Sample records for pseudo-first-order reaction rate

  1. Design of experiments for zeroth and first-order reaction rates.

    PubMed

    Amo-Salas, Mariano; Martín-Martín, Raúl; Rodríguez-Aragón, Licesio J

    2014-09-01

    This work presents optimum designs for reaction rates experiments. In these experiments, time at which observations are to be made and temperatures at which reactions are to be run need to be designed. Observations are performed along time under isothermal conditions. Each experiment needs a fixed temperature and so the reaction can be measured at the designed times. For these observations under isothermal conditions over the same reaction a correlation structure has been considered. D-optimum designs are the aim of our work for zeroth and first-order reaction rates. Temperatures for the isothermal experiments and observation times, to obtain the most accurate estimates of the unknown parameters, are provided in these designs. D-optimum designs for a single observation in each isothermal experiment or for several correlated observations have been obtained. Robustness of the optimum designs for ranges of the correlation parameter and comparisons of the information gathered by different designs are also shown. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Generalized Pseudo-Reaction Zone Model for Non-Ideal Explosives

    NASA Astrophysics Data System (ADS)

    Wescott, Bradley

    2007-06-01

    The pseudo-reaction zone model was proposed to improve engineering scale simulations when using Detonation Shock Dynamics with high explosives that have a slow reaction component. In this work an extension of the pseudo-reaction zone model is developed for non-ideal explosives that propagate well below their steady-planar Chapman-Jouguet velocity. A programmed burn method utilizing Detonation Shock Dynamics and a detonation velocity dependent pseudo-reaction rate has been developed for non-ideal explosives and applied to the explosive mixture of ammonium nitrate and fuel oil (ANFO). The pseudo-reaction rate is calibrated to the experimentally obtained normal detonation velocity---shock curvature relation. The generalized pseudo-reaction zone model proposed here predicts the cylinder expansion to within 1% by accounting for the slow reaction in ANFO.

  3. Generalized Pseudo-Reaction Zone Model for Non-Ideal Explosives

    NASA Astrophysics Data System (ADS)

    Wescott, B. L.

    2007-12-01

    The pseudo-reaction zone model was proposed to improve engineering scale simulations with high explosives that have a slow reaction component. In this work an extension of the pseudo-reaction zone model is developed for non-ideal explosives that propagate well below the steady-planar Chapman-Jouguet velocity. A programmed burn method utilizing Detonation Shock Dynamics (DSD) and a detonation velocity dependent pseudo-reaction rate has been developed for non-ideal explosives and applied to the explosive mixture of ammonium nitrate and fuel oil (ANFO). The pseudo-reaction rate is calibrated to the experimentally obtained normal detonation velocity—shock curvature relation. Cylinder test simulations predict the proper expansion to within 1% even though significant reaction occurs as the cylinder expands.

  4. Rate kernel theory for pseudo-first-order kinetics of diffusion-influenced reactions and application to fluorescence quenching kinetics.

    PubMed

    Yang, Mino

    2007-06-07

    Theoretical foundation of rate kernel equation approaches for diffusion-influenced chemical reactions is presented and applied to explain the kinetics of fluorescence quenching reactions. A many-body master equation is constructed by introducing stochastic terms, which characterize the rates of chemical reactions, into the many-body Smoluchowski equation. A Langevin-type of memory equation for the density fields of reactants evolving under the influence of time-independent perturbation is derived. This equation should be useful in predicting the time evolution of reactant concentrations approaching the steady state attained by the perturbation as well as the steady-state concentrations. The dynamics of fluctuation occurring in equilibrium state can be predicted by the memory equation by turning the perturbation off and consequently may be useful in obtaining the linear response to a time-dependent perturbation. It is found that unimolecular decay processes including the time-independent perturbation can be incorporated into bimolecular reaction kinetics as a Laplace transform variable. As a result, a theory for bimolecular reactions along with the unimolecular process turned off is sufficient to predict overall reaction kinetics including the effects of unimolecular reactions and perturbation. As the present formulation is applied to steady-state kinetics of fluorescence quenching reactions, the exact relation between fluorophore concentrations and the intensity of excitation light is derived.

  5. On the ambiguity of the reaction rate constants in multivariate curve resolution for reversible first-order reaction systems.

    PubMed

    Schröder, Henning; Sawall, Mathias; Kubis, Christoph; Selent, Detlef; Hess, Dieter; Franke, Robert; Börner, Armin; Neymeyr, Klaus

    2016-07-13

    If for a chemical reaction with a known reaction mechanism the concentration profiles are accessible only for certain species, e.g. only for the main product, then often the reaction rate constants cannot uniquely be determined from the concentration data. This is a well-known fact which includes the so-called slow-fast ambiguity. This work combines the question of unique or non-unique reaction rate constants with factor analytic methods of chemometrics. The idea is to reduce the rotational ambiguity of pure component factorizations by considering only those concentration factors which are possible solutions of the kinetic equations for a properly adapted set of reaction rate constants. The resulting set of reaction rate constants corresponds to those solutions of the rate equations which appear as feasible factors in a pure component factorization. The new analysis of the ambiguity of reaction rate constants extends recent research activities on the Area of Feasible Solutions (AFS). The consistency with a given chemical reaction scheme is shown to be a valuable tool in order to reduce the AFS. The new methods are applied to model and experimental data. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Reaction Order Ambiguity in Integrated Rate Plots

    ERIC Educational Resources Information Center

    Lee, Joe

    2008-01-01

    Integrated rate plots are frequently used in reaction kinetics to determine orders of reactions. It is often emphasised, when using this methodology in practice, that it is necessary to monitor the reaction to a substantial fraction of completion for these plots to yield unambiguous orders. The present article gives a theoretical and statistical…

  7. Pseudo second order kinetics and pseudo isotherms for malachite green onto activated carbon: comparison of linear and non-linear regression methods.

    PubMed

    Kumar, K Vasanth; Sivanesan, S

    2006-08-25

    Pseudo second order kinetic expressions of Ho, Sobkowsk and Czerwinski, Blanachard et al. and Ritchie were fitted to the experimental kinetic data of malachite green onto activated carbon by non-linear and linear method. Non-linear method was found to be a better way of obtaining the parameters involved in the second order rate kinetic expressions. Both linear and non-linear regression showed that the Sobkowsk and Czerwinski and Ritchie's pseudo second order model were the same. Non-linear regression analysis showed that both Blanachard et al. and Ho have similar ideas on the pseudo second order model but with different assumptions. The best fit of experimental data in Ho's pseudo second order expression by linear and non-linear regression method showed that Ho pseudo second order model was a better kinetic expression when compared to other pseudo second order kinetic expressions. The amount of dye adsorbed at equilibrium, q(e), was predicted from Ho pseudo second order expression and were fitted to the Langmuir, Freundlich and Redlich Peterson expressions by both linear and non-linear method to obtain the pseudo isotherms. The best fitting pseudo isotherm was found to be the Langmuir and Redlich Peterson isotherm. Redlich Peterson is a special case of Langmuir when the constant g equals unity.

  8. Second order Pseudo-gaussian shaper

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beche, Jean-Francois

    2002-11-22

    The purpose of this document is to provide a calculus spreadsheet for the design of second-order pseudo-gaussian shapers. A very interesting reference is given by C.H. Mosher ''Pseudo-Gaussian Transfer Functions with Superlative Recovery'', IEEE TNS Volume 23, p. 226-228 (1976). Fred Goulding and Don Landis have studied the structure of those filters and their implementation and this document will outline the calculation leading to the relation between the coefficients of the filter. The general equation of the second order pseudo-gaussian filter is: f(t) = P{sub 0} {center_dot} e{sup -3kt} {center_dot} sin{sup 2}(kt). The parameter k is a normalization factor.

  9. Temporal Frequency Modulates Reaction Time Responses to First-Order and Second-Order Motion

    ERIC Educational Resources Information Center

    Hutchinson, Claire V.; Ledgeway, Tim

    2010-01-01

    This study investigated the effect of temporal frequency and modulation depth on reaction times for discriminating the direction of first-order (luminance-defined) and second-order (contrast-defined) motion, equated for visibility using equal multiples of direction-discrimination threshold. Results showed that reaction times were heavily…

  10. A novel solution for hydroxylated PAHs removal by oxidative coupling reaction using Mn oxide.

    PubMed

    Kang, Ki-Hoon; Lim, Dong-Min; Shin, Hyun-Sang

    2008-01-01

    In this study, removals of 1-naphthol by oxidative-coupling reaction using birnessite, one of the natural Mn oxides present in soil, was investigated in various experimental conditions (reaction time, Mn oxide loadings, pH). The removal efficiency of 1-naphthol by birnessite was high in all the experimental conditions, and UV-visible and mass spectrometric analyses on the supernatant after reaction confirmed that the reaction products were oligomers formed by oxidative-coupling reaction. Pseudo-first order rate constants, k, for the oxidative transformation of 1-naphthol by birnessite was derived from the kinetic experiments under various amounts of birnessite loadings, and using the observed pseudo-first order rate constants with respect to birnessite loadings, the surface area normalised specific rate constant, k(surf), was also determined to be 9.3 x 10(-4) (L/m(2).min) for 1-naphthol. In addition, the oxidative transformation of 1-naphthol was found to be dependent on solution pH, and the pseudo-first order rate constants were increased from 0.129 at pH 10 to 0.187 at pH 4. (c) IWA Publishing 2008.

  11. Pseudo-extravasation rate constant of dynamic susceptibility contrast-MRI determined from pharmacokinetic first principles.

    PubMed

    Li, Xin; Varallyay, Csanad G; Gahramanov, Seymur; Fu, Rongwei; Rooney, William D; Neuwelt, Edward A

    2017-11-01

    Dynamic susceptibility contrast-magnetic resonance imaging (DSC-MRI) is widely used to obtain informative perfusion imaging biomarkers, such as the relative cerebral blood volume (rCBV). The related post-processing software packages for DSC-MRI are available from major MRI instrument manufacturers and third-party vendors. One unique aspect of DSC-MRI with low-molecular-weight gadolinium (Gd)-based contrast reagent (CR) is that CR molecules leak into the interstitium space and therefore confound the DSC signal detected. Several approaches to correct this leakage effect have been proposed throughout the years. Amongst the most popular is the Boxerman-Schmainda-Weisskoff (BSW) K 2 leakage correction approach, in which the K 2 pseudo-first-order rate constant quantifies the leakage. In this work, we propose a new method for the BSW leakage correction approach. Based on the pharmacokinetic interpretation of the data, the commonly adopted R 2 * expression accounting for contributions from both intravascular and extravasating CR components is transformed using a method mathematically similar to Gjedde-Patlak linearization. Then, the leakage rate constant (K L ) can be determined as the slope of the linear portion of a plot of the transformed data. Using the DSC data of high-molecular-weight (~750 kDa), iron-based, intravascular Ferumoxytol (FeO), the pharmacokinetic interpretation of the new paradigm is empirically validated. The primary objective of this work is to empirically demonstrate that a linear portion often exists in the graph of the transformed data. This linear portion provides a clear definition of the Gd CR pseudo-leakage rate constant, which equals the slope derived from the linear segment. A secondary objective is to demonstrate that transformed points from the initial transient period during the CR wash-in often deviate from the linear trend of the linearized graph. The inclusion of these points will have a negative impact on the accuracy of the leakage

  12. Critical ignition conditions in exothermically reacting systems: first-order reactions

    NASA Astrophysics Data System (ADS)

    Filimonov, Valeriy Yu.

    2017-10-01

    In this paper, the comparative analysis of the thermal explosion (TE) critical conditions on the planes temperature-conversion degree and temperature-time was conducted. It was established that the ignition criteria are almost identical only at relatively small values of Todes parameter. Otherwise, the results of critical conditions analysis on the plane temperature-conversion degree may be wrong. The asymptotic method of critical conditions calculation for the first-order reactions was proposed (taking into account the reactant consumption). The degeneration conditions of TE were determined. The calculation of critical conditions for specific first-order reaction was made. The comparison of the analytical results obtained with the results of numerical calculations and experimental data showed that they are in good agreement.

  13. Critical ignition conditions in exothermically reacting systems: first-order reactions.

    PubMed

    Filimonov, Valeriy Yu

    2017-10-01

    In this paper, the comparative analysis of the thermal explosion (TE) critical conditions on the planes temperature-conversion degree and temperature-time was conducted. It was established that the ignition criteria are almost identical only at relatively small values of Todes parameter. Otherwise, the results of critical conditions analysis on the plane temperature-conversion degree may be wrong. The asymptotic method of critical conditions calculation for the first-order reactions was proposed (taking into account the reactant consumption). The degeneration conditions of TE were determined. The calculation of critical conditions for specific first-order reaction was made. The comparison of the analytical results obtained with the results of numerical calculations and experimental data showed that they are in good agreement.

  14. Pseudo-second order models for the adsorption of safranin onto activated carbon: comparison of linear and non-linear regression methods.

    PubMed

    Kumar, K Vasanth

    2007-04-02

    Kinetic experiments were carried out for the sorption of safranin onto activated carbon particles. The kinetic data were fitted to pseudo-second order model of Ho, Sobkowsk and Czerwinski, Blanchard et al. and Ritchie by linear and non-linear regression methods. Non-linear method was found to be a better way of obtaining the parameters involved in the second order rate kinetic expressions. Both linear and non-linear regression showed that the Sobkowsk and Czerwinski and Ritchie's pseudo-second order models were the same. Non-linear regression analysis showed that both Blanchard et al. and Ho have similar ideas on the pseudo-second order model but with different assumptions. The best fit of experimental data in Ho's pseudo-second order expression by linear and non-linear regression method showed that Ho pseudo-second order model was a better kinetic expression when compared to other pseudo-second order kinetic expressions.

  15. Reaction kinetics of resveratrol with tert-butoxyl radicals

    NASA Astrophysics Data System (ADS)

    Džeba, Iva; Pedzinski, Tomasz; Mihaljević, Branka

    2012-09-01

    The rate constant for the reaction of t-butoxyl radicals with resveratrol was studied under pseudo-first order conditions. The rate constant was determined by measuring the phenoxyl radical formation rate at 390 nm as function of resveratrol concentration in acetonitrile. The rate constant was determined to be 6.5×108 M-1s-1. This high value indicates the high reactivity consistent with the strong antioxidant activity of resveratrol.

  16. Temperature and pressure dependence of the absolute rate constant for the reactions of NH2 radicals with acetylene and ethylene

    NASA Technical Reports Server (NTRS)

    Bosco, S. R.; Nava, D. F.; Brobst, W. D.; Stief, L. J.

    1984-01-01

    The absolute rate constants for the reaction between the NH2 free radical and acetylene and ethylene is measured experimentally using a flash photolysis technique. The constant is considered to be a function of temperature and pressure. At each temperature level of the experiment, the observed pseudo-first-order rate constants were assumed to be independent of flash intensity. The results of the experiment indicate that the bimolecular rate constant for the NH2 + C2H2 reaction increases with pressure at 373 K and 459 K but not at lower temperatures. Results near the pressure limit conform to an Arrhenius expression of 1.11 (+ or -) 0.36 x 10 to the -13th over the temperature range from 241 to 459 K. For the reaction NH2 + C2H4, a smaller rate of increase in the bimolecular rate constant was observed over the temperature range 250-465 K. The implications of these results for current theoretical models of NH2 + C2H2 (or H4) reactions in the atmospheres of Jupiter and Saturn are discussed.

  17. Computer Calculation of First-Order Rate Constants

    ERIC Educational Resources Information Center

    Williams, Robert C.; Taylor, James W.

    1970-01-01

    Discusses the computer program used to calculate first-order rate constants. Discussion includes data preparation, weighting options, comparison techniques, infinity point adjustment, least-square fit, Guggenheim calculation, and printed outputs. Exemplifies the utility of the computer program by two experiments: (1) the thermal decomposition of…

  18. Calculated third order rate constants for interpreting the mechanisms of hydrolyses of chloroformates, carboxylic Acid halides, sulfonyl chlorides and phosphorochloridates.

    PubMed

    Bentley, T William

    2015-05-08

    Hydrolyses of acid derivatives (e.g., carboxylic acid chlorides and fluorides, fluoro- and chloroformates, sulfonyl chlorides, phosphorochloridates, anhydrides) exhibit pseudo-first order kinetics. Reaction mechanisms vary from those involving a cationic intermediate (SN1) to concerted SN2 processes, and further to third order reactions, in which one solvent molecule acts as the attacking nucleophile and a second molecule acts as a general base catalyst. A unified framework is discussed, in which there are two reaction channels-an SN1-SN2 spectrum and an SN2-SN3 spectrum. Third order rate constants (k3) are calculated for solvolytic reactions in a wide range of compositions of acetone-water mixtures, and are shown to be either approximately constant or correlated with the Grunwald-Winstein Y parameter. These data and kinetic solvent isotope effects, provide the experimental evidence for the SN2-SN3 spectrum (e.g., for chloro- and fluoroformates, chloroacetyl chloride, p-nitrobenzoyl p-toluenesulfonate, sulfonyl chlorides). Deviations from linearity lead to U- or V-shaped plots, which assist in the identification of the point at which the reaction channel changes from SN2-SN3 to SN1-SN2 (e.g., for benzoyl chloride).

  19. Calculated Third Order Rate Constants for Interpreting the Mechanisms of Hydrolyses of Chloroformates, Carboxylic Acid Halides, Sulfonyl Chlorides and Phosphorochloridates

    PubMed Central

    Bentley, T. William

    2015-01-01

    Hydrolyses of acid derivatives (e.g., carboxylic acid chlorides and fluorides, fluoro- and chloroformates, sulfonyl chlorides, phosphorochloridates, anhydrides) exhibit pseudo-first order kinetics. Reaction mechanisms vary from those involving a cationic intermediate (SN1) to concerted SN2 processes, and further to third order reactions, in which one solvent molecule acts as the attacking nucleophile and a second molecule acts as a general base catalyst. A unified framework is discussed, in which there are two reaction channels—an SN1-SN2 spectrum and an SN2-SN3 spectrum. Third order rate constants (k3) are calculated for solvolytic reactions in a wide range of compositions of acetone-water mixtures, and are shown to be either approximately constant or correlated with the Grunwald-Winstein Y parameter. These data and kinetic solvent isotope effects, provide the experimental evidence for the SN2-SN3 spectrum (e.g., for chloro- and fluoroformates, chloroacetyl chloride, p-nitrobenzoyl p-toluenesulfonate, sulfonyl chlorides). Deviations from linearity lead to U- or V-shaped plots, which assist in the identification of the point at which the reaction channel changes from SN2-SN3 to SN1-SN2 (e.g., for benzoyl chloride). PMID:26006228

  20. First-order dissolution rate law and the role of surface layers in glass performance assessment

    NASA Astrophysics Data System (ADS)

    Grambow, B.; Müller, R.

    2001-09-01

    The first-order dissolution rate law is used for nuclear waste glass performance predictions since 1984. A first discussion of the role of saturation effects was initiated at the MRS conference that year. In paper (1) it was stated that "For glass dissolution A* (the reaction affinity) cannot become zero since saturation only involves the reacting surface while soluble elements still might be extracted from the glass" [B. Grambow, J. Mater. Res. Soc. Symp. Proc. 44 (1985) 15]. Saturation of silica at the surface and condensation of surface silanol groups was considered as being responsible for the slow down of reaction rates by as much as a factor of 1000. Precipitation of Si containing secondary phases such as quartz was invoked as a mechanism for keeping final dissolution affinities higher than zero. Another (2) paper [A.B. Barkatt, P.B. Macedo, B.C. Gibson, C.J. Montrose, J. Mater. Res. Soc. Symp. Proc. 44 (1985) 3] stated that "… under repository conditions the extent of glass dissolution will be moderate due to saturation with respect to certain major elements (in particular, Si, Al and Ca). Consequently, the concentration levels of the more soluble glass constituents in the aqueous medium are expected to fall appreciable below their solubility limit." The formation of dense surface layers was considered responsible for explaining the saturation effect. The mathematical model assumed stop of reaction in closed systems, once solubility limits were achieved. For more than 15 years the question of the correctness of one or the other concept has seldom been posed and has not yet been resolved. The need of repository performance assessment for validated rate laws demands a solution, particularly since the consequences of the two concepts and research requirements for the long-term glass behavior are quite different. In concept (1) the stability of the `equilibrium surface region' is not relevant because, by definition, this region is stable chemically and after a

  1. Rate Coefficients for the OH + (CHO)2 (Glyoxal) Reaction Between 240 and 400 K

    NASA Astrophysics Data System (ADS)

    Feierabend, K. J.; Talukdar, R. K.; Zhu, L.; Ravishankara, A. R.; Burkholder, J. B.

    2006-12-01

    Glyoxal (CHO)2, the simplest dialdehyde, is an end product formed in the atmospheric oxidation of biogenic hydrocarbons, for example, isoprene. As such, glyoxal plays a role in regional air quality and ozone production in certain locations. Glyoxal is lost in the atmosphere via UV photolysis and reaction with OH. However, the currently available rate coefficient data for the OH + glyoxal reaction is limited to a single room- temperature measurement made using the relative rate method. A determination of the rate coefficient temperature dependence is therefore needed for a more complete interpretation of the atmospheric processing of glyoxal. This study reports the rate coefficient for the OH + (CHO)2 reaction measured under pseudo- first-order conditions in OH ([(CHO)2] > 1000 [OH]0). OH radicals were produced using 248 nm pulsed laser photolysis of H2O2 or HNO3 and detected by pulsed laser induced fluorescence. The concentration of glyoxal in the reactor was determined using three independent techniques; gas flow rates as well as in situ UV and IR absorption. The total pressure in the reactor was varied from 40 to 300 Torr (He), and the rate coefficient was found to be independent of pressure over the temperature range studied. The rate coefficient exhibits a negative temperature dependence between 240 and 400 K consistent with the dependence previously observed for many other aldehydes. Our room-temperature rate coefficient is smaller than the relative rate value that is currently recommended for use in atmospheric model calculations. Our measured rate coefficients are discussed with respect to those for other aldehydes. The atmospheric implications of our work will also be discussed.

  2. Temperature-dependent rate coefficients and theoretical calculations for the OH+Cl2O reaction.

    PubMed

    Riffault, Véronique; Clark, Jared M; Hansen, Jaron C; Ravishankara, A R; Burkholder, James B

    2010-12-17

    Rate coefficients k for the OH+Cl(2)O reaction are measured as a function of temperature (230-370 K) and pressure by using pulsed laser photolysis to produce OH radicals and laser-induced fluorescence to monitor their loss under pseudo-first-order conditions in OH. The reaction rate coefficient is found to be independent of pressure, within the precision of our measurements at 30-100 Torr (He) and 100 Torr (N(2)). The rate coefficients obtained at 100 Torr (He) showed a negative temperature dependence with a weak non-Arrhenius behavior. A room-temperature rate coefficient of k(1)(297 K)=(7.5±1.1)×10(-12) cm(3) molecule(-1) s(-1) is obtained, where the quoted uncertainties are 2σ and include estimated systematic errors. Theoretical methods are used to examine OH···OCl(2) and OH···ClOCl adduct formation and the potential-energy surfaces leading to the HOCl+ClO (1a) and Cl+HOOCl (1d) products in reaction (1) at the hybrid density functional UMPW1K/6-311++G(2df,p) level of theory. The OH···OCl(2) and OH···ClOCl adducts are found to have binding energies of about 0.2 kcal mol(-1). The reaction is calculated to proceed through weak pre-reactive complexes. Transition-state energies for channels (1a) and (1d) are calculated to be about 1.4 and about 3.3 kcal mol(-1) above the energy of the reactants. The results from the present study are compared with previously reported rate coefficients, and the interpretation of the possible non-Arrhenius behavior is discussed.

  3. Astrophysical reaction rates from a symmetry-informed first-principles perspective

    NASA Astrophysics Data System (ADS)

    Dreyfuss, Alison; Launey, Kristina; Baker, Robert; Draayer, Jerry; Dytrych, Tomas

    2017-01-01

    With a view toward a new unified formalism for studying bound and continuum states in nuclei, to understand stellar nucleosynthesis from a fully ab initio perspective, we studied the nature of surface α-clustering in 20Ne by considering the overlap of symplectic states with cluster-like states. We compute the spectroscopic amplitudes and factors, α-decay width, and absolute resonance strength - characterizing major contributions to the astrophysical reaction rate through a low-lying 1- resonant state in 20Ne. As a next step, we consider a fully microscopic treatment for the n+4 He system, based on the successful first-principles No-Core Shell Model/Resonating Group Method (NCSM/RGM) for light nuclei, but with the capability to reach intermediate-mass nuclei. The new model takes advantage of the symmetry-based concept central to the Symmetry-Adapted No-Core Shell Model (SA-NCSM) to reduce computational complexity in physically-informed and methodical way, with sights toward first-principles calculations of rates for important astrophysical reactions, such as the 23 Al(p , γ) 24 Si reaction, believed to have a strong influence on X-ray burst light curves. Supported by the U.S. NSF (OCI-0904874, ACI -1516338) and the U.S. DOE (DE-SC0005248), and benefitted from computing resources provided by Blue Waters and the LSU Center for Computation & Technology.

  4. Pseudo almost periodic solutions to some systems of nonlinear hyperbolic second-order partial differential equations

    NASA Astrophysics Data System (ADS)

    Al-Islam, Najja Shakir

    In this Dissertation, the existence of pseudo almost periodic solutions to some systems of nonlinear hyperbolic second-order partial differential equations is established. For that, (Al-Islam [4]) is first studied and then obtained under some suitable assumptions. That is, the existence of pseudo almost periodic solutions to a hyperbolic second-order partial differential equation with delay. The second-order partial differential equation (1) represents a mathematical model for the dynamics of gas absorption, given by uxt+a x,tux=Cx,t,u x,t , u0,t=4 t, 1 where a : [0, L] x RR , C : [0, L] x R x RR , and ϕ : RR are (jointly) continuous functions ( t being the greatest integer function) and L > 0. The results in this Dissertation generalize those of Poorkarimi and Wiener [22]. Secondly, a generalization of the above-mentioned system consisting of the non-linear hyperbolic second-order partial differential equation uxt+a x,tux+bx,t ut+cx,tu=f x,t,u, x∈ 0,L,t∈ R, 2 equipped with the boundary conditions ux,0 =40x, u0,t=u 0t, uxx,0=y 0x, x∈0,L, t∈R, 3 where a, b, c : [0, L ] x RR and f : [0, L] x R x RR are (jointly) continuous functions is studied. Under some suitable assumptions, the existence and uniqueness of pseudo almost periodic solutions to particular cases, as well as the general case of the second-order hyperbolic partial differential equation (2) are studied. The results of all studies contained within this text extend those obtained by Aziz and Meyers [6] in the periodic setting.

  5. Organic Lecture Demonstrations of Common-Ion Effect, Ionizing Power of Solvents, and First-Order Reaction Kinetics.

    ERIC Educational Resources Information Center

    Danen, Wayne C.; Blecha, M. Therese, Sr.

    1982-01-01

    Background information and experimental procedures are provided for three lecture-demonstrations (involving hydrolysis of tetra-butyl chloride) illustrating: (1) common-ion or mass law effect; (2) effect of changing ionizing power of a solvent on a solvolysis reaction; and (3) collecting/plotting data to illustrate a first-order reaction.…

  6. Thermodynamic Analysis of Chemically Reacting Mixtures-Comparison of First and Second Order Models.

    PubMed

    Pekař, Miloslav

    2018-01-01

    Recently, a method based on non-equilibrium continuum thermodynamics which derives thermodynamically consistent reaction rate models together with thermodynamic constraints on their parameters was analyzed using a triangular reaction scheme. The scheme was kinetically of the first order. Here, the analysis is further developed for several first and second order schemes to gain a deeper insight into the thermodynamic consistency of rate equations and relationships between chemical thermodynamic and kinetics. It is shown that the thermodynamic constraints on the so-called proper rate coefficient are usually simple sign restrictions consistent with the supposed reaction directions. Constraints on the so-called coupling rate coefficients are more complex and weaker. This means more freedom in kinetic coupling between reaction steps in a scheme, i.e., in the kinetic effects of other reactions on the rate of some reaction in a reacting system. When compared with traditional mass-action rate equations, the method allows a reduction in the number of traditional rate constants to be evaluated from data, i.e., a reduction in the dimensionality of the parameter estimation problem. This is due to identifying relationships between mass-action rate constants (relationships which also include thermodynamic equilibrium constants) which have so far been unknown.

  7. Highly Accurate Analytical Approximate Solution to a Nonlinear Pseudo-Oscillator

    NASA Astrophysics Data System (ADS)

    Wu, Baisheng; Liu, Weijia; Lim, C. W.

    2017-07-01

    A second-order Newton method is presented to construct analytical approximate solutions to a nonlinear pseudo-oscillator in which the restoring force is inversely proportional to the dependent variable. The nonlinear equation is first expressed in a specific form, and it is then solved in two steps, a predictor and a corrector step. In each step, the harmonic balance method is used in an appropriate manner to obtain a set of linear algebraic equations. With only one simple second-order Newton iteration step, a short, explicit, and highly accurate analytical approximate solution can be derived. The approximate solutions are valid for all amplitudes of the pseudo-oscillator. Furthermore, the method incorporates second-order Taylor expansion in a natural way, and it is of significant faster convergence rate.

  8. Adsorption kinetics of NO on ordered mesoporous carbon (OMC) and cerium-containing OMC (Ce-OMC)

    NASA Astrophysics Data System (ADS)

    Chen, Jinghuan; Cao, Feifei; Chen, Songze; Ni, Mingjiang; Gao, Xiang; Cen, Kefa

    2014-10-01

    Ordered mesoporous carbon (OMC) and cerium-containing OMC (Ce-OMC) were prepared using evaporation-induced self-assembly (EISA) method and used to adsorb NO. N2 sorption, X-ray diffraction (XRD) and transmission electron microscopy (TEM) were used to confirm their structures. The results showed that the ordered and uniform structures were successfully synthesized and with the introduction of cerium pore properties were not significantly changed. The NO adsorption capacity of OMC was two times larger than that of activated carbon (AC). With the introduction of cerium both the adsorption capacity and the adsorption rate were improved. The effects of residence time and oxygen concentration on NO adsorption were also investigated. Oxygen played an important role in the NO adsorption (especially in the form of chemisorption) and residence time had small influence on the NO adsorption capacity. The NO adsorption kinetics was analyzed using pseudo-first-order, pseudo-second-order, Elovich equation and intraparticle diffusion models. The results indicated that the NO adsorption process can be divided into rapid adsorption period, slow adsorption period, and equilibrium adsorption period. The pseudo-second-order model was the most suitable model for NO adsorption on OMC and Ce-OMC. The rate controlling step was the intraparticle diffusion together with the adsorption reaction.

  9. First measurement of 30S+α resonant elastic scattering for the 30S(α ,p ) reaction rate

    NASA Astrophysics Data System (ADS)

    Kahl, D.; Yamaguchi, H.; Kubono, S.; Chen, A. A.; Parikh, A.; Binh, D. N.; Chen, J.; Cherubini, S.; Duy, N. N.; Hashimoto, T.; Hayakawa, S.; Iwasa, N.; Jung, H. S.; Kato, S.; Kwon, Y. K.; Nishimura, S.; Ota, S.; Setoodehnia, K.; Teranishi, T.; Tokieda, H.; Yamada, T.; Yun, C. C.; Zhang, L. Y.

    2018-01-01

    Background: Type I x-ray bursts are the most frequently observed thermonuclear explosions in the galaxy, resulting from thermonuclear runaway on the surface of an accreting neutron star. The 30S(α ,p ) reaction plays a critical role in burst models, yet insufficient experimental information is available to calculate a reliable, precise rate for this reaction. Purpose: Our measurement was conducted to search for states in 34Ar and determine their quantum properties. In particular, natural-parity states with large α -decay partial widths should dominate the stellar reaction rate. Method: We performed the first measurement of 30S+α resonant elastic scattering up to a center-of-mass energy of 5.5 MeV using a radioactive ion beam. The experiment utilized a thick gaseous active target system and silicon detector array in inverse kinematics. Results: We obtained an excitation function for 30S(α ,α ) near 150∘ in the center-of-mass frame. The experimental data were analyzed with R -matrix calculations, and we observed three new resonant patterns between 11.1 and 12.1 MeV, extracting their properties of resonance energy, widths, spin, and parity. Conclusions: We calculated the resonant thermonuclear reaction rate of 30S(α ,p ) based on all available experimental data of 34Ar and found an upper limit about one order of magnitude larger than a rate determined using a statistical model. The astrophysical impact of these two rates has been investigated through one-zone postprocessing type I x-ray burst calculations. We find that our new upper limit for the 30S(α ,p )33Cl rate significantly affects the predicted nuclear energy generation rate during the burst.

  10. One- and two-dimensional chemical exchange nuclear magnetic resonance studies of the creatine kinase catalyzed reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gober, J.R.

    1988-01-01

    The equilibrium chemical exchange dynamics of the creatine kinase enzyme system were studied by one- and two-dimensional {sup 31}P NMR techniques. Pseudo-first-order reaction rate constants were measured by the saturation transfer method under an array of experimental conditions of pH and temperature. Quantitative one-dimensional spectra were collected under the same conditions in order to calculate the forward and reverse reaction rates, the K{sub eq}, the hydrogen ion stoichiometry, and the standard thermodynamic functions. The pure absorption mode in four quadrant two-dimensional chemical exchange experiment was employed so that the complete kinetic matrix showing all of the chemical exchange process couldmore » be realized.« less

  11. Determination of redox reaction rates and orders by in situ liquid cell electron microscopy of Pd and Au solution growth.

    PubMed

    Sutter, Eli A; Sutter, Peter W

    2014-12-03

    In-situ liquid cell transmission and scanning transmission electron microscopy (TEM/STEM) experiments are important, as they provide direct insight into processes in liquids, such as solution growth of nanoparticles, among others. In liquid cell TEM/STEM redox reaction experiments, the hydrated electrons e(-)aq created by the electron beam are responsible for the reduction of metal-ion complexes. Here we investigate the rate equation of redox reactions involving reduction by e(-)aq generated by the electron beam during in situ liquid TEM/STEM. Specifically we consider the growth of Pd on Au seeds in aqueous solutions containing Pd-chloro complexes. From the quantification of the rate of Pd deposition at different electron beam currents and as a function of distance from a stationary, nanometer-sized exciting beam, we determine that the reaction is first order with respect to the concentration of hydrated electrons, [e(-)aq]. By comparing Pd- and Au-deposition, we further demonstrate that measurements of the local deposition rate on nanoparticles in the solution via real-time imaging can be used to measure not only [e(-)aq] but also the rate of reduction of a metal-ion complex to zerovalent metal atoms in solution.

  12. RhoA/ROCK Signaling Pathway Mediates Shuanghuanglian Injection-Induced Pseudo-allergic Reactions.

    PubMed

    Han, Jiayin; Zhao, Yong; Zhang, Yushi; Li, Chunying; Yi, Yan; Pan, Chen; Tian, Jingzhuo; Yang, Yifei; Cui, Hongyu; Wang, Lianmei; Liu, Suyan; Liu, Jing; Deng, Nuo; Liang, Aihua

    2018-01-01

    Background: Shuanghuanglian injection (SHLI) is a famous Chinese medicine used as an intravenous preparation for the treatment of acute respiratory tract infections. In the recent years, the immediate hypersensitivity reactions induced by SHLI have attracted broad attention. However, the mechanism involved in these reactions has not yet been elucidated. The present study aims to explore the characteristics of the immediate hypersensitivity reactions induced by SHLI and deciphers the role of the RhoA/ROCK signaling pathway in these reactions. Methods: SHLI-immunized mice or naive mice were intravenously injected (i.v.) with SHLI (600 mg/kg) once, and vascular leakage in the ears was evaluated. Passive cutaneous anaphylaxis test was conducted using sera collected from SHLI-immunized mice. Naive mice were administered (i.v.) with a single dose of 150, 300, or 600 mg/kg of SHLI, and vascular leakage, histamine release, and histopathological alterations in the ears, lungs, and intestines were tested. In vitro , human umbilical vein endothelial cell (HUVEC) monolayer was incubated with SHLI (0.05, 0.1, or 0.15 mg/mL), and the changes in endothelial permeability and cytoskeleton were observed. Western blot analysis was performed and ROCK inhibitor was employed to investigate the contribution of the RhoA/ROCK signaling pathway in SHLI-induced hypersensitivity reactions, both in HUVECs and in mice. Results: Our results indicate that SHLI was able to cause immediate dose-dependent vascular leakage, edema, and exudates in the ears, lungs, and intestines, and histamine release in mice. These were pseudo-allergic reactions, as SHLI-specific IgE was not elicited during sensitization. In addition, SHLI induced reorganization of actin cytoskeleton and disrupted the endothelial barrier. The administration of SHLI directly activated the RhoA/ROCK signaling pathway both in HUVECs and in the ears, lungs, and intestines of mice. Fasudil hydrochloride, a ROCK inhibitor, ameliorated the

  13. RhoA/ROCK Signaling Pathway Mediates Shuanghuanglian Injection-Induced Pseudo-allergic Reactions

    PubMed Central

    Han, Jiayin; Zhao, Yong; Zhang, Yushi; Li, Chunying; Yi, Yan; Pan, Chen; Tian, Jingzhuo; Yang, Yifei; Cui, Hongyu; Wang, Lianmei; Liu, Suyan; Liu, Jing; Deng, Nuo; Liang, Aihua

    2018-01-01

    Background: Shuanghuanglian injection (SHLI) is a famous Chinese medicine used as an intravenous preparation for the treatment of acute respiratory tract infections. In the recent years, the immediate hypersensitivity reactions induced by SHLI have attracted broad attention. However, the mechanism involved in these reactions has not yet been elucidated. The present study aims to explore the characteristics of the immediate hypersensitivity reactions induced by SHLI and deciphers the role of the RhoA/ROCK signaling pathway in these reactions. Methods: SHLI-immunized mice or naive mice were intravenously injected (i.v.) with SHLI (600 mg/kg) once, and vascular leakage in the ears was evaluated. Passive cutaneous anaphylaxis test was conducted using sera collected from SHLI-immunized mice. Naive mice were administered (i.v.) with a single dose of 150, 300, or 600 mg/kg of SHLI, and vascular leakage, histamine release, and histopathological alterations in the ears, lungs, and intestines were tested. In vitro, human umbilical vein endothelial cell (HUVEC) monolayer was incubated with SHLI (0.05, 0.1, or 0.15 mg/mL), and the changes in endothelial permeability and cytoskeleton were observed. Western blot analysis was performed and ROCK inhibitor was employed to investigate the contribution of the RhoA/ROCK signaling pathway in SHLI-induced hypersensitivity reactions, both in HUVECs and in mice. Results: Our results indicate that SHLI was able to cause immediate dose-dependent vascular leakage, edema, and exudates in the ears, lungs, and intestines, and histamine release in mice. These were pseudo-allergic reactions, as SHLI-specific IgE was not elicited during sensitization. In addition, SHLI induced reorganization of actin cytoskeleton and disrupted the endothelial barrier. The administration of SHLI directly activated the RhoA/ROCK signaling pathway both in HUVECs and in the ears, lungs, and intestines of mice. Fasudil hydrochloride, a ROCK inhibitor, ameliorated the

  14. Astrophysical Nuclear Reaction Rates in the Dense Metallic Environments

    NASA Astrophysics Data System (ADS)

    Kilic, Ali Ihsan

    2017-09-01

    Nuclear reaction rates can be enhanced by many orders of magnitude in dense and relatively cold astrophysical plasmas such as in white dwarfs, brown dwarfs, and giant planets. Similar conditions are also present in supernova explosions where the ignition conditions are vital for cosmological models. White dwarfs are compact objects that have both extremely high interior densities and very strong local magnetic fields. For the first time, a new formula has been developed to explain cross section and reaction rate quantities for light elements that includes not only the nuclear component but also the material dependence, magnetic field, and crystal structure dependency in dense metallic environments. I will present the impact of the developed formula on the cross section and reaction rates for light elements. This could have possible technological applications in energy production using nuclear fusion reactions.

  15. GROUND WATER ISSUE - CALCULATION AND USE OF FIRST-ORDER RATE CONSTANTS FOR MONITORED NATURAL ATTENUATION STUDIES

    EPA Science Inventory

    This issue paper explains when and how to apply first-order attenuation rate constant calculations in monitored natural attenuation (MNA) studies. First-order attenuation rate constant calculations can be an important tool for evaluating natural attenuation processes at ground-wa...

  16. Polyoxometalate oxidation of non-phenolic lignin subunits in water : effect of substrate structure on reaction kinetics

    Treesearch

    Tomoya Yokoyama; Hou-min Chang; Richard S. Reiner; Raja H. Atalla; Ira A. Weinstock; John F. Kadla

    2004-01-01

    The effect of lignin-biopolymer structure on the mechanism of its oxidative depolymerization by polyoxometalates (POMs) was investigated by reacting an equilibrated POM ensemble with a series of ring-substituted benzyl alcohols. Under anaerobic conditions in mixed water/methanol, observed pseudo-first order reaction rates (150°C) of 8.96 x 10–3 and 4.89 x 10–3 sec–1...

  17. Estimating reaction rate coefficients within a travel-time modeling framework.

    PubMed

    Gong, R; Lu, C; Wu, W-M; Cheng, H; Gu, B; Watson, D; Jardine, P M; Brooks, S C; Criddle, C S; Kitanidis, P K; Luo, J

    2011-01-01

    A generalized, efficient, and practical approach based on the travel-time modeling framework is developed to estimate in situ reaction rate coefficients for groundwater remediation in heterogeneous aquifers. The required information for this approach can be obtained by conducting tracer tests with injection of a mixture of conservative and reactive tracers and measurements of both breakthrough curves (BTCs). The conservative BTC is used to infer the travel-time distribution from the injection point to the observation point. For advection-dominant reactive transport with well-mixed reactive species and a constant travel-time distribution, the reactive BTC is obtained by integrating the solutions to advective-reactive transport over the entire travel-time distribution, and then is used in optimization to determine the in situ reaction rate coefficients. By directly working on the conservative and reactive BTCs, this approach avoids costly aquifer characterization and improves the estimation for transport in heterogeneous aquifers which may not be sufficiently described by traditional mechanistic transport models with constant transport parameters. Simplified schemes are proposed for reactive transport with zero-, first-, nth-order, and Michaelis-Menten reactions. The proposed approach is validated by a reactive transport case in a two-dimensional synthetic heterogeneous aquifer and a field-scale bioremediation experiment conducted at Oak Ridge, Tennessee. The field application indicates that ethanol degradation for U(VI)-bioremediation is better approximated by zero-order reaction kinetics than first-order reaction kinetics. Copyright © 2010 The Author(s). Journal compilation © 2010 National Ground Water Association.

  18. Estimating Reaction Rate Coefficients Within a Travel-Time Modeling Framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gong, R; Lu, C; Luo, Jian

    A generalized, efficient, and practical approach based on the travel-time modeling framework is developed to estimate in situ reaction rate coefficients for groundwater remediation in heterogeneous aquifers. The required information for this approach can be obtained by conducting tracer tests with injection of a mixture of conservative and reactive tracers and measurements of both breakthrough curves (BTCs). The conservative BTC is used to infer the travel-time distribution from the injection point to the observation point. For advection-dominant reactive transport with well-mixed reactive species and a constant travel-time distribution, the reactive BTC is obtained by integrating the solutions to advective-reactive transportmore » over the entire travel-time distribution, and then is used in optimization to determine the in situ reaction rate coefficients. By directly working on the conservative and reactive BTCs, this approach avoids costly aquifer characterization and improves the estimation for transport in heterogeneous aquifers which may not be sufficiently described by traditional mechanistic transport models with constant transport parameters. Simplified schemes are proposed for reactive transport with zero-, first-, nth-order, and Michaelis-Menten reactions. The proposed approach is validated by a reactive transport case in a two-dimensional synthetic heterogeneous aquifer and a field-scale bioremediation experiment conducted at Oak Ridge, Tennessee. The field application indicates that ethanol degradation for U(VI)-bioremediation is better approximated by zero-order reaction kinetics than first-order reaction kinetics.« less

  19. Determination of redox reaction rates and orders by in situ liquid cell electron microscopy of Pd and Au solution growth

    DOE PAGES

    Sutter, Eli A.; Sutter, Peter W.

    2014-11-19

    In-situ liquid cell transmission and scanning transmission electron microscopy (TEM/STEM) experiments are important as they provide direct insight into processes in liquids, such as solution growth of nanoparticles among others. In liquid cell TEM/STEM redox reaction experiments the hydrated electrons e⁻ aq created by the electron beam are responsible for the reduction of metal-ion complexes. Here we investigate the rate equation of redox reactions involving reduction by e⁻ aq generated by the electron beam during in-situ liquid TEM/STEM. Specifically we consider the growth of Pd on Au seeds in aqueous solutions containing Pd-chloro complexes. From the quantification of the ratemore » of Pd deposition at different electron beam currents and as a function of distance from a stationary, nanometer-sized exciting beam, we determine that the reaction is first order with respect to the concentration of hydrated electrons, [e⁻ aq]. In addition, by comparing Pd- and Au-deposition, we further demonstrate that measurements of the local deposition rate on nanoparticles in the solution via real-time imaging can be used to measure not only [e⁻ aq] but also the rate of reduction of a metal-ion complex to zero-valent metal atoms in solution.« less

  20. Accurate modeling of plasma acceleration with arbitrary order pseudo-spectral particle-in-cell methods

    DOE PAGES

    Jalas, S.; Dornmair, I.; Lehe, R.; ...

    2017-03-20

    Particle in Cell (PIC) simulations are a widely used tool for the investigation of both laser- and beam-driven plasma acceleration. It is a known issue that the beam quality can be artificially degraded by numerical Cherenkov radiation (NCR) resulting primarily from an incorrectly modeled dispersion relation. Pseudo-spectral solvers featuring infinite order stencils can strongly reduce NCR - or even suppress it - and are therefore well suited to correctly model the beam properties. For efficient parallelization of the PIC algorithm, however, localized solvers are inevitable. Arbitrary order pseudo-spectral methods provide this needed locality. Yet, these methods can again be pronemore » to NCR. Here in this paper, we show that acceptably low solver orders are sufficient to correctly model the physics of interest, while allowing for parallel computation by domain decomposition.« less

  1. The Rate Constant for the Reaction H + C2H5 at T = 295 - 150K

    NASA Technical Reports Server (NTRS)

    Pimentel, Andre S.; Payne, Walter A.; Nesbitt, Fred L.; Cody, Regina J.; Stief, Louis J.

    2004-01-01

    The reaction between the hydrogen atom and the ethyl (C2H3) radical is predicted by photochemical modeling to be the most important loss process for C2H5 radicals in the atmospheres of Jupiter and Saturn. This reaction is also one of the major sources for the methyl radicals in these atmospheres. These two simplest hydrocarbon radicals are the initial species for the synthesis of larger hydrocarbons. Previous measurements of the rate constant for the H + C2H5 reaction varied by a factor of five at room temperature, and some studies showed a dependence upon temperature while others showed no such dependence. In addition, the previous studies were at higher temperatures and generally higher pressures than that needed for use in planetary atmospheric models. The rate constant for the reaction H + C2H5 has been measured directly at T = 150, 202 and 295 K and at P = 1.0 Torr He for all temperatures and additionally at P = 0.5 and 2.0 Torr He at T = 202 K. The measurements were performed in a discharge - fast flow system. The decay of the C2H5 radical in the presence of excess hydrogen was monitored by low-energy electron impact mass spectrometry under pseudo-first order conditions. H atoms and C2H5 radicals were generated rapidly and simultaneously by the reaction of fluorine atoms with H2 and C2H6, respectively. The total rate constant was found to be temperature and pressure independent. The measured total rate constant at each temperature are: k(sub 1)(295K) = (1.02+/-0.24)x10(exp -10), k(sub 1)(202K) = (1.02+/-0.22)x10(exp -10) and k(sub 1)(150K) = (0.93+/-0.21)x10(exp -10), all in units of cu cm/molecule/s. The total rate constant derived from all the combined measurements is k(sub 1) = (l.03+/-0.17)x10(exp -10) cu cm/molecule/s. At room temperature our results are about a factor of two higher than the recommended rate constant and a factor of three lower than the most recently published study.

  2. Pseudo-Second-Order Calcium-Mediated Cryptosporidium parvum Oocyst Attachment to Environmental Biofilms

    PubMed Central

    Luo, Xia; Jedlicka, Sabrina

    2016-01-01

    ABSTRACT Cryptosporidium parvum oocysts are able to infect a wide range of mammals, including humans, via fecal-oral transmission. The remobilization of biofilm-associated C. parvum oocysts back into the water column by biofilm sloughing or bulk erosion poses a threat to public health and may be responsible for waterborne outbreaks; thus, the investigation of C. parvum attachment mechanisms to biofilms, particularly the physical and chemical factors controlling oocyst attachment to biofilms, is essential to predict the behavior of oocysts in the environment. In our study, biofilms were grown in rotating annular bioreactors using prefiltered stream water (0.2-μm retention) and rock biofilms (6-μm retention) until the mean biofilm thickness reached steady state. Oocyst deposition followed a calcium-mediated pseudo-second-order kinetic model. Kinetic parameters (i.e., initial oocyst deposition rate constant and total number of oocysts adhered to biofilms at equilibrium) from the model were then used to evaluate the impact of water conductivity on the attachment of oocysts to biofilms. Oocyst deposition was independent of solution ionic strength; instead, the presence of calcium enhanced oocyst attachment, as demonstrated by deposition tests. Calcium was identified as the predominant factor that bridges the carboxylic functional groups on biofilm and oocyst surfaces to cause attachment. The pseudo-second-order kinetic profile fit all experimental conditions, regardless of water chemistry and/or lighting conditions. IMPORTANCE The cation bridging model in our study provides new insights into the impact of calcium on the attachment of C. parvum oocysts to environmental biofilms. The kinetic parameters derived from the model could be further analyzed to elucidate the behavior of oocysts in commonly encountered complex aquatic systems, which will enable future innovations in parasite detection and treatment technologies to protect public health. PMID:27793825

  3. Pseudo-Second-Order Calcium-Mediated Cryptosporidium parvum Oocyst Attachment to Environmental Biofilms.

    PubMed

    Luo, Xia; Jedlicka, Sabrina; Jellison, Kristen

    2017-01-01

    Cryptosporidium parvum oocysts are able to infect a wide range of mammals, including humans, via fecal-oral transmission. The remobilization of biofilm-associated C. parvum oocysts back into the water column by biofilm sloughing or bulk erosion poses a threat to public health and may be responsible for waterborne outbreaks; thus, the investigation of C. parvum attachment mechanisms to biofilms, particularly the physical and chemical factors controlling oocyst attachment to biofilms, is essential to predict the behavior of oocysts in the environment. In our study, biofilms were grown in rotating annular bioreactors using prefiltered stream water (0.2-μm retention) and rock biofilms (6-μm retention) until the mean biofilm thickness reached steady state. Oocyst deposition followed a calcium-mediated pseudo-second-order kinetic model. Kinetic parameters (i.e., initial oocyst deposition rate constant and total number of oocysts adhered to biofilms at equilibrium) from the model were then used to evaluate the impact of water conductivity on the attachment of oocysts to biofilms. Oocyst deposition was independent of solution ionic strength; instead, the presence of calcium enhanced oocyst attachment, as demonstrated by deposition tests. Calcium was identified as the predominant factor that bridges the carboxylic functional groups on biofilm and oocyst surfaces to cause attachment. The pseudo-second-order kinetic profile fit all experimental conditions, regardless of water chemistry and/or lighting conditions. The cation bridging model in our study provides new insights into the impact of calcium on the attachment of C. parvum oocysts to environmental biofilms. The kinetic parameters derived from the model could be further analyzed to elucidate the behavior of oocysts in commonly encountered complex aquatic systems, which will enable future innovations in parasite detection and treatment technologies to protect public health. Copyright © 2016 American Society for

  4. Evaluation of the kinetic oxidation of aqueous volatile organic compounds by permanganate.

    PubMed

    Mahmoodlu, Mojtaba G; Hassanizadeh, S Majid; Hartog, Niels

    2014-07-01

    The use of permanganate solutions for in-situ chemical oxidation (ISCO) is a well-established groundwater remediation technology, particularly for targeting chlorinated ethenes. The kinetics of oxidation reactions is an important ISCO remediation design aspect that affects the efficiency and oxidant persistence. The overall rate of the ISCO reaction between oxidant and contaminant is typically described using a second-order kinetic model while the second-order rate constant is determined experimentally by means of a pseudo first order approach. However, earlier studies of chlorinated hydrocarbons have yielded a wide range of values for the second-order rate constants. Also, there is limited insight in the kinetics of permanganate reactions with fuel-derived groundwater contaminants such as toluene and ethanol. In this study, batch experiments were carried out to investigate and compare the oxidation kinetics of aqueous trichloroethylene (TCE), ethanol, and toluene in an aqueous potassium permanganate solution. The overall second-order rate constants were determined directly by fitting a second-order model to the data, instead of typically using the pseudo-first-order approach. The second-order reaction rate constants (M(-1) s(-1)) for TCE, toluene, and ethanol were 8.0×10(-1), 2.5×10(-4), and 6.5×10(-4), respectively. Results showed that the inappropriate use of the pseudo-first-order approach in several previous studies produced biased estimates of the second-order rate constants. In our study, this error was expressed as a function of the extent (P/N) in which the reactant concentrations deviated from the stoichiometric ratio of each oxidation reaction. The error associated with the inappropriate use of the pseudo-first-order approach is negatively correlated with the P/N ratio and reached up to 25% of the estimated second-order rate constant in some previous studies of TCE oxidation. Based on our results, a similar relation is valid for the other volatile

  5. Kinetics of Alcohol Dehydrogenase-Catalyzed Oxidation of Ethanol Followed by Visible Spectroscopy

    ERIC Educational Resources Information Center

    Bendinskas, Kestutis; DiJiacomo, Christopher; Krill, Allison; Vitz, Ed

    2005-01-01

    The effect of substrate concentration on the rate of enzymatic reaction was investigated and typical Michaelis-Mentin kinetics was observed during the first week. The first order reaction at relatively low concentrations of ethanol and the pseudo zero-order reaction at high concentrations of ethanol were emphasized.

  6. Toward efficiency in heterogeneous multispecies reactive transport modeling: A particle-tracking solution for first-order network reactions

    NASA Astrophysics Data System (ADS)

    Henri, Christopher; Fernàndez-Garcia, Daniel

    2015-04-01

    Modeling multi-species reactive transport in natural systems with strong heterogeneities and complex biochemical reactions is a major challenge for assessing groundwater polluted sites with organic and inorganic contaminants. A large variety of these contaminants react according to serial-parallel reaction networks commonly simplified by a combination of first-order kinetic reactions. In this context, a random-walk particle tracking method is presented. This method is capable of efficiently simulating the motion of particles affected by first-order network reactions in three-dimensional systems, which are represented by spatially variable physical and biochemical coefficients described at high resolution. The approach is based on the development of transition probabilities that describe the likelihood that particles belonging to a given species and location at a given time will be transformed into and moved to another species and location afterwards. These probabilities are derived from the solution matrix of the spatial moments governing equations. The method is fully coupled with reactions, free of numerical dispersion and overcomes the inherent numerical problems stemming from the incorporation of heterogeneities to reactive transport codes. In doing this, we demonstrate that the motion of particles follows a standard random walk with time-dependent effective retardation and dispersion parameters that depend on the initial and final chemical state of the particle. The behavior of effective parameters develops as a result of differential retardation effects among species. Moreover, explicit analytic solutions of the transition probability matrix and related particle motions are provided for serial reactions. An example of the effect of heterogeneity on the dechlorination of organic solvents in a three-dimensional random porous media shows that the power-law behavior typically observed in conservative tracers breakthrough curves can be largely compromised by the

  7. Toward efficiency in heterogeneous multispecies reactive transport modeling: A particle-tracking solution for first-order network reactions

    NASA Astrophysics Data System (ADS)

    Henri, Christopher V.; Fernàndez-Garcia, Daniel

    2014-09-01

    Modeling multispecies reactive transport in natural systems with strong heterogeneities and complex biochemical reactions is a major challenge for assessing groundwater polluted sites with organic and inorganic contaminants. A large variety of these contaminants react according to serial-parallel reaction networks commonly simplified by a combination of first-order kinetic reactions. In this context, a random-walk particle tracking method is presented. This method is capable of efficiently simulating the motion of particles affected by first-order network reactions in three-dimensional systems, which are represented by spatially variable physical and biochemical coefficients described at high resolution. The approach is based on the development of transition probabilities that describe the likelihood that particles belonging to a given species and location at a given time will be transformed into and moved to another species and location afterward. These probabilities are derived from the solution matrix of the spatial moments governing equations. The method is fully coupled with reactions, free of numerical dispersion and overcomes the inherent numerical problems stemming from the incorporation of heterogeneities to reactive transport codes. In doing this, we demonstrate that the motion of particles follows a standard random walk with time-dependent effective retardation and dispersion parameters that depend on the initial and final chemical state of the particle. The behavior of effective parameters develops as a result of differential retardation effects among species. Moreover, explicit analytic solutions of the transition probability matrix and related particle motions are provided for serial reactions. An example of the effect of heterogeneity on the dechlorination of organic solvents in a three-dimensional random porous media shows that the power-law behavior typically observed in conservative tracers breakthrough curves can be largely compromised by the

  8. Photocatalytic degradation of carbofuran by TiO2-coated activated carbon: Model for kinetic, electrical energy per order and economic analysis.

    PubMed

    Vishnuganth, M A; Remya, Neelancherry; Kumar, Mathava; Selvaraju, N

    2016-10-01

    The photocatalytic removal of carbofuran (CBF) from aqueous solution in the presence of granular activated carbon supported TiO2 (GAC-TiO2) catalyst was investigated under batch-mode experiments. The presence of GAC enhanced the photocatalytic efficiency of the TiO2 catalyst. Experiments were conducted at different concentrations of CBF to clarify the dependence of apparent rate constant (kapp) in the pseudo first-order kinetics on CBF photodegradation. The general relationship between the adsorption equilibrium constant (K) and reaction rate constant (kr) were explained by using the modified Langmuir-Hinshelwood (L-H) model. From the observed kinetics, it was observed that the surface reaction was the rate limiting step in the GAC-TiO2 catalyzed photodegradation of CBF. The values of K and kr for this pseudo first-order reaction were found to be 0.1942 L  mg(-1) and 1.51 mg L(-1) min(-1), respectively. In addition, the dependence of kapp on the half-life time was determined by calculating the electrical energy per order experimentally (EEO experimental) and also by modeling (EEO model). The batch-mode experimental outcomes revealed the possibility of 100% CBF removal (under optimized conditions and at an initial concentration of 50 mg L(-1) and 100 mg L(-1)) at a contact time of 90 min and 120 min, respectively. Both L-H kinetic model and EEO model fitted well with the batch-mode experimental data and also elucidated successfully the phenomena of photocatalytic degradation in the presence of GAC-TiO2 catalyst. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. A comparison of zero-order, first-order, and monod biotransformation models

    USGS Publications Warehouse

    Bekins, B.A.; Warren, E.; Godsy, E.M.

    1998-01-01

    Under some conditions, a first-order kinetic model is a poor representation of biodegradation in contaminated aquifers. Although it is well known that the assumption of first-order kinetics is valid only when substrate concentration, S, is much less than the half-saturation constant, K(s), this assumption is often made without verification of this condition. We present a formal error analysis showing that the relative error in the first-order approximation is S/K(S) and in the zero-order approximation the error is K(s)/S. We then examine the problems that arise when the first-order approximation is used outside the range for which it is valid. A series of numerical simulations comparing results of first- and zero-order rate approximations to Monod kinetics for a real data set illustrates that if concentrations observed in the field are higher than K(s), it may better to model degradation using a zero-order rate expression. Compared with Monod kinetics, extrapolation of a first-order rate to lower concentrations under-predicts the biotransformation potential, while extrapolation to higher concentrations may grossly over-predict the transformation rate. A summary of solubilities and Monod parameters for aerobic benzene, toluene, and xylene (BTX) degradation shows that the a priori assumption of first-order degradation kinetics at sites contaminated with these compounds is not valid. In particular, out of six published values of KS for toluene, only one is greater than 2 mg/L, indicating that when toluene is present in concentrations greater than about a part per million, the assumption of first-order kinetics may be invalid. Finally, we apply an existing analytical solution for steady-state one-dimensional advective transport with Monod degradation kinetics to a field data set.A formal error analysis is presented showing that the relative error in the first-order approximation is S/KS and in the zero-order approximation the error is KS/S where S is the substrate

  10. Hydrolysis rate constants and activation parameters for phosphate- and phosphonate-bridged phthalonitrile monomers under acid, neutral and alkali conditions.

    PubMed

    Belsky, Kirill S; Sulimov, Artem V; Bulgakov, Boris A; Babkin, Alexandr V; Kepman, Alexey V

    2017-08-01

    Hydrolysis data for Bis(3-(3,4-dicyanophenoxy)phenyl) phenyl phosphate and Bis(3-(3,4-dicyanophenoxy)phenyl) phenylphosphonate under pH 4, 7 and 10 are presented. Conversion/time plots collected by HPLC analysis, typical chromatograms and NMR spectra of the reactions products are given. Pseudo-first order rate constants are determined for both substrates at 25, 50 and 80 °C. Activation parameters were calculated from Arrhenius equation.

  11. Triple-α reaction rate constrained by stellar evolution models

    NASA Astrophysics Data System (ADS)

    Suda, Takuma; Hirschi, Raphael; Fujimoto, Masayuki Y.

    2012-11-01

    We investigate the quantitative constraint on the triple-α reaction rate based on stellar evolution theory, motivated by the recent significant revision of the rate proposed by nuclear physics calculations. Targeted stellar models were computed in order to investigate the impact of that rate in the mass range of 0.8<=M/Msolar<=25 and in the metallicity range between Z = 0 and Z = 0.02. The revised rate has a significant impact on the evolution of low-and intermediate-mass stars, while its influence on the evolution of massive stars (M > 10Msolar) is minimal. We find that employing the revised rate suppresses helium shell flashes on AGB phase for stars in the initial mass range 0.8<=M/Msolar<=6, which is contradictory to what is observed. The absence of helium shell flashes is due to the weak temperature dependence of the revised triple-α reaction cross section at the temperature involved. In our models, it is suggested that the temperature dependence of the cross section should have at least ν > 10 at T = 1-1.2×108K where the cross section is proportional to Tν. We also derive the helium ignition curve to estimate the maximum cross section to retain the low-mass first red giants. The semi-analytically derived ignition curves suggest that the reaction rate should be less than ~ 10-29 cm6 s-1 mole-2 at ~ 107.8 K, which corresponds to about three orders of magnitude larger than that of the NACRE compilation.

  12. Investigation and kinetic evaluation of the reactions of hydroxymethylfurfural with amino and thiol groups of amino acids.

    PubMed

    Hamzalıoğlu, Aytül; Gökmen, Vural

    2018-02-01

    In this study, reactions of hydroxymethylfurfural (HMF) with selected amino acids (arginine, cysteine and lysine) were investigated in HMF-amino acid (high moisture) and Coffee-amino acid (low moisture) model systems at 5, 25 and 50°C. The results revealed that HMF reacted efficiently and effectively with amino acids in both high and low moisture model systems. High-resolution mass spectrometry (HRMS) analyses of the reaction mixtures confirmed the formations of Michael adduct and Schiff base of HMF with amino acids. Calculated pseudo-first order reaction rate constants were in the following order; k Cysteine >k Arginine >k Lysine for high moisture model systems. Comparing to these rate constants, the k Cysteine decreased whereas, k Arginine and k Lysine increased under the low moisture conditions of Coffee-amino acid model systems. The temperature dependence of the rate constants was found to obey the Arrhenius law in a temperature range of 5-50°C under both low and high moisture conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Low rank approach to computing first and higher order derivatives using automatic differentiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reed, J. A.; Abdel-Khalik, H. S.; Utke, J.

    2012-07-01

    This manuscript outlines a new approach for increasing the efficiency of applying automatic differentiation (AD) to large scale computational models. By using the principles of the Efficient Subspace Method (ESM), low rank approximations of the derivatives for first and higher orders can be calculated using minimized computational resources. The output obtained from nuclear reactor calculations typically has a much smaller numerical rank compared to the number of inputs and outputs. This rank deficiency can be exploited to reduce the number of derivatives that need to be calculated using AD. The effective rank can be determined according to ESM by computingmore » derivatives with AD at random inputs. Reduced or pseudo variables are then defined and new derivatives are calculated with respect to the pseudo variables. Two different AD packages are used: OpenAD and Rapsodia. OpenAD is used to determine the effective rank and the subspace that contains the derivatives. Rapsodia is then used to calculate derivatives with respect to the pseudo variables for the desired order. The overall approach is applied to two simple problems and to MATWS, a safety code for sodium cooled reactors. (authors)« less

  14. Quasi-phases and pseudo-transitions in one-dimensional models with nearest neighbor interactions

    NASA Astrophysics Data System (ADS)

    de Souza, S. M.; Rojas, Onofre

    2018-01-01

    There are some particular one-dimensional models, such as the Ising-Heisenberg spin models with a variety of chain structures, which exhibit unexpected behaviors quite similar to the first and second order phase transition, which could be confused naively with an authentic phase transition. Through the analysis of the first derivative of free energy, such as entropy, magnetization, and internal energy, a "sudden" jump that closely resembles a first-order phase transition at finite temperature occurs. However, by analyzing the second derivative of free energy, such as specific heat and magnetic susceptibility at finite temperature, it behaves quite similarly to a second-order phase transition exhibiting an astonishingly sharp and fine peak. The correlation length also confirms the evidence of this pseudo-transition temperature, where a sharp peak occurs at the pseudo-critical temperature. We also present the necessary conditions for the emergence of these quasi-phases and pseudo-transitions.

  15. Reaction of atomic bromine with acetylene and loss rate of atmospheric acetylene due to reaction with OH, Cl, O, and Br

    NASA Technical Reports Server (NTRS)

    Payne, W. A.; Nava, D. F.; Brunning, J.; Stief, L. J.

    1986-01-01

    The first-order, diffusion, and bimolecular rate constants for the reaction Br + C2H2 yields C2H3Br are evaluated. The rate constants are measured at 210, 248, 298, and 393 K and at pressures between 15-100 torr Ar using flash photolysis combined with time-resolved detection of atomic bromine via Br resonance radiation. It is observed that the reaction is not affected by pressure or temperature and the bimolecular constant = (4.0 + or - 0.8) x 10 to the -15th cu cm/sec with an error of two standard deviations. The C2H2 + Br reaction rates are compared with reactions of C2H2 with Cl, OH, NH2, and H. The loss rates for atmospheric C2H2 for reactions with OH, Cl, O, and Br are calculated as a function of altitude.

  16. [Preparation of Coated CMC-Fe0 Using Rheological Phase Reaction Method and Research on Degradation of TCE in Water].

    PubMed

    Fan, Wen-jing; Cheng, Yue; Yu, Shu-zhen; Fan, Xiao-feng

    2015-06-01

    The coated nanoscale zero-valent iron (coated CMC-Fe0) was synthesized with cheap and environment friendly CMC as the coating agent using rheological phase reaction. The sample was characterized by means of XRD, SEM, TEM and N2 adsorption-stripping and used to study reductive dechlorination of TCE. The experimental results indicated that the removal rate of TCE was about 100% when the CMC-Fe0 dosage was 6 g x L(-1), the initial TCE concentration was 5 mg x L(-1) and the reaction time was 40 h. The TCE degradation reaction of coated CMC-Fe0 followed a pseudo-first-order kinetic model. Finally, the product could be simply recovered.

  17. Biotransformation of trace organic chemicals during groundwater recharge: How useful are first-order rate constants?

    PubMed

    Regnery, J; Wing, A D; Alidina, M; Drewes, J E

    2015-08-01

    This study developed relationships between the attenuation of emerging trace organic chemicals (TOrC) during managed aquifer recharge (MAR) as a function of retention time, system characteristics, and operating conditions using controlled laboratory-scale soil column experiments simulating MAR. The results revealed that MAR performance in terms of TOrC attenuation is primarily determined by key environmental parameters (i.e., redox, primary substrate). Soil columns with suboxic and anoxic conditions performed poorly (i.e., less than 30% attenuation of moderately degradable TOrC) in comparison to oxic conditions (on average between 70-100% attenuation for the same compounds) within a residence time of three days. Given this dependency on redox conditions, it was investigated if key parameter-dependent rate constants are more suitable for contaminant transport modeling to properly capture the dynamic TOrC attenuation under field-scale conditions. Laboratory-derived first-order removal kinetics were determined for 19 TOrC under three different redox conditions and rate constants were applied to MAR field data. Our findings suggest that simplified first-order rate constants will most likely not provide any meaningful results if the target compounds exhibit redox dependent biotransformation behavior or if the intention is to exactly capture the decline in concentration over time and distance at field-scale MAR. However, if the intention is to calculate the percent removal after an extended time period and subsurface travel distance, simplified first-order rate constants seem to be sufficient to provide a first estimate on TOrC attenuation during MAR. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Pseudo-capacitor device for aqueous electrolytes

    DOEpatents

    Prakash, Jai; Thackeray, Michael M.; Dees, Dennis W.; Vissers, Donald R.; Myles, Kevin M.

    1998-01-01

    A pseudo-capacitor having a high energy storage capacity develops a double layer capacitance as well as a Faradaic or battery-like redox reaction, also referred to as pseudo-capacitance. The Faradaic reaction gives rise to a capacitance much greater than that of the typical ruthenate oxide ultracapacitor which develops only charge separation-based double layer capacitance. The capacitor employs a lead and/or bismuth/ruthenate and/or iridium system having the formula A.sub.2 ›B.sub.2-x Pb.sub.x !O.sub.7-y, where A=Pb, Bi, and B=Ru, Ir, and Opseudo-capacitance, affords high energy/power density in the pseudo-capacitor. The amount of expensive ruthenate and iridium can be substantially reduced in the pseudo-capacitor by increasing the lead content while improving energy storage capacity.

  19. Pseudo-capacitor device for aqueous electrolytes

    DOEpatents

    Prakash, J.; Thackeray, M.M.; Dees, D.W.; Vissers, D.R.; Myles, K.M.

    1998-11-24

    A pseudo-capacitor having a high energy storage capacity develops a double layer capacitance as well as a Faradaic or battery-like redox reaction, also referred to as pseudo-capacitance. The Faradaic reaction gives rise to a capacitance much greater than that of the typical ruthenate oxide ultracapacitor which develops only charge separation-based double layer capacitance. The capacitor employs a lead and/or bismuth/ruthenate and/or iridium system having the formula A{sub 2}[B{sub 2{minus}x}Pb{sub x}]O{sub 7{minus}y}, where A=Pb, Bi, and B=Ru, Ir, and Opseudo-capacitance, affords high energy/power density in the pseudo-capacitor. The amount of expensive ruthenate and iridium can be substantially reduced in the pseudo-capacitor by increasing the lead content while improving energy storage capacity. 8 figs.

  20. General solution of the chemical master equation and modality of marginal distributions for hierarchic first-order reaction networks.

    PubMed

    Reis, Matthias; Kromer, Justus A; Klipp, Edda

    2018-01-20

    Multimodality is a phenomenon which complicates the analysis of statistical data based exclusively on mean and variance. Here, we present criteria for multimodality in hierarchic first-order reaction networks, consisting of catalytic and splitting reactions. Those networks are characterized by independent and dependent subnetworks. First, we prove the general solvability of the Chemical Master Equation (CME) for this type of reaction network and thereby extend the class of solvable CME's. Our general solution is analytical in the sense that it allows for a detailed analysis of its statistical properties. Given Poisson/deterministic initial conditions, we then prove the independent species to be Poisson/binomially distributed, while the dependent species exhibit generalized Poisson/Khatri Type B distributions. Generalized Poisson/Khatri Type B distributions are multimodal for an appropriate choice of parameters. We illustrate our criteria for multimodality by several basic models, as well as the well-known two-stage transcription-translation network and Bateman's model from nuclear physics. For both examples, multimodality was previously not reported.

  1. Applying constraints on model-based methods: Estimation of rate constants in a second order consecutive reaction

    NASA Astrophysics Data System (ADS)

    Kompany-Zareh, Mohsen; Khoshkam, Maryam

    2013-02-01

    This paper describes estimation of reaction rate constants and pure ultraviolet/visible (UV-vis) spectra of the component involved in a second order consecutive reaction between Ortho-Amino benzoeic acid (o-ABA) and Diazoniom ions (DIAZO), with one intermediate. In the described system, o-ABA was not absorbing in the visible region of interest and thus, closure rank deficiency problem did not exist. Concentration profiles were determined by solving differential equations of the corresponding kinetic model. In that sense, three types of model-based procedures were applied to estimate the rate constants of the kinetic system, according to Levenberg/Marquardt (NGL/M) algorithm. Original data-based, Score-based and concentration-based objective functions were included in these nonlinear fitting procedures. Results showed that when there is error in initial concentrations, accuracy of estimated rate constants strongly depends on the type of applied objective function in fitting procedure. Moreover, flexibility in application of different constraints and optimization of the initial concentrations estimation during the fitting procedure were investigated. Results showed a considerable decrease in ambiguity of obtained parameters by applying appropriate constraints and adjustable initial concentrations of reagents.

  2. Three-dimensional cross-linked carbon network wrapped with ordered polyaniline nanowires for high-performance pseudo-supercapacitors

    NASA Astrophysics Data System (ADS)

    Hu, Huan; Liu, Shuwu; Hanif, Muddasir; Chen, Shuiliang; Hou, Haoqing

    2014-12-01

    The polyaniline (PANI)-based pseudo-supercapacitor has been extensively studied due to its good conductivity, ease of synthesis, low-cost monomer, tunable properties and remarkable specific capacitance. In this work, a three-dimensional cross-linked carbon network (3D-CCN) was used as a contact-resistance-free substrate for PANI-based pseudo-supercapacitors. The ordered PANI nanowires (PaNWs) were grown on the 3D-CCN to form PaNWs/3D-CCN composites by in-situ polymerization. The PaNWs/3D-CCN composites exhibited a specific capacitance (Cs) of 1191.8 F g-1 at a current density of 0.5 A g-1 and a superior rate capability with 66.4% capacitance retention at 100.0 A g-1. The high specific capacitance is attributed to the thin PaNW coating and the spaced PANI nanowire array, which ensure a higher utilization of PANI due to the ease of diffusion of protons through/on the PANI nanowires. In addition, the unique 3D-CCN was used as a high-conductivity platform (or skeleton) with no contact resistance for fast electron transfer and facile charge transport within the composites. Therefore, the binder-free composites can process rapid gains or losses of electrons and ions, even at a high current density. As a result, the specific capacitance and rate capability of our composites are remarkably higher than those of other PANI composites.

  3. Spectroscopic and kinetic studies of photochemical reaction of magnesium tetraphenylporphyrin with oxygen.

    PubMed

    Zhang, Jianbin; Zhang, Pengyan; Zhang, Zhengfu; Wei, Xionghui

    2009-05-07

    Magnesium tetraphenylporphyrin (MgTPP) was synthesized from meso-tetraphenylporphyrin (H(2)TPP) in N,N-dimethylformamide (DMF). The photochemical properties of MgTPP in the presence of oxygen were investigated in dichloromethane (CH(2)Cl(2)) by conventional fluorescence, UV-vis, (1)H NMR, MALDI-TOF-MS, FTIR, and XPS spectroscopic techniques. Spectral analyses showed that under irradiation, MgTPP molecules reacted with O(2) molecules, and a stable 1:1 adduct was produced. During the photochemical reaction process, one oxygen molecule was bound to the pyrrolenine nitrogens in the MgTPP molecule, and the characteristic N-O bonds were identified using the FTIR and XPS techniques. The kinetics of the photochemical reaction of MgTPP with O(2) has been studied in an oxygen-saturated solution. Under irradiation conditions, the experimental rate follows a pseudo-first-order reaction for MgTPP, having a half-life from 40 to 130 min under various irradiation intensities. The kinetic rate constant of photochemical reaction of MgTPP with O(2) showed a linear dependence.

