realignment methods in a Cyclone-IV FPGA
NASA Astrophysics Data System (ADS)
Cao, Guiping; Xia, Haojie; Dong, Ning
2018-05-01
The method commonly used to produce a field-programmable gate array (FPGA)-based time-to-digital converter (TDC) creates a tapped delay line (TDL) for time interpolation to yield high time precision. We conduct timing adjustment and bin realignment to implement a TDC in the Altera Cyclone-IV FPGA. The former tunes the carry look-up table (LUT) cell delay by changing the LUT's function through low-level primitives according to timing analysis results, while the latter realigns bins according to the timing result obtained by timing adjustment so as to create a uniform TDL with bins of equivalent width. The differential nonlinearity and time resolution can be improved by realigning the bins. After calibration, the TDC has a 18 ps root-mean-square timing resolution and a 45 ps least-significant bit resolution.
Mueller, R F; Characklis, W G; Jones, W L; Sears, J T
1992-05-01
The processes leading to bacterial colonization on solid-water interfaces are adsorption, desorption, growth, and erosion. These processes have been measured individually in situ in a flowing system in real time using image analysis. Four different substrata (copper, silicon, 316 stainless-steel and glass) and 2 different bacterial species (Pseudomonas aeruginosa and Pseudomonas fluorescens) were used in the experiments. The flow was laminar (Re = 1.4) and the shear stress was kept constant during all experiments at 0.75 N m(-2). The surface roughness varied among the substrata from 0.002 microm (for silicon) to 0.015 microm (for copper). Surface free energies varied from 25.1 dynes cm(-1) for silicon to 31.2 dynes cm(-1) for copper. Cell curface hydrophobicity, reported as hydrocarbon partitioning values, ranged from 0.67 for Ps. fluorescens to 0.97 for Ps. aeruginosa.The adsorption rate coefficient varied by as much as a factor of 10 among the combinations of bacterial strain and substratum material, and was positively correlated with surface free energy, the surface roughness of the substratum, and the hydrophobicity of the cells. The probability of desorption decreased with increasing surface free energy and surface roughness of the substratum. Cell growth was inhibited on copper, but replication of cells overlying an initial cell layer was observed with increased exposure time to the cell-containing bulk water. A mathematical model describing cell accumulation on a substratum is presented.
The broad applicability of the disk laser principle: from CW to ps
NASA Astrophysics Data System (ADS)
Killi, Alexander; Stolzenburg, Christian; Zawischa, Ivo; Sutter, Dirk; Kleinbauer, Jochen; Schad, Sven; Brockmann, Rüdiger; Weiler, Sascha; Neuhaus, Jörg; Kalfhues, Steffen; Mehner, Eva; Bauer, Dominik; Schlueter, Holger; Schmitz, Christian
2009-02-01
The quasi two-dimensional geometry of the disk laser results in conceptional advantages over other geometries. Fundamentally, the thin disk laser allows true power scaling by increasing the pump spot diameter on the disk while keeping the power density constant. This scaling procedure keeps optical peak intensity, temperature, stress profile, and optical path differences in the disk nearly unchanged. The required pump beam brightness - a main cost driver of DPSSL systems - also remains constant. We present these fundamental concepts and present results in the wide range of multi kW-class CW-sources, high power Q-switched sources and ultrashort pulsed sources.
FEROZ, Shevin R.; SUMI, Rumana A.; MALEK, Sri N.A.; TAYYAB, Saad
2014-01-01
The interaction of pinostrobin (PS), a multitherapeutic agent with serum albumins of various mammalian species namely, goat, bovine, human, porcine, rabbit, sheep and dog was investigated using fluorescence quench titration and competitive drug displacement experiments. Analysis of the intrinsic fluorescence quenching data revealed values of the association constant, Ka in the range of 1.49 – 6.12 × 104 M−1, with 1:1 binding stoichiometry. Based on the PS–albumin binding characteristics, these albumins were grouped into two classes. Ligand displacement studies using warfarin as the site I marker ligand correlated well with the binding data. Albumins from goat and bovine were found to be closely similar to human albumin on the basis of PS binding characteristics. PMID:25519455
Bulfone, Giampiera; Fida, Roberta; Ghezzi, Valerio; Macale, Loreana; Sili, Alessandro; Alvaro, Rosaria; Palese, Alvisa
Student perceptions of self-efficacy (SE) prevent stress and burnout and improve engagement in nursing education, thus increasing learning outcomes. The study aims were to (1) validate a scale measuring nursing SE in psychomotor skills (NSE-PS), (2) describe changes in NSE-PS over time, and (3) explore NSE-PS correlations with burnout and engagement. A total of 1117 nursing students participated. A significant increase in the NSE-PS scores over the years has emerged; in addition, all NSE-PS dimensions were correlated negatively with burnout and positively with engagement.
JOB, MARTIN O.; KUHAR, MICHAEL J.
2017-01-01
In this study, we reexamined the effect of CART peptide on psychostimulant (PS)-induced locomotor activity (LMA) in individual rats. The Methods utilized were as previously published. The PS-induced LMA was defined as the distance traveled after PS administration (intraperitoneal), and the CART peptide effect was defined as the change in the PS-induced activity after bilateral intra-NAc administration of CART peptide. The experiments included both male and female Sprague-Dawley rats, and varying the CART peptide dose and the PS dose. While the average effect of CART peptide was to inhibit PS-induced LMA, the effect of CART peptide on individual PS treated animals was not always inhibitory and sometimes even produced an increase or no change in PS-induced LMA. Upon further analysis, we observed a linear correlation, reported for the first time, between the magnitude of PS-induced LMA and the CART peptide effect. Because CART peptide inhibits PS-induced LMA when it is large, and increases PS-induced LMA when it is small, the peptide can be considered a homeostatic regulator of dopamine (DA)-induced LMA, which supports our earlier homeostatic hypothesis. PMID:28215744
2015-11-04
Kirtland AFB, NM 87117-5776 10. SPONSOR/MONITOR’S ACRONYM(S) AFRL /RVBYE 11. SPONSOR/MONITOR’S REPORT NUMBER(S) AFRL -RV-PS-TR-2016-0012 12. DISTRIBUTION...DISTRIBUTION LIST DTIC/OCP 8725 John J. Kingman Rd, Suite 0944 Ft Belvoir, VA 22060-6218 1 cy AFRL /RVIL Kirtland AFB, NM 87117-5776 2 cys Official... AFRL -RV-PS- TR-2016-0012 AFRL -RV-PS- TR-2016-0012 TOWARD UNIFIED CORRECTION OF REGIONAL PHASES FOR AMPLITUDE AND TRAVEL TIME EFFECTS
2015-11-04
Kirtland AFB, NM 87117-5776 10. SPONSOR/MONITOR’S ACRONYM(S) AFRL /RVBYE 11. SPONSOR/MONITOR’S REPORT NUMBER(S) AFRL -RV-PS-TR-2016-0012 12. DISTRIBUTION...DISTRIBUTION LIST DTIC/OCP 8725 John J. Kingman Rd, Suite 0944 Ft Belvoir, VA 22060-6218 1 cy AFRL /RVIL Kirtland AFB, NM 87117-5776 2 cys Official... AFRL -RV-PS- TR-2016-0012 AFRL -RV-PS- TR-2016-0012 TOWARD UNIFIED CORRECTION OF REGIONAL PHASES FOR AMPLITUDE AND TRAVEL TIME EFFECTS
NASA Astrophysics Data System (ADS)
Chapuis, P.; Montgomery, P. C.; Anstotz, F.; Leong-Hoï, A.; Gauthier, C.; Baschnagel, J.; Reiter, G.; McKenna, G. B.; Rubin, A.
2017-09-01
Glass formation and glassy behavior remain as the important areas of investigation in soft matter physics with many aspects which are still not completely understood, especially at the nanometer size-scale. In the present work, we show an extension of the "nanobubble inflation" method developed by O'Connell and McKenna [Rev. Sci. Instrum. 78, 013901 (2007)] which uses an interferometric method to measure the topography of a large array of 5 μ m sized nanometer thick films subjected to constant inflation pressures during which the bubbles grow or creep with time. The interferometric method offers the possibility of making measurements on multiple bubbles at once as well as having the advantage over the AFM methods of O'Connell and McKenna of being a true non-contact method. Here we demonstrate the method using ultra-thin films of both poly(vinyl acetate) (PVAc) and polystyrene (PS) and discuss the capabilities of the method relative to the AFM method, its advantages and disadvantages. Furthermore we show that the results from experiments on PVAc are consistent with the prior work on PVAc, while high stress results with PS show signs of a new non-linear response regime that may be related to the plasticity of the ultra-thin film.
Naz, Iffat; Batool, Syeda Ain-ul; Ali, Naeem; Khatoon, Nazia; Atiq, Niama; Hameed, Abdul; Ahmed, Safia
2013-08-01
The present research work monitored the successive biofilm development and its catabolic role in the degradation of polystyrene (PS). PS material was artificially colonized with biofilm by incubating it with activated sludge under aerobic and anaerobic conditions. Biofilm formation was monitored by gravimetric weight analysis, spectrophotometric absorbance technique, heterotrophic plate count, and scanning electron microscopy under aerobic and anaerobic conditions. The wet weight (1.59 and 1.17 g) and dry weight (0.41 and 0.08 g) of a biofilm showed a significant constant increase under aerobic and anaerobic conditions, respectively, from first till 9 weeks of incubation. Plate count of the selected bacteria (Escherichia coli, Salmonella typhimurium, Shigella dysenteriae, Pseudomonas aeruginosa) considerably declined (90-99 %) in the biofilm after seventh and fifth weeks of incubation under aerobic and anaerobic conditions, respectively, indicating a positive shift from pathogenic to beneficial microbial community. While most probable number index of fecal coliforms and E. coli in the sludge showed more reduction (98 and 99 %) under aerobic as compare to anaerobic conditions (86 and 91 %) after 9 weeks of biofilm formation on PS cubes. Correspondingly, the decreasing levels of chemical oxygen demand and biochemical oxygen demand (up to 73 %) showed signs of sludge digestion. Scanning electron microscope coupled with energy dispersive X-ray spectroscope revealed nature of PS media containing high carbon content. However, biofilm development proved to be involved in the biochemical transformation of the PS medium as indicated by Fourier transform infrared spectroscopy.
Circadian Regulation of Hippocampal Long-Term Potentiation
Chaudhury, Dipesh; Wang, Louisa M.; Colwell, Christopher S.
2008-01-01
The goal of this study is to investigate the possible circadian regulation of hippocampal excitability and long-term potentiation (LTP) measured by stimulating the Schaffer collaterals (SC) and recording the field excitatory postsynaptic potential (fEPSP) from the CA1 dendritic layer or the population spike (PS) from the soma in brain slices of C3H and C57 mice. These 2 strains of mice were of interest because the C3H mice secrete melatonin rhythmically while the C57 mice do not. The authors found that the magnitude of the enhancement of the PS was significantly greater in LTP recorded from night slices compared to day slices of both C3H and C57 mice. They also found significant diurnal variation in the decay of LTP measured with fEPSPs, with the decay slower during the night in both strains of mice. There was evidence for a diurnal rhythm in the input/output function of pyramidal neurons measured at the soma in C57 but not C3H mice. Furthermore, LTP in the PS, measured in slices prepared during the day but recorded during the night, had a profile remarkably similar to the night group. Finally, PS recordings were carried out in slices from C3H mice maintained in constant darkness prior to experimentation. Again, the authors found that the magnitude of the enhancement of the PS was significantly greater in LTP recorded from subjective night slices compared to subjective day slices. These results provide the 1st evidence that an endogenous circadian oscillator modulates synaptic plasticity in the hippocampus. PMID:15851529
Baral, Jayanta K; Majumdar, Himadri S; Laiho, Ari; Jiang, Hua; Kauppinen, Esko I; Ras, Robin H A; Ruokolainen, Janne; Ikkala, Olli; Osterbacka, Ronald
2008-01-23
We report a simple memory device in which the fullerene-derivative [6,6]-phenyl-C(61) butyric acid methyl ester (PCBM) mixed with inert polystyrene (PS) matrix is sandwiched between two aluminum (Al) electrodes. Transmission electron microscopy (TEM) images of PCBM:PS films showed well controlled morphology without forming any aggregates at low weight percentages (<10 wt%) of PCBM in PS. Energy dispersive x-ray spectroscopy (EDX) analysis of the device cross-sections indicated that the thermal evaporation of the Al electrodes did not lead to the inclusion of Al metal nanoparticles into the active PCBM:PS film. Above a threshold voltage of <3 V, independent of thickness, a consistent negative differential resistance (NDR) is observed in devices in the thickness range from 200 to 350 nm made from solutions with 4-10 wt% of PCBM in PS. We found that the threshold voltage (V(th)) for switching from the high-impedance state to the low-impedance state, the voltage at maximum current density (V(max)) and the voltage at minimum current density (V(min)) in the NDR regime are constant within this thickness range. The current density ratio at V(max) and V(min) is more than or equal to 10, increasing with thickness. Furthermore, the current density is exponentially dependent on the longest tunneling jump between two PCBM molecules, suggesting a tunneling mechanism between individual PCBM molecules. This is further supported with temperature independent NDR down to 240 K.
Ammonia modification for flotation separation of polycarbonate and polystyrene waste plastics.
Wang, Chong-Qing; Wang, Hui; Gu, Guo-Hua; Lin, Qing-Quan; Zhang, Ling-Ling; Huang, Luo-Luo; Zhao, Jun-Yao
2016-05-01
A promising method, ammonia modification, was developed for flotation separation of polycarbonate (PC) and polystyrene (PS) waste plastics. Ammonia modification has little effect on flotation behavior of PS, while it changes significantly that of PC. The PC recovery in the floated product drops from 100% to 3.17% when modification time is 13min and then rises to 100% after longer modification. The mechanism of ammonia modification was studied by contact angle, and Fourier transform infrared (FT-IR) and X-ray photoelectron spectroscopy (XPS) measurements. Contact angle of PC indicates the decline of PC recovery in the floated product is ascribed to an increase in surface wettability. FT-IR and XPS spectra suggest that ammonia modification causes chemical reactions occurred on PC surface. Flotation behavior of ammonia-modified PC and PS was investigated with respect to flotation time, frother concentration and particle sizes. Flotation separation of PC and PS waste plastics was conducted based on the flotation behavior of single plastic. PC and PS mixtures with different particle sizes are separated efficiently, implying that the technology possesses superior applicability to particle sizes of plastics. The purity of PS and PC is up to 99.53% and 98.21%, respectively, and the recovery of PS and PC is larger than 92.06%. A reliable, cheap and effective process is proposed for separation of PC and PS waste plastics. Copyright © 2016 Elsevier Ltd. All rights reserved.
STIC3 - Silicon Photomultiplier Timing Chip with picosecond resolution
NASA Astrophysics Data System (ADS)
Stankova, Vera; Shen, Wei; Briggl, Konrad; Chen, Huangshan; Fischer, Peter; Gil, Alejandro; Harion, Tobias; Kiworra, Volker; Munwes, Yonathan; Ritzert, Michael; Schultz-Coulon, Hans-Christian
2015-07-01
The diagnostic of pancreas and prostate cancer is a challenging task due to the background noise coming from the closer organs. The EndoToFPET-US project aims to combine the synergy between metabolic and anatomical (ultrasound) image in order to improve the precision in the tumor localization. The goal of the project is to develop a Positron Emission Tomography (PET) system that provides a time-of-flight resolution of 200 ps FWHM for improving the signal to noise ratio and further to improve the medical image quality. In order to achieve this purpose an ASIC has been designed for very high timing resolution in time-of-flight (ToF) applications. In this paper we present the ASIC performance and the first characterization measurements with the 64-channels prototype version (STiC3). Measurements are performed with LYSO scintillator crystal and a Multi Pixel Photon Counter (MPPC). Measurements with the chip show an analog-front-end stage jitter of 35 ps for the first photo-electron equivalent charge and reach 18 ps for the third photo-electron. Coincidence time resolution (CTR) of 240 ps FWHM is measured with 3.1×3.1×15 mm3 LYSO crystal and 50 μm pixel pitch MPPC. Further optimization including the Time-to-Digital Converter (TDC) non-linearity corrections and setup fine tuning are ongoing for achieving the desired CTR of 200 ps FWHM.
Coexistence of WiFi and WiMAX systems based on PS-request protocols.
Kim, Jongwoo; Park, Suwon; Rhee, Seung Hyong; Choi, Yong-Hoon; Chung, Young-uk; Hwang, Ho Young
2011-01-01
We introduce both the coexistence zone within the WiMAX frame structure and a PS-Request protocol for the coexistence of WiFi and WiMAX systems sharing a frequency band. Because we know that the PS-Request protocol has drawbacks, we propose a revised PS-Request protocol to improve the performance. Two PS-Request protocols are based on the time division operation (TDO) of WiFi system and WiMAX system to avoid the mutual interference, and use the vestigial power management (PwrMgt) bit within the Frame Control field of the frames transmitted by a WiFi AP. The performance of the revised PS-Request protocol is evaluated by computer simulation, and compared to those of the cases without a coexistence protocol and to the original PS-Request protocol.
Coexistence of WiFi and WiMAX Systems Based on PS-Request Protocols†
Kim, Jongwoo; Park, Suwon; Rhee, Seung Hyong; Choi, Yong-Hoon; Chung, Young-uk; Hwang, Ho Young
2011-01-01
We introduce both the coexistence zone within the WiMAX frame structure and a PS-Request protocol for the coexistence of WiFi and WiMAX systems sharing a frequency band. Because we know that the PS-Request protocol has drawbacks, we propose a revised PS-Request protocol to improve the performance. Two PS-Request protocols are based on the time division operation (TDO) of WiFi system and WiMAX system to avoid the mutual interference, and use the vestigial power management (PwrMgt) bit within the Frame Control field of the frames transmitted by a WiFi AP. The performance of the revised PS-Request protocol is evaluated by computer simulation, and compared to those of the cases without a coexistence protocol and to the original PS-Request protocol. PMID:22163721
Paul, Rituparna; Karabiyik, Ufuk; Swift, Michael C; Hottle, John R; Esker, Alan R
2008-05-06
Morphological evolution in dewetting thin film bilayers of polystyrene (PS) and a polyhedral oligomeric silsesquioxane (POSS), trisilanolphenyl-POSS (TPP), was studied as a function of annealing temperature and annealing time. The results demonstrate unique dewetting morphologies in PS/TPP bilayers at elevated temperatures that are significantly different from those typically observed in dewetting polymer/polymer bilayers. During temperature ramp studies by optical microscopy (OM) in the reflection mode, PS/TPP bilayers form cracks with a weak optical contrast at approximately 130 degrees C. The crack formation is attributed to tensile stresses within the upper TPP layer. The weak optical contrast of the cracks observed in the bilayers for annealing temperatures below approximately 160 degrees C is consistent with the cracking and dewetting of only the upper TPP layer from the underlying PS layer. The optical contrast of the morphological features is significantly enhanced at annealing temperatures of >160 degrees C. This observation suggests dewetting of both the upper TPP and the lower PS layers that results in the exposure of the silicon substrate. Upon annealing the PS/TPP bilayers at 200 degrees C in a temperature jump experiment, the upper TPP layer undergoes instantaneous cracking as observed by OM. These cracks in the upper TPP layer serve as nucleation sites for rapid dewetting and aggregation of the TPP layer, as revealed by OM and atomic force microscopy (AFM). X-ray photoelectron spectroscopy (XPS) results indicated that dewetting of the lower PS layer ensued for annealing times >5 min and progressed up to 90 min. For annealing times >90 min, OM, AFM, and XPS results revealed complete dewetting of both the layers with the formation of TPP encapsulated PS droplets.
ARSRP Signal Processing Software
1993-02-01
Hardcopy of plot? Y or N : Y Enter name of postscript output file. : wave2 .ps Postscript file created. Another plot? Y or N :N 19 The two plots...created and stored in wavel.ps and wave2 .ps are shown in Figures 4 and 5 with the corresponding MSS real- time plots from the ARSRP Monitoring Support
Pijuan-Galitó, Sara; Tamm, Christoffer; Schuster, Jens; Sobol, Maria; Forsberg, Lars; Merry, Catherine L. R.; Annerén, Cecilia
2016-01-01
Reliable, scalable and time-efficient culture methods are required to fully realize the clinical and industrial applications of human pluripotent stem (hPS) cells. Here we present a completely defined, xeno-free medium that supports long-term propagation of hPS cells on uncoated tissue culture plastic. The medium consists of the Essential 8 (E8) formulation supplemented with inter-α-inhibitor (IαI), a human serum-derived protein, recently demonstrated to activate key pluripotency pathways in mouse PS cells. IαI efficiently induces attachment and long-term growth of both embryonic and induced hPS cell lines when added as a soluble protein to the medium at seeding. IαI supplementation efficiently supports adaptation of feeder-dependent hPS cells to xeno-free conditions, clonal growth as well as single-cell survival in the absence of Rho-associated kinase inhibitor (ROCKi). This time-efficient and simplified culture method paves the way for large-scale, high-throughput hPS cell culture, and will be valuable for both basic research and commercial applications. PMID:27405751
Femtosecond Visible Transient Absorption Spectroscopy of Chlorophyll f-Containing Photosystem I.
Kaucikas, Marius; Nürnberg, Dennis; Dorlhiac, Gabriel; Rutherford, A William; van Thor, Jasper J
2017-01-24
Photosystem I (PSI) from Chroococcidiopsis thermalis PCC 7203 grown under far-red light (FRL; >725 nm) contains both chlorophyll a and a small proportion of chlorophyll f. Here, we investigated excitation energy transfer and charge separation using this FRL-grown form of PSI (FRL-PSI). We compared femtosecond transient visible absorption changes of normal, white-light (WL)-grown PSI (WL-PSI) with those of FRL-PSI using excitation at 670 nm, 700 nm, and (in the case of FRL-PSI) 740 nm. The possibility that chlorophyll f participates in energy transfer or charge separation is discussed on the basis of spectral assignments. With selective pumping of chlorophyll f at 740 nm, we observe a final ∼150 ps decay assigned to trapping by charge separation, and the amplitude of the resulting P700 +• A 1 -• charge-separated state indicates that the yield is directly comparable to that of WL-PSI. The kinetics shows a rapid 2 ps time constant for almost complete transfer to chlorophyll f if chlorophyll a is pumped with a wavelength of 670 nm or 700 nm. Although the physical role of chlorophyll f is best supported as a low-energy radiative trap, the physical location should be close to or potentially within the charge-separating pigments to allow efficient transfer for charge separation on the 150 ps timescale. Target models can be developed that include a branching in the formation of the charge separation for either WL-PSI or FRL-PSI. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Godfrey, T J; Yu, Hui; Ullrich, Susanne
2014-07-28
The studies herein investigate the involvement of the low-lying (1)La and (1)Lb states with (1)ππ(*) character and the (1)πσ(*) state in the deactivation process of indole following photoexcitation at 201 nm. Three gas-phase, pump-probe spectroscopic techniques are employed: (1) Time-resolved photoelectron spectroscopy (TR-PES), (2) hydrogen atom (H-atom) time-resolved kinetic energy release (TR-KER), and (3) time-resolved ion yield (TR-IY). Each technique provides complementary information specific to the photophysical processes in the indole molecule. In conjunction, a thorough examination of the electronically excited states in the relaxation process, with particular focus on the involvement of the (1)πσ(*) state, is afforded. Through an extensive analysis of the TR-PES data presented here, it is deduced that the initial excitation of the (1)Bb state decays to the (1)La state on a timescale beyond the resolution of the current experimental setup. Relaxation proceeds on the (1)La state with an ultrafast decay constant (<100 femtoseconds (fs)) to the lower-lying (1)Lb state, which is found to possess a relatively long lifetime of 23 ± 5 picoseconds (ps) before regressing to the ground state. These studies also manifest an additional component with a relaxation time of 405 ± 76 fs, which is correlated with activity along the (1)πσ(*) state. TR-KER and TR-IY experiments, both specifically probing (1)πσ(*) dynamics, exhibit similar decay constants, further validating these observations.
Wang, Ziying; Shao, Yisheng; Gao, Naiyun; Lu, Xian; An, Na
2018-02-01
Degradation of diethyl phthalate (DEP) by ultraviolet/persulfate (UV/PS) process at different reaction conditions was evaluated. DEP can be degraded effectively via this process. Both tert-butyl (TBA) and methanol (MeOH) inhibited the degradation of DEP with MeOH having a stronger impact than TBA, suggesting sulfate radical () and hydroxyl radical (HO) both existed in the reaction systems studied. The second-order rate constants of DEP reacting with and HO were calculated to be (6.4±0.3)×10 7 M -1 s -1 and (3.7±0.1)×10 9 M -1 s -1 , respectively. To further access the potential degradation mechanism in this system, the pseudo-first-order rate constants (k o ) and the radical contributions were modeled using a simple steady-state kinetic model involving and HO. Generally, HO had a greater contribution to DEP degradation than . The k o of DEP increased as PS dosages increased when PS dosages were below 1.9 mM. However, it decreased with increasing initial DEP concentrations, which might be due to the radical scavenging effect of DEP. The k o values in acidic conditions were higher than those in alkaline solutions, which was probably caused by the increasing concentration of hydrogen phosphate (with higher scavenging effects than dihydrogen phosphate) from the phosphate buffer as pH values rose. Natural organic matter and bicarbonate dramatically suppressed the degradation of DEP by scavenging and HO. Additionally, the presence of chloride ion (Cl - ) promoted the degradation of DEP at low Cl - concentrations (0.25-1 mM). Finally, the proposed degradation pathways were illustrated. Copyright © 2017 Elsevier Ltd. All rights reserved.
Wang, Lixiu; Bi, Yayan; Yu, Muxin; Li, Tao; Tong, Dongxia; Yang, Xiaoyan; Zhang, Cong; Guo, Li; Wang, Chunxu; Kou, Yan; Dong, Zengxiang; Novakovic, Valerie A; Tian, Ye; Kou, Junjie; Shammas, Masood A; Shi, Jialan
2018-05-01
The definitive role of phosphatidylserine (PS) in the prothrombotic state of non-valvular atrial fibrillation (NVAF) remains unclear. Our objectives were to study the PS exposure on blood cells and microparticles (MPs) in NVAF, and evaluate their procoagulant activity (PCA). NVAF patients without (n = 60) and with left atrial thrombi (n = 18) and controls (n = 36) were included in our study. Exposed PS was analyzed with flow cytometry and confocal microscopy. PCA was evaluated using clotting time, factor Xa (FXa), thrombin and fibrin formation. PS + blood cells and MPs were significantly higher in NVAF patients without and with left atrial thrombi (both P < 0.01) than in controls. Patients with left atrial thrombi showed increased PS + platelets, neutrophils, erythrocytes and MPs compared with patients without thrombi (all P < 0.05). Moreover, in patients with left atrial thrombi, MPs primarily originated from platelets (56.1%) followed by leukocytes (21.9%, including MPs from neutrophils, monocytes and lymphocytes), erythrocytes (12.2%) and endothelial cells (8.9%). Additionally, PS + blood cells and MPs contributed to markedly shortened coagulation time and dramatically increased FXa/thrombin/fibrin (all P < 0.001) generation in both NVAF groups. Furthermore, blockade of exposed PS on blood cells and MPs with lactadherin inhibited PCA by approximately 80%. Lastly, we found that the amount of PS + platelets and MPs was positively correlated with thrombus diameter (all p < 0.005). Our results suggest that exposed PS on blood cells and MPs play a procoagulant role in NVAF patients. Blockade of PS prior to thrombus formation might be a novel therapeutic approach in these patients. Copyright © 2018 Elsevier B.V. All rights reserved.
Sasahira, Naoki; Hamada, Tsuyoshi; Togawa, Osamu; Yamamoto, Ryuichi; Iwai, Tomohisa; Tamada, Kiichi; Kawaguchi, Yoshiaki; Shimura, Kenji; Koike, Takero; Yoshida, Yu; Sugimori, Kazuya; Ryozawa, Shomei; Kakimoto, Toshiharu; Nishikawa, Ko; Kitamura, Katsuya; Imamura, Tsunao; Mizuide, Masafumi; Toda, Nobuo; Maetani, Iruru; Sakai, Yuji; Itoi, Takao; Nagahama, Masatsugu; Nakai, Yousuke; Isayama, Hiroyuki
2016-01-01
AIM: To determine the optimal method of endoscopic preoperative biliary drainage for malignant distal biliary obstruction. METHODS: Multicenter retrospective study was conducted in patients who underwent plastic stent (PS) or nasobiliary catheter (NBC) placement for resectable malignant distal biliary obstruction followed by surgery between January 2010 and March 2012. Procedure-related adverse events, stent/catheter dysfunction (occlusion or migration of PS/NBC, development of cholangitis, or other conditions that required repeat endoscopic biliary intervention), and jaundice resolution (bilirubin level < 3.0 mg/dL) were evaluated. Cumulative incidence of jaundice resolution and dysfunction of PS/NBC were estimated using competing risk analysis. Patient characteristics and preoperative biliary drainage were also evaluated for association with the time to jaundice resolution and PS/NBC dysfunction using competing risk regression analysis. RESULTS: In total, 419 patients were included in the study (PS, 253 and NBC, 166). Primary cancers included pancreatic cancer in 194 patients (46%), bile duct cancer in 172 (41%), gallbladder cancer in three (1%), and ampullary cancer in 50 (12%). The median serum total bilirubin was 7.8 mg/dL and 324 patients (77%) had ≥ 3.0 mg/dL. During the median time to surgery of 29 d [interquartile range (IQR), 30-39 d]. PS/NBC dysfunction rate was 35% for PS and 18% for NBC [Subdistribution hazard ratio (SHR) = 4.76; 95%CI: 2.44-10.0, P < 0.001]; the pig-tailed tip was a risk factor for PS dysfunction. Jaundice resolution was achieved in 85% of patients and did not depend on the drainage method (PS or NBC). CONCLUSION: PS has insufficient patency for preoperative biliary drainage. Given the drawbacks of external drainage via NBC, an alternative method of internal drainage should be explored. PMID:27076764
Time-resolved x-ray spectra from laser-generated high-density plasmas
NASA Astrophysics Data System (ADS)
Andiel, U.; Eidmann, Klaus; Witte, Klaus-Juergen
2001-04-01
We focused frequency doubled ultra short laser pulses on solid C, F, Na and Al targets, K-shell emission was systematically investigated by time resolved spectroscopy using a sub-ps streak camera. A large number of laser shots can be accumulated when triggering the camera with an Auston switch system at very high temporal precision. The system provides an outstanding time resolution of 1.7ps accumulating thousands of laser shots. The time duration of the He-(alpha) K-shell resonance lines was observed in the range of (2-4)ps and shows a decrease with the atomic number. The experimental results are well reproduced by hydro code simulations post processed with an atomic kinetics code.
Xie, Qiyuan; Tu, Ran; Wang, Nan; Ma, Xin; Jiang, Xi
2014-02-28
The objective of this work is to quantitatively investigate the dripping-burning and flowing fire of thermoplastics. A new experimental setup is developed with a heating vessel and a T-trough. Hot thermoplastic liquids are generated in the vessel by electric heating. N2 gas is continuously injected into the vessel to avoid a sudden ignition of fuel in it. The detailed flowing burning behaviors of pool fire in the T-trough are analyzed through the measurements of the mass, heat flux and temperatures etc. The experimental results suggest that a continuous dripping of melted thermoplastic liquids in a nearly constant mass rate can be successfully made in the new setup. It also shows that the mass dripping rate of melted PS liquid is smaller than PP and PE since its large viscosity. In addition, the flame spread velocities of hot liquids of PS in the T-trough are also smaller than that of PP and PE because of its large viscosity. The mass burning rate of the PP and PE pool fire in T-trough are smaller than PS. Finally, considering the heating, melting, dripping and flowing burning behaviors of these polymers, it is suggested that the fire hazard of PE and PP are obviously higher than PS for their faster flowing burning. Copyright © 2013 Elsevier B.V. All rights reserved.
Ke, Hua; Li, Zhan-Kui; Yu, Xi-Ping; Guo, Jin-Zhen
2016-05-01
To study the efficacy of different preparations of budesonide combined with pulmonary surfactant (PS) in improving blood gas levels and preventing bronchopulmonary dysplasia (BPD) in preterm infants with neonatal respiratory distress syndrome (NRDS). A total of 184 preterm infants who developed NRDS within 4 hours after birth were randomly administered with PS + continuous inhalation of budesonide aerosol (continuous aerosol group), PS+budesonide solution (solution group), PS + single inhalation of budesonide aerosol (single aerosol group), and PS alone, with 46 neonates in each group. The changes in arterial blood gas levels, rate of invasive mechanical ventilation after treatment, time of assisted ventilation, rate of repeated use of PS, and the incidence of BPD were compared between the four groups. On the 2nd to 4th day after treatment, pH, PCO2, and oxygenation index (FiO2/PaO2) showed significant differences among the four groups, and the continuous aerosol group showed the most improvements of all indicators, followed by the solution group, single aerosol group, and PS alone group. The continuous aerosol group had a significantly shorter time of assisted ventilation than the other three groups (P<0.05). The solution group had a significantly shorter time of assisted ventilation than the single aerosol and PS alone groups (P<0.05). The rate of invasive mechanical ventilation after treatment, rate of repeated use of PS, and incidence of BPD showed significant differences among the four groups (P<0.05), and the continuous aerosol group had the lowest rates, followed by the solution group. A combination of PS and continuous inhalation of budesonide aerosol has a better efficacy in the treatment of NRDS than a combination of PS and budesonide solution. The difference in reducing the incidence of BDP between the two administration methods awaits further investigation with a larger sample size.
NASA Astrophysics Data System (ADS)
Farag, O. F.
2018-06-01
Polystyrene-copper (PS-Cu) nanocomposite films were treated with DC N2 plasma and gamma rays irradiations. The plasma treatment of PS-Cu film surface was carried out at different treatment times, gas pressure 0.4 Torr and the applied power 3.5 W. On the other hand, the treatment with gamma rays irradiation were carried out at irradiation doses 10, 30 and 50 kGy. The induced changes in surface properties of PS-Cu films were investigated with UV-viss spectroscopy, scanning electron microscopy (SEM) and FTIR spectroscopy techniques. In addition, the wettability property, surface free energy, spreading coefficient and surface roughness of the treated samples were studied by measuring the contact angle. The UV-viss spectroscopy analysis revealed that the optical band gap decreases with increasing the treatment time and the irradiation dose for plasma and gamma treatments, respectively. SEM observations showed that the particle size of copper particles was increased with increasing the treatment time and the irradiation dose, but gamma treatment changes the copper particles size from nano scale to micro scale. The contact angle measurements showing that the wettability property, surface free energy, spreading coefficient and surface roughness of the treated PS-Cu samples were increased remarkably with increasing the treatment time and the irradiation dose for plasma and gamma treatments, respectively. The contact angle, surface free energy, spreading coefficient and surface roughness of the treated PS-Cu samples are more influenced by plasma treatment than gamma treatment.
