Sample records for psenud filmi nitamise

  1. Reconciling extreme branch length differences: decoupling time and rate through the evolutionary history of filmy ferns.

    PubMed

    Schuettpelz, Eric; Pryer, Kathleen M

    2006-06-01

    The rate of molecular evolution is not constant across the Tree of Life. Characterizing rate discrepancies and evaluating the relative roles of time and rate along branches through the past are both critical to a full understanding of evolutionary history. In this study, we explore the interactions of time and rate in filmy ferns (Hymenophyllaceae), a lineage with extreme branch length differences between the two major clades. We test for the presence of significant rate discrepancies within and between these clades, and we separate time and rate across the filmy fern phylogeny to simultaneously yield an evolutionary time scale of filmy fern diversification and reconstructions of ancestral rates of molecular evolution. Our results indicate that the branch length disparity observed between the major lineages of filmy ferns is indeed due to a significant difference in molecular evolutionary rate. The estimation of divergence times reveals that the timing of crown group diversification was not concurrent for the two lineages, and the reconstruction of ancestral rates of molecular evolution points to a substantial rate deceleration in one of the clades. Further analysis suggests that this may be due to a genome-wide deceleration in the rate of nucleotide substitution.

  2. Physiological and ultrastructural characterisation of a desiccation-tolerant filmy fern, Hymenophyllum caudiculatum: Influence of translational regulation and ABA on recovery.

    PubMed

    Garcés, M; Ulloa, M; Miranda, A; Bravo, L A

    2018-03-01

    The filmy fern Hymenophyllum caudiculatum can lose 60% of its relative water content, remain dry for some time and recover 88% of photochemical efficiency after 30 min of rehydration. Little is known about the protective strategies and regulation of the cellular rehydration process in this filmy fern species. The aim of this study was to characterise the filmy fern ultrastructure during a desiccation-rehydration cycle, and measure the physiological effects of transcription/translation inhibitors and ABA during desiccation recovery. Confocal and transmission electron microscopy were used to compare changes in structure during fast or slow desiccation. Transcription (actinomycin D) and translation (cycloheximide) inhibitors and ABA were used to compare photochemical efficiency during desiccation recovery. Cell structure was conserved during slow desiccation and rehydration, constitutive properties of the cell wall, allowing invagination and folding of the membranes and an important change in chloroplast size. The use of a translational inhibitor impeded recovery of photochemical efficiency during the first 80 min of rehydration, but the transcriptional inhibitor had no effect. Exogenous ABA delayed photochemical inactivation, and endogenous ABA levels decreased during desiccation and rehydration. Frond curling and chloroplast movements are possible strategies to avoid photodamage. Constitutive membrane plasticity and rapid cellular repair can be adaptations evolved to tolerate a rapid recovery during rehydration. Further research is required to explore the importance of existing mRNAs during the first minutes of recovery, and ABA function during desiccation of H. caudiculatum. © 2017 German Society for Plant Sciences and The Royal Botanical Society of the Netherlands.

  3. Changes in photosynthetic rate and stress volatile emissions through desiccation-rehydration cycles in desiccation-tolerant epiphytic filmy ferns (Hymenophyllaceae).

    PubMed

    Niinemets, Ülo; Bravo, León A; Copolovici, Lucian

    2018-07-01

    Exposure to recurrent desiccation cycles carries a risk of accumulation of reactive oxygen species that can impair leaf physiological activity upon rehydration, but changes in filmy fern stress status through desiccation and rewatering cycles have been poorly studied. We studied foliage photosynthetic rate and volatile marker compounds characterizing cell wall modifications (methanol) and stress development (lipoxygenase [LOX] pathway volatiles and methanol) through desiccation-rewatering cycles in lower-canopy species Hymenoglossum cruentum and Hymenophyllum caudiculatum, lower- to upper-canopy species Hymenophyllum plicatum and upper-canopy species Hymenophyllum dentatum sampled from a common environment and hypothesized that lower canopy species respond more strongly to desiccation and rewatering. In all species, rates of photosynthesis and LOX volatile emission decreased with progression of desiccation, but LOX emission decreased with a slower rate than photosynthesis. Rewatering first led to an emission burst of LOX volatiles followed by methanol, indicating that the oxidative burst was elicited in the symplast and further propagated to cell walls. Changes in LOX emissions were more pronounced in the upper-canopy species that had a greater photosynthetic activity and likely a greater rate of production of photooxidants. We conclude that rewatering induces the most severe stress in filmy ferns, especially in the upper canopy species. © 2018 John Wiley & Sons Ltd.

  4. Light and desiccation responses of some Hymenophyllaceae (filmy ferns) from Trinidad, Venezuela and New Zealand: poikilohydry in a light-limited but low evaporation ecological niche

    PubMed Central

    Proctor, Michael C. F.

