Science.gov

Sample records for pseudobulge galaxies ngc3368

  1. Primordial (pseudo)bulges in isolated galaxies

    NASA Astrophysics Data System (ADS)

    Fernández-Lorenzo, M.; Sulentic, J.; Verdes-Montenegro, L.; Blasco-Herrera, J.; Argudo-Fernández, M.; Ramírez-Moreta, P.; Garrido, J.; Ruiz, J. E.; Sánchez-Expósito, S.; Santander-Vela, J. D.

    2015-05-01

    Important clues about spiral galaxy formation lie in the nature of their central bulges. In this sense, properties of bulges in isolated galaxies best reflect their origin because of their minimized environmental evolutionary effects. We report here the structural parameters and (g-i) bulge/disk colors for a sample of 189 isolated galaxies selected from the AMIGA project (Analysis of the interstellar Medium of Isolated GAlaxies). A 2D bulge/disk/bar decomposition of SDSS i-band images was performed in order to identify the pseudobulges in our sample. We derived (g-i) bulge colors using aperture photometry. Pseudobulges in our sample show median colors (g-i)˜ 1.06, while their associated disks are much bluer, (g-i)˜ 0.77. Moreover, 64 % (113/177) of pseudobulges follow the red sequence of early-type galaxies. The bluer pseudobulges in our sample tend to be located in those galaxies more affected by the tidal interactions. The red bulge colors and low B/T values for AMIGA isolated galaxies are consistent with an early formation epoch. The results found here suggest that environment could be playing a role in rejuvenating the pseudobulges.

  2. Composite bulges: the coexistence of classical bulges and discy pseudo-bulges in S0 and spiral galaxies

    NASA Astrophysics Data System (ADS)

    Erwin, Peter; Saglia, Roberto P.; Fabricius, Maximilian; Thomas, Jens; Nowak, Nina; Rusli, Stephanie; Bender, Ralf; Vega Beltrán, Juan Carlos; Beckman, John E.

    2015-02-01

    We present an analysis of nine S0-Sb galaxies which have (photometric) bulges consisting of two distinct components. The outer component is a flattened, kinematically cool, disc-like structure: a `discy pseudo-bulge'. Embedded inside is a rounder, kinematically hot spheroidal structure: a `classical bulge'. This indicates that pseudo-bulges and classical bulges are not mutually exclusive phenomena: some galaxies have both. The discy pseudo-bulges almost always consist of an exponential disc (scalelengths = 125-870 pc, mean size ˜440 pc) with one or more disc-related subcomponents: nuclear rings, nuclear bars, and/or spiral arms. They constitute 11-59 per cent of the galaxy stellar mass (mean PB/T = 0.33), with stellar masses ˜7 × 109-9 × 1010 M⊙. The classical-bulge components have Sérsic indices of 0.9-2.2, effective radii of 25-430 pc and stellar masses of 5 × 108-3 × 1010 M⊙; they are usually <10 per cent of the galaxy's stellar mass (mean B/T = 0.06). The classical bulges do show rotation, but are clearly kinematically hotter than the discy pseudo-bulges. Dynamical modelling of three systems indicates that velocity dispersions are isotropic in the classical bulges and equatorially biased in the discy pseudo-bulges. In the mass-radius and mass-stellar mass density planes, classical-bulge components follow sequences defined by ellipticals and (larger) classical bulges. Discy pseudo-bulges also fall on this sequence; they are more compact than large-scale discs of similar mass. Although some classical bulges are quite compact, they are as a class clearly distinct from nuclear star clusters in both size and mass; in at least two galaxies they coexist with nuclear clusters. Since almost all the galaxies in this study are barred, they probably also host boxy/peanut-shaped bulges (vertically thickened inner parts of bars). NGC 3368 shows isophotal evidence for such a zone just outside its discy pseudo-bulge, making it a clear case of a galaxy with all three

  3. STAR CLUSTERS IN PSEUDOBULGES OF SPIRAL GALAXIES

    SciTech Connect

    Di Nino, Daiana; Trenti, Michele; Stiavelli, Massimo; Carollo, C. Marcella; Scarlata, Claudia; Wyse, Rosemary F. G.

    2009-11-15

    We present a study of the properties of the star-cluster systems around pseudobulges of late-type spiral galaxies using a sample of 11 galaxies with distances from 17 Mpc to 37 Mpc. Star clusters are identified from multiband Hubble Space Telescope ACS and WFPC2 imaging data by combining detections in three bands (F435W and F814W with ACS and F606W with WFPC2). The photometric data are then compared to population synthesis models to infer the masses and ages of the star clusters. Photometric errors and completeness are estimated by means of artificial source Monte Carlo simulations. Dust extinction is estimated by considering F160W NICMOS observations of the central regions of the galaxies, augmenting our wavelength coverage. In all galaxies we identify star clusters with a wide range of ages, from young (age {approx}< 8 Myr) blue clusters, with typical mass of 10{sup 3} M {sub sun} to older (age >100-250 Myr), more massive, red clusters. Some of the latter might likely evolve into objects similar to the Milky Way's globular clusters. We compute the specific frequencies for the older clusters with respect to the galaxy and bulge luminosities. Specific frequencies relative to the galaxy light appear consistent with the globular cluster specific frequencies of early-type spirals. We compare the specific frequencies relative to the bulge light with the globular cluster specific frequencies of dwarf galaxies, which have a surface brightness profile that is similar to that of the pseudobulges in our sample. The specific frequencies we derive for our sample galaxies are higher than those of the dwarf galaxies, supporting an evolutionary scenario in which some of the dwarf galaxies might be the remnants of harassed late-type spiral galaxies that hosted a pseudobulge.

  4. ARE (PSEUDO)BULGES IN ISOLATED GALAXIES ACTUALLY PRIMORDIAL RELICS?

    SciTech Connect

    Fernández Lorenzo, M.; Sulentic, J.; Verdes-Montenegro, L.; Blasco-Herrera, J.; Argudo-Fernández, M.; Garrido, J.; Ramírez-Moreta, P.; Ruiz, J. E.; Sánchez-Expósito, S.; Santander-Vela, J. D.

    2014-06-20

    We present structural parameters and (g – i) bulge/disk colors for a large sample (189) of isolated AMIGA galaxies. The structural parameters of bulges were derived from the two-dimensional bulge/disk/bar decomposition of Sloan Digital Sky Survey i-band images using GALFIT. Galaxies were separated between classical bulges (n{sub b} > 2.5) and pseudobulges (n{sub b} < 2.5), resulting in a dominant pseudobulge population (94%) with only 12 classical bulges. In the (μ {sub e})-R {sub e} plane, pseudobulges are distributed below the elliptical relation (smaller R {sub e} and fainter μ {sub e}), with the closest region to the Kormendy relation populated by those pseudobulges with larger values of B/T. We derived (g – i) bulge colors using aperture photometry and find that pseudobulges show median colors (g – i) {sub b} ∼ 1.06, while their associated disks are much bluer, (g – i) {sub d} ∼ 0.77. Moreover, 64% (113/177) of pseudobulges follow the red sequence of early-type galaxies. Bluer pseudobulges tend to be located in galaxies with the highest likelihood of tidal perturbation. The red bulge colors and low B/T values for AMIGA isolated galaxies are consistent with an early formation epoch and not much subsequent growth. Properties of bulges in isolated galaxies contrast with a picture where pseudobulges grow continuously via star formation. They also suggest that environment could be playing a role in rejuvenating the pseudobulges.

  5. Discovery of a Pseudobulge Galaxy Launching Powerful Relativistic Jets

    NASA Astrophysics Data System (ADS)

    Kotilainen, Jari K.; León-Tavares, Jonathan; Olguín-Iglesias, Alejandro; Baes, Maarten; Anórve, Christopher; Chavushyan, Vahram; Carrasco, Luis

    2016-12-01

    Supermassive black holes launching plasma jets at close to the speed of light, producing gamma-rays, have ubiquitously been found to be hosted by massive elliptical galaxies. Since elliptical galaxies are generally believed to be built through galaxy mergers, active galactic nuclei (AGN) launching relativistic jets are associated with the latest stages of galaxy evolution. We have discovered a pseudobulge morphology in the host galaxy of the gamma-ray AGN PKS 2004-447. This is the first gamma-ray emitter radio-loud AGN found to have been launched from a system where both the black hole and host galaxy have been actively growing via secular processes. This is evidence of an alternative black hole-galaxy co-evolutionary path to develop powerful relativistic jets, which is not merger driven.

  6. Supermassive black holes do not correlate with galaxy disks or pseudobulges.

    PubMed

    Kormendy, John; Bender, R; Cornell, M E

    2011-01-20

    The masses of supermassive black holes are known to correlate with the properties of the bulge components of their host galaxies. In contrast, they seem not to correlate with galaxy disks. Disk-grown 'pseudobulges' are intermediate in properties between bulges and disks; it has been unclear whether they do or do not correlate with black holes in the same way that bulges do. At stake in this issue are conclusions about which parts of galaxies coevolve with black holes, possibly by being regulated by energy feedback from black holes. Here we report pseudobulge classifications for galaxies with dynamically detected black holes and combine them with recent measurements of velocity dispersions in the biggest bulgeless galaxies. These data confirm that black holes do not correlate with disks and show that they correlate little or not at all with pseudobulges. We suggest that there are two different modes of black-hole feeding. Black holes in bulges grow rapidly to high masses when mergers drive gas infall that feeds quasar-like events. In contrast, small black holes in bulgeless galaxies and in galaxies with pseudobulges grow as low-level Seyfert galaxies. Growth of the former is driven by global processes, so the biggest black holes coevolve with bulges, but growth of the latter is driven locally and stochastically, and they do not coevolve with disks and pseudobulges.

  7. A Spitzer Study of Pseudobulges in S0 Galaxies: Secular Evolution of Disks

    NASA Astrophysics Data System (ADS)

    Barway, Sudhanshu; Vaghmare, Kaustubh; Mathur, Smita; Kembhavi, Ajit

    2017-03-01

    A comparison of pseudobulges in S0 and spiral galaxies is presented using structural parameters derived from 2-d decomposition of mid-infrared images taken at 3.6 μm by Spitzer IRAC. The position of the bulges on the Kormendy diagram has been used as an initial classification criterion for determining the nature of the bulge. To make the classification more secure, the criterion proposed by Fisher and Drory (2008) has also been used, which involves using the n = 2 division line on Sérsic index. We find that among the 185 S0 galaxies, 27 are pseudobulge hosts while 160 are classical. Of these 25 pseudobulge hosts, only two belong to the bright luminosity class (MK < 22.66, AB system) while rest belong to the faint luminosity class (MK > 22.66, AB system). We find that among spiral galaxies, 77 % (24 of 31) of the bulges are classified as pseudobulges. As pointed out by various studies, the presence of such a large fraction poses problems to our current picture of galaxy formation. How ever, our primary result is that the disk scale length of pseudobulge hosting S0s is significantly smaller on average than that of their spiral counterparts. This can be explained as a lowered disk luminosity which in turn implies that S0s have evolved from spiral progenitors. We also argue that early type spirals are more likely to be the progenitors based on bulge and total luminosity arguments. We speculate that if late type spirals hosting pseudobulges have to evolve into S0s, an additional mechanism along with gas stripping of spirals is needed. We have also investigated the effect of environment on pseudobulges in the two samples, but no significant trends were found in the properties of the pseudobulges as a function of the various structural parameters. The study is made more difficult because of the low number statistics one deals with when the sample is sub-divided based on whether it is in a field or group/cluster environment. The study of pseudobulges based on environment

  8. An Observational Guide to Identifying Pseudobulges and Classical Bulges in Disc Galaxies

    NASA Astrophysics Data System (ADS)

    Fisher, David B.; Drory, Niv

    In this review our aim is to summarize the observed properties of pseudobulges and classical bulges. We utilize an empirical approach to studying the properties of bulges in disc galaxies, and restrict our analysis to statistical properties. A clear bimodality is observed in a number of properties including morphology, structural properties, star formation, gas content & stellar population, and kinematics. We conclude by summarizing those properties that isolate pseudobulges from classical bulges. Our intention is to describe a practical, easy to use, list of criteria for identifying bulge types.

  9. Properties of Pseudo-bulges and Classical Bulges Identified Among SDSS Galaxies

    NASA Astrophysics Data System (ADS)

    Luo, Yifei; Rodriguez, Aldo; Koo, David C.; Primack, Joel R.; Faber, Sandra M.; Guo, Yicheng; Chen, Zhu; Fang, Jerome J.; Huertas-Company, Marc

    2017-01-01

    We have used publicly-available SDSS photometry and structural parameters to classify nearby galaxies(z<0.05) into four bulge-related groups, i.e., those galaxies with : 1) no bulges; 2) pseudo-bulges; 3) classical bulges; and 4) nearly pure bulges, i. e., elliptical-like. We adopt the stellar-mass surface-density within the inner 1 kpc (Σ1) radius as a key parameter. A sample of 1000 galaxies with previously-classified bulge-types by Gadotti (2009) is used to identify the regions within the Σ1 vs integrated, stellar-mass plane of galaxies to which each bulge group belongs. In this plane, galaxies with classical bulges appear to overlap the region of elliptical galaxies, while those with pseudo-bulges or no bulges lie at lower Σ1 at a given stellar mass. In contrast to some previous results, our main finding is that the properties of pseudo-bulge and classical-bulge groups have distributions that appear mostly blended or overlapping, i.e., continuous, rather being distinct, i.e., bimodal.

  10. AGN III—primordial activity in the nuclei of disk galaxies with pseudobulges

    NASA Astrophysics Data System (ADS)

    Komberg, B. V.; Ermash, A. A.

    2013-06-01

    Observational data on the evolution of quasars and galaxies of various morphological types and numerical simulations carried out by various groups are used to argue that low-redshift ( z < 0.5) quasars of types I and II, identified with massive elliptical and spiral galaxies with classical bulges, cannot be undergoing a single, late phase of activity; i.e., their activity cannot be "primordial," and must have "flared up" at multiple times in the past. This means that their appearance at low z is associated with recurrence of their activity—i.e., with major mergers of gas-rich galaxies (so-called wet major mergers)—since their lifetimes in the active phase do not exceed a few times 107 yrs. Only objects we have referred to earlier as AGN III, which are associated with the nuclei of isolated, late-type spiral galaxies with low-mass, rapidly-rotating "pseudobulges," could represent primordial AGNs at low z. The black holes in such galaxies have masses M BH < 107 M ⊙, and the peculiarities of their nuclear spectra suggest that they may have very high specific rotational angular momenta per unit mass. Type I narrow-line (widths less than 2000 km/s) Seyfert galaxies (NLSyIs) with pseudobulges and black-hole masses M BH < 107 M ⊙ may be characteristic representatives of the AGN III population. Since NLSyI galaxies have pseudobulges while Type I broad-line Seyfert galaxies have classical bulges, these two types of galaxies cannot represent different evolutionary stages of a single type of object. It is possible that the precursors of NLSyIs are "Population A" quasars.

  11. How well can we identify pseudobulges?

    NASA Astrophysics Data System (ADS)

    Graham, Alister

    2015-03-01

    Since the discovery of rotating galaxy bulges (e.g. Pease 1918; Babcock 1938, 1939), especially in the 1970s (e.g. Rubin, Ford & Kumar 1973; Pellet 1976; Bertola & Capaccioli 1977; Peterson 1978; Mebold et al. 1979; Kormendy & Illingworth 1979), coupled with early computer simulations of disks which formed rotating, exponential-like ``pseudobulges'' (e.g. Bardeen 1975; Hohl 1975, and references therein), a number of often over-looked problems pertaining to the identification of real ``pseudobulges'' have arisen. Drawing on my recent review article of disk galaxy structure and modern scaling laws (Graham 2012), some of these important issues are presented. Topics include: classical spheroids with exponential light distributions; curved but continuous scaling relations involving the `effective' structural parameters; the old age of most bulge stars (e.g. Thomas & Davies 2006; MacArthur et al. 2009); that most disk galaxies have bulge-to-disk flux ratios < 1/3 (Graham & Worley 2008); rotation in simulated merger remnants (e.g. Bekki 2010; Keselman & Nusser 2012) plus many other frustrating yet interesting reasons why rotation may not be a definitive signature of bulges built via secular processes (e.g. Babusiaux et al. 2010; Williams et al. 2010, Qu et al. 2011; Saha et al. 2012)

  12. Pseudobulge Formation as a Dynamical Rather than a Secular Process

    NASA Astrophysics Data System (ADS)

    Guedes, Javiera; Mayer, Lucio; Carollo, Marcella; Madau, Piero

    2013-07-01

    We investigate the formation and evolution of the pseudobulge in "Eris," a high-resolution N-body + smoothed particle hydrodynamic cosmological simulation that successfully reproduces a Milky-Way-like massive late-type spiral in an cold dark matter universe. At the present epoch, Eris has a virial mass M vir ~= 8 × 1011 M ⊙, a photometric stellar mass M * = 3.2 × 1010 M ⊙, a bulge-to-total ratio B/T = 0.26, and a weak nuclear bar. We find that the bulk of the pseudobulge forms quickly at high redshift via a combination of non-axisymmetric disk instabilities and tidal interactions or mergers, both occurring on dynamical timescales, not through slow secular processes at lower redshift. Its subsequent evolution is not strictly secular either, and is closely intertwined with the evolution of the stellar bar. In fact, the structure that we recognize as a pseudobulge today evolved from a stellar bar that formed at high redshift due to tidal interactions with satellites, was destroyed by minor mergers at z ~ 3, re-formed shortly after, and weakened again following a steady gas inflow at z <~ 1. The gradual dissolution of the bar ensued at z ~ 1 and continues until the present without increasing the stellar velocity dispersion in the inner regions. In this scenario, the pseudobulge is not a separate component from the inner disk in terms of formation path; rather, it is the first step in the inside-out formation of the baryonic disk, in agreement with the fact that pseudobulges of massive spiral galaxies typically have a dominant old stellar population. If our simulations do indeed reproduce the formation mechanisms of massive spirals, then the progenitors of late-type galaxies should have strong bars and small photometric pseudobulges at high redshift.

  13. PSEUDOBULGE FORMATION AS A DYNAMICAL RATHER THAN A SECULAR PROCESS

    SciTech Connect

    Guedes, Javiera; Mayer, Lucio; Carollo, Marcella; Madau, Piero

    2013-07-20

    We investigate the formation and evolution of the pseudobulge in 'Eris', a high-resolution N-body + smoothed particle hydrodynamic cosmological simulation that successfully reproduces a Milky-Way-like massive late-type spiral in an cold dark matter universe. At the present epoch, Eris has a virial mass M{sub vir} {approx_equal} 8 Multiplication-Sign 10{sup 11} M{sub Sun }, a photometric stellar mass M{sub *} = 3.2 Multiplication-Sign 10{sup 10} M{sub Sun }, a bulge-to-total ratio B/T = 0.26, and a weak nuclear bar. We find that the bulk of the pseudobulge forms quickly at high redshift via a combination of non-axisymmetric disk instabilities and tidal interactions or mergers, both occurring on dynamical timescales, not through slow secular processes at lower redshift. Its subsequent evolution is not strictly secular either, and is closely intertwined with the evolution of the stellar bar. In fact, the structure that we recognize as a pseudobulge today evolved from a stellar bar that formed at high redshift due to tidal interactions with satellites, was destroyed by minor mergers at z {approx} 3, re-formed shortly after, and weakened again following a steady gas inflow at z {approx}< 1. The gradual dissolution of the bar ensued at z {approx} 1 and continues until the present without increasing the stellar velocity dispersion in the inner regions. In this scenario, the pseudobulge is not a separate component from the inner disk in terms of formation path; rather, it is the first step in the inside-out formation of the baryonic disk, in agreement with the fact that pseudobulges of massive spiral galaxies typically have a dominant old stellar population. If our simulations do indeed reproduce the formation mechanisms of massive spirals, then the progenitors of late-type galaxies should have strong bars and small photometric pseudobulges at high redshift.

  14. The NGC 4013 tale: a pseudo-bulged, late-type spiral shaped by a major merger

    NASA Astrophysics Data System (ADS)

    Wang, Jianling; Hammer, Francois; Puech, Mathieu; Yang, Yanbin; Flores, Hector

    2015-10-01

    Many spiral galaxy haloes show stellar streams with various morphologies when observed with deep images. The origin of these tidal features is discussed, either coming from a satellite infall or caused by residuals of an ancient, gas-rich major merger. By modelling the formation of the peculiar features observed in the NGC 4013 halo, we investigate their origin. By using GADGET-2 with implemented gas cooling, star formation, and feedback, we have modelled the overall NGC 4013 galaxy and its associated halo features. A gas-rich major merger occurring 2.7-4.6 Gyr ago succeeds in reproducing the NGC 4013 galaxy properties, including all the faint stellar features, strong gas warp, boxy-shaped halo and vertical 3.6 μm luminosity distribution. High gas fractions in the progenitors are sufficient to reproduce the observed thin and thick discs, with a small bulge fraction, as observed. A major merger is able to reproduce the overall NGC 4013 system, including the warp strength, the red colour and the high stellar mass density of the loop, while a minor merger model cannot. Because the gas-rich model suffices to create a pseudo-bulge with a small fraction of the light, NGC 4013 is perhaps the archetype of a late-type galaxy formed by a relatively recent merger. Then late type, pseudo-bulge spirals are not mandatorily made through secular evolution, and the NGC 4013 properties also illustrate that strong warps in isolated galaxies may well occur at a late phase of a gas-rich major merger.

  15. Orbital masses of nearby luminous galaxies

    SciTech Connect

    Karachentsev, Igor D.; Kudrya, Yuri N. E-mail: yukudrya@gmail.com

    2014-09-01

    We use observational properties of galaxies accumulated in the Updated Nearby Galaxy Catalog to derive a dark matter mass of luminous galaxies via motions of their companions. The data on orbital-to-stellar mass ratio are presented for 15 luminous galaxies situated within 11 Mpc from us: the Milky Way, M31, M81, NGC 5128, IC342, NGC 253, NGC 4736, NGC 5236, NGC 6946, M101, NGC 4258, NGC 4594, NGC 3115, NGC 3627, and NGC 3368, as well as for a composite suite around other nearby galaxies of moderate and low luminosity. The typical ratio for these galaxies is M {sub orb}/M {sub *} = 31, corresponding to the mean local density of matter Ω {sub m} = 0.09, i.e., one-third of the global cosmic density. This quantity seems to be rather an upper limit of dark matter density, since the peripheric population of the suites may suffer from the presence of fictitious unbound members. We note that the Milky Way and M31 halos have lower dimensions and lower stellar masses than those of the other 13 nearby luminous galaxies. However, the dark-to-stellar mass ratio for both the Milky Way and M31 is typical for other neighboring luminous galaxies. The distortion in the Hubble flow, observed around the Local Group and five other neighboring groups, yields their total masses within the radius of a zero velocity surface, R {sub 0}; these masses are slightly lower than the orbital and virial values. This difference may be due to the effect of dark energy producing a kind of 'mass defect' within R {sub 0}.

  16. Searching for Diffuse Light in the M96 Galaxy Group

    NASA Astrophysics Data System (ADS)

    Watkins, Aaron E.; Mihos, J. Christopher; Harding, Paul; Feldmeier, John J.

    2014-08-01

    We present deep, wide-field imaging of the M96 galaxy group (also known as the Leo I Group). Down to surface brightness limits of μ B = 30.1 and μ V = 29.5, we find no diffuse, large-scale optical counterpart to the "Leo Ring," an extended H I ring surrounding the central elliptical M105 (NGC 3379). However, we do find a number of extremely low surface brightness (μ B >~ 29) small-scale streamlike features, possibly tidal in origin, two of which may be associated with the Ring. In addition, we present detailed surface photometry of each of the group's most massive members—M105, NGC 3384, M96 (NGC 3368), and M95 (NGC 3351)—out to large radius and low surface brightness, where we search for signatures of interaction and accretion events. We find that the outer isophotes of both M105 and M95 appear almost completely undisturbed, in contrast to NGC 3384 which shows a system of diffuse shells indicative of a recent minor merger. We also find photometric evidence that M96 is accreting gas from the H I ring, in agreement with H I data. In general, however, interaction signatures in the M96 Group are extremely subtle for a group environment, and provide some tension with interaction scenarios for the formation of the Leo H I Ring. The lack of a significant component of diffuse intragroup starlight in the M96 Group is consistent with its status as a loose galaxy group in which encounters are relatively mild and infrequent.

  17. Searching for diffuse light in the M96 galaxy group

    SciTech Connect

    Watkins, Aaron E.; Mihos, J. Christopher; Harding, Paul; Feldmeier, John J.

    2014-08-10

    We present deep, wide-field imaging of the M96 galaxy group (also known as the Leo I Group). Down to surface brightness limits of μ{sub B} = 30.1 and μ{sub V} = 29.5, we find no diffuse, large-scale optical counterpart to the 'Leo Ring', an extended H I ring surrounding the central elliptical M105 (NGC 3379). However, we do find a number of extremely low surface brightness (μ{sub B} ≳ 29) small-scale streamlike features, possibly tidal in origin, two of which may be associated with the Ring. In addition, we present detailed surface photometry of each of the group's most massive members—M105, NGC 3384, M96 (NGC 3368), and M95 (NGC 3351)—out to large radius and low surface brightness, where we search for signatures of interaction and accretion events. We find that the outer isophotes of both M105 and M95 appear almost completely undisturbed, in contrast to NGC 3384 which shows a system of diffuse shells indicative of a recent minor merger. We also find photometric evidence that M96 is accreting gas from the H I ring, in agreement with H I data. In general, however, interaction signatures in the M96 Group are extremely subtle for a group environment, and provide some tension with interaction scenarios for the formation of the Leo H I Ring. The lack of a significant component of diffuse intragroup starlight in the M96 Group is consistent with its status as a loose galaxy group in which encounters are relatively mild and infrequent.

  18. Galaxies

    SciTech Connect

    Not Available

    1981-01-01

    Normal galaxies, radio galaxies, and Seyfert galaxies are considered. The large magellanic cloud and the great galaxy in Andromedia are highlighted. Quasars and BL lacertae objects are also discussed and a review of the spectral observations of all of these galaxies and celestial objects is presented.

  19. Star Formation In The Centers Of Galaxies Due To Secular Evolution

    NASA Astrophysics Data System (ADS)

    Fisher, David; Drory, Niv; Kormendy, John

    2006-05-01

    The two fundamental channels for disk galaxy evolution are environmentally driven hierarchical clustering (galaxy mergers) and internally driven secular evolution. Ellipticals and "classical bulges" are believed to form by mergers. "Pseudobulges" are observed to be more disk-like than classical bulges: they are flatter, they rotate very rapidly, and they have embedded bars, spiral structure, and ongoing star formation. They are the likely products of slow ("secular") rearrangement of disks by bars and oval distortions. Note that pseudobulges can form only if it has been a long time since the last major merger. This qualitative picture is well supported by observations. But, what is the relative importance of mergers and secular evolution in building bulges -- quantitatively? We propose to measure star formation rates in classical bulges and pseudobulges using the far-infrared fluxes observed with MIPS. Additionally, we use mid-infared IRAC imaging to resolve star-forming substructure within these bulges. To measure star formation rates we use published warm dust SED calibrations (Dale and Helou 2002; Wu et al 2005) as well as any that are still under development. Our purpose is to measure pseudobulge growth rates in Sa, Sb, and Sbc galaxies, and to tie together star formation rates with other indicators of secular evolution. Estimating pseudobulge growth time is the necessary next step in determing the relative importance of major mergers and secular evolution in bulge formation. A key to our strategy is the choice of galaxy sample. We propose to observe matched triples of the nearest giant galaxies that have strong, weak, and no obvious driving agents for internal evolution; i.e. galaxies that are barred, globally oval, and unbarred, respectively. Our sample will provide a valuable augmentation of archive data, completing observations of triples where necessary. The result is to increase the return of previous investments for a wider variety of science

  20. Relative growth of black holes and the stellar components of galaxies

    NASA Astrophysics Data System (ADS)

    Menci, N.; Fiore, F.; Bongiorno, A.; Lamastra, A.

    2016-10-01

    Recent observations indicate that the mass of supermassive black holes (SMBHs) correlate differently with different galaxy stellar components. Comparing such observations with the results of "ab initio" galaxy formation models can provide insight on the mechanisms leading to the growth of SMBHs. Here we use a state-of-the-art semi-analytic model of galaxy formation to investigate the correlation of the different galaxy stellar components with the mass of the central SMBH. The stellar mass in the disc, in the bulge, and in the pseudo-bulge of galaxies is related to quiescent star formation, to galaxy interactions, and to the loss of angular momentum following disc instabilities, respectively. Consistently with recent findings, we find that while the predicted bulge masses are tightly correlated with the SMBH masses, the correlation between the latter and the galactic discs shows a much larger scatter, in particular when bulgeless galaxies are considered. In addition, we obtain that the predicted masses of pseudo-bulges shows little or no-correlation with the masses of SMBHs. We track the histories of merging, star formation, and SMBH accretion to investigate the physical processes at the origin of such findings within the context of cosmological models of galaxy formation. Finally, we discuss the effects of variations of our assumed fiducial model on the results.

  1. A Local Baseline of the Black Hole Mass Scaling Relations for Active Galaxies. III.The MBH - σ Relation

    NASA Astrophysics Data System (ADS)

    Bennert, Vardha N.; Treu, Tommaso; Auger, Matthew W.; Cosens, Maren; Park, Daeseong; Rosen, Rebecca; Harris, Chelsea E.; Malkan, Matthew A.; Woo, Jong-Hak

    2015-08-01

    We create a baseline of the black hole (BH) mass (MBH)—stellar-velocity dispersion (σ) relation for active galaxies, using a sample of 66 local (0.02galaxies, selected from the Sloan Digital Sky Survey (SDSS). Analysis of SDSS images yields AGN luminosities free of host-galaxy contamination, and morphological classification. 51/66 galaxies have spiral morphology. Out of these, 28 bulges have Sérsic index n<2 and are considered candidate pseudo-bulges, with eight being definite pseudo-bulges based on multiple classification criteria met. Only 4/66 galaxies show signs of interaction/merging. High signal-to-noise ratio Keck spectra provide the width of the broad Hβ emission line free of Fe ii emission and stellar absorption. AGN luminosity and Hβ line widths are used to estimate MBH. The Keck-based spatially resolved kinematics is used to determine stellar-velocity dispersion within the spheroid effective radius (σ spat,reff). We find that σ can vary on average by up to 40% across definitions commonly used in the literature, emphasizing the importance of using self-consistent definitions in comparisons and evolutionary studies. The MBH-σ relation for our Seyfert-1 galaxy sample has the same intercept and scatter as that of reverberation-mapped AGNs as well as that of quiescent galaxies, consistent with the hypothesis that our single epoch MBH estimator and sample selection function do not introduce significant biases. Barred galaxies, merging galaxies, and those hosting pseudo-bulges do not represent outliers in the MBH-σ relation. This is in contrast with previous work, although no firm conclusion can be drawn on this matter due to the small sample size and limited resolution of the SDSS images.

  2. Secular Evolution in Disk Galaxies

    NASA Astrophysics Data System (ADS)

    Kormendy, John

    2013-10-01

    bulges because the latter retain a `memory' of their disky origin. That is, they have one or more characteristics of disks: (1) flatter shapes than those of classical bulges, (2) correspondingly large ratios of ordered to random velocities, (3) small velocity dispersions with respect to the Faber-Jackson correlation between velocity dispersion and bulge luminosity, (4) spiral structure or nuclear bars in the `bulge' part of the light profile, (5) nearly exponential brightness profiles and (6) starbursts. So the cleanest examples of pseudobulges are recognisable. However, pseudo and classical bulges can coexist in the same galaxy. I review two important implications of secular evolution: (1) The existence of pseudobulges highlights a problem with our theory of galaxy formation by hierarchical clustering. We cannot explain galaxies that are completely bulgeless. Galaxy mergers are expected to happen often enough so that every giant galaxy should have a classical bulge. But we observe that bulgeless giant galaxies are common in field environments. We now realise that many dense centres of galaxies that we used to think are bulges were not made by mergers; they were grown out of disks. So the challenge gets more difficult. This is the biggest problem faced by our theory of galaxy formation. (2) Pseudobulges are observed to contain supermassive black holes (BHs), but they do not show the well-known, tight correlations between BH mass and the mass and velocity dispersion of the host bulge. This leads to the suggestion that there are two fundamentally different BH feeding processes. Rapid global inward gas transport in galaxy mergers leads to giant BHs that correlate with host ellipticals and classical bulges, whereas local and more stochastic feeding of small BHs in largely bulgeless galaxies evidently involves too little energy feedback to result in BH-host coevolution. It is an important success of the secular evolution picture that morphological differences can be used to

  3. Elliptical Galaxies and Bulges of Disc Galaxies: Summary of Progress and Outstanding Issues

    NASA Astrophysics Data System (ADS)

    Kormendy, John

    Bulge components of disc galaxies are the high-density centers interior to their outer discs. Once thought to be equivalent to elliptical galaxies, their observed properties and formation histories turn out to be richer and more varied than those of ellipticals. This book reviews progress in many areas of bulge studies. Two advances deserve emphasis: (1) Observations divide bulges into "classical bulges" that look indistinguishable from ellipticals and "pseudobulges" that are discier and (except in S0s) more actively star-forming than are ellipticals. Classical bulges and ellipticals are thought to form by major galaxy mergers. Discy pseudobulges are a product of the slow ("secular") evolution of galaxy discs. Nonaxisymmetries such as bars and oval distortions transport some disc gas toward the center, where it starbursts and builds a dense central component that is discier in structure than are classical bulges. Secular evolution explains many regular structures (e.g., rings) seen in galaxy discs. It is a new area of galaxy evolution work that complements hierarchical clustering. (2) Studies of high-redshift galaxies reveal that their discs are so gas-rich that they are violently unstable to the formation of mass clumps that sink to the center and merge. This is an alternative channel for the formation of classical bulges. This chapter summarizes big-picture successes and unsolved problems in the formation of bulges and ellipticals and their coevolution (or not) with supermassive black holes. I present an observer's perspective on simulations of cold dark matter galaxy formation including baryonic physics. Our picture of the quenching of star formation is becoming general and secure at redshifts z < 1. I conclude with a list of major uncertainties and problems. The biggest challenge is to produce realistic bulges + ellipticals and realistic discs that overlap over a factor of > 1000 in mass but that differ from each other as we observe over that whole range. A

  4. Galaxy Zoo: Observing secular evolution through bars

    SciTech Connect

    Cheung, Edmond; Faber, S. M.; Koo, David C.; Athanassoula, E.; Bosma, A.; Masters, Karen L.; Nichol, Robert C.; Melvin, Thomas; Bell, Eric F.; Lintott, Chris; Schawinski, Kevin; Skibba, Ramin A.; Willett, Kyle W.

    2013-12-20

    In this paper, we use the Galaxy Zoo 2 data set to study the behavior of bars in disk galaxies as a function of specific star formation rate (SSFR) and bulge prominence. Our sample consists of 13,295 disk galaxies, with an overall (strong) bar fraction of 23.6% ± 0.4%, of which 1154 barred galaxies also have bar length (BL) measurements. These samples are the largest ever used to study the role of bars in galaxy evolution. We find that the likelihood of a galaxy hosting a bar is anticorrelated with SSFR, regardless of stellar mass or bulge prominence. We find that the trends of bar likelihood and BL with bulge prominence are bimodal with SSFR. We interpret these observations using state-of-the-art simulations of bar evolution that include live halos and the effects of gas and star formation. We suggest our observed trends of bar likelihood with SSFR are driven by the gas fraction of the disks, a factor demonstrated to significantly retard both bar formation and evolution in models. We interpret the bimodal relationship between bulge prominence and bar properties as being due to the complicated effects of classical bulges and central mass concentrations on bar evolution and also to the growth of disky pseudobulges by bar evolution. These results represent empirical evidence for secular evolution driven by bars in disk galaxies. This work suggests that bars are not stagnant structures within disk galaxies but are a critical evolutionary driver of their host galaxies in the local universe (z < 1).

  5. Bulgeless Galaxies Hosting 107 M⊙ AGN in Galaxy Zoo: The Growth of Black Holes via Secular Processes

    NASA Astrophysics Data System (ADS)

    Simmons, Brooke; Lintott, C. J.; Schawinski, K.; Moran, E. C.; Han, A.; Kaviraj, S.; Masters, K. L.; Urry, C. M.; Willett, K.; Bamford, S. P.; Nichol, R.

    2013-01-01

    The growth of supermassive black holes (SMBHs) appears to proceed via multiple pathways including mergers and secular processes, but these are difficult to disentangle for most galaxies given their complex evolutionary histories. In order to understand the effects of secular galaxy evolution on black hole growth, we require a sample of active galactic nuclei (AGN) in galaxies with a calm formation history free of significant mergers, a population that heretofore has been difficult to locate. Here we present a sample of 13 AGN in massive galaxies lacking the classical bulges believed inevitably to result from mergers; they also either lack or have extremely small pseudobulges, meaning they have had very calm accretion histories. This is the largest sample to date of massive, bulgeless AGN host galaxies selected without any direct restriction on the SMBH mass. The broad-line objects in the sample have black hole masses of 106-7 M⊙ Eddington arguments imply similar masses for the rest of the sample, meaning these black holes have grown substantially in the absence of mergers or other bulge-building processes such as violent disk instabilities. The black hole masses are systematically higher than expected from established bulge-black hole relations. However, these systems may be consistent with the correlation between black hole mass and total stellar mass. We discuss these results in the context of other studies and consider the implication that the details of stellar galaxy evolution and dynamics may not be fundamental to the co-evolution of galaxies and black holes.

  6. A REVISED PARALLEL-SEQUENCE MORPHOLOGICAL CLASSIFICATION OF GALAXIES: STRUCTURE AND FORMATION OF S0 AND SPHEROIDAL GALAXIES

    SciTech Connect

    Kormendy, John; Bender, Ralf E-mail: bender@mpe.mpg.de

    2012-01-01

    We update van den Bergh's parallel-sequence galaxy classification in which S0 galaxies form a sequence S0a-S0b-S0c that parallels the sequence Sa-Sb-Sc of spiral galaxies. The ratio B/T of bulge-to-total light defines the position of a galaxy in this tuning-fork diagram. Our classification makes one major improvement. We extend the S0a-S0b-S0c sequence to spheroidal ('Sph') galaxies that are positioned in parallel to irregular galaxies in a similarly extended Sa-Sb-Sc-Im sequence. This provides a natural 'home' for spheroidals, which previously were omitted from galaxy classification schemes or inappropriately combined with ellipticals. To motivate our juxtaposition of Sph and Im galaxies, we present photometry and bulge-disk decompositions of four rare, late-type S0s that bridge the gap between the more common S0b and Sph galaxies. NGC 4762 is an edge-on SB0bc galaxy with a very small classical-bulge-to-total ratio of B/T = 0.13 {+-} 0.02. NGC 4452 is an edge-on SB0 galaxy with an even tinier pseudobulge-to-total ratio of PB/T = 0.017 {+-} 0.004. It is therefore an SB0c. VCC 2048, whose published classification is S0, contains an edge-on disk, but its 'bulge' plots in the structural parameter sequence of spheroidals. It is therefore a disky Sph. And NGC 4638 is similarly a 'missing link' between S0s and Sphs-it has a tiny bulge and an edge-on disk embedded in an Sph halo. In the Appendix, we present photometry and bulge-disk decompositions of all Hubble Space Telescope Advanced Camera for Surveys Virgo Cluster Survey S0s that do not have published decompositions. We use these data to update the structural parameter correlations of Sph, S+Im, and E galaxies. We show that Sph galaxies of increasing luminosity form a continuous sequence with the disks (but not bulges) of S0c-S0b-S0a galaxies. Remarkably, the Sph-S0-disk sequence is almost identical to that of Im galaxies and spiral galaxy disks. We review published observations for galaxy transformation processes

  7. A Revised Parallel-sequence Morphological Classification of Galaxies: Structure and Formation of S0 and Spheroidal Galaxies

    NASA Astrophysics Data System (ADS)

    Kormendy, John; Bender, Ralf

    2012-01-01

    We update van den Bergh's parallel-sequence galaxy classification in which S0 galaxies form a sequence S0a-S0b-S0c that parallels the sequence Sa-Sb-Sc of spiral galaxies. The ratio B/T of bulge-to-total light defines the position of a galaxy in this tuning-fork diagram. Our classification makes one major improvement. We extend the S0a-S0b-S0c sequence to spheroidal ("Sph") galaxies that are positioned in parallel to irregular galaxies in a similarly extended Sa-Sb-Sc-Im sequence. This provides a natural "home" for spheroidals, which previously were omitted from galaxy classification schemes or inappropriately combined with ellipticals. To motivate our juxtaposition of Sph and Im galaxies, we present photometry and bulge-disk decompositions of four rare, late-type S0s that bridge the gap between the more common S0b and Sph galaxies. NGC 4762 is an edge-on SB0bc galaxy with a very small classical-bulge-to-total ratio of B/T = 0.13 ± 0.02. NGC 4452 is an edge-on SB0 galaxy with an even tinier pseudobulge-to-total ratio of PB/T = 0.017 ± 0.004. It is therefore an SB0c. VCC 2048, whose published classification is S0, contains an edge-on disk, but its "bulge" plots in the structural parameter sequence of spheroidals. It is therefore a disky Sph. And NGC 4638 is similarly a "missing link" between S0s and Sphs—it has a tiny bulge and an edge-on disk embedded in an Sph halo. In the Appendix, we present photometry and bulge-disk decompositions of all Hubble Space Telescope Advanced Camera for Surveys Virgo Cluster Survey S0s that do not have published decompositions. We use these data to update the structural parameter correlations of Sph, S+Im, and E galaxies. We show that Sph galaxies of increasing luminosity form a continuous sequence with the disks (but not bulges) of S0c-S0b-S0a galaxies. Remarkably, the Sph-S0-disk sequence is almost identical to that of Im galaxies and spiral galaxy disks. We review published observations for galaxy transformation processes

  8. Complex central structures suggest complex evolutionary paths for barred S0 galaxies

    NASA Astrophysics Data System (ADS)

    Dullo, Bililign T.; Martínez-Lombilla, Cristina; Knapen, Johan H.

    2016-11-01

    We investigate three barred lenticular galaxies (NGC 2681, NGC 3945 and NGC 4371), which were previously reported to have complex central structures but without a detailed structural analysis of these galaxies' high-resolution data. We have therefore performed four- to six-component (pseudo-)bulge/disc/bar/ring/point source) decompositions of the composite (Hubble Space Telescope plus ground-based) surface brightness profiles. We find that NGC 2681 hosts three bars, while NGC 3945 and NGC 4371 are double- and single-barred galaxies, respectively, in agreement with past isophotal analysis. We find that the bulges in these galaxies are compact, and have Sérsic indices of n ˜ 2.2-3.6 and stellar masses of M* ˜ 0.28 × 1010-1.1 × 1010 M⊙. NGC 3945 and NGC 4371 have intermediate-scale `pseudo-bulges' that are well described by a Sérsic model with low n ≲ 0.5 instead of an exponential (n = 1) profile as done in the past. We measure emission line fluxes enclosed within nine different elliptical apertures, finding that NGC 2681 has a low-ionization nuclear emission region (LINER)-type emission inside R ˜ 3 arcsec, but the emission line due to star formation is significant when aperture size is increased. In contrast, NGC 3945 and NGC 4371 have composite (active galactic nucleus plus star-forming)- and LINER-type emissions inside and outside R ˜ 2 arcsec, respectively. Our findings suggest that the three galaxies have experienced a complex evolutionary path. The bulges appear to be consequences of an earlier violent merging event while subsequent disc formation via gas accretion and bar-driven perturbations may account for the build-up of pseudo-bulges, bars, rings and point sources.

  9. Coevolution (Or Not) of Supermassive Black Holes and Host Galaxies

    NASA Astrophysics Data System (ADS)

    Kormendy, John; Ho, Luis C.

    2013-08-01

    Supermassive black holes (BHs) have been found in 85 galaxies by dynamical modeling of spatially resolved kinematics. The Hubble Space Telescope revolutionized BH research by advancing the subject from its proof-of-concept phase into quantitative studies of BH demographics. Most influential was the discovery of a tight correlation between BH mass [Formula: see text] and the velocity dispersion σ of the bulge component of the host galaxy. Together with similar correlations with bulge luminosity and mass, this led to the widespread belief that BHs and bulges coevolve by regulating each other's growth. Conclusions based on one set of correlations from [Formula: see text] in brightest cluster ellipticals to [Formula: see text] in the smallest galaxies dominated BH work for more than a decade. New results are now replacing this simple story with a richer and more plausible picture in which BHs correlate differently with different galaxy components. A reasonable aim is to use this progress to refine our understanding of BH-galaxy coevolution. BHs with masses of 105-106M⊙ are found in many bulgeless galaxies. Therefore, classical (elliptical-galaxy-like) bulges are not necessary for BH formation. On the other hand, although they live in galaxy disks, BHs do not correlate with galaxy disks. Also, any [Formula: see text] correlations with the properties of disk-grown pseudobulges and dark matter halos are weak enough to imply no close coevolution. The above and other correlations of host-galaxy parameters with each other and with [Formula: see text] suggest that there are four regimes of BH feedback. (1) Local, secular, episodic, and stochastic feeding of small BHs in largely bulgeless galaxies involves too little energy to result in coevolution. (2) Global feeding in major, wet galaxy mergers rapidly grows giant BHs in short-duration, quasar-like events whose energy feedback does affect galaxy evolution. The resulting hosts are classical bulges and coreless

  10. The formation of disc galaxies in a ΛCDM universe

    NASA Astrophysics Data System (ADS)

    Agertz, Oscar; Teyssier, Romain; Moore, Ben

    2011-01-01

    We study the formation of disc galaxies in a fully cosmological framework using adaptive mesh refinement simulations. We perform an extensive parameter study of the main subgrid processes that control how gas is converted into stars and the coupled effect of supernovae feedback. We argue that previous attempts to form disc galaxies have been unsuccessful because of the universal adoption of strong feedback combined with high star formation efficiencies. Unless extreme amounts of energy are injected into the interstellar medium during supernovae events, these star formation parameters result in bulge-dominated S0/Sa galaxies as star formation is too efficient at z˜ 3. We show that a low efficiency of star formation more closely models the subparsec physical processes, especially at high redshift. We highlight the successful formation of extended disc galaxies with scalelengths rd= 4-5 kpc, flat rotation curves and bulge-to-disc ratios of B/D ˜ 1/4. Not only do we resolve the formation of a Milky Way-like spiral galaxy, we also observe the secular evolution of the disc as it forms a pseudo-bulge. The disc properties agree well with observations and are compatible with the photometric and baryonic Tully-Fisher relations, the ΣSFR-Σgas (Kennicutt-Schmidt) relation and the observed angular momentum content of spiral galaxies. We conclude that the underlying small-scale star formation physics plays a greater role than previously considered in simulations of galaxy formation.

  11. Gradients of stellar population properties and evolution clues in a nearby galaxy M101

    SciTech Connect

    Lin, Lin; Kong, Xu; Lin, Xuanbin; Mao, Yewei; Cheng, Fuzhen; Zou, Hu; Jiang, Zhaoji; Zhou, Xu E-mail: xkong@ustc.edu.cn

    2013-06-01

    Multiband photometric images from ultraviolet and optical to infrared are collected to derive spatially resolved properties of the nearby Scd-type galaxy M101. With evolutionary stellar population synthesis models, two-dimensional distributions and radial profiles of age, metallicity, dust attenuation, and star formation timescale in the form of the Sandage star formation history are obtained. When fitting with the models, we use the IRX-A {sub FUV} relation, found to depend on a second parameter of birth rate b (ratio of present- and past-averaged star formation rates), to constrain the dust attenuation. There are obvious parameter gradients in the disk of M101, which supports the theory of an 'inside-out' disk growth scenario. Two distinct disk regions with different gradients of age and color are discovered, similar to another late-type galaxy, NGC 628. The metallicity gradient of the stellar content is flatter than that of H II regions. The stellar disk is optically thicker inside than outside and the global dust attenuation of this galaxy is lower compared with galaxies of similar and earlier morphological type. We note that a variational star formation timescale describes the real star formation history of a galaxy. The timescale increases steadily from the center to the outskirt. We also confirm that the bulge in this galaxy is a disk-like pseudobulge, whose evolution is likely to be induced by some secular processes of the small bar which is relatively young, metal-rich, and contains much dust.

  12. Gradients of Stellar Population Properties and Evolution Clues in a Nearby Galaxy M101

    NASA Astrophysics Data System (ADS)

    Lin, Lin; Zou, Hu; Kong, Xu; Lin, Xuanbin; Mao, Yewei; Cheng, Fuzhen; Jiang, Zhaoji; Zhou, Xu

    2013-06-01

    Multiband photometric images from ultraviolet and optical to infrared are collected to derive spatially resolved properties of the nearby Scd-type galaxy M101. With evolutionary stellar population synthesis models, two-dimensional distributions and radial profiles of age, metallicity, dust attenuation, and star formation timescale in the form of the Sandage star formation history are obtained. When fitting with the models, we use the IRX-A FUV relation, found to depend on a second parameter of birth rate b (ratio of present- and past-averaged star formation rates), to constrain the dust attenuation. There are obvious parameter gradients in the disk of M101, which supports the theory of an "inside-out" disk growth scenario. Two distinct disk regions with different gradients of age and color are discovered, similar to another late-type galaxy, NGC 628. The metallicity gradient of the stellar content is flatter than that of H II regions. The stellar disk is optically thicker inside than outside and the global dust attenuation of this galaxy is lower compared with galaxies of similar and earlier morphological type. We note that a variational star formation timescale describes the real star formation history of a galaxy. The timescale increases steadily from the center to the outskirt. We also confirm that the bulge in this galaxy is a disk-like pseudobulge, whose evolution is likely to be induced by some secular processes of the small bar which is relatively young, metal-rich, and contains much dust.

  13. Forming Disk Galaxies in Wet Major Mergers. I. Three Fiducial Examples

    NASA Astrophysics Data System (ADS)

    Athanassoula, E.; Rodionov, S. A.; Peschken, N.; Lambert, J. C.

    2016-04-01

    Using three fiducial N-body+SPH simulations, we follow the merging of two disk galaxies that each have a hot gaseous halo component, and examine whether the merger remnant can be a spiral galaxy. The stellar progenitor disks are destroyed by violent relaxation during the merging and most of their stars form a classical bulge, while the remaining stars, as well as stars born during the merging times, form a thick disk and its bar. A new stellar disk forms subsequently and gradually in the remnant from the gas accreted mainly from the halo. It is vertically thin and well extended in its equatorial plane. A bar starts forming before the disk is fully in place, which is contrary to what is assumed in idealized simulations of isolated bar-forming galaxies, and has morphological features such as ansae and boxy/peanut bulges. Stars of different ages populate different parts of the box/peanut. A disky pseudobulge also forms, so that by the end of the simulation all three types of bulges coexist. The oldest stars are found in the classical bulge, followed by those of the thick disk, then by those in the thin disk. The youngest stars are in the spiral arms and the disky pseudobulge. The disk surface density profiles are of type II (exponential with downbending); the circular velocity curves are flat and show that the disks are submaximum in these examples: two clearly so and one near-borderline between maximum and submaximum. On average, only roughly between 10% and 20% of the stellar mass is in the classical bulge of the final models, i.e., much less than in previous simulations.

  14. Radio Galaxies.

    ERIC Educational Resources Information Center

    Downes, Ann

    1986-01-01

    Provides background information on radio galaxies. Topic areas addressed include: what produces the radio emission; radio telescopes; locating radio galaxies; how distances to radio galaxies are found; physics of radio galaxies; computer simulations of radio galaxies; and the evolution of radio galaxies with cosmic time. (JN)

  15. Internal and environmental secular evolution of disk galaxies

    NASA Astrophysics Data System (ADS)

    Kormendy, John

    2015-03-01

    that are available to them. They do this by spreading - the inner parts shrink while the outer parts expand. Significant changes happen only if some process efficiently transports energy or angular momentum outward. The consequences are very general: evolution by spreading happens in stars, star clusters, protostellar and protoplanetary disks, black hole accretion disks and galaxy disks. This meeting is about disk galaxies, so the evolution most often involves the redistribution of angular momentum. We now have a good heuristic understanding of how nonaxisymmetric structures rearrange disk gas into outer rings, inner rings and stuff dumped onto the center. Numerical simulations reproduce observed morphologies very well. Gas that is transported to small radii reaches high densities that are seen in CO observations. Star formation rates measured (e.g.) in the mid-infrared show that many barred and oval galaxies grow, on timescales of a few Gyr, dense central `pseudobulges' that are frequently mistaken for classical (elliptical-galaxy-like) bulges but that were grown slowly out of the disk (not made rapidly by major mergers). Our resulting picture of secular evolution accounts for the richness observed in morphological classification schemes such as those of de Vaucouleurs (1959) and Sandage (1961). State-of-the art morphology discussions include the de Vaucouleurs Atlas of Galaxies (Buta et al. 2007) and Buta (2012, 2013). Pseudobulges as disk-grown alternatives to merger-built classical bulges are important because they impact many aspects of our understanding of galaxy evolution. For example, they are observed to contain supermassive black holes (BHs), but they do not show the well known, tight correlations between BH mass and host properties (Kormendy et al. 2011). We can distinguish between classical and pseudo bulges because the latter retain a `memory' of their disky origin. That is, they have one or more characteristics of disks: (1) flatter shapes than those of

  16. Bulge Growth Through Disc Instabilities in High-Redshift Galaxies

    NASA Astrophysics Data System (ADS)

    Bournaud, Frédéric

    The role of disc instabilities, such as bars and spiral arms, and the associated resonances, in growing bulges in the inner regions of disc galaxies have long been studied in the low-redshift nearby Universe. There it has long been probed observationally, in particular through peanut-shaped bulges (Chap. 14 10.1007/978-3-319-19378-6_14"). This secular growth of bulges in modern disc galaxies is driven by weak, non-axisymmetric instabilities: it mostly produces pseudobulges at slow rates and with long star-formation timescales. Disc instabilities at high redshift (z > 1) in moderate-mass to massive galaxies (1010 to a few 1011 M⊙ of stars) are very different from those found in modern spiral galaxies. High-redshift discs are globally unstable and fragment into giant clumps containing 108-9 M⊙ of gas and stars each, which results in highly irregular galaxy morphologies. The clumps and other features associated to the violent instability drive disc evolution and bulge growth through various mechanisms on short timescales. The giant clumps can migrate inward and coalesce into the bulge in a few 108 years. The instability in the very turbulent media drives intense gas inflows toward the bulge and nuclear region. Thick discs and supermassive black holes can grow concurrently as a result of the violent instability. This chapter reviews the properties of high-redshift disc instabilities, the evolution of giant clumps and other features associated to the instability, and the resulting growth of bulges and associated sub-galactic components.

  17. Supermassive black holes: Coevolution (or not) of black holes and host galaxies

    NASA Astrophysics Data System (ADS)

    Kormendy, John

    2013-07-01

    Supermassive black holes (BHs) have been found in 75 galaxies by observing spatially resolved dynamics. The Hubble Space Telescope (HST) revolutionized BH work by advancing the subject from its `proof of concept' phase into quantitative studies of BH demographics. Most influential was the discovery of a tight correlation between BH masses M • and the velocity dispersions σ of stars in the host galaxy bulge components at radii where the stars mostly feel each other and not the BH. Together with correlations between M • and bulge luminosity, with the `missing light' that defines galaxy cores, and with numbers of globular clusters, this has led to the conclusion that BHs and bulges coevolve by regulating each other's growth. This simple picture with one set of correlations for all galaxies dominated BH work in the past decade. New results are now replacing the above, simple story with a richer and more plausible picture in which BHs correlate differently with different kinds of galaxy components. BHs with masses of 105-106 M ⊙ live in some bulgeless galaxies. So classical (merger-built) bulges are not necessary equipment for BH formation. On the other hand, while they live in galaxy disks, BHs do not correlate with galaxy disks or with disk-grown pseudobulges. They also have no special correlation with dark matter halos beyond the fact that halo gravity controls galaxy formation. This leads to the suggestion that there are two modes of BH feeding, (1) local, secular and episodic feeding of small BHs in largely bulgeless galaxies that involves too little energy feedback to drive BH-host-galaxy coevolution and (2) global feeding in major galaxy mergers that rapidly grows giant BHs in short-duration events whose energy feedback does affect galaxy formation. After these quasar-like phases, maintenance-mode BH feedback into hot, X-ray-emitting gas continues to have a primarily negative effect in preventing late-time star formation when cold gas or gas-rich galaxies

  18. The Black Hole-Bulge Mass Relation in Megamaser Host Galaxies

    NASA Astrophysics Data System (ADS)

    Läsker, Ronald; Greene, Jenny E.; Seth, Anil; van de Ven, Glenn; Braatz, James A.; Henkel, Christian; Lo, K. Y.

    2016-07-01

    We present Hubble Space Telescope (HST) images for nine megamaser disk galaxies with the primary goal of studying photometric BH-galaxy scaling relations. The megamaser disks provide the highest-precision extragalactic BH mass measurements, while our high-resolution HST imaging affords us the opportunity to decompose the complex nuclei of their late-type hosts in detail. Based on the morphologies and shapes of the galaxy nuclei, we argue that most of these galaxies’ central regions contain secularly evolving components (pseudo-bulges), and in many cases we photometrically identify co-existing “classical” bulge components as well. Using these decompositions, we draw the following conclusions. (1) The megamaser BH masses span two orders of magnitude (106-{10}8 {M}⊙ ) while the stellar mass of their spiral host galaxies are all ˜ {10}11 {M}⊙ within a factor of three. (2) The BH masses at a given bulge mass or total stellar mass in the megamaser host spiral galaxies tend to be lower than expected when compared to an extrapolation of the BH-bulge relation based on early-type galaxies. (3) The observed large intrinsic scatter of BH masses in the megamaser host galaxies raises the question of whether scaling relations exist in spiral galaxies. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program 12185.

  19. The black hole mass scale of classical and pseudo bulges in active galaxies

    SciTech Connect

    Ho, Luis C.; Kim, Minjin

    2014-07-01

    The mass estimator used to calculate black hole (BH) masses in broad-line active galactic nuclei (AGNs) relies on a virial coefficient (the 'f factor') that is determined by comparing reverberation-mapped (RM) AGNs with measured bulge stellar velocity dispersions against the M {sub BH}-σ{sub *} relation of inactive galaxies. It has recently been recognized that only classical bulges and ellipticals obey a tight M {sub BH}-σ{sub *} relation; pseudobulges have a different zero point and much larger scatter. Motivated by these developments, we reevaluate the f factor for RM AGNs with available σ{sub *} measurements, updated Hβ RM lags, and new bulge classifications based on detailed decomposition of high-resolution ground-based and space-based images. Separate calibrations are provided for the two bulge types, whose virial coefficients differ by a factor of ∼2: f = 6.3 ± 1.5 for classical bulges and ellipticals and f = 3.2 ± 0.7 for pseudobulges. The structure and kinematics of the broad-line region, at least as crudely encoded in the f factor, seems to be related to the large-scale properties or formation history of the bulge. Lastly, we investigate the bulge stellar masses of the RM AGNs, show evidence for recent star formation in the AGN hosts that correlates with Eddington ratio, and discuss the potential utility of the M {sub BH}-M {sub bulge} relation as a more promising alternative to the conventionally used M {sub BH}-σ{sub *} relation for future refinement of the virial mass estimator for AGNs.

  20. NGC 6340: an old S0 galaxy with a young polar disc. Clues from morphology, internal kinematics, and stellar populations

    NASA Astrophysics Data System (ADS)

    Chilingarian, I. V.; Novikova, A. P.; Cayatte, V.; Combes, F.; Di Matteo, P.; Zasov, A. V.

    2009-09-01

    Context: Lenticular galaxies are believed to form by a combination of environmental effects and secular evolution. Aims: We study the nearby disc-dominated S0 galaxy NGC 6340 photometrically and spectroscopically to understand the mechanisms of S0 formation and evolution in groups. Methods: We use SDSS images to build colour maps and the light profile of NGC 6340, which we decompose using a three-component model including Sérsic and two exponential profiles. We also use Spitzer Space Telescope archival near-infrared images to study the morphology of regions containing warm interstellar medium and dust. Then, we re-process and re-analyse deep long-slit spectroscopic data for NGC 6340, applying a novel sky subtraction technique and recover its stellar and gas kinematics, distribution of age and metallicity with the NBursts full spectral fitting. Results: We obtain the profiles of internal kinematics, age, and metallicity out to >2 half-light radii. The three structural components of NGC 6340 are found to have distinct kinematic and stellar population properties. We see a kinematic misalignment between inner and outer regions of the galaxy. We confirm the old metal-rich centre and a wrapped inner gaseous polar disc (r˜ 1 kpc) having weak ongoing star formation, counter-rotating in projection with respect to the stars. The central compact pseudo-bulge of NGC 6340 looks very similar to compact elliptical galaxies. Conclusions: In accordance with the results of numerical simulations, we conclude that the properties of NGC 6340 can be explained as the result of a major merger of an early-type galaxy and a spiral galaxy that occurred about 12 Gyr ago. The intermediate exponential structure might be a triaxial pseudo-bulge formed by a past bar structure. The inner compact bulge could be the result of a nuclear starburst triggered by the merger. The inner polar disc appeared recently, 1/3-1/2 Gyr ago, as a result of another minor merger or cold gas accretion. Data points

  1. THE MOLECULAR GAS DENSITY IN GALAXY CENTERS AND HOW IT CONNECTS TO BULGES

    SciTech Connect

    Fisher, David B.; Bolatto, Alberto; Drory, Niv; Combes, Francoise; Blitz, Leo; Wong, Tony

    2013-02-20

    In this paper we present gas density, star formation rate (SFR), stellar masses, and bulge-disk decompositions for a sample of 60 galaxies. Our sample is the combined sample of the BIMA SONG, CARMA STING, and PdBI NUGA surveys. We study the effect of using CO-to-H{sub 2} conversion factors that depend on the CO surface brightness, and also that of correcting SFRs for diffuse emission from old stellar populations. We estimate that SFRs in bulges are typically lower by 20% when correcting for diffuse emission. Using the surface brightness dependent conversion factor, we find that over half of the galaxies in our sample have {Sigma}{sub mol} > 100 M {sub Sun} pc{sup -2}. Though our sample is not complete in any sense, our results are enough to rule out the assumption that bulges are uniformly gas-poor systems. We find a trend between gas density of bulges and bulge Sersic index; bulges with lower Sersic index have higher gas density. Those bulges with low Sersic index (pseudobulges) have gas fractions that are similar to that of disks. Conversely, the typical molecular gas fraction in classical bulges is more similar to that of an elliptical galaxy. We also find that there is a strong correlation between bulges with the highest gas surface density and the galaxy being barred. However, we also find that classical bulges with low gas surface density can be barred as well. Our results suggest that understanding the connection between the central surface density of gas in disk galaxies and the presence of bars should also take into account the total gas content of the galaxy. Finally, we show that when using the corrected SFRs and gas densities, the correlation between SFR surface density and gas surface density of bulges is similar to that of disks. This implies that at the scale of the bulges the timescale for converting gas into stars is comparable to those results found in disks.

  2. The Molecular Gas Density in Galaxy Centers and how it Connects to Bulges

    NASA Astrophysics Data System (ADS)

    Fisher, David B.; Bolatto, Alberto; Drory, Niv; Combes, Francoise; Blitz, Leo; Wong, Tony

    2013-02-01

    In this paper we present gas density, star formation rate (SFR), stellar masses, and bulge-disk decompositions for a sample of 60 galaxies. Our sample is the combined sample of the BIMA SONG, CARMA STING, and PdBI NUGA surveys. We study the effect of using CO-to-H2 conversion factors that depend on the CO surface brightness, and also that of correcting SFRs for diffuse emission from old stellar populations. We estimate that SFRs in bulges are typically lower by 20% when correcting for diffuse emission. Using the surface brightness dependent conversion factor, we find that over half of the galaxies in our sample have Σmol > 100 M ⊙ pc-2. Though our sample is not complete in any sense, our results are enough to rule out the assumption that bulges are uniformly gas-poor systems. We find a trend between gas density of bulges and bulge Sérsic index; bulges with lower Sérsic index have higher gas density. Those bulges with low Sérsic index (pseudobulges) have gas fractions that are similar to that of disks. Conversely, the typical molecular gas fraction in classical bulges is more similar to that of an elliptical galaxy. We also find that there is a strong correlation between bulges with the highest gas surface density and the galaxy being barred. However, we also find that classical bulges with low gas surface density can be barred as well. Our results suggest that understanding the connection between the central surface density of gas in disk galaxies and the presence of bars should also take into account the total gas content of the galaxy. Finally, we show that when using the corrected SFRs and gas densities, the correlation between SFR surface density and gas surface density of bulges is similar to that of disks. This implies that at the scale of the bulges the timescale for converting gas into stars is comparable to those results found in disks.

  3. Starburst galaxies

    NASA Technical Reports Server (NTRS)

    Weedman, Daniel W.

    1987-01-01

    The infrared properties of star-forming galaxies, primarily as determined by the Infrared Astronomy Satellite (IRAS), are compared to X-ray, optical, and radio properties. Luminosity functions are reviewed and combined with those derived from optically discovered samples using 487 Markarian galaxies with redshifts and published IRAS 60 micron fluxes, and 1074 such galaxies in the Center for Astrophysics redshift survey. It is found that the majority of infrared galaxies which could be detected are low luminosity sources already known from the optical samples, but non-infrared surveys have found only a very small fraction of the highest luminosity sources. Distributions of infrared to optical fluxes and available spectra indicate that the majority of IRAS-selected galaxies are starburst galaxies. Having a census of starburst galaxies and associated dust allow severl important global calculations. The source counts are predicted as a function of flux limits for both infrared and radio fluxes. These galaxies are found to be important radio sources at faint flux limits. Taking the integrated flux to z = 3 indicates that such galaxies are a significant component of the diffuse X-ray background, and could be the the dominant component depending on the nature of the X-ray spectra and source evolution.

  4. Les galaxies

    NASA Astrophysics Data System (ADS)

    Combes, Francoise

    2016-08-01

    Considerable progress has been made on galaxy formation and evolution in recent years, and new issues. The old Hubble classification according to the tuning fork of spirals, lenticulars and ellipticals, is still useful but has given place to the red sequence, the blue cloud and the green valley, showing a real bimodality of types between star forming galaxies (blue) and quenched ones (red). Large surveys have shown that stellar mass and environment density are the two main factors of the evolution from blue to red sequences. Evolution is followed directly with redshift through a look-back time of more than 12 billion years. The most distant galaxy at z=11. has already a stellar mass of a billion suns. In an apparent anti-hierarchical scenario, the most massive galaxies form stars early on, while essentially dwarf galaxies are actively star-formers now. This downsizing feature also applies to the growth of super-massive black holes at the heart of each bulgy galaxy. The feedback from active nuclei is essential to explain the distribution of mass in galaxies, and in particular to explain why the fraction of baryonic matter is so low, lower by more than a factor 5 than the baryonic fraction of the Universe. New instruments just entering in operation, like MUSE and ALMA, provide a new and rich data flow, which is developed in this series of articles.

  5. Formation of S0 galaxies through mergers. Bulge-disc structural coupling resulting from major mergers

    NASA Astrophysics Data System (ADS)

    Querejeta, M.; Eliche-Moral, M. C.; Tapia, T.; Borlaff, A.; Rodríguez-Pérez, C.; Zamorano, J.; Gallego, J.