NASA Astrophysics Data System (ADS)
Tamborini, D.; Portaluppi, D.; Villa, F.; Tisa, S.; Tosi, A.
2014-11-01
We present a Time-to-Digital Converter (TDC) card with a compact form factor, suitable for multichannel timing instruments or for integration into more complex systems. The TDC Card provides 10 ps timing resolution over the whole measurement range, which is selectable from 160 ns up to 10 μs, reaching 21 ps rms precision, 1.25% LSB rms differential nonlinearity, up to 3 Mconversion/s with 400 mW power consumption. The I/O edge card connector provides timing data readout through either a parallel bus or a 100 MHz serial interface and further measurement information like input signal rate and valid conversion rate (typically useful for time-correlated single-photon counting application) through an independent serial link.
Tamborini, D; Portaluppi, D; Villa, F; Tisa, S; Tosi, A
2014-11-01
We present a Time-to-Digital Converter (TDC) card with a compact form factor, suitable for multichannel timing instruments or for integration into more complex systems. The TDC Card provides 10 ps timing resolution over the whole measurement range, which is selectable from 160 ns up to 10 μs, reaching 21 ps rms precision, 1.25% LSB rms differential nonlinearity, up to 3 Mconversion/s with 400 mW power consumption. The I/O edge card connector provides timing data readout through either a parallel bus or a 100 MHz serial interface and further measurement information like input signal rate and valid conversion rate (typically useful for time-correlated single-photon counting application) through an independent serial link.
Investigation on the structural characterization of pulsed p-type porous silicon
NASA Astrophysics Data System (ADS)
Wahab, N. H. Abd; Rahim, A. F. Abd; Mahmood, A.; Yusof, Y.
2017-08-01
P-type Porous silicon (PS) was sucessfully formed by using an electrochemical pulse etching (PC) and conventional direct current (DC) etching techniques. The PS was etched in the Hydrofluoric (HF) based solution at a current density of J = 10 mA/cm2 for 30 minutes from a crystalline silicon wafer with (100) orientation. For the PC process, the current was supplied through a pulse generator with 14 ms cycle time (T) with 10 ms on time (Ton) and pause time (Toff) of 4 ms respectively. FESEM, EDX, AFM, and XRD have been used to characterize the morphological properties of the PS. FESEM images showed that pulse PS (PPC) sample produces more uniform circular structures with estimated average pore sizes of 42.14 nm compared to DC porous (PDC) sample with estimated average size of 16.37nm respectively. The EDX spectrum for both samples showed higher Si content with minimal presence of oxide.
Sun, Xishan; Lan, Allan K.; Bircher, Chad; Deng, Zhi; Liu, Yinong; Shao, Yiping
2011-01-01
A new signal processing method for PET application has been developed, with discrete circuit components to measure energy and timing of a gamma interaction based solely on digital timing processing without using an amplitude-to-digital convertor (ADC) or a constant fraction discriminator (CFD). A single channel discrete component time-based readout (TBR) circuit was implemented in a PC board. Initial circuit functionality and performance evaluations have been conducted. Accuracy and linearity of signal amplitude measurement were excellent, as measured with test pulses. The measured timing accuracy from test pulses reached to less than 300 ps, a value limited mainly by the timing jitter of the prototype electronics circuit. Both suitable energy and coincidence timing resolutions (~18% and ~1.0 ns) have been achieved with 3 × 3 × 20 mm3 LYSO scintillator and photomultiplier tube-based detectors. With its relatively simple circuit and low cost, TBR is expected to be a suitable front-end signal readout electronics for compact PET or other radiation detectors requiring the reading of a large number of detector channels and demanding high performance for energy and timing measurement. PMID:21743761
Lonjon, Guillaume; Porcher, Raphael; Ergina, Patrick; Fouet, Mathilde; Boutron, Isabelle
2017-05-01
To describe the evolution of the use and reporting of propensity score (PS) analysis in observational studies assessing a surgical procedure. Assessing surgery in randomized controlled trials raises several challenges. Observational studies with PS analysis are a robust alternative for comparative effectiveness research. In this methodological systematic review, we identified all PubMed reports of observational studies with PS analysis that evaluated a surgical procedure and described the evolution of their use over time. Then, we selected a sample of articles published from August 2013 to July 2014 and systematically appraised the quality of reporting and potential bias of the PS analysis used. We selected 652 reports of observational studies with PS analysis. The publications increased over time, from 1 report in 1987 to 198 in 2013. Among the 129 reports assessed, 20% (n = 24) did not detail the covariates included in the PS and 77% (n = 100) did not report a justification for including these covariates in the PS. The rate of missing data for potential covariates was reported in 9% of articles. When a crossover by conversion was possible, only 14% of reports (n = 12) mentioned this issue. For matched analysis, 10% of articles reported all 4 key elements that allow for reproducibility of a PS-matched analysis (matching ratio, method to choose the nearest neighbors, replacement and method for statistical analysis). Observational studies with PS analysis in surgery are increasing in frequency, but specific methodological issues and weaknesses in reporting exist.
Tarasenko, V F; Rybka, D V; Burachenko, A G; Lomaev, M I; Balzovsky, E V
2012-08-01
This note reports the time-amplitude characteristic of the supershort avalanche electron beam with up to 20 ps time resolution. For the first time it is shown that the electron beam downstream of small-diameter diaphragms in atmospheric pressure air has a complex structure which depends on the interelectrode gap width and cathode design. With a spherical cathode and collimator the minimum duration at half maximum of the supershort avalanche electron beam current pulse was shown to be ~25 ps. The minimum duration at half maximum of one peak in the pulses with two peaks can reach ~25 ps too.
Systems for measuring response statistics of gigahertz bandwidth photomultipliers
NASA Technical Reports Server (NTRS)
Abshire, J. B.; Rowe, H. E.
1977-01-01
New systems have been developed for measuring the average impulse response, the pulse-height spectrum, the transit-time statistics as a function of signal level, and the dark-count spectrum of gigahertz bandwidth photomultipliers. Measurements showed that the 0.53 microns pulse used as an optical test source had a 30 picoseconds and less than 70 ps pulse width. Calibration data showed the system resolution to be less than 20 ps for root mean square transit-time measurements. Test data for a static crossed-field photomultiplier showed 2-photoelectron resolution and less than 30-ps time jitter over the 1- to 100-photoelectron range.
Emission of positronium in a nanometric PMMA film
NASA Astrophysics Data System (ADS)
Palacio, C. A.; De Baerdemaeker, J.; Van Thourhout, D.; Dauwe, C.
2008-10-01
Positron beam experiments have been performed for the first time on a self-supporting polymethyl metacrylate (PMMA) film of 310 nm-thick made by spin coating. The positronium (Ps) emission from the PMMA surface is studied as a function of the positron implantation energy by using Doppler profile spectroscopy and Compton-to-peak ratio analysis. When the sample and the Ge-detector are perpendicular to the positron beam, the emission of para-positronium ( p-Ps) is detected as a narrow central peak. By rotating the sample 45° with respect to the beam, the emission of p-Ps is detected as a blue-shifted fly-away peak. The bulk Ps fraction, the efficiency for the emission of Ps by picking up an electron from the surface, and the diffusion lengths of positrons (thermal and or epithermal), p-Ps and ortho-positronium ( o-Ps) are obtained.
NASA Astrophysics Data System (ADS)
Kim, Sehee; Char, Kookheon; Sohn, Byeong-Hyeok
2010-03-01
Diblock copolymers consisting of two immiscible polymer blocks covalently bonded together form various self-assembled nanostructures such as spheres, cylinders, and lamellae in bulk phase. In a selective solvent, however, they assemble into micelles with soluble corona brushes and immiscible cores. Both polystyrene-poly(4-vinylpyridine) (PS-b-P4VP) and polystyrene-poly(2-vinylpyridine) (PS-b-P2VP) diblock copolymers form micelles with PS coronas and P4VP or P2VP cores in a PS selective solvent (toluene). By varying the mixture ratio between PS-b-P4VP and PS-b-P2VP, composite films based on the micellar mixtures of PS-b-P4VP and PS-b-P2VP were obtained by spin-coating, followed by the solvent annealing with tetrahydrofuran (THF) vapor. Since THF is a solvent for both PS and P2VP blocks and, at the same time, a non-solvent for the P4VP block, PS-P2VP micelles transformed to lamellar multilayers while PS-P4VP micelles remained intact during the THF annealing. The spontaneous evolution of nanostructure in composite films consisting of lamellae layers with BCP micelles were investigated in detail by cross-sectional TEM and AFM.
Molecular cloning and potential function prediction of homologous SOC1 genes in tree peony.
Wang, Shunli; Beruto, Margherita; Xue, Jingqi; Zhu, Fuyong; Liu, Chuanjiao; Yan, Yueming; Zhang, Xiuxin
2015-08-01
The central flower integrator PsSOC1 was isolated and its expression profiles were analyzed; then the potential function of PsSOC1 in tree peony was postulated. The six flowering genes PrSOC1, PdSOC1, PsSOC1, PsSOC1-1, PsSOC1-2, and PsSOC1-3 were isolated from Paeonia rockii, Paeonia delavayi, and Paeonia suffruticosa, respectively. Sequence comparison analysis showed that the six genes were highly conserved and shared 99.41% nucleotide identity. Further investigation suggested PsSOC1 was highly homologous to the floral integrators, SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1), from Arabidopsis. Phylogenetic analysis showed that the SOC1 protein clustering has family specificity and PsSOC1 has a close relationship with homologous SOC1 from Asteraceae species. The studies of PsSOC1's expression patterns in different buds and flower buds, and vegetative organs indicated that PsSOC1 could express in both vegetative and reproductive organs. While the expression of PsSOC1 in different developmental stages of buds was different; high expression levels of PsSOC1 occurred in the bud at the bud sprouting stage and the type I aborted the flower bud. PsSOC1 expression was also shown to be affected by gibberellins (GA), low temperature, and photoperiod. One of the pathways that regulates tree peony flowering may be the GA-inductive pathway. Ectopic expression of PsSOC1 in tobacco demonstrated that greater PsSOC1 expression in the transgenic tobacco plants not only promoted plant growth, but also advanced the flowering time. Finally, the potential function of PsSOC1 in tree peony was postulated.
NASA Astrophysics Data System (ADS)
Lin, Gong-Ru
2002-12-01
We develop a delay-line-free and frequency traceable electro-optic sampling oscilloscope by use of a digital phase-locked loop phase shifter (PLL-PS) controlled delay-time-tunable gain-switched laser diode (GSLD). The home-made voltage-controllable PLL-PS exhibits a linear transfer function with ultra-wide phase shifting range of ±350° and tuning error of <±5%, which benefits the advantages of frequency tracking to free-running signals with suppressed timing-jitter. The maximum delay-time of PLL-PS controlled GSLD is up to 1.95 periods by changing the controlling voltage ( VREF) from -3.5 to 3.5 V, which corresponds to 3.9 ns at repetition frequency of 500 MHz. The tuning responsivity and resolution are about 0.56 ns/V and 0.15˜0.2 ps, respectively. The maximum delay-time switching bandwidth of 100 Hz is determined under the control of a saw-tooth modulated VREF function. The waveform sampling of microwave PECL signals generated from a free-running digital frequency divider is performed with acceptable measuring deviation.
Optimisation of multiplet identifier processing on a PLAYSTATION® 3
NASA Astrophysics Data System (ADS)
Hattori, Masami; Mizuno, Takashi
2010-02-01
To enable high-performance computing (HPC) for applications with large datasets using a Sony® PLAYSTATION® 3 (PS3™) video game console, we configured a hybrid system consisting of a Windows® PC and a PS3™. To validate this system, we implemented the real-time multiplet identifier (RTMI) application, which identifies multiplets of microearthquakes in terms of the similarity of their waveforms. The cross-correlation computation, which is a core algorithm of the RTMI application, was optimised for the PS3™ platform, while the rest of the computation, including data input and output remained on the PC. With this configuration, the core part of the algorithm ran 69 times faster than the original program, accelerating total computation speed more than five times. As a result, the system processed up to 2100 total microseismic events, whereas the original implementation had a limit of 400 events. These results indicate that this system enables high-performance computing for large datasets using the PS3™, as long as data transfer time is negligible compared with computation time.
Xu, J.; Stickrath, A. B.; Bhattacharya, P.; Nees, J.; Váró, G.; Hillebrecht, J. R.; Ren, L.; Birge, R. R.
2003-01-01
The photovoltaic signal associated with the primary photochemical event in an oriented bacteriorhodopsin film is measured by directly probing the electric field in the bacteriorhodopsin film using an ultrafast electro-optic sampling technique. The inherent response time is limited only by the laser pulse width of 500 fs, and permits a measurement of the photovoltage with a bandwidth of better than 350 GHz. All previous published studies have been carried out with bandwidths of 50 GHz or lower. We observe a charge buildup with an exponential formation time of 1.68 ± 0.05 ps and an initial decay time of 31.7 ps. Deconvolution with a 500-fs Gaussian excitation pulse reduces the exponential formation time to 1.61 ± 0.04 ps. The photovoltaic signal continues to rise for 4.5 ps after excitation, and the voltage profile corresponds well with the population dynamics of the K state. The origin of the fast photovoltage is assigned to the partial isomerization of the chromophore and the coupled motion of the Arg-82 residue during the primary event. PMID:12885657
NASA Astrophysics Data System (ADS)
Ke, Yaotang; Garg, Bhaskar; Ling, Yong-Chien
2016-02-01
A novel label-free fluorescence `turn-on' nanosensor has been developed for highly selective and sensitive detection of phosphorylated species (Ps) in biological samples and living cells. The design strategy relies on the use of Ti4+-immobilized polydopamine (PDA) coated reduced graphene oxide (rGO@PDA-Ti4+) that serves as an attractive platform to bind riboflavin 5'-monophosphate molecules (FMNs) through ion-pair interactions between phosphate groups and Ti4+. The as-prepared rGO@PDA-Ti4+-FMNs (nanosensor), fluoresce only weakly due to the ineffective Förster resonance energy transfer between the FMNs and rGO@PDA-Ti4+. The experimental findings revealed that the microwave-assisted interaction of the nanosensor with α-, β-casein, ovalbumin, human serum, non-fat milk, egg white, and living cells (all containing Ps) releases FMNs (due to the high formation constant between phosphate groups and Ti4+), leading to an excellent fluorescence `turn-on' response. The fluorescence spectroscopy, confocal microscopy, and MALDI-TOF MS spectrometry were used to detect Ps both qualitatively and quantitatively. Under the optimized conditions, the nanosensor showed a detection limit of ca. 118.5, 28.9, and 54.8 nM for the tryptic digests of α-, β-casein and ovalbumin, respectively. Furthermore, the standard addition method was used as a bench-mark proof for phosphopeptide quantification in egg white samples. We postulate that the present quantitative assay for Ps holds tremendous potential and may pave the way to disease diagnostics in the near future.A novel label-free fluorescence `turn-on' nanosensor has been developed for highly selective and sensitive detection of phosphorylated species (Ps) in biological samples and living cells. The design strategy relies on the use of Ti4+-immobilized polydopamine (PDA) coated reduced graphene oxide (rGO@PDA-Ti4+) that serves as an attractive platform to bind riboflavin 5'-monophosphate molecules (FMNs) through ion-pair interactions between phosphate groups and Ti4+. The as-prepared rGO@PDA-Ti4+-FMNs (nanosensor), fluoresce only weakly due to the ineffective Förster resonance energy transfer between the FMNs and rGO@PDA-Ti4+. The experimental findings revealed that the microwave-assisted interaction of the nanosensor with α-, β-casein, ovalbumin, human serum, non-fat milk, egg white, and living cells (all containing Ps) releases FMNs (due to the high formation constant between phosphate groups and Ti4+), leading to an excellent fluorescence `turn-on' response. The fluorescence spectroscopy, confocal microscopy, and MALDI-TOF MS spectrometry were used to detect Ps both qualitatively and quantitatively. Under the optimized conditions, the nanosensor showed a detection limit of ca. 118.5, 28.9, and 54.8 nM for the tryptic digests of α-, β-casein and ovalbumin, respectively. Furthermore, the standard addition method was used as a bench-mark proof for phosphopeptide quantification in egg white samples. We postulate that the present quantitative assay for Ps holds tremendous potential and may pave the way to disease diagnostics in the near future. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr07261a
NASA Astrophysics Data System (ADS)
Weiying, Ou; Lei, Zhao; Hongwei, Diao; Jun, Zhang; Wenjing, Wang
2011-05-01
Porous silicon (PS) layers were formed on textured crystalline silicon by electrochemical etching in HF-based electrolyte. Optical and electrical properties of the TMAH textured surfaces with PS formation are studied. Moreover, the influences of the initial structures and the anodizing time on the optical and electrical properties of the surfaces after PS formation are investigated. The results show that the TMAH textured surfaces with PS formation present a dramatic decrease in reflectance. The longer the anodizing time is, the lower the reflectance. Moreover, an initial surface with bigger pyramids achieved lower reflectance in a short wavelength range. A minimum reflectance of 3.86% at 460 nm is achieved for a short anodizing time of 2 min. Furthermore, the reflectance spectrum of the sample, which was etched in 3 vol.% TMAH for 25 min and then anodized for 20 min, is extremely flat and lies between 3.67% and 6.15% in the wavelength range from 400 to 1040 nm. In addition, for a short anodizing time, a slight increase in the effective carrier lifetime is observed. Our results indicate that PS layers formed on a TMAH textured surface for a short anodization treatment can be used as both broadband antireflection coatings and passivation layers for the application in solar cells.
Yu, Muxin; Xie, Rujuan; Zhang, Yan; Liang, Hui; Hou, Li; Yu, Chengyuan; Zhang, Jinming; Dong, Zengxiang; Tian, Ye; Bi, Yayan; Kou, Junjie; Novakovic, Valerie A; Shi, Jialan
2018-02-26
Relatively little is known about the role of phosphatidylserine (PS) in procoagulant activity (PCA) in patients with diabetic kidney disease (DKD). This study was designed to evaluate whether exposed PS on microparticles (MPs) and MP-origin cells were involved in the hypercoagulability in DKD patients. DKD patients (n = 90) were divided into three groups based on urinary albumin excretion rate, defined as normoalbuminuria (No-A) (<30 mg/24 h), microalbuminuria (Mi-A) (30-299 mg/24 h) or macroalbuminuria (Ma-A) (>300 mg/24 h), and compared with healthy controls (n = 30). Lactadherin was used to quantify PS exposure on MPs and their original cells. Healthy blood cells (BCs) and human umbilical vein endothelial cells (HUVECs) were treated with 25, 5 or 2.5 mmol/L glucose as well as 3-12 mg/dL uric acid and cells were evaluated by clotting time and purified coagulation complex assays. Fibrin production was determined by turbidity. PS exposure and fibrin strands were observed using confocal microscopy. Using flow cytometry, we found that PS+ MPs (derived from platelets, erythrocytes, HUVECs, neutrophils, monocytes and lymphocytes) and BCs were significantly higher in patients than in controls. Furthermore, the number of PS+ MPs and BCs in patients with Ma-A was significantly higher than in patients with No-A. Similarly, we observed markedly elevated PS exposure on HUVECs cultured with serum from patients with Ma-A versus serum from patients with Mi-A or normoalbuminuria. In addition, circulating PS+ MPs cooperated with PS+ cells, contributing to markedly shortened coagulation time and dramatically increased FXa/thrombin generation and fibrin formation in each DKD group. Confocal microscopy images demonstrated colocalization of fibrin with PS on HUVECs. Moreover, blockade of exposed PS on MPs and cells with lactadherin inhibited PCA by ∼80%. In vitro, BCs and endothelial cells exposed more PS in hypoglycemia or hyperglycemia. Interestingly, reconstitution experiments showed that hypoglycemia-treated cells could be further activated or injured when recovery is obtained reaching hyperglycemia. Moreover, uric acid induced PS exposure on cells (excluding platelets) at concentrations >6 mg/dL. Linear regression analysis showed that levels of PS+ BCs and microparticles were positively correlated with uric acid and proteinuria, but negatively correlated with glomerular filtration rate. Our results suggest that PS+ MPs and MP-origin cells play procoagulant roles in patients with DKD. Blockade of PS could become a novel therapeutic modality for the prevention of thrombosis in these patients.
Lominchar, Miguel A; Rodríguez, Sergio; Lorenzo, David; Santos, Noelia; Romero, Arturo; Santos, Aurora
2018-01-01
Three persulfate (PS) activation methods (nanoparticles of zero-valent iron (nZVI), hydrogen peroxide and alkali) were compared using phenol as target pollutant. Firstly, four experiments were conducted at 25°C in a batch way using the same initial phenol and oxidant concentrations (10 mM and 420 mM, respectively), being the molar ratio activator/PS fixed to 0.005 with nZVI (mass ratio 0.0011 nZVI/PS), to 2 using hydrogen peroxide and to 2 and 4 with NaOH. Phenol and PS conversions and aromatic byproducts profiles during 168 h reaction time were measured and compared, as well as mineralization and ecotoxicity of the samples. It was found that both phenol and aromatic byproducts (catechol and hydroquinone) totally disappeared using PS activated by alkali before 24 h, while a significant amount of aromatic intermediates was obtained with nZVI and H 2 O 2 . Additional runs were carried out using shorter times (0-2 h) to discriminate the oxidation route and the kinetic model of phenol abatement by using PS activated by alkali. Different initial concentrations of phenol (5-15 mM), PS (210 and 420 mM) and molar ratio NaOH/PS (2 and 4) were employed. The kinetic model obtained predicts accurately the evolution of phenol, persulfate, hydroquinone and catechol.
Song, Hee-eun; Kirmaier, Christine; Taniguchi, Masahiko; Diers, James R; Bocian, David F; Lindsey, Jonathan S; Holten, Dewey
2008-11-19
Excited-state charge separation in molecular architectures has been widely explored, yet ground-state hole (or electron) transfer, particularly involving equivalent pigments, has been far less studied, and direct quantitation of the rate of transfer often has proved difficult. Prior studies of ground-state hole transfer between equivalent zinc porphyrins using electron paramagnetic resonance techniques give a lower limit of approximately (50 ns)(-1) on the rates. Related transient optical studies of hole transfer between inequivalent sites [zinc porphyrin (Zn) and free base porphyrin (Fb)] give an upper limit of approximately (20 ps)(-1). Thus, a substantial window remains for the unknown rates of ground-state hole transfer between equivalent sites. Herein, the ground-state hole-transfer processes are probed in a series of oxidized porphyrin triads (ZnZnFb) with the focus being on determination of the rates between the nominally equivalent sites (Zn/Zn). The strategy builds upon recent time-resolved optical studies of the photodynamics of dyads wherein a zinc porphyrin is electrochemically oxidized and the attached free base porphyrin is photoexcited. The resulting energy- and hole-transfer processes in the oxidized ZnFb dyads are typically complete within 100 ps of excitation. Such processes are also present in the triads and serve as a starting point for determining the rates of ground-state hole transfer between equivalent sites in the triads. The rate constant of the Zn/Zn hole transfer is found to be (0.8 ns)(-1) for diphenylethyne-linked zinc porphyrins and increases only slightly to (0.6 ns)(-1) when a shorter phenylene linker is utilized. The rate decreases slightly to (1.1 ns)(-1) when steric constraints are introduced in the diarylethyne linker. In general, the rate constants for ground-state Zn/Zn hole transfer in oxidized arrays are a factor of 40 slower than those for Zn/Fb transfer. Collectively, the findings should aid the design of next-generation molecular architectures for applications in solar-energy conversion.
Octanol reduces end-plate channel lifetime
Gage, Peter W.; McBurney, Robert N.; Van Helden, Dirk
1978-01-01
1. Post-synaptic effects of n-octanol at concentrations of 0·1-1 mM were examined in toad sartorius muscles by use of extracellular and voltage-clamp techniques. 2. Octanol depressed the amplitude and duration of miniature end-plate currents and hence depressed neuromuscular transmission. 3. The decay of miniature end-plate currents remained exponential in octanol solutions even when the time constant of decay (τD) was decreased by 80-90%. 4. The lifetime of end-plate channels, obtained by analysis of acetylcholine noise, was also decreased by octanol. The average lifetime measured from noise spectra agreed reasonably well with the time constant of decay of miniature end-plate currents, both in control solution and in octanol solutions. 5. Octanol caused a reduction in the conductance of end-plate channels. Single channel conductance was on average about 25 pS in control solution and 20 pS in octanol. 6. In most cells the normal voltage sensitivity of the decay of miniature end-plate currents was retained in octanol solutions. The lifetime of end-plate channels measured from acetylcholine noise also remained voltage-sensitive in octanol solutions. In some experiments in which channel lifetime was exceptionally reduced the voltage sensitivity was less than normal. 7. In octanol solutions, τD was still very sensitive to temperature changes in most cells although in some the temperature sensitivity of τD was clearly reduced. Changes in τD with temperature could generally be fitted by the Arrhenius equation suggesting that a single step reaction controlled the decay of currents both in control and in octanol solutions. In some cells in which τD became less than 0·3 ms, the relationship between τD and temperature became inconsistent with the Arrhenius equation. 8. As the decay of end-plate currents in octanol solutions remains exponential, and the voltage and temperature sensitivity can be unchanged even when τD is significantly reduced, it seems likely that octanol decreases τD by increasing the rate of the reaction which normally controls the lifetime of end-plate channels. PMID:203674
Land subsidence monitoring in central Taiwan by using PS-InSAR technique
NASA Astrophysics Data System (ADS)
Hu, J.-C.; Tung, H.; Huang, M.-H.
2009-04-01
Ground subsidence induced by heavy withdrawal of underground water has resulted in environmental hazard and potential risk in Taiwan, particularly in the Choushui River alluvial fan where the Yunlin section of the Taiwan High Speed Rail had been constructed. The Yunlin County located in the southwestern coastal region of Taiwan is one of the most counties with serious land subsidence because of the agricultural needs. Yunlin County is one of the important agricultural production regions located in the southwestern coastal region of Taiwan where the irrigated area is up to 123,000 hectares and agricultural water consumption reaches approximate 90 percents of all available water resources in the Choshui River Basin. Moreover, since there is no sufficient surface water supplied, groundwater becomes a vital resource for every water consumption targets. Seasonal effects of land subsidence occurring in the study area had been estimated using a regression analysis of a series of weekly GPS height solutions. These results demonstrated the average rate of ground subsidence in this area over the period of 1995-2001 was 3 cm/yr. Based on data collected at the piezometer, the variation of land subsidence rate appears to be associated with an unstable underground water level, which drop gradually during winter and either remains constant or rises during summer time. Consequently, land subsidence rates vary considerably from 1.5 cm/yr for the summer time to 9.0 cm/yr for the winter time. In addition, anthropogenic ground subsidence due to massive pumping of groundwater is one of problems in Taiwan. In this study, we represented a both stacking D-InSAR and PS-InSAR results deduced from 1996-1999 time spans for monitoring of land subsidence in this area. Both D-InSAR and PS-InSAR results show the Baojhou, Tuku Township and northern Mailiao reveal a maximum subsidence rate of about 6 cm/yr along LOS and the Taishi Township located on the coastal area reveals a subsidence rate of 1.6 cm/yr, which is quite coincident with precise leveling result. These two results have proven that the effective reduction of labor and cost could be achieved by using this technique on monitoring land subsidence in Yunlin County.
Low-Timing-Jitter Near-Infrared Single-Photon-Sensitive 16-Channel Intensified-Photodiode Detector
NASA Technical Reports Server (NTRS)
Krainak, Michael A.; Lu, Wei; Yang, Guangning; Sun, Xiaoli; Sykora, Derek; Jurkovic, Mike; Aebi, Verle; Costello, Ken; Burns, Richard
2011-01-01
We developed a 16-channel InGaAsP photocathode intensified-photodiode (IPD) detector with 78 ps (1-sigma) timing-jitter, less than 500 ps FWHM impulse response, greater than 15% quantum efficiency at 1064 nm wavelength with 131 kcps dark counts at 15 C.
Yamazaki, Masakazu; Oishi, Keiya; Nakazawa, Hiroyuki; Zhu, Chaoyuan; Takahashi, Masahiko
2015-03-13
We report a time-resolved (e, 2e) experiment on the deuterated acetone molecule in the S2 Rydberg state with a lifetime of 13.5 ps. The acetone S2 state was prepared by a 195 nm pump laser and probed with electron momentum spectroscopy using a 1.2 keV incident electron beam of 1 ps temporal width. In spite of the low data statistics as well as of the limited time resolution (±35 ps) due to velocity mismatch, the experimental results clearly demonstrate that electron momentum spectroscopy measurements of short-lived transient species are feasible, opening the door to time-resolved orbital imaging in momentum space.
NASA Astrophysics Data System (ADS)
Scolnic, D. M.; Jones, D. O.; Rest, A.; Pan, Y. C.; Chornock, R.; Foley, R. J.; Huber, M. E.; Kessler, R.; Narayan, G.; Riess, A. G.; Rodney, S.; Berger, E.; Brout, D. J.; Challis, P. J.; Drout, M.; Finkbeiner, D.; Lunnan, R.; Kirshner, R. P.; Sanders, N. E.; Schlafly, E.; Smartt, S.; Stubbs, C. W.; Tonry, J.; Wood-Vasey, W. M.; Foley, M.; Hand, J.; Johnson, E.; Burgett, W. S.; Chambers, K. C.; Draper, P. W.; Hodapp, K. W.; Kaiser, N.; Kudritzki, R. P.; Magnier, E. A.; Metcalfe, N.; Bresolin, F.; Gall, E.; Kotak, R.; McCrum, M.; Smith, K. W.
2018-06-01
We present optical light curves, redshifts, and classifications for 365 spectroscopically confirmed Type Ia supernovae (SNe Ia) discovered by the Pan-STARRS1 (PS1) Medium Deep Survey. We detail improvements to the PS1 SN photometry, astrometry, and calibration that reduce the systematic uncertainties in the PS1 SN Ia distances. We combine the subset of 279 PS1 SNe Ia (0.03 < z < 0.68) with useful distance estimates of SNe Ia from the Sloan Digital Sky Survey (SDSS), SNLS, and various low-z and Hubble Space Telescope samples to form the largest combined sample of SNe Ia, consisting of a total of 1048 SNe Ia in the range of 0.01 < z < 2.3, which we call the “Pantheon Sample.” When combining Planck 2015 cosmic microwave background (CMB) measurements with the Pantheon SN sample, we find {{{Ω }}}m=0.307+/- 0.012 and w=-1.026+/- 0.041 for the wCDM model. When the SN and CMB constraints are combined with constraints from BAO and local H 0 measurements, the analysis yields the most precise measurement of dark energy to date: {w}0=-1.007+/- 0.089 and {w}a=-0.222+/- 0.407 for the {w}0{w}aCDM model. Tension with a cosmological constant previously seen in an analysis of PS1 and low-z SNe has diminished after an increase of 2× in the statistics of the PS1 sample, improved calibration and photometry, and stricter light-curve quality cuts. We find that the systematic uncertainties in our measurements of dark energy are almost as large as the statistical uncertainties, primarily due to limitations of modeling the low-redshift sample. This must be addressed for future progress in using SNe Ia to measure dark energy.
Methane in the South China Sea and the Western Philippine Sea
NASA Astrophysics Data System (ADS)
Tseng, Hsiao-Chun; Chen, Chen-Tung Arthur; Borges, Alberto V.; DelValls, T. Angel; Chang, Yu-Chang
2017-03-01
Approximately 700 water samples from the South China Sea (SCS) and 300 water samples from the western Philippine Sea (wPS) were collected during eight cruises from August 2003 to July 2007 to determine methane (CH4) distributions from the surface to a depth of 4250 m. The surface CH4 concentrations exceeded atmospheric equilibrium, both in the SCS and the wPS, and the concentrations were 4.5±3.6 and 3.0±1.2 nmol L-1, respectively. The sea-to-air fluxes were calculated, and the SCS and the wPS were found to emit CH4 to the atmosphere at 8.6±6.4 μmol m-2 d-1 and 4.9±4.9 μmol m-2 d-1, respectively. In the SCS, CH4 emissions were higher over the continental shelf (11.0±7.4 μmol m-2 d-1) than over the deep ocean (6.1±6.0 μmol m-2 d-1), owing to greater biological productivity and closer coupling with the sediments on the continental shelf. The SCS emitted 30.1×106 mol d-1 CH4 to the atmosphere and exported 1.82×106 mol d-1 CH4 to the wPS. The concentrations of both CH4 and chlorophyll a were high in the 150 m surface layer of the wPS, but were not significantly correlated with each other. CH4 concentrations generally declined with increasing depth below the euphotic zone but remained constant below 1,000 m, both in the SCS and the wPS. Some high CH4 concentrations were observed at mid-depths and bottom waters in the SCS, and were most likely caused by the release of CH4 from gas hydrates or gas seepage.
Expression of small heat shock proteins from pea seedlings under gravity altered conditions
NASA Astrophysics Data System (ADS)
Talalaev, Alexandr S.
2005-08-01
A goal of our study was to evaluate the stress gene expression in Pisum sativum seedlings exposed to altered gravity and temperature elevation. We investigate message for the two inducible forms of the cytosolic small heat shock proteins (sHsp), sHsp 17.7 and sHsp 18.1. Both proteins are able to enhance the refolding of chemically denatured proteins in an ATP- independent manner, in other words they can function as molecular chaperones. We studied sHsps expression in pea seedlings cells by Western blotting. Temperature elevation, as the positive control, significantly increased PsHsp 17.7 and PsHsp 18.1 expression. Expression of the housekeeping protein, actin was constant and comparable to unstressed controls for all treatments. We concluded that gravitational perturbations incurred by clinorotation did not change sHsp genes expression.
NASA Astrophysics Data System (ADS)
Fiorini, M.; Rinella, G. Aglieri; Carassiti, V.; Ceccucci, A.; Gil, E. Cortina; Ramusino, A. Cotta; Dellacasa, G.; Garbolino, S.; Jarron, P.; Kaplon, J.; Kluge, A.; Marchetto, F.; Mapelli, A.; Martin, E.; Mazza, G.; Morel, M.; Noy, M.; Nuessle, G.; Petagna, P.; Petrucci, F.; Perktold, L.; Riedler, P.; Rivetti, A.; Statera, M.; Velghe, B.