    2012-01-01

    Background and Aims Hymenophyllaceae (filmy ferns) are typically plants of shady, constantly moist habitats. They attain greatest species diversity and biomass in humid tropical montane forests and temperate hyperoceanic climates. This paper presents ecophysiological data bearing on their worldwide ecological niche space and its limits. Methods Chlorophyll fluorescence was used to monitor recovery in desiccation experiments, and for measurements of 95 % saturating irradiance [photosynthetic photon flux density (PPFD95 %)] of photosynthetic electron flow and other parameters, in the New Zealand Hymenophyllum sanguinolentum, and three species each of Hymenophyllum and Trichomanes from forests in Trinidad and Venezuela. Key Results Hymenophyllum sanguinolentum was comparable in desiccation tolerance and light responses with the European species. The more common species in the two tropical forests showed PPFD95 % >100 µmol m−2 s−1, and withstood moderate desiccation (–40 MPa) for several days. The four most shade-adapted species had PPFD95 % ≤51 µmol m−2 s−1, and were sensitive to even mild and brief desiccation (–22 MPa for 3 d). Conclusions Light and desiccation responses of filmy ferns can be seen as an integrated package. At low light and windspeed in humid forests, net radiation and saturation deficit are low, and diffusion resistance high. Water loss is slow and can be supported by modest conduction from the sub-stratum. With higher irradiance, selection pressure for desiccation tolerance increases progressively. With low light and high humidity, the filmy fern pattern of adaptation is probably optimal, and the vascular plant leaf with mesophyll and stomata offers no advantage in light capture, water economy or CO2 uptake. Trade-offs between light adaptation and desiccation tolerance, and between stem conduction and water absorption through the leaf surface, underlie adaptive radiation and niche differentiation of species within the family

  5. Comparative ecophysiological measurements on the light responses, water relations and desiccation tolerance of the filmy ferns Hymenophyllum wilsonii Hook. and H. tunbrigense (L.) Smith.

    PubMed

    Proctor, Michael C F

    2003-05-01

    Chlorophyll-fluorescence and infrared gas analyser measurements show saturation of photosynthetic electron flow and CO(2) uptake at generally lower irradiances in Hymenophyllum tunbrigense than in H. wilsonii, but with wide variation in both species (63-189 micromol m(-2) s(-1) PPFD in H. tunbrigense, 129-552 micro mol m(-2) s(-1) PPFD in H. wilsonii), probably related to both site and season. Non-photochemical quenching (at 400 micromol m(-2) s(-1) PPFD) ranged from 2.1 to 8.1, with no significant difference between the species. Pressure-volume curves from thermocouple-psychrometer measurements give full-turgor osmotic potentials of approx. -1.4 MPa in both species, and indicate low apoplast fractions and high cell-wall elastic moduli. Leaves of H. tunbrigense recovered within 24 h from up to 7 d desiccation at water potentials ranging from -40 MPa (74 % relative humidity, RH) to -220 MPa (20 % RH); after 15 or 30 d, desiccation recovery was slower and less complete, and leaves were severely damaged at the highest and lowest humidities. Hymenophyllum wilsonii recovered well from up to 30 d desiccation at -114 and -220 MPa, but at -40 MPa it showed signs of damage after 15 d, and was severely damaged or killed after 30 d. Results are discussed in relation to the ecological and geographical distributions of the two species, and to the adaptive strategies of filmy ferns in general.

  6. Comparative Ecophysiological Measurements on the Light Responses, Water Relations and Desiccation Tolerance of the Filmy Ferns Hymenophyllum wilsonii Hook. and H. tunbrigense (L.) Smith

    PubMed Central

    PROCTOR, MICHAEL C. F.

    2003-01-01

    Chlorophyll‐fluorescence and infrared gas analyser measurements show saturation of photosynthetic electron flow and CO2 uptake at generally lower irradiances in Hymenophyllum tunbrigense than in H. wilsonii, but with wide variation in both species (63–189 µmol m–2 s–1 PPFD in H. tunbrigense, 129–552 µmol m–2 s–1 PPFD in H. wilsonii), probably related to both site and season. Non‐photochemical quenching (at 400 µmol m–2 s–1 PPFD) ranged from 2·1 to 8·1, with no significant difference between the species. Pressure–volume curves from thermocouple‐psychrometer measurements give full‐turgor osmotic potentials of approx. –1·4 MPa in both species, and indicate low apoplast fractions and high cell‐wall elastic moduli. Leaves of H. tunbrigense recovered within 24 h from up to 7 d desiccation at water potentials ranging from –40 MPa (74 % relative humidity, RH) to –220 MPa (20 % RH); after 15 or 30 d, desiccation recovery was slower and less complete, and leaves were severely damaged at the highest and lowest humidities. Hymenophyllum wilsonii recovered well from up to 30 d desiccation at –114 and –220 MPa, but at –40 MPa it showed signs of damage after 15 d, and was severely damaged or killed after 30 d. Results are discussed in relation to the ecological and geographical distributions of the two species, and to the adaptive strategies of filmy ferns in general. PMID:12714369

  7. Ultraviolet spectra of quenched carbonaceous composite derivatives: Comparison to the '217 nanometer' interstellar absorption feature

    NASA Technical Reports Server (NTRS)

    Sakata, Akira; Wada, Setsuko; Tokunaga, Alan T.; Narisawa, Takatoshi; Nakagawa, Hidehiro; Ono, Hiroshi