    2015-01-01

    Context. Observations reveal a strong structural coupling between bulge and disc in S0 galaxies, which seems difficult to explain if they have formed from supposedly catastrophic events such as major mergers. Aims: We face this question by quantifying the bulge-disc coupling in dissipative simulations of major and minor mergers that result in realistic S0s. Methods: We have studied the dissipative N-body binary merger simulations from the GalMer database that give rise to realistic, relaxed E/S0 and S0 remnants (67 major and 29 minor mergers). We simulate surface brightness profiles of these S0-like remnants in the K band, mimicking typical observational conditions, to perform bulge-disc decompositions analogous to those carried out in real S0s. Additional components have been included when needed. The global bulge-disc structure of these remnants has been compared with real data. Results: The S0-like remnants distribute in the B/T - re - hd parameter space consistently with real bright S0s, where B/T is the bulge-to-total luminosity ratio, re is the bulge effective radius, and hd is the disc scalelength. Major mergers can rebuild a bulge-disc coupling in the remnants after having destroyed the structures of the progenitors, whereas minor mergers directly preserve them. Remnants exhibit B/T and re/hd spanning a wide range of values, and their distribution is consistent with observations. Many remnants have bulge Sérsic indices ranging 1 pseudobulges in real S0s. Conclusions: Contrary to the popular view, mergers (and in particular, major events) can result in S0 remnants with realistically coupled bulge-disc structures in less than ~3 Gyr. The bulge-disc coupling and the presence of pseudobulges in real S0s cannot be used as an argument against the possible major-merger origin of these galaxies. Table 3 is available in electronic form at http://www.aanda.org

  6. Black hole starvation and bulge evolution in a Milky Way-like galaxy

    NASA Astrophysics Data System (ADS)

    Bonoli, Silvia; Mayer, Lucio; Kazantzidis, Stelios; Madau, Piero; Bellovary, Jillian; Governato, Fabio

    2016-07-01

    We present a new zoom-in hydrodynamical simulation, `ErisBH', which features the same initial conditions, resolution, and sub-grid physics as the close Milky Way-analogue `Eris' (Guedes et al. 2011), but it also includes prescriptions for the formation, growth and feedback of supermassive black holes. This enables a detailed study of black hole evolution and the impact of active galactic nuclei (AGN) feedback in a late-type galaxy. At z = 0, the main galaxy of ErisBH hosts a central black hole of 2.6 × 106 M⊙, which correlates to the bulge mass and the galaxy's central velocity dispersion similarly to what is observed in the Milky Way and in pseudobulges. During its evolution, the black hole grows mostly through mergers with black holes brought in by accreted satellite galaxies and very little by gas accretion (due to the modest amount of gas that reaches the central regions). AGN feedback is weak and it affects only the central 1-2 kpc. Yet, it limits the growth of the bulge, which results in a rotation curve that, in the inner ˜ 10 kpc, is flatter than that of Eris. We find that ErisBH is more prone to instabilities than Eris, due to its smaller bulge and larger disc. At z ˜ 0.3, an initially small bar grows to be of a few disc scalelengths in size. The formation of the bar causes a small burst of star formation in the inner few hundred pc, provides new gas to the central black hole and causes the bulge to have a boxy/peanut morphology by z = 0.

  7. Andromeda Galaxy

    NASA Astrophysics Data System (ADS)

    Walterbos, R.; Murdin, P.

    2000-11-01

    The Andromeda galaxy is the closest SPIRAL GALAXY to the MILKY WAY, just visible to the naked eye on a dark night as a faint smudge of light in the constellation Andromeda. The earliest records of the Andromeda nebula, as it is still often referred to, date back to AD 964, to the `Book of the Fixed Stars' published by the Persian astronomer AL-SÛFI. The first European to officially note the Andro...

  8. Progress and Challenges in SPH Simulations of Disk Galaxy Formation: The Combined Role of Resolution and the Star Formation Density Threshold

    NASA Astrophysics Data System (ADS)

    Mayer, L.

    2012-07-01

    We review progress in cosmological SPH simulations of disk galaxy formation. We discuss the role of numerical resolution and sub-grid recipes of star formation and feedback from supernovae, higlighting the important role of a high star formation density threshold comparable to that of star forming molecular gas phase. Two recent succesfull examples, in simulations of the formation of gas-rich bulgeless dwarf galaxies and in simulations of late-type spirals (the ERIS simulations), are presented and discussed. In the ERIS simulations, already in the progenitors at z = 3 the resolution is above the threshold indicated by previous idealized numerical experiments as necessary to minimize numerical angular momentum loss (Kaufmann et al. 2007). A high star formation density threshold maintains an inhomogeneous interstellar medium, where star formation is clustered, and thus the local effect of supernovae feedback is enhanced. As a result, outflows are naturally generated removing 2/3 of the baryons in galaxies with Vvir˜50 km/s and ˜ 30% of the baryons in galaxies with (Vvir ˜ 150 km/s). Low angular momentum baryons are preferentially removed since the strongest bursts of star formation occur predominantly near the center, especially after a merger event. This produces pure exponential disks or small bulges depending on galaxy mass, and, correspondingly, slowly rising or nearly flat rotation curves that match those of observed disk galaxies. In dwarfs the rapid mass removal by outflows generates a core-like distribution in the dark matter. Furthermore, contrary to the common picture, in the ERIS spiral galaxies a bar/pseudobulge forms rapidly, and not secularly, as a result of mergers and interactions at high-z.

  9. Kinematics of 10 Early-Type Galaxies from Hubble Space Telescope and Ground-based Spectroscopy

    NASA Astrophysics Data System (ADS)

    Pinkney, Jason; Gebhardt, Karl; Bender, Ralf; Bower, Gary; Dressler, Alan; Faber, S. M.; Filippenko, Alexei V.; Green, Richard; Ho, Luis C.; Kormendy, John; Lauer, Tod R.; Magorrian, John; Richstone, Douglas; Tremaine, Scott

    2003-10-01

    We present stellar kinematics for a sample of 10 early-type galaxies observed using the Space Telescope Imaging Spectrograph (STIS) aboard the Hubble Space Telescope and the Modular Spectrograph on the MDM Observatory 2.4 m telescope. These observations are a part of an ongoing program to understand the coevolution of supermassive black holes and their host galaxies. Our spectral ranges include either the calcium triplet absorption lines at 8498, 8542, and 8662 Å or the Mg b absorption at 5175 Å. The lines are used to derive line-of-sight velocity distributions (LOSVDs) of the stars using a maximum penalized likelihood method. We use Gauss-Hermite polynomials to parameterize the LOSVDs and find predominantly negative h4 values (boxy distributions) in the central regions of our galaxies. One galaxy, NGC 4697, has significantly positive central h4 (high tail weight). The majority of galaxies have a central velocity dispersion excess in the STIS kinematics over ground-based velocity dispersions. The galaxies with the strongest rotational support, as quantified with vmax/σSTIS, have the smallest dispersion excess at STIS resolution. The best-fitting, general, axisymmetric dynamical models (described in a companion paper) require black holes in all cases, with masses ranging from 106.5 to 109.3 Msolar. We replot these updated masses on the MBH-σ relation and show that the fit to only these 10 galaxies has a slope consistent with the fits to larger samples. The greatest outlier is NGC 2778, a dwarf elliptical with relatively poorly constrained black hole mass. The two best candidates for pseudobulges, NGC 3384 and NGC 7457, do not deviate significantly from the established relation between MBH and σ. Neither do the three galaxies that show the most evidence of a recent merger, NGC 3608, NGC 4473, and NGC 4697. Based in part on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the

  10. Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Miller, Christopher J. Miller

    2012-03-01

    There are many examples of clustering in astronomy. Stars in our own galaxy are often seen as being gravitationally bound into tight globular or open clusters. The Solar System's Trojan asteroids cluster at the gravitational Langrangian in front of Jupiter’s orbit. On the largest of scales, we find gravitationally bound clusters of galaxies, the Virgo cluster (in the constellation of Virgo at a distance of ˜50 million light years) being a prime nearby example. The Virgo cluster subtends an angle of nearly 8◦ on the sky and is known to contain over a thousand member galaxies. Galaxy clusters play an important role in our understanding of theUniverse. Clusters exist at peaks in the three-dimensional large-scale matter density field. Their sky (2D) locations are easy to detect in astronomical imaging data and their mean galaxy redshifts (redshift is related to the third spatial dimension: distance) are often better (spectroscopically) and cheaper (photometrically) when compared with the entire galaxy population in large sky surveys. Photometric redshift (z) [Photometric techniques use the broad band filter magnitudes of a galaxy to estimate the redshift. Spectroscopic techniques use the galaxy spectra and emission/absorption line features to measure the redshift] determinations of galaxies within clusters are accurate to better than delta_z = 0.05 [7] and when studied as a cluster population, the central galaxies form a line in color-magnitude space (called the the E/S0 ridgeline and visible in Figure 16.3) that contains galaxies with similar stellar populations [15]. The shape of this E/S0 ridgeline enables astronomers to measure the cluster redshift to within delta_z = 0.01 [23]. The most accurate cluster redshift determinations come from spectroscopy of the member galaxies, where only a fraction of the members need to be spectroscopically observed [25,42] to get an accurate redshift to the whole system. If light traces mass in the Universe, then the locations

  11. Galaxy formation

    SciTech Connect

    Silk, J.

    1984-11-01

    Implications of the isotropy of the cosmic microwave background on large and small angular scales for galaxy formation are reviewed. In primeval adiabatic fluctuations, a universe dominated by cold, weakly interacting nonbaryonic matter, e.g., the massive photino is postulated. A possible signature of photino annihilation in our galactic halo involves production of cosmic ray antiprotons. If the density is near its closure value, it is necessary to invoke a biasing mechanism for suppressing galaxy formation throughout most of the universe in order to reconcile the dark matter density with the lower astronomical determinations of the mean cosmological density. A mechanism utilizing the onset of primordial massive star formation to strip gaseous protogalaxies is described. Only the densest, early collapsing systems form luminous galaxies. (ESA)

  12. The Coevolution of Galaxies and Supermassive Black Holes: Insights from Surveys of the Contemporary Universe

    NASA Astrophysics Data System (ADS)

    Heckman, Timothy M.; Best, Philip N.

    2014-08-01

    We summarize what large surveys of the contemporary Universe have taught us about the physics and phenomenology of the processes that link the formation and evolution of galaxies with their central supermassive black holes. We present a picture in which the population of active galactic nuclei (AGNs) can be divided into two distinct populations. The radiative-mode AGNs are associated with black holes (BHs) that produce radiant energy powered by accretion at rates in excess of ˜1% of the Eddington limit. They are primarily associated with less massive BHs growing in high-density pseudobulges at a rate sufficient to produce the total mass budget in these BHs in ˜10 Gyr. The circumnuclear environment contains high-density cold gas and associated star formation. Major mergers are not the primary mechanism for transporting this gas inward; secular processes appear dominant. Stellar feedback is generic in these objects, and strong AGN feedback is seen only in the most powerful AGNs. In jet-mode AGNs the bulk of energetic output takes the form of collimated outflows (jets). These AGNs are associated with the more massive BHs in more massive (classical) bulges and elliptical galaxies. Neither the accretion onto these BHs nor star formation in their host bulge is significant today. These AGNs are probably fueled by the accretion of slowly cooling hot gas that is limited by the feedback/heating provided by AGN radio sources. Surveys of the high-redshift Universe paint a similar picture. Noting that the volume-averaged ratio of star formation to BH growth has remained broadly constant over the past 10 Gyrs, we argue that the processes that linked the cosmic evolution of galaxies and BHs are still at play today.

  13. THE BULGELESS SEYFERT/LINER GALAXY NGC 3367: DISK, BAR, LOPSIDEDNESS, AND ENVIRONMENT

    SciTech Connect

    Hernandez-Toledo, H. M.; Cano-Diaz, M.; Valenzuela, O.; Garcia-Barreto, J. A; Moreno-Diaz, E.; Puerari, I.; Bravo-Alfaro, H.

    2011-12-15

    NGC 3367 is a nearby isolated active galaxy that shows a radio jet, a strong bar, and evidence of lopsidedness. We present a quantitative analysis of the stellar and gaseous structure of the galaxy disk and search for evidence of recent interaction. Our study is based on new UBVRI H{alpha} and JHK images and on archive H{alpha} Fabry-Perot and H I Very Large Array data. From a coupled one-dimensional/two-dimensional GALFIT bulge/bar/disk decomposition a (B/D {approx} 0.07-0.1) exponential pseudobulge is inferred in all the observed bands. A near-infrared (NIR) estimate of the bar strength Q{sup max}{sub T}(R) = 0.44 places NGC 3367 bar among the strongest ones. The asymmetry properties were studied using (1) the optical and NIR concentration-asymmetry-clumpiness indices, (2) the stellar (NIR) and gaseous (H{alpha}, H I) A{sub 1} Fourier mode amplitudes, and (3) the H I-integrated profile and H I mean intensity distribution. While the average stellar component shows asymmetry values close to the average found in the local universe for isolated galaxies, the young stellar component and gas values are largely decoupled showing significantly larger A{sub 1} mode amplitudes suggesting that the gas has been recently perturbed and placing NGC 3367 in a global starburst phase. NGC 3367 is devoid of H I gas in the central regions where a significant amount of molecular CO gas exists instead. Our search for (1) faint stellar structures in the outer regions (up to {mu}{sub R} {approx} 26 mag arcsec{sup -2}), (2) (H{alpha}) star-forming satellite galaxies, and (3) regions with different colors (stellar populations) along the disk all failed. Such an absence is interpreted by using results from recent numerical simulations to constrain either a possible tidal event with an LMC like galaxy to some dynamical times in the past or a very low mass but perhaps gas rich recent encounter. We conclude that a cold flow accretion mode (gas and small/dark galaxies) may be responsible for

  14. Galaxy-galaxy(-galaxy) lensing as a sensitive probe of galaxy evolution

    NASA Astrophysics Data System (ADS)

    Saghiha, H.; Hilbert, S.; Schneider, P.; Simon, P.

    2012-11-01

    Context. The gravitational lensing effect provides various ways to study the mass environment of galaxies. Aims: We investigate how galaxy-galaxy(-galaxy) lensing can be used to test models of galaxy formation and evolution. Methods: We consider two semi-analytic galaxy formation models based on the Millennium Run N-body simulation: the Durham model by Bower et al. (2006, MNRAS, 370, 645) and the Garching model by Guo et al. (2011, MNRAS, 413, 101). We generate mock lensing observations for the two models, and then employ Fast Fourier Transform methods to compute second- and third-order aperture statistics in the simulated fields for various galaxy samples. Results: We find that both models predict qualitatively similar aperture signals, but there are large quantitative differences. The Durham model predicts larger amplitudes in general. In both models, red galaxies exhibit stronger aperture signals than blue galaxies. Using these aperture measurements and assuming a linear deterministic bias model, we measure relative bias ratios of red and blue galaxy samples. We find that a linear deterministic bias is insufficient to describe the relative clustering of model galaxies below ten arcmin angular scales. Dividing galaxies into luminosity bins, the aperture signals decrease with decreasing luminosity for brighter galaxies, but increase again for fainter galaxies. This increase is likely an artifact due to too many faint satellite galaxies in massive group and cluster halos predicted by the models. Conclusions: Our study shows that galaxy-galaxy(-galaxy) lensing is a sensitive probe of galaxy evolution.

  15. Dwarf spheroidal galaxies: Keystones of galaxy evolution

    NASA Technical Reports Server (NTRS)

    Gallagher, John S., III; Wyse, Rosemary F. G.

    1994-01-01

    Dwarf spheroidal galaxies are the most insignificant extragalactic stellar systems in terms of their visibility, but potentially very significant in terms of their role in the formation and evolution of much more luminous galaxies. We discuss the present observational data and their implications for theories of the formation and evolution of both dwarf and giant galaxies. The putative dark-matter content of these low-surface-brightness systems is of particular interest, as is their chemical evolution. Surveys for new dwarf spheroidals hidden behind the stars of our Galaxy and those which are not bound to giant galaxies may give new clues as to the origins of this unique class of galaxy.

  16. Galaxies at High Redshift

    NASA Astrophysics Data System (ADS)

    Pérez-Fournon, I.; Balcells, M.; Moreno-Insertis, F.; Sánchez, F.

    2010-08-01

    Participants; Group photograph; Preface; Acknowledgements; 1. Galaxy formation and evolution: recent progress R. Ellis; 2. Galaxies at high redshift M. Dickinson; 3. High-redshift galaxies: the far-infrared and sub-millimeter view A. Franceschini; 4. Quasar absorption lines J. Bechtold; 5. Stellar population synthesis models at low and high redshift G. Bruzual A.; 6. Elliptical galaxies K. C. Freeman; 7. Disk galaxies K. C. Freeman; 8. Dark matter in disk galaxies K. C. Freeman.

  17. Bulges and discs in the local Universe. Linking the galaxy structure to star formation activity

    NASA Astrophysics Data System (ADS)

    Morselli, L.; Popesso, P.; Erfanianfar, G.; Concas, A.

    2017-01-01

    We use a sample built on the SDSS DR7 catalogue and the bulge-disc decomposition of Simard et al. (2011, ApJS, 196, 11) to study how the bulge and disc components contribute to the parent galaxy's star formation activity, by determining its position in the star formation rate (SFR) - stellar mass (M⋆) plane at 0.02 < z < 0.1 and around the main sequence (MS) of star-forming galaxies. For this purpose, we use the bulge and disc colours as proxy for their SFRs, while the total galaxy SFR comes from Hα or D4000. We study the mean galaxy bulge-total mass ratio (B/T) as a function of the residual from the MS (ΔMS) and find that the B/T-ΔMS relation exhibits a parabola-like shape with the peak of the MS corresponding to the lowest B/Ts at any stellar mass. The lower and upper envelope of the MS are populated by galaxies with similar B/T, velocity dispersion and concentration (R90/R50) values. The mean values of such distributions indicate that the majority of the galaxies are characterised by classical bulges and not pseudo-bulges. Bulges above the MS are characterised by blue colours or, when red, by a high level of dust obscuration, thus indicating that in both cases they are actively star forming. When on the MS or below it, bulges are mostly red and dead. At stellar masses above 1010.5M⊙, bulges on the MS or in the green valley tend to be significantly redder than their counterparts in the quiescence region, despite similar levels of dust obscuration. This could be explained with different age or metallicity content, suggesting different evolutionary paths for bulges on the MS and green valley with respect to those in the quiescence region. The disc g-r colour anti-correlates at any mass with the distance from the MS, getting redder when approaching the MS lower envelope and the quiescence region. The anti-correlation flattens as a function of the stellar mass, likely due to a higher level of dust obscuration in massive SF galaxies. We conclude that the

  18. The Galaxy End Sequence

    NASA Astrophysics Data System (ADS)

    Eales, Stephen; de Vis, Pieter; Smith, Matthew W. L.; Appah, Kiran; Ciesla, Laure; Duffield, Chris; Schofield, Simon

    2017-03-01

    A common assumption is that galaxies fall in two distinct regions of a plot of specific star formation rate (SSFR) versus galaxy stellar mass: a star-forming galaxy main sequence (GMS) and a separate region of 'passive' or 'red and dead galaxies'. Starting from a volume-limited sample of nearby galaxies designed to contain most of the stellar mass in this volume, and thus representing the end-point of ≃12 billion years of galaxy evolution, we investigate the distribution of galaxies in this diagram today. We show that galaxies follow a strongly curved extended GMS with a steep negative slope at high galaxy stellar masses. There is a gradual change in the morphologies of the galaxies along this distribution, but there is no clear break between early-type and late-type galaxies. Examining the other evidence that there are two distinct populations, we argue that the 'red sequence' is the result of the colours of galaxies changing very little below a critical value of the SSFR, rather than implying a distinct population of galaxies. Herschel observations, which show at least half of early-type galaxies contain a cool interstellar medium, also imply continuity between early-type and late-type galaxies. This picture of a unitary population of galaxies requires more gradual evolutionary processes than the rapid quenching process needed to explain two distinct populations. We challenge theorists to predict quantitatively the properties of this 'Galaxy End Sequence'.

  19. Galaxy-galaxy and galaxy-CMB Lensing with SDSS-III BOSS galaxies

    NASA Astrophysics Data System (ADS)

    Singh, Sukhdeep; Mandelbaum, Rachel

    2017-01-01

    Weak lensing has emerged as an important cosmological probe for our understanding of dark matter and dark energy. The low redshift spectroscopic sample of SDSS-III BOSS survey, with a well-understood galaxy population is ideal to probe cosmology using galaxy-galaxy lensing and galaxy-CMB lensing. I will present results from two methods that combine information from lensing and galaxy clustering. The first involves combining lensing and galaxy clustering to directly measure galaxy bias and thus recover the matter correlation function, which is directly predicted from theory. Using scales where linear perturbation theory is valid, we carry out a joint analysis of galaxy-galaxy clustering, galaxy-galaxy lensing, and CMB-galaxy lensing, and constrain linear galaxy bias b=1.80+/-0.06, Omega_m=0.284+/-0.024, and relative calibration bias between CMB and galaxy lensing, b_l=0.82+/-0.15. The second method involves including information about redshift-space distortions to measure the E_G statistic to test gravitational physics at cosmological scales. This statistic is independent of galaxy bias and the amplitude of the matter power spectrum. Different theories of gravity predict a different E_G value, making it a clean and stringent test of GR at cosmological scales. Using the BOSS low redshift sample, we have measured E_G at z=0.27 with ~10% (15%) accuracy using galaxy (CMB) lensing, with results consistent with LCDM predictions.

  20. Galaxy groups

    SciTech Connect

    Brent Tully, R.

    2015-02-01

    Galaxy groups can be characterized by the radius of decoupling from cosmic expansion, the radius of the caustic of second turnaround, and the velocity dispersion of galaxies within this latter radius. These parameters can be a challenge to measure, especially for small groups with few members. In this study, results are gathered pertaining to particularly well-studied groups over four decades in group mass. Scaling relations anticipated from theory are demonstrated and coefficients of the relationships are specified. There is an update of the relationship between light and mass for groups, confirming that groups with mass of a few times 10{sup 12}M{sub ⊙} are the most lit up while groups with more and less mass are darker. It is demonstrated that there is an interesting one-to-one correlation between the number of dwarf satellites in a group and the group mass. There is the suggestion that small variations in the slope of the luminosity function in groups are caused by the degree of depletion of intermediate luminosity systems rather than variations in the number per unit mass of dwarfs. Finally, returning to the characteristic radii of groups, the ratio of first to second turnaround depends on the dark matter and dark energy content of the universe and a crude estimate can be made from the current observations of Ω{sub matter}∼0.15 in a flat topology, with a 68% probability of being less than 0.44.

  1. Star Formation in Irregular Galaxies.

    ERIC Educational Resources Information Center

    Hunter, Deidre; Wolff, Sidney

    1985-01-01

    Examines mechanisms of how stars are formed in irregular galaxies. Formation in giant irregular galaxies, formation in dwarf irregular galaxies, and comparisons with larger star-forming regions found in spiral galaxies are considered separately. (JN)

  2. Combining Galaxy-Galaxy Lensing and Galaxy Clustering

    SciTech Connect

    Park, Youngsoo; Krause, Elisabeth; Dodelson, Scott; Jain, Bhuvnesh; Amara, Adam; Becker, Matt; Bridle, Sarah; Clampitt, Joseph; Crocce, Martin; Honscheid, Klaus; Gaztanaga, Enrique; Sanchez, Carles; Wechsler, Risa

    2015-01-01

    Combining galaxy-galaxy lensing and galaxy clustering is a promising method for inferring the growth rate of large scale structure, a quantity that will shed light on the mechanism driving the acceleration of the Universe. The Dark Energy Survey (DES) is a prime candidate for such an analysis, with its measurements of both the distribution of galaxies on the sky and the tangential shears of background galaxies induced by these foreground lenses. By constructing an end-to-end analysis that combines large-scale galaxy clustering and small-scale galaxy-galaxy lensing, we also forecast the potential of a combined probes analysis on DES datasets. In particular, we develop a practical approach to a DES combined probes analysis by jointly modeling the assumptions and systematics affecting the different components of the data vector, employing a shared halo model, HOD parametrization, photometric redshift errors, and shear measurement errors. Furthermore, we study the effect of external priors on different subsets of these parameters. We conclude that DES data will provide powerful constraints on the evolution of structure growth in the universe, conservatively/ optimistically constraining the growth function to 8%/4.9% with its first-year data covering 1000 square degrees, and to 4%/2.3% with its full five-year data covering 5000 square degrees.

  3. Galaxy formation and evolution

    NASA Technical Reports Server (NTRS)

    Cowie, Lennox L.

    1991-01-01

    The presence of high z quasars and radio galaxies tells us that galaxy formation began at z greater than 5, but leaves unanswered the question of when the bulk of galaxies formed. Recent near infrared number counts of galaxies strongly favor a cosmological geometry with q(sub 0) = 0.5 and lambda = 0. Such a model grossly underpredicts blue galaxy counts. Spectroscopy shows that the excess blue galaxies at B = 24 are dwarfs at z approximately equals 0.4 which are no longer seen at the present time. These dwarfs must contain a large amount of baryonic matter which is not included in current estimates of baryonic omega .

  4. Galaxy formation and evolution

    NASA Technical Reports Server (NTRS)

    Cowie, Lennox L.

    1991-01-01

    The presence of high-z quasars and radio galaxies indicates that galaxy formation began at z greater than 5, but leaves unanswered the question of when the bulk of galaxies formed. Recent near-infrared number counts of galaxies strongly favor a cosmological geometry with q0 = 0.5 and Lambda = 0. Such a model grossly underpredicts blue galaxy counts. Spectroscopy shows that the excess blue galaxies at B = 24 are dwarfs at z = 0.4, which are no longer seen at the present time. These dwarfs must contain a large amount of baryonic matter which is not included in current estimates of baryonic Omega.

  5. A Zoo of Galaxies

    NASA Astrophysics Data System (ADS)

    Masters, Karen L.

    2015-03-01

    We live in a universe filled with galaxies with an amazing variety of sizes and shapes. One of the biggest challenges for astronomers working in this field is to understand how all these types relate to each other in the background of an expanding universe. Modern astronomical surveys (like the Sloan Digital Sky Survey) have revolutionised this field of astronomy, by providing vast numbers of galaxies to study. The sheer size of the these databases made traditional visual classification of the types galaxies impossible and in 2007 inspired the Galaxy Zoo project (www.galaxyzoo.org); starting the largest ever scientific collaboration by asking members of the public to help classify galaxies by type and shape. Galaxy Zoo has since shown itself, in a series of now more than 30 scientific papers, to be a fantastic database for the study of galaxy evolution. In this Invited Discourse I spoke a little about the historical background of our understanding of what galaxies are, of galaxy classification, about our modern view of galaxies in the era of large surveys. I finish with showcasing some of the contributions galaxy classifications from the Galaxy Zoo project are making to our understanding of galaxy evolution.

  6. Star Formation in Galaxies

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Topics addressed include: star formation; galactic infrared emission; molecular clouds; OB star luminosity; dust grains; IRAS observations; galactic disks; stellar formation in Magellanic clouds; irregular galaxies; spiral galaxies; starbursts; morphology of galactic centers; and far-infrared observations.

  7. Clusters of Galaxies

    NASA Astrophysics Data System (ADS)

    Huchtmeier, W. K.; Richter, O. G.; Materne, J.

    1981-09-01

    The large-scale structure of the universe is dominated by clustering. Most galaxies seem to be members of pairs, groups, clusters, and superclusters. To that degree we are able to recognize a hierarchical structure of the universe. Our local group of galaxies (LG) is centred on two large spiral galaxies: the Andromeda nebula and our own galaxy. Three sr:naller galaxies - like M 33 - and at least 23 dwarf galaxies (KraanKorteweg and Tammann, 1979, Astronomische Nachrichten, 300, 181) can be found in the evironment of these two large galaxies. Neighbouring groups have comparable sizes (about 1 Mpc in extent) and comparable numbers of bright members. Small dwarf galaxies cannot at present be observed at great distances.

  8. Experimenting with galaxies

    NASA Technical Reports Server (NTRS)

    Miller, Richard H.

    1992-01-01

    A study to demonstrate how the dynamics of galaxies may be investigated through the creation of galaxies within a computer model is presented. The numerical technique for simulating galaxies is shown to be both highly efficient and highly robust. Consideration is given to the anatomy of a galaxy, the gravitational N-body problem, numerical approaches to the N-body problem, use of the Poisson equation, and the symplectic integrator.

  9. Secular Evolution of Galaxies

    NASA Astrophysics Data System (ADS)

    Falcón-Barroso, Jesús; Knapen, Johan H.

    2013-10-01

    Preface; 1. Secular evolution in disk galaxies John Kormendy; 2. Galaxy morphology Ronald J. Buta; 3. Dynamics of secular evolution James Binney; 4. Bars and secular evolution in disk galaxies: theoretical input E. Athanassoula; 5. Stellar populations Reynier F. Peletier; 6. Star formation rate indicators Daniela Calzetti; 7. The evolving interstellar medium Jacqueline van Gorkom; 8. Evolution of star formation and gas Nick Z. Scoville; 9. Cosmological evolution of galaxies Isaac Shlosman.

  10. The Structural Evolution of Milky-Way-Like Star-Forming Galaxies zeta is approximately 1.3

    NASA Technical Reports Server (NTRS)

    Patel, Shannon G.; Fumagalli, Mattia; Franx, Marun; VanDokkum, Pieter G.; VanDerWel, Arjen; Leja, Joel; Labbe, Ivo; Brammr, Gabriel; Whitaker, Katherine E.; Skelton, Rosalind E.; Momcheva, Ivelina; Lundgren, Britt; Muzzin, Adam; Quadri, Ryan F.; Nelson, Erica June; Wake, David A.; Rix, Hans-Walter

    2013-01-01

    We follow the structural evolution of star-forming galaxies (SFGs) like the Milky Way by selecting progenitors to zeta is approx. 1.3 based on the stellar mass growth inferred from the evolution of the star-forming sequence. We select our sample from the 3D-HT survey, which utilizes spectroscopy from the HST-WFC3 G141 near-IR grism and enables precise redshift measurements for our sample of SFGs. Structural properties are obtained from Sersic profile fits to CANDELS WFC3 imaging. The progenitors of zeta = 0 SFGs with stellar mass M = 10(exp 10.5) solar mass are typically half as massive at zeta is approx. 1. This late-time stellar mass grow is consistent with recent studies that employ abundance matching techniques. The descendant SFGs at zeta is approx. 0 have grown in half-light radius by a factor of approx. 1.4 zeta is approx. 1. The half-light radius grows with stellar mass as r(sub e) alpha stellar mass(exp 0.29). While most of the stellar mass is clearly assembling at large radii, the mass surface density profiles reveal ongoing mass growth also in the central regions where bulges and pseudobulges are common features in present day late-type galaxies. Some portion of this growth in the central regions is due to star formation as recent observations of H(a) maps for SFGs at zeta approx. are found to be extended but centrally peaked. Connecting our lookback study with galactic archeology, we find the stellar mass surface density at R - 8 kkpc to have increased by a factor of approx. 2 since zeta is approx. 1, in good agreement with measurements derived for the solar neighborhood of the Milky Way.

  11. UM 625 REVISITED: MULTIWAVELENGTH STUDY OF A SEYFERT 1 GALAXY WITH A LOW-MASS BLACK HOLE

    SciTech Connect

    Jiang Ning; Dong Xiaobo; Yang Huan; Wang Junxian; Ho, Luis C. E-mail: xbdong@ustc.edu.cn

    2013-06-10

    UM 625, previously identified as a narrow-line active galactic nucleus (AGN), actually exhibits broad H{alpha} and H{beta} lines whose width and luminosity indicate a low black hole (BH) mass of 1.6 Multiplication-Sign 10{sup 6} M{sub Sun }. We present a detailed multiwavelength study of the nuclear and host galaxy properties of UM 625. Analysis of Chandra and XMM-Newton observations suggests that this system contains a heavily absorbed and intrinsically X-ray weak ({alpha}{sub ox} = -1.72) nucleus. Although not strong enough to qualify as radio loud, UM 625 does belong to a minority of low-mass AGNs detected in the radio. The broadband spectral energy distribution constrains the bolometric luminosity to L{sub bol} Almost-Equal-To (0.5-3) Multiplication-Sign 10{sup 43} erg s{sup -1} and L{sub bol}/L{sub Edd} Almost-Equal-To 0.02-0.15. A comprehensive analysis of Sloan Digital Sky Survey and Hubble Space Telescope images shows that UM 625 is a nearly face-on S0 galaxy with a prominent, relatively blue pseudobulge (Sersic index n = 1.60) that accounts for {approx}60% of the total light in the R band. The extended disk is featureless, but the central {approx}150-400 pc contains a conspicuous semi-ring of bright, blue star-forming knots, whose integrated ultraviolet luminosity suggests a star formation rate of {approx}0.3 M{sub Sun} yr{sup -1}. The mass of the central BH roughly agrees with the value predicted from its bulge velocity dispersion but is significantly lower than that expected from its bulge luminosity.

  12. The structural evolution of Milky-Way-like star-forming galaxies since z ∼ 1.3

    SciTech Connect

    Patel, Shannon G.; Fumagalli, Mattia; Franx, Marijn; Labbé, Ivo; Muzzin, Adam; Van Dokkum, Pieter G.; Leja, Joel; Skelton, Rosalind E.; Momcheva, Ivelina; Nelson, Erica June; Van der Wel, Arjen; Rix, Hans-Walter; Brammer, Gabriel; Whitaker, Katherine E.; Lundgren, Britt; Wake, David A.; Quadri, Ryan F.

    2013-12-01

    We follow the structural evolution of star-forming galaxies (SFGs) like the Milky Way by selecting progenitors to z ∼ 1.3 based on the stellar mass growth inferred from the evolution of the star-forming sequence. We select our sample from the 3D-HST survey, which utilizes spectroscopy from the HST/WFC3 G141 near-IR grism and enables precise redshift measurements for our sample of SFGs. Structural properties are obtained from Sérsic profile fits to CANDELS WFC3 imaging. The progenitors of z = 0 SFGs with stellar mass M = 10{sup 10.5} M {sub ☉} are typically half as massive at z ∼ 1. This late-time stellar mass growth is consistent with recent studies that employ abundance matching techniques. The descendant SFGs at z ∼ 0 have grown in half-light radius by a factor of ∼1.4 since z ∼ 1. The half-light radius grows with stellar mass as r{sub e} ∝M {sup 0.29}. While most of the stellar mass is clearly assembling at large radii, the mass surface density profiles reveal ongoing mass growth also in the central regions where bulges and pseudobulges are common features in present day late-type galaxies. Some portion of this growth in the central regions is due to star formation as recent observations of Hα maps for SFGs at z ∼ 1 are found to be extended but centrally peaked. Connecting our lookback study with galactic archeology, we find the stellar mass surface density at R = 8 kpc to have increased by a factor of ∼2 since z ∼ 1, in good agreement with measurements derived for the solar neighborhood of the Milky Way.

  13. THE TWO-PHASE FORMATION HISTORY OF SPIRAL GALAXIES TRACED BY THE COSMIC EVOLUTION OF THE BAR FRACTION

    SciTech Connect

    Kraljic, Katarina; Bournaud, Frederic

    2012-09-20

    We study the evolution of galactic bars and the link with disk and spheroid formation in a sample of zoom-in cosmological simulations. Our simulation sample focuses on galaxies with present-day stellar masses in the 10{sup 10}-10{sup 11} M{sub Sun} range, in field and loose group environments, with a broad variety of mass growth histories. In our models, bars are almost absent from the progenitors of present-day spirals at z > 1.5, and they remain rare and generally too weak to be observable down to z Almost-Equal-To 1. After this characteristic epoch, the fractions of observable and strong bars rise rapidly, bars being present in 80% of spiral galaxies and easily observable in two thirds of these at z {<=} 0.5. This is quantitatively consistent with the redshift evolution of the observed bar fraction, although the latter is presently known up to z Almost-Equal-To 0.8 because of band-shifting and resolution effects. Our models hence predict that the decrease in the bar fraction with increasing redshift should continue with a fraction of observable bars not larger than 10%-15% in disk galaxies at z > 1. Our models also predict later bar formation in lower-mass galaxies, in agreement with existing data. We find that the characteristic epoch of bar formation, namely redshift z Almost-Equal-To 0.8-1 in the studied mass range, corresponds to the epoch at which today's spirals acquire their disk-dominated morphology. At higher redshift, disks tend to be rapidly destroyed by mergers and gravitational instabilities and rarely develop significant bars. We hence suggest that the bar formation epoch corresponds to the transition between an early 'violent' phase of spiral galaxy formation at z {>=} 1 and a late 'secular' phase at z {<=} 0.8. In the secular phase, the presence of bars substantially contributes to the growth of the (pseudo-)bulge, but the bulge mass budget remains statistically dominated by the contribution of mergers, interactions, and disk instabilities at

  14. Segregation properties of galaxies

    SciTech Connect

    Santiago, B.X.; Da Costa, L.N. )

    1990-10-01

    Using the recently completed Southern Sky Redshift Survey, in conjunction with measurements of the central surface brightness, the existence of segregation in the way galaxies of different morphology and surface brightness are distributed in space is investigated. Results indicate that there is some evidence that low surface brightness galaxies are more randomly distributed than brighter ones and that this effect is independent of the well-known tendency of early-type galaxies to cluster more strongly than spirals. Presuming that the observed clustering was established at the epoch of galaxy formation, it may provide circumstantial evidence for biased galaxy formation. 24 refs.

  15. Low surface brightness galaxies

    NASA Technical Reports Server (NTRS)

    Vanderhulst, J. M.; Deblok, W. J. G.; Mcgaugh, S. S.; Bothun, G. D.

    1993-01-01

    A program to investigate the properties of low surface brightness (LSB) galaxies involving surface photometry in U, B, V, R, I, and H-alpha, HI imaging with the Westerbork Synthesis Radio Telescope (WSRT) and the very large array (VLA) and spectrophotometry of H2 regions in LSB galaxies is underway. The goal is to verify the idea that LSB galaxies have low star formation rates because the local gas density falls below the critical density for star formation, and to study the stellar population and abundances in LSB galaxies. Such information should help understanding the evolutionary history of LSB galaxies. Some preliminary results are reported.

  16. How Do Galaxies Grow?

    NASA Astrophysics Data System (ADS)

    2008-08-01

    Astronomers have caught multiple massive galaxies in the act of merging about 4 billion years ago. This discovery, made possible by combining the power of the best ground- and space-based telescopes, uniquely supports the favoured theory of how galaxies form. ESO PR Photo 24/08 ESO PR Photo 24/08 Merging Galaxies in Groups How do galaxies form? The most widely accepted answer to this fundamental question is the model of 'hierarchical formation', a step-wise process in which small galaxies merge to build larger ones. One can think of the galaxies forming in a similar way to how streams merge to form rivers, and how these rivers, in turn, merge to form an even larger river. This theoretical model predicts that massive galaxies grow through many merging events in their lifetime. But when did their cosmological growth spurts finish? When did the most massive galaxies get most of their mass? To answer these questions, astronomers study massive galaxies in clusters, the cosmological equivalent of cities filled with galaxies. "Whether the brightest galaxies in clusters grew substantially in the last few billion years is intensely debated. Our observations show that in this time, these galaxies have increased their mass by 50%," says Kim-Vy Tran from the University of Zürich, Switzerland, who led the research. The astronomers made use of a large ensemble of telescopes and instruments, including ESO's Very Large Telescope (VLT) and the Hubble Space Telescope, to study in great detail galaxies located 4 billion light-years away. These galaxies lie in an extraordinary system made of four galaxy groups that will assemble into a cluster. In particular, the team took images with VIMOS and spectra with FORS2, both instruments on the VLT. From these and other observations, the astronomers could identify a total of 198 galaxies belonging to these four groups. The brightest galaxies in each group contain between 100 and 1000 billion of stars, a property that makes them comparable

  17. Using Galaxy Winds to Constrain Galaxy Evolution

    NASA Astrophysics Data System (ADS)

    Churchill, Christopher W.; Klypin, A.; Ceverino, D.; Kacprzak, G.; Klimek, E.

    2010-01-01

    Analysis of mock quasar spectra of metal absorption lines in the proximity of formed galaxies in cosmological simulation is a highly promising for understanding the role of galaxies in IGM physics, or IGM physics in the role of galaxy formation in context of the cosmic web. Such analysis using neutral hydrogen in the cosmic web has literally revolutionized our understanding of the Lyman alpha forest. We are undertaking a wholesale approach to use powerful Lambda-CDM simulations to interpret absorption line data from redshift 1-3 starbursting galaxies e.g. Lyman break galaxies, etc) The data with which direct quantitative comparison is made are from the DEEP survey (Weiner et al.) and the collective work of Steidel et al. and collaborators. The simulations are performed using the Eulerian Gasdynamics plus N-body Adaptive Refinement Tree (ART) code, which has gas cell resolutions of 20-50 pc. Physical processes implemented in the code include realistic radiative cooling, star formation, metal enrichment and thermal feedback due to type II and type Ia supernovae. We quantitatively compare the spatial and kinematic distribution of HI, MgII, CIV, and OVI of absorption lines over a range of impact parameters for various simulated galaxies as a function of redshift, and discuss key insights for interpreting the underlying temperature, density, and ionization structure of the halo/cosmic-web interface, and the influence of galaxies on its chemical enrichment.

  18. Isolated galaxies, pairs, and groups of galaxies

    NASA Technical Reports Server (NTRS)

    Kuneva, I.; Kalinkov, M.

    1990-01-01

    The authors searched for isolated galaxies, pairs and groups of galaxies in the CfA survey (Huchra et al. 1983). It was assumed that the distances to galaxies are given by R = V/H sub o, where H sub o = 100 km s(exp -1) Mpc(exp -1) and R greater than 6 Mpc. The searching procedure is close to those, applied to find superclusters of galaxies (Kalinkov and Kuneva 1985, 1986). A sphere with fixed radius r (asterisk) is described around each galaxy. The mean spatial density in the sphere is m. Let G (sup 1) be any galaxy and G (sup 2) be its nearest neighbor at a distance R sub 2. If R sub 2 exceeds the 95 percent quintile in the distribution of the distances of the second neighbors, then G (sup 1) is an isolated galaxy. Let the midpoint of G (sup 1) and G (sup 2) be O sub 2 and r sub 2=R sub 2/2. For the volume V sub 2, defined with the radius r sub 2, the density D sub 2 less than k mu, the galaxy G (sup 2) is a single one and the procedure for searching for pairs and groups, beginning with this object is over and we have to pass to another object. Here the authors present the groups - isolated and nonisolated - with n greater than 3, found in the CfA survey in the Northern galactic hemisphere. The parameters used are k = 10 and r (asterisk) = 5 Mpc. Table 1 contains: (1) the group number, (2) the galaxy, nearest to the multiplet center, (3) multiplicity n, (4) the brightest galaxy if it is not listed in (2); (5) and (6) are R.A. and Dec. (1950), (7) - mean distance D in Mpc. Further there are the mean density rho (8) of the multiplet (galaxies Mpc (exp -3), (9) the density rho (asterisk) for r (asterisk) = 5 Mpc and (10) the density rho sub g for the group with its nearest neighbor. The parenthesized digits for densities in the last three columns are powers of ten.

  19. Classic Galaxy with Glamour

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This color composite image of nearby NGC 300 combines the visible-light pictures from Carnegie Institution of Washington's 100-inch telescope at Las Campanas Observatory (colored red and yellow), with ultraviolet views from NASA's Galaxy Evolution Explorer. Galaxy Evolution Explorer detectors image far ultraviolet light (colored blue).

    This composite image traces star formation in progress. Young hot blue stars dominate the outer spiral arms of the galaxy, while the older stars congregate in the nuclear regions which appear yellow-green. Gases heated by hot young stars and shocks due to winds from massive stars and supernova explosions appear in pink, as revealed by the visible-light image of the galaxy.

    Located nearly 7 million light years away, NGC 300 is a member of a nearby group of galaxies known as the Sculptor Group. It is a spiral galaxy like our own Milky Way.

  20. The evolution of galaxies

    NASA Technical Reports Server (NTRS)

    Gunn, J. E.

    1982-01-01

    The recent observational evidence on the evolution of galaxies is reviewed and related to the framework of current ideas for galaxy formation from primordial density fluctuations. Recent strong evidence for the evolution of the stellar population in ellipticals is presented, as well as evidence that not all ellipticals behave as predicted by any simple theory. The status of counts of faint galaxies and the implications for the evolution of spirals is discussed, together with a discussion of recent work on the redshift distribution of galaxies at faint magnitudes and a spectroscopic investigation of the Butcher-Oemler blue cluster galaxies. Finally a new picture for the formation and evolution of disk galaxies which may explain most of the features of the Hubble sequence is outlined.

  1. Deep infrared galaxies

    NASA Technical Reports Server (NTRS)

    Ashby, Matthew; Houck, J. R.; Hacking, Perry B.

    1992-01-01

    High signal-to-noise ratio optical spectra of 17 infrared-bright emission-line galaxies near the north ecliptic pole are presented. Reddening-corrected line ratios forbidden O III 5007/H-beta, N II 6583/H-alpha, S II (6716 + 6731)/H-alpha, and O I 6300/H-alpha are used to discriminate between candidate energy generation mechanisms in each galaxy. These criteria have frequently been applied to optically selected samples of galaxies in the past, but this is the first time they have been applied to a set of faint flux-limited infrared-selected objects. The analysis indicates the sample contains seven starburst galaxies and three (AGN). However, seven galaxies in the present sample elude the classification scheme based on these line ratios. It is concluded that a two-component (starburst plus AGN) model for energy generation is inadequate for infrared galaxies.

  2. Finding the First Galaxies

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2009-01-01

    Astronomers study distant galaxies by taking long exposures in deep survey fields. They choose fields that are empty of known sources, so that they are statistically representative of the Universe as a whole. Astronomers can compare the distribution of the detected galaxies in brightness, color, morphology and redshift to theoretical models, in order to puzzle out the processes of galaxy evolution. In 2004, the Hubble Space Telescope was pointed at a small, deep-survey field in the southern constellation Fornax for more than 500 hours of exposure time. The resulting Hubble Ultra-Deep Field could see the faintest and most distant galaxies that the telescope is capable of viewing. These galaxies emitted their light less than 1 billion years after the Big Bang. From the Ultra Deep Field and other galaxy surveys, astronomers have built up a history of star formation in the universe. the peak occurred about7 billion years ago, about half of the age of the current universe, then the number of stars that were forming was about 15 time the rate today. Going backward in time to when the very first starts and galaxies formed, the average star-formation rate should drop to zero. but when looking at the most distant galaxies in the Ultra Deep field, the star formation rate is still higher than it is today. The faintest galaxies seen by Hubble are not the first galaxies that formed in the early universe. To detect these galaxies NASA is planning the James Webb Space Telescope for launch in 2013. Webb will have a 6.5-meter diameter primary mirror, much bigger than Hubble's 2.4-meter primary, and will be optimized for infrared observations to see the highly redshifted galaxies.

  3. Amazing Andromeda Galaxy

    NASA Technical Reports Server (NTRS)

    2006-01-01

    The many 'personalities' of our great galactic neighbor, the Andromeda galaxy, are exposed in this new composite image from NASA's Galaxy Evolution Explorer and the Spitzer Space Telescope.

    The wide, ultraviolet eyes of Galaxy Evolution Explorer reveal Andromeda's 'fiery' nature -- hotter regions brimming with young and old stars. In contrast, Spitzer's super-sensitive infrared eyes show Andromeda's relatively 'cool' side, which includes embryonic stars hidden in their dusty cocoons.

    Galaxy Evolution Explorer detected young, hot, high-mass stars, which are represented in blue, while populations of relatively older stars are shown as green dots. The bright yellow spot at the galaxy's center depicts a particularly dense population of old stars.

    Swaths of red in the galaxy's disk indicate areas where Spitzer found cool, dusty regions where stars are forming. These stars are still shrouded by the cosmic clouds of dust and gas that collapsed to form them.

    Together, Galaxy Evolution Explorer and Spitzer complete the picture of Andromeda's swirling spiral arms. Hints of pinkish purple depict regions where the galaxy's populations of hot, high-mass stars and cooler, dust-enshrouded stars co-exist.

    Located 2.5 million light-years away, the Andromeda is our largest nearby galactic neighbor. The galaxy's entire disk spans about 260,000 light-years, which means that a light beam would take 260,000 years to travel from one end of the galaxy to the other. By comparison, our Milky Way galaxy's disk is about 100,000 light-years across.

    This image is a false color composite comprised of data from Galaxy Evolution Explorer's far-ultraviolet detector (blue), near-ultraviolet detector (green), and Spitzer's multiband imaging photometer at 24 microns (red).

  4. Multiple Core Galaxies

    NASA Technical Reports Server (NTRS)

    Miller, R.H.; Morrison, David (Technical Monitor)

    1994-01-01

    Nuclei of galaxies often show complicated density structures and perplexing kinematic signatures. In the past we have reported numerical experiments indicating a natural tendency for galaxies to show nuclei offset with respect to nearby isophotes and for the nucleus to have a radial velocity different from the galaxy's systemic velocity. Other experiments show normal mode oscillations in galaxies with large amplitudes. These oscillations do not damp appreciably over a Hubble time. The common thread running through all these is that galaxies often show evidence of ringing, bouncing, or sloshing around in unexpected ways, even though they have not been disturbed by any external event. Recent observational evidence shows yet another phenomenon indicating the dynamical complexity of central regions of galaxies: multiple cores (M31, Markarian 315 and 463 for example). These systems can hardly be static. We noted long-lived multiple core systems in galaxies in numerical experiments some years ago, and we have more recently followed up with a series of experiments on multiple core galaxies, starting with two cores. The relevant parameters are the energy in the orbiting clumps, their relative.masses, the (local) strength of the potential well representing the parent galaxy, and the number of cores. We have studied the dependence of the merger rates and the nature of the final merger product on these parameters. Individual cores survive much longer in stronger background potentials. Cores can survive for a substantial fraction of a Hubble time if they travel on reasonable orbits.

  5. Exploring Dwarf Galaxy Evolution

    NASA Astrophysics Data System (ADS)

    Dunn, Jacqueline M.

    2017-01-01

    Dwarf galaxies are the most numerous galaxies in the universe, yet little is definitively understood about their formation and evolution. An evolutionary link has been proposed between dwarf irregular and dwarf elliptical galaxies by previous studies. The nature and existence of so-called dwarf spiral galaxies is still heavily debated. This project explores the properties of dwarf galaxies spanning a range in morphological type, luminosity, physical size, and surrounding environment (i.e. group / field galaxies). The goal of this project is to determine the range of exhibited properties for each type of dwarf galaxy using available ultraviolet, visible, and near-infrared imaging and spectra. Similarities in visible, broadband colors support the proposed evolutionary link dwarf irregular and dwarf elliptical galaxies when the range of brightness of the samples is constrained to the fainter galaxies. Here, comparisons amongst a sub-sample of 59 dwarf irregulars, 12 dwarf ellipticals, and 29 dwarf spirals will be presented using archival ultraviolet, visible, and near-infrared imaging. The effect of constraining the comparisons to the fainter sample members will be explored, as well as the effect of constraining the comparisons to the brighter sample members.

  6. Backwards Spiral Galaxy

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Astronomers using NASA's Hubble Space Telescope have found a spiral galaxy that may rotate in the opposite direction from what was expected.

    A picture of the oddball galaxy is available at http://heritage.stsci.edu or http://oposite.stsci.edu/pubinfo/pr/2002/03 or http://www.jpl.nasa.gov/images/wfpc . It was taken in May 2001 by Hubble's Wide Field and Planetary Camera 2, designed and built by NASA's Jet Propulsion Laboratory, Pasadena, Calif.

    The picture showed which side of galaxy NGC 4622 is closer to Earth; that information helped astronomers determine that the galaxy may be spinning clockwise. The image shows NGC 4622 and its outer pair of winding arms full of new stars, shown in blue.

    Astronomers are puzzled by the clockwise rotation because of the direction the outer spiral arms are pointing. Most spiral galaxies have arms of gas and stars that trail behind as they turn. But this galaxy has two 'leading' outer arms that point toward the direction of the galaxy's clockwise rotation. NGC 4622 also has a 'trailing' inner arm that is wrapped around the galaxy in the opposite direction. Based on galaxy simulations, a team of astronomers had expected that the galaxy was turning counterclockwise.

    NGC 4622 is a rare example of a spiral galaxy with arms pointing in opposite directions. Astronomers suspect this oddity was caused by the interaction of NGC 4622 with another galaxy. Its two outer arms are lopsided, meaning that something disturbed it. The new Hubble image suggests that NGC 4622 consumed a smaller companion galaxy.

    Galaxies, which consist of stars, gas, and dust, rotate very slowly. Our Sun, one of many stars in our Milky Way galaxy, completes a circuit around the Milky Way every 250 million years. NGC 4622 lies 111 million light-years away in the direction of the constellation Centaurus.

    The science team, consisting of Drs. Ron Buta and Gene Byrd from the University of Alabama, Tuscaloosa, and Tarsh Freeman of Bevill State

  7. Evolution of galaxy habitability

    NASA Astrophysics Data System (ADS)

    Gobat, R.; Hong, S. E.

    2016-08-01

    We combine a semi-analytic model of galaxy evolution with constraints on circumstellar habitable zones and the distribution of terrestrial planets in order to probe the suitability of galaxies of different mass and type to host habitable planets, and how it evolves with time. We find that the fraction of stars with terrestrial planets in their habitable zone (known as habitability) depends only weakly on galaxy mass, with a maximum around 4 × 1010M⊙. We estimate that 0.7% of all stars in Milky Way-type galaxies to host a terrestrial planet within their habitable zone, consistent with the value derived from Kepler observations. On the other hand, the habitability of passive galaxies is slightly but systematically higher, unless we assume an unrealistically high sensitivity of planets to supernovae. We find that the overall habitability of galaxies has not changed significantly in the last ~8 Gyr, with most of the habitable planets in local disk galaxies having formed ~1.5 Gyr before our own solar system. Finally, we expect that ~1.4 ×109 planets similar to present-day Earth have existed so far in our galaxy.

  8. Superluminous Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Ogle, Patrick M.; Lanz, Lauranne; Nader, Cyril; Helou, George

    2016-02-01

    We report the discovery of spiral galaxies that are as optically luminous as elliptical brightest cluster galaxies, with r-band monochromatic luminosity Lr = 8-14L* (4.3-7.5 × 1044 erg s-1). These super spiral galaxies are also giant and massive, with diameter D = 57-134 kpc and stellar mass Mstars = 0.3-3.4 × 1011M⊙. We find 53 super spirals out of a complete sample of 1616 SDSS galaxies with redshift z < 0.3 and Lr > 8L*. The closest example is found at z = 0.089. We use existing photometry to estimate their stellar masses and star formation rates (SFRs). The SDSS and Wide-field Infrared Survey Explorer colors are consistent with normal star-forming spirals on the blue sequence. However, the extreme masses and rapid SFRs of 5-65 M⊙ yr-1 place super spirals in a sparsely populated region of parameter space, above the star-forming main sequence of disk galaxies. Super spirals occupy a diverse range of environments, from isolation to cluster centers. We find four super spiral galaxy systems that are late-stage major mergers—a possible clue to their formation. We suggest that super spirals are a remnant population of unquenched, massive disk galaxies. They may eventually become massive lenticular galaxies after they are cut off from their gas supply and their disks fade.

  9. Brightest Cluster Galaxy Identification

    NASA Astrophysics Data System (ADS)

    Leisman, Luke; Haarsma, D. B.; Sebald, D. A.; ACCEPT Team

    2011-01-01

    Brightest cluster galaxies (BCGs) play an important role in several fields of astronomical research. The literature includes many different methods and criteria for identifying the BCG in the cluster, such as choosing the brightest galaxy, the galaxy nearest the X-ray peak, or the galaxy with the most extended profile. Here we examine a sample of 75 clusters from the Archive of Chandra Cluster Entropy Profile Tables (ACCEPT) and the Sloan Digital Sky Survey (SDSS), measuring masked magnitudes and profiles for BCG candidates in each cluster. We first identified galaxies by hand; in 15% of clusters at least one team member selected a different galaxy than the others.We also applied 6 other identification methods to the ACCEPT sample; in 30% of clusters at least one of these methods selected a different galaxy than the other methods. We then developed an algorithm that weighs brightness, profile, and proximity to the X-ray peak and centroid. This algorithm incorporates the advantages of by-hand identification (weighing multiple properties) and automated selection (repeatable and consistent). The BCG population chosen by the algorithm is more uniform in its properties than populations selected by other methods, particularly in the relation between absolute magnitude (a proxy for galaxy mass) and average gas temperature (a proxy for cluster mass). This work supported by a Barry M. Goldwater Scholarship and a Sid Jansma Summer Research Fellowship.

  10. MULTIPLE GALAXY COLLISIONS

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Here is a sampling of 15 ultraluminous infrared galaxies viewed by NASA's Hubble Space Telescope. Hubble's sharp vision reveals more complexity within these galaxies, which astronomers are interpreting as evidence of a multiple-galaxy pileup. These images, taken by the Wide Field and Planetary Camera 2, are part of a three-year study of 123 galaxies within 3 billion light-years of Earth. The study was conducted in 1996, 1997, and 1999. False colors were assigned to these photos to enhance fine details within these coalescing galaxies. Credits: NASA, Kirk Borne (Raytheon and NASA Goddard Space Flight Center, Greenbelt, Md.), Luis Colina (Instituto de Fisica de Cantabria, Spain), and Howard Bushouse and Ray Lucas (Space Telescope Science Institute, Baltimore, Md.)

  11. The galaxy ancestor problem

    NASA Astrophysics Data System (ADS)

    Disney, M. J.; Lang, R. H.

    2012-11-01

    The Hubble Space Telescope (HST) findsgalaxies whose Tolman dimming exceeds 10 mag. Could evolution alone explain these as our ancestor galaxies or could they be representatives of quite a different dynasty whose descendants are no longer prominent today? We explore the latter hypothesis and argue that surface brightness selection effects naturally bring into focus quite different dynasties from different redshifts. Thus, the HST z = 7 galaxies could be examples of galaxies whose descendants are both too small and too choked with dust to be recognizable in our neighbourhood easily today. Conversely, the ancestors of the Milky Way and its obvious neighbours would have completely sunk below the sky at z > 1.2, unless they were more luminous in the past, although their diffused light could account for the missing re-ionization flux. This Succeeding Prominent Dynasties Hypothesis (SPDH) fits the existing observations both naturally and well even without evolution, including the bizarre distributions of galaxy surface brightness found in deep fields, the angular size ˜(1 + z)-1 law, 'downsizing' which turns out to be an 'illusion' in the sense that it does not imply evolution, 'infant mortality', that is, the discrepancy between stars born and stars seen, the existence of 'red nuggets', and finally the recently discovered and unexpected excess of quasar absorption line damped Lyα systems at high redshift. If galaxies were not significantly brighter in the past and the SPDH were true, then a large proportion of galaxies could remain sunk from sight, possibly at all redshifts, and these sunken galaxies could supply the missing re-ionization flux. We show that fishing these sunken galaxies out of the sky by their optical emissions alone is practically impossible, even when they are nearby. More ingenious methods are needed to detect them. It follows that disentangling galaxy evolution through studying ever higher redshift galaxies may be a forlorn hope because one could

  12. Giant disk galaxies : Where environment trumps mass in galaxy evolution

    NASA Astrophysics Data System (ADS)

    Courtois, H. M.

    There is an ongoing argument regarding galaxies, like there is regarding children, of whether the final outcome is driven primarily by nature or nurture. In the case of galaxies, the total mass plays the role of genetics (nature) and the number of nearby galaxies plays the role of family life (nurture). Untangling the role of each has been particularly difficult for galaxies because the mass of a galaxy is closely tied to its environment.

  13. Bayesian Inference of Galaxy Morphology

    NASA Astrophysics Data System (ADS)

    Yoon, Ilsang; Weinberg, M.; Katz, N.

    2011-01-01

    Reliable inference on galaxy morphology from quantitative analysis of ensemble galaxy images is challenging but essential ingredient in studying galaxy formation and evolution, utilizing current and forthcoming large scale surveys. To put galaxy image decomposition problem in broader context of statistical inference problem and derive a rigorous statistical confidence levels of the inference, I developed a novel galaxy image decomposition tool, GALPHAT (GALaxy PHotometric ATtributes) that exploits recent developments in Bayesian computation to provide full posterior probability distributions and reliable confidence intervals for all parameters. I will highlight the significant improvements in galaxy image decomposition using GALPHAT, over the conventional model fitting algorithms and introduce the GALPHAT potential to infer the statistical distribution of galaxy morphological structures, using ensemble posteriors of galaxy morphological parameters from the entire galaxy population that one studies.

  14. Rebuilding Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    2005-01-01

    Major Observing Programme Leads to New Theory of Galaxy Formation Summary Most present-day large galaxies are spirals, presenting a disc surrounding a central bulge. Famous examples are our own Milky Way or the Andromeda Galaxy. When and how did these spiral galaxies form? Why do a great majority of them present a massive central bulge? An international team of astronomers [1] presents new convincing answers to these fundamental questions. For this, they rely on an extensive dataset of observations of galaxies taken with several space- and ground-based telescopes. In particular, they used over a two-year period, several instruments on ESO's Very Large Telescope. Among others, their observations reveal that roughly half of the present-day stars were formed in the period between 8,000 million and 4,000 million years ago, mostly in episodic burst of intense star formation occurring in Luminous Infrared Galaxies. From this and other evidence, the astronomers devised an innovative scenario, dubbed the "spiral rebuilding". They claim that most present-day spiral galaxies are the results of one or several merger events. If confirmed, this new scenario could revolutionise the way astronomers think galaxies formed. PR Photo 02a/05: Luminosity - Oxygen Abundance Relation for Galaxies (VLT) PR Photo 02b/05: The Spiral Rebuilding Scenario A fleet of instruments How and when did galaxies form? How and when did stars form in these island universes? These questions are still posing a considerable challenge to present-day astronomers. Front-line observational results obtained with a fleet of ground- and space-based telescopes by an international team of astronomers [1] provide new insights into these fundamental issues. For this, they embarked on an ambitious long-term study at various wavelengths of 195 galaxies with a redshift [2] greater than 0.4, i.e. located more than 4000 million light-years away. These galaxies were studied using ESO's Very Large Telescope, as well as the

  15. JSPAM: Interacting galaxies modeller

    NASA Astrophysics Data System (ADS)

    Wallin, John F.; Holincheck, Anthony; Harvey, Allen

    2015-11-01

    JSPAM models galaxy collisions using a restricted n-body approach to speed up computation. Instead of using a softened point-mass potential, the software supports a modified version of the three component potential created by Hernquist (1994, ApJS 86, 389). Although spherically symmetric gravitationally potentials and a Gaussian model for the bulge are used to increase computational efficiency, the potential mimics that of a fully consistent n-body model of a galaxy. Dynamical friction has been implemented in the code to improve the accuracy of close approaches between galaxies. Simulations using this code using thousands of particles over the typical interaction times of a galaxy interaction take a few seconds on modern desktop workstations, making it ideal for rapidly prototyping the dynamics of colliding galaxies. Extensive testing of the code has shown that it produces nearly identical tidal features to those from hierarchical tree codes such as Gadget but using a fraction of the computational resources. This code was used in the Galaxy Zoo: Mergers project and is very well suited for automated fitting of galaxy mergers with automated pattern fitting approaches such as genetic algorithms. Java and Fortran versions of the code are available.

  16. ACS Nearby Galaxy Survey

    NASA Astrophysics Data System (ADS)

    Dalcanton, Julianne

    2006-07-01

    Existing HST observations of nearby galaxies comprise a sparse and highly non-uniform archive, making comprehensive comparative studies among galaxies essentially impossible. We propose to secure HST's lasting impact on the study of nearby galaxies by undertaking a systematic, complete, and carefully crafted imaging survey of ALL galaxies in the Local Universe outside the Local Group. The resulting images will allow unprecedented measurements of: {1} the star formation history {SFH} of a >100 Mpc^3 volume of the Universe with a time resolution of Delta[log{t}]=0.25; {2} correlations between spatially resolved SFHs and environment; {3} the structure and properties of thick disks and stellar halos; and {4} the color distributions, sizes, and specific frequencies of globular and disk clusters as a function of galaxy mass and environment. To reach these goals, we will use a combination of wide-field tiling and pointed deep imaging to obtain uniform data on all 72 galaxies within a volume-limited sample extending to 3.5 Mpc, with an extension to the M81 group. For each galaxy, the wide-field imaging will cover out to 1.5 times the optical radius and will reach photometric depths of at least 2 magnitudes below the tip of the red giant branch throughout the limits of the survey volume. One additional deep pointing per galaxy will reach SNR 10 for red clump stars, sufficient to recover the ancient SFH from the color-magnitude diagram. This proposal will produce photometric information for 100 million stars {comparable to the number in the SDSS survey} and uniform multi-color images of half a square degree of sky. The resulting archive will establish the fundamental optical database for nearby galaxies, in preparation for the shift of high-resolution imaging to the near-infrared.

  17. Disks in elliptical galaxies

    SciTech Connect

    Rix, H.; White, S.D.M. )

    1990-10-01

    The abundance and strength of disk components in elliptical galaxies are investigated by studying the photometric properties of models containing a spheroidal r exp 1/4-law bulge and a weak exponential disk. Pointed isophotes are observed in a substantial fraction of elliptical galaxies. If these isophote distortions are interpreted in the framework of the present models, then the statistics of observed samples suggest that almost all radio-weak ellipticals could have disks containing roughly 20 percent of the light. It is shown that the E5 galaxy NGC 4660 has the photometric signatures of a disk containing a third of the light. 30 refs.

  18. Spiral Galaxies Stripped Bare

    NASA Astrophysics Data System (ADS)

    2010-10-01

    Six spectacular spiral galaxies are seen in a clear new light in images from ESO's Very Large Telescope (VLT) at the Paranal Observatory in Chile. The pictures were taken in infrared light, using the impressive power of the HAWK-I camera, and will help astronomers understand how the remarkable spiral patterns in galaxies form and evolve. HAWK-I [1] is one of the newest and most powerful cameras on ESO's Very Large Telescope (VLT). It is sensitive to infrared light, which means that much of the obscuring dust in the galaxies' spiral arms becomes transparent to its detectors. Compared to the earlier, and still much-used, VLT infrared camera ISAAC, HAWK-I has sixteen times as many pixels to cover a much larger area of sky in one shot and, by using newer technology than ISAAC, it has a greater sensitivity to faint infrared radiation [2]. Because HAWK-I can study galaxies stripped bare of the confusing effects of dust and glowing gas it is ideal for studying the vast numbers of stars that make up spiral arms. The six galaxies are part of a study of spiral structure led by Preben Grosbøl at ESO. These data were acquired to help understand the complex and subtle ways in which the stars in these systems form into such perfect spiral patterns. The first image shows NGC 5247, a spiral galaxy dominated by two huge arms, located 60-70 million light-years away. The galaxy lies face-on towards Earth, thus providing an excellent view of its pinwheel structure. It lies in the zodiacal constellation of Virgo (the Maiden). The galaxy in the second image is Messier 100, also known as NGC 4321, which was discovered in the 18th century. It is a fine example of a "grand design" spiral galaxy - a class of galaxies with very prominent and well-defined spiral arms. About 55 million light-years from Earth, Messier 100 is part of the Virgo Cluster of galaxies and lies in the constellation of Coma Berenices (Berenice's Hair, named after the ancient Egyptian queen Berenice II). The third

  19. Growing Galaxies Gently

    NASA Astrophysics Data System (ADS)

    2010-10-01

    New observations from ESO's Very Large Telescope have, for the first time, provided direct evidence that young galaxies can grow by sucking in the cool gas around them and using it as fuel for the formation of many new stars. In the first few billion years after the Big Bang the mass of a typical galaxy increased dramatically and understanding why this happened is one of the hottest problems in modern astrophysics. The results appear in the 14 October issue of the journal Nature. The first galaxies formed well before the Universe was one billion years old and were much smaller than the giant systems - including the Milky Way - that we see today. So somehow the average galaxy size has increased as the Universe has evolved. Galaxies often collide and then merge to form larger systems and this process is certainly an important growth mechanism. However, an additional, gentler way has been proposed. A European team of astronomers has used ESO's Very Large Telescope to test this very different idea - that young galaxies can also grow by sucking in cool streams of the hydrogen and helium gas that filled the early Universe and forming new stars from this primitive material. Just as a commercial company can expand either by merging with other companies, or by hiring more staff, young galaxies could perhaps also grow in two different ways - by merging with other galaxies or by accreting material. The team leader, Giovanni Cresci (Osservatorio Astrofisico di Arcetri) says: "The new results from the VLT are the first direct evidence that the accretion of pristine gas really happened and was enough to fuel vigorous star formation and the growth of massive galaxies in the young Universe." The discovery will have a major impact on our understanding of the evolution of the Universe from the Big Bang to the present day. Theories of galaxy formation and evolution may have to be re-written. The group began by selecting three very distant galaxies to see if they could find evidence

  20. Outskirts of spiral galaxies

    NASA Astrophysics Data System (ADS)

    Bresolin, Fabio

    2017-03-01

    I present an overview of the recent star formation activity in the outer disks of spiral galaxies, from the observational standpoint, with emphasis on the gas content, the star formation law, the metallicity and the stellar populations.

  1. Interpretation of galaxy counts

    SciTech Connect

    Tinsely, B.M.

    1980-10-01

    New models are presented for the interpretation of recent counts of galaxies to 24th magnitude, and predictions are shown to 28th magnitude for future comparison with data from the Space Telescope. The results supersede earlier, more schematic models by the author. Tyson and Jarvis found in their counts a ''local'' density enhancement at 17th magnitude, on comparison with the earlier models; the excess is no longer significant when a more realistic mixture of galaxy colors is used. Bruzual and Kron's conclusion that Kron's counts show evidence for evolution at faint magnitudes is confirmed, and it is predicted that some 23d magnitude galaxies have redshifts greater than unity. These may include spheroidal systems, elliptical galaxies, and the bulges of early-type spirals and S0's, seen during their primeval rapid star formation.

  2. Life in the Galaxy?

    NASA Astrophysics Data System (ADS)

    Shostak, G. S.