The Gigatracker (GTK) is a hybrid silicon pixel detector developed for NA62, the experiment aimed at studying ultra-rare kaon decays at the CERN SPS. Three GTK stations will provide precise momentum and angular measurements on every track of the high intensity NA62 hadron beam with a time-tagging resolution of 150 ps. Multiple scattering and hadronic interactions of beam particles in the GTK have to be minimized to keep background events at acceptable levels, hence the total material budget is fixed to 0.5% X0 per station. In addition the calculated fluence for 100 days of running is 2×1014 1 MeV neq/cm2, comparable to the one expected for the inner trackers of LHC detectors in 10 years of operation. These requirements pose challenges for the development of an efficient and low-mass cooling system, to be operated in vacuum, and on the thinning of read-out chips to 100 μm or less. The most challenging requirement is represented by the time resolution, which can be achieved by carefully compensating for the discriminator time-walk. For this purpose, two complementary read-out architectures have been designed and produced as small-scale prototypes: the first is based on the use of a Time-over-Threshold circuit followed by a TDC shared by a group of pixels, while the other uses a constant-fraction discriminator followed by an on-pixel TDC. The readout pixel ASICs are produced in 130 nm IBM CMOS technology and bump-bonded to 200 μm thick silicon sensors. The Gigatracker detector system is described with particular emphasis on recent experimental results obtained from laboratory and beam tests of prototype bump-bonded assemblies, which show a time resolution of less than 200 ps for single hits.
Yago, Tomoaki; Tamaki, Yoshiaki; Furube, Akihiro; Katoh, Ryuzi
2008-08-14
Self-trapping and singlet-singlet annihilation of the free excitons in a monomeric (beta) perylene crystal were studied by using femtosecond transient absorption microscopy. The free exciton generated by the photo-excitation of the beta-perylene crystal relaxed to the self-trapped exciton with a rate constant of 7 x 10(10) s(-1). The singlet-singlet annihilation of the free exciton observed under the high excitation density conditions was competed with the self-trapping of the free exciton; we estimated the annihilation rate constant for the free exciton to be 1 x 10(-8) cm(3) s(-1) from the excitation density dependence of the free exciton decay. After self-trapping of the free exciton, no annihilation was observed in the 100 ps time range, suggesting that the diffusion coefficient was reduced drastically by self-trapping. The results show that the major factor limiting the exciton diffusion in the beta-perylene crystal is a relaxation of the free exciton to the self-trapped exciton, and not the lifetime of the exciton. Though the singlet-singlet annihilation rate constants and fluorescence lifetime of the beta-perylene crystal are similar to those of the anthracene crystal, the estimated exciton diffusion length (2 nm) in the beta-perylene crystal is much smaller than that (100 nm) in the anthracene crystal as a result of the exciton self-trapping.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tamborini, D., E-mail: davide.tamborini@polimi.it; Portaluppi, D.; Villa, F.
We present a Time-to-Digital Converter (TDC) card with a compact form factor, suitable for multichannel timing instruments or for integration into more complex systems. The TDC Card provides 10 ps timing resolution over the whole measurement range, which is selectable from 160 ns up to 10 μs, reaching 21 ps rms precision, 1.25% LSB rms differential nonlinearity, up to 3 Mconversion/s with 400 mW power consumption. The I/O edge card connector provides timing data readout through either a parallel bus or a 100 MHz serial interface and further measurement information like input signal rate and valid conversion rate (typically usefulmore » for time-correlated single-photon counting application) through an independent serial link.« less
Performance of the Tachyon Time-of-Flight PET Camera
NASA Astrophysics Data System (ADS)
Peng, Q.; Choong, W.-S.; Vu, C.; Huber, J. S.; Janecek, M.; Wilson, D.; Huesman, R. H.; Qi, Jinyi; Zhou, Jian; Moses, W. W.
2015-02-01
We have constructed and characterized a time-of-flight Positron Emission Tomography (TOF PET) camera called the Tachyon. The Tachyon is a single-ring Lutetium Oxyorthosilicate (LSO) based camera designed to obtain significantly better timing resolution than the 550 ps found in present commercial TOF cameras, in order to quantify the benefit of improved TOF resolution for clinically relevant tasks. The Tachyon's detector module is optimized for timing by coupling the 6.15 ×25 mm2 side of 6.15 ×6.15 ×25 mm3 LSO scintillator crystals onto a 1-inch diameter Hamamatsu R-9800 PMT with a super-bialkali photocathode. We characterized the camera according to the NEMA NU 2-2012 standard, measuring the energy resolution, timing resolution, spatial resolution, noise equivalent count rates and sensitivity. The Tachyon achieved a coincidence timing resolution of 314 ps +/- 20 ps FWHM over all crystal-crystal combinations. Experiments were performed with the NEMA body phantom to assess the imaging performance improvement over non-TOF PET. The results show that at a matched contrast, incorporating 314 ps TOF reduces the standard deviation of the contrast by a factor of about 2.3.
Performance of the Tachyon Time-of-Flight PET Camera.
Peng, Q; Choong, W-S; Vu, C; Huber, J S; Janecek, M; Wilson, D; Huesman, R H; Qi, Jinyi; Zhou, Jian; Moses, W W
2015-02-01
We have constructed and characterized a time-of-flight Positron Emission Tomography (TOF PET) camera called the Tachyon. The Tachyon is a single-ring Lutetium Oxyorthosilicate (LSO) based camera designed to obtain significantly better timing resolution than the ~ 550 ps found in present commercial TOF cameras, in order to quantify the benefit of improved TOF resolution for clinically relevant tasks. The Tachyon's detector module is optimized for timing by coupling the 6.15 × 25 mm 2 side of 6.15 × 6.15 × 25 mm 3 LSO scintillator crystals onto a 1-inch diameter Hamamatsu R-9800 PMT with a super-bialkali photocathode. We characterized the camera according to the NEMA NU 2-2012 standard, measuring the energy resolution, timing resolution, spatial resolution, noise equivalent count rates and sensitivity. The Tachyon achieved a coincidence timing resolution of 314 ps +/- ps FWHM over all crystal-crystal combinations. Experiments were performed with the NEMA body phantom to assess the imaging performance improvement over non-TOF PET. The results show that at a matched contrast, incorporating 314 ps TOF reduces the standard deviation of the contrast by a factor of about 2.3.
Performance of the Tachyon Time-of-Flight PET Camera
Peng, Q.; Choong, W.-S.; Vu, C.; Huber, J. S.; Janecek, M.; Wilson, D.; Huesman, R. H.; Qi, Jinyi; Zhou, Jian; Moses, W. W.
2015-01-01
We have constructed and characterized a time-of-flight Positron Emission Tomography (TOF PET) camera called the Tachyon. The Tachyon is a single-ring Lutetium Oxyorthosilicate (LSO) based camera designed to obtain significantly better timing resolution than the ~ 550 ps found in present commercial TOF cameras, in order to quantify the benefit of improved TOF resolution for clinically relevant tasks. The Tachyon’s detector module is optimized for timing by coupling the 6.15 × 25 mm2 side of 6.15 × 6.15 × 25 mm3 LSO scintillator crystals onto a 1-inch diameter Hamamatsu R-9800 PMT with a super-bialkali photocathode. We characterized the camera according to the NEMA NU 2-2012 standard, measuring the energy resolution, timing resolution, spatial resolution, noise equivalent count rates and sensitivity. The Tachyon achieved a coincidence timing resolution of 314 ps +/− ps FWHM over all crystal-crystal combinations. Experiments were performed with the NEMA body phantom to assess the imaging performance improvement over non-TOF PET. The results show that at a matched contrast, incorporating 314 ps TOF reduces the standard deviation of the contrast by a factor of about 2.3. PMID:26594057
Performance of the Tachyon Time-of-Flight PET Camera
Peng, Q.; Choong, W. -S.; Vu, C.; ...
2015-01-23
We have constructed and characterized a time-of-flight Positron Emission Tomography (TOF PET) camera called the Tachyon. The Tachyon is a single-ring Lutetium Oxyorthosilicate (LSO) based camera designed to obtain significantly better timing resolution than the ~ 550 ps found in present commercial TOF cameras, in order to quantify the benefit of improved TOF resolution for clinically relevant tasks. The Tachyon's detector module is optimized for timing by coupling the 6.15 ×25 mm 2 side of 6.15 ×6.15 ×25 mm 3 LSO scintillator crystals onto a 1-inch diameter Hamamatsu R-9800 PMT with a super-bialkali photocathode. We characterized the camera according tomore » the NEMA NU 2-2012 standard, measuring the energy resolution, timing resolution, spatial resolution, noise equivalent count rates and sensitivity. The Tachyon achieved a coincidence timing resolution of 314 ps +/- 20 ps FWHM over all crystal-crystal combinations. Experiments were performed with the NEMA body phantom to assess the imaging performance improvement over non-TOF PET. We find that the results show that at a matched contrast, incorporating 314 ps TOF reduces the standard deviation of the contrast by a factor of about 2.3.« less
Evaluation of a clinical TOF-PET detector design that achieves ⩽100 ps coincidence time resolution
NASA Astrophysics Data System (ADS)
Cates, Joshua W.; Levin, Craig S.
2018-06-01
Commercially available clinical positron emission tomography (PET) detectors employ scintillation crystals that are long (20 mm length) and narrow (4–5 mm width) optically coupled on their narrow end to a photosensor. The aspect ratio of this traditional crystal rod configuration and 511 keV photon attenuation properties yield significant variances in scintillation light collection efficiency and transit time to the photodetector, due to variations in the 511 keV photon interaction depth in the crystal. These variances contribute significant to coincidence time resolution degradation. If instead, crystals are coupled to a photosensor on their long side, near-complete light collection efficiency can be achieved, and scintillation photon transit time jitter is reduced. In this work, we compare the achievable coincidence time resolution (CTR) of LGSO:Ce(0.025 mol%) crystals 3–20 mm in length when optically coupled to silicon photomultipliers (SiPMs) on either their short end or long side face. In this ‘side readout’ configuration, a CTR of 102 ± 2 ps FWHM was measured with mm3 crystals coupled to rows of mm2 SensL-J SiPMs using leading edge time pickoff and a single timing channel. This is in contrast to a CTR of 137 ± 3 ps FWHM when the same crystals were coupled to single mm2 SiPMs on their narrow ends. We further study the statistical limit on CTR using side readout via the Cramér–Rao lower bound (CRLB), with consideration given to ongoing work to further improve photosensor technologies and exploit fast phenomena to ultimately achieve 10 ps FWHM CTR. Potential design aspects of scalable front-end signal processing readout electronics using this side readout configuration are discussed. Altogether, we demonstrate that the side readout configuration offers an immediate solution for 100 ps CTR clinical PET detectors and mitigates factors prohibiting future efforts to achieve 10 ps FWHM CTR.
Song, Peipei; Inagaki, Yoshinori; Sugawara, Yasuhiko; Kokudo, Norihiro
2013-06-01
A research project involving sheets of retinal pigment epithelium constructed from iPS cells derived from patients with age-related maculopathy is one step closer to being approved for clinical trials by the Japanese Government. Now is the time to make therapies using iPS cells clinically available.
Nearly penalty-free, less than 4 ps supercontinuum Gbit/s pulse generation over 1535-1560 nm
NASA Astrophysics Data System (ADS)
Morioka, T.; Kawanishi, S.; Mori, K.; Saruwatari, M.
1994-05-01
Nearly penalty-free less than 4ps supercontinuum WDM pulses are generated at 6.3 Gbit/s over 1535-1560 nm for the first time using a 200 nm superbroadened supercontinuum in an optical fibre pumped by 1.7 W, 3.3 ps, 1542 nm short pulses from an Er(3+)-doped fibre ring laser.
NASA Astrophysics Data System (ADS)
Polland, Hans J.; Kuhl, Jurgen; Gobel, Ernst O.
1988-08-01
Picosecond photoluminescence experiments at low temperature (6K) have been employed to study the trapping dynamics of photoexcited carriers in GaAs/AlGaAs single quantum wells for different shapes of the AlxGai_xAs confinement layers. We have obtained the following results by analyzing the spectral and temporal distribution of the photoluminescence after picosecond pulse excitation: Trapping efficiency is ==, 40% for a standard ungraded cladding layer (A10.3G1.7As with constant band gap and 5nm thick wells) but increases to ,-, 60% and 100% for samp es with a spatially parabolic or linear band gap profile of the confinement layers, respectively. Trapping times are appreciably shorter than the luminescence risetime which is between 60ps to 100ps. Thus carrier trapping does not impose severe limitations on the modulation speed of single quantum well devices up to frequencies in the order of 10GHz. Similar results are obtained for a well with a width of 1.2nm. Inhomogeneities in the carrier trapping mechanism due to well width fluctuations are not observed in our samples. In the second part we describe the photoluminescence properties of GaAs/A1,Gai_x As quantum wells (x=0.3) under the influence of electric fields perpendicular to the layers. We observe a drastic red shift and a concomitant strong increase of the electron-hole recombination lifetime for well widths > lOnm due to the quantum-confined Stark effect. At high fields (50-100kV/cm) field ionization due to tunneling leads to a decrease of both the photoluminescence yield and decay time, in accordance with a simple WKB theory
Perez, Adrián A; Sánchez, Cecilio Carrera; Patino, Juan M Rodríguez; Rubiolo, Amelia C; Santiago, Liliana G
2011-07-01
Milk whey proteins (MWP) and pectins (Ps) are biopolymer ingredients commonly used in the manufacture of colloidal food products. Therefore, knowledge of the interfacial characteristics of these biopolymers and their mixtures is very important for the design of food dispersion formulations (foams and/or emulsions). In this paper, we examine the adsorption and surface dilatational behaviour of MWP/Ps systems under conditions in which biopolymers can saturate the air-water interface on their own. Experiments were performed at constant temperature (20 °C), pH 7 and ionic strength 0.05 M. Two MWP samples, β-lactoglobulin (β-LG) and whey protein concentrate (WPC), and two Ps samples, low-methoxyl pectin (LMP) and high-methoxyl pectin (HMP) were evaluated. The contribution of biopolymers (MWP and Ps) to the interfacial properties of mixed systems was evaluated on the basis of their individual surface molecular characteristics. Biopolymer bulk concentration capable of saturating the air-water interface was estimated from surface pressure isotherms. Under conditions of interfacial saturation, dynamic adsorption behaviour (surface pressure and dilatational rheological characteristics) of MWP/Ps systems was discussed from a kinetic point of view, in terms of molecular diffusion, penetration and configurational rearrangement at the air-water interface. The main adsorption mechanism in MWP/LMP mixtures might be the MWP interfacial segregation due to the thermodynamic incompatibility between MWP and LMP (synergistic mechanism); while the interfacial adsorption in MWP/HMP mixtures could be characterized by a competitive mechanism between MWP and HMP at the air-water interface (antagonistic mechanism). The magnitude of these phenomena could be closely related to differences in molecular composition and/or aggregation state of MWP (β-LG and WPC). Copyright © 2011 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumada, Takayuki, E-mail: kumada.takayuki@jaea.go.jp; Otobe, Tomohito; Nishikino, Masaharu
2016-01-04
The dynamics of photomechanical spallation during femtosecond laser ablation of fused silica was studied by time-resolved reflectivity with double pump pulses. Oscillation of reflectivity was caused by interference between the probe pulses reflected at the sample surface and the spallation layer, and was enhanced when the surface was irradiated with the second pump pulse within a time interval, Δτ, of several picoseconds after the first pump pulse. However, as Δτ was increased, the oscillation amplitude decreased with an exponential decay time of 10 ps. The oscillation disappeared when Δτ exceeded 20 ps. This result suggests that the formation time of the spallationmore » layer is approximately 10 ps. A second pump pulse with Δτ shorter than 10 ps excites the bulk sample. The spallation layer that is photo-excited by the first and second pump pulses is separated afterward. In contrast, a pulse with Δτ longer than the formation time excites and breaks up the spallation layer that has already been separated from the bulk. The formation time of the spallation layer, as determined in this experiment, is attributed to the characteristic time of the mechanical equilibration corresponding to the thickness divided by the sound velocity of the photo-excited layer.« less
Time resolution deterioration with increasing crystal length in a TOF-PET system
NASA Astrophysics Data System (ADS)
Gundacker, S.; Knapitsch, A.; Auffray, E.; Jarron, P.; Meyer, T.; Lecoq, P.
2014-02-01
Highest time resolution in scintillator based detectors is becoming more and more important. In medical detector physics L(Y)SO scintillators are commonly used for time of flight positron emission tomography (TOF-PET). Coincidence time resolutions (CTRs) smaller than 100 ps FWHM are desirable in order to improve the image signal to noise ratio and thus give benefit to the patient by shorter scanning times. Also in high energy physics there is the demand to improve the timing capabilities of calorimeters down to 10 ps. To achieve these goals it is important to study the whole chain, i.e. the high energy particle interaction in the crystal, the scintillation process itself, the scintillation light transfer in the crystal, the photodetector and the electronics. Time resolution measurements for a PET like system are performed with the time-over-threshold method in a coincidence setup utilizing the ultra-fast amplifier-discriminator NINO. With 2×2×3 mm3 LSO:Ce codoped 0.4%Ca crystals coupled to commercially available SiPMs (Hamamatsu S10931-050P MPPC) we achieve a CTR of 108±5 ps FWHM at an energy of 511 keV. Under the same experimental conditions an increase in crystal length to 5 mm deteriorates the CTR to 123±7 ps FWHM, 10 mm to 143±7 ps FWHM and 20 mm to 176±7 ps FWHM. This degradation in CTR is caused by the light transfer efficiency (LTE) and light transfer time spread (LTTS) in the crystal. To quantitatively understand the measured values, we developed a Monte Carlo simulation tool in MATLAB incorporating the timing properties of the photodetector and electronics, the scintillation properties of the crystal and the light transfer within the crystal simulated by SLITRANI. In this work, we show that the predictions of the simulation are in good agreement with the experimental data. We conclude that for longer crystals the deterioration in CTR is mainly caused by the LTE, i.e. the ratio of photons reaching the photodetector to the total amount of photons generated by the scintillation whereas the LTTS influence is partly offset by the gamma absorption in the crystal.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nie, K; Yue, N; Jabbour, S
Purpose: To compare three different pharmacokinetic models for analysis of dynamic-contrast-enhanced (DCE)-CT data with respect to different acquisition times and location of region of interest. Methods: Eight rectal cancer patients with pre-treatment DCE-CTs were included. The dynamic sequence started 4–10seconds(s) after the injection of contrast agent. The scan included a 110s acquisition with intervals of 40×1s+15×3s+4×6s. An experienced oncologist outlined the tumor region. Hotspots with top-5%-enhancement were also identified. Pharmacokinetic analysis was performed using three different models: deconvolution method, Patlak model, and modified Toft’s model. Perfusion parameters as blood flow (BF), blood volume (BV), mean transit time (MTT), permeability-surface-area-product (PS),more » volume transfer constant (Ktrans), and flux rate constant (Kep), were compared with respect to different acquisition times of 45s, 65s, 85s and 105s. Both hotspot and whole-volume variances were also assessed. The differences were compared using the Wilcoxon matched-pairs test and Bland-Altman plots. Results: Moderate correlation was observed for various perfusion parameters (r=0.56–0.72, p<0.0001) but the Wilcoxon test revealed a significant difference among the three models (P < .001). Significant differences in PS were noted between acquisitions of 45s versus longer time of 85s or 105s (p<0.05) using Patlak but not with the deconvolution method. In addition, measurements varied substantially between whole-volume vs. hotspot analysis. Conclusion: The radiation dose of DCE-CT was on average 1.5 times of an abdomen/pelvic CT, which is not insubstantial. To take the DCE-CT forward as a biomarker in oncology, prospective studies should be carefully designed with the optimal image acquisition and analysis technique. Our study suggested that: (1) different kinetic models are not interchangeable; (2) a 45s acquisition might not be sufficient for reliable permeability measurement in rectal cancer using Patlak model, but might be achievable using deconvolution method; and (3) local variations existed inside the tumor, and both whole-volume-averaged and local-heterogeneity analysis is recommended for future quantitative studies. This work is supported by the National High-tech R&D program for Young Scientists by the Ministry of Science and Technology of China (Grant No. 2015AA020917), Natural Science Foundation of China (NSFC Grant No. 81201091).« less
Ultrafast compression of graphite observed with sub-ps time resolution diffraction on LCLS
NASA Astrophysics Data System (ADS)
Armstrong, Michael; Goncharov, A.; Crowhurst, J.; Zaug, J.; Radousky, H.; Grivickas, P.; Bastea, S.; Goldman, N.; Stavrou, E.; Belof, J.; Gleason, A.; Lee, H. J.; Nagler, R.; Holtgrewe, N.; Walter, P.; Pakaprenka, V.; Nam, I.; Granados, E.; Presher, C.; Koroglu, B.
2017-06-01
We will present ps time resolution pulsed x-ray diffraction measurements of rapidly compressed highly oriented pyrolytic graphite along its basal plane at the Materials under Extreme Conditions (MEC) sector of the Linac Coherent Light Source (LCLS). These experiments explore the possibility of rapid (<100 ps time scale) material transformations occurring under very highly anisotropic compression conditions. Under such conditions, non-equilibrium mechanisms may play a role in the transformation process. We will present experimental results and simulations which explore this possibility. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Security, LLC under Contract DE-AC52-07NA27344.
Progresses in Polystyrene Biodegradation and Prospects for Solutions to Plastic Waste Pollution
NASA Astrophysics Data System (ADS)
Yang, S. S.; Brandon, A. M.; Xing, D. F.; Yang, J.; Pang, J. W.; Criddle, C. S.; Ren, N. Q.; Wu, W. M.
2018-05-01
Petroleum-based plastic pollution has been a global environmental concern for decades. The obvious contrast between the remarkable durability of the plastics and their short service time leads to the increasing accumulation of plastic wastes in the environment. A cost-effective, sustainable strategy to solve the problem should focus on source control and clean up. Polystyrene (PS) wastes, a recalcitrant plastic polymer, are among the wide spread man-made plastic pollutants. Destruction of PS wastes can be achieved using various abiotic methods such as incineration but such methods release potential air pollution and generation of hazardous by-products. Biodegradation and bioremediation has been proposed for years. Since the 1970’s, the microbial biodegradation of plastics, including PS, has been evaluated with mixed and isolated cultures from different sources such as activated sludge, trash, soil, and manure. To date, PS biodegradation by these microbial cultures is still quite slow. Recently, the larvae of yellow mealworms (Tenebrio molitor Linnaeus) have demonstrated promising PS biodegradation performance. Mealworms have demonstrated the ability to chew and ingest PS foam as food and are capable of degrading and mineralizing PS into CO2 via microbe-dependent activities within the gut in less than the 12-15 hrs gut retention time. These research results have revealed a potential for microbial biodegradation and bioremediation of plastic pollutants.
Goodman, Y E; Wort, A J; Jackson, F L
1981-01-01
An enzyme-linked immunosorbent assay was developed for detection of immunoglobulin A (IgA) antibody to Bordetella pertussis (PsIgA) in nasopharyngeal secretions as an indicator of recent infection. Secretion specimens submitted for pertussis culture were examined for PsIgA by this technique. Of 348 specimens tested, B. pertussis was cultured from 57, and PsIgA was detected in 8 culture-positive and 40 culture-negative specimens. The average time between onset of symptoms and specimen collection for the culture-positive, PsIgA-negative specimens was 10 days; for the culture-positive, PsIgA-positive specimens, 15 days; and for the culture-negative, PsIgA-positive specimens, 36 days. Examination of paired samples available from several culture-proven cases demonstrated conversion from a negative PsIgA in the early sample to a positive PsIgA in the follow-up sample. Our results indicate that PsIgA is produced during natural human infection and does not arise as a result of parenteral vaccination. PsIgA usually appears in the nasopharyngeal secretions during the second or third week of illness and persists for at least 3 months. The detection of PsIgA in secretions may be a valuable diagnostic aid in culture-negative patients with pertussis. Images PMID:6259201
He, Yulu; Hua, Wei-Hsiang; Low, Meng-Chun; Tsai, Yu-Hsuan; Cai, Cheng-Jin; Chiang, Hsin-Chun; Yu, Jian-He; Hsiao, Jen-Hung; Tseng, Po-Hao; Kiang, Yean-Woei; Yang, C C; Zhang, Zhenxi
2018-06-08
We first illustrate the faster decrease of the photothermal (PT) effect with the delay time of laser treatment, in which the illumination of a 1064 nm laser effectively excites the localized surface plasmon (LSP) resonance of cell-up-taken gold nanoring (NRI) linked with a photosensitizer (PS), when compared with the photodynamic (PD) effect produced by the illumination of a 660 nm laser for effective PS excitation. The measurement results of the metal contents of Au NRI and PS based on inductively coupled plasma mass spectroscopy and the PS fluorescence intensity based on flow cytometry show that the linkage of NRI and PS is rapidly broken for releasing PS through the effect of glutathione in lysosome after cell uptake. Meanwhile, NRI escapes from a cell with a high rate such that the PT effect decays fast while the released PS can stay inside a cell longer for producing a prolonged PD effect. The effective delivery of PS through the linkage with Au NRI for cell uptake and the advantageous effect of LSP resonance at a PS absorption wavelength on the PD process are also demonstrated.
NASA Astrophysics Data System (ADS)
He, Yulu; Hua, Wei-Hsiang; Low, Meng-Chun; Tsai, Yu-Hsuan; Cai, Cheng-Jin; Chiang, Hsin-Chun; Yu, Jian-He; Hsiao, Jen-Hung; Tseng, Po-Hao; Kiang, Yean-Woei; Yang, C. C.; Zhang, Zhenxi
2018-06-01
We first illustrate the faster decrease of the photothermal (PT) effect with the delay time of laser treatment, in which the illumination of a 1064 nm laser effectively excites the localized surface plasmon (LSP) resonance of cell-up-taken gold nanoring (NRI) linked with a photosensitizer (PS), when compared with the photodynamic (PD) effect produced by the illumination of a 660 nm laser for effective PS excitation. The measurement results of the metal contents of Au NRI and PS based on inductively coupled plasma mass spectroscopy and the PS fluorescence intensity based on flow cytometry show that the linkage of NRI and PS is rapidly broken for releasing PS through the effect of glutathione in lysosome after cell uptake. Meanwhile, NRI escapes from a cell with a high rate such that the PT effect decays fast while the released PS can stay inside a cell longer for producing a prolonged PD effect. The effective delivery of PS through the linkage with Au NRI for cell uptake and the advantageous effect of LSP resonance at a PS absorption wavelength on the PD process are also demonstrated.
Exploiting solitons in all-optical networks
NASA Astrophysics Data System (ADS)
Atieh, Ahmad K.
Two key components, the pulse generator and optical signal demultiplexer, needed for the implementation of all-optical soliton-based local area and wide area networks are investigated. The technology of generating a bright soliton pulse train from a sinusoidal pulse train produced as the beat signal of two distributed feedback laser diodes passed through a so-called comblike fiber structure is developed. A design methodology for this structure is discussed, and using this approach a soliton pulse source is constructed generating 1553 nm pulses at a repetition rate of 50 GHz, with pulses of full width at half maximum of 2.0 ps. The fiber structure used to generate the bright soliton pulse train employs the lowest average power for the beat signal ever reported in the literature, and the shortest length of fiber. The same structure (with a different design) is also used to produce a 47.6 GHz dark soliton pulse train with a full width at half maximum of 3.8 ps. This is the first reported use of this structure to generate dark solitons. It is shown that the comblike dispersion profile fiber structures may also be exploited for soliton pulse compression producing widths as short as 200 fs. Two approaches to implementation of optical signal demultiplexing are discussed. These are the nonlinear optical loop mirror (NOLM) and the separation of multilevel time division multiplexed signal pulses in the frequency domain by exploiting the relationship between the pulse's energy (i.e. pulse amplitude and width) and the Raman self-frequency shift. A modification of the NOLM scheme is investigated where feedback that adjusts the power of the control signal (by controlling the gain of an erbium-doped fiber amplifier introduced into the control signal input path) is employed to make the structure insensitive to the state of polarization of the signal and control pulses. In order to better understand the physical phenomena exploited in optical fiber soliton transmission and the above schemes, two experiments are conducted to measure the fiber nonlinear ratio (n2/Aeff) and the Raman time constant (TR) in single-mode fibers at 1550 nm. The fiber nonlinear ratio was measured for standard telecommunication fiber, dispersion shifted fiber, and dispersion compensating fiber. A value of 3.0 fs for the Raman time constant was measured and is recommended for soliton pulse propagation modeling in single-mode optical fibers.
Time-to-digital converter card for multichannel time-resolved single-photon counting applications
NASA Astrophysics Data System (ADS)
Tamborini, Davide; Portaluppi, Davide; Tisa, Simone; Tosi, Alberto
2015-03-01
We present a high performance Time-to-Digital Converter (TDC) card that provides 10 ps timing resolution and 20 ps (rms) timing precision with a programmable full-scale-range from 160 ns to 10 μs. Differential Non-Linearity (DNL) is better than 1.3% LSB (rms) and Integral Non-Linearity (INL) is 5 ps rms. Thanks to the low power consumption (400 mW) and the compact size (78 mm x 28 mm x 10 mm), this card is the building block for developing compact multichannel time-resolved instrumentation for Time-Correlated Single-Photon Counting (TCSPC). The TDC-card outputs the time measurement results together with the rates of START and STOP signals and the number of valid TDC conversions. These additional information are needed by many TCSPC-based applications, such as: Fluorescence Lifetime Imaging (FLIM), Time-of-Flight (TOF) ranging measurements, time-resolved Positron Emission Tomography (PET), single-molecule spectroscopy, Fluorescence Correlation Spectroscopy (FCS), Diffuse Optical Tomography (DOT), Optical Time-Domain Reflectometry (OTDR), quantum optics, etc.
Hida, Akiko; Oku, Shota; Nakashimada, Yutaka; Tajima, Takahisa; Kato, Junichi
2017-08-17
Chemotaxis enables bacteria to move toward more favorable environmental conditions. We observed chemotaxis toward boric acid by Ralstonia pseudosolanacearum Ps29. At higher concentrations, the chemotactic response of R. pseudosolanacearum toward boric acid was comparable to or higher than that toward L-malate, indicating that boric acid is a strong attractant for R. pseudosolanacearum. Chemotaxis assays under different pH conditions suggested that R. pseudosolanacearum recognizes B(OH) 3 (or B(OH 3 ) + B(OH) 4 - ) but not B(OH) 4 - alone. Our previous study revealed that R. pseudosolanacearum Ps29 harbors homologs of all 22R. pseudosolanacearum GMI1000 mcp genes. Screening of 22 mcp single-deletion mutants identified the RS_RS17100 homolog as the boric acid chemoreceptor, which was designated McpB. The McpB ligand-binding domain (LBD) was purified in order to characterize its binding to boric acid. Using isothermal titration calorimetry, we demonstrated that boric acid binds directly to the McpB LBD with a K D (dissociation constant) of 5.4 µM. Analytical ultracentrifugation studies revealed that the McpB LBD is present as a dimer that recognizes one boric acid molecule.
Yang, Shan-Shan; Brandon, Anja Malawi; Andrew Flanagan, James Christopher; Yang, Jun; Ning, Daliang; Cai, Shen-Yang; Fan, Han-Qing; Wang, Zhi-Yue; Ren, Jie; Benbow, Eric; Ren, Nan-Qi; Waymouth, Robert M; Zhou, Jizhong; Criddle, Craig S; Wu, Wei-Min
2018-01-01
Commercial production of polystyrene (PS) -a persistent plastic that is not biodegradable at appreciable rates in most environments-has led to its accumulation as a major contaminant of land, rivers, lakes, and oceans. Recently, however, an environment was identified in which PS is susceptible to rapid biodegradation: the larval gut of Tenebrio molitor Linnaeus (yellow mealworms). In this study, we evaluate PS degradation capabilities of a previously untested strain of T. molitor and assess its survival and PS biodegradation rates for a range of conditions (two simulated food wastes, three temperatures, seven PS waste types). For larvae fed PS alone, the %PS removed in the short (12-15 h) residence time of the mealworm gut gradually increased for 2-3 weeks then stabilized at values up to 65%. Thirty two-day survival rates were >85% versus 54% for unfed larvae. For mealworms fed ∼10% w/w PS and ∼90% bran, an agricultural byproduct, rates of PS degradation at 25 °C nearly doubled compared to mealworms fed PS alone. Polymer residues in the frass showed evidence of partial depolymerization and oxidation. All of the tested PS wastes degraded, with the less dense foams degrading most rapidly. Mealworms fed bran and PS completed all life cycle stages (larvae, pupae, beetles, egg), and the second generation had favorable PS degradation, opening the door for selective breeding. Copyright © 2017 Elsevier Ltd. All rights reserved.
Experimental and Theoretical Study of Molecular Response of Amine Bases in Organic Solvents
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kathmann, Shawn M.; Cho, Herman M.; Chang, Tsun-Mei
2014-05-08
Reorientational correlation times of various amine bases (viz., pyridine, 2,6-lutidene, 2,2,6,6-tetramethylpiperidine) and organic solvents (dichloromethane, toluene) were determined by solution-state NMR relaxation time measurements and compared with predictions from molecular dynamics (MD) simulations. The bases and solvents are reagents in complex reactions involving Frustrated Lewis Pairs (FLP), which display remarkable catalytic activity in metal-free H2 scission. The comparison of measured and simulated correlation times is a key test of the ability of recent MD and quantum electronic structure calculations to elucidate the mechanism of FLP activity. Correla- tion times were found to be in the range 1.4-3.4 ps (NMR) andmore » 1.23-5.28 ps (MD) for the amines, and 0.9-2.3 ps (NMR) and 0.2-1.7 ps (MD) for the solvent molecules. This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences. Pacic Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle.« less
Hilton, David J
2012-12-31
We develop a new characteristic matrix-based method to analyze cyclotron resonance experiments in high mobility two-dimensional electron gas samples where direct interference between primary and satellite reflections has previously limited the frequency resolution. This model is used to simulate experimental data taken using terahertz time-domain spectroscopy that show multiple pulses from the substrate with a separation of 15 ps that directly interfere in the time-domain. We determine a cyclotron dephasing lifetime of 15.1 ± 0.5 ps at 1.5 K and 5.0 ± 0.5 ps at 75 K.
Characterization of gigahertz (GHz) bandwidth photomultipliers
NASA Technical Reports Server (NTRS)
Abshire, J. B.; Rowe, H. E.
1977-01-01
The average impulse response, root-mean-square times jitter as a function of signal level, single photoelectron distribution, and multiphotoelectron dark-count distribution have been measured for two static crossed-field and five electrostatic photomultipliers. The optical signal source for the first three of these tests was a 30 picosecond mode-locked laser pulse at 0.53 micron. The static crossed-field detectors had 2-photoelectron resolution, less than 200 ps rise times, and rms time jitters of 30 ps at the single photoelectron level. The electrostatic photomultipliers had rise times from 1 to 2.5 nanoseconds, and rms time jitters from 160 to 650 ps at the same signal level. The two static crossed-field photomultipliers had ion-feedback-generated dark pulses to the 50-photoelectron level, whereas one electrostatic photomultiplier had dark pulses to the 30-photoelectron level.