    1994-01-01

    QCCs (quenched carbonaceous composite) are amorphus carbonaceous material formed from a hydrocarbon plasma. We present the UV-visible spectra of 'filmy QCC; (obtained outside of the beam ejected from the hydrocarbon plasma) and 'dark QCC' (obtained very near to the beam) for comparison to the stellar extinction curve. When filmy QCC is heated to 500-700 C (thermally altered), the wavelength of the absorption maximum increases form 204 nm to 220-222 nm. The dark QCC has an absorption maximum at 217-222 nm. In addition, the thermally altered filmy QCC has a slope change at about 500 nm which resmbles that in the interstellar extinction curve. The resemblance of the extinction curve of the QCCs to that of the interstellar medium suggests that QCC derivatives may be representative of the type of interstellar material that produces the 217 nm interstellar medium feature. The peak extinction of the dark QCC is higher than the average interstellar extinction curve while that of the thermally altered filmy QCC is lower, so that a mixture of dark and thermally altered filmy QCC can match the peak extinction observed in the interstellar medium. It is shown from electron micrographs that most of the thermally altered flimy QCC is in the form of small grainy structure less than 4 nm in diameter. This shows that the structure unit causing the 217-222 nm feature in QCC is very small.

  8. Bilinguals' Creativity and Syntactic Theory: Evidence for Emerging Grammar.

    ERIC Educational Resources Information Center

    Bhatia, Tej K.

    1989-01-01

    Examines a code mixed variety of English and Hindi called Filmi English, which reflects the linguistic influence of the Indian film industry. A corpus of more than 2,000 intrasentential code-mixed sentences drawn from a film magazine, "Stardust," is analyzed. (Author/OD)

  9. NLO 󈨞. Nonlinear Optics: Materials, Phenomena and Devices Digest. Internation Meeting on Nonlinear Optics (1st) Held in Kauai, Hawaii on 16-20 July 1990

    DTIC Science & Technology

    1991-03-13

    combination50 with a dynamic grating diffraction modelO . Considering o 0 a polarlsatlon grating on a homoetropic aligned nematlc ’-i 40 filmi the optical...nonlinearities of solutions of chloroaluminumphthalocyanine (CAP) in methanol and a silicon naphthalocyanine (Nc) derivative, SiNc( OSi (hexyl)3)2 or

  10. Media Education in Japan (Retrospect and Present Trends).

    ERIC Educational Resources Information Center

    Takakuwa, Yasuo

    This overview of the development of media education in Japan begins with a discussion of the motion picture as entertainment and the public attitude toward film in Japan during the early years of the century. The introduction of film education into the schools in the 1920s--both teaching by film and teaching about film--is then described together…

  11. Comparative analysis of long-term outcomes of Misgav Ladach technique cesarean section and traditional cesarean section.

    PubMed

    Ghahiry, Ata; Rezaei, Farimah; Karimi Khouzani, Reza; Ashrafinia, Mansoor

    2012-10-01

    The aim of the present study was to evaluate pelvic adhesions, dehiscence and chronic pelvic pain in two groups of patients who underwent different cesarean section (CS) operations. One hundred and twelve eligible patients who met our criteria were randomly divided into two groups. Group 1 consisted of 52 women who had been operated at their first CS by Misgav Ladach technique and had now undergone a second CS. Group 2 consisted of 60 women who had been operated at their first CS by traditional (Pfannenstiel) technique and had now undergone a second CS. The two groups were compared for long-term outcomes, including adhesion, pelvic pain and wound dehiscence. The rate of adhesion in group 2 was 50% filmy type and 1.7% dense type. However, in group 1 the adhesion rate was 50% filmy and there was no dense type (P = 0.12). The location of adhesions were significantly different (P = 0.04). Dehiscence of uterine incision in the second group was seen in three patients but no dehiscence was found in the first group (P = 0.012). The rate of chronic pelvic pain in Misgav Ladach group (group 1) was 17.2% versus 35% in the traditional method (P = 0.01). The present results support the method of single layer suturing of the uterus and leaving the peritoneum intact in CS. © 2012 The Authors. Journal of Obstetrics and Gynaecology Research © 2012 Japan Society of Obstetrics and Gynecology.

  12. Raman Spectrum of Quenched Carbonaceous Composites

    NASA Technical Reports Server (NTRS)

    Wada, S.; Hayashi, S.; Miyaoka, H.; Tokunaga, A. T.

    1996-01-01

    Quenched Carbonaceous Composites (QCC's) are products from the ejecta of a hydrocarbon plasma. Two types of QCC, dark QCC and thermally-altered (heated) filmy QCC, have been shown to have a 220 nm absorption feature similar to that seen in the interstellar extinction curve. We present here Raman spectra of the QCCs and compare them with various carbonaceous materials to better understand the structure QCC. We find that structure of QCC is different from that of graphite and more similar to carbonaceous material found in some interplanetary dust particles and chondritic meteorites.