  4. Theory of First Order Chemical Kinetics at the Critical Point of Solution.

    PubMed

    Baird, James K; Lang, Joshua R

    2017-10-26

    Liquid mixtures, which have a phase diagram exhibiting a miscibility gap ending in a critical point of solution, have been used as solvents for chemical reactions. The reaction rate in the forward direction has often been observed to slow down as a function of temperature in the critical region. Theories based upon the Gibbs free energy of reaction as the driving force for chemical change have been invoked to explain this behavior. With the assumption that the reaction is proceeding under relaxation conditions, these theories expand the free energy in a Taylor series about the position of equilibrium. Since the free energy is zero at equilibrium, the leading term in the Taylor series is proportional to the first derivative of the free energy with respect to the extent of reaction. To analyze the critical behavior of this derivative, the theories exploit the principle of critical point isomorphism, which is thought to govern all critical phenomena. They find that the derivative goes to zero in the critical region, which accounts for the slowing down observed in the reaction rate. As has been pointed out, however, most experimental rate investigations have been carried out under irreversible conditions as opposed to relaxation conditions [Shen et al. J. Phys. Chem. A 2015, 119, 8784-8791]. Below, we consider a reaction governed by first order kinetics and invoke transition state theory to take into account the irreversible conditions. We express the apparent activation energy in terms of thermodynamic derivatives evaluated under standard conditions as well as the pseudoequilibrium conditions associated with the reactant and the activated complex. We show that these derivatives approach infinity in the critical region. The apparent activation energy follows this behavior, and its divergence accounts for the slowing down of the reaction rate.

  5. First-order inflation. [in cosmology

    NASA Technical Reports Server (NTRS)

    Turner, Michael S.

    1992-01-01

    I discuss the most recent model of inflation. In first-order inflation the inflationary epoch is associated with a first-order phase transition, with the most likely candidate being GUT symmetry breaking. The transition from the false-vacuum inflationary phase to the true-vacuum radiation-dominated phase proceeds through the nucleation and percolation of true-vacuum bubbles. The first successful and simplest model of first-order inflation, extended inflation, is discussed in some detail: evolution of the cosmic-scale factor, reheating, density perturbations, and the production of gravitational waves both from quantum fluctuations and bubble collisions. Particular attention is paid to the most critical issue in any model of first-order inflation: the requirements on the nucleation rate to ensure a graceful transition from the inflationary phase to the radiation-dominated phase.

  6. First-order reactant in homogeneous turbulence before the final period of decay. [contaminant fluctuations in chemical reaction

    NASA Technical Reports Server (NTRS)

    Kumar, P.; Patel, S. R.

    1974-01-01

    A method is described for studying theoretically the concentration fluctuations of a dilute contaminate undergoing a first-order chemical reaction. The method is based on Deissler's (1958) theory for homogeneous turbulence for times before the final period, and it follows the approach used by Loeffler and Deissler (1961) to study temperature fluctuations in homogeneous turbulence. Four-point correlation equations are obtained; it is assumed that terms containing fifth-order correlation are very small in comparison with those containing fourth-order correlations, and can therefore be neglected. A spectrum equation is obtained in a form which can be solved numerically, yielding the decay law for the concentration fluctuations in homogeneous turbulence for the period much before the final period of decay.

  7. State-Dependent Pseudo-Linear Filter for Spacecraft Attitude and Rate Estimation

    NASA Technical Reports Server (NTRS)

    Bar-Itzhack, Itzhack Y.; Harman, Richard R.

    2001-01-01

    This paper presents the development and performance of a special algorithm for estimating the attitude and angular rate of a spacecraft. The algorithm is a pseudo-linear Kalman filter, which is an ordinary linear Kalman filter that operates on a linear model whose matrices are current state estimate dependent. The nonlinear rotational dynamics equation of the spacecraft is presented in the state space as a state-dependent linear system. Two types of measurements are considered. One type is a measurement of the quaternion of rotation, which is obtained from a newly introduced star tracker based apparatus. The other type of measurement is that of vectors, which permits the use of a variety of vector measuring sensors like sun sensors and magnetometers. While quaternion measurements are related linearly to the state vector, vector measurements constitute a nonlinear function of the state vector. Therefore, in this paper, a state-dependent linear measurement equation is developed for the vector measurement case. The state-dependent pseudo linear filter is applied to simulated spacecraft rotations and adequate estimates of the spacecraft attitude and rate are obtained for the case of quaternion measurements as well as of vector measurements.

  8. Reactions and reaction rates in the regional aquifer beneath the Pajarito Plateau, north-central New Mexico, USA

    NASA Astrophysics Data System (ADS)

    Hereford, Anne G.; Keating, Elizabeth H.; Guthrie, George D.; Zhu, Chen

    2007-05-01

    Reactions and reaction rates within aquifers are fundamental components of critical hydrological processes. However, reactions simulated in laboratory experiments typically demonstrate rates that are much faster than those observed in the field. Therefore, it is necessary to conduct more reaction rate analyses in natural settings. This study of geochemical reactions in the regional aquifer in the Pajarito Plateau near Los Alamos, New Mexico combines modeling with petrographic assessment to further knowledge and understanding of complex natural hydrologic systems. Groundwater geochemistry shows marked evolution along assumed flow paths. The flow path chosen for this study was evaluated using inverse mass balance modeling to calculate the mass transfer. X-ray diffraction and field emission gun scanning electron microscopy were used to identify possible reactants and products. Considering the mineralogy of the aquifer and saturation indices for the regional water refined initial interpretations. Calculations yielded dissolution rates for plagioclase on the order of 10-15 mol s-1 m-2 and for K-feldspar on the order of 10-17 mol s-1 m-2, orders of magnitude slower than laboratory rates. While these rates agree with other aquifer studies, they must be considered in the light of the uncertainty associated with geometric surface area estimates, 14C ages, and aquifer properties.

  9. Calibrating reaction rates for the CREST model

    NASA Astrophysics Data System (ADS)

    Handley, Caroline A.; Christie, Michael A.

    2017-01-01

    The CREST reactive-burn model uses entropy-dependent reaction rates that, until now, have been manually tuned to fit shock-initiation and detonation data in hydrocode simulations. This paper describes the initial development of an automatic method for calibrating CREST reaction-rate coefficients, using particle swarm optimisation. The automatic method is applied to EDC32, to help develop the first CREST model for this conventional high explosive.

  10. Photooxidative removal of the herbicide Acid Blue 9 in the presence of hydrogen peroxide: modeling of the reaction for evaluation of electrical energy per order (E EO).

    PubMed

    Khataee, Ali R; Khataee, Hamid R

    2008-09-01

    The present work deals with photooxidative removal of the herbicide, Acid Blue 9 (AB9), in water in the presence of hydrogen peroxide (H2O2) under UV light illumination (30 W). The influence of the basic operational parameters such as amount of H2O2, irradiation time and initial concentration of AB9 on the photodegradation efficiency of the herbicide was investigated. The degradation rate of AB9 was not appreciably high when the photolysis was carried out in the absence of H2O2 and it was negligible in the absence of UV light. The photooxidative removal of the herbicide was found to follow pseudo-first-order kinetic, and hence the figure-of-merit electrical energy per order (E Eo) was considered appropriate for estimating the electrical energy efficiency. A mathematical relation between the apparent reaction rate constant and H2O2 used was applied for prediction of the electricity consumption in the photooxidative removal of AB9. The results indicated that this kinetic model, based on the initial rates of degradation, provided good prediction of the E Eo values for a variety of conditions. The results also indicated that the UV/H2O2 process was appropriate as the effective treatment method for removal of AB9 from the contaminated wastewater.

  11. Nitroxyl Radical plus Hydroxylamine Pseudo Self-Exchange Reactions: Tunneling in Hydrogen Atom Transfer

    PubMed Central

    Wu, Adam; Mader, Elizabeth A.; Datta, Ayan; Hrovat, David A.; Borden, Weston Thatcher; Mayer, James M.

    2009-01-01

    phenyl groups make the last of these reactions several orders of magnitude faster than the first two. By inference, the calculations also suggest why tunneling appears to be more important in the self-exchange reactions of dialkylhydroxylamines than of arylhydroxylamines. PMID:19618933

  12. Graphene Facilitated Removal of Labetalol in Laccase-ABTS System: Reaction Efficiency, Pathways and Mechanism

    PubMed Central

    Dong, Shipeng; Xiao, Huifang; Huang, Qingguo; Zhang, Jian; Mao, Liang; Gao, Shixiang

    2016-01-01

    The widespread occurrence of the beta-blocker labetalol causes environmental health concern. Enzymatic reactions are highly efficient and specific offering biochemical transformation of trace contaminants with short reaction time and little to none energy consumption. Our experiments indicate that labetalol can be effectively transformed by laccase-catalyzed reaction using 2, 2-Azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) as a mediator, while no significant removal of labetalol can be achieved in the absence of ABTS. A total of three products were identified. It is interesting that the presence of graphene greatly increased the reaction rate while not changed the products. In the presence of 100 μg/L graphene, the pseudo-first-order reaction rate constant was increased ~50 times. We found that the enhancement of graphene is probably attributed to the formation and releasing of ABTS2+ which has a much greater reactivity towards labetalol when graphene is present. This study provides fundamental information for laccase-ABTS mediated labetalol reactions and the effect of graphene, which could eventually lead to development of novel methods to control beta-blocker contamination. PMID:26891761

  13. TSCAN: Pseudo-time reconstruction and evaluation in single-cell RNA-seq analysis

    PubMed Central

    Ji, Zhicheng; Ji, Hongkai

    2016-01-01

    When analyzing single-cell RNA-seq data, constructing a pseudo-temporal path to order cells based on the gradual transition of their transcriptomes is a useful way to study gene expression dynamics in a heterogeneous cell population. Currently, a limited number of computational tools are available for this task, and quantitative methods for comparing different tools are lacking. Tools for Single Cell Analysis (TSCAN) is a software tool developed to better support in silico pseudo-Time reconstruction in Single-Cell RNA-seq ANalysis. TSCAN uses a cluster-based minimum spanning tree (MST) approach to order cells. Cells are first grouped into clusters and an MST is then constructed to connect cluster centers. Pseudo-time is obtained by projecting each cell onto the tree, and the ordered sequence of cells can be used to study dynamic changes of gene expression along the pseudo-time. Clustering cells before MST construction reduces the complexity of the tree space. This often leads to improved cell ordering. It also allows users to conveniently adjust the ordering based on prior knowledge. TSCAN has a graphical user interface (GUI) to support data visualization and user interaction. Furthermore, quantitative measures are developed to objectively evaluate and compare different pseudo-time reconstruction methods. TSCAN is available at https://github.com/zji90/TSCAN and as a Bioconductor package. PMID:27179027

  14. Experimental and theoretical study of the gas phase reaction of ethynyl radical with methane (HCC+CH 4)

    NASA Astrophysics Data System (ADS)

    Ceursters, Benny; Thi Nguyen, Hue Minh; Peeters, Jozef; Tho Nguyen, Minh

    2000-10-01

    Absolute rate coefficients of the reaction of ethynyl radical with methane were measured for the first time at higher temperatures by a pulsed laser photolysis/chemiluminescence (PLP/CL) technique. Ethynyl radicals (HCC) radicals were generated pulsewise upon excimer laser photodissociation of acetylene at 193 nm and pseudo-first-order exponential decays of thermalized HCC were monitored in real-time by the CH( A2Δ → X2Π ) chemiluminescence produced by their reaction with O 2. The rate coefficients k(HCC+CH 4), over 295⩽T ( K)<800 , exhibit strong non-Arrhenius behaviour, being k(T)=1.39×10 -18T 2.34±0.40exp[(380±180) K/T] cm3 molecule-1 s-1. Calculations at the CCSD(T)/aug-cc-pvTZ level reveal that the direct H-abstraction yielding HCCH+CH 3 has the lowest energy barrier of about 10 kJ mol -1.

  15. Atmospheric chemistry of (Z)-CF3CH═CHCF3: OH radical reaction rate coefficient and global warming potential.

    PubMed

    Baasandorj, Munkhbayar; Ravishankara, A R; Burkholder, James B

    2011-09-29

    Rate coefficients, k, for the gas-phase reaction of the OH radical with (Z)-CF(3)CH═CHCF(3) (cis-1,1,1,4,4,4-hexafluoro-2-butene) were measured under pseudo-first-order conditions in OH using pulsed laser photolysis (PLP) to produce OH and laser-induced fluorescence (LIF) to detect it. Rate coefficients were measured over a range of temperatures (212-374 K) and bath gas pressures (20-200 Torr; He, N(2)) and found to be independent of pressure over this range of conditions. The rate coefficient has a non-Arrhenius behavior that is well-described by the expression k(1)(T) = (5.73 ± 0.60) × 10(-19) × T(2) × exp[(678 ± 10)/T] cm(3) molecule(-1) s(-1) where k(1)(296 K) was measured to be (4.91 ± 0.50) × 10(-13) cm(3) molecule(-1) s(-1) and the uncertainties are at the 2σ level and include estimated systematic errors. Rate coefficients for the analogous OD radical reaction were determined over a range of temperatures (262-374 K) at 100 Torr (He) to be k(2)(T) = (4.81 ± 0.20) × 10(-19) × T(2) × exp[(776 ± 15)/T], with k(2)(296 K) = (5.73 ± 0.50) × 10(-13) cm(3) molecule(-1) s(-1). OH radical rate coefficients were also measured at 296, 345, and 375 K using a relative rate technique and found to be in good agreement with the PLP-LIF results. A room-temperature rate coefficient for the O(3) + (Z)-CF(3)CH═CHCF(3) reaction was measured using an absolute method with O(3) in excess to be <6 × 10(-21) cm(3) molecule(-1) s(-1). The atmospheric lifetime of (Z)-CF(3)CH═CHCF(3) due to loss by OH reaction was estimated to be ~20 days. Infrared absorption spectra of (Z)-CF(3)CH═CHCF(3) measured in this work were used to determine a (Z)-CF(3)CH═CHCF(3) global warming potential (GWP) of ~9 for the 100 year time horizon. A comparison of the OH reactivity of (Z)-CF(3)CH═CHCF(3) with other unsaturated fluorinated compounds is presented.

  16. Reaction time for trimolecular reactions in compartment-based reaction-diffusion models

    NASA Astrophysics Data System (ADS)

    Li, Fei; Chen, Minghan; Erban, Radek; Cao, Yang

    2018-05-01

    Trimolecular reaction models are investigated in the compartment-based (lattice-based) framework for stochastic reaction-diffusion modeling. The formulae for the first collision time and the mean reaction time are derived for the case where three molecules are present in the solution under periodic boundary conditions. For the case of reflecting boundary conditions, similar formulae are obtained using a computer-assisted approach. The accuracy of these formulae is further verified through comparison with numerical results. The presented derivation is based on the first passage time analysis of Montroll [J. Math. Phys. 10, 753 (1969)]. Montroll's results for two-dimensional lattice-based random walks are adapted and applied to compartment-based models of trimolecular reactions, which are studied in one-dimensional or pseudo one-dimensional domains.

  17. Ammonia removal in electrochemical oxidation: mechanism and pseudo-kinetics.

    PubMed

    Li, Liang; Liu, Yan

    2009-01-30

    This paper investigated the mechanism and pseudo-kinetics for removal of ammonia by electrochemical oxidation with RuO(2)/Ti anode using batch tests. The results show that the ammonia oxidation rates resulted from direct oxidation at electrode-liquid interfaces of the anode by stepwise dehydrogenation, and from indirect oxidation by hydroxyl radicals were so slow that their contribution to ammonia removal was negligible under the condition with Cl(-). The oxidation rates of ammonia ranged from 1.0 to 12.3 mg N L(-1)h(-1) and efficiency reached nearly 100%, primarily due to the indirect oxidation of HOCl, and followed pseudo zero-order kinetics in electrochemical oxidation with Cl(-). About 88% ammonia was removed from the solution. The removed one was subsequently found in the form of N(2) in the produced gas. The rate at which Cl(-) lost electrons at the anode was a major factor in the overall ammonia oxidation. Current density and Cl(-) concentration affected the constant of the pseudo zero-order kinetics, expressed by k=0.0024[Cl(-)]xj. The ammonia was reduced to less than 0.5 mg N L(-1) after 2h of electrochemical oxidation for the effluent from aerobic or anaerobic reactors which treated municipal wastewater. This result was in line with the strict discharge requirements.

  18. Rate coefficients for the gas-phase reaction of the hydroxyl radical with CH2=CHF and CH2=CF2.

    PubMed

    Baasandorj, Munkhbayar; Knight, Gary; Papadimitriou, Vassileios C; Talukdar, Ranajit K; Ravishankara, A R; Burkholder, James B

    2010-04-08

    Rate coefficients, k, for the gas-phase reaction of the OH radical with CH(2)=CHF (k(1)) and CH(2)=CF(2) (k(2)) were measured under pseudo-first-order conditions in OH using pulsed laser photolysis to produce OH and laser-induced fluorescence (PLP-LIF) to detect it. Rate coefficients were measured over a range of temperature (220-373 K) and bath gas pressure (20-600 Torr; He, N(2)). The rate coefficients were found to be independent of pressure. The measured rate coefficient for reaction 1 at room temperature was k(1)(296 K) = (5.18 +/- 0.50) x 10(-12) cm(3) molecule(-1) s(-1), independent of pressure, and the temperature dependence is given by the Arrhenius expression k(1)(T) = (1.75 +/- 0.20) x 10(-12) exp[(316 +/- 25)/T] cm(3) molecule(-1) s(-1); the rate coefficients for reaction 2 were k(2)(296 K) = (2.79 +/- 0.25) x 10(-12) cm(3) molecule(-1) s(-1) and k(2)(T) = (1.75 +/- 0.20) x 10(-12) exp[(140 +/- 20)/T] cm(3) molecule(-1) s(-1). The quoted uncertainties are 2sigma (95% confidence level) and include estimated systematic errors. The fall-off parameters for reaction 2 of k(infinity) = 3 x 10(-12) cm(3) molecule(-1) s(-1) and k(0)(296 K) = 1.8 x 10(-28) cm(6) molecule(-2) s(-1) with F(c) = 0.6 reproduce the room temperature data obtained in this study combined with the low pressure rate coefficient data from Howard (J. Chem. Phys. 1976, 65, 4771). OH radical formation was observed for reactions 1 and 2 in the presence of O(2), and the mechanism was investigated using (18)OH and OD rate coefficient measurements with CH(2)=CHF and CH(2)=CF(2) over a range of temperature (260-373 K) and pressure (20-100 Torr, He). Quantum chemical calculations using density functional theory (DFT) were used to determine the geometries and energies of the reactants and adducts formed in reactions 1 and 2 and the peroxy radicals formed following the addition of O(2). The atmospheric lifetimes of CH(2)=CHF and CH(2)=CF(2) due to loss by reaction with OH are approximately 2 and 4

  19. [Influence of pH on Kinetics of Anilines Oxidation by Permanganate].

    PubMed

    Wang, Hui; Sun, Bo; Guan, Xiao-hong

    2016-02-15

    To investigate the effect of pH on the oxidation of anilines by potassium permanganate, aniline and p-Chloroaniline were taken as the target contaminants, and the experiments were conducted under the condition with potassium permanganate in excess over a wide pH range. The reaction displayed remarkable autocatalysis, which was presumably ascribed to the formation of complexes by the in situ generated MnOx and the target contaminants on its surface, and thereby improved the oxidation rate of the target contaminants by permanganate. The reaction kinetics was fitted with the pseudo-first-order kinetics at different pH to obtain the pseudo-first-order reaction constants (k(obs)). The second-order rate constants calculated from permanganate concentration and k,b, increased with the increase of pH and reached the maximum near their respective pKa, after which they decreased gradually. This tendency is called parabola-like shaped pH-rate profile. The second-order rate constants between permanganate and anilines were well fitted by the proton transfer model proposed by us in previous work.

  20. TSCAN: Pseudo-time reconstruction and evaluation in single-cell RNA-seq analysis.

    PubMed

    Ji, Zhicheng; Ji, Hongkai

    2016-07-27

    When analyzing single-cell RNA-seq data, constructing a pseudo-temporal path to order cells based on the gradual transition of their transcriptomes is a useful way to study gene expression dynamics in a heterogeneous cell population. Currently, a limited number of computational tools are available for this task, and quantitative methods for comparing different tools are lacking. Tools for Single Cell Analysis (TSCAN) is a software tool developed to better support in silico pseudo-Time reconstruction in Single-Cell RNA-seq ANalysis. TSCAN uses a cluster-based minimum spanning tree (MST) approach to order cells. Cells are first grouped into clusters and an MST is then constructed to connect cluster centers. Pseudo-time is obtained by projecting each cell onto the tree, and the ordered sequence of cells can be used to study dynamic changes of gene expression along the pseudo-time. Clustering cells before MST construction reduces the complexity of the tree space. This often leads to improved cell ordering. It also allows users to conveniently adjust the ordering based on prior knowledge. TSCAN has a graphical user interface (GUI) to support data visualization and user interaction. Furthermore, quantitative measures are developed to objectively evaluate and compare different pseudo-time reconstruction methods. TSCAN is available at https://github.com/zji90/TSCAN and as a Bioconductor package. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  1. Sea of Majorana fermions from pseudo-scalar superconducting order in three dimensional Dirac materials.

    PubMed

    Salehi, Morteza; Jafari, S A

    2017-08-15

    We suggest that spin-singlet pseudo-scalar s-wave superconducting pairing creates a two dimensional sea of Majorana fermions on the surface of three dimensional Dirac superconductors (3DDS). This pseudo-scalar superconducting order parameter Δ 5 , in competition with scalar Dirac mass m, leads to a topological phase transition due to band inversion. We find that a perfect Andreev-Klein reflection is guaranteed by presence of anomalous Andreev reflection along with the conventional one. This effect manifests itself in a resonant peak of the differential conductance. Furthermore, Josephson current of the Δ 5 |m|Δ 5 junction in the presence of anomalous Andreev reflection is fractional with 4π period. Our finding suggests another search area for condensed matter realization of Majorana fermions which are beyond the vortex-core of p-wave superconductors. The required Δ 5 pairing can be extrinsically induced by a conventional s-wave superconductor into a three dimensional Dirac material (3DDM).

  2. First-order inflation

    NASA Technical Reports Server (NTRS)

    Kolb, Edward W.

    1991-01-01

    In the original proposal, inflation occurred in the process of a strongly first-order phase transition. This model was soon demonstrated to be fatally flawed. Subsequent models for inflation involved phase transitions that were second-order, or perhaps weakly first-order; some even involved no phase transition at all. Recently the possibility of inflation during a strongly first-order phase transition has been revived. In this talk I will discuss some models for first-order inflation, and emphasize unique signatures that result if inflation is realized in a first-order transition. Before discussing first-order inflation, I will briefly review some of the history of inflation to demonstrate how first-order inflation differs from other models.

  3. Determination of reaction rates and activation energy in aerobic composting processes for yard waste.

    PubMed

    Uma, R N; Manjula, G; Meenambal, T

    2007-04-01

    The reaction rates and activation energy in aerobic composting processes for yard waste were determined using specifically designed reactors. Different mixture ratios were fixed before the commencement of the process. The C/N ratio was found to be optimum for a mixture ratio of 1:6 containing one part of coir pith to six parts of other waste which included yard waste, yeast sludge, poultry yard waste and decomposing culture (Pleurotosis). The path of stabilization of the wastes was continuously monitored by observing various parameters such as temperature, pH, Electrical Conductivity, C.O.D, VS at regular time intervals. Kinetic analysis was done to determine the reaction rates and activation energy for the optimum mixture ratio under forced aeration condition. The results of the analysis clearly indicated that the temperature dependence of the reaction rates followed the Arrhenius equation. The temperature coefficients were also determined. The degradation of the organic fraction of the yard waste could be predicted using first order reaction model.

  4. Aerodynamics of the pseudo-glottis.

    PubMed

    Kotby, M N; Hegazi, M A; Kamal, I; Gamal El Dien, N; Nassar, J

    2009-01-01

    The aim of this work is to study the hitherto unclear aerodynamic parameters of the pseudo-glottis following total laryngectomy. These parameters include airflow rate, sub-pseudo-glottic pressure (SubPsG), efficiency and resistance, as well as sound pressure level (SPL). Eighteen male patients who have undergone total laryngectomy, with an age range from 54 to 72 years, were investigated in this study. All tested patients were fluent esophageal 'voice' speakers utilizing tracheo-esophageal prosthesis. The airflow rate, SubPsG and SPL were measured. The results showed that the mean value of the airflow rate was 53 ml/s, the SubPsG pressure was 13 cm H(2)O, while the SPL was 66 dB. The normative data obtained from the true glottis in healthy age-matched subjects are 89 ml/s, 7.9 cm H(2)O and 70 dB, respectively. Other aerodynamic indices were calculated and compared to the data obtained from the true glottis. Such a comparison of the pseudo-glottic aerodynamic data to the data of the true glottis gives an insight into the mechanism of action of the pseudo-glottis. The data obtained suggests possible clinical applications in pseudo-voice training. Copyright 2009 S. Karger AG, Basel.

  5. Statistical methods for thermonuclear reaction rates and nucleosynthesis simulations

    NASA Astrophysics Data System (ADS)

    Iliadis, Christian; Longland, Richard; Coc, Alain; Timmes, F. X.; Champagne, Art E.

    2015-03-01

    Rigorous statistical methods for estimating thermonuclear reaction rates and nucleosynthesis are becoming increasingly established in nuclear astrophysics. The main challenge being faced is that experimental reaction rates are highly complex quantities derived from a multitude of different measured nuclear parameters (e.g., astrophysical S-factors, resonance energies and strengths, particle and γ-ray partial widths). We discuss the application of the Monte Carlo method to two distinct, but related, questions. First, given a set of measured nuclear parameters, how can one best estimate the resulting thermonuclear reaction rates and associated uncertainties? Second, given a set of appropriate reaction rates, how can one best estimate the abundances from nucleosynthesis (i.e., reaction network) calculations? The techniques described here provide probability density functions that can be used to derive statistically meaningful reaction rates and final abundances for any desired coverage probability. Examples are given for applications to s-process neutron sources, core-collapse supernovae, classical novae, and Big Bang nucleosynthesis.

  6. Impact of transverse and longitudinal dispersion on first-order degradation rate constant estimation

    NASA Astrophysics Data System (ADS)

    Stenback, Greg A.; Ong, Say Kee; Rogers, Shane W.; Kjartanson, Bruce H.

    2004-09-01

    A two-dimensional analytical model is employed for estimating the first-order degradation rate constant of hydrophobic organic compounds (HOCs) in contaminated groundwater under steady-state conditions. The model may utilize all aqueous concentration data collected downgradient of a source area, but does not require that any data be collected along the plume centerline. Using a least squares fit of the model to aqueous concentrations measured in monitoring wells, degradation rate constants were estimated at a former manufactured gas plant (FMGP) site in the Midwest U.S. The estimated degradation rate constants are 0.0014, 0.0034, 0.0031, 0.0019, and 0.0053 day -1 for acenaphthene, naphthalene, benzene, ethylbenzene, and toluene, respectively. These estimated rate constants were as low as one-half those estimated with the one-dimensional (centerline) approach of Buscheck and Alcantar [Buscheck, T.E., Alcantar, C.M., 1995. Regression techniques and analytical solutions to demonstrate intrinsic bioremediation. In: Hinchee, R.E., Wilson, J.T., Downey, D.C. (Eds.), Intrinsic Bioremediation, Battelle Press, Columbus, OH, pp. 109-116] which does not account for transverse dispersivity. Varying the transverse and longitudinal dispersivity values over one order of magnitude for toluene data obtained from the FMGP site resulted in nearly a threefold variation in the estimated degradation rate constant—highlighting the importance of reliable estimates of the dispersion coefficients for obtaining reasonable estimates of the degradation rate constants. These results have significant implications for decision making and site management where overestimation of a degradation rate may result in remediation times and bioconversion factors that exceed expectations. For a complex source area or non-steady-state plume, a superposition of analytical models that incorporate longitudinal and transverse dispersion and time may be used at sites where the centerline method would not be

  7. Influence of reaction-induced fracturing on serpentinisation rate

    NASA Astrophysics Data System (ADS)

    Malvoisin, B.; Brantut, N.; Kaczmarek, M. A.

    2017-12-01

    The alteration of mantle rocks at mid-ocean ridges (i.e. serpentinisation) can lead to a solid volume increase responsible for stress build-up and cracking during reaction (reaction-induced fracturing). This mechanism has been proposed to play a key role for maintaining fluid pathways during reaction. However, its impact on the reaction rate is not yet quantified. We propose here a micromechanical model to quantify the influence of the crystallisation pressure generated during serpentine precipitation on crack propagation in olivine. This model is then coupled to a simple geometrical model to calculate the generation of reactive surface area during grain splitting, and thus bulk reaction rate. The model is able to reproduce experimental kinetic data as well as the mesh texture observed in natural samples. The model results are compared to olivine grain size distribution in serpentinised peridotites from the Marum ophiolite and the Papuan ultramafic belt (Papuan New Guinea). The observations and the model both indicate a decrease of the mean grain size by one order of magnitude as the reaction progresses from 5 to 40 %. Based on this good agreement, we use our model to predict that cracking reduces the characteristic time of serpentinisation by one order of magnitude, down to values comprised between 10 and 1,000 yr. The peak serpentinisation is also shifted 4 km above the previous predictions due to effective pressure increase with depth.

  8. Effect of reactivity loss on apparent reaction order of burning char particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murphy, Jeffrey J.; Shaddix, Christopher R.

    Considerable debate still exists in the char combustion community over the expected and observed reaction orders of carbon reacting with oxygen. In particular, very low values of the reaction order (approaching zero) are commonly observed in char combustion experiments. These observations appear to conflict with porous catalyst theory as first expressed by Thiele, which suggests that the apparent reaction order must be greater than 0.5. In this work, we propose that this conflict may be resolved by considering the decrease in char reactivity with burnout due to ash effects, thermal annealing, or other phenomena. Specifically, the influence of ash dilutionmore » of the available surface area on the apparent reaction order is explored. Equations describing the ash dilution effect are combined with a model for particle burnout based on single-film nth-order Arrhenius char combustion and yield an analytical expression for the effective reaction order. When this expression is applied for experimental conditions reflecting combustion of individual pulverized coal particles in an entrained flow reactor, the apparent reaction order is shown to be lower than the inherent char matrix reaction order, even for negligible extents of char conversion. As char conversion proceeds and approaches completion, the apparent reaction order drops precipitously past zero to negative values. Conversely, the inclusion of the ash dilution model has little effect on the char conversion profile or char particle temperature until significant burnout has occurred. Taken together, these results suggest that the common experimental observation of low apparent reaction orders during char combustion is a consequence of the lack of explicit modeling of the decrease in char reactivity with burnout. (author)« less

  9. Reaction rates for a generalized reaction-diffusion master equation

    DOE PAGES

    Hellander, Stefan; Petzold, Linda

    2016-01-19

    It has been established that there is an inherent limit to the accuracy of the reaction-diffusion master equation. Specifically, there exists a fundamental lower bound on the mesh size, below which the accuracy deteriorates as the mesh is refined further. In this paper we extend the standard reaction-diffusion master equation to allow molecules occupying neighboring voxels to react, in contrast to the traditional approach in which molecules react only when occupying the same voxel. We derive reaction rates, in two dimensions as well as three dimensions, to obtain an optimal match to the more fine-grained Smoluchowski model, and show inmore » two numerical examples that the extended algorithm is accurate for a wide range of mesh sizes, allowing us to simulate systems that are intractable with the standard reaction-diffusion master equation. In addition, we show that for mesh sizes above the fundamental lower limit of the standard algorithm, the generalized algorithm reduces to the standard algorithm. We derive a lower limit for the generalized algorithm which, in both two dimensions and three dimensions, is on the order of the reaction radius of a reacting pair of molecules.« less

  10. Reaction rates for a generalized reaction-diffusion master equation

    PubMed Central

    Hellander, Stefan; Petzold, Linda

    2016-01-01

    It has been established that there is an inherent limit to the accuracy of the reaction-diffusion master equation. Specifically, there exists a fundamental lower bound on the mesh size, below which the accuracy deteriorates as the mesh is refined further. In this paper we extend the standard reaction-diffusion master equation to allow molecules occupying neighboring voxels to react, in contrast to the traditional approach in which molecules react only when occupying the same voxel. We derive reaction rates, in two dimensions as well as three dimensions, to obtain an optimal match to the more fine-grained Smoluchowski model, and show in two numerical examples that the extended algorithm is accurate for a wide range of mesh sizes, allowing us to simulate systems that are intractable with the standard reaction-diffusion master equation. In addition, we show that for mesh sizes above the fundamental lower limit of the standard algorithm, the generalized algorithm reduces to the standard algorithm. We derive a lower limit for the generalized algorithm which, in both two dimensions and three dimensions, is on the order of the reaction radius of a reacting pair of molecules. PMID:26871190

  11. Essaying a Pseudo-Panel Approach: Studies on Education, Women, and Income Inequality in Thailand

    ERIC Educational Resources Information Center

    Warunsiri, Sasiwimon

    2010-01-01

    This dissertation is composed of three studies on Thai labor markets using a pseudo-panel data set: The first chapter estimates the rate of return to education in Thailand, while treating the endogeneity bias common to estimates from data on individuals. Pseudo-panel data are constructed from repeated cross sections of Labor Force Surveys…

  12. Factors influencing the mechanism of surfactant catalyzed reaction of vitamin C-ferric chloride hexahydrate system

    NASA Astrophysics Data System (ADS)

    Farrukh, Muhammad Akhyar; Kauser, Robina; Adnan, Rohana

    2013-09-01

    The kinetics of vitamin C by ferric chloride hexahydrate has been investigated in the aqueous ethanol solution of basic surfactant viz. octadecylamine (ODA) under pseudo-first order conditions. The critical micelle concentration (CMC) of surfactant was determined by surface tension measurement. The effect of pH (2.5-4.5) and temperature (15-35°C) in the presence and absence of surfactant were investigated. Activation parameters, Δ E a, Δ H #, Δ S #, Δ G ≠, for the reaction were calculated by using Arrhenius and Eyring plot. Surface excess concentration (Γmax), minimum area per surfactant molecule ( A min), average area occupied by each molecule of surfactant ( a), surface pressure at the CMC (Πmax), Gibb's energy of micellization (Δ G M°), Gibb's energy of adsorption (Δ G ad°), were calculated. It was found that the reaction in the presence of surfactant showed faster oxidation rate than the aqueous ethanol solution. Reaction mechanism has been deduced in the presence and absence of surfactant.

  13. Urea degradation by electrochemically generated reactive chlorine species: products and reaction pathways.

    PubMed

    Cho, Kangwoo; Hoffmann, Michael R

    2014-10-07

    This study investigated the transformation of urea by electrochemically generated reactive chlorine species (RCS). Solutions of urea with chloride ions were electrolyzed using a bismuth doped TiO2 (BiOx/TiO2) anode coupled with a stainless steel cathode at applied anodic potentials (Ea) of either +2.2 V or +3.0 V versus the normal hydrogen electrode. In NaCl solution, the current efficiency of RCS generation was near 30% at both potentials. In divided cell experiments, the pseudo-first-order rate of total nitrogen decay was an order of magnitude higher at Ea of +3.0 V than at +2.2 V, presumably because dichlorine radical (Cl2(-)·) ions facilitate the urea transformation primary driven by free chlorine. Quadrupole mass spectrometer analysis of the reactor headspace revealed that N2 and CO2 are the primary gaseous products of the oxidation of urea, whose urea-N was completely transformed into N2 (91%) and NO3(-) (9%). The higher reaction selectivity with respect to N2 production can be ascribed to a low operational ratio of free available chlorine to N. The mass-balance analysis recovered urea-C as CO2 at 77%, while CO generation most likely accounts for the residual carbon. In light of these results, we propose a reaction mechanism involving chloramines and chloramides as reaction intermediates, where the initial chlorination is the rate-determining step in the overall sequence of reactions.

  14. Gas-phase rate coefficients for the OH + n-, i-, s-, and t-butanol reactions measured between 220 and 380 K: non-Arrhenius behavior and site-specific reactivity.

    PubMed

    McGillen, Max R; Baasandorj, Munkhbayar; Burkholder, James B

    2013-06-06

    Butanol (C4H9OH) is a potential biofuel alternative in fossil fuel gasoline and diesel formulations. The usage of butanol would necessarily lead to direct emissions into the atmosphere; thus, an understanding of its atmospheric processing and environmental impact is desired. Reaction with the OH radical is expected to be the predominant atmospheric removal process for the four aliphatic isomers of butanol. In this work, rate coefficients, k, for the gas-phase reaction of the n-, i-, s-, and t-butanol isomers with the OH radical were measured under pseudo-first-order conditions in OH using pulsed laser photolysis to produce OH radicals and laser induced fluorescence to monitor its temporal profile. Rate coefficients were measured over the temperature range 221-381 K at total pressures between 50 and 200 Torr (He). The reactions exhibited non-Arrhenius behavior over this temperature range and no dependence on total pressure with k(296 K) values of (9.68 ± 0.75), (9.72 ± 0.72), (8.88 ± 0.69), and (1.04 ± 0.08) (in units of 10(-12) cm(3) molecule(-1) s(-1)) for n-, i-, s-, and t-butanol, respectively. The quoted uncertainties are at the 2σ level and include estimated systematic errors. The observed non-Arrhenius behavior is interpreted here to result from a competition between the available H-atom abstraction reactive sites, which have different activation energies and pre-exponential factors. The present results are compared with results from previous kinetic studies, structure-activity relationships (SARs), and theoretical calculations and the discrepancies are discussed. Results from this work were combined with available high temperature (1200-1800 K) rate coefficient data and room temperature reaction end-product yields, where available, to derive a self-consistent site-specific set of reaction rate coefficients of the form AT(n) exp(-E/RT) for use in atmospheric and combustion chemistry modeling.

  15. Rate Constant and Reaction Coordinate of Trp-Cage Folding in Explicit Water

    PubMed Central

    Juraszek, Jarek; Bolhuis, Peter G.

    2008-01-01

    We report rate constant calculations and a reaction coordinate analysis of the rate-limiting folding and unfolding process of the Trp-cage mini-protein in explicit solvent using transition interface sampling. Previous transition path sampling simulations revealed that in this (un)folding process the protein maintains its compact configuration, while a (de)increase of secondary structure is observed. The calculated folding rate agrees reasonably with experiment, while the unfolding rate is 10 times higher. We discuss possible origins for this mismatch. We recomputed the rates with the forward flux sampling method, and found a discrepancy of four orders of magnitude, probably caused by the method's higher sensitivity to the choice of order parameter with respect to transition interface sampling. Finally, we used the previously computed transition path-sampling ensemble to screen combinations of many order parameters for the best model of the reaction coordinate by employing likelihood maximization. We found that a combination of the root mean-square deviation of the helix and of the entire protein was, of the set of tried order parameters, the one that best describes the reaction coordination. PMID:18676648

  16. The effect of the textile industry dye bath additive EDTMPA on colour removal characteristics by ozone oxidation.

    PubMed

    Olmez, T; Kabdaşli, I; Tünay, O

    2007-01-01

    In this study, the effects of the phosphonic acid based sequestering agent EDTMPA used in the textile dye baths on colour and organic matter removal by ozone oxidation was experimentally investigated. Procion Navy HEXL dyestuff that has been commonly used for the reactive dyeing of cellulose fibers was selected as the model component. The organic matter oxidation by ozone was determined to obey the pseudo-first order kinetics as they are treated singly or in combination. COD removal rates obtained from pseudo-first order reaction kinetics showed that oxidation of Navy HEXL alone (0.0947 L/min) was faster than that of EDTMPA (0.0171 L/min) and EDTMPA with dye (0.0155 L/min) at pH 3.0. It was also found that reaction rates of single EDTMPA removal and EDTMPA and dye mixture removal increased as the reaction pH was increased from 3.0 to 10.5.

  17. Pseudo-lignin Formation during Dilute Acid Pretreatment for Cellulosic Ethanol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meng, Xianzhi; Ragauskas, Arthur J.

    Dilute acid-based pretreatment represents one of the most important pretreatment technologies to reduce biomass recalcitrance and it has been successfully applied to a wide range of feedstocks. During this type of pretreatment, the relative lignin content usually increases partially due to the loss of carbohydrates. More importantly, it has been reported that the increase of lignin content after dilute acid pretreatment is mainly due to the formation of pseudo-lignin. Furthermore, the exact reaction mechanisms leading to the formation of pseudo-lignin is still under investigation. However, it has been proposed that rearrangement of hydroxymethylfurfural (HMF) or furfural can produce aromatic typemore » of compounds which can further undergo polymerization reactions to from a lignin-like polyphenolic structures termed as pseudo-lignin. Likewise, this mini-review mainly covers recent advances in understanding the fundamentals of pseudo-lignin formation during dilute acid pretreatment, the impact of its formation on enzymatic hydrolysis, and how to suppress its formation during dilute acid pretreatment.« less

  18. Pseudo-lignin Formation during Dilute Acid Pretreatment for Cellulosic Ethanol

    DOE PAGES

    Meng, Xianzhi; Ragauskas, Arthur J.

    2017-04-17

    Dilute acid-based pretreatment represents one of the most important pretreatment technologies to reduce biomass recalcitrance and it has been successfully applied to a wide range of feedstocks. During this type of pretreatment, the relative lignin content usually increases partially due to the loss of carbohydrates. More importantly, it has been reported that the increase of lignin content after dilute acid pretreatment is mainly due to the formation of pseudo-lignin. Furthermore, the exact reaction mechanisms leading to the formation of pseudo-lignin is still under investigation. However, it has been proposed that rearrangement of hydroxymethylfurfural (HMF) or furfural can produce aromatic typemore » of compounds which can further undergo polymerization reactions to from a lignin-like polyphenolic structures termed as pseudo-lignin. Likewise, this mini-review mainly covers recent advances in understanding the fundamentals of pseudo-lignin formation during dilute acid pretreatment, the impact of its formation on enzymatic hydrolysis, and how to suppress its formation during dilute acid pretreatment.« less

  19. Rate-induced solubility and suppression of the first-order phase transition in olivine LiFePO4.

    PubMed

    Zhang, Xiaoyu; van Hulzen, Martijn; Singh, Deepak P; Brownrigg, Alex; Wright, Jonathan P; van Dijk, Niels H; Wagemaker, Marnix

    2014-05-14

    The impact of ultrahigh (dis)charge rates on the phase transition mechanism in LiFePO4 Li-ion electrodes is revealed by in situ synchrotron diffraction. At high rates the solubility limits in both phases increase dramatically, causing a fraction of the electrode to bypass the first-order phase transition. The small transforming fraction demonstrates that nucleation rates are consequently not limiting the transformation rate. In combination with the small fraction of the electrode that transforms at high rates, this indicates that higher performances may be achieved by further optimizing the ionic/electronic transport in LiFePO4 electrodes.

  20. What Is a Reaction Rate?

    ERIC Educational Resources Information Center

    Schmitz, Guy

    2005-01-01

    The definition of reaction rate is derived and demonstrations are made for the care to be taken while using the term. Reaction rate can be in terms of a reaction property, the extent of reaction and thus it is possible to give a definition applicable in open and closed systems.

  1. Control of serpentinisation rate by reaction-induced cracking

    NASA Astrophysics Data System (ADS)

    Malvoisin, Benjamin; Brantut, Nicolas; Kaczmarek, Mary-Alix

    2017-10-01

    Serpentinisation of mantle rocks requires the generation and maintenance of transport pathways for water. The solid volume increase during serpentinisation can lead to stress build-up and trigger cracking, which ease fluid penetration into the rock. The quantitative effect of this reaction-induced cracking mechanism on reactive surface generation is poorly constrained, thus hampering our ability to predict serpentinisation rate in geological environments. Here we use a combined approach with numerical modelling and observations in natural samples to provide estimates of serpentinisation rate at mid-ocean ridges. We develop a micromechanical model to quantify the propagation of serpentinisation-induced cracks in olivine. The maximum crystallisation pressure deduced from thermodynamic calculations reaches several hundreds of megapascals but does not necessary lead to crack propagation if the olivine grain is subjected to high compressive stresses. The micromechanical model is then coupled to a simple geometrical model to predict reactive surface area formation during grain splitting, and thus bulk reaction rate. Our model reproduces quantitatively experimental kinetic data and the typical mesh texture formed during serpentinisation. We also compare the model results with olivine grain size distribution data obtained on natural serpentinised peridotites from the Marum ophiolite and the Papuan ultramafic belt (Papua New Guinea). The natural serpentinised peridotites show an increase of the number of olivine grains for a decrease of the mean grain size by one order of magnitude as reaction progresses from 5 to 40%. These results are in agreement with our model predictions, suggesting that reaction-induced cracking controls the serpentinisation rate. We use our model to estimate that, at mid-ocean ridges, serpentinisation occurs up to 12 km depth and reaction-induced cracking reduces the characteristic time of serpentinisation by one order of magnitude, down to values

  2. Hippocrates in the pseudo-Galenic Introduction: or how was medicine taught in Roman times?

    PubMed

    Petit, Caroline

    2010-01-01

    The Pseudo-Galenic Introduction (Introductio Sive medicus, 14.674-797 K.), a medical handbook of the Roman period, witnesses the importance of Hippocrates in medical teaching at the time. Numerous quotations, allusions and reminiscences from the Hippocratic Corpus illustrate Hippocrates' authority for Pseudo-Galen. In the light of the first critical edition of the text (C. Petit, Les Belles Lettres, Paris, 2009), this article discusses the function of Hippocrates, and the various reminiscences of the Hippocratic Corpus, in order to assess Pseudo-Galen's quotation technique and, ultimately, his reliability as a source for the history of medicine.

  3. Best combination of promoter and micellar catalyst for the rapid conversion of sorbitol to glucose

    NASA Astrophysics Data System (ADS)

    Mukherjee, Kakali; Ghosh, Aniruddha; Saha, Rumpa; Sar, Pintu; Malik, Susanta; Saha, Bidyut

    2014-03-01

    Kinetic data for oxidation of D-sorbitol to glucose by hexavalent chromium in aqueous medium and aqueous surfactant medium (SDS, TX-100) have been reported. Effect of promoter such as PA, bipy and phenanthroline on the reaction has been investigated. The reaction is performed under pseudo first order condition with an excess of substrate over the oxidant. The reaction is first order with respect to substrate and oxidant. The micelles have a catalytic effect on the reaction. Combination of phen and TX-100 produces almost twelve times increase in rate of oxidation.

  4. Application of first order rate kinetics to explain changes in bloom toxicity—the importance of understanding cell toxin quotas

    NASA Astrophysics Data System (ADS)

    Orr, Philip T.; Willis, Anusuya; Burford, Michele A.

    2018-04-01

    Cyanobacteria are oxygenic photosynthetic Gram-negative bacteria that can form potentially toxic blooms in eutrophic and slow flowing aquatic ecosystems. Bloom toxicity varies spatially and temporally, but understanding the mechanisms that drive these changes remains largely a mystery. Changes in bloom toxicity may result from changes in intracellular toxin pool sizes of cyanotoxins with differing molecular toxicities, and/or from changes in the cell concentrations of toxic and non-toxic cyanobacterial species or strains within bloom populations. We show here how first-order rate kinetics at the cellular level can be used to explain how environmental conditions drive changes in bloom toxicity at the ecological level. First order rate constants can be calculated for changes in cell concentration (μ c: specific cell division rate) or the volumetric biomass concentration (μ g: specific growth rate) between short time intervals throughout the cell cycle. Similar first order rate constants can be calculated for changes in nett volumetric cyanotoxin concentration (μ tox: specific cyanotoxin production rate) over similar time intervals. How μ c (or μ g ) covaries with μ tox over the cell cycle shows conclusively when cyanotoxins are being produced and metabolised, and how the toxicity of cells change in response to environment stressors. When μ tox/μ c>1, cyanotoxin cell quotas increase and individual cells become more toxic because the nett cyanotoxin production rate is higher than the cell division rate. When μ tox/μ c=1, cell cyanotoxin quotas remains fixed because the nett cyanotoxin production rate matches the cell division rate. When μ tox/μ c<1, the cyanotoxin cell quota decreases because either the nett cyanotoxin production rate is lower than the cell division rate, or metabolic breakdown and/or secretion of cyanotoxins is occurring. These fundamental equations describe cyanotoxin metabolism dynamics at the cellular level and provide the necessary

  5. First measurement of the 34S(p ,γ )35Cl reaction rate through indirect methods for presolar nova grains

    NASA Astrophysics Data System (ADS)

    Gillespie, S. A.; Parikh, A.; Barton, C. J.; Faestermann, T.; José, J.; Hertenberger, R.; Wirth, H.-F.; de Séréville, N.; Riley, J. E.; Williams, M.

    2017-08-01

    Sulphur isotopic ratio measurements may help to establish the astrophysical sites in which certain presolar grains were formed. Nova model predictions of the 34S/32S ratio are, however, unreliable due to the lack of an experimental 34S(p ,γ )35Cl reaction rate. To this end, we have measured the 34S(3He,d )35Cl reaction at 20 MeV using a high resolution quadrupole-dipole-dipole-dipole magnetic spectrograph. Twenty-two levels over 6.2 MeV first time over the energy range relevant for novae. With this new spectroscopic information a new 34S(p ,γ )35Cl reaction rate has been determined using a Monte Carlo method. Hydrodynamic nova model calculations have been performed using this new reaction rate. These models show that remaining uncertainties in the 34S(p ,γ ) rate affect nucleosynthesis predictions by less than a factor of 1.4, and predict a 34S/32S isotopic ratio of 0.014-0.017. Since recent type II supernova models predict 34S/32S=0.026 -0.053 , the 34S/32S isotopic ratio may be used, in conjunction with other isotopic signatures, to distinguish presolar grains from oxygen-neon nova and type II supernova origin. Our results address a key nuclear physics uncertainty on which recent considerations discounting the nova origin of several grains depend.

  6. Determination of the astrophysical 12N(p,γ)13O reaction rate from the 2H(12N,13O)n reaction and its astrophysical implications

    NASA Astrophysics Data System (ADS)

    Guo, B.; Su, J.; Li, Z. H.; Wang, Y. B.; Yan, S. Q.; Li, Y. J.; Shu, N. C.; Han, Y. L.; Bai, X. X.; Chen, Y. S.; Liu, W. P.; Yamaguchi, H.; Binh, D. N.; Hashimoto, T.; Hayakawa, S.; Kahl, D.; Kubono, S.; He, J. J.; Hu, J.; Xu, S. W.; Iwasa, N.; Kume, N.; Li, Z. H.

    2013-01-01

    The evolution of massive stars with very low-metallicities depends critically on the amount of CNO nuclides which they produce. The 12N(p,γ)13O reaction is an important branching point in the rap processes, which are believed to be alternative paths to the slow 3α process for producing CNO seed nuclei and thus could change the fate of massive stars. In the present work, the angular distribution of the 2H(12N, 13O)n proton transfer reaction at Ec.m.=8.4 MeV has been measured for the first time. Based on the Johnson-Soper approach, the square of the asymptotic normalization coefficient (ANC) for the virtual decay of 13Og.s. → 12N+p was extracted to be 3.92±1.47 fm-1 from the measured angular distribution and utilized to compute the direct component in the 12N(p,γ)13O reaction. The direct astrophysical S factor at zero energy was then found to be 0.39±0.15 keV b. By considering the direct capture into the ground state of 13O, the resonant capture via the first excited state of 13O and their interference, we determined the total astrophysical S factors and rates of the 12N(p,γ)13O reaction. The new rate is two orders of magnitude slower than that from the REACLIB compilation. Our reaction network calculations with the present rate imply that 12N(p,γ)13O will only compete successfully with the β+ decay of 12N at higher (˜2 orders of magnitude) densities than initially predicted.

  7. Speed discrimination predicts word but not pseudo-word reading rate in adults and children

    PubMed Central

    Main, Keith L.; Pestilli, Franco; Mezer, Aviv; Yeatman, Jason; Martin, Ryan; Phipps, Stephanie; Wandell, Brian

    2014-01-01

    Word familiarity may affect magnocellular processes of word recognition. To explore this idea, we measured reading rate, speed-discrimination, and contrast detection thresholds in adults and children with a wide range of reading abilities. We found that speed-discrimination thresholds are higher in children than in adults and are correlated with age. Speed discrimination thresholds are also correlated with reading rate, but only for words, not for pseudo-words. Conversely, we found no correlation between contrast sensitivity and reading rate and no correlation between speed discrimination thresholds WASI subtest scores. These findings support the position that reading rate is influenced by magnocellular circuitry attuned to the recognition of familiar word-forms. PMID:25278418

  8. Measuring order in disordered systems and disorder in ordered systems: Random matrix theory for isotropic and nematic liquid crystals and its perspective on pseudo-nematic domains

    NASA Astrophysics Data System (ADS)

    Zhao, Yan; Stratt, Richard M.

    2018-05-01

    Surprisingly long-ranged intermolecular correlations begin to appear in isotropic (orientationally disordered) phases of liquid crystal forming molecules when the temperature or density starts to close in on the boundary with the nematic (ordered) phase. Indeed, the presence of slowly relaxing, strongly orientationally correlated, sets of molecules under putatively disordered conditions ("pseudo-nematic domains") has been apparent for some time from light-scattering and optical-Kerr experiments. Still, a fully microscopic characterization of these domains has been lacking. We illustrate in this paper how pseudo-nematic domains can be studied in even relatively small computer simulations by looking for order-parameter tensor fluctuations much larger than one would expect from random matrix theory. To develop this idea, we show that random matrix theory offers an exact description of how the probability distribution for liquid-crystal order parameter tensors converges to its macroscopic-system limit. We then illustrate how domain properties can be inferred from finite-size-induced deviations from these random matrix predictions. A straightforward generalization of time-independent random matrix theory also allows us to prove that the analogous random matrix predictions for the time dependence of the order-parameter tensor are similarly exact in the macroscopic limit, and that relaxation behavior of the domains can be seen in the breakdown of the finite-size scaling required by that random-matrix theory.

  9. [Pseudo-radicular referred leg pain].

    PubMed

    von Heymann, W

    2015-12-01

    Pseudo-radicular leg pain as initially described by Bruegger more than 55 years ago was at that time a genius explanation for so many non-radicular pain syndromes that needed not any kind of surgical intervention but in first line a manual treatment or a treatment by therapeutic local anesthetics. Today we describe this pain as a "referred pain" originating from other anatomic structures that may occur during the development of chronic pain. Nevertheless this pain is found in many patients and it still seems to be a big problem for many physicians and surgeons. Imaging does not help either. The history and the clinical symptoms, the examinations, the chain reactions in the motor system as well as the treatment options from the point of view of manual medicine are described.

  10. Photo-kinetics of photoinduced transformation reaction of methylene green with titanium trichloride in different solvents

    NASA Astrophysics Data System (ADS)

    Nadeem, Syed Muhammad Saqib; Saeed, Rehana

    2017-08-01

    The photo-kinetics of photoinduced transformation reaction of methylene green and titanium trichloride was investigated in water and different aqueous-alcoholic solvents. The reaction is pseudo-first order, dependent only on the concentration of titanium trichloride at fixed concentration of methylene green. The effect of water and aqueous-alcoholic solvents was studied in the acidic range from 4 to 7. It was observed that the quantum yield (φ) of reaction increased with increase in polarity of the solvent. The quantum yield (φ) was high in acidic condition and decreased with further increase in acidity. The quantum yield (φ) increased sharply with increase in concentration of titanium trichloride while it almost remained unaffected by change in concentration of methylene green. The addition of ions increased the quantum yield (φ) of reaction. The increase in temperature decreased the rate and quantum yield (φ) of reaction. An electron transfer mechanism for the reaction has been proposed in accordance with the kinetics of reaction. The absence of any reaction intermediate was confirmed by spectroscopic investigations. Activation energy ( E a) was calculated by Arrhenius relation. Thermodynamic parameters such as activation energy ( E a), enthalpy change (Δ H), free energy change (Δ G) and entropy change (Δ S) were also evaluated.

  11. Development of a second order closure model for computation of turbulent diffusion flames

    NASA Technical Reports Server (NTRS)

    Varma, A. K.; Donaldson, C. D.

    1974-01-01

    A typical eddy box model for the second-order closure of turbulent, multispecies, reacting flows developed. The model structure was quite general and was valid for an arbitrary number of species. For the case of a reaction involving three species, the nine model parameters were determined from equations for nine independent first- and second-order correlations. The model enabled calculation of any higher-order correlation involving mass fractions, temperatures, and reaction rates in terms of first- and second-order correlations. Model predictions for the reaction rate were in very good agreement with exact solutions of the reaction rate equations for a number of assumed flow distributions.

  12. Postoperative ocular higher-order aberrations and contrast sensitivity: femtosecond lenticule extraction versus pseudo small-incision lenticule extraction.

    PubMed

    Tan, Deborah K L; Tay, Wan Ting; Chan, Cordelia; Tan, Donald T H; Mehta, Jodhbir S

    2015-03-01

    To evaluate and compare changes in contrast sensitivity and ocular higher-order aberrations (HOAs) after femtosecond lenticule extraction (FLEx) and pseudo small-incision lenticule extraction (SMILE). Singapore National Eye Centre, Singapore. Retrospective case series. Patients had femtosecond lenticule extraction (Group 1) or pseudo small-incision lenticule extraction (Group 2) between March 2010 and December 2011. The main outcome measures were manifest refraction, HOAs, and contrast sensitivity 1, 3, 6, and 12 months postoperatively. Fifty-two consecutive patients (102 eyes) were recruited, 21 patients (42 eyes) in Group 1 and the 31 patients (60 eyes) in Group 2. The uncorrected and corrected distance visual acuities were significantly better in Group 2 than in Group 1 at 12 months (P = .032). There was no significant increase in 3rd- or 4th-order aberrations at 1 year and no significant difference between the 2 groups preoperatively or postoperatively. At 1 year, there was a significant increase in mesopic contrast sensitivity in Group 2 at 1.5 cycles per degree (cpd) (P = .008) that was not found in Group 1, and photopic contrast sensitivity at 6.0 cpd was higher in Group 2 (P = .027). These results indicate that refractive lenticule extraction is safe and effective with no significant induction of HOAs or deterioration in contrast sensitivity at 1 year. Induction of HOAs was not significantly different between both variants of refractive lenticule extraction. However, there was significant improvement in photopic contrast sensitivity after pseudo small-incision lenticule extraction, which persisted through 1 year. No author has a financial or proprietary interest in any material or method mentioned. Copyright © 2015 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  13. Reaction kinetics and oxidation product formation in the degradation of acetaminophen by ferrate (VI).

    PubMed

    Wang, Hongyu; Liu, Yibing; Jiang, Jia-Qian

    2016-07-01

    This paper investigates the degradation of acetaminophen (AAP) in aqueous solutions by ferrate (VI), aiming to propose the kinetics, pathways and the oxidation products' formation in the AAP degradation. A series of jar tests were undertaken over ferrate (VI) dosages (molar ratios of ferrate (VI):AAP, 5:1 to 25:1) and pH values (4-11). The effects of co-existing ions (0.2-5 mM) and humic acid (10-50 mg l(-1)) on the AAP removal were investigated. Ferrate (VI) can remove 99.6% AAP (from 1000 μg l(-1)) in 60 min under study conditions when majority of the AAP reduction occurred in the first 5 min. The treatment performance depended on the ferrate(VI) dosage, pH and the type and strength of co-existing ions and humic acid. Raising ferrate (VI) dosage with optimal pH 7 improved the AAP degradation. In the presence of humic acid, the AAP degradation by ferrate (VI) was promoted in a short period (<30 min) but then inhibited with increasing in humic acid contents. The presence of Al(3+), CO3(2-) and PO4(3-) ions declined but the existence of K(+), Na(+), Mg(2+) and Ca(2+) ions can improve the AAP removal. The catalytic function of Al(3+) on the decomposition of ferrate (VI) in aqueous solution was found. The kinetics of the reaction between ferrate (VI) and AAP was pseudo first-order for ferrete (VI) and pseudo second-order for AAP. The pseudo rate constant of ferrate (VI) with AAP was 1.4 × 10(-5) L(2) mg(-2) min(-1). Three oxidation products (OPs) were identified and the AAP degradation pathways were proposed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Pop-It Beads to Introduce Catalysis of Reaction Rate and Substrate Depletion Effects

    ERIC Educational Resources Information Center

    Gehret, Austin U.

    2017-01-01

    A kinesthetic classroom activity was designed to help students understand enzyme activity and catalysis of reaction rate. Students served the role of enzymes by manipulating Pop-It Beads as the catalytic event. This activity illuminates the relationship between reaction rate and reaction progress by allowing students to experience first-hand the…

  15. Direct measurements of unimolecular and bimolecular reaction kinetics of the Criegee intermediate (CH 3) 2COO

    DOE PAGES

    Chhantyal-Pun, Rabi; Welz, Oliver; Savee, John D.; ...

    2016-10-18

    Here, the Criegee intermediate acetone oxide, (CH 3) 2COO, is formed by laser photolysis of 2,2-diiodopropane in the presence of O 2 and characterized by synchrotron photoionization mass spectrometry and by cavity ring-down ultraviolet absorption spectroscopy. The rate coefficient of the reaction of the Criegee intermediate with SO 2 was measured using photoionization mass spectrometry and pseudo-first-order methods to be (7.3 ± 0.5) × 10 –11 cm 3 s –1 at 298 K and 4 Torr and (1.5 ± 0.5) × 10 –10 cm 3 s –1 at 298 K and 10 Torr (He buffer). These values are similar tomore » directly measured rate coefficients of anti-CH 3CHOO with SO 2, and in good agreement with recent UV absorption measurements. The measurement of this reaction at 293 K and slightly higher pressures (between 10 and 100 Torr) in N 2 from cavity ring-down decay of the ultraviolet absorption of (CH 3) 2COO yielded even larger rate coefficients, in the range (1.84 ± 0.12) × 10 –10 to (2.29 ± 0.08) × 10 –10 cm 3 s –1. Photoionization mass spectrometry measurements with deuterated acetone oxide at 4 Torr show an inverse deuterium kinetic isotope effect, kH/kD = (0.53 ± 0.06), for reactions with SO 2, which may be consistent with recent suggestions that the formation of an association complex affects the rate coefficient. The reaction of (CD3)2COO with NO2 has a rate coefficient at 298 K and 4 Torr of (2.1 ± 0.5) × 10 –12 cm 3 s –1 (measured with photoionization mass spectrometry), again similar to rate for the reaction of anti-CH 3CHOO with NO 2. Cavity ring-down measurements of the acetone oxide removal without added reagents display a combination of first- and second-order decay kinetics, which can be deconvolved to derive values for both the self-reaction of (CH 3) 2COO and its unimolecular thermal decay. The inferred unimolecular decay rate coefficient at 293 K, (305 ± 70) s –1, is similar to determinations from ozonolysis. The present measurements confirm the large

  16. Best combination of promoter and micellar catalyst for the rapid conversion of sorbitol to glucose.

    PubMed

    Mukherjee, Kakali; Ghosh, Aniruddha; Saha, Rumpa; Sar, Pintu; Malik, Susanta; Saha, Bidyut

    2014-03-25

    Kinetic data for oxidation of D-sorbitol to glucose by hexavalent chromium in aqueous medium and aqueous surfactant medium (SDS, TX-100) have been reported. Effect of promoter such as PA, bipy and phenanthroline on the reaction has been investigated. The reaction is performed under pseudo first order condition with an excess of substrate over the oxidant. The reaction is first order with respect to substrate and oxidant. The micelles have a catalytic effect on the reaction. Combination of phen and TX-100 produces almost twelve times increase in rate of oxidation. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Thermodynamics of the pseudo-knot in helix 18 of 16S ribosomal RNA.

    PubMed

    Wojciechowska, Monika; Dudek, Marta; Trylska, Joanna

    2018-04-01

    A fragment of E. coli 16S rRNA formed by nucleotides 500 to 545 is termed helix 18. Nucleotides 505-507 and 524-526 form a pseudo-knot and its distortion affects ribosome function. Helix 18 isolated from the ribosome context is thus an interesting fragment to investigate the structural properties and folding of RNA with pseudo-knots. With all-atom molecular dynamics simulations, spectroscopic and gel electrophoresis experiments, we investigated thermodynamics of helix 18, with a focus on its pseudo-knot. In solution studies at ambient conditions we observed dimerization of helix 18. We proposed that the loop, containing nucleotides forming the pseudo-knot, interacts with another monomer of helix 18. The native dimer is difficult to break but introducing mutations in the pseudo-knot indeed assured a monomeric form of helix 18. Molecular dynamics simulations at 310 K confirmed the stability of the pseudo-knot but at elevated temperatures this pseudo-knot was the first part of helix 18 to lose the hydrogen bond pattern. To further determine helix 18 stability, we analyzed the interactions of helix 18 with short oligomers complementary to a nucleotide stretch containing the pseudo-knot. The formation of higher-order structures by helix 18 impacts hybridization efficiency of peptide nucleic acid and 2'-O methyl RNA oligomers. © 2018 Wiley Periodicals, Inc.

  18. Scale-Dependent Rates of Uranyl Surface Complexation Reaction in Sediments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Chongxuan; Shang, Jianying; Kerisit, Sebastien N.

    Scale-dependency of uranyl[U(VI)] surface complexation rates was investigated in stirred flow-cell and column systems using a U(VI)-contaminated sediment from the US Department of Energy, Hanford site, WA. The experimental results were used to estimate the apparent rate of U(VI) surface complexation at the grain-scale and in porous media. Numerical simulations using molecular, pore-scale, and continuum models were performed to provide insights into and to estimate the rate constants of U(VI) surface complexation at the different scales. The results showed that the grain-scale rate constant of U(VI) surface complexation was over 3 to 10 orders of magnitude smaller, dependent on themore » temporal scale, than the rate constant calculated using the molecular simulations. The grain-scale rate was faster initially and slower with time, showing the temporal scale-dependency. The largest rate constant at the grain-scale decreased additional 2 orders of magnitude when the rate was scaled to the porous media in the column. The scaling effect from the grain-scale to the porous media became less important for the slower sorption sites. Pore-scale simulations revealed the importance of coupled mass transport and reactions in both intragranular and inter-granular domains, which caused both spatial and temporal dependence of U(VI) surface complexation rates in the sediment. Pore-scale simulations also revealed a new rate-limiting mechanism in the intragranular porous domains that the rate of coupled diffusion and surface complexation reaction was slower than either process alone. The results provided important implications for developing models to scale geochemical/biogeochemical reactions.« less

  19. The formation of the dolomite-analogue norsethite: Reaction pathway and cation ordering

    NASA Astrophysics Data System (ADS)

    Pimentel, Carlos; Pina, Carlos M.

    2014-10-01

    Reaction pathways and cation ordering mechanisms involved in the formation of the mineral dolomite in nature still remain poorly understood. This is mainly due to the experimental problems posed by the synthesis of dolomite at ambient conditions, which preclude monitoring its formation in reasonable time scales. However, processes leading to the crystallization of fully-ordered dolomite-like structures can be studied by conducting experiments with mineral analogues, which are more readily precipitated. In this paper we present a study of the formation of the dolomite-analogue norsethite [BaMg(CO3)2] from a slurry which was aged at room temperature during 14 days. We found that norsethite forms by two dissolution-crystallization reactions from an initial amorphous nano-sized precipitate. The first reaction produces a mineral assemblage composed by witherite [BaCO3], northupite [Na3Mg(CO3)2Cl] and norsethite. The second dissolution-crystallization process leads to the almost complete depletion of witherite and northupite in favor of norsethite. While the composition of norsethite crystals rapidly reaches a Ba/Mg = 1 ratio, X-ray diffraction peaks indicate an increase in the crystallinity of those crystals during the first 48 h of reaction. Simultaneously, Ba-Mg cation ordering increases, as shown by the evolution of intensity ratios of certain superstructure and structure reflections. Altogether, these results demonstrate that the formation of fully-ordered norsethite occurs by a sequence of solvent-mediated processes which involve a number of precursors. Our study also suggests that similar processes might lead to the formation of dolomite in natural environments.

  20. The Phase Behavior Effect on the Reaction Engineering of Transesterification Reactions and Reactor Design for Continuous Biodiesel Production

    NASA Astrophysics Data System (ADS)

    Csernica, Stephen N.

    transitions from two phases to a single phase, or pseudo-single phase. The transition to a single phase or pseudo-single phase is a function of the methanol content. Regardless, the maximum observed reaction rate occurs at the point of the phase transition, when the concentration of triglycerides in the methanol phase is largest. The phase transition occurs due to the accumulation of the primary product, biodiesel methyl esters. Through various experiments, it was determined that the rate of the triglyceride mass transfer into the methanol phase, as well as the solubility of triglycerides in methanol, increases with increasing methyl ester concentration. Thus, there exists some critical methyl ester concentration which favors the formation of a single or pseudo-single phase system. The effect of the by-product glycerol on the reaction kinetics was also investigated. It was determined that at low methanol to triglyceride molar ratios, glycerol acts to inhibit the reaction rate and limit the overall triglyceride conversion. This occurs because glycerol accumulates in the methanol phase, i.e. the primary reaction volume. When glycerol is at relatively high concentrations within the methanol phase, triglycerides become excluded from the reaction volume. This greatly reduces the reaction rate and limits the overall conversion. As the concentration of methanol is increased, glycerol becomes diluted and the inhibitory effects become dampened. Assuming pseudo-homogeneous phase behavior, a simple kinetic model incorporating the inhibitory effects of glycerol was proposed based on batch reactor data. The kinetic model was primarily used to theoretically compare the performance of different types of continuous flow reactors for continuous biodiesel production. It was determined that the inhibitory effects of glycerol result in the requirement of very large reactor volumes when using continuous stirred tank reactors (CSTR). The reactor volume can be greatly reduced using tubular style

  1. Kinetics and Mechanism of the Reaction of Hydoxyl Radicals with Acetonitrile under Atmospheric Conditions

    NASA Technical Reports Server (NTRS)

    Hynes, A. J.; Wine, P. H.

    1997-01-01

    The pulsed laser photolysis-pulsed laser induced fluorescence technique has been employed to determine absolute rate coefficients for the reaction OH + CH3CN (1) and its isotopic variants, OH + CD3CN (2), OD + CH3CN (3), and OD + CD3CN (4). Reactions 1 and 2 were studied as a function of pressure and temperature in N2, N2/O2, and He buffer gases. In the absence of O2 all four reactions displayed well-behaved kinetics with exponential OH decays and pseudo-first rate constants which were proportional to substrate concentration. Data obtained in N2 over the range 50-700 Torr at 298 K are consistent with k(sub 1), showing a small pressure dependence. The Arrhenius expression obtained by averaging data at all pressures in k(sub 1)(T) = (1.1(sup +0.5)/(sub -0.3)) x 10(exp -12) exp[(-1130 +/- 90)/T] cu cm /(molecule s). The kinetics of reaction 2 are found to be pressure dependent with k(sub 2) (298 K) increasing from (1.21 +/- 0.12) x 10(exp -14) to (2.16 +/- 0.11) x 10(exp -14) cm(exp 3)/ (molecule s) over the pressure range 50-700 Torr of N2 at 298 K. Data at pressures greater than 600 Torr give k(sub 2)(T) = (9.4((sup +13.4)(sub -5.0))) x 10(exp -13) exp[(-1180 +/- 250)/T] cu cm/(molecule s). The rates of reactions 3 and 4 are found to be independent of pressure over the range 50-700 Torr of N2 with 298 K rate coefficient given by k(sub 3) =(3.18 +/- 0.40) x 10(exp -14) cu cm/(molecule s) and k(sub 4) = (2.25 +/-0.28) x 10(exp -14) cu cm/(molecule s). In the presence of O2 each reaction shows complex (non-pseudo-first-order) kinetic behavior and/or an apparent decrease in the observed rate constant with increasing [O2], indicating the presence of significant OH or OD regeneration. Observation of regeneration of OH in (2) and OD in (3) is indicative of a reaction channel which proceeds via addition followed by reaction of the adduct, or one of its decomposition products, with O2. The observed OH and OD decay profiles have been modeled by using a simple mechanistic

  2. Probabilistic models and uncertainty quantification for the ionization reaction rate of atomic Nitrogen

    NASA Astrophysics Data System (ADS)

    Miki, K.; Panesi, M.; Prudencio, E. E.; Prudhomme, S.

    2012-05-01

    The objective in this paper is to analyze some stochastic models for estimating the ionization reaction rate constant of atomic Nitrogen (N + e- → N+ + 2e-). Parameters of the models are identified by means of Bayesian inference using spatially resolved absolute radiance data obtained from the Electric Arc Shock Tube (EAST) wind-tunnel. The proposed methodology accounts for uncertainties in the model parameters as well as physical model inadequacies, providing estimates of the rate constant that reflect both types of uncertainties. We present four different probabilistic models by varying the error structure (either additive or multiplicative) and by choosing different descriptions of the statistical correlation among data points. In order to assess the validity of our methodology, we first present some calibration results obtained with manufactured data and then proceed by using experimental data collected at EAST experimental facility. In order to simulate the radiative signature emitted in the shock-heated air plasma, we use a one-dimensional flow solver with Park's two-temperature model that simulates non-equilibrium effects. We also discuss the implications of the choice of the stochastic model on the estimation of the reaction rate and its uncertainties. Our analysis shows that the stochastic models based on correlated multiplicative errors are the most plausible models among the four models proposed in this study. The rate of the atomic Nitrogen ionization is found to be (6.2 ± 3.3) × 1011 cm3 mol-1 s-1 at 10,000 K.

  3. (CH3)3COOH (tert-butyl hydroperoxide): OH reaction rate coefficients between 206 and 375 K and the OH photolysis quantum yield at 248 nm.

    PubMed

    Baasandorj, Munkhbayar; Papanastasiou, Dimitrios K; Talukdar, Ranajit K; Hasson, Alam S; Burkholder, James B

    2010-10-14

    Rate coefficients, k, for the gas-phase reaction of the OH radical with (CH(3))(3)COOH (tert-butyl hydroperoxide) were measured as a function of temperature (206-375 K) and pressure (25-200 Torr (He, N(2))). Rate coefficients were measured under pseudo-first-order conditions using pulsed laser photolysis to produce OH and laser induced fluorescence (PLP-LIF) to measure the OH temporal profile. Two independent methods were used to determine the gas-phase infrared cross sections of (CH(3))(3)COOH, absolute pressure and chemical titration, that were used to determine the (CH(3))(3)COOH concentration in the LIF reactor. The temperature dependence of the rate coefficients is described, within the measurement precision, by the Arrhenius expression k(1)(T) = (7.0 ± 1.0) × 10(-13) exp[(485 ± 20)/T] cm(3) molecule(-1) s(-1) where k(1)(296 K) was measured to be (3.58 ± 0.54) × 10(-12) cm(3) molecule(-1) s(-1). The uncertainties are 2σ (95% confidence level) and include estimated systematic errors. UV absorption cross sections of (CH(3))(3)COOH were determined at 185, 214, 228, and 254 nm and over the wavelength range 210-300 nm. The OH quantum yield following the 248 nm pulsed laser photolysis of (CH(3))(3)COOH was measured relative to the OH quantum yields of H(2)O(2) and HNO(3) using PLP-LIF and found to be near unity.