    The arguments for and against the SETI (Search for Extra Terrestrial Intelligence) program are discussed. Based on apparently reasonable assumptions regarding the number of civilizations likely to exist in the Galaxy, it seems that ten million years would be sufficient time for an ambitious group of aliens to colonize the Galaxy; since no concrete evidence of aliens has turned up, the assumptions have to be reconsidered. The views of Sagan, Hart, Drake and a number of other researchers are noted.

  3. SUPERLUMINOUS SPIRAL GALAXIES

    SciTech Connect

    Ogle, Patrick M.; Lanz, Lauranne; Nader, Cyril; Helou, George

    2016-02-01

    We report the discovery of spiral galaxies that are as optically luminous as elliptical brightest cluster galaxies, with r-band monochromatic luminosity L{sub r} = 8–14L* (4.3–7.5 × 10{sup 44} erg s{sup −1}). These super spiral galaxies are also giant and massive, with diameter D = 57–134 kpc and stellar mass M{sub stars} = 0.3–3.4 × 10{sup 11}M{sub ⊙}. We find 53 super spirals out of a complete sample of 1616 SDSS galaxies with redshift z < 0.3 and L{sub r} > 8L*. The closest example is found at z = 0.089. We use existing photometry to estimate their stellar masses and star formation rates (SFRs). The SDSS and Wide-field Infrared Survey Explorer colors are consistent with normal star-forming spirals on the blue sequence. However, the extreme masses and rapid SFRs of 5–65 M{sub ⊙} yr{sup −1} place super spirals in a sparsely populated region of parameter space, above the star-forming main sequence of disk galaxies. Super spirals occupy a diverse range of environments, from isolation to cluster centers. We find four super spiral galaxy systems that are late-stage major mergers—a possible clue to their formation. We suggest that super spirals are a remnant population of unquenched, massive disk galaxies. They may eventually become massive lenticular galaxies after they are cut off from their gas supply and their disks fade.

  4. PEARS Emission Line Galaxies

    NASA Technical Reports Server (NTRS)

    Pirzkal, Nor; Rothberg, Barry; Ly, Chun; Rhoads, James E.; Malhotra, Sangeeta; Grogin, Norman A.; Dahlen, Tomas; Meurer, Gerhardt R.; Walsh, Jeremy; Hathi, Nimish P.; Cohen, Seth; Belini, Andrea; Holwerda, Benne W.; Straughn, Amber; Mechtley, Matthew

    2012-01-01

    We present a full analysis of the Probing Evolution And Reionization Spectroscopically (PEARS) slitless grism spectroscopic data obtained vl'ith the Advanced Camera for Surveys on HST. PEARS covers fields within both the Great Observatories Origins Deep Survey (GOODS) North and South fields, making it ideal as a random surveY of galaxies, as well as the availability of a wide variety of ancillary observations to support the spectroscopic results. Using the PEARS data we are able to identify star forming galaxies within the redshift volume 0 < z < 1.5. Star forming regions in the PEARS survey are pinpointed independently of the host galaxy. This method allOW8 us to detect the presence of multiple emission line regions (ELRs) within a single galaxy. 1162 [OII], [OIII] and/or H-alpha emission lines have been identified in the PEARS sample of approx 906 galaxies down to a limiting flux of approx 10 - 18 erg/s/sq cm . The ELRs have also been compared to the properties of the host galaxy, including morphology, luminosity, and mass. From this analysis we find three key results: 1) The computed line luminosities show evidence of a flattening in the luminosity function with increasing redshift; 2) The star forming systems show evidence of disturbed morphologies, with star formation occurring predominantly within one effective (half-light) radius. However, the morphologies show no correlation with host stellar mass; and 3) The number density of star forming galaxies with M(*) >= 10(exp 9) Solar M decreases by an order of magnitude at z<=0.5 relative to the number at 0.5 < z < 0.9 in support of the argument for galaxy downsizing.

  5. The Integral Sign Galaxy

    NASA Astrophysics Data System (ADS)

    Noll, Keith

    2007-07-01

    We will observe the unusual warped disk galaxy known as the Integral Sign Galaxy, UGC 3697, with a small two-position WFPC2 mosaic. Observations will be obtained in three broad band filters and the resulting image will be released on the 19th anniversary of the launch of the Hubble Space Telescope on ~April 24, 2009. Multidrizzled mosaics will be made available through the archive.

  6. Galaxies at High Redshift

    NASA Astrophysics Data System (ADS)

    Bauer, F. E.

    2014-10-01

    Recent years have seen tremendous progress in finding and charactering star-forming galaxies at high redshifts across the electromagnetic spectrum, giving us a more complete picture of how galaxies evolve, both in terms of their stellar and gas content, as well as the growth of their central supermassive black holes. A wealth of studies now demonstrate that star formation peaked at roughly half the age of the Universe and drops precariously as we look back to very early times, and that their central monsters apparently growth with them. At the highest-redshifts, we are pushing the boundaries via deep surveys at optical, X-ray, radio wavelengths, and more recently using gamma-ray bursts. I will review some of our accomplishments and failures. Telescope have enabled Lyman break galaxies to be robustly identified, but the UV luminosity function and star formation rate density of this population at z = 6 - 8 seems to be much lower than at z = 2 - 4. High escape fractions and a large contribution from faint galaxies below our current detection limits would be required for star-forming galaxies to reionize the Universe. We have also found that these galaxies have blue rest-frame UV colours, which might indicate lower dust extinction at z > 5. There has been some spectroscopic confirmation of these Lyman break galaxies through Lyman-α emission, but the fraction of galaxies where we see this line drops at z > 7, perhaps due to the onset of the Gunn-Peterson effect (where the IGM is opaque to Lyman-α).

  7. Coma cluster of galaxies

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Atlas Image mosaic, covering 34' x 34' on the sky, of the Coma cluster, aka Abell 1656. This is a particularly rich cluster of individual galaxies (over 1000 members), most prominently the two giant ellipticals, NGC 4874 (right) and NGC 4889 (left). The remaining members are mostly smaller ellipticals, but spiral galaxies are also evident in the 2MASS image. The cluster is seen toward the constellation Coma Berenices, but is actually at a distance of about 100 Mpc (330 million light years, or a redshift of 0.023) from us. At this distance, the cluster is in what is known as the 'Hubble flow,' or the overall expansion of the Universe. As such, astronomers can measure the Hubble Constant, or the universal expansion rate, based on the distance to this cluster. Large, rich clusters, such as Coma, allow astronomers to measure the 'missing mass,' i.e., the matter in the cluster that we cannot see, since it gravitationally influences the motions of the member galaxies within the cluster. The near-infrared maps the overall luminous mass content of the member galaxies, since the light at these wavelengths is dominated by the more numerous older stellar populations. Galaxies, as seen by 2MASS, look fairly smooth and homogeneous, as can be seen from the Hubble 'tuning fork' diagram of near-infrared galaxy morphology. Image mosaic by S. Van Dyk (IPAC).

  8. Hypervortex Explanation of Galaxies

    NASA Astrophysics Data System (ADS)

    Warren, Gary

    2017-01-01

    Standard models fail to explain the existence of galaxies. In contrast, galaxies are inherently explained and even predicted by older Aether theories in which Aether filled the space between particles. Galaxies would be vortexes in the Aether; the vortexes generate gravitational forces that trap matter within them. Aether theories were rejected, however, because they failed to explain experimental results regarding the Earth-Aether boundary. In the hypervortex model, hyperfluid fills all of space, including the space occupied by particles. With such hyperfluid, there is no boundary problem. The hyperfluid is continuous everywhere and all of the historical experimental challenges to fluid models become inherently solved. In the model, galaxies are our observation of very large hypervortexes in the hyperfluid while particles are our observation of the smallest of hypervortexes. A unifying Lagrangian for has been created the hypervortex model that generates correct forms for gravity and electromagnetics and the framework for full integration of particle theory. Mass orbits around galactic centers because galactic hypervortexes generate gravitational forces with r =0 at the galactic center. The quantity of matter in a galaxy may depend on the quantity of turbulence initially in the galactic hypervortex; such turbulence would generate the smaller hypervortexes within the galaxy that we observe as particles. The gravitational singularity at r =0 disappears, which resolves issues related to black holes. Gary.warren@saic.com; garywarren@cox.net; hypervortex.com

  9. Dwarf elliptical galaxies

    NASA Technical Reports Server (NTRS)

    Ferguson, Henry C.; Binggeli, Bruno

    1994-01-01

    Dwarf elliptical (dE) galaxies, with blue absolute magnitudes typically fainter than M(sub B) = -16, are the most numerous type of galaxy in the nearby universe. Tremendous advances have been made over the past several years in delineating the properties of both Local Group satellite dE's and the large dE populations of nearby clusters. We review some of these advances, with particular attention to how well currently availiable data can constrain (a) models for the formation of dE's, (b) the physical and evolutionary connections between different types of galaxies that overlap in the same portion of the mass-spectrum of galaxies, (c) the contribution of dE's to the galaxy luminosity functions in clusters and the field, (d) the star-forming histories of dE's and their possible contribution to faint galaxy counts, and (e) the clustering properties of dE's. In addressing these issues, we highlight the extent to which selection effects temper these constraints, and outline areas where new data would be particularly valuable.

  10. Matching Supernovae to Galaxies

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-12-01

    One of the major challenges for modern supernova surveys is identifying the galaxy that hosted each explosion. Is there an accurate and efficient way to do this that avoids investing significant human resources?Why Identify Hosts?One problem in host galaxy identification. Here, the supernova lies between two galaxies but though the centroid of the galaxy on the right is closer in angular separation, this may be a distant background galaxy that is not actually near the supernova. [Gupta et al. 2016]Supernovae are a critical tool for making cosmological predictions that help us to understand our universe. But supernova cosmology relies on accurately identifying the properties of the supernovae including their redshifts. Since spectroscopic followup of supernova detections often isnt possible, we rely on observations of the supernova host galaxies to obtain redshifts.But how do we identify which galaxy hosted a supernova? This seems like a simple problem, but there are many complicating factors a seemingly nearby galaxy could be a distant background galaxy, for instance, or a supernovas host could be too faint to spot.The authors algorithm takes into account confusion, a measure of how likely the supernova is to be mismatched. In these illustrations of low (left) and high (right) confusion, the supernova is represented by a blue star, and the green circles represent possible host galaxies. [Gupta et al. 2016]Turning to AutomationBefore the era of large supernovae surveys, searching for host galaxies was done primarily by visual inspection. But current projects like the Dark Energy Surveys Supernova Program is finding supernovae by the thousands, and the upcoming Large Synoptic Survey Telescope will likely discover hundreds of thousands. Visual inspection will not be possible in the face of this volume of data so an accurate and efficient automated method is clearly needed!To this end, a team of scientists led by Ravi Gupta (Argonne National Laboratory) has recently

  11. Tidal Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Houck, James R.; Higdon, Sarah

    2004-09-01

    Tidal Dwarf Galaxies (TDG's) are formed from material stripped from the disks of spiral galaxies, which are undergoing tidal interactions with a nearby companion. These galaxies provide important clues to our understanding of galaxy formation, evolution and cosmic recycling. Using the IRS we will measure the star formation activity in 6 TDG candidates. We will measure the ionization state ( [NeII] 12.8 um, [NeIII] 15.6 um and [NeV] 14.3um and [OIV] 25.9 um), the density in the ionized gas ([SIII] 18.7um/33.5um), the PAH fractions at 5.5-9um and 11-12.2um and possibly (optimistic here!) molecular hydrogen emission form PDRs at H2 (S0) 28um and H2 (S1) at 17um. In addition to the IRS observations we will map both the Guitar and Stephan's Quintet with IRAC. This will enable us to compare the PAH fraction in the dwarf galaxy to that of its parent. Similarly we will compare our observation of the proposed TDG at the southern tip of NGC 4038 with the GT observations of the central region of the Antennae. This program compliments two existing GT programmes: 1) the high-Z program - these observations enable us to observe in fine detail the nearby/present day analogs of galaxy formation in the early universe. 2) Blue Compact Dwarf programme - On first inpsection BCD's and TDG's appear the same: BCDs are similar in size to TDG's, but TDG's may not have a large dark matter halo component (affecting the long term stability of an object) and BCD's typically have a much lower metallicity. We will be able to compare the star formation activity in terms of the ionization state and PAH fraction in the two galaxy types.

  12. Galaxies et trous noirs supermassifs

    NASA Astrophysics Data System (ADS)

    Collin-Zahn, Suzy

    2016-08-01

    A few percents of galaxies are classified as « active ». An active galaxy is a galaxy whose nucleus emits more energy than the whole galaxy in the form of electromagnetic radiation, relativistic particles, or mechanical energy. It is activated by a supermassive black hole fueled by matter falling on it, whose characteristics (Eddington luminosity, spin) are recalled. The class includes quasars and Seyfert galaxies. All massive "non active" galaxies contain a supermassive black hole, but there is not enough matter in its environment so as the nucleus becomes luminous. Different items are considered in the paper : how supermassive black holes are fueled, the accretion disc, the jets and the winds, the unified model of active galaxies, how are determined the masses of supermassive black holes, and what is the relation between the evolution of galaxies and supermassive black holes.

  13. The morphological evolution of galaxies.

    PubMed

    Abraham, R G; van Den Bergh, S

    2001-08-17

    Many galaxies have taken on their familiar appearance relatively recently. In the distant Universe, galaxy morphology deviates significantly (and systematically) from that of nearby galaxies at redshifts (z) as low as 0.3. This corresponds to a time approximately 3.5 x 10(9) years in the past, which is only approximately 25% of the present age of the Universe. Beyond z = 0.5 (5 x 10(9) years in the past), spiral arms are less well developed and more chaotic, and barred spiral galaxies may become rarer. At z = 1, around 30% of the galaxy population is sufficiently peculiar that classification on Hubble's traditional "tuning fork" system is meaningless. On the other hand, some characteristics of galaxies have not changed much over time. The space density of luminous disk galaxies has not changed significantly since z = 1, indicating that although the general appearance of these galaxies has continuously changed over time, their overall numbers have been conserved.

  14. Computer Simulation of Colliding Galaxies

    NASA Video Gallery

    Simulation of the formation of the galaxy known as "The Mice." The simulation depicts the merger of two spiral galaxies, pausing and rotating at the stage resembling the Hubble Space Telescope Adva...

  15. Seeing Baby Dwarf Galaxies

    NASA Technical Reports Server (NTRS)

    2009-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] [figure removed for brevity, see original site] Visible/DSS Click on image for larger version Ultraviolet/GALEX Click on image for larger version Poster Version Click on image for larger version

    The unique ultraviolet vision of NASA's Galaxy Evolution Explorer reveals, for the first time, dwarf galaxies forming out of nothing more than pristine gas likely leftover from the early universe. Dwarf galaxies are relatively small collections of stars that often orbit around larger galaxies like our Milky Way.

    The forming dwarf galaxies shine in the far ultraviolet spectrum, rendered as blue in the call-out on the right hand side of this image. Near ultraviolet light, also obtained by the Galaxy Evolution Explorer, is displayed in green, and visible light from the blue part of the spectrum here is represented by red. The clumps (in circles) are distinctively blue, indicating they are primarily detected in far ultraviolet light.

    The faint blue overlay traces the outline of the Leo Ring, a huge cloud of hydrogen and helium that orbits around two massive galaxies in the constellation Leo (left panel). The cloud is thought likely to be a primordial object, an ancient remnant of material that has remained relatively unchanged since the very earliest days of the universe. Identified about 25 years ago by radio waves, the ring cannot be seen in visible light.

    Only a portion of the Leo Ring has been imaged in the ultraviolet, but this section contains the telltale ultraviolet signature of recent massive star formation within this ring of pristine gas. Astronomers have previously only seen dwarf galaxies form out of gas that has already been cycled through a galaxy and enriched with metals elements heavier than helium produced as stars evolve.

    The visible data come from the Digitized Sky Survey of the Space Telescope Science Institute in Baltimore, Md. The

  16. A MINUET OF GALAXIES

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This troupe of four galaxies, known as Hickson Compact Group 87 (HCG 87), is performing an intricate dance orchestrated by the mutual gravitational forces acting between them. The dance is a slow, graceful minuet, occurring over a time span of hundreds of millions of years. The Wide Field and Planetary Camera 2 on NASA's Hubble Space Telescope (HST) provides a striking improvement in resolution over previous ground-based imaging. In particular, this image reveals complex details in the dust lanes of the group's largest galaxy member (HCG 87a), which is actually disk-shaped, but tilted so that we see it nearly edge-on. Both 87a and its elliptically shaped nearest neighbor (87b) have active galactic nuclei which are believed to harbor black holes that are consuming gas. A third group member, the nearby spiral galaxy 87c, may be undergoing a burst of active star formation. Gas flows within galaxies can be intensified by the gravitational tidal forces between interacting galaxies. So interactions can provide fresh fuel for both active nuclei and starburst phenomena. These three galaxies are so close to each other that gravitational forces disrupt their structure and alter their evolution. From the analysis of its spectra, the small spiral near the center of the group could either be a fourth member or perhaps an unrelated background object. The HST image was made by combining images taken in four different color filters in order to create a three-color picture. Regions of active star formation are blue (hot stars) and also pinkish if hot hydrogen gas is present. The complex dark bands across the large edge-on disk galaxy are due to interstellar dust silhouetted against the galaxy's background starlight. A faint tidal bridge of stars can be seen between the edge-on and elliptical galaxies. HCG 87 was selected for Hubble imaging by members of the public who visited the Hubble Heritage website (http://heritage.stsci.edu) during the month of May and registered their votes

  17. Tidal alignment of galaxies

    SciTech Connect

    Blazek, Jonathan; Vlah, Zvonimir; Seljak, Uroš

    2015-08-01

    We develop an analytic model for galaxy intrinsic alignments (IA) based on the theory of tidal alignment. We calculate all relevant nonlinear corrections at one-loop order, including effects from nonlinear density evolution, galaxy biasing, and source density weighting. Contributions from density weighting are found to be particularly important and lead to bias dependence of the IA amplitude, even on large scales. This effect may be responsible for much of the luminosity dependence in IA observations. The increase in IA amplitude for more highly biased galaxies reflects their locations in regions with large tidal fields. We also consider the impact of smoothing the tidal field on halo scales. We compare the performance of this consistent nonlinear model in describing the observed alignment of luminous red galaxies with the linear model as well as the frequently used "nonlinear alignment model," finding a significant improvement on small and intermediate scales. We also show that the cross-correlation between density and IA (the "GI" term) can be effectively separated into source alignment and source clustering, and we accurately model the observed alignment down to the one-halo regime using the tidal field from the fully nonlinear halo-matter cross correlation. Inside the one-halo regime, the average alignment of galaxies with density tracers no longer follows the tidal alignment prediction, likely reflecting nonlinear processes that must be considered when modeling IA on these scales. Finally, we discuss tidal alignment in the context of cosmic shear measurements.

  18. Tidal alignment of galaxies

    SciTech Connect

    Blazek, Jonathan; Vlah, Zvonimir; Seljak, Uroš E-mail: zvlah@stanford.edu

    2015-08-01

    We develop an analytic model for galaxy intrinsic alignments (IA) based on the theory of tidal alignment. We calculate all relevant nonlinear corrections at one-loop order, including effects from nonlinear density evolution, galaxy biasing, and source density weighting. Contributions from density weighting are found to be particularly important and lead to bias dependence of the IA amplitude, even on large scales. This effect may be responsible for much of the luminosity dependence in IA observations. The increase in IA amplitude for more highly biased galaxies reflects their locations in regions with large tidal fields. We also consider the impact of smoothing the tidal field on halo scales. We compare the performance of this consistent nonlinear model in describing the observed alignment of luminous red galaxies with the linear model as well as the frequently used 'nonlinear alignment model,' finding a significant improvement on small and intermediate scales. We also show that the cross-correlation between density and IA (the 'GI' term) can be effectively separated into source alignment and source clustering, and we accurately model the observed alignment down to the one-halo regime using the tidal field from the fully nonlinear halo-matter cross correlation. Inside the one-halo regime, the average alignment of galaxies with density tracers no longer follows the tidal alignment prediction, likely reflecting nonlinear processes that must be considered when modeling IA on these scales. Finally, we discuss tidal alignment in the context of cosmic shear measurements.

  19. Galaxy clustering and galaxy-galaxy lensing: a promising union to constrain cosmological parameters

    NASA Astrophysics Data System (ADS)

    Cacciato, Marcello; van den Bosch, Frank C.; More, Surhud; Li, Ran; Mo, H. J.; Yang, Xiaohu

    2009-04-01

    Galaxy clustering and galaxy-galaxy lensing probe the connection between galaxies and their dark matter haloes in complementary ways. Since the clustering of dark matter haloes depends on cosmology, the halo occupation statistics inferred from the observed clustering properties of galaxies are degenerate with the adopted cosmology. Consequently, different cosmologies imply different mass-to-light ratios for dark matter haloes. Galaxy-galaxy lensing, which yields direct constraints on the actual mass-to-light ratios, can therefore be used to break this degeneracy, and thus to constrain cosmological parameters. In this paper, we establish the link between galaxy luminosity and dark matter halo mass using the conditional luminosity function (CLF), Φ(L|M)dL, which gives the number of galaxies with luminosities in the range L +/- dL/2 that reside in a halo of mass M. We constrain the CLF parameters using the galaxy luminosity function and the luminosity dependence of the correlation lengths of galaxies. The resulting CLF models are used to predict the galaxy-galaxy lensing signal. For a cosmology that agrees with constraints from the cosmic microwave background, i.e. (Ωm,σ8) = (0.238,0.734), the model accurately fits the galaxy-galaxy lensing data obtained from the Sloan Digital Sky Survey. For a comparison cosmology with (Ωm,σ8) = (0.3,0.9), however, we can accurately fit the luminosity function and clustering properties of the galaxy population, but the model predicts mass-to-light ratios that are too high, resulting in a strong overprediction of the galaxy-galaxy lensing signal. We conclude that the combination of galaxy clustering and galaxy-galaxy lensing is a powerful probe of the galaxy-dark matter connection, with the potential to yield tight constraints on cosmological parameters. Since this method mainly probes the mass distribution on relatively small (non-linear) scales, it is complementary to constraints obtained from the galaxy power spectrum, which

  20. Kepler View of the Galaxy

    NASA Video Gallery

    Our Sun is just one out of over 200 billion stars in our galaxy, the Milky Way. The Sun is located in the Orion arm of our galaxy about 75,000 light years from the center of the Galaxy. Kepler will...

  1. High redshift radio galaxies

    NASA Technical Reports Server (NTRS)

    Mccarthy, Patrick J.

    1993-01-01

    High redshift galaxies that host powerful radio sources are examined. An overview is presented of the content of radio surveys: 3CR and 3CRR, 4C and 4C/USS, B2/1 Jy, MG, MRC/1Jy, Parkes/PSR, B3, and ESO Key-Project. Narrow-line radio galaxies in the visible and UV, the source of ionization and excitation of the emission lines, emission-line luminosities, morphology of the line-emitting gas, physical properties and energetics, kinematics of the line-emitting gas, and implications from the emission lines are discussed. The morphologies and environments of the host galaxies, the alignment effect, and spectral energy distributions and ages are also examined.

  2. Microvariability in Seyfert galaxies

    USGS Publications Warehouse

    Carini, M.T.; Noble, J.C.; Miller, H.R.

    2003-01-01

    We present the results of a search for microvariability in a sample of eight Seyfert galaxies. Microvariability (i.e., variations occurring on timescales of tens of minutes to hours) has been conclusively demonstrated to exist in the class of active galactic nuclei (AGNs) known as blazars. Its existence in other classes of AGNs is far less certain. We present the results of a study of eight Seyfert 1 galaxies, which were intensively monitored in order to determine whether such variations exist in these objects. Only one object, Ark 120, displayed any evidence of microvariations. The implications of these results with respect to current models of the mechanisms responsible for the observed emission in Seyfert galaxies are discussed. We compare our results with those obtained from other studies of microvariability in different classes of AGNs.

  3. Local normal galaxies

    NASA Technical Reports Server (NTRS)

    Fichtel, Carl E.

    1990-01-01

    In the near future, high energy (E greater than 20 MeV) gamma ray astronomy offers the promise of a new means of examining the closest galaxies. Two and possibly three local galaxies, the Small and Large Magellanic Clouds and M31, should be visible to the high energy gamma ray telescope on the Gamma Ray Observatory, and the first should be seen by GAMMA-1. With the assumptions of adequate cosmic ray production and reasonable magnetic field strengths, both of which should likely be satisfied, specific predictions of the gamma ray emission can be made separating the concepts of the galactic and universal nature of cosmic rays. A study of the synchrotron radiation from the Large Magellanic Cloud (LMC) suggests that the cosmic ray density is similar to that in the local region of our galaxy, but not uniform. It is hoped the measurements will be able to verify this independent of assumptions about the magnetic fields in the LMC.

  4. Edge-on Galaxy

    NASA Technical Reports Server (NTRS)

    1999-01-01

    NASA's Hubble Space Telescope has imaged an unusual edge-on galaxy, revealing remarkable details of its warped dusty disc and showing how colliding galaxies trigger the birth of new stars.

    The image, taken by Hubble's Wide Field and Planetary Camera 2 (WFPC2), is online at http://heritage.stsci.edu and http://www.jpl.nasa.gov/images/wfpc. The camera was designed and built by NASA's Jet Propulsion Laboratory, Pasadena, Calif. During observations of the galaxy, the camera passed a milestone, taking its 100,000th image since shuttle astronauts installed it in Hubble in 1993.

    The dust and spiral arms of normal spiral galaxies, like our Milky Way, look flat when seen edge- on. The new image of the galaxy ESO 510-G13 shows an unusual twisted disc structure, first seen in ground-based photographs taken at the European Southern Observatory in Chile. ESO 510-G13 lies in the southern constellation Hydra, some 150 million light-years from Earth. Details of the galaxy's structure are visible because interstellar dust clouds that trace its disc are silhouetted from behind by light from the galaxy's bright, smooth central bulge.

    The strong warping of the disc indicates that ESO 510-G13 has recently collided with a nearby galaxy and is in the process of swallowing it. Gravitational forces distort galaxies as their stars, gas, and dust merge over millions of years. When the disturbances die out, ESO 510-G13 will be a single galaxy.

    The galaxy's outer regions, especially on the right side of the image, show dark dust and bright clouds of blue stars. This indicates that hot, young stars are forming in the twisted disc. Astronomers believe star formation may be triggered when galaxies collide and their interstellar clouds are compressed.

    The Hubble Heritage Team used WFPC2 to observe ESO 510-G13 in April 2001. Pictures obtained through blue, green, and red filters were combined to make this color-composite image, which emphasizes the contrast between the dusty

  5. Galaxy Zoo Supernovae

    NASA Astrophysics Data System (ADS)

    Smith, A. M.; Lynn, S.; Sullivan, M.; Lintott, C. J.; Nugent, P. E.; Botyanszki, J.; Kasliwal, M.; Quimby, R.; Bamford, S. P.; Fortson, L. F.; Schawinski, K.; Hook, I.; Blake, S.; Podsiadlowski, P.; Jönsson, J.; Gal-Yam, A.; Arcavi, I.; Howell, D. A.; Bloom, J. S.; Jacobsen, J.; Kulkarni, S. R.; Law, N. M.; Ofek, E. O.; Walters, R.

    2011-04-01

    This paper presents the first results from a new citizen science project: Galaxy Zoo Supernovae. This proof-of-concept project uses members of the public to identify supernova candidates from the latest generation of wide-field imaging transient surveys. We describe the Galaxy Zoo Supernovae operations and scoring model, and demonstrate the effectiveness of this novel method using imaging data and transients from the Palomar Transient Factory (PTF). We examine the results collected over the period 2010 April-July, during which nearly 14 000 supernova candidates from the PTF were classified by more than 2500 individuals within a few hours of data collection. We compare the transients selected by the citizen scientists to those identified by experienced PTF scanners and find the agreement to be remarkable - Galaxy Zoo Supernovae performs comparably to the PTF scanners and identified as transients 93 per cent of the ˜130 spectroscopically confirmed supernovae (SNe) that the PTF located during the trial period (with no false positive identifications). Further analysis shows that only a small fraction of the lowest signal-to-noise ratio detections (r > 19.5) are given low scores: Galaxy Zoo Supernovae correctly identifies all SNe with ≥8σ detections in the PTF imaging data. The Galaxy Zoo Supernovae project has direct applicability to future transient searches, such as the Large Synoptic Survey Telescope, by both rapidly identifying candidate transient events and via the training and improvement of existing machine classifier algorithms. This publication has been made possible by the participation of more than 10 000 volunteers in the Galaxy Zoo Supernovae project ().

  6. Dwarf galaxy evolution within the environments of massive galaxies

    NASA Astrophysics Data System (ADS)

    Arraki, Kenza S.; Klypin, Anatoly A.; Ceverino, Daniel; Trujillo-Gomez, Sebastian; Primack, Joel R.

    2016-01-01

    Understanding galaxy evolution depends on connecting large-scale structure determined by the ΛCDM model with, at minimum, the small-scale physics of gas, star formation, and stellar feedback. Formation of galaxies within dark matter halos is sensitive to the physical phenomena occurring within and around the halo. This is especially true for dwarf galaxies, which have the smallest potential wells and are more susceptible to the effects of gas ionization and removal than larger galaxies. At dwarf galaxies scales comparisons of dark matter-only simulations with observations has unveiled various differences including the core-cusp, the missing satellites, and the too-big-to-fail problems. We have run a new suite of hydrodynamical simulations using the ART code to examine the evolution of dwarf galaxies in massive host environments. These are cosmological zoom-in simulations including deterministic star formation and stellar feedback in the form of supernovae feedback, stellar winds, radiation pressure, and photoionization pressure. We simulates galaxies with final halo masses on the order of 1012 M⊙ with high resolution, allowing us to examine the satellite dwarf galaxies and local isolated dwarf galaxies around each primary galaxy. We analyzed the abundance and structure of these dwarfs specifically the velocity function, their star formation rates, core creation and the circumgalactic medium. By reproducing observations of dwarf galaxies in simulations we show how including baryons in simulations relieves tensions seen in comparing dark matter only simulations with observations.

  7. OPTOPUS spectroscopy of galaxies

    NASA Astrophysics Data System (ADS)

    Schnur, G. F. O.

    The spectra of selected H II regions in the center of the starburst galaxy NGC 1808 and of many faint galaxies surrounding the NGC 1808 were obtained simultaneously, using the Optopus fiber-optics spectrograph facility (described by Lund, 1986) at the ESO 3.6-m telescope. The preparation of Optopus plates (each of which employed more than 40 fibers), observations, and the procedures of data processing and Optopus calibration are described together with the problems caused by cosmic ray events. Preliminary results are included.

  8. Galaxy bachelors, couples, spouses: Star formation in interacting galaxies

    NASA Astrophysics Data System (ADS)

    Sun, Jing; Barger, Kathleen; Richstein, Hannah; SDSS-IV/MaNGA

    2017-01-01

    We investigate the star formation activity in three galaxy systems in different stages of interaction to determine how the environment of galaxies affects their star forming ability and potential. These systems include an isolated galaxy, a pair of interacting galaxies, and a pair of merging galaxies. All of the target galaxies in these systems have similar stellar masses and similar radii and are at similar redshifts. We trace the star formation activity over the past 1-2 Gyr using spatially and kinematically resolved H-alpha emission, H-alpha equivalent width, and 4000-Angstrom break maps. This work is based on data from the fourth-generation Sloan Digital Sky Survey (SDSS-IV)/Mapping Nearby Galaxies at Apache Point Observatory (MaNGA), and is part of the Project No.0285 in SDSS-IV.

  9. Galaxy and Mass Assembly (GAMA): ugriz galaxy luminosity functions

    NASA Astrophysics Data System (ADS)

    Loveday, J.; Norberg, P.; Baldry, I. K.; Driver, S. P.; Hopkins, A. M.; Peacock, J. A.; Bamford, S. P.; Liske, J.; Bland-Hawthorn, J.; Brough, S.; Brown, M. J. I.; Cameron, E.; Conselice, C. J.; Croom, S. M.; Frenk, C. S.; Gunawardhana, M.; Hill, D. T.; Jones, D. H.; Kelvin, L. S.; Kuijken, K.; Nichol, R. C.; Parkinson, H. R.; Phillipps, S.; Pimbblet, K. A.; Popescu, C. C.; Prescott, M.; Robotham, A. S. G.; Sharp, R. G.; Sutherland, W. J.; Taylor, E. N.; Thomas, D.; Tuffs, R. J.; van Kampen, E.; Wijesinghe, D.

    2012-02-01

    Galaxy and Mass Assembly (GAMA) is a project to study galaxy formation and evolution, combining imaging data from ultraviolet to radio with spectroscopic data from the AAOmega spectrograph on the Anglo-Australian Telescope. Using data from Phase 1 of GAMA, taken over three observing seasons, and correcting for various minor sources of incompleteness, we calculate galaxy luminosity functions (LFs) and their evolution in the ugriz passbands. At low redshift, z < 0.1, we find that blue galaxies, defined according to a magnitude-dependent but non-evolving colour cut, are reasonably well fitted over a range of more than 10 magnitudes by simple Schechter functions in all bands. Red galaxies, and the combined blue plus red sample, require double power-law Schechter functions to fit a dip in their LF faintwards of the characteristic magnitude M* before a steepening faint end. This upturn is at least partly due to dust-reddened disc galaxies. We measure the evolution of the galaxy LF over the redshift range 0.002 < z < 0.5 both by using a parametric fit and by measuring binned LFs in redshift slices. The characteristic luminosity L* is found to increase with redshift in all bands, with red galaxies showing stronger luminosity evolution than blue galaxies. The comoving number density of blue galaxies increases with redshift, while that of red galaxies decreases, consistent with prevailing movement from blue cloud to red sequence. As well as being more numerous at higher redshift, blue galaxies also dominate the overall luminosity density beyond redshifts z≃ 0.2. At lower redshifts, the luminosity density is dominated by red galaxies in the riz bands, and by blue galaxies in u and g.

  10. HUBBLE'S INFRARED GALAXY GALLERY

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Astronomers have used the NASA Hubble Space Telescope to produce an infrared 'photo essay' of spiral galaxies. By penetrating the dust clouds swirling around the centers of these galaxies, the telescope's infrared vision is offering fresh views of star birth. These six images, taken with the Near Infrared Camera and Multi-Object Spectrometer, showcase different views of spiral galaxies, from a face-on image of an entire galaxy to a close-up of a core. The top row shows spirals at diverse angles, from face-on, (left); to slightly tilted, (center); to edge-on, (right). The bottom row shows close-ups of the hubs of three galaxies. In these images, red corresponds to glowing hydrogen, the raw material for star birth. The red knots outlining the curving spiral arms in NGC 5653 and NGC 3593, for example, pinpoint rich star-forming regions where the surrounding hydrogen gas is heated by intense ultraviolet radiation from young, massive stars. In visible light, many of these regions can be hidden from view by the clouds of gas and dust in which they were born. The glowing hydrogen found inside the cores of these galaxies, as in NGC 6946, may be due to star birth; radiation from active galactic nuclei (AGN), which are powered by massive black holes; or a combination of both. White is light from middle-age stars. Clusters of stars appear as white dots, as in NGC 2903. The galaxy cores are mostly white because of their dense concentration of stars. The dark material seen in these images is dust. These galaxies are part of a Hubble census of about 100 spiral galaxies. Astronomers at Space Telescope Science Institute took these images to fill gaps in the scheduling of a campaign using the NICMOS-3 camera. The data were non-proprietary, and were made available to the entire astronomical community. Filters: Three filters were used: red, blue, and green. Red represents emission at the Paschen Alpha line (light from glowing hydrogen) at a wavelength of 1.87 microns. Blue shows the

  11. Size Bias in Galaxy Surveys

    NASA Astrophysics Data System (ADS)

    Schmidt, Fabian; Rozo, Eduardo; Dodelson, Scott; Hui, Lam; Sheldon, Erin

    2009-07-01

    Only certain galaxies are included in surveys: those bright and large enough to be detectable as extended sources. Because gravitational lensing can make galaxies appear both brighter and larger, the presence of foreground inhomogeneities can scatter galaxies across not only magnitude cuts but also size cuts, changing the statistical properties of the resulting catalog. Here we explore this size bias and how it combines with magnification bias to affect galaxy statistics. We demonstrate that photometric galaxy samples from current and upcoming surveys can be even more affected by size bias than by magnification bias.

  12. HUBBLE REVEALS 'BACKWARDS' SPIRAL GALAXY

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Astronomers have found a spiral galaxy that may be spinning to the beat of a different cosmic drummer. To the surprise of astronomers, the galaxy, called NGC 4622, appears to be rotating in the opposite direction to what they expected. Pictures by NASA's Hubble Space Telescope helped astronomers determine that the galaxy may be spinning clockwise by showing which side of the galaxy is closer to Earth. A Hubble telescope photo of the oddball galaxy is this month's Hubble Heritage offering. The image shows NGC 4622 and its outer pair of winding arms full of new stars [shown in blue]. Astronomers are puzzled by the clockwise rotation because of the direction the outer spiral arms are pointing. Most spiral galaxies have arms of gas and stars that trail behind as they turn. But this galaxy has two 'leading' outer arms that point toward the direction of the galaxy's clockwise rotation. To add to the conundrum, NGC 4622 also has a 'trailing' inner arm that is wrapped around the galaxy in the opposite direction it is rotating. Based on galaxy simulations, a team of astronomers had expected that the galaxy was turning counterclockwise. NGC 4622 is a rare example of a spiral galaxy with arms pointing in opposite directions. What caused this galaxy to behave differently from most galaxies? Astronomers suspect that NGC 4622 interacted with another galaxy. Its two outer arms are lopsided, meaning that something disturbed it. The new Hubble image suggests that NGC 4622 consumed a small companion galaxy. The galaxy's core provides new evidence for a merger between NGC 4622 and a smaller galaxy. This information could be the key to understanding the unusual leading arms. Galaxies, which consist of stars, gas, and dust, rotate very slowly. Our Sun, one of many stars in our Milky Way Galaxy, completes a circuit around the Milky Way every 250 million years. NGC 4622 resides 111 million light-years away in the constellation Centaurus. The pictures were taken in May 2001 with Hubble

  13. Secular evolution in disk galaxies

    NASA Astrophysics Data System (ADS)

    Knapen, J. H.

    2013-05-01

    The detailed study of the different structural components of nearby galaxies can supply vital information about the secular, or internal, evolution of these galaxies which they may have undergone since their formation. We highlight a series of new studies based on the analysis of mid-infrared images of over 2000 local galaxies which we are collecting within the Spitzer Survey of Stellar Structure in Galaxies (S^4G). In particular, we discuss new results on the thick and thin disk components of galaxies, which turn out to be roughly equally massive, and whose properties indicate that the thick disks mostly formed in situ, and to a lesser degree as a result of galaxy-galaxy interactions and secular evolution. We then briefly review recent research into rings in galaxies, which are common and closely linked to secular evolution of galaxies. Finally, we report on the research into local galaxy morphology, kinematics and stellar populations that we will perform over the coming four years within the EU-funded initial training network DAGAL (Detailed Anatomy of GALaxies).

  14. IRAS observations of active galaxies

    NASA Technical Reports Server (NTRS)

    Neugebauer, G.; Soifer, B. T.; Rowan-Robinson, M.

    1985-01-01

    The IRAS survey gives an unbiased view of the infrared properties of the active galaxies. Seyfert galaxies occupy much the same area in color-color plots as to normal infrared bright galaxies, but extend the range towards flatter 60 to 25 mm slopes. Statistically the Seyfert 1 galaxies can be distinguished from the Seyfert 2 galaxies, lying predominantly closer to the area with constant slopes between 25 and 200 mm. The infrared measurements of the Seyfert galaxies cannot distinguish between the emission mechanisms in these objects although they agree with the currently popular ideas; they do provide a measure of the total luminosity of the Seyferts. The quasar's position in the color-color diagrams continue the trend of the Seyferts. The quasar 3C48 is shown to be exceptional among the radio loud quasars in that it has a high infrared luminosity which dominates the power output of the quasar and is most likely associated with the underlying host galaxy.

  15. Slowly cooking galaxies

    NASA Astrophysics Data System (ADS)

    Legrand, François

    2000-07-01

    Recent spectroscopic observations of IZw 18 have revealed homogeneous abundance throughout the galaxy and several observations of other starburst galaxies have shown no significant gradient or discontinuity in the abundance distributions within the H II regions. I thus concur with Tenorio-Tagle G., 1996, AJ 111, 1641 and Devost D., Roy J.R., Drissen L., 1997, ApJ 482, 765, that these observed abundance homogeneities cannot be produced by the material ejected from the stars formed in the current burst and result from a previous star-formation episode. Metals ejected in the current burst of star formation remain most probably hidden in a hot phase and are undetectable using optical spectroscopy. Combining various observational facts, for instance, the faint star-formation rate observed in low surface brightness galaxies, Van Zee L., Haynes M.P., Salzer J.J., Broeils A.H., 1997c, AJ 113, 1618. I propose that a low and continuous star-formation rate, occurring during quiescent phases between bursts, is a non negligible source of new elements in the interstellar medium. Using a spectrophotometric and chemical evolution model for galaxies, I investigated the star formation history IZw 18. I demonstrate that the continuous star formation scenario reproduces all the observed parameters of IZw 18. I discuss the consequences of such a quiet star-formation regime.

  16. Dust in galaxy clusters

    NASA Astrophysics Data System (ADS)

    Polikarpova, O. L.; Shchekinov, Yu. A.

    2017-02-01

    The conditions for the destruction of dust in hot gas in galaxy clusters are investigated. It is argued that extinction measurements can be subject to selection effects, hindering their use in obtaining trustworthy estimates of dust masses in clusters. It is shown, in particular, that the ratio of the dust mass to the extinction M d / S d increases as dust grains are disrupted, due to the rapid destruction of small grains. Over long times, this ratio can asymptotically reach values a factor of three higher than the mean value in the interstellar medium in the Galaxy. This lowers dust-mass estimates based on measurements of extinction in galaxy clusters. The characteristic lifetime of dust in hot cluster gas is determined by its possible thermal isolation by the denser medium of gas fragments within which the dust is ejected from galaxies, and can reach 100-300 million years, depending on the kinematics and morphology of the fragments. As a result, the mass fraction of dust in hot cluster gas can reach 1-3% of the Galactic value. Over its lifetime, dust can also be manifest through its far-infrared emission. The emission characteristics of the dust change as it is disrupted, and the ratio of the fluxes at 350 and 850 μm can increase appreciably. This can potentially serve as an indicator of the state of the dust and ambient gas.

  17. Life in the Galaxy

    ERIC Educational Resources Information Center

    Oliver, B. M.

    1973-01-01

    Discusses the origin of life on the basis of information about cosmic evolution, stellar alchemy, atmospheric histories, and rise and fall of civilizations. Indicates that man's contact with other civilizations in our galaxy may be made possible through studies of interstellar communication. (CC)

  18. Galaxy cosmological mass function

    NASA Astrophysics Data System (ADS)

    Lopes, Amanda R.; Iribarrem, Alvaro; Ribeiro, Marcelo B.; Stoeger, William R.

    2014-12-01

    Aims: This paper studies the galaxy cosmological mass function (GCMF) in a semi-empirical relativistic approach that uses observational data provided by recent galaxy redshift surveys. Methods: Starting from a previously presented relation between the mass-to-light ratio, the selection function obtained from the luminosity function (LF) data and the luminosity density, the average luminosity L, and the average galactic mass ℳg were computed in terms of the redshift. ℳg was also alternatively estimated by means of a method that uses the galaxy stellar mass function (GSMF). Comparison of these two forms of deriving the average galactic mass allowed us to infer a possible bias introduced by the selection criteria of the survey. We used the FORS Deep Field galaxy survey sample of 5558 galaxies in the redshift range 0.5 galaxy mergers or as a strong evolution in the star formation history of these galaxies.

  19. E/S0 GALAXIES ON THE BLUE COLOR-STELLAR MASS SEQUENCE AT z = 0: FADING MERGERS OR FUTURE SPIRALS?

    SciTech Connect

    Kannappan, Sheila J.; Guie, Jocelly M.; Baker, Andrew J. E-mail: jocelly@mail.utexas.edu

    2009-08-15

    } show signs of disk and/or pseudobulge building, which may be enhanced by companion interactions. The blue overall colors of blue-sequence E/S0s are most clearly linked to blue outer disks, but also reflect blue centers and more frequent blue-centered color gradients than seen in red-sequence E/S0s. Notably, all E/S0s in the NFGS with polar or counterrotating gas lie on or near the blue sequence, and most of these systems show signs of secondary stellar disks forming in the decoupled gas. From star formation rates and gas fractions, we infer significant recent and ongoing morphological transformation in the blue-sequence E/S0 population, especially below M{sub b}. We argue that sub-M{sub b} blue-sequence E/S0s occupy a 'sweet spot' in stellar mass and concentration, with both abundant gas and optimally efficient star formation, which may enable the formation of large spiral disks. Our results provide evidence for the importance of disk rebuilding after mergers, as predicted by hierarchical models of galaxy formation.

  20. Triple Scoop from Galaxy Hunter

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] [figure removed for brevity, see original site] Figure 1Figure 2Figure 3

    Silver Dollar Galaxy: NGC 253 (figure 1) Located 10 million light-years away in the southern constellation Sculptor, the Silver Dollar galaxy, or NGC 253, is one of the brightest spiral galaxies in the night sky. In this edge-on view from NASA's Galaxy Evolution Explorer, the wisps of blue represent relatively dustless areas of the galaxy that are actively forming stars. Areas of the galaxy with a soft golden glow indicate regions where the far-ultraviolet is heavily obscured by dust particles.

    Gravitational Dance: NGC 1512 and NGC 1510 (figure 2) In this image, the wide ultraviolet eyes of NASA's Galaxy Evolution Explorer show spiral galaxy NGC 1512 sitting slightly northwest of elliptical galaxy NGC 1510. The two galaxies are currently separated by a mere 68,000 light-years, leading many astronomers to suspect that a close encounter is currently in progress.

    The overlapping of two tightly wound spiral arm segments makes up the light blue inner ring of NGC 1512. Meanwhile, the galaxy's outer spiral arm is being distorted by strong gravitational interactions with NGC 1510.

    Galaxy Trio: NGC 5566, NGC 5560, and NGC 5569 (figure 3) NASA's Galaxy Evolution Explorer shows a triplet of galaxies in the Virgo cluster: NGC 5560 (top galaxy), NGC 5566 (middle galaxy), and NGC 5569 (bottom galaxy).

    The inner ring in NGC 5566 is formed by two nearly overlapping bright arms, which themselves spring from the ends of a central bar. The bar is not visible in ultraviolet because it consists of older stars or low mass stars that do not emit energy at ultraviolet wavelengths. The outer disk of NGC 5566 appears warped, and the disk of NGC 5560 is clearly disturbed. Unlike its galactic neighbors, the disk of NGC 5569 does not appear to have been distorted by any passing

  1. Galaxy NGC 4013

    NASA Technical Reports Server (NTRS)

    1999-01-01

    An amazing 'edge-on' view of a spiral galaxy 55 million light years from Earth has been captured by the Hubble Space Telescope. The image, available at http://www.jpl.nasa.gov/pictures/wfpc , reveals in great detail huge clouds of dust and gas extending along and above the galaxy's main disk.

    The image was taken by Hubble's Wide Field and Planetary Camera 2, which was designed and built by NASA's Jet Propulsion Laboratory, Pasadena, Calif.

    The galaxy, called NGC 4013, lies in the direction of the constellation Ursa Major. If we could see it pole-on, it would look like a nearly circular pinwheel. In this Hubble image, NGC 4013 is seen edge-on, from our vantage point. Because the galaxy is larger than Hubble's field of view, the image shows only a little more than half the object, but with unprecedented detail.

    Dark clouds of interstellar dust stand out, since they absorb the light of background stars. Most of the clouds lie in the galaxy's plane and form the dark band, about 500 light years thick, that appears to cut the galaxy in two from upper right to lower left. Scientists believe that new stars form in dark interstellar clouds. NGC 4013 shows several examples of these stellar kindergartens near the center of the image, in front of the dark band along the galaxy's equator. One extremely bright star near the upper left corner is merely a nearby foreground star that lies in our Milky Way and happened to be in the line of sight.

    This new picture was constructed from Hubble images taken in January 2000 by Dr. J. Christopher Howk of Johns Hopkins University, Baltimore, Md., and Dr. Blair D. Savage of the University of Wisconsin-Madison. Images taken through three different filters have been combined into a color composite covering the region of the galaxy nucleus (behind the bright foreground star at the upper left) and extending along one edge of the galaxy to the lower right.

    The Space Telescope Science Institute, Baltimore, Md., manages space

  2. A pseudo-spectrum analysis of galaxy-galaxy lensing

    NASA Astrophysics Data System (ADS)

    Hikage, Chiaki; Oguri, Masamune

    2016-10-01

    We present the application of the pseudo-spectrum method to galaxy-galaxy lensing. We derive explicit expressions for the pseudo-spectrum analysis of the galaxy-shear cross-spectrum, which is the Fourier space counterpart of the stacked galaxy-galaxy lensing profile. The pseudo-spectrum method corrects observational issues such as the survey geometry, masks of bright stars and their spikes, and inhomogeneous noise, which distort the spectrum and also mix the E-mode and the B-mode signals. Using ray-tracing simulations in N-body simulations including realistic masks, we confirm that the pseudo-spectrum method successfully recovers the input galaxy-shear cross-spectrum. We also show that the galaxy-shear cross-spectrum has an excess covariance relative to the Gaussian covariance at small scales (k ≳ 1h Mpc-1) where the shot noise is dominated in the Gaussian approximation. We find that the excess is consistent with the expectation from the halo sample variance (HSV), which originates from the matter fluctuations at scales larger than the survey area. We apply the pseudo-spectrum method to the observational data of Canada-France-Hawaii Telescope Lensing survey shear catalogue and three different spectroscopic samples of Sloan Digital Sky Survey Luminous Red Galaxy, and Baryon Oscillation Spectroscopic Survey CMASS and LOWZ galaxies. The galaxy-shear cross-spectra are significantly detected at the level of 7-10σ using the analytic covariance with the HSV contribution included. We also confirm that the observed spectra are consistent with the halo model predictions with the halo occupation distribution parameters estimated from previous work. This work demonstrates the viability of galaxy-galaxy lensing analysis in the Fourier space.

  3. The Shocked POststarburst Galaxy Survey

    NASA Astrophysics Data System (ADS)

    Alatalo, Katherine A.; SPOGS Team

    2017-01-01

    Modern day galaxies are found to be in a bimodal distribution, both in terms of their morphologies, and in terms of their colors, and these properties are inter-related. In color space, there is a genuine dearth of intermediate colored galaxies, which has been taken to mean that the transition a galaxy undergoes to transform must be rapid. Given that this transformation is largely one-way (at z=0), identifying all initial conditions that catalyze it becomes essential. The Shocked POststarburst Galaxy Survey (http://www.spogs.org) is able to pinpoint transitioning galaxies at an earlier stage of transition than other traditional searches, possibly opening a new door to identifying new pathways over which galaxies transform from blue spirals to red ellipticals.

  4. IRAS observations of Seyfert galaxies

    NASA Technical Reports Server (NTRS)

    Miley, G. K.; Neugebauer, G.; Soifer, B. T.

    1985-01-01

    Infrared Astronomy Satellite measurements at 25, 60 and 100 microns were used to analyze the infrared properties of Seyfert galaxies from the Markarian and NGC Catalogs. One hundred and sixteen of 186 Seyfert galaxies were detected. About 50% of all Seyfert galaxies in the sample have 60 micron luminosities in excess of 10 to the 10th power solar luminosity, and the mean 60 micron luminosity increase with the optical B absolute magnitude. The luminosity functions of the Seyfert 1 and Seyfert 2 galaxies appear quite similar. It is possible, however, to statistically separate the two types of galaxies in color-color plots. The 100- to 60- micron energy distributions flatten systematically with increasing 60- micron luminosity. The infrared measurements provide a measure of the bolometric luminosity of the Seyfert galaxies, but do not discriminate between the physical processes involved.

  5. The environments of Markarian galaxies

    NASA Technical Reports Server (NTRS)

    Mackenty, John W.; Simpson, Caroline; Mclean, Brian

    1990-01-01

    The extensively studied Markarian sample of 1500 ultraviolet excess galaxies contains many Seyfert, starburst, and peculiar galaxies. Using the 20 minute V plates obtained for the construction of the Hubble Space Telescope Guide Star Catalog, the authors investigated the morphologies of the Markarian galaxies and the environments in which they are located. The relationship between the types of nuclear activity and the morphologies and environments of the Markarian galaxies is discussed. The authors conclude that the type of nuclear activity present in the galaxies of the Markarian sample is not dependent on either the morphology or the local environment of the galaxy. This is not to imply that nuclear activity per se is not influenced by the environment in which the nucleus is located. Rather the type of nuclear activity (at least in the Markarian population) does not appear to be determined by the environment.

  6. Collisionless galaxy simulations

    NASA Technical Reports Server (NTRS)

    Hohl, F.; Zang, T. A.; Miller, J. B.

    1979-01-01

    Three-dimensional fully self-consistent computer models were used to determine the evolution of galaxies consisting of 100 000 simulation stars. Comparison of two-dimensional simulations with three-dimensional simulations showed only a very slight stabilizing effect due to the additional degree of freedom. The addition of a fully self-consistent, nonrotating, exponential core/halo component resulted in considerable stabilization. A second series of computer experiments was performed to determine the collapse and relaxation of initially spherical, uniform density and uniform velocity dispersion stellar systems. The evolution of the system was followed for various amounts of angular momentum in solid body rotation. For initally low values of the angular momentum satisfying the Ostriker-Peebles stability criterion, the systems quickly relax to an axisymmetric shape and resemble elliptical galaxies in appearance. For larger values of the initial angular momentum bars develop and the systems undergo a much more drastic evolution.

  7. Clusters of galaxies

    NASA Astrophysics Data System (ADS)

    Vikhlinin, A. A.; Kravtsov, A. V.; Markevich, M. L.; Sunyaev, R. A.; Churazov, E. M.

    2014-04-01

    Galaxy clusters are formed via nonlinear growth of primordial density fluctuations and are the most massive gravitationally bound objects in the present Universe. Their number density at different epochs and their properties depend strongly on the properties of dark matter and dark energy, making clusters a powerful tool for observational cosmology. Observations of the hot gas filling the gravitational potential well of a cluster allows studying gasdynamic and plasma effects and the effect of supermassive black holes on the heating and cooling of gas on cluster scales. The work of Yakov Borisovich Zeldovich has had a profound impact on virtually all cosmological and astrophysical studies of galaxy clusters, introducing concepts such as the Harrison-Zeldovich spectrum, the Zeldovich approximation, baryon acoustic peaks, and the Sunyaev-Zeldovich effect. Here, we review the most basic properties of clusters and their role in modern astrophysics and cosmology.

  8. The Anatomy of Galaxies

    NASA Astrophysics Data System (ADS)

    D'Onofrio, Mauro; Rampazzo, Roberto; Zaggia, Simone; Longair, Malcolm S.; Ferrarese, Laura; Marziani, Paola; Sulentic, Jack W.; van der Kruit, Pieter C.; Laurikainen, Eija; Elmegreen, Debra M.; Combes, Françoise; Bertin, Giuseppe; Fabbiano, Giuseppina; Giovanelli, Riccardo; Calzetti, Daniela; Moss, David L.; Matteucci, Francesca; Djorgovski, Stanislav George; Fraix-Burnet, Didier; Graham, Alister W. McK.; Tully, Brent R.

    Just after WWII Astronomy started to live its "Golden Age", not differently to many other sciences and human activities, especially in the west side countries. The improved resolution of telescopes and the appearance of new efficient light detectors (e.g. CCDs in the middle eighty) greatly impacted the extragalactic researches. The first morphological analysis of galaxies were rapidly substituted by "anatomic" studies of their structural components, star and gas content, and in general by detailed investigations of their properties. As for the human anatomy, where the final goal was that of understanding the functionality of the organs that are essential for the life of the body, galaxies were dissected to discover their basic structural components and ultimately the mystery of their existence.

  9. Galaxy clusters: Radio relics from fossil electrons

    NASA Astrophysics Data System (ADS)

    Johnston-Hollitt, Melanie

    2017-01-01

    The detection of a tailed radio galaxy in a galaxy cluster conjoined to a region of diffuse radio emission confirms that radio galaxies provide the energetic electrons needed to explain the origin of this enigmatic emission.

  10. Central Engine and Host Galaxy of RXJ 1301.9+2747: A Multiwavelength View of a Low-mass Black Hole Active Galactic Nuclei with Ultra-soft X-Ray Emission

    NASA Astrophysics Data System (ADS)

    Shu, X. W.; Wang, T. G.; Jiang, N.; Wang, J. X.; Sun, L. M.; Zhou, H. Y.

    2017-03-01

    RXJ 1301.9+2747 is an optically identified very-low-mass AGN candidate with {M}{BH}∼ 1× {10}6 {M}ȯ , which shows extremely soft X-ray emission and unusual X-ray variability in the form of short-lived flares. We present an analysis of multiwavelength observations of RXJ 1301.9+2747 in order to study the properties of the active nucleus and its host galaxy. The UV-to-X-ray spectrum in the quiescent state can be well and self-consistently described by a thermal and a Comptonized emission from the accretion disk, with the black body dominating ∼70% of the X-rays in the 0.2–2 keV. The same model can describe the X-ray spectrum in the flare state, but the Comptonized component becomes dominant (∼80%). The best fit implies an Eddington ratio of ∼0.14 and a black-hole mass of (1.7-2.8)× {10}6 M ⊙, in agreement with the estimation from the optical data within errors. However, the best-fitting model under predicts the optical flux for the HST point source by a factor of ∼2. The excess of nuclear optical emission could be attributed to a nuclear stellar cluster, which is frequently seen in low-mass AGNs. The X-ray to optical spectral slope ({α }{ox}) is lower than in most other active galaxies, which may be attributed to intrinsically X-ray weakness due to very little hot and optically thin coronal emission. We performed a pilot search for weak or hidden broad emission lines using optical spectropolarimetry observations, but no polarized broad lines are detected. The host galaxy appears to be a disk galaxy with a boxy pseudobulge or nuclear bar accounting for ∼15% of the total starlight, which is consistent with the general characteristics of the host of low-mass AGNs.

  11. Galaxy formation by dust

    NASA Technical Reports Server (NTRS)

    Wang, Boqi; Field, Goerge B.

    1989-01-01

    It has been known since the early 1940's that radiation can cause an instability in the interstellar medium. Absorbing dust particles in an isotropic radiation field shadow each other by a solid angle which is inversely proportional to the square of the distance between the two particles, leading to an inverse-square attractive force - mock gravity. The effect is largest in an optically thin medium. Recently Hogan and White (HW, hereafter) proposed that if the pre-galactic universe contained suitable sources of radiation and dust, instability in the dust distribution caused by mock gravity may have led to the formation of galaxies and galaxy clusters. In their picture of a well-coupled dust-gas medium, HW show that mock gravity begins to dominate gravitational instability when the perturbation becomes optically thin, provided that the radiation field at the time is strong enough. The recent rocket observation of the microwave background at submillimeter wavelengths by Matsumoto et al. might be from pre-galactic stars, the consequence of the absorption of ultraviolet radiation by dust, and infrared reemission which is subsequently redshifted. HW's analysis omits radiative drag, incomplete collisional coupling of gas and dust, finite dust albedo, and finite matter pressure. These effects could be important. In a preliminary calculation including them, the authors have confirmed that mock gravitational instability is effective if there is a strong ultraviolet radiation at the time, but any galaxies that form would be substantially enriched in heavy elements because the contraction of the dust is more rapid than that of the gas. Moreover, since the dust moves with supersonic velocity through the gas soon after the perturbation becomes optically thin, the sputtering of dust particles by gas is significant, so the dust could disappear before the instability develops significantly. They conclude that the mock gravity by dust is not important in galaxy formations.

  12. Very high redshift radio galaxies

    SciTech Connect

    van Breugel, W.J.M., LLNL

    1997-12-01

    High redshift radio galaxies (HzRGs) provide unique targets for the study of the formation and evolution of massive galaxies and galaxy clusters at very high redshifts. We discuss how efficient HzRG samples ae selected, the evidence for strong morphological evolution at near-infracd wavelengths, and for jet-induced star formation in the z = 3 800 HzRG 4C41 17

  13. Star Formation in MUSCEL Galaxies

    NASA Astrophysics Data System (ADS)

    Young, Jason; Kuzio de Naray, Rachel; Wang, Sharon Xuesong

    2017-01-01

    We present preliminary star-formation histories for a subset of the low surface brightness (LSB) galaxies in the MUSCEL (MUltiwavelength observations of the Structure, Chemistry, and Evolution of LSB galaxies) program. These histories are fitted against ground-based IFU spectra in tandem with space-based UV and IR photometry. MUSCEL aims to use these histories along with kinematic analyses to determine the physical processes that have caused the evolution of LSB galaxies to diverge from their high surface brightness counterparts.

  14. Ultraluminous infrared galaxies

    NASA Technical Reports Server (NTRS)

    Sanders, D. B.; Soifer, B. T.; Neugebauer, G.; Scoville, N. Z.; Madore, B. F.; Danielson, G. E.; Elias, J. H.; Matthews, K.; Persson, C. J.; Persson, S. E.

    1987-01-01

    The IRAS survey of the local universe has revealed the existence of a class of ultraluminous infrared galaxies with L(8 to 1000 micrometer) greater than 10 to the 12th L sub 0 that are slightly more numerous, and as luminous as optically selected quasars at similar redshift. Optical CCD images of these infrared galaxies show that nearly all are advanced mergers. Millimeter wave CO observations indicate that these interacting systems are extremely rich in molecular gas with total H2 masses 1 to 3 x 10 to the 10th power M sub 0. Nearly all of the ultraluminous infrared galaxies show some evidence in their optical spectra for nonthermal nuclear activity. It is proposed that their infrared luminosity is powered by an embedded active nucleus and a nuclear starburst both of which are fueled by the tremendous reservoir of molecular gas. Once these merger nuclei shed their obscuring dust, allowing the AGN to visually dominate the decaying starburst, they become the optically selected quasars.

  15. Investigating Dwarf Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Weerasooriya, Sachithra; Dunn, Jacqueline M.

    2017-01-01

    Several studies have proposed that dwarf elliptical / spheroidal galaxies form through the transformation of dwarf irregular galaxies. Early and late type dwarfs resemble each other in terms of their observed colors and light distributions (each can often be represented by exponential disks), providing reason to propose an evolutionary link between the two types. The existence of dwarf spirals has been largely debated. However, more and more recent studies are using the designation of dwarf spiral to describe their targets of interest. This project seeks to explore where dwarf spirals fit into the above mentioned evolutionary sequence, if at all. Optical colors will be compared between a sample of dwarf irregular, dwarf elliptical, and dwarf spiral galaxies. The dwarf irregular and dwarf elliptical samples have previously been found to overlap in both optical color and surface brightness profile shape when limiting the samples to their fainter members. A preliminary comparison including the dwarf spiral sample will be presented here, along with a comparison of available ultraviolet and near-infrared data. Initial results indicate a potential evolutionary link that merits further investigation.

  16. The revised Flat Galaxy Catalogue.

    NASA Astrophysics Data System (ADS)

    Karachentsev, I. D.; Karachentseva, V. E.; Kudrya, Yu. N.; Sharina, M. E.; Parnovskij, S. L.

    The authors present a new improved and completed version of the Flat Galaxy Catalogue (FGC) named the Revised Flat Galaxy Catalogue (RFGC) containing 4236 thin edge-on spiral galaxies and covering the whole sky. The Catalogue is intended to study large-scale cosmic streamings as well as other problems of observational cosmology. The dipole moment of distribution of the RFGC galaxies (l = 273°, b = +19°) lies within statistical errors (±10°) in the direction of the Local Group motion towards the Microwave Background Radiation.

  17. Ginga observations of Seyfert galaxies

    NASA Technical Reports Server (NTRS)

    Awaki, H.; Koyama, K.

    1993-01-01

    We observed twenty-eight Seyfert 2 galaxies with the Japanese X-ray satellite, Ginga, and found Seyfert 2 galaxies, in general, have the X-ray spectral characteristics of obscured Seyfert 1 nuclei. This results agrees with the predictions from the Unified Seyfert model proposed by Antonucci and Miller. However, among the observed Seyfert 2 galaxies, there are a few galaxies with no evidence of an obscuration, contrary to the general predictions of the unified model. We note that type 2 active galactic nuclei (AGN) will contribute to the Cosmic Diffuse X-ray Background, if the unified Seyfert model can be extended to the far distant AGN such as quasars.

  18. The "Valencian-GALAXY-zoo"

    NASA Astrophysics Data System (ADS)

    Navarro-González, J.; Ricciardelli, E.; Quilis, V.; Vazdekis, A.

    2013-05-01

    We present a sample of the most massive galaxies (M^{*}>10^{11}{M}_{⊙}) found at z=0 in a fully cosmological simulation performed with MASCLET (Mesh Adaptative Scheme for CosmologicaL structurE evoluTion). te{quilis04} The Upper (lower) pannel shows the merger (quiet) galaxies depending on elipticity (ɛ) and velocity vs velocity-dispersion (v/σ). We use the ssp MILES models to make our galaxies bright and study some observables of our fully cosmological synthetic galaxies.

  19. Giant disk galaxies : Where environment trumps mass in galaxy evolution

    NASA Astrophysics Data System (ADS)

    Courtois, Helene M.; Zaritsky, Dennis; Sorce, Jenny G.; Pomarede, Daniel

    2015-08-01

    We identify some of the most HI massive and fastest rotating disk galaxies in the local universe with the aim of probing the processes that drive the formation of these extreme disk galaxies. By combining data from the Cosmic Flows project, which has consistently reanalyzed archival galaxy HI profiles, and 3.6 micron photometry obtained with the Spitzer Space Telescope, with which we can measure stellar mass, we use the baryonic Tully-Fisher relationship to explore whether these massive galaxies are distinct.We discuss several results, but the most striking is the systematic offset of the HI-massive sample above the baryonic Tully-Fisher. These galaxies have both more gas and more stars in their disks than the typical disk galaxy of similar rotational velocity. The ``condensed" baryon fraction, fC, the fraction of the baryons in a dark matter halo that settle either as cold gas or stars into the disk, is twice as high in the HI-massive sample than typical, and almost reaches the universal baryon fraction in some cases, suggesting that the most extreme of these galaxies have little in the way of a hot baryonic component or cold baryons distributed well outside the disk. In contrast, the star formation efficiency, measured as the ratio of the mass in stars to that in both stars and gas, shows no difference between the HI-massive sample and the typical disk galaxies. We conclude that the star formation efficiency is driven by an internal, self-regulating process, while fC is affected by external factors. Neither the morphology nor the star formation rate of these galaxies is primarily determined by either their dark or stellar mass. We also found that the most massive HI detected galaxies are located preferentially in filaments. We present the first evidence of an environmental effect on galaxy evolution using a dynamical definition of a filament.

  20. Giant disc galaxies: where environment trumps mass in galaxy evolution

    NASA Astrophysics Data System (ADS)

    Courtois, H. M.; Zaritsky, D.; Sorce, J. G.; Pomarède, D.

    2015-04-01

    We identify some of the most H I-massive and fastest rotating disc galaxies in the local universe with the aim of probing the processes that drive the formation of these extreme disc galaxies. By combining data from the Cosmic Flows project, which has consistently reanalysed archival galaxy H I profiles, and 3.6 μm photometry obtained with the Spitzer Space Telescope, with which we can measure stellar mass, we use the baryonic Tully-Fisher (BTF) relationship to explore whether these massive galaxies are distinct. We discuss several results, but the most striking is the systematic offset of the H I-massive sample above the BTF. These galaxies have both more gas and more stars in their discs than the typical disc galaxy of similar rotational velocity. The `condensed' baryon fraction, fC, the fraction of the baryons in a dark matter halo that settle either as cold gas or stars into the disc, is twice as high in the H I-massive sample than typical, and almost reaches the universal baryon fraction in some cases, suggesting that the most extreme of these galaxies have little in the way of a hot baryonic component or cold baryons distributed well outside the disc. In contrast, the star formation efficiency, measured as the ratio of the mass in stars to that in both stars and gas, shows no difference between the H I-massive sample and the typical disc galaxies. We conclude that the star formation efficiency is driven by an internal, self-regulating process, while fC is affected by external factors. Neither the morphology nor the star formation rate of these galaxies is primarily determined by either their dark or stellar mass. We also found that the most massive H I detected galaxies are located preferentially in filaments. We present the first evidence of an environmental effect on galaxy evolution using a dynamical definition of a filament.