  13. From Empire to "Filmi:" A Fusion of Western and Indian Cultural Practices in Australian Music Education

    ERIC Educational Resources Information Center

    Southcott, Jane; Joseph, Dawn

    2007-01-01

    During the 19th and 20th centuries, Indian culture was represented in Australia as part of celebrations of the British Empire. Children were presented with stereotypic representations of Indian culture, which provide a snapshot of contemporary perceptions. Such representations were rarely authentic. By removing music from one culture and…

  14. Stable high-power saturable absorber based on polymer-black-phosphorus films

    NASA Astrophysics Data System (ADS)

    Mao, Dong; Li, Mingkun; Cui, Xiaoqi; Zhang, Wending; Lu, Hua; Song, Kun; Zhao, Jianlin

    2018-01-01

    Black phosphorus (BP), a rising two-dimensional material with a layer-number-dependent direct bandgap of 0.3-1.5 eV, is very interesting for optoelectronics applications from near- to mid-infrared wavebands. In the atmosphere, few-layer BP tends to be oxidized or degenerated during interacting with lasers. Here, we fabricate few-layer BP nanosheets based on a liquid exfoliation method using N-methylpyrrolidone as the dispersion liquid. By incorporating BP nanosheets with polymers (polyvinyl alcohol or high-melting-point polyimide), two flexible filmy BP saturable absorbers are fabricated to realize passive mode locking in erbium-doped fiber lasers. The polymer-BP saturable absorber, especially the polyimide-BP saturable absorber, can prevent the oxidation or water-induced etching under high-power laser illuminations, providing a promising candidate for Q-switchers, mode lockers, and light modulators.

  15. A Filmy Black-Phosphorus Polyimide Saturable Absorber for Q-Switched Operation in an Erbium-Doped Fiber Laser.

    PubMed

    Feng, Tianxian; Mao, Dong; Cui, Xiaoqi; Li, Mingkun; Song, Kun; Jiang, Biqiang; Lu, Hua; Quan, Wangmin

    2016-11-11

    We demonstrate an erbium-doped fiber laser passively Q-switched by a black-phosphorus polyimide film. The multi-layer black-phosphorus (BP) nanosheets were prepared via a liquid exfoliation approach exploiting N -methylpyrrolidone as the dispersion liquid. By mixing the BP nanosheets with polyimide (PI), a piece of BP-PI film was obtained after evaporating the mixture in a petri dish. The BP-PI saturable absorber had a modulation depth of 0.47% and was inserted into an erbium-doped fiber laser to realize passive Q-switched operations. The repetition rate of the Q-switched laser increased from 5.73 kHz to 31.07 kHz when the laser pump was enhanced from 31.78 mW to 231.46 mW. Our results show that PI is an excellent host material to protect BP from oxidation, and the BP-PI film can act as a promising nonlinear optical device for laser applications.

  16. Gold nanorod as saturable absorber for Q-switched Yb-doped fiber laser

    NASA Astrophysics Data System (ADS)

    Wang, Xu-De; Luo, Zhi-Chao; Liu, Hao; Zhao, Nian; Liu, Meng; Zhu, Yan-Fang; Xue, Jian-Ping; Luo, Ai-Ping; Xu, Wen-Cheng

    2015-07-01

    We reported on the generation of Q-switched pulse in an Yb-doped fiber laser by using a filmy polyvinyl alcohol (PVA)-based gold nanorods (GNRs) saturable absorber (SA). The GNRs are synthesized through seed-mediated method whose longitudinal surface plasmon resonance (SPR) absorption peak is located at 1038 nm. The modulation depth of the GNRs SA is ∼4.06%. By gradually increasing the pump power from 62 mW to 128 mW, the repetition rate of Q-switched pulse increases from 8.78 kHz to 20.78 kHz and the pulse duration decreases from 9.43 μs to 3.65 μs. In addition, the dual-wavelength switchable Q-switched operation was also observed. The obtained results further expand the applications of GNRs SA to the field of Q-switched pulsed fiber lasers at 1.0 μm waveband.

  17. An application of computer image-processing and filmy replica technique to the copper electroplating method of stress analysis

    NASA Astrophysics Data System (ADS)

    Sugiura, M.; Seika, M.

    1994-02-01

    In this study, a new technique to measure the density of slip-bands automatically is developed, namely, a TV image of the slip-bands observed through a microscope is directly processed by an image-processing system using a personal computer and an accurate value of the density of slip-bands is measured quickly. In the case of measuring the local stresses in machine parts of large size with the copper plating foil, the direct observation of slip-bands through an optical microscope is difficult. In this study, to facilitate a technique close to the direct microscopic observation of slip-bands in the foil attached to a large-sized specimen, the replica method using a platic film of acetyl cellulose is applied to replicate the slip-bands in the attached foil.

  18. Multiphase Microstructure in a Metastability-Assisted Medium Carbon Alloy Steel

    NASA Astrophysics Data System (ADS)

    Liu, Cheng; Cui, Xixi; Yang, Chen

    2018-05-01

    A medium carbon alloy steel is processed by austenizing at 900 °C for 30 min, then rapid quenching into a patented quenching liquid and holding at 170 °C for 5 min, finally isothermally holding at 250 °C for different times. The morphology and mechanical properties are performed by using optical microscopy and scanning electron microscopy. A multiphase microstructure characterized by a mixture of lenticular prior martensite (PM), fine needle bainitic ferrite and filmy retained austenite (RA) is obtained. It is found that the PM formed firstly upon quenching can accelerate the subsequent bainitic transformation and promote refinement of multiphase colonies. The results show that an optimum mechanical property of a 4000.9 MPa bending strength and a 2030 MPa tensile strength is achieved at 250 °C for 120 min, which is attributed to the multiphase microstructural characteristics and a high product of the volume fraction of RA and the carbon content of austenite.