  4. Tjalma syndrome (pseudo-pseudo Meigs') as initial manifestation of juvenile-onset systemic lupus erythematosus.

    PubMed

    Torres Jiménez, Alfonso Ragnar; Solís-Vallejo, Eunice; Céspedes-Cruz, Adriana Ivonne; Zeferino Cruz, Maritza; Rojas-Curiel, Edna Zoraida; Sánchez-Jara, Berenice

    2017-05-15

    Tjalma syndrome or pseudo-pseudo Meigs' syndrome is a clinical condition characterized by pleural effusion, ascites and elevated CA-125 with no associated benign or malignant ovarian tumor in a patient with systemic lupus erythematosus (SLE). Tjalma described the first case of a patient with SLE, pleural effusion, ascites and elevated CA-125. We report the first case in a 14-year old patient who presented with ascites and pleural effusion refractory to treatment and elevated CA-125, in the absence of an ovarian tumor, that warranted aggressive management. Copyright © 2017 Elsevier España, S.L.U. and Sociedad Española de Reumatología y Colegio Mexicano de Reumatología. All rights reserved.

  5. Pseudo-simple heteroclinic cycles in R4

    NASA Astrophysics Data System (ADS)

    Chossat, Pascal; Lohse, Alexander; Podvigina, Olga

    2018-06-01

    We study pseudo-simple heteroclinic cycles for a Γ-equivariant system in R4 with finite Γ ⊂ O(4) , and their nearby dynamics. In particular, in a first step towards a full classification - analogous to that which exists already for the class of simple cycles - we identify all finite subgroups of O(4) admitting pseudo-simple cycles. To this end we introduce a constructive method to build equivariant dynamical systems possessing a robust heteroclinic cycle. Extending a previous study we also investigate the existence of periodic orbits close to a pseudo-simple cycle, which depends on the symmetry groups of equilibria in the cycle. Moreover, we identify subgroups Γ ⊂ O(4) , Γ ⊄ SO(4) , admitting fragmentarily asymptotically stable pseudo-simple heteroclinic cycles. (It has been previously shown that for Γ ⊂ SO(4) pseudo-simple cycles generically are completely unstable.) Finally, we study a generalized heteroclinic cycle, which involves a pseudo-simple cycle as a subset.

  6. First-order inflation. [in cosmology

    NASA Technical Reports Server (NTRS)

    Kolb, Edward W.

    1991-01-01

    In the original proposal, inflation occurred in the process of a strongly first-order phase transition. This model was soon demonstrated to be fatally flawed. Subsequent models for inflation involved phase transitions that were second-order, or perhaps weakly first-order; some even involved no phase transition at all. Recently the possibility of inflation during a strongly first-order phase transition has been revived. In this paper, some models for first-order inflation are discussed, and unique signatures that result if inflation is realized in a first-order transition are emphasized. Some of the history of inflation is reviewed to demonstrate how first-order inflation differs from other models.

  7. Energy diffusion controlled reaction rate of reacting particle driven by broad-band noise

    NASA Astrophysics Data System (ADS)

    Deng, M. L.; Zhu, W. Q.

    2007-10-01

    The energy diffusion controlled reaction rate of a reacting particle with linear weak damping and broad-band noise excitation is studied by using the stochastic averaging method. First, the stochastic averaging method for strongly nonlinear oscillators under broad-band noise excitation using generalized harmonic functions is briefly introduced. Then, the reaction rate of the classical Kramers' reacting model with linear weak damping and broad-band noise excitation is investigated by using the stochastic averaging method. The averaged Itô stochastic differential equation describing the energy diffusion and the Pontryagin equation governing the mean first-passage time (MFPT) are established. The energy diffusion controlled reaction rate is obtained as the inverse of the MFPT by solving the Pontryagin equation. The results of two special cases of broad-band noises, i.e. the harmonic noise and the exponentially corrected noise, are discussed in details. It is demonstrated that the general expression of reaction rate derived by the authors can be reduced to the classical ones via linear approximation and high potential barrier approximation. The good agreement with the results of the Monte Carlo simulation verifies that the reaction rate can be well predicted using the stochastic averaging method.

  8. Growth, Toxin Production and Allelopathic Effects of Pseudo-nitzschia multiseries under Iron-Enriched Conditions.

    PubMed

    Sobrinho, Bruna Fernanda; de Camargo, Luana Mocelin; Sandrini-Neto, Leonardo; Kleemann, Cristian Rafael; Machado, Eunice da Costa; Mafra, Luiz Laureno

    2017-10-24

    In order to assess the effects of Fe-enrichment on the growth and domoic acid (DA) production of the toxigenic diatom Pseudo-nitzschia multiseries , static cultures that received the addition of different iron (Fe) concentrations were maintained for 30 days. Intra- and extracellular DA concentrations were evaluated over time, and growth and chain-formation were compared to those of non-toxic diatoms, Bacillaria sp. Growth rates of P. multiseries (μ = 0.45-0.73 d -1 ) were similar among cultures containing different Fe concentrations. Likewise, the similar incidence and length of P. multiseries stepped cell chains (usually 2-4; up to 8-cell long) among the treatments reinforces that the cultures were not growth-inhibited under any condition tested, suggesting an efficient Fe acquisition mechanism. Moreover, DA concentrations were significantly higher under the highest Fe concentration, indicating that Fe is required for toxin synthesis. Bacillaria sp. reached comparable growth rates under the same Fe concentrations, except when the dissolved cell contents from a P. multiseries culture was added. The 50-70% reduction in cell density and 70-90% decrease in total chlorophyll-a content of Bacillaria sp. at early stationary growth phase indicates, for the first time, an allelopathic effect of undetermined compounds released by Pseudo-nitzschia to another diatom species.

  9. Pseudo color ghost coding imaging with pseudo thermal light

    NASA Astrophysics Data System (ADS)

    Duan, De-yang; Xia, Yun-jie

    2018-04-01

    We present a new pseudo color imaging scheme named pseudo color ghost coding imaging based on ghost imaging but with multiwavelength source modulated by a spatial light modulator. Compared with conventional pseudo color imaging where there is no nondegenerate wavelength spatial correlations resulting in extra monochromatic images, the degenerate wavelength and nondegenerate wavelength spatial correlations between the idle beam and signal beam can be obtained simultaneously. This scheme can obtain more colorful image with higher quality than that in conventional pseudo color coding techniques. More importantly, a significant advantage of the scheme compared to the conventional pseudo color coding imaging techniques is the image with different colors can be obtained without changing the light source and spatial filter.

  10. First-order reversal curves of single domain particles: diluted random assemblages and chains

    NASA Astrophysics Data System (ADS)

    Egli, R.

    2009-04-01

    Exact magnetic models can be used to calculate first-order reversal curves (FORC) of single domain (SD) particle assemblages, as shown by Newell [2005] for the case of isolated Stoner-Wohlfarth particles. After overcoming experimental difficulties, a FORC diagram sharing many similarities to Newell's model has been measured on a lake sediment sample (see A.P. Chen et al., "Quantification of magnetofossils using first-order reversal curves", EGU General Assembly 2009, Abstracts Vol. 11, EGU2009-10719). This sample contains abundant magnetofossils, as shown by coercivity analysis and electron microscopy, therefore suggesting that well dispersed, intact magnetosome chains are the main SD carriers. Subtle differences between the reversible and the irreversible contributions of the measured FORC distribution suggest that magnetosome chains might not be correctly described by the Stoner-Wohlfarth model. To better understand the hysteresis properties of such chains, a simple magnetic model has been implemented, taking dipole-dipole interactions between particles within the same chain into account. The model results depend on the magnetosome elongation, the number of magnetosomes in a chain, and the gap between them. If the chain axis is subparallel to the applied field, the magnetic moment reverses by a pseudo-fanning mode, which is replaced by a pseudo-coherent rotation mode at greater angles. These reversal modes are intrinsically different from coherent rotation assumed Stoner-Wohlfarth model, resulting in FORC diagrams with a smaller reversible component. On the other hand, isolated authigenic SD particles can precipitate in the sediment matrix, as it might occur for pedogenic magnetite. In this case, an assembly of randomly located particles provides a possible model for the resulting FORC diagram. If the concentration of the particles is small, each particle is affected by a random interaction field whose statistical distribution can be calculated from first

  11. Using a CBL Unit, a Temperature Sensor, and a Graphing Calculator to Model the Kinetics of Consecutive First-Order Reactions as Safe In-Class Demonstrations

    ERIC Educational Resources Information Center

    Moore-Russo, Deborah A.; Cortes-Figueroa, Jose E.; Schuman, Michael J.

    2006-01-01

    The use of Calculator-Based Laboratory (CBL) technology, the graphing calculator, and the cooling and heating of water to model the behavior of consecutive first-order reactions is presented, where B is the reactant, I is the intermediate, and P is the product for an in-class demonstration. The activity demonstrates the spontaneous and consecutive…

  12. Catalyst-free room-temperature iClick reaction of molybdenum(ii) and tungsten(ii) azide complexes with electron-poor alkynes: structural preferences and kinetic studies.

    PubMed

    Schmid, Paul; Maier, Matthias; Pfeiffer, Hendrik; Belz, Anja; Henry, Lucas; Friedrich, Alexandra; Schönfeld, Fabian; Edkins, Katharina; Schatzschneider, Ulrich

    2017-10-10

    Two isostructural and isoelectronic group VI azide complexes of the general formula [M(η 3 -allyl)(N 3 )(bpy)(CO) 2 ] with M = Mo, W and bpy = 2,2'-bipyridine were prepared and fully characterized, including X-ray structure analysis. Both reacted smoothly with electron-poor alkynes such as dimethyl acetylenedicarboxylate (DMAD) and 4,4,4-trifluoro-2-butynoic acid ethyl ester in a catalyst-free room-temperature iClick [3 + 2] cycloaddition reaction. Reaction with phenyl(trifluoromethyl)acetylene, on the other hand, did not lead to any product formation. X-ray structures of the four triazolate complexes isolated showed the monodentate ligand to be N2-coordinated in all cases, which requires a 1,2-shift of the nitrogen from the terminal azide to the triazolate cycloaddition product. On the other hand, a 19 F NMR spectroscopic study of the reaction of the fluorinated alkyne with the tungsten azide complex at 27 °C allowed detection of the N1-coordinated intermediate. With this method, the second-order rate constant was determined as (7.3 ± 0.1) × 10 -2 M -1 s -1 , which compares favorably with that of first-generation compounds such as difluorocyclooctyne (DIFO) used in the strain-promoted azide-alkyne cycloaddition (SPAAC). In contrast, the reaction of the molybdenum analogue was too fast to be studied with NMR methods. Alternatively, solution IR studies revealed pseudo-first order rate constants of 0.4 to 6.5 × 10 -3 s -1 , which increased in the order of Mo > W and F 3 C-C[triple bond, length as m-dash]C-COOEt > DMAD.

  13. Expanding the capability of reaction-diffusion codes using pseudo traps and temperature partitioning: Applied to hydrogen uptake and release from tungsten

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simmonds, M. J.; Yu, J. H.; Wang, Y. Q.

    Simulating the implantation and thermal desorption evolution in a reaction-diffusion model requires solving a set of coupled differential equations that describe the trapping and release of atomic species in Plasma Facing Materials (PFMs). These fundamental equations are well outlined by the Tritium Migration Analysis Program (TMAP) which can model systems with no more than three active traps per atomic species. To overcome this limitation, we have developed a Pseudo Trap and Temperature Partition (PTTP) scheme allowing us to lump multiple inactive traps into one pseudo trap, simplifying the system of equations to be solved. For all temperatures, we show themore » trapping of atoms from solute is exactly accounted for when using a pseudo trap. However, a single effective pseudo trap energy can not well replicate the release from multiple traps, each with its own detrapping energy. However, atoms held in a high energy trap will remain trapped at relatively low temperatures, and thus there is a temperature range in which release from high energy traps is effectively inactive. By partitioning the temperature range into segments, a pseudo trap can be defined for each segment to account for multiple high energy traps that are actively trapping but are effectively not releasing atoms. With increasing temperature, as in controlled thermal desorption, the lowest energy trap is nearly emptied and can be removed from the set of coupled equations, while the next higher energy trap becomes an actively releasing trap. Each segment is thus calculated sequentially, with the last time step of a given segment solution being used as an initial input for the next segment as only the pseudo and actively releasing traps are modeled. This PTTP scheme is then applied to experimental thermal desorption data for tungsten (W) samples damaged with heavy ions, which display six distinct release peaks during thermal desorption. Without modifying the TMAP7 source code the PTTP scheme is shown

  14. Expanding the capability of reaction-diffusion codes using pseudo traps and temperature partitioning: Applied to hydrogen uptake and release from tungsten

    DOE PAGES

    Simmonds, M. J.; Yu, J. H.; Wang, Y. Q.; ...

    2018-06-04

    Simulating the implantation and thermal desorption evolution in a reaction-diffusion model requires solving a set of coupled differential equations that describe the trapping and release of atomic species in Plasma Facing Materials (PFMs). These fundamental equations are well outlined by the Tritium Migration Analysis Program (TMAP) which can model systems with no more than three active traps per atomic species. To overcome this limitation, we have developed a Pseudo Trap and Temperature Partition (PTTP) scheme allowing us to lump multiple inactive traps into one pseudo trap, simplifying the system of equations to be solved. For all temperatures, we show themore » trapping of atoms from solute is exactly accounted for when using a pseudo trap. However, a single effective pseudo trap energy can not well replicate the release from multiple traps, each with its own detrapping energy. However, atoms held in a high energy trap will remain trapped at relatively low temperatures, and thus there is a temperature range in which release from high energy traps is effectively inactive. By partitioning the temperature range into segments, a pseudo trap can be defined for each segment to account for multiple high energy traps that are actively trapping but are effectively not releasing atoms. With increasing temperature, as in controlled thermal desorption, the lowest energy trap is nearly emptied and can be removed from the set of coupled equations, while the next higher energy trap becomes an actively releasing trap. Each segment is thus calculated sequentially, with the last time step of a given segment solution being used as an initial input for the next segment as only the pseudo and actively releasing traps are modeled. This PTTP scheme is then applied to experimental thermal desorption data for tungsten (W) samples damaged with heavy ions, which display six distinct release peaks during thermal desorption. Without modifying the TMAP7 source code the PTTP scheme is shown

  15. Reaction rates for mesoscopic reaction-diffusion kinetics

    DOE PAGES

    Hellander, Stefan; Hellander, Andreas; Petzold, Linda

    2015-02-23

    The mesoscopic reaction-diffusion master equation (RDME) is a popular modeling framework frequently applied to stochastic reaction-diffusion kinetics in systems biology. The RDME is derived from assumptions about the underlying physical properties of the system, and it may produce unphysical results for models where those assumptions fail. In that case, other more comprehensive models are better suited, such as hard-sphere Brownian dynamics (BD). Although the RDME is a model in its own right, and not inferred from any specific microscale model, it proves useful to attempt to approximate a microscale model by a specific choice of mesoscopic reaction rates. In thismore » paper we derive mesoscopic scale-dependent reaction rates by matching certain statistics of the RDME solution to statistics of the solution of a widely used microscopic BD model: the Smoluchowski model with a Robin boundary condition at the reaction radius of two molecules. We also establish fundamental limits on the range of mesh resolutions for which this approach yields accurate results and show both theoretically and in numerical examples that as we approach the lower fundamental limit, the mesoscopic dynamics approach the microscopic dynamics. Finally, we show that for mesh sizes below the fundamental lower limit, results are less accurate. Thus, the lower limit determines the mesh size for which we obtain the most accurate results.« less

  16. Reaction rates for mesoscopic reaction-diffusion kinetics

    PubMed Central

    Hellander, Stefan; Hellander, Andreas; Petzold, Linda

    2016-01-01

    The mesoscopic reaction-diffusion master equation (RDME) is a popular modeling framework frequently applied to stochastic reaction-diffusion kinetics in systems biology. The RDME is derived from assumptions about the underlying physical properties of the system, and it may produce unphysical results for models where those assumptions fail. In that case, other more comprehensive models are better suited, such as hard-sphere Brownian dynamics (BD). Although the RDME is a model in its own right, and not inferred from any specific microscale model, it proves useful to attempt to approximate a microscale model by a specific choice of mesoscopic reaction rates. In this paper we derive mesoscopic scale-dependent reaction rates by matching certain statistics of the RDME solution to statistics of the solution of a widely used microscopic BD model: the Smoluchowski model with a Robin boundary condition at the reaction radius of two molecules. We also establish fundamental limits on the range of mesh resolutions for which this approach yields accurate results and show both theoretically and in numerical examples that as we approach the lower fundamental limit, the mesoscopic dynamics approach the microscopic dynamics. We show that for mesh sizes below the fundamental lower limit, results are less accurate. Thus, the lower limit determines the mesh size for which we obtain the most accurate results. PMID:25768640

  17. CH3CO + O2 + M (M = He, N2) Reaction Rate Coefficient Measurements and Implications for the OH Radical Product Yield.

    PubMed

    Papadimitriou, Vassileios C; Karafas, Emmanuel S; Gierczak, Tomasz; Burkholder, James B

    2015-07-16

    The gas-phase CH3CO + O2 reaction is known to proceed via a chemical activation mechanism leading to the formation of OH and CH3C(O)OO radicals via bimolecular and termolecular reactive channels, respectively. In this work, rate coefficients, k, for the CH3CO + O2 reaction were measured over a range of temperature (241-373 K) and pressure (0.009-600 Torr) with He and N2 as the bath gas and used to characterize the bi- and ter-molecular reaction channels. Three independent experimental methods (pulsed laser photolysis-laser-induced fluorescence (PLP-LIF), pulsed laser photolysis-cavity ring-down spectroscopy (PLP-CRDS), and a very low-pressure reactor (VLPR)) were used to characterize k(T,M). PLP-LIF was the primary method used to measure k(T,M) in the high-pressure regime under pseudo-first-order conditions. CH3CO was produced by PLP, and LIF was used to monitor the OH radical bimolecular channel reaction product. CRDS, a complementary high-pressure method, measured k(295 K,M) over the pressure range 25-600 Torr (He) by monitoring the temporal CH3CO radical absorption following its production via PLP in the presence of excess O2. The VLPR technique was used in a relative rate mode to measure k(296 K,M) in the low-pressure regime (9-32 mTorr) with CH3CO + Cl2 used as the reference reaction. A kinetic mechanism analysis of the combined kinetic data set yielded a zero pressure limit rate coefficient, kint(T), of (6.4 ± 4) × 10(-14) exp((820 ± 150)/T) cm(3) molecule(-1) s(-1) (with kint(296 K) measured to be (9.94 ± 1.3) × 10(-13) cm(3) molecule(-1) s(-1)), k0(T) = (7.39 ± 0.3) × 10(-30) (T/300)(-2.2±0.3) cm(6) molecule(-2) s(-1), and k∞(T) = (4.88 ± 0.05) × 10(-12) (T/300)(-0.85±0.07) cm(3) molecule(-1) s(-1) with Fc = 0.8 and M = N2. A He/N2 collision efficiency ratio of 0.60 ± 0.05 was determined. The phenomenological kinetic results were used to define the pressure and temperature dependence of the OH radical yield in the CH3CO + O2 reaction. The

  18. Pseudo-drunk-patron evaluation of bar-staff compliance with Western Australian liquor law.

    PubMed

    Rydon, P; Stockwell, T; Lang, E; Beel, A

    1996-06-01

    Compliance of bar staff with the Western Australian liquor law prohibiting service to drunk patrons was assessed through the deployment of actors trained to behave in a drunken manner. The serving practices of 23 licensed premises (19 hotels and four nightclubs) were examined. During 120 visits to hotel and nightclub bars, more than 350 drink orders were placed by pairs of pseudo-drunk actors who ordered up to three drinks each on each visit. On placing these drink orders, pseudo-drunks were refused service by bar staff on only 12 occasions. The rate of refusal of service across all premises was 10 per cent of visits. Partial interventions by servers, such as offering food or low-alcohol or nonalcoholic drinks, occurred in only four instances of the 120 visits. Qualitative observations and results obtained from a separate study examining a subsample of the servers who trained in responsible service of alcohol are discussed.

  19. Dye-sensitized electron transfer from TiO2 to oxidized triphenylamines that follows first-order kinetics

    PubMed Central

    DiMarco, Brian N.; Troian-Gautier, Ludovic; Sampaio, Renato N.

    2017-01-01

    Two sensitizers, [Ru(bpy)2(dcb)]2+ (RuC) and [Ru(bpy)2(dpb)]2+ (RuP), where bpy is 2,2′-bipyridine, dcb is 4,4′-dicarboxylic acid-2,2′-bipyridine and dpb is 4,4′-diphosphonic acid-2,2′-bipyridine, were anchored to mesoporous TiO2 thin films and utilized to sensitize the reaction of TiO2 electrons with oxidized triphenylamines, TiO2(e–) + TPA+ → TiO2 + TPA, to visible light in CH3CN electrolytes. A family of four symmetrically substituted triphenylamines (TPAs) with formal Eo(TPA+/0) reduction potentials that spanned a 0.5 eV range was investigated. Surprisingly, the reaction followed first-order kinetics for two TPAs that provided the largest thermodynamic driving force. Such first-order reactivity indicates a strong Coulombic interaction between TPA+ and TiO2 that enables the injected electron to tunnel back in one concerted step. The kinetics for the other TPA derivatives were non-exponential and were modelled with the Kohlrausch–William–Watts (KWW) function. A Perrin-like reaction sphere model is proposed to rationalize the kinetic data. The activation energies were the same for all of the TPAs, within experimental error. The average rate constants were found to increase with the thermodynamic driving force, consistent with electron transfer in the Marcus normal region. PMID:29629161

  20. DEPENDENCE OF X-RAY BURST MODELS ON NUCLEAR REACTION RATES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cyburt, R. H.; Keek, L.; Schatz, H.

    2016-10-20

    X-ray bursts are thermonuclear flashes on the surface of accreting neutron stars, and reliable burst models are needed to interpret observations in terms of properties of the neutron star and the binary system. We investigate the dependence of X-ray burst models on uncertainties in (p, γ ), ( α , γ ), and ( α , p) nuclear reaction rates using fully self-consistent burst models that account for the feedbacks between changes in nuclear energy generation and changes in astrophysical conditions. A two-step approach first identified sensitive nuclear reaction rates in a single-zone model with ignition conditions chosen to matchmore » calculations with a state-of-the-art 1D multi-zone model based on the Kepler stellar evolution code. All relevant reaction rates on neutron-deficient isotopes up to mass 106 were individually varied by a factor of 100 up and down. Calculations of the 84 changes in reaction rate with the highest impact were then repeated in the 1D multi-zone model. We find a number of uncertain reaction rates that affect predictions of light curves and burst ashes significantly. The results provide insights into the nuclear processes that shape observables from X-ray bursts, and guidance for future nuclear physics work to reduce nuclear uncertainties in X-ray burst models.« less

  1. CO/sub 2/ absorption into aqueous MDEA and MDEA/MEA solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Critchfield, J.; Rochelle, G.T.

    1987-01-01

    The rate of absorption of CO/sub 2/ into 2 molal MDEA was measured by following solution composition in a stirred-cell batch reactor. The conditions investigated were 9.5 - 62/sup 0/C at a nominal CO/sub 2/ pressure of 1 atm. The data were modelled with a combined mass transfer and equilibrium model which treated the reaction of CO/sub 2/ with MDEA as second order and reversible, rather than pseudo-first order. The resulting activation energy was 13.7 kcal/gmol, and the rate constant at 30.5/sup 0/C was 4.0 (Ms)/sup -1/. The assumption of pseudo-first order conditions was found to reduce the apparent activationmore » energy to approximately 9 kcal/gmol. CO/sub 2/ absorption into 1.36 molal MDEA/0.61 molal MEA was studied at 31/sup 0/C. The experimental data were predicted better by a mass transfer model based on a shuttle mechanism than by one with two parallel reactions.« less

  2. Method of controlling fusion reaction rates

    DOEpatents

    Kulsrud, Russell M.; Furth, Harold P.; Valeo, Ernest J.; Goldhaber, Maurice

    1988-01-01

    A method of controlling the reaction rates of the fuel atoms in a fusion reactor comprises the step of polarizing the nuclei of the fuel atoms in a particular direction relative to the plasma confining magnetic field. Fusion reaction rates can be increased or decreased, and the direction of emission of the reaction products can be controlled, depending on the choice of polarization direction.

  3. Method of controlling fusion reaction rates

    DOEpatents

    Kulsrud, Russell M.; Furth, Harold P.; Valeo, Ernest J.; Goldhaber, Maurice

    1988-03-01

    A method of controlling the reaction rates of the fuel atoms in a fusion reactor comprises the step of polarizing the nuclei of the fuel atoms in a particular direction relative to the plasma confining magnetic field. Fusion reaction rates can be increased or decreased, and the direction of emission of the reaction products can be controlled, depending on the choice of polarization direction.

  4. Rapid oxidation of geothermal arsenic(III) in streamwaters of the eastern Sierra Nevada

    USGS Publications Warehouse

    Wilkie, J.A.; Hering, J.G.

    1998-01-01

    Arsenic redox cycling was examined in source waters of the Los Angeles Aqueduct, specifically at Hot Creek, a tributary of the Owens River. Elevated arsenic concentrations in Hot Creek result from geothermal inputs. Total arsenic and As(III) concentrations were determined in the creek and in hot spring pools along its banks. Samples were processed in the field using anion-exchange columns to separate inorganic As(III) and As(V) species. Downstream of the geothermal inputs, decreasing contributions of As(III) to total arsenic concentrations indicated rapid in-stream oxidation of As(III) to As(V) with almost complete oxidation occurring within 1200 m. Based on assumed plug flow transport and a flow velocity of about 0.4 m/s, the pseudo- first-order half-life calculated for this reaction was approximately 0.3 h. Conservative transport of total dissolved arsenic was observed over the reach. Pseudo-first-order reaction rates determined for As(III) oxidation in batch studies conducted in the field with aquatic macrophytes and/or macrophyte surface matter were comparable to the in-stream oxidation rate observed along Hot Creek. In batch kinetic studies, oxidation was not observed after sterile filtration or after the addition of antibiotics, which indicates that bacteria attached to submerged macrophytes are mediating the rapid As(III) oxidation reaction.Arsenic redox cycling was examined in source waters of the Los Angeles Aqueduct, specifically at Hot Creek, a tributary of the Owens River. Elevated arsenic concentrations in Hot Creek result from geothermal inputs. Total arsenic and As(III) concentrations were determined in the creek and in hot spring pools along its banks. Samples were processed in the field using anion-exchange columns to separate inorganic As(III) and As(V) species. Downstream of the geothermal inputs, decreasing contributions of As(III) to total arsenic concentrations indicated rapid in-stream oxidation of As(III) to As(V) with almost complete

  5. Exploiting Photo-induced Reactions in Polymer Blends to Create Hierarchically Ordered, Defect-free Materials

    ScienceCinema

    Balazs, Anna [University of Pittsburgh, Pittsburgh, Pennsylvania, United States

    2017-12-09

    Computer simulations reveal how photo-induced chemical reactions can be exploited to create long-range order in binary and ternary polymeric materials. The process is initiated by shining a spatially uniform light over a photosensitive AB binary blend, which undergoes both a reversible chemical reaction and phase separation. We then introduce a well-collimated, higher-intensity light source. Rastering this secondary light over the sample locally increases the reaction rate and causes formation of defect-free, spatially periodic structures. These binary structures resemble either the lamellar or hexagonal phases of microphase-separated di-block copolymers. We measure the regularity of the ordered structures as a function of the relative reaction rates for different values of the rastering speed and determine the optimal conditions for creating defect-free structures in the binary systems. We then add a non-reactive homo-polymer C, which is immiscible with both A and B. We show that this component migrates to regions that are illuminated by the secondary, higher-intensity light, allowing us to effectively write a pattern of C onto the AB film. Rastering over the ternary blend with this collimated light now leads to hierarchically ordered patterns of A, B, and C. The findings point to a facile, non-intrusive process for manufacturing high-quality polymeric devices in a low-cost, efficient manner.

  6. Night-time tropospheric chemistry of the unsaturated alcohols ( Z)-pent-2-en-1-ol and pent-1-en-3-ol: Kinetic studies of reactions of NO 3 and N 2O 5 with stress-induced plant emissions

    NASA Astrophysics Data System (ADS)

    Pfrang, Christian; Baeza Romero, Maria T.; Cabanas, Beatriz; Canosa-Mas, Carlos E.; Villanueva, Florentina; Wayne, Richard P.

    The night-time tropospheric chemistry of two stress-induced volatile organic compounds (VOCs), ( Z)-pent-2-en-1-ol and pent-1-en-3-ol, has been studied at room temperature. Rate coefficients for reactions of the nitrate radical (NO 3) with these pentenols were measured using the discharge-flow technique. Because of the relatively low volatility of these compounds, we employed off-axis continuous-wave cavity-enhanced absorption spectroscopy for detection of NO 3 in order to be able to work in pseudo first-order conditions with the pentenols in large excess over NO 3. The rate coefficients were determined to be (1.53±0.23)×10 -13 and (1.39±0.19)×10 -14 cm 3 molecule -1 s -1 for reactions of NO 3 with ( Z)-pent-2-en-1-ol and pent-1-en-3-ol. An attempt to study the kinetics of these reactions with a relative-rate technique, using N 2O 5 as source of NO 3 resulted in significantly higher apparent rate coefficients. Performing relative-rate experiments in known excesses of NO 2 allowed us to determine the rate coefficients for the N 2O 5 reactions to be (5.0±2.8)×10 -19 cm 3 molecule -1 s -1 for ( Z)-pent-2-en-1-ol, and (9.1±5.8)×10 -19 cm 3 molecule -1 s -1 for pent-1-en-3-ol. We show that these relatively slow reactions can indeed interfere with rate determinations in conventional relative-rate experiments.

  7. Representing Rate Equations for Enzyme-Catalyzed Reactions

    ERIC Educational Resources Information Center

    Ault, Addison

    2011-01-01

    Rate equations for enzyme-catalyzed reactions are derived and presented in a way that makes it easier for the nonspecialist to see how the rate of an enzyme-catalyzed reaction depends upon kinetic constants and concentrations. This is done with distribution equations that show how the rate of the reaction depends upon the relative quantities of…

  8. Pop-it beads to introduce catalysis of reaction rate and substrate depletion effects.

    PubMed

    Gehret, Austin U

    2017-03-04

    A kinesthetic classroom activity was designed to help students understand enzyme activity and catalysis of reaction rate. Students served the role of enzymes by manipulating Pop-It Beads as the catalytic event. This activity illuminates the relationship between reaction rate and reaction progress by allowing students to experience first-hand the effect of substrate depletion on catalyzed reaction rate. Preliminary findings based on survey results and exam performance suggest the activity could prove beneficial to students in the targeted learning outcomes. Unique to previous kinesthetic approaches that model Michaelis-Menten kinetics, this activity models the effects of substrate depletion on catalyzed reaction rate. Therefore, it could prove beneficial for conveying the reasoning behind the initial rate simplification used in Michaelis-Menten kinetics. © 2016 by The International Union of Biochemistry and Molecular Biology, 45(2):179-183, 2017. © 2016 The International Union of Biochemistry and Molecular Biology.

  9. Strain, curvature, and twist measurements in digital holographic interferometry using pseudo-Wigner-Ville distribution based method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rajshekhar, G.; Gorthi, Sai Siva; Rastogi, Pramod

    2009-09-15

    Measurement of strain, curvature, and twist of a deformed object play an important role in deformation analysis. Strain depends on the first order displacement derivative, whereas curvature and twist are determined by second order displacement derivatives. This paper proposes a pseudo-Wigner-Ville distribution based method for measurement of strain, curvature, and twist in digital holographic interferometry where the object deformation or displacement is encoded as interference phase. In the proposed method, the phase derivative is estimated by peak detection of pseudo-Wigner-Ville distribution evaluated along each row/column of the reconstructed interference field. A complex exponential signal with unit amplitude and the phasemore » derivative estimate as the argument is then generated and the pseudo-Wigner-Ville distribution along each row/column of this signal is evaluated. The curvature is estimated by using peak tracking strategy for the new distribution. For estimation of twist, the pseudo-Wigner-Ville distribution is evaluated along each column/row (i.e., in alternate direction with respect to the previous one) for the generated complex exponential signal and the corresponding peak detection gives the twist estimate.« less

  10. Measuring one nucleon transfer reaction 24Mg( p, d)23Mg for astrophysical reaction rates

    NASA Astrophysics Data System (ADS)

    Lee, E. J.; Chae, K. Y.

    2017-12-01

    The level structure of a radionuclide 23Mg has been studied by using the 24Mg( p, d)23Mg one nucleon transfer reaction measurement for the astrophysical 19Ne(α, γ)23Mg reaction rate. A 41 MeV proton beam was produced and accelerated at the 25 MV tandem accelerator of the Holifield Radioactive Ion Beam Facility of the Oak Ridge National Laboratory in the United States. The beam particles impinged on an isotopically-enriched 24Mg solid target. Angular distributions of recoiling deuterons were extracted by using a large area silicon strip detector array. By comparing the experimentally-obtained angular distributions with zero range distorted wave Born approximation calculations, spins and parities of three energy levels of 23Mg could be constrained for the first time, which is very important information needed to understand the 19Ne(α, γ)23Mg reaction rate.

  11. Determining Li+-Coupled Redox Targeting Reaction Kinetics of Battery Materials with Scanning Electrochemical Microscopy.

    PubMed

    Yan, Ruiting; Ghilane, Jalal; Phuah, Kia Chai; Pham Truong, Thuan Nguyen; Adams, Stefan; Randriamahazaka, Hyacinthe; Wang, Qing

    2018-02-01

    The redox targeting reaction of Li + -storage materials with redox mediators is the key process in redox flow lithium batteries, a promising technology for next-generation large-scale energy storage. The kinetics of the Li + -coupled heterogeneous charge transfer between the energy storage material and redox mediator dictates the performance of the device, while as a new type of charge transfer process it has been rarely studied. Here, scanning electrochemical microscopy (SECM) was employed for the first time to determine the interfacial charge transfer kinetics of LiFePO 4 /FePO 4 upon delithiation and lithiation by a pair of redox shuttle molecules FcBr 2 + and Fc. The effective rate constant k eff was determined to be around 3.70-6.57 × 10 -3 cm/s for the two-way pseudo-first-order reactions, which feature a linear dependence on the composition of LiFePO 4 , validating the kinetic process of interfacial charge transfer rather than bulk solid diffusion. In addition, in conjunction with chronoamperometry measurement, the SECM study disproves the conventional "shrinking-core" model for the delithiation of LiFePO 4 and presents an intriguing way of probing the phase boundary propagations induced by interfacial redox reactions. This study demonstrates a reliable method for the kinetics of redox targeting reactions, and the results provide useful guidance for the optimization of redox targeting systems for large-scale energy storage.

  12. An Analogy Using Pennies and Dimes to Explain Chemical Kinetics Concepts

    ERIC Educational Resources Information Center

    Cortes-Figueroa, Jose E.; Perez, Wanda I.; Lopez, Jose R.; Moore-Russo, Deborah A.

    2011-01-01

    In this article, the authors present an analogy that uses coins and graphical analysis to teach kinetics concepts and resolve pseudo-first-order rate constants related to transition-metal complexes ligand-solvent exchange reactions. They describe an activity that is directed to upper-division undergraduate and graduate students. The activity…

  13. Chemical reaction rates of ozone in water infusions of wheat, beech, oak and pine leaves of different ages

    NASA Astrophysics Data System (ADS)

    Potier, Elise; Loubet, Benjamin; Durand, Brigitte; Flura, Dominique; Bourdat-Deschamps, Marjolaine; Ciuraru, Raluca; Ogée, Jérôme

    2017-02-01

    In this study we present results from a laboratory experiment designed to evaluate the first-order chemical reaction rate (k) of ozone in water films on plant leaves occurring during dew or rain events. Ozone deposition to wet cuticles is indeed known to be a significant pathway of ozone deposition, but the underlying processes are not yet well understood. Leaf infusions obtained by infusing plant leaves with water at room temperature were introduced into a wet effluent denuder fed with a flux of ozone-rich air. Ozone, water vapour concentrations and temperature were measured in both inlet and outlet airflows in order to compute ozone reaction rates kr using an ozone reaction-diffusion model in the water film. Ascorbate solutions were used to validate the set up and led to kr = 3.6 107 M-1 s-1 consistent with the literature. Ozone reaction rates were determined for wheat, beech, oak and pine leaves infusions at several developmental stages, as well as for rain samples. Leaf infusions reaction rates were between 240 s-1 and 3.4 105 s-1 depending on species and developmental stage, while k for rain water ranged from 130 to 830 s-1. Wheat leaves solutions showed significantly (P < 0.001) higher kr (median 73800 s-1) compared to the other tree species (median 4560 s-1). Senescing or dead leaves also showed significantly (P < 0.001) larger k (median 21100 s-1) compared to non-senescent leaves (median 3200 s-1). In wheat, k also increased with increasing yellow leaf fraction. Our results are in the range of previously reported ozone deposition on wet leaves in field or chamber studies. Composition of leaves infusions and previous studies on throughfall and dew composition shows that reaction of ozone with inorganic compounds may only explain the smallest measured k. The largest k observed during senescent are most likely due to reaction with organic material. This is confirmed by LC-MS measurements which showed detection of ascorbate and VOCs as well as the reaction

  14. Multiscale Investigation on Biofilm Distribution and Its Impact on Macroscopic Biogeochemical Reaction Rates: BIOFILM DISTRIBUTION AND RATE SCALING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Zhifeng; Liu, Chongxuan; Liu, Yuanyuan

    Biofilms are critical locations for biogeochemical reactions in the subsurface environment. The occurrence and distribution of biofilms at microscale as well as their impacts on macroscopic biogeochemical reaction rates are still poorly understood. This paper investigated the formation and distributions of biofilms in heterogeneous sediments using multiscale models, and evaluated the effects of biofilm heterogeneity on local and macroscopic biogeochemical reaction rates. Sediment pore structures derived from X-ray computed tomography were used to simulate the microscale flow dynamics and biofilm distribution in the sediment column. The response of biofilm formation and distribution to the variations in hydraulic and chemical propertiesmore » was first examined. One representative biofilm distribution was then utilized to evaluate its effects on macroscopic reaction rates using nitrate reduction as an example. The results revealed that microorganisms primarily grew on the surfaces of grains and aggregates near preferential flow paths where both electron donor and acceptor were readily accessible, leading to the heterogeneous distribution of biofilms in the sediments. The heterogeneous biofilm distribution decreased the macroscopic rate of biogeochemical reactions as compared with those in homogeneous cases. Operationally considering the heterogeneous biofilm distribution in macroscopic reactive transport models such as using dual porosity domain concept can significantly improve the prediction of biogeochemical reaction rates. Overall, this study provided important insights into the biofilm formation and distribution in soils and sediments as well as their impacts on the macroscopic manifestation of reaction rates.« less

  15. Temperature-Dependent Rate Coefficients for the Reaction of CH2OO with Hydrogen Sulfide.

    PubMed

    Smith, Mica C; Chao, Wen; Kumar, Manoj; Francisco, Joseph S; Takahashi, Kaito; Lin, Jim Jr-Min

    2017-02-09

    The reaction of the simplest Criegee intermediate CH 2 OO with hydrogen sulfide was measured with transient UV absorption spectroscopy in a temperature-controlled flow reactor, and bimolecular rate coefficients were obtained from 278 to 318 K and from 100 to 500 Torr. The average rate coefficient at 298 K and 100 Torr was (1.7 ± 0.2) × 10 -13 cm 3 s -1 . The reaction was found to be independent of pressure and exhibited a weak negative temperature dependence. Ab initio quantum chemistry calculations of the temperature-dependent reaction rate coefficient at the QCISD(T)/CBS level are in reasonable agreement with the experiment. The reaction of CH 2 OO with H 2 S is 2-3 orders of magnitude faster than the reaction with H 2 O monomer. Though rates of CH 2 OO scavenging by water vapor under atmospheric conditions are primarily controlled by the reaction with water dimer, the H 2 S loss pathway will be dominated by the reaction with monomer. The agreement between experiment and theory for the CH 2 OO + H 2 S reaction lends credence to theoretical descriptions of other Criegee intermediate reactions that cannot easily be probed experimentally.

  16. Typewriting rate as a function of reaction time.

    PubMed

    Hayes, V; Wilson, G D; Schafer, R L

    1977-12-01

    This study was designed to determine the relationship between reaction time and typewriting rate. Subjects were 24 typists ranging in age from 19 to 39 yr. Reaction times (.001 sec) to a light were recorded for each finger and to each alphabetic character and three punctuation marks. Analysis of variance yielded significant differences in reaction time among subjects and fingers. Correlation between typewriting rate and average reaction time to the alphabetic characters and three punctuation marks was --.75. Correlation between typewriting rate and the difference between the reaction time of the hands was --.42. Factors influencing typewriting rate may include reaction time of the fingers, difference between the reaction time of the hands, and reaction time to individual keys on the typewriter. Implications exist for instructional methodology and further research.

  17. Enzymatic conversion of sucrose to glucose and its anomerization by quantitative NMR spectroscopy: Application of a simple consecutive reaction rates approach

    NASA Astrophysics Data System (ADS)

    Singh, Jaideep; Her, Cheenou; Krishnan, V. V.

    2018-02-01

    The anomerization of carbohydrates is an essential process that determines the relative stabilization of stereoisomers in an aqueous solution. In a typical real-time enzyme kinetics experiment, the substrate (sucrose) is converted to glucose and fructose by the enzyme invertase. The product (α-D-glucose) starts to convert to β-D-glucose immediately by hydrolysis. Though the anomerization process is independent of the enzyme catalysis, the progress curve describing the production of β-D-glucose from α-D-glucose is directly affected by the kinetics of consecutive reactions. When α-D-glucose is continually converted to β-D-glucose, by the enzymatic action, the time course of both α- and β-D-glucose is influenced by the enzyme kinetics. Thus, a reversible first-order rate equation is not adequate to model the reaction mechanism, leading to erroneous results on the rates of formation of the glucose anomers. In this manuscript, we incorporate an approximate method to address consecutive general reactions involving enzyme kinetics and first-order reaction processes. The utility of the approach is demonstrated in the real-time NMR measurement of the anomerization process of α-D-glucose (enzymatically produced from sucrose) to β-D-glucose, as a function of invertase enzyme concentration. Variable temperature experiments were used to estimate the thermodynamic parameters of the anomerization process and are consistent with literature values.

  18. Growth, Toxin Production and Allelopathic Effects of Pseudo-nitzschia multiseries under Iron-Enriched Conditions

    PubMed Central

    Sobrinho, Bruna Fernanda; de Camargo, Luana Mocelin; Sandrini-Neto, Leonardo; Kleemann, Cristian Rafael; Machado, Eunice da Costa; Mafra, Luiz Laureno

    2017-01-01

    In order to assess the effects of Fe-enrichment on the growth and domoic acid (DA) production of the toxigenic diatom Pseudo-nitzschia multiseries, static cultures that received the addition of different iron (Fe) concentrations were maintained for 30 days. Intra- and extracellular DA concentrations were evaluated over time, and growth and chain-formation were compared to those of non-toxic diatoms, Bacillaria sp. Growth rates of P. multiseries (μ = 0.45–0.73 d−1) were similar among cultures containing different Fe concentrations. Likewise, the similar incidence and length of P. multiseries stepped cell chains (usually 2–4; up to 8-cell long) among the treatments reinforces that the cultures were not growth-inhibited under any condition tested, suggesting an efficient Fe acquisition mechanism. Moreover, DA concentrations were significantly higher under the highest Fe concentration, indicating that Fe is required for toxin synthesis. Bacillaria sp. reached comparable growth rates under the same Fe concentrations, except when the dissolved cell contents from a P. multiseries culture was added. The 50–70% reduction in cell density and 70–90% decrease in total chlorophyll-a content of Bacillaria sp. at early stationary growth phase indicates, for the first time, an allelopathic effect of undetermined compounds released by Pseudo-nitzschia to another diatom species. PMID:29064395

  19. Rate and reaction probability of the surface reaction between ozone and dihydromyrcenol measured in a bench scale reactor and a room-sized chamber

    NASA Astrophysics Data System (ADS)

    Shu, Shi; Morrison, Glenn C.

    2012-02-01

    Low volatility terpenoids emitted from consumer products can react with ozone on surfaces and may significantly alter concentrations of ozone, terpenoids and reaction products in indoor air. We measured the reaction probability and a second-order surface-specific reaction rate for the ozonation of dihydromyrcenol, a representative indoor terpenoid, adsorbed onto polyvinylchloride (PVC), glass, and latex paint coated spheres. The reaction probability ranged from (0.06-8.97) × 10 -5 and was very sensitive to humidity, substrate and mass adsorbed. The average surface reaction probability is about 10 times greater than that for the gas-phase reaction. The second-order surface-specific rate coefficient ranged from (0.32-7.05) × 10 -15 cm 4 s -1 molecule -1and was much less sensitive to humidity, substrate, or mass adsorbed. We also measured the ozone deposition velocity due to adsorbed dihydromyrcenol on painted drywall in a room-sized chamber, Based on that, we calculated the rate coefficient ((0.42-1.6) × 10 -15 cm 4 molecule -1 s -1), which was consistent with that derived from bench-scale experiments for the latex paint under similar conditions. We predict that more than 95% of dihydromyrcenol oxidation takes place on indoor surfaces, rather than in building air.

  20. Communication: rate coefficients from quasiclassical trajectory calculations from the reverse reaction: The Mu + H2 reaction re-visited.

    PubMed

    Homayoon, Zahra; Jambrina, Pablo G; Aoiz, F Javier; Bowman, Joel M

    2012-07-14

    In a previous paper [P. G. Jambrina et al., J. Chem. Phys. 135, 034310 (2011)] various calculations of the rate coefficient for the Mu + H(2) → MuH + H reaction were presented and compared to experiment. The widely used standard quasiclassical trajectory (QCT) method was shown to overestimate the rate coefficients by several orders of magnitude over the temperature range 200-1000 K. This was attributed to a major failure of that method to describe the correct threshold for the reaction owing to the large difference in zero-point energies (ZPE) of the reactant H(2) and product MuH (∼0.32 eV). In this Communication we show that by performing standard QCT calculations for the reverse reaction and then applying detailed balance, the resulting rate coefficient is in very good agreement with the other computational results that respect the ZPE, (as well as with the experiment) but which are more demanding computationally.

  1. Communication: Rate coefficients from quasiclassical trajectory calculations from the reverse reaction: The Mu + H2 reaction re-visited

    NASA Astrophysics Data System (ADS)

    Homayoon, Zahra; Jambrina, Pablo G.; Aoiz, F. Javier; Bowman, Joel M.

    2012-07-01

    In a previous paper [P. G. Jambrina et al., J. Chem. Phys. 135, 034310 (2011), 10.1063/1.3611400] various calculations of the rate coefficient for the Mu + H2 → MuH + H reaction were presented and compared to experiment. The widely used standard quasiclassical trajectory (QCT) method was shown to overestimate the rate coefficients by several orders of magnitude over the temperature range 200-1000 K. This was attributed to a major failure of that method to describe the correct threshold for the reaction owing to the large difference in zero-point energies (ZPE) of the reactant H2 and product MuH (˜0.32 eV). In this Communication we show that by performing standard QCT calculations for the reverse reaction and then applying detailed balance, the resulting rate coefficient is in very good agreement with the other computational results that respect the ZPE, (as well as with the experiment) but which are more demanding computationally.

  2. pH & Rate of Enzymatic Reactions.

    ERIC Educational Resources Information Center

    Clariana, Roy B.

    1991-01-01

    A quantitative and inexpensive way to measure the rate of enzymatic reaction is provided. The effects of different pH levels on the reaction rate of an enzyme from yeast are investigated and the results graphed. Background information, a list of needed materials, directions for preparing solutions, procedure, and results and discussion are…

  3. Pseudo-set framing.

    PubMed

    Barasz, Kate; John, Leslie K; Keenan, Elizabeth A; Norton, Michael I

    2017-10-01

    Pseudo-set framing-arbitrarily grouping items or tasks together as part of an apparent "set"-motivates people to reach perceived completion points. Pseudo-set framing changes gambling choices (Study 1), effort (Studies 2 and 3), giving behavior (Field Data and Study 4), and purchase decisions (Study 5). These effects persist in the absence of any reward, when a cost must be incurred, and after participants are explicitly informed of the arbitrariness of the set. Drawing on Gestalt psychology, we develop a conceptual account that predicts what will-and will not-act as a pseudo-set, and defines the psychological process through which these pseudo-sets affect behavior: over and above typical reference points, pseudo-set framing alters perceptions of (in)completeness, making intermediate progress seem less complete. In turn, these feelings of incompleteness motivate people to persist until the pseudo-set has been fulfilled. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  4. Kinetics of heterogeneous reaction of CaCO3 particles with gaseous HNO3 over a wide range of humidity.

    PubMed

    Liu, Y; Gibson, E R; Cain, J P; Wang, H; Grassian, V H; Laskin, A

    2008-02-21

    Heterogeneous reaction kinetics of gaseous nitric acid (HNO3) with calcium carbonate (CaCO3) particles was investigated using a particle-on-substrate stagnation flow reactor (PS-SFR). This technique utilizes the exposure of substrate deposited, isolated, and narrowly dispersed particles to a gas mixture of HNO3/H2O/N2, followed by microanalysis of individual reacted particles using computer-controlled scanning electron microscopy with energy-dispersive X-ray analysis (CCSEM/EDX). The first series of experiments were conducted at atmospheric pressure, room temperature and constant relative humidity (40%) with a median dry particle diameter of Dp = 0.85 mum, particle loading densities 2 x 104 pseudo first-order rate constant for the reaction was determined from oxygen enrichment in individual particles as a function of particle loading. Quantitative treatment of the data using a diffusion-kinetic model yields a lower limit to the net reaction probability gammanet >/= 0.06 (x3//2). In a second series of experiments, HNO3 uptake on CaCO3 particles of the same size was examined over a wide range of relative humidity, from 10 to 80%. The net reaction probability was found to increase with increasing relative humidity, from gammanet >/= 0.003 at RH = 10% to 0.21 at 80%.

  5. Sympathetic nerve dysfunction is common in patients with chronic intestinal pseudo-obstruction.

    PubMed

    Mattsson, Tomas; Roos, Robert; Sundkvist, Göran; Valind, Sven; Ohlsson, Bodil

    2008-02-01

    To clarify whether disturbances in the autonomic nervous system, reflected in abnormal cardiovascular reflexes, could explain symptoms of impaired heat regulation in patients with intestinal pseudo-obstruction. Chronic intestinal pseudo-obstruction is a clinical syndrome characterized by diffuse, unspecific gastrointestinal symptoms due to damage to the enteric nervous system or the smooth muscle cells. These patients often complain of excessive sweating or feeling cold, suggesting disturbances in the autonomic nervous system. Earlier studies have pointed to a coexistence of autonomic disturbances in the enteric and cardiovascular nervous system. Thirteen consecutive patients (age range 23 to 79, mean 44 y) fulfilling the criteria for chronic intestinal pseudo-obstruction were investigated. Six of them complained of sweating or a feeling of cold. Examination of autonomic reflexes included heart rate variation to deep-breathing (expiration/inspiration index), heart rate reaction to tilt (acceleration index, brake index), and vasoconstriction (VAC) due to indirect cooling by laser doppler (VAC-index; high index indicates impaired VAC). Test results in patients were compared with healthy individuals. Patients had significantly higher (more abnormal) median VAC-index compared with healthy controls [1.79 (interquartile ranges 1.89) vs. 0.08 (interquartile ranges 1.29); P=0.0007]. However, symptoms of impaired heat regulation were not related to the VAC-index. There were no differences in expiration/inspiration, acceleration index, or brake index between patients and controls. The patients with severe gastrointestinal dysmotility showed impaired sympathetic nerve function which, however, did not seem to be associated with symptoms of impaired heat regulation.

  6. Kinetics and mechanism of electron transfer reaction of single and double chain surfactant cobalt(III) complex by Fe2+ ions in liposome (dipalmitoylphosphotidylcholine) vesicles: effects of phase transition

    NASA Astrophysics Data System (ADS)

    Nagaraj, Karuppiah; Senthil Murugan, Krishnan; Thangamuniyandi, Pilavadi

    2015-05-01

    In this study, we report the kinetics of reduction reactions of single and double chain surfactant cobalt(III) complexes of octahedral geometry, cis-[Co(en)2(4AMP)(DA)](ClO4)3 and cis-[Co(dmp)2(C12H25NH2)2](ClO4)3 (en = ethylenediamine, dmp = 1,3-diaminopropane, 4AMP = 4-aminopropane, C12H25NH2 = dodecylamine) by Fe2+ ion in dipalmitoylphosphotidylcholine (DPPC) vesicles at different temperatures under pseudo first-order conditions. The kinetics of these reactions is followed by spectrophotometry method. The reactions are found to be second order and the electron transfer is postulated as outer sphere. The remarkable findings in the present investigation are that, below the phase transition temperature of DPPC, the rate decreases with an increase in the concentration of DPPC, while above the phase transition temperature the rate increases with an increase in the concentration of DPPC. The main driving force for this phenomenon is considered to be the intervesicular hydrophobic interaction between vesicles surface and hydrophobic part of the surfactant complexes. Besides, comparing the values of rate constants of these outer-sphere electron transfer reactions in the absence and in the presence of DPPC, the rate constant values in the presence of DPPC are always found to be greater than in the absence of DPPC. This is ascribed to the double hydrophobic fatty acid chain in the DPPC that gives the molecule an overall tubular shape due to the intervesicular hydrophobic interaction between vesicles surface and hydrophobic part of the surfactant complexes more suitable for vesicle aggregation which facilitates lower activation energy, and consequently higher rate is observed in the presence of DPPC. The activation parameters (ΔS# and ΔH#) of the reactions at different temperatures have been calculated which corroborate the kinetics of the reaction.

  7. Pseudo-random bit generator based on lag time series

    NASA Astrophysics Data System (ADS)

    García-Martínez, M.; Campos-Cantón, E.

    2014-12-01

    In this paper, we present a pseudo-random bit generator (PRBG) based on two lag time series of the logistic map using positive and negative values in the bifurcation parameter. In order to hidden the map used to build the pseudo-random series we have used a delay in the generation of time series. These new series when they are mapped xn against xn+1 present a cloud of points unrelated to the logistic map. Finally, the pseudo-random sequences have been tested with the suite of NIST giving satisfactory results for use in stream ciphers.

  8. Non-equilibrium reaction rates in chemical kinetic equations

    NASA Astrophysics Data System (ADS)

    Gorbachev, Yuriy

    2018-05-01

    Within the recently proposed asymptotic method for solving the Boltzmann equation for chemically reacting gas mixture, the chemical kinetic equations has been derived. Corresponding one-temperature non-equilibrium reaction rates are expressed in terms of specific heat capacities of the species participate in the chemical reactions, bracket integrals connected with the internal energy transfer in inelastic non-reactive collisions and energy transfer coefficients. Reactions of dissociation/recombination of homonuclear and heteronuclear diatomic molecules are considered. It is shown that all reaction rates are the complex functions of the species densities, similarly to the unimolecular reaction rates. For determining the rate coefficients it is recommended to tabulate corresponding bracket integrals, additionally to the equilibrium rate constants. Correlation of the obtained results with the irreversible thermodynamics is established.

  9. First-order and higher order sequence learning in specific language impairment.

    PubMed

    Clark, Gillian M; Lum, Jarrad A G

    2017-02-01

    A core claim of the procedural deficit hypothesis of specific language impairment (SLI) is that the disorder is associated with poor implicit sequence learning. This study investigated whether implicit sequence learning problems in SLI are present for first-order conditional (FOC) and higher order conditional (HOC) sequences. Twenty-five children with SLI and 27 age-matched, nonlanguage-impaired children completed 2 serial reaction time tasks. On 1 version, the sequence to be implicitly learnt comprised a FOC sequence and on the other a HOC sequence. Results showed that the SLI group learned the HOC sequence (η p ² = .285, p = .005) but not the FOC sequence (η p ² = .099, p = .118). The control group learned both sequences (FOC η p ² = .497, HOC η p 2= .465, ps < .001). The SLI group's difficulty learning the FOC sequence is consistent with the procedural deficit hypothesis. However, the study provides new evidence that multiple mechanisms may underpin the learning of FOC and HOC sequences. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  10. Laser positioning of four-quadrant detector based on pseudo-random sequence

    NASA Astrophysics Data System (ADS)

    Tang, Yanqin; Cao, Ercong; Hu, Xiaobo; Gu, Guohua; Qian, Weixian

    2016-10-01

    Nowadays the technology of laser positioning based on four-quadrant detector has the wide scope of the study and application areas. The main principle of laser positioning is that by capturing the projection of the laser spot on the photosensitive surface of the detector, and then calculating the output signal from the detector to obtain the coordinates of the spot on the photosensitive surface of the detector, the coordinate information of the laser spot in the space with respect to detector system which reflects the spatial position of the target object is calculated effectively. Given the extensive application of FPGA technology and the pseudo-random sequence has the similar correlation of white noise, the measurement process of the interference, noise has little effect on the correlation peak. In order to improve anti-jamming capability of the guided missile in tracking process, when the laser pulse emission, the laser pulse period is pseudo-random encoded which maintains in the range of 40ms-65ms so that people of interfering can't find the exact real laser pulse. Also, because the receiver knows the way to solve the pseudo-random code, when the receiver receives two consecutive laser pulses, the laser pulse period can be decoded successfully. In the FPGA hardware implementation process, around each laser pulse arrival time, the receiver can open a wave door to get location information contained the true signal. Taking into account the first two consecutive pulses received have been disturbed, so after receiving the first laser pulse, it receives all the laser pulse in the next 40ms-65ms to obtain the corresponding pseudo-random code.

  11. Efficient Green's Function Reaction Dynamics (GFRD) simulations for diffusion-limited, reversible reactions

    NASA Astrophysics Data System (ADS)

    Bashardanesh, Zahedeh; Lötstedt, Per

    2018-03-01

    In diffusion controlled reversible bimolecular reactions in three dimensions, a dissociation step is typically followed by multiple, rapid re-association steps slowing down the simulations of such systems. In order to improve the efficiency, we first derive an exact Green's function describing the rate at which an isolated pair of particles undergoing reversible bimolecular reactions and unimolecular decay separates beyond an arbitrarily chosen distance. Then the Green's function is used in an algorithm for particle-based stochastic reaction-diffusion simulations for prediction of the dynamics of biochemical networks. The accuracy and efficiency of the algorithm are evaluated using a reversible reaction and a push-pull chemical network. The computational work is independent of the rates of the re-associations.

  12. Chemical Reaction Rate Coefficients from Ring Polymer Molecular Dynamics: Theory and Practical Applications

    DOE PAGES

    Suleimanov, Yury V.; Aoiz, F. Javier; Guo, Hua

    2016-09-14

    This Feature Article presents an overview of the current status of ring polymer molecular dynamics (RPMD) rate theory. We first analyze the RPMD approach and its connection to quantum transition-state theory. We then focus on its practical applications to prototypical chemical reactions in the gas phase, which demonstrate how accurate and reliable RPMD is for calculating thermal chemical reaction rate coefficients in multifarious cases. This review serves as an important checkpoint in RPMD rate theory development, which shows that RPMD is shifting from being just one of recent novel ideas to a well-established and validated alternative to conventional techniques formore » calculating thermal chemical rate coefficients. We also hope it will motivate further applications of RPMD to various chemical reactions.« less

  13. Correlated uncertainties in Monte Carlo reaction rate calculations

    NASA Astrophysics Data System (ADS)

    Longland, Richard

    2017-07-01

    Context. Monte Carlo methods have enabled nuclear reaction rates from uncertain inputs to be presented in a statistically meaningful manner. However, these uncertainties are currently computed assuming no correlations between the physical quantities that enter those calculations. This is not always an appropriate assumption. Astrophysically important reactions are often dominated by resonances, whose properties are normalized to a well-known reference resonance. This insight provides a basis from which to develop a flexible framework for including correlations in Monte Carlo reaction rate calculations. Aims: The aim of this work is to develop and test a method for including correlations in Monte Carlo reaction rate calculations when the input has been normalized to a common reference. Methods: A mathematical framework is developed for including correlations between input parameters in Monte Carlo reaction rate calculations. The magnitude of those correlations is calculated from the uncertainties typically reported in experimental papers, where full correlation information is not available. The method is applied to four illustrative examples: a fictional 3-resonance reaction, 27Al(p, γ)28Si, 23Na(p, α)20Ne, and 23Na(α, p)26Mg. Results: Reaction rates at low temperatures that are dominated by a few isolated resonances are found to minimally impacted by correlation effects. However, reaction rates determined from many overlapping resonances can be significantly affected. Uncertainties in the 23Na(α, p)26Mg reaction, for example, increase by up to a factor of 5. This highlights the need to take correlation effects into account in reaction rate calculations, and provides insight into which cases are expected to be most affected by them. The impact of correlation effects on nucleosynthesis is also investigated.

  14. Electron-transfer reactions of cobalt(III) complexes. 1. The kinetic investigation of the reduction of various surfactant cobalt(III) complexes by iron(II) in surface active ionic liquids

    NASA Astrophysics Data System (ADS)

    Nagaraj, Karuppiah; Senthil Murugan, Krishnan; Thangamuniyandi, Pilavadi; Sakthinathan, Subramanian

    2015-05-01

    The kinetics of outer sphere electron transfer reaction of surfactant cobalt(III) complex ions, cis-[Co(en)2(C12H25NH2)2]3+ (1), cis-[Co(dp)2(C12H25NH2)2]3+ (2), cis-[Co(trien)(C12H25NH2)2]3+ (3), cis-[Co(bpy)2(C12H25NH2)2]3+ (4) and cis-[Co(phen)2(C12H25NH2)2]3+ (5) (en: ethylenediamine, dp: diaminopropane, trien : triethylenetetramine, bpy: 2,2‧-bipyridyl, phen: 1,10-phenanthroline and C12H25NH2 : dodecylamine) have been interrogated by Fe2+ ion in ionic liquid (1-butyl-3-methylimidazoliumbromide) medium at different temperatures (298, 303, 308, 313, 318 and 323 K) by the spectrophotometry method under pseudo first order conditions using an excess of the reductant. Experimentally the reactions were found to be of second order and the electron transfer as outer sphere. The second order rate constant for the electron transfer reaction in ionic liquids was found to increase with increase in the concentration of all these surfactant cobalt(III) complexes. Among these complexes (from en to phen ligand), complex containing the phenanthroline ligand rate is higher compared to other complexes. By assuming the outer sphere mechanism, the results have been explained based on the presence of aggregated structures containing cobalt(III) complexes at the surface of ionic liquids formed by the surfactant cobalt(III) complexes in the reaction medium. The activation parameters (enthalpy of activation ΔH‡ and entropy of activation ΔS‡) of the reaction have been calculated which substantiate the kinetics of the reaction.

  15. Reactions of OH radicals with 2-methyl-1-butyl, neopentyl and 1-hexyl nitrates. Structure-activity relationship for gas-phase reactions of OH with alkyl nitrates: An update

    NASA Astrophysics Data System (ADS)

    Bedjanian, Yuri; Morin, Julien; Romanias, Manolis N.

    2018-05-01

    The kinetics of the reactions 2-methyl-1-butyl (2M1BNT), neopentyl (NPTNT) and 1-hexyl nitrates (1HXNT) with OH radicals has been studied using a low pressure flow tube reactor combined with a quadrupole mass spectrometer. The rate constants of the title reactions were determined under pseudo-first order conditions from kinetics of OH consumption in excess of nitrates. The overall rate coefficients, k2M1BNT = 1.54 × 10-14 (T/298)4.85 exp (1463/T) (T = 278-538 K), kNPTNT = 1.39 × 10-14 (T/298)4.89 exp (1189/T) (T = 278-500 K) and k1HXNT = 2.23 × 10-13 (T/298)2.83 exp (853/T) cm3molecule-1s-1 (T = 306-538 K) (with conservative 15% uncertainty), were determined at a total pressure of 1 Torr of helium. The yield of trimethylacetaldehyde ((CH3)3CCHO), resulting from the abstraction by OH of an α-hydrogen atom in neopentyl nitrate, followed by α-substituted alkyl radical decomposition, was determined as 0.31 ± 0.06 at T = 298 K. The calculated tropospheric lifetimes of 2M1BNT, NPTNT and 1HXNT indicate that reaction of these nitrates with OH represents an important sink of these compounds in the atmosphere. Based on the available kinetic data, we have updated the structure-activity relationship (SAR) for reactions of alkyl nitrates with OH at T = 298 K. Good agreement (within 20%) is obtained between experimentally measured rate constants (total and that for H-atom abstraction from α carbon) and those calculated from SAR using new substituents factors for almost all the experimental data available.

  16. Kinetics of the Reactions between the Criegee Intermediate CH2OO and Alcohols.

    PubMed

    Tadayon, Sara V; Foreman, Elizabeth S; Murray, Craig

    2018-01-11

    Reactions of the simplest Criegee intermediate (CH 2 OO) with a series of alcohols have been studied in a flash photolysis flow reactor. Laser photolysis of diiodomethane at 355 nm in the presence of molecular oxygen was used to produce CH 2 OO, and the absolute number densities were determined as a function of delay time from analysis of broadband transient absorption spectra obtained using a pulsed LED. The kinetics for the reactions of CH 2 OO with methanol, ethanol, and 2-propanol were measured under pseudo-first-order conditions at 295 K, yielding rate constants of (1.4 ± 0.4) × 10 -13 cm 3 s -1 , (2.3 ± 0.6) × 10 -13 cm 3 s -1 , and (1.9 ± 0.5) × 10 -13 cm 3 s -1 , respectively. Complementary ab initio calculations were performed at the CCSD(T)/aug-cc-pVTZ//CCSD/cc-pVDZ level of theory to characterize stationary points on the reaction enthalpy and free energy surfaces and to elucidate the thermochemistry and mechanisms. The reactions proceed over free energy barriers of ∼8 kcal mol -1 to form geminal alkoxymethyl hydroperoxides: methoxymethyl hydroperoxide (MMHP), ethoxymethyl hydroperoxide (EMHP), and isopropoxymethyl hydroperoxide (PMHP). The experimental and theoretical results are compared to reactions of CH 2 OO with other hydroxylic compounds, such as water and carboxylic acids, and trends in reactivity are discussed.

  17. Arrhenius Rate: constant volume burn

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menikoff, Ralph

    A constant volume burn occurs for an idealized initial state in which a large volume of reactants at rest is suddenly raised to a high temperature and begins to burn. Due to the uniform spatial state, there is no fluid motion and no heat conduction. This reduces the time evolu tion to an ODE for the reaction progress variable. With an Arrhenius reaction rate, two characteristics of thermal ignition are illustrated: induction time and thermal runaway. The Frank-Kamenetskii approximation then leads to a simple expression for the adiabatic induction time. For a first order reaction, the analytic solution is derivedmore » and used to illustrate the effect of varying the activation temperature; in particular, on the induction time. In general, the ODE can be solved numerically. This is used to illustrate the effect of varying the reaction order. We note that for a first order reaction, the time evolution of the reaction progress variable has an exponential tail. In contrast, for a reaction order less than one, the reaction completes in a nite time. The reaction order also affects the induction time.« less

  18. Kinetics of binding of chicken cystatin to papain.

    PubMed

    Björk, I; Alriksson, E; Ylinenjärvi, K

    1989-02-21

    The kinetics of binding of chicken cystatin to papain were studied by stopped-flow fluorometry under pseudo-first-order conditions, i.e., with an excess of inhibitor. All reactions showed first-order behavior, and the observed pseudo-first-order rate constant increased linearly with the cystatin concentration up to the highest concentration that could be studied, 35 microM. The analyses thus provided no evidence for a limiting rate resulting from a conformational change stabilizing an initial encounter complex, in contrast with previous studies of reactions between serine proteinases and their protein inhibitors. The second-order association rate constant for complex formation was 9.9 X 10(6) M-1 s-1 at 25 degrees C, pH 7.4, I = 0.15, for both forms of cystatin, 1 and 2. This value approaches that expected for a diffusion-controlled rate. The temperature dependence of the association rate constant gave an enthalpy of activation at 25 degrees C of 31.5 kJ mol-1 and an entropy of activation at 25 degrees C of -7 J K-1 mol-1, compatible with no appreciable conformational change during the reaction. The association rate constant was independent of pH between pH 6 and 8 but decreased at lower and higher pH in a manner consistent with involvement of an unprotonated acid group with a pKa of 4-4.5 and a protonated basic group with a pKa of 9-9.5 in the interaction. The association rate constant was unaffected by ionic strengths between 0.15 and 1.0 but decreased somewhat at lower ionic strengths. Incubation of the complex between cystatin 2 and papain with an excess of cystatin 1 resulted in slow displacement of cystatin 2 from the complex.(ABSTRACT TRUNCATED AT 250 WORDS)

  19. A pseudo-thermodynamic description of dispersion for nanocomposites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Yan; Beaucage, Gregory; Vogtt, Karsten

    Dispersion in polymer nanocomposites is determined by the kinetics of mixing and chemical affinity. Compounds like reinforcing filler/elastomer blends display some similarity to colloidal solutions in that the filler particles are close to randomly dispersed through processing. It is attractive to apply a pseudo-thermodynamic approach taking advantage of this analogy between the kinetics of mixing for polymer compounds and thermally driven dispersion for colloids. In order to demonstrate this pseudo-thermodynamic approach, two polybutadienes and one polyisoprene were milled with three carbon blacks and two silicas. These samples were examined using small-angle x-ray scattering as a function of filler concentration tomore » determine a pseudo-second order virial coefficient, A2, which is used as an indicator for compatibility of the filler and polymer. It is found that A2 follows the expected behavior with lower values for smaller primary particles indicating that smaller particles are less compatible and more difficult to mix. The measured values of A2 can be used to specify repulsive interaction potentials for coarse grain DPD simulations of filler/elastomer systems. In addition, new methods to quantify the filler percolation threshold and filler mesh size as a function of filler concentration are obtained. Moreover, the results represent a new approach to understanding and predicting compatibility in polymer nanocomposites based on a pseudo-thermodynamic approach.« less

  20. A pseudo-thermodynamic description of dispersion for nanocomposites

    DOE PAGES

    Jin, Yan; Beaucage, Gregory; Vogtt, Karsten; ...

    2017-09-18

    Dispersion in polymer nanocomposites is determined by the kinetics of mixing and chemical affinity. Compounds like reinforcing filler/elastomer blends display some similarity to colloidal solutions in that the filler particles are close to randomly dispersed through processing. It is attractive to apply a pseudo-thermodynamic approach taking advantage of this analogy between the kinetics of mixing for polymer compounds and thermally driven dispersion for colloids. In order to demonstrate this pseudo-thermodynamic approach, two polybutadienes and one polyisoprene were milled with three carbon blacks and two silicas. These samples were examined using small-angle x-ray scattering as a function of filler concentration tomore » determine a pseudo-second order virial coefficient, A2, which is used as an indicator for compatibility of the filler and polymer. It is found that A2 follows the expected behavior with lower values for smaller primary particles indicating that smaller particles are less compatible and more difficult to mix. The measured values of A2 can be used to specify repulsive interaction potentials for coarse grain DPD simulations of filler/elastomer systems. In addition, new methods to quantify the filler percolation threshold and filler mesh size as a function of filler concentration are obtained. Moreover, the results represent a new approach to understanding and predicting compatibility in polymer nanocomposites based on a pseudo-thermodynamic approach.« less

  1. Reaction kinetics and critical phenomena: iodination of acetone in isobutyric acid + water near the consolute point.

    PubMed

    Hu, Baichuan; Baird, James K

    2010-01-14

    The rate of iodination of acetone has been measured as a function of temperature in the binary solvent isobutyric acid (IBA) + water near the upper consolute point. The reaction mixture was prepared by the addition of acetone, iodine, and potassium iodide to IBA + water at its critical composition of 38.8 mass % IBA. The value of the critical temperature determined immediately after mixing was 25.43 degrees C. Aliquots were extracted from the mixture at regular intervals in order to follow the time course of the reaction. After dilution of the aliquot with water to quench the reaction, the concentration of triiodide ion was determined by the measurement of the optical density at a wavelength of 565 nm. These measurements showed that the kinetics were zeroth order. When at the end of 24 h the reaction had come to equilibrium, the critical temperature was determined again and found to be 24.83 degrees C. An Arrhenius plot of the temperature dependence of the observed rate constant, k(obs), was linear over the temperature range 27.00-38.00 degrees C, but between 25.43 and 27.00 degrees C, the values of k(obs) fell below the extrapolation of the Arrhenius line. This behavior is evidence in support of critical slowing down. Our experimental method and results are significant in three ways: (1) In contrast to in situ measurements of optical density, the determination of the optical density of diluted aliquots avoided any interference from critical opalescence. (2) The measured reaction rate exhibited critical slowing down. (3) The rate law was pseudo zeroth order both inside and outside the critical region, indicating that the reaction mechanism was unaffected by the presence of the critical point.

  2. Imidazole C-2 Hydrogen/Deuterium Exchange Reaction at Histidine for Probing Protein Structure and Function with MALDI Mass Spectrometry

    PubMed Central

    Hayashi, Naoka; Kuyama, Hiroki; Nakajima, Chihiro; Kawahara, Kazuki; Miyagi, Masaru; Nishimura, Osamu; Matsuo, Hisayuki; Nakazawa, Takashi

    2015-01-01

    We present a mass spectrometric method for analyzing protein structure and function, based on the imidazole C-2 or histidine Cε1 hydrogen/deuterium (H/D) exchange reaction, which is intrinsically second order with respect to the concentrations of the imidazolium cation and OD− in D2O. The second-order rate constant (k2) of this reaction was calculated from the pH-dependency of the pseudo-first-order rate constant (kφ) obtained from the change of average mass ΔMr (0 ≤ ΔMr < 1) of a peptide fragment containing a defined histidine residue at incubation time (t) such that kφ = − [ln(1−ΔMr)]/t. We preferred using k2 rather than kφ because k2max (maximal value of k2) was empirically related to pKa as illustrated with a Brønsted plot: logk2max=-0.7pKa+α (α is an arbitrary constant), so that we could analyze the effect of structure on the H/D-exchange rate in terms of log(k2max/k2) representing the deviation of k2 from k2max. In the catalytic site of bovine ribonuclease A, His12 showed much larger change in log(k2max/k2) compared with His119 upon binding with cytidine 3′-monophosphate, as anticipated from the X-ray structures and the possible change in solvent accessibility. However, there is a need of considering the hydrogen bonds of the imidazole group with non-dissociable groups to interpret an extremely slow H/D exchange rate of His48 in partially solvent-exposed situation. PMID:24606199

  3. Bayesian Estimation of Thermonuclear Reaction Rates for Deuterium+Deuterium Reactions

    NASA Astrophysics Data System (ADS)

    Gómez Iñesta, Á.; Iliadis, C.; Coc, A.

    2017-11-01

    The study of d+d reactions is of major interest since their reaction rates affect the predicted abundances of D, 3He, and 7Li. In particular, recent measurements of primordial D/H ratios call for reduced uncertainties in the theoretical abundances predicted by Big Bang nucleosynthesis (BBN). Different authors have studied reactions involved in BBN by incorporating new experimental data and a careful treatment of systematic and probabilistic uncertainties. To analyze the experimental data, Coc et al. used results of ab initio models for the theoretical calculation of the energy dependence of S-factors in conjunction with traditional statistical methods based on χ 2 minimization. Bayesian methods have now spread to many scientific fields and provide numerous advantages in data analysis. Astrophysical S-factors and reaction rates using Bayesian statistics were calculated by Iliadis et al. Here we present a similar analysis for two d+d reactions, d(d, n)3He and d(d, p)3H, that has been translated into a total decrease of the predicted D/H value by 0.16%.