Biosynthesis of glycerolipid molecular species in photoreceptor membranes of frog retina
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiegand, R.D.; Louie, K.; Anderson, R.E.
1987-05-01
Phospholipid (PL) molecular species of vertebrate retinal photoreceptor cells are unique in that they contain two polyunsaturated fatty acids per molecule. Docosahexaenoic acid (22:6 {omega}3) is the major component of these dipolyunsaturate species (DPS), which also contain 20:4{omega}6, 22:4{omega}6, 22:5{omega}6, and 22:5{omega}3. We have studied the de novo synthesis and metabolism of the (DPS) and other PL molecular species in frog rod outer segments (ROS) following intravitreal injection of 2-({sup 3}H)-glycerol. At 1, 2, 4, and 8 days after injection, ROS were prepared, PL extracted, and phosphatidylcholine (PC), phosphatidylethanolamine (PE), and phosphatidylserine (PS) isolated. PC, PE, and PS were convertedmore » to diglycerides (DG's) with phospholipase C. DG's were derivatized, fractionated into molecular species by HPLC, quantitated, and counted for radioactivity. The following were observed: (1) Specific activities (SA) of the PC DPS were 3-5 times higher than the same species in either PE or PS. (2) SA of the PC monopolyunsaturate species (MPS) (species which contain 22:6{omega}3 and/or 16:0 or 18:0) were 3-5 times lower than the SA of the PC DPS. In contrast, SA of PE MPS were 2-5 times higher than the SA of the PE DPS. (3) The major PS MPS synthesized contained 18:0 and 22:6{omega}3. SA of that species were similar to SA of the PS DPS. The data support the suggestion that PC DPS are synthesized and/or incorporated in ROS at a greater rate than the same species in either PE or PS. Our study thus provides evidence for different rates of synthesis and/or incorporation of the various molecular species of PC, PE, and PS in ROS.« less
Bispectral Index monitoring in cancer patients undergoing palliative sedation: a preliminary report.
Monreal-Carrillo, Edith; Allende-Pérez, Silvia; Hui, David; García-Salamanca, Maria-Fernanda; Bruera, Eduardo; Verástegui, Emma
2017-10-01
Continuous palliative sedation (PS) is currently titrated based on clinical observation; however, it is often unclear if patients are still aware of their suffering. The aim of this prospective study is to characterize the level of consciousness in patients undergoing PS using Bispectral Index (BIS) monitoring. We enrolled consecutive patients with refractory symptoms requiring PS. We documented the level of sedation using Ramsay Sedation Scale (RSS) and BIS at 0, 2, 4, 6, 12, and 24 h during the first day of PS and examined their degree of association. Intravenous midazolam or propofol was titrated according to the sedation level. Twenty patients on PS were recruited and had BIS continuous monitoring. Delirium was the most frequent reason for PS (n = 15, 75%). The median time of sedation was 24.5 h (interquartile range 6-46). The average time to achieve the desired sedation level was 6 h, and dose titration was required in 80% of the cases. At baseline, 14 (70%) patients were considered to be awake according to RSS (i.e., 1-3) and 19 (95%) were awake according to BIS (i.e., >60%). This proportion decreased to 31 and 56% at 4 h, 27% and 53 at 6 h, and 22 and 33% at 24 h. RS and BIS had moderate correlation (rho = -0.58 to -0.65); however, a small proportion of patients were found to be awake by BIS (i.e., ≥60%) despite clinical observation (i.e., RSS 4-6) indicating otherwise. The BIS is a noninvasive, bedside, real-time continuous monitoring method that may facilitate the objective assessment of level of consciousness and dose titration in patients undergoing PS.
Alanazi, Abdullah; Al Enezi, Farhan; Alqahtani, Mohammd Mesfer; Alshammari, Turki Faleh; Ansari, Mumtaz Ahmed; Al-Oraibi, Saleh; Qureshi, Shoeb
2015-01-01
Background: Despite the recent campaigns to eliminate smoking, the rates are still increasing world-wide. Exposure to passive smoking (PS) is associated with morbidity and mortality from awful diseases. Although many college students smoke, little is known about their exposure to PS, common places and sources of exposures in Saudi Arabia. Aim: The aim of the following study is to identify prevalence and magnitude of PS among college students, exposure time, locations, sources of exposure, investigate the effects and make recommendations. Materials and Methods: A cross-sectional study was performed to identify factors associated with PS exposure among students of College of Applied Medical Sciences, Riyadh. Results: Out of 61 students included in the study, 91.8% were found exposed to PS. Exposure in Hospitality venues (Estirah) was the most common followed by other areas. Among the sources of exposure, the highest was among friends and the least were parents and guests. The frequency of highest exposure per month was >15 times and the lowest was 10-15 times. Levels of annoyance varied between 18% and 37.7%, respectively. Since the values obtained for different markers in the pulmonary function test are more than the predicted values, the observed spirometry is normal. The percent oxygen saturation in hemoglobin and blood pressure of PS were in normal range. Conclusion: Since the properties of mainstream smoke and environmental tobacco smoke are quite different, risk extrapolation from active to PS is uncertain, especially during a short period. Nevertheless, it can be deteriorating during a longer duration, hence; the administrators, policy makers and tobacco control advocates may endorse policies to restrict smoking in shared areas, particularly working environment. PMID:25810644
In vitro inhibition of human papillomavirus following use of a carrageenan-containing vaginal gel.
Novetsky, Akiva P; Keller, Marla J; Gradissimo, Ana; Chen, Zigui; Morgan, Stephanie L; Xue, Xiaonan; Strickler, Howard D; Fernández-Romero, José A; Burk, Robert; Einstein, Mark H
2016-11-01
To assess in vitro efficacy of Divine 9, a carrageenan-based vaginal lubricant that is being studied as a microbicide to inhibit HPV16 pseudovirus (PsV) infection. Sexually active US women between 19 and 35years without prior HPV vaccination or cervical intraepithelial neoplasia were instructed to use Divine 9 vaginally with an applicator either before sex only or before and after intercourse. Women who applied a single dose of gel returned for cervicovaginal lavage (CVL) collection 1, 4 or 8-12h after intercourse versus those who applied gel before and after intercourse returned 1, 4 or 8-12h after the second gel dose. Carrageenan concentrations were assessed using an ELISA assay and the inhibitory activity was assessed using a PsV-based neutralization assay against HPV16 infection. Carrageenan concentrations and the percentage of PsV16 inhibition were compared using the Wilcoxon rank sum test. Thirteen women were enrolled and thirty specimens from different time-points were assessed. 87% of CVL samples had detectable carrageenans with levels decreasing over time from intercourse. 93% of CVL samples had detectable PsV16 inhibition with median inhibition of 97.5%. PsV16 inhibition decreased over time, but remained high, with median inhibition of 98.1%, 97.4% and 83.4% at 1, 4 and 8-12h, respectively. Higher carrageenan concentrations were associated with higher levels of PsV16 inhibition (rho=0.69). This is the first report of a human study investigating in vitro HPV inhibition of a carrageenan-based vaginal lubricant with CVL collected after sexual intercourse. We demonstrate excellent efficacy in preventing PsV16 infection. Copyright © 2016 Elsevier Inc. All rights reserved.
In Vitro Inhibition of Human Papillomavirus Following Use of a Carrageenan-Containing Vaginal Gel
Novetsky, Akiva P.; Keller, Marla J.; Gradissimo, Ana; Chen, Zigui; Morgan, Stephanie L.; Xue, Xiaonan; Strickler, Howard D.; Fernández-Romero, José A.; Burk, Robert; Einstein, Mark H.
2016-01-01
Objective To assess in vitro efficacy of Divine 9, a carrageenan-based vaginal lubricant that is being studied as a microbicide to inhibit HPV16 pseudovirus (PsV) infection. Methods Sexually active US women between 19–35 years without prior HPV vaccination or cervical intraepithelial neoplasia were instructed to use Divine 9 vaginally with an applicator either before sex only or before and after intercourse. Women who applied a single dose of gel returned for cervicovaginal lavage (CVL) collection 1, 4 or 8–12 hours after intercourse versus those who applied gel before and after intercourse returned 1, 4 or 8–12 hours after the second gel dose. Carrageenan concentrations were assessed using an ELISA assay and the inhibitory activity was assessed using a PsV-based neutralization assay against HPV16 infection. Carrageenan concentrations and the percentage of PsV16 inhibition were compared using the Wilcoxon rank sum test. Results Thirteen women were enrolled and thirty specimens from different time-points were assessed. 87% of CVL samples had detectable carrageenans with levels decreasing over time from intercourse. 93% of CVL samples had detectable PsV16 inhibition with median inhibition of 97.5%. PsV16 inhibition decreased over time, but remained high, with median inhibition of 98.1%, 97.4% and 83.4% at 1, 4 and 8–12 hours, respectively. Higher carrageenan concentrations were associated with higher levels of PsV16 inhibition (rho=0.69). Conclusions This is the first report of a human study investigating in vitro HPV inhibition of a carrageenan-based vaginal lubricant with CVL collected after sexual intercourse. We demonstrate excellent efficacy in preventing PsV16 infection. PMID:27625046
USDA-ARS?s Scientific Manuscript database
Protein synthesis (PS) increases after a meal in neonates, but the time course of the changes in PS in different tissues after a meal is unknown. We aimed to evaluate the changes in tissue PS, mammalian target of rapamycin complex 1 (mTORC1) activation, and proportion of ribosomal protein (rp) mRNAs...
Foucher, Fabrice; Morin, Julie; Courtiade, Juliette; Cadioux, Sandrine; Ellis, Noel; Banfield, Mark J; Rameau, Catherine
2003-11-01
Genes in the TERMINAL FLOWER1 (TFL1)/CENTRORADIALIS family are important key regulatory genes involved in the control of flowering time and floral architecture in several different plant species. To understand the functions of TFL1 homologs in pea, we isolated three TFL1 homologs, which we have designated PsTFL1a, PsTFL1b, and PsTFL1c. By genetic mapping and sequencing of mutant alleles, we demonstrate that PsTFL1a corresponds to the DETERMINATE (DET) gene and PsTFL1c corresponds to the LATE FLOWERING (LF) gene. DET acts to maintain the indeterminacy of the apical meristem during flowering, and consistent with this role, DET expression is limited to the shoot apex after floral initiation. LF delays the induction of flowering by lengthening the vegetative phase, and allelic variation at the LF locus is an important component of natural variation for flowering time in pea. The most severe class of alleles flowers early and carries either a deletion of the entire PsTFL1c gene or an amino acid substitution. Other natural and induced alleles for LF, with an intermediate flowering time phenotype, present no changes in the PsTFL1c amino acid sequence but affect LF transcript level in the shoot apex: low LF transcript levels are correlated with early flowering, and high LF transcript levels are correlated with late flowering. Thus, different TFL1 homologs control two distinct aspects of plant development in pea, whereas a single gene, TFL1, performs both functions in Arabidopsis. These results show that different species have evolved different strategies to control key developmental transitions and also that the genetic basis for natural variation in flowering time may differ among plant species.
Miller, Joseph D; Slipchenko, Mikhail N; Meyer, Terrence R
2011-07-04
Hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering (fs/ps CARS) offers accurate thermometry at kHz rates for combustion diagnostics. In high-temperature flames, selection of probe-pulse characteristics is key to simultaneously optimizing signal-to-nonresonant-background ratio, signal strength, and spectral resolution. We demonstrate a simple method for enhancing signal-to-nonresonant-background ratio by using a narrowband Lorentzian filter to generate a time-asymmetric probe pulse with full-width-half-maximum (FWHM) pulse width of only 240 fs. This allows detection within just 310 fs after the Raman excitation for eliminating nonresonant background while retaining 45% of the resonant signal at 2000 K. The narrow linewidth is comparable to that of a time-symmetric sinc2 probe pulse with a pulse width of ~2.4 ps generated with a conventional 4-f pulse shaper. This allows nonresonant-background-free, frequency-domain vibrational spectroscopy at high temperature, as verified using comparisons to a time-dependent theoretical fs/ps CARS model.
Note: Fully integrated time-to-amplitude converter in Si-Ge technology.
Crotti, M; Rech, I; Ghioni, M
2010-10-01
Over the past years an always growing interest has arisen about the measurement technique of time-correlated single photon counting TCSPC), since it allows the analysis of extremely fast and weak light waveforms with a picoseconds resolution. Consequently, many applications exploiting TCSPC have been developed in several fields such as medicine and chemistry. Moreover, the development of multianode PMT and of single photon avalanche diode arrays led to the realization of acquisition systems with several parallel channels to employ the TCSPC technique in even more applications. Since TCSPC basically consists of the measurement of the arrival time of a photon, the most important part of an acquisition chain is the time measurement block, which must have high resolution and low differential nonlinearity, and in order to realize multidimensional systems, it has to be integrated to reduce both cost and area. In this paper we present a fully integrated time-to-amplitude converter, built in 0.35 μm Si-Ge technology, characterized by a good time resolution (60 ps), low differential nonlinearity (better than 3% peak to peak), high counting rate (16 MHz), low and constant power dissipation (40 mW), and low area occupation (1.38×1.28 mm(2)).
The Gigatracker: An ultra-fast and low-mass silicon pixel detector for the NA62 experiment
NASA Astrophysics Data System (ADS)
Fiorini, M.; Carassiti, V.; Ceccucci, A.; Cortina, E.; Cotta Ramusino, A.; Dellacasa, G.; Garbolino, S.; Jarron, P.; Kaplon, J.; Kluge, A.; Mapelli, A.; Marchetto, F.; Martin, E.; Martoiu, S.; Mazza, G.; Morel, M.; Noy, M.; Nuessle, G.; Petrucci, F.; Riedler, P.; Aglieri Rinella, G.; Rivetti, A.; Tiuraniemi, S.
2011-02-01
The Gigatracker is a hybrid silicon pixel detector developed to track the highly intense NA62 hadron beam with a time resolution of 150 ps (rms). The beam spectrometer of the experiment is composed of three Gigatracker stations installed in vacuum in order to precisely measure momentum, time and direction of every traversing particle. Precise tracking demands a very low mass of the detector assembly ( <0.5% X0 per station) in order to limit multiple scattering and beam hadronic interactions. The high rate and especially the high timing precision requirements are very demanding: two R&D options are ongoing and the corresponding prototype read-out chips have been recently designed and produced in 0.13 μm CMOS technology. One solution makes use of a constant fraction discriminator and on-pixel analogue-based time-to-digital-converter (TDC); the other comprises a delay-locked loop based TDC placed at the end of each pixel column and a time-over-threshold discriminator with time-walk correction technique. The current status of the R&D program is overviewed and results from the prototype read-out chips test are presented.
NASA Astrophysics Data System (ADS)
Ueno, Yoshiyasu; Nakamoto, Ryouichi; Sakaguchi, Jun; Suzuki, Rei
2006-12-01
In frequency ranges above 200-300 GHz, the second slowest relaxation in the optical response (such as carrier-cooling relaxation having a time constant of 1-2 ps) of a semiconductor optical amplifier inside the conventional delayed-interference signal-wavelength converter (DISC) scheme is thought to start the distortion of all-optically gated waveforms. In this work, we design a digital optical-spectrum-synthesizer block that is part of the expanded DISC scheme. Our numerically calculated spectra, waveforms, and eye diagrams with assumed pseudorandom digital data pulses indicate that this synthesizer significantly removes strong distortion from the gated waveforms. A signal-to-noise ratio of 20 dB was obtained from our random-data eye diagram, providing proof of effectiveness in principle.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guldi, D.M.; Torres-Garcia, G.; Mattay, J.
Excited-state properties of three different pyrazine derivatives 4--6 were probed by emission and transient absorption spectroscopy. They display emission maxima at 464 (4), 417 (5), and 515 nm (6) that are red-shifted with respect to their strong UV ground-state absorption and formed with overall quantum yields ({Phi}) of 0.156, 0.22, and 0.13, respectively. Once photoexcited, these triplet excited pyrazines undergo rapid intermolecular energy transfer to a monofunctionalized fullerene derivative (7) with bimolecular rate constants ranging from 3.64 {times} 10{sup 9} M{sup {minus}1} s{sup {minus}1} (6) to 1.1 {times} 10{sup 10} M{sup {minus}1} s{sup {minus}1} (4). The product of these bimolecularmore » energy-transfer reactions is in all cases the fullerene triplet excited state. Functionalization of pristine C{sub 60} with the investigated pyrazine derivatives promotes the UV-vis absorption characteristics and, in turn, improves the light-harvesting efficiency of the resulting dyads 1--3 relative to pristine C{sub 60}. Photoexcitation of the pyrazine moieties in dyads 1--3 leads to the formation of their singlet excited states. In contrast to the pyrazine models, photoexcitation of dyad 1--3 is followed by rapid intramolecular deactivation processes of the latter via energy transfer to the fullerene ground state with half-lives between 37 and 100 ps. In turn, energy transfer transforms the short-lived and moderately redox-active singlet excited states of pyrazine into the highly reactive fullerene triplet excited state. The latter is found to produce effectively singlet oxygen ({sup 1}O{sub 2}) with quenching rate constants for 1--3 of (1--1.5) {times} 10{sup 9} M{sup {minus}1} s{sup {minus}1}. Similarly, reductive quenching of the triplet excited states in dyads 1--3 via electron transfer with diazabicyclooctane (DABCO) occurs with rate constants of 5.2--9.4 {times} 10{sup 7} M{sup {minus}1} s{sup {minus}1}.« less
Laser-Interferometric Broadband Seismometer for Epicenter Location Estimation
Lee, Kyunghyun; Kwon, Hyungkwan; You, Kwanho
2017-01-01
In this paper, we suggest a seismic signal measurement system that uses a laser interferometer. The heterodyne laser interferometer is used as a seismometer due to its high accuracy and robustness. Seismic data measured by the laser interferometer is used to analyze crucial earthquake characteristics. To measure P-S time more precisely, the short time Fourier transform and instantaneous frequency estimation methods are applied to the intensity signal (Iy) of the laser interferometer. To estimate the epicenter location, the range difference of arrival algorithm is applied with the P-S time result. The linear matrix equation of the epicenter localization can be derived using P-S time data obtained from more than three observatories. We prove the performance of the proposed algorithm through simulation and experimental results. PMID:29065515
Two-color short-pulse laser altimeter measurements of ocean surface backscatter
NASA Technical Reports Server (NTRS)
Abshire, James B.; Mcgarry, Jan F.
1987-01-01
The timing and correlation properties of pulsed laser backscatter from the ocean surface have been measured with a two-color short-pulse laser altimeter. The Nd:YAG laser transmitted 70- and 35-ps wide pulses simultaneously at 532 and 355 nm at nadir, and the time-resolved returns were recorded by a receiver with 800-ps response time. The time-resolved backscatter measured at both 330-m and 1291-m altitudes showed little pulse broadening due to the submeter laser spot size. The differential delay of the 355-nm and 532-nm backscattered waveforms were measured with a rms error of about 75 ps. The change in aircraft altitudes also permitted the change in atmospheric pressure to be estimated by using the two-color technique.
A 7.4 ps FPGA-Based TDC with a 1024-Unit Measurement Matrix
Zhang, Min; Wang, Hai; Liu, Yan
2017-01-01
In this paper, a high-resolution time-to-digital converter (TDC) based on a field programmable gate array (FPGA) device is proposed and tested. During the implementation, a new architecture of TDC is proposed which consists of a measurement matrix with 1024 units. The utilization of routing resources as the delay elements distinguishes the proposed design from other existing designs, which contributes most to the device insensitivity to variations of temperature and voltage. Experimental results suggest that the measurement resolution is 7.4 ps, and the INL (integral nonlinearity) and DNL (differential nonlinearity) are 11.6 ps and 5.5 ps, which indicates that the proposed TDC offers high performance among the available TDCs. Benefitting from the FPGA platform, the proposed TDC has superiorities in easy implementation, low cost, and short development time. PMID:28420121
A 7.4 ps FPGA-Based TDC with a 1024-Unit Measurement Matrix.
Zhang, Min; Wang, Hai; Liu, Yan
2017-04-14
In this paper, a high-resolution time-to-digital converter (TDC) based on a field programmable gate array (FPGA) device is proposed and tested. During the implementation, a new architecture of TDC is proposed which consists of a measurement matrix with 1024 units. The utilization of routing resources as the delay elements distinguishes the proposed design from other existing designs, which contributes most to the device insensitivity to variations of temperature and voltage. Experimental results suggest that the measurement resolution is 7.4 ps, and the INL (integral nonlinearity) and DNL (differential nonlinearity) are 11.6 ps and 5.5 ps, which indicates that the proposed TDC offers high performance among the available TDCs. Benefitting from the FPGA platform, the proposed TDC has superiorities in easy implementation, low cost, and short development time.
NASA Astrophysics Data System (ADS)
Solovev, I. A.; Poltavtsev, S. V.; Kapitonov, Yu. V.; Akimov, I. A.; Sadofev, S.; Puls, J.; Yakovlev, D. R.; Bayer, M.
2018-06-01
We study optically the coherent evolution of trions and excitons in a δ -doped 3.5-nm-thick ZnO/Zn0.91Mg0.09O multiple quantum well by means of time-resolved four-wave mixing at a temperature of 1.5 K. Employing spectrally narrow picosecond laser pulses in the χ(3 ) regime allows us to address differently localized trion and exciton states, thereby avoiding many-body interactions and excitation-induced dephasing. The signal in the form of photon echoes from the negatively charged A excitons (TA, trions) decays with coherence times varying from 8 up to 60 ps, depending on the trion energy: more strongly localized trions reveal longer coherence dynamics. The localized neutral excitons decay on the picosecond time scale with coherence times up to T2=4.5 ps. The coherent dynamics of the XB exciton and TB trion are very short (T2<1 ps), which is attributed to the fast energy relaxation from the trion and exciton B states to the respective A states. The trion population dynamics is characterized by the decay time T1, rising from 30 to 100 ps with decreasing trion energy.
Study on the Curcumin dynamics and distribution through living biofilms
NASA Astrophysics Data System (ADS)
Carvalho, Mariana T.; Dovigo, Lívia N.; Rastelli, Alessandra N. S.; Bagnato, Vanderlei S.
2013-03-01
Human oral cavity is colonized by a wide range of microorganisms, often organized in biofilms. These biofilms are responsible for the pathogenesis of caries and most periodontal diseases. A possible alternative to reduce biofilms is the photodynamic inactivation (PDI). The success of the PDI depends on different factors. The time required by the PS to remain in contact with the target cells prior to illumination is determinant for the technique's efficacy. This study aimed to assess the interaction between the PS and the biofilm prior to the PDI. We used confocal microscopy and FLIM to evaluate the interaction between the PS and the biofilm's microorganism during the pre-irradiation time (PIT). The study of this dynamics can lead to the understanding of why only some PSs are effective and why is necessary a long PIT for some microorganisms. Our results showed that are differences for each PIT. These differences can be the determinate for the efficacy of the PDI. We observed that the microorganism needs time to concentrate and/or transport the PS within the biofilm. We presented preliminary results for biofilms of Candida albicans and Streptococcus mutans in the presence of Curcumin and compared it with the literature. We observed that the effectiveness of the PDI might be directly correlated to the position of the PS with the biofilm. Further analyses will be conducted in order to confirm the potential of FLIM to assess the PS dynamics within the biofilms.
Tang, Kuo-Chun; Chang, Ming-Jen; Lin, Tsung-Yi; Pan, Hsiao-An; Fang, Tzu-Chien; Chen, Kew-Yu; Hung, Wen-Yi; Hsu, Yu-Hsiang; Chou, Pi-Tai
2011-11-09
Using 7-hydroxy-1-indanone as a prototype (I), which exhibits excited-state intramolecular proton transfer (ESIPT), chemical modification has been performed at C(2)-C(3) positions by fusing benzene (molecule II) and naphthalene rings, (molecule III). I undergoes an ultrafast rate of ESIPT, resulting in a unique tautomer emission (λ(max) ∼530 nm), whereas excited-state equilibrium is established for both II and III, as supported by the dual emission and the associated relaxation dynamics. The forward ESIPT (normal to proton-transfer tautomer species) rates for II and III are deduced to be (30 ps)(-1) and (22 ps)(-1), respectively, while the backward ESIPT rates are (11 ps)(-1) and (48 ps)(-1). The ESIPT equilibrium constants are thus calculated to be 0.37 and 2.2 for II and III, respectively, giving a corresponding free energy change of 0.59 and -0.47 kcal/mol between normal and tautomer species. For III, normal and tautomer emissions in solid are maximized at 435 and 580 nm, respectively, achieving a white light generation with Commission Internationale de l'Eclairage (CIE) (0.30, 0.27). An organic light-emitting diode based on III is also successfully fabricated with maximum brightness of 665 cd m(-2) at 20 V (885 mA cm(-2)) and the CIE coordinates of (0.26, 0.35). The results provide the proof of concept that the white light generation can be achieved in a single ESIPT system.
Exciplex mediated photoinduced electron transfer reactions of phthalocyanine-fullerene dyads.
Niemi, Marja; Tkachenko, Nikolai V; Efimov, Alexander; Lehtivuori, Heli; Ohkubo, Kei; Fukuzumi, Shunichi; Lemmetyinen, Helge
2008-07-31
Evidences of an intramolecular exciplex intermediate in a photoinduced electron transfer (ET) reaction of double-linked free-base and zinc phthalocyanine-C60 dyads were found. This was the first time for a dyad with phthalocyanine donor. Excitation of the phthalocyanine moiety of the dyads results in rapid ET from phthalocyanine to fullerene via an exciplex state in both polar and nonpolar solvents. Relaxation of the charge-separated (CS) state Pc(*+)-C60(*-) in a polar solvent occurs directly to the ground state in 30-70 ps. In a nonpolar solvent, roughly 20% of the molecules undergo transition from the CS state to phthalocyanine triplet state (3)Pc*-C60 before relaxation to the ground state. Formation of the CS state was confirmed with electron spin resonance measurements at low temperature in both polar and nonpolar solvent. Reaction schemes for the photoinduced ET reactions of the dyads were completed with rate constants obtained from the time-resolved absorption and emission measurements and with state energies obtained from the fluorescence, phosphorescence, and voltammetric measurements.
NASA Astrophysics Data System (ADS)
Heisterkamp, F.; Zhukov, E. A.; Greilich, A.; Yakovlev, D. R.; Korenev, V. L.; Pawlis, A.; Bayer, M.
2015-06-01
The spin dynamics of strongly localized donor-bound electrons in fluorine-doped ZnSe epilayers is studied using pump-probe Kerr rotation techniques. A method exploiting the spin inertia is developed and used to measure the longitudinal spin relaxation time T1 in a wide range of magnetic fields, temperatures, and pump densities. The T1 time of the donor-bound electron spin of about 1.6 μ s remains nearly constant for external magnetic fields varied from zero up to 2.5 T (Faraday geometry) and in a temperature range 1.8-45 K. These findings impose severe restrictions on possible spin relaxation mechanisms. In our opinion they allow us to rule out scattering between free and donor-bound electrons, jumping of electrons between different donor centers, scattering between phonons and donor-bound electrons, and with less certainty charge fluctuations in the environment of the donors caused by the 1.5 ps pulsed laser excitation.
Ultrafast dynamics of an unoccupied surface resonance state in B i2T e2Se
NASA Astrophysics Data System (ADS)
Munisa, Nurmamat; Krasovskii, E. E.; Ishida, Y.; Sumida, K.; Chen, Jiahua; Yoshikawa, T.; Chulkov, E. V.; Kokh, K. A.; Tereshchenko, O. E.; Shin, S.; Kimura, Akio
2018-03-01
Electronic structure and electron dynamics in the ternary topological insulator B i2T e2Se are studied with time- and angle-resolved photoemission spectroscopy using optical pumping. An unoccupied surface resonance split off from the bulk conduction band previously indirectly observed in scanning tunneling measurements is spectroscopically identified. Furthermore, an unoccupied topological surface state (TSS) is found, which is serendipitously located at about 1.5 eV above the occupied TSS, thereby facilitating direct optical transitions between the two surface states at ℏ ω =1.5 eV in an n -type topological insulator. An appreciable nonequilibrium population of the bottom of the bulk conduction band is observed for longer than 15 ps after the pump pulse. This leads to a long recovery time of the lower TSS, which is constantly populated by the electrons coming from the bulk conduction band. Our results demonstrate B i2T e2Se to be an ideal platform for designing future optoelectronic devices based on topological insulators.
Waldecker, Lutz; Miller, Timothy A; Rudé, Miquel; Bertoni, Roman; Osmond, Johann; Pruneri, Valerio; Simpson, Robert E; Ernstorfer, Ralph; Wall, Simon
2015-10-01
The extreme electro-optical contrast between crystalline and amorphous states in phase-change materials is routinely exploited in optical data storage and future applications include universal memories, flexible displays, reconfigurable optical circuits, and logic devices. Optical contrast is believed to arise owing to a change in crystallinity. Here we show that the connection between optical properties and structure can be broken. Using a combination of single-shot femtosecond electron diffraction and optical spectroscopy, we simultaneously follow the lattice dynamics and dielectric function in the phase-change material Ge2Sb2Te5 during an irreversible state transformation. The dielectric function changes by 30% within 100 fs owing to a rapid depletion of electrons from resonantly bonded states. This occurs without perturbing the crystallinity of the lattice, which heats with a 2-ps time constant. The optical changes are an order of magnitude larger than those achievable with silicon and present new routes to manipulate light on an ultrafast timescale without structural changes.
Potentials and Limits of Sar Permanent Scatterers In Ground Deformation Monitoring
NASA Astrophysics Data System (ADS)
Rocca, F.; Colesanti, C.; Ferretti, A.; Prati, C.
The Permanent Scatterers (PS) technique allows the identification of individual radar targets particularly suitable for SAR interferometric measurements. In fact, despite its remarkable potential, spaceborne SAR Differential Interferometry (DInSAR) has not been fully exploited as a reference tool for ground deformation mapping, due to the presence of atmospheric artefacts as well as geometrical and temporal phase decorrelation. Both drawbacks are overcome in a multi-image framework of interfer- ometric data (>25-30 images) jointly used in order to properly identify and exploit the subset of image pixels corresponding to privileged reflectors, the so-called Per- manent Scatterers. Provided that at least 3-4 PS/sqkm are available, accurate phase measurements carried out on the sparse PS grid allow one to compensate data for the atmospheric phase contributions. Average ground deformation rate as well as full dis- placement time series (both along the satellite Line of Sight, LOS) are estimated with millimetric accuracy on individual PS locations. The PS subset of image pixels can be thought of as a high density (100-400 PS/sqkm, in urban areas) "natural" geode- tic network. This study aims at discussing in detail potentials and limits of the PS approach in monitoring ground deformation phenomena characterised by a complex time non-uniform evolution (Non-Linear Motion, NLM). PS results highlighting sea- sonal displacement effects beneath San Jose (Santa Clara Valley, California) are going to be discussed. The deformation occurring there is related to the seasonal variation of the ground water level in the area delimited by the Silver Creek and the San Jose fault. The San Jose PS analysis is exploited as a significant case study to assess the main requirements for a successful detection of NLM phenomena (by means of PS), and to analyse their impact on the quality of results. Particular attention will be de- voted to the effect of irregularly sampled data and missing acquisitions. The strategies used in order to isolate the phase contribution relative to time non-uniform displace- ment phenomena from other phase terms (mainly atmospheric artefacts and residual topography) are going to be illustrated. Moreover, the main aspects to be considered envisaging a synergistic use of PS results and both GPS and optical levelling data are going to be outlined. Finally, attention will be paid to key issues to be taken into account for designing future SAR missions dedicated to detection and monitoring of ground deformation phenomena.
A molecular dynamics simulation study of chloroform
NASA Astrophysics Data System (ADS)
Tironi, Ilario G.; van Gunsteren, Wilfred F.
Three different chloroform models have been investigated using molecular dynamics computer simulation. The thermodynamic, structural and dynamic properties of the various models were investigated in detail. In particular, the potential energies, diffusion coefficients and rotational correlation times obtained for each model are compared with experiment. It is found that the theory of rotational Brownian motion fails in describing the rotational diffusion of chloroform. The force field of Dietz and Heinzinger was found to give good overall agreement with experiment. An extended investigation of this chloroform model has been performed. Values are reported for the isothermal compressibility, the thermal expansion coefficient and the constant volume heat capacity. The values agree well with experiment. The static and frequency dependent dielectric permittivity were computed from a 1·2 ns simulation conducted under reaction field boundary conditions. Considering the fact that the model is rigid with fixed partial charges, the static dielectric constant and Debye relaxation time compare well with experiment. From the same simulation the shear viscosity was computed using the off-diagonal elements of the pressure tensor, both via an Einstein type relation and via a Green-Kubo equation. The calculated viscosities show good agreement with experimental values. The excess Helmholtz energy is calculated using the thermodynamic integration technique and simulations of 50 and 80 ps. The value obtained for the excess Helmholtz energy matches the theoretical value within a few per cent.
Bautista-Herrera, L A; De la Cruz-Mosso, U; Morales-Zambrano, R; Villanueva-Quintero, G D; Hernández-Bello, J; Ramírez-Dueñas, M G; Martínez-López, E; Brennan-Bourdon, L M; Baños-Hernández, C J; Muñoz-Valle, J F
2018-05-01
Psoriatic arthritis (PsA) is an autoimmune inflammatory disease associated with psoriasis. The cause of this pathology is still unknown, but research suggests the diseases are caused by a deregulated cytokine production. MIF is a cytokine associated with immunomodulation of Th1, Th2, and Th17 cytokine profiles in inflammatory diseases. Based on this knowledge, the aim of this study was to determine the association of MIF and TNFA expression with Th1, Th2, and Th17 cytokine profiles in serum levels of PsA patients. A cross-sectional study was performed in 50 PsA patients and 30 control subjects (CS). The cytokine profiles were quantified by BioPlex MagPix system and the mRNA expression levels by real-time PCR. TNFA mRNA expression was 138.81-folds higher in PsA patients than CS (p < 0.001). Regarding MIF mRNA expression, no significant differences were observed; however, a positive correlation was identified between MIF mRNA expression and PsA time of evolution (r = - 0.53, p = 0.009). An increase of Th1 (IFNγ: PsA = 37.1 pg/mL vs. CS = 17 pg/mL, p < 0.05; TNFα: PsA = 24.6 pg/mL vs. CS = 9.8 pg/mL, p < 0.0001) and Th17 cytokine profiles (IL-17: PsA = 6.4 pg/mL vs. CS = 2.7 pg/mL, p < 0.05; IL-22: PsA = 8.4 pg/mL vs. CS = 1.8 pg/mL, p < 0.001), were found in PsA patients. Th2 cytokines were not significantly different in both groups. In conclusion, a high expression of TNFA mRNA, as well as an increase of Th1 and Th17 cytokine profiles evaluated by IFNγ, TNFα, IL-17, and IL-22 cytokines, was observed in PsA patients.