  1. Interpreting the Properties of Galaxies

    NASA Astrophysics Data System (ADS)

    Conti, Alberto

    Galaxies exhibit a wide range of physical properties (e.g., luminosities, colors, velocity widths, star formation, gas and stellar content) and the evolutionary processes responsible for these properties are numerous and complex. Understanding which processes shape the observable properties of galaxies and which others play only a minor role, inherently requires a large sample of galaxies. Moreover, if we want to understand why galaxies have the properties they do, we need a theory of galaxy formation. The standard paradigm of galaxy formation assumes that most of the matter is dark and dissipationless and that, under the influence of gravity, structures on galactic and larger scales grow hierarchically (from Gaussian initial conditions) with smaller objects forming first. Gas, moving under the gravitational influence of the dark component, dissipates and collapses at the center of the potential wells provided by the dark matter. In this picture the internal structure of the dark matter clumps and their formation history regulate the global properties of galaxies. However, these properties must also depend on how gas cools to form the dense clouds that seed star formation and how star formation affects the surrounding medium with the injection of energy and heavy elements. I show how simple, ``semi-analytic'' parameterizations are used to describe the highly non-linear aforementioned processes and to predict a wide range of properties of the galaxy population for any specific cosmogony. I then present a simple and flexible framework to extract from the numerous observable properties of disk galaxies that semi-analytic models predict, only those that are needed to characterize the sample as a whole. This framework makes use of the well-know statistical technique of Principal Component Analysis (PCA). Moreover, I correlate the semi-analytic assumptions with the PCA findings and determine which, among our theoretical assumptions, shape the observable galaxies

  2. Galaxy and mass assembly (GAMA): projected galaxy clustering

    NASA Astrophysics Data System (ADS)

    Farrow, D. J.; Cole, Shaun; Norberg, Peder; Metcalfe, N.; Baldry, I.; Bland-Hawthorn, Joss; Brown, Michael J. I.; Hopkins, A. M.; Lacey, Cedric G.; Liske, J.; Loveday, Jon; Palamara, David P.; Robotham, A. S. G.; Sridhar, Srivatsan

    2015-12-01

    We measure the projected two-point correlation function of galaxies in the 180 deg2 equatorial regions of the GAMA II survey, for four different redshift slices between z = 0.0 and 0.5. To do this, we further develop the Cole method of producing suitable random catalogues for the calculation of correlation functions. We find that more r-band luminous, more massive and redder galaxies are more clustered. We also find that red galaxies have stronger clustering on scales less than ˜3 h-1 Mpc. We compare to two different versions of the GALFORM galaxy formation model, Lacey et al. (in preparation) and Gonzalez-Perez et al., and find that the models reproduce the trend of stronger clustering for more massive galaxies. However, the models underpredict the clustering of blue galaxies, can incorrectly predict the correlation function on small scales and underpredict the clustering in our sample of galaxies with {˜ } 3 Lr^*. We suggest possible avenues to explore to improve these clustering predictions. The measurements presented in this paper can be used to test other galaxy formation models, and we make the measurements available online to facilitate this.

  3. QUALITATIVE INTERPRETATION OF GALAXY SPECTRA

    SciTech Connect

    Sanchez Almeida, J.; Morales-Luis, A. B.; Terlevich, R.; Terlevich, E.; Cid Fernandes, R. E-mail: abml@iac.es E-mail: eterlevi@inaoep.mx

    2012-09-10

    We describe a simple step-by-step guide to qualitative interpretation of galaxy spectra. Rather than an alternative to existing automated tools, it is put forward as an instrument for quick-look analysis and for gaining physical insight when interpreting the outputs provided by automated tools. Though the recipe is for general application, it was developed for understanding the nature of the Automatic Spectroscopic K-means-based (ASK) template spectra. They resulted from the classification of all the galaxy spectra in the Sloan Digital Sky Survey data release 7, thus being a comprehensive representation of the galaxy spectra in the local universe. Using the recipe, we give a description of the properties of the gas and the stars that characterize the ASK classes, from those corresponding to passively evolving galaxies, to H II galaxies undergoing a galaxy-wide starburst. The qualitative analysis is found to be in excellent agreement with quantitative analyses of the same spectra. We compare the mean ages of the stellar populations with those inferred using the code STARLIGHT. We also examine the estimated gas-phase metallicity with the metallicities obtained using electron-temperature-based methods. A number of byproducts follow from the analysis. There is a tight correlation between the age of the stellar population and the metallicity of the gas, which is stronger than the correlations between galaxy mass and stellar age, and galaxy mass and gas metallicity. The galaxy spectra are known to follow a one-dimensional sequence, and we identify the luminosity-weighted mean stellar age as the affine parameter that describes the sequence. All ASK classes happen to have a significant fraction of old stars, although spectrum-wise they are outshined by the youngest populations. Old stars are metal-rich or metal-poor depending on whether they reside in passive galaxies or in star-forming galaxies.

  4. Magnetic fields in spiral galaxies

    NASA Astrophysics Data System (ADS)

    Beck, Rainer

    2015-12-01

    Radio synchrotron emission, its polarization and Faraday rotation of the polarization angle are powerful tools to study the strength and structure of magnetic fields in galaxies. Unpolarized synchrotron emission traces isotropic turbulent fields which are strongest in spiral arms and bars (20-30 \\upmu G) and in central starburst regions (50-100 \\upmu G). Such fields are dynamically important; they affect gas flows and drive gas inflows in central regions. Polarized emission traces ordered fields, which can be regular or anisotropic turbulent, where the latter originates from isotropic turbulent fields by the action of compression or shear. The strongest ordered fields (10-15 \\upmu G) are generally found in interarm regions. In galaxies with strong density waves, ordered fields are also observed at the inner edges of spiral arms. Ordered fields with spiral patterns exist in grand-design, barred and flocculent galaxies and in central regions. Ordered fields in interacting galaxies have asymmetric distributions and are a tracer of past interactions between galaxies or with the intergalactic medium.—Faraday rotation measures of the diffuse polarized radio emission from galaxy disks reveal large-scale spiral patterns that can be described by the superposition of azimuthal modes; these are signatures of regular fields generated by mean-field dynamos. "Magnetic arms" between gaseous spiral arms may also be products of dynamo action, but need a stable spiral pattern to develop. Helically twisted field loops winding around spiral arms were found in two galaxies so far. Large-scale field reversals, like the one found in the Milky Way, could not yet be detected in external galaxies. In radio halos around edge-on galaxies, ordered magnetic fields with X-shaped patterns are observed. The origin and evolution of cosmic magnetic fields, in particular their first occurrence in young galaxies and their dynamical importance during galaxy evolution, will be studied with

  5. Empirical ugri-UBVRc transformations for galaxies

    NASA Astrophysics Data System (ADS)

    Cook, David O.; Dale, Daniel A.; Johnson, Benjamin D.; Van Zee, Liese; Lee, Janice C.; Kennicutt, Robert C.; Calzetti, Daniela; Staudaher, Shawn M.; Engelbracht, Charles W.

    2014-11-01

    We present empirical colour transformations between Sloan Digital Sky Survey ugri and Johnson-Cousins UBVRc photometry for nearby galaxies (D < 11 Mpc). We use the Local Volume Legacy (LVL) galaxy sample where there are 90 galaxies with overlapping observational coverage for these two filter sets. The LVL galaxy sample consists of normal, non-starbursting galaxies. We also examine how well the LVL galaxy colours are described by previous transformations derived from standard calibration stars and model-based galaxy templates. We find significant galaxy colour scatter around most of the previous transformation relationships. In addition, the previous transformations show systematic offsets between transformed and observed galaxy colours which are visible in observed colour-colour trends. The LVL-based galaxy transformations show no systematic colour offsets and reproduce the observed colour-colour galaxy trends.

  6. Irregular Dwarf Galaxy IC 1613

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Ultraviolet image (left) and visual image (right) of the irregular dwarf galaxy IC 1613. Low surface brightness galaxies, such as IC 1613, are more easily detected in the ultraviolet because of the low background levels compared to visual wavelengths.

  7. Radio galaxies and their environment

    SciTech Connect

    van Breugel, W.

    1993-02-24

    The relationships between radio galaxies and their environment are varied, complex, and evolve with cosmic epoch. Basic questions are what role the environment plays in triggering and fuelling (radio) galaxy activity what the effects of this activity are on its environment, and how radio galaxies and environment evolve. Clearly, this could be the topic of a workshop all in itself and the scope of this review will necessarily be limited. A review of the connections between environment and galaxy activity in general has been given by Heckman. First, I will briefly summarize the relationships between parent galaxy and cluster environments, and radio galaxies. A more detailed discussion of various aspects of this will be given elsewhere by F. Owen, J.0. Burns and R. Perley. I will then discuss the current status of investigations of extended emission-line regions in radio galaxies, again referring elsewhere in this volume for more detailed discussions of some particular aspects (kinematics and ionization mechanisms by K. Meisenheimer; polarization and spectral index lobe asymmetries by G. Pooley). I will conclude with a brief discussion of the current status of observations of high redshift radio galaxies.

  8. GALAXY Classroom: Television for Tomorrow.

    ERIC Educational Resources Information Center

    Graumann, Peter

    1994-01-01

    An interactive learning service for elementary grades, "GALAXY Classroom," offers enrichment opportunities to classrooms. Students communicate via fax in response to questions posed in satellite transmitted segments. The primary market for "GALAXY Classroom" is the at-risk student. Sidebars describe costs and current offerings.…

  9. Computational astrophysics: Monstrous galaxies unmasked

    NASA Astrophysics Data System (ADS)

    Davé, Romeel

    2015-09-01

    The enigma of how the most luminous galaxies arise is closer to being solved. New simulations show that these are long-lived massive galaxies powered by prodigious gas infall and the recycling of supernova-driven outflows. See Letter p.496

  10. Galaxy cluster's rotation

    NASA Astrophysics Data System (ADS)

    Manolopoulou, M.; Plionis, M.

    2017-03-01

    We study the possible rotation of cluster galaxies, developing, testing, and applying a novel algorithm which identifies rotation, if such does exist, as well as its rotational centre, its axis orientation, rotational velocity amplitude, and, finally, the clockwise or counterclockwise direction of rotation on the plane of the sky. To validate our algorithms we construct realistic Monte Carlo mock rotating clusters and confirm that our method provides robust indications of rotation. We then apply our methodology on a sample of Abell clusters with z ≲ 0.1 with member galaxies selected from the Sloan Digital Sky Survey DR10 spectroscopic data base. After excluding a number of substructured clusters, which could provide erroneous indications of rotation, and taking into account the expected fraction of misidentified coherent substructure velocities for rotation, provided by our Monte Carlo simulation analysis, we find that ∼23 per cent of our clusters are rotating under a set of strict criteria. Loosening the strictness of the criteria, on the expense of introducing spurious rotation indications, we find this fraction increasing to ∼28 per cent. We correlate our rotation indicators with the cluster dynamical state, provided either by their Bautz-Morgan type or by their X-ray isophotal shape and find for those clusters showing rotation within 1.5 h^{-1}_{70} Mpc that the significance of their rotation is related to the dynamically younger phases of cluster formation but after the initial anisotropic accretion and merging has been completed. Finally, finding rotational modes in galaxy clusters could lead to the necessity of correcting the dynamical cluster mass calculations.

  11. Novel calibrations of virial black hole mass estimators in active galaxies based on X-ray luminosity and optical/near-infrared emission lines

    NASA Astrophysics Data System (ADS)

    Ricci, F.; La Franca, F.; Onori, F.; Bianchi, S.

    2017-02-01

    Context. It is currently only possible to accurately weigh, through reverberation mapping (RM), the masses of super massive black holes (BHs) in active galactic nuclei (AGN) for a small group of local and bright broad line AGN. Statistical demographic studies can be carried out considering the empirical scaling relation between the size of the broad line region (BLR) and the AGN optical continuum luminosity. There are still biases, however, against low-luminosity or reddened AGN, in which the rest-frame optical radiation can be severely absorbed or diluted by the host galaxy and the BLR emission lines can be hard to detect. Aims: Our purpose is to widen the applicability of virial-based single-epoch (SE) relations to measure reliably the BH masses for low-luminosity or intermediate and type 2 AGN, which the current methodology misses. We achieve this goal by calibrating virial relations based on unbiased quantities: the hard X-ray luminosities in the 2-10 keV and 14-195 keV bands that are less sensitive to galaxy contamination, and the full width at half maximum (FWHM) of the most important rest-frame near-infrared (NIR) and optical BLR emission lines. Methods: We built a sample of RM AGN with both X-ray luminosity, broad optical and NIR FWHM measurements available to calibrate new virial BH mass estimators. Results: We found that the FWHM of the Hα, Hβ, and NIR lines (i.e. Paα, Paβ, and He iλ10830) all correlate with each other with negligible or small offsets. This result allowed us to derive virial BH mass estimators based on either the 2-10 keV or 14-195 keV luminosity. We also took into account the recent determination of the different virial coefficients, f, for pseudo- and classical bulges. By splitting the sample according to the bulge type and adopting separate f factors, we found that our virial relations predict BH masses of AGN hosted in pseudo-bulges 0.5 dex smaller than in classical bulges. Assuming the same average f factor for both populations

  12. Relic galaxies: where are they?

    NASA Astrophysics Data System (ADS)

    Peralta de Arriba, L.; Quilis, V.; Trujillo, I.; Cebrián, M.; Balcells, M.

    2017-03-01

    The finding that massive galaxies grow with cosmic time fired the starting gun for the search of objects which could have survived up to the present day without suffering substantial changes (neither in their structures, neither in their stellar populations). Nevertheless, and despite the community efforts, up to now only one firm candidate to be considered one of these relics is known: NGC 1277. Curiously, this galaxy is located at the centre of one of the most rich near galaxy clusters: Perseus. Is its location a matter of chance? Should relic hunters focus their search on galaxy clusters? In order to reply this question, we have performed a simultaneous and analogous analysis using simulations (Millennium I-WMAP7) and observations (New York University Value-Added Galaxy Catalogue). Our results in both frameworks agree: it is more probable to find relics in high density environments.

  13. Multiwavelength Luminosity Functions of Galaxies

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan; Oegerle, William R. (Technical Monitor)

    2002-01-01

    I have developed a technique for measuring multi-variate luminosity functions of galaxies. Multivariate or multi-wavelength luminosity functions will reveal the interplay between star formation, chemical evolution, and absorption and re-emission of dust within evolving galaxy populations. By using principle component analysis to reduce the dimensionality of the problem, I optimally extract the relevant photometric information from large galaxy catalogs. As a demonstration of the technique, I derive the multiwavelength luminosity function for the galaxies in the released SDSS catalog, and show that the results are consistent with those obtained by traditional methods. This technique will be applicable to catalogs of galaxies from datasets obtained by the SIRTF and GALEX missions.

  14. FRACTAL DIMENSION OF GALAXY ISOPHOTES

    SciTech Connect

    Thanki, Sandip; Rhee, George; Lepp, Stephen E-mail: grhee@physics.unlv.edu

    2009-09-15

    In this paper we investigate the use of the fractal dimension of galaxy isophotes in galaxy classification. We have applied two different methods for determining fractal dimensions to the isophotes of elliptical and spiral galaxies derived from CCD images. We conclude that fractal dimension alone is not a reliable tool but that combined with other parameters in a neural net algorithm the fractal dimension could be of use. In particular, we have used three parameters to segregate the ellipticals and lenticulars from the spiral galaxies in our sample. These three parameters are the correlation fractal dimension D {sub corr}, the difference between the correlation fractal dimension and the capacity fractal dimension D {sub corr} - D {sub cap}, and, thirdly, the B - V color of the galaxy.

  15. Disrupted Stars in Unusual Galaxies

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-03-01

    Tidal disruption events (TDEs) occur when a star passes a little too close to a supermassive black hole at the center of a galaxy. Tidal forces from the black hole cause the passing star to be torn apart, resulting in a brief flare of radiation as the stars material accretes onto the black hole. A recent study asks the following question: do TDEs occur most frequently in an unusual type of galaxy?A Trend in DisruptionsSo far, we have data from eight candidate TDEs that peaked in optical and ultraviolet wavelengths. The spectra from these observations have shown an intriguing trend: many of these TDEs host galaxies exhibit weak line emission (indicating little or no current star-formation activity), and yet they show strong Balmer absorption lines (indicating star formation activity occurred within the last Gyr). These quiescent, Balmer-strong galaxies likely underwent a period of intense star formation that recently ended.To determine if TDEs are overrepresented in such galaxies, a team of scientists led by Decker French (Steward Observatory, University of Arizona) has quantified the fraction of galaxies in the Sloan Digital Sky Survey (SDSS) that exhibit similar properties to those of TDE hosts.Quantifying OverrepresentationSpectral characteristics of SDSS galaxies (gray) and TDE candidate host galaxies (colored points): line emission vs. Balmer absorption. The lower right-hand box identifies thequiescent, Balmer-strong galaxies which contain most TDE events, yet are uncommon among the galaxy sample as a whole. Click for a better look! [French et al. 2016]French and collaborators compare the optical spectra of the TDE host galaxies to those of nearly 600,000 SDSS galaxies, using two different cutoffs for the Balmer absorption the indicator of past star formation. Their strictest cut, filtering for very high Balmer absorption, selected only 0.2% of the SDSS galaxies, yet 38% of the TDEs are hosted in such galaxies. Using a more relaxed cutoff selects 2.3% of

  16. Creating lenticular galaxies with mergers

    NASA Astrophysics Data System (ADS)

    Querejeta, Miguel; Eliche-Moral, M. Carmen; Tapia, Trinidad; Borlaff, Alejandro; van de Ven, Glenn; Lyubenova, Mariya; Martig, Marie; Falcón-Barroso, Jesús; Méndez-Abreu, Jairo; Zamorano, Jaime; Gallego, Jesús

    2017-03-01

    Lenticular galaxies (S0s) represent the majority of early-type galaxies in the local Universe, but their formation channels are still poorly understood. While galaxy mergers are obvious pathways to suppress star formation and increase bulge sizes, the marked parallelism between spiral and lenticular galaxies (e.g. photometric bulge-disc coupling) seemed to rule out a potential merger origin. Here, we summarise our recent work in which we have shown, through N-body numerical simulations, that disc-dominated lenticulars can emerge from major mergers of spiral galaxies, in good agreement with observational photometric scaling relations. Moreover, we show that mergers simultaneously increase the light concentration and reduce the angular momentum relative to their spiral progenitors. This explains the mismatch in angular momentum and concentration between spirals and lenticulars recently revealed by CALIFA observations, which is hard to reconcile with simple fading mechanisms (e.g. ram-pressure stripping).

  17. Mass distributions in disk galaxies

    NASA Astrophysics Data System (ADS)

    Martinsson, Thomas; Verheijen, Marc; Bershady, Matthew; Westfall, Kyle; Andersen, David; Swaters, Rob

    2017-03-01

    We present results on luminous and dark matter mass distributions in disk galaxies from the DiskMass Survey. As expected for normal disk galaxies, stars dominate the baryonic mass budget in the inner region of the disk; however, at about four optical scale lengths (hR ) the atomic gas starts to become the dominant contributor. Unexpectedly, we find the total baryon to dark-matter fraction within a galaxy stays nearly constant with radius from 1hR out to at least 6hR , with a baryon fraction of 15-50% among galaxies. On average, only one third of the mass within 2.2hR in a disk galaxy is baryonic and these baryons appear to have had only a minor effect on the distribution of the dark matter.

  18. Spectral Analysis of CLU Galaxies

    NASA Astrophysics Data System (ADS)

    Sutter, Jessica; Cook, David O.; Kasliwal, Mansi M.; Dale, Daniel A.

    2017-01-01

    In order to help select possible EM signals from gravitational wave-emitting sources, a more complete catalog of local galaxies is being created. This catalog, called the Census of the Local Universe (CLU), will attempt to find the position of all star-forming galaxies within 200 Mpc. By doing this, the area on the sky from which a gravitational wave could possibly have originated is reduced by a factor of 100. Besides providing this valuable resource for gravitational wave follow-up, the CLU survey provides an exciting new opportunity for better understanding the properties of galaxies near the same age as the Milky Way. Using spectra obtained with the Palomar 200-inch double-prime spectrograph as well as data from the WISE survey, we have created a main sequence for the CLU survey. By analyzing how this main sequence behaves in local galaxies, we can better understand the relationship between current star formation rate and total galaxy stellar mass.

  19. Galaxy NGC 1850

    NASA Technical Reports Server (NTRS)

    1999-01-01

    By spying on a neighboring galaxy, NASA's Hubble Space Telescope has captured an image of a young, globular-like star cluster -- a type of object unknown in our Milky Way Galaxy.

    The image, taken by Hubble's Wide Field and Planetary Camera 2, is online at http://oposite.stsci.edu/pubinfo/pr/2001/25 and http://www.jpl.nasa.gov/images/wfpc. The camera was designed and built by NASA's Jet Propulsion Laboratory, Pasadena, Calif.

    The double cluster NGC 1850 lies in a neighboring satellite galaxy, the Large Magellanic Cloud. It has two relatively young components. The main, globular-like cluster is in the center. A smaller cluster is seen below and to the right, composed of extremely hot, blue stars and fainter red T-Tauri stars. The main cluster is about 50 million years old; the smaller one is 4 million years old.

    A filigree pattern of diffuse gas surrounds NGC 1850. Scientists believe the pattern formed millions of years ago when massive stars in the main cluster exploded as supernovas.

    Hubble can observe a range of star types in NGC 1850, including the faint, low-mass T-Tauri stars, which are difficult to distinguish with ground-based telescopes. Hubble's fine angular resolution can pick out these stars, even in other galaxies. Massive stars of the OB type emit large amounts of energetic ultraviolet radiation, which is absorbed by the Earth's atmosphere. From Hubble's position above the atmosphere, it can detect this ultraviolet light.

    NGC 1850, the brightest star cluster in the Large Magellanic Cloud, is in the southern constellation of Dorado, called the Goldfish or the Swordfish. This image was created from five archival exposures taken by the Wide Field Planetary Camera 2 between April 3, 1994 and February 6, 1996. More information about the Hubble Space Telescope is online at http://www.stsci.edu. More information about the Wide Field and Planetary Camera 2 is at http://wfpc2.jpl.nasa.gov.

    The Space Telescope Science Institute, Baltimore

  20. Bayesian anatomy of galaxy structure

    NASA Astrophysics Data System (ADS)

    Yoon, Ilsang

    In this thesis I develop Bayesian approach to model galaxy surface brightness and apply it to a bulge-disc decomposition analysis of galaxies in near-infrared band, from Two Micron All Sky Survey (2MASS). The thesis has three main parts. First part is a technical development of Bayesian galaxy image decomposition package GALPHAT based on Markov chain Monte Carlo algorithm. I implement a fast and accurate galaxy model image generation algorithm to reduce computation time and make Bayesian approach feasible for real science analysis using large ensemble of galaxies. I perform a benchmark test of G ALPHAT and demonstrate significant improvement in parameter estimation with a correct statistical confidence. Second part is a performance test for full Bayesian application to galaxy bulge-disc decomposition analysis including not only the parameter estimation but also the model comparison to classify different galaxy population. The test demonstrates that GALPHAT has enough statistical power to make a reliable model inference using galaxy photometric survey data. Bayesian prior update is also tested for parameter estimation and Bayes factor model comparison and it shows that informative prior significantly improves the model inference in every aspects. Last part is a Bayesian bulge-disc decomposition analysis using 2MASS Ks-band selected samples. I characterise the luminosity distributions in spheroids, bulges and discs separately in the local Universe and study the galaxy morphology correlation, by full utilizing the ensemble parameter posterior of the entire galaxy samples. It shows that to avoid a biased inference, the parameter covariance and model degeneracy has to be carefully characterized by the full probability distribution.

  1. Galaxy populations in rich environments

    NASA Astrophysics Data System (ADS)

    Tran, Kim-Vy Huu

    2002-11-01

    Combining two color HST/WFPC2 mosaics with extensive Keck/LRIS spectroscopy, we derive physical properties for over 400 confirmed cluster members at z = 0.33, 0.58, and 0.83 to provide key tests of current CDM models of hierarchical galaxy formation. Morphological characteristics such as bulge to total luminosity, half-light radius, bulge/disk scale length, and galaxy asymmetry are measured by determining the best-fit 2D bulge + disk model for each galaxy. We rigorously test these measurements using extensive mock galaxy catalogs to quantify systematic and random errors. Utilizing quantitative structural parameters, spectral indices ([OII] λ3727, HS, and H-γ), Hubble types, internal velocity dispersions (for a subset), and galaxy colors, we find that: (1)Galaxies spanning the range of Hubble type (-5 ≤ T ≤ 8) are well-fit by a de Vaucouleurs bulge with exponential disk profile; (2)The average [OII] equivalent width of the most disk-dominated members (B/T < 0.25) is significantly higher than the average of the bulge-dominated members (B/T ≥ 0.4); (3)The physical properties, e.g. half-light radii, bulge-to-total luminosities, and bulge ellipticities, of cluster elliptical and S0 galaxies (-17.3 ≥ MBz - 5log h 70 ≥ -19.3) are consistent with the two types sharing a common parent galaxy population; (4)In these three clusters, the distributions of cluster disk sizes are indistinguishable, a result contrary to predictions from current hierarchical formation models; (5)Post- starburst (“E + A”) galaxies are a non- negligible fraction (˜5 20%) of the cluster population at these redshifts; (6)We find compelling evidence that the E + A mass distribution evolves with redshift (“downsizing”) such that E + A galaxies span the range in mass at high redshift but only low mass E + A's exist in nearby clusters.

  2. Spectroscopic Observations of Merging Galaxies

    NASA Astrophysics Data System (ADS)

    Donzelli, C. J.; Pastoriza, M. G.

    2000-07-01

    In this paper we describe the spectroscopic and infrared properties of a sample of 25 merging galaxy pairs, selected from the catalog of Arp & Madore, and we compare them with those observed in a similar sample of interacting galaxies (Donzelli & Pastoriza). It is noted that mergers as well as interacting systems comprise a wide range of spectral types, going from those corresponding to well-evolved stellar populations (older than 200 Myr) to those that show clear signatures of H II regions with stellar populations younger than 8 Myr. However, merger galaxies show on average more excited spectra than interacting pairs, which could be attributed to lower gas metallicity. From the emission lines we also found that merging systems show on average higher (about a factor of 2) star formation rates than interacting galaxies. Classical diagnostic diagrams show that only three of 50 of the galaxies (6%) present some form of nuclear activity: two Seyfert galaxies and one LINER. However, through a detailed analysis of the pure emission-line spectra, we conclude that this fraction may raise up to 23% of the mergers if we consider that some galaxies host a low-luminosity active nucleus surrounded by strong star-forming regions. This latter assumption is also supported by the infrared colors of the galaxies. Regarding to the total infrared luminosities, the merging galaxies show on average an IR luminosity, log(Lir)=10.7, lower than that of interacting systems, log(Lir)=10.9. We find that only three mergers of the sample (12%) can be classified as luminous infrared galaxies, while this fraction increases to 24% in the interacting sample. Based on observations made at CASLEO. Complejo Astronómico El Leoncito is operated under agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina and the National Universities of La Plata, Córdoba and San Juan.

  3. Testing galaxy formation models with galaxy stellar mass functions

    NASA Astrophysics Data System (ADS)

    Lim, S. H.; Mo, H. J.; Lan, T.-W.; Ménard, B.

    2017-01-01

    We compare predictions of a number of empirical models and numerical simulations of galaxy formation to the conditional stellar mass functions of galaxies in groups of different masses obtained recently by Lan et al. to test how well different models accommodate the data. The observational data clearly prefer a model in which star formation in low-mass haloes changes behaviour at a characteristic redshift zc ˜ 2. There is also tentative evidence that this characteristic redshift depends on environment, becoming zc ˜ 4 in regions that eventually evolve into rich clusters of galaxies. The constrained model is used to understand how galaxies form and evolve in dark matter haloes, and to make predictions for other statistical properties of the galaxy population, such as the stellar mass functions of galaxies at high z, the star formation, and stellar mass assembly histories in dark matter haloes. A comparison of our model predictions with those of other empirical models shows that different models can make vastly different predictions, even though all of them are tuned to match the observed stellar mass functions of galaxies.

  4. ORIENTATION OF BRIGHTER GALAXIES IN NEARBY GALAXY CLUSTERS

    SciTech Connect

    Panko, E.; Juszczyk, T.; Flin, P. E-mail: sfflin@cyf-kr.edu.pl

    2009-12-15

    A sample of 6188 nearby galaxy structures, complete to r{sub F} = 18fm3 and containing at least 10 members each, was the observational basis for an investigation of the alignment of bright galaxies with the major axes for the parent clusters. The distribution of position angles for galaxies within the clusters, specifically the brightest, the second brightest, the third, and the tenth brightest galaxies was tested for isotropy. Galaxy position angles appear to be distributed isotropically, as are the distributions of underlying cluster structure position angles. The characterization of galaxy structures according to richness class also appears to be isotropic. Characterization according to BM types, which are known for 1056 clusters, is more interesting. Only in the case of clusters of BM type I is there an alignment of the brightest cluster member with the major axis of the parent cluster. The effect is observed at the 2 significance level. In other investigated cases the distributions are isotropic. The results confirm the special role of cD galaxies in the origin/evolution of large-scale structures.

  5. The Dragonfly Nearby Galaxies Survey. II. Ultra-Diffuse Galaxies near the Elliptical Galaxy NGC 5485

    NASA Astrophysics Data System (ADS)

    Merritt, Allison; van Dokkum, Pieter; Danieli, Shany; Abraham, Roberto; Zhang, Jielai; Karachentsev, I. D.; Makarova, L. N.

    2016-12-01

    We present the unexpected discovery of four ultra-diffuse galaxies (UDGs) in a group environment. We recently identified seven extremely low surface brightness galaxies in the vicinity of the spiral galaxy M101, using data from the Dragonfly Telephoto Array. The galaxies have effective radii of 10″-38″ and central surface brightnesses of 25.6-27.7 mag arcsec-2 in the g-band. We subsequently obtained follow-up observations with HST to constrain the distances to these galaxies. Four remain persistently unresolved even with the spatial resolution of HST/ACS, which implies distances of D\\gt 17.5 Mpc. We show that the galaxies are most likely associated with a background group at ˜27 Mpc containing the massive ellipticals NGC 5485 and NGC 5473. At this distance, the galaxies have sizes of 2.6-4.9 kpc, and are classified as UDGs, similar to the populations that have been revealed in clusters such as Coma, Virgo, and Fornax, yet even more diffuse. The discovery of four UDGs in a galaxy group demonstrates that the UDG phenomenon is not exclusive to cluster environments. Furthermore, their morphologies seem less regular than those of the cluster populations, which may suggest a different formation mechanism or be indicative of a threshold in surface density below which UDGs are unable to maintain stability.

  6. Lopsided Collections of Satellite Galaxies

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-12-01

    You might think that small satellite galaxies would be distributed evenly around their larger galactic hosts but local evidence suggests otherwise. Are satellite distributions lopsided throughout the universe?Satellites in the Local GroupThe distribution of the satellite galaxies orbiting Andromeda, our neighboring galaxy, is puzzling: 21 out of 27 ( 80%) of its satellites are on the side of Andromeda closest to us. In a similar fashion, 4 of the 11 brightest Milky Way satellites are stacked on the side closest to Andromeda.It seems to be the case, then, that satellites around our pair of galaxies preferentially occupy the space between the two galaxies. But is this behavior specific to the Local Group? Or is it commonplace throughout the universe? In a recent study, a team of scientists led by Noam Libeskind (Leibniz Institute for Astrophysics Potsdam, Germany) set out to answer this question.Properties of the galaxies included in the authors sample. Left: redshifts for galaxy pairs. Right: Number of satellite galaxies around hosts. [Adapted from Libeskind et al. 2016]Asymmetry at LargeLibeskind and collaborators tested whether this behavior is common by searching through Sloan Digital Sky Survey observations for galaxy pairs that are similar to the Milky Way/Andromeda pair. The resulting sample consists of 12,210 pairs of galaxies, which have 46,043 potential satellites among them. The team then performed statistical tests on these observations to quantify the anisotropic distribution of the satellites around the host galaxies.Libeskind and collaborators find that roughly 8% more galaxies are seen within a 15 angle facing the other galaxy of a pair than would be expected in a uniform distribution. The odds that this asymmetric behavior is randomly produced, they show, are lower than 1 in 10 million indicating that the lopsidedness of satellites around galaxies in pairs is a real effect and occurs beyond just the Local Group.Caution for ModelingProbability that

  7. Color and magnitude dependence of galaxy clustering

    NASA Astrophysics Data System (ADS)

    Müller, Volker

    2016-10-01

    A quantitative study of the clustering properties of galaxies in the cosmic web as a function of absolute magnitude and colour is presented using the SDSS Data Release 7 galaxy redshift survey. We compare our results with mock galaxy samples obtained with four different semi-analytical models of galaxy formation imposed on the merger trees of the Millenium simulation.

  8. DEPENDENCE OF BARRED GALAXY FRACTION ON GALAXY PROPERTIES AND ENVIRONMENT

    SciTech Connect

    Lee, Gwang-Ho; Lee, Myung Gyoon; Park, Changbom; Choi, Yun-Young E-mail: mglee@astro.snu.ac.kr E-mail: yy.choi@khu.ac.kr

    2012-02-01

    We investigate the dependence of the occurrence of bars in galaxies on galaxy properties and environment. We use a volume-limited sample of 33,391 galaxies brighter than M{sub r} = -19.5 + 5logh at 0.02 {<=} z {<=} 0.05489, drawn from the Sloan Digital Sky Survey Data Release 7. We classify the galaxies into early and late types, and identify bars by visual inspection. Among 10,674 late-type galaxies with axis ratio b/a > 0.60, we find 3240 barred galaxies (f{sub bar} = 30.4%) which divide into 2542 strong bars (f{sub SB1} = 23.8%) and 698 weak bars (f{sub SB2} = 6.5%). We find that f{sub SB1} increases as u - r color becomes redder and that it has a maximum value at intermediate velocity dispersion ({sigma} {approx_equal}150 km s{sup -1}). This trend suggests that strong bars are dominantly hosted by intermediate-mass systems. Weak bars prefer bluer galaxies with lower mass and lower concentration. In the case of strong bars, their dependence on the concentration index appears only for massive galaxies with {sigma} > 150 km s{sup -1}. We also find that f{sub bar} does not directly depend on the large-scale background density when other physical parameters (u - r color or {sigma}) are fixed. We discover that f{sub SB1} decreases as the separation to the nearest neighbor galaxy becomes smaller than 0.1 times the virial radius of the neighbor regardless of neighbor's morphology. These results imply that strong bars are likely to be destroyed during strong tidal interactions and that the mechanism for this phenomenon is gravitational and not hydrodynamical. The fraction of weak bars has no correlation with environmental parameters. We do not find any direct evidence for environmental stimulation of bar formation.

  9. Galaxy and Mass Assembly (GAMA): merging galaxies and their properties

    NASA Astrophysics Data System (ADS)

    De Propris, Roberto; Baldry, Ivan K.; Bland-Hawthorn, Joss; Brough, Sarah; Driver, Simon P.; Hopkins, Andrew M.; Kelvin, Lee; Loveday, Jon; Phillipps, Steve; Robotham, Aaron S. G.

    2014-11-01

    We derive the close pair fractions and volume merger rates for galaxies in the Galaxy and Mass Assembly (GAMA) survey with -23 < Mr < -17 (ΩM = 0.27, ΩΛ = 0.73, H0 = 100 km s-1 Mpc-1) at 0.01 < z < 0.22 (look-back time of <2 Gyr). The merger fraction is approximately 1.5 per cent Gyr-1 at all luminosities (assuming 50 per cent of pairs merge) and the volume merger rate is ≈3.5 × 10-4 Mpc-3 Gyr-1. We examine how the merger rate varies by luminosity and morphology. Dry mergers (between red/spheroidal galaxies) are found to be uncommon and to decrease with decreasing luminosity. Fainter mergers are wet, between blue/discy galaxies. Damp mergers (one of each type) follow the average of dry and wet mergers. In the brighter luminosity bin (-23 < Mr < -20), the merger rate evolution is flat, irrespective of colour or morphology, out to z ˜ 0.2. The makeup of the merging population does not appear to change over this redshift range. Galaxy growth by major mergers appears comparatively unimportant and dry mergers are unlikely to be significant in the buildup of the red sequence over the past 2 Gyr. We compare the colour, morphology, environmental density and degree of activity (BPT class, Baldwin, Phillips & Terlevich) of galaxies in pairs to those of more isolated objects in the same volume. Galaxies in close pairs tend to be both redder and slightly more spheroid dominated than the comparison sample. We suggest that this may be due to `harassment' in multiple previous passes prior to the current close interaction. Galaxy pairs do not appear to prefer significantly denser environments. There is no evidence of an enhancement in the AGN fraction in pairs, compared to other galaxies in the same volume.

  10. Spiral galaxies in clusters. III. Gas-rich galaxies in the Pegasus I cluster of galaxies

    SciTech Connect

    Bothun, G.D.; Schommer, R.A.; Sullivan, W.T. III

    1982-05-01

    We report the results of a 21-cm and optical survey of disk galaxies in the vicinity of the Pegasus I cluster of galaxies. The color--gas content relation (log(M/sub H//L/sub B/) vs (B-V)/sup T//sub 0/ ) for this particular cluster reveals the presence of a substantial number of blue, gas-rich galaxies. With few exceptions, the disk systems in Pegasus I retain large amounts of neutral hydrogen despite their presence in a cluster. This directly shows that environmental processes have not yet removed substantial amounts of gas from these disk galaxies. We conclude that the environment has had little or no observable effect upon the evolution of disk galaxies in Pegasus I. The overall properties of the Pegasus I spirals are consistent with the suggestion that this cluster is now at an early stage in its evolution.

  11. Local Universe Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Carignan, Claude

    2015-08-01

    One of the outstanding problems in cosmology is addressing the "small-scale crisis" and understanding structure formation at the smallest scales. Standard Lambda Cold Dark Matter cosmological simulations of Milky Way-size DM halos predict many more DM sub-halos than the number of dwarf galaxies observed. This is the so-called Missing Satellites Problem. The most popular interpretation of the Missing Satellites Problem is that the smallest dark matter halos in the universe are extremely inefficient at forming stars. The virialized extent of the Milky Way's halo should contain ~500 satellites, while only ˜100 satellites and dwarfs are observed in the whole Local Group. Despite the large amount of theoretical work and new optical observations, the discrepancy, even if reduced, still persists between observations and hierarchical models, regardless of the model parameters. It may be possible to find those isolated ultra-faint missing dwarf galaxies via their neutral gas component, which is one of the goals we are pursuing with the SKA precursor KAT-7 in South Africa, and soon with the SKA pathfinder MeerKAT.

  12. Chaos and Galaxy Evolution

    NASA Astrophysics Data System (ADS)

    Kandrup, H. E.

    2002-09-01

    This talk summarises a combined theoretical and numerical investigation of the role of chaos and transient chaos in time-dependent Hamiltonian systems which aim to model elliptical galaxies. The existence of large amounts of chaos in near-equilibrium configurations is of potential importance because configurations incorporating large numbers of chaotic orbits appear to be substantially more susceptible than nearly integrable systems to various irregularities associated with, e.g., internal substructures, satellite galaxies, and/or the effects of a high density environment. Alternatively, transient chaos, reflecting exponential sensitivity over comparatively short time intervals, can prove important by significantly increasing the overall efficiency of violent relaxation so as to facilitate a more rapid evolution towards a `well-mixed' equilibrium. Completely conclusive `smoking gun' evidence for chaos and chaotic mixing has not yet been obtained, although evidence for the presence of chaos can in principle be extracted from such data sets as provided by the Sloan Digital Sky Survey. Interestingly, however, arguments completely analogous to those applied to self-gravitating systems also suggest the presence of chaos in charged particle beams, a setting which is amenable to controlled experiments.

  13. Extinction in SC galaxies

    NASA Astrophysics Data System (ADS)

    Giovanelli, Riccardo; Haynes, Martha P.; Salzer, John J.; Wegner, Gary; da Costa, Luiz N.; Freudling, Wolfram

    1994-06-01

    We analyze the photometric properties of a sample of Sbc-Sc galaxies with known redshifts, single-dish H I profiles, and Charge Coupled Device (CCD) I band images. We derive laws that relate the measured isophotal radius at muI = 23.5, magnitude, scale length, and H I flux to the face-on aspect. We find spiral galaxies to be substantially less transparent than suggested in most previous determinations, but not as opaque as claimed by Valentijn (1990). Regions in the disk farther than two or three scale lengths from the center are close to completely transparent. In addition to statistically derived relations for the inclination dependence of photometric parameters, we present the results of a modeling exercise that utilizes the 'triplex' model of Disney et al. (1989) to obtain upper limits of the disk opacity. Within the framework of that model, and with qualitative consideration of the effects of scattering on extinction, we estimate late spiral disks at I band to have central optical depths tauI(0) less than 5 and dust absorbing layers with scale heights on the order of half that of the stellar component or less. We discuss our results in light of previous determinations of internal extinction relations and point out the substantial impact of internal extinction on the scatter of the Tully-Fisher relation. We also find that the visual diameters by which large catalogs are constructed (UGC, ESO-Uppsala) are nearly proportional to face-on isophotal diameters.

  14. FIR statistics of paired galaxies

    NASA Technical Reports Server (NTRS)

    Sulentic, Jack W.

    1990-01-01

    Much progress has been made in understanding the effects of interaction on galaxies (see reviews in this volume by Heckman and Kennicutt). Evidence for enhanced emission from galaxies in pairs first emerged in the radio (Sulentic 1976) and optical (Larson and Tinsley 1978) domains. Results in the far infrared (FIR) lagged behind until the advent of the Infrared Astronomy Satellite (IRAS). The last five years have seen numerous FIR studies of optical and IR selected samples of interacting galaxies (e.g., Cutri and McAlary 1985; Joseph and Wright 1985; Kennicutt et al. 1987; Haynes and Herter 1988). Despite all of this work, there are still contradictory ideas about the level and, even, the reality of an FIR enhancement in interacting galaxies. Much of the confusion originates in differences between the galaxy samples that were studied (i.e., optical morphology and redshift coverage). Here, the authors report on a study of the FIR detection properties for a large sample of interacting galaxies and a matching control sample. They focus on the distance independent detection fraction (DF) statistics of the sample. The results prove useful in interpreting the previously published work. A clarification of the phenomenology provides valuable clues about the physics of the FIR enhancement in galaxies.

  15. Galaxies appear simpler than expected.

    PubMed

    Disney, M J; Romano, J D; Garcia-Appadoo, D A; West, A A; Dalcanton, J J; Cortese, L

    2008-10-23

    Galaxies are complex systems the evolution of which apparently results from the interplay of dynamics, star formation, chemical enrichment and feedback from supernova explosions and supermassive black holes. The hierarchical theory of galaxy formation holds that galaxies are assembled from smaller pieces, through numerous mergers of cold dark matter. The properties of an individual galaxy should be controlled by six independent parameters including mass, angular momentum, baryon fraction, age and size, as well as by the accidents of its recent haphazard merger history. Here we report that a sample of galaxies that were first detected through their neutral hydrogen radio-frequency emission, and are thus free from optical selection effects, shows five independent correlations among six independent observables, despite having a wide range of properties. This implies that the structure of these galaxies must be controlled by a single parameter, although we cannot identify this parameter from our data set. Such a degree of organization appears to be at odds with hierarchical galaxy formation, a central tenet of the cold dark matter model in cosmology.

  16. Dark matter in elliptical galaxies

    NASA Technical Reports Server (NTRS)

    Carollo, C. M.; Zeeuw, P. T. DE; Marel, R. P. Van Der; Danziger, I. J.; Qian, E. E.

    1995-01-01

    We present measurements of the shape of the stellar line-of-sight velocity distribution out to two effective radii along the major axes of the four elliptical galaxies NGC 2434, 2663, 3706, and 5018. The velocity dispersion profiles are flat or decline gently with radius. We compare the data to the predictions of f = f(E, L(sub z)) axisymmetric models with and without dark matter. Strong tangential anisotropy is ruled out at large radii. We conclude from our measurements that massive dark halos must be present in three of the four galaxies, while for the fourth galaxy (NGC 2663) the case is inconclusive.

  17. "Dead quasars" in nearby galaxies?

    PubMed

    Rees, M J

    1990-02-16

    The nuclei of some galaxies undergo violent activity, quasars being the most extreme instances of this phenomenon. Such activity is probably short-lived compared to galactic lifetimes, and was most prevalent when the universe was only about one-fifth of its present age. A massive black hole seems the inevitable end point of such activity, and dead quasars should greatly outnumber active ones. In recent years, studies of stellar motions in the cores of several nearby galaxies indicate the presence of central dark masses which could be black holes. This article discusses how such evidence might be corroborated, and the potential implications for our understanding of active galaxies and black holes.

  18. Connecting interacting galaxies with manifolds

    NASA Astrophysics Data System (ADS)

    Romero-Gomez, M.; Athanassoula, E.

    2017-03-01

    It is well known that the interaction between two disk galaxies generates tidal spiral arms and a connection in the form of a bridge. Here we address the question of the formation of tidal arms and bridges from a dynamical point of view. We model the bridges and tails observed in interacting galaxies using the invariant manifolds associated to the Lyapunov orbits of the Lagrangian points of the galactic system, when the two galaxies are considered as two point masses in a circular orbit.

  19. Asymmetric Galaxies: Nature or Nurture?

    NASA Astrophysics Data System (ADS)

    Wilcots, E. M.

    2010-10-01

    Asymmetry is a common characteristic of many disk galaxies, but we have little understanding of its causes. In this contribution we look at the H I properties of a sample of Magellanic spirals, some of the most lopsided galaxies in the local Universe, and a sample of isolated spirals. In neither case do we see evidence of a link between the presence of a companion and asymmetry; indeed, asymmetry persists even in the absence of a companion or evidence of a recent interaction. These results suggest that once it arises, asymmetry may be a very long-lived characteristic of disk galaxies.

  20. Observations of faint field galaxies

    NASA Technical Reports Server (NTRS)

    Koo, David C.

    1987-01-01

    Number counts, colors, and angular correlations of field galaxies fainter than 20th mag are summarized. Resulting conclusions regarding the presence and nature of luminosity, spectral, and clustering evolution remain contraversial. Preliminary analysis of two major spectroscopic surveys near completion suggests that by z approximately 0.5, larger numbers of very blue galaxies of moderate luminosities are found than today. The skewer-like surveys also provide new probes of galaxy clustering on scales previously unexplored (larger than 200 Mpc) and over lookback times of several billion years.

  1. Morphological Galaxy Classification with Shapelets

    NASA Astrophysics Data System (ADS)

    Andrae, René; Melchior, Peter

    2008-12-01

    We present an unsupervised classification algorithm, that identifies natural classes of galaxy morphologies. Working on SDSS G-band imaging data, we encode the morphologies by shapelet decomposition. The algorithm employs a model-based soft clustering analysis to find groupings of similar data points. We demonstrate that the algorithm is able to clearly identify and distinguish groups of elliptical, face-on and edge-on spiral galaxies in a training data set. Based on the soft clustering results, we set up a soft classifier for a data set containing 1602 SDSS galaxies.

  2. Observations and Models of Galaxy Assembly Bias

    NASA Astrophysics Data System (ADS)

    Campbell, Duncan A.

    2017-01-01

    The assembly history of dark matter haloes imparts various correlations between a halo’s physical properties and its large scale environment, i.e. assembly bias. It is common for models of the galaxy-halo connection to assume that galaxy properties are only a function of halo mass, implicitly ignoring how assembly bias may affect galaxies. Recently, programs to model and constrain the degree to which galaxy properties are influenced by assembly bias have been undertaken; however, the extent and character of galaxy assembly bias remains a mystery. Nevertheless, characterizing and modeling galaxy assembly bias is an important step in understanding galaxy evolution and limiting any systematic effects assembly bias may pose in cosmological measurements using galaxy surveys.I will present work on modeling and constraining the effect of assembly bias in two galaxy properties: stellar mass and star-formation rate. Conditional abundance matching allows for these galaxy properties to be tied to halo formation history to a variable degree, making studies of the relative strength of assembly bias possible. Galaxy-galaxy clustering and galactic conformity, the degree to which galaxy color is correlated between neighbors, are sensitive observational measures of galaxy assembly bias. I will show how these measurements can be used to constrain galaxy assembly bias and the peril of ignoring it.

  3. Fantastic Four Galaxies with Planet (Artist Concept)

    NASA Technical Reports Server (NTRS)

    2007-01-01

    This artist's concept shows what the night sky might look like from a hypothetical planet around a star tossed out of an ongoing four-way collision between big galaxies (yellow blobs). NASA's Spitzer Space Telescope spotted this 'quadruple merger' of galaxies within a larger cluster of galaxies located nearly 5 billion light-years away.

    Though the galaxies appear intact, gravitational disturbances have caused them to stretch and twist, flinging billions of stars into space -- nearly three times as many stars as are in our Milky Way galaxy. The tossed stars are visible in the large plume emanating from the central, largest galaxy. If any of these stars have planets, their night skies would be filled with the monstrous merger, along with other galaxies in the cluster (smaller, bluish blobs).

    This cosmic smash-up is the largest known merger between galaxies of a similar size. While three of the galaxies are about the size of our Milky Way galaxy, the fourth (center of image) is three times as big. All four of the galaxies, as well as most other galaxies in the huge cluster, are blob-shaped ellipticals instead of spirals like the Milky Way.

    Ultimately, in about one hundred million years or so, the four galaxies E will unite into one. About half of the stars kicked out during the merger will fall back and join the new galaxy, making it one of the biggest galaxies in the universe.

  4. Galaxy NGC 1512

    NASA Technical Reports Server (NTRS)

    1999-01-01

    A rainbow of colors is captured in the center of a magnificent barred spiral galaxy, as witnessed by the three cameras of NASA's Hubble Space Telescope.

    The color-composite image of the galaxy NGC 1512 was created from seven images taken with the JPL-designed and built Wide Field and Planetary Camera 2 (WFPC-2), along with the Faint Object Camera and the Near Infrared Camera and Multi-Object Spectrometer. Hubble's unique vantage point high above the atmosphere allows astronomers to see objects over a broad range of wavelengths from the ultraviolet to the infrared and to detect differences in the regions around newly born stars.

    The new image is online at http://oposite.stsci.edu/pubinfo/pr/2001/16 and http://www.jpl.nasa.gov/images/wfpc .

    The image reveals a stunning 2,400 light-year-wide circle of infant star clusters in the center of NGC 1512. Located 30 million light-years away in the southern constellation of Horologium, NGC 1512 is a neighbor of our Milky Way galaxy.

    With the Hubble data, a team of Israeli and American astronomers performed one of the broadest, most detailed studies ever of such star-forming regions. Results will appear in the June issue of the Astronomical Journal. The team includes Dr. Dan Maoz, Tel-Aviv University, Israel and Columbia University, New York, N.Y.; Dr. Aaron J. Barth, Harvard-Smithsonian Center for Astrophysics, Cambridge, Mass.; Dr. Luis C. Ho, The Observatories of the Carnegie Institution of Washington; Dr. Amiel Sternberg, Tel-Aviv University, Israel; and Dr. Alexei V. Filippenko, University of California, Berkeley.

    The Space Telescope Science Institute, Baltimore, Md., manages space operations for the Hubble Space Telescope for NASA's Office of Space Science, Washington, D.C. The Institute is operated by the Association of Universities for Research in Astronomy Inc., for NASA under contract with NASA's Goddard Space Flight Center, Greenbelt, Md. The Hubble Space Telescope is a project of international

  5. Joint Analysis of Galaxy-Galaxy Lensing and Galaxy Clustering: Methodology and Forecasts for DES

    SciTech Connect

    Park, Y.

    2015-07-19

    The joint analysis of galaxy-galaxy lensing and galaxy clustering is a promising method for inferring the growth function of large scale structure. Our analysis will be carried out on data from the Dark Energy Survey (DES), with its measurements of both the distribution of galaxies and the tangential shears of background galaxies induced by these foreground lenses. We develop a practical approach to modeling the assumptions and systematic effects affecting small scale lensing, which provides halo masses, and large scale galaxy clustering. Introducing parameters that characterize the halo occupation distribution (HOD), photometric redshift uncertainties, and shear measurement errors, we study how external priors on different subsets of these parameters affect our growth constraints. Degeneracies within the HOD model, as well as between the HOD and the growth function, are identified as the dominant source of complication, with other systematic effects sub-dominant. The impact of HOD parameters and their degeneracies necessitate the detailed joint modeling of the galaxy sample that we employ. Finally, we conclude that DES data will provide powerful constraints on the evolution of structure growth in the universe, conservatively/optimistically constraining the growth function to 7.9%/4.8% with its first-year data that covered over 1000 square degrees, and to 3.9%/2.3% with its full five-year data that will survey 5000 square degrees, including both statistical and systematic uncertainties.

  6. Low mass galaxy clusters and galaxy morphology evolution

    NASA Astrophysics Data System (ADS)

    Nilo Castellón, J. L.; Órdenes, Y.; Ramos, F.; Alonso, M. V.; Cuevas, H.; García Lambas, D.; Ramírez, A.

    We present preliminary results about the galaxy morphology evolution in three low mass galaxy clusters: RX J0533.9-5809 ([VMF98]046, z 0.198), RX J1204.3-0350 ([VMF98]113, z 0.261) and RX J0533.8-5746 ([VMF98]045, z 0.295). Full photometric catalogues were created using SExtractor v2.8.0. Also, photometric redshifts (z phot ) were obtained for all the object classified as galaxies, using the ANNz code. Color-Magnitude Diagrams (CMD) were generated for those galaxies clas- sified as cluster members. Clear Red Cluster Sequences (RCS) with a me- dian slopes of -0.03 are observed for all the tree clusters. Based on the RCS best fit, a blue and a red population of galaxies were defined, observ- ing that the color distribution of the cluster [VMF98]045 is well fitted by a double Gaussian function (2 0.2), while the clusters [VMF98]046 and [VMF98]113 presents a third population between the blue and red peak dis- tributions. These preliminary results would show the existence of a possible transi- tion population between the blue and the red population in these low mass galaxy clusters at low redshifts.

  7. Galaxy-Galaxy Lensing in the DES Science Verification Data

    SciTech Connect

    Clampitt, J.; et al.

    2016-03-18

    We present galaxy-galaxy lensing results from 139 square degrees of Dark Energy Survey (DES) Science Verification (SV) data. Our lens sample consists of red galaxies, known as redMaGiC, which are specifically selected to have a low photometric redshift error and outlier rate. The lensing measurement has a total signal-to-noise of 29, including all lenses over a wide redshift range $0.2 < z < 0.8$. Dividing the lenses into three redshift bins, we find no evidence for evolution in the halo mass with redshift. We obtain consistent results for the lensing measurement with two independent shear pipelines, ngmix and im3shape. We perform a number of null tests on the shear and photometric redshift catalogs and quantify resulting systematic errors. Covariances from jackknife subsamples of the data are validated with a suite of 50 mock surveys. The results and systematics checks in this work provide a critical input for future cosmological and galaxy evolution studies with the DES data and redMaGiC galaxy samples. We fit a Halo Occupation Distribution (HOD) model, and demonstrate that our data constrains the mean halo mass of the lens galaxies, despite strong degeneracies between individual HOD parameters.

  8. Population of the Galaxy

    SciTech Connect

    Troitskii, V.

    1981-09-01

    A new theory of the population of the Galaxy, based on the hypothesis of explosive: simultaneous and one-time-origination of life in the universe at a certain moment of its evolutionary development, is discussed in the report. According to the proposed theory, civilizations began to arise around the present moment of the history of the universe. Their possible number is limited even when their lifetime is unlimited. The age and number of simultaneously existing civilizations when their lifetime is unlimited is determined by the duration and dispersion of the time of evolution of life on different planets from the cell level to civilization. The proposed theory explains better than Drake's theory the negative results of the search for evidence of the existence of superpowerful extraterrestrial civilizations and the noncolonization of the earth.

  9. GREEN GALAXIES IN THE COSMOS FIELD

    SciTech Connect

    Pan, Zhizheng; Kong, Xu; Fan, Lulu E-mail: xkong@ustc.edu.cn

    2013-10-10

    We present research on the morphologies, spectra, and environments of ≈2350 'green valley' galaxies at 0.2 < z < 1.0 in the COSMOS field. The bimodality of dust-corrected NUV–r {sup +} color is used to define 'green valley'; it removes dusty star-forming galaxies from galaxies that are truly transitioning between the blue cloud and the red sequence. Morphological parameters of green galaxies are intermediate between those of blue and red galaxy populations, both on the Gini-asymmetry and the Gini-M{sub 20} planes. Approximately 60%-70% of green disk galaxies have intermediate or big bulges, and only 5%-10% are pure disk systems, based on morphological classification using the Zurich Estimator of Structural Types. The obtained average spectra of green galaxies are intermediate between blue and red ones in terms of [O II], Hα, and Hβ emission lines. Stellar population synthesis on the average spectra shows that green galaxies are on average older than blue galaxies but younger than red galaxies. Green galaxies and blue galaxies have similar projected galaxy density (Σ{sub 10}) distributions at z > 0.7. At z < 0.7, the fractions of M{sub *} < 10{sup 10.0} M{sub ☉} green galaxies located in a dense environment are found to be significantly larger than those of blue galaxies. The morphological and spectral properties of green galaxies are consistent with the transitioning population between the blue cloud and the red sequence. The possible mechanisms for quenching star formation activities in green galaxies are discussed. The importance of active galactic nucleus feedback cannot be well constrained in our study. Finally, our findings suggest that environmental conditions, most likely starvation and harassment, significantly affect the transformation of M{sub *} < 10{sup 10.0} M{sub ☉} blue galaxies into red galaxies, especially at z < 0.5.

  10. Markarian 36: A young galaxy

    NASA Astrophysics Data System (ADS)

    Huchra, J.; Geller, M.; Hunter, D.; Gallagher, J.

    The UV, optical, and IR observations of three galaxies (NGC 4214, NGC4670 = Haro 9, and Markarian 36) are reported. The optical spectrum of Markarian 36, a dwarf galaxy, is dominated by strong emission lines. The UV spectrum however shows no strong emission lines, only weak C IV and Si absorption and a strong blue continuum that is still rising shortward of Lyman alpha. Combined UV, optical and IR observations show that the continuum is nearly Rayleigh-Jeans from 1100 A to 2.2 microns, with a slight excess in the optical due to free-free emission and recombination lines. This galaxy has few, if any, red stars. Combined with its low metal content, this lack of red stars is a very strong indication that this galaxy has only recently begun to form stars.

  11. Cold dust in elliptical galaxies.

    NASA Astrophysics Data System (ADS)

    Wiklind, T.; Henkel, C.

    1995-05-01

    We have observed the λ1250 µm flux in 8 elliptical galaxies using the MPIfR 7-channel bolometer system attachet to the IRAM 30-m telescope. Five of the galaxies are detected at more than 3σ, two are tentatively detected and for one we obtained an upper limit. For two of the detected galaxies, the CO(2-1) line makes a significant contribution to the measured λ1250 µm flux. A comparison of the λ1250 µm fluxes, corrected for the CO(2-1) line contribution, with IRAS 60 and 100µm data shows that there is a colt dust component (Td~<20K) in two of the ellipticals. The other galaxies have λ1250 µm fluxes consistent with a one-temperature component, with Td typically between 20-30K.

  12. Galaxies in the Cosmological Context

    NASA Astrophysics Data System (ADS)

    Lucia, Gabriella De

    In the last decades, a number of observational experiments have converged to establish the cold dark matter model as the "de facto" standard model for structure formation. While the cosmological paradigm appears to be firmly established, a theory of galaxy formation remains elusive, and our understanding of the physical processes that determine the observed variety of galaxy properties and their evolution as a function of cosmic time and environment is far from complete. Although much progress has been made, both on the theoretical and observational side, understanding how galaxies form and evolve remains one of the most outstanding questions of modern astrophysics. This chapter provides an introduction to ideas and concepts that underpin modern models of galaxy formation and evolution, in the currently favoured cosmological context.

  13. The KMOS Galaxy Clusters Project

    NASA Astrophysics Data System (ADS)

    Davies, Roger L.; Beifiori, A.; Bender, R.; Cappellari, M.; Chan, J.; Houghton, R.; Mendel, T.; Saglia, R.; Sharples, R.; Stott, J.; Smith, R.; Wilman, D.

    2015-04-01

    KMOS is a cryogenic infrared spectrograph fed by twentyfour deployable integral field units that patrol a 7.2 arcminute diameter field of view at the Nasmyth focus of the ESO VLT. It is well suited to the study of galaxy clusters at 1 < z < 2 where the well understood features in the restframe V-band are shifted into the KMOS spectral bands. Coupled with HST imagining, KMOS offers a window on the critical epoch for galaxy evolution, 7-10 Gyrs ago, when the key properties of cluster galaxies were established. We aim to investigate the size, mass, morphology and star formation history of galaxies in the clusters. Here we describe the instrument, discuss the status of the observations and report some preliminary results.

  14. HUBBLE SERVES UP A GALAXY

    NASA Technical Reports Server (NTRS)

    2002-01-01

    What may first appear as a sunny side up egg is actually NASA Hubble Space Telescope's face-on snapshot of the small spiral galaxy NGC 7742. But NGC 7742 is not a run-of-the-mill spiral galaxy. In fact, this spiral is known to be a Seyfert 2 active galaxy, a type of galaxy that is probably powered by a black hole residing in its core. The core of NGC 7742 is the large yellow 'yolk' in the center of the image. The lumpy, thick ring around this core is an area of active starbirth. The ring is about 3,000 light-years from the core. Tightly wound spiral arms also are faintly visible. Surrounding the inner ring is a wispy band of material, which is probably the remains of a once very active stellar breeding ground. Credit: Hubble Heritage Team (AURA/STScI/NASA)

  15. Cosmological models of galaxy formation

    NASA Astrophysics Data System (ADS)

    Menci, N.

    I review the present status of galaxy formation models within a cosmological framework. I focus on semi-analytic models based on the Cold Dark Matter scenario, discussing the role of the different physical process involving dark matter and baryons in determining the observed statistical properties of galaxies and their dependence on cosmic time and on environment evolution. I will highlight some present problems and briefly present the main effects of assuming a Warm Dark Matter scenario.

  16. THE SPIRAL GALAXY M100

    NASA Technical Reports Server (NTRS)

    2002-01-01

    An image of the grand design of spiral galaxy M100 obtained with NASA's Hubble Space Telescope resolves individual stars within the majestic spiral arms. (These stars typically appeared blurred together when viewed with ground-based telescopes.) Hubble has the ability to resolve individual stars in other galaxies and measure accurately the light from very faint stars. This makes space telescope invaluable for identifying a rare class of pulsating stars, called Cepheid Variable stars embedded within M100's spiral arms. Cepheids are reliable cosmic distance mileposts. The interval it takes for the Cepheid to complete one pulsation is a direct indication of the stars's intrinsic brightness. This value can be used to make a precise measurement of the galaxy's distance, which turns out to be 56 million light-years. M100 (100th object in the Messier catalog of non-stellar objects) is a majestic face-on spiral galaxy. It is a rotating system of gas and stars, similar to our own galaxy, the Milky Way. Hubble routinely can view M100 with a level of clarity and sensitivity previously possible only for the very few nearby galaxies that compose our 'Local Group.'' M100 is a member of the huge Virgo cluster of an estimated 2,500 galaxies. The galaxy can be seen by amateur astronomers as a faint, pinwheel-shaped object in the spring constellation Coma Berenices. Technical Information: The Hubble Space Telescope image was taken on December 31, 1993 with the Wide Field Planetary Camera 2 (WFPC 2). This color picture is a composite of several images taken in different colors of light. Blue corresponds to regions containing hot newborn stars. The Wide Field and Planetary Camera 2 was developed by the Jet Propulsion Laboratory (JPL) and managed by the Goddard Space Flight Center for NASA's Office of Space Science. Credit: J. Trauger, JPL and NASA

  17. Counterrotating cores in elliptical galaxies

    NASA Astrophysics Data System (ADS)

    Balcella, Marc Comas

    The dynamics of the merger between a high- and a low-elliptical galaxy was studied to understand how kinematically peculiar cores in elliptical galaxies might form. Numerical simulations of mergers provide rotation curves, surface density profiles, surface density contour plots and velocity maps of the merger remnants, as well as diagnostics on the dynamics such as phase-space diagrams. This type of merger can create counterrotating cores. The core of the smaller galaxy, of higher density, is not disrupted by the primary tidal field and sinks to the center of the primary as an independent dynamical subsystem. Core counterrotation occurs only when the initial merger orbit is retrograde with respect to the pin of the primary. The remnant has higher effective radius and lower mean central surface density than the primary galaxy, but a smaller core radius. The adsorption of orbital energy and angular momentum by the primary particles greatly modifies the kinematic structure of the larger galaxy. Twisted rotation axes and isophote twists appear over the whole body of the remnant. These diagnostics may be used to determine whether observed peculiar cores might have formed via an elliptical-elliptical merger. Galaxies with counterrotating cores should show a complex velocity field, isophotal irregularities, and, in general, a slow rotation in the main body of the galaxy. The present experiments are the first galaxy-satellite merger experiments involving an active, rotating secondary. They show that part of the orbital angular momentum is absorbed by the secondary, thus the secondary contributes to its own sinking: the sinking rate depends on the orientation of the secondary spin. Long-slit spectroscopic observations of NGC 3656 are reported.

  18. Radio emission in peculiar galaxies

    NASA Technical Reports Server (NTRS)

    Demellorabaca, Dulia F.; Abraham, Zulema

    1990-01-01

    During the last decades a number of surveys of peculiar galaxies have been carried out and accurate positions become available. Since peculiarities are a possible evidence of radio emission (Wright, 1974; Sulentic, 1976; Stocke et al., 1978), the authors selected a sample of 24 peculiar galaxies with optical jet-like features or extensions in different optical catalogues, mainly the Catalogue of Southern Peculiar Galaxies and Associations (Arp and Madore, 1987) and the ESO/Uppsala Survey of the ESO(B) Atlas (Lauberts, 1982) for observation at the radio continuum frequency of 22 GHz. The sample is listed in a table. Sol (1987) studied this sample and concluded that the majority of the jet-like features seem to admit an explanation in terms of interactive galaxies with bridges and/or tails due to tidal effects. Only in a few cases do the jets seem to be possibly linked to some nuclear activity of the host galaxy. The observations were made with the 13.7m-radome enclosed Itapetinga Radiotelescope (HPBW of 4.3 arcmin), in Brazil. The receiver was a 1 GHz d.s.b. super-heterodine mixer operated in total-power mode, with a system temperature of approximately 800 K. The observational technique consisted in scans in right ascention, centralized in the optical position of the galaxy. The amplitude of one scan was 43 arcmin, and its duration time was 20 seconds. The integration time was at least 2 hours (12 ten-minute observations) and the sensibility limit adopted was an antenna temperature greater than 3 times the r.m.s. error of the baseline determination. Virgo A was used as the calibrator source. Three galaxies were detected for the first time as radio sources and four other known galaxies at low frequencies had their flux densities measured at 22 GHz. The results for these sources are presented.

  19. Hidden interaction in SBO galaxies

    NASA Technical Reports Server (NTRS)

    Galletta, G.; Bettoni, D.; Oosterloo, T.; Fasano, G.

    1990-01-01

    Galaxies, like plants, show a large variety of grafts: an individual of some type connects physically with a neighborhood of same or different type. The effects of these interactions between galaxies have a broad range of morphologies depending, among other quantities, on the distance of the closest approach between systems and the relative size of the two galaxies. A sketch of the possible situations is shown in tabular form. This botanical classification is just indicative, because the effects of interactions can be notable also at relatively large separations, when additional conditions are met, as for example low density of the interacting systems or the presence of intra-cluster gas. In spite of the large variety of encounters and effects, in the literature the same terms are often used to refer to different types of interactions. Analysis indicates that only few of the situations show evident signs of interaction. They appear to be most relevant when the size of the two galaxies is comparable. Bridges and tails, like the well known case of NGC 4038/39, the Antennae, are only observed for a very low percentage of all galaxies (approx. 0.38 percent, Arp and Madore 1977). In most cases of gravitational bond between two galaxies, the effects of interactions are not relevant or evident. For instance, the detection of stellar shells (Malin and Carter 1983), which have been attributed to the accretion of gas stripped from another galaxy or to the capture and disruption of a small stellar system (Quinn 1984), requires particular observing and reduction techniques. Besides these difficulties of detection, time plays an important role in erasing, within a massive galaxy, the effects of interactions with smaller objects. This can happen on a timescale shorter than the Hubble time, so the number of systems now showing signs of interaction suggests lower limits to the true frequency of interactions in the life-time of a stellar system.

  20. The Secret Lives of Galaxies

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The ground-based image in visible light locates the hub imaged with the Hubble Space Telescope. This barred galaxy feeds material into its hub, igniting star birth. The Hubble NICMOS instrument penetrates beneath the dust to reveal clusters of young stars. Footage shows ground-based, WFPC2, and NICMOS images of NGS 1365. An animation of a large spiral galaxy zooms from the edge to the galactic bulge.