  19. Nanometer-Scale Epitaxial Strain Release in Perovskite Heterostructures Using 'SrAlOx' Sliding Buffer Layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bell, Christopher

    2011-08-11

    We demonstrate the strain release of LaAlO{sub 3} epitaxial film on SrTiO{sub 3} (001) by inserting ultra-thin 'SrAlO{sub x}' buffer layers. Although SrAlO{sub x} is not a perovskite, nor stable as a single phase in bulk, epitaxy stabilizes the perovskite structure up to a thickness of 2 unit cells (uc). At a critical thickness of 3 uc of SrAlO{sub x}, the interlayer acts as a sliding buffer layer, and abruptly relieves the lattice mismatch between the LaAlO{sub 3} filmand the SrTiO{sub 3} substrate, while maintaining crystallinity. This technique may provide a general approach for strain relaxation of perovskite film farmore » below the thermodynamic critical thickness. A central issue in heteroepitaxial filmgrowth is the inevitable difference in lattice constants between the filmand substrate. Due to this lattice mismatch, thin film are subjected to microstructural strain, which can have a significan effect on the filmproperties. This challenge is especially prominent in the rapidly developing fiel of oxide electronics, where much interest is focused on incorporating the emergent physical properties of oxides in devices. Although strain can be used to great effect to engineer unusual ground states, it is often deleterious for bulk first-orde phase transitions, which are suppressed by the strain and symmetry constraints of the substrate. While there are some reports discussing the control of the lattice mismatch in oxides using thick buffer layers, the materials choice, lattice-tunable range, and control of misfit dislocations are still limited. In this Letter, we report the fabrication of strain-relaxed LaAlO{sub 3} (LAO) thin film on SrTiO{sub 3} (STO) (001) using very thin 'SrAlO{sub x}' (SAO) buffer layers. Whereas for 1 or 2 pseudo-perovskite unit cells (uc) of SAO, the subsequent LAO filmis strained to the substrate, at a critical thickness of 3 uc the SAO interlayer abruptly relieves the lattice mismatch between the LAO and the STO, although maintaining

  20. Widely-tunable, passively Q-switched erbium-doped fiber laser with few-layer MoS2 saturable absorber.

    PubMed

    Huang, Yizhong; Luo, Zhengqian; Li, Yingyue; Zhong, Min; Xu, Bin; Che, Kaijun; Xu, Huiying; Cai, Zhiping; Peng, Jian; Weng, Jian

    2014-10-20

    We propose and demonstrate a MoS2-based passively Q-switched Er-doped fiber laser with a wide tuning range of 1519.6-1567.7 nm. The few-layer MoS2 nano-platelets are prepared by the liquid-phase exfoliation method, and are then made into polymer-composite film to construct the fiber-compatible MoS2 saturable absorber (SA). It is measured at 1560 nm wavelength, that such MoS2 SA has the modulation depth of ∼ 2% and the saturable optical intensity of ∼ 10 MW/cm(2). By further inserting the filmy MoS2-SA into an Er-doped fiber laser, stable Q-switching operation with a 48.1 nm continuous tuning from S- to C-waveband is successfully achieved. The shortest pulse duration and the maximum pulse energy are 3.3 μs and 160 nJ, respectively. The repetition rate and the pulse duration under different operation conditions have been also characterized. To the best of our knowledge, it is the first demonstration of MoS2 Q-switched, widely-tunable fiber laser.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okada, Shoko; Weisman, Sarah; Trueman, Holly E.

    Aposthonia gurneyi, an Australian webspinner species, is a primitive insect that constructs and lives in a silken tunnel which screens it from the attentions of predators. The insect spins silk threads from many tiny spines on its forelegs to weave a filmy sheet. We found that the webspinner silk fibers have a mean diameter of only 65 nm, an order of magnitude smaller than any previously reported insect silk. The purpose of such fine silk may be to reduce the metabolic cost of building the extensive tunnels. At the molecular level, the A. gurneyi silk has a predominantly beta-sheet proteinmore » structure. The most abundant clone in a cDNA library produced from the webspinner silk glands encoded a protein with extensive glycine-serine repeat regions. The GSGSGS repeat motif of the A. gurneyi silk protein is similar to the well-known GAGAGS repeat motif found in the heavy fibroin of silkworm silk, which also has beta-sheet structure. As the webspinner silk gene is unrelated to the silk gene of the phylogenetically distant silkworm, this is a striking example of convergent evolution.« less

  2. Epiphytes as an Indicator of Climate Change in Hawaii

    NASA Astrophysics Data System (ADS)

    Kettwich, S. K.