  4. Linear and non-linear regression analysis for the sorption kinetics of methylene blue onto activated carbon.

    PubMed

    Kumar, K Vasanth

    2006-10-11

    Batch kinetic experiments were carried out for the sorption of methylene blue onto activated carbon. The experimental kinetics were fitted to the pseudo first-order and pseudo second-order kinetics by linear and a non-linear method. The five different types of Ho pseudo second-order expression have been discussed. A comparison of linear least-squares method and a trial and error non-linear method of estimating the pseudo second-order rate kinetic parameters were examined. The sorption process was found to follow a both pseudo first-order kinetic and pseudo second-order kinetic model. Present investigation showed that it is inappropriate to use a type 1 and type pseudo second-order expressions as proposed by Ho and Blanachard et al. respectively for predicting the kinetic rate constants and the initial sorption rate for the studied system. Three correct possible alternate linear expressions (type 2 to type 4) to better predict the initial sorption rate and kinetic rate constants for the studied system (methylene blue/activated carbon) was proposed. Linear method was found to check only the hypothesis instead of verifying the kinetic model. Non-linear regression method was found to be the more appropriate method to determine the rate kinetic parameters.

  5. Compensation for first-order polarization-mode dispersion by using a novel tunable compensator

    NASA Astrophysics Data System (ADS)

    Qiu, Feng; Ning, Tigang; Pei, Shanshan; Xing, Yujun; Jian, Shuisheng

    2005-01-01

    Polarization-related impairments have become a critical issue for high-data-rate optical systems, particularly when considering polarization-mode dispersion (PMD). Consequently, compensation of PMD, especially for the first-order PMD is necessary to maintain adequate performance in long-haul systems at a high bit rate of 10 Gb/s or beyond. In this paper, we successfully demonstrated automatic and tunable compensation for first-order polarization-mode dispersion. Furthermore, we reported the statistical assessment of this tunable compensator at 10 Gbit/s. Experimental results, including bit error rate measurements, are successfully compared with theory, therefore demonstrating the compensator efficiency at 10 Gbit/s. The first-order PMD was max 274 ps before PMD compensation, and it was lower than 7ps after PMD compensation.

  6. Ultrasound promoted reaction of Rhodamine B with sodium hypochlorite using sonochemical and dental ultrasonic instruments.

    PubMed

    Tiong, T Joyce; Price, Gareth J

    2012-03-01

    The sonochemical acceleration of bleaching of Rhodamine B by sodium hypochlorite has been studied using ultrasound intensities in the range 0-7 W cm(-2). Using a 20 kHz ultrasonic horn, it was shown that ultrasound could significantly shorten the treatment time and/or the concentration of hypochlorite required for the reaction. A number of intermediate species formed during the reaction have been identified. It was demonstrated that the same sonochemical reactions occur during the use of dental ultrasound instruments of the type used in endodontics where hypochlorite solutions act as disinfectants. Results showed pseudo-first order degradation kinetics for the degradation of Rhodamine B for both types of source. Both the distribution of cavitation and the resulting bleaching reactions were dependent on the design of the tips. The bleaching reaction can therefore be used to characterise the behaviour of dental instruments and aid in the optimisation of their performance. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Multiscale Investigation on Biofilm Distribution and Its Impact on Macroscopic Biogeochemical Reaction Rates

    NASA Astrophysics Data System (ADS)

    Yan, Zhifeng; Liu, Chongxuan; Liu, Yuanyuan; Bailey, Vanessa L.

    2017-11-01

    Biofilms are critical locations for biogeochemical reactions in the subsurface environment. The occurrence and distribution of biofilms at microscale as well as their impacts on macroscopic biogeochemical reaction rates are still poorly understood. This paper investigated the formation and distributions of biofilms in heterogeneous sediments using multiscale models and evaluated the effects of biofilm heterogeneity on local and macroscopic biogeochemical reaction rates. Sediment pore structures derived from X-ray computed tomography were used to simulate the microscale flow dynamics and biofilm distribution in the sediment column. The response of biofilm formation and distribution to the variations in hydraulic and chemical properties was first examined. One representative biofilm distribution was then utilized to evaluate its effects on macroscopic reaction rates using nitrate reduction as an example. The results revealed that microorganisms primarily grew on the surfaces of grains and aggregates near preferential flow paths where both electron donor and acceptor were readily accessible, leading to the heterogeneous distribution of biofilms in the sediments. The heterogeneous biofilm distribution decreased the macroscopic rate of biogeochemical reactions as compared with those in homogeneous cases. Operationally considering the heterogeneous biofilm distribution in macroscopic reactive transport models such as using dual porosity domain concept can significantly improve the prediction of biogeochemical reaction rates. Overall, this study provided important insights into the biofilm formation and distribution in soils and sediments as well as their impacts on the macroscopic manifestation of reaction rates.

  8. Application of the Zero-Order Reaction Rate Model and Transition State Theory to predict porous Ti6Al4V bending strength.

    PubMed

    Reig, L; Amigó, V; Busquets, D; Calero, J A; Ortiz, J L

    2012-08-01

    Porous Ti6Al4V samples were produced by microsphere sintering. The Zero-Order Reaction Rate Model and Transition State Theory were used to model the sintering process and to estimate the bending strength of the porous samples developed. The evolution of the surface area during the sintering process was used to obtain sintering parameters (sintering constant, activation energy, frequency factor, constant of activation and Gibbs energy of activation). These were then correlated with the bending strength in order to obtain a simple model with which to estimate the evolution of the bending strength of the samples when the sintering temperature and time are modified: σY=P+B·[lnT·t-ΔGa/R·T]. Although the sintering parameters were obtained only for the microsphere sizes analysed here, the strength of intermediate sizes could easily be estimated following this model. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Reaction rate kinetics for in situ combustion retorting of Michigan Antrim oil shale

    USGS Publications Warehouse

    Rostam-Abadi, M.; Mickelson, R.W.

    1984-01-01

    The intrinsic reaction rate kinetics for the pyrolysis of Michigan Antrim oil shale and the oxidation of the carbonaceous residue of this shale have been determined using a thermogravimetric analysis method. The kinetics of the pyrolysis reaction were evaluated from both isothermal and nonisothermal rate data. The reaction was found to be second-order with an activation energy of 252.2 kJ/mole, and with a frequency factor of 9.25 ?? 1015 sec-1. Pyrolysis kinetics were not affected by heating rates between 0.01 to 0.67??K/s. No evidence of any reactions among the oil shale mineral constituents was observed at temperatures below 1173??K. However, it was found that the presence of pyrite in oil shale reduces the primary devolatilization rate of kerogen and increases the amount of residual char in the spent shale. Carbonaceous residues which were prepared by heating the oil shale at a rate of 0.166??K/s to temperatures between 923??K and 1073??K, had the highest reactivities when oxidized at 0.166??K/s in a gas having 21 volume percent oxygen. Oxygen chemisorption was found to be the initial precursor to the oxidation process. The kinetics governing oxygen chemisorption is (Equation Presented) where X is the fractional coverage. The oxidation of the carbonaceous residue was found also to be second-order. The activation energy and the frequency factor determined from isothermal experiments were 147 kJ/mole and 9.18??107 sec-1 respectively, while the values of these parameters obtained from a nonisothermal experiment were 212 kJ/mole and 1.5??1013 sec-1. The variation in the rate constants is attributed to the fact that isothermal and nonisothermal analyses represent two different aspects of the combustion process.

  10. First-order intervalley scattering in low-dimensional systems

    NASA Astrophysics Data System (ADS)

    Monsef, Florian; Dollfus, Philippe; Galdin, Sylvie; Bournel, Arnaud

    2002-06-01

    The intervalley phonon scattering rate in one- and two-dimensional electron gases is calculated for the case in which the transition matrix element is of first order in the phonon wave vector. This type of interaction is important in silicon at low temperature. The interaction between electrons and bulk phonons is considered in the standard golden rule approach by including the contribution of the components of phonon wave vector in the confinement direction(s). This process makes possible the transition between different subbands, and the resulting total scattering rate differs significantly from the rate commonly used in Si quantum wells.

  11. The affects on Titan atmospheric modeling by variable molecular reaction rates

    NASA Astrophysics Data System (ADS)

    Hamel, Mark D.

    The main effort of this thesis is to study the production and loss of molecular ions in the ionosphere of Saturn's largest moon Titan. Titan's atmosphere is subject to complex photochemical processes that can lead to the production of higher order hydrocarbons and nitriles. Ion-molecule chemistry plays an important role in this process but remains poorly understood. In particular, current models that simulate the photochemistry of Titan's atmosphere overpredict the abundance of the ionosphere's main ions suggesting a flaw in the modeling process. The objective of this thesis is to determine which reactions are most important for production and loss of the two primary ions, C2H5+ and HCNH+, and what is the impact of uncertainty in the reaction rates on the production and loss of these ions. In reviewing the literature, there is a contention about what reactions are really necessary to illuminate what is occurring in the atmosphere. Approximately seven hundred reactions are included in the model used in this discussion (INT16). This paper studies what reactions are fundamental to the atmospheric processes in Titan's upper atmosphere, and also to the reactions that occur in the lower bounds of the ionosphere which are used to set a baseline molecular density for all species, and reflects what is expected at those altitudes on Titan. This research was conducted through evaluating reaction rates and cross sections available in the scientific literature and through conducting model simulations of the photochemistry in Titan's atmosphere under a range of conditions constrained by the literature source. The objective of this study is to determine the dependence of ion densities of C2H5+ and HCNH+ on the uncertainty in the reaction rates that involve these two ions in Titan's atmosphere.

  12. Extension of a Kinetic-Theory Approach for Computing Chemical-Reaction Rates to Reactions with Charged Particles

    NASA Technical Reports Server (NTRS)

    Liechty, Derek S.; Lewis, Mark J.

    2010-01-01

    Recently introduced molecular-level chemistry models that predict equilibrium and nonequilibrium reaction rates using only kinetic theory and fundamental molecular properties (i.e., no macroscopic reaction rate information) are extended to include reactions involving charged particles and electronic energy levels. The proposed extensions include ionization reactions, exothermic associative ionization reactions, endothermic and exothermic charge exchange reactions, and other exchange reactions involving ionized species. The extensions are shown to agree favorably with the measured Arrhenius rates for near-equilibrium conditions.

  13. The Impact of Nuclear Reaction Rate Uncertainties on the Evolution of Core-collapse Supernova Progenitors

    NASA Astrophysics Data System (ADS)

    Fields, C. E.; Timmes, F. X.; Farmer, R.; Petermann, I.; Wolf, William M.; Couch, S. M.

    2018-02-01

    We explore properties of core-collapse supernova progenitors with respect to the composite uncertainties in the thermonuclear reaction rates by coupling the probability density functions of the reaction rates provided by the STARLIB reaction rate library with MESA stellar models. We evolve 1000 models of 15{M}ȯ from the pre-main sequence to core O-depletion at solar and subsolar metallicities for a total of 2000 Monte Carlo stellar models. For each stellar model, we independently and simultaneously sample 665 thermonuclear reaction rates and use them in a MESA in situ reaction network that follows 127 isotopes from 1H to 64Zn. With this framework we survey the core mass, burning lifetime, composition, and structural properties at five different evolutionary epochs. At each epoch we measure the probability distribution function of the variations of each property and calculate Spearman rank-order correlation coefficients for each sampled reaction rate to identify which reaction rate has the largest impact on the variations on each property. We find that uncertainties in the reaction rates of {}14{{N}}{({{p}},γ )}15{{O}}, triple-α, {}12{{C}}{(α ,γ )}16{{O}}, 12C(12C,p)23Na, 12C(16O, p)27Al, 16O(16O,n)31S, 16O(16O, p)31P, and 16O(16O,α)28Si dominate the variations of the properties surveyed. We find that variations induced by uncertainties in nuclear reaction rates grow with each passing phase of evolution, and at core H-, He-depletion they are of comparable magnitude to the variations induced by choices of mass resolution and network resolution. However, at core C-, Ne-, and O-depletion, the reaction rate uncertainties can dominate the variation, causing uncertainty in various properties of the stellar model in the evolution toward iron core-collapse.

  14. Episodic seasonal Pseudo-Bartter syndrome in cystic fibrosis.

    PubMed

    Kintu, Brett; Brightwell, Alex

    2014-06-01

    Pseudo-Bartter syndrome (PBS) describes an uncommon but well recognised complication of cystic fibrosis leading to hypochloraemic, hypokalaemic metabolic alkalosis. Pseudo-Bartter syndrome is usually seen at initial presentation or within the first two years of life in children with cystic fibrosis. Risk factors for development of PBS include warm weather conditions, severe respiratory or pancreatic disease and gastrointestinal losses (e.g. vomiting and diarrhoea). PBS is rare in older children and adolescents although epidemics have been associated with heat wave conditions in warmer climates. In this era of climate change, it is crucial that clinicians consider Pseudo-Bartter syndrome when patients with cystic fibrosis present unwell during summer. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Vaccine allergy and pseudo-allergy.

    PubMed

    Ponvert, Claude; Scheinmann, Pierre

    2003-01-01

    Allergic and pseudo-allergic reactions to vaccines frequently involve the skin, and can be generalized systemic symptoms (urticaria/angioedema, serum sickness, flares of eczema) or localized at the sites of vaccination (persistent nodules, abcesses, granulomas). Diagnosis of Arthus-type reactions is based on clinical history and specific IgM/IgG anti-toxoid determination. For other local reactions, diagnostic value of non-immediate responses in skin tests varies with clinical symptoms and substances involved. Immediate responses in skin tests and specific IgE determination have good diagnostic and/or predictive value in anaphylaxis and immediate/accelerated urticaria/angioedema to toxoid-, pneumococcus-, and egg- and gelatin-containing vaccines. Diagnosis of reactions to dextran in BCG is based on specific IgM/IgG determination. Most non-immediate generalized reactions result from non-specific inflammation, except for gelatin-containing vaccines, but the diagnostic value of immuno-allergological tests with the vaccines and gelatin are controversial. Withholding booster injections is advised if specific IgM/IgG levels are high. If the levels are low, sequential injections of vaccines containing a single vaccinating agent are usually tolerated. However, injections of the vaccine should be performed using a " desensitization " procedure in patients reporting anaphylaxis and immediate/accelerated urticaria/angioedema.

  16. Semi-classical analysis and pseudo-spectra

    NASA Astrophysics Data System (ADS)

    Davies, E. B.

    We prove an approximate spectral theorem for non-self-adjoint operators and investigate its applications to second-order differential operators in the semi-classical limit. This leads to the construction of a twisted FBI transform. We also investigate the connections between pseudo-spectra and boundary conditions in the semi-classical limit.

  17. A simple reaction-rate model for turbulent diffusion flames

    NASA Technical Reports Server (NTRS)

    Bangert, L. H.

    1975-01-01

    A simple reaction rate model is proposed for turbulent diffusion flames in which the reaction rate is proportional to the turbulence mixing rate. The reaction rate is also dependent on the mean mass fraction and the mean square fluctuation of mass fraction of each reactant. Calculations are compared with experimental data and are generally successful in predicting the measured quantities.

  18. PSEUDO-CODEWORD LANDSCAPE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    CHERTKOV, MICHAEL; STEPANOV, MIKHAIL

    2007-01-10

    The authors discuss performance of Low-Density-Parity-Check (LDPC) codes decoded by Linear Programming (LP) decoding at moderate and large Signal-to-Noise-Ratios (SNR). Frame-Error-Rate (FER) dependence on SNR and the noise space landscape of the coding/decoding scheme are analyzed by a combination of the previously introduced instanton/pseudo-codeword-search method and a new 'dendro' trick. To reduce complexity of the LP decoding for a code with high-degree checks, {ge} 5, they introduce its dendro-LDPC counterpart, that is the code performing identifically to the original one under Maximum-A-Posteriori (MAP) decoding but having reduced (down to three) check connectivity degree. Analyzing number of popular LDPC codes andmore » their dendro versions performing over the Additive-White-Gaussian-Noise (AWGN) channel, they observed two qualitatively different regimes: (i) error-floor sets early, at relatively low SNR, and (ii) FER decays with SNR increase faster at moderate SNR than at the largest SNR. They explain these regimes in terms of the pseudo-codeword spectra of the codes.« less

  19. Pseudo hard-sphere potential for use in continuous molecular-dynamics simulation of spherical and chain molecules

    NASA Astrophysics Data System (ADS)

    Jover, J.; Haslam, A. J.; Galindo, A.; Jackson, G.; Müller, E. A.

    2012-10-01

    We present a continuous pseudo-hard-sphere potential based on a cut-and-shifted Mie (generalized Lennard-Jones) potential with exponents (50, 49). Using this potential one can mimic the volumetric, structural, and dynamic properties of the discontinuous hard-sphere potential over the whole fluid range. The continuous pseudo potential has the advantage that it may be incorporated directly into off-the-shelf molecular-dynamics code, allowing the user to capitalise on existing hardware and software advances. Simulation results for the compressibility factor of the fluid and solid phases of our pseudo hard spheres are presented and compared both to the Carnahan-Starling equation of state of the fluid and published data, the differences being indistinguishable within simulation uncertainty. The specific form of the potential is employed to simulate flexible chains formed from these pseudo hard spheres at contact (pearl-necklace model) for mc = 4, 5, 7, 8, 16, 20, 100, 201, and 500 monomer segments. The compressibility factor of the chains per unit of monomer, mc, approaches a limiting value at reasonably small values, mc < 50, as predicted by Wertheim's first order thermodynamic perturbation theory. Simulation results are also presented for highly asymmetric mixtures of pseudo hard spheres, with diameter ratios of 3:1, 5:1, 20:1 over the whole composition range.

  20. Kinetics of sorption of polyaromatic hydrocarbons onto granular activated carbon and Macronet hyper-cross-linked polymers (MN200).

    PubMed

    Valderrama, C; Cortina, J L; Farran, A; Gamisans, X; Lao, C

    2007-06-01

    Polymeric supports are presented as an alternative to granular activated carbon (GAC) for organic contaminant removal from groundwater using permeable reactive barriers (PRB). The search for suitable polymeric sorbents for hydrocarbon extraction from aqueous streams has prompted the synthesis of new resins incorporating new functionalities or modifying the polymer network properties that solve many of the existing problems. Between them, the new type of polymeric sorbents Macronet Hypersol containing a styrene-divinylbenzene macroporous hyperreticulated network has been evaluated. Because of their potential sorptive properties, tests were conducted to determine the feasibility of using them as a low-cost reactive material for groundwater applications. The present work describes the sorption of six polycyclic hydrocarbons (PAHs) from aqueous solution onto both Macronet polymeric sorbent MN200 and granular activated carbon. Batch experiments were performed to determine loading rates of a family of PAHs (naphthalene, fluorene, anthracene, acenaphthene, pyrene, and fluoranthene), from a simple two-rings PAH (naphthalene) up to a four-ring PAH (pyrene). The behavior of a non-functionalized Macronet support (MN200) was compared with the behavior of a recognized material, granular activated carbon (GAC). Analyses of the respective rate data with three theoretical models (pseudo-first- and pseudo-second-order reaction models and the Elovich model) were used to describe the PAH sorption kinetics. Sorption rate constants were determined by graphical analysis of the proposed models. The study showed that sorption systems followed a pseudo-first-order reaction model, although the pseudo-second-order reaction model provides an acceptable description of the sorption process. Graphical analysis showed that the sorption process with activated carbon is a more complex process than the one observed for hyper-cross-linked polymers (MN200). A simulation of the barrier thickness needed

  1. Discovery of a Significant Acetone•Hydroperoxy Adduct Chaperone Effect and Its Impact on the Determination of Room Temperature Rate Constants for Acetonylperoxy/Hydroperoxy Self-Reactions and Cross Reaction Via Infrared Kinetic Spectroscopy.

    NASA Astrophysics Data System (ADS)

    Grieman, F. J.; Hui, A. O.; Okumura, M.; Sander, S. P.

    2017-12-01

    In order to model the upper troposphere/lower stratosphere in regions containing acetone properly, the kinetics of the acetonylperoxy/hydroperoxy self-reactions and cross reaction have been studied over a wide temperature range using Infrared Kinetic Spectroscopy. We report here the determination of different rate constants for the acetonylperoxy chemistry that we obtained at 298 K compared to currently accepted values. A considerable increase in the observed HO2 self-reaction rate constant due to rate enhancement via the chaperone effect from the reaction between HO2 and the (CH3)2CO•HO2 hydrogen-bonded adduct, even at room temperature, was discovered that was previously ignored. Correct determination of the acetonylperoxy and hydroperoxy kinetics must include this dependence of the HO2 self-reaction rate on acetone concentration. Via excimer laser flash photolysis to create the radical reactants, HO2 absorption was monitored in the infrared by diode laser wavelength modulation detection simultaneously with CH3C(O)CH2O2absorption monitored in the ultraviolet at 300 nm as a function of time. Resulting decay curves were fit concurrently first over a short time scale to obtain the rate constants minimizing subsequent product reactions. Modeling/fitting with a complete reaction scheme was then performed to refine the rate constants and test their veracity. Experiments were carried out over a variety of concentrations of acetone and methanol. Although no effect due to methanol concentration was found at room temperature, the rate constant for the hydroperoxy self-reaction was found to increase linearly with acetone concentration which is interpreted as the adduct being formed and resulting in a chaperone mechanism that enhances the self-reaction rate: (CH3)2CO·HO2 + HO2 → H2O2 + O2 + (CH3)2CO Including this effect, the resulting room temperature rate constants for the cross reaction and the acetonylperoxy self-reaction were found to be 2-3 times smaller than

  2. Intestinal Pseudo-Obstruction

    MedlinePlus

    ... condition as adults. Intestinal pseudo-obstruction may be acute, occurring suddenly and lasting a short time, or it may be chronic, or long lasting. Acute colonic pseudo-obstruction, also called Ogilvie syndrome or ...

  3. Reaction Rates Of Olivine Carbonation - An Experimental Study Using Synthetic Fluid Inclusions As Micro-Reactors

    NASA Astrophysics Data System (ADS)

    Sendula, E.; Lamadrid, H. M.; Bodnar, R. J.

    2017-12-01

    Ultramafic and mafic rocks (e.g. peridotites, serpentinites and basalts) are being considered as possible targets for CO2 sequestration via mineral carbonation. The determination of reaction kinetics and the factors that control mineralization are important in order to understand and predict fluid-rock reactions between the injected CO2 and the host rocks. Here we present results of experiments focused on determining the reaction rates of carbonation of olivine as a function of initial CO2 concentration (20 mol% and 11 mol%) in the aqueous solution and temperature (100°C and 50°C). We used a recently developed experimental method (Lamadrid et al., 2017) that uses synthetic fluid inclusions as micro-reactors. The micro-reactor technique coupled with non-destructive Raman spectroscopy allows us to monitor the reaction progress in situ and in real time, by quantifying the amount of CO2 consumed in the reaction as a function of time. Results show a measurable decrease of CO2 density in the fluid inclusions as a result of the reaction between the CO2-bearing aqueous phase and olivine. Magnesite formation begins within several hours at 100°C and most of the CO2 was consumed within two days. At 50°C, however, magnesite nucleation and precipitation required weeks to months to begin, and the reaction rates were about an order of magnitude slower than in the experiments at 100°C. No significant differences were observed in the reaction rates as a function of initial CO2 concentration. The application of the synthetic fluid inclusion technique as micro-reactors coupled with non-destructive analytical techniques is a promising tool to monitor rates of fluid-rock reactions in situ and in real time, allowing detailed micron-scale investigations. The technique can be applied to a wide variety of chemical systems, host minerals, reaction products, fluid densities, temperatures, and different starting fluid compositions.

  4. First-order kinetic gas generation model parameters for wet landfills.

    PubMed

    Faour, Ayman A; Reinhart, Debra R; You, Huaxin

    2007-01-01

    Landfill gas collection data from wet landfill cells were analyzed and first-order gas generation model parameters were estimated for the US EPA landfill gas emissions model (LandGEM). Parameters were determined through statistical comparison of predicted and actual gas collection. The US EPA LandGEM model appeared to fit the data well, provided it is preceded by a lag phase, which on average was 1.5 years. The first-order reaction rate constant, k, and the methane generation potential, L(o), were estimated for a set of landfills with short-term waste placement and long-term gas collection data. Mean and 95% confidence parameter estimates for these data sets were found using mixed-effects model regression followed by bootstrap analysis. The mean values for the specific methane volume produced during the lag phase (V(sto)), L(o), and k were 33 m(3)/Megagrams (Mg), 76 m(3)/Mg, and 0.28 year(-1), respectively. Parameters were also estimated for three full scale wet landfills where waste was placed over many years. The k and L(o) estimated for these landfills were 0.21 year(-1), 115 m(3)/Mg, 0.11 year(-1), 95 m(3)/Mg, and 0.12 year(-1) and 87 m(3)/Mg, respectively. A group of data points from wet landfills cells with short-term data were also analyzed. A conservative set of parameter estimates was suggested based on the upper 95% confidence interval parameters as a k of 0.3 year(-1) and a L(o) of 100 m(3)/Mg if design is optimized and the lag is minimized.

  5. The gravitational wave stress–energy (pseudo)-tensor in modified gravity

    NASA Astrophysics Data System (ADS)

    Saffer, Alexander; Yunes, Nicolás; Yagi, Kent

    2018-03-01

    The recent detections of gravitational waves by the advanced LIGO and Virgo detectors open up new tests of modified gravity theories in the strong-field and dynamical, extreme gravity regime. Such tests rely sensitively on the phase evolution of the gravitational waves, which is controlled by the energy–momentum carried by such waves out of the system. We here study four different methods for finding the gravitational wave stress–energy pseudo-tensor in gravity theories with any combination of scalar, vector, or tensor degrees of freedom. These methods rely on the second variation of the action under short-wavelength averaging, the second perturbation of the field equations in the short-wavelength approximation, the construction of an energy complex leading to a Landau–Lifshitz tensor, and the use of Noether’s theorem in field theories about a flat background. We apply these methods in general relativity, Jordan–Fierz–Brans–Dicky theoy, and Einstein-Æther theory to find the gravitational wave stress–energy pseudo-tensor and calculate the rate at which energy and linear momentum is carried away from the system. The stress–energy tensor and the rate of linear momentum loss in Einstein-Æther theory are presented here for the first time. We find that all methods yield the same rate of energy loss, although the stress–energy pseudo-tensor can be functionally different. We also find that the Noether method yields a stress–energy tensor that is not symmetric or gauge-invariant, and symmetrization via the Belinfante procedure does not fix these problems because this procedure relies on Lorentz invariance, which is spontaneously broken in Einstein-Æther theory. The methods and results found here will be useful for the calculation of predictions in modified gravity theories that can then be contrasted with observations.

  6. Reacting gas mixtures in the state-to-state approach: The chemical reaction rates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kustova, Elena V.; Kremer, Gilberto M.

    2014-12-09

    In this work chemically reacting mixtures of viscous flows are analyzed within the framework of Boltzmann equation. By applying a modified Chapman-Enskog method to the system of Boltzmann equations general expressions for the rates of chemical reactions and vibrational energy transitions are determined as functions of two thermodynamic forces: the velocity divergence and the affinity. As an application chemically reacting mixtures of N{sub 2} across a shock wave are studied, where the first lowest vibrational states are taken into account. Here we consider only the contributions from the first four single quantum vibrational-translational energy transitions. It is shown that themore » contribution to the chemical reaction rate related to the affinity is much larger than that of the velocity divergence.« less

  7. The kinetics of the O2/CO2 reaction in molten carbonate - Reaction orders for O2 and CO2 on NiO. [in fuel cells

    NASA Technical Reports Server (NTRS)

    Winnick, J.; Ross, P. N.

    1980-01-01

    The kinetics of the O2/CO2 reaction in molten carbonate is investigated using paste electrolytes and nickel sinter electrodes. A two-step approach to the determination of reaction orders is employed. First, exchange currents at various P(CO2) and P(O2) were measured using the low polarization method. Second, alpha(+) and alpha(-) values were obtained from the slope of the Allen-Hickling plot for current densities low enough so that concentration polarization within the electrode can be neglected. The reaction orders are + 1/4 in CO2 and + 5/8 in O2 in the cathodic direction, and - 3/4 in CO2 and + 1/8 in O2 in the anodic direction.

  8. Hydrotreating of coal liquids, Phase Two. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, D.B.; Bogdanor, J.M.

    1982-06-01

    The purpose of this study was to determine the kinetic parameters for the pseudo first-order denitrogenation and desulfurization of an SASOL coal naphtha. Only the fraction boiling over 95/sup 0/C (at 25.8 mmHg) was hydrotreated due to the high volatility of the whole naphtha. Dodecane was used as a diluent to further reduce the volatility of the hydrotreated naphtha bottoms. A commercial Ni-Mo catalyst (HDS9A) was employed. Based on chromatographic results, nitrogen and sulfur were successfully removed from the naphtha bottoms. The mathematical model developed to describe the pseudo first-order denitrogenation and desulfurization of the naphtha bottoms in the semi-batch,more » slurry reactor was adequate to explain the experimental results. The Arrhenius plot of the rate constants, determined by fitting the data to the model equation, for the desulfurization of the naphtha bottoms, yielded a straight line for the three temperatures used, 221, 235, and 251/sup 0/C at a pressure of 800 psig. This indicates that the assumption of a pseudo first-order reaction for the desulfurization of the naphtha bottoms is valid. The estimate of the activation energy, 8558 cal/g mole, for the desulfurization is consistent with the literature. The desulfurizationwas much faster than the denitrogenation reaction. This observation is also consistent with the literature. The estimate of the activation energy, 4560 cal/g mole, for the denitrogenation of the naphtha bottoms, was lower than expected for the reaction occurring in the kinetic regime. Two possible explanations for this are discussed.« less

  9. Salt effects on an ion-molecule reaction--hydroxide-catalyzed hydrolysis of benzocaine.

    PubMed

    Al-Maaieh, Ahmad; Flanagan, Douglas R

    2006-03-01

    This work investigates the effect of various salts on the rate of a reaction involving a neutral species (benzocaine alkaline hydrolysis). Benzocaine hydrolysis kinetics in NaOH solutions in the presence of different salts were studied at 25 degrees C. Benzocaine solubility in salt solutions was also determined. Solubility data were used to estimate salt effects on benzocaine activity coefficients, and pH was used to estimate salt effects on hydroxide activity coefficients. Salts either increased or decreased benzocaine solubility. For example, solubility increased with 1.0 M tetraethylammonium chloride (TEAC) approximately 3-fold, whereas solubility decreased approximately 35% with 0.33 M Na2SO4. Salt effects on hydrolysis rates were more complex and depended on the relative magnitudes of the salt effects on the activity coefficients of benzocaine, hydroxide ion, and the transition state. As a result, some salts increased the hydrolysis rate constant, whereas others decreased it. For example, the pseudo-first-order rate constant decreased approximately 45% (to 0.0584 h(-1)) with 1 M TEAC, whereas it increased approximately 8% (to 0.116 h(-1)) with 0.33 M Na2SO4. Different salt effects on degradation kinetics can be demonstrated for a neutral compound reacting with an ion. These salt effects depend on varying effects on activity coefficients of reacting and intermediate species.

  10. Analysis of gas absorption to a thin liquid film in the presence of a zero-order chemical reaction

    NASA Technical Reports Server (NTRS)

    Rajagopalan, S.; Rahman, M. M.

    1995-01-01

    The paper presents a detailed theoretical analysis of the process of gas absorption to a thin liquid film adjacent to a horizontal rotating disk. The film is formed by the impingement of a controlled liquid jet at the center of the disk and subsequent radial spreading of liquid along the disk. The chemical reaction between the gas and the liquid film can be expressed as a zero-order homogeneous reaction. The process was modeled by establishing equations for the conservation of mass, momentum, and species concentration and solving them analytically. A scaling analysis was used to determine dominant transport processes. Appropriate boundary conditions were used to solve these equations to develop expressions for the local concentration of gas across the thickness of the film and distributions of film height, bulk concentration, and Sherwood number along the radius of the disk. The partial differential equation for species concentration was solved using the separation of variables technique along with the Duhamel's theorem and the final analytical solution was expressed using confluent hypergeometric functions. Tables for eigenvalues and eigenfunctions are presented for a number of reaction rate constants. A parametric study was performed using Reynolds number, Ekman number, and dimensionless reaction rate as parameters. At all radial locations, Sherwood number increased with Reynolds number (flow rate) as well as Ekman number (rate of rotation). The enhancement of mass transfer due to chemical reaction was found to be small when compared to the case of no reaction (pure absorption), but the enhancement factor was very significant when compared to pure absorption in a stagnant liquid film. The zero-order reaction processes considered in the present investigation included the absorption of oxygen in aqueous alkaline solutions of sodiumdithionite and rhodium complex catalyzed carbonylation of methanol. Present analytical results were compared to previous theoretical

  11. Raman Spectral Determination of Chemical Reaction Rate Characteristics

    NASA Astrophysics Data System (ADS)

    Balakhnina, I. A.; Brandt, N. N.; Mankova, A. A.; Chikishev, A. Yu.; Shpachenko, I. G.

    2017-09-01

    The feasibility of using Raman spectroscopy to determine chemical reaction rates and activation energies has been demonstrated for the saponification of ethyl acetate. The temperature dependence of the reaction rate was found in the range from 15 to 45°C.

  12. Dendritic Ni(Cu)-polypyrrole hybrid films for a pseudo-capacitor.

    PubMed

    Choi, Bit Na; Chun, Woo Won; Qian, Aniu; Lee, So Jeong; Chung, Chan-Hwa

    2015-11-28

    Dendritic Ni(Cu)-polypyrrole hybrid films are fabricated for a pseudo-capacitor in a unique morphology using two simple methods: electro-deposition and electrochemical de-alloying. Three-dimensional structures of porous dendrites are prepared by electro-deposition within the hydrogen evolution reaction (HER) at a high cathodic potential; the high-surface-area structure provides sufficient redox reactions between the electrodes and the electrolyte. The dependence of the active-layer thickness on the super-capacitor performance is also investigated, and the 60 μm-thick Ni(Cu)PPy hybrid electrode presents the highest performance of 659.52 F g(-1) at the scan rate of 5 mV s(-1). In the thicker layers, the specific capacitance became smaller due to the diffusion limitation of the ions in an electrolyte. The polypyrrole-hybridization on the porous dendritic Ni(Cu) electrode provides superior specific capacitance and excellent cycling stability due to the improvement in electric conductivity by the addition of conducting polypyrrole in the matrices of the dendritic nano-porous Ni(Cu) layer and the synergistic effect of composite materials.

  13. Investigation of the hydrochlorination of SiCl4

    NASA Technical Reports Server (NTRS)

    Mui, J. Y. P.

    1982-01-01

    The hyrochlorination of SiC14 and m.g. silicon metal to produce SiHC13, was investigated. Reaction kinetic measurements were carried out to collect additional rate data at 525 C and 550 C. A theoretical study was carried out to provide a kinetic model and a rate equation for the hydrochlorination reaction. Results of this preliminary study show that the rate of formation of SiHC13 follows a pseudo first order kinetics. The rate constants were measured at three temperatures, 550 C, 500 C and 450 C, respectively. The activation energy was determined from the Arrhenius plot to give a value of 13.2 Kcal/mole. The design of a quartz reactor to measure reaction rates and equilibrium conversion of SiHC13 at reaction temperature up to 650 C was completed.

  14. The influence of steric hindrance on kinetics and isotope effects in the reaction of 2,2-bis(4-dimethylaminophenyl)-1-nitro-1-(4-nitrophenyl)ethane with DBU base in acetonitrile

    NASA Astrophysics Data System (ADS)

    Nowak, Iwona; Jarczewski, Arnold

    2014-11-01

    The pKa value for 2,2-bis(4-dimethylaminophenyl)-1-nitro-1-(4-nitrophenyl)ethane, (dmap)2 (pKa = 25.11) has been measured spectrophotometrically using buffer solutions of a few strong amine bases: 1,8-diazabicyclo[5.4.0]undec-7-ene, (DBU); 1,1,3,3-tetramethylguanidine, (TMG); 1,5,7-triazabicyclo[4.4.0]dec-5-ene, (TBD); 7-methyl-1,5,7-triazabicyclo[4.4.0]dec-5-ene, (MTBD) and their salts. The low energy conformers of nitrophenyl nitroalkanes have been determined using the semiempirical PM6 methods, (B3-LYP) density functional theory (DFT) together with the 6-31G(d,p) basis set. The participation of the low energy conformer in the proton transfer reaction to DBU base has been discussed. The kinetic data for proton transfer reactions between (dmap)2 and DBU in acetonitrile (MeCN) at pseudo-first order conditions have been presented. The influence of steric hindrance brought by reacting C-acid and organic base on the stability of the transition state has been discussed. The rates of second-order rate constants for series of nitrophenyl nitroalkanes, NO2PhCHRNO2 (R = Me; Et; iPr; dimethylaminophenyl = (dmap)2) are presented and discussed.

  15. Spectacular Rate Enhancement of the Diels-Alder Reaction at the Ionic Liquid/n-Hexane Interface.

    PubMed

    Beniwal, Vijay; Manna, Arpan; Kumar, Anil

    2016-07-04

    The use of the ionic liquid/n-hexane interface as a new class of reaction medium for the Diels-Alder reaction gives large rate enhancements of the order of 10(6) to 10(8) times and high stereoselectivity, as compared to homogeneous media. The rate enhancement is attributed to the H-bonding abilities and polarities of the ionic liquids, whereas the hydrophobicity of ionic liquids was considered to be the factor in controlling stereoselectivity. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. A Transition in the Cumulative Reaction Rate of Two Species Diffusion with Bimolecular Reaction

    NASA Astrophysics Data System (ADS)

    Rajaram, Harihar; Arshadi, Masoud

    2015-04-01

    Diffusion and bimolecular reaction between two initially separated reacting species is a prototypical small-scale description of reaction induced by transverse mixing. It is also relevant to diffusion controlled transport regimes as encountered in low-permeability matrix blocks in fractured media. In previous work, the reaction-diffusion problem has been analyzed as a Stefan problem involving a distinct moving boundary (reaction front), which predicts that front motion scales as √t, and the cumulative reaction rate scales as 1/√t-. We present a general non-dimensionalization of the problem and a perturbation analysis to show that there is an early time regime where the cumulative reaction rate scales as √t- rather than 1/√t. The duration of this early time regime (where the cumulative rate is kinetically rather than diffusion controlled) depends on the rate parameter, in a manner that is consistently predicted by our non-dimensionalization. We also present results on the scaling of the reaction front width. We present numerical simulations in homogeneous and heterogeneous porous media to demonstrate the limited influence of heterogeneity on the behavior of the reaction-diffusion system. We illustrate applications to the practical problem of in-situ chemical oxidation of TCE and PCE by permanganate, which is employed to remediate contaminated sites where the DNAPLs are largely dissolved in the rock matrix.

  17. Kinetic study of microwave-assisted alkaline hydrolysis of Jatropha curcas oil

    NASA Astrophysics Data System (ADS)

    Yusuf, Nur'aini Raman; Kamil, Ruzaimah Nik Mohamad; Yusup, Suzana

    2016-11-01

    The kinetics of hydrolysis of Jatropha curcas oil under microwave irradation in the presence of alkaline solution was studied. The temperature of 50°C, 65°C and 80°C were studied in the range of optimum condition of 1.75 M catalyst, solvent/oil ratio of (1: 68) and 15 minutes reaction time. The rate constants of oil hydrolysis are corresponding to triglyceride disappearance concentration. The rates of reaction for fatty acids production was determined by pseudo first order. The activation energy (Ea) achieved at 30.61 kJ/mol is lower using conventional method. This conclude that the rate of reaction via microwave heating is less temperature sensitive therefore reaction can be obtained at lower temperature.

  18. Generalized first-order kinetic model for biosolids decomposition and oxidation during hydrothermal treatment.

    PubMed

    Shanableh, A

    2005-01-01

    The main objective of this study was to develop generalized first-order kinetic models to represent hydrothermal decomposition and oxidation of biosolids within a wide range of temperatures (200-450 degrees C). A lumping approach was used in which oxidation of the various organic ingredients was characterized by the chemical oxygen demand (COD), and decomposition was characterized by the particulate (i.e., nonfilterable) chemical oxygen demand (PCOD). Using the Arrhenius equation (k = k(o)e(-Ea/RT)), activation energy (Ea) levels were derived from 42 continuous-flow hydrothermal treatment experiments conducted at temperatures in the range of 200-450 degrees C. Using predetermined values for k(o) in the Arrhenius equation, the activation energies of the various organic ingredients were separated into 42 values for oxidation and a similar number for decomposition. The activation energy values were then classified into levels representing the relative ease at which the organic ingredients of the biosolids were oxidized or decomposed. The resulting simple first-order kinetic models adequately represented, within the experimental data range, hydrothermal decomposition of the organic particles as measured by PCOD and oxidation of the organic content as measured by COD. The modeling approach presented in the paper provide a simple and general framework suitable for assessing the relative reaction rates of the various organic ingredients of biosolids.

  19. Products and kinetics of the heterogeneous reaction of suspended vinclozolin particles with ozone.

    PubMed

    Gan, Jie; Yang, Bo; Zhang, Yang; Shu, Xi; Liu, Changgeng; Shu, Jinian

    2010-11-25

    Vinclozolin is a widely used fungicide that can be released into the atmosphere via application and volatilization. This paper reports an experimental investigation on the heterogeneous ozonation of vinclozolin particles. The ozonation of vinclozolin adsorbed on azelaic acid particles under pseudo-first-order conditions is investigated online with a vacuum ultraviolet photoionization aerosol time-of-flight mass spectrometer (VUV-ATOFMS). The ozonation products are analyzed with a combination of VUV-ATOFMS and GC/MS. Two main ozonation products are observed. The formation of the ozonation products results from addition of O(3) on the C-C double bond of the vinyl group. The heterogeneous reactive rate constant of vinclozolin particles under room temperature is (2.4 ± 0.4) × 10(-17) cm(3) molecules(-1) s(-1), with a corresponding lifetime at 100 ppbv O(3) of 4.3 ± 0.7 h, which is almost comparable with the estimated lifetime due to the reaction with atmospheric OH radicals (∼1.7 h). The reactive uptake coefficient for O(3) on vinclozolin particles is (6.1 ± 1.0) × 10(-4).

  20. Reaction of H2 with O2 in Excited Electronic States: Reaction Pathways and Rate Constants.

    PubMed

    Pelevkin, Alexey V; Loukhovitski, Boris I; Sharipov, Alexander S

    2017-12-21

    Comprehensive quantum chemical analysis with the use of the multireference state-averaged complete active space self-consistent field approach was carried out to study the reactions of H 2 with O 2 in a 1 Δ g , b 1 Σ g + , c 1 Σ u - , and A' 3 Δ u electronically excited states. The energetically favorable reaction pathways and possible intersystem crossings have been revealed. The energy barriers were refined employing the extended multiconfiguration quasi-degenerate second-order perturbation theory. It has been shown that the interaction of O 2 (a 1 Δ g ) and O 2 (A' 3 Δ u ) with H 2 occurs through the H-abstraction process with relatively low activation barriers that resulted in the formation of the HO 2 molecule in A″ and A' electronic states, respectively. Meanwhile, molecular oxygen in singlet sigma states (b 1 Σ g + and c 1 Σ u - ) was proved to be nonreactive with respect to the molecular hydrogen. Appropriate rate constants for revealed reaction and quenching channels have been estimated using variational transition-state theory including corrections for the tunneling effect, possible nonadiabatic transitions, and anharmonicity of vibrations for transition states and reactants. It was demonstrated that the calculated reaction rate constant for the H 2 + O 2 (a 1 Δ g ) process is in reasonable agreement with known experimental data. The Arrhenius approximations for these processes have been proposed for the temperature range T = 300-3000 K.

  1. First order ball bearing kinematics

    NASA Technical Reports Server (NTRS)

    Kingbury, E.

    1984-01-01

    Two first order equations are given connecting geometry and internal motions in an angular contact ball bearing. Total speed, kinematic equivalence, basic speed ratio, and modal speed ratio are defined and discussed; charts are given for the speed ratios covering all bearings and all rotational modes. Instances where specific first order assumptions might fail are discussed, and the resulting effects on bearing performance reviewed.

  2. Nucleophilic substitution at centers other than carbon: reaction at the chlorine of N-chloroacetanilides with triethylamine as the nucleophile

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Underwood, G.R.; Dietze, P.E.

    1984-12-28

    The reaction between triethylamine (TEA) and a series of para-substituted N-chloroacetanilides has been studied in aqueous solution buffered to pHs between 1 and 5. The exclusive product derived from the aromatic moiety is the corresponding acetanilide. The reaction occurs via two parallel pseudo-second-order paths, one acid catalyzed (the Orton-like mechanism), the other uncatalyzed. The uncatalyzed reaction is accelerated by the presence of electron-withdrawing substituents on the aromatic ring and can best be represented as nucleophilic displacement at chlorine. It therefore appears to be the prototype of a convenient class of reactions for the study of displacement reactions at chlorine. Themore » rho value for this reaction is 3.87, indicating substantial negative charge buildup in the aromatic ring during of the transition state. The acid-catalyzed reaction is more complex, presumable involving a protonation equilibrium for the N-chloroacetanilide prior to the rate-determining step similar to that in the Orton reaction. 15 references, 2 figures, 3 tables.« less

  3. Fast and calibration free determination of first order reaction kinetics in API synthesis using in-situ ATR-FTIR.

    PubMed

    Rehbein, Moritz C; Husmann, Sascha; Lechner, Christian; Kunick, Conrad; Scholl, Stephan

    2018-05-01

    In early stages of drug development only sparse amounts of the key substances are available, which is problematic for the determination of important process data like reaction kinetics. Therefore, it is important to perform experiments as economically as possible, especially in regards to limiting compounds. Here we demonstrate the use of a temperature step experiment enabling the determination of complete reaction kinetics in a single non-isothermal experiment. In contrast to the traditionally used HPLC, the method takes advantage of the high measuring rate and the low amount of labor involved in using in-situ ATR-FTIR to determine time-dependent concentration-equivalent data. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Pseudo hard-sphere potential for use in continuous molecular-dynamics simulation of spherical and chain molecules.

    PubMed

    Jover, J; Haslam, A J; Galindo, A; Jackson, G; Müller, E A

    2012-10-14

    We present a continuous pseudo-hard-sphere potential based on a cut-and-shifted Mie (generalized Lennard-Jones) potential with exponents (50, 49). Using this potential one can mimic the volumetric, structural, and dynamic properties of the discontinuous hard-sphere potential over the whole fluid range. The continuous pseudo potential has the advantage that it may be incorporated directly into off-the-shelf molecular-dynamics code, allowing the user to capitalise on existing hardware and software advances. Simulation results for the compressibility factor of the fluid and solid phases of our pseudo hard spheres are presented and compared both to the Carnahan-Starling equation of state of the fluid and published data, the differences being indistinguishable within simulation uncertainty. The specific form of the potential is employed to simulate flexible chains formed from these pseudo hard spheres at contact (pearl-necklace model) for m(c) = 4, 5, 7, 8, 16, 20, 100, 201, and 500 monomer segments. The compressibility factor of the chains per unit of monomer, m(c), approaches a limiting value at reasonably small values, m(c) < 50, as predicted by Wertheim's first order thermodynamic perturbation theory. Simulation results are also presented for highly asymmetric mixtures of pseudo hard spheres, with diameter ratios of 3:1, 5:1, 20:1 over the whole composition range.

  5. First observation of a mass independent isotopic fractionation in a condensation reaction

    NASA Technical Reports Server (NTRS)

    Thiemens, M. H.; Nelson, R.; Dong, Q. W.; Nuth, Joseph A., III

    1994-01-01

    Thiemens and Heidenreich (1983) first demonstrated that a chemically produced mass independent isotopic fractionation process could produce an isotopic composition which is identical to that observed in Allende inclusions. This raised the possibility that the meteoritic components could be produced by chemical, rather than nuclear processes. In order to develop a mechanistic model of the early solar system, it is important that relevant reactions be studied, particularly, those which may occur in the earliest condensation reactions. The isotopic results for isotopic fractionations associated with condensation processes are reported. A large mass independent isotopic fractionation is observed in one of the experiments.

  6. Design of pseudo-symmetric high bit rate, bend insensitive optical fiber applicable for high speed FTTH

    NASA Astrophysics Data System (ADS)

    Makouei, Somayeh; Koozekanani, Z. D.

    2014-12-01

    In this paper, with sophisticated modification on modal-field distribution and introducing new design procedure, the single-mode fiber with ultra-low bending-loss and pseudo-symmetric high bit-rate of uplink and downlink, appropriate for fiber-to-the-home (FTTH) operation is presented. The bending-loss reduction and dispersion management are done by the means of Genetic Algorithm. The remarkable feature of this methodology is designing a bend-insensitive fiber without reduction of core radius and MFD. Simulation results show bending loss of 1.27×10-2 dB/turn at 1.55 μm for 5 mm curvature radius. The MFD and Aeff are 9.03 μm and 59.11 μm2. Moreover, the upstream and downstream bit-rates are approximately 2.38 Gbit/s-km and 3.05 Gbit/s-km.

  7. Suitable combination of promoter and micellar catalyst for kilo fold rate acceleration on benzaldehyde to benzoic acid conversion in aqueous media at room temperature: a kinetic approach.

    PubMed

    Ghosh, Aniruddha; Saha, Rumpa; Ghosh, Sumanta K; Mukherjee, Kakali; Saha, Bidyut

    2013-05-15

    The kinetics of oxidation of benzaldehyde by chromic acid in aqueous and aqueous surfactant (sodium dodecyl sulfate, SDS, alkyl phenyl polyethylene glycol, Triton X-100 and N-cetylpyridinium chloride, CPC) media have been investigated in the presence of promoter at 303 K. The pseudo-first-order rate constants (kobs) were determined from a logarithmic plot of absorbance as a function time. The rate constants were found to increase with introduction of heteroaromatic nitrogen base promoters such as Picolinic acid (PA), 2,2'-bipyridine (bipy) and 1,10-phenanthroline (phen). The product benzoic acid has been characterized by conventional melting point experiment, NMR, HRMS and FTIR spectral analysis. The mechanism of both unpromoted and promoted reaction path has been proposed for the reaction. In presence of the anionic surfactant SDS, cationic surfactant CPC and neutral surfactant TX-100 the reaction can undergo simultaneously in both aqueous and micellar phase with an enhanced rate of oxidation in the micellar phase. Both SDS and TX-100 produce normal micellar effect whereas CPC produce reverse micellar effect in the presence of benzaldehyde. The observed net enhancement of rate effects has been explained by considering the hydrophobic and electrostatic interaction between the surfactants and reactants. SDS and bipy combination is the suitable one for benzaldehyde oxidation. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Rate constant for the reaction SO + BrO yields SO2 + Br

    NASA Technical Reports Server (NTRS)

    Brunning, J.; Stief, L.

    1986-01-01

    The rate of the radical-radical reaction SO + BrO yields SO2 + Br has been determined at 298 K in a discharge flow system near 1 torr pressure with detection of SO and BrO via collision-free sampling mass spectrometry. The rate constant was determined using two different methods: measuring the decay of SO radicals in the presence of an excess of BrO and measuring the decay of BrO radicals in excess SO. The results from the two methods are in reasonable agreement and the simple mean of the two values gives the recommended rate constant at 298 K, k = (5.7 + or - 2.0) x 10 to the -11th cu cm/s. This represents the first determination of this rate constant and it is consistent with a previously derived lower limit based on SO2 formation. Comparison is made with other radical-radical reactions involving SO or BrO. The reaction SO + BrO yields SO2 + Br is of interest for models of the upper atmosphere of the earth and provides a potential coupling between atmospheric sulfur and bromine chemistry.

  9. Brain MR image segmentation using NAMS in pseudo-color.

    PubMed

    Li, Hua; Chen, Chuanbo; Fang, Shaohong; Zhao, Shengrong

    2017-12-01

    Image segmentation plays a crucial role in various biomedical applications. In general, the segmentation of brain Magnetic Resonance (MR) images is mainly used to represent the image with several homogeneous regions instead of pixels for surgical analyzing and planning. This paper proposes a new approach for segmenting MR brain images by using pseudo-color based segmentation with Non-symmetry and Anti-packing Model with Squares (NAMS). First of all, the NAMS model is presented. The model can represent the image with sub-patterns to keep the image content and largely reduce the data redundancy. Second, the key idea is proposed that convert the original gray-scale brain MR image into a pseudo-colored image and then segment the pseudo-colored image with NAMS model. The pseudo-colored image can enhance the color contrast in different tissues in brain MR images, which can improve the precision of segmentation as well as directly visual perceptional distinction. Experimental results indicate that compared with other brain MR image segmentation methods, the proposed NAMS based pseudo-color segmentation method performs more excellent in not only segmenting precisely but also saving storage.

  10. Adsorption of phenolic compound by aged-refuse.

    PubMed

    Xiaoli, Chai; Youcai, Zhao

    2006-09-01

    The adsorption of phenol, 2-chlorophenol, 4-chlorophenol and 2,4-dichlorophenol by aged-refuse has been studied. Adsorption isotherms have been determined for phenol, 2-chlorophenol, 4-chlorophenol and 2,4-dichlorophenol and the data fits well to the Freundlich equation. The chlorinated phenols are absorbed more strongly than the phenol and the adsorption capacity has an oblivious relationship with the numbers and the position of chlorine subsistent. The experiment data suggests that both the partition function and the chemical adsorption involve in the adsorption process. Pseudo-first-order and pseudo-second-order model were applied to investigate the kinetics of the adsorption and the results show that it fit the pseudo-second-order model. More than one step involves in the adsorption process and the overall rate of the adsorption process appears to be controlled by the chemical reaction. The thermodynamic analysis indicates that the adsorption is spontaneous and endothermic.

  11. Pseudo-radar algorithms with two extremely wet months of disdrometer data in the Paris area

    NASA Astrophysics Data System (ADS)

    Gires, A.; Tchiguirinskaia, I.; Schertzer, D.

    2018-05-01

    Disdrometer data collected during the two extremely wet months of May and June 2016 at the Ecole des Ponts ParisTech are used to get insights on radar algorithms. The rain rate and pseudo-radar quantities (horizontal and vertical reflectivity, specific differential phase shift) are all estimated over several durations with the help of drop size distributions (DSD) collected at 30 s time steps. The pseudo-radar quantities are defined with simplifying hypotheses, in particular on the DSD homogeneity. First it appears that the parameters of the standard radar relations Zh - R, R - Kdp and R - Zh - Zdr for these pseudo-radar quantities exhibit strong variability between events and even within an event. Second an innovative methodology that relies on checking the ability of a given algorithm to reproduce the good scale invariant multifractal behaviour (on scales 30 s - few h) observed on rainfall time series is implemented. In this framework, the classical hybrid model (Zh - R for low rain rates and R - Kdp for great ones) performs best, as well as the local estimates of the radar relations' parameters. However, we emphasise that due to the hypotheses on which they rely these observations cannot be straightforwardly extended to real radar quantities.

  12. Kinetic modeling of electro-Fenton reaction in aqueous solution.

    PubMed

    Liu, H; Li, X Z; Leng, Y J; Wang, C

    2007-03-01

    To well describe the electro-Fenton (E-Fenton) reaction in aqueous solution, a new kinetic model was established according to the generally accepted mechanism of E-Fenton reaction. The model has special consideration on the rates of hydrogen peroxide (H(2)O(2)) generation and consumption in the reaction solution. The model also embraces three key operating factors affecting the organic degradation in the E-Fenton reaction, including current density, dissolved oxygen concentration and initial ferrous ion concentration. This analytical model was then validated by the experiments of phenol degradation in aqueous solution. The experiments demonstrated that the H(2)O(2) gradually built up with time and eventually approached its maximum value in the reaction solution. The experiments also showed that phenol was degraded at a slow rate at the early stage of the reaction, a faster rate during the middle stage, and a slow rate again at the final stage. It was confirmed in all experiments that the curves of phenol degradation (concentration vs. time) appeared to be an inverted "S" shape. The experimental data were fitted using both the normal first-order model and our new model, respectively. The goodness of fittings demonstrated that the new model could better fit the experimental data than the first-order model appreciably, which indicates that this analytical model can better describe the kinetics of the E-Fenton reaction mathematically and also chemically.

  13. Analysis of heart rate and oxygen uptake kinetics studied by two different pseudo-random binary sequence work rate amplitudes.

    PubMed

    Drescher, U; Koschate, J; Schiffer, T; Schneider, S; Hoffmann, U

    2017-06-01

    The aim of the study was to compare the kinetics responses of heart rate (HR), pulmonary (V˙O 2 pulm) and predicted muscular (V˙O 2 musc) oxygen uptake between two different pseudo-random binary sequence (PRBS) work rate (WR) amplitudes both below anaerobic threshold. Eight healthy individuals performed two PRBS WR protocols implying changes between 30W and 80W and between 30W and 110W. HR and V˙O 2 pulm were measured beat-to-beat and breath-by-breath, respectively. V˙O 2 musc was estimated applying the approach of Hoffmann et al. (Eur J Appl Physiol 113: 1745-1754, 2013) considering a circulatory model for venous return and cross-correlation functions (CCF) for the kinetics analysis. HR and V˙O 2 musc kinetics seem to be independent of WR intensity (p>0.05). V˙O 2 pulm kinetics show prominent differences in the lag of the CCF maximum (39±9s; 31±4s; p<0.05). A mean difference of 14W between the PRBS WR amplitudes impacts venous return significantly, while HR and V˙O 2 musc kinetics remain unchanged. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. The Effects of Response Option Order and Question Order on Self-Rated Health

    PubMed Central

    Garbarski, Dana; Schaeffer, Nora Cate; Dykema, Jennifer

    2014-01-01

    Objectives This study aims to assess the impact of response option order and question order on the distribution of responses to the self-rated health (SRH) question and the relationship between SRH and other health-related measures. Methods In an online panel survey, we implement a 2-by-2 between-subjects factorial experiment, manipulating the following levels of each factor: 1) order of response options (“excellent” to “poor” versus “poor” to “excellent”); and 2) order of SRH item (either preceding or following the administration of domain-specific health items). We use chi-square difference tests, polychoric correlations, and differences in means and proportions to evaluate the effect of the experimental treatments on SRH responses and the relationship between SRH and other health measures. Results Mean SRH is higher (better health) and proportion in “fair” or “poor” health lower when response options are ordered from “excellent” to “poor” and SRH is presented first compared to other experimental treatments. Presenting SRH after domain-specific health items increases its correlation with these items, particularly when response options are ordered “excellent” to “poor.” Among participants with the highest level of current health risks, SRH is worse when it is presented last versus first. Conclusion While more research on the presentation of SRH is needed across a range of surveys, we suggest that ordering response options from “poor” to “excellent” might reduce positive clustering. Given the question order effects found here, we suggest presenting SRH before domain-specific health items in order to increase inter-survey comparability, as domain-specific health items will vary across surveys. PMID:25409654

  15. The reaction mechanism of methyl-coenzyme M reductase: How an enzyme enforces strict binding order

    DOE PAGES

    Wongnate, Thanyaporn; Ragsdale, Stephen W.

    2015-02-17

    Methyl-coenzyme M reductase (MCR) is a nickel tetrahydrocorphinoid (coenzyme F430) containing enzyme involved in the biological synthesis and anaerobic oxidation of methane. MCR catalyzes the conversion of methyl-2-mercaptoethanesulfonate (methyl-SCoM) and N-7-mercaptoheptanoylthreonine phosphate (CoB 7SH) to CH 4 and the mixed disulfide CoBS-SCoM. In this study, the reaction of MCR from Methanothermobacter marburgensis, with its native substrates was investigated using static binding, chemical quench, and stopped-flow techniques. Rate constants were measured for each step in this strictly ordered ternary complex catalytic mechanism. Surprisingly, in the absence of the other substrate, MCR can bind either substrate; however, only one binary complex (MCR·methyl-SCoM)more » is productive whereas the other (MCR·CoB 7SH) is inhibitory. Moreover, the kinetic data demonstrate that binding of methyl-SCoM to the inhibitory MCR·CoB 7SH complex is highly disfavored ( Kd = 56 mM). However, binding of CoB 7SH to the productive MCR·methyl-SCoM complex to form the active ternary complex (CoB 7SH·MCR(Ni I)·CH 3SCoM) is highly favored ( Kd = 79 μM). Only then can the chemical reaction occur ( kobs = 20 s -1 at 25 °C), leading to rapid formation and dissociation of CH 4 leaving the binary product complex (MCR(Ni II)·CoB 7S -·SCoM), which undergoes electron transfer to regenerate Ni(I) and the final product CoBS-SCoM. In conclusion, this first rapid kinetics study of MCR with its natural substrates describes how an enzyme can enforce a strictly ordered ternary complex mechanism and serves as a template for identification of the reaction intermediates.« less

  16. Adsorption and photocatalytic degradation of 2-CP in wastewater onto CS/CoFe₂O ₄ nanocomposite synthesized using gamma radiation.

    PubMed

    Taleb, Manal F Abou

    2014-12-19

    Photocatalytic degradation of 2-chlorophenol (2-CP) was studied using the photocatalyst chitosane/CoFe2O4 nanocomposite (CS/CF) under visible light. CS/CF nanocomposites were synthesized via gamma irradiation cross-linking method with the aid of sonication. Physical characteristics of CS/CF were studied using infrared spectrophotometer (IR), scanning electron microscopy (SEM), transmission electron microscope (TEM) and ultraviolet-visible (UV-vis) spectroscopy. Their photocatalytic activity was tested for the degradation of 2-CP in aqueous medium using sunlight. The effect of different parameters such as catalyst concentration, 2-CP concentration and reaction pH on degradation was also examined. It was verified that the 2-CP degradation rate fits a pseudo-first-order kinetics for initial 2-CP concentrations between 25 and 100mg/l, at 30°C. The degradation kinetics fit well Langmuir-Hinshelwood rate law. The degradation of (2-CP) follows pseudo-first-order kinetics. Results showed that after the catalyst had been used 5 times repeatedly, the degradation rate was still above 80%. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Inference of reaction rate parameters based on summary statistics from experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khalil, Mohammad; Chowdhary, Kamaljit Singh; Safta, Cosmin

    Here, we present the results of an application of Bayesian inference and maximum entropy methods for the estimation of the joint probability density for the Arrhenius rate para meters of the rate coefficient of the H 2/O 2-mechanism chain branching reaction H + O 2 → OH + O. Available published data is in the form of summary statistics in terms of nominal values and error bars of the rate coefficient of this reaction at a number of temperature values obtained from shock-tube experiments. Our approach relies on generating data, in this case OH concentration profiles, consistent with the givenmore » summary statistics, using Approximate Bayesian Computation methods and a Markov Chain Monte Carlo procedure. The approach permits the forward propagation of parametric uncertainty through the computational model in a manner that is consistent with the published statistics. A consensus joint posterior on the parameters is obtained by pooling the posterior parameter densities given each consistent data set. To expedite this process, we construct efficient surrogates for the OH concentration using a combination of Pad'e and polynomial approximants. These surrogate models adequately represent forward model observables and their dependence on input parameters and are computationally efficient to allow their use in the Bayesian inference procedure. We also utilize Gauss-Hermite quadrature with Gaussian proposal probability density functions for moment computation resulting in orders of magnitude speedup in data likelihood evaluation. Despite the strong non-linearity in the model, the consistent data sets all res ult in nearly Gaussian conditional parameter probability density functions. The technique also accounts for nuisance parameters in the form of Arrhenius parameters of other rate coefficients with prescribed uncertainty. The resulting pooled parameter probability density function is propagated through stoichiometric hydrogen-air auto-ignition computations to

  18. Inference of reaction rate parameters based on summary statistics from experiments

    DOE PAGES

    Khalil, Mohammad; Chowdhary, Kamaljit Singh; Safta, Cosmin; ...

    2016-10-15

    Here, we present the results of an application of Bayesian inference and maximum entropy methods for the estimation of the joint probability density for the Arrhenius rate para meters of the rate coefficient of the H 2/O 2-mechanism chain branching reaction H + O 2 → OH + O. Available published data is in the form of summary statistics in terms of nominal values and error bars of the rate coefficient of this reaction at a number of temperature values obtained from shock-tube experiments. Our approach relies on generating data, in this case OH concentration profiles, consistent with the givenmore » summary statistics, using Approximate Bayesian Computation methods and a Markov Chain Monte Carlo procedure. The approach permits the forward propagation of parametric uncertainty through the computational model in a manner that is consistent with the published statistics. A consensus joint posterior on the parameters is obtained by pooling the posterior parameter densities given each consistent data set. To expedite this process, we construct efficient surrogates for the OH concentration using a combination of Pad'e and polynomial approximants. These surrogate models adequately represent forward model observables and their dependence on input parameters and are computationally efficient to allow their use in the Bayesian inference procedure. We also utilize Gauss-Hermite quadrature with Gaussian proposal probability density functions for moment computation resulting in orders of magnitude speedup in data likelihood evaluation. Despite the strong non-linearity in the model, the consistent data sets all res ult in nearly Gaussian conditional parameter probability density functions. The technique also accounts for nuisance parameters in the form of Arrhenius parameters of other rate coefficients with prescribed uncertainty. The resulting pooled parameter probability density function is propagated through stoichiometric hydrogen-air auto-ignition computations to

  19. Rate constant for reaction of atomic hydrogen with germane

    NASA Technical Reports Server (NTRS)

    Nava, David F.; Payne, Walter A.; Marston, George; Stief, Louis J.

    1990-01-01

    Due to the interest in the chemistry of germane in the atmospheres of Jupiter and Saturn, and because previously reported kinetic reaction rate studies at 298 K gave results differing by a factor of 200, laboratory measurements were performed to determine the reaction rate constant for H + GeH4. Results of the study at 298 K, obtained via the direct technique of flash photolysis-resonance fluorescence, yield the reaction rate constant, k = (4.08 + or - 0.22) x 10(exp -12) cu cm/s.

  20. Application of the Initial Rate Method in Anaerobic Digestion of Kitchen Waste

    PubMed Central

    Lang, Xianming; Liu, Yiwei; Li, Rundong; Yu, Meiling; Shao, Lijie; Wang, Xiaoming

    2017-01-01

    This article proposes a methane production approach through sequenced anaerobic digestion of kitchen waste, determines the hydrolysis constants and reaction orders at both low total solid (TS) concentrations and high TS concentrations using the initial rate method, and examines the population growth model and first-order hydrolysis model. The findings indicate that the first-order hydrolysis model better reflects the kinetic process of gas production. During the experiment, all the influential factors of anaerobic fermentation retained their optimal values. The hydrolysis constants and reaction orders at low TS concentrations are then employed to demonstrate that the first-order gas production model can describe the kinetics of the gas production process. At low TS concentrations, the hydrolysis constants and reaction orders demonstrated opposite trends, with both stabilizing after 24 days at 0.99 and 1.1252, respectively. At high TS concentrations, the hydrolysis constants and the reaction orders stabilized at 0.98 (after 18 days) and 0.3507 (after 14 days), respectively. Given sufficient reaction time, the hydrolysis involved in anaerobic fermentation of kitchen waste can be regarded as a first-order reaction in terms of reaction kinetics. This study serves as a good reference for future studies regarding the kinetics of anaerobic digestion of kitchen waste. PMID:28546964

  1. Application of the Initial Rate Method in Anaerobic Digestion of Kitchen Waste.

    PubMed

    Feng, Lei; Gao, Yuan; Kou, Wei; Lang, Xianming; Liu, Yiwei; Li, Rundong; Yu, Meiling; Shao, Lijie; Wang, Xiaoming

    2017-01-01

    This article proposes a methane production approach through sequenced anaerobic digestion of kitchen waste, determines the hydrolysis constants and reaction orders at both low total solid (TS) concentrations and high TS concentrations using the initial rate method, and examines the population growth model and first-order hydrolysis model. The findings indicate that the first-order hydrolysis model better reflects the kinetic process of gas production. During the experiment, all the influential factors of anaerobic fermentation retained their optimal values. The hydrolysis constants and reaction orders at low TS concentrations are then employed to demonstrate that the first-order gas production model can describe the kinetics of the gas production process. At low TS concentrations, the hydrolysis constants and reaction orders demonstrated opposite trends, with both stabilizing after 24 days at 0.99 and 1.1252, respectively. At high TS concentrations, the hydrolysis constants and the reaction orders stabilized at 0.98 (after 18 days) and 0.3507 (after 14 days), respectively. Given sufficient reaction time, the hydrolysis involved in anaerobic fermentation of kitchen waste can be regarded as a first-order reaction in terms of reaction kinetics. This study serves as a good reference for future studies regarding the kinetics of anaerobic digestion of kitchen waste.

  2. OH + (E)- and (Z)-1-chloro-3,3,3-trifluoropropene-1 (CF3CH═CHCl) reaction rate coefficients: stereoisomer-dependent reactivity.

    PubMed

    Gierczak, Tomasz; Baasandorj, M; Burkholder, James B

    2014-11-20

    Rate coefficients for the gas-phase reaction of the OH radical with (E)- and (Z)-CF3CH═CHCl (1-chloro-3,3,3-trifluoropropene-1, HFO-1233zd) (k1(T) and k2(T), respectively) were measured under pseudo-first-order conditions in OH over the temperature range 213-376 K. OH was produced by pulsed laser photolysis, and its temporal profile was measured using laser-induced fluorescence. The obtained rate coefficients were independent of pressure between 25 and 100 Torr (He, N2) with k1(296 K) = (3.76 ± 0.35) × 10(-13) cm(3) molecule(-1) s(-1) and k2(296 K) = (9.46 ± 0.85) × 10(-13) cm(3) molecule(-1) s(-1) (quoted uncertainties are 2σ and include estimated systematic errors). k2(T) showed a weak non-Arrhenius behavior over this temperature range. The (E)- and (Z)- stereoisomer rate coefficients were found to have opposite temperature dependencies that are well represented by k1(T) = (1.14 ± 0.15) × 10(-12) exp[(-330 ± 10)/T] cm(3) molecule(-1) s(-1) and k2(T) = (7.22 ± 0.65) × 10(-19) × T(2) × exp[(800 ± 20)/T] cm(3) molecule(-1) s(-1). The present results are compared with a previous room temperature relative rate coefficient study of k1, and an explanation for the discrepancy is presented. CF3CHO, HC(O)Cl, and CF3CClO, were observed as stable end-products following the OH radical initiated degradation of (E)- and (Z)-CF3CH═CHCl in the presence of O2. In addition, chemically activated isomerization was also observed. Atmospheric local lifetimes of (E)- and (Z)-CF3CH═CHCl, due to OH reactive loss, were estimated to be ∼34 and ∼11 days, respectively. Infrared absorption spectra measured in this work were used to estimate radiative efficiencies and well-mixed global warming potentials of ∼10 and ∼3 for (E)- and (Z)-CF3CH═CHCl, respectively, on the 100-year time horizon.

  3. A review of reaction rates in high temperature air

    NASA Technical Reports Server (NTRS)

    Park, Chul

    1989-01-01

    The existing experimental data on the rate coefficients for the chemical reactions in nonequilibrium high temperature air are reviewed and collated, and a selected set of such values is recommended for use in hypersonic flow calculations. For the reactions of neutral species, the recommended values are chosen from the experimental data that existed mostly prior to 1970, and are slightly different from those used previously. For the reactions involving ions, the recommended rate coefficients are newly chosen from the experimental data obtained more recently. The reacting environment is assumed to lack thermal equilibrium, and the rate coefficients are expressed as a function of the controlling temperature, incorporating the recent multitemperature reaction concept.

  4. Oxidation kinetics of polycyclic aromatic hydrocarbons by permanganate.

    PubMed

    Forsey, Steven P; Thomson, Neil R; Barker, James F

    2010-04-01

    The reactivity of permanganate towards polycyclic aromatics hydrocarbons (PAHs) is well known but little kinetic information is available. This study investigated the oxidation kinetics of a selected group of coal tar creosote compounds and alkylbenzenes in water using permanganate, and the correlation between compound reactivity and physical/chemical properties. The oxidation of naphthalene, phenanthrene, chrysene, 1-methylnaphthalene, 2-methylnaphthalene, acenaphthene, fluorene, carbazole isopropylbenzene, ethylbenzene and methylbenzene closely followed pseudo first-order reaction kinetics. The oxidation of pyrene was initially very rapid and did not follow pseudo first-order kinetics at early times. Fluoranthene was only partially oxidized and the oxidation of anthracene was too fast to be captured. Biphenyl, dibenzofuran, benzene and tert-butylbenzene were non-reactive under the study conditions. The oxidation rate was shown to increase with increasing number of polycyclic rings because less energy is required to overcome the aromatic character of a polycyclic ring than is required for benzene. Thus the rate of oxidation increased in the series naphthalenerate of side chain reactivity is controlled by the C-H bond strength. For the alkyl substituted benzenes an excellent correlation was observed between the reaction rate coefficients and bond dissociation energies, but for the substituted PAHs the relationship was poor. A trend was found between the reaction rate coefficients and the calculated heats of complexation indicating that significant ring oxidation occurred in addition to side chain oxidation. Clar's aromatic sextet theory was used to predict the relative stability of arenes towards ring oxidation by permanganate. 2010 Elsevier Ltd. All rights reserved.

  5. High-resolution mineralogical characterization and biogeochemical modeling of uranium reaction pathways at the FRC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen Zhu

    2006-06-15

    High-Resolution Mineralogical Characterization and Biogeochemical Modeling of Uranium Reduction Pathways at the Oak Ridge Field-Research Center (FRC) Chen Zhu, Indiana University, David R. Veblen, Johns Hopkins University We have successfully completed a proof-of-concept, one-year grant on a three-year proposal from the former NABIR program, and here we seek additional two-year funding to complete and publish the research. Using a state-of-the-art 300-kV, atomic resolution, Field Emission Gun Transmission Electron Microscope (TEM), we have successfully identified three categories of mineral hosts for uranium in contaminated soils: (1) iron oxides; (2) mixed manganese-iron oxides; and (3) uranium phosphates. Method development using parallel electronmore » energy loss spectroscopy (EELS) associated with the TEM shows great promise for characterizing the valence states of immobilized U during bioremediation. We have also collected 27 groundwater samples from two push-pull field biostimulation tests, which form two time series from zero to approximately 600 hours. The temporal evolution in major cations, anions, trace elements, and the stable isotopes 34S, 18O in sulfate, 15N in nitrate, and 13C in dissolved inorganic carbon (DIC) clearly show that biostimulation resulted in reduction of nitrate, Mn(IV), Fe(III), U(VI), sulfate, and Tc(VII), and these reduction reactions were intimately coupled with a complex network of inorganic reactions evident from alkalinity, pH, Na, K, Mg, and Ca concentrations. From these temporal trends, apparent zero order rates were regressed. However, our extensive suite of chemical and isotopic data sets, perhaps the first and only comprehensive data set available at the FRC, show that the derived rates from these field biostimulation experiments are composite and lump-sum rates. There were several reactions that were occurring at the same time but were masked by these pseudo-zero order rates. A reaction-path model comprising a total of

  6. Chemical Dosing and First-Order Kinetics

    ERIC Educational Resources Information Center

    Hladky, Paul W.

    2011-01-01

    College students encounter a variety of first-order phenomena in their mathematics and science courses. Introductory chemistry textbooks that discuss first-order processes, usually in conjunction with chemical kinetics or radioactive decay, stop at single, discrete dose events. Although single-dose situations are important, multiple-dose events,…

  7. Investigation of Ag-TiO2 nanostructures photocatalytic properties prepared by modified dip coating method

    NASA Astrophysics Data System (ADS)

    AlArfaj, Esam

    2016-05-01

    In this article, titanium dioxide and silver nanostructures were deposited on glass substrates using modified sol-gel methods and dip-coating technique. The films were characterised chemically and physically using different techniques (TLC, UV-Vis and XRD) and tested for environmental applications regarding degradation of aromatic hydrocarbons. The photocatalytic activity of the TiO2 nanostructures is tested with different small concentrations of phenol in water and reaction mechanisms discussed. Considerable enhancement is observed in the photodegradation activity of Ag-modified (3 wt.%) TiO2 compared to unmodified TiO2 nanostructures for phenol concentrations within the pseudo-first-order Langmuir-Hinshelwood (LH) model for reaction kinetics. The pseudo-first-order global degradation rate constant increased from <0.005 min-1 for TiO2 to 0.013 min-1 for 3 mol% Ag-modified TiO2. The enhancement is attributed to the incorporation of Ag which promotes the generation of reactive oxygen species and increases the carrier recombination life-time. In addition, Ag has been observed to extend the absorption to the visible region by its surface plasmon resonances and to suppress the anatase-rutile phase transformation. Moreover, TiO2 grain size prepared was found to be 10 nm which maximises the active surface area. For phenol initial concentrations as low as 0.0002 M, saturation trend in the degradation process occurred at 0.00014 M and the reaction rate can be fitted with half-order LH kinetics.