  1. Simulating high-redshift galaxies

    NASA Astrophysics Data System (ADS)

    Salvaterra, Ruben; Ferrara, Andrea; Dayal, Pratika

    2011-06-01

    Recent observations have gathered a considerable sample of high-redshift galaxy candidates and determined the evolution of their luminosity function (LF). To interpret these findings, we use cosmological SPH simulations including, in addition to standard physical processes, a detailed treatment of the Pop III-Pop II transition in early objects. The simulated high-z galaxies match remarkably well the amplitude and slope of the observed LF in the redshift range 5 < z < 10. The LF shifts towards fainter luminosities with increasing redshift, while its faint-end slope keeps an almost constant value, α≈-2. The stellar populations of high-z galaxies have ages of 100-300 (40-130) Myr at z= 5 (z= 7-8), implying an early (z > 9.4) start of their star formation activity; the specific star formation rate is almost independent of galactic stellar mass. These objects are enriched rapidly with metals and galaxies identified by HST/WFC3 (?) show metallicities ≈0.1 Z⊙ even at z= 7-8. Most of the simulated galaxies at z≈ 7 (noticeably the smallest ones) are virtually dust-free, and none of them has an extinction larger than E(B-V) = 0.01. The bulk (50 per cent) of the ionizing photons is produced by objects populating the faint end of the LF (?), which JWST will resolve up to z= 7.3. Pop III stars continue to form essentially at all redshifts; however, at z= 6 (z= 10) the contribution of Pop III stars to the total galactic luminosity is always less than 5 per cent for ? (?). The typical high-z galaxies closely resemble the GRB host galaxy population observed at lower redshifts, strongly encouraging the use of GRBs to detect the first galaxies.

  2. Technical Civilizations in the Galaxy

    NASA Technical Reports Server (NTRS)

    Jones, Harry

    2005-01-01

    Are there other technical civilizations in the galaxy? Past analyses come to different conclusions. Cocconi and Morrison demonstrated in 1959 that interstellar radio communication was possible and Drake conducted the first search for beacons in 1960. The Drake equation estimates the number of galactic civilizations that are transmitting beacons as the product of the rate of star formation in the galaxy, the fraction of stars with planets, their average number of earthlike planets, the fraction with intelligent life and interstellar communication, and the average lifetime of a technical civilization. The Drake model of the galaxy contains many technical civilizations with communication but no interstellar travel. Michael Hart in 1975 strongly challenged this model. Starting with the fact that no extraterrestrials have been observed on Earth, and assuming that interstellar colonization is possible, he concluded that it was very likely that we are the first civilization in our galaxy and that searching or beacons is probably a waste of time and money. The Fermi paradox similarly reasons that if extraterrestrials exist: they should be here, and asks, Where are they? The Hart/Fermi model of the galaxy contains only our civilization and suggests we may colonize the galaxy. A third galactic model is that we are alone but will never develop interstellar travel. The fourth alternate model has many technical civilizations, with interstellar travel and colonization. The possibilities are clear and momentous. Either we are the only technical civilization in the galaxy or there are others. Technical civilizations will colonize the galaxy or not. We have four cosmic conjectures - one or many, colonization or not - but however unlikely they seem based on our limited evidence, one of these four models must be collect.

  3. Massive star clusters in galaxies.

    PubMed

    Harris, William E

    2010-02-28

    The ensemble of all star clusters in a galaxy constitutes its star cluster system. In this review, the focus of the discussion is on the ability of star clusters, particularly the systems of old massive globular clusters (GCs), to mark the early evolutionary history of galaxies. I review current themes and key findings in GC research, and highlight some of the outstanding questions that are emerging from recent work.

  4. ORBITAL DEPENDENCE OF GALAXY PROPERTIES IN SATELLITE SYSTEMS OF GALAXIES

    SciTech Connect

    Hwang, Ho Seong; Park, Changbom E-mail: cbp@kias.re.k

    2010-09-01

    We study the dependence of satellite galaxy properties on the distance to the host galaxy and the orbital motion (prograde and retrograde orbits) using the Sloan Digital Sky Survey (SDSS) data. From SDSS Data Release 7, we find 3515 isolated satellite systems of galaxies at z < 0.03 that contain 8904 satellite galaxies. Using this sample, we construct a catalog of 635 satellites associated with 215 host galaxies whose spin directions are determined by our inspection of the SDSS color images and/or by spectroscopic observations in the literature. We divide satellite galaxies into prograde and retrograde orbit subsamples depending on their orbital motion with respect to the spin direction of the host. We find that the number of galaxies in prograde orbit is nearly equal to that of retrograde orbit galaxies: the fraction of satellites in prograde orbit is 50% {+-} 2%. The velocity distribution of satellites with respect to their hosts is found to be almost symmetric: the median bulk rotation of satellites is -1 {+-} 8 km s{sup -1}. It is found that the radial distribution of early-type satellites in prograde orbit is strongly concentrated toward the host while that of retrograde ones shows much less concentration. We also find the orbital speed of late-type satellites in prograde orbit increases as the projected distance to the host (R) decreases while the speed decreases for those in retrograde orbit. At R less than 0.1 times the host virial radius (R < 0.1r{sub vir,host}), the orbital speed decreases in both prograde and retrograde orbit cases. Prograde satellites are on average fainter than retrograde satellites for both early and late morphological types. The u - r color becomes redder as R decreases for both prograde and retrograde orbit late-type satellites. The differences between prograde and retrograde orbit satellite galaxies may be attributed to their different origin or the different strength of physical processes that they have experienced through

  5. Brighter galaxy bias: underestimating the velocity dispersions of galaxy clusters

    NASA Astrophysics Data System (ADS)

    Old, L.; Gray, M. E.; Pearce, F. R.

    2013-09-01

    We study the systematic bias introduced when selecting the spectroscopic redshifts of brighter cluster galaxies to estimate the velocity dispersion of galaxy clusters from both simulated and observational galaxy catalogues. We select clusters with Ngal ≥ 50 at five low-redshift snapshots from the publicly available De Lucia & Blaziot semi-analytic model galaxy catalogue. Clusters are also selected from the Tempel Sloan Digital Sky Survey Data Release 8 groups and clusters catalogue across the redshift range 0.021 ≤ z ≤ 0.098. We employ various selection techniques to explore whether the velocity dispersion bias is simply due to a lack of dynamical information or is the result of an underlying physical process occurring in the cluster, for example, dynamical friction experienced by the brighter cluster members. The velocity dispersions of the parent dark matter (DM) haloes are compared to the galaxy cluster dispersions and the stacked distribution of DM particle velocities is examined alongside the corresponding galaxy velocity distribution. We find a clear bias between the halo and the semi-analytic galaxy cluster velocity dispersion on the order of σgal/σDM ˜ 0.87-0.95 and a distinct difference in the stacked galaxy and DM particle velocities distribution. We identify a systematic underestimation of the velocity dispersions when imposing increasing absolute I-band magnitude limits. This underestimation is enhanced when using only the brighter cluster members for dynamical analysis on the order of 5-35 per cent, indicating that dynamical friction is a serious source of bias when using galaxy velocities as tracers of the underlying gravitational potential. In contrast to the literature we find that the resulting bias is not only halo mass dependent but also that the nature of the dependence changes according to the galaxy selection strategy. We make a recommendation that, in the realistic case of limited availability of spectral observations, a strictly

  6. Galaxy Evolution in Rich Clusters

    NASA Astrophysics Data System (ADS)

    Schwarzkopf, U.; Hill, J. M.

    2000-12-01

    We present the first results of a study of the morphological and spectral evolution of galaxies within the dense cores of distant clusters at redshifts between z=0.4 and 1. The morphology, colors, concentration index, and asymmetry parameters of these cluster members are compared by using a combination of deep HST NICMOS and WFPC2 imaging, covering the rest-frame U and J bands. We also discuss the influence of dust obscuration on the derived measurements. Of particular interest is the morphology of galaxies at near-infrared wavelengths in rich clusters which show an excess of blue galaxies (Butcher-Oelmer effect), namely Abell 851 (z=0.4) and CL 1603+43 (z=0.92). We focus our study on optical/near-infrared measurements of galaxy asymmetry and central concentration, derived from a large number (>400) of objects detected within the core of Abell 851. The sensitivity and reliability of these parameters for galaxy classification and physical diagnostic purposes are tested. In conjunction with the use of recent source extraction software we are able to establish a fast, robust, and highly automated procedure of mapping the structural parameters of large galaxy samples. This work is supported by NASA, under contract NAS5-26555.

  7. Enhancement classification of galaxy images

    NASA Astrophysics Data System (ADS)

    Jenkinson, John

    With the advent of astronomical imaging technology developments, and the increased capacity of digital storage, the production of photographic atlases of the night sky have begun to generate volumes of data which need to be processed autonomously. As part of the Tonantzintla Digital Sky Survey construction, the present work involves software development for the digital image processing of astronomical images, in particular operations that preface feature extraction and classification. Recognition of galaxies in these images is the primary objective of the present work. Many galaxy images have poor resolution or contain faint galaxy features, resulting in the misclassification of galaxies. An enhancement of these images by the method of the Heap transform is proposed, and experimental results are provided which demonstrate the image enhancement to improve the presence of faint galaxy features thereby improving classification accuracy. The feature extraction was performed using morphological features that have been widely used in previous automated galaxy investigations. Principal component analysis was applied to the original and enhanced data sets for a performance comparison between the original and reduced features spaces. Classification was performed by the Support Vector Machine learning algorithm.

  8. The Rotation of Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Tovmassian, H. M.

    2015-09-01

    The method for detection of the galaxy cluster rotation based on the study of distribution of member galaxies with velocities lower and higher than the cluster mean velocity over the cluster image is proposed. The search for rotation is made for flat clusters with a/b > 1.8 and BMI type clusters which are expected to be rotating. For comparison there were studied also round clusters and clusters of NBMI type, the second by brightness galaxy, which does not differ significantly from the cluster cD galaxy. Seventeen out of studied 65 clusters are found to be rotating. It was found that the detection rate is sufficiently high for flat clusters, over 60%, and clusters of BMI type with dominant cD galaxy, ≈ 35% . The obtained results show that clusters were formed from the huge primordial gas clouds and preserved the rotation of the primordial clouds, unless they did not experience mergings with other clusters and groups of galaxies, as a result of which the rotation was prevented.

  9. Mirages in galaxy scaling relations

    NASA Astrophysics Data System (ADS)

    Mosenkov, A. V.; Sotnikova, N. Ya.; Reshetnikov, V. P.

    2014-06-01

    We analysed several basic correlations between structural parameters of galaxies. The data were taken from various samples in different passbands which are available in the literature. We discuss disc scaling relations as well as some debatable issues concerning the so-called Photometric Plane for bulges and elliptical galaxies in different forms and various versions of the famous Kormendy relation. We show that some of the correlations under discussion are artificial (self-correlations), while others truly reveal some new essential details of the structural properties of galaxies. Our main results are as follows: At present, we cannot conclude that faint stellar discs are, on average, more thin than discs in high surface brightness galaxies. The `central surface brightness-thickness' correlation appears only as a consequence of the transparent exponential disc model to describe real galaxy discs. The Photometric Plane appears to have no independent physical sense. Various forms of this plane are merely sophisticated versions of the Kormendy relation or of the self-relation involving the central surface brightness of a bulge/elliptical galaxy and the Sérsic index n. The Kormendy relation is a physical correlation presumably reflecting the difference in the origin of bright and faint ellipticals and bulges. We present arguments that involve creating artificial samples to prove our main idea.

  10. How Opaque Are Spiral Galaxies?

    NASA Astrophysics Data System (ADS)

    Allen, Ronald

    1999-07-01

    Using HST Archival images in a previous modest AR program, we have developed a new method to calibrate the effects of crowding and confusion from foreground structure on the counts of background galaxies seen through a foreground system. This new method, the Synthetic Field Method, permits us to establish the area-averaged amount of extinction through the entire thickness of the foreground galaxy. No assumptions about the spatial distribution of the obscuring material in the foreground system or about its reddening law are required. We now propose to exploit this method by applying it to deep Archival images of all 17 nearby spiral galaxies obtained earlier with the HST/WFPC2 in the Cepheid distance scale programs. Applying the method to this large sample of spirals will permit us: {1} to decrease the fundamental uncertainty in our results owing to field-to-field variations in the surface number density of the background galaxies, and {2} to begin quantifying the differences in extinction between arms and inter-arm regions, and between the inner and outer parts of spiral galaxy disks. The results of this project will provide the largest study to date of TOTAL extinction in spiral galaxies using background illuminating objects.

  11. Narrow Line Seyfert 1 Galaxies and the Evolution of Galaxies and Active Galaxies

    NASA Technical Reports Server (NTRS)

    Mathur, Smita

    2000-01-01

    Narrow Line Seyfert 1 galaxies (NLS1s) are intriguing due to their continuum as well as emission line properties. The observed peculiar properties of the NLS1s are believed to be due to accretion rate close to Eddington limit. As a consequence, for a given luminosity, NLS1s have smaller black hole (BH) masses compared to normal Seyfert galaxies. Here we argue that NLS1s might be Seyfert galaxies in their early stage of evolution and as such may be low redshift, low luminosity analogues of high redshift quasars. We propose that NLS1s may reside in rejuvenated, gas rich galaxies. The also argue in favor of collisional ionization for production of FeII in active galactic nuclei (AGN).

  12. Submillimeter Galaxies as Progenitors of Compact Quiescent Galaxies

    NASA Technical Reports Server (NTRS)

    Toft, S.; Smolcic, V.; Magnelli, B.; Karim, A.; Zirm, A.; Michalowski, M.; Capak, P.; Sheth, K.; Schawinski, K.; Krogager, J.-K.; Wuyts, S.; Sanders, D.; Man, A. W. S.; Lutz, D.; Staguhn, J.; Berta, S.; McCracken, H.; Krpan, J.; Riechers, D.

    2014-01-01

    Three billion years after the big bang (at redshift z = 2), half of the most massive galaxies were already old, quiescent systems with little to no residual star formation and extremely compact with stellar mass densities at least an order of magnitude larger than in low-redshift ellipticals, their descendants. Little is known about how they formed, but their evolved, dense stellar populations suggest formation within intense, compact starbursts 1-2 Gyr earlier (at 3 < z < 6). Simulations show that gas-rich major mergers can give rise to such starbursts, which produce dense remnants. Submillimeter-selected galaxies (SMGs) are prime examples of intense, gas-rich starbursts.With a new, representative spectroscopic sample of compact, quiescent galaxies at z = 2 and a statistically well-understood sample of SMGs, we show that z = 3-6 SMGs are consistent with being the progenitors of z = 2 quiescent galaxies, matching their formation redshifts and their distributions of sizes, stellar masses, and internal velocities. Assuming an evolutionary connection, their space densities also match if the mean duty cycle of SMG starbursts is 42(sup+40) -29 Myr (consistent with independent estimates), which indicates that the bulk of stars in these massive galaxies were formed in a major, early surge of star formation. These results suggest a coherent picture of the formation history of the most massive galaxies in the universe, from their initial burst of violent star formation through their appearance as high stellar-density galaxy cores and to their ultimate fate as giant ellipticals.

  13. Submillimeter galaxies as progenitors of compact quiescent galaxies

    SciTech Connect

    Toft, S.; Zirm, A.; Krogager, J.-K.; Man, A. W. S.; Smolčić, V.; Krpan, J.; Magnelli, B.; Karim, A.; Michalowski, M.; Capak, P.; Sheth, K.; Schawinski, K.; Wuyts, S.; Lutz, D.; Staguhn, J.; Berta, S.; Sanders, D.; Mccracken, H.; Riechers, D.

    2014-02-20

    Three billion years after the big bang (at redshift z = 2), half of the most massive galaxies were already old, quiescent systems with little to no residual star formation and extremely compact with stellar mass densities at least an order of magnitude larger than in low-redshift ellipticals, their descendants. Little is known about how they formed, but their evolved, dense stellar populations suggest formation within intense, compact starbursts 1-2 Gyr earlier (at 3 < z < 6). Simulations show that gas-rich major mergers can give rise to such starbursts, which produce dense remnants. Submillimeter-selected galaxies (SMGs) are prime examples of intense, gas-rich starbursts. With a new, representative spectroscopic sample of compact, quiescent galaxies at z = 2 and a statistically well-understood sample of SMGs, we show that z = 3-6 SMGs are consistent with being the progenitors of z = 2 quiescent galaxies, matching their formation redshifts and their distributions of sizes, stellar masses, and internal velocities. Assuming an evolutionary connection, their space densities also match if the mean duty cycle of SMG starbursts is 42{sub −29}{sup +40} Myr (consistent with independent estimates), which indicates that the bulk of stars in these massive galaxies were formed in a major, early surge of star formation. These results suggest a coherent picture of the formation history of the most massive galaxies in the universe, from their initial burst of violent star formation through their appearance as high stellar-density galaxy cores and to their ultimate fate as giant ellipticals.

  14. Do Galaxies Follow Darwinian Evolution?

    NASA Astrophysics Data System (ADS)

    2006-12-01

    Using VIMOS on ESO's Very Large Telescope, a team of French and Italian astronomers have shown the strong influence the environment exerts on the way galaxies form and evolve. The scientists have for the first time charted remote parts of the Universe, showing that the distribution of galaxies has considerably evolved with time, depending on the galaxies' immediate surroundings. This surprising discovery poses new challenges for theories of the formation and evolution of galaxies. The 'nature versus nurture' debate is a hot topic in human psychology. But astronomers too face similar conundrums, in particular when trying to solve a problem that goes to the very heart of cosmological theories: are the galaxies we see today simply the product of the primordial conditions in which they formed, or did experiences in the past change the path of their evolution? ESO PR Photo 17/06 ESO PR Photo 45/06 Galaxy Distribution in Space In a large, three-year long survey carried out with VIMOS [1], the Visible Imager and Multi-Object Spectrograph on ESO's VLT, astronomers studied more than 6,500 galaxies over a wide range of distances to investigate how their properties vary over different timescales, in different environments and for varying galaxy luminosities [2]. They were able to build an atlas of the Universe in three dimensions, going back more than 9 billion years. This new census reveals a surprising result. The colour-density relation, that describes the relationship between the properties of a galaxy and its environment, was markedly different 7 billion years ago. The astronomers thus found that the galaxies' luminosity, their initial genetic properties, and the environments they reside in have a profound impact on their evolution. "Our results indicate that environment is a key player in galaxy evolution, but there's no simple answer to the 'nature versus nurture' problem in galaxy evolution," said Olivier Le Fèvre from the Laboratoire d'Astrophysique de Marseille

  15. VIPERS: Galaxy morphology at z ˜ 1

    NASA Astrophysics Data System (ADS)

    Krywult, Janusz; Pollo, Agnieszka; Vipers Team

    2014-12-01

    We use spectroscopic VIPERS data to analyze morphological properties of galaxies at z ˜ 1. To determine galaxy morphologies, we estimate their Sérsic index. Then, we correlate it with galaxy rest-frame colors, and other physical properties. We find that the distribution of Sérsic index of our sample is bimodal, and well correlated with the color-bimodality of the galaxy distribution. So-called green valley (i.e. intermediate colour) galaxies often have intermediate values of Sérsic index which may support the hypothesis that at least a part of this population are galaxies in the transition phase.

  16. Gas Stripping in the Simulated Pegasus Galaxy

    NASA Astrophysics Data System (ADS)

    Mercado, Francisco Javier; Samaniego, Alejandro; Wheeler, Coral; Bullock, James

    2017-01-01

    We utilize the hydrodynamic simulation code GIZMO to construct a non-cosmological idealized dwarf galaxy built to match the parameters of the observed Pegasus dwarf galaxy. This simulated galaxy will be used in a series of tests in which we will implement different methods of removing the dwarf’s gas in order to emulate the ram pressure stripping mechanism encountered by dwarf galaxies as they fall into more massive companion galaxies. These scenarios will be analyzed in order to determine the role that the removal of gas plays in rotational vs. dispersion support (Vrot/σ) of our galaxy.

  17. Missing mass in collisional debris from galaxies.

    PubMed

    Bournaud, Frédéric; Duc, Pierre-Alain; Brinks, Elias; Boquien, Médéric; Amram, Philippe; Lisenfeld, Ute; Koribalski, Bärbel S; Walter, Fabian; Charmandaris, Vassilis

    2007-05-25

    Recycled dwarf galaxies can form in the collisional debris of massive galaxies. Theoretical models predict that, contrary to classical galaxies, these recycled galaxies should be free of nonbaryonic dark matter. By analyzing the observed gas kinematics of such recycled galaxies with the help of a numerical model, we demonstrate that they do contain a massive dark component amounting to about twice the visible matter. Staying within the standard cosmological framework, this result most likely indicates the presence of large amounts of unseen, presumably cold, molecular gas. This additional mass should be present in the disks of their progenitor spiral galaxies, accounting for a substantial part of the so-called missing baryons.

  18. Counterrotating Cores in Elliptical Galaxies.

    NASA Astrophysics Data System (ADS)

    Balcells, Marc Comas

    The dynamics of the merger between a high- and a low-luminosity elliptical galaxy has been studied to understand how kinematically peculiar cores in elliptical galaxies might form. Numerical simulations of mergers provide rotation curves, surface density profiles, surface density contour plots and velocity maps of the merger remnants, as well as diagnostics on the dynamics such as phase-space diagrams. This type of merger can create counterrotating cores. The core of the smaller galaxy, of higher density, is not disrupted by the primary tidal field and sinks to the center of the primary as an independent dynamical subsystem. Core counterrotation occurs only when the initial merger orbit is retrograde with respect to the spin of the primary. The remnant has higher effective radius and lower mean central surface density than the primary galaxy, but a smaller core radius. The adsorption of orbital energy and angular momentum by the primary particles greatly modifies the kinematic structure of the larger galaxy. Twisted rotation axes and isophote twists appear over the whole body of the remnant. These diagnostics may be used to determine whether observed peculiar cores might have formed via an elliptical-elliptical merger. Galaxies with counterrotating cores should show a complex velocity field, isophotal irregularities, and, in general, a slow rotation in the main body of the galaxy. The present experiments are the first galaxy-satellite merger experiments involving an active, rotating secondary. They show that part of the orbital angular momentum is absorbed by the secondary, thus the secondary contributes to its own sinking: the sinking rate depends on the orientation of the secondary spin. Long-slit spectroscopic observations of NGC 3656 are reported. Rotation curves indicate that NGC 3656 contains a core spinning in a direction perpendicular to the rotation in the main body of the galaxy. Velocity reversals at intermediate radii are also observed. These features

  19. The nature of active galaxies

    NASA Astrophysics Data System (ADS)

    Chapman, Scott Christopher

    Many details of the structure of Active Galactic Nuclei (AGN) galaxies continue to elude researchers in the field. To shed light on some of the enigmas related to the fueling and classification of AGN, I have studied the core structure of a sample of 37 nearby Seyfert galaxies at high resolution using adaptive optics on the CFHT. This dataset consists of near-IR imaging from 1 to 3 μm (the J, H, and K bands). I first describe the instruments and observing techniques along with a presentation of the galaxy sample properties. I then outline the detailed data reduction and image processing required with adaptive optics observations, highlighting some of the associated unavoidable perils. A detailed multi-wavelength study is pursued for two nearby Seyfert galaxies, NGC3227 and NGC2992. With these objects, the current ideas of Seyfert fueling and unification of Seyfert types are scrutinized, focusing on the high spatial resolution achieved using adaptive optics in the near-IR. The dynamical processes and differing classifications of these galaxies are substantially clarified through their core morphologies. These studies show that scientific results can be established with AO data, in spite of the above mentioned artifact. For NGC2992, a spiral structure within the central 6' and a 1' extended feature are traced down to the core at the resolution of our images. We speculate, based on these observed structures, that multiple radio components are superposed which contribute to the observed figure-8 morphology in the VLA images: one associated with the spiral structure in the galaxy disk, and another flowing out of the galaxy plane. I then address whether the classification of Seyfert galaxy types can be explained via patchy dust at fairly large distances (~100 pc) from the central engine. Maps of dust extinction are constructed with the deep view afforded by the near-IR. These are compared with optical images observed with the Hubble Space Telescope (HST) to aid in

  20. SAMI Galaxy Survey: Spectrally Dissecting 3400 Galaxies By the Dozen

    NASA Astrophysics Data System (ADS)

    Cecil, Gerald N.; Croom, S.; The SAMI Galaxy Survey Team

    2014-01-01

    More than 440 mapped, less than 3000 to go in the Sydney-AAO Multi-object IFU (SAMI) Galaxy Survey! SAMI uses novel, photonic fused-optical fiber “hexabundles” that were developed successfully at The University of Sydney and the Australian Astronomical Observatory AAO), with support from the Australian Research Council Centre of Excellence for All-Sky Astrophysics (CAASTRO). The SAMI Galaxy Survey, led by Assoc. Prof. Croom, is backed by an international team. This spectro-bolometric survey mitigates against “aperture effects” that may mislead when stacking single-fiber galaxy spectra. We seek to answer questions such as “what is the physical role of environment in galaxy evolution? How is stellar mass growth and angular momentum development related in galaxies? How does gas get into and out of galaxies, and how do such flows drive star formation?” SAMI maps stellar and gas properties with 13 integral-field units (IFU) plugged onto a dozen galaxies over the 1° field of the AAT prime-focus corrector. 78% of each bundle's area is filled by sixty-one 1.6-arcsec diameter fibers that are packed closely into concentric circles then their etched, thinned cladding is fused without deforming their cores. The fiber hexabundles route to the bench-mounted AAOmega double-beam spectrograph to cover simultaneously 373-570 nm at R=1730 and 620-735 nm at R=4500. Full spatial resolution of the observing site is recovered by dithered exposures totaling 3.5 hours per field. Target stellar masses generally exceed 108 M⊙, and span a range of environments: ˜650 are within clusters of virial mass 1014-15 M⊙ at 0.03 < z < 0.06, the rest are in the z < 0.1 field with extensive frequency data ancillary to the GAMA Survey. We display some key early results of major science themes being addressed by the SAMI survey team, from rotation curve dependence on group halo mass, through galaxy winds and AGN feedback mechanisms, to oxygen abundance gradients, kinematic decomposition

  1. Galaxy Zoo: Mergers - Dynamical models of interacting galaxies

    NASA Astrophysics Data System (ADS)

    Holincheck, Anthony J.; Wallin, John F.; Borne, Kirk; Fortson, Lucy; Lintott, Chris; Smith, Arfon M.; Bamford, Steven; Keel, William C.; Parrish, Michael

    2016-06-01

    The dynamical history of most merging galaxies is not well understood. Correlations between galaxy interaction and star formation have been found in previous studies, but require the context of the physical history of merging systems for full insight into the processes that lead to enhanced star formation. We present the results of simulations that reconstruct the orbit trajectories and disturbed morphologies of pairs of interacting galaxies. With the use of a restricted three-body simulation code and the help of citizen scientists, we sample 105 points in parameter space for each system. We demonstrate a successful recreation of the morphologies of 62 pairs of interacting galaxies through the review of more than 3 million simulations. We examine the level of convergence and uniqueness of the dynamical properties of each system. These simulations represent the largest collection of models of interacting galaxies to date, providing a valuable resource for the investigation of mergers. This paper presents the simulation parameters generated by the project. They are now publicly available in electronic format at http://data.galaxyzoo.org/mergers.html. Though our best-fitting model parameters are not an exact match to previously published models, our method for determining uncertainty measurements will aid future comparisons between models. The dynamical clocks from our models agree with previous results of the time since the onset of star formation from starburst models in interacting systems and suggest that tidally induced star formation is triggered very soon after closest approach.

  2. Galaxy Interaction in Overdense Environments

    NASA Astrophysics Data System (ADS)

    Holman, Derek; Hung, Chao-Ling

    2017-01-01

    Examining protoclusters is an important method for developing our understanding of the formation and evolution of large galaxy clusters found in the local universe. Many of the z≈2-3 protoclusters contain overdensities of dusty star-forming galaxies (DSFG) which have stellar formation rates greater than 100 Msun/year. Due to the short depletion time (≈100Myr) of molecular gas in the DSFGs contained in these protoclusters, the assembly of protoclusters is believed to be a rapid and occasional process. One possible mechanism for this rapid assembly is an enhanced frequency of interaction between galaxies. We analyzed one of these protoclusters at z= 2.1 to determine if the frequency of mergers is affected by the overdense environment. Previous works have shown that galaxies may interact more frequently in overdense environments but do not provide adequate significance to confirm this connection. Using the COSMOS2015 catalog, galaxies in the protocluster are evaluated with the following criteria for merger candidates: existence of neighboring galaxies in a 10-30 kpc radius, agreement of photometric redshift with neighbor(s) within 1σ, and stellar mass ratio calculation for merger candidates in terms of minor mergers (>4:1) and major mergers (1:1 - 4:1). Our analysis confirms that interacting galaxies are found more frequently in overdense environments (δ > 0.5). Based on further analysis using spectroscopic redshifts from the ZFIRE Survey to evaluate the uncertainty present by using the photometric redshifts, we find that σΔ/(1+z_s) = 0.05 for the photometric redshifts from z= 1.50 to z= 2.50. In the future it will be helpful to analyze mergers in other stages of interaction to see if the enhanced merger frequency is still evident.

  3. IRAS study of interacting galaxies

    NASA Astrophysics Data System (ADS)

    Allam, S.

    1998-04-01

    Interacting galaxies are ideal laboratories for studying the influence of gravitational forces on galaxies. From theoretical and observational studies, we know how sensitive galaxies are to tidal interaction, from the formation of tidal tails, bridges, bursts of star formation up to a complete merging of the galaxies. The Far Infrared (FIR) properties of interacting galaxies give information on the dynamical and physical properties of these systems. Several earlier studies using the IRAS point source catalogue (IPSC) and IRAS Faint Source Survey (FSS), showed that the FIR emission from interacting/merging galaxies is enhanced with respect to isolated non-interacting galaxies; moreover, that high density environments have more influence in producing enhanced FIR emission over isolated interacting systems. In general the ratio of FIR to optical luminosity in interacting systems was found to be enhanced. It is regarded as an increased star formation (SF) rate in these systems. Later on, due to the rather high IPSC detection threshold, and its low resolution, several contradictory results have been reported. In this thesis the FIR emission from interacting galaxies is studied by using the high resolution IRAS software introduced by Bontekoe et al. (1994). This soft ware package uses a Maximum Entropy method (hereafter MaxEnt). The MaxEnt formulation is rooted in Bayesian probability theory. The raw IRAS data contains the Point Spread Function (PSF) of both the telescope mirror (60 cm --> 1 arcmin at 60 μm) and the PSF of the detectors (≃ 5 arcmin). Since there is much redundancy in the data, the MaxEnt routine can be used to remove the 5 arcmin PSF from the detectors. For many interacting galaxies this is enough to resolve them. The size of the images was chosen such that the objects could be studied including their surroundings. The absolute position calibration and flux estimates for the MaxEnt images are described in Allam et al. (1996). Because of the high

  4. Astrophysics of galaxy clusters

    NASA Astrophysics Data System (ADS)

    Ettori, Stefano

    2016-07-01

    As the nodes of the cosmic web, clusters of galaxies trace the large-scale distribution of matter in the Universe. They are thus privileged sites in which to investigate the complex physics of structure formation. However, the complete story of how these structures grow, and how they dissipate the gravitational and non-thermal components of their energy budget over cosmic time, is still beyond our grasp. Most of the baryons gravitationally bound to the cluster's halo is in the form of a diffuse, hot, metal-enriched plasma that radiates primarily in the X-ray band. X-ray observations of the evolving cluster population provide a unique opportunity to address such fundamental open questions as: How do hot diffuse baryons accrete and dynamically evolve in dark matter potentials? How and when was the energy that we observe in the ICM generated and distributed? Where and when are heavy elements produced and how are they circulated? We will present the ongoing activities to define the strategy on how an X-ray observatory with large collecting area and an unprecedented combination of high spectral and angular resolution, such as Athena, can address these questions.

  5. The Dawn of Galaxies

    NASA Astrophysics Data System (ADS)

    Madau, Piero

    The development of primordial inhomogeneities into the non-linear regime and the formation of the first astrophysical objects within dark matter halos mark the transition from a simple, neutral, cooling universe — described by just a few parameters — to a messy ionized one — the realm of radiative, hydrodynamic, and star formation processes. The Wilkinson Microwave Anisotropy Probe (WMAP) polarization data show that this transition must have begun quite early, and that the universe was fully reionized some 350 million years after the Big Bang. It is a young generation of extremely metal-poor massive stars and/or `seed' accreting black holes in subgalactic halos that may have generated the ultraviolet radiation and mechanical energy that reheated and reionized most of the hydrogen in the cosmos. The detailed thermal, ionization, and chemical enrichment history of the universe during the crucial formative stages around redshift 10 depends on the power-spectrum of density fluctuations on small scales, the stellar initial mass function and star formation efficiency, a complex network of poorly understood `feedback' mechanisms, and remains one of the crucial missing links in galaxy formation and evolution studies.

  6. Nomads of the Galaxy

    NASA Astrophysics Data System (ADS)

    Strigari, Louis E.; Barnabè, Matteo; Marshall, Philip J.; Blandford, Roger D.

    2012-06-01

    We estimate that there may be up to ˜105 compact objects in the mass range 10-8-10-2 M⊙ per-main-sequence star that are unbound to a host star in the Galaxy. We refer to these objects as nomads; in the literature a subset of these are sometimes called free-floating or rogue planets. Our estimate for the number of Galactic nomads is consistent with a smooth extrapolation of the mass function of unbound objects above the Jupiter-mass scale, the stellar mass density limit and the metallicity of the interstellar medium. We analyse the prospects for detecting nomads via Galactic microlensing. The Wide-Field Infrared Survey Telescope will measure the number of nomads per-main-sequence star greater than the mass of Jupiter to ˜13 per cent, and the corresponding number greater than the mass of Mars to ˜25 per cent. All-sky surveys such as Gaia and Large Synoptic Survey Telescope can identify nomads greater than about the mass of Jupiter. We suggest a dedicated drift scanning telescope that covers approximately 100 deg2 in the Southern hemisphere could identify nomads via microlensing of bright stars with characteristic time-scales of tens to hundreds of seconds.

  7. A galaxy of folds

    PubMed Central

    Alva, Vikram; Remmert, Michael; Biegert, Andreas; Lupas, Andrei N; Söding, Johannes

    2010-01-01

    Many protein classification systems capture homologous relationships by grouping domains into families and superfamilies on the basis of sequence similarity. Superfamilies with similar 3D structures are further grouped into folds. In the absence of discernable sequence similarity, these structural similarities were long thought to have originated independently, by convergent evolution. However, the growth of databases and advances in sequence comparison methods have led to the discovery of many distant evolutionary relationships that transcend the boundaries of superfamilies and folds. To investigate the contributions of convergent versus divergent evolution in the origin of protein folds, we clustered representative domains of known structure by their sequence similarity, treating them as point masses in a virtual 2D space which attract or repel each other depending on their pairwise sequence similarities. As expected, families in the same superfamily form tight clusters. But often, superfamilies of the same fold are linked with each other, suggesting that the entire fold evolved from an ancient prototype. Strikingly, some links connect superfamilies with different folds. They arise from modular peptide fragments of between 20 and 40 residues that co-occur in the connected folds in disparate structural contexts. These may be descendants of an ancestral pool of peptide modules that evolved as cofactors in the RNA world and from which the first folded proteins arose by amplification and recombination. Our galaxy of folds summarizes, in a single image, most known and many yet undescribed homologous relationships between protein superfamilies, providing new insights into the evolution of protein domains. PMID:19937658

  8. A galaxy of folds.

    PubMed

    Alva, Vikram; Remmert, Michael; Biegert, Andreas; Lupas, Andrei N; Söding, Johannes

    2010-01-01

    Many protein classification systems capture homologous relationships by grouping domains into families and superfamilies on the basis of sequence similarity. Superfamilies with similar 3D structures are further grouped into folds. In the absence of discernable sequence similarity, these structural similarities were long thought to have originated independently, by convergent evolution. However, the growth of databases and advances in sequence comparison methods have led to the discovery of many distant evolutionary relationships that transcend the boundaries of superfamilies and folds. To investigate the contributions of convergent versus divergent evolution in the origin of protein folds, we clustered representative domains of known structure by their sequence similarity, treating them as point masses in a virtual 2D space which attract or repel each other depending on their pairwise sequence similarities. As expected, families in the same superfamily form tight clusters. But often, superfamilies of the same fold are linked with each other, suggesting that the entire fold evolved from an ancient prototype. Strikingly, some links connect superfamilies with different folds. They arise from modular peptide fragments of between 20 and 40 residues that co-occur in the connected folds in disparate structural contexts. These may be descendants of an ancestral pool of peptide modules that evolved as cofactors in the RNA world and from which the first folded proteins arose by amplification and recombination. Our galaxy of folds summarizes, in a single image, most known and many yet undescribed homologous relationships between protein superfamilies, providing new insights into the evolution of protein domains.

  9. Galaxies Probing Galaxies: Cool Halo Gas from a z = 0.47 Post-Starburst Galaxy

    NASA Astrophysics Data System (ADS)

    Rubin, Kate H. R.; Prochaska, J. Xavier; Koo, David C.; Phillips, Andrew C.; Weiner, Benjamin J.

    2010-03-01

    We study the cool gas around a galaxy at z = 0.4729 using Keck/LRIS spectroscopy of a bright (B = 21.7) background galaxy at z = 0.6942 at a transverse distance of 16.5h -1 70 kpc. The background galaxy spectrum reveals strong Fe II, Mg II, Mg I, and Ca II absorption at the redshift of the foreground galaxy, with an Mg II λ2796 rest equivalent width of 3.93 ± 0.08 Å, indicative of a velocity width exceeding 400 km s-1. Because the background galaxy is large (>4h -1 70 kpc), the high covering fraction of the absorbing gas suggests that it arises in a spatially extended complex of cool clouds with large velocity dispersion. Spectroscopy of the massive (log M */M sun = 11.15 ± 0.08) host galaxy reveals that it experienced a burst of star formation about 1 Gyr ago and that it harbors a weak active galactic nucleus. We discuss the possible origins of the cool gas in its halo, including multiphase cooling of hot halo gas, cold inflow, tidal interactions, and galactic winds. We conclude that the absorbing gas was most likely ejected or tidally stripped from the interstellar medium of the host galaxy or its progenitors during the past starburst event. Adopting the latter interpretation, these results place one of only a few constraints on the radial extent of cool gas driven or stripped from a galaxy in the distant universe. Future studies with integral field unit spectroscopy of spatially extended background galaxies will provide multiple sight lines through foreground absorbers and permit analysis of the morphology and kinematics of the gas surrounding galaxies with a diverse set of properties and environments. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  10. 'Death Star' Galaxy Black Hole Fires at Neighboring Galaxy

    NASA Astrophysics Data System (ADS)

    2008-12-01

    This "death star" galaxy was discovered through the combined efforts of both space and ground-based telescopes. NASA's Chandra X-ray Observatory, Hubble Space Telescope, and Spitzer Space Telescope were part of the effort. The Very Large Array telescope, Socorro, N.M., and the Multi-Element Radio Linked Interferometer Network (MERLIN) telescopes in the United Kingdom also were needed for the finding. Illustration of Jet Striking Galaxy (unlabeled) Illustration of Jet Striking Galaxy (unlabeled) "We've seen many jets produced by black holes, but this is the first time we've seen one punch into another galaxy like we're seeing here," said Dan Evans, a scientist at the Harvard-Smithsonian Center for Astrophysics and leader of the study. "This jet could be causing all sorts of problems for the smaller galaxy it is pummeling." Jets from super massive black holes produce high amounts of radiation, especially high-energy X-rays and gamma-rays, which can be lethal in large quantities. The combined effects of this radiation and particles traveling at almost the speed of light could severely damage the atmospheres of planets lying in the path of the jet. For example, protective layers of ozone in the upper atmosphere of planets could be destroyed. X-ray & Radio Full Field Image of 3C321 X-ray & Radio Full Field Image of 3C321 Jets produced by super massive black holes transport enormous amounts of energy far from black holes and enable them to affect matter on scales vastly larger than the size of the black hole. Learning more about jets is a key goal for astrophysical research. "We see jets all over the Universe, but we're still struggling to understand some of their basic properties," said co-investigator Martin Hardcastle of the University of Hertfordshire, United Kingdom. "This system of 3C321 gives us a chance to learn how they're affected when they slam into something - like a galaxy - and what they do after that." Optical Image of 3C321 Optical Image of 3C321 The

  11. 'Death Star' Galaxy Black Hole Fires at Neighboring Galaxy

    NASA Astrophysics Data System (ADS)

    2007-12-01

    This "death star" galaxy was discovered through the combined efforts of both space and ground-based telescopes. NASA's Chandra X-ray Observatory, Hubble Space Telescope, and Spitzer Space Telescope were part of the effort. The Very Large Array telescope, Socorro, N.M., and the Multi-Element Radio Linked Interferometer Network (MERLIN) telescopes in the United Kingdom also were needed for the finding. Illustration of Jet Striking Galaxy (unlabeled) Illustration of Jet Striking Galaxy (unlabeled) "We've seen many jets produced by black holes, but this is the first time we've seen one punch into another galaxy like we're seeing here," said Dan Evans, a scientist at the Harvard-Smithsonian Center for Astrophysics and leader of the study. "This jet could be causing all sorts of problems for the smaller galaxy it is pummeling." Jets from super massive black holes produce high amounts of radiation, especially high-energy X-rays and gamma-rays, which can be lethal in large quantities. The combined effects of this radiation and particles traveling at almost the speed of light could severely damage the atmospheres of planets lying in the path of the jet. For example, protective layers of ozone in the upper atmosphere of planets could be destroyed. X-ray & Radio Full Field Image of 3C321 X-ray & Radio Full Field Image of 3C321 Jets produced by super massive black holes transport enormous amounts of energy far from black holes and enable them to affect matter on scales vastly larger than the size of the black hole. Learning more about jets is a key goal for astrophysical research. "We see jets all over the Universe, but we're still struggling to understand some of their basic properties," said co-investigator Martin Hardcastle of the University of Hertfordshire, United Kingdom. "This system of 3C321 gives us a chance to learn how they're affected when they slam into something - like a galaxy - and what they do after that." Optical Image of 3C321 Optical Image of 3C321 The

  12. The Least Luminous Galaxies in the Universe

    NASA Astrophysics Data System (ADS)

    Willman, Beth

    2011-05-01

    In the past six years, more than two dozen dwarf galaxies have been discovered around the Milky Way and M31. Many of these discoveries are 100 times less luminous than any galaxy previously known, and a million times less luminous than the Milky Way itself. These discoveries have made astronomers question the very meaning of the word "galaxy", and hint that such ultra-faint dwarf galaxies may be the most numerous type of galaxy in the universe. This talk will highlight i. how we can see galaxies that are effectively invisible in images of the sky, ii. the brewing controversy over the definition of the term "galaxy", and iii. what ultra-faint galaxies can reveal about the distribution of dark matter in our Universe.

  13. Study Finds Surprising Trend in Galaxy Evolution

    NASA Video Gallery

    A study of 544 star-forming galaxies observed by the Keck and Hubble telescopes shows that disk galaxies like our own Milky Way unexpectedly reached their current state long after much of the unive...

  14. Colliding Galaxies Create Active Galactic Nuclei

    NASA Video Gallery

    This simulation follows the collision of two spiral galaxies that harbor giant black holes. The collision merges the black holes and stirs up gas in both galaxies. The merged black hole gorges on t...

  15. Galaxy Structure in the Far-Ultraviolet

    NASA Astrophysics Data System (ADS)

    Mager, Violet; Conselice, Christopher; Seibert, Mark; Gusbar, Courtney; Katona, Anthony; Villari, Joseph; Madore, Barry F.; Windhorst, Rogier A.

    2017-01-01

    Galaxy structure comparisons as a function of redshift for the purpose of evolution studies are complicated by the fact that a given galaxy can have a significantly different morphological appearance when viewed in different wavelengths. Using CAS parameters to measure galaxy structure (concentration, asymmetry, and clumpiness), we quantify this band-pass shifting effect in the far-UV as compared to multiple rest-frame wavelengths ranging up to the near-infrared. Our study includes 2073 nearby galaxies observed by GALEX (Galaxy Evolution Explorer) in the FUV and/or NUV. Through this, we provide corrective terms that can be applied to CAS measurements of higher redshift galaxies. We also find an interesting result that elliptical galaxies appear significantly more late-type in the far-UV, with CAS parameters more similar to spiral galaxies observed at red optical wavelengths. We attribute this to ongoing star formation in extended disks. Funded by a grant through NASA.

  16. Radio properties of fossil galaxy groups

    NASA Astrophysics Data System (ADS)

    Miraghaei, H.; Khosroshahi, H. G.

    2016-09-01

    We study 1.4 GHz radio properties of a sample of fossil galaxy groups using GMRT radio observations and the FIRST survey catalog. Fossil galaxy groups, having no recent major mergers in their dominant galaxies and also group scale mergers, give us the opportunity to investigate the effect of galaxy merger on AGN activity. In this work, we compare the radio properties of a rich sample of fossil groups with a sample of normal galaxy groups and clusters and show that the brightest group galaxies in fossil groups are under luminous at 1.4 GHz, relative to the general population of the brightest group galaxies, indicating that the dynamically relaxed nature of fossil groups has influenced the AGN activity in their dominant galaxy.

  17. Weak gravitational lensing by galaxies

    SciTech Connect

    Brainerd, T.G. |; Blandford, R.D.; Smail, I. |

    1996-08-01

    We report a detection of weak, tangential distortion of the images of cosmologically distant, faint galaxies due to gravitational lensing by foreground galaxies. A mean image polarization of ({ital p})=0.011{plus_minus}0.006 (95{percent} confidence bounds) is obtained for 3202 pairs of source (23{lt}{ital r}{sub {ital s}}{le}24) and lens (20{le}{ital r}{sub {ital d}}{le}23) galaxies with projected separations of 5{double_prime}{le}{theta}{le}34{double_prime}. Averaged over annuli of inner radius 5{double_prime} and outer radius {theta}{sub max}, the signal is string for lens-source separations of {theta}{sub max}{approx_lt}90{double_prime} consistent with quasi-isothermal galaxy halos extending to large radii ({approx_gt}100{ital h}{sup {minus}1} kpc). The observed polarization is also consistent with the signal expected on the basis of simulations incorporating measured properties of local galaxies and modest extrapolations of the observed redshift distribution of faint galaxies (to which the results are somewhat sensitive). From the simulations we obtain formal best-fit model parameters for the dark halos of the lens galaxies that consist of a characteristic circular velocity of {ital V}{asterisk}{approximately}220{plus_minus}80 kms{sup {minus}1} and characteristic radial extent of {ital s}{asterisk}{approx_gt}100{ital h}{sup {minus}1} kpc. The predicted polarization based on the model is relatively insensitive to the characteristic radial extent of the halos, {ital s}{asterisk}, and very small halos ({ital s}{asterisk}{approximately}10{ital h}{sup {minus}1} kpc) are excluded only at the 2 {sigma} level. The formal best-fit halo parameters imply typical masses for the lens galaxies within a radius of 100{ital h}{sup -1} kpc on the order of 1.0{sup +1.2}{sub {minus}0.5}{times}10{sup 12} {ital h}{sup {minus}1}{ital M}{sub {circle_dot}} (90% confidence bounds), in agreement with recent dynamical estimates of the masses of local spiral galaxies.

  18. Galaxy clustering on large scales.

    PubMed Central

    Efstathiou, G

    1993-01-01

    I describe some recent observations of large-scale structure in the galaxy distribution. The best constraints come from two-dimensional galaxy surveys and studies of angular correlation functions. Results from galaxy redshift surveys are much less precise but are consistent with the angular correlations, provided the distortions in mapping between real-space and redshift-space are relatively weak. The galaxy two-point correlation function, rich-cluster two-point correlation function, and galaxy-cluster cross-correlation function are all well described on large scales ( greater, similar 20h-1 Mpc, where the Hubble constant, H0 = 100h km.s-1.Mpc; 1 pc = 3.09 x 10(16) m) by the power spectrum of an initially scale-invariant, adiabatic, cold-dark-matter Universe with Gamma = Omegah approximately 0.2. I discuss how this fits in with the Cosmic Background Explorer (COBE) satellite detection of large-scale anisotropies in the microwave background radiation and other measures of large-scale structure in the Universe. PMID:11607400

  19. Galaxy formation and physical bias

    NASA Technical Reports Server (NTRS)

    Cen, Renyue; Ostriker, Jeremiah P.

    1992-01-01

    We have supplemented our code, which computes the evolution of the physical state of a representative piece of the universe to include, not only the dynamics of dark matter (with a standard PM code), and the hydrodynamics of the gaseous component (including detailed collisional and radiative processes), but also galaxy formation on a heuristic but plausible basis. If, within a cell the gas is Jeans' unstable, collapsing, and cooling rapidly, it is transformed to galaxy subunits, which are then followed with a collisionless code. After grouping them into galaxies, we estimate the relative distributions of galaxies and dark matter and the relative velocities of galaxies and dark matter. In a large scale CDM run of 80/h Mpc size with 8 x 10 exp 6 cells and dark matter particles, we find that physical bias b is on the 8/h Mpc scale is about 1.6 and increases towards smaller scales, and that velocity bias is about 0.8 on the same scale. The comparable HDM simulation is highly biased with b = 2.7 on the 8/h Mpc scale. Implications of these results are discussed in the light of the COBE observations which provide an accurate normalization for the initial power spectrum. CDM can be ruled out on the basis of too large a predicted small scale velocity dispersion at greater than 95 percent confidence level.

  20. Starburst models of merging galaxies

    NASA Technical Reports Server (NTRS)

    Prestwich, Andrea H.

    1993-01-01

    In the past decade, infrared observations have shown that interacting and merging galaxies have higher luminosities than isolated systems, with the luminosities in mergers as high as 10(exp 12) solar luminosity. However, the origin of the luminosity found in mergers is controversial, with two main competing theories. The first is the starburst scenario. As two gas rich galaxies start to merge, cloud-cloud collisions induce fast shocks in the molecular gas. This gas cools, collapses, and fragments, producing a blast of star formation. The main rival to this theory is that the infrared luminosity is produced by a dust embedded active nucleus, the merger of two gas rich galaxies providing the 'fuel to feed the monster'. There has even been speculation that there is an evolutionary link between starbursts and active nuclei, and that possibly active galactic nuclei (AGN's) and QSO's were formed from a starburst. Assuming that the infrared luminosity in merging galaxies is due to star formation, there should be ionizing photons produced from the high mass stars, giving rise to recombination line emission. The objective is to use a simple starburst model to test the hypothesis that the extreme infrared luminosity of merging galaxies is due to a starburst.

  1. Two searches for primeval galaxies

    NASA Technical Reports Server (NTRS)

    Thompson, D.; Djorgovski, S.; Trauger, J.

    1993-01-01

    A number of active galaxies are now known at very large redshifts, some of them even have properties suggestive of galaxies in the process of formation. They commonly show strong Ly-alpha emission, at least some of which appears to be ionized by young stars. Inferred star formation rates are in the range approximately = 100-500 solar mass/yr. An important question is: are there radio-quiet, field counterparts of these systems at comparable redshifts? Whereas, we are probably already observing some evolutionary and formative processes of distant radio galaxies, the ultimate goal is to observe normal galaxies at the epoch when most of their stars form. We have, thus, started a search for emission-line objects at large redshifts, ostensibly young and forming galaxies. Our method is to search for strong line emission (hopefully Ly alpha) employing two techniques: a direct, narrow-band imaging search, using a Fabry-Perot interferometer; and a serendipitous long-slit spectroscopic search.

  2. Construction of luminosity function for galaxy clusters

    NASA Astrophysics Data System (ADS)

    Godłowski, Włodzimierz; Popiela, Joanna; Bajan, Katarzyna; Biernacka, Monika; Flin, Piotr; Panko, Elena

    2015-02-01

    The luminosity function is an important quantity for analysis of large scale structure statistics, interpretation of galaxy counts (Lin & Kirshner 1996). We investigate the luminosity function of galaxy clusters. This is performed by counting the brightness of galaxies belonging to clusters in PF Catalogue. The obtained luminosity function is significantly different than that obtained both for optical and radiogalaxies (Machalski & Godowski 2000). The implications of this result for theories of galaxy formation are discussed as well.

  3. High resolution imaging of galaxy cores

    NASA Technical Reports Server (NTRS)

    Crane, P.; Stiavelli, M.; King, I. R.; Deharveng, J. M.; Albrecht, R.; Barbieri, C.; Blades, J. C.; Boksenberg, A.; Disney, M. J.; Jakobsen, P.

    1993-01-01

    Surface photometry data obtained with the Faint Object Camera of the Hubble Space Telescope in the cores of ten galaxies is presented. The major results are: (1) none of the galaxies show truly 'isothermal' cores, (2) galaxies with nuclear activity show very similar light profiles, (3) all objects show central mass densities above 10 exp 3 solar masses/cu pc3, and (4) four of the galaxies (M87, NGC 3862, NGC 4594, NGC 6251) show evidence for exceptional nuclear mass concentrations.

  4. The APM Galaxy Survey - V. Catalogues of galaxy clusters

    NASA Astrophysics Data System (ADS)

    Dalton, G. B.; Maddox, S. J.; Sutherland, W. J.; Efstathiou, G.

    1997-08-01

    We describe the construction of catalogues of galaxy clusters from the APM Galaxy survey using an automated algorithm based on Abell-like selection criteria. We investigate the effects of varying several parameters in our selection algorithm, including the magnitude range and radius from the cluster centre used to estimate the cluster richnesses. We quantify the accuracy of the photometric distance estimates by comparing them with measured redshifts, and we investigate the stability and completeness of the resulting catalogues. We find that the angular correlation functions for different cluster catalogues are in good agreement with one another, and are also consistent with the observed amplitude of the spatial correlation function of rich clusters.

  5. White Dwarfs in the Galaxy's Halo

    NASA Astrophysics Data System (ADS)

    Oppenheimer, B.; Murdin, P.

    2002-12-01

    The Galaxy's large spherical halo (see GALACTICMETAL-POOR HALO and HALO, GALACTIC) may harboras many as several hundred billion WHITE DWARFS, apopulation as large in number as the total number of stars in theGalaxy's disk (see DISK GALAXIES and GALACTIC THIN DISK). Although this assertion iscontroversial, several astronomical surveys provide strong support for it andthe implications affect fields ...

  6. Evolving Galaxies in a Hierachical Universe

    NASA Astrophysics Data System (ADS)

    Hahn, Changhoon

    2017-01-01

    Observations of galaxies using large surveys (SDSS, COSMOS, PRIMUS, etc.) have firmly established a global view of galaxy properties out to z~1. Galaxies are broadly divided into two classes: blue, typically disk-like star forming galaxies and red, typically elliptical quiescent ones with little star formation. The star formation rates (SFR) and stellar masses of star forming galaxies form an empirical relationship referred to as the "star formation main sequence". Over cosmic time, this sequence undergoes significant decline in SFR and causes the overall cosmic star formation decline. Simultaneously, physical processes cause significant fractions of star forming galaxies to "quench" their star formation. Hierarchical structure formation and cosmological models provide precise predictions of the evolution of the underying dark matter, which serve as the foundation for these detailed trends and their evolution. Whatever trends we observe in galaxy properties can be interpreted within the narrative of the underlying dark matter and halo occupation framework. More importantly, through careful statistical treatment and precise measurements, this connection can be utilized to better constrain and understand key elements of galaxy evolution. In this spirit, for my dissertation I connect observations of evolving galaxy properties to the framework of the hierarchical Universe and use it to better understand physical processes responsible for the cessation of star formation in galaxies. For instance, through this approach, I constrain the quenching timescale of central galaxies and find that they are significantly longer than the quenching timescale of satellite galaxies.

  7. The Evolution of Galaxies and Their Environment

    NASA Technical Reports Server (NTRS)

    Hollenbach, David (Editor); Thronson, Harley A. (Editor); Shull, J. Michael (Editor)

    1993-01-01

    The Third Teton Summer School on Astrophysics discussed the formation of galaxies, star formation in galaxies, galaxies and quasars at high red shift, and the intergalactic and intercluster medium and cooling flows. Observation and theoretical research on these topics was presented at the meeting and summaries of the contributed papers are included in this volume.

  8. Interpretation of colors of faint galaxies

    SciTech Connect

    Kron, R.G.

    1980-10-01

    We present new calculations for evolving light in galaxies which allow the color distribution expected for faint field galaxies to be computed. We normalize the expected counts to data in catalogs of bright galaxies, and find that an excellent fit to Kron's faint photometry can be achieved with a Friedmann model and no other special assumptions.

  9. THE METALLICITY OF VOID DWARF GALAXIES

    SciTech Connect

    Kreckel, K.; Groves, B.; Croxall, K.; Pogge, R. W.; Van de Weygaert, R.

    2015-01-01

    The current ΛCDM cosmological model predicts that galaxy evolution proceeds more slowly in lower density environments, suggesting that voids are a prime location to search for relatively pristine galaxies that are representative of the building blocks of early massive galaxies. To test the assumption that void galaxies are more pristine, we compare the evolutionary properties of a sample of dwarf galaxies selected specifically to lie in voids with a sample of similar isolated dwarf galaxies in average density environments. We measure gas-phase oxygen abundances and gas fractions for eight dwarf galaxies (M{sub r} > –16.2), carefully selected to reside within the lowest density environments of seven voids, and apply the same calibrations to existing samples of isolated dwarf galaxies. We find no significant difference between these void dwarf galaxies and the isolated dwarf galaxies, suggesting that dwarf galaxy chemical evolution proceeds independent of the large-scale environment. While this sample is too small to draw strong conclusions, it suggests that external gas accretion is playing a limited role in the chemical evolution of these systems, and that this evolution is instead dominated mainly by the internal secular processes that are linking the simultaneous growth and enrichment of these galaxies.

  10. Disk Galaxies : Building Blocks Of The Universe?

    NASA Astrophysics Data System (ADS)

    Bower, Richard

    2016-10-01

    In my talk I look at the origin of disk galaxies from the theoretical perspective. In particular I look at simple ways to use the properties of disk galaxies, and their evolution, to test our current paradigm for galaxy formation within the CDM scenario.

  11. Les noyaux actifs de galaxies

    NASA Astrophysics Data System (ADS)

    Camenzind, Max; Boucher, A.

    Découverts il y a plus de 30 ans, les quasars et les radiogalaxies sont des galaxies particulières qui manifestent en leur centre une activité intense. Cet ouvrage se consacre aux principales questions de la physique des noyaux actifs en les illustrant par de récentes données. Y sont traités les domaines suivants: les noyaux des galaxies actives, la théorie des trous noirs en rotation et de leurs disques d'accrétion, l'origine des raies d'émission et les jets des galaxies actives. Fournissant une introduction génerale à la terminologie, cet ouvrage s'adresse aussi bien aux étudiants en astronomie qu'aux astrophysiciens.

  12. The Alignment of Galaxy Structures

    NASA Astrophysics Data System (ADS)

    Biernacka, M.; Panko, E.; Bajan, K.; Godłowski, W.; Flin, P.

    2015-11-01

    We analyzed the orientation of the sample of ACO galaxy clusters. We examined the alignment in a subsample of 1056 galaxy structures taken from the Panko-Flin (2006) Catalog with known BM morphological types. We were looking for a correlation between the orientation of the cluster and the positions of neighboring clusters. The Binggeli effect (the excess of small values of the Δθ angles between the direction toward neighboring clusters and the cluster position angle) is observed, having a range up to about 45 h-1 Mpc. The strongest effect was found for elongated BM type I clusters. This is probably connected with the origins of the supergiant galaxy and with cluster formation along a long filament or plane in a supercluster.

  13. New Eyes for Galaxies Investigation

    NASA Astrophysics Data System (ADS)

    D'Onofrio, Mauro; Zaggia, Simone; Rampazzo, Roberto; Vallenari, Antonella; Gilmore, Gerald F.; Marziani, Paola; Stiavelli, Massimo; Calzetti, Daniela; Bianchi, Luciana; Trinchieri, Ginevra; Bromm, Volker; Bland-Hawthorn, Jonathan; Kaifu, Norio; Combes, Françoise; Moss, David L.; Paturel, George

    The observational data for the extragalactic research are evolved across this century. While the first studies on galaxies were essentially based on images and spectra taken in the optical waveband and registered after hours of work at the telescope on glass photographic plates, today we receive pre-reduced multiwavelength images and spectra directly on our computers. The work of astronomers is changed completely with the technological progress. Only 30 years ago, 4-5 photographic images of galaxies, or a few spectra, were the best one can hope to get after a night of hard work at the telescope. Today, space and ground-based telescopes with big diameters and field of view are pointed toward the sky every night, collecting gigabytes of data for thousand of galaxies, that we bring with us in our laptop computers.

  14. GALAXY OUTFLOWS WITHOUT SUPERNOVAE

    SciTech Connect

    Sur, Sharanya; Scannapieco, Evan; Ostriker, Eve C. E-mail: sharanya.sur@asu.edu

    2016-02-10

    High surface density, rapidly star-forming galaxies are observed to have ≈50–100 km s{sup −1} line of sight velocity dispersions, which are much higher than expected from supernova driving alone, but may arise from large-scale gravitational instabilities. Using three-dimensional simulations of local regions of the interstellar medium, we explore the impact of high velocity dispersions that arise from these disk instabilities. Parametrizing disks by their surface densities and epicyclic frequencies, we conduct a series of simulations that probe a broad range of conditions. Turbulence is driven purely horizontally and on large scales, neglecting any energy input from supernovae. We find that such motions lead to strong global outflows in the highly compact disks that were common at high redshifts, but weak or negligible mass loss in the more diffuse disks that are prevalent today. Substantial outflows are generated if the one-dimensional horizontal velocity dispersion exceeds ≈35 km s{sup −1}, as occurs in the dense disks that have star-formation rate (SFR) densities above ≈0.1 M{sub ⊙} yr{sup −1} kpc{sup −2}. These outflows are triggered by a thermal runaway, arising from the inefficient cooling of hot material coupled with successive heating from turbulent driving. Thus, even in the absence of stellar feedback, a critical value of the SFR density for outflow generation can arise due to a turbulent heating instability. This suggests that in strongly self-gravitating disks, outflows may be enhanced by, but need not caused by, energy input from supernovae.

  15. Galaxies with Strong Nitrogen Lines

    NASA Astrophysics Data System (ADS)

    Bergmann, T. S.; Pastoriza, M. G.

    1987-05-01

    ABSTRACT. From a qualitative spectroscopic survey of southern galaxies made by Pastoriza, a group with different morphological types whose nuclear region showed particular strong emission [N II]A6548-6584 lines when compared to Hn, was selected in order to investigate why [N II] is so strong. This work presents the results of a first analysis of the spectra of some of the galaxies above obtained with the 1-m telescope plus 2DFRUTTI detector of the Cerro Tololo Inter-American Observatory. The spectra are all very similar showing strong stellar continuum and absorption lines, and all the emission spectra show [0111] >[OII], [NIl] > H . None of the spectra show H in emission. Using the relative intensities of the H and K Call lines (Talent 1982, PLtb. A.S.P., 94,36), the obtained integrated spectra for all the observed galaxies is later than GO, which means that the H absorption lines should not be strong. From the relative intensities of the emission lines, we conclude that these galaxies cannot be classified as Starburst or LINERS. They are similar to Seyfert 2 (Osterbrock 1986, Act#va QSO4, preprint), but the FWHM of the lines is less than 300 km s . Also Ol X6300 is not clearly seen, and the absorption spectrum is strong relative to the emission spectrum. The preliminary conclusion is an activity similar but milder than that present in Seyfert 2 galaxies, as sug gested by Rose and Searle (1982, Ap. 5., 253, 556) and Rose and Cecil (1983, Ap. 5., 266, 531) for the nucleus of M51, maybe affected by an anomalous nitrogen abundance. K o : GALAXIES-ACTIVE - SPECTROSCOPY

  16. The Stability of Galaxy Disks

    NASA Astrophysics Data System (ADS)

    Westfall, Kyle B.; Andersen, D. R.; Bershady, M. A.; Martinsson, T.; Swaters, R. A.; Verheijen, M. A.

    2013-01-01

    Using measurements of velocity dispersion and mass surface density for both the gas and stellar components, we calculate the multi-component stability (Q) for 30 galaxy disks observed by the DiskMass Survey. Despite their sub-maximality (Bershady et al. 2011, ApJL, 739, 47), we find all disks to be stable with roughly 85% falling in the range 1galaxy. We measure the shape of the SVE using methods developed by Westfall (2009, PhD Thesis) and Westfall et al. (2011, ApJ, 742, 18); these methods primarily hinge on asymmetric-drift measurements determined by our gas and stellar rotation curves. We find high-quality SVE measurements for a third of the galaxies in our sample. Practical (inclination) limitations and/or the requisite dynamical assumptions in these methods currently prevent satisfactory SVE solutions for the remainder of our sample; for these galaxies, we determine Q using reasonable SVE estimates based on our own high-quality results and others gathered from the literature (e.g., van der Kruit & de Grijs 1999, A&A, 352, 129; Gerssen & Shapiro Griffin 2012, MNRAS, 423, 2726). Finally, we explore correlations between disk stability and other galaxy properties such as star-formation rate, gas mass fraction, disk maximality, and Hubble type to understand their interdependencies within the context of the secular evolution of galaxy disks. We acknowledge support for this work from the National Science Foundation (AST-0307417, AST-0607516, OISE-0754437, AST-1009491), The Netherlands Organisation for Scientific Research (grant 614.000.807), the UW Graduate School (PRJ13SL, 050167, and the Vilas Associate award), the Leids Kerkhoven-Bosscha Fonds, and NASA/JPL/Spitzer (GO-30894).

  17. He II-Emitting Galaxies

    NASA Astrophysics Data System (ADS)

    Heap, Sara R.

    2014-01-01

    A small fraction of star-forming galaxies at redshift, 3, show He II at 1640 A as a narrow emission line (Cassata et al. 2012), but the source of this emission is not understood. Does the He II emission arise in the stars or in the surrounding nebula? To answer this question, we use I Zw 18, a well studied blue compact dwarf galaxy showing narrow He II line emission as a test case. We consider if/how He II narrow emission lines could originate in the nearby nebulosity, or in the winds of hot, massive stars, both those on the main sequence and post-MS evolutionary phases.

  18. Galaxy Cluster Smashes Distance Record

    NASA Astrophysics Data System (ADS)

    2009-10-01

    he most distant galaxy cluster yet has been discovered by combining data from NASA's Chandra X-ray Observatory and optical and infrared telescopes. The cluster is located about 10.2 billion light years away, and is observed as it was when the Universe was only about a quarter of its present age. The galaxy cluster, known as JKCS041, beats the previous record holder by about a billion light years. Galaxy clusters are the largest gravitationally bound objects in the Universe. Finding such a large structure at this very early epoch can reveal important information about how the Universe evolved at this crucial stage. JKCS041 is found at the cusp of when scientists think galaxy clusters can exist in the early Universe based on how long it should take for them to assemble. Therefore, studying its characteristics - such as composition, mass, and temperature - will reveal more about how the Universe took shape. "This object is close to the distance limit expected for a galaxy cluster," said Stefano Andreon of the National Institute for Astrophysics (INAF) in Milan, Italy. "We don't think gravity can work fast enough to make galaxy clusters much earlier." Distant galaxy clusters are often detected first with optical and infrared observations that reveal their component galaxies dominated by old, red stars. JKCS041 was originally detected in 2006 in a survey from the United Kingdom Infrared Telescope (UKIRT). The distance to the cluster was then determined from optical and infrared observations from UKIRT, the Canada-France-Hawaii telescope in Hawaii and NASA's Spitzer Space Telescope. Infrared observations are important because the optical light from the galaxies at large distances is shifted into infrared wavelengths because of the expansion of the universe. The Chandra data were the final - but crucial - piece of evidence as they showed that JKCS041 was, indeed, a genuine galaxy cluster. The extended X-ray emission seen by Chandra shows that hot gas has been detected

  19. The IRAS Galaxy Atlas (IGA)

    NASA Technical Reports Server (NTRS)

    Prince, Thomas A.; Oliversen, R. (Technical Monitor)

    1999-01-01

    In 1993 we proposed a project to NASA having the goal of producing a new infrared map of our Galaxy. In particular, we proposed to reprocess the IRAS data taken in the early 1980's using modern image processing algorithms and the large Intel parallel computers of the Center for Advanced Computing Research, (at that time called the Caltech Concurrent Supercomputing Facilities - CCSF). The rationale was simple: what took approximately 100 days on a typical workstation would take less than a day on the multi-processor parallel computers, thus making a high-resolution infrared atlas of the Galaxy feasible.

  20. Isolated galaxies: residual of primordial building blocks?

    NASA Astrophysics Data System (ADS)

    Galletta, G.; Rodighiero, G.; Bettoni, D.; Moles, M.; Varela, J.