Yuan, Rongfeng; Yan, Chang; Nishida, Jun; Fayer, Michael D
2017-05-04
The dynamics of water molecules near the surfactant interface in large Aerosol-OT reverse micelles (RMs) (w 0 = 16-25) was investigated with IR polarization-selective pump-probe experiments using the SeCN - anion as a vibrational probe. Linear absorption spectra of RMs (w 0 = 25-2) can be decomposed into the weighted sum of the SeCN - spectra in bulk water and the spectrum of the SeCN - anion interacting with the interfacial sulfonate head groups (w 0 = 1). The spectra of the large RMs, w 0 ≥ 16, are overwhelmingly dominated by the bulk water component. Anisotropy decays (orientational relaxation) of the anion for w 0 ≥ 16 displayed bulk water relaxation (1.4 and 4.5 ps) plus an additional slow decay with a time constant of ∼13 ps. The amplitude of the slow decay was too large to be associated with SeCN - in contact with the interface on the basis of the linear spectrum decomposition. The results indicate that the observed slow components arise from SeCN - in a water boundary layer, in which water molecules are perturbed by the interface but are not directly associated with it. This layer is the transition between water in direct contact with the interface and bulk water in the large RM cores. In the boundary layer, the water dynamics is slow compared to that in bulk water.
Losses and depolarization of ultracold neutrons on neutron guide and storage materials
NASA Astrophysics Data System (ADS)
Bondar, V.; Chesnevskaya, S.; Daum, M.; Franke, B.; Geltenbort, P.; Göltl, L.; Gutsmiedl, E.; Karch, J.; Kasprzak, M.; Kessler, G.; Kirch, K.; Koch, H.-C.; Kraft, A.; Lauer, T.; Lauss, B.; Pierre, E.; Pignol, G.; Reggiani, D.; Schmidt-Wellenburg, P.; Sobolev, Yu.; Zechlau, T.; Zsigmond, G.
2017-09-01
At Institut Laue-Langevin (ILL) and Paul Scherrer Institute (PSI), we have measured the losses and depolarization probabilities of ultracold neutrons on various materials: (i) nickel-molybdenum alloys with weight percentages of 82/18, 85/15, 88/12, 91/9, and 94/6 and natural nickel Ni100, (ii) nickel-vanadium NiV93/7, (iii) copper, and (iv) deuterated polystyrene (dPS). For the different samples, storage-time constants up to ˜460 s were obtained at room temperature. The corresponding loss parameters for ultracold neutrons, η , varied between 1.0 ×10-4 and 2.2 ×10-4 . All η values are in agreement with theory except for dPS, where anomalous losses at room temperature were established with four standard deviations. The depolarization probabilities per wall collision β measured with unprecedented sensitivity varied between 0.7 ×10-6 and 9.0 ×10-6 . Our depolarization result for copper differs from other experiments by 4.4 and 15.8 standard deviations. The β values of the paramagnetic NiMo alloys over molybdenum content show an increase of β with increasing Mo content. This is in disagreement with expectations from literature. Finally, ferromagnetic behavior of NiMo alloys at room temperature was found for molybdenum contents of 6.5 at.% or less and paramagnetic behavior for more than 8.7 at.%. This may contribute to solving an ambiguity in literature.
A Fiber Optic Beam Controller for Phased Array Radars.
1982-06-01
characteristics with limited discussion of the underlying physics . The components which will be surveyed are: ( 1 ) Optical Fibers, (2) Light Emitters, (3...effect rather than by a physical grating. The defining equation is An = 1 /2 n3 ps p = photo-elastic constant (21) s = the acoustic strain amplitude...RESULTS AND AN INTUITIVE MODEL OF NEAR TERM TECHNOLOGY CHANGES The experimental results are combined with other data and the conclusions drawn are: ( 1
Improvements in diagnostic tools for early detection of psoriatic arthritis.
D'Angelo, Salvatore; Palazzi, Carlo; Gilio, Michele; Leccese, Pietro; Padula, Angela; Olivieri, Ignazio
2016-11-01
Psoriatic arthritis (PsA) is a heterogeneous chronic inflammatory disease characterized by a wide clinical spectrum. The early diagnosis of PsA is currently a challenging topic. Areas covered: The literature was extensively reviewed for studies addressing the topic area "diagnosis of psoriatic arthritis". This review will summarize improvements in diagnostic tools, especially referral to the rheumatologist, the role of patient history and clinical examination, laboratory tests, and imaging techniques in getting an early and correct diagnosis of PsA. Expert commentary: Due to the heterogeneity of its expression, PsA may be easily either overdiagnosed or underdiagnosed. A diagnosis of PsA should be taken into account every time a patient with psoriasis or a family history of psoriasis shows peripheral arthritis, especially if oligoarticular or involving the distal interphalangeal joints, enthesitis or dactylitis. Magnetic resonance imaging and ultrasonography are useful for diagnosing PsA early, particularly when isolated enthesitis or inflammatory spinal pain occur.
Celiac disease in siblings with Pearson syndrome.
Köklü, Seyfettin; Alioğlu, Bülent; Akbal, Erdem; Koçak, Erdem
2010-04-01
Pearson syndrome (PS) is a rare mitochondrial disorder characterized by sideroblastic anemia and exocrine pancreas deficiency as a result of mitochondrial DNA deletion or deletion-duplication. A 21-year-old woman and 11-year-old brother who had been diagnosed as PS at the age of 18 and 8, respectively, were admitted to our hospital with the complaints of chronic diarrhea while using exogenous pancreas enzymes. Diarrhea was present in both for a long time and attributed to existing PS. Endoscopic and laboratory examinations revealed celiac disease (CD). After gluten-free diet, their symptoms were resolved. Detailed family investigation revealed that parents and the sister of the siblings were free of both PS and CD. To our knowledge, there has been no previous report of the presence of these 2 disorders, PS and CD, in the same patient. CD should be screened and treated appropriately in cases with PS.
Ross, Joseph S; Bates, Jonathan; Parzynski, Craig S; Akar, Joseph G; Curtis, Jeptha P; Desai, Nihar R; Freeman, James V; Gamble, Ginger M; Kuntz, Richard; Li, Shu-Xia; Marinac-Dabic, Danica; Masoudi, Frederick A; Normand, Sharon-Lise T; Ranasinghe, Isuru; Shaw, Richard E; Krumholz, Harlan M
2017-01-01
Machine learning methods may complement traditional analytic methods for medical device surveillance. Using data from the National Cardiovascular Data Registry for implantable cardioverter-defibrillators (ICDs) linked to Medicare administrative claims for longitudinal follow-up, we applied three statistical approaches to safety-signal detection for commonly used dual-chamber ICDs that used two propensity score (PS) models: one specified by subject-matter experts (PS-SME), and the other one by machine learning-based selection (PS-ML). The first approach used PS-SME and cumulative incidence (time-to-event), the second approach used PS-SME and cumulative risk (Data Extraction and Longitudinal Trend Analysis [DELTA]), and the third approach used PS-ML and cumulative risk (embedded feature selection). Safety-signal surveillance was conducted for eleven dual-chamber ICD models implanted at least 2,000 times over 3 years. Between 2006 and 2010, there were 71,948 Medicare fee-for-service beneficiaries who received dual-chamber ICDs. Cumulative device-specific unadjusted 3-year event rates varied for three surveyed safety signals: death from any cause, 12.8%-20.9%; nonfatal ICD-related adverse events, 19.3%-26.3%; and death from any cause or nonfatal ICD-related adverse event, 27.1%-37.6%. Agreement among safety signals detected/not detected between the time-to-event and DELTA approaches was 90.9% (360 of 396, k =0.068), between the time-to-event and embedded feature-selection approaches was 91.7% (363 of 396, k =-0.028), and between the DELTA and embedded feature selection approaches was 88.1% (349 of 396, k =-0.042). Three statistical approaches, including one machine learning method, identified important safety signals, but without exact agreement. Ensemble methods may be needed to detect all safety signals for further evaluation during medical device surveillance.
NASA Astrophysics Data System (ADS)
Gundacker, S.; Turtos, R. M.; Auffray, E.; Lecoq, P.
2018-05-01
The emergence of new solid-state avalanche photodetectors, e.g. SiPMs, with unprecedented timing capabilities opens new ways to profit from ultrafast and prompt photon emission in scintillators. In time of flight positron emission tomography (TOF-PET) and high energy timing detectors based on scintillators the ultimate coincidence time resolution (CTR) achievable is proportional to the square root of the scintillation rise time, decay time and the reciprocal light yield, CTR ∝√{τrτd / LY }. Hence, the precise study of light emission in the very first tens of picoseconds is indispensable to understand time resolution limitations imposed by the scintillator. We developed a time correlated single photon counting setup having a Gaussian impulse response function (IRF) of 63ps sigma, allowing to precisely measure the scintillation rise time of various materials with 511keV excitation. In L(Y)SO:Ce we found two rise time components, the first below the resolution of our setup <10 ps and a second component being ∼380 ps. Co-doping with Ca2+ completely suppresses the slow rise component leading to a very fast initial scintillation emission with a rise time of <10ps. A very similar behavior is observed in LGSO:Ce crystals. The results are further confirmed by complementary measurements using a streak-camera system with pulsed X-ray excitation and additional 511 keV excited measurements of Mg2+ co-doped LuAG:Ce, YAG:Ce and GAGG:Ce samples.
Oh, Eui Hyun; Ro, Young Suck; Kim, Jeong Eun
2017-06-01
There is a lack of nationwide studies examining the epidemiology and comorbidities of psoriasis vulgaris (PsV) and psoriatic arthritis (PsA) in Asian populations. The purpose of this study is to determine the demographics of psoriasis in Korea along with the incidence of cerebro-cardiovascular (CV) comorbidities and to compare these risks between populations with PsA and with PsV. This cohort study identified 15 484 patients with psoriasis among 855 003 subjects in the Korean National Health Insurance Database from 2002 through 2010. The cases were further classified into PsA and PsV. We used hazard ratios (HR) and 95% confidence intervals (CI) from the univariate and age-sex adjusted logistic regression model to assess the risk of comorbidities in patients with PsA and PsV. The annual prevalence of psoriasis increased from 313.2 to 453.5/100 000 people from 2002 through 2010; however, the overall incidence rate for psoriasis slightly decreased (252.7-212.6/100 000 population). Of psoriatic patients, 10.8% had PsA, and after adjusting for age and sex, PsA patients had a significantly higher risk of dyslipidemia than PsV patients (adjusted HR, 1.185; 95% CI, 1.049-1.338). When stratified by age group, subjects aged 20-39 years had a higher risk of stroke and many CV risk factors. In conclusion, the prevalence of psoriasis, while within the range of previous reports, tended to increase over time. Patients with PsA had higher burdens of specific comorbid diseases than those with PsV, especially at a comparatively early age. © 2017 Japanese Dermatological Association.
Positronium signature in organic liquid scintillators for neutrino experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Franco, D.; Consolati, G.; Trezzi, D.
2011-01-15
Electron antineutrinos are commonly detected in liquid scintillator experiments via inverse {beta} decay by looking at the coincidence between the reaction products: neutrons and positrons. Prior to positron annihilation, an electron-positron pair may form an orthopositronium (o-Ps) state, with a mean lifetime of a few nanoseconds. Even if the o-Ps decay is speeded up by spin-flip or pick-off effects, it may introduce distortions in the photon emission time distribution, crucial for position reconstruction and pulse shape discrimination algorithms in antineutrino experiments. Reversing the problem, the o-Ps-induced time distortion represents a new signature for tagging antineutrinos in liquid scintillator. In thismore » article, we report the results of measurements of the o-Ps formation probability and lifetime for the most used solvents for organic liquid scintillators in neutrino physics (pseudocumene, linear alkyl benzene, phenylxylylethane, and dodecane). We characterize also a mixture of pseudocumene +1.5 g/l of 2,5-diphenyloxazole, a fluor acting as wavelength shifter. In the second part of the article, we demonstrate that the o-Ps-induced distortion of the scintillation photon emission time distributions represent an optimal signature for tagging positrons on an event by event basis, potentially enhancing the antineutrino detection.« less
Annihilation of positronium atoms confined in mesoporous and macroporous SiO2 films
NASA Astrophysics Data System (ADS)
Cooper, B. S.; Boilot, J.-P.; Corbel, C.; Guillemot, F.; Gurung, L.; Liszkay, L.; Cassidy, D. B.
2018-05-01
We report experiments in which positronium (Ps) atoms were created in thin, porous silica films containing isolated voids with diameters ranging from 5 to 75 nm. Ps lifetimes in the pore structures were measured directly via time-delayed laser excitation of 13S1→23PJ transitions. In a film containing 5-nm pores Ps was predominantly emitted into vacuum, with a small component of confined Ps with a lifetime of 75 ns also observed. In films with larger pores Ps atoms were not emitted into vacuum except from the film surface, and confined Ps lifetimes of ≈90 ns were measured with no dependence on the pore size. However, for such large pores, extended Tao-Eldrup (ETE)-type models predict Ps lifetimes close to the 142-ns vacuum value. Moreover, 13S1→23PJ excitation of Ps atoms inside the pores was found to result in annihilation and exhibited an extremely broad (≈10 THz) linewidth. We attribute these observations to a process in which nonthermal Ps atoms in the isolated voids become temporarily trapped in a series of surface states that dissociate following excitation. The occurrence of this mechanism is not necessarily apparent from ground-state Ps decay rates without some prior knowledge of the sample structure, and it precludes the application of ETE-type models as they do not take into account surface interactions other than pickoff annihilation.
Sex differences in paradoxical sleep: influences of estrus cycle and ovariectomy.
Fang, J; Fishbein, W
1996-09-23
Previously, we reported that paradoxical sleep (PS) is sexually dimorphic in mice and rats. Since some early studies indicate that PS is suppressed during proestrus night, it is important to know whether the estrus cycle and accompanying circulating ovarian hormones could explain the sexual dimorphism of PS. To examine this, sleep patterns of male rats were compared with those of normal cycling female rats and ovariectomized females in a 12:12 h light/dark cycle. Slow wave sleep and total sleep time are indistinguishable between the males, cycling females and ovariectomized females. However, normal males display significantly more PS than cycling females during both daytime and nighttime (average of all estrus stages). On the other hand, while ovariectomy has no visible effect on daytime sleep--the sexual dimorphism of PS is unchanged by ovariectomy--during nighttime, ovariectomy produces a selective increase of PS, eliminating the sex difference during the night. In sum, normal cycling females show no change in daytime sleep patterns across the estrus cycle, but have significantly less PS during proestrus nights than during metestrus and diestrus nights. The results indicate that the sex difference in nighttime PS is due to the suppression of PS by ovarian hormones during proestrus and, to a less extent, estrus nights. The sex difference in daytime PS, on the other hand, appears to be independent of circulating ovarian hormones.
Richardson, Daniel R; Stauffer, Hans U; Roy, Sukesh; Gord, James R
2017-04-10
A comparison is made between two ultrashort-pulse coherent anti-Stokes Raman scattering (CARS) thermometry techniques-hybrid femtosecond/picosecond (fs/ps) CARS and chirped-probe-pulse (CPP) fs-CARS-that have become standards for high-repetition-rate thermometry in the combustion diagnostics community. These two variants of fs-CARS differ only in the characteristics of the ps-duration probe pulse; in hybrid fs/ps CARS a spectrally narrow, time-asymmetric probe pulse is used, whereas a highly chirped, spectrally broad probe pulse is used in CPP fs-CARS. Temperature measurements were performed using both techniques in near-adiabatic flames in the temperature range 1600-2400 K and for probe time delays of 0-30 ps. Under these conditions, both techniques are shown to exhibit similar temperature measurement accuracies and precisions to previously reported values and to each other. However, it is observed that initial calibration fits to the spectrally broad CPP results require more fitting parameters and a more robust optimization algorithm and therefore significantly increased computational cost and complexity compared to the fitting of hybrid fs/ps CARS data. The optimized model parameters varied more for the CPP measurements than for the hybrid fs/ps measurements for different experimental conditions.
NASA Astrophysics Data System (ADS)
Tormoen, Garth W.; Recht, Olivia; Gruber, András; Levine, Ross L.; McCarty, Owen J. T.
2013-10-01
Patients with acute myelogenous leukemia (AML) are at risk for thrombotic complications. Risk to develop thrombosis is closely tied to leukemia subtype, and studies have shown an association between leukocytosis and thrombosis in AML M3. We evaluated the relative roles of cell count and the surface expression of tissue factor (TF) and phosphatidylserine (PS) in the procoagulant phenotype of AML cell lines. The TF-positive AML M3 cell lines, NB4 and HL60, and AML M2 cell line, AML14, exhibited both extrinsic tenase and prothrombinase activity in a purified system and promoted experimental thrombus formation. In contrast, the TF-negative AML cell line, HEL, exhibited only prothrombinase activity and did not affect the rate of occlusive thrombus formation. In plasma, NB4, HL60 and AML14 shortened clotting times in a cell-count, PS- and TF-dependent manner. Exposure of cultured NB4, HL60, and AML14 cells to the chemotherapeutic agent daunorubicin increased their extrinsic tenase activity and PS expression. Clot initiation time inversely correlated with logarithm of PS index, defined as the product of multiplying leukocyte count with cell surface PS exposure. We propose that leukemia cell PS index may serve as a biomarker for procoagulant activity.
Polarization sensitive spectroscopic optical coherence tomography for multimodal imaging
NASA Astrophysics Data System (ADS)
Strąkowski, Marcin R.; Kraszewski, Maciej; Strąkowska, Paulina; Trojanowski, Michał
2015-03-01
Optical coherence tomography (OCT) is a non-invasive method for 3D and cross-sectional imaging of biological and non-biological objects. The OCT measurements are provided in non-contact and absolutely safe way for the tested sample. Nowadays, the OCT is widely applied in medical diagnosis especially in ophthalmology, as well as dermatology, oncology and many more. Despite of great progress in OCT measurements there are still a vast number of issues like tissue recognition or imaging contrast enhancement that have not been solved yet. Here we are going to present the polarization sensitive spectroscopic OCT system (PS-SOCT). The PS-SOCT combines the polarization sensitive analysis with time-frequency analysis. Unlike standard polarization sensitive OCT the PS-SOCT delivers spectral information about measured quantities e.g. tested object birefringence changes over the light spectra. This solution overcomes the limits of polarization sensitive analysis applied in standard PS-OCT. Based on spectral data obtained from PS-SOCT the exact value of birefringence can be calculated even for the objects that provide higher order of retardation. In this contribution the benefits of using the combination of time-frequency and polarization sensitive analysis are being expressed. Moreover, the PS-SOCT system features, as well as OCT measurement examples are presented.
A practical method of estimating standard error of age in the fission track dating method
Johnson, N.M.; McGee, V.E.; Naeser, C.W.
1979-01-01
A first-order approximation formula for the propagation of error in the fission track age equation is given by PA = C[P2s+P2i+P2??-2rPsPi] 1 2, where PA, Ps, Pi and P?? are the percentage error of age, of spontaneous track density, of induced track density, and of neutron dose, respectively, and C is a constant. The correlation, r, between spontaneous are induced track densities is a crucial element in the error analysis, acting generally to improve the standard error of age. In addition, the correlation parameter r is instrumental is specifying the level of neutron dose, a controlled variable, which will minimize the standard error of age. The results from the approximation equation agree closely with the results from an independent statistical model for the propagation of errors in the fission-track dating method. ?? 1979.
Contrasting two different interpretations of the dynamics in binary glass forming mixtures
NASA Astrophysics Data System (ADS)
Valenti, S.; Capaccioli, S.; Ngai, K. L.
2018-02-01
In a series of papers on binary glass-forming mixtures of tripropyl phosphate (TPP) with polystyrene (PS), Kahlau et al. [J. Chem. Phys. 140, 044509 (2014)] and Bock et al. [J. Chem. Phys. 139, 064508 (2013); J. Chem. Phys. 140, 094505 (2014); and J. Non-Cryst. Solids 407, 88-97 (2015)] presented the data on the dynamics of the two components studied over the entire composition range by several experimental methods. From these sets of data, obtained by multiple experimental techniques on mixtures with a large difference ΔTg ≈ 200 K between the glass transition temperatures of two starting glass formers, they obtained two α-relaxations, α1 and α2. The temperature dependence of the slower α1 is Vogel-Fulcher like, but the faster α2 is Arrhenius. We have re-examined their data and show that their α2-relaxation is the Johari-Goldstein (JG) β-relaxation with Arrhenius T-dependence admixed with a true α2-relaxation having a stronger temperature dependence. In support of our interpretation of their data, we made dielectric measurements at elevated pressures P to show that the ratio of the α1 and α2 relaxation times, τα1(T,P)/τα2(T,P), is invariant to variations of T and P, while τα1(T,P) is kept constant. This property proves unequivocally that the α2-relaxation is the JG β-relaxation, the precursor of the α1-relaxation. Subsequently, the true but unresolved α2-relaxation is recovered, and its relaxation times with much stronger temperature dependence are deduced, as expected for the α-relaxation of the TPP component. The results are fully compatible with those found in another binary mixture of methyltetrahydrofuran with tristyrene and PS with ΔTg ≈ 283 K, even larger than ΔTg ≈ 200 K of the mixture of TPP with PS, and in several polymer blends. The contrast between the two very different interpretations brought out in this paper is deemed beneficial for further progress in this research area.
NASA Astrophysics Data System (ADS)
Dove, P. M.; Giuffre, A. J.; Mergelsberg, S. T.; Han, N.; De Yoreo, J. J.
2016-12-01
Organisms form shells and skeletons with remarkable fidelity by controlling the timing and placement of the minerals that nucleate and subsequently grow. An extensive effort has identified features of the organic matrix that regulate this process. Recent measurements from our group show the energy barrier to nucleation onto polysaccharide (PS) substrates is dependent upon hydrophilicity through functional group chemistry and suggest that free energy of the macromolecule-liquid interface influences where and when mineral nucleation occurs (Giuffre et al., 2013, PNAS). The importance of interfacial free energy in regulating nucleation raises the question of whether local changes in salinity or electrolyte composition can be tuned to further modulate the onset of calcite nucleation. Using alginate (negatively charged by carboxyl groups) and chitosan (small positive charge by amine groups), the rate of calcite nucleation was measured at controlled supersaturations and pH as a function of NaCl concentration (65-600 mM). Analyses of the data show the thermodynamic barrier to calcite nucleation onto both types of PS increases with ionic strength. The evidence suggests this effect arises from an increasing concentration of solvated ions at the PS-water interface while also increasing the hydrophilic character of that interface; thus decreasing the substrate-liquid interfacial free energy. To test this explanation, a second group of nucleation experiments used a suite of electrolytes (alkali chlorides for alginate and sodium halides for chitosan) while holding ionic strength constant. Indeed, the nucleation barriers for calcite formation are electrolyte-specific and correlated with the hydration free energy of the ion. This suggests solvated electrolyte ions indirectly regulate calcite nucleation onto substrates through their competition with the substrate for water thereby influencing net interfacial free energy. These effects are consistent with the long-established salting-in phenomena of the Hofmeister series. The new insights from this experimental study reiterate the importance of electrolytes in reactions involving mineral-water interfaces and suggest a role for seemingly inert `spectator' ions in regulating the local timing and placement of minerals during biomineralization.
Zhang, Haiyan; Yu, Pengli; Zhao, Jiuhai; Jiang, Hongling; Wang, Haiyang; Zhu, Yingfang; Botella, Miguel A; Šamaj, Jozef; Li, Chuanyou; Lin, Jinxing
2018-01-01
Systemin (SYS), an octadecapeptide hormone processed from a 200-amino-acid precursor (prosystemin, PS), plays a central role in the systemic activation of defense genes in tomato in response to herbivore and pathogen attacks. However, whether PS mRNA is transferable and its role in systemic defense responses remain unknown. We created the transgenic tomato PS gene tagged with the green fluorescent protein (PS-GFP) using a shoot- or root-specific promoter, and the constitutive 35S promoter in Arabidopsis. Subcellular localization of PS-/SYS-GFP was observed using confocal laser scanning microscopy and gene transcripts were determined using quantitative real-time PCR. In Arabidopsis, PS protein can be processed and SYS is secreted. Shoot-/root-specific expression of PS-GFP in Arabidopsis, and grafting experiments, revealed that the PS mRNA moves in a bi-directional manner. We also found that ectopic expression of PS improves Arabidopsis resistance to the necrotrophic fungus Botrytis cinerea, consistent with substantial upregulation of the transcript levels of specific pathogen-responsive genes. Our results provide novel insights into the multifaceted mechanism of SYS signaling transport and its potential application in genetic engineering for increasing pathogen resistance across diverse plant families. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
Kwon, Chang-Il; Kim, Gwangil; Jeong, Seok; Lee, Won Seop; Lee, Don Haeng; Ko, Kwang Hyun; Hong, Sung Pyo; Hahm, Ki Baik
2016-01-01
Background/Aims The efforts to improve biliary plastic stents (PSs) for decreasing biofilm formation and overcome short patency time have been continued. The aim of this study is to evaluate the effect of advanced hydrophilic coating for patency and biodurability of PS. Methods Using an in vitro bile flow phantom model, we compared patency between prototype PS with hydrophilic coating (PS+HC) and prototype PS without hydrophilic coating (PS−HC). We performed an analysis of the degree of luminal narrowing by microscopic examination. Using an in vivo swine bile duct dilation model made by endoscopic papillary closure and stent insertion, we evaluated biodurability of hydrophilic coating. Results In the phantom model, PS+HC showed less biofilm formation and luminal narrowing than PS−HC at 8 weeks (p<0.05). A total of 31 stents were inserted into the dilated bile duct of seven swine models, and 24 stents were successfully retrieved 8 weeks later. There was no statistical difference of stent patency between the polyethylene PS+HC and the polyurethane PS+HC. The biodurability of hydrophilic coating was sustained up to 8 weeks, when assessing the coating layer by scanning electron microscopy examination. Conclusions Advanced hydrophilic coating technology may extend the patency of PS compared to uncoated PS. PMID:27021507
Leitner, T.; Mazza, T.; Schröder, H.; Kunnus, K.; Schreck, S.; Radcliffe, P.; Düsterer, S.; Meyer, M.; Föhlisch, A.
2017-01-01
We prove the hitherto hypothesized sequential dissociation of Fe(CO)5 in the gas phase upon photoexcitation at 266 nm via a singlet pathway with time-resolved valence and core-level photoelectron spectroscopy with an x-ray free-electron laser. Valence photoelectron spectra are used to identify free CO molecules and to determine the time constants of stepwise dissociation to Fe(CO)4 within the temporal resolution of the experiment and further to Fe(CO)3 within 3 ps. Fe 3p core-level photoelectron spectra directly reflect the singlet spin state of the Fe center in Fe(CO)5, Fe(CO)4, and Fe(CO)3 showing that the dissociation exclusively occurs along a singlet pathway without triplet-state contribution. Our results are important for assessing intra- and intermolecular relaxation processes in the photodissociation dynamics of the prototypical Fe(CO)5 complex in the gas phase and in solution, and they establish time-resolved core-level photoelectron spectroscopy as a powerful tool for determining the multiplicity of transition metals in photochemical reactions of coordination complexes. PMID:28595420
Knowles, Kathryn E; McArthur, Eric A; Weiss, Emily A
2011-03-22
A combination of transient absorption (TA) and time-resolved photoluminescence (TRPL) spectroscopies performed on solution-phase samples of colloidal CdSe quantum dots (QDs) allows the construction of a time-resolved, charge carrier-resolved map of decay from the first excitonic state of the QD. Data from TA and TRPL yield the same six exponential components, with time constants ranging from ∼1 ps to 50 ns, for excitonic decay. Comparison of TA signals in the visible and near-infrared (NIR) spectral regions enables determination of the relative contributions of electron and hole dynamics to each decay component, and comparison of TA and TRPL reveals that each component represents a competition between radiative and nonradiative decay pathways. In total, these data suggest that the QD sample comprises at least three distinct populations that differ in both the radiative and nonradiative decay pathways available to the excitonic charge carriers, and provide evidence for multiple emissive excitonic states in which the hole is not in the valence band, but rather a relaxed or trapped state.
Vallejo, J G; Baker, C J; Edwards, M S
1996-01-01
Group B streptococci (GBS) are the major cause of sepsis and fatal shock in neonates in the United States. The precise role of tumor necrosis factor alpha (TNF-alpha) in the development of human GBS sepsis has not been defined; however, whole GBS have been shown to induce the production of this inflammatory cytokine. We sought to determine which bacterial cell wall components of GBS are responsible for triggering TNF-alpha production. Human cord blood monocytes were stimulated with encapsulated (COH1) or unencapsulated (COH1-13) whole type III GBS or with purified bacterial components, including type III capsular polysaccharide (III-PS), group B polysaccharide (GB-PS), lipoteichoic acid (LTA), or peptidoglycan (PG). Lipopolysaccharide from Escherichia coli served as a control. Supernatants were harvested at specific timed intervals, and TNF-alpha levels were measured by enzyme-linked immunosorbent assay. Monocytes exposed to COH1 and COH1-13 induced similar amounts of TNF-alpha. III-PS, GB-PS, LTA, and PG each induced TNF-alpha in a time- and concentration-dependent manner. However, TNF-alpha release was significantly greater after stimulation by the GB-PS or PG than after stimulation by III-PS or LTA (P < 0.05). Our findings indicate that GB-PS and PG are the bacterial cell wall components primarily evoking TNF-alpha release. These, alone or in concert with other factors, may be responsible for septic shock accompanying GBS sepsis. PMID:8945544
Guo, Li; Tong, Dongxia; Yu, Muxin; Zhang, Yan; Li, Tao; Wang, Chunxu; Zhou, Peng; Jin, Jiaqi; Li, Baorong; Liu, Yingmiao; Liu, Ruipeng; Novakovic, Valerie A; Dong, Zengxiang; Tian, Ye; Kou, Junjie; Bi, Yayan; Zhou, Jin; Shi, Jialan
2018-06-01
Multiple myeloma (MM) is characterized by an increased incidence of thromboembolic events, particularly when treated with immunomodulatory drugs (IMiDs) in combination with dexamethasone. The optimal prophylactic strategy to prevent the hypercoagulable state of patients with MM is still debated. The aim of the current study was to investigate the definitive role of phosphatidylserine (PS) in supporting procoagulant activity (PCA) in patients with MM. Patients with MM (n=20) and healthy subjects (n=15) were recruited for the present study. PS analyses were performed by flow cytometry and confocal microscopy. The PCA was evaluated by clotting time, purified coagulation complex assays and fibrin production assays. The percentage of PS+ blood cells was significantly higher in patients with MM than in healthy subjects. Additionally, the patient serum induced more PS exposure on endothelial cells (ECs) in vitro than serum from healthy subjects. Isolated blood cells from patients with MM and ECs cultured with patient serum in vitro demonstrated significantly shortened coagulation time, greatly intrinsic/extrinsic factor Xa generation and increased thrombin formation. In addition, the levels of PS+ erythrocytes, platelets, leukocytes, and ECs incubated with IMiDs and dexamethasone were higher than with IMiDs alone. The findings support the hypothesis that increased PS exposure on blood cells and ECs participates in the hypercoagulable state in patients with MM. Thus, blocking PS may be a novel therapeutic target for the prevention of thrombosis in these patients.
Gabriel, Erin E; Gilbert, Peter B
2014-04-01
Principal surrogate (PS) endpoints are relatively inexpensive and easy to measure study outcomes that can be used to reliably predict treatment effects on clinical endpoints of interest. Few statistical methods for assessing the validity of potential PSs utilize time-to-event clinical endpoint information and to our knowledge none allow for the characterization of time-varying treatment effects. We introduce the time-dependent and surrogate-dependent treatment efficacy curve, ${\\mathrm {TE}}(t|s)$, and a new augmented trial design for assessing the quality of a biomarker as a PS. We propose a novel Weibull model and an estimated maximum likelihood method for estimation of the ${\\mathrm {TE}}(t|s)$ curve. We describe the operating characteristics of our methods via simulations. We analyze data from the Diabetes Control and Complications Trial, in which we find evidence of a biomarker with value as a PS.
NASA Astrophysics Data System (ADS)
Wang, Yonggang; Kuang, Jie; Liu, Chong; Cao, Qiang; Li, Deng
2017-03-01
A high performance multi-channel time-to-digital converter (TDC) is implemented in a Xilinx Zynq-7000 field programmable gate array (FPGA). It can be flexibly configured as either 32 TDC channels with 9.9 ps time-interval RMS precision, 16 TDC channels with 6.9 ps RMS precision, or 8 TDC channels with 5.8 ps RMS precision. All TDCs have a 380 M Samples/second measurement throughput and a 2.63 ns measurement dead time. The performance consistency and temperature dependence of TDC channels are also evaluated. Because Zynq-7000 FPGA family integrates a feature-rich dual-core ARM based processing system and 28 nm Xilinx programmable logic in a single device, the realization of high performance TDCs on it will make the platform more widely used in time-measuring related applications.
Guo, Nan; Bindt, Carola; Te Bonle, Marguerite; Appiah-Poku, John; Tomori, Cecilia; Hinz, Rebecca; Barthel, Dana; Schoppen, Stefanie; Feldt, Torsten; Barkmann, Claus; Koffi, Mathurin; Loag, Wibke; Nguah, Samuel Blay; Eberhardt, Kirsten A; Tagbor, Harry; Bass, Judith K; N'Goran, Eliezer; Ehrhardt, Stephan
2014-05-29
There are limited data on the parenting stress (PS) levels in sub-Saharan African mothers and on the association between ante- and postnatal depression and anxiety on PS. A longitudinal birth cohort of 577 women from Ghana and Côte d'Ivoire was followed from the 3rd trimester in pregnancy to 2 years postpartum between 2010 and 2013. Depression and anxiety were assessed by the Patient Health Questionnaire depression module (PHQ-9) and the Generalized Anxiety Disorder (GAD-7) at baseline, 3 month, 12 month and 24 month postpartum. PS was measured using the Parenting Stress Index-Short Form (PSI-SF) at 3, 12 and 24 month. The mean total PS score and the subscale scores were compared among depressed vs. non-depressed and among anxious vs. non-anxious mothers at 3, 12 and 24 month postpartum. The proportions of clinical PS (PSI-SF raw score > 90) in depressed vs. non-depressed and anxious vs. non-anxious mothers were also compared. A generalized estimating equation (GEE) approach was used to estimate population-averaged associations between women's depression/anxiety and PS adjusting for age, child sex, women's anemia, education, occupation, spouse's education, and number of sick child visits. A total of 577, 531 and 264 women completed the PS assessment at 3 month, 12 month and 24 month postpartum across the two sites and the prevalences of clinical PS at each time point was 33.1%, 24.4% and 14.9% in Ghana and 30.2%, 33.5% and 22.6% in Côte d'Ivoire, respectively. At all three time points, the PS scores were significantly higher among depressed mothers vs. non-depressed mothers. In the multivariate regression analyses, antepartum and postpartum depression were consistently associated with PS after adjusting for other variables. Parenting stress is frequent and levels are high compared with previous studies from high-income countries. Antepartum and postpartum depression were both associated with PS, while antepartum and postpartum anxiety were not after adjusting for confounders. More quantitative and qualitative data are needed in sub-Saharan African populations to assess the burden of PS and understand associated mechanisms. Should our findings be replicated, it appears prudent to design and subsequently evaluate intervention strategies.