    2013-12-01

    Although climate change threatens many ecosystems, current research in this field suggests tropical vegetation lags in response. Epiphytes, or arboreal vegetation, occupy tight, climate-defined niches compared with co-occurring life forms such as trees, yet there have been few studies of Hawaii's epiphyte communities. Because of Hawaii Island's natural climatic diversity, it is an ideal location to understand how these intrinsically climate sensitive plants interact with the atmosphere and evaluate how they may serve as a near-term indicator of climate change. Here we establish a baseline from which changes in corticolous epiphyte communities can be monitored as a leading indicator of likely forest changes by 1) investigating patterns of epiphyte abundance and species composition across elevation and precipitation gradients on windward Hawaii Island, and 2) using physiological measurements to investigate the relative importance of rain vs. fog in epiphyte-atmosphere interactions. The precipitation gradient keeps elevation constant at 1000m, while varying precipitation between 2,400 and 6,400 mm/year. The elevation gradient keeps rainfall constant at 3000mm/year, and varies elevation between 200 and 1750 m. Forest sites are dominated by Ohia Lehua (Metrosideros polymorpha) across broad geographic and climatological ranges thus allowing examination of epiphytes on this single host. We quantified bryophytes and vascular plants growing on Ohia trunks with standardized diameter and branching characteristics. Overall, epiphyte communities showed much finer scale responses to climate variation when compared with structurally dominant vegetation (which was broadly similar at all sites). The precipitation gradient exhibits a clear increase in abundance of all epiphyte groups and a definable increase in diversity with increasing rainfall. Results across the elevation gradient show a higher abundance of filmy ferns and bryophytes above the lifting condensation level (about

  3. Effect of Intercritical Annealing on Microstructural Evolution and Properties of Quenched & Partitioned (Q&P) Steels

    NASA Astrophysics Data System (ADS)

    Wu, Riming; Jin, Xuejun; Wang, Chenglin; Wang, Li

    2016-04-01

    Transformation of metastable austenite into martensite in novel quenched & partitioned (Q&P) steels improves sheet formability, allowing this class of high-strength steels to be used for automotive structural components. The current work studies the microstructural evolution by varying intercritical annealing time ( t a), as well as its influence on the martensite-austenite constituent and mechanical properties of Q&P steels. As the t a was prolonged, the morphology of retained austenite progressively transformed from block to a mixture of block and film, and finally changed to totally film. Based on electron back-scatter diffraction (EBSD) measurements and uniaxial tensile response, the holding time of 600 s at 760 °C was determined to produce the best results in terms of highest volume fraction of retained austenite ( f γ = 15.8%) and largest strain (26.8%) at the ultimate tensile strength (892 MPa). This difference in work-hardening behavior corresponds directly to the transformation rate of retained austenite with different morphology. The slower rate of transformation of filmy austenite allowed for work hardening to persist at high strains where the transformation effect had already been exhausted in the blocky one. There is great potential for properties improvement through adjustment of metastability of retained austenite.

  4. Chitosan and β-Cyclodextrin-epichlorohydrin Polymer Composite Film as a Plant Healthcare Material for Carbendazim-Controlled Release to Protect Rape against Sclerotinia sclerotiorum (Lib.) de Bary.

    PubMed

    Wang, Delong; Jia, Mingchen; Wang, Lanying; Song, Shuang; Feng, Juntao; Zhang, Xing

    2017-03-26

    The influence of β-cyclodextrin-epichlorohydrin (β-CD-EP) polymers on the improvement of the solubility and antifungal activity of carbendazim has been investigated. Meanwhile, the potential of the chitosan and β-CD-EP composite film used as a plant healthcare material for carbendazim-controlled release to protect rape against Sclerotinia sclerotiorum (Lib.) de Bary has been evaluated. β-CD-EP-1 and 2 (β-CD content, 750 mg/g and 440 mg/g, respectively) were found to significantly improve the solubility of the guest molecule carbendazim (17.9 and 18.5 times, respectively) and the 1:1 stoichiometry of the host-guest was confirmed by the Job's plot. A slight synergism was observed for the β-CD-EP/carbendazim complex against S. sclerotiorum (Lib.) de Bary, indicating an enhancement to the bioavailability of carbendazim. The in vitro release studies revealed that β-CD-EP polymers could efficiently modulate carbendazim release behaviors, such as the release retard and rate. The in vivo efficacy experiments demonstrated that the β-CD-EP/carbendazim and chitosan composite film could significantly prolong the effective duration of carbendazim at a concentration of 100 μg/mL compared with spraying carbendazim at 500 μg/mL. Thereby, a highly useful and strategic concept in plant disease control by a plant healthcare material-the chitosan and polymeric β-CD-EP composite film-is provided, which could also serve as a concept for related plant diseases.