    2006-09-01

    Context: .The mass assembly is believed to be the dominant process of early galaxy formation. This mechanism of galaxy building can proceed either by repeated major mergers with other systems, or by means of accretion of matter from the surrounding regions. Aims: .In this paper we compare the properties of local disk galaxies that appear isolated, i.e., not tidally affected by other galaxies during the last few Gyr within the volume given by cz≤ 5000 km s-1, with those galaxies at z values from 0.25 to 5. Methods: .Effective radii for 203 isolated galaxies and 1645 galaxies from the RC3 have been collected and the two samples have been analyzed statistically. A similar comparison has been made with half light radii studied at high z from the literature. Results: .We found that isolated galaxies are, in general, smaller than other present epoch galaxies from the RC3. We notice the lack of systems larger than 7 kpc among them. Their size distribution appears to be similar to that of galaxies at 1.4 ≤ z ≤ 2. The models of the merging history also indicate that the isolated galaxies did stop their merging process at about that redshift, evolving passively since then. The galaxy density seems to have remained unchanged since that epoch Conclusions: .Isolated galaxies appear to be the end products of the merging process, as proposed by the hierarchical accretion scenario at around z=1.4. For this class of galaxies, this was the last significant merging event in their lives, and they have evolved passively since then. This is confirmed by the analytical estimate of the merging fraction with z and by the comparison with sizes of distant galaxies.

  1. The Arecibo Galaxy Environment Survey IX: the isolated galaxy sample

    NASA Astrophysics Data System (ADS)

    Minchin, R. F.; Auld, R.; Davies, J. I.; Karachentsev, I. D.; Keenan, O. C.; Momjian, E.; Rodriguez, R.; Taber, T.; Taylor, R.

    2016-02-01

    We have used the Arecibo L-band Feed Array (ALFA) to map three regions, each of 5 deg2, around the isolated galaxies NGC 1156, UGC 2082, and NGC 5523. In the vicinity of these galaxies we have detected two dwarf companions: one near UGC 2082, previously discovered by the Arecibo Legacy Fast ALFA (ALFALFA) survey, and one near NGC 1156, discovered by this project and reported in an earlier paper. This is significantly fewer than the 15.4^{+1.7}_{-1.5} that would be expected from the field H I mass function from ALFALFA or the 8.9 ± 1.2 expected if the H I mass function from the Local Group applied in these regions. The number of dwarf companions detected is, however, consistent with a flat or declining H I mass function as seen by a previous, shallower, H I search for companions to isolated galaxies. We attribute this difference in H I mass functions to the different environments in which they are measured. This agrees with the general observation that lower ratios of dwarf to giant galaxies are found in lower density environments.

  2. Morphology of Our Galaxy's 'Twin'

    NASA Technical Reports Server (NTRS)

    2004-01-01

    NASA's Spitzer Space Telescope has captured these infrared images of a nearby spiral galaxy that resembles our own Milky Way. The targeted galaxy, known as NGC 7331 and sometimes referred to as our galaxy's twin, is found in the constellation Pegasus at a distance of 50 million light-years. This inclined galaxy was discovered in 1784 by William Herschel, who also discovered infrared light.

    The evolution of this galaxy is a story that depends significantly on the amount and distribution of gas and dust, the locations and rates of star formation, and on how the energy from star formation is recycled by the local environment. The new Spitzer images are allowing astronomers to 'read' this story by dissecting the galaxy into its separate components.

    The image, measuring 12.6 by 8.2 arcminutes, was obtained by Spitzer's infrared array camera. It is a four-color composite of invisible light, showing emissions from wavelengths of 3.6 microns (blue), 4.5 microns (green), 5.8 microns (yellow) and 8.0 microns (red). These wavelengths are roughly 10 times longer than those seen by the human eye.

    The infrared light seen in this image originates from two very different sources. At shorter wavelengths (3.6 to 4.5 microns), the light comes mainly from stars, particularly ones that are older and cooler than our Sun. This starlight fades at longer wavelengths (5.8 to 8.0 microns), where instead we see the glow from clouds of interstellar dust. This dust consists mainly of a variety of carbon-based organic molecules known collectively as polycyclic aromatic hydrocarbons. Wherever these compounds are found, there will also be dust granules and gas, which provide a reservoir of raw materials for future star formation.

    One feature that stands out in the Spitzer image is the ring of actively forming stars that surrounds the galaxy center (yellow). This ring, with a radius of nearly 20,000 light-years, is invisible at shorter wavelengths, yet has been detected at

  3. General properties of HII regions in galaxies

    NASA Technical Reports Server (NTRS)

    Smirnov, M. A.; Komberg, B. V.

    1979-01-01

    The structure, electron density, and dimensions of HII regions in galaxies are discussed. These parameters are correlated to the chemical composition gradient along the galactic radius, the dimensions of the three largest HII regions in the galaxy, and the amount of hydrogen in the galaxy, as well as the mass, dimensions, and total optical luminosity of the galaxy. The relationships of HII regions to star formation and galactic nucleus activity are discussed and the kinematic properties of the SB and Sab galaxies are related to the size of HII regions.

  4. Galaxy evolution in clusters since z~1

    NASA Astrophysics Data System (ADS)

    Aragon-Salamanca, Alfonso

    2010-09-01

    Galaxy clusters provide some of the most extreme environments in which galaxies evolve, making them excellent laboratories to study the age old question of "nature" vs. "nurture" in galaxy evolution. Here I review some of the key observational results obtained during the last decade on the evolution of the morphology, structure, dynamics, star-formation history and stellar populations of cluster galaxies since the time when the universe was half its present age. Many of the results presented here have been obtained within the ESO Distant Cluster Survey (EDisCS) and Space Telescope A901/02 Galaxy Evolution Survey (STAGES) collaborations.

  5. AGN Host Galaxy Properties And Mass Function

    NASA Astrophysics Data System (ADS)

    Bongiorno, Angela

    2016-10-01

    Supermassive black hole growth, nuclear activity, and galaxy evolution have been found to be closely related. In the context of AGN-galaxy coevolution, I will discuss about the relation found between the host galaxy properties and the central BH and I will present the latest determination of the host galaxy stellar mass function (HGMF), and the specific accretion rate distribution function (SARDF), derived from the XMM-COSMOS sample up to z˜2.5, with particular focus on AGN feedback as possible responsible mechanism for galaxy quenching.

  6. Galaxy Evolution in Clusters Since z ~ 1

    NASA Astrophysics Data System (ADS)

    Aragón-Salamanca, A.

    Galaxy clusters provide some of the most extreme environments in which galaxies evolve, making them excellent laboratories to study the age old question of "nature" vs. "nurture" in galaxy evolution. Here I review some of the key observational results obtained during the last decade on the evolution of the morphology, structure, dynamics, star-formation history and stellar populations of cluster galaxies since the time when the Universe was half its present age. Many of the results presented here have been obtained within the ESO Distant Cluster Survey (EDisCS) and Space Telescope A901/02 Galaxy Evolution Survey (STAGES) collaborations.

  7. Chemical Classification of Nearby Active Galaxies

    NASA Astrophysics Data System (ADS)

    Aladro, R.; Martín, S.; Kramer, C.

    2015-12-01

    We present an unbiased λ=3 mm survey done with the IRAM 30 telescope towards the central parts of eight galaxies considered as archetypes of nearby starbursts, galaxies with an active galactic nucleus (AGN) and ultra-luminous infrared galaxies (ULIRGs). The spatial resolution range from ˜200 pc to ˜1.6 kpc, depending on the galaxy. We compare the abundances of thirty-seven species among the sample, and highlight the molecules that characterise the gas in each of them. These results can be very useful to prepare future interferometric observations of active galaxies.

  8. Probing the Baryon Cycle in Galaxy Outskirts

    NASA Astrophysics Data System (ADS)

    Davé, Romeel

    2017-03-01

    Galaxies are born and grow within a cosmic ecosystem, in which they receive material from surrounding intergalactic gas via gravitationally-driven inflows and expel material via powerful galactic outflows. These processes, collectively referred to as the baryon cycle, are increasingly believed to govern galaxy growth over cosmic time. I discuss new insights on the baryon cycle using analytic models and hydrodynamical simulations of galaxy evolution, particularly emphasizing how galaxy outskirts are the prime locale within which to observe these processes in action by examining observational tracers such as rest-ultraviolet absorption lines and the neutral and molecular gas content of galaxies.

  9. VISTA Views the Sculptor Galaxy

    NASA Astrophysics Data System (ADS)

    2010-06-01

    A spectacular new image of the Sculptor Galaxy (NGC 253) has been taken with the ESO VISTA telescope at the Paranal Observatory in Chile as part of one of its first major observational campaigns. By observing in infrared light VISTA's view is less affected by dust and reveals a myriad of cooler stars as well as a prominent bar of stars across the central region. The VISTA image provides much new information on the history and development of the galaxy. The Sculptor Galaxy (NGC 253) lies in the constellation of the same name and is one of the brightest galaxies in the sky. It is prominent enough to be seen with good binoculars and was discovered by Caroline Herschel from England in 1783. NGC 253 is a spiral galaxy that lies about 13 million light-years away. It is the brightest member of a small collection of galaxies called the Sculptor Group, one of the closest such groupings to our own Local Group of galaxies. Part of its visual prominence comes from its status as a starburst galaxy, one in the throes of rapid star formation. NGC 253 is also very dusty, which obscures the view of many parts of the galaxy (eso0902). Seen from Earth, the galaxy is almost edge on, with the spiral arms clearly visible in the outer parts, along with a bright core at its centre. VISTA, the Visible and Infrared Survey Telescope for Astronomy, the latest addition to ESO's Paranal Observatory in the Chilean Atacama Desert, is the world's largest survey telescope. After being handed over to ESO at the end of 2009 (eso0949) the telescope was used for two detailed studies of small sections of the sky before it embarked on the much larger surveys that are now in progress. One of these "mini surveys" was a detailed study of NGC 253 and its environment. As VISTA works at infrared wavelengths it can see right through most of the dust that is such a prominent feature of the Sculptor Galaxy when viewed in visible light. Huge numbers of cooler stars that are barely detectable with visible

  10. Watching a Cannibal Galaxy Dine

    NASA Astrophysics Data System (ADS)

    2009-11-01

    A new technique using near-infrared images, obtained with ESO's 3.58-metre New Technology Telescope (NTT), allows astronomers to see through the opaque dust lanes of the giant cannibal galaxy Centaurus A, unveiling its "last meal" in unprecedented detail - a smaller spiral galaxy, currently twisted and warped. This amazing image also shows thousands of star clusters, strewn like glittering gems, churning inside Centaurus A. Centaurus A (NGC 5128) is the nearest giant, elliptical galaxy, at a distance of about 11 million light-years. One of the most studied objects in the southern sky, by 1847 the unique appearance of this galaxy had already caught the attention of the famous British astronomer John Herschel, who catalogued the southern skies and made a comprehensive list of nebulae. Herschel could not know, however, that this beautiful and spectacular appearance is due to an opaque dust lane that covers the central part of the galaxy. This dust is thought to be the remains of a cosmic merger between a giant elliptical galaxy and a smaller spiral galaxy full of dust. Between 200 and 700 million years ago, this galaxy is indeed believed to have consumed a smaller spiral, gas-rich galaxy - the contents of which appear to be churning inside Centaurus A's core, likely triggering new generations of stars. First glimpses of the "leftovers" of this meal were obtained thanks to observations with the ESA Infrared Space Observatory , which revealed a 16 500 light-year-wide structure, very similar to that of a small barred galaxy. More recently, NASA's Spitzer Space Telescope resolved this structure into a parallelogram, which can be explained as the remnant of a gas-rich spiral galaxy falling into an elliptical galaxy and becoming twisted and warped in the process. Galaxy merging is the most common mechanism to explain the formation of such giant elliptical galaxies. The new SOFI images, obtained with the 3.58-metre New Technology Telescope at ESO's La Silla Observatory

  11. Choirs H I galaxy groups: The metallicity of dwarf galaxies

    SciTech Connect

    Sweet, Sarah M.; Drinkwater, Michael J.; Meurer, Gerhardt; Bekki, Kenji; Dopita, Michael A.; Nicholls, David C.; Kilborn, Virginia

    2014-02-10

    We present a recalibration of the luminosity-metallicity relation for gas-rich, star-forming dwarfs to magnitudes as faint as M{sub R} ∼ –13. We use the Dopita et al. metallicity calibrations to calibrate the relation for all the data in this analysis. In metallicity-luminosity space, we find two subpopulations within a sample of high-confidence Sloan Digital Sky Survey (SDSS) DR8 star-forming galaxies: 52% are metal-rich giants and 48% are metal-medium galaxies. Metal-rich dwarfs classified as tidal dwarf galaxy (TDG) candidates in the literature are typically of metallicity 12 + log(O/H) = 8.70 ± 0.05, while SDSS dwarfs fainter than M{sub R} = –16 have a mean metallicity of 12 + log(O/H) = 8.28 ± 0.10, regardless of their luminosity, indicating that there is an approximate floor to the metallicity of low-luminosity galaxies. Our hydrodynamical simulations predict that TDGs should have metallicities elevated above the normal luminosity-metallicity relation. Metallicity can therefore be a useful diagnostic for identifying TDG candidate populations in the absence of tidal tails. At magnitudes brighter than M{sub R} ∼ –16, our sample of 53 star-forming galaxies in 9 H I gas-rich groups is consistent with the normal relation defined by the SDSS sample. At fainter magnitudes, there is an increase in dispersion of the metallicity of our sample, suggestive of a wide range of H I content and environment. In our sample, we identify three (16% of dwarfs) strong TDG candidates (12 + log(O/H) > 8.6) and four (21%) very metal-poor dwarfs (12 + log(O/H) < 8.0), which are likely gas-rich dwarfs with recently ignited star formation.

  12. Galaxy Clustering Around Nearby Luminous Quasars

    NASA Technical Reports Server (NTRS)

    Fisher, Karl B.; Bahcall, John N.; Kirhakos, Sofia; Schneider, Donald P.

    1996-01-01

    We examine the clustering of galaxies around a sample of 20 luminous low redshift (z approx. less than 0.30) quasars observed with the Wide Field Camera-2 on the Hubble Space Telescope (HST). The HST resolution makes possible galaxy identification brighter than V = 24.5 and as close as 1 min or 2 min to the quasar. We find a significant enhancement of galaxies within a projected separation of approx. less than 100 1/h kpc of the quasars. If we model the QSO/galaxy correlation function as a power law with a slope given by the galaxy/galaxy correlation function, we find that the ratio of the QSO/galaxy to galaxy/galaxy correlation functions is 3.8 +/- 0.8. The galaxy counts within r less than 15 1/h kpc of the quasars are too high for the density profile to have an appreciable core radius (approx. greater than 100 1/h kpc). Our results reinforce the idea that low redshift quasars are located preferentially in groups of 10-20 galaxies rather than in rich clusters. We see no significant difference in the clustering amplitudes derived from radio-loud and radio-quiet subsamples.

  13. Local Group dwarf galaxies: nature and nurture

    NASA Astrophysics Data System (ADS)

    Sawala, Till; Scannapieco, Cecilia; White, Simon

    2012-02-01

    We investigate the formation and evolution of dwarf galaxies in a high-resolution, hydrodynamical cosmological simulation of a Milky Way sized halo and its environment. Our simulation includes gas cooling, star formation, supernova feedback, metal enrichment and ultraviolet heating. In total, 90 satellites and more than 400 isolated dwarf galaxies are formed in the simulation, allowing a systematic study of the internal and environmental processes that determine their evolution. We find that 95 per cent of satellite galaxies are gas free at z= 0, and identify three mechanisms for gas loss: supernova feedback, tidal stripping and photoevaporation due to re-ionization. Gas-rich satellite galaxies are only found with total masses above ˜5 × 109 M⊙. In contrast, for isolated dwarf galaxies, a total mass of ˜109 M⊙ constitutes a sharp transition; less massive galaxies are predominantly gas free at z= 0, more massive, isolated dwarf galaxies are often able to retain their gas. In general, we find that the total mass of a dwarf galaxy is the main factor which determines its star formation, metal enrichment and its gas content, but that stripping may explain the observed difference in gas content between field dwarf galaxies and satellites with total masses close to 109 M⊙. We also find that a morphological transformation via tidal stripping of infalling, luminous dwarf galaxies whose dark matter is less concentrated than their stars cannot explain the high total mass-to-light ratios of the faint dwarf spheroidal galaxies.

  14. Star formation in Kiso measle galaxies

    NASA Astrophysics Data System (ADS)

    Elmegreen, Debra M.; Elmegreen, B. G.

    2012-05-01

    The Kiso sample of several thousand local ultraviolet-bright galaxies includes galaxies classified as irregular disk galaxies with large star-forming complexes (I,g). We selected a sample of all I,g galaxies with both Sloan Digital Sky Survey images and spectra. They contain up to several dozen giant clumps each, so we refer to them as measle galaxies. We determined ages and masses of the clumps based on a comparison of photometry with population synthesis models of cluster evolution. The spectra were used to determine global star formation rates. Several hundred clumps were measured in the sample, with masses ranging from 10^5 to several x10^8 solar masses, scaling with galaxy absolute g magnitude of -14 to -21 mag. The galaxies are starbursting, sitting above the Groth strip “main sequence” of star formation rate versus galaxy mass by an order of magnitude. These Kiso measle galaxies have 10x the star formation rates of the Kiso tadpole galaxies. We compare their clump luminosity distribution functions with normal disk galaxies.

  15. Galaxy Selection and the Surface Brightness Distribution

    NASA Astrophysics Data System (ADS)

    McGaugh, Stacy S.; Bothun, Gregory D.; Schombert, James M.

    1995-08-01

    Optical surveys for galaxies are biased against the inclusion of low surface brightness (LSB) galaxies. Disney [Nature, 263,573(1976)] suggested that the constancy of disk central surface brightness noticed by Freeman [ApJ, 160,811(1970)] was not a physical result, but instead was an artifact of sample selection. Since LSB galaxies do exist, the pertinent and still controversial issue is if these newly discovered galaxies constitute a significant percentage of the general galaxy population. In this paper, we address this issue by determining the space density of galaxies as a function of disk central surface brightness. Using the physically reasonable assumption (which is motivated by the data) that central surface brightness is independent of disk scale length, we arrive at a distribution which is roughly flat (i.e., approximately equal numbers of galaxies at each surface brightness) faintwards of the Freeman (1970) value. Brightwards of this, we find a sharp decline in the distribution which is analogous to the turn down in the luminosity function at L^*^. An intrinsically sharply peaked "Freeman law" distribution can be completely ruled out, and no Gaussian distribution can fit the data. Low surface brightness galaxies (those with central surface brightness fainter than 22 B mag arcsec^-2^) comprise >~ 1/2 the general galaxy population, so a representative sample of galaxies at z = 0 does not really exist at present since past surveys have been insensitive to this component of the general galaxy population.

  16. Ellipticities of Elliptical Galaxies in Different Environments

    NASA Astrophysics Data System (ADS)

    Chen, Cheng-Yu; Hwang, Chorng-Yuan; Ko, Chung-Ming

    2016-10-01

    We studied the ellipticity distributions of elliptical galaxies in different environments. From the ninth data release of the Sloan Digital Sky Survey, we selected galaxies with absolute {r}\\prime -band magnitudes between -21 and -22. We used the volume number densities of galaxies as the criterion for selecting the environments of the galaxies. Our samples were divided into three groups with different volume number densities. The ellipticity distributions of the elliptical galaxies differed considerably in these three groups of different density regions. We deprojected the observed 2D ellipticity distributions into intrinsic 3D shape distributions, and the result showed that the shapes of the elliptical galaxies were relatively spherically symmetric in the high density region (HDR) and that relatively more flat galaxies were present in the low density region (LDR). This suggests that the ellipticals in the HDRs and LDRs have different origins or that different mechanisms might be involved. The elliptical galaxies in the LDR are likely to have evolved from mergers in relatively anisotropic structures, such as filaments and webs, and might contain information on the anisotropic spatial distribution of their parent mergers. By contrast, elliptical galaxies in the HDR might be formed in more isotropic structures, such as galaxy clusters, or they might encounter more torqueing effects compared with galaxies in LDRs, thereby becoming rounder.

  17. Morphologies at High Redshift from Galaxy Zoo

    NASA Astrophysics Data System (ADS)

    Masters, Karen; Melvin, Tom; Simmons, Brooke; Willett, Kyle; Lintott, Chris

    2015-08-01

    I will present results from Galaxy Zoo classification of galaxies observed in public observed frame optical HST surveys (e.g. COSMOS, GOODS) as well as in observed frame NIR with (ie. CANDELS). Early science results from these classifications have investigated the changing bar fraction in disc galaxies as a function of redshift (to z~1 in Melvin et al. 2014; and at z>1 in Simmons et al. 2015), as well as how the morphologies of galaxies on the red sequence have been changing since z~1 (Melvin et al. in prep.). These unique dataset of quantitative visual classifications for high redshift galaxies will be made public in forthcoming publications (planned as Willett et al. for Galaxy Zoo Hubble, and Simmons et al. for Galaxy Zoo CANDELS).

  18. Environmental Dependence of Warps in Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Ann, Hong Bae; Bae, Hyun Jeong

    2016-12-01

    We determined the warp parameters of 192 warped galaxies which are selected from 340 edge-on galaxies using color images as well as r-band isophotal maps. We derive the local background density (Σ_{n}) to examine the dependence of the warp amplitudes on the galaxy environment. We find a clear trend that strongly warped galaxies are likely to be found in high density regions where tidal interactions are supposed to be frequent. However, the correlation between α_{w} and Σ_{n} is too weak for weakly warped galaxies (α_{w} < 4°) and the cumulative distributions of weakly warped galaxies are not significantly different from those of galaxies with no detectable warps. This suggests that tidal interactions do not play a decisive role in the formation of weak warps.}

  19. Galaxies on Top of Quasars: Probing Dwarf Galaxies in the SDSS

    NASA Astrophysics Data System (ADS)

    Straka, Lorrie; York, D. G.; Noterdaeme, P.; Srianand, R.; Bowen, D. V.; Khare, P.; Bishof, M.; Whichard, Z.; Kulkarni, V. P.

    2013-07-01

    Absorption lines from galaxies at intervening redshifts in quasar spectra are sensitive probes of metals and gas that are otherwise invisible due to distance or low surface brightness. However, in order to determine the environments these absorption lines arise in, we must detect these galaxies in emission as well. Galaxies on top of quasars (GOTOQs) are low-z galaxies found intervening with background quasars in the SDSS. These galaxies have been flagged for their narrow galactic emission lines present in quasar spectra in the SDSS. Typically, the low-z nature of these galaxies allows them to be easily detected in SDSS imaging. However, a number of GOTOQs (about 10%), despite being detected in spectral emission, are NOT seen in SDSS imaging. This implies that these may be dark galaxies, dwarf galaxies, or similarly low surface brightness galaxies. Additionally, about 25% of those detected in imaging are dwarf galaxies according to their L* values. Dwarf galaxies have long been underrepresented in observations compared to theory and are known to have large extents in dark matter. Given their prevalence here in our sample we must ask what role they play in quasar absorption line systems (QSOALS). Recent detections of 21-cm galaxies with few stars imply that aborted star formation in dark matter sub halos may produce QSOALS. Thus, this sub sample of galaxies offers a unique technique for probing dark and dwarf galaxies. The sample and its properties will be discussed, including star formation rates and dust estimates, as well as prospects for the future.

  20. The Laniakea supercluster of galaxies.

    PubMed

    Tully, R Brent; Courtois, Hélène; Hoffman, Yehuda; Pomarède, Daniel

    2014-09-04

    Galaxies congregate in clusters and along filaments, and are missing from large regions referred to as voids. These structures are seen in maps derived from spectroscopic surveys that reveal networks of structure that are interconnected with no clear boundaries. Extended regions with a high concentration of galaxies are called 'superclusters', although this term is not precise. There is, however, another way to analyse the structure. If the distance to each galaxy from Earth is directly measured, then the peculiar velocity can be derived from the subtraction of the mean cosmic expansion, the product of distance times the Hubble constant, from observed velocity. The peculiar velocity is the line-of-sight departure from the cosmic expansion and arises from gravitational perturbations; a map of peculiar velocities can be translated into a map of the distribution of matter. Here we report a map of structure made using a catalogue of peculiar velocities. We find locations where peculiar velocity flows diverge, as water does at watershed divides, and we trace the surface of divergent points that surrounds us. Within the volume enclosed by this surface, the motions of galaxies are inward after removal of the mean cosmic expansion and long range flows. We define a supercluster to be the volume within such a surface, and so we are defining the extent of our home supercluster, which we call Laniakea.

  1. DAGAL: Detailed Anatomy of Galaxies

    NASA Astrophysics Data System (ADS)

    Knapen, Johan H.

    2017-03-01

    The current IAU Symposium is closely connected to the EU-funded network DAGAL (Detailed Anatomy of Galaxies), with the final annual network meeting of DAGAL being at the core of this international symposium. In this short paper, we give an overview of DAGAL, its training activities, and some of the scientific advances that have been made under its umbrella.

  2. Magnetic fields during galaxy mergers

    NASA Astrophysics Data System (ADS)

    Rodenbeck, Kai; Schleicher, Dominik R. G.

    2016-09-01

    Galaxy mergers are expected to play a central role for the evolution of galaxies and may have a strong effect on their magnetic fields. We present the first grid-based 3D magnetohydrodynamical simulations investigating the evolution of magnetic fields during merger events. For this purpose, we employed a simplified model considering the merger event of magnetized gaseous disks in the absence of stellar feedback and without a stellar or dark matter component. We show that our model naturally leads to the production of two peaks in the evolution of the average magnetic field strength within 5 kpc, within 25 kpc, and on scales in between 5 and 25 kpc. The latter is consistent with the peak in the magnetic field strength previously reported in a merger sequence of observed galaxies. We show that the peak on the galactic scale and in the outer regions is most likely due to geometrical effects, as the core of one galaxy enters the outskirts of the other one. In addition, the magnetic field within the central ~5 kpc is physically enhanced, which reflects the enhancement in density that is due to efficient angular momentum transport. We conclude that high-resolution observations of the central regions will be particularly relevant for probing the evolution of magnetic field structures during merger events.

  3. Revised positions for CIG galaxies

    NASA Astrophysics Data System (ADS)

    Leon, S.; Verdes-Montenegro, L.

    2003-12-01

    We present revised positions for the 1051 galaxies belonging to the Karachentseva Catalog of Isolated Galaxies (CIG). New positions were calculated by applying SExtractor to the Digitized Sky Survey CIG fields with a spatial resolution of 1 arcsper 2. We visually checked the results and for 118 galaxies had to recompute the assigned positions due to complex morphologies (e.g. distorted isophotes, undefined nuclei, knotty galaxies) or the presence of bright stars. We found differences between older and newer positions of up to 38 arcsec with a mean value of 2 arcsper 96 relative to SIMBAD and up to 38 arcsec and 2 arcsper 42 respectively relative to UZC. Based on star positions from the APM catalog we determined that the DSS astrometry of five CIG fields has a mean offset in (alpha , delta ) of (-0 arcsper 90, 0 arcsper 93) with a dispersion of 0 arcsper 4. These results have been confirmed using the 2MASS All-Sky Catalog of Point Sources. The intrinsic errors of our method combined with the astrometric ones are of the order of 0 arcsper 5. Full Table 1 is only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/411/391

  4. UV-radiation in galaxies

    NASA Astrophysics Data System (ADS)

    Sil'Chenko, Olga K.

    2011-09-01

    I review the origin of UV-radiation in galaxies of different morphological types. UV-excess in spectra of massive elliptical galaxies which have predominantly old stellar populations is traditionally explained by the contribution of low-mass stars at very late, poorly known stages of evolution—by so called `AGB-manqué' stars or by the population of extended horizontal branch. However recent results from the GALEX survey of a large sample of nearby ellipticals have also demonstrated probable traces of recent star formation in a third of all ellipticals observed. In spiral galaxies extended UV-disks have been discovered by the GALEX; they are certainly illuminated by the current star formation, but what has provoked star formation in the areas of very low gas density, beyond the distribution of older stars, is a puzzle yet. The UV-spectra of starburst galaxies or starforming galactic nuclei are characterized by weak emission lines, if any, quite dissimilar to their optical spectra.

  5. The Laniakea supercluster of galaxies

    NASA Astrophysics Data System (ADS)

    Tully, R. Brent; Courtois, Hélène; Hoffman, Yehuda; Pomarède, Daniel

    2014-09-01

    Galaxies congregate in clusters and along filaments, and are missing from large regions referred to as voids. These structures are seen in maps derived from spectroscopic surveys that reveal networks of structure that are interconnected with no clear boundaries. Extended regions with a high concentration of galaxies are called `superclusters', although this term is not precise. There is, however, another way to analyse the structure. If the distance to each galaxy from Earth is directly measured, then the peculiar velocity can be derived from the subtraction of the mean cosmic expansion, the product of distance times the Hubble constant, from observed velocity. The peculiar velocity is the line-of-sight departure from the cosmic expansion and arises from gravitational perturbations; a map of peculiar velocities can be translated into a map of the distribution of matter. Here we report a map of structure made using a catalogue of peculiar velocities. We find locations where peculiar velocity flows diverge, as water does at watershed divides, and we trace the surface of divergent points that surrounds us. Within the volume enclosed by this surface, the motions of galaxies are inward after removal of the mean cosmic expansion and long range flows. We define a supercluster to be the volume within such a surface, and so we are defining the extent of our home supercluster, which we call Laniakea.

  6. Angular Momentum of Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Butler, Kirsty M.; Obreschkow, Danail; Oh, Se-Heon

    2017-01-01

    We present measurements of baryonic mass {M}{{b}} and specific angular momentum (sAM) {j}{{b}} in 14 rotating dwarf Irregular (dIrr) galaxies from the LITTLE THINGS sample. These measurements, based on 21 cm kinematic data from the Very Large Array and stellar mass maps from the Spitzer Space Telescope, extend previous AM measurements by more than two orders of magnitude in {M}{{b}}. The dwarf galaxies show systematically higher {j}{{b}} values than expected from the {j}{{b}}\\propto {M}{{b}}2/3 scaling of spiral galaxies, representative of a scale-free galaxy formation scenario. This offset can be explained by decreasing baryon mass fractions {f}{{M}}={M}{{b}}/{M}{dyn} (where {M}{dyn} is the dynamical mass) with decreasing {M}{{b}} (for {M}{{b}}< {10}11 {M}ȯ ). We find that the sAM of neutral atomic hydrogen (H i) alone is about 2.5 times higher than that of the stars. The M–j relation of H i is significantly steeper than that of the stars, as a direct consequence of the systematic variation of the H i fraction with {M}{{b}}.

  7. Epsiodic Activity in Radio Galaxies

    SciTech Connect

    Saikia, D.J.; Konar, C.; Jamrozy, M.; Machalski, J.; Gupta, Neeraj; Stawarz, L.; Mack, K.-H.; Siemiginowska, A.; /Harvard-Smithsonian Ctr. Astrophys.

    2007-10-15

    One of the interesting issues in our understanding of active galactic nuclei is the duration of their active phase and whether such activity is episodic. In this paper we summarize our recent results on episodic activity in radio galaxies obtained with the GMRT and the VLA.

  8. More Satellites of Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Zaritsky, Dennis; Smith, Rodney; Frenk, Carlos; White, Simon D. M.

    1997-03-01

    We present a revised and expanded catalog of satellite galaxies of a set of isolated spiral galaxies similar in luminosity to the Milky Way. This sample of 115 satellites, 69 of which were discovered in our multifiber redshift survey, is used to probe the results obtained from the original sample further (Zaritsky et al.). The satellites are, by definition, at projected separations <~500 kpc, have absolute recessional velocity differences with respect to the parent spiral of less than 500 km s-1, and are at least 2.2 mag fainter than their associated primary galaxy. A key characteristic of this survey is the strict isolation of these systems, which simplifies any dynamical analysis. We find no evidence for a decrease in the velocity dispersion of the satellite system as a function of radius out to galactocentric radii of 400 kpc, which suggests that the halo extends well beyond 200 kpc. Furthermore, the new sample affirms our previous conclusions (Zaritsky et al.) that (1) the velocity difference between a satellite and its primary is not strongly correlated with the rotation speed of the primary, (2) the system of satellites has a slight net rotation (34 +/- 14 km s-1) in the same sense as the primary's disk, and (3) that the halo mass of an ~L* spiral galaxy is in excess of 2 × 1012 M⊙. Lick Observatory Bulletin B1346.

  9. Clumpy Galaxies in the Early Universe

    NASA Astrophysics Data System (ADS)

    Elmegreen, Debra Meloy

    2007-05-01

    High redshift galaxies larger than 10 pixels were observed with the HST ACS in the Ultra Deep Field and Tadpole galaxy field in order to determine their morphological classes and photometric properties. Over 1300 galaxies were studied; most are at redshifts 1 to 3, although several dozen Lyman Break Galaxies were observed at redshifts 4 and 5. Galaxy types include chains, clump-clusters, doubles, tadpoles, spirals, and ellipticals. Ordinary spiral and elliptical galaxies are rare in the early universe; clumpy galaxies dominate at fainter than magnitude 25. Face-on spirals are scarce at high z because of surface brightness selection effects. Chain galaxies and clump-cluster galaxies appear to be a single galaxy type viewed at different orientations; they have no bulges or exponential profiles. Spiral galaxies at high z have exponential profiles with scale lengths that average half that of local galaxies, implying that disks must grow from the inside out with time. Star-forming clusters in both clump-clusters and spirals have exponential radial distributions, suggesting that the clumps in clump-clusters will eventually disperse to form exponential disks. There is a nearly uniform fraction of barred galaxies with z, suggesting that bar dissolution is not a prominent occurrence. The appearance of blue clumpy bars suggests that bar formation sometimes occurs from gas-phase disk instabilities rather than stellar instabilities. Thirty percent of elliptical galaxies at high z contain blue clumps. The prominent star-forming clumps in clump clusters and ellipticals were compared with stellar evolution models to determine ages and masses; these regions are unlike star-forming regions in the local universe. They have ages less than 1 Gyr and contain one billion solar masses. They resemble isolated clumps in the UDF, suggesting accretion in a hierarchical build-up model.

  10. The VRI colours of H II galaxies

    NASA Astrophysics Data System (ADS)

    Telles, Eduardo; Terlevich, Roberto

    1997-03-01

    We present a high spatial resolution CCD surface photometry study in the optical V, R and I broad-band filters of a sample of 15 H II galaxies. Narrow-band imaging allows the separation of the emission-line region from the extended parts of the galaxy. The latter are assumed to represent the underlying galaxy in H II galaxies; thus the colours of the underlying galaxy are measured. The colours of the underlying stellar continuum within the starburst are also derived by subtracting the contribution of the emission lines falling in the broad-band filters. The distribution of colours of the underlying galaxy in H II galaxies is similar to the colours of other late-type low surface brightness galaxies, which suggests a close kinship of these with the quiescent phases of H II galaxies. However, comparison wtih recent evolutionary population synthesis models shows that the observational errors and the uncertainties in the models are still too large to put strict constraints on their past star formation history. Our analysis of the morphology and structural properties, from contour maps and luminosity profiles, of this sample of 15 H II galaxies agrees with what has been found by Telles and Telles, Melnick & Terlevich, namely that H II galaxies comprise two broad classes segregated by their luminosity; Type I H II galaxies are luminous and have disturbed and irregular outer shapes, while Type II H II galaxies are less luminous and have regular shapes. The outer parts of their profiles are well represented by an exponential, as in other types of known dwarf galaxy.

  11. Morphological Peculiarities of Distant and Local Galaxies

    NASA Astrophysics Data System (ADS)

    Wu, K. L.; Faber, S. M.; Lauer, T. R.

    1997-12-01

    Detailed images from the Hubble Space Telescope (HST) have sparked a surge of interest in morphological peculiarities in both distant and local galaxies. Several groups have developed criteria by which to classify peculiarities in galaxy morphology (e.g., Abraham et al. 1996, Naim et al. 1997). In order to study peculiar galaxies at high redshifts, it is crucial to have a solid understanding of both the morphological peculiarities in local galaxies and the appearance of local galaxies if they were observed at higher redshifts. We are developing several algorithms to quantify the types and degree of peculiarity seen in galaxy morphology. These algorithms, or peculiarity indices, are sensitive to several different types of features. The indices are applied initially to two samples: (1) a local galaxy sample, comprised of a subset of the Frei, et al. 1996 ``Catalog of Nearby Galaxies,'' along with several merger candidates from Hibbard & van Gorkom 1996 and from a run on the Lick Observatory Nickel 40-inch telescope by one of the authors (KLW); and (2) a sample of simulated z ~ 0.8 galaxies. The images of the local galaxies are resampled, and noise is added, to reflect the sampling and noise levels found in the Hubble Deep Field (HDF). The galaxy sizes and surface brightnesses are cosmologically shifted to simulate observations of these galaxies through the HST F814W ( ~ I) filter at z ~ 0.8. This study expands upon previous work by providing a realistic view of which local morphological features we can expect to measure robustly when observed at high redshifts with the current observational technology. We also demonstrate the effectiveness of our peculiarity indices in differentiating between ``normal'' (i.e., Hubble Sequence type) galaxies and ``peculiar'' galaxies at these two epochs.

  12. Magnetic fields in spiral galaxies

    NASA Astrophysics Data System (ADS)

    Krause, Marita

    2015-03-01

    The magnetic field structure in edge-on galaxies observed so far shows a plane-parallel magnetic field component in the disk of the galaxy and an X-shaped field in its halo. The plane-parallel field is thought to be the projected axisymmetric (ASS) disk field as observed in face-on galaxies. Some galaxies addionionally exhibit strong vertical magnetic fields in the halo right above and below the central region of the disk. The mean-field dynamo theory in the disk cannot explain these observed fields without the action of a wind, which also probably plays an important role to keep the vertical scale heights constant in galaxies of different Hubble types and star formation activities, as has been observed in the radio continuum: At λ6 cm the vertical scale heights of the thin disk and the thick disk/halo in a sample of five edge-on galaxies are similar with a mean value of 300 +/- 50 pc for the thin disk and 1.8 +/- 0.2 kpc for the thick disk (a table and references are given in Krause 2011) with our sample including the brightest halo observed so far, NGC 253, with strong star formation, as well as one of the weakest halos, NGC 4565, with weak star formation. If synchrotron emission is the dominant loss process of the relativistic electrons the outer shape of the radio emission should be dumbbell-like as has been observed in several edge-on galaxies like e.g. NGC 253 (Heesen et al. 2009) and NGC 4565. As the synchrotron lifetime t syn at a single frequency is proportional to the total magnetic field strength B t -1.5, a cosmic ray bulk speed (velocity of a galactic wind) can be defined as v CR = h CR /t syn = 2 h z /t syn , where h CR and h z are the scale heights of the cosmic rays and the observed radio emission at this freqnency. Similar observed radio scale heights imply a self regulation mechanism between the galactic wind velocity, the total magnetic field strength and the star formation rate SFR in the disk: v CR ~ B t 1.5 ~ SFR ~ 0.5 (Niklas & Beck 1997).

  13. On-Going Galaxy Formation

    NASA Astrophysics Data System (ADS)

    Braine, Jonathan; Duc, P.-A.; Lisenfeld, U.; Charmandaris, V.; Vallejo, O.; Leon, S.; Brinks, E.

    2002-07-01

    We investigate the process of galaxy formation as can be observed in the only currently forming galaxies - the so-called Tidal Dwarf Galaxies, hereafter TDGs - through observations of the molecular gas detected via its CO (Carbon Monoxide) emission. These objects are formed of material torn off of the outer parts of a spiral disk due to tidal forces in a collision between two massive galaxies. Molecular gas is a key element in the galaxy formation process, providing the link between a cloud of gas and a bona fide galaxy. We have detected CO in 8 TDGs (Braine, Lisenfeld, Duc and Leon, 2000: Nature 403, 867; Braine, Duc, Lisenfeld, Charmandaris, Vallejo, Leon and Brinks: 2001, A&A 378, 51), with an overall detection rate of 80%, showing that molecular gas is abundant in TDGs, up to a few 108 M ⊙. The CO emission coincides both spatially and kinematically with the HI emission, indicating that the molecular gas forms from the atomic hydrogen where the HI column density is high. A possible trend of more evolved TDGs having greater molecular gas masses is observed, in accord with the transformation of HI into H2. Although TDGs share many of the properties of small irregulars, their CO luminosity is much greater (factor ˜ 100) than that of standard dwarf galaxies of comparable luminosity. This is most likely a consequence of the higher metallicity (≳sim 1/3 solar) of TDGs which makes CO a good tracer of molecular gas. This allows us to study star formation in environments ordinarily inaccessible due to the extreme difficulty of measuring the molecular gas mass. The star formation efficiency, measured by the CO luminosity per Hα flux, is the same in TDGs and full-sized spirals. CO is likely the best tracer of the dynamics of these objects because some fraction of the HI near the TDGs may be part of the tidal tail and not bound to the TDG. Although uncertainties are large for individual objects, as the geometry is unknown, our sample is now of eight detected objects

  14. COSMOS Galaxy Morphology Pilot Project

    NASA Astrophysics Data System (ADS)

    Prescott, M.; Impey, C.; Scoville, N.; COSMOS Collaboration

    2004-05-01

    The COSMOS (Cosmic Evolution Survey) project will be the largest HST imaging survey ever, covering two square degrees with the ACS instrument. The survey is designed to sample the full range of cosmic structures up to scales of 100 Mpc, map the evolution of galaxy morphology, galaxy merging, and star formation out to z of 2, use weak lensing to reconstruct the dark matter distribution out to z of 1, and study the joint evolution of galaxies and black holes via the AGN population. Extensive multi-wavelength observations of the field have also been committed for X-ray, UV, FIR, NIR, millimeter, and radio wavelengths. We present results from a pilot project using only the central 10.4 by 10.4 arcmin portion of the field. The goal is to understand the reliability of galaxy morphological information derived from GALFIT and other methods. Morphology has been derived from both g and i ACS images in terms of bulge/disk ratio and Sersic index. These measures have been augmented by CAS and Gini coefficients as a way of identifying galaxies that are disturbed or interacting, or where the axisymmetric assumptions of GALFIT are not warranted. We present results on how morphology correlates with global quantities such as luminosity, scale length, and mean surface brightness as well as with various broad band color combinations, which serve as proxies for overall stellar populations and ages. Using photo-z's we study all these relationships in terms of cosmic evolution. This pilot project will be used to optimize analysis strategies for the much larger amount of data in the overall COSMOS project. Funding for this work was provided by a NSF Graduate Fellowship and a NASA/HST GO Grant.

  15. Secular evolution in young galaxies

    NASA Astrophysics Data System (ADS)

    Elmegreen, Bruce G.

    2015-03-01

    Young galaxies viewed at high redshift have high turbulent velocities, high star formation rates, high gas fractions, and chaotic structures, suggesting wild instabilities during which giant gas clumps form and make stars in their dense regions, stir other disk stars and gas, and transport angular momentum outward with a resulting net mass flow inward (e.g., Ceverino et al. 2010). At z=1.5, 40% of star-forming galaxies have significant clumps (Elmegreen et al. 2007; Wuyts et al. 2012), and in these, 10%-20% of the stellar mass is in clumps that last ~150 Myr (Elmegreen et al. 2009; Wuyts et al. 2012). The thick disk and bulge in modern galaxies could form in this phase. The similarity in the α/Fe ratio (Meléndez et al. 2008), K-giant abundances (Bensby et al. 2010) and ages for the Milky Way bulge and thick disk suggest they formed at the same time. High dispersion gas at z ~ 1.5 can do this because it makes the young disk thick and the SF clumps big enough to drive fast secular evolution (Elmegreen et al. 2006; Genzel et al. 2008; Bournaud et al. 2009). Local analogues might be present in dynamically young galaxies like BCDs (Elmegreen et al. 2012). The high fraction of z ~ 1.5 galaxies with massive clumps suggests clump formation is a long-lived phase and that clump torques should last ~ 1 Gyr or more even if individual clumps come and go on shorter timescales. Clump formation may cease when stars finally dominate the disk mass (Cacciato et al. 2012).

  16. How to quench a galaxy

    NASA Astrophysics Data System (ADS)

    Pontzen, Andrew; Tremmel, Michael; Roth, Nina; Peiris, Hiranya V.; Saintonge, Amélie; Volonteri, Marta; Quinn, Tom; Governato, Fabio

    2017-02-01

    We show how the interplay between active galactic nuclei (AGNs) and merger history determines whether a galaxy quenches star formation (SF) at high redshift. We first simulate, in a full cosmological context, a galaxy of total dynamical mass Mvir = 1012 M⊙ at z = 2. Then we systematically alter the accretion history of the galaxy by minimally changing the linear overdensity in the initial conditions. This `genetic modification' approach allows the generation of three sets of Λ CDM initial conditions leading to maximum merger ratios of 1:10, 1:5 and 2:3, respectively. The changes leave the final halo mass, large-scale structure and local environment unchanged, providing a controlled numerical experiment. Interaction between the AGN physics and mergers in the three cases leads, respectively, to a star-forming, temporarily quenched and permanently quenched galaxy. However, the differences do not primarily lie in the black hole accretion rates, but in the kinetic effects of the merger: the galaxy is resilient against AGN feedback unless its gaseous disc is first disrupted. Typical accretion rates are comparable in the three cases, falling below 0.1 M⊙ yr-1, equivalent to around 2 per cent of the Eddington rate or 10-3 times the pre-quenching star formation rate, in agreement with observations. This low level of black hole accretion can be sustained even when there is insufficient dense cold gas for SF. Conversely, supernova feedback is too distributed to generate outflows in high-mass systems, and cannot maintain quenching over periods longer than the halo gas cooling time.

  17. Galaxy formation in an Omega = 1 cold dark matter universe

    NASA Technical Reports Server (NTRS)

    Bardeen, James M.

    1986-01-01

    A model for galaxy formation is proposed which assumes that bright galaxies form where the primordial density fluctuations exceed a high threshold. Most of the mass in the universe is uncondensed or associated with low surface brightness galaxies. Physical mechanisms and predicitons for the galaxy-galaxy correlation function are discussed.

  18. Radio Galaxy Zoo: host galaxies and radio morphologies derived from visual inspection

    NASA Astrophysics Data System (ADS)

    Banfield, J. K.; Wong, O. I.; Willett, K. W.; Norris, R. P.; Rudnick, L.; Shabala, S. S.; Simmons, B. D.; Snyder, C.; Garon, A.; Seymour, N.; Middelberg, E.; Andernach, H.; Lintott, C. J.; Jacob, K.; Kapińska, A. D.; Mao, M. Y.; Masters, K. L.; Jarvis, M. J.; Schawinski, K.; Paget, E.; Simpson, R.; Klöckner, H.-R.; Bamford, S.; Burchell, T.; Chow, K. E.; Cotter, G.; Fortson, L.; Heywood, I.; Jones, T. W.; Kaviraj, S.; López-Sánchez, Á. R.; Maksym, W. P.; Polsterer, K.; Borden, K.; Hollow, R. P.; Whyte, L.

    2015-11-01

    We present results from the first 12 months of operation of Radio Galaxy Zoo, which upon completion will enable visual inspection of over 170 000 radio sources to determine the host galaxy of the radio emission and the radio morphology. Radio Galaxy Zoo uses 1.4 GHz radio images from both the Faint Images of the Radio Sky at Twenty Centimeters (FIRST) and the Australia Telescope Large Area Survey (ATLAS) in combination with mid-infrared images at 3.4 μm from the Wide-field Infrared Survey Explorer (WISE) and at 3.6 μm from the Spitzer Space Telescope. We present the early analysis of the WISE mid-infrared colours of the host galaxies. For images in which there is >75 per cent consensus among the Radio Galaxy Zoo cross-identifications, the project participants are as effective as the science experts at identifying the host galaxies. The majority of the identified host galaxies reside in the mid-infrared colour space dominated by elliptical galaxies, quasi-stellar objects and luminous infrared radio galaxies. We also find a distinct population of Radio Galaxy Zoo host galaxies residing in a redder mid-infrared colour space consisting of star-forming galaxies and/or dust-enhanced non-star-forming galaxies consistent with a scenario of merger-driven active galactic nuclei (AGN) formation. The completion of the full Radio Galaxy Zoo project will measure the relative populations of these hosts as a function of radio morphology and power while providing an avenue for the identification of rare and extreme radio structures. Currently, we are investigating candidates for radio galaxies with extreme morphologies, such as giant radio galaxies, late-type host galaxies with extended radio emission and hybrid morphology radio sources.

  19. Galaxy Zoo: quantitative visual morphological classifications for 48 000 galaxies from CANDELS

    NASA Astrophysics Data System (ADS)

    Simmons, B. D.; Lintott, Chris; Willett, Kyle W.; Masters, Karen L.; Kartaltepe, Jeyhan S.; Häußler, Boris; Kaviraj, Sugata; Krawczyk, Coleman; Kruk, S. J.; McIntosh, Daniel H.; Smethurst, R. J.; Nichol, Robert C.; Scarlata, Claudia; Schawinski, Kevin; Conselice, Christopher J.; Almaini, Omar; Ferguson, Henry C.; Fortson, Lucy; Hartley, William; Kocevski, Dale; Koekemoer, Anton M.; Mortlock, Alice; Newman, Jeffrey A.; Bamford, Steven P.; Grogin, N. A.; Lucas, Ray A.; Hathi, Nimish P.; McGrath, Elizabeth; Peth, Michael; Pforr, Janine; Rizer, Zachary; Wuyts, Stijn; Barro, Guillermo; Bell, Eric F.; Castellano, Marco; Dahlen, Tomas; Dekel, Avishai; Ownsworth, Jamie; Faber, Sandra M.; Finkelstein, Steven L.; Fontana, Adriano; Galametz, Audrey; Grützbauch, Ruth; Koo, David; Lotz, Jennifer; Mobasher, Bahram; Mozena, Mark; Salvato, Mara; Wiklind, Tommy

    2017-02-01

    We present quantified visual morphologies of approximately 48 000 galaxies observed in three Hubble Space Telescope legacy fields by the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) and classified by participants in the Galaxy Zoo project. 90 per cent of galaxies have z ≤ 3 and are observed in rest-frame optical wavelengths by CANDELS. Each galaxy received an average of 40 independent classifications, which we combine into detailed morphological information on galaxy features such as clumpiness, bar instabilities, spiral structure, and merger and tidal signatures. We apply a consensus-based classifier weighting method that preserves classifier independence while effectively down-weighting significantly outlying classifications. After analysing the effect of varying image depth on reported classifications, we also provide depth-corrected classifications which both preserve the information in the deepest observations and also enable the use of classifications at comparable depths across the full survey. Comparing the Galaxy Zoo classifications to previous classifications of the same galaxies shows very good agreement; for some applications, the high number of independent classifications provided by Galaxy Zoo provides an advantage in selecting galaxies with a particular morphological profile, while in others the combination of Galaxy Zoo with other classifications is a more promising approach than using any one method alone. We combine the Galaxy Zoo classifications of `smooth' galaxies with parametric morphologies to select a sample of featureless discs at 1 ≤ z ≤ 3, which may represent a dynamically warmer progenitor population to the settled disc galaxies seen at later epochs.

  20. STUDYING INTERCLUSTER GALAXY FILAMENTS THROUGH STACKING gmBCG GALAXY CLUSTER PAIRS

    SciTech Connect

    Zhang Yuanyuan; Dietrich, Joerg P.; McKay, Timothy A.; Nguyen, Alex T. Q.; Sheldon, Erin S.

    2013-08-20

    We present a method to study the photometric properties of galaxies in filaments by stacking the galaxy populations between pairs of galaxy clusters. Using Sloan Digital Sky Survey data, this method can detect the intercluster filament galaxy overdensity with a significance of {approx}5{sigma} out to z = 0.40. Using this approach, we study the g - r color and luminosity distribution of filament galaxies as a function of redshift. Consistent with expectation, filament galaxies are bimodal in their color distribution and contain a larger blue galaxy population than clusters. Filament galaxies are also generally fainter than cluster galaxies. More interestingly, the observed filament population seems to show redshift evolution at 0.12 < z < 0.40: the blue galaxy fraction has a trend to increase at higher redshift; such evolution is parallel to the ''Butcher-Oemler effect'' of galaxy clusters. We test the dependence of the observed filament density on the richness of the cluster pair: richer clusters are connected by higher density filaments. We also test the spatial dependence of filament galaxy overdensity: this quantity decreases when moving away from the intercluster axis between a cluster pair. This method provides an economical way to probe the photometric properties of filament galaxies and should prove useful for upcoming projects like the Dark Energy Survey.

  1. A class of compact dwarf galaxies from disruptive processes in galaxy clusters.

    PubMed

    Drinkwater, M J; Gregg, M D; Hilker, M; Bekki, K; Couch, W J; Ferguson, H C; Jones, J B; Phillipps, S

    2003-05-29

    Dwarf galaxies have attracted increased attention in recent years, because of their susceptibility to galaxy transformation processes within rich galaxy clusters. Direct evidence for these processes, however, has been difficult to obtain, with a small number of diffuse light trails and intra-cluster stars being the only signs of galaxy disruption. Furthermore, our current knowledge of dwarf galaxy populations may be very incomplete, because traditional galaxy surveys are insensitive to extremely diffuse or compact galaxies. Aware of these concerns, we recently undertook an all-object survey of the Fornax galaxy cluster. This revealed a new population of compact members, overlooked in previous conventional surveys. Here we demonstrate that these 'ultra-compact' dwarf galaxies are structurally and dynamically distinct from both globular star clusters and known types of dwarf galaxy, and thus represent a new class of dwarf galaxy. Our data are consistent with the interpretation that these are the remnant nuclei of disrupted dwarf galaxies, making them an easily observed tracer of galaxy disruption.

  2. Investigating the Processes Driving Low-Mass Galaxy Evolution with Gas Metallicities of Starburst Galaxies

    NASA Astrophysics Data System (ADS)

    Ly, Chun; Malkan, Matthew; Nagao, Tohru; Hayashi, Masao; Kashikawa, Nobunari; Shimasaku, Kazuhiro; Motohara, Kentaro

    2013-02-01

    There appears to be a ``fundamental" relationship that links the stellar masses, star-formation rates (SFRs), and gas metallicities of local galaxies. It has been used to constrain the major processes in galaxy evolution. However, it is unclear whether (1) this observed relation holds at earlier cosmic time, and (2) if it applies to low-mass galaxies and/or those with relatively higher specific SFRs (sSFRs). We request follow-up Hectospec spectroscopy %and DEIMOS spectroscopy to obtain gas metallicity measurements in key unexplored domains of galaxy parameter space. We will target Ntarget low-mass high equivalent width (EW) emission-line galaxies at zrange in the Subaru Deep Field (SDF). This sample is a factor of almost 4 larger than the existing data for galaxies with similar redshifts, SFRs and stellar masses. The SDF is ideal for such a survey because of its unique multi-wavelength imaging data that allow us to (1) identify a much higher surface density of high-EW star-forming galaxies over a wide redshift range than in any other survey, and (2) determine stellar masses and SFRs for individual galaxies. With the largest spectroscopic sample of low mass and/or high sSFR galaxies, we will determine the relationships between metallicity, stellar mass, and SFRs for dwarf galaxies. We will examine if the same galaxy evolution processes in massive galaxies also hold for lower mass galaxies over the past six billion years.

  3. Baby Galaxies in the Adult Universe

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site] Figure 1

    This artist's conception illustrates the decline in our universe's 'birth-rate' over time. When the universe was young, massive galaxies were forming regularly, like baby bees in a bustling hive. In time, the universe bore fewer and fewer 'offspring,' and newborn galaxies (white circles) matured into older ones more like our own Milky Way (spirals).

    Previously, astronomers thought that the universe had ceased to give rise to massive, young galaxies, but findings from NASA's Galaxy Evolution Explorer suggest that may not be the case. Surveying thousands of nearby galaxies with its highly sensitive ultraviolet eyes, the telescope spotted three dozen that greatly resemble youthful galaxies from billions of years ago. In this illustration, those galaxies are represented as white circles on the right, or 'today' side of the timeline.

    The discovery not only suggests that our universe may still be alive with youth, but also offers astronomers their first close-up look at what appear to be baby galaxies. Prior to the new result, astronomers had to peer about 11 billion light-years into the distant universe to see newborn galaxies. The newfound galaxies are only about 2 to 4 billion light-years away.

  4. The Star Formation History of Void Galaxies

    NASA Astrophysics Data System (ADS)

    Stanonik, Kathryn

    The Cosmic Web that permeates our universe is defined by the alignment of galaxies into filaments, clusters, and walls, as well as by the voids between them which are (mostly) empty. Void galaxies, found occupying these underdense regions, are an environmentally defined population whose isolated nature and extreme environment provides an ideal opportunity to test theories of galaxy formation and evolution. Their existence also poses a well defined observational constraint to Lambda CDM cosmological models. We propose to do UV imaging of a sample of SDSS selected void galaxies located in the deepest underdensities of nearby voids. Our galaxies were selected using the Delaunay Tesselation Field estimator, a novel, purely structural and geometric technique, to produce a sample that more uniformly represents the void galaxy population. In addition, we use a powerful new backend of the Westerbork Synthesis Radio Telescope that allows us to probe the neutral gas content in a huge volume around each targeted void galaxy, while still resolving individual galaxy kinematics and detecting faint companions in H I. We specifically aim to study the star formation history of these systems, which appear to be in a more youthful stage of their evolution than field galaxies. With this combination of UV and H I data we will address questions ranging from how galaxies get their gas, how they form stars, and what role environment plays in these processes.

  5. Morphology and Structures of Nearby Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Seo, Mira; Ann, HongBae

    2015-08-01

    We performed an analysis of the structure of nearby dwarf galaxies based on a 2-dimensional decomposition of galaxy images using GALFIT. The present sample consists of ~1,100 dwarf galaxies with redshift less than z = 0.01, which is is derived from the morphology catalog of the Visually classified galaxies in the local universe (Ann, Seo, and Ha 2015). In this catalog, dwarf galaxies are divided into 5 subtypes: dS0, dE, dSph, dEbc, dEblue with distinction of the presence of nucleation in dE, dSph, and dS0. We found that dSph and dEblue galaxies are fainter than other subtypes of dwarf galaxies. In most cases, single component, represented by the Sersic profile with n=1~1.5, well describes the luminosity distribution of dwarf galaxies in the present sample. However, a significant fraction of dS0, dEbc, and dEbue galaxies show sub-structures such as spiral arms and rings. We will discuss the morphology dependent evolutionary history of the local dwarf galaxies.

  6. CO excitation in four IR luminous galaxies

    NASA Technical Reports Server (NTRS)

    Radford, Simon J. E.; Solomon, P. M.; Downes, Dennis

    1990-01-01

    The correlation between the CO and far infrared luminosities of spiral galaxies is well established. The luminosity ration, L sub FIR/L sub CO in IR luminous active galaxies is, however, systematically five to ten times higher than in ordinary spirals and molecular clouds in our Galaxy. Furthermore, the masses of molecular hydrogen in luminous galaxies are large, M (H2) approx. equals 10(exp 10) solar magnitude, which indicates the observed luminosity ratios are due to an excess of infrared output, rather than a deficiency of molecular gas. These large amounts of molecular gas may fuel luminous galaxies through either star formation or nuclear activity. This interpretation rests on applying the M (H2)/L sub CO ratio calibrated in our Galaxy to galaxies with strikingly different luminosity ratios. But are the physical conditions of the molecular gas different in galaxies with different luminosity ratios. And, if so, does the proportionality between CO and H2 also vary among galaxies. To investigate these questions researchers observed CO (2 to 1) and (1 to 0) emission from four luminous galaxies with the Institute for Radio Astronomy in the Millimeter range (IRAM) 30 m telescope. Researchers conclude that most of the CO emission from these Arp 193, Arp 220, and Mrk 231 arises in regions with moderate ambient densities similar to the clouds in the Milky Way molecular ring. The emission is neither from dense hot cloud cores nor from the cold low density gas characteristic of the envelopes of dark clouds.

  7. Exploring Dwarf Galaxy Evolution through Metallicity Distributions

    NASA Astrophysics Data System (ADS)

    Ross, Teresa

    2015-01-01

    As the most numerous type of galaxy, dwarf galaxies are ideal for examining galactic evolution on small scales. Additional clues to galactic evolution come from the metallicity distribution function (MDF), which is influenced by the star formation, accretion, outflows and galaxy interactions. We derived stellar MDFs for the Leo I, Leo II, IC 1613, and Phoenix dwarf galaxies using HST images in order to examine how their evolution compares as a function of various galaxy properties. These galaxies span a range of different morphologies, masses, SFHs and distances from the MW. We fit a simple evolution model and an accretion model to the MDFs in order to quantify the effect of gas flows and enrichment within the galaxies. The MDFs of Leo II (dSph), Phoenix (dTrans) and IC 1613 (dIr) have similar shapes, though their peak metallicities differ. Additionally, we find the accretion model, over the simple model, is a better fit chemical evolution model for these three galaxies. However these best fit accretion models do not require a significant amount of additional gas to explain the MDF shapes. In contrast the chemical evolution model that best fits the narrow MDF of Leo I implies twice the additional gas accretion. The similarities in the MDF shapes of Leo II, Phoenix and IC 1613, even though these galaxies all have different morphologies, implies that the current morphology is not the driving factor in shaping the MDF of these galaxies.

  8. Forty Years of Research on Isolated Galaxies

    NASA Astrophysics Data System (ADS)

    Sulentic, J.

    2010-10-01

    Isolated galaxies have not been a hot topic over the past four decades. This is partly due to uncertainties about their existence. Are there galaxies isolated enough to be interesting? Do they exist in sufficient numbers to be statistically useful? Most attempts to compile isolated galaxy lists were marginally successful-too small number and not very isolated galaxies. If really isolated galaxies do exist then their value becomes obvious in a Universe where effects of interactions and environment (i.e. nurture) are important. They provide a means for better quantifying effects of nurture. The Catalog of Isolated Galaxies (CIG) compiled by Valentina Karachentseva appeared near the beginning of the review period. It becomes the focus of this review because of its obvious strengths and because the AMIGA project has increased its utility through a refinement (a vetted CIG). It contains almost 1000 galaxies with nearest neighbor crossing times of 1--3 Gyr. It is large enough to serve as a zero-point or control sample. The galaxies in the CIG (and the distribution of galaxy types) may be significantly different than those in even slightly richer environments. The AMIGA-CIG, and future iterations, may be able to tell us something about galaxy formation. It may also allow us to better define intrinsic (natural) correlations like e.g. Fisher-Tully and FIR-OPTICAL. Correlations can be better defined when the dispersion added by external stimuli (nurture) is minimized or removed.

  9. The SAMI Galaxy Survey: Early Data Release

    NASA Astrophysics Data System (ADS)

    Allen, J. T.; Croom, S. M.; Konstantopoulos, I. S.; Bryant, J. J.; Sharp, R.; Cecil, G. N.; Fogarty, L. M. R.; Foster, C.; Green, A. W.; Ho, I.-T.; Owers, M. S.; Schaefer, A. L.; Scott, N.; Bauer, A. E.; Baldry, I.; Barnes, L. A.; Bland-Hawthorn, J.; Bloom, J. V.; Brough, S.; Colless, M.; Cortese, L.; Couch, W. J.; Drinkwater, M. J.; Driver, S. P.; Goodwin, M.; Gunawardhana, M. L. P.; Hampton, E. J.; Hopkins, A. M.; Kewley, L. J.; Lawrence, J. S.; Leon-Saval, S. G.; Liske, J.; López-Sánchez, Á. R.; Lorente, N. P. F.; McElroy, R.; Medling, A. M.; Mould, J.; Norberg, P.; Parker, Q. A.; Power, C.; Pracy, M. B.; Richards, S. N.; Robotham, A. S. G.; Sweet, S. M.; Taylor, E. N.; Thomas, A. D.; Tonini, C.; Walcher, C. J.

    2015-01-01

    We present the Early Data Release of the Sydney-AAO Multi-object Integral field spectrograph (SAMI) Galaxy Survey. The SAMI Galaxy Survey is an ongoing integral field spectroscopic survey of ˜3400 low-redshift (z < 0.12) galaxies, covering galaxies in the field and in groups within the Galaxy And Mass Assembly (GAMA) survey regions, and a sample of galaxies in clusters. In the Early Data Release, we publicly release the fully calibrated data cubes for a representative selection of 107 galaxies drawn from the GAMA regions, along with information about these galaxies from the GAMA catalogues. All data cubes for the Early Data Release galaxies can be downloaded individually or as a set from the SAMI Galaxy Survey website. In this paper we also assess the quality of the pipeline used to reduce the SAMI data, giving metrics that quantify its performance at all stages in processing the raw data into calibrated data cubes. The pipeline gives excellent results throughout, with typical sky subtraction residuals in the continuum of 0.9-1.2 per cent, a relative flux calibration uncertainty of 4.1 per cent (systematic) plus 4.3 per cent (statistical), and atmospheric dispersion removed with an accuracy of 0.09 arcsec, less than a fifth of a spaxel.

  10. CO excitation in four IR luminous galaxies

    NASA Astrophysics Data System (ADS)

    Radford, Simon J. E.; Solomon, P. M.; Downes, Dennis

    1990-07-01

    The correlation between the CO and far infrared luminosities of spiral galaxies is well established. The luminosity ration, LFIR/L sub CO in IR luminous active galaxies is, however, systematically five to ten times higher than in ordinary spirals and molecular clouds in our Galaxy. Furthermore, the masses of molecular hydrogen in luminous galaxies are large, M (H2) approx. equals 1010 solar magnitude, which indicates the observed luminosity ratios are due to an excess of infrared output, rather than a deficiency of molecular gas. These large amounts of molecular gas may fuel luminous galaxies through either star formation or nuclear activity. This interpretation rests on applying the M (H2)/LCO ratio calibrated in our Galaxy to galaxies with strikingly different luminosity ratios. But are the physical conditions of the molecular gas different in galaxies with different luminosity ratios. And, if so, does the proportionality between CO and H2 also vary among galaxies. To investigate these questions researchers observed CO (2 to 1) and (1 to 0) emission from four luminous galaxies with the Institute for Radio Astronomy in the Millimeter range (IRAM) 30 m telescope. Researchers conclude that most of the CO emission from these Arp 193, Arp 220, and Mrk 231 arises in regions with moderate ambient densities similar to the clouds in the Milky Way molecular ring. The emission is neither from dense hot cloud cores nor from the cold low density gas characteristic of the envelopes of dark clouds.

  11. The Superwind Galaxy NGC 4666

    NASA Astrophysics Data System (ADS)

    2010-09-01

    The galaxy NGC 4666 takes pride of place at the centre of this new image, made in visible light with the Wide Field Imager on the MPG/ESO 2.2-metre telescope at the La Silla Observatory in Chile. NGC 4666 is a remarkable galaxy with very vigorous star formation and an unusual "superwind" of out-flowing gas. It had previously been observed in X-rays by the ESA XMM-Newton space telescope, and the image presented here was taken to allow further study of other objects detected in the earlier X-ray observations. The prominent galaxy NGC 4666 in the centre of the picture is a starburst galaxy, about 80 million light-years from Earth, in which particularly intense star formation is taking place. The starburst is thought to be caused by gravitational interactions between NGC 4666 and its neighbouring galaxies, including NGC 4668, visible to the lower left. These interactions often spark vigorous star-formation in the galaxies involved. A combination of supernova explosions and strong winds from massive stars in the starburst region drives a vast flow of gas from the galaxy into space - a so-called "superwind". The superwind is huge in scale, coming from the bright central region of the galaxy and extending for tens of thousands of light-years. As the superwind gas is very hot it emits radiation mostly as X-rays and in the radio part of the spectrum and cannot be seen in visible light images such as the one presented here. This image was made as part of a follow-up to observations made with the ESA XMM-Newton space telescope in X-rays. NGC 4666 was the target of the original XMM-Newton observations, but thanks to the telescope's wide field-of-view many other X-ray sources were also seen in the background. One such serendipitous detection is a faint galaxy cluster seen close to the bottom edge of the image, right of centre. This cluster is much further away from us than NGC 4666, at a distance of about three billion light-years. In order to fully understand the nature of

  12. Central Dark Matter Distribution In Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Oh, Se-Heon; Brook, C.; Governato, F.; Brinks, E.; Mayer, L.; de Blok, E.; Brooks, A.; Walter, F.