Effectiveness of early adalimumab therapy in psoriatic arthritis patients from Reuma.pt - EARLY PsA.
Santos, Helena; Eusébio, Mónica; Borges, Joana; Gonçalves, Diana; Ávila-Ribeiro, Pedro; Faria, Daniela Santos; Lopes, Carina; Rovisco, João; Águeda, Ana; Nero, Patrícia; Valente, Paula; Cravo, Ana Rita; Santos, Maria José
2017-01-01
Objective To compare outcomes in psoriatic arthritis (PsA) patients initiating adalimumab (ADA), with short- and long-term disease duration and to evaluate the potential effect of concomitant conventional synthetic disease-modifying antirheumatic drugs (csDMARD) or glucocorticoids. Methods Analyses included adult PsA patients registered in the Rheumatic Diseases Portuguese Register (Reuma.pt) between June 2008-June 2016 who received ADA for ≥3 months. Psoriatic Arthritis Response Criteria (PsARC) response, tender and swollen joint count, inflammatory parameters, patient (PtGA) and physician global assessment (PhGA), Disease Activity Score-28 joints (DAS28), and Health Assessment Questionnaire Disability Index (HAQ-DI) were compared between patients with <5 years of disease (early PsA) and those with ≥5 years of disease duration (late PsA). Time to achieving PsARC response was estimated using the Kaplan-Meier method. Results Of 135 PsA patients treated with ADA, 126 had information on disease duration (earlyPsA, n=41). PsARC response was achieved by 72.9% of the patients (88.0% early PsA vs 62.2% late PsA; P=0.022) after 3 months and by 85.4% after 24 months (100% early PsA vs 75.9% late PsA; P=0.044). Early PsA patients achieved significantly less painful joints (2.7 vs 6.7, p=0.006), lower mean C-reactive protein (0.5 mg/dL vs 1.3 mg/dL; P=0.011), and PhGA (18.3 vs 28.1; P=0.020) at 3 months. In the long term, early PsA patients also had fewer swollen joints (0.3 vs 1.7; P=0.030) and lower PhGA (6.3 vs 21.9; P<0.001), C-reactive protein (0.4 mg/dL vs 1.0 mg/dL; P=0.026), and DAS28 (2.2 vs 3.2; P=0.030). HAQ-DI decreased in both groups reaching a mean value at 24 months of 0.4 and 0.8 (P=ns) in early and late PsA, respectively. Early PsA patients obtained PsARC response more rapidly than late PsA (3.8 and 7.4 months, respectively; P=0.008). Concomitant csDMARDs showed clinical benefit (2-year PsARC response, 88.3% vs 60.0%; P=0.044). Concomitant glucocorticoids had no effect on PsARC response over 2 years of follow-up. Persistence on ADA was similar in both groups. Conclusion Early PsA patients had a greater chance of improvement after ADA therapy and better functional outcome, and achieved PsARC response more rapidly than late PsA. In this cohort, comedication with csDMARDs was beneficial over 2 years.
Strategies for Developing Family Nursing Communities of Practice Through Social Media.
Isaacson, Kris; Looman, Wendy S
2017-02-01
This discussion article presents communities of practice (CoPs) and bridging social capital as conceptual frameworks to demonstrate how social media can be leveraged for family nursing knowledge, scholarship, and practice. CoPs require a shared domain of interest, exchange of resources, and dedication to expanding group knowledge. Used strategically and with a professional presence, mainstream social media channels such as Twitter, Facebook, and YouTube can support the family nurse in developing and contributing to CoPs related to family nursing. This article presents four strategies-curate, connect, collaborate, and contribute-for establishing and growing a social media presence that fits one's professional goals and time availability. Family nurses who leverage social media using these strategies can strengthen existing CoPs and at the same time bridge networks to reach new audiences, such as family advocacy groups, policy makers, educators, practitioners, and a wide array of other extended networks.
Hosono, Hiroyuki; Homma, Masato; Ogasawara, Yoko; Makide, Kumiko; Aoki, Junken; Niwata, Hideaki; Watanabe, Machiko; Inoue, Keizo; Ohkohchi, Nobuhiro; Kohda, Yukinao
2010-01-01
The expression of phosphatidylserine-specific phospholipase A(1) (PS-PLA(1)) is most upregulated in the genes of peripheral blood cells from chronic rejection model rats bearing long-term surviving cardiac allografts. The expression profile of PS-PLA(1) in peripheral blood cells responsible for the immune response may indicate a possible biological marker for rejection episodes. In this study, PS-PLA(1) mRNA expression was examined in human THP-1-derived macrophages. The effects of several immunosuppressive agents on this expression were also examined in in vitro experiments. A real-time RT-PCR analysis revealed that PS-PLA(1) mRNA expression was found in human THP-1-derived macrophages. This expression was enhanced in the cells stimulated with lipopolysaccharide (LPS), a toll-like receptor (TLR) 4 ligand. Other TLR ligands (TLR2, 3, 5, 7, and 9) did not show a significant induction of PS-PLA(1) mRNA. The time course of the mRNA expression profiles was different between PS-PLA(1) and tumor necrosis factor-α (TNF-α), which showed a maximal expression at 12 and 1 h after LPS stimulation, respectively. Among the observed immunosuppressive agents, corticosteroids, prednisolone, 6α-methylprednisolone, dexamethasone, and beclomethasone inhibited PS-PLA(1) expression with half-maximal inhibitory concentrations less than 3.0 nM, while methotrexate, cyclosporine A, tacrolimus, 6-mercaptopurine, and mycophenoic acid showed either a weak or moderate inhibition. These results suggest that the expression of PS-PLA(1) mRNA in THP-1-derived macrophages is activated via TLR4 and it is inhibited by corticosteroids, which are used at high dosages to suppress chronic allograft rejection.
Efficient biotechnological approach for lentiviral transduction of induced pluripotent stem cells.
Zare, Mehrak; Soleimani, Masoud; Mohammadian, Mozhdeh; Akbarzadeh, Abolfazl; Havasi, Parvaneh; Zarghami, Nosratollah
2016-01-01
Induced pluripotent stem (iPS) cells are generated from differentiated adult somatic cells by reprogramming them. Unlimited self-renewal, and the potential to differentiate into any cell type, make iPS cells very promising candidates for basic and clinical research. Furthermore, iPS cells can be genetically manipulated for use as therapeutic tools. DNA can be introduced into iPS cells, using lentiviral vectors, which represent a helpful choice for efficient transduction and stable integration of transgenes. In this study, we compare two methods of lentiviral transduction of iPS cells, namely, the suspension method and the hanging drop method. In contrast to the conventional suspension method, in the hanging drop method, embryoid body (EB) formation and transduction occur concurrently. The iPS cells were cultured to form EBs, and then transduced with lentiviruses, using the conventional suspension method and the hanging drop method, to express miR-128 and green fluorescent protein (GFP). The number of transduced cells were assessed by fluorescent microscopy and flow cytometry. MTT assay and real-time PCR were performed to determine the cell viability and transgene expression, respectively. Morphologically, GFP+ cells were more detectable in the hanging drop method, and this finding was quantified by flow cytometric analysis. According to the results of the MTT assay, cell viability was considerably higher in the hanging drop method, and real-time PCR represented a higher relative expression of miR-128 in the iPS cells introduced with lentiviruses in drops. Altogether, it seems that lentiviral transduction of challenging iPS cells using the hanging drop method offers a suitable and sufficient strategy in their gene transfer, with less toxicity than the conventional suspension method.
Optimization of a LSO-Based Detector Module for Time-of-Flight PET
NASA Astrophysics Data System (ADS)
Moses, W. W.; Janecek, M.; Spurrier, M. A.; Szupryczynski, P.; Choong, W.-S.; Melcher, C. L.; Andreaco, M.
2010-06-01
We have explored methods for optimizing the timing resolution of an LSO-based detector module for a single-ring, “demonstration” time-of-flight PET camera. By maximizing the area that couples the scintillator to the PMT and minimizing the average path length that the scintillation photons travel, a single detector timing resolution of 218 ps fwhm is measured, which is considerably better than the 385 ps fwhm obtained by commercial LSO or LYSO TOF detector modules. We explored different surface treatments (saw-cut, mechanically polished, and chemically etched) and reflector materials (Teflon tape, ESR, Lumirror, Melinex, white epoxy, and white paint), and found that for our geometry, a chemically etched surface had 5% better timing resolution than the saw-cut or mechanically polished surfaces, and while there was little dependence on the timing resolution between the various reflectors, white paint and white epoxy were a few percent better. Adding co-dopants to LSO shortened the decay time from 40 ns to 30 ns but maintained the same or higher total light output. This increased the initial photoelectron rate and so improved the timing resolution by 15%. Using photomultiplier tubes with higher quantum efficiency (blue sensitivity index of 13.5 rather than 12) improved the timing resolution by an additional 5%. By choosing the optimum surface treatment (chemically etched), reflector (white paint), LSO composition (co-doped), and PMT (13.5 blue sensitivity index), the coincidence timing resolution of our detector module was reduced from 309 ps to 220 ps fwhm.
Stability improvement of an operational two-way satellite time and frequency transfer system
NASA Astrophysics Data System (ADS)
Huang, Yi-Jiun; Fujieda, Miho; Takiguchi, Hiroshi; Tseng, Wen-Hung; Tsao, Hen-Wai
2016-04-01
To keep national time accurately coherent with coordinated universal time, many national metrology institutes (NMIs) use two-way satellite time and frequency transfer (TWSTFT) to continuously measure the time difference with other NMIs over an international baseline. Some NMIs have ultra-stable clocks with stability better than 10-16. However, current operational TWSTFT can only provide frequency uncertainty of 10-15 and time uncertainty of 1 ns, which is inadequate. The uncertainty is dominated by the short-term stability and the diurnals, i.e. the measurement variation with a period of one day. The aim of this work is to improve the stability of operational TWSTFT systems without additional transmission, bandwidth or increase in signal power. A software-defined receiver (SDR) comprising a high-resolution correlator and successive interference cancellation associated with open-loop configuration as the TWSTFT receiver reduces the time deviation from 140 ps to 73 ps at averaging time of 1 h, and occasionally suppresses diurnals. To study the source of the diurnals, TWSTFT is performed using a 2 × 2 earth station (ES) array. Consequently, some ESs sensitive to temperature variation are identified, and the diurnals are significantly reduced by employing insensitive ESs. Hence, the operational TWSTFT using the proposed SDR with insensitive ESs achieves time deviation to 41 ps at 1 h, and 80 ps for averaging times from 1 h to 20 h.
Chen, Xing; Lu, Jinlong; Cui, Yifan; Zhang, Jian; Lu, Xing; Tian, Xusheng; Ci, Cheng; Liu, Bo; Wu, Hong; Tang, Tingsong; Shi, Kebin; Zhang, Zhigang
2015-12-22
Precision time synchronization between two remote sites is desired in many applications such as global positioning satellite systems, long-baseline interferometry, coherent radar detection and fundamental physics constant measurements. The recently developed frequency dissemination technologies based on optical fiber link have improved the transfer instability to the level of 10(-19)/day at remote location. Therefore it is possible to keep clock oscillation at remote locations continuously corrected, or to reproduce a "virtual" clock on the remote location. However the initial alignment and the correction of 1 pps timing signal from time to time are still required, besides the highly stabilized clock frequency transfer between distant locations. Here we demonstrate a time synchronization based on an ultra-stable frequency transfer system via 120-km commercial fiber link by transferring an optical frequency comb. Both the phase noise compensation in frequency dissemination and temporal basis alignment in time synchronization were implemented by a feed-forward digital compensation (FFDC) technique. The fractional frequency instability was measured to be 6.18 × 10(-20) at 2000 s. The timing deviation of time synchronization was measured to be 0.6 ps in 1500 s. This technique also can be applied in multi-node fiber network topology.
Chen, Xing; Lu, Jinlong; Cui, Yifan; Zhang, Jian; Lu, Xing; Tian, Xusheng; Ci, Cheng; Liu, Bo; Wu, Hong; Tang, Tingsong; Shi, Kebin; Zhang, Zhigang
2015-01-01
Precision time synchronization between two remote sites is desired in many applications such as global positioning satellite systems, long-baseline interferometry, coherent radar detection and fundamental physics constant measurements. The recently developed frequency dissemination technologies based on optical fiber link have improved the transfer instability to the level of 10−19/day at remote location. Therefore it is possible to keep clock oscillation at remote locations continuously corrected, or to reproduce a “virtual” clock on the remote location. However the initial alignment and the correction of 1 pps timing signal from time to time are still required, besides the highly stabilized clock frequency transfer between distant locations. Here we demonstrate a time synchronization based on an ultra-stable frequency transfer system via 120-km commercial fiber link by transferring an optical frequency comb. Both the phase noise compensation in frequency dissemination and temporal basis alignment in time synchronization were implemented by a feed-forward digital compensation (FFDC) technique. The fractional frequency instability was measured to be 6.18 × 10−20 at 2000 s. The timing deviation of time synchronization was measured to be 0.6 ps in 1500 s. This technique also can be applied in multi-node fiber network topology. PMID:26691731
Evaluation of a clinical TOF-PET detector design that achieves ⩽100 ps coincidence time resolution.
Cates, Joshua W; Levin, Craig S
2018-06-07
Commercially available clinical positron emission tomography (PET) detectors employ scintillation crystals that are long ([Formula: see text]20 mm length) and narrow (4-5 mm width) optically coupled on their narrow end to a photosensor. The aspect ratio of this traditional crystal rod configuration and 511 keV photon attenuation properties yield significant variances in scintillation light collection efficiency and transit time to the photodetector, due to variations in the 511 keV photon interaction depth in the crystal. These variances contribute significant to coincidence time resolution degradation. If instead, crystals are coupled to a photosensor on their long side, near-complete light collection efficiency can be achieved, and scintillation photon transit time jitter is reduced. In this work, we compare the achievable coincidence time resolution (CTR) of LGSO:Ce(0.025 mol%) crystals 3-20 mm in length when optically coupled to silicon photomultipliers (SiPMs) on either their short end or long side face. In this 'side readout' configuration, a CTR of 102 ± 2 ps FWHM was measured with [Formula: see text] mm 3 crystals coupled to rows of [Formula: see text] mm 2 SensL-J SiPMs using leading edge time pickoff and a single timing channel. This is in contrast to a CTR of 137 ± 3 ps FWHM when the same crystals were coupled to single [Formula: see text] mm 2 SiPMs on their narrow ends. We further study the statistical limit on CTR using side readout via the Cramér-Rao lower bound (CRLB), with consideration given to ongoing work to further improve photosensor technologies and exploit fast phenomena to ultimately achieve 10 ps FWHM CTR. Potential design aspects of scalable front-end signal processing readout electronics using this side readout configuration are discussed. Altogether, we demonstrate that the side readout configuration offers an immediate solution for 100 ps CTR clinical PET detectors and mitigates factors prohibiting future efforts to achieve 10 ps FWHM CTR.
Research progress at the Slow Positron Facility in the Institute of Materials Structure Science, KEK
NASA Astrophysics Data System (ADS)
Hyodo, T.; Wada, K.; Mochizuki, I.; Kimura, M.; Toge, N.; Shidara, T.; Fukaya, Y.; Maekawa, M.; Kawasuso, A.; Iida, S.; Michishio, K.; Nagashima, Y.
2017-01-01
Recent results at the Slow Positron Facility (SPF), Institute of Materials Structure Science (IMSS), KEK are reported. Studies using the total-reflection high-energy positron diffraction (TRHEPD) station revealed the structures of rutile-TiO2(110) (1×2), graphene on Cu (111) and Co (0001), and germanene on Al (111). First observations of the shape resonance in the Ps- photodetachment process were made using the positronium negative ion (Ps-) station. Experiments using the positronium time-of-flight (Ps-TOF) station showed significant enhancement of the Ps formation efficiency and the energy loss in the Ps formation-emission process. A pulse-stretching section has been implemented, which stretches the positron pulse width from 1.2 μs up to almost 20 ms.
30 CFR 938.13 - State statutory and regulatory provisions set aside.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 720 of SMCRA that were in existence at the time of mining. (5) Section 5.4(c) (52 P.S. 1406.5d(c)) of...) Section 5.2(h) (52 P.S. 1406.5b(h)) of BMSLCA is superseded to the extent it would preclude Pennsylvania...) The portion of section 5.4(a)(3) (52 P.S. 1406.5d(a)(3)) of BMSLCA that states, “in place on the...
Liu, Xiong; Zhou, Wenqi; Xu, Longqi
2017-09-01
A type of resin-anchored CuPF 6 -(S)-BINAP was synthesized and identified. The PS-CuPF 6 -(S)-BINAP resin was used to adsorb the phenylalanine enantiomers. The results showed that the adsorption capacity of PS-CuPF 6 -(S)-BINAP resin toward L-phenylalanine was higher than that of resin toward D-phenylalanine. PS-CuPF 6 -(S)-BINAP resin exhibited good enantioselectivity toward L-phenylalanine and D-phenylalanine. The influence of phenylalanine concentration, pH, adsorption time, and temperature on the enantioselectivity of the resin were investigated. The results showed that the enantioselectivity of the resin increased with increasing the phenylalanine concentration, pH, and adsorption time, while it decreased with an increase in temperature. The causes for these influences are discussed. The highest enantioselectivity (α = 2.81) was obtained when the condition of phenylalanine concentration was 0.05 mmol/mL, pH was 8, adsorption time was 12 h, and temperature 5°C. The desorption test for removing D/L-phenylalanine on PS-CuPF 6 -(S)-BINAP resin was also investigated. The desorption ratios of D-phenylalanine and L-phenylalanine at pH of 1 were 95.7% and 94.3%, respectively. This result indicated that the PS-CuPF 6 -(S)-BINAP resin could be regenerated by shaking with an acidic solution. The reusability of the PS-CuPF 6 -(S)-BINAP resin was also assessed and the resin exhibited considerable reusability. © 2017 Wiley Periodicals, Inc.
2017-09-30
AFRL-RD-PS- AFRL-RD-PS- TR-2017-0047 TR-2017-0047 TIME -DOMAIN FULL-WAVE MODELING OF NONLINEAR AIR BREAKDOWN IN HIGH-POWER MICROWAVE...Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions...TITLE AND SUBTITLE Time -Domain Full-Wave Modeling of Nonlinear Air Breakdown in High-Power Microwave Devices and Systems 5a. CONTRACT NUMBER 5b
Budzyńska, Agnieszka; Nowakowska-Duława, Ewa; Marek, Tomasz; Hartleb, Marek
2016-10-01
Most patients with malignant biliary obstruction are suited only for palliation by endoscopic drainage with plastic stents (PS) or self-expandable metal stents (SEMS). To compare the clinical outcome and costs of biliary stenting with SEMS and PS in patients with malignant biliary strictures. A total of 114 patients with malignant jaundice who underwent 376 endoscopic retrograde biliary drainage (ERBD) were studied. ERBD with the placement of PS was performed in 80 patients, with one-step SEMS in 20 patients and two-step SEMS in 14 patients. Significantly fewer ERBD interventions were performed in patients with one-step SEMS than PS or the two-step SEMS technique (2.0±1.12 vs. 3.1±1.7 or 5.7±2.1, respectively, P<0.0001). The median hospitalization duration per procedure was similar for the three groups of patients. The patients' survival time was the longest in the two-step SEMS group in comparison with the one-step SEMS and PS groups (596±270 vs. 276±141 or 208±219 days, P<0.001). Overall median time to recurrent biliary obstruction was 89.3±159 days for PS and 120.6±101 days for SEMS (P=0.01). The total cost of hospitalization with ERBD was higher for two-step SEMS than for one-step SEMS or PS (1448±312, 1152±135 and 977±156&OV0556;, P<0.0001). However, the estimated annual cost of medical care for one-step SEMS was higher than that for the two-step SEMS or PS groups (4618, 4079, and 3995&OV0556;, respectively). Biliary decompression by SEMS is associated with longer patency and reduced number of auxiliary procedures; however, repeated PS insertions still remain the most cost-effective strategy.
Influence of the external DEM on PS-InSAR processing and results on Northern Appennine slopes
NASA Astrophysics Data System (ADS)
Bayer, B.; Schmidt, D. A.; Simoni, A.
2014-12-01
We present an InSAR analysis of slow moving landslide in the Northern Appennines, Italy, and assess the dependencies on the choice of DEM. In recent years, advanced processing techniques for synthetic aperture radar interferometry (InSAR) have been applied to measure slope movements. The persistent scatterers (PS-InSAR) approach is probably the most widely used and some codes are now available in the public domain. The Stanford method of Persistent Scatterers (StamPS) has been successfully used to analyze landslide areas. One problematic step in the processing chain is the choice of an external DEM that is used to model and remove the topographic phase in a series of interferograms in order to obtain the phase contribution caused by surface deformation. The choice is not trivial, because the PS InSAR results differ significantly in terms of PS identification, positioning, and the resulting deformation signal. We use four different DEMs to process a set of 18 ASAR (Envisat) scenes over a mountain area (~350 km2) of the Northern Appennines of Italy, using StamPS. Slow-moving landslides control the evolution of the landscape and cover approximately 30% of the territory. Our focus in this presentation is to evaluate the influence of DEM resolution and accuracy by comparing PS-InSAR results. On an areal basis, we perform a statistical analysis of displacement time-series to make the comparison. We also consider two case studies to illustrate the differences in terms of PS identification, number and estimated displacements. It is clearly shown that DEM accuracy positively influences the number of PS, while line-of-sight rates differ from case to case and can result in deformation signals that are difficult to interpret. We also take advantage of statistical tools to analyze the obtained time-series datasets for the whole study area. Results indicate differences in the style and amount of displacement that can be related to the accuracy of the employed DEM.
Fixed and Data Adaptive Kernels in Cohen’s Class of Time-Frequency Distributions
1992-09-01
translated into its associated analytic signal by using the techniques discussed in Chapter Four. 1. Wigner - Ville Distribution function PS = wvd (data,winlen...step,begin,theend) % PS = wvd (data,winlen,step,begin,theend) % ’wvd.ml returns the Wigner - Ville time-frequency distribution % for the input data...12 IV. FIXED KERNEL DISTRIBUTIONS .................................................................. 19 A. WIGNER - VILLE DISTRIBUTION
Cao, Yixiang; Hughes, Thomas; Giesen, Dave; Halls, Mathew D; Goldberg, Alexander; Vadicherla, Tati Reddy; Sastry, Madhavi; Patel, Bhargav; Sherman, Woody; Weisman, Andrew L; Friesner, Richard A
2016-06-15
We have developed and implemented pseudospectral time-dependent density-functional theory (TDDFT) in the quantum mechanics package Jaguar to calculate restricted singlet and restricted triplet, as well as unrestricted excitation energies with either full linear response (FLR) or the Tamm-Dancoff approximation (TDA) with the pseudospectral length scales, pseudospectral atomic corrections, and pseudospectral multigrid strategy included in the implementations to improve the chemical accuracy and to speed the pseudospectral calculations. The calculations based on pseudospectral time-dependent density-functional theory with full linear response (PS-FLR-TDDFT) and within the Tamm-Dancoff approximation (PS-TDA-TDDFT) for G2 set molecules using B3LYP/6-31G*(*) show mean and maximum absolute deviations of 0.0015 eV and 0.0081 eV, 0.0007 eV and 0.0064 eV, 0.0004 eV and 0.0022 eV for restricted singlet excitation energies, restricted triplet excitation energies, and unrestricted excitation energies, respectively; compared with the results calculated from the conventional spectral method. The application of PS-FLR-TDDFT to OLED molecules and organic dyes, as well as the comparisons for results calculated from PS-FLR-TDDFT and best estimations demonstrate that the accuracy of both PS-FLR-TDDFT and PS-TDA-TDDFT. Calculations for a set of medium-sized molecules, including Cn fullerenes and nanotubes, using the B3LYP functional and 6-31G(**) basis set show PS-TDA-TDDFT provides 19- to 34-fold speedups for Cn fullerenes with 450-1470 basis functions, 11- to 32-fold speedups for nanotubes with 660-3180 basis functions, and 9- to 16-fold speedups for organic molecules with 540-1340 basis functions compared to fully analytic calculations without sacrificing chemical accuracy. The calculations on a set of larger molecules, including the antibiotic drug Ramoplanin, the 46-residue crambin protein, fullerenes up to C540 and nanotubes up to 14×(6,6), using the B3LYP functional and 6-31G(**) basis set with up to 8100 basis functions show that PS-FLR-TDDFT CPU time scales as N(2.05) with the number of basis functions. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Sipei; Lee, Keun Hyung; Sun, Jingru
2013-03-07
The viscoelastic properties and ionic conductivity of ion gels based on the self-assembly of a poly(styrene-b-ethylene oxide-b-styrene) (SOS) triblock copolymer (M{sub n,S} = 3 kDa, M{sub n,O} = 35 kDa) in the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide ([EMI][TFSA]) were investigated over the composition range of 10-50 wt % SOS and the temperature range of 25-160 C. The poly(styrene) (PS) end-blocks associate into micelles, whereas the poly(ethylene oxide) (PEO) midblocks are well-solvated by this ionic liquid. The ion gel with 10 wt % SOS melts at 54 C, with the longest relaxation time exhibiting a similar temperature dependence to that of themore » viscosity of bulk PS. However, the actual values of the gel relaxation time are more than 4 orders of magnitude larger than the relaxation time of bulk PS. This is attributed to the thermodynamic penalty of pulling PS end-blocks through the PEO/[EMI][TFSA] matrix. Ion gels with 20-50 wt % SOS do not melt and show two plateaus in the storage modulus over the temperature and frequency ranges measured. The one at higher frequencies is that of an entangled network of PEO strands with PS cross-links; the modulus displays a quadratic dependence on polymer weight fraction and agrees with the prediction of linear viscoelastic theory assuming half of the PEO chains are elastically effective. The frequency that separates the two plateaus, {omega}{sub c}, reflects the time scale of PS end-block pull-out. The other plateau at lower frequencies is that of a congested micelle solution with PS cores and PEO coronas, which has a power law dependence on domain spacing similar to diblock melts. The ionic conductivity of the ion gels is compared to PEO homopolymer solutions at similar polymer concentrations; the conductivity is reduced by a factor of 2.1 or less, decreases with increasing PS volume fraction, and follows predictions based on a simple obstruction model. Our collective results allow the formulation of basic design considerations for optimizing the mechanical properties, thermal stability, and ionic conductivity of these gels.« less
Stein, Marina; Carlos Rossi, Gustavo; Ricardo Almirón, Walter
2013-01-01
The female of Psorophora (Grabhamia) paulli Paterson & Shannon is redescribed, and the pupa, fourth-instar larva and male genitalia are described and illustrated for the first time. Information about the distribution, bionomics and taxonomy is also included. Adults of Ps. paulli can be separated from the other species of the genus and subgenus by its small size. The larva of Ps. paulli is similar to that of Ps. varinervis Edwards and Ps. discolor (Coquillett) but can be separated based on the development of setae 1-X and 5-VIII, the length of the anal papillae and the comb on a sclerotized area.
Wagner, M S; Ilieva, E D; Petkov, P St; Nikolova, R D; Kienberger, R; Iglev, H
2015-04-21
The solvation dynamics after optical excitation of two phosphono-substituted coumarin derivatives dissolved in various solutions are studied by fluorescence up-conversion spectroscopy and quantum chemical simulations. The Kamlet-Taft analysis of the conventional absorption and emission spectra suggests weakening of the solvent-solute H-bonds upon optical excitation, which is in contrast to the results gained by the quantum simulations and earlier studies reported for coumarin derivatives without phosphono groups. The simulations give evidence that the solvent reorganisation around the excited fluorophore leads to partial electron transfer to the first solvation shell. The process occurs on a timescale between 1 and 10 ps depending on the solvent polarity and leads to a fast decay of the time-resolved emission signal. Using the ultrafast spectral shift of the time-dependent fluorescence we estimated the relaxation time of the H-bonds in the electronically excited state to be about 0.6 ps in water, 1.5 ps in ethanol and 2.8 ps in formamide.
Kearney, Sean P; Danehy, Paul M
2015-09-01
We investigate the feasibility of gas-phase pressure measurements using fs/ps rotational CARS. Femtosecond pump and Stokes pulses impulsively prepare a rotational Raman coherence, which is probed by a high-energy 5-ps pulse introduced at a time delay from the Raman preparation. These ultrafast laser pulses are shorter than collisional-dephasing time scales, enabling a new hybrid time- and frequency-domain detection scheme for pressure. Single-laser-shot rotational CARS spectra were recorded from N2 contained in a room-temperature gas cell for pressures from 0.4 to 3 atm and probe delays ranging from 16 to 298 ps. Sensitivity of the accuracy and precision of the pressure data to probe delay was investigated. The technique exhibits superior precision and comparable accuracy to previous laser-diagnostic pressure measurements.
Gao, Chunyan; Xie, Rui; Yu, Chengyuan; Ma, Ruishuang; Dong, Weijun; Meng, Huan; Zhang, Yan; Si, Yu; Zhang, Zhuo; Novakovic, Valerie; Zhang, Yong; Kou, Junjie; Bi, Yayan; Li, Baoxin; Xie, Rujuan; Gilbert, Gary E.; Zhou, Jin; Shi, Jialan
2015-01-01
The mechanisms contributing to an increased risk of thrombosis in uremia are complex and require clarification. There is scant morphological evidence of membrane-dependent binding of factor Xa (FXa) and factor Va (FVa) on endothelial cells (EC) in vitro. Our objectives were to confirm that exposed phosphatidylserine (PS) on microparticle (MP), EC, and peripheral blood cell (PBC) has a prothrombotic role in uremic patients and to provide visible and morphological evidence of PS-dependent prothrombinase assembly in vitro. We found that uremic patients had more circulating MP (derived from PBC and EC) than controls. Additionally, patients had more exposed PS on their MPs and PBCs, especially in the hemodialysis group. In vitro, EC exposed more PS in uremic toxins or serum. Moreover, reconstitution experiments showed that at the early stages, PS exposure was partially reversible. Using confocal microscopy, we observed that PS-rich membranes of EC and MP provided binding sites for FVa and FXa. Further, exposure of PS in uremia resulted in increased generation of FXa, thrombin, and fibrin and significantly shortened coagulation time. Lactadherin, a protein that blocks PS, reduced 80% of procoagulant activity on PBC, EC, and MP. Our results suggest that PBC and EC in uremic milieu are easily injured or activated, which exposes PS and causes a release of MP, providing abundant procoagulant membrane surfaces and thus facilitating thrombus formation. Blocking PS binding sites could become a new therapeutic target for preventing thrombosis. PMID:26580207
Phosphatidylserine-targeted liposome for enhanced glioma-selective imaging.
Zhang, Liang; Habib, Amyn A; Zhao, Dawen
2016-06-21
Phosphatidylserine (PS), which is normally intracellular, becomes exposed on the outer surface of viable endothelial cells (ECs) of tumor vasculature. Utilizing a PS-targeting antibody, we have recently established a PS-targeted liposomal (PS-L) nanoplatform that has demonstrated to be highly tumor-selective. Because of the vascular lumen-exposed PS that is immediately accessible without a need to penetrate the intact blood brain barrier (BBB), we hypothesize that the systemically administered PS-L binds specifically to tumor vascular ECs, becomes subsequently internalized into the cells and then enables its cargos to be efficiently delivered to glioma parenchyma. To test this, we exploited the dual MRI/optical imaging contrast agents-loaded PS-L and injected it intravenously into mice bearing intracranial U87 glioma. At 24 h, both in vivo optical imaging and MRI depicted enhanced tumor contrast, distinct from the surrounding normal brain. Intriguingly, longitudinal MRI revealed temporal and spatial intratumoral distribution of the PS-L by following MRI contrast changes, which appeared punctate in tumor periphery at an earlier time point (4 h), but became clustering and disseminated throughout the tumor at 24 h post injection. Importantly, glioma-targeting specificity of the PS-L was antigen specific, since a control probe of irrelevant specificity showed minimal accumulation in the glioma. Together, these results indicate that the PS-L nanoplatform enables the enhanced, glioma-targeted delivery of imaging contrast agents by crossing the tumor BBB efficiently, which may also serve as a useful nanoplatform for anti-glioma drugs.
NASA Astrophysics Data System (ADS)
Cheng, Jing; Lawson, Richard A.; Yeh, Wei-Ming; Jarnagin, Nathan D.; Peters, Andrew; Tolbert, Laren M.; Henderson, Clifford L.
2012-03-01
Directed self-assembly (DSA) of block copolymers is a promising technology for extending the patterning capability of current lithographic exposure tools. For example, production of sub-40 nm pitch features using 193nm exposure technologies is conceivably possible using DSA methods without relying on time consuming, challenging, and expensive multiple patterning schemes. Significant recent work has focused on demonstration of the ability to produce large areas of regular grating structures with low numbers of defects using self-assembly of poly(styrene)-b-poly(methyl methacrylate) copolymers (PS-b-PMMA). While these recent results are promising and have shown the ability to print pitches approaching 20 nm using DSA, the ability to advance to even smaller pitches will be dependent upon the ability to develop new block copolymers with higher χ values and the associated alignment and block removal processes required to achieve successful DSA with these new materials. This paper reports on work focused on identifying higher χ block copolymers and their associated DSA processes for sub-20 nm pitch patterning. In this work, DSA using polystyrene-b-polyacid materials has been explored. Specifically, it is shown that poly(styrene)-b-poly(acrylic acid) copolymers (PS-b-PAA) is one promising material for achieving substantially smaller pitch patterns than those possible with PS-b-PMMA while still utilizing simple hydrocarbon polymers. In fact, it is anticipated that much of the learning that has been done with the PS-b-PMMA system, such as development of highly selective plasma etch block removal procedures, can be directly leveraged or transferred to the PS-b-PAA system. Acetone vapor annealing of PS-b-PAA (Mw=16,000 g/mol with 50:50 mole ratio of PS:PAA) and its self-assembly into a lamellar morphology is demonstrated to generate a pattern pitch size (L0) of 21 nm. The χ value for PS-b-PAA was estimated from fingerprint pattern pitch data to be approximately 0.18 which is roughly 4.5 times greater than the χ for PS-b-PMMA (χPS-b-PMMA ~ 0.04).