  8. Time-Resolved O3 Chemical Chain Reaction Kinetics Via High-Resolution IR Laser Absorption Methods

    NASA Technical Reports Server (NTRS)

    Kulcke, Axel; Blackmon, Brad; Chapman, William B.; Kim, In Koo; Nesbitt, David J.

    1998-01-01

    Excimer laser photolysis in combination with time-resolved IR laser absorption detection of OH radicals has been used to study O3/OH(v = 0)/HO2 chain reaction kinetics at 298 K, (i.e.,(k(sub 1) is OH + 03 yields H02 + 02 and (k(sub 2) is H02 + 03 yields OH + 202). From time-resolved detection of OH radicals with high-resolution near IR laser absorption methods, the chain induction kinetics have been measured at up to an order of magnitude higher ozone concentrations ([03] less than or equal to 10(exp 17) molecules/cu cm) than accessible in previous studies. This greater dynamic range permits the full evolution of the chain induction, propagation, and termination process to be temporally isolated and measured in real time. An exact solution for time-dependent OH evolution under pseudo- first-order chain reaction conditions is presented, which correctly predicts new kinetic signatures not included in previous OH + 03 kinetic analyses. Specifically, the solutions predict an initial exponential loss (chain "induction") of the OH radical to a steady-state level ([OH](sub ss)), with this fast initial decay determined by the sum of both chain rate constants, k(sub ind) = k(sub 1) + k(sub 2). By monitoring the chain induction feature, this sum of the rate constants is determined to be k(sub ind) = 8.4(8) x 10(exp -14) cu cm/molecule/s for room temperature reagents. This is significantly higher than the values currently recommended for use in atmospheric models, but in excellent agreement with previous results from Ravishankara et al.

  9. A Pseudo-Vertical Equilibrium Model for Slow Gravity Drainage Dynamics

    NASA Astrophysics Data System (ADS)

    Becker, Beatrix; Guo, Bo; Bandilla, Karl; Celia, Michael A.; Flemisch, Bernd; Helmig, Rainer

    2017-12-01

    Vertical equilibrium (VE) models are computationally efficient and have been widely used for modeling fluid migration in the subsurface. However, they rely on the assumption of instant gravity segregation of the two fluid phases which may not be valid especially for systems that have very slow drainage at low wetting phase saturations. In these cases, the time scale for the wetting phase to reach vertical equilibrium can be several orders of magnitude larger than the time scale of interest, rendering conventional VE models unsuitable. Here we present a pseudo-VE model that relaxes the assumption of instant segregation of the two fluid phases by applying a pseudo-residual saturation inside the plume of the injected fluid that declines over time due to slow vertical drainage. This pseudo-VE model is cast in a multiscale framework for vertically integrated models with the vertical drainage solved as a fine-scale problem. Two types of fine-scale models are developed for the vertical drainage, which lead to two pseudo-VE models. Comparisons with a conventional VE model and a full multidimensional model show that the pseudo-VE models have much wider applicability than the conventional VE model while maintaining the computational benefit of the conventional VE model.

  10. Toward a reaction rate model of condensed-phase RDX decomposition under high temperatures

    NASA Astrophysics Data System (ADS)

    Schweigert, Igor

    2015-06-01

    Shock ignition of energetic molecular solids is driven by microstructural heterogeneities, at which even moderate stresses can result in sufficiently high temperatures to initiate material decomposition and chemical energy release. Mesoscale modeling of these ``hot spots'' requires a reaction rate model that describes the energy release with a sub-microsecond resolution and under a wide range of temperatures. No such model is available even for well-studied energetic materials such as RDX. In this presentation, I will describe an ongoing effort to develop a reaction rate model of condensed-phase RDX decomposition under high temperatures using first-principles molecular dynamics, transition-state theory, and reaction network analysis. This work was supported by the Naval Research Laboratory, by the Office of Naval Research, and by the DoD High Performance Computing Modernization Program Software Application Institute for Multiscale Reactive Modeling of Insensitive Munitions.

  11. Kinetic intermediates of unfolding of dimeric prostatic phosphatase.

    PubMed

    Kuciel, Radosława; Mazurkiewicz, Aleksandra; Dudzik, Paulina

    2007-01-01

    Kinetics of guanidine hydrochloride (GdnHCl)-induced unfolding of human prostatic acid phosphatase (hPAP), a homodimer of 50 kDa subunit molecular mass was investigated with enzyme activity measurements, capacity for binding an external hydrophobic probe, 1-anilinonaphtalene-8-sulfonate (ANS), accessibility of thiols to reaction with 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) and 2-(4'-maleimidylanilino)naphthalene-6-sulfonate (MIANS) and ability to bind Congo red dye. Kinetic analysis was performed to describe a possible mechanism of hPAP unfolding and dissociation that leads to generation of an inactive monomeric intermediate that resembles, in solution of 1.25 M GdnHCl pH 7.5, at 20 degrees C, in equilibrium, a molten globule state. The reaction of hPAP inactivation in 1.25 M GdnHCl followed first order kinetics with the reaction rate constant 0.0715 +/- 0.0024 min(-1) . The rate constants of similar range were found for the pseudo-first-order reactions of ANS and Congo red binding: 0.0366 +/- 0.0018 min(-1) and 0.0409 +/- 0.0052 min(-1), respectively. Free thiol groups, inaccessible in the native protein, were gradually becoming, with the progress of unfolding, exposed for the reactions with DTNB and MIANS, with the pseudo-first-order reaction rate constants 0.327 +/- 0.014 min(-1) and 0.216 +/- 0.010 min(-1), respectively. The data indicated that in the course of hPAP denaturation exposure of thiol groups to reagents took place faster than the enzyme inactivation and exposure of the protein hydrophobic surface. This suggested the existence of a catalytically active, partially unfolded, but probably dimeric kinetic intermediate in the process of hPAP unfolding. On the other hand, the protein inactivation was accompanied by exposure of a hydrophobic, ANS-binding surface, and with an increased capacity to bind Congo red. Together with previous studies these results suggest that the stability of the catalytically active conformation of the enzyme depends mainly on

  12. Determination of astrophysical 7Be(p, γ)8B reaction rates from the 7Li(d, p)8Li reaction

    NASA Astrophysics Data System (ADS)

    Du, XianChao; Guo, Bing; Li, ZhiHong; Pang, DanYang; Li, ErTao; Liu, WeiPing

    2015-06-01

    The 7Be(p, γ)8B reaction plays a central role not only in the evaluation of solar neutrino fluxes but also in the evolution of the first stars. Study of this reaction requires the asymptotic normalization coefficient (ANC) for the virtual decay 8B g.s. → 7Be + p. By using the charge symmetry relation, we obtain this proton ANC with the single neutron ANC of 8Li g.s. →7Li + n, which is determined with the distorted wave Born approximation (DWBA) and adiabatic distorted wave approximation (ADWA) analysis of the 7Li(d, p)8Li angular distribution. The astrophysical S-factors and reaction rates of the direct capture process in the 7Be(p, γ)8B reaction are further deduced at energies of astrophysical relevance. The astrophysical S-factor at zero energy for direct capture, S 17(0), is derived to be (19.9 ± 3.5) eV b in good agreement with the most recent recommended value. The contributions of the 1+ and 3+ resonances to the S-factor and reaction rate are also evaluated. The present result demonstrates that the direct capture dominates the 7Be(p, γ)8B reaction in the whole temperature range. This work provides an independent examination to the current results of the 7Be(p, γ)8B reaction.

  13. A Pseudo Fractional-N Clock Generator with 50% Duty Cycle Output

    NASA Astrophysics Data System (ADS)

    Yang, Wei-Bin; Lo, Yu-Lung; Chao, Ting-Sheng

    A proposed pseudo fractional-N clock generator with 50% duty cycle output is presented by using the pseudo fractional-N controller for SoC chips and the dynamic frequency scaling applications. The different clock frequencies can be generated with the particular phase combinations of a four-stage voltage-controlled oscillator (VCO). It has been fabricated in a 0.13µm CMOS technology, and work with a supply voltage of 1.2V. According to measured results, the frequency range of the proposed pseudo fractional-N clock generator is from 71.4MHz to 1GHz and the peak-to-peak jitter is less than 5% of the output period. Duty cycle error rates of the output clock frequencies are from 0.8% to 2% and the measured power dissipation of the pseudo fractional-N controller is 146µW at 304MHz.

  14. Reaction rates of α-tocopheroxyl radicals confined in micelles and in human plasma lipoproteins.

    PubMed

    Vanzani, Paola; Rigo, Adelio; Zennaro, Lucio; Di Paolo, Maria Luisa; Scarpa, Marina; Rossetto, Monica

    2014-08-01

    α-Tocopherol, the main component of vitamin E, traps highly reactive radicals which otherwise might react with lipids present in plasmatic lipoproteins or in cell membranes. The α-tocopheroxyl radicals generated by this process have also a pro-oxidant action which is contrasted by their reaction with ascorbate or by bimolecular self-reaction (dismutation). The kinetics of this bimolecular self-reaction were explored in solution such as ethanol, and in heterogeneous systems such as deoxycholic acid micelles and in human plasma. According to ESR measurements, the kinetic rate constant (2k(d)) of the bimolecular self-reaction of α-tocopheroxyl radicals in micelles and in human plasma was calculated to be of the order of 10(5) M(-1) s(-1) at 37 °C. This value was obtained considering that the reactive radicals are confined into the micellar pseudophase and is one to two orders of magnitude higher than the value we found in homogeneous phase. The physiological significance of this high value is discussed considering the competition between bimolecular self-reaction and the α-tocopheroxyl radical recycling by ascorbate. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. BAYESIAN ESTIMATION OF THERMONUCLEAR REACTION RATES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iliadis, C.; Anderson, K. S.; Coc, A.

    The problem of estimating non-resonant astrophysical S -factors and thermonuclear reaction rates, based on measured nuclear cross sections, is of major interest for nuclear energy generation, neutrino physics, and element synthesis. Many different methods have been applied to this problem in the past, almost all of them based on traditional statistics. Bayesian methods, on the other hand, are now in widespread use in the physical sciences. In astronomy, for example, Bayesian statistics is applied to the observation of extrasolar planets, gravitational waves, and Type Ia supernovae. However, nuclear physics, in particular, has been slow to adopt Bayesian methods. We presentmore » astrophysical S -factors and reaction rates based on Bayesian statistics. We develop a framework that incorporates robust parameter estimation, systematic effects, and non-Gaussian uncertainties in a consistent manner. The method is applied to the reactions d(p, γ ){sup 3}He, {sup 3}He({sup 3}He,2p){sup 4}He, and {sup 3}He( α , γ ){sup 7}Be, important for deuterium burning, solar neutrinos, and Big Bang nucleosynthesis.« less

  16. Kinetics of azathioprine metabolism in fresh human blood.

    PubMed

    Chrzanowska, M; Hermann, T; Gapińska, M

    1985-01-01

    Azathioprine (AZA) is transformed in the whole fresh human blood in vitro to 6-mercaptopurine (6-MP). The rate of the above reaction was followed as a function of time at 25, 30 and 37 degrees C. Pseudo-first-order rate constants and thermodynamic parameters were calculated. The statistical evaluation of the parameters calculated was provided. Half-life time of 6-MP formation in blood from AZA at e.g. 37 degrees C was equal to 28.9 +/- 2.8 min.

  17. An application of second-order UV-derivative spectrophotometry for study of solvolysis of a novel fluocinolone acetonide ester

    NASA Astrophysics Data System (ADS)

    Markovic, Bojan; Vladimirov, Sote; Cudina, Olivera; Savic, Vladimir; Karljikovic-Rajic, Katarina

    2010-02-01

    A novel topical corticosteroid FA-21-PhP, 2-phenoxypropionate ester of fluocinolone acetonide, has been synthesized in order to investigate the possibility of decreasing systemic side effects. In this study model system for in vitro solvolytic reaction of FA-21-PhP has been analyzed in ethanol/water (90:10, v/v) with excess of sodium hydrogen carbonate. The selected conditions have been used as in vitro model for activation of corticosteroid C-21 ester prodrug. The second-order derivative spectrophotometric method (DS) using zero-crossing technique was developed for monitoring ternary mixture of solvolysis. Fluocinolone acetonide (FA) as a solvolyte was determined in the mixture in the concentration range 0.062-0.312 mM using amplitude 2D 274.96. Experimentally determined LOD value was 0.0295 mM. The accuracy of proposed DS method was confirmed with HPLC referent method. Peak area of parent ester FA-21-PhP was used for solvolysis monitoring to ensure the initial stage of changes. Linear relationship in HPLC assay for parent ester was obtained in the concentration range 0.054-0.54 mM, with experimentally determined LOD value of 0.0041 mM. Investigated solvolytic reaction in the presence of excess of NaHCO 3 proceeded via a pseudo-first-order kinetic with significant correlation coefficients 0.9891 and 0.9997 for DS and HPLC, respectively. The values of solvolysis rate constant calculated according to DS and HPLC methods are in good accordance 0.038 and 0.043 h -1, respectively.

  18. First- and second-order processing in transient stereopsis.

    PubMed

    Edwards, M; Pope, D R; Schor, C M

    2000-01-01

    Large-field stimuli were used to investigate the interaction of first- and second-order pathways in transient-stereo processing. Stimuli consisted of sinewave modulations in either the mean luminance (first-order stimulus) or the contrast (second-order stimulus) of a dynamic-random-dot field. The main results of the present study are that: (1) Depth could be extracted with both the first-order and second-order stimuli; (2) Depth could be extracted from dichoptically mixed first- and second-order stimuli, however, the same stimuli, when presented as a motion sequence, did not result in a motion percept. Based upon these findings we conclude that the transient-stereo system processes both first- and second-order signals, and that these two signals are pooled prior to the extraction of transient depth. This finding of interaction between first- and second-order stereoscopic processing is different from the independence that has been found with the motion system.

  19. Pseudo-polar drive patterns for brain electrical impedance tomography.

    PubMed

    Shi, Xuetao; Dong, Xiuzhen; Shuai, Wanjun; You, Fusheng; Fu, Feng; Liu, Ruigang

    2006-11-01

    Brain electrical impedance tomography (EIT) is a difficult task as brain tissues are enclosed by the skull of high resistance and cerebrospinal fluid (CSF) of low resistance, which makes internal resistivity information more difficult to extract. In order to seek a single source drive pattern that is more suitable for brain EIT, we built a more realistic experimental setting that simulates a head with the resistivity of the scalp, skull, CSF and brain, and compared the performance of adjacent, cross, polar and pseudo-polar drive patterns in terms of the boundary voltage dynamic range, independent measurement number, total boundary voltage changes and anti-noise performance based on it. The results demonstrate that the pseudo-polar drive pattern is optimal in all the aspects except for the dynamic range. The polar and cross drive patterns come next, and the adjacent drive pattern is the worst. Therefore, the pseudo-polar drive pattern should be chosen for brain EIT.

  20. SCL-90-R emotional distress ratings in substance use and impulse control disorders: One-factor, oblique first-order, higher-order, and bi-factor models compared.

    PubMed

    Arrindell, Willem A; Urbán, Róbert; Carrozzino, Danilo; Bech, Per; Demetrovics, Zsolt; Roozen, Hendrik G

    2017-09-01

    To fully understand the dimensionality of an instrument in a certain population, rival bi-factor models should be routinely examined and tested against oblique first-order and higher-order structures. The present study is among the very few studies that have carried out such a comparison in relation to the Symptom Checklist-90-R. In doing so, it utilized a sample comprising 2593 patients with substance use and impulse control disorders. The study also included a test of a one-dimensional model of general psychological distress. Oblique first-order factors were based on the original a priori 9-dimensional model advanced by Derogatis (1977); and on an 8-dimensional model proposed by Arrindell and Ettema (2003)-Agoraphobia, Anxiety, Depression, Somatization, Cognitive-performance deficits, Interpersonal sensitivity and mistrust, Acting-out hostility, and Sleep difficulties. Taking individual symptoms as input, three higher-order models were tested with at the second-order levels either (1) General psychological distress; (2) 'Panic with agoraphobia', 'Depression' and 'Extra-punitive behavior'; or (3) 'Irritable-hostile depression' and 'Panic with agoraphobia'. In line with previous studies, no support was found for the one-factor model. Bi-factor models were found to fit the dataset best relative to the oblique first-order and higher-order models. However, oblique first-order and higher-order factor models also fit the data fairly well in absolute terms. Higher-order solution (2) provided support for R.F. Krueger's empirical model of psychopathology which distinguishes between fear, distress, and externalizing factors (Krueger, 1999). The higher-order model (3), which combines externalizing and distress factors (Irritable-hostile depression), fit the data numerically equally well. Overall, findings were interpreted as supporting the hypothesis that the prevalent forms of symptomatology addressed have both important common and unique features. Proposals were made to

  1. Sorption reaction mechanism of some hazardous radionuclides from mixed waste by impregnated crown ether onto polymeric resin.

    PubMed

    Shehata, F A; Attallah, M F; Borai, E H; Hilal, M A; Abo-Aly, M M

    2010-02-01

    A novel impregnated polymeric resin was practically tested as adsorbent material for removal of some hazardous radionuclides from radioactive liquid waste. The applicability for the treatment of low-level liquid radioactive waste was investigated. The material was prepared by loading 4,4'(5')di-t-butylbenzo 18 crown 6 (DtBB18C6) onto poly(acrylamide-acrylic acid-acrylonitril)-N, N'-methylenediacrylamide (P(AM-AA-AN)-DAM). The removal of (134)Cs, (60)Co, (65)Zn , and ((152+154))Eu onto P(AM-AA-AN)-DAM/DtBB18C6 was investigated using a batch equilibrium technique with respect to the pH, contact time, and temperature. Kinetic models are used to determine the rate of sorption and to investigate the mechanism of sorption process. Five kinetics models, pseudo-first-order, pseudo-second-order, intra-particle diffusion, homogeneous particle diffusion (HPDM), and Elovich models, were used to investigate the sorption process. The obtained results of kinetic models predicted that, pseudo-second-order is applicable; the sorption is controlled by particle diffusion mechanism and the process is chemisorption. The obtained values of thermodynamics parameters, DeltaH degrees , DeltaS degrees , and DeltaG degrees indicated that the endothermic nature, increased randomness at the solid/solution interface and the spontaneous nature of the sorption processes. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  2. Consistent Modeling of GS 1826-24 X-Ray Bursts for Multiple Accretion Rates Demonstrates the Possibility of Constraining rp-process Reaction Rates

    NASA Astrophysics Data System (ADS)

    Meisel, Zach

    2018-06-01

    Type-I X-ray burst light curves encode unique information about the structure of accreting neutron stars and the nuclear reaction rates of the rp-process that powers bursts. Using the first model calculations of hydrogen/helium-burning bursts for a large range of astrophysical conditions performed with the code MESA, this work shows that simultaneous model–observation comparisons for bursts from several accretion rates \\dot{M} are required to remove degeneracies in astrophysical conditions that otherwise reproduce bursts for a single \\dot{M} and that such consistent multi-epoch modeling could possibly limit the 15O(α, γ)19Ne reaction rate. Comparisons to the 1998, 2000, and 2007 bursting epochs of the neutron star GS 1826-24 show that \\dot{M} must be larger than previously inferred and that the shallow heating in this source must be below 0.5 MeV/u, providing a new method to constrain the shallow heating mechanism in the outer layers of accreting neutron stars. Features of the light curve rise are used to demonstrate that a lower limit could likely be placed on the 15O(α, γ) reaction rate, demonstrating the possibility of constraining nuclear reaction rates with X-ray burst light curves.

  3. A description of pseudo-bosons in terms of nilpotent Lie algebras

    NASA Astrophysics Data System (ADS)

    Bagarello, Fabio; Russo, Francesco G.

    2018-02-01

    We show how the one-mode pseudo-bosonic ladder operators provide concrete examples of nilpotent Lie algebras of dimension five. It is the first time that an algebraic-geometric structure of this kind is observed in the context of pseudo-bosonic operators. Indeed we do not find the well known Heisenberg algebras, which are involved in several quantum dynamical systems, but different Lie algebras which may be decomposed into the sum of two abelian Lie algebras in a prescribed way. We introduce the notion of semidirect sum (of Lie algebras) for this scope and find that it describes very well the behavior of pseudo-bosonic operators in many quantum models.

  4. Radiation-reaction force on a small charged body to second order

    NASA Astrophysics Data System (ADS)

    Moxon, Jordan; Flanagan, Éanna

    2018-05-01

    In classical electrodynamics, an accelerating charged body emits radiation and experiences a corresponding radiation-reaction force, or self-force. We extend to higher order in the total charge a previous rigorous derivation of the electromagnetic self-force in flat spacetime by Gralla, Harte, and Wald. The method introduced by Gralla, Harte, and Wald computes the self-force from the Maxwell field equations and conservation of stress-energy in a limit where the charge, size, and mass of the body go to zero, and it does not require regularization of a singular self-field. For our higher-order computation, an adjustment of the definition of the mass of the body is necessary to avoid including self-energy from the electromagnetic field sourced by the body in the distant past. We derive the evolution equations for the mass, spin, and center-of-mass position of the body through second order. We derive, for the first time, the second-order acceleration dependence of the evolution of the spin (self-torque), as well as a mixing between the extended body effects and the acceleration-dependent effects on the overall body motion.

  5. Toward a reaction rate model of condensed-phase RDX decomposition under high temperatures

    NASA Astrophysics Data System (ADS)

    Schweigert, Igor

    2014-03-01

    Shock ignition of energetic molecular solids is driven by microstructural heterogeneities, at which even moderate stresses can result in sufficiently high temperatures to initiate material decomposition and the release of the chemical energy. Mesoscale modeling of these ``hot spots'' requires a chemical reaction rate model that describes the energy release with a sub-microsecond resolution and under a wide range of temperatures. No such model is available even for well-studied energetic materials such as RDX. In this presentation, I will describe an ongoing effort to develop a reaction rate model of condensed-phase RDX decomposition under high temperatures using first-principles molecular dynamics, transition-state theory, and reaction network analysis. This work was supported by the Naval Research Laboratory, by the Office of Naval Research, and by the DOD High Performance Computing Modernization Program Software Application Institute for Multiscale Reactive Modeling of Insensitive Munitions.

  6. Removal of dieldrin from aqueous solution by a novel triolein-embedded composite adsorbent.

    PubMed

    Ru, Jia; Liu, Huijuan; Qu, Jiuhui; Wang, Aimin; Dai, Ruihua

    2007-03-06

    In this study, a novel triolein-embedded activated carbon composite adsorbent (CA-T) was prepared and applied for the adsorption and removal of dieldrin from aqueous systems. Experiments were carried out to investigate the adsorption behavior of dieldrin on CA-T, including adsorption isotherms, adsorption kinetics, the influence of initial concentration, temperature, shaking speed, pH and the addition of humic acid (HA) on adsorption. The adsorption isotherms accorded with Freundlich equation. Three kinetics models, including pseudo-first-order, pseudo-second-order and intraparticle diffusion models, were used to fit the experimental data. By comparing the correlation coefficients, it was found that both pseudo-second-order and intraparticle diffusion models were used to well describe the adsorption of dieldrin on CA-T. The addition of HA had little effect on dieldrin adsorption by CA-T. Results indicated that CA-T appeared to be a promising adsorbent for removing lipophilic dieldrin in trace amount, which was advantageous over pure granular activated carbon (GAC). The adsorption rate increased with increasing shaking speed, initial concentration and temperature, and remained almost unchanged in the pH range of 4-8. Thermodynamic calculations indicated that the adsorption reaction was spontaneous with a high affinity and the adsorption was an endothermic reaction.

  7. Analysis of reaction schemes using maximum rates of constituent steps

    PubMed Central

    Motagamwala, Ali Hussain; Dumesic, James A.

    2016-01-01

    We show that the steady-state kinetics of a chemical reaction can be analyzed analytically in terms of proposed reaction schemes composed of series of steps with stoichiometric numbers equal to unity by calculating the maximum rates of the constituent steps, rmax,i, assuming that all of the remaining steps are quasi-equilibrated. Analytical expressions can be derived in terms of rmax,i to calculate degrees of rate control for each step to determine the extent to which each step controls the rate of the overall stoichiometric reaction. The values of rmax,i can be used to predict the rate of the overall stoichiometric reaction, making it possible to estimate the observed reaction kinetics. This approach can be used for catalytic reactions to identify transition states and adsorbed species that are important in controlling catalyst performance, such that detailed calculations using electronic structure calculations (e.g., density functional theory) can be carried out for these species, whereas more approximate methods (e.g., scaling relations) are used for the remaining species. This approach to assess the feasibility of proposed reaction schemes is exact for reaction schemes where the stoichiometric coefficients of the constituent steps are equal to unity and the most abundant adsorbed species are in quasi-equilibrium with the gas phase and can be used in an approximate manner to probe the performance of more general reaction schemes, followed by more detailed analyses using full microkinetic models to determine the surface coverages by adsorbed species and the degrees of rate control of the elementary steps. PMID:27162366

  8. First-principles theory of cation and intercalation ordering in Li xCoO 2

    NASA Astrophysics Data System (ADS)

    Wolverton, C.; Zunger, Alex

    Several types of cation- and vacancy-ordering are of interest in the Li xCoO 2 battery cathode material since they can have a profound effect on the battery voltage. We present a first-principles theoretical approach which can be used to calculate both cation- and vacancy-ordering patterns at both zero and finite temperatures. This theory also provides quantum-mechanical predictions (i.e., without the use of any experimental input) of battery voltages of both ordered and disordered Li xCoO 2/Li cells from the energetics of the Li intercalation reactions. Our calculations allow us to search the entire configurational space to predict the lowest-energy ground-state structures, search for large voltage cathodes, explore metastable low-energy states, and extend our calculations to finite temperatures, thereby searching for order-disorder transitions and states of partial disorder. We present the first prediction of the stable spinel structure LiCo 2O 4 for the 50% delithiated Li 0.5CoO 2.

  9. Modular rate laws for enzymatic reactions: thermodynamics, elasticities and implementation.

    PubMed

    Liebermeister, Wolfram; Uhlendorf, Jannis; Klipp, Edda

    2010-06-15

    Standard rate laws are a key requisite for systematically turning metabolic networks into kinetic models. They should provide simple, general and biochemically plausible formulae for reaction velocities and reaction elasticities. At the same time, they need to respect thermodynamic relations between the kinetic constants and the metabolic fluxes and concentrations. We present a family of reversible rate laws for reactions with arbitrary stoichiometries and various types of regulation, including mass-action, Michaelis-Menten and uni-uni reversible Hill kinetics as special cases. With a thermodynamically safe parameterization of these rate laws, parameter sets obtained by model fitting, sampling or optimization are guaranteed to lead to consistent chemical equilibrium states. A reformulation using saturation values yields simple formulae for rates and elasticities, which can be easily adjusted to the given stationary flux distributions. Furthermore, this formulation highlights the role of chemical potential differences as thermodynamic driving forces. We compare the modular rate laws to the thermodynamic-kinetic modelling formalism and discuss a simplified rate law in which the reaction rate directly depends on the reaction affinity. For automatic handling of modular rate laws, we propose a standard syntax and semantic annotations for the Systems Biology Markup Language. An online tool for inserting the rate laws into SBML models is freely available at www.semanticsbml.org. Supplementary data are available at Bioinformatics online.

  10. Kinetic rate laws as derived from order parameter theory I: Theoretical concepts

    NASA Astrophysics Data System (ADS)

    Salje, Ekhard

    1988-03-01

    A theoretical concept is outlined, which links the kinetics of structural transformations with thermodynamic theories of structural phase transitions. Starting from Landau theory and Markovian processes, the general rate laws for crystals with long correlation lengths are derived. The rate laws in Ginzburg-Landau theory are 269_2004_Article_BF00311038_TeX2GIFE1.gif 1{text{n }}Δ Q - 1{text{n }}fleft( Q right) ∝ - t/tau {text{ for }}T ≪ T_c {text{ and }}T ≫ T_c and Q 2∝ for T ≈ T c . The physical meaning of the time constant τ and the correction term f( Q) are explained. Fluctuations of the order parameter lead to damping behaviour with explicit dependence on the wavelength of the fluctuation wave and modulation-dependent variations of the lattice strain. Lattice relaxations and activation processes are discussed. Typical rate laws are found to follow 269_2004_Article_BF00311038_TeX2GIFE2.gif begin{gathered} ln Δ Q = rlnΔ t, \\ lnQ/Q + {1\\varepsilon }/{2k_B T}left( {Q^2 - Q_0^2 } right) = {Δ t}/{tau *} \\ which leads for short time intervals to a linear rate law 269_2004_Article_BF00311038_TeX2GIFE3.gif Δ Q ∝ Δ t It is shown that linear terms in the Landau potential are equivalent to a logarithmic decay of the excess entropy Δ S ∝ ln Δ t which is also expected to be the dominant rate law in field-induced pseudo-spin glasses: 269_2004_Article_BF00311038_TeX2GIFE4.gif Δ Q ∝ 1{text{n }}Δ t{text{ and }}1{text{n}}left( {Δ {text{Q}} \\cdot Δ {text{t}}} right) = A{text{ }}Δ t + B Fluctuations lead to spatially heterogeneous distributions of the order parameter. A two phase field is found in this case where the nucleation energy is overcome by fluctuation processes. Random fields, arising, for example, from lattice imperfections, lead also to spacially inhomogeneous material. The dominant microstructure is the lattice modulation mostly in the form of a cross hatched pattern (tweed) but also in the form of incommensurate modulations.

  11. The rate of the reaction between CN and C2H2 at interstellar temperatures.

    PubMed

    Woon, D E; Herbst, E

    1997-03-01

    The rate coefficient for the important interstellar reaction between CN and C2H2 has been calculated as a function of temperature between 10 and 300 K. The potential surface for this reaction has been determined through ab initio quantum chemical techniques; the potential exhibits no barrier in the entrance channel but does show a small exit channel barrier, which lies below the energy of reactants. Phase-space calculations for the reaction dynamics, which take the exit channel barrier into account, show the same unusual temperature dependence as determined by experiment, in which the rate coefficient at first increases as the temperature is reduced below room temperature and then starts to decrease as the temperature drops below 50-100 K. The agreement between theory and experiment provides strong confirmation that the reaction occurs appreciably at cool interstellar temperatures.

  12. Transcriptional dynamics with time-dependent reaction rates

    NASA Astrophysics Data System (ADS)

    Nandi, Shubhendu; Ghosh, Anandamohan

    2015-02-01

    Transcription is the first step in the process of gene regulation that controls cell response to varying environmental conditions. Transcription is a stochastic process, involving synthesis and degradation of mRNAs, that can be modeled as a birth-death process. We consider a generic stochastic model, where the fluctuating environment is encoded in the time-dependent reaction rates. We obtain an exact analytical expression for the mRNA probability distribution and are able to analyze the response for arbitrary time-dependent protocols. Our analytical results and stochastic simulations confirm that the transcriptional machinery primarily act as a low-pass filter. We also show that depending on the system parameters, the mRNA levels in a cell population can show synchronous/asynchronous fluctuations and can deviate from Poisson statistics.

  13. Charting an Alternate Pathway to Reaction Orders and Rate Laws in Introductory Chemistry Courses

    ERIC Educational Resources Information Center

    Rushton, Gregory T.; Criswell, Brett A.; McAllister, Nicole D.; Polizzi, Samuel J.; Moore, Lamesha A.; Pierre, Michelle S.

    2014-01-01

    Reaction kinetics is an axiomatic topic in chemistry that is often addressed as early as the high school course and serves as the foundation for more sophisticated conversations in college-level organic, physical, and biological chemistry courses. Despite the fundamental nature of reaction kinetics, students can struggle with transforming their…

  14. Reduced Order Models for Reactions of Energetic Materials

    NASA Astrophysics Data System (ADS)

    Kober, Edward

    The formulation of reduced order models for the reaction chemistry of energetic materials under high pressures is needed for the development of mesoscale models in the areas of initiation, deflagration and detonation. Phenomenologically, 4-8 step models have been formulated from the analysis of cook-off data by analyzing the temperature rise of heated samples. Reactive molecular dynamics simulations have been used to simulate many of these processes, but reducing the results of those simulations to simple models has not been achieved. Typically, these efforts have focused on identifying molecular species and detailing specific chemical reactions. An alternative approach is presented here that is based on identifying the coordination geometries of each atom in the simulation and tracking classes of reactions by correlated changes in these geometries. Here, every atom and type of reaction is documented for every time step; no information is lost from unsuccessful molecular identification. Principal Component Analysis methods can then be used to map out the effective chemical reaction steps. For HMX and TATB decompositions simulated with ReaxFF, 90% of the data can be explained by 4-6 steps, generating models similar to those from the cook-off analysis. By performing these simulations at a variety of temperatures and pressures, both the activation and reaction energies and volumes can then be extracted.

  15. Absolute rate constants of alkoxyl radical reactions in aqueous solution. [Tert-butyl hydroperoxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erben-Russ, M.; Michel, C.; Bors, W.

    1987-04-23

    The pulse radiolysis technique was used to generate the alkoxyl radical derived from tert-butyl hydroperoxide (/sup t/BuOOH) in aqueous solution. The reactions of this radical with 2,2'-azinobis(3-ethyl-6-benzothiazolinesulfonate) (ABTS) and promethazine were monitored by kinetic spectroscopy. The unimolecular decay rate constant of the tert-butoxyl radical (/sup t/BuO) was determined to be 1.4 x 10/sup 6/ s/sup -1/. On the basis of this value, the rate constants for /sup t/BuO attack on quercetin, crocin, crocetin, ascorbate, isoascorbate, trolox c, glutathione, thymidine, adenosine, guanosine, and unsaturated fatty acids were determined. In addition, the reaction of /sup t/BuO with the polyunsaturated fatty acids (PUFA)more » was observed by directly monitoring the formation of the fatty acid pentadienyl radicals. Interestingly, the attack of /sup t/BuO on PUFA was found to be faster by about one order of magnitude as compared to the same reaction in a nonpolar solvent.« less

  16. Reaction rate for carbon burning in massive stars

    NASA Astrophysics Data System (ADS)

    Jiang, C. L.; Santiago-Gonzalez, D.; Almaraz-Calderon, S.; Rehm, K. E.; Back, B. B.; Auranen, K.; Avila, M. L.; Ayangeakaa, A. D.; Bottoni, S.; Carpenter, M. P.; Dickerson, C.; DiGiovine, B.; Greene, J. P.; Hoffman, C. R.; Janssens, R. V. F.; Kay, B. P.; Kuvin, S. A.; Lauritsen, T.; Pardo, R. C.; Sethi, J.; Seweryniak, D.; Talwar, R.; Ugalde, C.; Zhu, S.; Bourgin, D.; Courtin, S.; Haas, F.; Heine, M.; Fruet, G.; Montanari, D.; Jenkins, D. G.; Morris, L.; Lefebvre-Schuhl, A.; Alcorta, M.; Fang, X.; Tang, X. D.; Bucher, B.; Deibel, C. M.; Marley, S. T.

    2018-01-01

    Carbon burning is a critical phase for nucleosynthesis in massive stars. The conditions for igniting this burning stage, and the subsequent isotope composition of the resulting ashes, depend strongly on the reaction rate for 12C+12C fusion at very low energies. Results for the cross sections for this reaction are influenced by various backgrounds encountered in measurements at such energies. In this paper, we report on a new measurement of 12C+12C fusion cross sections where these backgrounds have been minimized. It is found that the astrophysical S factor exhibits a maximum around Ecm=3.5 -4.0 MeV, which leads to a reduction of the previously predicted astrophysical reaction rate.

  17. Analysis of reaction schemes using maximum rates of constituent steps

    DOE PAGES

    Motagamwala, Ali Hussain; Dumesic, James A.

    2016-05-09

    In this paper, we show that the steady-state kinetics of a chemical reaction can be analyzed analytically in terms of proposed reaction schemes composed of series of steps with stoichiometric numbers equal to unity by calculating the maximum rates of the constituent steps, r max,i, assuming that all of the remaining steps are quasi-equilibrated. Analytical expressions can be derived in terms of r max,i to calculate degrees of rate control for each step to determine the extent to which each step controls the rate of the overall stoichiometric reaction. The values of r max,i can be used to predict themore » rate of the overall stoichiometric reaction, making it possible to estimate the observed reaction kinetics. This approach can be used for catalytic reactions to identify transition states and adsorbed species that are important in controlling catalyst performance, such that detailed calculations using electronic structure calculations (e.g., density functional theory) can be carried out for these species, whereas more approximate methods (e.g., scaling relations) are used for the remaining species. Finally, this approach to assess the feasibility of proposed reaction schemes is exact for reaction schemes where the stoichiometric coefficients of the constituent steps are equal to unity and the most abundant adsorbed species are in quasi-equilibrium with the gas phase and can be used in an approximate manner to probe the performance of more general reaction schemes, followed by more detailed analyses using full microkinetic models to determine the surface coverages by adsorbed species and the degrees of rate control of the elementary steps.« less

  18. Introducing Stochastic Simulation of Chemical Reactions Using the Gillespie Algorithm and MATLAB: Revisited and Augmented

    ERIC Educational Resources Information Center

    Argoti, A.; Fan, L. T.; Cruz, J.; Chou, S. T.

    2008-01-01

    The stochastic simulation of chemical reactions, specifically, a simple reversible chemical reaction obeying the first-order, i.e., linear, rate law, has been presented by Martinez-Urreaga and his collaborators in this journal. The current contribution is intended to complement and augment their work in two aspects. First, the simple reversible…

  19. An electronically tunable, first-order Fabry-Perot infrared filter

    NASA Astrophysics Data System (ADS)

    Knudtson, J. T.; Levy, D. S.; Herr, K. C.

    1995-04-01

    A tunable infrared filter capable of scanning from 8.2 to 12.8 micrometers has been designed, constructed and tested. It is a first order Fabry Perot interferometer with piezoelectrically driven cavity spacing. Multilayer dielectric coatings for the partially transmitting mirrors were designed to minimize the wavelength dependent phase change produced by reflection. The transmission bandwidth ranged from 2.8 to 4.0% across the tuning range. Continuous scanning at 20 Hz rates was demonstrated.

  20. Kinetics and mechanism of permanganate oxidation of iota- and lambda-carrageenan polysaccharides as sulfated carbohydrates in acid perchlorate solutions.

    PubMed

    Hassan, Refat M; Fawzy, Ahmed; Ahmed, Gamal A; Zaafarany, Ishaq A; Asghar, Basim H; Takagi, Hideo D; Ikeda, Yasuhisa

    2011-10-18

    The kinetics of oxidation of iota- and lambda-carrageenan as sulfated carbohydrates by permanganate ion in aqueous perchlorate solutions at a constant ionic strength of 2.0 mol dm(-3) have been investigated spectrophotometrically. The pseudo-first-order plots were found to be of inverted S-shape throughout the entire courses of reactions. The initial rates were found to be relatively slow in the early stages, followed by an increase in the oxidation rates over longer time periods. The experimental observations showed first-order dependences in permanganate and fractional first-order kinetics with respect to both carrageenans concentration for both the induction and autoacceleration periods. The results obtained at various hydrogen ion concentrations showed that the oxidation processes in these redox systems are acid-catalyzed throughout the two stages of oxidation reactions. The added salts lead to the prediction that Mn(III) is the reactive species throughout the autoacceleration periods. Kinetic evidence for the formation of 1:1 intermediate complexes was revealed. The kinetic parameters have been evaluated and tentative reaction mechanisms in good agreement with the kinetic results are discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Discriminating between first- and second-order cognition in first-episode paranoid schizophrenia.

    PubMed

    Bliksted, Vibeke; Samuelsen, Erla; Sandberg, Kristian; Bibby, Bo Martin; Overgaard, Morten Storm

    2017-03-01

    An impairment of visually perceiving backward masked stimuli is commonly observed in patients with schizophrenia, yet it is unclear whether this impairment is the result of a deficiency in first or higher order processing and for which subtypes of schizophrenia it is present. Here, we compare identification (first order) and metacognitive (higher order) performance in a visual masking paradigm between a highly homogenous group of young first-episode patients diagnosed with paranoid schizophrenia (N = 11) to that of carefully matched healthy controls (N = 13). We find no difference across groups in first-order performance, but find a difference in metacognitive performance, particularly for stimuli with relatively high visibility. These results indicate that the masking deficit is present in first-episode patients with paranoid schizophrenia, but that it is primarily an impairment of metacognition.

  2. Mixing effects on apparent reaction rates and isotope fractionation during denitrification in a heterogeneous aquifer

    USGS Publications Warehouse

    Green, Christopher T.; Böhlke, John Karl; Bekins, Barbara A.; Phillips, Steven P.

    2010-01-01

    Gradients in contaminant concentrations and isotopic compositions commonly are used to derive reaction parameters for natural attenuation in aquifers. Differences between field‐scale (apparent) estimated reaction rates and isotopic fractionations and local‐scale (intrinsic) effects are poorly understood for complex natural systems. For a heterogeneous alluvial fan aquifer, numerical models and field observations were used to study the effects of physical heterogeneity on reaction parameter estimates. Field measurements included major ions, age tracers, stable isotopes, and dissolved gases. Parameters were estimated for the O2 reduction rate, denitrification rate, O2 threshold for denitrification, and stable N isotope fractionation during denitrification. For multiple geostatistical realizations of the aquifer, inverse modeling was used to establish reactive transport simulations that were consistent with field observations and served as a basis for numerical experiments to compare sample‐based estimates of “apparent” parameters with “true“ (intrinsic) values. For this aquifer, non‐Gaussian dispersion reduced the magnitudes of apparent reaction rates and isotope fractionations to a greater extent than Gaussian mixing alone. Apparent and true rate constants and fractionation parameters can differ by an order of magnitude or more, especially for samples subject to slow transport, long travel times, or rapid reactions. The effect of mixing on apparent N isotope fractionation potentially explains differences between previous laboratory and field estimates. Similarly, predicted effects on apparent O2threshold values for denitrification are consistent with previous reports of higher values in aquifers than in the laboratory. These results show that hydrogeological complexity substantially influences the interpretation and prediction of reactive transport.

  3. Optimal Design of Passive Power Filters Based on Pseudo-parallel Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Li, Pei; Li, Hongbo; Gao, Nannan; Niu, Lin; Guo, Liangfeng; Pei, Ying; Zhang, Yanyan; Xu, Minmin; Chen, Kerui

    2017-05-01

    The economic costs together with filter efficiency are taken as targets to optimize the parameter of passive filter. Furthermore, the method of combining pseudo-parallel genetic algorithm with adaptive genetic algorithm is adopted in this paper. In the early stages pseudo-parallel genetic algorithm is introduced to increase the population diversity, and adaptive genetic algorithm is used in the late stages to reduce the workload. At the same time, the migration rate of pseudo-parallel genetic algorithm is improved to change with population diversity adaptively. Simulation results show that the filter designed by the proposed method has better filtering effect with lower economic cost, and can be used in engineering.

  4. Evaluating the effectiveness of various biochars as porous media for biodiesel synthesis via pseudo-catalytic transesterification.

    PubMed

    Lee, Jechan; Jung, Jong-Min; Oh, Jeong-Ik; Ok, Yong Sik; Lee, Sang-Ryong; Kwon, Eilhann E

    2017-05-01

    This study focuses on investigating the optimized chemical composition of biochar used as porous material for biodiesel synthesis via pseudo-catalytic transesterification. To this end, six biochars from different sources were prepared and biodiesel yield obtained from pseudo-catalytic transesterification of waste cooking oil using six biochars were measured. Biodiesel yield and optimal reaction temperature for pseudo-catalytic transesterification were strongly dependent on the raw material of biochar. For example, biochar generated from maize residue exhibited the best performance, which yield was reached ∼90% at 300°C; however, the maximum biodiesel yield with pine cone biochar was 43% at 380°C. The maximum achievable yield of biodiesel was sensitive to the lignin content of biomass source of biochar but not sensitive to the cellulose and hemicellulose content. This study provides an insight for screening the most effective biochar as pseudo-catalytic porous material, thereby helping develop more sustainable and economically viable biodiesel synthesis process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Calculation of astrophysical S-factor and reaction rate in 12C(p, γ)13N reaction

    NASA Astrophysics Data System (ADS)

    Moghadasi, A.; Sadeghi, H.; Pourimani, R.

    2018-02-01

    The 12C(p, γ)13N reaction is the first process in the CNO cycle. Also it is a source of low-energy solar neutrinos in various neutrino experiments. Therefore, it is of high interest to gain data of the astrophysical S-factor in low energies. By applying Faddeev's method, we calculated wave functions for the bound state of 13N. Then the cross sections for resonance and non-resonance were calculated through using Breit-Wigner and direct capture cross section formulae, respectively. After that, we calculated the total S-factor and compared it with previous experimental data, revealing a good agreement altogether. Then, we extrapolated the S-factor in zero energy and the result was 1.32 ± 0.19 (keV.b). In the end, we calculated reaction rate and compared it with NACRE data.

  6. Characterization of shock-dependent reaction rates in an aluminum/perfluoropolyether pyrolant

    NASA Astrophysics Data System (ADS)

    Wilson, Dennis; Granier, John; Johnson, Richard; Littrell, Donald

    2017-01-01

    Energetic formulations of perfluoropolyether (PFPE) and aluminum are highly non-ideal. They release energy via a fast self-oxidized combustion wave rather than a true self-sustaining detonation. Unlike high explosives, the reactions are shock dependent and can be overdriven to control energy release rate. Reaction rate experiments show that the velocity can vary from 1.25 to 3 km/s. This paper examines the effect of the initial shock conditions upon the reaction rate of the explosive. The following conditions were varied in a series of reaction rate experiments: the high explosive booster mass and geometry; shock attenuation; confinement; and rate stick diameter and length. Several experiments designed to isolate and quantify these dependencies are described and summarized.

  7. Consistent Modeling of GS 1826-24 X-Ray Bursts for Multiple Accretion Rates Demonstrates the Possibility of Constraining rp-process Reaction Rates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meisel, Zach

    Type-I X-ray burst light curves encode unique information about the structure of accreting neutron stars and the nuclear reaction rates of the rp-process that powers bursts. Using the first model calculations of hydrogen/helium-burning bursts for a large range of astrophysical conditions performed with the code MESA, this work shows that simultaneous model–observation comparisons for bursts from several accretion ratesmore » $$\\dot{M}$$ are required to remove degeneracies in astrophysical conditions that otherwise reproduce bursts for a single $$\\dot{M}$$ and that such consistent multi-epoch modeling could possibly limit the 15O(α, γ) 19Ne reaction rate. Comparisons to the 1998, 2000, and 2007 bursting epochs of the neutron star GS 1826-24 show that $$\\dot{M}$$ must be larger than previously inferred and that the shallow heating in this source must be below 0.5 MeV/u, providing a new method to constrain the shallow heating mechanism in the outer layers of accreting neutron stars. Lastly, features of the light curve rise are used to demonstrate that a lower limit could likely be placed on the 15O(α, γ) reaction rate, demonstrating the possibility of constraining nuclear reaction rates with X-ray burst light curves.« less

  8. Consistent Modeling of GS 1826-24 X-Ray Bursts for Multiple Accretion Rates Demonstrates the Possibility of Constraining rp-process Reaction Rates

    DOE PAGES

    Meisel, Zach

    2018-06-21

    Type-I X-ray burst light curves encode unique information about the structure of accreting neutron stars and the nuclear reaction rates of the rp-process that powers bursts. Using the first model calculations of hydrogen/helium-burning bursts for a large range of astrophysical conditions performed with the code MESA, this work shows that simultaneous model–observation comparisons for bursts from several accretion ratesmore » $$\\dot{M}$$ are required to remove degeneracies in astrophysical conditions that otherwise reproduce bursts for a single $$\\dot{M}$$ and that such consistent multi-epoch modeling could possibly limit the 15O(α, γ) 19Ne reaction rate. Comparisons to the 1998, 2000, and 2007 bursting epochs of the neutron star GS 1826-24 show that $$\\dot{M}$$ must be larger than previously inferred and that the shallow heating in this source must be below 0.5 MeV/u, providing a new method to constrain the shallow heating mechanism in the outer layers of accreting neutron stars. Lastly, features of the light curve rise are used to demonstrate that a lower limit could likely be placed on the 15O(α, γ) reaction rate, demonstrating the possibility of constraining nuclear reaction rates with X-ray burst light curves.« less

  9. Pseudo-color coding method for high-dynamic single-polarization SAR images

    NASA Astrophysics Data System (ADS)

    Feng, Zicheng; Liu, Xiaolin; Pei, Bingzhi

    2018-04-01

    A raw synthetic aperture radar (SAR) image usually has a 16-bit or higher bit depth, which cannot be directly visualized on 8-bit displays. In this study, we propose a pseudo-color coding method for high-dynamic singlepolarization SAR images. The method considers the characteristics of both SAR images and human perception. In HSI (hue, saturation and intensity) color space, the method carries out high-dynamic range tone mapping and pseudo-color processing simultaneously in order to avoid loss of details and to improve object identifiability. It is a highly efficient global algorithm.

  10. Considerations Based on Reaction Rate on Char Gasification Behavior in Two-stage Gasifier for Biomass

    NASA Astrophysics Data System (ADS)

    Taniguchi, Miki; Nishiyama, Akio; Sasauchi, Kenichi; Ito, Yusuke; Akamatsu, Fumiteru

    In order to develop a small-scale gasifier in which biomass can be converted to energy with high efficiency, we planned a gasification process that consists of two parts: pyrolysis part (rotary kiln) and gasification part (downdraft gasifier). We performed fundamental experiments on gasification part and discussed the appropriate conditions such as air supply location, air ratio, air temperature and hearth load. We considered the results by calculating reaction rates of representative reactions on char gasification part and found that water gas reaction is dominant in the reduction area and its behavior gives important information to decide the adequate length of the char layer.

  11. Ruthenium(VI)-Catalyzed Oxidation of Alcohols by Hexacyanoferrate(III): An Example of Mixed Order

    ERIC Educational Resources Information Center

    Mucientes, Antonio E.; de la Pena, Maria A.

    2006-01-01

    The absorbance decay of hexacyanoferrate(III) as a function of time shows a progressive deviation from zero to first order. This variation follows an experimental rate law that has been analyzed. The change in reaction order is due to a change in the relative rate of substrate oxidation with respect to that of catalyst regeneration. (Contains 2…

  12. Modeling Studies of Inhomogeneity Effects during Laser Flash Photolysis Experiments: A Reaction-Diffusion Approach.

    PubMed

    Dóka, Éva; Lente, Gábor

    2017-04-13

    This work presents a rigorous mathematical study of the effect of unavoidable inhomogeneities in laser flash photolysis experiments. There are two different kinds of inhomegenities: the first arises from diffusion, whereas the second one has geometric origins (the shapes of the excitation and detection light beams). Both of these are taken into account in our reported model, which gives rise to a set of reaction-diffusion type partial differential equations. These equations are solved by a specially developed finite volume method. As an example, the aqueous reaction between the sulfate ion radical and iodide ion is used, for which sufficiently detailed experimental data are available from an earlier publication. The results showed that diffusion itself is in general too slow to influence the kinetic curves on the usual time scales of laser flash photolysis experiments. However, the use of the absorbances measured (e.g., to calculate the molar absorption coefficients of transient species) requires very detailed mathematical consideration and full knowledge of the geometrical shapes of the excitation laser beam and the separate detection light beam. It is also noted that the usual pseudo-first-order approach to evaluating the kinetic traces can be used successfully even if the usual large excess condition is not rigorously met in the reaction cell locally.

  13. Reaction rate for carbon burning in massive stars

    DOE PAGES

    Jiang, C. L.; Santiago-Gonzalez, D.; Almaraz-Calderon, S.; ...

    2018-01-10

    Carbon burning is a critical phase for nucleosynthesis in massive stars. The conditions for igniting this burning stage, and the subsequent isotope composition of the resulting ashes, depend strongly on the reaction rate for 12C+ 12C fusion at very low energies. Results for the cross sections for this reaction are influenced by various backgrounds encountered in measurements at such energies. In this paper, we report on a new measurement of 12C+ 12C fusion cross sections where these backgrounds have been minimized. In conclusion, it is found that the astrophysical S factor exhibits a maximum around E cm=3.5–4.0 MeV, which leadsmore » to a reduction of the previously predicted astrophysical reaction rate.« less

  14. Kinetics of the benzyl + O(3P) reaction: a quantum chemical/statistical reaction rate theory study.

    PubMed

    da Silva, Gabriel; Bozzelli, Joseph W

    2012-12-14

    The resonance stabilized benzyl radical is an important intermediate in the combustion of aromatic hydrocarbons and in polycyclic aromatic hydrocarbon (PAH) formation in flames. Despite being a free radical, benzyl is relatively stable in thermal, oxidizing environments, and is predominantly removed through bimolecular reactions with open-shell species other than O(2). In this study the reaction of benzyl with ground-state atomic oxygen, O((3)P), is examined using quantum chemistry and statistical reaction rate theory. C(7)H(7)O energy surfaces are generated at the G3SX level, and include several novel pathways. Transition state theory is used to describe elementary reaction kinetics, with canonical variational transition state theory applied for barrierless O atom association with benzyl. Apparent rate constants and branching ratios to different product sets are obtained as a function of temperature and pressure from solving the time-dependent master equation, with RRKM theory for microcanonical k(E). These simulations indicate that the benzyl + O reaction predominantly forms the phenyl radical (C(6)H(5)) plus formaldehyde (HCHO), with lesser quantities of the C(7)H(6)O products benzaldehyde, ortho-quinone methide, and para-quinone methide (+H), along with minor amounts of the formyl radical (HCO) + benzene. Addition of O((3)P) to the methylene site in benzyl produces a highly vibrationally excited C(7)H(7)O* adduct, the benzoxyl radical, which can β-scission to benzaldehyde + H and phenyl + HCHO. In order to account for the experimental observation of benzene as the major reaction product, a roaming radical mechanism is proposed that converts the nascent products phenyl and HCHO to benzene + HCO. Oxygen atom addition at the ortho and para ring sites in benzyl, which has not been previously considered, is shown to lead to the quinone methides + H; these species are less-stable isomers of benzaldehyde that are proposed as important combustion intermediates, but

  15. 10 CFR 217.32 - Elements of a rated order.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Elements of a rated order. 217.32 Section 217.32 Energy DEPARTMENT OF ENERGY OIL ENERGY PRIORITIES AND ALLOCATIONS SYSTEM Placement of Rated Orders § 217.32 Elements of a rated order. Each rated order must include: (a) The appropriate priority rating (e.g. DO-F1 or...

  16. 10 CFR 217.32 - Elements of a rated order.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Elements of a rated order. 217.32 Section 217.32 Energy DEPARTMENT OF ENERGY OIL ENERGY PRIORITIES AND ALLOCATIONS SYSTEM Placement of Rated Orders § 217.32 Elements of a rated order. Each rated order must include: (a) The appropriate priority rating (e.g. DO-F1 or...

  17. 10 CFR 217.32 - Elements of a rated order.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Elements of a rated order. 217.32 Section 217.32 Energy DEPARTMENT OF ENERGY OIL ENERGY PRIORITIES AND ALLOCATIONS SYSTEM Placement of Rated Orders § 217.32 Elements of a rated order. Each rated order must include: (a) The appropriate priority rating (e.g. DO-F1 or...

  18. Rates for neutron-capture reactions on tungsten isotopes in iron meteorites. [Abstract only

    NASA Technical Reports Server (NTRS)

    Masarik, J.; Reedy, R. C.

    1994-01-01

    High-precision W isotopic analyses by Harper and Jacobsen indicate the W-182/W-183 ratio in the Toluca iron meteorite is shifted by -(3.0 +/- 0.9) x 10(exp -4) relative to a terrestrial standard. Possible causes of this shift are neutron-capture reactions on W during Toluca's approximately 600-Ma exposure to cosmic ray particles or radiogenic growth of W-182 from 9-Ma Hf-182 in the silicate portion of the Earth after removal of W to the Earth's core. Calculations for the rates of neutron-capture reactions on W isotopes were done to study the first possibility. The LAHET Code System (LCS) which consists of the Los Alamos High Energy Transport (LAHET) code and the Monte Carlo N-Particle(MCNP) transport code was used to numerically simulate the irradiation of the Toluca iron meteorite by galactic-cosmic-ray (GCR) particles and to calculate the rates of W(n, gamma) reactions. Toluca was modeled as a 3.9-m-radius sphere with the composition of a typical IA iron meteorite. The incident GCR protons and their interactions were modeled with LAHET, which also handled the interactions of neutrons with energies above 20 MeV. The rates for the capture of neutrons by W-182, W-183, and W-186 were calculated using the detailed library of (n, gamma) cross sections in MCNP. For this study of the possible effect of W(n, gamma) reactions on W isotope systematics, we consider the peak rates. The calculated maximum change in the normalized W-182/W-183 ratio due to neutron-capture reactions cannot account for more than 25% of the mass 182 deficit observed in Toluca W.

  19. Improved removal performance and mechanism investigation of papermaking wastewater treatment using manganese enhanced Fenton reaction.

    PubMed

    Wang, Yingcai; Wang, Can; Shi, Shuai; Fang, Shuai

    2018-06-01

    The effects of Mn(II) on Fenton system to treat papermaking wastewater and the mechanism of Mn(II) enhanced Fenton reaction were investigated in this study. The chemical oxygen demand (COD) removal efficiency was enhanced in the presence of Mn(II), which increased by 19% compared with that of the Fenton system alone. The pseudo-first order reaction kinetic rate constant of Mn(II)/Fenton system was 2.11 times higher than that of Fenton system. 67%-81% COD were removed with the increasing Mn(II) concentration from 0 to 0.8 g/L. COD removal efficiency was also enhanced in a wider pH range (3-7), which indicated the operation parameters of Fenton technology could be broadened to a milder condition. The study of the mechanism showed that Mn(II) participated in the oxidation and coagulation stages in Fenton system. In the oxidation stage, Mn(II) promotes the production of HO 2 •/ O 2 • - , then HO 2 •/ O 2 • - reacts with Fe(III) to accelerate the formation of Fe(II), and finally accelerates the production of HO•. Meantime MnMnO 3 and Fe(OH) 3 forms in the coagulation stage, facilitating the removal of suspended substances and a large amount of COD, which enhances the overall COD removal of papermaking wastewater. This study provided a detailed mechanism to improve practical applications of Fenton technology.

  20. H2/O2 three-body rates at high temperatures

    NASA Technical Reports Server (NTRS)

    Marinelli, William J.; Kessler, William J.; Carleton, Karen L.

    1991-01-01

    Hydrogen atoms are produced in the presence of excess O2, and the first-order decay are studied as a function of temperature and pressure in order to obtain the rate coefficient for the three-body reaction between H-atoms and O2. Attention is focused on the kinetic scheme employed as well as the reaction cell and photolysis and probe laser system. A two-photon laser-induced fluorescence technique is employed to detect H-atoms without optical-thickness or O2-absorption problems. Results confirm measurements reported previously for the H + O2 + N2 reaction at 300 K and extend these measurements to higher temperatures. Preliminary data indicate non-Arrehenius-type behavior of this reaction rate coefficient as a function of temperature. Measurements of the rate coefficient for H + O2 + Ar reaction at 300 K give a rate coefficient of 2.1 +/- 0.1 x 10 to the -32nd cm exp 6/molecule sec.

  1. Quantum mechanical reaction probability of triplet ketene at the multireference second-order perturbation level of theory.

    PubMed

    Ogihara, Yusuke; Yamamoto, Takeshi; Kato, Shigeki

    2010-09-23

    Triplet ketene exhibits a steplike structure in the experimentally observed dissociation rates, but its mechanism is still unknown despite many theoretical efforts in the past decades. In this paper we revisit this problem by quantum mechanically calculating the reaction probability with multireference-based electronic structure theory. Specifically, we first construct an analytical potential energy surface of triplet state by fitting it to about 6000 ab initio energies computed at the multireference second-order Mller-Plesset perturbation (MRMP2) level. We then evaluate the cumulative reaction probability by using the transition state wave packet method together with an adiabatically constrained Hamiltonian. The result shows that the imaginary barrier frequency on the triplet surface is 328i cm-1, which is close to the CCSD(T) result (321i cm-1) but is likely too large for reproducing the experimentally observed steps. Indeed, our calculated reaction probability exhibits no signature of steps, reflecting too strong tunneling effect along the reaction coordinate. Nevertheless, it is emphasized that the flatness of the potential profile in the transition-state region (which governs the degree of tunneling) depends strongly on the level of electronic structure calculation, thus leaving some possibility that the use of more accurate theories might lead to the observed steps. We also demonstrate that the triplet potential surface differs significantly between the CASSCF and MRMP2 results, particularly in the transition-state region. This fact seems to require more attention when studying the "nonadiabatic" scenario for the steps, in which the crossing seam between S0 and T1 surfaces is assumed to play a central role.

  2. Kinetics of ozone-initiated oxidation of textile dye, Amaranth in aqueous systems.

    PubMed

    Dachipally, Purnachandar; Jonnalagadda, Sreekanth B

    2011-01-01

    The ozone facilitated oxidation mechanism of water soluble azo anionic dye, amaranth (Am) was investigated monitoring the depletion kinetics of the dye spectrometrically at 521 nm. The oxidation kinetics of the dye by ozone was studied under semi-batch conditions, by bubbling ozone enriched oxygen through the aqueous reaction mixture of dye, as function of flow rate, ionic strength, [O(3)] and pH variations. With excess concentration of ozone and other reagents and low [amaranth], reaction followed pseudo-first-order kinetics with respect to the dye. Added neutral salts had marginal effect on the reaction rate and the variation of pH from 7 to 2 and 7 to 12 exerted only small increases in the reaction rate suggesting molecular ozone possibly is the principle reactive species in oxidation of dye. The reaction order with respect ozone was near unity and it varied slightly with pH and flow rate variations. The overall second-order rate constant for the reaction was (105 ± 4) M(-1) min(-1). The main oxidation products immediately after amaranth decolorization were identified. The reaction mechanism and overall rate law were proposed. After spiking the seawater, river water and wastewaters with Amaranth dye, the reaction rates and trends in BOD and COD under control and natural conditions were investigated. The rate of depletion of the dye in natural waters was relatively lower, but the ozonation process significantly decreased both the BOD and COD levels.

  3. Efficient kinetic Monte Carlo method for reaction-diffusion problems with spatially varying annihilation rates

    NASA Astrophysics Data System (ADS)

    Schwarz, Karsten; Rieger, Heiko

    2013-03-01

    We present an efficient Monte Carlo method to simulate reaction-diffusion processes with spatially varying particle annihilation or transformation rates as it occurs for instance in the context of motor-driven intracellular transport. Like Green's function reaction dynamics and first-passage time methods, our algorithm avoids small diffusive hops by propagating sufficiently distant particles in large hops to the boundaries of protective domains. Since for spatially varying annihilation or transformation rates the single particle diffusion propagator is not known analytically, we present an algorithm that generates efficiently either particle displacements or annihilations with the correct statistics, as we prove rigorously. The numerical efficiency of the algorithm is demonstrated with an illustrative example.

  4. 49 CFR 33.32 - Elements of a rated order.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 1 2014-10-01 2014-10-01 false Elements of a rated order. 33.32 Section 33.32 Transportation Office of the Secretary of Transportation TRANSPORTATION PRIORITIES AND ALLOCATION SYSTEM Placement of Rated Orders § 33.32 Elements of a rated order. Each rated order must include: (a) The...

  5. 49 CFR 33.32 - Elements of a rated order.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 1 2012-10-01 2012-10-01 false Elements of a rated order. 33.32 Section 33.32 Transportation Office of the Secretary of Transportation TRANSPORTATION PRIORITIES AND ALLOCATION SYSTEM Placement of Rated Orders § 33.32 Elements of a rated order. Each rated order must include: (a) The...

  6. 49 CFR 33.32 - Elements of a rated order.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 1 2013-10-01 2013-10-01 false Elements of a rated order. 33.32 Section 33.32 Transportation Office of the Secretary of Transportation TRANSPORTATION PRIORITIES AND ALLOCATION SYSTEM Placement of Rated Orders § 33.32 Elements of a rated order. Each rated order must include: (a) The...

  7. ATP hydrolysis assists phosphate release and promotes reaction ordering in F1-ATPase

    PubMed Central

    Li, Chun-Biu; Ueno, Hiroshi; Watanabe, Rikiya; Noji, Hiroyuki; Komatsuzaki, Tamiki

    2015-01-01

    F1-ATPase (F1) is a rotary motor protein that can efficiently convert chemical energy to mechanical work of rotation via fine coordination of its conformational motions and reaction sequences. Compared with reactant binding and product release, the ATP hydrolysis has relatively little contributions to the torque and chemical energy generation. To scrutinize possible roles of ATP hydrolysis, we investigate the detailed statistics of the catalytic dwells from high-speed single wild-type F1 observations. Here we report a small rotation during the catalytic dwell triggered by the ATP hydrolysis that is indiscernible in previous studies. Moreover, we find in freely rotating F1 that ATP hydrolysis is followed by the release of inorganic phosphate with low synthesis rates. Finally, we propose functional roles of the ATP hydrolysis as a key to kinetically unlock the subsequent phosphate release and promote the correct reaction ordering. PMID:26678797

  8. Help of third-year medical students decreases first-year medical students' negative psychological reactions on the first day of gross anatomy dissection.

    PubMed

    Houwink, Aletta P; Kurup, Anil N; Kollars, Joshua P; Kral Kollars, Catharine A; Carmichael, Stephen W; Pawlina, Wojciech

    2004-05-01

    The assistance of third-year medical students (MS3) may be an easy, inexpensive, educational method to decrease physical and emotional stress among first-year medical students (MS1) on the first day of gross anatomy dissection. In the academic years 2000-2001 and 2001-2002, a questionnaire on the emotional and physical reactions on the first day of dissection was distributed to 84 MS1 at Mayo Medical School (Rochester, MN); 74 (88%) responded. Student perceptions were assessed on a 5-point Likert scale. The 42 second-year medical students (MS2) whose first academic year was 1999-2000 were used as a control group, because they had not had assistance from MS3. MS2 completed the same questionnaire (59% response rate). Data were collected from MS1 on the day of their first gross anatomy dissection. The most frequent reactions were headache, disgust, grief or sadness, and feeling light-headed. Significant differences (alpha < 0.05) were found with use of the chi(2) test to compare the emotional and physical reactions of MS1 and MS2. MS1 had significantly fewer physical reactions (64% vs. 88%), reporting lower levels of anxiety (23% vs. 48%), headache (14% vs. 36%), disgust (9% vs. 20%), feeling light-headed (11% vs. 24%), and reaction to the smell of the cadaver and laboratory (8% vs. 52%). MS1 commented that having MS3 at the dissection table was extremely helpful. They relied less on their peers and felt they learned more efficiently about the dissection techniques and anatomical structures. Using MS3 as assistants is one method to reduce fear and anxiety on the first day of gross anatomy dissection. Copyright 2004 Wiley-Liss, Inc.

  9. Using amphiphilic pseudo amino acid composition to predict enzyme subfamily classes.

    PubMed

    Chou, Kuo-Chen

    2005-01-01

    With protein sequences entering into databanks at an explosive pace, the early determination of the family or subfamily class for a newly found enzyme molecule becomes important because this is directly related to the detailed information about which specific target it acts on, as well as to its catalytic process and biological function. Unfortunately, it is both time-consuming and costly to do so by experiments alone. In a previous study, the covariant-discriminant algorithm was introduced to identify the 16 subfamily classes of oxidoreductases. Although the results were quite encouraging, the entire prediction process was based on the amino acid composition alone without including any sequence-order information. Therefore, it is worthy of further investigation. To incorporate the sequence-order effects into the predictor, the 'amphiphilic pseudo amino acid composition' is introduced to represent the statistical sample of a protein. The novel representation contains 20 + 2lambda discrete numbers: the first 20 numbers are the components of the conventional amino acid composition; the next 2lambda numbers are a set of correlation factors that reflect different hydrophobicity and hydrophilicity distribution patterns along a protein chain. Based on such a concept and formulation scheme, a new predictor is developed. It is shown by the self-consistency test, jackknife test and independent dataset tests that the success rates obtained by the new predictor are all significantly higher than those by the previous predictors. The significant enhancement in success rates also implies that the distribution of hydrophobicity and hydrophilicity of the amino acid residues along a protein chain plays a very important role to its structure and function.

  10. Functional kaolin supported nanoscale zero-valent iron as a Fenton-like catalyst for the degradation of Direct Black G.

    PubMed

    Lin, Jiajiang; Sun, Mengqiang; Liu, Xinwen; Chen, Zuliang

    2017-10-01

    Kaolin supported nanoscale zero-valent iron (K-nZVI) is synthesized and applied as the Fenton-like oxidation catalyst to degrade a model azo dye, Direct Black G (DBG). The characterization of K-nZVI by the high resolution transmission electronmicroscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), Energy Diffraction Spectrum (EDS) and X-ray diffraction (XRD) show that kaolin as a support material not only reduces the aggregation of zero-valent iron (nZVI) but also facilitates the Fenton-like oxidation by increasing the local concentration of DBG in the vicinity of nZVI. Pseudo first-order and pseudo second-order kinetic models are employed to reveal the adsorption and degradation of the DBG using K-nZVI as the catalyst. A better fit with pseudo second-order model for the adsorption process and equal excellent fits with pseudo first-order and pseudo second-order models for the degradation process are observed; the adsorption process is found to be the rate limiting step for overall reactions. The adsorption, evaluated by isotherms and thermodynamic parameters is a spontaneous and endothermic process. High-performance liquid chromatography-mass spectrometry (LC-MS) analysis was used to test degraded products in the degradation of DGB by K-nZVI. A removal mechanism based on the adsorption and degradation is proposed, including (i) prompt adsorption of DBG onto the K-nZVI surface, and (ii) oxidation of DBG by hydroxyl radicals at the K-nZVI surface. The application of K-nZVI to treat real wastewater containing azo dyes shows excellent degradation efficiency. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Effect of hydrostatic pressure, temperature, and solvent on the rate of the Diels-Alder reaction between 9,10-anthracenedimethanol and maleic anhydride

    NASA Astrophysics Data System (ADS)

    Kiselev, V. D.; Kornilov, D. A.; Anikin, O. V.; Latypova, L. I.; Konovalov, A. I.

    2017-03-01

    The rate of the reaction between 9,10-anthracenedimethanol and maleic anhydride in 1,4-dioxane, acetonitrile, trichloromethane, and toluene is studied at 25, 35, 45°C in the pressure range of 1-1772 bar. The rate constants, enthalpies, entropies and activation volumes are determined. It is shown that the rate of reaction with 9,10-anthracenedimethanol is approximately one order of magnitude higher than with 9-anthracenemethanol.

  12. The Kinetic Rate Law for Autocatalytic Reactions.

    ERIC Educational Resources Information Center

    Mata-Perez, Fernando; Perez-Benito, Joaquin F.

    1987-01-01

    Presented is a method of obtaining accurate rate constants for autocatalytic reactions. The autocatalytic oxidation of dimethylamine by permanganate ion in aqueous solution is used as an example. (RH)

  13. Alkali-metal-ion catalysis and inhibition in the nucleophilic displacement reaction of y-substituted phenyl diphenylphosphinates and diphenylphosphinothioates with alkali-metal ethoxides: effect of changing the electrophilic center from P=O to P=S.

    PubMed

    Um, Ik-Hwan; Shin, Young-Hee; Park, Jee-Eun; Kang, Ji-Sun; Buncel, Erwin

    2012-01-16

    A kinetic study of the nucleophilic substitution reaction of Y-substituted phenyl diphenylphosphinothioates 2 a-g with alkali-metal ethoxides (MOEt; M = Li, Na, K) in anhydrous ethanol at (25.0±0.1) °C is reported. Plots of pseudo-first-order rate constants (k(obsd)) versus [MOEt], the alkali ethoxide concentration, show distinct upward (KOEt) and downward (LiOEt) curvatures, respectively, pointing to the importance of ion-pairing phenomena and a differential reactivity of dissociated EtO(-) and ion-paired MOEt. Based on ion-pairing treatment of the kinetic data, the k(obsd) values were dissected into k EtO - and k(MOEt), the second-order rate constants for the reaction with the dissociated EtO(-) and ion-paired MOEt, respectively. The reactivity of MOEt toward 2 b (Y = 4-NO(2)) increases in the order LiOEtorder reported previously for the reaction of 4-nitrophenyl diphenylphosphinate 1 b, that is, LiOEt>NaOEt>KOEt>EtO(-). The current study based on Yukawa-Tsuno analysis has revealed that the reactions of 2 a-g (P=S) and Y-substituted phenyl diphenylphosphinates 1 a-g (P=O) with MOEt proceed through the same concerted mechanism, which indicates that the contrasting selectivity patterns are not due to a difference in reaction mechanism. The P=O compounds 1 a-g are approximately 80-fold more reactive than the P=S compounds 2 a-g toward the dissociated EtO(-) (regardless of the electronic nature of substituent Y) but are up to 3.1×10(3)-fold more reactive toward ion-paired LiOEt. The origin of the contrasting selectivity patterns is further discussed on the basis of competing electrostatic effects and solvational requirements as a function of anionic electric field strength and cation size (Eisenman's theory). Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Long-term survival in pseudo-Meigs' syndrome caused by ovarian metastases from colon cancer.

    PubMed

    Tajima, Yosuke; Kameyama, Hitoshi; Yamada, Saki; Yagi, Ryoma; Nakano, Masato; Nagahashi, Masayuki; Shimada, Yoshifumi; Sakata, Jun; Kobayashi, Takashi; Umezu, Hajime; Wakai, Toshifumi

    2016-11-14

    Meigs' syndrome is defined as the co-existence of benign ovarian fibroma or fibroma-like tumor, ascites, and pleural effusion. In contrast, pseudo-Meigs' syndrome is defined as the co-existence of other ovarian or pelvic tumors, ascites, and pleural effusion. In Meigs' and pseudo-Meigs' syndromes, ascites and pleural effusion resolve promptly after the complete resection of the ovarian or pelvic tumor(s). Secondary ovarian tumors from colorectal gastrointestinal metastases rarely cause pseudo-Meigs' syndrome; only 11 cases of pseudo-Meigs' syndrome secondary to colorectal cancers have been reported in the literature. Therefore, the prognosis and etiology of pseudo-Meigs' syndrome caused by ovarian metastasis from colorectal cancers remain unclear. We report here a rare case of pseudo-Meigs' syndrome caused by ovarian metastases from sigmoid colon cancer with long-term survival. A 47-year-old woman presented with abdominal distention of 1-month duration. She developed acute dyspnea 2 weeks after the initial presentation. Colonoscopy and computed tomography revealed sigmoid colon cancer with an ovarian metastasis, along with massive ascites and bilateral pleural effusion. Emergency operation, including bilateral oophorectomy and sigmoidectomy, was performed. Subsequently, ascites and bilateral pleural effusion resolved rapidly. Curative hepatic resection was performed for liver metastases 29 months after the first operation, and as of this writing, the patient is alive with no evidence of a disease 78 months after the first operation. In general, colorectal cancer with ovarian metastasis is hard to cure, and long-term survival in patients with colorectal cancer with pseudo-Meigs' syndrome is rare. Our experience suggests that curative resection for pseudo-Meigs' syndrome caused by ovarian metastasis from colorectal cancer may offer long-term survival. Our experience suggests that pseudo-Meigs' syndrome can occur in a patient with colorectal cancer after metastasis

  15. Incorporating reaction-rate dependence in reaction-front models of wellbore-cement/carbonated-brine systems

    DOE PAGES

    Iyer, Jaisree; Walsh, Stuart D. C.; Hao, Yue; ...