    2012-01-01

    Central dark matter distribution in dwarf galaxies Se-Heon Oh, Chris Brook, Fabio Governato, Elias Brinks, Lucio Mayer, W.J.G. de Blok, Alyson Brooks and Fabian Walter We present high-resolution mass models of 7 nearby dwarf galaxies from "The HI Nearby Galaxy Survey” (THINGS) and compare these with those from hydrodynamic simulations of dwarf galaxies assuming a ΛCDM cosmology. The simulations include the effect of baryonic feedback processes, such as gas cooling, star formation, cosmic UV background heating and most importantly, physically motivated gas outflows driven by supernovae (SNe). For the THINGS dwarf galaxies, we derive the mass models for the dark matter component by subtracting the contribution from baryons, derived from our HI observations and using the "Spitzer Infrared Nearby Galaxies Survey” (SINGS) 3.6μm data, from the total kinematics, leaving only the contribution by the Dark Matter halo. In parallel, we perform dark matter mass modeling of the simulated dwarf galaxies in exactly the same way as the observed THINGS dwarf galaxies. From a direct comparison between the observations and simulations, we find that the dark matter rotation curves of the simulated dwarf galaxies rise less steeply in the inner regions than those of dark-matter-only simulations based on the ΛCDM paradigm, and are more consistent with those of the THINGS dwarf galaxies. In addition, the mean value of the logarithmic inner dark matter density slopes, α, of the simulated galaxies is approximately -0.4 ± 0.1, which is in good agreement with α = -0.29 ± -0.07 of the THINGS dwarf galaxies. This shows that the baryonic feedback processes in the simulations are efficient in flattening the initial cusps with α = -1.0 to -1.5 predicted from dark-matter-only simulations, and render the dark matter halo mass distribution more similar to that observed in nearby dwarf galaxies.

  13. Compact quiescent galaxies at intermediate redshifts {sup ,}

    SciTech Connect

    Hsu, Li-Yen; Stockton, Alan; Shih, Hsin-Yi

    2014-12-01

    From several searches of the area common to the Sloan Digital Sky Survey and the United Kingdom Infrared Telescope Infrared Deep Sky Survey, we have selected 22 luminous galaxies between z ∼ 0.4 and z ∼ 0.9 that have colors and sizes similar to those of the compact quiescent galaxies at z > 2. By exploring structural parameters and stellar populations, we found that most of these galaxies actually formed most of their stars at z < 2 and are generally less compact than those found at z > 2. Several of these young objects are disk-like or possibly prolate. This lines up with several previous studies that found that massive quiescent galaxies at high redshifts often have disk-like morphologies. If these galaxies were to be confirmed to be disk-like, their formation mechanism must be able to account for both compactness and disks. On the other hand, if these galaxies were to be confirmed to be prolate, the fact that prolate galaxies do not exist in the local universe would indicate that galaxy formation mechanisms have evolved over cosmic time. We also found five galaxies forming over 80% of their stellar masses at z > 2. Three of these galaxies appear to have been modified to have spheroid-like morphologies, in agreement with the scenario of 'inside-out' buildup of massive galaxies. The remaining galaxies, SDSS J014355.21+133451.4 and SDSS J115836.93+021535.1, have truly old stellar populations and disk-like morphologies. These two objects would be good candidates for nearly unmodified compact quiescent galaxies from high redshifts that are worth future study.

  14. The Topsy-Turvy Galaxy

    NASA Astrophysics Data System (ADS)

    2006-11-01

    The captivating appearance of this image of the starburst galaxy NGC 1313, taken with the FORS instrument at ESO's Very Large Telescope, belies its inner turmoil. The dense clustering of bright stars and gas in its arms, a sign of an ongoing boom of star births, shows a mere glimpse of the rough times it has seen. Probing ever deeper into the heart of the galaxy, astronomers have revealed many enigmas that continue to defy our understanding. ESO PR Photo 43a/06 ESO PR Photo 43a/06 The Topsy-Turvy Galaxy NGC 1313 This FORS image of the central parts of NGC 1313 shows a stunning natural beauty. The galaxy bears some resemblance to some of the Milky Way's closest neighbours, the Magellanic Clouds. NGC 1313 has a barred spiral shape, with the arms emanating outwards in a loose twist from the ends of the bar. The galaxy lies just 15 million light-years away from the Milky Way - a mere skip on cosmological scales. The spiral arms are a hotbed of star-forming activity, with numerous young clusters of hot stars being born continuously at a staggering rate out of the dense clouds of gas and dust. Their light blasts through the surrounding gas, creating an intricately beautiful pattern of light and dark nebulosity. But NGC 1313 is not just a pretty picture. A mere scratch beneath the elegant surface reveals evidence of some of the most puzzling problems facing astronomers in the science of stars and galaxies. Starburst galaxies are fascinating objects to study in their own right; in neighbouring galaxies, around one quarter of all massive stars are born in these powerful engines, at rates up to a thousand times higher than in our own Milky Way Galaxy. In the majority of starbursts the upsurge in star's births is triggered when two galaxies merge, or come too close to each other. The mutual attraction between the galaxies causes immense turmoil in the gas and dust, causing the sudden 'burst' in star formation. ESO PR Photo 43b/06 ESO PR Photo 43b/06 Larger View of NGC 1313

  15. Surface photometry of Virgo cluster galaxies - Barred galaxies

    NASA Technical Reports Server (NTRS)

    Benedict, G. F.

    1976-01-01

    Photographic surface photometry in B and V is presented for three barred galaxies in the Virgo cluster: N4548, N4596, and N4608. Intercomparisons of luminosity and color profiles and standard photometric parameters indicate that for these galaxies: (1) the nuclear component follows the fourth-root-of-radius luminosity law for both B and V, (2) the luminosity profiles along the bar show a characteristic shoulder with a slight fall in B-V color profile at the brightest point in the bar, the strength of the effect declining from N4548 to N4608, (3) the integrated bar component is slightly bluer than the nucleus, and (4) as the disk, arm, and ring components contribute less to the total luminosity of the system, the contribution of the bar increases as does the equivalent gradient.

  16. Galaxies Gather at Great Distances

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Distant Galaxy Cluster Infrared Survey Poster [figure removed for brevity, see original site] [figure removed for brevity, see original site] Bird's Eye View Mosaic Bird's Eye View Mosaic with Clusters [figure removed for brevity, see original site] [figure removed for brevity, see original site] [figure removed for brevity, see original site] 9.1 Billion Light-Years 8.7 Billion Light-Years 8.6 Billion Light-Years

    Astronomers have discovered nearly 300 galaxy clusters and groups, including almost 100 located 8 to 10 billion light-years away, using the space-based Spitzer Space Telescope and the ground-based Mayall 4-meter telescope at Kitt Peak National Observatory in Tucson, Ariz. The new sample represents a six-fold increase in the number of known galaxy clusters and groups at such extreme distances, and will allow astronomers to systematically study massive galaxies two-thirds of the way back to the Big Bang.

    A mosaic portraying a bird's eye view of the field in which the distant clusters were found is shown at upper left. It spans a region of sky 40 times larger than that covered by the full moon as seen from Earth. Thousands of individual images from Spitzer's infrared array camera instrument were stitched together to create this mosaic. The distant clusters are marked with orange dots.

    Close-up images of three of the distant galaxy clusters are shown in the adjoining panels. The clusters appear as a concentration of red dots near the center of each image. These images reveal the galaxies as they were over 8 billion years ago, since that's how long their light took to reach Earth and Spitzer's infrared eyes.

    These pictures are false-color composites, combining ground-based optical images captured by the Mosaic-I camera on the Mayall 4-meter telescope at Kitt Peak, with infrared pictures taken by Spitzer's infrared array camera. Blue and green represent visible light at wavelengths of 0

  17. ENVIRONMENTAL DEPENDENCE OF OTHER GALAXY PROPERTIES FOR HIGH STELLAR MASS AND LOW STELLAR MASS GALAXIES

    SciTech Connect

    Deng Xinfa; Wen Xiaoqing; Xu Jianying; Ding Yingping; Huang Tong

    2010-06-10

    At a stellar mass of 3 x 10{sup 10} M {sub {Theta}} we divide the volume-limited Main galaxy sample of the Sloan Digital Sky Survey Data Release 6 (SDSS DR6) into two distinct families and explore the environmental dependence of galaxy properties for High Stellar Mass (HSM) and Low Stellar Mass (LSM) galaxies. It is found that for HSM and LSM galaxies, the environmental dependence of some typical galaxy properties, such as color, morphologies, and star formation activities, is still very strong, which at least shows that the stellar mass is not fundamental in correlations between galaxy properties and the environment. We also note that the environmental dependence of the size for HSM and LSM galaxies is fairly weak, which is mainly due to the galaxy size being insensitive to environment.

  18. The IRAS galaxy 0421+040P06: An active spiral (?) galaxy with extended radio lobes

    NASA Technical Reports Server (NTRS)

    Beichman, C. A.; Wynn-Williams, C. G.; Lonsdale, C. J.; Persson, S. E.; Heasley, J. N.; Miley, G. K.; Soifer, B. T.; Neugebauer, G.; Becklin, E. E.; Houck, J. R.

    1984-01-01

    The infrared bright galaxy 0421+040P06 detected by IRAS at 25 and 60 microns was studied at optical, infrared, and radio wavelength. It is a luminous galaxy with apparent spiral structure emitting 4 x 10 to the 37th power from far-infrared to optical wavelengths. Optical spectroscopy reveals a Seyfert 2 emission line spectrum, making 0421+040P06 the first active galaxy selected from an unbiased infrared survey of galaxies. The fact that this galaxy shows a flatter energy distribution with more 25 micron emission than other galaxies in the infrared sample may be related to the presence of an intense active nucleus. The radio observations reveal the presence of a non-thermal source that, at 6 cm, shows a prominent double lobed structure 20 to 30 kpc in size extending beyond the optical confines of the galaxy. The radio source is three to ten times larger than structures previously seen in spiral galaxies.

  19. Multiwavelength Study of Active Galaxies

    NASA Astrophysics Data System (ADS)

    Singh, Veeresh

    2010-08-01

    Seyfert galaxies are a subclass of active galaxies and are categorized as nearby, low luminosity, radio-quiet Active Galactic Nuclei (AGN) hosted in spiral or lenticular galaxies. Demographically, Seyfert galaxies may account for ~ 10% of the entire population of active galaxies in the nearby universe. Seyfert galaxies are classified mainly into two subclasses named as `type 1' and `type 2' Seyferts, based on the presence and absence of broad permitted emission lines in their optical spectra, respectively. Detection of broad permitted emission lines in some Seyfert type 2s observed in the polarized light laid the foundation of the Seyfert unification scheme, which hypothesizes that Seyfert type 1s and type 2s belong to the same parent population and appear different solely due to the differing orientations of the obscuring material having a torus-like geometry around the AGN (Antonucci and Miller 1985; Antonucci 1993). The primary objective of this thesis work is to examine the validity and limitations of the orientation and obscuration based Seyfert unification scheme using multiwavelength (mainly X-ray and radio) observations. The key issue in testing the Seyfert unification scheme has been acquiring a well defined rigorously selected Seyfert sample. I have argued that the Seyfert samples based on flux limited surveys at optical, IR, UV and X-ray are likely to be biased against obscured and faint sources. In order to test the predictions of Seyfert unification scheme I use a sample based on properties (i.e., cosmological redshift, [OIII] emission line luminosity, absolute bulge magnitude, absolute stellar magnitude of the host galaxy and the Hubble stage of the host galaxy) that are independent to the orientation of the obscuring torus, host galaxy and the AGN axis. Furthermore, two Seyfert subtypes of our sample have matched distributions in the orientation-independent properties and this ensures the intrinsic similarity between two Seyfert subtypes within the

  20. Ultraviolet Halos around Spiral Galaxies. I. Morphology

    NASA Astrophysics Data System (ADS)

    Hodges-Kluck, Edmund; Cafmeyer, Julian; Bregman, Joel N.

    2016-12-01

    We examine ultraviolet halos around a sample of highly inclined galaxies within 25 Mpc to measure their morphology and luminosity. Despite contamination from galactic light scattered into the wings of the point-spread function, we find that ultraviolet (UV) halos occur around each galaxy in our sample. Around most galaxies the halos form a thick, diffuse disk-like structure, but starburst galaxies with galactic superwinds have qualitatively different halos that are more extensive and have filamentary structure. The spatial coincidence of the UV halos above star-forming regions, the lack of consistent association with outflows or extraplanar ionized gas, and the strong correlation between the halo and galaxy UV luminosity suggest that the UV light is an extragalactic reflection nebula. UV halos may thus represent 106-107 M ⊙ of dust within 2-10 kpc of the disk, whose properties may change with height in starburst galaxies.

  1. SPHGR: Smoothed-Particle Hydrodynamics Galaxy Reduction

    NASA Astrophysics Data System (ADS)

    Thompson, Robert

    2015-02-01

    SPHGR (Smoothed-Particle Hydrodynamics Galaxy Reduction) is a python based open-source framework for analyzing smoothed-particle hydrodynamic simulations. Its basic form can run a baryonic group finder to identify galaxies and a halo finder to identify dark matter halos; it can also assign said galaxies to their respective halos, calculate halo & galaxy global properties, and iterate through previous time steps to identify the most-massive progenitors of each halo and galaxy. Data about each individual halo and galaxy is collated and easy to access. SPHGR supports a wide range of simulations types including N-body, full cosmological volumes, and zoom-in runs. Support for multiple SPH code outputs is provided by pyGadgetReader (ascl:1411.001), mainly Gadget (ascl:0003.001) and TIPSY (ascl:1111.015).

  2. Cosmology with void-galaxy correlations.

    PubMed

    Hamaus, Nico; Wandelt, Benjamin D; Sutter, P M; Lavaux, Guilhem; Warren, Michael S

    2014-01-31

    Galaxy bias, the unknown relationship between the clustering of galaxies and the underlying dark matter density field is a major hurdle for cosmological inference from large-scale structure. While traditional analyses focus on the absolute clustering amplitude of high-density regions mapped out by galaxy surveys, we propose a relative measurement that compares those to the underdense regions, cosmic voids. On the basis of realistic mock catalogs we demonstrate that cross correlating galaxies and voids opens up the possibility to calibrate galaxy bias and to define a static ruler thanks to the observable geometric nature of voids. We illustrate how the clustering of voids is related to mass compensation and show that volume-exclusion significantly reduces the degree of stochasticity in their spatial distribution. Extracting the spherically averaged distribution of galaxies inside voids from their cross correlations reveals a remarkable concordance with the mass-density profile of voids.

  3. Constructing a WISE High Resolution Galaxy Atlas

    NASA Technical Reports Server (NTRS)

    Jarrett, T. H.; Masci, F.; Tsai, C. W.; Petty, S.; Cluver, M.; Assef, Roberto J.; Benford, D.; Blain, A.; Bridge, C.; Donoso, E.; Eisenhardt, P.; Fowler, J.; Koribalski, B.; Lake, S.; Neill, James D.; Seibert, M.; Stanford, S.; Wright, E.

    2012-01-01

    After eight months of continuous observations, the Wide-field Infrared Survey Explorer (WISE) mapped the entire sky at 3.4 micron, 4.6 micron, 12 micron, and 22 micron. We have begun a dedicated WISE High Resolution Galaxy Atlas project to fully characterize large, nearby galaxies and produce a legacy image atlas and source catalog. Here we summarize the deconvolution techniques used to significantly improve the spatial resolution of WISE imaging, specifically designed to study the internal anatomy of nearby galaxies. As a case study, we present results for the galaxy NGC 1566, comparing the WISE enhanced-resolution image processing to that of Spitzer, Galaxy Evolution Explorer, and ground-based imaging. This is the first paper in a two-part series; results for a larger sample of nearby galaxies are presented in the second paper.

  4. Constructing a WISE High Resolution Galaxy Atlas

    NASA Astrophysics Data System (ADS)

    Jarrett, T. H.; Masci, F.; Tsai, C. W.; Petty, S.; Cluver, M.; Assef, Roberto J.; Benford, D.; Blain, A.; Bridge, C.; Donoso, E.; Eisenhardt, P.; Fowler, J.; Koribalski, B.; Lake, S.; Neill, James D.; Seibert, M.; Sheth, K.; Stanford, S.; Wright, E.

    2012-08-01

    After eight months of continuous observations, the Wide-field Infrared Survey Explorer (WISE) mapped the entire sky at 3.4 μm, 4.6 μm, 12 μm, and 22 μm. We have begun a dedicated WISE High Resolution Galaxy Atlas project to fully characterize large, nearby galaxies and produce a legacy image atlas and source catalog. Here we summarize the deconvolution techniques used to significantly improve the spatial resolution of WISE imaging, specifically designed to study the internal anatomy of nearby galaxies. As a case study, we present results for the galaxy NGC 1566, comparing the WISE enhanced-resolution image processing to that of Spitzer, Galaxy Evolution Explorer, and ground-based imaging. This is the first paper in a two-part series; results for a larger sample of nearby galaxies are presented in the second paper.

  5. Integrated Optical Polarization of nearby Galaxies

    NASA Astrophysics Data System (ADS)

    Jones, Amy; Wang, Lifan; Krisciunas, Kevin; Freeland, Emily

    2012-03-01

    We performed an integrated optical polarization survey of 70 nearby galaxies to study the relationship between linear polarization and galaxy properties. To date this is the largest survey of its kind. The data were collected at McDonald Observatory using the Imaging Grism Polarimeter on the Otto Struve 2.1 m telescope. Most of the galaxies did not have significant level of linear polarization, where the bulk is <1%. A fraction of the galaxies showed a loose correlation between the polarization and position angle of the galaxy, indicating that dust scattering is the main source of optical polarization. The unbarred spiral galaxies are consistent with the predicted relationship with inclination from scattering models of ~sin 2 i.

  6. HST Infrared Imaging of MASSIVE Survey Galaxies

    NASA Astrophysics Data System (ADS)

    Jensen, Joseph B.; Goullaud, Charles; Blakeslee, John; Mitchiner, Casey; Ma, Chung-Pei; Greene, Jenny E.; McConnell, Nicholas J.; Thomas, Jens

    2017-01-01

    We have recently obtained high-resolution HST WFC3/IR F110W (J-band) images of 34 early-type galaxies in the MASSIVE study sample. These galaxies are among the most massive in the local universe, and were chosen to study the connection between supermassive central black holes and their host galaxies. To determine accurate masses for the black holes, we are measuring high-precision surface brightness fluctuation (SBF) distances to the galaxies. The WFC3/IR data also allow us to measure high spatial resolution central surface brightness profiles to understand better the nuclear structure and dynamics of the galaxies. We present a first look at the IR images, profiles, and SBF magnitudes for 34 galaxies in the MASSIVE sample.

  7. Gas content of infrared luminous markarian galaxies

    NASA Astrophysics Data System (ADS)

    Kandalian, R.; Martin, J.-M.; Bottinelli, L.; Gouguenheim, L.

    1995-10-01

    The atomic and molecular hydrogen gas properties of a complete sample of Markarian galaxies with flux density at 60 µm higher than 1.95 Jy are presented. We present the improved far-infrared luminosity function of Markarian galaxies; and its comparison with other samples. We find that 40% of the bright IRAS galaxies of far-infrared luminosity higher than 1010.5 L ⊙ are Markarian galaxies. There is an absence of correlation between HI content of Markarian galaxies and current star formation activity, implying that star formation in these systems has complex structure and it is not a simple function of the HI content. On the contrary, the H2 content of Markarian galaxies is well correlated with star formation activity. It is argued that tight correlation between HI and H2 contents is a consequence of transformation of atomic hydrogen into molecular.

  8. Nature of multiple-nucleus cluster galaxies

    SciTech Connect

    Merritt, D.

    1984-05-01

    In models for the evolution of galaxy clusters which include dynamical friction with the dark binding matter, the distribution of galaxies becomes more concentrated to the cluster center with time. In a cluster like Coma, this evolution could increase by a factor of approximately 3 the probability of finding a galaxy very close to the cluster center, without decreasing the typical velocity of such a galaxy significantly below the cluster mean. Such an enhancement is roughly what is needed to explain the large number of first-ranked cluster galaxies which are observed to have extra ''nuclei''; it is also consistent with the high velocities typically measured for these ''nuclei.'' Unlike the cannibalism model, this model predicts that the majority of multiple-nucleus systems are transient phenomena, and not galaxies in the process of merging.

  9. Galaxy evolution in clusters since z=1

    NASA Astrophysics Data System (ADS)

    Aragón-Salamanca, A.

    2011-11-01

    It is now 30 years since Alan Dressler published his seminal paper onthe morphology-density relation. Although there is still much to learnon the effect of the environment on galaxy evolution, extensive progress has been made since then both observationally and theoretically.Galaxy clusters provide some of the most extreme environments in which galaxies evolve, making them excellent laboratories to study the age old question of "nature'' vs. "nurture'' in galaxy evolution. Here I review some of the key observational results obtained during the last decade on the evolution of the morphology, structure, dynamics, star-formation history and stellar populations of cluster galaxies since the time when the universe was half its present age.Many of the results presented here have been obtainedwithin the ESO Distant Cluster Survey (EDisCS) and Space Telescope A901/02 Galaxy Evolution Survey (STAGES) collaborations.

  10. INTEGRATED OPTICAL POLARIZATION OF NEARBY GALAXIES

    SciTech Connect

    Jones, Amy; Wang Lifan; Krisciunas, Kevin; Freeland, Emily

    2012-03-20

    We performed an integrated optical polarization survey of 70 nearby galaxies to study the relationship between linear polarization and galaxy properties. To date this is the largest survey of its kind. The data were collected at McDonald Observatory using the Imaging Grism Polarimeter on the Otto Struve 2.1 m telescope. Most of the galaxies did not have significant level of linear polarization, where the bulk is <1%. A fraction of the galaxies showed a loose correlation between the polarization and position angle of the galaxy, indicating that dust scattering is the main source of optical polarization. The unbarred spiral galaxies are consistent with the predicted relationship with inclination from scattering models of {approx}sin{sup 2} i.

  11. Deconstructing bulges in lenticular galaxies using CALIFA

    NASA Astrophysics Data System (ADS)

    Méndez-Abreu, J.; CALIFA Team

    2015-05-01

    Bulges play a key role in the evolution of disk galaxies and their influence on the fate of lenticular galaxies (S0s) is still more manifest. We present preliminary results on the photometric and kinematic properties of S0 bulges drawn from the CALIFA survey. We find that S0 galaxies usually deviate from their archetypal view of simple systems composed by a bulge and disk structure. In fact, most of S0 galaxies (˜65%) host bars or non-single exponential profiles, making compulsory the use of multi-component photometric decompositions to properly address the bulge properties. We confirm previous results present in the literature showing S0 galaxies as a complete photometric and kinematic sequence of galaxies.

  12. An isolated compact galaxy triplet

    NASA Astrophysics Data System (ADS)

    Feng, Shuai; Shao, Zheng-Yi; Shen, Shi-Yin; Argudo-Fernández, Maria; Wu, Hong; Lam, Man-I.; Yang, Ming; Yuan, Fang-Ting

    2016-05-01

    We report the discovery of an isolated compact galaxy triplet SDSS J084843.45+164417.3, which is first detected by the LAMOST spectral survey and then confirmed by a spectroscopic observation of the BFOSC mounted on the 2.16 meter telescope located at Xinglong Station, which is administered by National Astronomical Observatories, Chinese Academy of Sciences. It is found that this triplet is an isolated and extremely compact system, which has an aligned configuration and very small radial velocity dispersion. The member galaxies have similar colors and show marginal star formation activities. These results support the opinion that the compact triplets are well-evolved systems rather than hierarchically forming structures. This serendipitous discovery reveals the limitations of fiber spectral redshift surveys in studying such a compact system, and demonstrates the necessity of additional observations to complete the current redshift sample.

  13. Galaxy Classification without Feature Extraction

    NASA Astrophysics Data System (ADS)

    Polsterer, K. L.; Gieseke, F.; Kramer, O.

    2012-09-01

    The automatic classification of galaxies according to the different Hubble types is a widely studied problem in the field of astronomy. The complexity of this task led to projects like Galaxy Zoo which try to obtain labeled data based on visual inspection by humans. Many automatic classification frameworks are based on artificial neural networks (ANN) in combination with a feature extraction step in the pre-processing phase. These approaches rely on labeled catalogs for training the models. The small size of the typically used training sets, however, limits the generalization performance of the resulting models. In this work, we present a straightforward application of support vector machines (SVM) for this type of classification tasks. The conducted experiments indicate that using a sufficient number of labeled objects provided by the EFIGI catalog leads to high-quality models. In contrast to standard approaches no additional feature extraction is required.

  14. Galaxy formation through hierarchical clustering

    NASA Technical Reports Server (NTRS)

    White, Simon D. M.; Frenk, Carlos S.

    1991-01-01

    Analytic methods for studying the formation of galaxies by gas condensation within massive dark halos are presented. The present scheme applies to cosmogonies where structure grows through hierarchical clustering of a mixture of gas and dissipationless dark matter. The simplest models consistent with the current understanding of N-body work on dissipationless clustering, and that of numerical and analytic work on gas evolution and cooling are adopted. Standard models for the evolution of the stellar population are also employed, and new models for the way star formation heats and enriches the surrounding gas are constructed. Detailed results are presented for a cold dark matter universe with Omega = 1 and H(0) = 50 km/s/Mpc, but the present methods are applicable to other models. The present luminosity functions contain significantly more faint galaxies than are observed.

  15. Keplerian Rotation of Our Galaxy?

    NASA Astrophysics Data System (ADS)

    Gnaciński, P.; Młynik, T.

    2017-04-01

    It is common to attribute a flat rotation curve to our Galaxy. However, in a recent paper, Galazutdinov et al. obtained a Keplerian rotation curve for interstellar clouds in the outer parts of the Galaxy. They calculated the distances from equivalent widths of interstellar CaII lines. The radial velocity was also measured on the interstellar CaII absorption line. We verify the results of Galazutdinov et al. based on observations of old open clusters. We propose that the observations of flat and Keplerian rotation curves may be caused by the assumption of circular orbits. The application of formulas derived with the assumption of circular orbits to elliptical ones may mimics the flat rotation curve. The interstellar clouds with cross-sections larger than stars may have almost circular orbits, and the derived rotation curve will be Keplerian.

  16. Einstein's legacy in galaxy surveys

    NASA Astrophysics Data System (ADS)

    Camera, Stefano; Maartens, Roy; Santos, Mário G.

    2015-07-01

    Non-Gaussianity in the primordial fluctuations that seeded structure formation produces a signal in the galaxy power spectrum on very large scales. This signal contains vital information about the primordial Universe, but it is very challenging to extract, because of cosmic variance and large-scale systematics - especially after the Planck experiment has already ruled out a large amplitude for the signal. Whilst cosmic variance and experimental systematics can be alleviated by the multitracer method, we here address another systematic - introduced by not using the correct relativistic analysis of the power spectrum on very large scales. In order to reduce the errors on fNL, we need to include measurements on the largest possible scales. Failure to include the relativistic effects on these scales can introduce significant bias in the best-fit value of fNL from future galaxy surveys.

  17. High-redshift galaxy populations.

    PubMed

    Hu, Esther M; Cowie, Lennox L

    2006-04-27

    We now see many galaxies as they were only 800 million years after the Big Bang, and that limit may soon be exceeded when wide-field infrared detectors are widely available. Multi-wavelength studies show that there was relatively little star formation at very early times and that star formation was at its maximum at about half the age of the Universe. A small number of high-redshift objects have been found by targeting X-ray and radio sources and most recently, gamma-ray bursts. The gamma-ray burst sources may provide a way to reach even higher-redshift galaxies in the future, and to probe the first generation of stars.

  18. The TANGO Project: Thorough ANalysis of radio-Galaxies Observations

    NASA Astrophysics Data System (ADS)

    Ocaña Flaquer, Breezy; Leon Tanne, Stephane; Combes, Francoise; Lim, Jeremy

    2010-05-01

    We present a sample of radio galaxies selected only on the basis of radio continuum emission and we confirm that these galaxies have lower molecular gas mass than other elliptical galaxies with different selection criteria.

  19. Annihilation in Gases and Galaxies

    NASA Technical Reports Server (NTRS)

    Drachman, Richard J. (Editor)

    1990-01-01

    This publication contains most of the papers, both invited and contributed, that were presented at the Workshop of Annihilation in Gases and Galaxies. This was the fifth in a biennial series associated with the International Conference on the Physics of Electronic and Atomic Collisions. Subjects covered included the scattering and annihilation of positrons and positronium atoms in various media, including those of astrophysical interest. In addition, the topics of antimatter and dark matter were covered.

  20. Galaxy Classification using Machine Learning

    NASA Astrophysics Data System (ADS)

    Fowler, Lucas; Schawinski, Kevin; Brandt, Ben-Elias; widmer, Nicole

    2017-01-01

    We present our current research into the use of machine learning to classify galaxy imaging data with various convolutional neural network configurations in TensorFlow. We are investigating how five-band Sloan Digital Sky Survey imaging data can be used to train on physical properties such as redshift, star formation rate, mass and morphology. We also investigate the performance of artificially redshifted images in recovering physical properties as image quality degrades.

  1. Cosmic strings and galaxy formation

    NASA Technical Reports Server (NTRS)

    Bertschinger, Edmund

    1989-01-01

    The cosmogonical model proposed by Zel'dovich and Vilenkin (1981), in which superconducting cosmic strings act as seeds for the origin of structure in the universe, is discussed, summarizing the results of recent theoretical investigations. Consideration is given to the formation of cosmic strings, the microscopic structure of strings, gravitational effects, cosmic string evolution, and the formation of galaxies and large-scale structure. Simulation results are presented in graphs, and several outstanding issues are listed and briefly characterized.

  2. PHOTOMETRIC REDSHIFTS OF SUBMILLIMETER GALAXIES

    SciTech Connect

    Chakrabarti, Sukanya; Magnelli, Benjamin; Lutz, Dieter; Berta, Stefano; Popesso, Paola; McKee, Christopher F.; Pozzi, Francesca

    2013-08-20

    We use the photometric redshift method of Chakrabarti and McKee to infer photometric redshifts of submillimeter galaxies with far-IR (FIR) Herschel data obtained as part of the PACS Evolutionary Probe program. For the sample with spectroscopic redshifts, we demonstrate the validity of this method over a large range of redshifts (4 {approx}> z {approx}> 0.3) and luminosities, finding an average accuracy in (1 + z{sub phot})/(1 + z{sub spec}) of 10%. Thus, this method is more accurate than other FIR photometric redshift methods. This method is different from typical FIR photometric methods in deriving redshifts from the light-to-gas mass (L/M) ratio of infrared-bright galaxies inferred from the FIR spectral energy distribution, rather than dust temperatures. To assess the dependence of our photometric redshift method on the data in this sample, we contrast the average accuracy of our method when we use PACS data, versus SPIRE data, versus both PACS and SPIRE data. We also discuss potential selection effects that may affect the Herschel sample. Once the redshift is derived, we can determine physical properties of infrared-bright galaxies, including the temperature variation within the dust envelope, luminosity, mass, and surface density. We use data from the GOODS-S field to calculate the star formation rate density (SFRD) of submillimeter bright sources detected by AzTEC and PACS. The AzTEC-PACS sources, which have a threshold 850 {mu}m flux {approx}> 5 mJy, contribute 15% of the SFRD from all ultraluminous infrared galaxies (L{sub IR} {approx}> 10{sup 12} L{sub Sun }), and 3% of the total SFRD at z {approx} 2.

  3. Photometric Redshifts of Submillimeter Galaxies

    NASA Astrophysics Data System (ADS)

    Chakrabarti, Sukanya; Magnelli, Benjamin; McKee, Christopher F.; Lutz, Dieter; Berta, Stefano; Popesso, Paola; Pozzi, Francesca

    2013-08-01

    We use the photometric redshift method of Chakrabarti & McKee to infer photometric redshifts of submillimeter galaxies with far-IR (FIR) Herschel data obtained as part of the PACS Evolutionary Probe program. For the sample with spectroscopic redshifts, we demonstrate the validity of this method over a large range of redshifts (4 >~ z >~ 0.3) and luminosities, finding an average accuracy in (1 + z phot)/(1 + z spec) of 10%. Thus, this method is more accurate than other FIR photometric redshift methods. This method is different from typical FIR photometric methods in deriving redshifts from the light-to-gas mass (L/M) ratio of infrared-bright galaxies inferred from the FIR spectral energy distribution, rather than dust temperatures. To assess the dependence of our photometric redshift method on the data in this sample, we contrast the average accuracy of our method when we use PACS data, versus SPIRE data, versus both PACS and SPIRE data. We also discuss potential selection effects that may affect the Herschel sample. Once the redshift is derived, we can determine physical properties of infrared-bright galaxies, including the temperature variation within the dust envelope, luminosity, mass, and surface density. We use data from the GOODS-S field to calculate the star formation rate density (SFRD) of submillimeter bright sources detected by AzTEC and PACS. The AzTEC-PACS sources, which have a threshold 850 μm flux >~ 5 mJy, contribute 15% of the SFRD from all ultraluminous infrared galaxies (L IR >~ 1012 L ⊙), and 3% of the total SFRD at z ~ 2.

  4. N-body realizations of compound galaxies

    NASA Technical Reports Server (NTRS)

    Hernquist, Lars

    1993-01-01

    A prescription for constructing N-body models of galaxies consisting of more than one component is described. Spatial density profiles are realized exactly, but the phase space distribution is approximated using moments of the collisionless Boltzmann equation. While this approach is not fully rigorous, empirical tests suggest that it is adequate for studies of, e.g., interacting galaxies and the forced response of galaxies to imposed perturbations such as bars.

  5. CO distribution in southern S0 galaxies

    NASA Technical Reports Server (NTRS)

    Vanwoerden, Hugo; Tacconi, Linda

    1990-01-01

    With the Swedish ESO Submillimeter Telescope (SEST), researchers observed 7 S0 galaxies at 2.6 mm, and detected CO emission in five. Observing four offset positions per galaxy at greater than or equal to 40 seconds from the center, they find significantly extended CO emission in almost all cases. The (lower limits to) H2 masses of several times 10(exp 8) solar magnitude amount to 0.2-0.3 times the HI mass in 4 or 5 galaxies.

  6. The dark side of galaxy formation.

    PubMed

    Smail, Ian

    2002-12-15

    I discuss the discovery of a population of extremely luminous, but very dusty and very distant, galaxies in the submillimetre (submm) waveband. Almost all the light emitted by the stars in these galaxies is absorbed by interstellar dust (which is produced by the same stars) and re-radiated in the far-infrared. This leaves little to be detected at optical wavelengths and results in most of these galaxies being effectively invisible in even the deepest optical images obtainable with the Hubble space telescope. Yet this population contributes most of the light emitted by galaxies at wavelengths of lambda > or approximately equal 100 microm over the lifetime of the Universe. Together with other observations, this suggests that perhaps up to half of all the stars seen in galaxies today were formed in very dusty regions in the early Universe. Hence, studying the galaxies detected in the submm wavebands is critical for developing and testing models of galaxy formation and evolution. Individually, these luminous submm galaxies are forming stars a thousand times faster than our Galaxy is at the present-day, sufficiently fast to form all the stars in the most luminous galaxy in the local Universe within a short period, up to ca. 0.1-1 Gyr. Detailed study of a handful of examples of this population confirm these estimates and unequivocally identify the bulk of this submm-selected population with dusty, star-burst galaxies in the very distant Universe. The extreme faintness of this population in the optical and near-infrared wavebands, resulting from their obscuration by dust, means that our understanding of the detailed nature of these galaxies is only slowly growing. I give a brief summary of the properties of these highly obscured systems and describe the wide range of facilities currently being developed that will greatly aid in their study.

  7. New southern galaxies with active nuclei

    SciTech Connect

    Maia, M.A.G.; Da costa, L.N.; Willmer, C.; Pellegrini, P.S.; Rite, C.

    1987-03-01

    A list of AGN candidates, identified from optical spectra taken as part of an ongoing redshift survey of southern galaxies, is presented. The identification, coordinates, morphological type, measured heliocentric radial velocity, and proposed emission type are given for the galaxies showing evidence of nonstellar nuclear activity. Using standard diagnostics, several new Seyferts and low-ionization nuclear-emission regions (LINERs) are identified among the emission-line galaxies observed. 14 references.

  8. Characterizing simulated galaxy stellar mass histories

    NASA Astrophysics Data System (ADS)

    Cohn, J. D.; van de Voort, Freeke

    2015-02-01

    Cosmological galaxy formation simulations can now produce rich and diverse ensembles of galaxy histories. These simulated galaxy histories, taken all together, provide an answer to the question `How do galaxies form?' for the models used to construct them. We characterize such galaxy history ensembles both to understand their properties and to identify points of comparison for histories within a given galaxy formation model or between different galaxy formation models and simulations. We focus primarily on stellar mass histories of galaxies with the same final stellar mass, for six final stellar mass values and for three different simulated galaxy formation models (a semi-analytic model built upon the dark matter Millennium simulation and two models from the hydrodynamical OverWhelmingly Large Simulations project). Using principal component analysis (PCA) to classify scatter around the average stellar mass history, we find that one fluctuation dominates for all sets of histories we consider, although its shape and contribution can vary between samples. We correlate the PCA characterization with several z = 0 galaxy properties (to connect with survey observables) and also compare it to some other galaxy history properties. We then explore separating galaxy stellar mass histories into classes, using the largest PCA contribution, k-means clustering, and simple Gaussian mixture models. For three component models, these different methods often gave similar results. These history classification methods provide a succinct and often quick way to characterize changes in the full ensemble of histories of a simulated population as physical assumptions are varied, to compare histories of different simulated populations to each other, and to assess the relation of simulated histories to fixed time observations.

  9. Local Group Galaxy Emission-line Survey

    NASA Astrophysics Data System (ADS)

    Blaha, Cindy; Baildon, Taylor; Mehta, Shail; Garcia, Edgar; Massey, Philip; Hodge, Paul W.

    2015-01-01

    We present the results of the Local Group Galaxy Emission-line Survey of Hα emission regions in M31, M33 and seven dwarf galaxies in (NGC6822, IC10, WLM, Sextans A and B, Phoenix and Pegasus). Using data from the Local Group Galaxy Survey (LGGS - see Massey et al, 2006), we used continuum-subtracted Ha emission line images to define emission regions with a faint flux limit of 10 -17 ergs-sec-1-cm-2above the background. We have obtained photometric measurements for roughly 7450 Hα emission regions in M31, M33 and five of the seven dwarf galaxies (no regions for Phoenix or Pegasus). Using these regions, with boundaries defined by Hα-emission flux limits, we also measured fluxes for the continuum-subtracted [OIII] and [SII] images and constructed a catalog of Hα fluxes, region sizes and [OIII]/ Hα and [SII]/ Hα line ratios. The HII region luminosity functions and size distributions for the spiral galaxies M31 and M33 are compared with those of the dwarf galaxies NGC 6822 and IC10. For M31 and M33, the average [SII]/ Hα and [OIII]/ Hα line ratios, plotted as a function of galactocentric radius, display a linear trend with shallow slopes consistent with other studies of metallicity gradients in these galaxies. The galaxy-wide averages of [SII]/ Hα line ratios correlate with the masses of the dwarf galaxies following the previously established dwarf galaxy mass-metallicity relationship. The slope of the luminosity functions for the dwarf galaxies varies with galaxy mass. The Carleton Catalog of this Local Group Emission-line Survey will be made available on-line.

  10. Spectroscopic Gradients in Early-type Galaxies

    NASA Astrophysics Data System (ADS)

    Buzzoni, A.; Battistini, C.; Carrasco, L.; Recillas, E.

    2009-11-01

    We review some relevant properties of the observed changes of Hβ, Mg_2, and FeI Lick indices across the surface of 25 bright elliptical galaxies. The impact of these spectroscopic gradients is briefly discussed, in the framework of the leading physical mechanisms that led to galaxy formation. In particular, three relevant evolutionary scenarios are sketched, each one able, in principle, to consistently match galaxy spectral properties and effectively constrain the composing stellar populations in these systems.

  11. Do elliptical galaxies suffer from warp?

    NASA Astrophysics Data System (ADS)

    Gamaleldin, A. I.

    1990-06-01

    Detailed surface isophotometry of NGC 1700 was performed. Luminosity profiles, ellipticity curve, reduced luminosity profiles, and the galaxy parameters are illustrated; the study also includes the variation of position angle with the distance from the center of the galaxy. An interesting feature of this object is the twisted shape of the outer isophote which does not appear as an ellipse but as an integral-sign shape, which is attributed to some kind of warp in the galaxy under investigation.

  12. Black holes in the milky way galaxy.

    PubMed

    Filippenko, A V

    1999-08-31

    Extremely strong observational evidence has recently been found for the presence of black holes orbiting a few relatively normal stars in our Milky Way Galaxy and also at the centers of some galaxies. The former generally have masses of 4-16 times the mass of the sun, whereas the latter are "supermassive black holes" with millions to billions of solar masses. The evidence for a supermassive black hole in the center of our galaxy is especially strong.

  13. Black holes in the Milky Way Galaxy

    PubMed Central

    Filippenko, Alexei V.

    1999-01-01

    Extremely strong observational evidence has recently been found for the presence of black holes orbiting a few relatively normal stars in our Milky Way Galaxy and also at the centers of some galaxies. The former generally have masses of 4–16 times the mass of the sun, whereas the latter are “supermassive black holes” with millions to billions of solar masses. The evidence for a supermassive black hole in the center of our galaxy is especially strong. PMID:10468548

  14. The resolved history of galaxy evolution.

    PubMed

    Brinchmann, Jarle

    2002-12-15

    We briefly review the study of the evolution of galaxies from an observational point of view, with particular emphasis on the role of the Hubble Space Telescope in probing the evolution of the different morphological types of galaxy. We show how using the stellar mass of galaxies as a tracer of evolution can improve our understanding of the physical process taking place before turning our eyes towards the future and giving an overview of what we can expect from future advances in technology.

  15. Galaxy Zoo: evidence for rapid, recent quenching within a population of AGN host galaxies

    NASA Astrophysics Data System (ADS)

    Smethurst, R. J.; Lintott, C. J.; Simmons, B. D.; Schawinski, K.; Bamford, S. P.; Cardamone, C. N.; Kruk, S. J.; Masters, K. L.; Urry, C. M.; Willett, K. W.; Wong, O. I.

    2016-12-01

    We present a population study of the star formation history of 1244 Type 2 active galactic nuclei (AGN) host galaxies, compared to 6107 inactive galaxies. A Bayesian method is used to determine individual galaxy star formation histories, which are then collated to visualize the distribution for quenching and quenched galaxies within each population. We find evidence for some of the Type 2 AGN host galaxies having undergone a rapid drop in their star formation rate within the last 2 Gyr. AGN feedback is therefore important at least for this population of galaxies. This result is not seen for the quenching and quenched inactive galaxies whose star formation histories are dominated by the effects of downsizing at earlier epochs, a secondary effect for the AGN host galaxies. We show that histories of rapid quenching cannot account fully for the quenching of all the star formation in a galaxy's lifetime across the population of quenched AGN host galaxies, and that histories of slower quenching, attributed to secular (non-violent) evolution, are also key in their evolution. This is in agreement with recent results showing that both merger-driven and non-merger processes are contributing to the co-evolution of galaxies and supermassive black holes. The availability of gas in the reservoirs of a galaxy, and its ability to be replenished, appear to be the key drivers behind this co-evolution.

  16. GalaxyGAN: Generative Adversarial Networks for recovery of galaxy features

    NASA Astrophysics Data System (ADS)

    Schawinski, Kevin; Zhang, Ce; Zhang, Hantian; Fowler, Lucas; Krishnan Santhanam, Gokula

    2017-02-01

    GalaxyGAN uses Generative Adversarial Networks to reliably recover features in images of galaxies. The package uses machine learning to train on higher quality data and learns to recover detailed features such as galaxy morphology by effectively building priors. This method opens up the possibility of recovering more information from existing and future imaging data.

  17. Circumnuclear Keplerian Disks in Galaxies

    NASA Astrophysics Data System (ADS)

    Bertola, Francesco; Cappellari, Michele; Funes, S. J., José G.; Corsini, Enrico M.; Pizzella, Alessandro; Beltrán, Juan C. Vega

    1998-12-01

    In this Letter, we demonstrate the possibility of inferring the presence of Keplerian gaseous disks using properly equipped optical ground-based telescopes. We have modeled the peculiar bidimensional shape of the emission lines in a sample of five early-type disk galaxies as due to the motion of a gaseous disk rotating in the combined potential of a central pointlike mass and of an extended stellar disk. The value of the central mass concentration estimated for four galaxies of the sample (NGC 2179, NGC 4343, NGC 4435, and NGC 4459) is ~109 Msolar. This value, according to the assumptions made in our model, is overestimated. However, we have calculated that the effect is well within the errors. For the remaining galaxy, NGC 5064, an upper limit of 5×107 Msolar is estimated. Based on observations carried out at ESO, La Silla, (Chile) (ESO N. 58, A-0564) and at the Mount Graham International Observatory (AZ) with the VATT: the Alice P. Lennon Telescope and the Thomas J. Bannan Astrophysics Facility.

  18. Cosmology with Clusters of Galaxies

    NASA Astrophysics Data System (ADS)

    Borgani, Stefano

    I reviewed in my talk recent results on the cosmological constraints that can be obtained by following the evolution of the population of galaxy clusters. Using extended samples of X-ray selected clusters, I have shown how they can be used to trace this evolution out to redshift z ~ 1. This evolution can be compared to model predictions and, therefore, to constrain cosmological parameters, such as the density parameter Omega_m and the shape and amplitude of the power spectrum of density perturbations. I have emphasized that the robustness of such constraints is quite sensitive to the relation between cluster collapsed mass and X-ray luminosity and temperature. This demonstrates that our ability to place significant constraints on cosmology using clusters of galaxies relies on our capability to understand the physical processes, which determine the properties of the intra-cluster medium (ICM). In this context, I have discussed how numerical simulations of cluster formation in cosmological context can play an important role in uderstanding the ICM physics. I have presented results from a very large cosmological simulation, which also includes the hydrodynamical description of the cosmic baryons, the processes of star formation and feedback from the stellar populations. The results from this simulation represent a unique baseline to describe the processes of formation and evolution of clusters of galaxies.

  19. Galaxy and the solar system

    SciTech Connect

    Smoluchowski, R.; Bahcall, J.M.; Matthews, M.S.

    1986-01-01

    The solar-Galactic neighborhood, massive interstellar clouds and other Galactic features, the Oort cloud, perturbations of the solar system, and the existence and stability of a solar companion star are examined in chapters based on contributions to a conference held in Tucson, AZ during January 1985. The individual topics addressed include: the Galactic environment of the solar system; stars within 25 pc of the sun; the path of the sun in 100 million years; the local velocity field in the last billion years; interstellar clouds near the sun; and evidence for a local recent supernova. Also considered are: dynamic influence of Galactic tides and molecular clouds on the Oort cloud; cometary evidence for a solar companion; dynamical interactions between the Oort cloud and the Galaxy; geological periodicities and the Galaxy; giant comets and the Galaxy; dynamical evidence for Planet X; evolution of the solar system in the presence of a solar companion star; mass extinctions, crater ages, and comet showers; evidence for Nemesis, a solar companion star.

  20. Magnetohydrodynamic Simulations of Barred Galaxies

    NASA Astrophysics Data System (ADS)

    Kim, W.-T.

    2013-04-01

    Magnetic fields are pervasive in barred galaxies, especially in gaseous substructures such as dust lanes and nuclear rings. To explore the effects of magnetic fields on the formation of the substructures as well as on the mass inflow rates to the galaxy center, we run two-dimensional, ideal magnetohydrodynamic simulations. We use a modified version of the Athena code whose numerical magnetic diffusivity is shown to be of third order in space. In the bar regions, magnetic fields are compressed and abruptly bent around the dust-lane shocks. The associated magnetic stress not only reduces the peak density of the dust-lane shocks but also removes angular momentum further from the gas that is moving radially in. Nuclear rings that form at the location of centrifugal barrier rather than resonance with the bar are smaller and more radially distributed, and the mass flow rate to the galaxy center is correspondingly larger in models with stronger magnetic fields. Outside the bar regions, the bar potential and strong shear conspire to amplify the field strength near the corotation resonance. The amplified fields transport angular momentum outward, producing trailing magnetic arms with strong fields and low density. The base of the magnetic arms are found to be unstable to a tearing-mode instability of magnetic reconnection. This produces numerous magnetic islands that eventually make the outer regions highly chaotic.

  1. Supernova Feedback in Galaxy Formation

    NASA Astrophysics Data System (ADS)

    Dubois, Y.; Teyssier, R.

    2008-06-01

    The hierarchical model of galaxy formation is known to suffer from the ``over-cooling'' problem: the high efficiency of radiative cooling results in too much baryonic matter in a condensed phase (namely, cold gas or stars) when compared to observations. A solution proposed by many authors (see Springel & Hernquist 2003; Fujita et al. 2004; Rasera & Teyssier 2005) is feedback due to supernova (SN) driven winds or active galactic nuclei. Modeling SN feedback by direct injection of thermal energy usually turns out to be inefficient in galaxy-scale simulations, due to the quasi-instantaneous radiation of the SN energy. To avoid this effect, we have developed a new method to incorporate SN feedback in cosmological simulations: using temporary test particles, we reproduce explicitly a local Sedov blast wave solution in the gas distribution. We have performed several self-consistent runs of isolated Navarro, Frenk, & White (1996, hereafter NFW) halos with radiative cooling, star formation, SN feedback and metal enrichment using the adaptive mesh refinement code RAMSES (Teyssier 2002). We have explored the influence of SN feedback on the formation and the evolution of galaxies with different masses. We have studied the efficiency of the resulting galactic winds, as a function of the mass of the parent halo.

  2. DECA: Decomposition of images of galaxies

    NASA Astrophysics Data System (ADS)

    Mosenkov, A. V.; Savchenko, Sergey

    2015-01-01

    DECA performs photometric analysis of images of disk and elliptical galaxies having a regular structure. It is written in Python and combines the capabilities of several widely used packages for astronomical data processing such as IRAF, SExtractor, and the GALFIT code to perform two-dimensional decomposition of galaxy images into several photometric components (bulge+disk). DECA can be applied to large samples of galaxies with different orientations with respect to the line of sight (including edge-on galaxies) and requires minimum human intervention.

  3. Central black hole masses of galaxies

    NASA Astrophysics Data System (ADS)

    Fan, Jun-Hui

    2003-11-01

    In this paper, the stellar velocity dispersions in the host galaxies are used to estimate the central black hole masses for a sample of elliptical galaxies. We find that the central black hole masses are in the range of 10(5.5-9.5)Modot. Based on the estimated masses in this paper and those by Woo & Urry (2002) and the measured host galaxy absolute magnitude, a relation, log (MBH/Modot) = -(0.25±4.3×10-3)MR + (2.98±0.208) is found for central black hole mass and the host galaxy magnitude. Some discussions are presented.

  4. Ultraviolet Spectra of Normal Spiral Galaxies

    NASA Technical Reports Server (NTRS)

    Kinney, Anne

    1997-01-01

    The data related to this grant on the Ultraviolet Spectra of Normal Spiral Galaxies have been entirely reduced and analyzed. It is incorporated into templates of Spiral galaxies used in the calculation of K corrections towards the understanding of high redshift galaxies. The main paper was published in the Astrophysical Journal, August 1996, Volume 467, page 38. The data was also used in another publication, The Spectral Energy Distribution of Normal Starburst and Active Galaxies, June 1997, preprint series No. 1158. Copies of both have been attached.

  5. Investigations of galaxy clusters using gravitational lensing

    NASA Astrophysics Data System (ADS)

    Wiesner, Matthew P.

    In this dissertation, we discuss the properties of galaxy clusters that have been determined using strong and weak gravitational lensing. A galaxy cluster is a collection of galaxies that are bound together by the force of gravity, while gravitational lensing is the bending of light by gravity. Strong lensing is the formation of arcs or rings of light surrounding clusters and weak lensing is a change in the apparent shapes of many galaxies. In this work we examine the properties of several samples of galaxy clusters using gravitational lensing. In Chapter 1 we introduce astrophysical theory of galaxy clusters and gravitational lensing. In Chapter 2 we examine evidence from our data that galaxy clusters are more concentrated than cosmology would predict. In Chapter 3 we investigate whether our assumptions about the number of galaxies in our clusters was valid by examining new data. In Chapter 4 we describe a determination of a relationship between mass and number of galaxies in a cluster at higher redshift than has been found before. In Chapter 5 we describe a model of the mass distribution in one of the ten lensing systems discovered by our group at Fermilab. Finally in Chapter 6 we summarize our conclusions.

  6. Differential dust attenuation in CALIFA galaxies

    NASA Astrophysics Data System (ADS)

    Vale Asari, N.; Cid Fernandes, R.; Amorim, A. L.; Lacerda, E. A. D.; Schlickmann, M.; Wild, V.; Kennicutt, R. C.

    2016-06-01

    Dust attenuation has long been treated as a simple parameter in SED fitting. Real galaxies are, however, much more complicated: The measured dust attenuation is not a simple function of the dust optical depth, but depends strongly on galaxy inclination and the relative distribution of stars and dust. We study the nebular and stellar dust attenuation in CALIFA galaxies, and propose some empirical recipes to make the dust treatment more realistic in spectral synthesis codes. By adding optical recombination emission lines, we find better constraints for differential attenuation. Those recipes can be applied to unresolved galaxy spectra, and lead to better recovered star formation rates.

  7. Galaxy Alignments: Observations and Impact on Cosmology

    NASA Astrophysics Data System (ADS)

    Kirk, Donnacha; Brown, Michael L.; Hoekstra, Henk; Joachimi, Benjamin; Kitching, Thomas D.; Mandelbaum, Rachel; Sifón, Cristóbal; Cacciato, Marcello; Choi, Ami; Kiessling, Alina; Leonard, Adrienne; Rassat, Anais; Schäfer, Björn Malte

    2015-11-01

    Galaxy shapes are not randomly oriented, rather they are statistically aligned in a way that can depend on formation environment, history and galaxy type. Studying the alignment of galaxies can therefore deliver important information about the physics of galaxy formation and evolution as well as the growth of structure in the Universe. In this review paper we summarise key measurements of galaxy alignments, divided by galaxy type, scale and environment. We also cover the statistics and formalism necessary to understand the observations in the literature. With the emergence of weak gravitational lensing as a precision probe of cosmology, galaxy alignments have taken on an added importance because they can mimic cosmic shear, the effect of gravitational lensing by large-scale structure on observed galaxy shapes. This makes galaxy alignments, commonly referred to as intrinsic alignments, an important systematic effect in weak lensing studies. We quantify the impact of intrinsic alignments on cosmic shear surveys and finish by reviewing practical mitigation techniques which attempt to remove contamination by intrinsic alignments.

  8. Investigations of Galaxy Clusters Using Gravitational Lensing

    SciTech Connect

    Wiesner, Matthew P.

    2014-08-01

    In this dissertation, we discuss the properties of galaxy clusters that have been determined using strong and weak gravitational lensing. A galaxy cluster is a collection of galaxies that are bound together by the force of gravity, while gravitational lensing is the bending of light by gravity. Strong lensing is the formation of arcs or rings of light surrounding clusters and weak lensing is a change in the apparent shapes of many galaxies. In this work we examine the properties of several samples of galaxy clusters using gravitational lensing. In Chapter 1 we introduce astrophysical theory of galaxy clusters and gravitational lensing. In Chapter 2 we examine evidence from our data that galaxy clusters are more concentrated than cosmology would predict. In Chapter 3 we investigate whether our assumptions about the number of galaxies in our clusters was valid by examining new data. In Chapter 4 we describe a determination of a relationship between mass and number of galaxies in a cluster at higher redshift than has been found before. In Chapter 5 we describe a model of the mass distribution in one of the ten lensing systems discovered by our group at Fermilab. Finally in Chapter 6 we summarize our conclusions.

  9. Effect of bars on the galaxy properties

    NASA Astrophysics Data System (ADS)

    Vera, Matias; Alonso, Sol; Coldwell, Georgina

    2016-10-01

    Aims: With the aim of assessing the effects of bars on disk galaxy properties, we present an analysis of different characteristics of spiral galaxies with strong bars, weak bars and without bars. Methods: We identified barred galaxies from the Sloan Digital Sky Survey (SDSS). By visual inspection of SDSS images we classified the face-on spiral galaxies brighter than g< 16.5 mag into strong-bar, weak-bar, and unbarred galaxies. With the goal of providing an appropriate quantification of the influence of bars on galaxy properties, we also constructed a suitable control sample of unbarred galaxies with similar redshifts, magnitudes, morphology, bulge sizes, and local density environment distributions to those of barred galaxies. Results: We found 522 strong-barred and 770 weak-barred galaxies; this represents a bar fraction of 25.82% with respect to the full sample of spiral galaxies, in good agreement with several previous studies. We also found that strong-barred galaxies show lower efficiency in star formation activity and older stellar populations (as derived with the Dn(4000) spectral index) with respect to weak-barred and unbarred spirals from the control sample. In addition, there is a significant excess of strong-barred galaxies with red colors. The color-color and color-magnitude diagrams show that unbarred and weak-barred galaxies are more extended towards the blue zone, while strong-barred disk objects are mostly grouped in the red region. Strong-barred galaxies present an important excess of high metallicity values compared to unbarred and weak-barred disk objects, which show similar distributions. Regarding the mass-metallicity relation, we found that weak-barred and unbarred galaxies are fitted by similar curves, while strong-barred ones show a curve that falls abruptly with more significance in the range of low stellar masses (log (M∗/M⊙) < 10.0). These results would indicate that prominent bars produced an accelerating effect on the gas processing

  10. Multi-wavelength Luminosity Functions of Galaxies

    NASA Technical Reports Server (NTRS)

    Gardner, J. P.; Miller, N. A.

    2002-01-01

    Multivariate or multi-wavelength luminosity functions will reveal the interplay between star formation, chemical evolution, and absorption and re-emission of dust within evolving galaxy populations. By using principal component analysis to reduce the dimensionality of the problem, we optimally extract the relevant photometric information from large galaxy catalogs. As a demonstration of the technique, we derive the multi-wavelength luminosity function for the galaxies in the released SDSS catalog, and compare the results with those obtained by traditional methods. This technique will be applicable to catalogs of galaxies from datasets obtained by 2MASS, and the SIRTF and GALEX missions.

  11. Multi-Wavelength Luminosity Functions of Galaxies

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2002-01-01

    Multivariate or multi-wavelength luminosity functions will reveal the interplay between star formation, chemical evolution, and ab- sorption and re-emission of dust within evolving galaxy populations. By using principal component analysis to reduce the dimensionality of the problem, I optimally extract the relevant photometric information from large galaxy catalogs. As a demonstration of the technique, I derive the multi-wavelength luminosity function for the galaxies in the released SDSS catalog, and compare the results with those obtained by traditional methods. This technique will be applicable to catalogs of galaxies from datasets obtained by 2MASS, and the SIRTF and GALEX missions.

  12. Reddening and Absorption Through Local Group Galaxies

    NASA Astrophysics Data System (ADS)

    Hodge, Paul

    1997-07-01

    This project involves a photometric study of galaxies seen through the bodies of several Local Group galaxies. The high resolution of WFPC2 images will be used with automated techniques to identify galaxies at various magnitude limits. For three different magnitude regimes we will use three different techniques for studying the optical effects of the dust content: 1} for the brighter galaxies the integrated colors will be determined and compared to those of similar Hubble types in the field, which follow a fairly narrow color- type relationship; 2} for a selection of galaxies that goes to somewhat fainter limits, we will be able to measure magnitudes in three colors, allowing us to determine reddening by comparison with the field galaxy color-color relations; and 3} the identified galaxies of all brightnesses will be counted, using automated techniques, and the counts will be compared to galaxy densities in the field. The goal is a map of the TOTAL extinction and reddening through the Local Group galaxies, which can be compared to maps of the HI, molecular gas and infrared radiation, so that astrophysical conclusions can be made.

  13. Morphology and evolution of VIPERS galaxies

    NASA Astrophysics Data System (ADS)

    Krywult, Janusz; Pollo, Agnieszka

    2016-06-01

    Using the spectroscopic and photometric data from the VIMOS Public Extragalactic Redshift Survey (VIPERS), together with the CFHTLS T0006 CCD images, we analyze co-evolution of rest-frame colours and Sérsic indices of the early and late-type galaxies in the redshift range 0.5 < z < 1.0. We find a strong Gaussian bimodality of both the galaxy rest-frame colour and Sérsic index distribution in the redshift - luminosity plane. We propose a new empirical model of galaxy colour and Sérsic index dependence on redshift and luminosity, to study the dynamical and chemical evolution of galaxies.

  14. Watching Galaxy Evolution in High Definition

    NASA Technical Reports Server (NTRS)

    Rigby, Jane

    2011-01-01

    As Einstein predicted, mass deflects light. In hundreds of known cases, "gravitational lenses" have deflected, distorted, and amplified images of galaxies or quasars behind them. As such, gravitational lensing is a way to "cheat" at studying how galaxies evolve, because lensing can magnify galaxies by factors of 10--100 times, transforming them from objects we can barely detect to bright objects we can study in detail. I'll summarize new results from a comprehensive program, using multi-wavelength, high-quality spectroscopy, to study how galaxies formed stars at redshifts of 1--3, the epoch when most of the Universe's stars were formed.

  15. Watching Galaxy Evolution in High Definition

    NASA Technical Reports Server (NTRS)

    Rigby, Jane R.

    2012-01-01

    As Einstein predicted, mass deflects light. In hundreds of known cases, "gravitational lenses" have deflected, distorted, and amplified images of galaxies or quasars behind them. As such, gravitational lensing is a way to "cheat" at studying how galaxies evolve, because lensing can magnify galaxies by factors of 10-100 times, transforming them from objects we can barely detect to bright objects we can study in detail. I'll summarize new results from a comprehensive program, using multi-wavelength, high-quality spectroscopy, to study how galaxies formed stars at redshifts of 1-3, the epoch when most of the Universe's stars were formed.

  16. Quasars and Active Galaxies: A Reading List.

    ERIC Educational Resources Information Center

    Fraknoi, Andrew

    1988-01-01

    Contains the annotated bibliographies of introductory books and sections of books, recent introductory articles, more advanced articles, and more advanced books dealing with quasars and active galaxies. (CW)

  17. Counts of galaxies in a merger model

    NASA Technical Reports Server (NTRS)

    Colin, P.; Schramm, D. N.; Peimbert, M.

    1994-01-01

    A model for the photometric evolution of galaxies has been developed and has been applied to the problem of galaxy counts. The integrated colors of galaxies are calculated using the most recently computed evolutionary tracks from Maeder and collaborators complemented with evolutionary tracks derived by other authors. The asymptotic giant branch lifetime is left as a free parameter. A series of cosmological models using different values of the cosmological constant, lambda(sub 0), and the density parameter, omega(sub 0), have been computed. The universality hypothesis of the luminosity function of galaxies has been abandoned. The influence of galaxy merging on the counts has been considered in a simple manner by assuming that the number of strongly interacting galaxies in a comoving volume increases with redshift as a power law given by (1 + z)(exp 3.8). Taking a Schechter parametrization for the luminosity function of the different types of galaxies, we are able to reproduce the observations reasonably well. We have also considered models with a Gaussian distribution for the luminosity function of the brighter galaxies that provide a poorer fit to the observations. It is shown that galaxy count data are not yet able to make unambiguous cosmological statements since evolutionary assumptions are critical. In particular, an omega(sub 0) = 1, lambda(sub 0) = 0 cosmology is shown to be consistent with the data.

  18. Measuring star formation rates in blue galaxies

    NASA Technical Reports Server (NTRS)

    Gallagher, John S., III; Hunter, Deidre A.

    1987-01-01

    The problems associated with measurements of star formation rates in galaxies are briefly reviewed, and specific models are presented for determinations of current star formation rates from H alpha and Far Infrared (FIR) luminosities. The models are applied to a sample of optically blue irregular galaxies, and the results are discussed in terms of star forming histories. It appears likely that typical irregular galaxies are forming stars at nearly constant rates, although a few examples of systems with enhanced star forming activity are found among HII regions and luminous irregular galaxies.

  19. Multiple Core Galaxies: Implications for M31

    NASA Technical Reports Server (NTRS)

    Smith, B. F.; Miller, R. H.; Cuzzi, Jeffrey N. (Technical Monitor)

    1994-01-01

    It is generally perceived that two cores cannot survive very long within the nuclear regions of a galaxy. The recent HST discovery of a double nucleus in M31 brings this question into prominence. Physical conditions in the nuclear regions of a typical galaxy help a second core survive so it can orbit for a long time, possibly for thousands of orbits. Given the nearly uniform mass density in a core, tidal forces within a core radius are compressive in all directions and help the core survive the buffeting it takes as it orbits near the center of the galaxy. We use numerical experiments to illustrate these physical principles. Modifications to the experimental method allow the full power of the experiments to be concentrated on the nuclear regions. Spatial resolution of about 0.2 parsec comfortably resolves detail within the 1.4 parsec core radius of the second, but brighter, core (P1) in M31. The same physical principles apply in other astronomical situations, such as dumbbell galaxies, galaxies orbiting near the center of a galaxy cluster, and subclustering in galaxy clusters. The experiments also illustrate that galaxy encounters and merging are quite sensitive to external tidal forces, such as those produced by the gravitational potential in a group or cluster of galaxies.

  20. The Lopsided Distribution of Satellite Galaxies

    NASA Astrophysics Data System (ADS)

    Libeskind, Noam I.; Guo, Quan; Tempel, Elmo; Ibata, Rodrigo

    2016-10-01

    The distribution of smaller satellite galaxies around large central galaxies has attracted attention because peculiar spatial and kinematic configurations have been detected in some systems. A particularly striking example of such behavior is seen in the satellite system of the Andromeda galaxy, where around 80% are on the near side of that galaxy, facing the Milky Way. Motivated by this departure from anisotropy, we examined the spatial distribution of satellites around pairs of galaxies in the Sloan Digital Sky Survey. By stacking tens of thousands of satellites around galaxy pairs, we found that satellites tend to bulge toward the other central galaxy, preferably occupying the space between the pair, rather than being spherically or axis-symmetrically distributed around each host. The bulging is a function of the opening angle examined and is fairly strong—there are up to ∼10% more satellites in the space between the pair than expected from uniform. Consequently, it is a statistically very strong signal, being inconsistent with a uniform distribution at the 5σ level. The possibility that the observed signal is the result of the overlap of two halos with extended satellite distributions is ruled out by testing this hypothesis by performing the same tests on isolated galaxies (and their satellites) artificially placed at similar separations. These findings highlight the unrelaxed and interacting nature of galaxies in pairs.

  1. The large-scale distribution of galaxies

    NASA Technical Reports Server (NTRS)

    Geller, Margaret J.

    1989-01-01

    The spatial distribution of galaxies in the universe is characterized on the basis of the six completed strips of the Harvard-Smithsonian Center for Astrophysics redshift-survey extension. The design of the survey is briefly reviewed, and the results are presented graphically. Vast low-density voids similar to the void in Bootes are found, almost completely surrounded by thin sheets of galaxies. Also discussed are the implications of the results for the survey sampling problem, the two-point correlation function of the galaxy distribution, the possibility of detecting large-scale coherent flows, theoretical models of large-scale structure, and the identification of groups and clusters of galaxies.

  2. Over-Luminous Elliptical Galaxies

    NASA Technical Reports Server (NTRS)

    Forman, William; Mushotzky, Richard (Technical Monitor)

    2004-01-01

    The first paper from our work has been completed and accepted for publication. Another paper presents a study of the ESO 30601 70 galaxy group, combining Chandra, XMM-Newton, and optical observations. We find that the system is a true fossil galaxy group - a group whose optical light is dominated by a single galaxy. The group X-ray emission is composed of a central, dense, cool core (10 kpc in radius) and an isothermal medium beyond the central 10 kpc. The region between 10 and 50 kpc (the cooling radius) has the same temperature as the gas from 50 to 400 kpc, although the gas cooling time between 10 and 50 kpc (2-6 Gyr) is shorter than the Hubble time. Thus, the ESO 3060170 group does not have a group-sized cooling core. We suggest that the group cooling core may have been heated by a central active galactic nucleus (AGN) outburst in the past and that the small, dense, cool core is the truncated relic of a previous cooling core. The Chandra observations also reveal a variety of X-ray features in the central region, including a finger, an edge-like feature, and a small tail, all aligned along a north-south axis, as are the galaxy light and group galaxy distribution. The proposed AGN outburst may cause gas to slosh around the center and produce these asymmetric features. The observed flat temperature profile to 1/3rvir is not consistent with the predicted temperature profile in recent numerical simulations. We compare the entropy profile of the ESO 3060170 group with those of three other groups and find a flatter relation than that predicted by simulations involving only shock heating, S approximately r approximately 0.85. This is direct evidence of the importance of non-gravitational processes in group centers. We derive the mass profiles within 1/3rvir and find that the ESO 3060170 group is the most massive fossil group known.