The health information system security threat lifecycle: an informatics theory.
Fernando, Juanita I; Dawson, Linda L
2009-12-01
This manuscript describes the health information system security threat lifecycle (HISSTL) theory. The theory is grounded in case study data analyzing clinicians' health information system (HIS) privacy and security (P&S) experiences in the practice context. The 'questerview' technique was applied to this study of 26 clinicians situated in 3 large Australian (across Victoria) teaching hospitals. Questerviews rely on data collection that apply standardized questions and questionnaires during recorded interviews. Analysis (using Nvivo) involved the iterative scrutiny of interview transcripts to identify emergent themes. Issues including poor training, ambiguous legal frameworks containing punitive threats, productivity challenges, usability errors and the limitations of the natural hospital environment emerged from empirical data about the clinicians' HIS P&S practices. The natural hospital environment is defined by the permanence of electronic HISs (e-HISs), shared workspaces, outdated HIT infrastructure, constant interruption, a P&S regulatory environment that is not conducive to optimal training outcomes and budgetary constraints. The evidence also indicated the obtrusiveness, timeliness, and reliability of P&S implementations for clinical work affected participant attitudes to, and use of, e-HISs. The HISSTL emerged from the analysis of study evidence. The theory embodies elements such as the fiscal, regulatory and natural hospital environments which impede P&S implementations in practice settings. These elements conflict with improved patient care outcomes. Efforts by clinicians to avoid conflict and emphasize patient care above P&S tended to manifest as security breaches. These breaches entrench factors beyond clinician control and perpetuate those within clinician control. Security breaches of health information can progress through the HISSTL. Some preliminary suggestions for addressing these issues are proposed. Legislative frameworks that are not related to direct patient care were excluded from this study. Other limitations included an exclusive focus on patient care tasks post-admission and pre-discharge from public hospital wards. Finally, the number of cases was limited by the number of participants who volunteered to participate in the study. It is reasonable to assume these participants were more interested in the P&S of patient care work than their counterparts, though the study was not intended to provide quantitative or statistical data. Nonetheless, additional case studies would strengthen the HISSTL theory if confirmatory, practice-based evidence were found.
Transient infrared spectroscopy: a new approach to investigate valence tautomerism.
Touceda, Patricia Tourón; Patricia, Tourón Touceda; Vázquez, Sandra Mosquera; Sandra, Mosquera Vázquez; Lima, Manuela; Manuela, Lima; Lapini, Andrea; Andrea, Lapini; Foggi, Paolo; Paolo, Foggi; Dei, Andrea; Andrea, Dei; Righini, Roberto; Roberto, Righini
2012-01-14
In this work we present, to our knowledge for the first time, the results of a transient infrared spectroscopic study of the photoinduced valence tautomerism process in cobalt-dioxolene complexes with sub-picosecond time resolution. The molecular systems investigated were [Co(tpa)(diox)]PF(6) (1) and [Co(Me(3)tpa)(diox)]PF(6) (2), where diox = 3,5-di-tert-butyl-1,2-dioxolene; tpa = tris(2-pyridylmethyl)amine and Me(3)tpa its 6-methylated analogue. Complex (1) is present in solution as ls-Co(III)(catecholate) (1-CAT), while (2) as hs-Co(II)(semiquinonate) (2-SQ). DFT calculation of the harmonic frequencies for (1) and (2) allowed us to identify the vibrational markers of catecholate and semiquinonate redox isomers. Irradiation with 405 and 810 nm pulses (~35 fs) of (1-CAT) induces the formation of an intermediate excited species from which the ground state population is recovered with a time constant of 1.5 ± 0.3 ns. Comparing the 1 ns transient infrared spectrum with the experimental difference spectrum FTIR(2-SQ)-FTIR(1-CAT) and with the calculated difference spectrum IR(c)(1-SQ)-IR(c)(1-CAT) we are able to unequivocally identify the long lived species as the semiquinonate redox isomer of (1). On the other hand, no evidence of photoconversion is observed upon irradiation of (2) with 405 nm. Temporal evolution of transient spectra was analyzed with the combined approach consisting of singular values decomposition and global fitting (global analysis). After 405 and 810 nm excitation of (1-CAT), the semiquinonate excited species is formed on an ultrafast time scale (<200 fs) and cools down within the first 50 ps. Excitation of (2-SQ) with 405 nm wavelength produces a short lived excited state in which the semiquinonate nature of dioxolene is preserved and the ground state recovery is completed within 30 ps.
He, Xiao-Mei; Zhu, Gang-Tian; Yin, Jia; Zhao, Qin; Yuan, Bi-Feng; Feng, Yu-Qi
2014-07-18
In the current study, polystyrene/oxidized carbon nanotubes (PS/OCNTs) film was prepared and applied as both an adsorbent of thin film microextraction (TFME) and matrix for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) for the first time. The uniform size of PS/OCNTs film with OCNTs evenly and firmly immobilized in PS was obtained by electrospinning. And a novel TFME device was developed using the prepared PS/OCNTs film to enrich benzo[a]pyrene (BaP) from water, and also BaP and 1-hydroxypyrene (1-OHP) from urine sample. Then the extracted analytes on the PS/OCNTs film were directly applied to MALDI-MS analysis with PS/OCNTs film as the MALDI matrix. Our results show that PS/OCNTs film is a good TFME adsorbent toward the analytes and an excellent matrix for the sensitive determination of BaP and 1-OHP using MALDI-TOF-MS. The employment of PS/OCNTs as the matrix for MALDI can effectively avoid the large variation of signal intensity normally resulting from heterogeneous distribution of the adsorbed analyte on matrix layer, which therefore significantly improve spot-to-spot reproducibility. The introduction of PS in the film can prevent OCNTs from flying out of MALDI plate to damage the equipment. In addition, PS/OCNTs film also largely extended the duration of ion signal of target analyte compared to OCNTs matrix. The developed method was further successfully used to quantitatively determine BaP in environmental water and 1-OHP in urine samples. The results show that BaP and 1-OHP could be easily detected at concentrations of 50pgmL(-1) and 500pgmL(-1), respectively, indicating the high detection sensitivity of this method. For BaP analysis, the linear range was 0.1-20ngmL(-1) with a correlation coefficient of 0.9970 and the recoveries were in the range of 81.3 to 123.4% with the RSD≤8.5% (n=3); for urinary 1-OHP analysis, the linear range was 0.5-20ngmL(-1) with a correlation coefficient of 0.9937 and the recoveries were in the range of 79.2 to 103.4% with the RSD≤7.6% (n=3). Taken together, the developed method provides a simple, rapid, cost-effective and high-throughput approach for the analysis of BaP in environmental water and endogenous 1-OHP in urine samples. Copyright © 2014 Elsevier B.V. All rights reserved.
Cutsforth, G A; Koppaka, V; Krishnaswamy, S; Wu, J R; Mann, K G; Lentz, B R
1996-01-01
The mechanism of binding of blood coagulation cofactor factor Va to acidic-lipid-containing membranes has been addressed. Binding isotherms were generated at room temperature using the change in fluorescence anisotropy of pyrene-labeled bovine factor Va to detect binding to sonicated membrane vesicles containing either bovine brain phosphatidylserine (PS) or 1,2-dioleoyl-3-sn-phosphatidylglycerol (DOPG) in combination with 1-palmitoyl-2-oleoyl-3-sn-phosphatidylcholine (POPC). The composition of the membranes was varied from 0 to 40 mol% for PS/POPC and from 0 to 65 mol % for DOPG/POPC membranes. Fitting the data to a classical Langmuir adsorption model yielded estimates of the dissociation constant (Kd) and the stoichiometry of binding. The values of Kd defined in this way displayed a maximum at low acidic lipid content but were nearly constant at intermediate to high fractions of acidic lipid. Fitting the binding isotherms to a two-process binding model (nonspecific adsorption in addition to binding of acidic lipids to sites on the protein) suggested a significant acidic-lipid-independent binding affinity in addition to occupancy of three protein sites that bind PS in preference to DOPG. Both analyses indicated that interaction of factor Va with an acidic-lipid-containing membrane is much more complex than those of factor Xa or prothrombin. Furthermore, a change in the conformation of bound pyrene-labeled factor Va with surface concentration of acidic lipid was implied by variation of both the saturating fluorescence anisotropy and the binding parameters with the acidic lipid content of the membrane. Finally, the results cannot support the contention that binding occurs through nonspecific adsorption to a patch or domain of acidic lipids in the membrane. Factor Va is suggested to associate with membranes by a complex process that includes both acidic-lipid-specific and acidic-lipid-independent sites and a protein structure change induced by occupancy of acidic-lipid-specific sites on the factor Va molecule. Images FIGURE 5 PMID:8744332
Bidirectional automatic release of reserve for low voltage network made with low capacity PLCs
NASA Astrophysics Data System (ADS)
Popa, I.; Popa, G. N.; Diniş, C. M.; Deaconu, S. I.
2018-01-01
The article presents the design of a bidirectional automatic release of reserve made on two types low capacity programmable logic controllers: PS-3 from Klöckner-Moeller and Zelio from Schneider. It analyses the electronic timing circuits that can be used for making the bidirectional automatic release of reserve: time-on delay circuit and time-off delay circuit (two types). In the paper are present the sequences code for timing performed on the PS-3 PLC, the logical functions for the bidirectional automatic release of reserve, the classical control electrical diagram (with contacts, relays, and time relays), the electronic control diagram (with logical gates and timing circuits), the code (in IL language) made for the PS-3 PLC, and the code (in FBD language) made for Zelio PLC. A comparative analysis will be carried out on the use of the two types of PLC and will be present the advantages of using PLCs.
Asano, Keigo; Ishida, Miho; Ishida, Motohiko
2017-03-01
To examine the effects of inclusion levels of pelleted silvergrass (PS) in the diet on digestibility, ruminal fermentation and nutrient status of breeding Japanese Black cows, four cows were allotted to a 4 × 4 Latin square design experiment. Treatments were control fed a diet consisting of 89.4% Sudangrass hay and 10.6% soybean meal on a dry matter (DM) basis, and PS18, PS27 and PS45 fed the diet replaced with 18%, 27% and 45% of control with PS, respectively. The total digestible nutrients (TDN) content of PS was 45.6% on a DM basis. The TDN intakes were significantly decreased by increasing PS level in the diet (P < 0.05), but were higher than the TDN requirement of maintenance cows in all treatments. The total chewing time was decreased significantly by increasing PS level in the diets (P < 0.05). However, the pH and concentration of volatile fatty acid in the ruminal fluid and serum metabolite concentrations were not significantly different among the treatments. The results suggested that including PS up to 45% in the diet did not have adverse effects on the ruminal fermentation and nutrient status in breeding Japanese Black cows at the maintenance stage. © 2016 Japanese Society of Animal Science.
Transport properties of the two-dimensional electron gas in AlxGa1-xN/GaN heterostructures
NASA Astrophysics Data System (ADS)
Han, Xiuxun; Honda, Yoshio; Narita, Tetsuo; Yamaguchi, Masahito; Sawaki, Nobuhiko
2007-01-01
Magnetotransport measurements were performed on a series of AlxGa1-xN/GaN heterostructures with different Al compositions (x = 0.15, 0.20 and 0.30) at 4.2 K. Adopting a fast Fourier transform method, we analysed the Shubnikov-de Hass oscillations due to the two-dimensional electron gas to derive the quantum scattering time (τq). It was found that the quantum scattering time in the ground subband decreases with increasing Al composition: 0.194 ps (x = 0.15), 0.174 ps (x = 0.20) and 0.123 ps (x = 0.30), respectively. To discern the predominant scattering process, the scattering time limited by interface roughness, the residual impurity and the alloy disorder were investigated numerically by including inter-subband scattering. We found that enhanced interface roughness scattering dominates both the transport and quantum scattering time in the ground subband.
NASA Astrophysics Data System (ADS)
Szplet, R.; Kalisz, J.; Jachna, Z.
2009-02-01
We present a time digitizer having 45 ps resolution, integrated in a field programmable gate array (FPGA) device. The time interval measurement is based on the two-stage interpolation method. A dual-edge two-phase interpolator is driven by the on-chip synthesized 250 MHz clock with precise phase adjustment. An improved dual-edge double synchronizer was developed to control the main counter. The nonlinearity of the digitizer's transfer characteristic is identified and utilized by the dedicated hardware code processor for the on-the-fly correction of the output data. Application of presented ideas has resulted in the measurement uncertainty of the digitizer below 70 ps RMS over the time interval ranging from 0 to 1 s. The use of the two-stage interpolation and a fast FIFO memory has allowed us to obtain the maximum measurement rate of five million measurements per second.
NASA Astrophysics Data System (ADS)
Hoek, M.; Cardinali, M.; Corell, O.; Dickescheid, M.; Ferretti B., M. I.; Lauth, W.; Schlimme, B. S.; Sfienti, C.; Thiel, M.
2017-12-01
A prototype detector, called FLASH (Fast Light Acquiring Start Hodoscope), was built to provide precise Time-of-Flight (TOF) measurements and reference timestamps for detector setups at external beam lines. Radiator bars, made of synthetic fused silica, were coupled to a fast MCP-PMT with 64 channels and read out with custom electronics using Time-over-Threshold (TOT) for signal characterization. The TRB3 system, a high-precision TDC implemented in an FPGA, was used as data acquisition system. The performance of a system consisting of two FLASH units was investigated at a dedicated test experiment at the Mainz Microtron (MAMI) accelerator using its 855 MeV electron beam. The TOT measurement enabled time walk corrections and an overall TOF resolution of ∼70 ps could be achieved which translates into a resolution of ∼50 ps per FLASH unit. The intrinsic resolution of the frontend electronics including the TDC was measured to be less than 25 ps.
Keszthelyi, D; Knol, D; Troost, F J; van Avesaat, M; Foltz, M; Masclee, A A M
2013-06-01
Plant sterol (PS)-enriched food products are known to reduce plasma cholesterol concentrations by inhibiting the absorption of dietary and biliary cholesterol. The physiological responses induced by food intake in the gastrointestinal tract are all important factors in determining the overall effect of PS. The aim of this study was therefore to assess the effect of timing of consumption of a plant sterol (PS)-containing yoghurt drink relative to meal ingestion on gastric emptying (GE) of the drink and gallbladder (GB) volume. This is a randomized, single-centre, controlled study with crossover design in 12 healthy male volunteers. Three treatments were tested; a 100 mL PS yoghurt drink (labeled with 1,000 mg acetaminophen) was consumed 45 min prior to, during and 45 min after a solid meal. Plasma samples were taken, and gallbladder volumes were measured at baseline and at regular intervals during a 6-h study period. When consumed before the consumption of a meal, the yoghurt drink exhibited fast GE. The solid meal intake caused a significant contraction of the gallbladder. Consumption of the PS drink before the meal had no significant effect on GB volume as compared to baseline and compared to during and after meal consumption. The PS-containing drink, which empties fast from the stomach, does not sufficiently trigger gallbladder contraction without co-ingestion of a solid meal and in consequence does not induce the necessary physiological changes needed to allow PS to exhibit their effect on inhibiting cholesterol absorption.
Kinetics of porous silicon growth studied using flicker-noise spectroscopy
NASA Astrophysics Data System (ADS)
Parkhutik, V.; Timashev, S.
2000-05-01
The mechanism of the formation of porous silicon (PS) is studied using flicker noise spectroscopy (FNS), a new phenomenological method that allows us to analyze the evolution of nonlinear dissipative systems in time, space and energy. FNS is based on the ideas of deterministic chaos in complex macro- and microsystems. It allows us to obtain a set of empiric parameters ("passport data") which characterize the state of the system and change of its properties due to the evolution in time, energy, and space. The FNS method permits us to get new information about the kinetics of growth of PS and its properties. Thus, the PS formation mechanisms at n-Si and p-Si, as revealed using the FNS, seem to be essentially different. p-Si shows larger "memory" in the sequence of individual events involved in PS growth than n-Si (if anodized without light illumination). The influence of the anodization variables (such as current density, HF concentration, duration of the process, light illumination) onto the "passport data" of PS is envisaged. The increase of the current density increases memory of the PS formation process, when each forthcoming individual event is more correlated with the preceding one. Increasing current density triggers electrochemical reactions that are negligible at lower currents. Light illumination also produces a positive effect onto the "memory" of the system. The FNS makes it possible to distinguish different stages of the continuous anodization process which are apparently associated with increasing pore length. Thus, FNS is a very sensitive tool in analysis of the PS formation and other complex electrochemical systems as well.
Orientation and Order in Shear-Aligned Thin Films of Cylinder-Forming Block Copolymers
NASA Astrophysics Data System (ADS)
Register, Richard
The regularity and tunability of the nanoscale structure in block copolymers makes their thin films attractive as nanolithographic templates; however, in the absence of a guiding field, self-assembly produces a polygrain structure with no particular orientation and a high density of defects. As demonstrated in the elegant studies of Ed Kramer and coworkers, graphoepitaxy can provide local control over domain orientation, with a dramatic reduction in defect density. Alternatively, cylindrical microdomains lying in the plane of the film can be aligned over macroscopic areas by applying shear stress at the film surface. In non-sheared films of polystyrene-poly(n-hexylmethacrylate) diblocks, PS-PHMA, the PS cylinder axis orientation relative to the surface switches from parallel to perpendicular as a function of film thickness; this oscillation is damped out as the fraction of the PS block increases, away from the sphere-cylinder phase boundary. In aligned films, thicknesses which possess the highest coverage of parallel cylinders prior to shear show the highest quality of alignment post-shear, as measured by the in-plane orientational order parameter. In well-aligned samples of optimal thickness, the quality of alignment is limited by isolated dislocations, whose density is highest at high PS contents, and by undulations in the cylinders' trajectories, whose impact is most severe at low PS contents; consequently, polymers whose compositions lie in the middle of the cylinder-forming region exhibit the highest quality of alignment. The dynamics of the alignment process are also investigated, and fit to a melting-recrystallization model which allows for the determination of two key alignment parameters: the critical stress needed for alignment, and an orientation rate constant. For films containing a monolayer of cylindrical domains, as PS weight fraction or overall molecular weight increases, the critical stress increases moderately, while the rate of alignment drastically decreases. As the number of layers of cylinders in the film increases, the critical stress decreases modestly, while the rate remains unchanged; substrate wetting condition has no measurable influence on alignment response. [Work of Raleigh Davis, in collaboration with Paul Chaikin.
In vivo photodynamic inactivation of Psuedomonas aeruginosa in burned skin in rats
NASA Astrophysics Data System (ADS)
Hirao, Akihiro; Sato, Shunichi; Terakawa, Mitsuhiro; Saitoh, Daizoh; Shinomiya, Nariyoshi; Ashida, Hiroshi; Obara, Minoru
2010-02-01
Control of infection in wounds is critically important to avoid transition to sepsis; however, recent rise of drug-resistant bacteria makes it difficult. Thus, antimicrobial photodynamic therapy (APDT) has recently received considerable attention. In this study, we examined methylene blue (MB)-mediated photodynamic inactivation of Psuedomonas aeruginosa in rat burned skin. Two days after infection, the wound surface was contacted with a MB solution at different concentrations, and thereafter the wound was irradiated with cw 665-nm light at a constant power density of 250 mW/cm2 for different time durations. We obtained a two orders of magnitude decrease in the number of bacteria by PDT with a 2-h contact of 0.5-mM MB solution and a illumination of 480 J/cm2, demonstrating the efficacy of PDT against infection with Ps. aeruginosa in burns.
Nishida, Jun; Tamimi, Amr; Fei, Honghan; ...
2014-12-15
One key property of metal-organic frameworks (MOFs) are their structural elasticity. IHere we show that 2D IR spectroscopy with pulse-shaping techniques can probe the ultrafast structural fluctuations of MOFs. 2D IR data, obtained from a vibrational probe attached to the linkers of UiO-66 MOF in low concentration, revealed that the structural fluctuations have time constants of 7 and 670 ps with no solvent. Filling the MOF pores with dimethylformamide (DMF) slows the structural fluctuations by reducing the ability of the MOF to undergo deformations, and the dynamics of the DMF molecules are also greatly restricted. Finally, methodology advances were requiredmore » to remove the severe light scattering caused by the macroscopic-sized MOF particles, eliminate interfering oscillatory components from the 2D IR data, and address Förster vibrational excitation transfer.« less
Piatkowski, Piotr; Cohen, Boiko; Ponseca, Carlito S; Salado, Manuel; Kazim, Samrana; Ahmad, Shahzada; Sundström, Villy; Douhal, Abderrazzak
2016-01-07
We report on studies of the formamidinium lead triiodide (FAPbI3) perovskite film using time-resolved terahertz (THz) spectroscopy (TRTS) and flash photolysis to explore charge carriers generation, migration, and recombination. The TRTS results show that upon femtosecond excitation above the absorption edge, the initial high photoconductivity (∼75 cm(2) V(-1) s(-1)) remains constant at least up to 8 ns, which corresponds to a diffusion length of 25 μm. Pumping below the absorption edge results in a mobility of 40 cm(2) V(-1) s(-1) suggesting lower mobility of charge carriers located at the bottom of the conduction band or shallow sub-bandgap states. Furthermore, analysis of the THz kinetics reveals rising components of <1 and 20 ps, reflecting dissociation of excitons having different binding energies. Flash photolysis experiments indicate that trapped charge carriers persist for milliseconds.
NASA Astrophysics Data System (ADS)
Wang, Wei; Huang, Jingyu; Murphy, Catherine; Cahill, David; University of Illinois At Urbana Champaign, Department of Materials Science; Engineering Team; Department Collaboration
2011-03-01
While heat transfer via phonons across solid-solid boundary has been a core field in condense matter physics for many years, vibrational energy transport across molecular layers has been less well elucidated. We heat rectangular-shaped gold nanocrystals (nanorods) with Ti-sapphire femtosecond pulsed laser at their longitudinal surface plasmon absorption wavelength to watch how their temperature evolves in picoseconds transient. We observed single exponential decay behavior, which suggests that the heat dissipation is only governed by a single interfacial conductance value. The ``RC'' time constant was 300ps, corresponding to a conductance value of 95MW/ m 2 K. This interfacial conductance value is also a function of ambient temperature since at temperatures as low as 80K, which are below the Debye temperature of organic layers, several phonon modes were quenched, which shut down the dominating channels that conduct heat at room temperature.
Huang, Jier; Huang, Zhuangqun; Yang, Ye; Zhu, Haiming; Lian, Tianquan
2010-04-07
Multiexciton generation in quantum dots (QDs) may provide a new approach for improving the solar-to-electric power conversion efficiency in QD-based solar cells. However, it remains unclear how to extract these excitons before the ultrafast exciton-exciton annihilation process. In this study we investigate multiexciton dissociation dynamics in CdSe QDs adsorbed with methylene blue (MB(+)) molecules by transient absorption spectroscopy. We show that excitons in QDs dissociate by ultrafast electron transfer to MB(+) with an average time constant of approximately 2 ps. The charge separated state is long-lived (>1 ns), and the charge recombination rate increases with the number of dissociated excitons. Up to three MB(+) molecules per QD can be reduced by exciton dissociation. Our result demonstrates that ultrafast interfacial charge separation can effectively compete with exciton-exciton annihilation, providing a viable approach for utilizing short-lived multiple excitons in QDs.
Exciton diffusion coefficient measurement in ZnO nanowires under electron beam irradiation.
Donatini, Fabrice; Pernot, Julien
2018-03-09
In semiconductor nanowires (NWs) the exciton diffusion coefficient can be determined using a scanning electron microscope fitted with a cathodoluminescence system. High spatial and temporal resolution cathodoluminescence experiments are needed to measure independently the exciton diffusion length and lifetime in single NWs. However, both diffusion length and lifetime can be affected by the electron beam bombardment during observation and measurement. Thus, in this work the exciton lifetime in a ZnO NW is measured versus the electron beam dose (EBD) via a time-resolved cathodoluminescence experiment with a temporal resolution of 50 ps. The behavior of the measured exciton lifetime is consistent with our recent work on the EBD dependence of the exciton diffusion length in similar NWs investigated under comparable SEM conditions. Combining the two results, the exciton diffusion coefficient in ZnO is determined at room temperature and is found constant over the full span of EBD.
Nastasi, Francesco; Puntoriero, Fausto; Natali, Mirco; Mba, Miriam; Maggini, Michele; Mussini, Patrizia; Panigati, Monica; Campagna, Sebastiano
2015-05-01
A novel molecular dyad, 1, made of a dinuclear {[Re2(μ-X)2(CO)6(μ-pyridazine)]} component covalently-linked to a fullerene unit by a carbocyclic molecular bridge has been prepared and its redox, spectroscopic, and photophysical properties - including pump-probe transient absorption spectroscopy in the visible and near-infrared region - have been investigated, along with those of its model species. Photoinduced, intercomponent electron transfer occurs in 1 from the thermally-equilibrated, triplet metal/ligand-to-ligand charge-transfer ((3)MLLCT) state of the dinuclear rhenium(I) subunit to the fullerene acceptor, with a time constant of about 100 ps. The so-formed triplet charge-separated state recombines in a few nanoseconds by a spin-selective process yielding, rather than the ground state, the locally-excited, triplet fullerene state, which finally decays to the ground state by intersystem crossing in about 290 ns.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sawada, Y.; Kawai, R.; McManaway, M.
(3H)Cyclofoxy (CF: 17-cyclopropylmethyl-3,14-dihydroxy-4,5-alpha-epoxy-6-beta-fluoromorp hinan) is an opioid antagonist with affinity to both mu and kappa subtypes that was synthesized for quantitative evaluation of opioid receptor binding in vivo. Two sets of experiments in rats were analyzed. The first involved determining the metabolite-corrected blood concentration and tissue distribution of CF in brain 1 to 60 min after i.v. bolus injection. The second involved measuring brain washout for 15 to 120 s following intracarotid artery injection of CF. A physiologically based model and a classical compartmental pharmacokinetic model were compared. The models included different assumptions for transport across the blood-brain barrier (BBB);more » estimates of nonspecific tissue binding and specific binding to a single opiate receptor site were found to be essentially the same with both models. The nonspecific binding equilibrium constant varied modestly in different brain structures (Keq = 3-9), whereas the binding potential (BP) varied over a much broader range (BP = 0.6-32). In vivo estimates of the opioid receptor dissociation constant were similar for different brain structures (KD = 2.1-5.2 nM), whereas the apparent receptor density (Bmax) varied between 1 (cerebellum) and 78 (thalamus) pmol/g of brain. The receptor dissociation rate constants in cerebrum (k4 = 0.08-0.16 min-1; koff = 0.16-0.23 min-1) and brain vascular permeability (PS = 1.3-3.4 ml/min/g) are sufficiently high to achieve equilibrium conditions within a reasonable period of time. Graphical analysis of the data is inappropriate due to the high tissue-loss rate constant for CF in brain. From these findings, CF should be a very useful opioid receptor ligand for the estimation of the receptor binding parameters in human subjects using (18F)CF and positron emission tomography.« less
First Principles Calculations of Transition Metal Binary Alloys: Phase Stability and Surface Effects
NASA Astrophysics Data System (ADS)
Aspera, Susan Meñez; Arevalo, Ryan Lacdao; Shimizu, Koji; Kishida, Ryo; Kojima, Kazuki; Linh, Nguyen Hoang; Nakanishi, Hiroshi; Kasai, Hideaki
2017-06-01
The phase stability and surface effects on binary transition metal nano-alloy systems were investigated using density functional theory-based first principles calculations. In this study, we evaluated the cohesive and alloying energies of six binary metal alloy bulk systems that sample each type of alloys according to miscibility, i.e., Au-Ag and Pd-Ag for the solid solution-type alloys (SS), Pd-Ir and Pd-Rh for the high-temperature solid solution-type alloys (HTSS), and Au-Ir and Ag-Rh for the phase-separation (PS)-type alloys. Our results and analysis show consistency with experimental observations on the type of materials in the bulk phase. Varying the lattice parameter was also shown to have an effect on the stability of the bulk mixed alloy system. It was observed, particularly for the PS- and HTSS-type materials, that mixing gains energy from the increasing lattice constant. We furthermore evaluated the surface effects, which is an important factor to consider for nanoparticle-sized alloys, through analysis of the (001) and (111) surface facets. We found that the stability of the surface depends on the optimization of atomic positions and segregation of atoms near/at the surface, particularly for the HTSS and the PS types of metal alloys. Furthermore, the increase in energy for mixing atoms at the interface of the atomic boundaries of PS- and HTSS-type materials is low enough to overcome by the gain in energy through entropy. These, therefore, are the main proponents for the possibility of mixing alloys near the surface.
Vitrification of polymer solutions as a function of solvent quality, analyzed via vapor pressures
NASA Astrophysics Data System (ADS)
Bercea, Maria; Wolf, Bernhard A.
2006-05-01
Vapor pressures (headspace sampling in combination with gas chromatography) and glass transition temperatures [differential scanning calorimetry (DSC)] have been measured for solutions of polystyrene (PS) in either toluene (TL) (10-70°C) or cyclohexane (CH) (32-60°C) from moderately concentrated solutions up to the pure polymer. As long as the mixtures are liquid, the vapor pressure of TL (good solvent) is considerably lower than that of CH (theta solvent) under other identical conditions. These differences vanish upon the vitrification of the solutions. For TL the isothermal liquid-solid transition induced by an increase of polymer concentration takes place within a finite composition interval at constant vapor pressure; with CH this phenomenon is either absent or too insignificant to be detected. For PS solutions in TL the DSC traces look as usual, whereas these curves may become bimodal for solutions in CH. The implications of the vitrification of the polymer solutions for the determination of Flory-Huggins interaction parameters from vapor pressure data are discussed. A comparison of the results for TL/PS with recently published data on the same system demonstrates that the experimental method employed for the determination of vapor pressures plays an important role at high polymer concentrations and low temperatures.
Hazer, Baki; Kalaycı, Özlem A
2017-05-01
Autoxidation of poly unsaturated fatty acids makes negative effect on foods. In this work, this negative effect was turned to a great advantage using autoxidized soybean oil as a macroperoxide nanocomposite initiator containing silver nano particles in free radical polymerization of vinyl monomers. The synthesis of soybean oil macro peroxide was carried out by exposing soybean oil to air oxygen with the presence of silver nanoparticles (Ag NPs) at room temperature. Autoxidized soybean oil macroperoxide containing silver nanoparticles (Agsbox) successfully initiated the free radical polymerization of styrene in order to obtain Polystyrene (PS)-g-soybean oil graft copolymer containing Ag NPs. Both autoxidized soybean oil and PS-g-sbox with Ag NPs showed a surface plasmon resonance and high fluorescence emission. Overall rate constant (K) of styrene polymerization initiated by autoxidized soybean oil macroperoxide with Ag NPs was found to be K=1.95.10 -4 Lmol -1 s -1 at 95°C. Antibacterial efficiency was observed in the PS-g-soybean oil graft copolymer film samples containing Ag NPs. 1 H NMR and GPC techniques were used for the structural analysis of the fractionated polymeric oils. Copyright © 2016 Elsevier B.V. All rights reserved.
Combinatorial screening of organic electronic materials: thin film stability
NASA Astrophysics Data System (ADS)
Chattopadhyay, Santanu; Carson Meredith, J.
2005-01-01
Dewetting of thin polymeric semiconducting-insulating (and conducting-insulating) bilayers is a serious fundamental problem facing the fabrication of organic electronic devices such as transistors, light-emitting diodes and supercapacitors. This paper describes a high-throughput characterization method that utilizes orthogonal thickness-gradient libraries of the bilayer components poly(3-octylthiophene) (semiconductor) and poly(styrene) (insulator). The technique allows simultaneous observation of hundreds of combinations of thicknesses and has permitted rapid discovery of a previously-unknown VDW instability transition. We observe that the onset of VDW instability in the PS-P3OT bilayer is a complex function of P3OT thickness that cannot be predicted by Hamaker constant models for free energy. At low P3OT thickness, the semiconductor acts to stabilize the PS insulator. But above a P3OT thickness of 175 nm, this behaviour is switched and P3OT destabilizes the PS. These thickness-dependent effects are correlated very well with dramatic transitions in P3OT optical spectra and the P3OT-AFM tip interaction forces. This unusual behaviour places critical limitations on practical device thicknesses and interfacial combinations, and points to the need for a thin-film stability theory that accounts for thickness-dependent molecular-electronic effects.
Body temperature and respiratory dynamics in un-shaded beef cattle
NASA Astrophysics Data System (ADS)
Gaughan, J. B.; Mader, T. L.
2014-09-01
In this study body temperature (BT, °C) and panting score (PS, 0-4.5; where 0 = no panting/no stress and 4.5 = catastrophic stress) data were obtained from 30 Angus steers housed outside over 120 days Steers were implanted with a BT transmitter on day -31, BT was recorded at 30-min intervals to a data logger and downloaded each day to a database. The cattle were housed in ten outdoor un-shaded pens with an earthen floor, eight of which had a pen floor area of 144 m2 (three transmitter steers plus five non-transmitter steers; 18 m2/steer) and two had an area of 168 m2 (three transmitter steers and six non-transmitter steers; 18.7 m2/steer). Only data from the transmitter steers were used in this study. The PS of the steers was obtained daily (± 15 min) at 0600 hours (AM), 1200 hours (MD) and 1600 hours (PM). At the same times climate variables (ambient temperature, black globe temperature, solar radiation, relative humidity, wind speed and rainfall) were obtained from an on-site weather station. PS observations were made from outside the pens so as not to influence cattle responses. The two closest BT values to the time when PS was obtained were downloaded retrospectively from a logger and averaged. A total of 8,352 observations were used to generate second order polynomial response curves: (AM) y = 39.08 + 0.009 x + 0.137 x 2 ( R 2 = 0.94; P < 0.001) (MD) y = 39.09 + 0.914 x - 0.080 x 2 ( R 2 = 0.89; P < 0.001) and (PM) y = 39.52 + 0.790 x - 0.068 x 2 ( R 2 = 0.83; P < 0.001) where y = BT (°C) and x PS. These data suggest that PS is a good indicator of body temperature. The BT at MD corresponded to slightly lower PS compared with PM, e.g., for PS 1; BT at MD = 39.1 ± 0.05 °C whereas BT at PM = 39.5 ± 0.05 °C. However during AM, BT was lower ( P < 0.05) at PS 1, 2 and 2.5 compared with MD and PM. For example, when PS was 2.5 the BT at AM was 40.2 ± 0.04 °C, at MD it was 40.9 ± 0.04 °C and at PM BT was 41.1 ± 0.04 °C. When PS was 0 the BT at AM and MD were similar. The AM response curve suggests animals attempt to increase heat dissipation during the cooler AM period relative to MD and PM. Morning observation of cattle (before feeding) are crucial for effective heat load management especially on days when high heat load is expected. The MD and PM observations provide a good indication of the impact of high environmental heat load on cattle. Differences in PS between AM and PM observations suggest that more research is needed to determine the effect of night time conditions on BT, PS and overall respiratory dynamics of cattle during periods of hot weather.