  5. Evolution of the rpoB-psbZ region in fern plastid genomes: notable structural rearrangements and highly variable intergenic spacers

    PubMed Central

    2011-01-01

    Background The rpoB-psbZ (BZ) region of some fern plastid genomes (plastomes) has been noted to go through considerable genomic changes. Unraveling its evolutionary dynamics across all fern lineages will lead to clarify the fundamental process shaping fern plastome structure and organization. Results A total of 24 fern BZ sequences were investigated with taxon sampling covering all the extant fern orders. We found that: (i) a tree fern Plagiogyria japonica contained a novel gene order that can be generated from either the ancestral Angiopteris type or the derived Adiantum type via a single inversion; (ii) the trnY-trnE intergenic spacer (IGS) of the filmy fern Vandenboschia radicans was expanded 3-fold due to the tandem 27-bp repeats which showed strong sequence similarity with the anticodon domain of trnY; (iii) the trnY-trnE IGSs of two horsetail ferns Equisetum ramosissimum and E. arvense underwent an unprecedented 5-kb long expansion, more than a quarter of which was consisted of a single type of direct repeats also relevant to the trnY anticodon domain; and (iv) ycf66 has independently lost at least four times in ferns. Conclusions Our results provided fresh insights into the evolutionary process of fern BZ regions. The intermediate BZ gene order was not detected, supporting that the Adiantum type was generated by two inversions occurring in pairs. The occurrence of Vandenboschia 27-bp repeats represents the first evidence of partial tRNA gene duplication in fern plastomes. Repeats potentially forming a stem-loop structure play major roles in the expansion of the trnY-trnE IGS. PMID:21486489

  6. Evolution of the rpoB-psbZ region in fern plastid genomes: notable structural rearrangements and highly variable intergenic spacers.

    PubMed

    Gao, Lei; Zhou, Yuan; Wang, Zhi-Wei; Su, Ying-Juan; Wang, Ting

    2011-04-13

    The rpoB-psbZ (BZ) region of some fern plastid genomes (plastomes) has been noted to go through considerable genomic changes. Unraveling its evolutionary dynamics across all fern lineages will lead to clarify the fundamental process shaping fern plastome structure and organization. A total of 24 fern BZ sequences were investigated with taxon sampling covering all the extant fern orders. We found that: (i) a tree fern Plagiogyria japonica contained a novel gene order that can be generated from either the ancestral Angiopteris type or the derived Adiantum type via a single inversion; (ii) the trnY-trnE intergenic spacer (IGS) of the filmy fern Vandenboschia radicans was expanded 3-fold due to the tandem 27-bp repeats which showed strong sequence similarity with the anticodon domain of trnY; (iii) the trnY-trnE IGSs of two horsetail ferns Equisetum ramosissimum and E. arvense underwent an unprecedented 5-kb long expansion, more than a quarter of which was consisted of a single type of direct repeats also relevant to the trnY anticodon domain; and (iv) ycf66 has independently lost at least four times in ferns. Our results provided fresh insights into the evolutionary process of fern BZ regions. The intermediate BZ gene order was not detected, supporting that the Adiantum type was generated by two inversions occurring in pairs. The occurrence of Vandenboschia 27-bp repeats represents the first evidence of partial tRNA gene duplication in fern plastomes. Repeats potentially forming a stem-loop structure play major roles in the expansion of the trnY-trnE IGS.

  7. Antioxidant status, metabolic profile and immune response of lambs supplemented with tannin rich Ficus infectoria leaf meal.

    PubMed

    Dey, Avijit; Dutta, Narayan; Pattanaik, Ashok Kumar; Sharma, Kusumakar

    2015-02-01

    To study the effect of supplementation of tanniferous tree leaves Ficus infectoria on antioxidant status and immune response, twenty four lambs were randomly divided into four groups of six each in a completely randomized design and fed either a conventional supplement (CON) or experimental supplements (FILM-I, FILM-II and FILM-III) containing 1.0, 1.5 and 2.0% condensed tannins (CT), respectively by replacement of wheat bran of supplement CON with Ficus infectoria leaf meal (FILM). Blood biochemical profile was monitored in all lambs at 0, 45, 90, 135, 180 days of feeding. Although haemato-biochemical parameters remained similar, there was significant (p < 0.05) improvement in catalase activity, total thiol and protein thiol groups with reduction in lipid peroxidation (LPO) in lambs fed FILM diet irrespective of levels. However, intracellular status of reduced glutathione, and superoxide dismutase activity was improved (p < 0.05) only in FILM-II and FILM-III supplemented lambs. The cell-mediated immune response was significantly (p < 0.05) improved in all the lambs fed FILM supplemented diets. Improved antioxidant status and immunity in FILM supplemented lambs increased voluntary feed intake irrespective of level. However, the average daily gain for a period of 180 d showed a significant (p < 0.05) increase by the supplementation of FILM-II diet containing 1.5% CT. The present study reveals that the supplementation of Ficus infectoria leaf meal up to 21.2% in the concentrate mixture could improve the antioxidant status and immunity in lambs. However, as feed efficiency was reduced at higher levels due to presence of CT, 15.9% supplementation containing 1.5% condensed tannins in concentrate mixture is suggested to improve the health and production performance of lambs.