    2017-03-08

    Contact between wellbore cement and carbonated brine produces reaction zones that alter the cement's chemical composition and its mechanical properties. The reaction zones have profound implications on the ability of wellbore cement to serve as a seal to prevent the flow of carbonated brine. Under certain circumstances, the reactions may cause resealing of leakage pathways within the cement or at cement-interfaces; either due to fracture closure in response to mechanical weakening or due to the precipitation of calcium carbonate within the fracture. In prior work, we showed how mechanical sealing can be simulated using a diffusion-controlled reaction-front model that linksmore » the growth of the cement reaction zones to the mechanical response of the fracture. Here, we describe how such models may be extended to account for the effects of the calcite reaction-rate. We discuss how the relative rates of reaction and diffusion within the cement affect the precipitation of calcium carbonate within narrow leakage pathways, and how such behavior relates to the formation of characteristic reaction modes in the direction of flow. In addition, we compare the relative impact of precipitation and mechanical deformation on fracture sealing for a range of flow conditions and fracture apertures. Here, we conclude by considering how the prior leaching of calcium from cement may influence the sealing behavior of fractures, and the implication of prior leaching on the ability of laboratory tests to predict long-term sealing.« less

  16. Incorporating reaction-rate dependence in reaction-front models of wellbore-cement/carbonated-brine systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iyer, Jaisree; Walsh, Stuart D. C.; Hao, Yue

    Contact between wellbore cement and carbonated brine produces reaction zones that alter the cement's chemical composition and its mechanical properties. The reaction zones have profound implications on the ability of wellbore cement to serve as a seal to prevent the flow of carbonated brine. Under certain circumstances, the reactions may cause resealing of leakage pathways within the cement or at cement-interfaces; either due to fracture closure in response to mechanical weakening or due to the precipitation of calcium carbonate within the fracture. In prior work, we showed how mechanical sealing can be simulated using a diffusion-controlled reaction-front model that linksmore » the growth of the cement reaction zones to the mechanical response of the fracture. Here, we describe how such models may be extended to account for the effects of the calcite reaction-rate. We discuss how the relative rates of reaction and diffusion within the cement affect the precipitation of calcium carbonate within narrow leakage pathways, and how such behavior relates to the formation of characteristic reaction modes in the direction of flow. In addition, we compare the relative impact of precipitation and mechanical deformation on fracture sealing for a range of flow conditions and fracture apertures. Here, we conclude by considering how the prior leaching of calcium from cement may influence the sealing behavior of fractures, and the implication of prior leaching on the ability of laboratory tests to predict long-term sealing.« less

  17. Chemistry and kinetics of I2 loss in urine distillate and humidity condensate

    NASA Technical Reports Server (NTRS)

    Atwater, James E.; Wheeler, Richard R., Jr.; Olivadoti, J. T.; Sauer, Richard L.

    1992-01-01

    Time-resolved molecular absorption spectrophotometry of iodinated ersatz humidity condensates and iodinated ersatz urine distillates across the UV and visible spectral regions are used to investigate the chemistry and kinetics of I2 loss in urine distillate and humidity condensate. Single contaminant systems at equivalent concentrations are also employed to study rates of iodine. Pseudo-first order rate constants are identified for ersatz contaminant model mixtures and for individual reactive constituents. The second order bimolecular reaction of elemental iodine with formic acid, producing carbon dioxide and iodine anion, is identified as the primary mechanism underlying the decay of residual I2 in ersatz humidity concentrate.

  18. Kinetics of the R + NO2 reactions (R = i-C3H7, n-C3H7, s-C4H9, and t-C4H9) in the temperature range 201-489 K.

    PubMed

    Rissanen, Matti P; Arppe, Suula L; Eskola, Arkke J; Tammi, Matti M; Timonen, Raimo S

    2010-04-15

    The bimolecular rate coefficients of four alkyl radical reactions with NO(2) have been measured in direct time-resolved experiments. Reactions were studied under pseudo-first-order conditions in a temperature-controlled tubular flow reactor coupled to a laser photolysis/photoionization mass spectrometer (LP-PIMS). The measured reaction rate coefficients are independent of helium bath gas pressure within the experimental ranges covered and exhibit negative temperature dependence. For i-C(3)H(7) + NO(2) and t-C(4)H(9) + NO(2) reactions, the dependence of ordinate (logarithm of reaction rate coefficients) on abscissa (1/T or log(T)) was nonlinear. The obtained results (in cm(3) s(-1)) can be expressed by the following equations: k(n-C(3)H(7) + NO(2)) = ((4.34 +/- 0.08) x 10(-11)) (T/300 K)(-0.14+/-0.08) (203-473 K, 1-7 Torr), k(i-C(3)H(7) + NO(2)) = ((3.66 +/- 2.54) x 10(-12)) exp(656 +/- 201 K/T)(T/300 K)(1.26+/-0.68) (220-489 K, 1-11 Torr), k(s-C(4)H(9) + NO(2)) = ((4.99 +/- 0.16) x 10(-11))(T/300 K)(-1.74+/-0.12) (241-485 K, 2 - 12 Torr) and k(t-C(4)H(9) + NO(2)) = ((8.64 +/- 4.61) x 10(-12)) exp(413 +/- 154 K/T)(T/300 K)(0.51+/-0.55) (201-480 K, 2-11 Torr), where the uncertainties shown refer only to the 1 standard deviations obtained from the fitting procedure. The estimated overall uncertainty in the determined bimolecular rate coefficients is about +/-20%.

  19. Formation mechanism of superconducting phase and its three-dimensional architecture in pseudo-single-crystal K xFe 2-ySe 2

    DOE PAGES

    Liu, Yong; Xing, Qingfeng; Straszheim, Warren E.; ...

    2016-02-11

    Here, we report how the superconducting phase forms in pseudo-single-crystal K xFe 2-ySe 2. In situ scanning electron microscopy (SEM) observation reveals that, as an order-disorder transition occurs, on cooling, most of the high-temperature iron-vacancy-disordered phase gradually changes into the iron-vacancy-ordered phase whereas a small quantity of the high-temperature phase retains its structure and aggregates to the stripes with more iron concentration but less potassium concentration compared to the iron-vacancy-ordered phase. The stripes that are generally recognized as the superconducting phase are actually formed as a remnant of the high-temperature phase with a compositional change after an “imperfect” order-disorder transition.more » It should be emphasized that the phase separation in pseudo-single-crystal K xFe 2-ySe 2 is caused by the iron-vacancy order-disorder transition. The shrinkage of the high-temperature phase and the expansion of the newly created iron-vacancy-ordered phase during the phase separation rule out the mechanism of spinodal decomposition proposed in an early report [Wang et al, Phys. Rev. B 91, 064513 (2015)]. Since the formation of the superconducting phase relies on the occurrence of the iron-vacancy order-disorder transition, it is impossible to synthesize a pure superconducting phase by a conventional solid state reaction or melt growth. By focused ion beam-scanning electron microscopy, we further demonstrate that the superconducting phase forms a contiguous three-dimensional architecture composed of parallelepipeds that have a coherent orientation relationship with the iron-vacancy-ordered phase.« less

  20. First-Order or Second-Order Kinetics? A Monte Carlo Answer

    ERIC Educational Resources Information Center

    Tellinghuisen, Joel

    2005-01-01

    Monte Carlo computational experiments reveal that the ability to discriminate between first- and second-order kinetics from least-squares analysis of time-dependent concentration data is better than implied in earlier discussions of the problem. The problem is rendered as simple as possible by assuming that the order must be either 1 or 2 and that…

  1. Distributions of Autocorrelated First-Order Kinetic Outcomes: Illness Severity

    PubMed Central

    Englehardt, James D.

    2015-01-01

    Many complex systems produce outcomes having recurring, power law-like distributions over wide ranges. However, the form necessarily breaks down at extremes, whereas the Weibull distribution has been demonstrated over the full observed range. Here the Weibull distribution is derived as the asymptotic distribution of generalized first-order kinetic processes, with convergence driven by autocorrelation, and entropy maximization subject to finite positive mean, of the incremental compounding rates. Process increments represent multiplicative causes. In particular, illness severities are modeled as such, occurring in proportion to products of, e.g., chronic toxicant fractions passed by organs along a pathway, or rates of interacting oncogenic mutations. The Weibull form is also argued theoretically and by simulation to be robust to the onset of saturation kinetics. The Weibull exponential parameter is shown to indicate the number and widths of the first-order compounding increments, the extent of rate autocorrelation, and the degree to which process increments are distributed exponential. In contrast with the Gaussian result in linear independent systems, the form is driven not by independence and multiplicity of process increments, but by increment autocorrelation and entropy. In some physical systems the form may be attracting, due to multiplicative evolution of outcome magnitudes towards extreme values potentially much larger and smaller than control mechanisms can contain. The Weibull distribution is demonstrated in preference to the lognormal and Pareto I for illness severities versus (a) toxicokinetic models, (b) biologically-based network models, (c) scholastic and psychological test score data for children with prenatal mercury exposure, and (d) time-to-tumor data of the ED01 study. PMID:26061263

  2. Initiation reactions in acetylene pyrolysis

    DOE PAGES

    Zador, Judit; Fellows, Madison D.; Miller, James A.

    2017-05-10

    In gas-phase combustion systems the interest in acetylene stems largely from its role in molecular weight growth processes. The consensus is that above 1500 K acetylene pyrolysis starts mainly with the homolytic fission of the C–H bond creating an ethynyl radical and an H atom. However, below ~1500 K this reaction is too slow to initiate the chain reaction. It has been hypothesized that instead of dissociation, self-reaction initiates this process. Nevertheless, rigorous theoretical or direct experimental evidence is lacking, to an extent that even the molecular mechanism is debated in the literature. In this work we use rigorous abmore » initio transition-state theory master equation methods to calculate pressure- and temperature-dependent rate coefficients for the association of two acetylene molecules and related reactions. We establish the role of vinylidene, the high-energy isomer of acetylene in this process, compare our results with available experimental data, and assess the competition between the first-order and second-order initiation steps. As a result, we also show the effect of the rapid isomerization among the participating wells and highlight the need for time-scale analysis when phenomenological rate coefficients are compared to observed time scales in certain experiments.« less

  3. Dissolution rate enhancement of gliclazide by ordered mixing.

    PubMed

    Saharan, Vikas A; Choudhury, Pratim K

    2011-09-01

    The poorly water soluble antidiabetic drug gliclazide was selected to study the effect of excipients on dissolution rate enhancement. Ordered mixtures of micronized gliclazide with lactose, mannitol, sorbitol, maltitol and sodium chloride were prepared by manual shaking of glass vials containing the drug and excipient(s). Different water soluble excipients, addition of surfactant and superdisintegrant, drug concentration and carrier particle size influenced the dissolution rate of the drug. Dissolution rate studies of the prepared ordered mixtures revealed an increase in drug dissolution with all water soluble excipients. The order of dissolution rate improvement for gliclazide was mannitol > lactose > maltitol > sorbitol > sodium chloride. Composite granules of the particle size range 355-710 μm were superior in increasing the drug dissolution rate from ordered mixtures. Reducing the carrier particle size decreased the dissolution rate of the drug as well as the increase in drug concentration. Kinetic modeling of drug release data fitted best the Hixson-Crowell model, which indicates that all the ordered mixture formulations followed the cube root law fairly well.

  4. Rate of reaction of OH with HNO3

    NASA Technical Reports Server (NTRS)

    Wine, P. H.; Ravishankara, A. R.; Kreutter, N. M.; Shah, R. C.; Nicovich, J. M.; Thompson, R. L.; Wuebbles, D. J.

    1981-01-01

    Measurements of the kinetics of the reaction of OH with HNO3, and mechanisms of HNO3 removal from the stratosphere, are reported. Bimolecular rate constants were determined at temperatures between 224 and 366 K by monitoring the concentrations of OH radicals produced by HNO3 photolysis and HNO3 according to their resonance fluorescence and 184.9-nm absorption, respectively. The rate constant measured at 298 K is found to be somewhat faster than previously accepted values, with a negative temperature dependence. Calculations of a one-dimensional transport-kinetic atmospheric model on the basis of the new rate constant indicate reductions in O3 depletion due to chlorofluoromethane release and NOx injection, of magnitudes dependent on the nature of the reaction products.

  5. Pseudo-pseudo Meigs' syndrome in a patient with systemic lupus erythematosus.

    PubMed

    Dalvi, S R; Yildirim, R; Santoriello, D; Belmont, H M

    2012-11-01

    Pseudo-pseudo Meigs' syndrome (PPMS) is a rare manifestation of patients with systemic lupus erythematosus (SLE), defined by the presence of ascites, pleural effusions and an elevated CA-125 level. We describe a patient with longstanding lupus who presented with localized lymphadenopathy and subsequently developed massive chylous ascites with marked hypoalbuminemia. A brief historical overview of Meigs' syndrome and related entities is presented, along with a discussion of the differential diagnosis of hypoalbuminemia and ascites in an SLE patient. In addition, we speculate on the optimal therapeutic intervention in such a patient.

  6. Theoretical derivation for reaction rate constants of H abstraction from thiophenol by the H/O radical pool

    PubMed Central

    Batiha, Marwan; Altarawneh, Mohammednoor; Al-Harahsheh, Mohammad; Altarawneh, Ibrahem; Rawadieh, Saleh

    2011-01-01

    Reaction and activation energy barriers are calculated for the H abstraction reactions (C6H5SH + X• → C6H5S + XH, X = H, OH and HO2) at the BB1K/GTLarge level of theory. The corresponding reactions with H2S and CH3SH are also investigated using the G3B3 and CBS-QB3 methods in order to demonstrate the accuracy of BB1K functional in finding activation barriers for hydrogen atom transfer reactions. Arrhenius parameters for the title reactions are fitted in the temperature range of 300 K–2000 K. The calculated reaction enthalpies are in good agreement with their corresponding experimental reaction enthalpies. It is found that H abstraction by OH radicals from the thiophenol molecule proceed in a much slower rate in reference to the analogous phenol molecule. ΔfH298o of thiophenoxy radical is calculated to be 63.3 kcal/mol. Kinetic parameters presented herein should be useful in describing the decomposition rate of thiophenol; i.e., one of the major aromatic sulfur carriers, at high temperatures. PMID:22485200

  7. Graphene oxide as a photocatalytic material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krishnamoorthy, Karthikeyan; Mohan, Rajneesh; Kim, S.-J.

    2011-06-13

    The photocatalytic characteristics of graphene oxide (GO) nanostructures synthesized by modified Hummer's method were investigated by measuring reduction rate of resazurin (RZ) into resorufin (RF) as a function of UV irradiation time. The progress of the photocatalytic reaction was monitored by change in color from blue (RZ) into pink (RF) followed by absorption spectra. It exhibited excellent photocatalytic activity, leading to the reduction of RZ in UV irradiation. The fitting of absorbance maximum versus time suggests that the reduction of RZ follow the pseudo first-order reaction kinetics. These results indicate that GO have great potential for use as a photocatalyst.

  8. Study of reversible magnetization in FeCoNi alloy nanowires with different diameters by first order reversal curve (FORC) diagrams

    NASA Astrophysics Data System (ADS)

    Samanifar, S.; Kashi, M. Almasi; Ramazani, A.

    2018-05-01

    Magnetic nanowires electrodeposited into solid templates are of high interest due to their tunable properties which are required for magnetic recording media and spintronic devices. Here, highly ordered arrays of FeCoNi NWs with varied diameters (between 60 and 150 nm) were fabricated into nanopores of hard-anodized aluminum oxide templates using pulsed ac electrodeposition technique. X-ray diffraction patterns indicated the formation of FeCoNi NWs with fcc FeNi and bcc FeCo alloy phases, being highly textured along the bcc [110] direction. Magnetic properties were studied by hysteresis loop measurements at room temperature and they showed reductions in coercivity and squareness values by increasing diameter. First-order reversal curve measurements revealed that, with increasing diameter from 60 to 150 nm, besides a transition from a single domain (SD) state to a pseudo SD state, an increase in the reversible magnetization component of the NWs from 11% to 24% occurred.

  9. Assessment of the pseudo-tracking approach for the calculation of material acceleration and pressure fields from time-resolved PIV: part I. Error propagation

    NASA Astrophysics Data System (ADS)

    van Gent, P. L.; Schrijer, F. F. J.; van Oudheusden, B. W.

    2018-04-01

    Pseudo-tracking refers to the construction of imaginary particle paths from PIV velocity fields and the subsequent estimation of the particle (material) acceleration. In view of the variety of existing and possible alternative ways to perform the pseudo-tracking method, it is not straightforward to select a suitable combination of numerical procedures for its implementation. To address this situation, this paper extends the theoretical framework for the approach. The developed theory is verified by applying various implementations of pseudo-tracking to a simulated PIV experiment. The findings of the investigations allow us to formulate the following insights and practical recommendations: (1) the velocity errors along the imaginary particle track are primarily a function of velocity measurement errors and spatial velocity gradients; (2) the particle path may best be calculated with second-order accurate numerical procedures while ensuring that the CFL condition is met; (3) least-square fitting of a first-order polynomial is a suitable method to estimate the material acceleration from the track; and (4) a suitable track length may be selected on the basis of the variation in material acceleration with track length.

  10. First-order metal-insulator transitions in vanadates from first principles

    NASA Astrophysics Data System (ADS)

    Kumar, Anil; Rabe, Karin

    2013-03-01

    Materials that exhibit first-order metal-insulator transitions, with the accompanying abrupt change in the conductivity, have potential applications as switches in future electronic devices. Identification of materials and exploration of the atomic-scale mechanisms for switching between the two electronic states is a focus of current research. In this work, we search for first-order metal-insulator transitions in transition metal compounds, with a particular focus on d1 and d2 systems, by using first principles calculations to screen for an alternative low-energy state having not only a electronic character opposite to that of the ground state, but a distinct structure and/or magnetic ordering which would permit switching by an applied field or stress. We will present the results of our investigation of the perovskite compounds SrVO3, LaVO3, CaVO3, YVO3, LaTiO3 and related layered phase, including superlattices and Ruddlesden-Popper phases. While the pure compounds do not satisfy the search criteria, the layered phases show promising results.

  11. Hydrolysis and nucleophilic substitution of model and ultimate carcinogens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Helmick, J.S.

    1992-01-01

    The hydrolysis reaction of the Model Carcinogen O-pivaloyl-N-(4-chlorophenyl)hydroxylamine in aqueous buffer (pH 7.0-10.0) proceeds by was of a nitrenium ion intermediate. The products formed from this process are predominately 2,4-dichloroaniline, and 2-hydroxy-4-chloro-pivalanilide. At pH 10-13 the rate becomes dependent upon hydroxide. The product that is formed is 4-chlorophenylhydroxylamine. 4-Chlorophenyl-hydroxylamine is formed by basic ester hydrolysis determined by an [sup 18]O GC-MS experiment. The reaction of O-pivaloyl-N-(4-chlorophenyl)hydroxylamine in an aqueous diethylamine (pH 11.3) buffer gave 4-chlorophenyl-N,N-diethylhydrazine as the substitution product in a 16% yield. The reaction of O-pivaloyl-N-(4-methylphenyl)hydroxylamine with diethylamine gave a 1% yield of the hydrazine product. The reaction ofmore » N,N-dimethylanline and aniline with ring-substituted O-pivaloyl-N-arylhydroxylamines in MeOH generates products of nucleophilic attack on the nitrogen of the hydroxylamine derivative. The hydrolysis of the ultimate carcinogen N-(sulfonatooxy)-N-4-aminobiphenyl proceeds by two consecutive pseudo-first-order processes and generates predominately a product of nucleophilic attack by chloride ion at the ortho position of the aromatic ring. A labile intermediate identified as N-acetypl-4-hydroxy-4-phenyl-2,5-cyclohexadienone imine has been detected by NMR. This intermediate rearranges to form 4-hydroxy-3-phenylacetanilide. The hydrolysis of N-benzoyl-4-hydroxy-4-hydroxy-4-phenyl-2,5-cyclohexadienone imine proceeds by way of two consecutive pseudo-first-order processes. The hydrolysis of N-benzoyl-4-methoxy-4-phenyl-2,5-cyclohexadienone imine also proceeds by two consecutive pseudo-first-order processes. Spectroscopic evidence of two diastereomeric intermediates formed from the hydrolysis of the N-benzoyl imines were tentatively identified as N-benzoyl-N-hydroxy-4-hydroxy-4-phenyl-2,5-cyclohexadienone imine.« less

  12. Rate of antioxidant degradation and color variations in dehydrated apples as related to water activity.

    PubMed

    Lavelli, Vera; Vantaggi, Claudia

    2009-06-10

    Dehydrated apples were studied to evaluate the effects of water activity on the stability of their antioxidants and color. Apples were freeze-dried, ground, then equilibrated, and stored at eight water activity levels, ranging from 0.058 to 0.747, at 40 degrees C. Their contents of hydroxycinnamic acids, dihydrochalcones, catechin, epicatechin, polymeric flavan-3-ols, and hydroxymethylfurfural, their antioxidant activity values, and their Hunter colorimetric parameters were analyzed at different storage times. Antioxidant degradation followed pseudo-first-order kinetics and was accelerated by increasing the water activity. The order of antioxidant stability in the products at water activity levels below 0.316 was catechin, epicatechin, and ascorbic acid < total procyanidins < dihydrochalcones and p-coumaric acid < chlorogenic acid; however, in the products at water activity levels above 0.316, the degradation of all antioxidants was very fast. The hydroxymethylfurfural formation rate increased exponentially during storage, especially at high water activity levels. The antioxidant activity of the dehydrated apples decreased during storage, consistent with antioxidant loss. The variations of the colorimetric parameters, namely, lightness (L*), redness (a*), and yellowness (b*), followed pseudo-zero-order kinetics and were accelerated by increasing water activity. All analytical indices indicated that the dehydrated apples were stable at water activity levels below 0.316, with the degradation rate accelerating upon exposure to higher relative humidities. Above 0.316, a small increase in water activity of the product would sharply increase the degradation rate constants for both antioxidant and color variations.

  13. The implementation of thermal image visualization by HDL based on pseudo-color

    NASA Astrophysics Data System (ADS)

    Zhu, Yong; Zhang, JiangLing

    2004-11-01

    The pseudo-color method which maps the sampled data to intuitive perception colors is a kind of powerful visualization way. And the all-around system of pseudo-color visualization, which includes the primary principle, model and HDL (Hardware Description Language) implementation for the thermal images, is expatiated on in the paper. The thermal images whose signal is modulated as video reflect the temperature distribution of measured object, so they have the speciality of mass and real-time. The solution to the intractable problem is as follows: First, the reasonable system, i.e. the combining of global pseudo-color visualization and local special area accurate measure, muse be adopted. Then, the HDL pseudo-color algorithms in SoC (System on Chip) carry out the system to ensure the real-time. Finally, the key HDL algorithms for direct gray levels connection coding, proportional gray levels map coding and enhanced gray levels map coding are presented, and its simulation results are showed. The pseudo-color visualization of thermal images implemented by HDL in the paper has effective application in the aspect of electric power equipment test and medical health diagnosis.

  14. Kinetics of removal of carbon dioxide by aqueous solutions of N,N-diethylethanolamine and piperazine.

    PubMed

    Konduru, Prashanti B; Vaidya, Prakash D; Kenig, Eugeny Y

    2010-03-15

    N,N-Diethylethanolamine (DEEA) is a very promising absorbent for CO(2) removal from gaseous streams, as it can be prepared from renewable resources. Aqueous mixtures of DEEA and piperazine (PZ) are attractive for the enhancement of CO(2) capture, due to the high CO(2) loading capacity of DEEA and high reactivity of PZ. In the present work, for the first time, the equilibrium and kinetic characteristics of the CO(2) reaction with such mixtures were considered. Kinetic data were obtained experimentally, by using a stirred cell reactor. These data were interpreted using a homogeneous activation mechanism, by which the investigated reaction was considered as a reaction between CO(2) and DEEA in parallel with the reaction of CO(2) with PZ. It is found that, in the studied range of temperatures, 298-308 K, and overall amine concentrations, 2.1-2.5 kmol/m(3), this reaction system belongs to the fast pseudo-first-order reaction regime systems. The second-order rate constant for the CO0 reaction with PZ was determined from the absorption rate measurements in the activated DEEA solutions, and its value at 303 K was found to be 24,450 m(3)/(kmol s).

  15. Pseudo-Meigs’ syndrome secondary to metachronous ovarian metastases from transverse colon cancer

    PubMed Central

    Kyo, Kennoki; Maema, Atsushi; Shirakawa, Motoaki; Nakamura, Toshio; Koda, Kenji; Yokoyama, Hidetaro

    2016-01-01

    Pseudo-Meigs’ syndrome associated with colorectal cancer is extremely rare. We report here a case of pseudo-Meigs’ syndrome secondary to metachronous ovarian metastases from colon cancer. A 65-year-old female with a history of surgery for transverse colon cancer and peritoneal dissemination suffered from metachronous ovarian metastases during treatment with systemic chemotherapy. At first, neither ascites nor pleural effusion was observed, but she later complained of progressive abdominal distention and dyspnea caused by rapidly increasing ascites and pleural effusion and rapidly enlarging ovarian metastases. Abdominocenteses were repeated, and cytological examinations of the fluids were all negative for malignant cells. We suspected pseudo-Meigs’ syndrome, and bilateral oophorectomies were performed after thorough informed consent. The patient’s postoperative condition improved rapidly after surgery. We conclude that pseudo-Meigs’ syndrome should be included in the differential diagnosis of massive or rapidly increasing ascites and pleural effusion associated with large or rapidly enlarging ovarian tumors. PMID:27182170

  16. Insights into solar photo-Fenton reaction parameters in the oxidation of a sanitary landfill leachate at lab-scale.

    PubMed

    Silva, Tânia F C V; Ferreira, Rui; Soares, Petrick A; Manenti, Diego R; Fonseca, Amélia; Saraiva, Isabel; Boaventura, Rui A R; Vilar, Vítor J P

    2015-12-01

    This work evaluates the effect of the main photo-Fenton (PF) reaction variables on the treatment of a sanitary landfill leachate collected at the outlet of a leachate treatment plant, which includes aerated lagooning followed by aerated activated sludge and a final coagulation-flocculation step. The PF experiments were performed in a lab-scale compound parabolic collector (CPC) photoreactor using artificial solar radiation. The photocatalytic reaction rate was determined while varying the total dissolved iron concentration (20-100 mg Fe(2+)/L), solution pH (2.0-3.6), operating temperature (10-50 °C), type of acid used for acidification (H2SO4, HCl and H2SO4 + HCl) and UV irradiance (22-68 W/m(2)). This work also tries to elucidate the role of ferric hydroxides, ferric sulphate and ferric chloride species, by taking advantage of ferric speciation diagrams, in the efficiency of the PF reaction when applied to leachate oxidation. The molar fraction of the most photoactive ferric species, FeOH(2+), was linearly correlated with the PF pseudo-first order kinetic constants obtained at different solution pH and temperature values. Ferric ion speciation diagrams also showed that the presence of high amounts of chloride ions negatively affected the PF reaction, due to the decrease of ferric ions solubility and scavenging of hydroxyl radicals for chlorine radical formation. The increment of the PF reaction rates with temperature was mainly associated with the increase of the molar fraction of FeOH(2+). The optimal parameters for the photo-Fenton reaction were: pH = 2.8 (acidification agent: H2SO4); T = 30 °C; [Fe(2+)] = 60 mg/L and UV irradiance = 44 WUV/m(2), achieving 72% mineralization after 25 kJUV/L of accumulated UV energy and 149 mM of H2O2 consumed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Investigating local network interactions underlying first- and second-order processing.

    PubMed

    Ellemberg, Dave; Allen, Harriet A; Hess, Robert F

    2004-01-01

    We compared the spatial lateral interactions for first-order cues to those for second-order cues, and investigated spatial interactions between these two types of cues. We measured the apparent modulation depth of a target Gabor at fixation, in the presence and the absence of horizontally flanking Gabors. The Gabors' gratings were either added to (first-order) or multiplied with (second-order) binary 2-D noise. Apparent "contrast" or modulation depth (i.e., the perceived difference between the high and low luminance regions for the first-order stimulus, or between the high and low contrast regions for the second-order stimulus) was measured with a modulation depth-matching paradigm. For each observer, the first- and second-order Gabors were equated for apparent modulation depth without the flankers. Our results indicate that at the smallest inter-element spacing, the perceived reduction in modulation depth is significantly smaller for the second-order than for the first-order stimuli. Further, lateral interactions operate over shorter distances and the spatial frequency and orientation tuning of the suppression effect are broader for second- than first-order stimuli. Finally, first- and second-order information interact in an asymmetrical fashion; second-order flankers do not reduce the apparent modulation depth of the first-order target, whilst first-order flankers reduce the apparent modulation depth of the second-order target.

  18. Malonic acid concentration as a control parameter in the kinetic analysis of the Belousov-Zhabotinsky reaction under batch conditions.

    PubMed

    Blagojević, Slavica M; Anić, Slobodan R; Cupić, Zeljko D; Pejić, Natasa D; Kolar-Anić, Ljiljana Z

    2008-11-28

    The influence of the initial malonic acid concentration [MA]0 (8.00 x 10(-3) < or = [MA]0 < or = 4.30 x 10(-2) mol dm(-3)) in the presence of bromate (6.20 x 10(-2) mol dm(-3)), bromide (1.50 x 10(-5) mol dm(-3)), sulfuric acid (1.00 mol dm(-3)) and cerium sulfate (2.50 x 10(-3) mol dm(-3)) on the dynamics and the kinetics of the Belousov-Zhabotinsky (BZ) reactions was examined under batch conditions at 30.0 degrees C. The kinetics of the BZ reaction was analyzed by the earlier proposed method convenient for the examinations of the oscillatory reactions. In the defined region of parameters where oscillograms with only large-amplitude relaxation oscillations appeared, the pseudo-first order of the overall malonic acid decomposition with a corresponding rate constant of 2.14 x 10(-2) min(-1) was established. The numerical results on the dynamics and kinetics of the BZ reaction, carried out by the known skeleton model including the Br2O species, were in good agreement with the experimental ones. The already found saddle node infinite period (SNIPER) bifurcation point in transition from a stable quasi-steady state to periodic orbits and vice versa is confirmed by both experimental and numerical investigations of the system under consideration. Namely, the large-amplitude relaxation oscillations with increasing periods between oscillations in approaching the bifurcation points at the beginning and the end of the oscillatory domain, together with excitability of the stable quasi-steady states in their vicinity are obtained.

  19. A comparison of the Cray-2 performance before and after the installation of memory pseudo-banking

    NASA Technical Reports Server (NTRS)

    Schmickley, Ronald D.; Bailey, David H.

    1987-01-01

    A suite of 13 large Fortran benchmark codes were run on a Cray-2 configured with memory pseudo-banking circuits, and floating point operation rates were measured for each under a variety of system load configurations. These were compared with similar flop measurements taken on the same system before installation of the pseudo-banking. A useful memory access efficiency parameter was defined and calculated for both sets of performance rates, allowing a crude quantitative measure of the improvement in efficiency due to pseudo-banking. Programs were categorized as either highly scalar (S) or highly vectorized (V) and either memory-intensive or register-intensive, giving 4 categories: S-memory, S-register, V-memory, and V-register. Using flop rates as a simple quantifier of these 4 categories, a scatter plot of efficiency gain vs Mflops roughly illustrates the improvement in floating point processing speed due to pseudo-banking. On the Cray-2 system tested this improvement ranged from 1 percent for S-memory codes to about 12 percent for V-memory codes. No significant gains were made for V-register codes, which was to be expected.

  20. Up-Scaling Geochemical Reaction Rates for Carbon Dioxide (CO2) in Deep Saline Aquifers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters, Catherine A

    2013-02-28

    Geochemical reactions in deep subsurface environments are complicated by the consolidated nature and mineralogical complexity of sedimentary rocks. Understanding the kinetics of these reactions is critical to our ability to make long-term predictions about subsurface processes such as pH buffering, alteration in rock structure, permeability changes, and formation of secondary precipitates. In this project, we used a combination of experiments and numerical simulation to bridge the gap between our knowledge of these reactions at the lab scale and rates that are meaningful for modeling reactive transport at core scales. The focus is on acid-driven mineral dissolution, which is specifically relevantmore » in the context of CO2-water-rock interactions in geological sequestration of carbon dioxide. The project led to major findings in three areas. First, we modeled reactive transport in pore-network systems to investigate scaling effects in geochemical reaction rates. We found significant scaling effects when CO2 concentrations are high and reaction rates are fast. These findings indicate that the increased acidity associated with geological sequestration can generate conditions for which proper scaling tools are yet to be developed. Second, we used mathematical modeling to investigate the extent to which SO2, if co-injected with CO2, would acidify formation brines. We found that there exist realistic conditions in which the impact on brine acidity will be limited due to diffusion rate-limited SO2 dissolution from the CO2 phase, and the subsequent pH shift may also be limited by the lack of availability of oxidants to produce sulfuric acid. Third, for three Viking sandstones (Alberta sedimentary basin, Canada), we employed backscattered electron microscopy and energy dispersive X-ray spectroscopy to statistically characterize mineral contact with pore space. We determined that for reactive minerals in sedimentary consolidated rocks, abundance alone is not a good

  1. Quinone-induced protein modifications: Kinetic preference for reaction of 1,2-benzoquinones with thiol groups in proteins.

    PubMed

    Li, Yuting; Jongberg, Sisse; Andersen, Mogens L; Davies, Michael J; Lund, Marianne N

    2016-08-01

    Oxidation of polyphenols to quinones serves as an antioxidative mechanism, but the resulting quinones may induce damage to proteins as they react through a Michael addition with nucleophilic groups, such as thiols and amines to give protein adducts. In this study, rate constants for the reaction of 4-methylbenzoquinone (4MBQ) with proteins, thiol and amine compounds were determined under pseudo first-order conditions by UV-vis stopped-flow spectrophotometry. The chemical structures of the adducts were identified by LC-ESI-MS/MS. Proteins with free thiols were rapidly modified by 4MBQ with apparent second order rate constants, k2 of (3.1±0.2)×10(4)M(-1)s(-1) for bovine serum albumin (BSA) and (4.8±0.2)×10(3)M(-1)s(-1) for human serum albumin at pH 7.0. These values are at least 12-fold greater than that for α-lactalbumin (4.0±0.2)×10(2)M(-1)s(-1), which does not contain any free thiols. Reaction of Cys-34 of BSA with N-ethylmaleimide reduced the thiol concentration by ~59%, which resulted in a decrease in k2 by a similar percentage, consistent with rapid adduction at Cys-34. Reaction of 4MBQ with amines (Gly, Nα-acetyl-l-Lys, Nε-acetyl-l-Lys and l-Lys) and the guanidine group of Nα-acetyl-l-Arg was at least 5×10(5) slower than with low-molecular-mass thiols (l-Cys, Nα-acetyl-l-Cys, glutathione). The thiol-quinone interactions formed colorless thiol-phenol products via an intermediate adduct, while the amine-quinone interactions generated colored amine-quinone products that require oxygen involvement. These data provide strong evidence for rapid modification of protein thiols by quinone species which may be of considerable significance for biological and food systems. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Formation kinetics of gemfibrozil chlorination reaction products: analysis and application.

    PubMed

    Krkosek, Wendy H; Peldszus, Sigrid; Huck, Peter M; Gagnon, Graham A

    2014-07-01

    Aqueous chlorination kinetics of the lipid regulator gemfibrozil and the formation of reaction products were investigated in deionized water over the pH range 3 to 9, and in two wastewater matrices. Chlorine oxidation of gemfibrozil was found to be highly dependent on pH. No statistically significant degradation of gemfibrozil was observed at pH values greater than 7. Gemfibrozil oxidation between pH 4 and 7 was best represented by first order kinetics. At pH 3, formation of three reaction products was observed. 4'-C1Gem was the only reaction product formed from pH 4-7 and was modeled with zero order kinetics. Chlorine oxidation of gemfibrozil in two wastewater matrices followed second order kinetics. 4'-C1Gem was only formed in wastewater with pH below 7. Deionized water rate kinetic models were applied to two wastewater effluents with gemfibrozil concentrations reported in literature in order to calculate potential mass loading rates of 4'C1Gem to the receiving water.

  3. Maintaining heterokaryosis in pseudo-homothallic fungi

    PubMed Central

    Grognet, Pierre; Silar, Philippe

    2015-01-01

    Among all the strategies displayed by fungi to reproduce and propagate, some species have adopted a peculiar behavior called pseudo-homothallism. Pseudo-homothallic fungi are true heterothallics, i.e., they need 2 genetically-compatible partners to mate, but they produce self-fertile mycelium in which the 2 different nuclei carrying the compatible mating types are present. This lifestyle not only enables the fungus to reproduce without finding a compatible partner, but also to cross with any mate it may encounter. However, to be fully functional, pseudo-homothallism requires maintaining heterokaryosis at every stage of the life cycle. We recently showed that neither the structure of the mating-type locus nor hybrid-enhancing effect due to the presence of the 2 mating types accounts for the maintenance of heterokaryosis in the pseudo-homothallic fungus P. anserina. In this addendum, we summarize the mechanisms creating heterokaryosis in P. anserina and 2 other well-known pseudo-homothallic fungi, Neurospora tetrasperma and Agaricus bisporus. We also discuss mechanisms potentially involved in maintaining heterokaryosis in these 3 species. PMID:26479494

  4. Maintaining heterokaryosis in pseudo-homothallic fungi.

    PubMed

    Grognet, Pierre; Silar, Philippe

    2015-01-01

    Among all the strategies displayed by fungi to reproduce and propagate, some species have adopted a peculiar behavior called pseudo-homothallism. Pseudo-homothallic fungi are true heterothallics, i.e., they need 2 genetically-compatible partners to mate, but they produce self-fertile mycelium in which the 2 different nuclei carrying the compatible mating types are present. This lifestyle not only enables the fungus to reproduce without finding a compatible partner, but also to cross with any mate it may encounter. However, to be fully functional, pseudo-homothallism requires maintaining heterokaryosis at every stage of the life cycle. We recently showed that neither the structure of the mating-type locus nor hybrid-enhancing effect due to the presence of the 2 mating types accounts for the maintenance of heterokaryosis in the pseudo-homothallic fungus P. anserina. In this addendum, we summarize the mechanisms creating heterokaryosis in P. anserina and 2 other well-known pseudo-homothallic fungi, Neurospora tetrasperma and Agaricus bisporus. We also discuss mechanisms potentially involved in maintaining heterokaryosis in these 3 species.

  5. Multi-Rate Digital Control Systems with Simulation Applications. Volume I. Technical Report

    DTIC Science & Technology

    1980-09-01

    108 45. A Pseudo Differentiation Configuration ........................ 110 46. Bode Plot, Pseudo Differentiation ...symbolically in Fig. 7a and for 11 x 2 in Fig. 7b. (* notation on x2is used here to indicate an "unconven- tional" sampling operation.) 115 TXi ,A! T...the general multi-rate/multiple-order open-loop system of Fig. 21 have a sine wave input. In Fig 2L, = (GIRj) (114) CT/N = [GGRt]T/N ( 115 ) where a, B

  6. [Pseudo-Bartter syndrome--2 cases].

    PubMed

    Jóźwiak, Lucyna; Jaroszyński, Andrzej; Baranowicz-Gaszczyk, Iwona; Borowicz, Ewa; Ksiazek, Andrzej

    2010-01-01

    Bartter syndrome represents the group of renal disturbances characterized by hypokaliemia and metabolic alkalosis. Some diseases could display hypokalemic metabolic alkalosis without primary tubular dysfunction. These disorders are called pseudo-Bartter syndrome. In this paper we present 2 cases of pseudo-Bartter syndrome related among to other things to overuse of diuretic drugs.

  7. An effective rate equation approach to reaction kinetics in small volumes: theory and application to biochemical reactions in nonequilibrium steady-state conditions.

    PubMed

    Grima, R

    2010-07-21

    Chemical master equations provide a mathematical description of stochastic reaction kinetics in well-mixed conditions. They are a valid description over length scales that are larger than the reactive mean free path and thus describe kinetics in compartments of mesoscopic and macroscopic dimensions. The trajectories of the stochastic chemical processes described by the master equation can be ensemble-averaged to obtain the average number density of chemical species, i.e., the true concentration, at any spatial scale of interest. For macroscopic volumes, the true concentration is very well approximated by the solution of the corresponding deterministic and macroscopic rate equations, i.e., the macroscopic concentration. However, this equivalence breaks down for mesoscopic volumes. These deviations are particularly significant for open systems and cannot be calculated via the Fokker-Planck or linear-noise approximations of the master equation. We utilize the system-size expansion including terms of the order of Omega(-1/2) to derive a set of differential equations whose solution approximates the true concentration as given by the master equation. These equations are valid in any open or closed chemical reaction network and at both the mesoscopic and macroscopic scales. In the limit of large volumes, the effective mesoscopic rate equations become precisely equal to the conventional macroscopic rate equations. We compare the three formalisms of effective mesoscopic rate equations, conventional rate equations, and chemical master equations by applying them to several biochemical reaction systems (homodimeric and heterodimeric protein-protein interactions, series of sequential enzyme reactions, and positive feedback loops) in nonequilibrium steady-state conditions. In all cases, we find that the effective mesoscopic rate equations can predict very well the true concentration of a chemical species. This provides a useful method by which one can quickly determine the

  8. On pseudo-spectral time discretizations in summation-by-parts form

    NASA Astrophysics Data System (ADS)

    Ruggiu, Andrea A.; Nordström, Jan

    2018-05-01

    Fully-implicit discrete formulations in summation-by-parts form for initial-boundary value problems must be invertible in order to provide well functioning procedures. We prove that, under mild assumptions, pseudo-spectral collocation methods for the time derivative lead to invertible discrete systems when energy-stable spatial discretizations are used.

  9. Study on US/O3 mechanism in p-chlorophenol decomposition

    PubMed Central

    Xu, Xian-wen; Xu, Xin-hua; Shi, Hui-xiang; Wang, Da-hui

    2005-01-01

    Study on the effects of sonolysis, ozonolysis and US/O3 system on the decomposition of p-chlorophenol in aqueous solutions indicated that in the cases of US/O3 system, individual ozonolysis and sonolysis, the decomposition rate of p-chlorophenol reached 78.78%, 56.20%, 2.79% after a 16-min reaction while its CODcr (chemical oxygen demand) removal rate was 97.02%, 62.17%, 3.67% after a 120-min reaction. The decomposition reaction of p-chlorophenol follows pseudo-first-order kinetics. The enhancement factors of p-chlorophenol and its CODcr under US/O3 system reached 63% and 237% respectively. The main intermediates during the decomposition include catechol, hydroquinone, p-benzoquinone, phenol, fumaric acid, maleic acid, oxalic acid and formic acid. The decomposition mechanism of p-chlorophenol was also discussed. PMID:15909343

  10. Measurement of the 2H(7Be, 6Li)3He reaction rate and its contribution to the primordial lithium abundance

    NASA Astrophysics Data System (ADS)

    Li, Er-Tao; Li, Zhi-Hong; Yan, Sheng-Quan; Su, Jun; Guo, Bing; Li, Yun-Ju; Wang, You-Bao; Lian, Gang; Zeng, Sheng; Chen, Si-Zhe; Ma, Shao-Bo; Li, Xiang-Qing; He, Cao; Sun, Hui-Bin; Liu, Wei-Ping

    2018-04-01

    In the standard Big Bang nucleosynthesis (SBBN) model, the lithium puzzle has attracted intense interest over the past few decades, but still has not been solved. Conventionally, the approach is to include more reactions flowing into or out of lithium, and study the potential effects of those reactions which were not previously considered. 7Be(d, 3He)6Li is a reaction that not only produces 6Li but also destroys 7Be, which decays to 7Li, thereby affecting 7Li indirectly. Therefore, this reaction could alleviate the lithium discrepancy if its reaction rate is sufficiently high. However, there is not much information available about the 7Be(d, 3He)6Li reaction rate. In this work, the angular distributions of the 7Be(d, 3He)6Li reaction are measured at the center of mass energies E cm = 4.0 MeV and 6.7 MeV with secondary 7Be beams for the first time. The excitation function of the 7Be(d, 3He)6Li reaction is first calculated with the computer code TALYS and then normalized to the experimental data, then its reaction rate is deduced. A SBBN network calculation is performed to investigate its influence on the 6Li and 7Li abundances. The results show that the 7Be(d, 3He)6Li reaction has a minimal effect on 6Li and 7Li because of its small reaction rate. Therefore, the 7Be(d, 3He)6Li reaction is ruled out by this experiment as a means of alleviating the lithium discrepancy. Supported by National Natural Science Foundation of China (11375269, 11505117, 11490560, 11475264, 11321064), Natural Science Foundation of Guangdong Province (2015A030310012), 973 program of China (2013CB834406) and National key Research and Development Province (2016YFA0400502)

  11. Generation of Earth's first-order biodiversity pattern.

    PubMed

    Krug, Andrew Z; Jablonski, David; Valentine, James W; Roy, Kaustuv

    2009-01-01

    The first-order biodiversity pattern on Earth today and at least as far back as the Paleozoic is the latitudinal diversity gradient (LDG), a decrease in richness of species and higher taxa from the equator to the poles. LDGs are produced by geographic trends in origination, extinction, and dispersal over evolutionary timescales, so that analyses of static patterns will be insufficient to reveal underlying processes. The fossil record of marine bivalve genera, a model system for the analysis of biodiversity dynamics over large temporal and spatial scales, shows that an origination and range-expansion gradient plays a major role in generating the LDG. Peak origination rates and peak diversities fall within the tropics, with range expansion out of the tropics the predominant spatial dynamic thereafter. The origination-diversity link occurs even in a "contrarian" group whose diversity peaks at midlatitudes, an exception proving the rule that spatial variations in origination are key to latitudinal diversity patterns. Extinction rates are lower in polar latitudes (> or =60 degrees ) than in temperate zones and thus cannot create the observed gradient alone. They may, however, help to explain why origination and immigration are evidently damped in higher latitudes. We suggest that species require more resources in higher latitudes, for the seasonality of primary productivity increases by more than an order of magnitude from equatorial to polar regions. Higher-latitude species are generalists that, unlike potential immigrants, are adapted to garner the large share of resources required for incumbency in those regions. When resources are opened up by extinctions, lineages spread chiefly poleward and chiefly through speciation.

  12. Generation of Earth's First-Order Biodiversity Pattern

    NASA Astrophysics Data System (ADS)

    Krug, Andrew Z.; Jablonski, David; Valentine, James W.; Roy, Kaustuv

    2009-02-01

    The first-order biodiversity pattern on Earth today and at least as far back as the Paleozoic is the latitudinal diversity gradient (LDG), a decrease in richness of species and higher taxa from the equator to the poles. LDGs are produced by geographic trends in origination, extinction, and dispersal over evolutionary timescales, so that analyses of static patterns will be insufficient to reveal underlying processes. The fossil record of marine bivalve genera, a model system for the analysis of biodiversity dynamics over large temporal and spatial scales, shows that an origination and range-expansion gradient plays a major role in generating the LDG. Peak origination rates and peak diversities fall within the tropics, with range expansion out of the tropics the predominant spatial dynamic thereafter. The origination-diversity link occurs even in a "contrarian" group whose diversity peaks at midlatitudes, an exception proving the rule that spatial variations in origination are key to latitudinal diversity patterns. Extinction rates are lower in polar latitudes (≥60°) than in temperate zones and thus cannot create the observed gradient alone. They may, however, help to explain why origination and immigration are evidently damped in higher latitudes. We suggest that species require more resources in higher latitudes, for the seasonality of primary productivity increases by more than an order of magnitude from equatorial to polar regions. Higher-latitude species are generalists that, unlike potential immigrants, are adapted to garner the large share of resources required for incumbency in those regions. When resources are opened up by extinctions, lineages spread chiefly poleward and chiefly through speciation.

  13. Kinetics, Reaction Orders, Rate Laws, and Their Relation to Mechanisms: A Hands-On Introduction for High School Students Using Portable Spectrophotometry

    ERIC Educational Resources Information Center

    Carraher, Jack M.; Curry, Sarah M.; Tessonnier, Jean-Philippe

    2016-01-01

    Teaching complex chemistry concepts such as kinetics using inquiry-based learning techniques can be challenging in a high school classroom setting. Access to expensive laboratory equipment such as spectrometers is typically limited and most reaction kinetics experiments have been designed for advanced placement (AP) or first-year undergraduate…

  14. Decomposition reaction rate of BCl3-C3H6(propene)-H2 in the gas phase.

    PubMed

    Xiao, Jun; Su, Kehe; Liu, Yan; Ren, Hongjiang; Zeng, Qingfeng; Cheng, Laifei; Zhang, Litong

    2012-07-05

    The decomposition reaction rate in the BCl(3)-C(3)H(6)-H(2) gas phase reaction system in preparing boron carbides was investigated based on the most favorable reaction pathways proposed by Jiang et al. [Theor. Chem. Accs. 2010, 127, 519] and Yang et al. [J. Theor. Comput. Chem. 2012, 11, 53]. The rate constants of all the elementary reactions were evaluated with the variational transition state theory. The vibrational frequencies for the stationary points as well as the selected points along the minimum energy paths (MEPs) were calculated with density functional theory at the B3PW91/6-311G(d,p) level and the energies were refined with the accurate model chemistry method G3(MP2). For the elementary reaction associated with a transition state, the MEP was obtained with the intrinsic reaction coordinates, while for the elementary reaction without transition state, the relaxed potential energy surface scan was employed to obtain the MEP. The rate constants were calculated for temperatures within 200-2000 K and fitted into three-parameter Arrhenius expressions. The reaction rates were investigated by using the COMSOL software to solve numerically the coupled differential rate equations. The results show that the reactions are, consistent with the experiments, appropriate at 1100-1500 K with the reaction time of 30 s for 1100 K, 1.5 s for 1200 K, 0.12 s for 1300 K, 0.011 s for 1400 K, or 0.001 s for 1500 K, for propene being almost completely consumed. The completely dissociated species, boron carbides C(3)B, C(2)B, and CB, have very low concentrations, and C(3)B is the main product at higher temperatures, while C(2)B is the main product at lower temperatures. For the reaction time 1 s, all these concentrations approach into a nearly constant. The maximum value (in mol/m(3)) is for the highest temperature 1500 K with the orders of -13, -17, and -23 for C(3)B, C(2)B, and CB, respectively. It was also found that the logarithm of the overall reaction rate and reciprocal

  15. Isotopic exchange in mineral-fluid systems. IV. The crystal chemical controls on oxygen isotope exchange rates in carbonate-H 2O and layer silicate-H 2O systems

    NASA Astrophysics Data System (ADS)

    Cole, David R.

    2000-03-01

    Oxygen isotope exchange between minerals and water in systems far from chemical equilibrium is controlled largely by surface reactions such as dissolution-precipitation. In many cases, this behavior can be modeled adequately by a simple pseudo-first order rate model that accounts for changes in surface area of the solid. Previous modeling of high temperature isotope exchange data for carbonates, sulfates, and silicates indicated that within a given mineral group there appears to be a systematic relationship between rate and mineral chemistry. We tested this idea by conducting oxygen isotope exchange experiments in the systems, carbonate-H 2O and layer silicate-H 2O at 300 and 350°C, respectively. Witherite (BaCO 3), strontianite (SrCO 3) and calcite (CaCO 3) were reacted with pure H 2O for different lengths of time (271-1390 h) at 300°C and 100 bars. The layer silicates, chlorite, biotite and muscovite were reacted with H 2O for durations ranging from 132 to 3282 h at 350°C and 250 bars. A detailed survey of grain sizes and grain habits using scanning electron microscopy (SEM) indicated that grain regrowth occurred in all experiments to varying extents. Changes in the mean grain diameters were particularly significant in experiments involving withertite, strontianite and biotite. The variations in the extent of oxygen isotope exchange were measured as a function of time, and fit to a pseudo-first order rate model that accounted for the change in surface area of the solid during reaction. The isotopic rates (ln r) for the carbonate-H 2O system are -20.75 ± 0.44, -18.95 ± 0.62 and -18.51 ± 0.48 mol O m -2 s -1 for calcite, strontianite and witherite, respectively. The oxygen isotope exchange rates for layer silicate-H 2O systems are -23.99 ± 0.89, -23.14 ± 0.74 and -22.40 ± 0.66 mol O m -2 s -1 for muscovite, biotite and chlorite, respectively. The rates for the carbonate-H 2O systems increase in order from calcite to strontianite to witherite. This order

  16. Cooperation between bound waters and hydroxyls in controlling isotope-exchange rates

    NASA Astrophysics Data System (ADS)

    Panasci, Adele F.; McAlpin, J. Gregory; Ohlin, C. André; Christensen, Shauna; Fettinger, James C.; Britt, R. David; Rustad, James R.; Casey, William H.

    2012-02-01

    Mineral oxides differ from aqueous ions in that the bound water molecules are usually attached to different metal centers, or vicinal, and thus separated from one another. In contrast, for most monomeric ions used to establish kinetic reactivity trends, such as octahedral aquo ions (e.g., Al(H 2O) 63+), the bound waters are closely packed, or geminal. Because of this structural difference, the existing literature about ligand substitution in monomer ions may be a poor guide to the reactions of geochemical interest. To understand how coordination of the reactive functional groups might affect the rates of simple water-exchange reactions, we synthesized two structurally similar Rh(III) complexes, [Rh(phen) 2(H 2O) 2] 3+ [ 1] and [Rh(phen) 2(H 2O)Cl] 2+ [ 2] where (phen) = 1,10-phenanthroline. Complex [ 1] has two adjacent, geminal, bound waters in the inner-coordination sphere and [ 2] has a single bound water adjacent to a bound chloride ion. We employed Rh(III) as a trivalent metal rather than a more geochemically relevant metal like Fe(III) or Al(III) to slow the rate of reaction, which makes possible measurement of the rates of isotopic substitution by simple mass spectrometry. We prepared isotopically pure versions of the molecules, dissolved them into isotopically dissimilar water, and measured the rates of exchange from the extents of 18O and 16O exchange at the bound waters. The pH dependency of rates differ enormously between the two complexes. Pseudo-first-order rate coefficients at 298 K for water exchanges from the fully protonated molecules are close: k0298 = 5 × 10 -8(±0.5 × 10 -8) s -1 for [ 1] and k0298 = 2.5 × 10 -9(±1 × 10 -9) for [ 2]. Enthalpy and entropy activation parameters (Δ H‡ and Δ S‡) were measured to be 119(±3) kJ mol -1, and 14(±1) J mol -1 K -1, respectively for [ 1]. The corresponding parameters for the mono-aquo complex, [ 2], are 132(±3) kJ mol -1 and 41.5(±2) J mol -1 K -1. Rates increase by many orders of magnitude

  17. The impact of item order on ratings of cancer risk perception.

    PubMed

    Taylor, Kathryn L; Shelby, Rebecca A; Schwartz, Marc D; Ackerman, Josh; LaSalle, V Holland; Gelmann, Edward P; McGuire, Colleen

    2002-07-01

    Although perceived risk is central to most theories of health behavior, there is little consensus on its measurement with regard to item wording, response set, or the number of items to include. In a methodological assessment of perceived risk, we assessed the impact of changing the order of three commonly used perceived risk items: quantitative personal risk, quantitative population risk, and comparative risk. Participants were 432 men and women enrolled in an ancillary study of the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial. Three groups of consecutively enrolled participants responded to the three items in one of three question orders. Results indicated that item order was related to the perceived risk ratings of both ovarian (P < 0.05) and colorectal (P < 0.05) cancers. Perceptions of risk were significantly lower when the comparative rating was made first. The findings suggest that compelling participants to consider their own risk relative to the risk of others results in lower ratings of perceived risk. Although the use of multiple items may provide more information than when only a single method is used, different conclusions may be reached depending on the context in which an item is assessed.

  18. [Effect of SO2 volume fraction in flue gas on the adsorption behaviors adsorbed by ZL50 activated carbon and kinetic analysis].

    PubMed

    Gao, Ji-xian; Wang, Tie-feng; Wang, Jin-fu

    2010-05-01

    The influence of SO2 dynamic adsorption behaviors using ZL50 activated carbon for flue gas desulphurization and denitrification under different SO2 volume fraction was investigated experimentally, and the kinetic analysis was conducted by kinetic models. With the increase of SO2 volume fraction in flue gas, the SO2 removal ratio and the activity ratio of ZL50 activated carbon decreased, respectively, and SO2 adsorption rate and capacity increased correspondingly. The calculated results indicate that Bangham model has the best prediction effect, the chemisorption processes of SO2 was significantly affected by catalytic oxidative reaction. The adsorption rate constant of Lagergren's pseudo first order model increased with the increase of inlet SO, volume fraction, which indicated that catalytic oxidative reaction of SO2 adsorbed by ZL50 activated carbon may be the rate controlling step in earlier adsorption stage. The Lagergren's and Bangham's initial adsorption rate were deduced and defined, respectively. The Ho's and Elovich's initial adsorption rate were also deduced in this paper. The Bangham's initial adsorption rate values were defined in good agreement with those of experiments. The defined Bangham's adsorptive reaction kinetic model can describe the SO2 dynamic adsorption rate well. The studied results indicated that the SO2 partial order of initial reaction rate was one or adjacent to one, while the O2 and water vapor partial order of initial reaction rate were constants ranging from 0.15-0.20 and 0.45-0.50, respectively.

  19. α -unbound levels in 34Ar from 36Ar(p ,t )34Ar reaction measurements and implications for the astrophysical 30S(α ,p )33Cl reaction rate

    NASA Astrophysics Data System (ADS)

    Long, A. M.; Adachi, T.; Beard, M.; Berg, G. P. A.; Couder, M.; deBoer, R. J.; Dozono, M.; Görres, J.; Fujita, H.; Fujita, Y.; Hatanaka, K.; Ishikawa, D.; Kubo, T.; Matsubara, H.; Namiki, Y.; O'Brien, S.; Ohkuma, Y.; Okamura, H.; Ong, H. J.; Patel, D.; Sakemi, Y.; Shimbara, Y.; Suzuki, S.; Talwar, R.; Tamii, A.; Volya, A.; Wakasa, T.; Watanabe, R.; Wiescher, M.; Yamada, R.; Zenihiro, J.

    2018-05-01

    The 30S(α ,p )33Cl reaction has been identified in several type-1 x-ray burst (XRB) sensitivity studies as a significant reaction within the α p process, possibly influencing not only the abundances of burst ashes but also the bolometric shape of double-peaked light curves coming from certain XRB systems. Given the dearth of experimental data on the 30S(α ,p ) 33Cl reaction at burst temperatures, we have performed high energy-resolution forward-angle 36Ar(p ,t )34Ar measurements in order to identify levels in 34Ar that could appear as resonances in the 30S(α ,p )33Cl reaction. Energies of levels identified in this work, along with model-based assumptions for spin assignments and spectroscopic factors, were then used to determine a rate for the 30S(α ,p )33Cl reaction based on a narrow-resonance formalism. The rates determined in this work are then compared with two standard Hauser-Feshbach model predictions over a range of XRB temperatures.

  20. Aldimine Formation Reaction, the First Step of the Maillard Early-phase Reaction, Might be Enhanced in Variant Hemoglobin, Hb Himeji.

    PubMed

    Koga, Masafumi; Inada, Shinya; Shimizu, Sayoko; Hatazaki, Masahiro; Umayahara, Yutaka; Nishihara, Eijun

    2015-01-01

    Hb Himeji (β140Ala→Asp) is known as a variant hemoglobin in which glycation is enhanced and HbA1c measured by immunoassay shows a high value. The phenomenon of enhanced glycation in Hb Himeji is based on the fact that the glycation product of variant hemoglobin (HbX1c) shows a higher value than HbA1c. In this study, we investigated whether aldimine formation reaction, the first step of the Maillard early-phase reaction, is enhanced in Hb Himeji in vitro. Three non-diabetic subjects with Hb Himeji and four non-diabetic subjects without variant hemoglobin were enrolled. In order to examine aldimine formation reaction, whole blood cells were incubated with 500 mg/dl of glucose at 37°C for 1 hour and were analyzed by high-performance liquid chromatography. Both HbA1c and HbX1c were not increased in this condition. After incubation with glucose, labile HbA1c (LA1c) fraction increased in the controls (1.1±0.3%). In subjects with Hb Himeji increases in the labile HbX1c (LX1c) fraction as well as the LA1c fraction were observed, and the degree of increase in the LX1c fraction was significantly higher than that of the LA1c fraction (1.8±0.1% vs. 0.5±0.2%, P<0.01). We have shown for the first time that aldimine (LX1c) formation reaction might be enhanced in Hb Himeji in vitro. The 140th amino acid in β chain of hemoglobin is suggested to be involved in aldimine formation reaction. © 2015 by the Association of Clinical Scientists, Inc.

  1. First international two-way satellite time and frequency transfer experiment employing dual pseudo-random noise codes.

    PubMed

    Tseng, Wen-Hung; Huang, Yi-Jiun; Gotoh, Tadahiro; Hobiger, Thomas; Fujieda, Miho; Aida, Masanori; Li, Tingyu; Lin, Shinn-Yan; Lin, Huang-Tien; Feng, Kai-Ming

    2012-03-01

    Two-way satellite time and frequency transfer (TWSTFT) is one of the main techniques used to compare atomic time scales over long distances. To both improve the precision of TWSTFT and decrease the satellite link fee, a new software-defined modem with dual pseudo-random noise (DPN) codes has been developed. In this paper, we demonstrate the first international DPN-based TWSTFT experiment over a period of 6 months. The results of DPN exhibit excellent performance, which is competitive with the Global Positioning System (GPS) precise point positioning (PPP) technique in the short-term and consistent with the conventional TWSTFT in the long-term. Time deviations of less than 75 ps are achieved for averaging times from 1 s to 1 d. Moreover, the DPN data has less diurnal variation than that of the conventional TWSTFT. Because the DPN-based system has advantages of higher precision and lower bandwidth cost, it is one of the most promising methods to improve international time-transfer links.

  2. Reaction Rate Theory in Coordination Number Space: An Application to Ion Solvation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roy, Santanu; Baer, Marcel D.; Mundy, Christopher J.

    2016-04-14

    Understanding reaction mechanisms in many chemical and biological processes require application of rare event theories. In these theories, an effective choice of a reaction coordinate to describe a reaction pathway is essential. To this end, we study ion solvation in water using molecular dynamics simulations and explore the utility of coordination number (n = number of water molecules in the first solvation shell) as the reaction coordinate. Here we compute the potential of mean force (W(n)) using umbrella sampling, predicting multiple metastable n-states for both cations and anions. We find with increasing ionic size, these states become more stable andmore » structured for cations when compared to anions. We have extended transition state theory (TST) to calculate transition rates between n-states. TST overestimates the rate constant due to solvent-induced barrier recrossings that are not accounted for. We correct the TST rates by calculating transmission coefficients using the reactive flux method. This approach enables a new way of understanding rare events involving coordination complexes. We gratefully acknowledge Liem Dang and Panos Stinis for useful discussion. This research used resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. SR, CJM, and GKS were supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. MDB was supported by MS3 (Materials Synthesis and Simulation Across Scales) Initiative, a Laboratory Directed Research and Development Program at Pacific Northwest National Laboratory (PNNL). PNNL is a multiprogram national laboratory operated by Battelle for the U.S. Department of Energy.« less

  3. Astrophysical reaction rate for α(αn,γ)9Be by photodisintegration

    NASA Astrophysics Data System (ADS)

    Sumiyoshi, K.; Utsunomiya, H.; Goko, S.; Kajino, T.

    2002-10-01

    We study the astrophysical reaction rate for the formation of 9Be through the three body reaction α(αn,γ). This reaction is one of the key reactions which could bridge the mass gap at A=8 nuclear systems to produce intermediate-to-heavy mass elements in alpha- and neutron-rich environments such as r-process nucleosynthesis in supernova explosions, s-process nucleosynthesis in asymptotic giant branch (AGB) stars, and primordial nucleosynthesis in baryon inhomogeneous cosmological models. To calculate the thermonuclear reaction rate in a wide range of temperatures, we numerically integrate the thermal average of cross sections assuming a two-steps formation through a metastable 8Be, α+α⇌8Be(n,γ)9Be. Off-resonant and on-resonant contributions from the ground state in 8Be are taken into account. As input cross section, we adopt the latest experimental data by photodisintegration of 9Be with laser-electron photon beams, which covers all relevant resonances in 9Be. Experimental data near the neutron threshold are added with γ-ray flux corrections and a new least-squares analysis is made to deduce resonance parameters in the Breit-Wigner formulation. Based on the photodisintegration cross section, we provide the reaction rate for α(αn,γ)9Be in the temperature range from T9=10-3 to T9=101 (T9 is the temperature in units of 109 K) both in the tabular form and in the analytical form for potential usage in nuclear reaction network calculations. The calculated reaction rate is compared with the reaction rates of the CF88 and the NACRE compilations. The CF88 rate, which is based on the photoneutron cross section for the 1/2+ state in 9Be by Berman et al., is valid at T9>0.028 due to lack of the off-resonant contribution. The CF88 rate differs from the present rate by a factor of two in a temperature range T9⩾0.1. The NACRE rate, which adopted different sources of experimental information on resonance states in 9Be, is 4-12 times larger than the present rate at T9

  4. Rate Constants and Activation Energies for Gas-Phase Reactions of Three Cyclic Volatile Methyl Siloxanes with the Hydroxyl Radical.

    PubMed

    Safron, Andreas; Strandell, Michael; Kierkegaard, Amelie; Macleod, Matthew

    2015-07-01

    Reaction with hydroxyl radicals (OH) is the major pathway for removal of cyclic volatile methyl siloxanes (cVMS) from air. We present new measurements of second-order rate constants for reactions of the cVMS octamethylcyclotetrasiloxane (D 4 ), decamethylcyclopentasiloxane (D 5 ), and dodecamethylcyclohexasiloxane (D 6 ) with OH determined at temperatures between 313 and 353 K. Our measurements were made using the method of relative rates with cyclohexane as a reference substance and were conducted in a 140-mL gas-phase reaction chamber with online mass spectrometry analysis. When extrapolated to 298 K, our measured reaction rate constants of D 4 and D 5 with the OH radical are 1.9 × 10 -12 (95% confidence interval (CI): (1.7-2.2) × 10 -12 ) and 2.6 × 10 -12 (CI: (2.3-2.9) × 10 -12 ) cm 3 molecule -1 s -1 , respectively, which are 1.9× and 1.7× faster than previous measurements. Our measured rate constant for D 6 is 2.8 × 10 -12 (CI: (2.5-3.2) × 10 -12 ) cm 3 molecule -1 s -1 and to our knowledge there are no comparable laboratory measurements in the literature. Reaction rates for D 5 were 33% higher than for D 4 (CI: 30-37%), whereas the rates for D 6 were only 8% higher than for D 5 (CI: 5-10%). The activation energies of the reactions of D 4 , D 5 , and D 6 with OH were not statistically different and had a value of 4300 ± 2800 J/mol.

  5. Theoretical performance analysis of doped optical fibers based on pseudo parameters

    NASA Astrophysics Data System (ADS)

    Karimi, Maryam; Seraji, Faramarz E.

    2010-09-01

    Characterization of doped optical fibers (DOFs) is an essential primary stage for design of DOF-based devices. This paper presents design of novel measurement techniques to determine DOFs parameters using mono-beam propagation in a low-loss medium by generating pseudo parameters for the DOFs. The designed techniques are able to characterize simultaneously the absorption, emission cross-sections (ACS and ECS), and dopant concentration of DOFs. In both the proposed techniques, we assume pseudo parameters for the DOFs instead of their actual values and show that the choice of these pseudo parameters values for design of DOF-based devices, such as erbium-doped fiber amplifier (EDFA), are appropriate and the resulting error is quite negligible when compared with the actual parameters values.Utilization of pseudo ACS and ECS values in design procedure of EDFAs does not require the measurement of background loss coefficient (BLC) and makes the rate equation of the DOFs simple. It is shown that by using the pseudo parameters values obtained by the proposed techniques, the error in the gain of a designed EDFA with a BLC of about 1 dB/km, are about 0.08 dB. It is further indicated that the same scenario holds good for BLC lower than 5 dB/m and higher than 12 dB/m. The proposed characterization techniques have simple procedures and are low cost that can have an advantageous use in manufacturing of the DOFs.

  6. A tool for rapid screening of direct DNA agents using reaction rates and relative interaction potency: towards screening environmental contaminants for hazard.

    PubMed

    Gavina, Jennilee M A; Rubab, Mamoona; Zhang, Huijuan; Zhu, Jiping; Nong, Andy; Feng, Yong-Lai

    2011-11-01

    DNA damage represents a potential biomarker for determining the exposure risk to chemicals and may provide early warning data for identifying chemical hazards to human health. Here, we have demonstrated a simple chromatography-based method that can be used to rapidly screen for the presence of chemical hazards as well as to determine parameters relevant to hazard assessment. In this proof-of-principle study, a simple in vitro system was used to determine the interaction of pollutants and probable carcinogens, phenyl glycidyl ether (PGE), tetrachlorohydroquinone (Cl(4)HQ), methylmethane sulfonate (MMS), styrene-7,8-oxide (SO), and benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE), a metabolite of benzo[a]pyrene (B[a]P), with single- and double-stranded DNA probes. Differences in potency and reaction kinetics were studied for chemical and DNA type. A relative interaction potency equivalency (PEQ) of a chemical was determined by ratio of interaction potency of a chemical to BPDE as the reference chemical in the reaction with single- and double-stranded oligodeoxynucleotides. PEQs were found to be BPDE > PGE > SO > MMS > Cl(4)HQ for single-stranded oligodeoxynucleotides while they were found to be BPDE > PGE > Cl(4)HQ > MMS > SO for double-stranded oligodeoxynucleotides. Kinetics evaluation revealed that BPDE reacted with both DNA probes at a significantly faster rate, as compared to the remaining test chemicals. Equilibrium was reached within an hour for BPDE, but required a minimum of 48 h for the remaining chemicals. First-order rate constants were (1.61 ± 0.2) × 10(-3) s(-1) and (3.18 ± 0.4) × 10(-4) s(-1) for reaction of BPDE with double- and single-stranded DNA, respectively. The remaining chemicals possessed rate constants from 2 to 13 × 10(-6) s(-1) with a relative kinetic order for reaction with DNA of BPDE ≫ MMS > SO > PGE > Cl(4)HQ for ds-DNA and BPDE ≫ SO ≈ Cl(4)HQ ≈ MMS > PGE for ss-DNA. We further found that the reaction potency, defined by

  7. Pseudo-fault signal assisted EMD for fault detection and isolation in rotating machines

    NASA Astrophysics Data System (ADS)

    Singh, Dheeraj Sharan; Zhao, Qing

    2016-12-01

    This paper presents a novel data driven technique for the detection and isolation of faults, which generate impacts in a rotating equipment. The technique is built upon the principles of empirical mode decomposition (EMD), envelope analysis and pseudo-fault signal for fault separation. Firstly, the most dominant intrinsic mode function (IMF) is identified using EMD of a raw signal, which contains all the necessary information about the faults. The envelope of this IMF is often modulated with multiple vibration sources and noise. A second level decomposition is performed by applying pseudo-fault signal (PFS) assisted EMD on the envelope. A pseudo-fault signal is constructed based on the known fault characteristic frequency of the particular machine. The objective of using external (pseudo-fault) signal is to isolate different fault frequencies, present in the envelope . The pseudo-fault signal serves dual purposes: (i) it solves the mode mixing problem inherent in EMD, (ii) it isolates and quantifies a particular fault frequency component. The proposed technique is suitable for real-time implementation, which has also been validated on simulated fault and experimental data corresponding to a bearing and a gear-box set-up, respectively.

  8. First Evidence of Vibrationally Driven Bimolecular Reactions in Solution: Reactions of Br Atoms with Dimethylsulfoxide and Methanol.

    PubMed

    Shin, Jae Yoon; Shaloski, Michael A; Crim, F Fleming; Case, Amanda S

    2017-03-23

    We present evidence for vibrational enhancement of the rate of bimolecular reactions of Br atoms with dimethylsulfoxide (DMSO) and methanol (CH 3 OH) in the condensed phase. The abstraction of a hydrogen atom from either of these solvents by a Br atom is highly endoergic: 3269 cm -1 for DMSO and 1416 or 4414 cm -1 for CH 3 OH, depending on the hydrogen atom abstracted. Thus, there is no thermal abstraction reaction at room temperature. Broadband electronic transient absorption shows that following photolysis of bromine precursors Br atoms form van der Waals complexes with the solvent molecules in about 5 ps and this Br • -solvent complex undergoes recombination. To explore the influence of vibrational energy on the abstraction reactions, we introduce a near-infrared (NIR) pump pulse following the photolysis pulse to excite the first overtone of the C-H (or O-H) stretch of the solvent molecules. Using single-wavelength detection, we observe a loss of the Br • -solvent complex that requires the presence of both photolysis and NIR pump pulses. Moreover, the magnitude of this loss depends on the NIR wavelength. Although this loss of reactive Br supports the notion of vibrationally driven chemistry, it is not concrete evidence of the hydrogen-abstraction reaction. To verify that the loss of reactive Br results from the vibrationally driven bimolecular reaction, we examine the pH dependence of the solution (as a measure of the formation of the HBr product) following long-time irradiation of the sample with both photolysis and NIR pump beams. We observe that when the NIR beam is on-resonance, the hydronium ion concentration increases fourfold as compared to that when it is off-resonance, suggesting the formation of HBr via a vibrationally driven hydrogen-abstraction reaction in solution.

  9. Effects of Water Molecule on CO Oxidation by OH: Reaction Pathways, Kinetic Barriers, and Rate Constants.

    PubMed

    Zhang, Linyao; Yang, Li; Zhao, Yijun; Zhang, Jiaxu; Feng, Dongdong; Sun, Shaozeng

    2017-07-06

    The water dilute oxy-fuel combustion is a clean combustion technology for near-zero emission power; and the presence of water molecule could have both kinetic and dynamic effects on combustion reactions. The reaction OH + CO → CO 2 + H, one of the most important elementary reactions, has been investigated by extensive electronic structure calculations. And the effects of a single water molecule on CO oxidation have been studied by considering the preformed OH(H 2 O) complex reacts with CO. The results show little change in the reaction pathways, but the additional water molecule actually increases the vibrationally adiabatic energy barriers (V a G ). Further thermal rate constant calculations in the temperature range of 200 to 2000 K demonstrate that the total low-pressure limit rate constant for the water assisted OH(H 2 O) + CO → CO 2 + H 2 O + H reaction is 1-2 orders lower than that of the water unassisted one, which is consistent with the change of V a G . Therefore, the hydrated radical OH(H 2 O) would actually slow down the oxidation of CO. Meanwhile, comparisons show that the M06-2X/aug-cc-pVDZ method gives a much better estimation in energy and thus is recommended to be employed for direct dynamics simulations.

  10. Electro-oxidation of the dye azure B: kinetics, mechanism, and by-products.

    PubMed

    Olvera-Vargas, Hugo; Oturan, Nihal; Aravindakumar, C T; Paul, M M Sunil; Sharma, Virender K; Oturan, Mehmet A

    2014-01-01

    In this work, the electrochemical degradation of the dye azure B in aqueous solutions was studied by electrochemical advanced oxidation processes (EAOPs), electro-Fenton, and anodic oxidation processes, using Pt/carbon-felt and boron-doped diamond (BDD)/carbon-felt cells with H₂O₂ electrogeneration. The higher oxidation power of the electro-Fenton (EF) process using BDD anode was demonstrated. The oxidative degradation of azure B by the electrochemically generated hydroxyl radicals ((•)OH) follows a pseudo-first-order kinetics. The apparent rate constants of the oxidation of azure B by (•)OH were measured according to pseudo-first-order kinetic model. The absolute rate constant of azure B hydroxylation reaction was determined by competition kinetics method and found to be 1.19 × 10(9) M(-1) s(-1). It was found that the electrochemical degradation of the dye leads to the formation of aromatic by-products which are then oxidized to aliphatic carboxylic acids before their almost mineralization to CO₂ and inorganic ions (sulfate, nitrate, and ammonium). The evolution of the TOC removal and time course of short-chain carboxylic acids during treatment were also investigated.