NASA Astrophysics Data System (ADS)
Alakent, Burak; Camurdan, Mehmet C.; Doruker, Pemra
2005-10-01
Time series models, which are constructed from the projections of the molecular-dynamics (MD) runs on principal components (modes), are used to mimic the dynamics of two proteins: tendamistat and immunity protein of colicin E7 (ImmE7). Four independent MD runs of tendamistat and three independent runs of ImmE7 protein in vacuum are used to investigate the energy landscapes of these proteins. It is found that mean-square displacements of residues along the modes in different time scales can be mimicked by time series models, which are utilized in dividing protein dynamics into different regimes with respect to the dominating motion type. The first two regimes constitute the dominance of intraminimum motions during the first 5ps and the random walk motion in a hierarchically higher-level energy minimum, which comprise the initial time period of the trajectories up to 20-40ps for tendamistat and 80-120ps for ImmE7. These are also the time ranges within which the linear nonstationary time series are completely satisfactory in explaining protein dynamics. Encountering energy barriers enclosing higher-level energy minima constrains the random walk motion of the proteins, and pseudorelaxation processes at different levels of minima are detected in tendamistat, depending on the sampling window size. Correlation (relaxation) times of 30-40ps and 150-200ps are detected for two energy envelopes of successive levels for tendamistat, which gives an overall idea about the hierarchical structure of the energy landscape. However, it should be stressed that correlation times of the modes are highly variable with respect to conformational subspaces and sampling window sizes, indicating the absence of an actual relaxation. The random-walk step sizes and the time length of the second regime are used to illuminate an important difference between the dynamics of the two proteins, which cannot be clarified by the investigation of relaxation times alone: ImmE7 has lower-energy barriers enclosing the higher-level energy minimum, preventing the protein to relax and letting it move in a random-walk fashion for a longer period of time.
Effects of concentration on the microwave dielectric spectra of aqueous urea solutions
NASA Astrophysics Data System (ADS)
Lyashchenko, A. K.; Dunyashev, V. S.; Zasetsky, A. Yu.
2017-05-01
Several models of relaxation for the dielectric spectra of aqueous urea solutions in the microwave region are compared. The spectra are shown to contain two main Debye components arising from the rotational motions of urea and water molecules. Two essentially different concentration regions in urea solutions are identified. The first is characterized by a small increase in the mobility of water molecules (τ1 = 7.8 ps) and the existence of hydrated urea molecules (τ2 = 19 ps). Due to the aggregation of urea molecules, the relaxation times for the latter process grow considerably in highly concentrated solutions. At the same time, faster molecular motions (τ3 = 6 ps) are observed for water molecules.
Cueva, Katie; Revels, Laura; Cueva, Melany; Lanier, Anne P; Dignan, Mark; Viswanath, K; Fung, Teresa T; Geller, Alan C
2017-04-12
To address a desire for timely, medically accurate cancer education in rural Alaska, ten culturally relevant online learning modules were developed with, and for, Alaska's Community Health Aides/Practitioners (CHA/Ps). The project was guided by the framework of Community-Based Participatory Action Research, honored Indigenous Ways of Knowing, and was informed by Empowerment Theory. A total of 428 end-of-module evaluation surveys were completed by 89 unique Alaska CHA/Ps between January and December 2016. CHA/Ps shared that as a result of completing the modules, they were empowered to share cancer information with their patients, families, friends, and communities, as well as engage in cancer risk reduction behaviors such as eating healthier, getting cancer screenings, exercising more, and quitting tobacco. CHA/Ps also reported the modules were informative and respectful of their diverse cultures. These results from end-of-module evaluation surveys suggest that the collaboratively developed, culturally relevant, online cancer education modules have empowered CHA/Ps to reduce cancer risk and disseminate cancer information. "brought me to tears couple of times, and I think it will help in destroying the silence that surrounds cancer".
NASA Astrophysics Data System (ADS)
Zhang, Ziming; Zheng, Lu; Khurram, Muhammad; Yan, Qingfeng
2017-10-01
Few-layer black phosphorus, also known as phosphorene, is a new two-dimensional material which is of enormous interest for applications, mainly in electronics and optoelectronics. Herein, we for the first time employ phosphorene for directing the self-assembly of asymmetric polystyrene-block-polymethylmethacrylate (PS-b-PMMA) block copolymer (BCP) thin film to form the perpendicular orientation of sub-10 nm PS nanopore arrays in a hexagonal fashion normal to the interface. We experimentally demonstrate that none of the PS and PMMA blocks exhibit preferential affinity to the phosphorene-modified surface. Furthermore, the perpendicularly-oriented PS nanostructures almost stay unchanged with the variation of number of layers of few-layer phosphorene nanoflakes between 15-30 layers. Differing from the neutral polymer brushes which are widely used for chemical modification of the silicon substrate, phosphorene provides a novel physical way to control the interfacial interactions between the asymmetric PS-b-PMMA BCP thin film and the silicon substrate. Based on our results, it is possible to build a new scheme for producing sub-10 nm PS nanopore arrays oriented perpendicularly to the few-layer phosphorene nanoflakes. Furthermore, the nanostructural microdomains could serve as a promising nanolithography template for surface patterning of phosphorene nanoflakes.
Characterization of spontaneous excitatory synaptic currents in salamander retinal ganglion cells.
Taylor, W R; Chen, E; Copenhagen, D R
1995-01-01
1. Spontaneous excitatory postsynaptic currents (sEPSCs) were recorded under voltage-clamp conditions. Consistent with activation of non-NMDA-type glutamate receptors, the sEPSCs reversed at potentials above 0 mV, were blocked by 1 microM CNQX and prolonged by 2 mM aniracetam. 2. The peak conductance of the averaged sEPSCs (n = 70-400) was 130 +/- 60 pS (mean +/- S.D.; 17 cells, ranging from 70 to 290 pS). Amplitude distributions were skewed towards larger amplitudes. 3. The decay of individual and mean sEPSCs was exponential with a mean time constant (tau d) of 3.75 +/- 0.84 ms (n = 13), which was voltage independent. The 10-90% rise time of the sEPSCs was 1.30 +/- 0.44 ms (n = 13). There was no correlation between sEPSC rise time and tau d suggesting that dendritic filtering alone did not shape the time course of sEPSCs. 4. Light-evoked EPSCs in these retinal ganglion cells are mediated by concomitant activation of NMDA and non-NMDA receptors; however, no NMDA component was discerned in the sEPSCs, even when recording at -96 mV in Mg(2+)-free solutions. The decay time course was not altered by 20 microM AP7, an NMDA antagonist, nor was an NMDA component unmasked by adding glycine or D-serine. These results suggest that NMDA and non-NMDA receptors are not coactivated by a single vesicle of transmitter during spontaneous release, and thus are probably not colocalized in the postsynaptic membrane at the sites of spontaneous release. 5. The sEPSCs were an order of magnitude faster than the non-NMDA receptor-mediated EPSCs evoked by light stimuli, and it is proposed that the EPSC time course is determined largely by the extended time course of release of synaptic vesicles from bipolar cells. The quantal content of a light-evoked non-NMDA receptor-mediated EPSC in an on-off cell is about 200 quanta. Images Figure 6 PMID:7562636
2014-01-01
Background There are limited data on the parenting stress (PS) levels in sub-Saharan African mothers and on the association between ante- and postnatal depression and anxiety on PS. Methods A longitudinal birth cohort of 577 women from Ghana and Côte d’Ivoire was followed from the 3rd trimester in pregnancy to 2 years postpartum between 2010 and 2013. Depression and anxiety were assessed by the Patient Health Questionnaire depression module (PHQ-9) and the Generalized Anxiety Disorder (GAD-7) at baseline, 3 month, 12 month and 24 month postpartum. PS was measured using the Parenting Stress Index-Short Form (PSI-SF) at 3, 12 and 24 month. The mean total PS score and the subscale scores were compared among depressed vs. non-depressed and among anxious vs. non-anxious mothers at 3, 12 and 24 month postpartum. The proportions of clinical PS (PSI-SF raw score > 90) in depressed vs. non-depressed and anxious vs. non-anxious mothers were also compared. A generalized estimating equation (GEE) approach was used to estimate population-averaged associations between women’s depression/anxiety and PS adjusting for age, child sex, women’s anemia, education, occupation, spouse’s education, and number of sick child visits. Results A total of 577, 531 and 264 women completed the PS assessment at 3 month, 12 month and 24 month postpartum across the two sites and the prevalences of clinical PS at each time point was 33.1%, 24.4% and 14.9% in Ghana and 30.2%, 33.5% and 22.6% in Côte d’Ivoire, respectively. At all three time points, the PS scores were significantly higher among depressed mothers vs. non-depressed mothers. In the multivariate regression analyses, antepartum and postpartum depression were consistently associated with PS after adjusting for other variables. Conclusions Parenting stress is frequent and levels are high compared with previous studies from high-income countries. Antepartum and postpartum depression were both associated with PS, while antepartum and postpartum anxiety were not after adjusting for confounders. More quantitative and qualitative data are needed in sub-Saharan African populations to assess the burden of PS and understand associated mechanisms. Should our findings be replicated, it appears prudent to design and subsequently evaluate intervention strategies. PMID:24884986
Direct measurements of the lifetime of medium-heavy hypernuclei
NASA Astrophysics Data System (ADS)
Qiu, X.; Tang, L.; Chen, C.; Margaryan, A.; Wood, S. A.; Achenbach, P.; Ahmidouch, A.; Albayrak, I.; Androic, D.; Asaturyan, A.; Asaturyan, R.; Ates, O.; Badui, R.; Baturin, P.; Boeglin, W.; Bono, J.; Brash, E.; Carter, P.; Chen, X.; Chiba, A.; Christy, M. E.; Dalton, M. M.; Danagoulian, S.; De Leo, R.; Doi, D.; Elaasar, M.; Ent, R.; Fenker, H.; Fujii, Y.; Furic, M.; Gabrielyan, M.; Gan, L.; Garibaldi, F.; Gaskell, D.; Gasparian, A.; Gogami, T.; Hashimoto, O.; Horn, T.; Hu, B.; Hungerford, Ed V.; Jones, M.; Kanda, H.; Kaneta, M.; Kawama, D.; Khanal, H.; Kohl, M.; Liyanage, A.; Luo, W.; Maeda, K.; Markowitz, P.; Marikyan, G.; Maruta, T.; Matsumura, A.; Maxwell, V.; Mkrtchyan, A.; Mkrtchyan, H.; Nagao, S.; Nakamura, S. N.; Narayan, A.; Neville, C.; Niculescu, G.; Niculescu, M. I.; Nunez, A.; Nuruzzaman; Okayasu, Y.; Petkovic, T.; Pochodzalla, J.; Reinhold, J.; Rodriguez, V. M.; Samanta, C.; Sawatzky, B.; Seva, T.; Shichijo, A.; Tadevosyan, V.; Taniya, N.; Tsukada, K.; Veilleux, M.; Vulcan, W.; Wesselmann, F. R.; Yamamoto, T.; Ye, Z.; Yokota, K.; Yuan, L.; Zhamkochyan, S.; Zhu, L.; HKS (JLab E02-017) Collaboration
2018-05-01
The lifetime of a Λ particle embedded in a nucleus (hypernucleus) decreases from that of free Λ decay mainly due to the opening of the ΛN → NN weak decay channel. However, it is generally believed that the lifetime of a hypernucleus attains a constant value (saturation) for medium to heavy hypernuclear masses, yet this hypothesis has been difficult to verify. This paper presents a direct measurement of the lifetime of medium-heavy hypernuclei that were hyper-fragments produced by fission or break-up from heavy hypernuclei initially produced with a 2.34 GeV photon-beam incident on thin Fe, Cu, Ag, and Bi target foils. For each event, fragments were detected in coincident pairs by a low-pressure multi-wire proportional chamber system. The lifetime was extracted from decay time spectrum formed by the difference of the time zeros between the pairs. The measured lifetime from each target is actually a statistical average over a range of mass with mean about 1/2 of the target mass and appears to be a constant of about 200 ps. Although this result cannot exclude unexpected shorter or longer lifetimes for some specific hypernuclei or hypernuclear states, it shows that a systematic decrease in lifetime as hypernuclear mass increases is not a general feature for hypernuclei with mean mass up to A ≈ 130. On the other hand, the success of this experiment and its technique shows that the time delayed fissions observed and used by all the lifetime measurements done so far on heavy hypernuclei could likely have originated from hyper-fragments lighter than the assumed masses.
Wang, Bin-Bin; Gu, Ya-Wei; Chen, Jian-Meng; Yao, Qian; Li, Hui-Juan; Peng, Dang-Cong; He, Feng
2017-06-01
Different from monomeric substrate, polymeric substrate (PS) needs to undergo slow hydrolysis process before becoming available for consumption by bacteria. Hydrolysis products will be available for the heterotrophs in low concentration, which will reduce competitive advantages of heterotrophs to nitrifiers in mixed culture. Therefore, some links between PS and nitrification process can be expected. In this study, three lab-scale sequencing batch reactors with different PS/total substrate (TS) ratio (0, 0.5 or 1) in influent were performed in parallel to investigate the influence of PS on nitrification process in activated sludge system. The results showed that with the increase of PS/TS ratio, apparent sludge yields decreased, while NO 3 - -N concentration in effluent increased. The change of PS/TS ratio in influent also altered the cycle behaviors of activated sludge. With the increase of PS/TS ratio from 0 to 0.5 and 1, the ammonium and nitrite utilization rate increased ∼2 and 3 times, respectively. The q-PCR results showed that the abundance of nitrifiers in activated sludge for PS/TS ratio of 0.5 and 1 were 0.7-0.8 and 1.4-1.5 orders of magnitude higher than that for PS/TS ratio of 0. However, the abundance of total bacteria decreased about 0.5 orders of magnitude from the former two to the latter. The FISH observation confirmed that the nitrifiers' microcolony became bigger and more robust with the increase of PS/TS ratio. This paper paves a path to understand the role of PS/TS in affecting the nitrification process in biological wastewater treatment systems. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Inoue, Ken-ichi; Singh, Prashant C.; Nihonyanagi, Satoshi
2015-06-07
Two-dimensional heterodyne-detected vibrational sum-frequency generation (2D HD-VSFG) spectroscopy is applied to study the ultrafast vibrational dynamics of water at positively charged aqueous interfaces, and 2D HD-VSFG spectra of cetyltrimethylammonium bromide (CTAB)/water interfaces in the whole hydrogen-bonded OH stretch region (3000 cm{sup −1} ≤ ω{sub pump} ≤ 3600 cm{sup −1}) are measured. 2D HD-VSFG spectrum of the CTAB/isotopically diluted water (HOD-D{sub 2}O) interface exhibits a diagonally elongated bleaching lobe immediately after excitation, which becomes round with a time constant of ∼0.3 ps due to spectral diffusion. In contrast, 2D HD-VSFG spectrum of the CTAB/H{sub 2}O interface at 0.0 ps clearly showsmore » two diagonal peaks and their cross peaks in the bleaching region, corresponding to the double peaks observed at 3230 cm{sup −1} and 3420 cm{sup −1} in the steady-state HD-VSFG spectrum. Horizontal slices of the 2D spectrum show that the relative intensity of the two peaks of the bleaching at the CTAB/H{sub 2}O interface gradually change with the change of the pump frequency. We simulate the pump-frequency dependence of the bleaching feature using a model that takes account of the Fermi resonance and inhomogeneity of the OH stretch vibration, and the simulated spectra reproduce the essential features of the 2D HD-VSFG spectra of the CTAB/H{sub 2}O interface. The present study demonstrates that heterodyne detection of the time-resolved VSFG is critically important for studying the ultrafast dynamics of water interfaces and for unveiling the underlying mechanism.« less
NASA Astrophysics Data System (ADS)
Kayal, Surajit; Roy, Khokan; Umapathy, Siva
2018-01-01
Ultrafast torsional dynamics plays an important role in the photoinduced excited state dynamics. Tetraphenylethylene (TPE), a model system for the molecular motor, executes interesting torsional dynamics upon photoexcitation. The photoreaction of TPE involves ultrafast internal conversion via a nearly planar intermediate state (relaxed state) that further leads to a twisted zwitterionic state. Here, we report the photoinduced structural dynamics of excited TPE during the course of photoisomerization in the condensed phase by ultrafast Raman loss (URLS) and femtosecond transient absorption (TA) spectroscopy. TA measurements on the S1 state reveal step-wise population relaxation from the Franck-Condon (FC) state → relaxed state → twisted state, while the URLS study provides insights on the vibrational dynamics during the course of the reaction. The TA spectral dynamics and vibrational Raman amplitudes within 1 ps reveal vibrational wave packet propagating from the FC state to the relaxed state. Fourier transformation of this oscillation leads to a ˜130 cm-1 low-frequency phenyl torsional mode. Two vibrational marker bands, Cet=Cet stretching (˜1512 cm-1) and Cph=Cph stretching (˜1584 cm-1) modes, appear immediately after photoexcitation in the URLS spectra. The initial red-shift of the Cph=Cph stretching mode with a time constant of ˜400 fs (in butyronitrile) is assigned to the rate of planarization of excited TPE. In addition, the Cet=Cet stretching mode shows initial blue-shift within 1 ps followed by frequency red-shift, suggesting that on the sub-picosecond time scale, structural relaxation is dominated by phenyl torsion rather than the central Cet=Cet twist. Furthermore, the effect of the solvent on the structural dynamics is discussed in the context of ultrafast nuclear dynamics and solute-solvent coupling.
Kayal, Surajit; Roy, Khokan; Umapathy, Siva
2018-01-14
Ultrafast torsional dynamics plays an important role in the photoinduced excited state dynamics. Tetraphenylethylene (TPE), a model system for the molecular motor, executes interesting torsional dynamics upon photoexcitation. The photoreaction of TPE involves ultrafast internal conversion via a nearly planar intermediate state (relaxed state) that further leads to a twisted zwitterionic state. Here, we report the photoinduced structural dynamics of excited TPE during the course of photoisomerization in the condensed phase by ultrafast Raman loss (URLS) and femtosecond transient absorption (TA) spectroscopy. TA measurements on the S 1 state reveal step-wise population relaxation from the Franck-Condon (FC) state → relaxed state → twisted state, while the URLS study provides insights on the vibrational dynamics during the course of the reaction. The TA spectral dynamics and vibrational Raman amplitudes within 1 ps reveal vibrational wave packet propagating from the FC state to the relaxed state. Fourier transformation of this oscillation leads to a ∼130 cm -1 low-frequency phenyl torsional mode. Two vibrational marker bands, C et =C et stretching (∼1512 cm -1 ) and C ph =C ph stretching (∼1584 cm -1 ) modes, appear immediately after photoexcitation in the URLS spectra. The initial red-shift of the C ph =C ph stretching mode with a time constant of ∼400 fs (in butyronitrile) is assigned to the rate of planarization of excited TPE. In addition, the C et =C et stretching mode shows initial blue-shift within 1 ps followed by frequency red-shift, suggesting that on the sub-picosecond time scale, structural relaxation is dominated by phenyl torsion rather than the central C et =C et twist. Furthermore, the effect of the solvent on the structural dynamics is discussed in the context of ultrafast nuclear dynamics and solute-solvent coupling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dallinger, R.F.; Farquharson, S.; Woodruff, W.H.
Resonance Raman and electronic absorption spectra are reported for the S/sub 0/ and T/sub 1/ states of the carotenoids ..beta..-carotene, zeaxanthin, echinenone, canthaxanthin, dihydroxylycopene, astaxanthin, decapreno(C/sub 50/)-..beta..-carotene, ..beta..-apo-8'-carotenal, and ethyl ..beta..-apo-8'-carotenoate. The results reveal qualitatively similar ground-state spectra and similar frequency shifts in all observed resonance Raman modes between S/sub 0/ and T/sub 1/, regardless of carotenoid structure. Examinations of the relationship of the putative C--C and C==C frequencies in S/sub 0/ and T/sub 1/ reveals anomalous shifts to lower frequency in the ''single-bond'' mode upon electronic excitation. These shifts may be due to molecular distortions in the excited statemore » which force changes in molecular motions comprising the observed modes. However, another possibility requiring no distortion is that the interaction (off-diagonal) force constants connecting the C--C and C==C modes change sign upon electronic excitation. This latter phenomenon may provide a unitary explanation for the ''anomalous'' frequency shifts in the C--C and C==C modes, both in the T/sub 1/ states of carotenoids and in the S/sub 1/ states of simpler polyenes, without postulating large, unpredicted structural changes upon excitation or general errors in existing vibrational or theoretical analyses. Resonance Raman and absorbance studies with 35-ps time resolution suggest that S/sub 1/ lifetime (of the /sup 1/B/sub u/ and/or the /sup 1/A/sub g/* states) of ..beta..-carotene in benzene is less than 1 ps.« less
NASA Astrophysics Data System (ADS)
Miller, Joseph Daniel
Hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering (fs/ps CARS) is employed for quantitative gas-phase temperature measurements in combustion processes and heated flows. In this approach, ultrafast 100-fs laser pulses are used to induce vibrational and rotational transitions in N2 and O2, while a third spectrally narrowed picosecond pulse is used to probe the molecular response. Temporal suppression of the nonresonant contribution and elimination of collisional effects are achieved by delay of the probe pulse, while sufficient spectral resolution is maintained for frequency-domain detection and thermometry. A theoretical framework is developed to model experimental spectra by phenomenologically describing the temporal evolution of the vibrational and rotational wavepackets as a function of temperature and pressure. Interference-free, single-shot vibrational fs/ps CARS thermometry is demonstrated at 1-kHz from 1400-2400 K in a H2-air flame, with accuracy better than 3%. A time-asymmetric exponential pulse shape is introduced to optimize nonresonant suppression with a 103 reduction at a probe delay of 0.31 ps. Low-temperature single-shot thermometry (300-700 K) with better than 1.5% accuracy is demonstrated using a fully degenerate rotational fs/ps CARS scheme, and the influence of collision energy transfer on thermometry error is quantified at atmospheric pressure. Interference-free thermometry, without nonresonant contributions and collision-induced error, is demonstrated for the first time using rotational fs/ps CARS at room temperature and pressures from 1-15 atm. Finally, the temporal and spectral resolution of fs/ps CARS is exploited for transition-resolved time-domain measurements of N2 and O2 self-broadened
Note: Neutron bang time diagnostic system on Shenguang-III prototype
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, Qi; Chen, Jiabin; Liu, Zhongjie
A neutron bang time (NBT) diagnostic system has been implemented on Shenguang-III prototype. The bang time diagnostic system is based on a sensitive fusion neutron detector, which consists of a plastic scintillator and a micro-channel plate photomultiplier tube (PMT). An optical fiber bundle is used to couple the scintillator and the PMT. The bang time system is able to measure bang time above a neutron yield of 10{sup 7}. Bang times and start time of laser were related by probing x-ray pulses produced by 200 ps laser irradiating golden targets. Timing accuracy of the NBT is better than 60 ps.
Development of a Modulated-Microstructure Heat Treatable Steel
1975-07-10
IV. Heat Treatment V. Results and Discussion V. 1 Properties of the Soft Layer Alloy, PS4 V. 2 Properties of High Speed Steel (REX 71) V. 3...the High Strength System. Fig. 6 Hardness of Tempered PS4 Alloy. Cast alloy hardened by austenitizing, at 2175^ quenched, and reheating three times...at 1000oF and then cooling in liquid nitrogen to form martensite. Fig. 7A Metallographic Section Through Impact Fracture of PS4 Tempered at 300oF
NASA Astrophysics Data System (ADS)
Morioka, T.; Kawanishi, S.; Saruwatari, M.
1994-05-01
Error-free, tunable optical frequency conversion of a transform-limited 4.0 ps optical pulse signalis demonstrated at 6.3 Gbit/s using four-wave mixing in a polarization-maintaining optical fibre. The process generates 4.0-4.6 ps pulses over a 25nm range with time-bandwidth products of 0.31-0.43 and conversion power penalties of less than 1.5 dB.
Milanovsky, Georgy E; Petrova, Anastasia A; Cherepanov, Dmitry A; Semenov, Alexey Yu
2017-09-01
The reduction kinetics of the photo-oxidized primary electron donor P 700 in photosystem I (PS I) complexes from cyanobacteria Synechocystis sp. PCC 6803 were analyzed within the kinetic model, which considers electron transfer (ET) reactions between P 700 , secondary quinone acceptor A 1 , iron-sulfur clusters and external electron donor and acceptors - methylviologen (MV), 2,3-dichloro-naphthoquinone (Cl 2 NQ) and oxygen. PS I complexes containing various quinones in the A 1 -binding site (phylloquinone PhQ, plastoquinone-9 PQ and Cl 2 NQ) as well as F X -core complexes, depleted of terminal iron-sulfur F A /F B clusters, were studied. The acceleration of charge recombination in F X -core complexes by PhQ/PQ substitution indicates that backward ET from the iron-sulfur clusters involves quinone in the A 1 -binding site. The kinetic parameters of ET reactions were obtained by global fitting of the P 700 + reduction with the kinetic model. The free energy gap ΔG 0 between F X and F A /F B clusters was estimated as -130 meV. The driving force of ET from A 1 to F X was determined as -50 and -220 meV for PhQ in the A and B cofactor branches, respectively. For PQ in A 1A -site, this reaction was found to be endergonic (ΔG 0 = +75 meV). The interaction of PS I with external acceptors was quantitatively described in terms of Michaelis-Menten kinetics. The second-order rate constants of ET from F A /F B , F X and Cl 2 NQ in the A 1 -site of PS I to external acceptors were estimated. The side production of superoxide radical in the A 1 -site by oxygen reduction via the Mehler reaction might comprise ≥0.3% of the total electron flow in PS I.
Multiphoton autofluorescence lifetime imaging of induced pluripotent stem cells
NASA Astrophysics Data System (ADS)
Uchugonova, Aisada
2017-06-01
The multiphoton fluorescence lifetime imaging tomograph MPTflex with its flexible 360-deg scan head, articulated arm, and tunable femtosecond laser source was employed to study induced pluripotent stem cell (iPS) cultures. Autofluorescence (AF) lifetime imaging was performed with 250-ps temporal resolution and submicron spatial resolution using time-correlated single-photon counting. The two-photon excited AF was based on the metabolic coenzymes NAD(P)H and flavin adenine dinucleotide/flavoproteins. iPS cells generated from mouse embryonic fibroblasts (MEFs) and cocultured with growth-arrested MEFs as feeder cells have been studied. Significant differences on AF lifetime signatures were identified between iPS and feeder cells as well as between their differentiating counterparts.
Tadiotto, Elisa; Maines, Evelina; Degani, Daniela; Balter, Rita; Bordugo, Andrea; Cesaro, Simone
2018-04-01
Pearson syndrome (PS) is a rare mitochondrial disorder that usually presents with transfusion-dependent macrocytic anemia, exocrine pancreatic dysfunction, and lactic acidosis. Typical bone marrow (BM) features are vacuolization in hematopoietic progenitors, hypocellularity, and ringed sideroblasts. At the neonatal age, PS may have a variable clinical onset. Moreover, there is little information about BM features at this age and the timing of their presentation. We report a neonatal case of PS that presented with refractory anemia and atypical BM features. We reviewed the BM findings in neonatal-onset PS cases to stress the importance and limitations of BM evaluation at this age. © 2017 Wiley Periodicals, Inc.
Lei, Zhongli; Bi, Shuxian
2007-01-30
Well-defined amphiphilic block copolymers poly(styrene-b-acrylic acid) (PS-b-PAA) with controlled block length were synthesized using atom transfer radical polymerization (ATRP). Pectinase enzyme was immobilized on the well-defined amphiphilic block copolymers PS-b-PAA. The carboxyl groups on the amphiphilic PS-b-PAA diblock copolymers present a very simple, mild, and time-saving process for enzyme immobilization. Various characteristics of immobilized pectinase such as the pH and temperature stability, thermal stability, and storage stability were valuated. Among them the pH optimum and temperature optimum of free and immobilized pectinase were found to be pH 6.0 and 65 degrees C.
PS3 CELL Development for Scientific Computation and Research
NASA Astrophysics Data System (ADS)
Christiansen, M.; Sevre, E.; Wang, S. M.; Yuen, D. A.; Liu, S.; Lyness, M. D.; Broten, M.
2007-12-01
The Cell processor is one of the most powerful processors on the market, and researchers in the earth sciences may find its parallel architecture to be very useful. A cell processor, with 7 cores, can easily be obtained for experimentation by purchasing a PlayStation 3 (PS3) and installing linux and the IBM SDK. Each core of the PS3 is capable of 25 GFLOPS giving a potential limit of 150 GFLOPS when using all 6 SPUs (synergistic processing units) by using vectorized algorithms. We have used the Cell's computational power to create a program which takes simulated tsunami datasets, parses them, and returns a colorized height field image using ray casting techniques. As expected, the time required to create an image is inversely proportional to the number of SPUs used. We believe that this trend will continue when multiple PS3s are chained using OpenMP functionality and are in the process of researching this. By using the Cell to visualize tsunami data, we have found that its greatest feature is its power. This fact entwines well with the needs of the scientific community where the limiting factor is time. Any algorithm, such as the heat equation, that can be subdivided into multiple parts can take advantage of the PS3 Cell's ability to split the computations across the 6 SPUs reducing required run time by one sixth. Further vectorization of the code can allow for 4 simultanious floating point operations by using the SIMD (single instruction multiple data) capabilities of the SPU increasing efficiency 24 times.
High-definition micropatterning method for hard, stiff and brittle polymers.
Zhao, Yiping; Truckenmuller, Roman; Levers, Marloes; Hua, Wei-Shu; de Boer, Jan; Papenburg, Bernke
2017-02-01
Polystyrene (PS) is the most commonly used material in cell culture devices, such as Petri dishes, culture flasks and well plates. Micropatterning of cell culture substrates can significantly affect cell-material interactions leading to an increasing interest in the fabrication of topographically micro-structured PS surfaces. However, the high stiffness combined with brittleness of PS (elastic modulus 3-3.5GPa) makes high-quality patterning into PS difficult when standard hard molds, e.g. silicon and nickel, are used as templates. A new and robust scheme for easy processing of large-area high-density micro-patterning into PS film is established using nanoimprinting lithography and standard hot embossing techniques. Including an extra step through an intermediate PDMS mold alone does not result in faithful replication of the large area, high-density micropattern into PS. Here, we developed an approach using an additional intermediate mold out of OrmoStamp, which allows for high-quality and large-area micro-patterning into PS. OrmoStamp was originally developed for UV nanoimprint applications; this work demonstrates for the first time that OrmoStamp is a highly adequate material for micro-patterning of PS through hot embossing. Our proposed processing method achieves high-quality replication of micropatterns in PS, incorporating features with high aspect ratio (4:1, height:width), high density, and over a large pattern area. The proposed scheme can easily be adapted for other large-area and high-density micropatterns of PS, as well as other stiff and brittle polymers. Copyright © 2016 Elsevier B.V. All rights reserved.
2007-04-01
for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data...Control Organization NRL Navy Research Laboratory nrtPS Non-real- time Polling Services OFDM Orthogonal frequency division multiplex OFDMA...Routeur IDentifier RTG RTO Task Group RTO Research & Technology Organization rtPS Real- time Polling Services SC Single-carrier modulation
Ross, Joseph S; Bates, Jonathan; Parzynski, Craig S; Akar, Joseph G; Curtis, Jeptha P; Desai, Nihar R; Freeman, James V; Gamble, Ginger M; Kuntz, Richard; Li, Shu-Xia; Marinac-Dabic, Danica; Masoudi, Frederick A; Normand, Sharon-Lise T; Ranasinghe, Isuru; Shaw, Richard E; Krumholz, Harlan M
2017-01-01
Background Machine learning methods may complement traditional analytic methods for medical device surveillance. Methods and results Using data from the National Cardiovascular Data Registry for implantable cardioverter–defibrillators (ICDs) linked to Medicare administrative claims for longitudinal follow-up, we applied three statistical approaches to safety-signal detection for commonly used dual-chamber ICDs that used two propensity score (PS) models: one specified by subject-matter experts (PS-SME), and the other one by machine learning-based selection (PS-ML). The first approach used PS-SME and cumulative incidence (time-to-event), the second approach used PS-SME and cumulative risk (Data Extraction and Longitudinal Trend Analysis [DELTA]), and the third approach used PS-ML and cumulative risk (embedded feature selection). Safety-signal surveillance was conducted for eleven dual-chamber ICD models implanted at least 2,000 times over 3 years. Between 2006 and 2010, there were 71,948 Medicare fee-for-service beneficiaries who received dual-chamber ICDs. Cumulative device-specific unadjusted 3-year event rates varied for three surveyed safety signals: death from any cause, 12.8%–20.9%; nonfatal ICD-related adverse events, 19.3%–26.3%; and death from any cause or nonfatal ICD-related adverse event, 27.1%–37.6%. Agreement among safety signals detected/not detected between the time-to-event and DELTA approaches was 90.9% (360 of 396, k=0.068), between the time-to-event and embedded feature-selection approaches was 91.7% (363 of 396, k=−0.028), and between the DELTA and embedded feature selection approaches was 88.1% (349 of 396, k=−0.042). Conclusion Three statistical approaches, including one machine learning method, identified important safety signals, but without exact agreement. Ensemble methods may be needed to detect all safety signals for further evaluation during medical device surveillance. PMID:28860874
Gas-phase lifetimes of nucleobase analogues by picosecond pumpionization and streak techniques.
Blaser, Susan; Frey, Hans-Martin; Heid, Cornelia G; Leutwyler, Samuel
2014-01-01
The picosecond (ps) timescale is relevant for the investigation of many molecular dynamical processes such as fluorescence, nonradiative relaxation, intramolecular vibrational relaxation, molecular rotation and intermolecular energy transfer, to name a few. While investigations of ultrafast (femtosecond) processes of biological molecules, e.g. nucleobases and their analogues in the gas phase are available, there are few investigations on the ps time scale. We have constructed a ps pump-ionization setup and a ps streak camera fluorescence apparatus for the determination of lifetimes of supersonic jet-cooled and isolated molecules and clusters. The ps pump-ionization setup was used to determine the lifetimes of the nucleobase analogue 2-aminopurine (2AP) and of two 2AP˙(H2O)n water cluster isomers with n=1 and 2. Their lifetimes lie between 150 ps and 3 ns and are strongly cluster-size dependent. The ps streak camera setup was used to determine accurate fluorescence lifetimes of the uracil analogue 2-pyridone (2PY), its self-dimer (2PY)2, two isomers of its trimer (2PY)3 and its tetramer (2PY)4, which lie in the 7-12 ns range.