  8. Prevention of postoperative pericardial adhesions with TachoSil.

    PubMed

    Kuschel, Tarah J; Gruszka, Anna; Hermanns-Sachweh, Benita; Elyakoubi, Jaouad; Sachweh, Joerg S; Vázquez-Jiménez, Jaime F; Schnoering, Heike

    2013-01-01

    The prevention of the pericardial adhesions largely accountable for the technical difficulty and risk of injury inherent to resternotomy continues to gain in importance with the increasing frequency of reoperations. The hemostatic sponge TachoSil (Nycomed Austria GmbH, Linz, Austria), has shown promising results in adhesion prevention in several regions of the body. This study was designed to evaluate its effectiveness in the prevention of pericardial adhesions in comparison with the Gore-Tex (W. L. Gore and Assoc, Flagstaff, AZ) surgical membrane and a control. Twenty-four rabbits were distributed into 3 groups: TachoSil, Gore-Tex, or no barrier agent (control). After median sternotomy and pericardiotomy, the cardial surface was exposed to the aggravating effects of room air, irrigation, and gauze abrasion for one hour. A pericardial defect was created and repaired with one of the barrier agents, or left uncovered (control). Resternotomy was performed after 6 months for the evaluation of adhesion formation. Significantly fewer macroscopic adhesions were observed with TachoSil than Gore-Tex in all regions (p < 0.05) excluding the coronary arteries, where the difference in favor of TachoSil did not achieve significance (0.05< p-value <0.10). TachoSil also demonstrated significantly fewer retrosternal adhesions than the control, as well as a universal non-significant trend of fewer adhesions in all regions. The limited lesions present in the TachoSil group were filmy in nature and removed with blunt dissection relatively easily. No significant differences were found between Gore-Tex and the control. Microscopically, the least pronounced fibrosis formation and inflammatory reaction was detected with TachoSil. TachoSil is effective in the prevention of pericardial adhesions. Copyright © 2013 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  9. Musing over Microbes in Microgravity: Microbial Physiology Flight Experiment

    NASA Technical Reports Server (NTRS)

    Schweickart, Randolph; McGinnis, Michael; Bloomberg, Jacob; Lee, Angie (Technical Monitor)

    2002-01-01

    New York City, the most populated city in the United States, is home to over 8 million humans. This means over 26,000 people per square mile! Imagine, though, what the view would be if you peeked into the world of microscopic organisms. Scientists estimate that a gram of soil may contain up to 1 billion of these microbes, which is as much as the entire human population of China! Scientists also know that the world of microbes is incredibly diverse-possibly 10,000 different species in one gram of soil - more than all the different types of mammals in the world. Microbes fill every niche in the world - from 20 miles below the Earth's surface to 20 miles above, and at temperatures from less than -20 C to hotter than water's boiling point. These organisms are ubiquitous because they can adapt quickly to changing environments, an effective strategy for survival. Although we may not realize it, microbes impact every aspect of our lives. Bacteria and fungi help us break down the food in our bodies, and they help clean the air and water around us. They can also cause the dark, filmy buildup on the shower curtain as well as, more seriously, illness and disease. Since humans and microbes share space on Earth, we can benefit tremendously from a better understanding of the workings and physiology of the microbes. This insight can help prevent any harmful effects on humans, on Earth and in space, as well as reap the benefits they provide. Space flight is a unique environment to study how microbes adapt to changing environmental conditions. To advance ground-based research in the field of microbiology, this STS-107 experiment will investigate how microgravity affects bacteria and fungi. Of particular interest are the growth rates and how they respond to certain antimicrobial substances that will be tested; the same tests will be conducted on Earth at the same times. Comparing the results obtained in flight to those on Earth, we will be able to examine how microgravity induces

  10. Epiphyte Water Retention and Evaporation in Native and Invaded Tropical Montane Cloud Forests in Hawaii

    NASA Astrophysics Data System (ADS)

    Mudd, R. G.; Giambelluca, T. W.

    2006-12-01

    Epiphyte water retention was quantified at two montane cloud forest sites in Hawai'i Volcanoes National Park, one native and the other invaded by an alien tree species. Water storage elements measured included all epiphytic mosses, leafy liverworts, and filmy ferns. Tree surface area was estimated and a careful survey was taken to account for all epiphytes in the sample area of the forest. Samples were collected and analyzed in the lab for epiphyte water retention capacity (WRC). Based on the volume of the different kinds of epiphytes and their corresponding WRC, forest stand water retention capacity for each survey area was estimated. Evaporation from the epiphyte mass was quantified using artificial reference samples attached to trees that were weighed at intervals to determine changes in stored water on days without significant rain or fog. In addition, a soil moisture sensor was wrapped in an epiphyte sample and left in the forest for a 6-day period. Epiphyte biomass at the Native Site and Invaded Site were estimated to be 2.89 t ha-1 and 1.05 t ha-1, respectively. Average WRC at the Native Site and Invaded Site were estimated at 1.45 mm and 0.68 mm, respectively. The difference is likely due to the presence of the invasive Psidium cattleianum at the Invaded Site because its smooth stem surface is unable to support a significant epiphytic layer. The evaporation rate from the epiphyte mass near WSC for the forest stand at the Native Site was measured at 0.38 mm day-1, which represented 10.6 % of the total ET from the forest canopy at the Native Site during the period. The above research has been recently complemented by a thorough investigation of the WSC of all water storage elements (tree stems, tree leaves, shrubs, grasses, litter, fallen branches, and epiphytes) at six forested sites at different elevations within, above, and below the zone of frequent cloud-cover. The goal of this study was to create an inexpensive and efficient methodology for acquiring