  11. Laboratory Study of the OH + Permethylsiloxane (L2, L3, D3, and D4) Reaction Rate Coefficients Between 240 and 370 K

    NASA Astrophysics Data System (ADS)

    Burkholder, J. B.; Bernard, F.; Papadimitriou, V. C.

    2016-12-01

    The atmospheric chemistry of organosiloxanes has recently been implicated in the formation of new particles as well as regional and indoor air quality. Methylsiloxanes with Si<6 are relatively volatile compounds with either linear or cyclic molecular structures. Methylsiloxanes are found in consumer goods such as cosmetics, textiles, health care and household products and in industrial applications as solvents and lubricants. They are released into the atmosphere during manufacturing, use, and disposal and have been observed in the atmosphere in ppb levels in certain locations. However, the fundamental chemical properties of this class of compounds, particularly their reactivity with the OH radical, are presently not fully characterized. In this work, the temperature dependence of the rate coefficients for the OH radical reaction with the simplest linear (L2 and L3) and cyclic (D3 and D4) siloxanes were measured: OH + (CH3)3SiOSi(CH3)3 = Products L2OH + [(CH3)3SiO]2Si(CH3)2 = Products L3OH + [-Si(CH3)2O-]3 = Products D3OH + [-Si(CH3)2O-]4 = Products D4OH rate coefficients were measured under pseudo-first conditions in OH over the temperature range 240-370 K using a pulsed laser photolysis-laser induced fluorescence (PLP-LIF) technique and at 296 K using a relative rate method. The present results are compared with available literature data where possible and discrepancies are discussed. The results from this work will be discussed in terms of the atmospheric lifetimes of these methylsiloxanes and the reactivity trends for this class of compound.

  12. Diabatic models with transferrable parameters for generalized chemical reactions

    NASA Astrophysics Data System (ADS)

    Reimers, Jeffrey R.; McKemmish, Laura K.; McKenzie, Ross H.; Hush, Noel S.

    2017-05-01

    Diabatic models applied to adiabatic electron-transfer theory yield many equations involving just a few parameters that connect ground-state geometries and vibration frequencies to excited-state transition energies and vibration frequencies to the rate constants for electron-transfer reactions, utilizing properties of the conical-intersection seam linking the ground and excited states through the Pseudo Jahn-Teller effect. We review how such simplicity in basic understanding can also be obtained for general chemical reactions. The key feature that must be recognized is that electron-transfer (or hole transfer) processes typically involve one electron (hole) moving between two orbitals, whereas general reactions typically involve two electrons or even four electrons for processes in aromatic molecules. Each additional moving electron leads to new high-energy but interrelated conical-intersection seams that distort the shape of the critical lowest-energy seam. Recognizing this feature shows how conical-intersection descriptors can be transferred between systems, and how general chemical reactions can be compared using the same set of simple parameters. Mathematical relationships are presented depicting how different conical-intersection seams relate to each other, showing that complex problems can be reduced into an effective interaction between the ground-state and a critical excited state to provide the first semi-quantitative implementation of Shaik’s “twin state” concept. Applications are made (i) demonstrating why the chemistry of the first-row elements is qualitatively so different to that of the second and later rows, (ii) deducing the bond-length alternation in hypothetical cyclohexatriene from the observed UV spectroscopy of benzene, (iii) demonstrating that commonly used procedures for modelling surface hopping based on inclusion of only the first-derivative correction to the Born-Oppenheimer approximation are valid in no region of the chemical

  13. Improved first-order uncertainty method for water-quality modeling

    USGS Publications Warehouse

    Melching, C.S.; Anmangandla, S.

    1992-01-01

    Uncertainties are unavoidable in water-quality modeling and subsequent management decisions. Monte Carlo simulation and first-order uncertainty analysis (involving linearization at central values of the uncertain variables) have been frequently used to estimate probability distributions for water-quality model output due to their simplicity. Each method has its drawbacks: Monte Carlo simulation's is mainly computational time; and first-order analysis are mainly questions of accuracy and representativeness, especially for nonlinear systems and extreme conditions. An improved (advanced) first-order method is presented, where the linearization point varies to match the output level whose exceedance probability is sought. The advanced first-order method is tested on the Streeter-Phelps equation to estimate the probability distribution of critical dissolved-oxygen deficit and critical dissolved oxygen using two hypothetical examples from the literature. The advanced first-order method provides a close approximation of the exceedance probability for the Streeter-Phelps model output estimated by Monte Carlo simulation using less computer time - by two orders of magnitude - regardless of the probability distributions assumed for the uncertain model parameters.

  14. Thermonuclear 19F(p, {{\\boldsymbol{\\alpha }}}_{0})16O reaction rate

    NASA Astrophysics Data System (ADS)

    He, Jian-Jun; Lombardo, Ivano; Dell'Aquila, Daniele; Xu, Yi; Zhang, Li-Yong; Liu, Wei-Ping

    2018-01-01

    The thermonuclear 19F(p, {{{α }}}0)16O reaction rate in the temperature region 0.007-10 GK has been derived by re-evaluating the available experimental data, together with the low-energy theoretical R-matrix extrapolations. Our new rate deviates by up to about 30% compared to the previous results, although all rates are consistent within the uncertainties. At very low temperature (e.g. 0.01 GK) our reaction rate is about 20% lower than the most recently published rate, because of a difference in the low energy extrapolated S-factor and a more accurate estimate of the reduced mass used in the calculation of the reaction rate. At temperatures above ˜1 GK, our rate is lower, for instance, by about 20% around 1.75 GK, because we have re-evaluated the previous data (Isoya et al., Nucl. Phys. 7, 116 (1958)) in a meticulous way. The present interpretation is supported by the direct experimental data. The uncertainties of the present evaluated rate are estimated to be about 20% in the temperature region below 0.2 GK, and are mainly caused by the lack of low-energy experimental data and the large uncertainties in the existing data. Asymptotic giant branch (AGB) stars evolve at temperatures below 0.2 GK, where the 19F(p, {{α }})16O reaction may play a very important role. However, the current accuracy of the reaction rate is insufficient to help to describe, in a careful way, the fluorine over-abundances observed in AGB stars. Precise cross section (or S factor) data in the low energy region are therefore needed for astrophysical nucleosynthesis studies. Supported by National Natural Science Foundation of China (11490562, 11490560, 11675229) and National Key Research and Development Program of China (2016YFA0400503)

  15. Multi-path variational transition state theory for chemical reaction rates of complex polyatomic species: ethanol + OH reactions.

    PubMed

    Zheng, Jingjing; Truhlar, Donald G

    2012-01-01

    Complex molecules often have many structures (conformations) of the reactants and the transition states, and these structures may be connected by coupled-mode torsions and pseudorotations; some but not all structures may have hydrogen bonds in the transition state or reagents. A quantitative theory of the reaction rates of complex molecules must take account of these structures, their coupled-mode nature, their qualitatively different character, and the possibility of merging reaction paths at high temperature. We have recently developed a coupled-mode theory called multi-structural variational transition state theory (MS-VTST) and an extension, called multi-path variational transition state theory (MP-VTST), that includes a treatment of the differences in the multi-dimensional tunneling paths and their contributions to the reaction rate. The MP-VTST method was presented for unimolecular reactions in the original paper and has now been extended to bimolecular reactions. The MS-VTST and MP-VTST formulations of variational transition state theory include multi-faceted configuration-space dividing surfaces to define the variational transition state. They occupy an intermediate position between single-conformation variational transition state theory (VTST), which has been used successfully for small molecules, and ensemble-averaged variational transition state theory (EA-VTST), which has been used successfully for enzyme kinetics. The theories are illustrated and compared here by application to three thermal rate constants for reactions of ethanol with hydroxyl radical--reactions with 4, 6, and 14 saddle points.

  16. Cardiorespiratory Kinetics Determined by Pseudo-Random Binary Sequences - Comparisons between Walking and Cycling.

    PubMed

    Koschate, J; Drescher, U; Thieschäfer, L; Heine, O; Baum, K; Hoffmann, U

    2016-12-01

    This study aims to compare cardiorespiratory kinetics as a response to a standardised work rate protocol with pseudo-random binary sequences between cycling and walking in young healthy subjects. Muscular and pulmonary oxygen uptake (V̇O 2 ) kinetics as well as heart rate kinetics were expected to be similar for walking and cycling. Cardiac data and V̇O 2 of 23 healthy young subjects were measured in response to pseudo-random binary sequences. Kinetics were assessed applying time series analysis. Higher maxima of cross-correlation functions between work rate and the respective parameter indicate faster kinetics responses. Muscular V̇O 2 kinetics were estimated from heart rate and pulmonary V̇O 2 using a circulatory model. Muscular (walking vs. cycling [mean±SD in arbitrary units]: 0.40±0.08 vs. 0.41±0.08) and pulmonary V̇O 2 kinetics (0.35±0.06 vs. 0.35±0.06) were not different, although the time courses of the cross-correlation functions of pulmonary V̇O 2 showed unexpected biphasic responses. Heart rate kinetics (0.50±0.14 vs. 0.40±0.14; P=0.017) was faster for walking. Regarding the biphasic cross-correlation functions of pulmonary V̇O 2 during walking, the assessment of muscular V̇O 2 kinetics via pseudo-random binary sequences requires a circulatory model to account for cardio-dynamic distortions. Faster heart rate kinetics for walking should be considered by comparing results from cycle and treadmill ergometry. © Georg Thieme Verlag KG Stuttgart · New York.

  17. Solar Wind-Magnetosphere Coupling Influences on Pseudo-Breakup Activity

    NASA Technical Reports Server (NTRS)

    Fillingim, M. O.; Brittnacher, M.; Parks, G. K.; Germany, G. A.; Spann, J. F.

    1998-01-01

    Pseudo-breakups are brief, localized aurora[ arc brightening, which do not lead to a global expansion, are historically observed during the growth phase of substorms. Previous studies have demonstrated that phenomenologically there is very little difference between substorm onsets and pseudo-breakups except for the degree of localization and the absence of a global expansion phase. A key open question is what physical mechanism prevents a pseudo-breakup form expanding globally. Using Polar Ultraviolet Imager (UVI) images, we identify periods of pseudo-breakup activity. Foe the data analyzed we find that most pseudo-breakups occur near local midnight, between magnetic local times of 21 and 03, at magnetic latitudes near 70 degrees, through this value may change by several degrees. While often discussed in the context of substorm growth phase events, pseudo-breakups are also shown to occur during prolonged relatively inactive periods. These quiet time pseudo-breakups can occur over a period of several hours without the development of a significant substorm for at least an hour after pseudo-breakup activity stops. In an attempt to understand the cause of quiet time pseudo-breakups, we compute the epsilon parameter as a measure of the efficiency of solar wind-magnetosphere coupling. It is noted that quiet time pseudo-breakups occur typically when epsilon is low; less than about 50 GW. We suggest that quiet time pseudo-breakups are driven by relatively small amounts of energy transferred to the magnetosphere by the solar wind insufficient to initiate a substorm expansion onset.

  18. Method and apparatus for obtaining enhanced production rate of thermal chemical reactions

    DOEpatents

    Tonkovich, Anna Lee Y [Pasco, WA; Wang, Yong [Richland, WA; Wegeng, Robert S [Richland, WA; Gao, Yufei [Kennewick, WA

    2003-04-01

    The present invention is a method and apparatus (vessel) for providing a heat transfer rate from a reaction chamber through a wall to a heat transfer chamber substantially matching a local heat transfer rate of a catalytic thermal chemical reaction. The key to the invention is a thermal distance defined on a cross sectional plane through the vessel inclusive of a heat transfer chamber, reaction chamber and a wall between the chambers. The cross sectional plane is perpendicular to a bulk flow direction of the reactant stream, and the thermal distance is a distance between a coolest position and a hottest position on the cross sectional plane. The thermal distance is of a length wherein the heat transfer rate from the reaction chamber to the heat transfer chamber substantially matches the local heat transfer rate.

  19. Superposition-Based Analysis of First-Order Probabilistic Timed Automata

    NASA Astrophysics Data System (ADS)

    Fietzke, Arnaud; Hermanns, Holger; Weidenbach, Christoph

    This paper discusses the analysis of first-order probabilistic timed automata (FPTA) by a combination of hierarchic first-order superposition-based theorem proving and probabilistic model checking. We develop the overall semantics of FPTAs and prove soundness and completeness of our method for reachability properties. Basically, we decompose FPTAs into their time plus first-order logic aspects on the one hand, and their probabilistic aspects on the other hand. Then we exploit the time plus first-order behavior by hierarchic superposition over linear arithmetic. The result of this analysis is the basis for the construction of a reachability equivalent (to the original FPTA) probabilistic timed automaton to which probabilistic model checking is finally applied. The hierarchic superposition calculus required for the analysis is sound and complete on the first-order formulas generated from FPTAs. It even works well in practice. We illustrate the potential behind it with a real-life DHCP protocol example, which we analyze by means of tool chain support.

  20. Micelle Catalysis of an Aromatic Substitution Reaction

    ERIC Educational Resources Information Center

    Corsaro, Gerald; Smith J. K.

    1976-01-01

    Describes an experiment in which the iodonation of aniline reaction is shown to undergo catalysis in solution of sodium lauryl sulfate which forms micelles with negatively charged pseudo surfaces. (MLH)

  1. H NMR studies of substrate hydrogen exchange reactions catalyzed by L-methionine gamma-lyase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Esaki, N.; Nakayama, T.; Sawada, S.

    Hydrogen exchange reactions of various L-amino acids catalyzed by L-methionine gamma-lyase (EC 4.4.1.11) have been studied. The enzyme catalyzes the rapid exchange of the alpha- and beta-hydrogens of L-methionine and S-methyl-L-cysteine with deuterium from the solvent. The rate of alpha-hydrogen exchange was about 40 times faster than that of the enzymatic elimination reaction of the sulfur-containing amino acids. The enzyme also catalyzes the exchange reaction of alpha- and beta-hydrogens of the straight-chain L-amino acids which are not susceptible to elimination. The exchange rates of the alpha-hydrogen and the total beta-hydrogens of L-alanine and L-alpha-aminobutyrate with deuterium followed first-order kinetics. Formore » L-norvaline, L-norleucine, S-methyl-L-cysteine, and L-methionine, the rate of alpha-hydrogen exchange followed first-order kinetics, but the rate of total beta-hydrogen exchange decreased due to a primary isotope effect at the alpha-position. L-Phenylalanine and L-tryptophan slowly underwent alpha-hydrogen exchange. The pro-R hydrogen of glycine was deuterated stereospecifically.« less

  2. A mesoscopic reaction rate model for shock initiation of multi-component PBX explosives.

    PubMed

    Liu, Y R; Duan, Z P; Zhang, Z Y; Ou, Z C; Huang, F L

    2016-11-05

    The primary goal of this research is to develop a three-term mesoscopic reaction rate model that consists of a hot-spot ignition, a low-pressure slow burning and a high-pressure fast reaction terms for shock initiation of multi-component Plastic Bonded Explosives (PBX). Thereinto, based on the DZK hot-spot model for a single-component PBX explosive, the hot-spot ignition term as well as its reaction rate is obtained through a "mixing rule" of the explosive components; new expressions for both the low-pressure slow burning term and the high-pressure fast reaction term are also obtained by establishing the relationships between the reaction rate of the multi-component PBX explosive and that of its explosive components, based on the low-pressure slow burning term and the high-pressure fast reaction term of a mesoscopic reaction rate model. Furthermore, for verification, the new reaction rate model is incorporated into the DYNA2D code to simulate numerically the shock initiation process of the PBXC03 and the PBXC10 multi-component PBX explosives, and the numerical results of the pressure histories at different Lagrange locations in explosive are found to be in good agreements with previous experimental data. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Hastatic Order in URu2Si2

    NASA Astrophysics Data System (ADS)

    Chandra, Premala; Coleman, Piers; Flint, Rebecca

    2012-02-01

    The hidden order that develops below 17.5K in URu2Si2 has eluded identification for twenty-five years. Here we show that the recent observation of Ising quasiparticles in URu2Si2 suggests a novel ``hastatic order'' (Latin:spear),with a two-component order parameter describing hybridization between electrons and the Ising 5f^2 states of the uranium atoms. Hastatic order breaks time-reversal symmetry by mixing states of different Kramers parity; this accounts for the magnetic anomalies observed in torque magnetometry and the pseudo-Goldstone mode observed in neutron scattering. Hastatic order is predicted to induce a basal-plane magnetic moment of order 0.01μB, a gap to longitudinal spin fluctuations that vanishes continuously at the first-order antiferromagnetic transition and a narrow resonant nematic feature in the scanning tunneling spectra.

  4. Micellar induced regioselectivity in the two-step consecutive reaction of SO3(2-) with Br-(CH2CH2)n-Br (n=2-5).

    PubMed

    Currie, Fredrik; Jarvoll, Patrik; Holmberg, Krister; Romsted, Laurence S; Gunaseelan, Krishnan

    2007-08-15

    High field (800 MHz) (1)H NMR was used to monitor the two-step consecutive reaction of excess SO(3)(2-) with symmetrical bifunctional alpha,omega-dibromoalkanes with butane (DBB), hexane (DBH), octane (DBO), and decane (DBD) chains in CTAB micelles at 25 degrees C. The first-order rate constant for the first substitution step for DBB and DBH is about 5 times faster than for the second, but the kinetics for DBO and DBD were not cleanly first-order. After 40 min, the solution contained about 80% of the intermediate bromoalkanesulfonate from DBB and DBH and the remainder is alkanedisulfonate and unreacted starting material. The same reactions were carried out in homogeneous MeOH/D(2)O solutions at 50 degrees C. The rate constants for all four alpha,omega-dibromoalkanes were first-order throughout the time course of the reaction and the same within +/-10%. However, because micellar solutions are organized on the nanoscale and bring together lipophilic and hydrophilic reactants into a small reaction volume at the micellar interface, they speed this substitution reaction considerably compared to reaction in MeOH/D(2)O. The CTAB micelles also induce a significant regioselectivity in product formation by speeding the first step of the consecutive reaction more than the second. The results are consistent with the bromoalkanesulfonate intermediates having a radial orientation within the micelles with the -CH(2)SO(3)(-) group in the interfacial region and the -CH(2)Br group directed into the micellar core such that the concentration of -CH(2)Br groups in the reactive zone, i.e., the micellar interface, is significantly reduced. These results provide the first example of self-assembled surfactant system altering the relative rates of the reaction steps of a consecutive reaction and, in doing so, enhancing monosubstitution of a symmetrically disubstituted species.

  5. Rate constants for the slow Mu + propane abstraction reaction at 300 K by diamagnetic RF resonance.

    PubMed

    Fleming, Donald G; Cottrell, Stephen P; McKenzie, Iain; Ghandi, Khashayar

    2015-08-14

    The study of kinetic isotope effects for H-atom abstraction rates by incident H-atoms from the homologous series of lower mass alkanes (CH4, C2H6 and, here, C3H8) provides important tests of reaction rate theory on polyatomic systems. With a mass of only 0.114 amu, the most sensitive test is provided by the rates of the Mu atom. Abstraction of H by Mu can be highly endoergic, due to the large zero-point energy shift in the MuH bond formed, which also gives rise to high activation energies from similar zero-point energy corrections at the transition state. Rates are then far too slow near 300 K to be measured by conventional TF-μSR techniques that follow the disappearance of the spin-polarised Mu atom with time. Reported here is the first measurement of a slow Mu reaction rate in the gas phase by the technique of diamagnetic radio frequency (RF) resonance, where the amplitude of the MuH product formed in the Mu + C3H8 reaction is followed with time. The measured rate constant, kMu = (6.8 ± 0.5) × 10(-16) cm(3) s(-1) at 300 K, is surprisingly only about a factor of three slower than that expected for H + C3H8, indicating a dominant contribution from quantum tunneling in the Mu reaction, consistent with elementary transition state theory calculations of the kMu/kH kinetic isotope effect.

  6. Dissolution Rates and Reaction Products of Olivine Interaction with Ammonia-Rich Fluid

    NASA Astrophysics Data System (ADS)

    Zandanel, A. E.; Truche, L.; Hellmann, R.; Tobie, G.; Marrocchi, Y.

    2018-05-01

    Olivine dissolution rates and reaction products in NH3-rich fluids are determined from experiments simulating H2O-rock interaction on Enceladus. Kinetic rates are calculated from flow through experiments and reaction products from static experiments.

  7. Construction of the mathematical concept of pseudo thinking students

    NASA Astrophysics Data System (ADS)

    Anggraini, D.; Kusmayadi, T. A.; Pramudya, I.

    2018-05-01

    Thinking process is a process that begins with the acceptance of information, information processing and information calling in memory with structural changes that include concepts or knowledges. The concept or knowledge is individually constructed by each individual. While, students construct a mathematical concept, students may experience pseudo thinking. Pseudo thinking is a thinking process that results in an answer to a problem or construction to a concept “that is not true”. Pseudo thinking can be classified into two forms there are true pseudo and false pseudo. The construction of mathematical concepts in students of pseudo thinking should be immediately known because the error will have an impact on the next construction of mathematical concepts and to correct the errors it requires knowledge of the source of the error. Therefore, in this article will be discussed thinking process in constructing of mathematical concepts in students who experience pseudo thinking.

  8. Elastic properties of graphene: A pseudo-beam model with modified internal bending moment and its application

    NASA Astrophysics Data System (ADS)

    Xia, Z. M.; Wang, C. G.; Tan, H. F.

    2018-04-01

    A pseudo-beam model with modified internal bending moment is presented to predict elastic properties of graphene, including the Young's modulus and Poisson's ratio. In order to overcome a drawback in existing molecular structural mechanics models, which only account for pure bending (constant bending moment), the presented model accounts for linear bending moments deduced from the balance equations. Based on this pseudo-beam model, an analytical prediction is accomplished to predict the Young's modulus and Poisson's ratio of graphene based on the equation of the strain energies by using Castigliano second theorem. Then, the elastic properties of graphene are calculated compared with results available in literature, which verifies the feasibility of the pseudo-beam model. Finally, the pseudo-beam model is utilized to study the twisting wrinkling characteristics of annular graphene. Due to modifications of the internal bending moment, the wrinkling behaviors of graphene sheet are predicted accurately. The obtained results show that the pseudo-beam model has a good ability to predict the elastic properties of graphene accurately, especially the out-of-plane deformation behavior.

  9. Dechlorination of trichloroethylene formed from 1,1,2,2-tetrachloroethane by dehydrochlorination in Portland cement slurry including Fe(II).

    PubMed

    Jung, Bahngmi; Batchelor, Bill

    2008-03-01

    Transformation of 1,1,2,2-tetrachloroethane (1,1,2,2-TeCA) by Fe(II) in 10% cement slurries was characterized using a batch reactor system. 1,1,2,2-TeCA was completely converted to trichloroethylene (TCE) within 1h in all experiments, even in controls with cement that did not include Fe(II). Therefore, complete degradation of 1,1,2,2-TeCA depends on the behavior of TCE. The half-life of TCE was observed to be 15d when concentrations of Fe(II) and 1,1,2,2-TeCA were 98mM and 0.245mM, respectively. The kinetics of TCE removal was observed to be dependent on Fe(II) dose, pH and initial substrate concentration. Pseudo-first-order rate constants linearly increased with Fe(II) dose up to 198mM when initial target concentration was 0.245mM. Pseudo-first-order kinetics generally described the degradation reactions of TCE at a specific initial concentration, but a modified Langmuir-Hinshelwood model was necessary to describe the degradation kinetics of TCE over a wide range of initial concentrations. A surface reaction of TCE on active solids, which were formed from Fe(II) and products of cement hydration appears to control observed TCE degradation kinetics.

  10. Automated Decisional Model for Optimum Economic Order Quantity Determination Using Price Regressive Rates

    NASA Astrophysics Data System (ADS)

    Roşu, M. M.; Tarbă, C. I.; Neagu, C.

    2016-11-01

    The current models for inventory management are complementary, but together they offer a large pallet of elements for solving complex problems of companies when wanting to establish the optimum economic order quantity for unfinished products, row of materials, goods etc. The main objective of this paper is to elaborate an automated decisional model for the calculus of the economic order quantity taking into account the price regressive rates for the total order quantity. This model has two main objectives: first, to determine the periodicity when to be done the order n or the quantity order q; second, to determine the levels of stock: lighting control, security stock etc. In this way we can provide the answer to two fundamental questions: How much must be ordered? When to Order? In the current practice, the business relationships with its suppliers are based on regressive rates for price. This means that suppliers may grant discounts, from a certain level of quantities ordered. Thus, the unit price of the products is a variable which depends on the order size. So, the most important element for choosing the optimum for the economic order quantity is the total cost for ordering and this cost depends on the following elements: the medium price per units, the stock cost, the ordering cost etc.

  11. Rate Constants and Activation Energies for Gas‐Phase Reactions of Three Cyclic Volatile Methyl Siloxanes with the Hydroxyl Radical

    PubMed Central

    Safron, Andreas; Strandell, Michael; Kierkegaard, Amelie

    2015-01-01

    ABSTRACT Reaction with hydroxyl radicals (OH) is the major pathway for removal of cyclic volatile methyl siloxanes (cVMS) from air. We present new measurements of second‐order rate constants for reactions of the cVMS octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), and dodecamethylcyclohexasiloxane (D6) with OH determined at temperatures between 313 and 353 K. Our measurements were made using the method of relative rates with cyclohexane as a reference substance and were conducted in a 140‐mL gas‐phase reaction chamber with online mass spectrometry analysis. When extrapolated to 298 K, our measured reaction rate constants of D4 and D5 with the OH radical are 1.9 × 10−12 (95% confidence interval (CI): (1.7–2.2) × 10−12) and 2.6 × 10−12 (CI: (2.3–2.9) × 10−12) cm3 molecule−1 s−1, respectively, which are 1.9× and 1.7× faster than previous measurements. Our measured rate constant for D6 is 2.8 × 10−12 (CI: (2.5–3.2) × 10−12) cm3 molecule−1 s−1 and to our knowledge there are no comparable laboratory measurements in the literature. Reaction rates for D5 were 33% higher than for D4 (CI: 30–37%), whereas the rates for D6 were only 8% higher than for D5 (CI: 5–10%). The activation energies of the reactions of D4, D5, and D6 with OH were not statistically different and had a value of 4300 ± 2800 J/mol. PMID:27708500

  12. Kinetics of p-hydroxybenzoic acid photodecomposition and ozonation in a batch reactor.

    PubMed

    Benitez, F J; Beltran-Heredia, J; Peres, J A; Dominguez, J R

    2000-04-03

    The decomposition of p-hydroxybenzoic acid, an important pollutant present in the wastewaters of the olive oil industry, has been carried out by a direct photolysis provided by a polychromatic UV radiation source, and by ozone. In both processes, the conversions obtained as a function of the operating variables (temperature, pH and ozone partial pressure in the ozonation process) are reported. In order to evaluate the radiation flow rate absorbed by the solutions in the photochemical process, the Line Source Spherical Emission Model is used. The application of this model to the experimental results provides the determination of the reaction quantum yields which values ranged between 8.62 and 81.43 l/einstein. In the ozonation process, the film theory allows to establish that the absorption process takes place in the fast and pseudo-first-order regime and the reaction is overall second-order, first-order with respect to both reactants, ozone and p-hydroxybenzoic acid. The rate constants are evaluated and vary between 0.18x10(5) and 29.9x10(5) l/mol s depending on the temperature and pH.

  13. First Measurement of the 19F(α, p)22Ne Reaction at Energies of Astrophysical Relevance

    NASA Astrophysics Data System (ADS)

    Pizzone, R. G.; D'Agata, G.; La Cognata, M.; Indelicato, I.; Spitaleri, C.; Blagus, S.; Cherubini, S.; Figuera, P.; Grassi, L.; Guardo, G. L.; Gulino, M.; Hayakawa, S.; Kshetri, R.; Lamia, L.; Lattuada, M.; Mijatović, T.; Milin, M.; Miljanić D., Đ.; Prepolec, L.; Rapisarda, G. G.; Romano, S.; Sergi, M. L.; Skukan, N.; Soić, N.; Tokić, V.; Tumino, A.; Uroić, M.

    2017-02-01

    The observational 19F abundance in stellar environments systematically exceeds the predicted one, thus representing one of the unsolved challenges for stellar modeling. It is therefore clear that further investigation is needed in this field. In this work, we focus our attention on the measurement of the {}19{{F}}{(α ,p)}22{Ne} reaction in the astrophysical energy range, between 0.2 and 0.8 MeV (far below the Coulomb barrier, 3.8 MeV), as it represents the main destruction channel in He-rich environments. The lowest energy at which this reaction has been studied with direct measurements is ˜0.66 MeV, covering only the upper tail of the Gamow window, causing the reaction-rate evaluation to be based on extrapolation. To investigate lower energies, the {}19{{F}}{(α ,p)}22{Ne} reaction has been studied by means of the Trojan horse method, applied to the quasi-free {}6{Li}{{(}19{{F}},{p}22{Ne})}2{{H}} reaction at E beam = 6 MeV. The indirect cross section of the {}19{{F}}{(α ,p)}22{Ne} reaction at energies ≲1 MeV was extracted, fully covering the astrophysical region of interest and overlapping existing direct data for normalization. Several resonances have been detected for the first time inside the Gamow window. The reaction rate has been calculated, showing an increase up to a factor of 4 with respect to the literature at astrophysical temperatures. This might lead to potential major astrophysical implications.

  14. Development of rate expressions for the thermal decomposition of RDX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erickson, K.L.; Behrens, R. Jr.; Bulusu, S.

    Decomposition and combustion of energetic materials involve processes in both condensed and gas phases. Development of reliable models for design, performance, stability, and hazard analyses requires detailed understanding of the mechanisms for both the initial condensed phase decomposition of the energetic material and the subsequent reaction of the decomposition species to form the ultimate reaction products. Those mechanisms must be described in terms of constitutive rate expressions that can be incorporated into mathematical models. The thermal decomposition of RDX has been studied by Behrens and Bulusu using Simultaneous Thermogravimetric Modulated Beam Mass Spectrometry (STMBMS). Their work provides a basis formore » developing some of the constitutive rate expressions that are needed in models for design, performance, stability and hazard analyses involving RDX. Behrens and Bulusu have identified four primary reaction pathways that control the liquid-phase decomposition of RDX at temperatures between 200 and 215{degrees}C, and one that controls solid-phase decomposition at temperatures below 200{degrees}C. Two of the liquid-phase pathways appear to be first order in RDX. Arrhenius parameters for the first-order rate constants were evaluated from data reported by Behrens and Bulusu. Reaction rates extrapolated to temperatures between 370 and 450{degrees}C are in good agreement with global reaction rates observed by Trott et al. using high-speed photography and laser-heated thin-film samples. Furthermore, the STMBMS results of Behrens and Bulusu appear to be consistent with condensed-phase infrared results reported by Trott et al. and Erickson et al.« less

  15. Development of rate expressions for the thermal decomposition of RDX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erickson, K.L.; Behrens, R. Jr.; Bulusu, S.

    Decomposition and combustion of energetic materials involve processes in both condensed and gas phases. Development of reliable models for design, performance, stability, and hazard analyses requires detailed understanding of the mechanisms for both the initial condensed phase decomposition of the energetic material and the subsequent reaction of the decomposition species to form the ultimate reaction products. Those mechanisms must be described in terms of constitutive rate expressions that can be incorporated into mathematical models. The thermal decomposition of RDX has been studied by Behrens and Bulusu using Simultaneous Thermogravimetric Modulated Beam Mass Spectrometry (STMBMS). Their work provides a basis formore » developing some of the constitutive rate expressions that are needed in models for design, performance, stability and hazard analyses involving RDX. Behrens and Bulusu have identified four primary reaction pathways that control the liquid-phase decomposition of RDX at temperatures between 200 and 215[degrees]C, and one that controls solid-phase decomposition at temperatures below 200[degrees]C. Two of the liquid-phase pathways appear to be first order in RDX. Arrhenius parameters for the first-order rate constants were evaluated from data reported by Behrens and Bulusu. Reaction rates extrapolated to temperatures between 370 and 450[degrees]C are in good agreement with global reaction rates observed by Trott et al. using high-speed photography and laser-heated thin-film samples. Furthermore, the STMBMS results of Behrens and Bulusu appear to be consistent with condensed-phase infrared results reported by Trott et al. and Erickson et al.« less

  16. Virtual Instrument for Determining Rate Constant of Second-Order Reaction by pX Based on LabVIEW 8.0

    PubMed Central

    Meng, Hu; Li, Jiang-Yuan; Tang, Yong-Huai

    2009-01-01

    The virtual instrument system based on LabVIEW 8.0 for ion analyzer which can measure and analyze ion concentrations in solution is developed and comprises homemade conditioning circuit, data acquiring board, and computer. It can calibrate slope, temperature, and positioning automatically. When applied to determine the reaction rate constant by pX, it achieved live acquiring, real-time displaying, automatical processing of testing data, generating the report of results; and other functions. This method simplifies the experimental operation greatly, avoids complicated procedures of manual processing data and personal error, and improves veracity and repeatability of the experiment results. PMID:19730752

  17. Virtual Instrument for Determining Rate Constant of Second-Order Reaction by pX Based on LabVIEW 8.0.

    PubMed

    Meng, Hu; Li, Jiang-Yuan; Tang, Yong-Huai

    2009-01-01

    The virtual instrument system based on LabVIEW 8.0 for ion analyzer which can measure and analyze ion concentrations in solution is developed and comprises homemade conditioning circuit, data acquiring board, and computer. It can calibrate slope, temperature, and positioning automatically. When applied to determine the reaction rate constant by pX, it achieved live acquiring, real-time displaying, automatical processing of testing data, generating the report of results; and other functions. This method simplifies the experimental operation greatly, avoids complicated procedures of manual processing data and personal error, and improves veracity and repeatability of the experiment results.

  18. Pycnonuclear reaction rates for binary ionic mixtures

    NASA Technical Reports Server (NTRS)

    Ichimaru, S.; Ogata, S.; Van Horn, H. M.

    1992-01-01

    Through a combination of compositional scaling arguments and examinations of Monte Carlo simulation results for the interparticle separations in binary-ionic mixture (BIM) solids, we have derived parameterized expressions for the BIM pycnonuclear rates as generalizations of those in one-component solids obtained previously by Salpeter and Van Horn and by Ogata et al. We have thereby discovered a catalyzing effect of the heavier elements, which enhances the rates of reactions among the lighter elements when the charge ratio exceeds a critical value of approximately 2.3.

  19. Photodegradation of gemfibrozil in aqueous solution under UV irradiation: kinetics, mechanism, toxicity, and degradation pathways.

    PubMed

    Ma, Jingshuai; Lv, Wenying; Chen, Ping; Lu, Yida; Wang, Fengliang; Li, Fuhua; Yao, Kun; Liu, Guoguang

    2016-07-01

    The lipid regulator gemfibrozil (GEM) has been reported to be persistent in conventional wastewater treatment plants. This study investigated the photolytic behavior, toxicity of intermediate products, and degradation pathways of GEM in aqueous solutions under UV irradiation. The results demonstrated that the photodegradation of GEM followed pseudo-first-order kinetics, and the pseudo-first-order rate constant was decreased markedly with increasing initial concentrations of GEM and initial pH. The photodegradation of GEM included direct photolysis via (3)GEM(*) and self-sensitization via ROS, where the contribution rates of degradation were 0.52, 90.05, and 8.38 % for ·OH, (1)O2, and (3)GEM(*), respectively. Singlet oxygen ((1)O2) was evidenced by the molecular probe compound, furfuryl alcohol (FFA), and was identified as the primary reactive species in the photolytic process. The steady-state concentrations of (1)O2 increased from (0.324 ± 0.014) × 10(-12) to (1.021 ± 0.040) × 10(-12) mol L(-1), as the initial concentrations of GEM were increased from 5 to 20 mg L(-1). The second-order rate constant for the reaction of GEM with (1)O2 was calculated to be 2.55 × 10(6) M(-1) s(-1). The primary transformation products were identified using HPLC-MS/MS, and possible photodegradation pathways were proposed by hydroxylation, aldehydes reactions, as well as the cleavage of ether side chains. The toxicity of phototransformation product evaluation revealed that photolysis potentially provides a critical pathway for GEM toxicity reduction in potable water and wastewater treatment facilities.

  20. Fractal reaction kinetics.

    PubMed

    Kopelman, R

    1988-09-23

    Classical reaction kinetics has been found to be unsatisfactory when the reactants are spatially constrained on the microscopic level by either walls, phase boundaries, or force fields. Recently discovered theories of heterogeneous reaction kinetics have dramatic consequences, such as fractal orders for elementary reactions, self-ordering and self-unmixing of reactants, and rate coefficients with temporal "memories." The new theories were needed to explain the results of experiments and supercomputer simulations of reactions that were confined to low dimensions or fractal dimensions or both. Among the practical examples of "fractal-like kinetics" are chemical reactions in pores of membranes, excitation trapping in molecular aggregates, exciton fusion in composite materials, and charge recombination in colloids and clouds.

  1. Tsallis entropy and decoherence of CsI quantum pseudo dot qubit

    NASA Astrophysics Data System (ADS)

    Tiotsop, M.; Fotue, A. J.; Fotsin, H. B.; Fai, L. C.

    2017-05-01

    Polaron in CsI quantum pseudo dot under an electromagnetic field was considered, and the ground and first excited state energies were derived by employing the combining Pekar variational and unitary transformation methods. With the two-level system obtained, single qubit was envisioned and the decoherence was studied using non-extensive entropy (Tsallis entropy). Numerical results showed: (i) the increase (decrease) of the energy levels (period of oscillation) with the increase of chemical potential, the zero point of pseudo dot, cyclotron frequency, and transverse and longitudinal confinements; (ii) the Tsallis entropy evolved as a wave envelop that increase with the increase of non-extenxive parameter and with the increase of electric field strength, zero point of pseudo dot and cyclotron frequency the wave envelop evolve periodically with reduction of period; (iii) The transition probability increases from the boundary to the centre of the dot where it has its maximum value. It was also noted that the probability density oscillate with period T0 = ℏ / Δ Ε with the tunnelling of the chemical potential and zero point of the pseudo dot. These results are helpful in the control of decoherence in quantum systems and may also be useful for the design of quantum computers.

  2. Classification of pseudo pairs between nucleotide bases and amino acids by analysis of nucleotide-protein complexes.

    PubMed

    Kondo, Jiro; Westhof, Eric

    2011-10-01

    Nucleotide bases are recognized by amino acid residues in a variety of DNA/RNA binding and nucleotide binding proteins. In this study, a total of 446 crystal structures of nucleotide-protein complexes are analyzed manually and pseudo pairs together with single and bifurcated hydrogen bonds observed between bases and amino acids are classified and annotated. Only 5 of the 20 usual amino acid residues, Asn, Gln, Asp, Glu and Arg, are able to orient in a coplanar fashion in order to form pseudo pairs with nucleotide bases through two hydrogen bonds. The peptide backbone can also form pseudo pairs with nucleotide bases and presents a strong bias for binding to the adenine base. The Watson-Crick side of the nucleotide bases is the major interaction edge participating in such pseudo pairs. Pseudo pairs between the Watson-Crick edge of guanine and Asp are frequently observed. The Hoogsteen edge of the purine bases is a good discriminatory element in recognition of nucleotide bases by protein side chains through the pseudo pairing: the Hoogsteen edge of adenine is recognized by various amino acids while the Hoogsteen edge of guanine is only recognized by Arg. The sugar edge is rarely recognized by either the side-chain or peptide backbone of amino acid residues.

  3. Classification of pseudo pairs between nucleotide bases and amino acids by analysis of nucleotide–protein complexes

    PubMed Central

    Kondo, Jiro; Westhof, Eric

    2011-01-01

    Nucleotide bases are recognized by amino acid residues in a variety of DNA/RNA binding and nucleotide binding proteins. In this study, a total of 446 crystal structures of nucleotide–protein complexes are analyzed manually and pseudo pairs together with single and bifurcated hydrogen bonds observed between bases and amino acids are classified and annotated. Only 5 of the 20 usual amino acid residues, Asn, Gln, Asp, Glu and Arg, are able to orient in a coplanar fashion in order to form pseudo pairs with nucleotide bases through two hydrogen bonds. The peptide backbone can also form pseudo pairs with nucleotide bases and presents a strong bias for binding to the adenine base. The Watson–Crick side of the nucleotide bases is the major interaction edge participating in such pseudo pairs. Pseudo pairs between the Watson–Crick edge of guanine and Asp are frequently observed. The Hoogsteen edge of the purine bases is a good discriminatory element in recognition of nucleotide bases by protein side chains through the pseudo pairing: the Hoogsteen edge of adenine is recognized by various amino acids while the Hoogsteen edge of guanine is only recognized by Arg. The sugar edge is rarely recognized by either the side-chain or peptide backbone of amino acid residues. PMID:21737431

  4. First and Higher Order Effects on Zero Order Radiative Transfer Model

    NASA Astrophysics Data System (ADS)

    Neelam, M.; Mohanty, B.

    2014-12-01

    Microwave radiative transfer model are valuable tool in understanding the complex land surface interactions. Past literature has largely focused on local sensitivity analysis for factor priotization and ignoring the interactions between the variables and uncertainties around them. Since land surface interactions are largely nonlinear, there always exist uncertainties, heterogeneities and interactions thus it is important to quantify them to draw accurate conclusions. In this effort, we used global sensitivity analysis to address the issues of variable uncertainty, higher order interactions, factor priotization and factor fixing for zero-order radiative transfer (ZRT) model. With the to-be-launched Soil Moisture Active Passive (SMAP) mission of NASA, it is very important to have a complete understanding of ZRT for soil moisture retrieval to direct future research and cal/val field campaigns. This is a first attempt to use GSA technique to quantify first order and higher order effects on brightness temperature from ZRT model. Our analyses reflect conditions observed during the growing agricultural season for corn and soybeans in two different regions in - Iowa, U.S.A and Winnipeg, Canada. We found that for corn fields in Iowa, there exist significant second order interactions between soil moisture, surface roughness parameters (RMS height and correlation length) and vegetation parameters (vegetation water content, structure and scattering albedo), whereas in Winnipeg, second order interactions are mainly due to soil moisture and vegetation parameters. But for soybean fields in both Iowa and Winnipeg, we found significant interactions only to exist between soil moisture and surface roughness parameters.

  5. An approximate classical unimolecular reaction rate theory

    NASA Astrophysics Data System (ADS)

    Zhao, Meishan; Rice, Stuart A.

    1992-05-01

    We describe a classical theory of unimolecular reaction rate which is derived from the analysis of Davis and Gray by use of simplifying approximations. These approximations concern the calculation of the locations of, and the fluxes of phase points across, the bottlenecks to fragmentation and to intramolecular energy transfer. The bottleneck to fragment separation is represented as a vibration-rotation state dependent separatrix, which approximation is similar to but extends and improves the approximations for the separatrix introduced by Gray, Rice, and Davis and by Zhao and Rice. The novel feature in our analysis is the representation of the bottlenecks to intramolecular energy transfer as dividing surfaces in phase space; the locations of these dividing surfaces are determined by the same conditions as locate the remnants of robust tori with frequency ratios related to the golden mean (in a two degree of freedom system these are the cantori). The flux of phase points across each dividing surface is calculated with an analytic representation instead of a stroboscopic mapping. The rate of unimolecular reaction is identified with the net rate at which phase points escape from the region of quasiperiodic bounded motion to the region of free fragment motion by consecutively crossing the dividing surfaces for intramolecular energy exchange and the separatrix. This new theory generates predictions of the rates of predissociation of the van der Waals molecules HeI2, NeI2 and ArI2 which are in very good agreement with available experimental data.

  6. VizieR Online Data Catalog: Brussels nuclear reaction rate library (Aikawa+, 2005)

    NASA Astrophysics Data System (ADS)

    Aikawa, M.; Arnould, M.; Goriely, S.; Jorissen, A.; Takahashi, K.

    2005-07-01

    The present data is part of the Brussels nuclear reaction rate library (BRUSLIB) for astrophysics applications and concerns nuclear reaction rate predictions calculated within the statistical Hauser-Feshbach approximation and making use of global and coherent microscopic nuclear models for the quantities (nuclear masses, nuclear structure properties, nuclear level densities, gamma-ray strength functions, optical potentials) entering the rate calculations. (4 data files).

  7. The Topological Weighted Centroid (TWC): A topological approach to the time-space structure of epidemic and pseudo-epidemic processes

    NASA Astrophysics Data System (ADS)

    Buscema, Massimo; Massini, Giulia; Sacco, Pier Luigi

    2018-02-01

    This paper offers the first systematic presentation of the topological approach to the analysis of epidemic and pseudo-epidemic spatial processes. We introduce the basic concepts and proofs, at test the approach on a diverse collection of case studies of historically documented epidemic and pseudo-epidemic processes. The approach is found to consistently provide reliable estimates of the structural features of epidemic processes, and to provide useful analytical insights and interpretations of fragmentary pseudo-epidemic processes. Although this analysis has to be regarded as preliminary, we find that the approach's basic tenets are strongly corroborated by this first test and warrant future research in this vein.

  8. The Gaseous Explosive Reaction : the Effect of Pressure on the Rate of Propagation of the Reaction Zone and upon the Rate of Molecular Transformation

    NASA Technical Reports Server (NTRS)

    Stevens, F W

    1932-01-01

    This study of gaseous explosive reaction has brought out a number of important fundamental characteristics of the explosive reaction indicating that the basal processes of the transformation are much simpler and corresponds more closely to the general laws and principles of ordinary transformations than is usually supposed. The report calls attention to the point that the rate of molecular transformation within the zone was found in all cases to be proportional to pressure, that the transformation within the zone is the result of binary impacts. This result is of unusual interest in the case of the reaction of heavy hydrocarbon fuels and the reaction mechanism proposed by the recent kinetic theory of chain reactions.

  9. Reaction of benzophenone UV filters in the presence of aqueous chlorine: kinetics and chloroform formation.

    PubMed

    Duirk, Stephen E; Bridenstine, David R; Leslie, Daniel C

    2013-02-01

    The transformation of two benzophenone UV filters (Oxybenzone and Dioxybenzone) was examined over the pH range 6-11 in the presence of excess aqueous chlorine. Under these conditions, both UV filters were rapidly transformed by aqueous chlorine just above circumneutral pH while transformation rates were significantly lower near the extremes of the pH range investigated. Observed first-order rate coefficients (k(obs)) were obtained at each pH for aqueous chlorine concentrations ranging from 10 to 75 μM. The k(obs) were used to determine the apparent second-order rate coefficient (k(app)) at each pH investigated as well as determine the reaction order of aqueous chlorine with each UV filter. The reaction of aqueous chlorine with either UV filter was found to be an overall second-order reaction, first-order with respect to each reactant. Assuming elemental stoichiometry described the reaction between aqueous chlorine and each UV filter, models were developed to determine intrinsic rate coefficients (k(int)) from the k(app) as a function of pH for both UV filters. The rate coefficients for the reaction of HOCl with 3-methoxyphenol moieties of oxybenzone (OXY) and dioxybenzone (DiOXY) were k(1,OxY) = 306 ± 81 M⁻¹s⁻¹ and k(1,DiOxY) = 154 ± 76 M⁻¹s⁻¹, respectively. The k(int) for the reaction of aqueous chlorine with the 3-methoxyphenolate forms were orders of magnitude greater than the un-ionized species, k(2,OxY) = 1.03(±0.52) × 10⁶ M⁻¹s⁻¹ and k(2_1,DiOxY) = 4.14(±0.68) × 10⁵ M⁻¹s⁻¹. Also, k(int) for the reaction of aqueous chlorine with the DiOXY ortho-substituted phenolate moiety was k(2_2,DiOxY) = 2.17(±0.30) × 10³ M⁻¹s⁻¹. Finally, chloroform formation potential for OXY and DiOXY was assessed over the pH range 6-10. While chloroform formation decreased as pH increased for OXY, chloroform formation increased as pH increased from 6 to 10 for DiOXY. Ultimate molar yields of chloroform per mole of UV filter were pH dependent

  10. Determination of Rate Constants for Ouabain Inhibition of Adenosine Triphosphatase: An Undergraduate Biological Chemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Sall, Eri; And Others

    1978-01-01

    Describes an undergraduate biological chemistry laboratory experiment which provides students with an example of pseudo-first-order kinetics with the cardiac glycoside inhibition of mammalism sodium and potassium transport. (SL)

  11. Implementation of steady state approximation for modelling of reaction kinetic of UV catalysed hydrogen peroxide oxidation of starch

    NASA Astrophysics Data System (ADS)

    Kumoro, Andri Cahyo; Retnowati, Diah Susetyo; Ratnawati, Budiyati, Catarina Sri

    2015-12-01

    With regard to its low viscosity, high stability, clarity, film forming and binding properties, oxidised starch has been widely used in various applications specifically in the food, paper, textile, laundry finishing and binding materials industries. A number of methods have been used to produce oxidised starch through reactions with various oxidizing agents, such as hydrogen peroxide, air oxygen, ozone, bromine, chromic acid, permanganate, nitrogen dioxide and hypochlorite. Unfortunately, most of previous works reported in the literatures were focused on the study of reaction mechanism and physicochemical properties characterization of the oxidised starches produced without investigation of the reaction kinetics of the oxidation process. This work aimed to develop a simple kinetic model for UV catalysed hydrogen peroxide oxidation of starch through implementation of steady state approximation for the radical reaction rates. The model was then verified using experimental data available in the literature. The model verification revealed that the proposed model shows its good agreement with the experimental data as indicated by an average absolute relative error of only 2.45%. The model also confirmed that carboxyl groups are oxidised further by hydroxyl radical. The carbonyl production rate was found to follow first order reaction with respect to carbonyl concentration. Similarly, carboxyl production rate also followed first order reaction with respect to carbonyl concentration. The apparent reaction rate constant for carbonyl formation and oxidation were 6.24 × 104 s-1 and 1.01 × 104 M-1.s-1, respectively. While apparent reaction rate constant for carboxyl oxidation was 4.86 × 104 M-1.s-1.

  12. A musculoskeletal shoulder model based on pseudo-inverse and null-space optimization.

    PubMed

    Terrier, Alexandre; Aeberhard, Martin; Michellod, Yvan; Mullhaupt, Philippe; Gillet, Denis; Farron, Alain; Pioletti, Dominique P

    2010-11-01

    The goal of the present work was assess the feasibility of using a pseudo-inverse and null-space optimization approach in the modeling of the shoulder biomechanics. The method was applied to a simplified musculoskeletal shoulder model. The mechanical system consisted in the arm, and the external forces were the arm weight, 6 scapulo-humeral muscles and the reaction at the glenohumeral joint, which was considered as a spherical joint. The muscle wrapping was considered around the humeral head assumed spherical. The dynamical equations were solved in a Lagrangian approach. The mathematical redundancy of the mechanical system was solved in two steps: a pseudo-inverse optimization to minimize the square of the muscle stress and a null-space optimization to restrict the muscle force to physiological limits. Several movements were simulated. The mathematical and numerical aspects of the constrained redundancy problem were efficiently solved by the proposed method. The prediction of muscle moment arms was consistent with cadaveric measurements and the joint reaction force was consistent with in vivo measurements. This preliminary work demonstrated that the developed algorithm has a great potential for more complex musculoskeletal modeling of the shoulder joint. In particular it could be further applied to a non-spherical joint model, allowing for the natural translation of the humeral head in the glenoid fossa. Copyright © 2010 IPEM. Published by Elsevier Ltd. All rights reserved.

  13. A case of mixed connective tissue disease with pseudo-pseudo Meigs' syndrome (PPMS)-like features.

    PubMed

    Cheah, C K; Ramanujam, S; Mohd Noor, N; Gandhi, C; D Souza, Beryl A; Gun, S C

    2016-02-01

    Pseudo-pseudo Meigs' syndrome (PPMS) has been reported to be a rare presentation of patients with systemic lupus erythematosus (SLE). However, such a presentation is not common in other forms of connective tissue disease. We presented a case of gross ascites, pleural effusion, and marked elevation of CA-125 level (PPMS-like features) that led to a diagnosis of MCTD. The patient responded to systemic steroid therapy. © The Author(s) 2015.

  14. The effect of presentation rate on implicit sequence learning in aging.

    PubMed

    Foster, Chris M; Giovanello, Kelly S

    2017-02-01

    Implicit sequence learning is thought to be preserved in aging when the to-be learned associations are first-order; however, when associations are second-order, older adults (OAs) tend to experience deficits as compared to young adults (YAs). Two experiments were conducted using a first (Experiment 1) and second-order (Experiment 2) serial-reaction time task. Stimuli were presented at a constant rate of either 800 milliseconds (fast) or 1200 milliseconds (slow). Results indicate that both age groups learned first-order dependencies equally in both conditions. OAs and YAs also learned second-order dependencies, but the learning of lag-2 information was significantly impacted by the rate of presentation for both groups. OAs showed significant lag-2 learning in slow condition while YAs showed significant lag-2 learning in the fast condition. The sensitivity of implicit sequence learning to the rate of presentation supports the idea that OAs and YAs different processing speeds impact the ability to build complex associations across time and intervening events.

  15. Semiclassical Calculation of Reaction Rate Constants for Homolytical Dissociations

    NASA Technical Reports Server (NTRS)

    Cardelino, Beatriz H.

    2002-01-01

    There is growing interest in extending organometallic chemical vapor deposition (OMCVD) to III-V materials that exhibit large thermal decomposition at their optimum growth temperature, such as indium nitride. The group III nitrides are candidate materials for light-emitting diodes and semiconductor lasers operating into the blue and ultraviolet regions. To overcome decomposition of the deposited compound, the reaction must be conducted at high pressures, which causes problems of uniformity. Microgravity may provide the venue for maintaining conditions of laminar flow under high pressure. Since the selection of optimized parameters becomes crucial when performing experiments in microgravity, efforts are presently geared to the development of computational OMCVD models that will couple the reactor fluid dynamics with its chemical kinetics. In the present study, we developed a method to calculate reaction rate constants for the homolytic dissociation of III-V compounds for modeling OMCVD. The method is validated by comparing calculations with experimental reaction rate constants.

  16. The reaction of peroxy radicals with OH: rate constants and HO2 yields

    NASA Astrophysics Data System (ADS)

    Fittschen, C. M.; Assaf, E.; Schoemaecker, C.; Vereecken, L.

    2017-12-01

    Peroxy radicals, RO2, are key species in the atmosphere. They are formed from a reaction of OH radicals with hydrocarbon: RH + OH + O2 → RO2 + H2O In polluted environments, RO2 radicals react predominantly with NO, leading to formation of NO2 and eventually through photolysis of NO2 to formation of O3. At low NOx concentrations such as in the marine boundary layer or the background troposphere, the lifetime of RO2 radicals increases and other reaction pathways become competitive. Atmospheric chemistry models have considered until recently only the self- and cross reaction with other RO2 radicals or with HO2 radicals as the major fate for RO2 radicals under low NOx conditions. Recently, the rate constants for the reaction of peroxy radicals with OH radicals RO2 + OH → products has been measured for CH3O2 [1, 2] and C2H5O2 [3] and it was shown to become competitive to other sinks [4]. However, in order to evaluate the impact of this so far neglected sink for peroxy radicals on the composition of remote atmospheres, the reaction products must be known. A recently improved experimental set-up combining laser photolysis with two simultaneous cw-CRDS detections in the near IR allowing for a time resolved, absolute quantification of OH and RO2 radicals has been used for a further investigation of this class of reactions. High-repetition rate LIF is used for determining relative OH profiles. For CH3O2 radicals, HO2 has been determined as major product recently [5]. Currently, we study the next larger perxoy, C2H5O2, using different radical precursors (C2H5I, (COCl)2/C2H6, XeF2/C2H6) and also deuterated C2D5I in order to elucidate the product yield. Preliminary results show a much lower HO2 yield for C2H5O2 compared to CH3O2. The most recent results will be presented at the conference. [1] A. Bossolasco, E. Faragó, C. Schoemaecker, and C. Fittschen, CPL, 593, 7, (2014). [2] E. Assaf, B. Song, A. Tomas, C. Schoemaecker, C. Fittschen, JPC A, 120, 8923 (2016) [3] Eszter

  17. Static and dynamic dielectric properties of strongly polar liquids in the vicinity of first order and weakly first order phase transitions

    NASA Astrophysics Data System (ADS)

    Jadżyn, Jan; Czechowski, Grzegorz; Legrand, Christian; Douali, Redouane

    2003-04-01

    The paper presents the results of measurements of the linear dielectric properties of the compounds from the homologous series of alkylcyanobiphenyls (CnH2n+1PhPhCN, nCB) in the vicinity of the first order transition (from the isotropic liquid to the crystalline phase) of nonmesogenic nCB’s (n=2 4) and the weakly first order transition (from the isotropic liquid to the nematic phase) of 5CB. The experimental method for the separation of the critical part of the static permittivity derivative and the activation energy for rotation of the mesogenic molecules, in the vicinity of weakly first order phase transition, is proposed. It is shown that the critical temperature dependence of the permittivity and the activation energy can be described with a function of (T-T*)-α type, with the same values of the temperature of virtual transition of the second order (T*) and the critical exponent (α).

  18. Viscosity Dependence of Some Protein and Enzyme Reaction Rates: Seventy-Five Years after Kramers.

    PubMed

    Sashi, Pulikallu; Bhuyan, Abani K

    2015-07-28

    Kramers rate theory is a milestone in chemical reaction research, but concerns regarding the basic understanding of condensed phase reaction rates of large molecules in viscous milieu persist. Experimental studies of Kramers theory rely on scaling reaction rates with inverse solvent viscosity, which is often equated with the bulk friction coefficient based on simple hydrodynamic relations. Apart from the difficulty of abstraction of the prefactor details from experimental data, it is not clear why the linearity of rate versus inverse viscosity, k ∝ η(-1), deviates widely for many reactions studied. In most cases, the deviation simulates a power law k ∝ η(-n), where the exponent n assumes fractional values. In rate-viscosity studies presented here, results for two reactions, unfolding of cytochrome c and cysteine protease activity of human ribosomal protein S4, show an exceedingly overdamped rate over a wide viscosity range, registering n values up to 2.4. Although the origin of this extraordinary reaction friction is not known at present, the results indicate that the viscosity exponent need not be bound by the 0-1 limit as generally suggested. For the third reaction studied here, thermal dissociation of CO from nativelike cytochrome c, the rate-viscosity behavior can be explained using Grote-Hynes theory of time-dependent friction in conjunction with correlated motions intrinsic to the protein. Analysis of the glycerol viscosity-dependent rate for the CO dissociation reaction in the presence of urea as the second variable shows that the protein stabilizing effect of subdenaturing amounts of urea is not affected by the bulk viscosity. It appears that a myriad of factors as diverse as parameter uncertainty due to the difficulty of knowing the exact reaction friction and both mode and consequences of protein-solvent interaction work in a complex manner to convey as though Kramers rate equation is not absolute.

  19. Pseudo Gitelman Syndrome Associated With Pregnancy.

    PubMed

    Yoshihara, Masato; Sayo, Akira; Mayama, Michinori; Oguchi, Hidenori

    2015-10-01

    Gitelman syndrome is a rare inherited renal tubulopathy associated with metabolic alkalosis and electrolyte disorders. Pseudo Gitelman syndrome presents with the same clinical characteristics as Gitelman syndrome, yet without genetic mutations in SLC12A3. A 32-year-old woman with no remarkable medical and family history developed hypokalemia at 32 weeks of gestation. Laboratory findings were consistent with Gitelman syndrome and potassium supplementation was initiated. The patient delivered a healthy neonate at 40 weeks of gestation and the electrolyte disorders drastically improved. After delivery, genomic analysis revealed no evidence of mutations in SLC12A3, and pseudo Gitelman syndrome was finally diagnosed. Pseudo Gitelman syndrome, presenting with Gitelman syndrome-like renal tubulopathy without mutations in SLC12A3, can cause a temporary electrolyte imbalance based on the physiologic changes of pregnancy. Although pregnant women with isolated hypokalemia need not be evaluated for Gitelman or pseudo Gitelman syndrome, if it is accompanied by metabolic alkalosis, hypocalciuria, hypomagnesia, and activation of the renin-angiotensin-aldosterone system without hypertension, this evaluation should be considered.

  20. Visual Evoked Cortical Potential (VECP) Elicited by Sinusoidal Gratings Controlled by Pseudo-Random Stimulation

    PubMed Central

    Araújo, Carolina S.; Souza, Givago S.; Gomes, Bruno D.; Silveira, Luiz Carlos L.

    2013-01-01

    The contributions of contrast detection mechanisms to the visual cortical evoked potential (VECP) have been investigated studying the contrast-response and spatial frequency-response functions. Previously, the use of m-sequences for stimulus control has been almost restricted to multifocal electrophysiology stimulation and, in some aspects, it substantially differs from conventional VECPs. Single stimulation with spatial contrast temporally controlled by m-sequences has not been extensively tested or compared to multifocal techniques. Our purpose was to evaluate the influence of spatial frequency and contrast of sinusoidal gratings on the VECP elicited by pseudo-random stimulation. Nine normal subjects were stimulated by achromatic sinusoidal gratings driven by pseudo random binary m-sequence at seven spatial frequencies (0.4–10 cpd) and three stimulus sizes (4°, 8°, and 16° of visual angle). At 8° subtence, six contrast levels were used (3.12–99%). The first order kernel (K1) did not provide a consistent measurable signal across spatial frequencies and contrasts that were tested–signal was very small or absent–while the second order kernel first (K2.1) and second (K2.2) slices exhibited reliable responses for the stimulus range. The main differences between results obtained with the K2.1 and K2.2 were in the contrast gain as measured in the amplitude versus contrast and amplitude versus spatial frequency functions. The results indicated that K2.1 was dominated by M-pathway, but for some stimulus condition some P-pathway contribution could be found, while the second slice reflected the P-pathway contribution. The present work extended previous findings of the visual pathways contribution to VECP elicited by pseudorandom stimulation for a wider range of spatial frequencies. PMID:23940546

  1. Nuclear reaction rate uncertainties and the 22Ne( p,gamma)23Na reaction: Classical novae and globular clusters

    NASA Astrophysics Data System (ADS)

    Kelly, Keegan John

    The overall theme of this thesis is the advancement of nuclear astrophysics via the analysis of stellar processes in the presence of varying levels of precision in the available nuclear data. With regard to classical novae, the level of mixing that occurs between the outer layers of the white dwarf core and the solar accreted material in oxygen-neon novae is presently undetermined by stellar models, but the nuclear data relevant to these explosive phenomena are fairly precise. This precision allowed for the identification of a series of elemental ratios indicative of the level of mixing occurring in novae. Direct comparisons of the modelled elemental ratios to observations showed that there is likely to be much less of this mixing than was previously assumed. Thus, our understanding of classical novae was altered via the investigation of the nuclear reactions relevant to this phenomenon. However, this level of experimental precision is rare and large nuclear reaction uncertainties can hinder our understanding of certain astrophysical phenomena. For example, it is commonly believed that uncertainties in the 22Ne(p,g)23Na reaction rate at temperatures relevant to thermally-pulsing asymptotic giant branch stars are largely responsible for our inability to explain the observed sodium-oxygen anti-correlation in globular clusters. With this motivation, resonances in the 22Ne(p,g) 23Na reaction at E_{c.m.} = 458, 417, 178, and 151 keV were measured. The direct-capture contribution was also measured at E_{lab} = 425 keV. It was determined that the 22Ne(p,g)23Na reaction rate in the astrophysically relevant temperature range is dominated by the resonances at 178 and 151 keV and that the total reaction rate is greater than the previously assumed rate by a factor of approximately ˜40 at 0.15 GK. This increased reaction rate impacts the expected nucleosynthesis that occurs in these stars and will shed light onto the origin of this anti-correlation as it is incorporated into

  2. Comparing transfusion reaction rates for various plasma types: a systematic review and meta-analysis/regression.

    PubMed

    Saadah, Nicholas H; van Hout, Fabienne M A; Schipperus, Martin R; le Cessie, Saskia; Middelburg, Rutger A; Wiersum-Osselton, Johanna C; van der Bom, Johanna G

    2017-09-01

    We estimated rates for common plasma-associated transfusion reactions and compared reported rates for various plasma types. We performed a systematic review and meta-analysis of peer-reviewed articles that reported plasma transfusion reaction rates. Random-effects pooled rates were calculated and compared between plasma types. Meta-regression was used to compare various plasma types with regard to their reported plasma transfusion reaction rates. Forty-eight studies reported transfusion reaction rates for fresh-frozen plasma (FFP; mixed-sex and male-only), amotosalen INTERCEPT FFP, methylene blue-treated FFP, and solvent/detergent-treated pooled plasma. Random-effects pooled average rates for FFP were: allergic reactions, 92/10 5 units transfused (95% confidence interval [CI], 46-184/10 5 units transfused); febrile nonhemolytic transfusion reactions (FNHTRs), 12/10 5 units transfused (95% CI, 7-22/10 5 units transfused); transfusion-associated circulatory overload (TACO), 6/10 5 units transfused (95% CI, 1-30/10 5 units transfused); transfusion-related acute lung injury (TRALI), 1.8/10 5 units transfused (95% CI, 1.2-2.7/10 5 units transfused); and anaphylactic reactions, 0.8/10 5 units transfused (95% CI, 0-45.7/10 5 units transfused). Risk differences between plasma types were not significant for allergic reactions, TACO, or anaphylactic reactions. Methylene blue-treated FFP led to fewer FNHTRs than FFP (risk difference = -15.3 FNHTRs/10 5 units transfused; 95% CI, -24.7 to -7.1 reactions/10 5 units transfused); and male-only FFP led to fewer cases of TRALI than mixed-sex FFP (risk difference = -0.74 TRALI/10 5 units transfused; 95% CI, -2.42 to -0.42 injuries/10 5 units transfused). Meta-regression demonstrates that the rate of FNHTRs is lower for methylene blue-treated compared with FFP, and the rate of TRALI is lower for male-only than for mixed-sex FFP; whereas no significant differences are observed between plasma types for allergic reactions, TACO

  3. Entanglement scaling at first order quantum phase transitions

    NASA Astrophysics Data System (ADS)

    Yuste, A.; Cartwright, C.; De Chiara, G.; Sanpera, A.

    2018-04-01

    First order quantum phase transitions (1QPTs) are signalled, in the thermodynamic limit, by discontinuous changes in the ground state properties. These discontinuities affect expectation values of observables, including spatial correlations. When a 1QPT is crossed in the vicinity of a second order one, due to the correlation length divergence of the latter, the corresponding ground state is modified and it becomes increasingly difficult to determine the order of the transition when the size of the system is finite. Here we show that, in such situations, it is possible to apply finite size scaling (FSS) to entanglement measures, as it has recently been done for the order parameters and the energy gap, in order to recover the correct thermodynamic limit (Campostrini et al 2014 Phys. Rev. Lett. 113 070402). Such a FSS can unambiguously discriminate between first and second order phase transitions in the vicinity of multicritical points even when the singularities displayed by entanglement measures lead to controversial results.

  4. EXPERIMENTAL PROTOCOL FOR DETERMINING PROTOLYSIS REACTION RATE CONSTANTS

    EPA Science Inventory

    An experimental protocol to determine photolysis rates of chemicals which photolyze relatively rapidly in the gas phase has been developed. This procedure provides a basis for evaluating the relative importance of one atmospheric reaction pathway (i.e., photolysis) for organic su...

  5. Measurement of Fluorine Atom Concentrations and Reaction Rates in Chemical Laser Systems.

    DTIC Science & Technology

    1981-09-01

    AD-A1RA 070 AERODYNEERESEARCHUINC BEDFORDM MA F/6_20/5 MEASURE MENT OF FLUORINE ATOM CONCENTRATIONS AND REACTION RATFS -ETC(U) SEP_ A A C STANT ON...0772 LEVELIg 00 ~ARI-RR-272 cO0 MEASUREMENT OF FLUORINE ATOM CONCENTRATIONS AND REACTION RATES IN CHEMICAL LASER SYSTEMS ANNUAL TECHNICAL REPORT by...MEASUREMENT OF FLUORINE ATOM CONCENTRATIONS AND Annual Report REACTION RATES IN CHEMICAL LASER SYSTEMS 23 July 1980 - 23 July 1981 S. PERFORMING ORG. REPORT

  6. Reactions of gas phase H atoms with ethylene, acetylene and ethane adsorbed on Ni( 1 1 1 )

    NASA Astrophysics Data System (ADS)

    Bürgi, T.; Trautman, T. R.; Gostein, M.; Lahr, D. L.; Haug, K. L.; Ceyer, S. T.

    2002-03-01

    The products of the reaction of the most energetic form of hydrogen, gas phase H atoms, with ethylene, acetylene and ethane adsorbed on a Ni(1 1 1) surface at 60 K are probed. Adsorbed ethylidyne (CCH 3) is identified by high resolution electron energy loss spectroscopy to be the major product (30% yield) in all three cases. Adsorbed acetylene is a minor product (3% yield) and arises as a consequence of a dynamic equilibrium between CCH 3 and C 2H 2 in the presence of gas phase H atoms. The observation of the same product for the reaction of H atoms with all three hydrocarbons implies that CCH 3 is the most stable C 2 species in the presence of coadsorbed hydrogen. The rates of CCH 3 production are measured as a function of the time of exposure of H atoms to each hydrocarbon. A simple kinetic model treating each reaction as a pseudo-first order reaction in the hydrocarbon coverage is fit to these data. A mechanism for the formation of CCH 3 via a CHCH 2 intermediate common to all three reactants is proposed to describe this model. The observed instability of the CH 2CH 3 species relative to C 2H 4 plays a role in the formulation of this mechanism as does the observed stability of CHCH 2 species in the presence of coadsorbed hydrogen. The CH 2CH 3 and the CHCH 2 species are produced by the translational activation of ethane and the dissociative ionization of ethane and ethylene, respectively. In addition, the binding energy and the vibrational spectrum of ethane adsorbed on Ni(1 1 1) are determined and exceptionally high resolution vibrational spectra of adsorbed ethylene and acetylene are presented.

  7. A new unequal-weighted triple-frequency first order ionosphere correction algorithm and its application in COMPASS

    NASA Astrophysics Data System (ADS)

    Liu, WenXiang; Mou, WeiHua; Wang, FeiXue

    2012-03-01

    As the introduction of triple-frequency signals in GNSS, the multi-frequency ionosphere correction technology has been fast developing. References indicate that the triple-frequency second order ionosphere correction is worse than the dual-frequency first order ionosphere correction because of the larger noise amplification factor. On the assumption that the variances of three frequency pseudoranges were equal, other references presented the triple-frequency first order ionosphere correction, which proved worse or better than the dual-frequency first order correction in different situations. In practice, the PN code rate, carrier-to-noise ratio, parameters of DLL and multipath effect of each frequency are not the same, so three frequency pseudorange variances are unequal. Under this consideration, a new unequal-weighted triple-frequency first order ionosphere correction algorithm, which minimizes the variance of the pseudorange ionosphere-free combination, is proposed in this paper. It is found that conventional dual-frequency first-order correction algorithms and the equal-weighted triple-frequency first order correction algorithm are special cases of the new algorithm. A new pseudorange variance estimation method based on the three carrier combination is also introduced. Theoretical analysis shows that the new algorithm is optimal. The experiment with COMPASS G3 satellite observations demonstrates that the ionosphere-free pseudorange combination variance of the new algorithm is smaller than traditional multi-frequency correction algorithms.

  8. Assembly of 4-, 6- and 8-connected Cd(II) pseudo-polymorphic coordination polymers: Synthesis, solvent-dependent structural variation and properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Zhao-Hao; Xue, Li-Ping, E-mail: lpxue@163.com; Miao, Shao-Bin

    2016-08-15

    The reaction of Cd(NO{sub 3}){sub 2}·4H{sub 2}O, 2,5-thiophenedicarboxylic acid (H{sub 2}tdc) and 1,2-bis(imidazol-1′-yl)methane (bimm) by modulating solvent systems yielded three highly connected pseudo-polymorphic coordination polymers based on different dinuclear [Cd{sub 2}(CO{sub 2}){sub 2}] subunits bridged by carboxylate groups. Single crystal structural analyses reveal structural variation from 4-connected 2D sql layer, 6-connected 2-fold interpenetrated 3D pcu to 8-connected 3D bcu-type network in compounds 1–3. The structural dissimilarity in the structures dependent on the coordination environments of Cd(II) ions and linking modes of mixed ligand influenced by different solvent systems during the synthesis process. Moreover, thermogravimetric and photoluminescence behaviors of 1–3 weremore » also investigated for the first time, and all the complexes emit blue luminescence in the solid state. - Graphical abstract: Key Topic. Different solvent systems modulated three Cd(II) pseudo-polymorphic coordination polymers based on thiophene-2,5-dicarboxylate and 1,2-bis(imidazol-1′-yl)methane mixed ligands. Display Omitted - Highlights: • Three solvent-dependent Cd(II) pseudo-polymorphic coordination polymers have been synthesized. • Structural variation from 4-connected 2D layer, 6-connected 2-fold interpenetrated 3D net to 8-connected 3D net. • All complexes emit blue luminescence.« less

  9. Kinetics of Electrocatalytic Reactions from First-Principles: A Critical Comparison with the Ab Initio Thermodynamics Approach.

    PubMed

    Exner, Kai S; Over, Herbert

    2017-05-16

    Multielectron processes in electrochemistry require the stabilization of reaction intermediates (RI) at the electrode surface after every elementary reaction step. Accordingly, the bond strengths of these intermediates are important for assessing the catalytic performance of an electrode material. Current understanding of microscopic processes in modern electrocatalysis research is largely driven by theory, mostly based on ab initio thermodynamics considerations, where stable reaction intermediates at the electrode surface are identified, while the actual free energy barriers (or activation barriers) are ignored. This simple approach is popular in electrochemistry in that the researcher has a simple tool at hand in successfully searching for promising electrode materials. The ab initio TD approach allows for a rough but fast screening of the parameter space with low computational cost. However, ab initio thermodynamics is also frequently employed (often, even based on a single binding energy only) to comprehend on the activity and on the mechanism of an electrochemical reaction. The basic idea is that the activation barrier of an endergonic reaction step consists of a thermodynamic part and an additional kinetically determined barrier. Assuming that the activation barrier scales with thermodynamics (so-called Brønsted-Polanyi-Evans (BEP) relation) and the kinetic part of the barrier is small, ab initio thermodynamics may provide molecular insights into the electrochemical reaction kinetics. However, for many electrocatalytic reactions, these tacit assumptions are violated so that ab initio thermodynamics will lead to contradictions with both experimental data and ab initio kinetics. In this Account, we will discuss several electrochemical key reactions, including chlorine evolution (CER), oxygen evolution reaction (OER), and oxygen reduction (ORR), where ab initio kinetics data are available in order to critically compare the results with those derived from a

  10. Phosphoryl transfer is not rate-limiting for the ROCK I-catalyzed kinase reaction.

    PubMed

    Futer, Olga; Saadat, Ahmad R; Doran, John D; Raybuck, Scott A; Pazhanisamy, S

    2006-06-27

    Rho-associated coiled-coil kinase, ROCK, is implicated in Rho-mediated cell adhesion and smooth muscle contraction. Animal models suggest that the inhibition of ROCK can ameliorate conditions, such as vasospasm, hypertension, and inflammation. As part of our effort to design novel inhibitors of ROCK, we investigated the kinetic mechanism of ROCK I. Steady-state bisubstrate kinetics, inhibition kinetics, isotope partition analysis, viscosity effects, and presteady-state kinetics were used to explore the kinetic mechanism. Plots of reciprocals of initial rates obtained in the presence of nonhydrolyzable ATP analogues and the small molecule inhibitor of ROCK, Y-27632, against the reciprocals of the peptide concentrations yielded parallel lines (uncompetitive pattern). This pattern is indicative of an ordered binding mechanism, with the peptide adding first. The staurosporine analogue K252a, however, gave a noncompetitive pattern. When a pulse of (33)P-gamma-ATP mixed with ROCK was chased with excess unlabeled ATP and peptide, 0.66 enzyme equivalent of (33)P-phosphate was incorporated into the product in the first turnover. The presence of ATPase activity coupled with the isotope partition data is a clear evidence for the existence of a viable [E-ATP] complex in the kinase reaction and implicates a random binding mechanism. The k(cat)/K(m) parameters were fully sensitive to viscosity (viscosity effects of 1.4 +/- 0.2 and 0.9 +/- 0.3 for ATP and peptide 5, respectively), and therefore, the barriers to dissociation of either substrate are higher than the barrier for the phosphoryl transfer step. As a consequence, not all the binding steps are at fast equilibrium. The observation of a burst in presteady-state kinetics (k(b) = 10.2 +/- 2.1 s(-)(1)) and the viscosity effect on k(cat) of 1.3 +/- 0.2 characterize the phosphoryl transfer step to be fast and the release of product and/or the enzyme isomerization step accompanying it as rate-limiting at V(max) conditions. From

  11. Pseudo-Linear Attitude Determination of Spinning Spacecraft

    NASA Technical Reports Server (NTRS)

    Bar-Itzhack, Itzhack Y.; Harman, Richard R.

    2004-01-01

    This paper presents the overall mathematical model and results from pseudo linear recursive estimators of attitude and rate for a spinning spacecraft. The measurements considered are vector measurements obtained by sun-sensors, fixed head star trackers, horizon sensors, and three axis magnetometers. Two filters are proposed for estimating the attitude as well as the angular rate vector. One filter, called the q-Filter, yields the attitude estimate as a quaternion estimate, and the other filter, called the D-Filter, yields the estimated direction cosine matrix. Because the spacecraft is gyro-less, Euler s equation of angular motion of rigid bodies is used to enable the estimation of the angular velocity. A simpler Markov model is suggested as a replacement for Euler's equation in the case where the vector measurements are obtained at high rates relative to the spacecraft angular rate. The performance of the two filters is examined using simulated data.

  12. Oxygen reactivity of the biferrous site in the de novo designed four helix bundle peptide DFsc: nature of the "intermediate" and reaction mechanism.

    PubMed

    Calhoun, Jennifer R; Bell, Caleb B; Smith, Thomas J; Thamann, Thomas J; DeGrado, William F; Solomon, Edward I

    2008-07-23

    The DFsc and DFscE11D de novo designed protein scaffolds support biomimetic diiron cofactor sites that react with dioxygen forming a 520 nm "intermediate" species with an apparent pseudo-first-order formation rate constant of 2.2 and 4.8 s-1, respectively. Resonance Raman spectroscopy shows that this absorption feature is due to a phenolate-to-ferric charge transfer transition arising from a single tyrosine residue coordinating terminally to one of the ferric ions in the site. Phenol coordination could provide a proton to promote rapid loss of a putative peroxo species.

  13. Correcting reaction rates measured by saturation-transfer magnetic resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Gabr, Refaat E.; Weiss, Robert G.; Bottomley, Paul A.

    2008-04-01

    Off-resonance or spillover irradiation and incomplete saturation can introduce significant errors in the estimates of chemical rate constants measured by saturation-transfer magnetic resonance spectroscopy (MRS). Existing methods of correction are effective only over a limited parameter range. Here, a general approach of numerically solving the Bloch-McConnell equations to calculate exchange rates, relaxation times and concentrations for the saturation-transfer experiment is investigated, but found to require more measurements and higher signal-to-noise ratios than in vivo studies can practically afford. As an alternative, correction formulae for the reaction rate are provided which account for the expected parameter ranges and limited measurements available in vivo. The correction term is a quadratic function of experimental measurements. In computer simulations, the new formulae showed negligible bias and reduced the maximum error in the rate constants by about 3-fold compared to traditional formulae, and the error scatter by about 4-fold, over a wide range of parameters for conventional saturation transfer employing progressive saturation, and for the four-angle saturation-transfer method applied to the creatine kinase (CK) reaction in the human heart at 1.5 T. In normal in vivo spectra affected by spillover, the correction increases the mean calculated forward CK reaction rate by 6-16% over traditional and prior correction formulae.

  14. The Influence of the Level Structure of Sodium -20 upon the Stellar Reaction Rate for NEON-19(PROTON, PHOTON)(20)SODIUM.

    NASA Astrophysics Data System (ADS)

    Lamm, Larry Odell

    The level structure of ^{20 }Na has been measured up to excitation energies of 3.33 MeV using the charge-exchange reaction 20Ne(^3He,t) 20Na. Angular distributions have been measured for 14 levels at laboratory angles ranging from 10 to 60 degrees. Assignments of spin and parities have been made for the levels based on DWBA analysis of the angular distributions and comparisons with the level structure of the analog nuclei. The reaction rate for ^{19 }Ne(p,gamma)^{20 }Na has been calculated to include the effects of the resonant levels of temperatures of interest in the operation of the hot CNO cycle. The result is an increase of nearly three orders of magnitude in the stellar reaction rate for 19Ne(p, gamma)20Na, as compared to previous estimates made before the measurement of the level structure of 20Na. This increase may indicate that 19 Ne(p,gamma)20 Na is the sought after breakout mechanism to allow for the transport of mass from the CNO region into the Ne-Na-Mg regions, with applications for the rp-process and the possible explanation of the observed neon overabundances in some nova events. A detailed description of the experiment is given, including a discussion of the development of a new type of position sensitive detector for use with the broad range magnetic spectrograph which has allowed, for the first time, the unambiguous identification to tritons within the spectrograph.

  15. Comparison of Nernst-Planck and reaction rate models for multiply occupied channels.

    PubMed Central

    Levitt, D G

    1982-01-01

    The Nernst-Planck continuum equation for a channel that can be occupied by at most two ions is solved for two different physical cases. The first case is for the assumption that the water and ion cannot get around each other anywhere in the channel, so that if there are two ions in the channel the distance between them is fixed by the number of water molecules between them. The second case is for the assumption that there are regions at he ends of the channel where the ions and water can get around each other. For these two cases, the validity of the simple two-site reaction-rate approximation when there is a continuously varying central energy barrier was evaluated by comparing it with the exact Nernst-Planck solution. For the first continuum case, the kinetics for the continuum and reaction-rate models are nearly identical. For the second case, the agreement depends on the strength of the ion-ion interaction energy. For a low interaction energy (large channel diameter) a high ion concentrations, there is a large difference in the flux as a function of voltage for the two models-with the continuum flux becoming more than four times larger at 250 mV. Simple analytical expressions are derived for the two-ion continuum channel for the case where the ends are in equilibrium with the bulk solution and for the case where ion mobility becomes zero when there are two ions in the channel. The implications of these results for biological channels are discussed. PMID:6280783

  16. The effect of displacement on sensitivity to first- and second-order global motion in 5-year-olds and adults.

    PubMed

    Ellemberg, D; Lewis, T L; Maurer, D; Lee, B; Ledgeway, T; Guilemot, J P; Lepore, F

    2010-01-01

    We compared the development of sensitivity to first- versus second-order global motion in 5-year-olds (n=24) and adults (n=24) tested at three displacements (0.1, 0.5 and 1.0 degrees). Sensitivity was measured with Random-Gabor Kinematograms (RGKs) formed with luminance-modulated (first-order) or contrast-modulated (second-order) concentric Gabor patterns. Five-year-olds were less sensitive than adults to the direction of both first- and second-order global motion at every displacement tested. In addition, the immaturity was smallest at the smallest displacement, which required the least spatial integration, and smaller for first-order than for second-order global motion at the middle displacement. The findings suggest that the development of sensitivity to global motion is limited by the development of spatial integration and by different rates of development of sensitivity to first- versus second-order signals.

  17. Highly efficient direct aerobic oxidative esterification of cinnamyl alcohol with alkyl alcohols catalysed by gold nanoparticles incarcerated in a nanoporous polymer matrix: a tool for investigating the role of the polymer host.

    PubMed

    Buonerba, Antonio; Noschese, Annarita; Grassi, Alfonso

    2014-04-25

    The selective aerobic oxidation of cinnamyl alcohol to cinnamaldehyde, as well as direct oxidative esterification of this alcohol with primary and secondary aliphatic alcohols, were achieved with high chemoselectivity by using gold nanoparticles supported in a nanoporous semicrystalline multi-block copolymer matrix, which consisted of syndiotactic polystyrene-co-cis-1,4-polybutadiene. The cascade reaction that leads to the alkyl cinnamates occurs through two oxidation steps: the selective oxidation of cinnamyl alcohol to cinnamaldehyde, followed by oxidation of the hemiacetal that results from the base-catalysed reaction of cinnamaldehyde with an aliphatic alcohol. The rate constants for the two steps were evaluated in the temperature range 10-45 °C. The cinnamyl alcohol oxidation is faster than the oxidative esterification of cinnamaldehyde with methanol, ethanol, 2-propanol, 1-butanol, 1-hexanol or 1-octanol. The rate constants of the latter reaction are pseudo-zero order with respect to the aliphatic alcohol and decrease as the bulkiness of the alcohol is increased. The activation energy (Ea) for the two oxidation steps was calculated for esterification of cinnamyl alcohol with 1-butanol (Ea = 57.8±11.5 and 62.7±16.7 kJ mol(-1) for the first and second step, respectively). The oxidative esterification of cinnamyl alcohol with 2-phenylethanol follows pseudo-first-order kinetics with respect to 2-phenylethanol and is faster than observed for other alcohols because of fast diffusion of the aromatic alcohol in the crystalline phase of the support. The kinetic investigation allowed us to assess the role of the polymer support in the determination of both high activity and selectivity in the title reaction. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Quantification of biodegradation for o-xylene and naphthalene using first order decay models, Michaelis-Menten kinetics and stable carbon isotopes.

    PubMed

    Blum, Philipp; Hunkeler, Daniel; Weede, Matthias; Beyer, Christof; Grathwohl, Peter; Morasch, Barbara

    2009-04-01

    At a former wood preservation plant severely contaminated with coal tar oil, in situ bulk attenuation and biodegradation rate constants for several monoaromatic (BTEX) and polyaromatic hydrocarbons (PAH) were determined using (1) classical first order decay models, (2) Michaelis-Menten degradation kinetics (MM), and (3) stable carbon isotopes, for o-xylene and naphthalene. The first order bulk attenuation rate constant for o-xylene was calculated to be 0.0025 d(-1) and a novel stable isotope-based first order model, which also accounted for the respective redox conditions, resulted in a slightly smaller biodegradation rate constant of 0.0019 d(-1). Based on MM-kinetics, the o-xylene concentration decreased with a maximum rate of k(max)=0.1 microg/L/d. The bulk attenuation rate constant of naphthalene retrieved from the classical first order decay model was 0.0038 d(-1). The stable isotope-based biodegradation rate constant of 0.0027 d(-1) was smaller in the reduced zone, while residual naphthalene in the oxic part of the plume further downgradient was degraded at a higher rate of 0.0038 d(-1). With MM-kinetics a maximum degradation rate of k(max)=12 microg/L/d was determined. Although best fits were obtained by MM-kinetics, we consider the carbon stable isotope-based approach more appropriate as it is specific for biodegradation (not overall attenuation) and at the same time accounts for the dominant electron-accepting process. For o-xylene a field based isotope enrichment factor epsilon(field) of -1.4 could be determined using the Rayleigh model, which closely matched values from laboratory studies of o-xylene degradation under sulfate-reducing conditions.

  19. Removal of humic acid from aqueous solution using dual PMMA/PVDF composite nanofiber: kinetics study

    NASA Astrophysics Data System (ADS)

    Zulfikar, M. A.; Afrianingsih, I.; Bahri, A.; Nasir, M.; Alni, A.; Setiyanto, H.

    2018-05-01

    The removal of humic acid from aqueous solution using dual poly(methyl methacrylate)/polyvinyl difluoride composite nanofiber under the influence of concentration has been studied. The experiments were performed using humic acid (HA) as an adsorbate at concentration in the range of 50-200 mg/L. Pseudo-first-order, pseudo-second-order, and intra-particle diffusion models were used to describe the kinetic data and the rate constants were evaluated. It was observed that the amount of humic acid removed decrease with increasing concentration. The kinetic study revealed that pseudo-second order model fitted well the kinetic data, while the external diffusion or boundary layer diffusion was the main rate determining step in the removal process.

  20. Pseudo-icosahedral Cr 55 Al 232 - δ as a high-temperature protective material

    DOE PAGES

    Rosa, R.; Bhattacharya, S.; Pabla, J.; ...

    2018-03-19

    In this paper, we report here a course of basic research into the potential suitability of a pseudo-icosahedral Cr aluminide as a material for high temperature protective coatings. Cr 55Al 232-δ [δ = 2.70(6)] exhibits high hardness at room temperature as well as low thermal conductivity and excellent oxidation resistance at 973 K, with an oxidation rate comparable to those of softer, denser benchmark materials. Lastly, the origin of these promising properties can be traced to competing long-range and short-range symmetries within the pseudo-icosahedral crystal structure, suggesting new criteria for future materials research.

  1. Pseudo-icosahedral Cr55Al232 -δ as a high-temperature protective material

    NASA Astrophysics Data System (ADS)

    Rosa, R.; Bhattacharya, S.; Pabla, J.; He, H.; Misuraca, J.; Nakajima, Y.; Bender, A. D.; Antonacci, A. K.; Adrip, W.; McNally, D. E.; Zebro, A.; Kamenov, P.; Geschwind, G.; Ghose, S.; Dooryhee, E.; Ibrahim, A.; Tritt, T. M.; Aronson, M. C.; Simonson, J. W.

    2018-03-01

    We report here a course of basic research into the potential suitability of a pseudo-icosahedral Cr aluminide as a material for high-temperature protective coatings. Cr55Al232 -δ [ δ =2.70 (6 ) ] exhibits high hardness at room temperature as well as low thermal conductivity and excellent oxidation resistance at 973 K, with an oxidation rate comparable to those of softer, denser benchmark materials. The origin of these promising properties can be traced to competing long-range and short-range symmetries within the pseudo-icosahedral crystal structure, suggesting new criteria for future materials research.

  2. Pseudo-icosahedral Cr 55 Al 232 - δ as a high-temperature protective material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosa, R.; Bhattacharya, S.; Pabla, J.

    In this paper, we report here a course of basic research into the potential suitability of a pseudo-icosahedral Cr aluminide as a material for high temperature protective coatings. Cr 55Al 232-δ [δ = 2.70(6)] exhibits high hardness at room temperature as well as low thermal conductivity and excellent oxidation resistance at 973 K, with an oxidation rate comparable to those of softer, denser benchmark materials. Lastly, the origin of these promising properties can be traced to competing long-range and short-range symmetries within the pseudo-icosahedral crystal structure, suggesting new criteria for future materials research.

  3. The effect of viscous flow and thermal flux on the rate of chemical reaction in dilute gases

    NASA Astrophysics Data System (ADS)

    Cukrowski, A. S.; Popielawski, J.

    1986-11-01

    Expression for the corrections describing the effect of viscous flow and thermal flux on the rate of chemical reaction have been derived for the reaction A + A = B + C described by Prigogine-Xhrouet and Present. These corrections are calculated for the velocity distribution function up to the second-order approximation for the Chapman-Enskog solution of the Boltzmann equation. These corrections are shown to be the same as those which would follow after application of the method of linearized-moments equations described by Eu and Li. The effects of viscous flow and thermal flux are presented as functions of activation energy of chemical reaction, temperature, density, coefficients of shear viscosity of thermal conductivity, and relevant gradients of mean molecular velocity or temperature. It is pointed out that for very slow reactions and for very large gradients (e.g. in shock waves) these effects can be quite significant.

  4. Computations and estimates of rate coefficients for hydrocarbon reactions of interest to the atmospheres of outer solar system

    NASA Technical Reports Server (NTRS)

    Laufer, A. H.; Gardner, E. P.; Kwok, T. L.; Yung, Y. L.

    1983-01-01

    The rate coefficients, including Arrhenius parameters, have been computed for a number of chemical reactions involving hydrocarbon species for which experimental data are not available and which are important in planetary atmospheric models. The techniques used to calculate the kinetic parameters include the Troe and semiempirical bond energy-bond order (BEBO) or bond strength-bond length (BSBL) methods.

  5. The effect of learning models and emotional intelligence toward students learning outcomes on reaction rate

    NASA Astrophysics Data System (ADS)

    Sutiani, Ani; Silitonga, Mei Y.

    2017-08-01

    This research focused on the effect of learning models and emotional intelligence in students' chemistry learning outcomes on reaction rate teaching topic. In order to achieve the objectives of the research, with 2x2 factorial research design was used. There were two factors tested, namely: the learning models (factor A), and emotional intelligence (factor B) factors. Then, two learning models were used; problem-based learning/PBL (A1), and project-based learning/PjBL (A2). While, the emotional intelligence was divided into higher and lower types. The number of population was six classes containing 243 grade X students of SMAN 10 Medan, Indonesia. There were 15 students of each class were chosen as the sample of the research by applying purposive sampling technique. The data were analyzed by applying two-ways analysis of variance (2X2) at the level of significant α = 0.05. Based on hypothesis testing, there was the interaction between learning models and emotional intelligence in students' chemistry learning outcomes. Then, the finding of the research showed that students' learning outcomes in reaction rate taught by using PBL with higher emotional intelligence is higher than those who were taught by using PjBL. There was no significant effect between students with lower emotional intelligence taught by using both PBL and PjBL in reaction rate topic. Based on the finding, the students with lower emotional intelligence were quite hard to get in touch with other students in group discussion.

  6. Simulation of biochemical reactions with time-dependent rates by the rejection-based algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thanh, Vo Hong, E-mail: vo@cosbi.eu; Priami, Corrado, E-mail: priami@cosbi.eu; Department of Mathematics, University of Trento, Trento

    We address the problem of simulating biochemical reaction networks with time-dependent rates and propose a new algorithm based on our rejection-based stochastic simulation algorithm (RSSA) [Thanh et al., J. Chem. Phys. 141(13), 134116 (2014)]. The computation for selecting next reaction firings by our time-dependent RSSA (tRSSA) is computationally efficient. Furthermore, the generated trajectory is exact by exploiting the rejection-based mechanism. We benchmark tRSSA on different biological systems with varying forms of reaction rates to demonstrate its applicability and efficiency. We reveal that for nontrivial cases, the selection of reaction firings in existing algorithms introduces approximations because the integration of reactionmore » rates is very computationally demanding and simplifying assumptions are introduced. The selection of the next reaction firing by our approach is easier while preserving the exactness.« less

  7. Bioethics in Denmark. Moving from first- to second-order analysis?

    PubMed

    Nielsen, Morten Ebbe Juul; Andersen, Martin Marchman

    2014-07-01

    This article examines two current debates in Denmark--assisted suicide and the prioritization of health resources--and proposes that such controversial bioethical issues call for distinct philosophical analyses: first-order examinations, or an applied philosophy approach, and second-order examinations, what might be called a political philosophical approach. The authors argue that although first-order examination plays an important role in teasing out different moral points of view, in contemporary democratic societies, few, if any, bioethical questions can be resolved satisfactorily by means of first-order analyses alone, and that bioethics needs to engage more closely with second-order enquiries and the question of legitimacy in general.

  8. Gender Differences in Affective Reactions to First Coitus.

    ERIC Educational Resources Information Center

    Guggino, Julie M.; Ponzetti, James J., Jr.

    1997-01-01

    Examined 87 college men's and 122 college women's affective reactions to first sexual intercourse. Results show that women were significantly more likely to report less pleasure, satisfaction, and excitement than men, and more sadness, guilt, nervousness, tension, embarrassment, and fear. Used factor analysis to group emotions into coherent…

  9. "Depletion": A Game with Natural Rules for Teaching Reaction Rate Theory.

    ERIC Educational Resources Information Center

    Olbris, Donald J.; Herzfeld, Judith

    2002-01-01

    Depletion is a game that reinforces central concepts of reaction rate theory through simulation. Presents the game with a set of follow-up questions suitable for either a quiz or discussion. Also describes student reaction to the game. (MM)

  10. Sensitivity study of explosive nucleosynthesis in type Ia supernovae: Modification of individual thermonuclear reaction rates

    NASA Astrophysics Data System (ADS)

    Bravo, Eduardo; Martínez-Pinedo, Gabriel

    2012-05-01

    Background: Type Ia supernovae contribute significantly to the nucleosynthesis of many Fe-group and intermediate-mass elements. However, the robustness of nucleosynthesis obtained via models of this class of explosions has not been studied in depth until now.Purpose: We explore the sensitivity of the nucleosynthesis resulting from thermonuclear explosions of massive white dwarfs with respect to uncertainties in nuclear reaction rates. We put particular emphasis on indentifying the individual reactions rates that most strongly affect the isotopic products of these supernovae.Method: We have adopted a standard one-dimensional delayed detonation model of the explosion of a Chandrasekhar-mass white dwarf and have postprocessed the thermodynamic trajectories of every mass shell with a nucleosynthetic code to obtain the chemical composition of the ejected matter. We have considered increases (decreases) by a factor of 10 on the rates of 1196 nuclear reactions (simultaneously with their inverse reactions), repeating the nucleosynthesis calculations after modification of each reaction rate pair. We have computed as well hydrodynamic models for different rates of the fusion reactions of 12C and of 16O. From the calculations we have selected the reactions that have the largest impact on the supernova yields, and we have computed again the nucleosynthesis using two or three alternative prescriptions for their rates, taken from the JINA REACLIB database. For the three reactions with the largest sensitivity we have analyzed as well the temperature ranges where a modification of their rates has the strongest effect on nucleosynthesis.Results: The nucleosynthesis resulting from the type Ia supernova models is quite robust with respect to variations of nuclear reaction rates, with the exception of the reaction of fusion of two 12C nuclei. The energy of the explosion changes by less than ˜4% when the rates of the reactions 12C+12C or 16O+16O are multiplied by a factor of ×10 or

  11. Calculation of astrophysical S-factor in reaction ^{13}C(p,γ )^{14}N for first resonance levels

    NASA Astrophysics Data System (ADS)

    Moghadasi, A.; Sadeghi, H.; Pourimani, R.

    2018-01-01

    The ^{13}C(p,γ )^{14}N reaction is one of the important reactions in the CNO cycle, which is a key process in nucleosynthesis. We first calculated wave functions for the bound state of ^{14}N with Faddeev's method. In this method, the considered reaction components are ^{12}C+n+p. Then, by using direct capture cross section and Breit-Wigner formulae, the non-resonant and resonant cross sections were calculated, respectively. In the next step, we calculated the total S-factor and compared it with experimental data, which showed good agreement between them. Next, we extrapolated the S-factor for the transition to the ground state at zero energy and obtained S(0)=5.8 ± 0.7 (keV b) and then calculate reaction rate. These ones are in agreement with previous reported results.

  12. 15 CFR 700.12 - Elements of a rated order.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 15 Commerce and Foreign Trade 2 2010-01-01 2010-01-01 false Elements of a rated order. 700.12 Section 700.12 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade (Continued... DEFENSE PRIORITIES AND ALLOCATIONS SYSTEM Industrial Priorities § 700.12 Elements of a rated order. Each...

  13. 15 CFR 700.12 - Elements of a rated order.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 15 Commerce and Foreign Trade 2 2014-01-01 2014-01-01 false Elements of a rated order. 700.12 Section 700.12 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade (Continued... DEFENSE PRIORITIES AND ALLOCATIONS SYSTEM Industrial Priorities § 700.12 Elements of a rated order. Each...

  14. 15 CFR 700.12 - Elements of a rated order.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 15 Commerce and Foreign Trade 2 2012-01-01 2012-01-01 false Elements of a rated order. 700.12 Section 700.12 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade (Continued... DEFENSE PRIORITIES AND ALLOCATIONS SYSTEM Industrial Priorities § 700.12 Elements of a rated order. Each...

  15. 15 CFR 700.12 - Elements of a rated order.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 15 Commerce and Foreign Trade 2 2011-01-01 2011-01-01 false Elements of a rated order. 700.12 Section 700.12 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade (Continued... DEFENSE PRIORITIES AND ALLOCATIONS SYSTEM Industrial Priorities § 700.12 Elements of a rated order. Each...

  16. 15 CFR 700.12 - Elements of a rated order.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 15 Commerce and Foreign Trade 2 2013-01-01 2013-01-01 false Elements of a rated order. 700.12 Section 700.12 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade (Continued... DEFENSE PRIORITIES AND ALLOCATIONS SYSTEM Industrial Priorities § 700.12 Elements of a rated order. Each...

  17. Kinetics of acid hydrolysis and reactivity of some antibacterial hydrophilic iron(II) imino-complexes

    NASA Astrophysics Data System (ADS)

    Shaker, Ali Mohamed; Nassr, Lobna Abdel-Mohsen Ebaid; Adam, Mohamed Shaker Saied; Mohamed, Ibrahim Mohamed Abdelhalim

    2015-05-01

    Kinetic study of acid hydrolysis of some hydrophilic Fe(II) Schiff base amino acid complexes with antibacterial properties was performed using spectrophotometry. The Schiff base ligands were derived from sodium 2-hydroxybenzaldehyde-5-sulfonate and glycine, L-alanine, L-leucine, L-isoleucine, DL-methionine, DL-serine, or L-phenylalanine. The reaction was studied in aqueous media under conditions of pseudo-first order kinetics. Moreover, the acid hydrolysis was studied at different temperatures and the activation parameters were calculated. The general rate equation was suggested as follows: rate = k obs [Complex], where k obs = k 2 [H+]. The evaluated rate constants and activation parameters are consistent with the hydrophilicity of the investigated complexes.

  18. Convergent dental adaptations in pseudo-tribosphenic and tribosphenic mammals.

    PubMed

    Luo, Zhe-Xi; Ji, Qiang; Yuan, Chong-Xi

    2007-11-01

    Tribosphenic molars of basal marsupials and placentals are a major adaptation, with the protocone (pestle) of the upper molar crushing and grinding in the talonid basin (mortar) on the lower molar. The extinct pseudo-tribosphenic mammals have a reversed tribosphenic molar in which a pseudo-talonid is anterior to the trigonid, to receive the pseudo-protocone of the upper molar. The pseudo-protocone is analogous to the protocone, but the anteriorly placed pseudo-talonid is opposite to the posterior talonid basin of true tribosphenic mammals. Here we describe a mammal of the Middle Jurassic period with highly derived pseudo-tribosphenic molars but predominantly primitive mandibular and skeletal features, and place it in a basal position in mammal phylogeny. Its shoulder girdle and limbs show fossorial features similar to those of mammaliaforms and monotremes, but different compared with those of the earliest-known Laurasian tribosphenic (boreosphenid) mammals. The find reveals a much greater range of dental evolution in Mesozoic mammals than in their extant descendants, and strengthens the hypothesis of homoplasy of 'tribosphenic-like' molars among mammals.

  19. A simple thermometric technique for reaction-rate determination of inorganic species, based on the iodide-catalysed cerium(IV)-arsenic(III) reaction.

    PubMed

    Grases, F; Forteza, R; March, J G; Cerda, V

    1985-02-01

    A very simple reaction-rate thermometric technique is used for determination of iodide (5-20 ng ml ), based on its catalytic action on the cerium(IV)-arsenic(III) reaction, and for determination of mercury(II) (1.5-10 ng ml ) and silver(I) (2-10 ng ml ), based on their inhibitory effect on this reaction. The reaction is followed by measuring the rate of temperature increase. The method suffers from very few interferences and is applied to determination of iodide in biological and inorganic samples, and Hg(II) and Ag(I) in pharmaceutical products.

  20. Adsorption kinetic and desorption studies of Cd2+ on Multi-Carboxylic-Functionalized Silica Gel

    NASA Astrophysics Data System (ADS)

    Li, Min; Wei, Jian; Meng, Xiaojing; Wu, Zhuqiang; Liang, Xiuke

    2018-01-01

    In the present study, the adsorption behavior of cadmium (II) ion from aqueous solution onto multi-carboxylic-functionalized silica gel (SG-MCF) has been investigated in detail by means of batch and column experiments. Batch experiments were performed to evaluate the effects of contact time on adsorption capacity of cadmium (II) ion. The kinetic data were analyzed on the basis of the pseudo-first-order kinetic and the pseudo-second-order kinetic models and consequently, the pseudo-second-order kinetic can better describe the adsorption process than the pseudo-first-order kinetic model. And the adsorption mechanism of the process was studied by intra-particle and film diffusion, it was found out that the adsorption rate was governed primarily by film diffusion to the adsorption onto the SG-MCF. In addition, column experiments were conducted to assess the effects initial inlet concentration and the flow rate on breakthrough time and adsorption capacity ascertaining the practical applicability of the adsorbent. The results suggest that the total amount of adsorbed cadmium (II) ion increased with declined flow rate and increased the inlet concentration. The adsorption-desorption experiment confirmed that adsorption capacity of cadmium (II) ion didn’t present an obvious decrease after five cycles.

  1. Adsorption kinetic and desorption studies of Cu2+ on Multi-Carboxylic-Functionalized Silica Gel

    NASA Astrophysics Data System (ADS)

    Li, Min; Meng, Xiaojing; Liu, Yushuang; Hu, Xinju; Liang, Xiuke

    2018-01-01

    In the present study, the adsorption behavior of copper (II) ion from aqueous solution onto multi-carboxylic-functionalized silica gel (SG-MCF) has been investigated in detail by means of batch and column experiments. Batch experiments were performed to evaluate the effects of contact time on adsorption capacity of copper (II) ion. The kinetic data were analyzed on the basis of the pseudo-first-order kinetic and the pseudo-second-order kinetic models and consequently, the pseudo-second-order kinetic can better describe the adsorption process than the pseudo-first-order kinetic model. And the adsorption mechanism of the process was studied by intra-particle and film diffusion, it was found out that the adsorption rate was governed primarily by film diffusion to the adsorption onto the SG-MCF. In addition, column experiments were conducted to assess the effects initial inlet concentration and the flow rate on breakthrough time and adsorption capacity ascertaining the practical applicability of the adsorbent. The results suggest that the total amount of adsorbed copper (II) ion increased with declined flow rate and increased the inlet concentration. The adsorption-desorption experiment confirmed that adsorption capacity of copper (II) ion didn’t present an obvious decrease after five cycles.

  2. First-Order Frameworks for Managing Models in Engineering Optimization

    NASA Technical Reports Server (NTRS)

    Alexandrov, Natlia M.; Lewis, Robert Michael

    2000-01-01

    Approximation/model management optimization (AMMO) is a rigorous methodology for attaining solutions of high-fidelity optimization problems with minimal expense in high- fidelity function and derivative evaluation. First-order AMMO frameworks allow for a wide variety of models and underlying optimization algorithms. Recent demonstrations with aerodynamic optimization achieved three-fold savings in terms of high- fidelity function and derivative evaluation in the case of variable-resolution models and five-fold savings in the case of variable-fidelity physics models. The savings are problem dependent but certain trends are beginning to emerge. We give an overview of the first-order frameworks, current computational results, and an idea of the scope of the first-order framework applicability.

  3. Continuous preparation of nanoscale zero-valent iron using impinging stream-rotating packed bed reactor and their application in reduction of nitrobenzene

    NASA Astrophysics Data System (ADS)

    Jiao, Weizhou; Qin, Yuejiao; Luo, Shuai; Feng, Zhirong; Liu, Youzhi

    2017-02-01

    Nanoscale zero-valent iron (nZVI) was continuously prepared by high-gravity reaction precipitation through a novel impinging stream-rotating packed bed (IS-RPB). Reactant solutions of FeSO4 and NaBH4 were conducted into the IS-RPB with flow rates of 60 L/h and rotating speed of 1000 r/min for the preparation of nZVI. As-prepared nZVI obtained by IS-RPB were quasi-spherical morphology and almost uniformly distributed with a particle size of 10-20 nm. The reactivity of nZVI was estimated by the degradation of 100 ml nitrobenzene (NB) with initial concentration of 250 mg/L. The optimum dosage of nZVI obtained by IS-RPB was 4.0 g/L as the NB could be completely removed within 10 min, which reduced 20% compared with nZVI obtained by stirred tank reactor (STR). The reduction of NB and production of aniline (AN) followed pseudo-first-order kinetics, and the pseudo-first-order rate constants were 0.0147 and 0.0034 s-1, respectively. Furthermore, the as-prepared nZVI using IS-RPB reactor in this work can be used within a relatively wide range pH of 1-9.

  4. The rate constant of a quantum-diffusion-controlled bimolecular reaction

    NASA Astrophysics Data System (ADS)

    Bondarev, B. V.

    1986-04-01

    A quantum-mechanical equation is derived in the tight-bond approximation which describes the motion and chemical interaction of a pair of species A and B when their displacement in the matrix is caused by tunnelling. Within the framework of the discrete model of random walks, definitions are given of the probability and rate constant of a reaction A + B → P (products) proceeding in a condensed medium. A method is suggested for calculating the rate constant of a quantum-diffusion-controlled bimolecular reaction. By this method, an expression is obtained for the rate constant in the stationary spherically symmetrical case. An equation for the density matrix is also proposed which describes the motion and chemical interaction of a pair of species when the quantum and classical diffusion are competitive.

  5. Pulsed Laser-Assisted Focused Electron-Beam-Induced Etching of Titanium with XeF 2 : Enhanced Reaction Rate and Precursor Transport

    DOE PAGES

    Noh, J. H.; Fowlkes, J. D.; Timilsina, R.; ...

    2015-01-28

    We introduce a laser-assisted focused electron-beam-induced etching (LA-FEBIE) process which is a versatile, direct write nanofabrication method that allows nanoscale patterning and editing; we do this in order to enhance the etch rate of electron-beam-induced etching. The results demonstrate that the titanium electron stimulated etch rate via the XeF2 precursor can be enhanced up to a factor of 6 times with an intermittent pulsed laser assist. Moreover, the evolution of the etching process is correlated to in situ stage current measurements and scanning electron micrographs as a function of time. Finally, the increased etch rate is attributed to photothermally enhancedmore » Ti–F reaction and TiF4 desorption and in some regimes enhanced XeF2 surface diffusion to the reaction zone.« less

  6. Influencing factors and kinetic studies of imidacloprid degradation by ozonation.

    PubMed

    Chen, Shi; Deng, Jing; Deng, Yang; Gao, Naiyun

    2018-03-02

    Batch kinetic tests in ozonation of imidacloprid from water were performed in this study. The pseudo-first-order rate constant of imidacloprid degradation was increased from 0.079 to 0.326 min -1 with the increasing pH from 6.02 to 8.64 at an average ozone dose of 1.149 mg L -1 . When the alkalinity was increased from 0 to 250 mg L -1 NaHCO 3 , the pseudo-first-order rate constants decreased from 0.121 to 0.034 min -1 . These results suggested that the predominant oxidant gradually switched from ozone to hydroxyl radicals ([Formula: see text]) with the increase in solution pH. The secondary rate constant [Formula: see text] (10.92 ± 0.12 M -1 s -1 ) for the reaction of imidacloprid and molecular ozone was determined at pH 2.0 and in the presence of 50 mM ter-butyl alcohol (p-chlorobenzoic acid, pCBA), respectively. An indirect competition method was used to determine the secondary rate constant for [Formula: see text] oxidation of imidacloprid in the presence of pCBA as the reference compound. The rate constants [Formula: see text] were estimated to range 2.65-3.79 M -1 s -1 at pH 6.02-8.64. Results obtained from this study demonstrate that ozonation appears to be an effective method to remove imidacloprid from water.

  7. Contrast gain control in first- and second-order motion perception.

    PubMed

    Lu, Z L; Sperling, G

    1996-12-01

    A novel pedestal-plus-test paradigm is used to determine the nonlinear gain-control properties of the first-order (luminance) and the second-order (texture-contrast) motion systems, that is, how these systems' responses to motion stimuli are reduced by pedestals and other masking stimuli. Motion-direction thresholds were measured for test stimuli consisting of drifting luminance and texture-contrast-modulation stimuli superimposed on pedestals of various amplitudes. (A pedestal is a static sine-wave grating of the same type and same spatial frequency as the moving test grating.) It was found that first-order motion-direction thresholds are unaffected by small pedestals, but at pedestal contrasts above 1-2% (5-10 x pedestal threshold), motion thresholds increase proportionally to pedestal amplitude (a Weber law). For first-order stimuli, pedestal masking is specific to the spatial frequency of the test. On the other hand, motion-direction thresholds for texture-contrast stimuli are independent of pedestal amplitude (no gain control whatever) throughout the accessible pedestal amplitude range (from 0 to 40%). However, when baseline carrier contrast increases (with constant pedestal modulation amplitude), motion thresholds increase, showing that gain control in second-order motion is determined not by the modulator (as in first-order motion) but by the carrier. Note that baseline contrast of the carrier is inherently independent of spatial frequency of the modulator. The drastically different gain-control properties of the two motion systems and prior observations of motion masking and motion saturation are all encompassed in a functional theory. The stimulus inputs to both first- and second-order motion process are normalized by feedforward, shunting gain control. The different properties arise because the modulator is used to control the first-order gain and the carrier is used to control the second-order gain.

  8. First-Order System Least-Squares for Second-Order Elliptic Problems with Discontinuous Coefficients

    NASA Technical Reports Server (NTRS)

    Manteuffel, Thomas A.; McCormick, Stephen F.; Starke, Gerhard

    1996-01-01

    The first-order system least-squares methodology represents an alternative to standard mixed finite element methods. Among its advantages is the fact that the finite element spaces approximating the pressure and flux variables are not restricted by the inf-sup condition and that the least-squares functional itself serves as an appropriate error measure. This paper studies the first-order system least-squares approach for scalar second-order elliptic boundary value problems with discontinuous coefficients. Ellipticity of an appropriately scaled least-squares bilinear form of the size of the jumps in the coefficients leading to adequate finite element approximation results. The occurrence of singularities at interface corners and cross-points is discussed. and a weighted least-squares functional is introduced to handle such cases. Numerical experiments are presented for two test problems to illustrate the performance of this approach.

  9. Gas-phase chemiluminescent reactions of ozone with monoterpenes

    NASA Astrophysics Data System (ADS)

    Arora, P. K.; Chatha, J. P. S.; Vohra, K. G.

    1983-08-01

    Chemiluminescent reactions of ozone with monoterpenes such as linallol, geraniol, d-limonene and α-pinene have been studied in the gas phase at low pressures. Methylglyoxal phosphorescence has been observed in the first two reactions. Emissions from HCHO( 1A 2) and glyoxal ( 3A u) are observed in the reaction of ozone with d-limonene and formation of excited glyoxal is found to be first order in ozone. The reaction of ozone with β-pinene gives rise to emission from a α-dicarbonyl compound and this is found to be first order in ozone. The mechanisms for the formation of excited species are proposed.

  10. Hydroxymethylfurfural and furosine reaction kinetics in tomato products.

    PubMed

    Hidalgo, A; Pompei, C

    2000-01-01

    The reaction kinetics of two heat damage indices, HMF and furosine, were examined in four tomato products with different dry matter contents (10.2, 25.5, 28.6, and 34.5%) over a temperature-time range of 80-120 degrees C and 0-255 min. The reactions followed pseudo-zero order kinetics. E(a) and z-value were, respectively, 139. 9 kJ/mol and 19.2 degrees C for HMF, and 93.9 kJ/mol and 28.4 degrees C for furosine. The analyses of both indices in several samples of commercial and industrial tomato products showed very low levels of HMF (from 1 to 42 ppm) and a lack of correlation between HMF and furosine mainly because of the different evolution of the two indices during storage. The HMF level of a tomato paste sample stored at 25 degrees C decreased from 609 to 17 ppm after 98 days, while furosine increased from 458 to 550 mg/100 g of protein.

  11. The Influence of Particle Charge on Heterogeneous Reaction Rate Coefficients

    NASA Technical Reports Server (NTRS)

    Aikin, A. C.; Pesnell, W. D.

    2000-01-01

    The effects of particle charge on heterogeneous reaction rates are presented. Many atmospheric particles, whether liquid or solid are charged. This surface charge causes a redistribution of charge within a liquid particle and as a consequence a perturbation in the gaseous uptake coefficient. The amount of perturbation is proportional to the external potential and the square of the ratio of debye length in the liquid to the particle radius. Previous modeling has shown how surface charge affects the uptake coefficient of charged aerosols. This effect is now included in the heterogeneous reaction rate of an aerosol ensemble. Extension of this analysis to ice particles will be discussed and examples presented.

  12. Pseudo-Outbreak of Actinomyces graevenitzii Associated with Bronchoscopy

    PubMed Central

    Peaper, David R.; Havill, Nancy L.; Aniskiewicz, Michael; Callan, Deborah; Pop, Olivia; Towle, Dana

    2014-01-01

    Outbreaks and pseudo-outbreaks of infection related to bronchoscopy typically involve Gram-negative bacteria, Mycobacterium species or Legionella species. We report an unusual bronchoscopy-related pseudo-outbreak due to Actinomyces graevenitzii. Extensive epidemiological and microbiological investigation failed to identify a common source. Strain typing revealed that the cluster was comprised of heterogeneous strains of A. graevenitzii. A change in laboratory procedures for Actinomyces cultures was coincident with the emergence of the pseudo-outbreak, and we determined that A. graevenitzii isolates more readily adopted a white, dry, molar tooth appearance on anaerobic colistin nalidixic acid (CNA) agar which likely facilitated its detection and identification in bronchoscopic specimens. This unusual pseudo-outbreak was related to frequent requests of bronchoscopists for Actinomyces cultures combined with a change in microbiology laboratory practices. PMID:25355767

  13. LLNL compiled first pages ordered by ascending B&R code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, G; Kumar, M; Tobin, J

    We aim to develop a fundamental understanding of materials dynamics (from {micro}s to ns) in systems where the required combination of spatial and temporal resolution can only be reached by the dynamic transmission electron microscope (DTEM). In this regime, the DTEM is capable of studying complex transient phenomena with several orders of magnitude time resolution advantage over any existing in-situ TEM. Using the unique in situ capabilities and the nanosecond time resolution of the DTEM, we seek to study complex transient phenomena associated with rapid processes in materials, such as active sites on nanoscale catalysts and the atomic level mechanismsmore » and microstructural features for nucleation and growth associated with phase transformations in materials, specifically in martensite formation and crystallization reactions from the amorphous phase. We also will study the transient phase evolution in rapid solid-state reactions, such as those occurring in reactive multilayer foils (RMLF). Program Impact: The LLNL DTEM possesses unique capabilities for capturing time resolved images and diffraction patterns of rapidly evolving materials microstructure under strongly driven conditions. No other instrument in the world can capture images with <10 nm spatial resolution of interesting irreversible materials processes such as phase transformations, plasticity, or morphology changes with 15 ns time resolution. The development of this innovative capability requires the continuing collaboration of laser scientists, electron microscopists, and materials scientists experienced in time resolved observations of materials that exist with particularly relevant backgrounds at LLNL. The research team has made observations of materials processes that are possible by no other method, such as the rapid crystallization of thin film NiTi that identified a change in mechanism at high heating rates as compared to isothermal anneals through changes in nucleation and growth rates of

  14. Inequalities for scalar curvature of pseudo-Riemannian submanifolds

    NASA Astrophysics Data System (ADS)

    Tripathi, Mukut Mani; Gülbahar, Mehmet; Kılıç, Erol; Keleş, Sadık

    2017-02-01

    Some basic inequalities, involving the scalar curvature and the mean curvature, for a pseudo-Riemannian submanifold of a pseudo-Riemannian manifold are obtained. We also find inequalities for spacelike submanifolds. Equality cases are also discussed.

  15. Biogeochemistry of the sulfur oxidizer Thiomicrospira thermophila

    NASA Astrophysics Data System (ADS)

    Houghton, J.; Fike, D. A.; Wills, E.; Foustoukos, D.

    2013-12-01

    Near-seafloor hydrothermal environments such as diffuse flow venting or subsurface mixing are characterized by rapidly changing conditions and steep chemical and thermal gradients. Microorganisms living in these environments can take advantage of these changes by switching among metabolic pathways rather than specializing. We present reaction stoichiometry and rates for T. thermophila grown in a closed system both at ambient and elevated pressure (50 bars) that demonstrate substantial metabolic flexibility, shifting between up to 5 different sulfur cycling reactions over a 24 hour period. Based on the stoichiometry between S2O3 consumed and SO4 produced, three reactions are sulfur oxidation and two are disproportionation, which has not previously been demonstrated for Thiomicrospira strains. Reactants include S2O3, elemental S (both polymeric S chains and S8 rings), HS-, and O2, while products include polymeric elemental S, SO4, HS-, and polysulfides. The presence of μmolal concentrations of HS- has been confirmed during the time series only when stoichiometry predicts disproportionation. Production of HS- in the presence of elemental S results in abiotic conversion to polysulfides, keeping the sulfide concentrations low in solution. The transition from oxidation to disproportionation appears to be triggered by a depletion in dissolved oxygen and the rate of reaction is a second order function of S2O3 and O2 concentrations. Growth was tested at conditions spanning their pH tolerance (5.0 - 8.0) using a citrate buffer (pH 5.0), unbuffered media (initial pH 7.0), and Tris buffer (pH 8.0). The highest rates are observed at pH 8.0 with rates decreasing as a function of pH. The lowest rate occurs at pH 5.0 and exhibits pseudo-first order behavior over a 24 hour period, likely due to a long lag and very slow growth. Repeat injections after the culture is acclimated to the experimental conditions result in very high pseudo-first order rates due to rapid consumption of

  16. Angular-Rate Estimation Using Star Tracker Measurements

    NASA Technical Reports Server (NTRS)

    Azor, R.; Bar-Itzhack, I.; Deutschmann, Julie K.; Harman, Richard R.

    1999-01-01

    This paper presents algorithms for estimating the angular-rate vector of satellites using quaternion measurements. Two approaches are compared, one that uses differentiated quatemion measurements to yield coarse rate measurements which are then fed into two different estimators. In the other approach the raw quatemion measurements themselves are fed directly into the two estimators. The two estimators rely on the ability to decompose the non-linear rate dependent part of the rotational dynamics equation of a rigid body into a product of an angular-rate dependent matrix and the angular-rate vector itself This decomposition, which is not unique, enables the treatment of the nonlinear spacecraft dynamics model as a linear one and, consequently, the application of a Pseudo-Linear Kalman Filter (PSELIKA). It also enables the application of a special Kalman filter which is based on the use of the solution of the State Dependent Algebraic Riccati Equation (SDARE) in order to compute the Kalman gain matrix and thus eliminates the need to propagate and update the filter covariance matrix. The replacement of the elaborate rotational dynamics by a simple first order Markov model is also examined. In this paper a special consideration is given to the problem of delayed quatemion measurements. Two solutions to this problem are suggested and tested. Real Rossi X-Ray Timing Explorer (RXTE) data is used to test these algorithms, and results of these tests are presented.

  17. Angular-Rate Estimation using Star Tracker Measurements

    NASA Technical Reports Server (NTRS)

    Azor, R.; Bar-Itzhack, Itzhack Y.; Deutschmann, Julie K.; Harman, Richard R.

    1999-01-01

    This paper presents algorithms for estimating the angular-rate vector of satellites using quaternion measurements. Two approaches are compared, one that uses differentiated quaternion measurements to yield coarse rate measurements which are then fed into two different estimators. In the other approach the raw quaternion measurements themselves are fed directly into the two estimators. The two estimators rely on the ability to decompose the non-linear rate dependent part of the rotational dynamics equation of a rigid body into a product of an angular-rate dependent matrix and the angular-rate vector itself. This decomposition, which is not unique, enables the treatment of the nonlinear spacecraft dynamics model as a linear one and, consequently, the application of a Pseudo-Linear Kalman Filter (PSELIKA). It also enables the application of a special Kalman filter which is based on the use of the solution of the State Dependent Algebraic Riccati Equation (SDARE) in order to compute the Kalman gain matrix and thus eliminates the need to propagate and update the filter covariance matrix. The replacement of the elaborate rotational dynamics by a simple first order Markov model is also examined. In this paper a special consideration is given to the problem of delayed quaternion measurements. Two solutions to this problem are suggested and tested. Real Rossi X-Ray Timing Explorer (RXTE) data is used to test these algorithms, and results of these tests are presented.

  18. Using a pseudo-thermal light source to teach spatial coherence

    NASA Astrophysics Data System (ADS)

    Pieper, K.; Bergmann, A.; Dengler, R.; Rockstuhl, C.

    2018-07-01

    Teaching students spatial coherence constitutes a challenge. On the one hand, discussing it theoretically requires a quite demanding mathematical breadth. On the other hand, discussing it experimentally is hardly possible as coherence usually cannot be directly observed. To solve this problem, we show, by studying the contrast of interference patterns of a double slit, that speckles of a pseudo-thermal light source, consisting of a laser and a rotating diffuser disc, are equivalent to the spatial extent of coherent areas of a thermal light source. Coherent areas are spatial regions within which light can be considered as coherent. The unique advantage of such pseudo-thermal light source is the opportunity to directly observe the spatial extent of the coherent areas. This renders the phenomena perceptible and accessible by various experiments, as described in this contribution. This opens modern paths to teach spatial coherence to students with a notably reduced order of abstraction.

  19. Geometric model of pseudo-distance measurement in satellite location systems

    NASA Astrophysics Data System (ADS)

    Panchuk, K. L.; Lyashkov, A. A.; Lyubchinov, E. V.

    2018-04-01

    The existing mathematical model of pseudo-distance measurement in satellite location systems does not provide a precise solution of the problem, but rather an approximate one. The existence of such inaccuracy, as well as bias in measurement of distance from satellite to receiver, results in inaccuracy level of several meters. Thereupon, relevance of refinement of the current mathematical model becomes obvious. The solution of the system of quadratic equations used in the current mathematical model is based on linearization. The objective of the paper is refinement of current mathematical model and derivation of analytical solution of the system of equations on its basis. In order to attain the objective, geometric analysis is performed; geometric interpretation of the equations is given. As a result, an equivalent system of equations, which allows analytical solution, is derived. An example of analytical solution implementation is presented. Application of analytical solution algorithm to the problem of pseudo-distance measurement in satellite location systems allows to improve the accuracy such measurements.

  20. Fractional spectral and pseudo-spectral methods in unbounded domains: Theory and applications

    NASA Astrophysics Data System (ADS)

    Khosravian-Arab, Hassan; Dehghan, Mehdi; Eslahchi, M. R.

    2017-06-01

    This paper is intended to provide exponentially accurate Galerkin, Petrov-Galerkin and pseudo-spectral methods for fractional differential equations on a semi-infinite interval. We start our discussion by introducing two new non-classical Lagrange basis functions: NLBFs-1 and NLBFs-2 which are based on the two new families of the associated Laguerre polynomials: GALFs-1 and GALFs-2 obtained recently by the authors in [28]. With respect to the NLBFs-1 and NLBFs-2, two new non-classical interpolants based on the associated- Laguerre-Gauss and Laguerre-Gauss-Radau points are introduced and then fractional (pseudo-spectral) differentiation (and integration) matrices are derived. Convergence and stability of the new interpolants are proved in detail. Several numerical examples are considered to demonstrate the validity and applicability of the basis functions to approximate fractional derivatives (and integrals) of some functions. Moreover, the pseudo-spectral, Galerkin and Petrov-Galerkin methods are successfully applied to solve some physical ordinary differential equations of either fractional orders or integer ones. Some useful comments from the numerical point of view on Galerkin and Petrov-Galerkin methods are listed at the end.

  1. Kinetic and mechanistic investigations of the degradation of sulfamethazine in heat-activated persulfate oxidation process.

    PubMed

    Fan, Yan; Ji, Yuefei; Kong, Deyang; Lu, Junhe; Zhou, Quansuo

    2015-12-30

    Sulfamethazine (SMZ) is widely used in livestock feeding and aquaculture as an antibiotic agent and growth promoter. Widespread occurrence of SMZ in surface water, groundwater, soil and sediment has been reported. In this study, degradation of SMZ by heat-activated persulfate (PS) oxidation was investigated in aqueous solution. Experimental results demonstrated that SMZ degradation followed pseudo-first-order reaction kinetics. The pseudo-first-order rate constant (kobs) was increased markedly with increasing concentration of PS and temperature. Radical scavenging tests revealed that the predominant oxidizing species was SO4·(-) with HO playing a less important role. Aniline moiety in SMZ molecule was confirmed to be the reactive site for SO4·(-) attack by comparison with substructural analogs. Nontarget natural water constituents affected SMZ removal significantly, e.g., Cl(-) and HCO3(-) improved the degradation while fulvic acid reduced it. Reaction products were enriched by solid phase extraction (SPE) and analyzed by liquid chromatography-electrospray ionization-triple quadrupole mass spectrometry (LC-ESI-MS/MS). 6 products derived from sulfonamide S--N bond cleavage, aniline moiety oxidation and Smiles-type rearrangement were identified, and transformation pathways of SMZ oxidation were proposed. Results reveal that heat-activated PS oxidation could be an efficient approach for remediation of water contaminated by SMZ and related sulfonamides. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Kinetic modeling and fitting software for interconnected reaction schemes: VisKin.

    PubMed

    Zhang, Xuan; Andrews, Jared N; Pedersen, Steen E

    2007-02-15

    Reaction kinetics for complex, highly interconnected kinetic schemes are modeled using analytical solutions to a system of ordinary differential equations. The algorithm employs standard linear algebra methods that are implemented using MatLab functions in a Visual Basic interface. A graphical user interface for simple entry of reaction schemes facilitates comparison of a variety of reaction schemes. To ensure microscopic balance, graph theory algorithms are used to determine violations of thermodynamic cycle constraints. Analytical solutions based on linear differential equations result in fast comparisons of first order kinetic rates and amplitudes as a function of changing ligand concentrations. For analysis of higher order kinetics, we also implemented a solution using numerical integration. To determine rate constants from experimental data, fitting algorithms that adjust rate constants to fit the model to imported data were implemented using the Levenberg-Marquardt algorithm or using Broyden-Fletcher-Goldfarb-Shanno methods. We have included the ability to carry out global fitting of data sets obtained at varying ligand concentrations. These tools are combined in a single package, which we have dubbed VisKin, to guide and analyze kinetic experiments. The software is available online for use on PCs.

  3. ReactionPredictor: prediction of complex chemical reactions at the mechanistic level using machine learning.

    PubMed

    Kayala, Matthew A; Baldi, Pierre

    2012-10-22

    Proposing reasonable mechanisms and predicting the course of chemical reactions is important to the practice of organic chemistry. Approaches to reaction prediction have historically used obfuscating representations and manually encoded patterns or rules. Here we present ReactionPredictor, a machine learning approach to reaction prediction that models elementary, mechanistic reactions as interactions between approximate molecular orbitals (MOs). A training data set of productive reactions known to occur at reasonable rates and yields and verified by inclusion in the literature or textbooks is derived from an existing rule-based system and expanded upon with manual curation from graduate level textbooks. Using this training data set of complex polar, hypervalent, radical, and pericyclic reactions, a two-stage machine learning prediction framework is trained and validated. In the first stage, filtering models trained at the level of individual MOs are used to reduce the space of possible reactions to consider. In the second stage, ranking models over the filtered space of possible reactions are used to order the reactions such that the productive reactions are the top ranked. The resulting model, ReactionPredictor, perfectly ranks polar reactions 78.1% of the time and recovers all productive reactions 95.7% of the time when allowing for small numbers of errors. Pericyclic and radical reactions are perfectly ranked 85.8% and 77.0% of the time, respectively, rising to >93% recovery for both reaction types with a small number of allowed errors. Decisions about which of the polar, pericyclic, or radical reaction type ranking models to use can be made with >99% accuracy. Finally, for multistep reaction pathways, we implement the first mechanistic pathway predictor using constrained tree-search to discover a set of reasonable mechanistic steps from given reactants to given products. Webserver implementations of both the single step and pathway versions of Reaction

  4. Kinetics of biosorption of hazardous metals by green soil supplement

    NASA Astrophysics Data System (ADS)

    Bagla, Hemlata; Khilnani, Roshan

    2016-04-01

    of the biosorption in terms of the order of the rate constant were studied applying different kinetic models such as First order, Second order, Pseudo-first order, Pseudo-second order and the intra particle diffusion model. But among these models best fitting model was Lagergren pseudo second order model. The correlation coefficients of all the elements have R2 values close to 1 indicating the applicability of pseudo second order model to the present system. The applicability of this model suggested that biosorption of elements under study, on DCP was based on chemical interactions between metals and active sites of biosorbent. References 1. E. Tipping, Cation Binding by Humic Substances. Cambridge University Press, 2002. 2. S. Lagergren, Zur theorie der sogenannten adsorption geloster stoffe. Kungliga Svenska Vetenskapsakademiens, Handlingar vol. 24, no.4, pp. 1-39, 1898. 3. Y. S. Ho and G. McKay, "Pseudo-second order model for sorption processes," Process Biochem., vol. 34, no. 5, pp. 451-465, Jul. 1999. 4. N. S. Barot and H. K. Bagla, "Extraction of humic acid from biological matrix - dry cow dung powder," Green Chem. Lett. Rev., vol. 2, no. 4, pp. 217-221, 2009.

  5. Chlorination of tramadol: Reaction kinetics, mechanism and genotoxicity evaluation.

    PubMed

    Cheng, Hanyang; Song, Dean; Chang, Yangyang; Liu, Huijuan; Qu, Jiuhui

    2015-12-01

    Tramadol (TRA) is one of the most detected analgesics in environmental matrices, and it is of high significance to study the reactivity of TRA during chlorination considering its potential toxicity to the environment. The chlorine/TRA reaction is first order with respect to the TRA concentration, and a combination of first-order and second-order with respect to chlorine concentration. The pH dependence of the observed rate constants (kobs) showed that the TRA oxidation reactivity increased with increasing pH. kobs can be quantitatively described by considering all active species including Cl2, Cl2O and HOCl, and the individual rate constants of HOCl/TRA(0), HOCl/TRAH(+), Cl2/TRA and Cl2O/TRA reactions were calculated to be (2.61±0.29)×10(3)M(-1)s(-1), 14.73±4.17M(-1)s(-1), (3.93±0.34)×10(5)M(-1)s(-1) and (5.66±1.83)×10(6)M(-1)s(-1), respectively. Eleven degradation products were detected with UPLC-Q-TOF-MS, and the corresponding structures of eight products found under various pH conditions were proposed. The amine group was proposed to be the initial attack site under alkaline pH conditions, where reaction of the deprotonated amine group with HOCl is favorable. Under acidic and neutral pH conditions, however, two possible reaction pathways were proposed. One is an electrophilic substitution on the aromatic ring, and another is an electrophilic substitution on the nitrogen, leading to an N-chlorinated intermediate, which can be further oxidized. Finally, the SOS/umu test showed that the genotoxicity of TRA chlorination products increased with increasing dosage of chlorine, which was mostly attributed to the formation of some chlorine substitution products. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Kinetics of silicide formation over a wide range of heating rates spanning six orders of magnitude

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Molina-Ruiz, Manel; Lopeandía, Aitor F.; Gonzalez-Silveira, Marta

    Kinetic processes involving intermediate phase formation are often assumed to follow an Arrhenius temperature dependence. This behavior is usually inferred from limited data over narrow temperature intervals, where the exponential dependence is generally fully satisfied. However, direct evidence over wide temperature intervals is experimentally challenging and data are scarce. Here, we report a study of silicide formation between a 12 nm film of palladium and 15 nm of amorphous silicon in a wide range of heating rates, spanning six orders of magnitude, from 0.1 to 10{sup 5 }K/s, or equivalently more than 300 K of variation in reaction temperature. The calorimetric traces exhibit severalmore » distinct exothermic events related to interdiffusion, nucleation of Pd{sub 2}Si, crystallization of amorphous silicon, and vertical growth of Pd{sub 2}Si. Interestingly, the thickness of the initial nucleation layer depends on the heating rate revealing enhanced mass diffusion at the fastest heating rates during the initial stages of the reaction. In spite of this, the formation of the silicide strictly follows an Arrhenius temperature dependence over the whole temperature interval explored. A kinetic model is used to fit the calorimetric data over the complete heating rate range. Calorimetry is complemented by structural analysis through transmission electron microscopy and both standard and in-situ synchrotron X-ray diffraction.« less

  7. Kinetics of acetaminophen degradation by Fenton oxidation in a fluidized-bed reactor.

    PubMed

    de Luna, Mark Daniel G; Briones, Rowena M; Su, Chia-Chi; Lu, Ming-Chun

    2013-01-01

    Acetaminophen (ACT), an analgesic and antipyretic substance, is one of the most commonly detected pharmaceutical compound in surface waters and wastewaters. In this study, fluidized-bed Fenton (FB-Fenton) was used to decompose ACT into its final degradation products. The 1.45-L cylindrical glass reactor had inlet, outlet and recirculating sections. SiO(2) carrier particles were supported by glass beads with 2-4 mm in diameter. ACT concentration was determined by high performance liquid chromatography (HPLC). During the first 40 min of reaction, a fast initial ACT removal was observed and the "two-stage" ACT degradation conformed to a pseudo reaction kinetics. The effects of ferrous ion dosage and [Fe(2+)]/[H(2)O(2)] (FH ratio) were integrated into the derived pseudo second-order kinetic model. A reaction pathway was proposed based on the intermediates detected through SPME/GC-MS. The aromatic intermediates identified were hydroquinone, benzaldehydes and benzoic acids while the non-aromatic substances include alcohols, ketones, aldehydes and carboxylic acids. Rapid initial ACT degradation rate can be accomplished by high initial ferrous ion concentration and/or low FH ratio. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. A rare cause of bleeding after laparoscopic sleeve gastrectomy : pseudo-aneurysm of the gastro-omental artery.

    PubMed

    Mege, D; Louis, G; Berthet, B

    2013-01-01

    A serious complication of laparoscopic sleeve gastrectomy (LSG) is bleeding that is primarily located along the staples lines. Bleeding may be due to several causes, including hematomas, trocar sites, or visceral pseudo-aneurysms. We reported here a case of bleeding related to a pseudo-aneurysm of the gastro-omental artery. An LSG was performed on a 43-year-old woman (BMI = 46 kg/m2) without apparent surgical complications. Fifteen days later, she was admitted to the emergency department for hematemesis and symptoms of hemorrhagic shock. Abdominal computed tomography angiography revealed blood in the stomach, without a digestive leak, and active bleeding from a pseudo-aneurysm of the gastro-omental artery. An arterial embolisation was performed with the sandwich technique and angiographic guide wires and the placement of several detachable coils. The patient was discharged two days later. We demonstrated for the first time that post-LSG bleeding may involve a pseudo-aneurysm of the gastro-omental artery.

  9. Analyzing Reaction Rates with the Distortion/Interaction‐Activation Strain Model

    PubMed Central

    2017-01-01

    Abstract The activation strain or distortion/interaction model is a tool to analyze activation barriers that determine reaction rates. For bimolecular reactions, the activation energies are the sum of the energies to distort the reactants into geometries they have in transition states plus the interaction energies between the two distorted molecules. The energy required to distort the molecules is called the activation strain or distortion energy. This energy is the principal contributor to the activation barrier. The transition state occurs when this activation strain is overcome by the stabilizing interaction energy. Following the changes in these energies along the reaction coordinate gives insights into the factors controlling reactivity. This model has been applied to reactions of all types in both organic and inorganic chemistry, including substitutions and eliminations, cycloadditions, and several types of organometallic reactions. PMID:28447369

  10. Aspects of reheating in first-order inflation

    NASA Technical Reports Server (NTRS)

    Watkins, Richard; Widrow, Lawrence M.

    1991-01-01

    Studied here is reheating in theories where inflation is completed by a first-order phase transition. In the scenarios, the Universe decays from its false vacuum state by bubble nucleation. In the first stage of reheating, vacuum energy is converted into kinetic energy for the bubble walls. To help understand this phase, researchers derive a simple expression for the equation of state of a universe filled with expanding bubbles. Eventually, the bubble walls collide. Researchers present numerical simulations of two-bubble collisions clarifying and extending previous work by Hawking, Moss, and Stewart. The researchers' results indicate that wall energy is efficiently converted into coherent scalar waves. Also discussed is particle production due to quantum effects. These effects lead to the decay of the coherent scalar waves. They also lead to direct particle production during bubble-wall collisions. Researchers calculate particle production for colliding walls in both sine-Gordon and theta (4) theories and show that it is far more efficient in the theta (4) case. The relevance of this work for recently proposed models of first order inflation is discussed.

  11. Pseudo-outbreak of Actinomyces graevenitzii associated with bronchoscopy.

    PubMed

    Peaper, David R; Havill, Nancy L; Aniskiewicz, Michael; Callan, Deborah; Pop, Olivia; Towle, Dana; Boyce, John M

    2015-01-01

    Outbreaks and pseudo-outbreaks of infection related to bronchoscopy typically involve Gram-negative bacteria, Mycobacterium species or Legionella species. We report an unusual bronchoscopy-related pseudo-outbreak due to Actinomyces graevenitzii. Extensive epidemiological and microbiological investigation failed to identify a common source. Strain typing revealed that the cluster was comprised of heterogeneous strains of A. graevenitzii. A change in laboratory procedures for Actinomyces cultures was coincident with the emergence of the pseudo-outbreak, and we determined that A. graevenitzii isolates more readily adopted a white, dry, molar tooth appearance on anaerobic colistin nalidixic acid (CNA) agar which likely facilitated its detection and identification in bronchoscopic specimens. This unusual pseudo-outbreak was related to frequent requests of bronchoscopists for Actinomyces cultures combined with a change in microbiology laboratory practices. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  12. Evaluation of Advanced Reactive Surface Area Estimates for Improved Prediction of Mineral Reaction Rates in Porous Media

    NASA Astrophysics Data System (ADS)

    Beckingham, L. E.; Mitnick, E. H.; Zhang, S.; Voltolini, M.; Yang, L.; Steefel, C. I.; Swift, A.; Cole, D. R.; Sheets, J.; Kneafsey, T. J.; Landrot, G.; Anovitz, L. M.; Mito, S.; Xue, Z.; Ajo Franklin, J. B.; DePaolo, D.

    2015-12-01

    CO2 sequestration in deep sedimentary formations is a promising means of reducing atmospheric CO2 emissions but the rate and extent of mineral trapping remains difficult to predict. Reactive transport models provide predictions of mineral trapping based on laboratory mineral reaction rates, which have been shown to have large discrepancies with field rates. This, in part, may be due to poor quantification of mineral reactive surface area in natural porous media. Common estimates of mineral reactive surface area are ad hoc and typically based on grain size, adjusted several orders of magnitude to account for surface roughness and reactivity. This results in orders of magnitude discrepancies in estimated surface areas that directly translate into orders of magnitude discrepancies in model predictions. Additionally, natural systems can be highly heterogeneous and contain abundant nano- and micro-porosity, which can limit connected porosity and access to mineral surfaces. In this study, mineral-specific accessible surface areas are computed for a sample from the reservoir formation at the Nagaoka pilot CO2 injection site (Japan). Accessible mineral surface areas are determined from a multi-scale image analysis including X-ray microCT, SEM QEMSCAN, XRD, SANS, and SEM-FIB. Powder and flow-through column laboratory experiments are performed and the evolution of solutes in the aqueous phase is tracked. Continuum-scale reactive transport models are used to evaluate the impact of reactive surface area on predictions of experimental reaction rates. Evaluated reactive surface areas include geometric and specific surface areas (eg. BET) in addition to their reactive-site weighted counterparts. The most accurate predictions of observed powder mineral dissolution rates were obtained through use of grain-size specific surface areas computed from a BET-based correlation. Effectively, this surface area reflects the grain-fluid contact area, or accessible surface area, in the powder

  13. Surface reaction rate and probability of ozone and alpha-terpineol on glass, polyvinyl chloride, and latex paint surfaces.

    PubMed

    Shu, Shi; Morrison, Glenn C

    2011-05-15

    Ozone can react homogeneously with unsaturated organic compounds in buildings to generate undesirable products. However, these reactions can also occur on indoor surfaces, especially for low-volatility organics. Conversion rates of ozone with α-terpineol, a representative low-volatility compound, were quantified on surfaces that mimic indoor substrates. Rates were measured for α-terpineol adsorbed to beads of glass, polyvinylchloride (PVC), and dry latex paint, in a plug flow reactor. A newly defined second-order surface reaction rate coefficient, k(2), was derived from the flow reactor model. The value of k(2) ranged from 0.68 × 10(-14) cm(4)s(-1)molecule(-1) for α-terpineol adsorbed to PVC to 3.17 × 10(-14) cm(4)s(-1)molecule(-1) for glass, but was insensitive to relative humidity. Further, k(2) is only weakly influenced by the adsorbed mass but instead appears to be more strongly related to the interfacial activity α-terpineol. The minimum reaction probability ranged from 3.79 × 10(-6) for glass at 20% RH to 6.75 × 10(-5) for PVC at 50% RH. The combination of high equilibrium surface coverage and high reactivity for α-terpineol suggests that surface conversion rates are fast enough to compete with or even overwhelm other removal mechanisms in buildings such as gas-phase conversion and air exchange.

  14. Pseudo-myocardial infarction in diabetic ketoacidosis with hyperkalemia.

    PubMed

    Bellazzini, Marc A; Meyer, Tom

    2010-10-01

    Hyperkalemia-induced electrocardiogram changes such as dysrhythmias and altered T wave morphology are well described in the medical literature. Pseudo-infarction hyperkalemia-induced changes are less well known, but present a unique danger for the clinician treating these critically ill patients. This article describes a case of pseudo anteroseptal myocardial infarction in a type 1 diabetic with hyperkalemia. The most common patterns of pseudo-infarct and their associated potassium concentrations are then summarized from a literature review of 24 cases. Copyright © 2010 Elsevier Inc. All rights reserved.

  15. Pseudo-entanglement evaluated in noninertial frames

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mehri-Dehnavi, Hossein, E-mail: mehri@alice.math.kindai.ac.jp; Research Center for Quantum Computing, Kinki University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502; Mirza, Behrouz, E-mail: b.mirza@cc.iut.ac.ir

    2011-05-15

    Research Highlights: > We study pseudo-entanglement in noninertial frames. > We examine different measures of entanglement and nonclassical correlation for the state. > We find the threshold for entanglement is changed in noninertial frames. > We also describe the behavior of local unitary classes of states in noninertial frames. - Abstract: We study quantum discord, in addition to entanglement, of bipartite pseudo-entanglement in noninertial frames. It is shown that the entanglement degrades from its maximum value in a stationary frame to a minimum value in an infinite accelerating frame. There is a critical region found in which, for particular cases,more » entanglement of states vanishes for certain accelerations. The quantum discord of pseudo-entanglement decreases by increasing the acceleration. Also, for a physically inaccessible region, entanglement and nonclassical correlation are evaluated and shown to match the corresponding values of the physically accessible region for an infinite acceleration.« less

  16. Recalled first reactions to inhaling nicotine predict the level of physical dependence.

    PubMed

    Wellman, Robert J; DiFranza, Joseph R; O'Loughlin, Jennifer

    2014-10-01

    The level of physical dependence is a measure of addiction that correlates highly with addiction-associated changes in brain structure. We sought to determine whether age at first inhalation and initial reactions to inhaling nicotine are related to level of physical dependence in early adulthood. Young adults (n=312; mean age=24 years; 51% female) from the Nicotine Dependence in Teens study who had smoked at least once in the preceding three months completed self-report questionnaires in 2011-12. We assessed level of physical dependence with three validated self-report items assessing 'wanting,' 'craving' and 'needing' triggered by nicotine deprivation. Survey items assessed smoking behavior, including age at first inhalation, and recalled first reactions to inhaling nicotine. After adjusting for covariates, experiencing relaxation, heart racing/pounding, rush or "buzz" (OR=1.45; 95% CI: 1.08, 1.94) and dizziness (OR=1.58; 95% CI: 1.15, 2.18) at first nicotine inhalation were associated with an increased odds of being at a higher level of physical dependence in young adulthood; the association for experiencing relaxation (OR=1.78; 95% CI: 1.20, 2.64) and heart racing/pounding (OR=1.51; 95% CI: 1.00, 2.28) persisted after additionally controlling for all other first reactions. Neither age at first inhalation nor unpleasant first reactions predicted level of physical dependence. In accordance with prior research, our findings suggest that smokers who are particularly sensitive to the pleasant, "buzz-related" and generally arousing effects of nicotine may be more likely to attain higher levels of physical dependence. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  17. Rate variations of a hetero-Diels--Alder reaction in supercritical fluid CO{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, R.L.; Glaeser, R.; Bush, D.

    1999-11-01

    The hetero-Diels-Alder reaction between anthracene and excess 4-phenyl-1,2,4-triazoline-3,5-dione has been investigated in supercritical CO{sub 2} at 40 C and pressures between 75 and 216 bar. Biomolecular reaction rate constants have been measured via fluorescence spectroscopy by following the decrease in anthracene concentration with reaction time. The reaction rate is elevated in the vicinity of the critical pressure. This difference is consistent with local composition enhancement and can be modeled with the Peng-Robinson equation of state.

  18. Theoretical study of thermodynamic properties and reaction rates of importance in the high-speed research program

    NASA Technical Reports Server (NTRS)

    Langhoff, Stephen; Bauschlicher, Charles; Jaffe, Richard

    1992-01-01

    One of the primary goals of NASA's high-speed research program is to determine the feasibility of designing an environmentally safe commercial supersonic transport airplane. The largest environmental concern is focused on the amount of ozone destroying nitrogen oxides (NO(x)) that would be injected into the lower stratosphere during the cruise portion of the flight. The limitations placed on NO(x) emission require more than an order of magnitude reduction over current engine designs. To develop strategies to meet this goal requires first gaining a fundamental understanding of the combustion chemistry. To accurately model the combustor requires a computational fluid dynamics approach that includes both turbulence and chemistry. Since many of the important chemical processes in this regime involve highly reactive radicals, an experimental determination of the required thermodynamic data and rate constants is often very difficult. Unlike experimental approaches, theoretical methods are as applicable to highly reactive species as stable ones. Also our approximation of treating the dynamics classically becomes more accurate with increasing temperature. In this article we review recent progress in generating thermodynamic properties and rate constants that are required to understand NO(x) formation in the combustion process. We also describe our one-dimensional modeling efforts to validate an NH3 combustion reaction mechanism. We have been working in collaboration with researchers at LeRC, to ensure that our theoretical work is focused on the most important thermodynamic quantities and rate constants required in the chemical data base.

  19. Predictive Rate-Distortion for Infinite-Order Markov Processes

    NASA Astrophysics Data System (ADS)

    Marzen, Sarah E.; Crutchfield, James P.

    2016-06-01

    Predictive rate-distortion analysis suffers from the curse of dimensionality: clustering arbitrarily long pasts to retain information about arbitrarily long futures requires resources that typically grow exponentially with length. The challenge is compounded for infinite-order Markov processes, since conditioning on finite sequences cannot capture all of their past dependencies. Spectral arguments confirm a popular intuition: algorithms that cluster finite-length sequences fail dramatically when the underlying process has long-range temporal correlations and can fail even for processes generated by finite-memory hidden Markov models. We circumvent the curse of dimensionality in rate-distortion analysis of finite- and infinite-order processes by casting predictive rate-distortion objective functions in terms of the forward- and reverse-time causal states of computational mechanics. Examples demonstrate that the resulting algorithms yield substantial improvements.

  20. Second-order numerical solution of time-dependent, first-order hyperbolic equations

    NASA Technical Reports Server (NTRS)

    Shah, Patricia L.; Hardin, Jay

    1995-01-01

    A finite difference scheme is developed to find an approximate solution of two similar hyperbolic equations, namely a first-order plane wave and spherical wave problem. Finite difference approximations are made for both the space and time derivatives. The result is a conditionally stable equation yielding an exact solution when the Courant number is set to one.