  3. Nonthermal Emission from Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Storm, Emma

    Galaxy clusters are the most massive gravitationally-bound objects in the universe. The bulk of the mass in a cluster is dark matter, while the dominant baryonic component is a thermal, X-ray emitting plasma. Radio observations of diffuse synchrotron emission indicate that galaxy clusters host a population of cosmic rays; however, the nature of this nonthermal component is not well-understood. In this dissertation, I investigate three sources of nonthermal emission in galaxy clusters. The first is star formation in galaxies, which is correlated to gamma-ray emission. I derive lower limits on the gamma-ray emission for nearby clusters by considering the emission from star formation in cluster galaxies. These lower limits sit about an order of magnitude below current upper limits on gamma rays in clusters and will be an important contributor to gamma-ray emission as upper limits improve over time. Dark matter annihilation, which produces relativistic particles that can result in a broad spectrum of emission in cluster environments, is another source of nonthermal emission. I use nondetections and marginal detections of diffuse radio emission in clusters to constrain dark matter annihilation. I derive limits on the annihilation cross section that are competitive with limits from the nondetection of gamma rays in clusters and show that the best objects for study in the radio are different than those in gamma rays, indicating that dark matter searches in the radio can be complementary to searches in other energy bands. I also investigate the cosmic ray population in the merging cluster A2319, which hosts a previously detected radio halo. I present new observations which reveal a two-component radio halo: a 2 Mpc region that extends far past the observable X-ray emission, and an 800 kpc "core" that is bounded by the X-ray cold front. I speculate on the origins of this structure, and show that a hadronic origin for this radio halo is disfavored. Finally, I discuss current

  4. Did galaxies reionize the universe?

    NASA Astrophysics Data System (ADS)

    Schenker, Matthew A.

    The epoch of reionization remains one of the last uncharted eras of cosmic history, yet this time is of crucial importance, encompassing the formation of both the first galaxies and the first metals in the universe. In this thesis, I present four related projects that both characterize the abundance and properties of these first galaxies and uses follow-up observations of these galaxies to achieve one of the first observations of the neutral fraction of the intergalactic medium during the heart of the reionization era. First, we present the results of a spectroscopic survey using the Keck telescopes targeting 6.3 < z < 8.8 star-forming galaxies. We secured observations of 19 candidates, initially selected by applying the Lyman break technique to infrared imaging data from the Wide Field Camera 3 (WFC3) onboard the Hubble Space Telescope (HST). This survey builds upon earlier work from Stark et al. (2010, 2011), which showed that star-forming galaxies at 3 < z < 6, when the universe was highly ionized, displayed a significant increase in strong Lyman alpha emission with redshift. Our work uses the LRIS and NIRSPEC instruments to search for Lyman alpha emission in candidates at a greater redshift in the observed near-infrared, in order to discern if this evolution continues, or is quenched by an increase in the neutral fraction of the intergalactic medium. Second, we characterize the abundance of star-forming galaxies at z > 6.5 again using WFC3 onboard the HST. This project conducted a detailed search for candidates both in the Hubble Ultra Deep Field as well as a number of additional wider Hubble Space Telescope surveys to construct luminosity functions at both z ~ 7 and 8, reaching 0.65 and 0.25 mag fainter than any previous surveys, respectively. We show that an extension of the luminosity function down to MUV = -13.0, coupled with a low level of star-formation out to higher redshift, can fit all available constraints on the ionization history of the universe

  5. Molecular gas in interacting galaxies

    NASA Astrophysics Data System (ADS)

    Zhu, Ming

    2001-10-01

    A systematic study of the molecular gas properties in strongly interacting galaxies (SIGs) has been undertaken, which includes two parts: (1)a statistical study of a large, optically-selected, complete sample of SIGs; (2)a case study of the nearest colliding pair NGC 4038/9 (``the Antennae'') with multi-transition data of both 12CO and 13CO. Consisting of 126 galaxies in 92 systems, our complete sample of SIGs includes all the SIGs in the northern sky with optical magnitude BT < 14.5. CO data have been collected for 95 SIGs (59 of which were observed by us) as well as for comparison samples of 59 weakly interacting and 69 isolated spiral galaxies. The statistical analysis of the samples shows that the SIGs, especially the colliding and merging systems, have a higher CO luminosity than isolated spiral galaxies. However, there is no significant difference in the atomic gas contents between the samples. This indicates that the excess CO emission is not due to the conversion of atomic gas to molecular gas, but may be more plausibly accounted for by a lower CO-to- H2 conversion factor X. For the Antennae galaxies, we have obtained high quality, fully sampled, single dish maps at 12CO J = 1-0 and 32 transitions with an angular resolution of 15' (1.5 kpc), together with 12CO J = 2-1, 13CO J = 2-1 and 3-2 data at selected regions with similar resolutions. Our Nobeyama 45m map recovers twice as much 12CO J = 1-0 flux as was reported by Wilson et al. (2000). The 12CO J = 1-0, 2-1 and 3-2 emission all peak in an off-nucleus region adjacent to where the two disks overlap. The 12CO/13 CO J = 2-1 and 3-2 integrated intensity ratios are remarkably high in the overlap region. Detailed LVG modeling indicates that the 12 CO and 13CO emission come from different spatial components. The 12CO emission originates from a nonvirialized low density gas component with a large velocity gradient. Such a large velocity gradient can produce ``over luminous'' CO emission, and the derived X

  6. Merging Galaxies Create a Binary Quasar

    NASA Astrophysics Data System (ADS)

    2010-02-01

    Astronomers have found the first clear evidence of a binary quasar within a pair of actively merging galaxies. Quasars are the extremely bright centers of galaxies surrounding super-massive black holes, and binary quasars are pairs of quasars bound together by gravity. Binary quasars, like other quasars, are thought to be the product of galaxy mergers. Until now, however, binary quasars have not been seen in galaxies that are unambiguously in the act of merging. But images of a new binary quasar from the Carnegie Institution's Magellan telescope in Chile show two distinct galaxies with "tails" produced by tidal forces from their mutual gravitational attraction. "This is really the first case in which you see two separate galaxies, both with quasars, that are clearly interacting," says Carnegie astronomer John Mulchaey who made observations crucial to understanding the galaxy merger. Most, if not all, large galaxies, such as our galaxy the Milky Way, host super-massive black holes at their centers. Because galaxies regularly interact and merge, astronomers have assumed that binary super-massive black holes have been common in the Universe, especially during its early history. Black holes can only be detected as quasars when they are actively accreting matter, a process that releases vast amounts of energy. A leading theory is that galaxy mergers trigger accretion, creating quasars in both galaxies. Because most such mergers would have happened in the distant past, binary quasars and their associated galaxies are very far away and therefore difficult for most telescopes to resolve. The binary quasar, labeled SDSS J1254+0846, was initially detected by the Sloan Digital Sky Survey, a large scale astronomical survey of galaxies and over 120,000 quasars. Further observations by Paul Green of the Harvard-Smithsonian Center for Astrophysics and colleagues* using NASA's Chandra's X-ray Observatory and telescopes at Kitt Peak National Observatory in Arizona and Palomar

  7. Joint analysis of galaxy-galaxy lensing and galaxy clustering: Methodology and forecasts for Dark Energy Survey

    NASA Astrophysics Data System (ADS)

    Park, Y.; Krause, E.; Dodelson, S.; Jain, B.; Amara, A.; Becker, M. R.; Bridle, S. L.; Clampitt, J.; Crocce, M.; Fosalba, P.; Gaztanaga, E.; Honscheid, K.; Rozo, E.; Sobreira, F.; Sánchez, C.; Wechsler, R. H.; Abbott, T.; Abdalla, F. B.; Allam, S.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Buckley-Geer, E.; Burke, D. L.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Castander, F. J.; da Costa, L. N.; DePoy, D. L.; Desai, S.; Dietrich, J. P.; Doel, P.; Eifler, T. F.; Fausti Neto, A.; Fernandez, E.; Finley, D. A.; Flaugher, B.; Gerdes, D. W.; Gruen, D.; Gruendl, R. A.; Gutierrez, G.; James, D. J.; Kent, S.; Kuehn, K.; Kuropatkin, N.; Lima, M.; Maia, M. A. G.; Marshall, J. L.; Melchior, P.; Miller, C. J.; Miquel, R.; Nichol, R. C.; Ogando, R.; Plazas, A. A.; Roe, N.; Romer, A. K.; Rykoff, E. S.; Sanchez, E.; Scarpine, V.; Schubnell, M.; Sevilla-Noarbe, I.; Soares-Santos, M.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thaler, J.; Vikram, V.; Walker, A. R.; Weller, J.; Zuntz, J.; DES Collaboration

    2016-09-01

    The joint analysis of galaxy-galaxy lensing and galaxy clustering is a promising method for inferring the growth function of large-scale structure. Anticipating a near future application of this analysis to Dark Energy Survey (DES) measurements of galaxy positions and shapes, we develop a practical approach to modeling the assumptions and systematic effects affecting the joint analysis of small-scale galaxy-galaxy lensing and large-scale galaxy clustering. Introducing parameters that characterize the halo occupation distribution (HOD), photometric redshift uncertainties, and shear measurement errors, we study how external priors on different subsets of these parameters affect our growth constraints. Degeneracies within the HOD model, as well as between the HOD and the growth function, are identified as the dominant source of complication, with other systematic effects being subdominant. The impact of HOD parameters and their degeneracies necessitate the detailed joint modeling of the galaxy sample that we employ. We conclude that DES data will provide powerful constraints on the evolution of structure growth in the Universe, conservatively/optimistically constraining the growth function to 7.9%/4.8% with its first-year data that cover over 1000 square degrees, and to 3.9%/2.3% with its full five-year data that will survey 5000 square degrees, including both statistical and systematic uncertainties.

  8. Joint analysis of galaxy-galaxy lensing and galaxy clustering: Methodology and forecasts for Dark Energy Survey

    SciTech Connect

    Park, Y.; Krause, E.; Dodelson, S.; Jain, B.; Amara, A.; Becker, M. R.; Bridle, S. L.; Clampitt, J.; Crocce, M.; Fosalba, P.; Gaztanaga, E.; Honscheid, K.; Rozo, E.; Sobreira, F.; Sánchez, C.; Wechsler, R. H.; Abbott, T.; Abdalla, F. B.; Allam, S.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Buckley-Geer, E.; Burke, D. L.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Castander, F. J.; da Costa, L. N.; DePoy, D. L.; Desai, S.; Dietrich, J. P.; Doel, P.; Eifler, T. F.; Fausti Neto, A.; Fernandez, E.; Finley, D. A.; Flaugher, B.; Gerdes, D. W.; Gruen, D.; Gruendl, R. A.; Gutierrez, G.; James, D. J.; Kent, S.; Kuehn, K.; Kuropatkin, N.; Lima, M.; Maia, M. A. G.; Marshall, J. L.; Melchior, P.; Miller, C. J.; Miquel, R.; Nichol, R. C.; Ogando, R.; Plazas, A. A.; Roe, N.; Romer, A. K.; Rykoff, E. S.; Sanchez, E.; Scarpine, V.; Schubnell, M.; Sevilla-Noarbe, I.; Soares-Santos, M.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thaler, J.; Vikram, V.; Walker, A. R.; Weller, J.; Zuntz, J.

    2016-09-30

    Here, the joint analysis of galaxy-galaxy lensing and galaxy clustering is a promising method for inferring the growth function of large-scale structure. Anticipating a near future application of this analysis to Dark Energy Survey (DES) measurements of galaxy positions and shapes, we develop a practical approach to modeling the assumptions and systematic effects affecting the joint analysis of small-scale galaxy-galaxy lensing and large-scale galaxy clustering. Introducing parameters that characterize the halo occupation distribution (HOD), photometric redshift uncertainties, and shear measurement errors, we study how external priors on different subsets of these parameters affect our growth constraints. Degeneracies within the HOD model, as well as between the HOD and the growth function, are identified as the dominant source of complication, with other systematic effects being subdominant. The impact of HOD parameters and their degeneracies necessitate the detailed joint modeling of the galaxy sample that we employ. We conclude that DES data will provide powerful constraints on the evolution of structure growth in the Universe, conservatively/optimistically constraining the growth function to 7.9%/4.8% with its first-year data that cover over 1000 square degrees, and to 3.9%/2.3% with its full five-year data that will survey 5000 square degrees, including both statistical and systematic uncertainties.

  9. Joint analysis of galaxy-galaxy lensing and galaxy clustering: Methodology and forecasts for Dark Energy Survey

    DOE PAGES

    Park, Y.; Krause, E.; Dodelson, S.; ...

    2016-09-30

    Here, the joint analysis of galaxy-galaxy lensing and galaxy clustering is a promising method for inferring the growth function of large-scale structure. Anticipating a near future application of this analysis to Dark Energy Survey (DES) measurements of galaxy positions and shapes, we develop a practical approach to modeling the assumptions and systematic effects affecting the joint analysis of small-scale galaxy-galaxy lensing and large-scale galaxy clustering. Introducing parameters that characterize the halo occupation distribution (HOD), photometric redshift uncertainties, and shear measurement errors, we study how external priors on different subsets of these parameters affect our growth constraints. Degeneracies within the HODmore » model, as well as between the HOD and the growth function, are identified as the dominant source of complication, with other systematic effects being subdominant. The impact of HOD parameters and their degeneracies necessitate the detailed joint modeling of the galaxy sample that we employ. We conclude that DES data will provide powerful constraints on the evolution of structure growth in the Universe, conservatively/optimistically constraining the growth function to 7.9%/4.8% with its first-year data that cover over 1000 square degrees, and to 3.9%/2.3% with its full five-year data that will survey 5000 square degrees, including both statistical and systematic uncertainties.« less

  10. SDSS superclusters: morphology and galaxy content

    NASA Astrophysics Data System (ADS)

    Einasto, M.; Lietzen, H.; Tempel, E.; Gramann, M.; Liivamägi, L. J.; Einasto, J.

    2014-02-01

    Context. Understanding the formation, evolution and present-day properties of the cosmic web and objects forming it is an important task in cosmology. Aims: We compare the galaxy populations in superclusters of different morphology in the nearby Universe (180 h-1 Mpc ≤ d ≤ 270 h-1 Mpc) to see whether the inner structure and overall morphology of superclusters are important in shaping galaxy properties in superclusters. Methods: We find supercluster morphology with Minkowski functionals and analyse the probability density distributions of colours, morphological types, stellar masses, star formation rate (SFR) of galaxies, and the peculiar velocities of the main galaxies in groups in superclusters of filament and spider types, and in the field. We test the statistical significance of the results with the KS test. Results: The fraction of red, early-type, low SFR galaxies in filament-type superclusters is higher than in spider-type superclusters; in low-density global environments their fraction is lower than in superclusters. In all environments the fraction of red, high stellar mass, and low SFR galaxies in rich groups is higher than in poor groups. In superclusters of spider morphology red, high SFR galaxies have higher stellar masses than in filament-type superclusters. Groups of equal richness host galaxies with larger stellar masses, a larger fraction of early-type and red galaxies, and a higher fraction of low SFR galaxies, if they are located in superclusters of filament morphology. The peculiar velocities of the main galaxies in groups from superclusters of filament morphology are higher than in those of spider morphology. Groups with higher peculiar velocities of their main galaxies in filament-type superclusters are located in higher density environment than those with low peculiar velocities. There are significant differences between galaxy populations of the individual richest superclusters. Conclusions: Both local (group) and global (supercluster

  11. Internal Kinematics of Distant Field Galaxies

    NASA Astrophysics Data System (ADS)

    Ing, Kristine Mei Lan

    1998-08-01

    We study faint blue field galaxies in two complementary ways by targeting red-shifted, broadened emission lines: (1) a detailed study of a small but representative sample using resolved images that reveal the internal kinematics of individual galaxies, and analyzing effects like ionized gas distribution and galaxy inclination that tend to bias the results obtained from spatially unresolved galaxy spectra; and (2) a study of a spatially unresolved but statistically complete sample within our color, magnitude, and redshift cuts. In order to facilitate comparison of distant and local galaxies, we have developed a methodology to study distant galaxies in as much detail as is customary for nearby galaxies, using state-of-the-art data. The ultimate goal of such a comparison is to determine the amount of evolution of the mass-to-light ratio of individual galaxies and to thereby constrain models of galaxy formation and evolution. In a followup to our recent multifiber spectroscopic study of the linewidth-vs-luminosity relation in faint blue galaxies at < z>~ 0.25 (Rix et al. 1997, MNRAS, 285, 779), we have carried out a detailed study of the internal kinematics of 10 distant (z = 0.30[-]0.44), faint (B = 20[-]24), blue (B-R <= 1.2) field galaxies using the Rutgers Fabry-Perot (RFP) instrument on the Cerro Tololo Interamerican Observatory's 4-meter telescope. In deriving rotation speeds from fiber spectra, we had to rely on large and somewhat uncertain statistical corrections for the effects of non-uniform gas distribution, disk inclination, shape of the rotation curve, and seeing. Using fitting disk models to the RFP datacube, complemented by surface photometry and isophotal shapes derived from high angular resolution Hubble Space Telescope Wide Field/Planetary Camera-2 images in the F814W ('I') or F555W ('V') Band and deep H-Band (1.6 μm) images obtained with the Near InfraRed Camera on the Keck 10-meter telescope, the RFP study addresses these issues directly and yields

  12. Important Nearby Galaxies without Accurate Distances

    NASA Astrophysics Data System (ADS)

    McQuinn, Kristen

    2014-10-01

    The Spitzer Infrared Nearby Galaxies Survey (SINGS) and its offspring programs (e.g., THINGS, HERACLES, KINGFISH) have resulted in a fundamental change in our view of star formation and the ISM in galaxies, and together they represent the most complete multi-wavelength data set yet assembled for a large sample of nearby galaxies. These great investments of observing time have been dedicated to the goal of understanding the interstellar medium, the star formation process, and, more generally, galactic evolution at the present epoch. Nearby galaxies provide the basis for which we interpret the distant universe, and the SINGS sample represents the best studied nearby galaxies.Accurate distances are fundamental to interpreting observations of galaxies. Surprisingly, many of the SINGS spiral galaxies have numerous distance estimates resulting in confusion. We can rectify this situation for 8 of the SINGS spiral galaxies within 10 Mpc at a very low cost through measurements of the tip of the red giant branch. The proposed observations will provide an accuracy of better than 0.1 in distance modulus. Our sample includes such well known galaxies as M51 (the Whirlpool), M63 (the Sunflower), M104 (the Sombrero), and M74 (the archetypal grand design spiral).We are also proposing coordinated parallel WFC3 UV observations of the central regions of the galaxies, rich with high-mass UV-bright stars. As a secondary science goal we will compare the resolved UV stellar populations with integrated UV emission measurements used in calibrating star formation rates. Our observations will complement the growing HST UV atlas of high resolution images of nearby galaxies.

  13. HC3N observations of nearby galaxies

    NASA Astrophysics Data System (ADS)

    Jiang, Xue-Jian; Wang, Jun-Zhi; Gao, Yu; Gu, Qiu-Sheng

    2017-03-01

    Aims: We aim to systematically study the properties of the different transitions of the dense molecular gas tracer HC3N in galaxies. Methods: We have conducted single-dish observations of HC3N emission lines towards a sample of nearby gas-rich galaxies. HC3N(J = 2-1) was observed in 20 galaxies with the Effelsberg 100-m telescope. HC3N(J = 24-23) was observed in nine galaxies with the 10-m Submillimeter Telescope (SMT). Results: HC3N 2-1 is detected in three galaxies: IC 342, M 66, and NGC 660 (> 3σ). HC3N 24-23 is detected in three galaxies: IC 342, NGC 1068, and IC 694. These are the first measurements of HC3N 2-1 in a relatively large sample of external galaxies, although the detection rate is low. For the HC3N 2-1 non-detections, upper limits (2σ) are derived for each galaxy, and stacking the non-detections is attempted to recover the weak signal of HC3N. The stacked spectrum, however, does not show any significant signs of HC3N 2-1 emission. The results are also compared with other transitions of HC3N observed in galaxies. Conclusions: The low detection rate of both transitions suggests low abundance of HC3N in galaxies, which is consistent with other observational studies. The comparison between HC3N and HCN or HCO+shows a large diversity in the ratios between HC3N and HCN or HCO+. More observations are needed to interpret the behavior of HC3N in different types of galaxies.

  14. Sombrero Galaxy (M104) in Infrared Light

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The razor sharp eye of the Hubble Space Telescope (HST) easily resolves the Sombrero galaxy, Messier 104 (M104). 50,000 light-years across, the galaxy is located 28 million light-years from Earth at the southern edge of the rich Virgo cluster of galaxies. Equivalent to 800 billion suns, Sombrero is one of the most massive objects in that group. The hallmark of Sombrero is a brilliant white, bulbous core encircled by the thick dust lanes comprising the spiral structure of the galaxy. As seen from Earth, the galaxy is tilted nearly edge-on. We view it from just six degrees north of its equatorial plane. This rich system of globular clusters is estimated to be nearly 2,000 in number which is 10 times as many as in our Milky Way galaxy. Similar to the clusters in the Milky Way, the ages range from 10-13 billion years old. Embedded in the bright core of M104 is a smaller disk, which is tilted relative to the large disk. The HST paired with the Spitzer infrared telescope, offers this striking composite capturing the magnificence of the Sombrero galaxy. In the Hubble view, the galaxy resembles a broad-rimmed Mexican hat, whereas in the Spitzer striking infrared view, the galaxy looks more like a bulls eye. The full view provided by Spitzer shows the disk is warped, which is often the result of a gravitational encounter with another galaxy, and clumpy areas spotted in the far edges of the ring indicate young star forming regions. Spitzer detected infrared emission not only from the ring, but from the center of the galaxy as well, where there is a huge black hole believed to be a billion times more massive than our Sun. The Marshall Space Flight Center (MSFC) had responsibility for design, development, and construction of the HST.

  15. Observational properties of compact groups of galaxies

    NASA Technical Reports Server (NTRS)

    Hickson, Paul

    1990-01-01

    Compact groups are small, relatively isolated, systems of galaxies with projected separations comparable to the diameters of the galaxies themselves. Two well-known examples are Stephan's Quintet (Stephan, 1877) and Seyfert's Sextet (Seyfert 1948a,b). In groups such as these, the apparent space density of galaxies approaches 10(exp 6) Mpc(sub -3), denser even than the cores of rich clusters. The apparent unlikeliness of the chance occurrence of such tight groupings lead Ambartsumyan (1958, 1975) to conclude that compact groups must be physically dense systems. This view is supported by clear signs of galaxy interactions that are seen in many groups. Spectroscopic observations reveal that typical relative velocities of galaxies in the groups are comparable to their internal stellar velocities. This should be conducive to strong gravitational interactions - more so than in rich clusters, where galaxy velocities are typically much higher. This suggests that compact groups could be excellent laboratories in which to study galaxy interactions and their effects. Compact groups often contain one or more galaxies whose redshift differs greatly from those of the other group members. If these galaxies are at the same distance as the other members, either entire galaxies are being ejected at high velocities from these groups, or some new physical phenomena must be occurring. If their redshifts are cosmological, we must explain why so many discordant galaxies are found in compact groups. In recent years much progress has been made in addressing these questions. Here, the author discusses the current observational data on compact groups and their implications.

  16. How robust are predictions of galaxy clustering?

    NASA Astrophysics Data System (ADS)

    Contreras, S.; Baugh, C. M.; Norberg, P.; Padilla, N.

    2013-07-01

    We use the Millennium Simulation data base to compare how different versions of the Durham and Munich semi-analytical galaxy formation models populate dark matter haloes with galaxies. The models follow the same physical processes but differ in how these are implemented. All of the models we consider use the Millennium N-body Simulation; however, the Durham and Munich groups use independent algorithms to construct halo merger histories from the simulation output. We compare the predicted halo occupation distributions (HODs) and correlation functions for galaxy samples defined by stellar mass, cold gas mass and star formation rate. The model predictions for the HOD are remarkably similar for samples ranked by stellar mass. The predicted bias averaged over pair separations in the range 5-25 h-1 Mpc is consistent between models to within 10 per cent. At small pair separations there is a clear difference in the predicted clustering. This arises because the Durham models allow some satellite galaxies to merge with the central galaxy in a halo when they are still associated with resolved dark matter subhaloes. The agreement between the models is less good for samples defined by cold gas mass or star formation rate, with the spread in predicted galaxy bias reaching 20 per cent and the small-scale clustering differing by an order of magnitude, reflecting the uncertainty in the modelling of star formation. The model predictions in these cases are nevertheless qualitatively similar, with a markedly shallower slope for the correlation function than is found for stellar mass selected samples and with the HOD displaying an asymmetric peak for central galaxies. We provide illustrative parametric fits to the HODs predicted by the models. Our results reveal the current limitations on how well we can predict galaxy bias in a fixed cosmology, which has implications for the interpretation of constraints on the physics of galaxy formation from galaxy clustering measurements and the

  17. Oxygen abundance maps of CALIFA galaxies

    NASA Astrophysics Data System (ADS)

    Zinchenko, I. A.; Pilyugin, L. S.; Grebel, E. K.; Sánchez, S. F.; Vílchez, J. M.

    2016-11-01

    We construct maps of the oxygen abundance distribution across the discs of 88 galaxies using Calar Alto Legacy Integral Field Area survey (CALIFA) Data Release 2 (DR2) spectra. The position of the centre of a galaxy (coordinates on the plate) was also taken from the CALIFA DR2. The galaxy inclination, the position angle of the major axis, and the optical radius were determined from the analysis of the surface brightnesses in the Sloan Digital Sky Survey (SDSS) g and r bands of the photometric maps of SDSS Data Release 9. We explore the global azimuthal abundance asymmetry in the discs of the CALIFA galaxies and the presence of a break in the radial oxygen abundance distribution. We found that there is no significant global azimuthal asymmetry for our sample of galaxies, i.e. the asymmetry is small, usually lower than 0.05 dex. The scatter in oxygen abundances around the abundance gradient has a comparable value, ≲0.05 dex. A significant (possibly dominant) fraction of the asymmetry can be attributed to the uncertainties in the geometrical parameters of these galaxies. There is evidence for a flattening of the radial abundance gradient in the central part of 18 galaxies. We also estimated the geometric parameters (coordinates of the centre, the galaxy inclination and the position angle of the major axis) of our galaxies from the analysis of the abundance map. The photometry-map-based and the abundance-map-based geometrical parameters are relatively close to each other for the majority of the galaxies but the discrepancy is large for a few galaxies with a flat radial abundance gradient.

  18. Multicolor surface photometry of powerful radio galaxies

    SciTech Connect

    Smith, E.P.

    1988-01-01

    CCD images of 72 powerful radio galaxies have been obtained with the KPNO 2.1m, 4m and CTIO 4m telescopes utilizing B, V, and R filters to study the colors and other photometric properties of these large systems. The GASP software package was used for the data reduction and detailed 2-d surface photometry. In addition, image modeling techniques were employed to investigate the contributions to galaxy properties by point-like nuclear sources seen in some of these galaxies. It was found that powerful radio galaxies show a much higher frequency than normal bright ellipticals of having optical morphologies which deviate from elliptical symmetry. Approximately 50% of the sample exhibit non-elliptically symmetric isophotes. These prominent distortions are present at surface brightness levels of {le} 25 V mag/(arc sec){sup 2}. In addition, a large fraction ({approximately}50%) of the remaining radio galaxies without the aforementioned morphological peculiarities have large isophotal twists ({Delta}P.A. {ge} 10{degree}) or ellipticity gradients. Significantly {approximately}50% of the galaxies with strong optical emission lines in their spectra display optically peculiar structures very similar to those found by Toomre and Toomre (1972) in their simulations of interacting disk galaxies. The galaxies with weak emission lines in their spectra are less frequently ({approximately}10%) distorted from elliptical shape. Those that are exhibit features like isophote twists, double nuclei and close companion galaxies embedded in the radio galaxy optical isophotes. The (B-V) colors of many of the powerful radio galaxies with strong emission lines are blue relative to normal giant ellipticals at the same redshift.

  19. ENVIRONMENTALLY DRIVEN GLOBAL EVOLUTION OF GALAXIES

    SciTech Connect

    Cen Renyue

    2011-11-10

    Utilizing high-resolution large-scale galaxy formation simulations of the standard cold dark matter model, we examine global trends in the evolution of galaxies due to gravitational shock heating by collapse of large halos and large-scale structure. We find two major global trends. (1) The mean specific star formation rate (sSFR) at a given galaxy mass is a monotonically increasing function with increasing redshift. (2) The mean sSFR at a given redshift is a monotonically increasing function of decreasing galaxy mass that steepens with decreasing redshift. The general dimming trend with time merely reflects the general decline of gas inflow rate with increasing time. The differential evolution of galaxies of different masses with redshift is a result of gravitational shock heating of gas due to formation of large halos (groups and clusters) and large-scale structure that moves a progressively larger fraction of galaxies and their satellites into environments where gas has too high an entropy to cool to continue feeding resident galaxies. Overdense regions where larger halos are preferentially located begin to be heated earlier and have higher temperatures than lower density regions at any given time, causing sSFR of larger galaxies to fall below the general dimming trend at higher redshift than less massive galaxies and galaxies with high sSFR to gradually shift to lower density environments at lower redshift. We find that several noted cosmic downsizing phenomena are different manifestations of these general trends. We also find that the great migration of galaxies from blue cloud to red sequence as well as color-density relation, among others, may arise naturally in this picture.

  20. Parametrizing the stellar haloes of galaxies

    NASA Astrophysics Data System (ADS)

    D'Souza, Richard; Kauffman, Guinevere; Wang, Jing; Vegetti, Simona

    2014-09-01

    We study the stellar haloes of galaxies out to 70-100 kpc as a function of stellar mass and galaxy type by stacking aligned r- and g-band images from a sample of 45 508 galaxies from Sloan Digital Sky Survey Data Release 9 in the redshift range 0.06 ≤ z ≤ 0.1 and in the mass range 1010.0 M⊙ < M* < 1011.4 M⊙. We derive surface brightness profiles to a depth of almost μr ˜ 32 mag arcsec-2. We find that the ellipticity of the stellar halo is a function of galaxy stellar mass and that the haloes of high-concentration galaxies are more elliptical than those of low-concentration galaxies. Where the g - r colour of the stellar halo can be measured, we find that the stellar light is always bluer than in the main galaxy. The colour of the stellar halo is redder for more massive galaxies. We further demonstrate that the full two-dimensional surface intensity distribution of our galaxy stacks can only be fit through multicomponent Sérsic models. Using the fraction of light in the outer component of the models as a proxy for the fraction of accreted stellar light, we show that this fraction is a function of stellar mass and galaxy type. The fraction of accreted stellar light rises from 30 to 70 per cent and from 2 to 25 per cent for high- and low-concentration galaxies, respectively, over the mass range 1010.0-1011.4 M⊙.

  1. GALAXIES IN THE YOUNG UNIVERSE [left

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This image of a small region of the constellation Sculptor, taken with a ground-based photographic sky survey camera, illustrates the extremely small angular size of a distant galaxy cluster in the night sky. Though this picture encompasses a piece of the sky about the width of the bowl of the Big Dipper, the cluster is so far away it fills a sky area only 1/10th the diameter of the Full Moon. The cluster members are not visible because they are so much fainter than foreground stars. [center] A NASA Hubble Space Telescope (HST) image of the farthest cluster of galaxies in the universe, located at a distance of 12 billion light-years. Because the light from these remote galaxies has taken 12 billion years to reach us, this image is a remarkable glimpse of the primeval universe, at it looked about two billion years after the Big Bang. The cluster contains 14 galaxies, the other objects are largely foreground galaxies. The galaxy cluster lies in front of quasar Q0000-263 in the constellation Sculptor. Presumably the brilliant core of an active galaxy, the quasar provides a beacon for searching for primordial galaxy clusters. The image is the full field view of the Wide Field and Planetary Camera-2, taken on September 6, 1994. The 4.7-hour exposure reveals objects down to 28.5 magnitude. [right] This enlargement shows one of the farthest normal galaxies yet detected, (blob at center right) at a distance of 12 billion light-years (redshift of z=3.330). The galaxy lies 300 million light-years in front of the quasar Q0000-263 (z=4.11, large white blob and spike on left side of frame) and was detected because it absorbs some light from the quasar. The galaxy's spectrum reveals that vigorous star formation is taking place. Credit: Duccio Macchetto (ESA/STScI), Mauro Giavalisco (STScI), and NASA

  2. Galaxies and Genes: How to Model Interacting Galaxies

    NASA Astrophysics Data System (ADS)

    Harfst, Stefan; Gerds, Christoph; Theis, Christian

    The observed features of interacting galaxies (e.g. tidal tails) provide a lot of information on the dynamics of such a system. Dark matter halos, for example, play an important rôle for the dynamical evolution of galaxies so that they should obviously have perceptible effects on the interaction. Unfortunately, the problem of modeling interacting galaxies from observational data suffers from an extended parameter space. Recently it has been shown that a Genetic Algorithm (GA) can be applied to this problem (Wahde 1998; Theis 1999). The general idea of a GA is to mimic natural evolution: A population of individuals which correspond to single points in parameter space (i.e. single N-body simulations) is evolved according to the principle of ``survival of the fittest''. The fitness is calculated by a comparison of observed intensities with the numerical model. New populations are created by ``sexual reproduction'' whereas individuals with a higher fitness reproduce themselves more often. This breeding process is repeated until a sufficient fit is achieved. Until now the GA has been applied to a chosen reference model (i.e. a preferred set of parameters) as in the case of NGC 4449 (Theis 1999). An automatic procedure for the selection of a suitable set of parameters on the basis of observational data is highly desirable. A first step in order to achieve this goal is an ``idealized'' observation which can be computed from a self-consistent N-body simulation. By this not only the parameters of the interaction are in control but one can also adjust the quality of the observational data allowing to check the general applicability of the GA to observational data.

  3. The coevolution of supermassive black holes and galaxies at z [ge] 1: Galaxy morphology, gravitational lensing, and quasar host galaxies

    NASA Astrophysics Data System (ADS)

    Peng, Chien Yi

    Supermassive black holes are ubiquitous in nearby galaxies. The strong correlations between black hole masses and their host galaxy bulges suggest they are intimately connected. To understand their coevolution we study quasars where both quantities can be probed out to high redshifts. To overcome the well known obstacles in studying quasar hosts at z > 1, we study 28 gravitationally lensed host galaxies, located at 1 <= z s <= 4.5, which are stretched out into arcs and Einstein rings. Applying two new algorithms, GALFIT and LENSFIT, to images obtained in the HST NICMOS F160W filter, we clearly resolve the host galaxies. Many have evidences of multiple components, interaction, offset galaxy components, or bulges and disks. The host galaxies at z > 1 are mostly brighter than [Special characters omitted.] galaxies today, but would become fainter than [Special characters omitted.] today after accounting for passive evolution. Furthermore, they have modest sizes ( R e < 6 kpc), and the profiles of the hosts are roughly equally split between bulge dominated and disk dominated. Due to these evidences, the quasar hosts may not be fully evolved early-type galaxies undergoing passive evolution if they evolve into [Special characters omitted.] galaxies today. Moreover, comparing the hosts of radio-loud quasars and radio-quiet quasars, there is not a significant difference in their luminosities. Finally, we study the bulge luminosities ( L bulge ) and black hole masses ( [Special characters omitted.] ) at z [approximate] 1 and z [approximate] 2, finding that the hosts at z > 2 already lie near the same L bulge vs. [Special characters omitted.] relationship as for z = 0 normal galaxies . Accounting for an early-type galaxy evolution, they would fade below the relationship at present day. Therefore, the hosts at z [approximate] 2 must undergo a stellar mass buildup by a factor of 3-5, if they evolve into early-type galaxies. This implies their [Special characters omitted

  4. On the tidal disruption of dwarf spheroidal galaxies around the galaxy

    NASA Astrophysics Data System (ADS)

    Oh, K. S.; Lin, D. N. C.; Aarseth, S. J.

    1995-03-01

    The Milky Way induces a strong tidal perturbation on its satellite dwarf spheroidal galaxies. We present numerical simulations of tidal interactions between these low-density dwarf spheroidal galaxies and the Milky Way. Our results indicate that dwarf spheroidal galaxies with limiting radius much larger than the theoretical tidal radius are unstable and likely to be tidally disrupted on a Hubble-time. However, dwarf spheroidal galaxies can survive over a Hubble time if their limiting radii are less than twice their tidal radii at perigalacticon. In a galaxy which is undergoing tidal disruption, (1) the projected surface density is flattened in the galaxy's orbital plane and follows a power-law distribution from the galaxy's center, (2) the velocity dispersion is sustained at the current virial equilibrium value, and (3) the central density ofthe residual remnant is maintained even after most of the initial mass is lost. Beyond the tidal radius, the escapers have a radial velocity gradient along the azimuthal direction of the galaxy's motion. When compared with observational data, our theoretical results are consistent with the scenarios that (1) some dwarf spheroidal galaxies contain dark matter, and (2) some dwarf spheroidal galaxies may be part of the debris that was tidally torn from the Large Magellanic Cloud (LMC) by the Galaxy.

  5. Very thin disc galaxies in the SDSS catalogue of edge-on galaxies

    NASA Astrophysics Data System (ADS)

    Bizyaev, D. V.; Kautsch, S. J.; Sotnikova, N. Ya.; Reshetnikov, V. P.; Mosenkov, A. V.

    2017-03-01

    We study the properties of galaxies with very thin discs (VTDs) using a sample of 85 objects whose stellar disc radial-to-vertical scale ratio determined from photometric decomposition, exceeds 9. We present evidences of similarities between the VTD galaxies and low surface brightness (LSB) disc galaxies, and conclude that both small and giant LSB galaxies may reveal themselves as VTD, edge-on galaxies. Our VTD galaxies are mostly bulgeless, and those with large radial scalelength tend to have redder colours. We performed spectral observations of 22 VTD galaxies with the Dual Imaging Spectrograph on the 3.5 m telescope at the Apache Point Observatory. The spectra with good resolution (R ∼ 5000) allow us to determine the distance and the ionized gas rotation curve maximum for the galaxies. Our VTD galaxies have low dust content, in contrast to regular disc galaxies. Apparently, VTD galaxies reside in specific cosmological low-density environments and tend to have less connection with filaments. Comparing a toy model that assumes marginally low star formation in galactic discs with obtained gas kinematics data, we conclude that there is a threshold central surface density of about 88 M⊙ pc-2, which we observe in the case of very thin, rotationally supported galactic discs.

  6. QUASAR-GALAXY CLUSTERING THROUGH PROJECTED GALAXY COUNTS AT z = 0.6-1.2

    SciTech Connect

    Zhang Shaohua; Zhou Hongyan; Wang Tinggui; Wang Huiyuan E-mail: twang@ustc.edu.cn

    2013-08-20

    We investigate the spatial clustering of galaxies around quasars at z = 0.6-1.2 using photometric data from Sloan Digital Sky Survey Stripe 82. The quasar and galaxy cross-correlation functions are measured through the projected galaxy number density n(r{sub p} ) on scales of 0.05 < r{sub p} < 20 h {sup -1} Mpc around quasars for a sample of 2300 quasars from Schneider et al. We detect strong clustering signals at all redshifts and find that the clustering amplitude increases significantly with redshift. We examine the dependence of quasar-galaxy clustering on quasar and galaxy properties and find that the clustering amplitude is significantly larger for quasars with more massive black holes or with bluer colors, while there is no dependence on quasar luminosity. We also show that quasars have a stronger correlation amplitude with blue galaxies than with red galaxies. We finally discuss the implications of our findings.

  7. The Local Dwarf GALAXIES:BUILDING Blocks of Massive Ones? I.THE Fornax Dwarf Galaxy

    NASA Astrophysics Data System (ADS)

    Nykytyuk, T. V.

    A chemical evolution of the Local Group dwarf galaxy Fornax is considered in the framework of the merger scenario. We suppose a galactic stellar halo to be formed as separate fragments which then merge; thus, we can calculate the set of such the fragments to reproduce the observed metallicity distribution function of a galaxy. Accordingly, if dwarf galaxies were such the systems, which, once merged, have formed massive galaxies, we need to obtain only one fragment to reproduce the observed metallicity distribution function of a dwarf galaxy. To test this assumption, the stellar metallicity distribution functions of Fornax was calculated in the framework of the merger scenario. The more than one fragment was obtained for galaxy under consideration; thus, it is unlikely the systems similar to Fornax to be building blocks of massive galaxies.

  8. A Curious Pair of Galaxies

    NASA Astrophysics Data System (ADS)

    2009-03-01

    The ESO Very Large Telescope has taken the best image ever of a strange and chaotic duo of interwoven galaxies. The images also contain some surprises -- interlopers both far and near. ESO PR Photo 11a/09 A Curious Pair of Galaxies ESO PR Video 11a/09 Arp 261 zoom in ESO PR Video 11b/09 Pan over Arp 261 Sometimes objects in the sky that appear strange, or different from normal, have a story to tell and prove scientifically very rewarding. This was the idea behind Halton Arp's catalogue of Peculiar Galaxies that appeared in the 1960s. One of the oddballs listed there is Arp 261, which has now been imaged in more detail than ever before using the FORS2 instrument on ESO's Very Large Telescope. The image proves to contain several surprises. Arp 261 lies about 70 million light-years distant in the constellation of Libra, the Scales. Its chaotic and very unusual structure is created by the interaction of two galaxies that are engaged in a slow motion, but highly disruptive close encounter. Although individual stars are very unlikely to collide in such an event, the huge clouds of gas and dust certainly do crash into each other at high speed, leading to the formation of bright new clusters of very hot stars that are clearly seen in the picture. The paths of the existing stars in the galaxies are also dramatically disrupted, creating the faint swirls extending to the upper left and lower right of the image. Both interacting galaxies were probably dwarfs not unlike the Magellanic Clouds orbiting our own galaxy. The images used to create this picture were not actually taken to study the interacting galaxies at all, but to investigate the properties of the inconspicuous object just to the right of the brightest part of Arp 261 and close to the centre of the image. This is an unusual exploding star, called SN 1995N, that is thought to be the result of the final collapse of a massive star at the end of its life, a so-called core collapse supernova. SN 1995N is unusual because

  9. It takes a supercluster to raise a galaxy

    NASA Astrophysics Data System (ADS)

    Lietzen, Heidi; Einasto, Maret

    2016-10-01

    The properties of galaxies depend on their environment: red, passive elliptical galaxies are usually located in denser environments than blue, star-forming spiral galaxies. This difference in galaxy populations can be detected at all scales from groups of galaxies to superclusters. In this paper, we will discuss the effect of the large-scale environment on galaxies. Our results suggest that galaxies in superclusters are more likely to be passive than galaxies in voids even when they belong to groups with the same richness. In addition, the galaxies in superclusters are also affected by the morphology of the supercluster: filament-type superclusters contain relatively more red, passive galaxies than spider-type superclusters. These results suggest that the evolution of a galaxy is not determined by its local environment alone, but the large-scale environment also affects.

  10. Searching for evidence of energetic feedback in distant galaxies: a galaxy wide outflow in a z ~ 2 ultraluminous infrared galaxy

    NASA Astrophysics Data System (ADS)

    Alexander, D. M.; Swinbank, A. M.; Smail, Ian; McDermid, R.; Nesvadba, N. P. H.

    2010-03-01

    Leading models of galaxy formation require large-scale energetic outflows to regulate the growth of distant galaxies and their central black holes. However, current observational support for this hypothesis at high redshift is mostly limited to rare z > 2 radio galaxies. Here, we present Gemini-North Near-Infrared Field Spectrometer (NIFS) observations of the [OIII]λ5007 emission from a z ~ 2 ultraluminous infrared galaxy (ULIRG; LIR > 1012Lsolar) with an optically identified active galactic nuclei (AGN). The spatial extent (~4-8 kpc) of the high velocity and broad [OIII] emission is consistent with that found in z > 2 radio galaxies, indicating the presence of a large-scale energetic outflow in a galaxy population potentially orders of magnitude more common than distant radio galaxies. The low radio luminosity of this system indicates that radio-bright jets are unlikely to be responsible for driving the outflow. However, the estimated energy input required to produce the large-scale outflow signatures (of the order of ~1059 erg over ~30 Myr) could be delivered by a wind radiatively driven by the AGN and/or supernovae winds from intense star formation. The energy injection required to drive the outflow is comparable to the estimated binding energy of the galaxy spheroid, suggesting that it can have a significant impact on the evolution of the galaxy. We argue that the outflow observed in this system is likely to be comparatively typical of the high-redshift ULIRG population and discuss the implications of these observations for galaxy formation models.

  11. Predicting Galaxy Star Formation Rates via the Co-evolution of Galaxies and Halos

    SciTech Connect

    Watson, Douglas F.; Hearin, Andrew P.; Berlind, Andreas A.; Becker, Matthew R.; Behroozi, Peter S.; Skibba, Ramin A.; Reyes, Reinabelle; Zentner, Andrew R.

    2014-03-06

    In this paper, we test the age matching hypothesis that the star formation rate (SFR) of a galaxy is determined by its dark matter halo formation history, and as such, that more quiescent galaxies reside in older halos. This simple model has been remarkably successful at predicting color-based galaxy statistics at low redshift as measured in the Sloan Digital Sky Survey (SDSS). To further test this method with observations, we present new SDSS measurements of the galaxy two-point correlation function and galaxy-galaxy lensing as a function of stellar mass and SFR, separated into quenched and star forming galaxy samples. We find that our age matching model is in excellent agreement with these new measurements. We also employ a galaxy group finder and show that our model is able to predict: (1) the relative SFRs of central and satellite galaxies, (2) the SFR-dependence of the radial distribution of satellite galaxy populations within galaxy groups, rich groups, and clusters and their surrounding larger scale environments, and (3) the interesting feature that the satellite quenched fraction as a function of projected radial distance from the central galaxy exhibits an approx r-.15 slope, independent of environment. The accurate prediction for the spatial distribution of satellites is intriguing given the fact that we do not explicitly model satellite-specific processes after infall, and that in our model the virial radius does not mark a special transition region in the evolution of a satellite, contrary to most galaxy evolution models. The success of the model suggests that present-day galaxy SFR is strongly correlated with halo mass assembly history.

  12. The HIX Galaxy Survey: The Most HI Rich Galaxies In The Southern Hemisphere

    NASA Astrophysics Data System (ADS)

    Lutz, Katharina

    2016-10-01

    When comparing the gas content of galaxies with their current star formation rate, it has been found that the gas consumption time scale is much smaller than the age of galaxies. In addition, the metallicity within galaxies is much smaller than expected from closed box modelling of galaxies. These discrepancies suggest that galaxies must replenish their gas reservoirs by accretion of metal-poor gas from the intergalactic medium.In order to investigate this process of gas accretion in more detail we target local galaxies that host an atomic hydrogen (HI) disc at least 2.5 times more massive than expected from their optical properties using scaling relations. For this sample of galaxies, we have been collecting a multiwavelength data set consisting of deep ATCA HI interferometry, ANU SSO 2.3m WiFeS optical integral field spectroscopy and publicly available photometry from GALEX (ultraviolet), WISE and 2MASS (both infrared).We find that these galaxies are normal star-forming spiral galaxies. However, their specific angular momentum is higher than in control galaxies, which allows these galaxies to support a massive HI disc.With the help of the HI interferometry and the optical IFU spectra, we are searching for signs of recent gas accretion. These signs may include among other things non-circular motion of HI, warped or lopsided HI discs, both of which can be identified through tilted-ring modelling of the HI disc or inhomogeneities in the IFU-based metallicity maps.In my talk I will first compare the HI rich galaxies to the control sample and the general galaxy population. I will then move on to the most HI massive galaxy in our sample and discuss its HI kinematics and its gas-phase oxygen abundance distribution in more detail. To conclude I will give an outlook on the more detailed HI kinematics of the remaining HI rich sample.

  13. Quasars: Active nuclei of young galaxies

    NASA Technical Reports Server (NTRS)

    Komberg, B. V.

    1980-01-01

    The hypothetical properties of 'young' galaxies and possible methods of observing them are discussed. It is proposed that star formation first takes place in the central regions of protogalaxies which may appear as quasar-like objects. An evolutionary scheme is outlined in which the radio quasars are transformed in time into the nuclei of radio galaxies.

  14. Galactic magnetic fields and hierarchical galaxy formation

    NASA Astrophysics Data System (ADS)

    Rodrigues, L. F. S.; Shukurov, A.; Fletcher, A.; Baugh, C. M.

    2015-07-01

    A framework is introduced for coupling the evolution of galactic magnetic fields sustained by the mean-field dynamo with the formation and evolution of galaxies in cold dark matter cosmology. Estimates of the steady-state strength of the large-scale and turbulent magnetic fields from mean-field and fluctuation dynamo models are used together with galaxy properties predicted by semi-analytic models of galaxy formation for a population of spiral galaxies. We find that the field strength is mostly controlled by the evolving gas content of the galaxies. Thus, because of the differences in the implementation of the star formation law, feedback from supernovae and ram-pressure stripping, each of the galaxy formation models considered predicts a distribution of field strengths with unique features. The most prominent of them is the difference in typical magnetic field strengths obtained for the satellite and central galaxy populations as well as the typical strength of the large-scale magnetic field in galaxies of different mass.

  15. Are dwarf galaxies killed by reionization?

    NASA Astrophysics Data System (ADS)

    Arraki, Kenza S.; Klypin, Anatoly A.; Trujillo-Gomez, Sebastian; Ceverino, Daniel; Primack, Joel R.

    2015-01-01

    The ΛCDM cosmological model has been very successful at predicting the large-scale structure of the Universe. However, for dwarf galaxies, simulations have failed to reproduce the number and structure of satellite and isolated dwarf galaxies. The inclusion of baryons in simulations has been found to alleviate the small-scale issues within ΛCDM, such as the core-cusp, missing satellites, and too-big-to-fail problems. To address these concerns, we analyzed state-of-the-art, high-resolution hydrodynamical simulations of galaxy formation created using the ART code. These simulations model relevant physical processes of star formation and stellar feedback including stellar winds, supernovae feedback, and radiation pressure. We examined 1,000 galaxies from the VELA suite of simulations and find steep velocity functions for satellite galaxies and a large spread in the stellar halo mass relation for a given virial mass or maximum circular velocity. The star formation histories of these galaxies agree with recent observations in that they have an initial burst and then are roughly constant. Reionization does not completely suppress star formation in the majority of these galaxies and only acts to decrease the star formation rate. 73% of galaxies with virial masses greater than 108 M⊙ are luminous, which contributes to a larger abundance of these low mass objects than are observed. Analysis of these kinds of simulations can shed light on the role of baryons in the overabundance and structure problems.

  16. Gravitational Instability of a Nonrotating Galaxy

    SciTech Connect

    Chao, Alexander W.; /SLAC

    2005-12-14

    Gravitational instability of the distribution of stars in a galaxy is a well-known phenomenon in astrophysics. This work is a preliminary attempt to analyze this phenomenon using the standard tools developed in accelerator physics. By applying this analysis, it is found that a stable nonrotating galaxy would become unstable if its size exceeds a certain limit that depends on its mass density.

  17. Gravitational Instability of a Nonrotating Galaxy

    SciTech Connect

    Chao, Alex; /SLAC

    2009-06-23

    Gravitational instability of the distribution of stars in a galaxy is a well-known phenomenon in astrophysics. This report is an attempt to analyze this phenomenon by applying standard tools developed in accelerator physics. It is found that a nonrotating galaxy would become unstable if its size exceeds a certain limit that depends on its mass density and its velocity spread.

  18. Host Galaxy Identification for Supernova Surveys

    NASA Astrophysics Data System (ADS)

    Gupta, Ravi R.; Kuhlmann, Steve; Kovacs, Eve; Spinka, Harold; Kessler, Richard; Goldstein, Daniel A.; Liotine, Camille; Pomian, Katarzyna; D'Andrea, Chris B.; Sullivan, Mark; Carretero, Jorge; Castander, Francisco J.; Nichol, Robert C.; Finley, David A.; Fischer, John A.; Foley, Ryan J.; Kim, Alex G.; Papadopoulos, Andreas; Sako, Masao; Scolnic, Daniel M.; Smith, Mathew; Tucker, Brad E.; Uddin, Syed; Wolf, Rachel C.; Yuan, Fang; Abbott, Tim M. C.; Abdalla, Filipe B.; Benoit-Lévy, Aurélien; Bertin, Emmanuel; Brooks, David; Carnero Rosell, Aurelio; Carrasco Kind, Matias; Cunha, Carlos E.; da Costa, Luiz N.; Desai, Shantanu; Doel, Peter; Eifler, Tim F.; Evrard, August E.; Flaugher, Brenna; Fosalba, Pablo; Gaztañaga, Enrique; Gruen, Daniel; Gruendl, Robert; James, David J.; Kuehn, Kyler; Kuropatkin, Nikolay; Maia, Marcio A. G.; Marshall, Jennifer L.; Miquel, Ramon; Plazas, Andrés A.; Romer, A. Kathy; Sánchez, Eusebio; Schubnell, Michael; Sevilla-Noarbe, Ignacio; Sobreira, Flávia; Suchyta, Eric; Swanson, Molly E. C.; Tarle, Gregory; Walker, Alistair R.; Wester, William

    2016-12-01

    Host galaxy identification is a crucial step for modern supernova (SN) surveys such as the Dark Energy Survey and the Large Synoptic Survey Telescope, which will discover SNe by the thousands. Spectroscopic resources are limited, and so in the absence of real-time SN spectra these surveys must rely on host galaxy spectra to obtain accurate redshifts for the Hubble diagram and to improve photometric classification of SNe. In addition, SN luminosities are known to correlate with host-galaxy properties. Therefore, reliable identification of host galaxies is essential for cosmology and SN science. We simulate SN events and their locations within their host galaxies to develop and test methods for matching SNe to their hosts. We use both real and simulated galaxy catalog data from the Advanced Camera for Surveys General Catalog and MICECATv2.0, respectively. We also incorporate “hostless” SNe residing in undetected faint hosts into our analysis, with an assumed hostless rate of 5%. Our fully automated algorithm is run on catalog data and matches SNe to their hosts with 91% accuracy. We find that including a machine learning component, run after the initial matching algorithm, improves the accuracy (purity) of the matching to 97% with a 2% cost in efficiency (true positive rate). Although the exact results are dependent on the details of the survey and the galaxy catalogs used, the method of identifying host galaxies we outline here can be applied to any transient survey.

  19. The early ISM and galaxy formation

    NASA Technical Reports Server (NTRS)

    White, Simon D. M.

    1990-01-01

    Current ideas about galaxy formation are reviewed, with particular attention to when and how it occurred, and what it might have looked like. It is argued that galaxy formation is more recent than originally predicted. Suggestions are presented as to how current observations of distant objects may be interpreted within the cold dark matter theory for the origin of structure.

  20. The Formation of Galaxies and Clusters.

    ERIC Educational Resources Information Center

    Gregory, Stephen; Morrison, Nancy D.

    1985-01-01

    Summarizes recent research on the formation of galaxies and clusters, focusing on research examining how the materials in galaxies seen today separated from the universal expansion and collapsed into stable bodies. A list of six nontechnical books and articles for readers with less background is included. (JN)

  1. The AGN Luminosity Fraction in Galaxy Mergers

    NASA Astrophysics Data System (ADS)

    Dietrich, Jeremy; Weiner, Aaron; Ashby, Matthew; Martinez-Galarza, Juan Rafael; Smith, Howard Alan

    2017-01-01

    Galaxy mergers are key events in galaxy evolution, generally triggering massive starbursts and AGNs. However, in these chaotic systems, it is not yet known what fraction each of these two mechanisms contributes to the total luminosity. Here we measure and model spectral energy distributions (SEDs) using the Code for Investigating Galaxy Emission (CIGALE) in up to 33 broad bands from the UV to the far-IR for 23 IR-luminous galaxies to estimate the fraction of the bolometric IR luminosity that can be attributed to the AGN. The galaxies are split nearly evenly into two subsamples: late-stage mergers, found in the IRAS Revised Bright Galaxy Sample or Faint Source Catalog, and early-stage mergers found in the Spitzer Interacting Galaxy Sample. We find that the AGN contribution to the total IR luminosity varies greatly from system to system, from 0% up to ~90%, but is substantially greater in the later-stage and brighter mergers. This is consistent with what is known about galaxy evolution and the triggering of AGNs.The SAO REU program is funded in part by the National Science Foundation REU and Department of Defense ASSURE programs under NSF Grant no. 1262851, and by the Smithsonian Institution.

  2. AO Observations of Three Powerful Radio Galaxies

    SciTech Connect

    de Vries, W; van Bruegel, W; Quirrenbach, A

    2002-08-01

    The host galaxies of powerful radio sources are ideal laboratories to study active galactic nuclei (AGN). The galaxies themselves are among the most massive systems in the universe, and are believed to harbor supermassive black holes (SMBH). If large galaxies are formed in a hierarchical way by multiple merger events, radio galaxies at low redshift represent the end-products of this process. However, it is not clear why some of these massive ellipticals have associated radio emission, while others do not. Both are thought to contain SMBHs, with masses proportional to the total luminous mass in the bulge. It either implies every SMBH has recurrent radio-loud phases, and the radio-quiet galaxies happen to be in the ''low'' state, or that the radio galaxy nuclei are physically different from radio-quiet ones, i.e. by having a more massive SMBH for a given bulge mass. Here we present the first results from our adaptive optics imaging and spectroscopy pilot program on three nearby powerful radio galaxies. Initiating a larger, more systematic AO survey of radio galaxies (preferentially with Laser Guide Star equipped AO systems) has the potential of furthering our understanding of the physical properties of radio sources, their triggering, and their subsequent evolution.

  3. Host Galaxy Identification for Supernova Surveys

    SciTech Connect

    Gupta, Ravi R.; Kuhlmann, Steve; Kovacs, Eve; Spinka, Harold; Kessler, Richard; Goldstein, Daniel A.; Liotine, Camille; Pomian, Katarzyna; D’Andrea, Chris B.; Sullivan, Mark; Carretero, Jorge; Castander, Francisco J.; Nichol, Robert C.; Finley, David A.; Fischer, John A.; Foley, Ryan J.; Kim, Alex G.; Papadopoulos, Andreas; Sako, Masao; Scolnic, Daniel M.; Smith, Mathew; Tucker, Brad E.; Uddin, Syed; Wolf, Rachel C.; Yuan, Fang; Abbott, Tim M. C.; Abdalla, Filipe B.; Benoit-Lévy, Aurélien; Bertin, Emmanuel; Brooks, David; Rosell, Aurelio Carnero; Kind, Matias Carrasco; Cunha, Carlos E.; Costa, Luiz N. da; Desai, Shantanu; Doel, Peter; Eifler, Tim F.; Evrard, August E.; Flaugher, Brenna; Fosalba, Pablo; Gaztañaga, Enrique; Gruen, Daniel; Gruendl, Robert; James, David J.; Kuehn, Kyler; Kuropatkin, Nikolay; Maia, Marcio A. G.; Marshall, Jennifer L.; Miquel, Ramon; Plazas, Andrés A.; Romer, A. Kathy; Sánchez, Eusebio; Schubnell, Michael; Sevilla-Noarbe, Ignacio; Sobreira, Flávia; Suchyta, Eric; Swanson, Molly E. C.; Tarle, Gregory; Walker, Alistair R.; Wester, William

    2016-11-08

    Host galaxy identification is a crucial step for modern supernova (SN) surveys such as the Dark Energy Survey (DES) and the Large Synoptic Survey Telescope (LSST), which will discover SNe by the thousands. Spectroscopic resources are limited, so in the absence of real-time SN spectra these surveys must rely on host galaxy spectra to obtain accurate redshifts for the Hubble diagram and to improve photometric classification of SNe. In addition, SN luminosities are known to correlate with host-galaxy properties. Therefore, reliable identification of host galaxies is essential for cosmology and SN science. We simulate SN events and their locations within their host galaxies to develop and test methods for matching SNe to their hosts. We use both real and simulated galaxy catalog data from the Advanced Camera for Surveys General Catalog and MICECATv2.0, respectively. We also incorporate "hostless" SNe residing in undetected faint hosts into our analysis, with an assumed hostless rate of 5%. Our fully automated algorithm is run on catalog data and matches SNe to their hosts with 91% accuracy. We find that including a machine learning component, run after the initial matching algorithm, improves the accuracy (purity) of the matching to 97% with a 2% cost in efficiency (true positive rate). Although the exact results are dependent on the details of the survey and the galaxy catalogs used, the method of identifying host galaxies we outline here can be applied to any transient survey.

  4. Young Galaxy's Magnetism Surprises Astronomers

    NASA Astrophysics Data System (ADS)

    2008-10-01

    Astronomers have made the first direct measurement of the magnetic field in a young, distant galaxy, and the result is a big surprise. Looking at a faraway protogalaxy seen as it was 6.5 billion years ago, the scientists measured a magnetic field at least 10 times stronger than that of our own Milky Way. They had expected just the opposite. The GBT Robert C. Byrd Green Bank Telescope CREDIT: NRAO/AUI/NSF The scientists made the discovery using the National Science Foundation's ultra-sensitive Robert C. Byrd Green Bank Telescope (GBT) in West Virginia. "This new measurement indicates that magnetic fields may play a more important role in the formation and evolution of galaxies than we have realized," said Arthur Wolfe, of the University of California-San Diego (UCSD). At its great distance, the protogalaxy is seen as it was when the Universe was about half its current age. According to the leading theory, cosmic magnetic fields are generated by the dynamos of rotating galaxies -- a process that would produce stronger fields with the passage of time. In this scenario, the magnetic fields should be weaker in the earlier Universe, not stronger. The new, direct magnetic-field measurement comes on the heels of a July report by Swiss and American astronomers who made indirect measurements that also implied strong magnetic fields in the early Universe. "Our results present a challenge to the dynamo model, but they do not rule it out," Wolfe said. There are other possible explanations for the strong magnetic field seen in the one protogalaxy Wolfe's team studied. "We may be seeing the field close to the central region of a massive galaxy, and we know such fields are stronger toward the centers of nearby galaxies. Also, the field we see may have been amplified by a shock wave caused by the collision of two galaxies," he said. The protogalaxy studied with the GBT, called DLA-3C286, consists of gas with little or no star formation occurring in it. The astronomers suspect that

  5. Old Galaxies in the Young Universe

    NASA Astrophysics Data System (ADS)

    2004-07-01

    Very Large Telescope Unravels New Population of Very Old Massive Galaxies [1] Summary Current theories of the formation of galaxies are based on the hierarchical merging of smaller entities into larger and larger structures, starting from about the size of a stellar globular cluster and ending with clusters of galaxies. According to this scenario, it is assumed that no massive galaxies existed in the young universe. However, this view may now have to be revised. Using the multi-mode FORS2 instrument on the Very Large Telescope at Paranal, a team of Italian astronomers [2] have identified four remote galaxies, several times more massive than the Milky Way galaxy, or as massive as the heaviest galaxies in the present-day universe. Those galaxies must have formed when the Universe was only about 2,000 million years old, that is some 12,000 million years ago. The newly discovered objects may be members of a population of old massive galaxies undetected until now. The existence of such systems shows that the build-up of massive elliptical galaxies was much faster in the early Universe than expected from current theory. PR Photo 21a/04: Small Part of the K20 Field Showing the z=1.9 Elliptical Galaxy (ACS/HST). PR Photo 21b/04: Averaged Spectrum of Old Galaxies (FORS2/VLT). Hierarchical merging Galaxies are like islands in the Universe, made of stars as well as dust and gas clouds. They come in different sizes and shapes. Astronomers generally distinguish between spiral galaxies - like our own Milky Way, NGC 1232 or the famous Andromeda galaxy - and elliptical galaxies, the latter mostly containing old stars and having very little dust or gas. Some galaxies are intermediate between spirals and ellipticals and are referred to as lenticular or spheroidal galaxies. Galaxies are not only distinct in shape, they also vary in size: some may be as "light" as a stellar globular cluster in our Milky Way (i.e. they contain about the equivalent of a few million Suns) while others

  6. Evolution of Galaxies in the Cosmic Web

    NASA Astrophysics Data System (ADS)

    Darvish Sarvestani, Behnam

    2015-12-01

    We study the effects of environment on the evolution of galaxies, with an emphasis on two different approaches towards the definition of environment: (1) environment defined based on the local surface density of galaxies and (2) environment defined based on the major components of the cosmic web; i.e., filaments, clusters and the field. In the first approach, surface density field is estimated using a variety of estimators and tested with simulations. Using the estimated surface densities assigned to galaxies, we observe a strong environmental dependence on the properties of galaxies (e.g., SFR, sSFR and the quiescent fraction) at z ≤ 1. We explore the fractional role of stellar mass and environment in quenching the star-formation. In the second approach, we use the Multi-scale Morphology Filter algorithm to disentangle the density field into its component. We apply this method to a sample of star-forming galaxies for a large-scale structure at z ˜0.84 in the HiZELS-COSMOS field. We show that the observed median SFR, stellar mass, sSFR, the mean SFR-mass relation and its scatter for star-forming galaxies do not strongly depend on the cosmic web. However, the fraction of Halpha star-forming galaxies varies with environment and is enhanced in filaments. Furthermore, we study the physical properties of a spectroscopic sample of star-forming galaxies in a large filament in the COSMOS field at z ˜0.53, with spectroscopic data taken with the Keck/DEIMOS spectrograph, and compare them with a control sample of field galaxies. We spectroscopically confirm the presence of a large galaxy filament (˜ 8 Mpc). We show that within the uncertainties, the ionization parameter, EW, EW versus sSFR relation, EW versus stellar mass relation, line-of-sight velocity dispersion, dynamical mass, and stellar-to-dynamical mass ratio are similar for filament and field star-forming galaxies. However, we show that on average, filament star-forming galaxies are more metal-enriched (˜ 0

  7. SUPERDENSE MASSIVE GALAXIES IN WINGS LOCAL CLUSTERS

    SciTech Connect

    Valentinuzzi, T.; D'Onofrio, M.; Fritz, J.; Poggianti, B. M.; Bettoni, D.; Fasano, G.; Moretti, A.; Omizzolo, A.; Varela, J.; Cava, A.; Couch, W. J.; Dressler, A.; Moles, M.; Kjaergaard, P.; Vanzella, E.

    2010-03-20

    Massive quiescent galaxies at z > 1 have been found to have small physical sizes, and hence to be superdense. Several mechanisms, including minor mergers, have been proposed for increasing galaxy sizes from high- to low-z. We search for superdense massive galaxies in the WIde-field Nearby Galaxy-cluster Survey (WINGS) of X-ray selected galaxy clusters at 0.04 < z < 0.07. We discover a significant population of superdense massive galaxies with masses and sizes comparable to those observed at high redshift. They approximately represent 22% of all cluster galaxies more massive than 3 x 10{sup 10} M{sub sun}, are mostly S0 galaxies, have a median effective radius (R{sub e} ) = 1.61 +- 0.29 kpc, a median Sersic index (n) = 3.0 +- 0.6, and very old stellar populations with a median mass-weighted age of 12.1 +- 1.3 Gyr. We calculate a number density of 2.9 x 10{sup -2} Mpc{sup -3} for superdense galaxies in local clusters, and a hard lower limit of 1.3 x 10{sup -5} Mpc{sup -3} in the whole comoving volume between z = 0.04 and z = 0.07. We find a relation between mass, effective radius, and luminosity-weighted age in our cluster galaxies, which can mimic the claimed evolution of the radius with redshift, if not properly taken into account. We compare our data with spectroscopic high-z surveys and find that-when stellar masses are considered-there is consistency with the local WINGS galaxy sizes out to z {approx} 2, while a discrepancy of a factor of 3 exists with the only spectroscopic z > 2 study. In contrast, there is strong evidence for a large evolution in radius for the most massive galaxies with M{sub *} > 4 x 10{sup 11} M{sub sun} compared to similarly massive galaxies in WINGS, i.e., the brightest cluster galaxies.

  8. Galaxy Pairwise Velocity Distributions on Nonlinear Scales

    NASA Astrophysics Data System (ADS)

    Diaferio, Antonaldo; Geller, Margaret J.

    1996-08-01

    The redshift-space correlation function ξ_s_ for projected galaxy separations <~ 1 h^-1^ Mpc can be expressed as the convolution of the real-space correlation function with the galaxy pairwise velocity distribution function (PVDF). An exponential PVDF yields the best fit to the ξ_s_ measured from galaxy samples of different redshift surveys. We show that this exponential PVDF is not merely a fitting function but arises from well-defined gravitational processes. Two ingredients conspire to yield a PVDF with a nearly exponential shape: (1) the number density n(σ) of systems with velocity dispersion σ and (2) the unrelaxed dynamical state of most galaxy systems. The former ingredient determines the exponential tail, and the latter determines the central peak of the PVDF. We examine a third issue: the transfer of orbital kinetic energy to galaxy internal degrees of freedom. Although this effect is of secondary importance for the PVDF exponential shape, it is detectable in galaxy groups, which indicates that galaxy merging is an ongoing process in the present universe. We compare the ξ_s_ measured on nonlinear scales from galaxy samples of the Center for Astrophysics redshift surveys with different models of the PVDF convolved with the measured real-space correlation function. This preliminary comparison indicates that the agreement between model and observations depends strongly on both the underlying cosmological model and the internal dynamics of galaxy systems. Neither parameter dominates. Moreover, the agreement depends sensitively on the accuracy of the galaxy position and velocity measurements. We expect that ξ_s_ will pose further constraints on the model of the universe and will improve the knowledge of the dynamics of galaxy systems on very small scales if we improve (1) the galaxy coordinate determination and (2) the measurement of relative velocities of galaxies with small projected separation. In fact, the redshift-space correlation function

  9. Stellar Evolution in Starburst Galaxies

    NASA Technical Reports Server (NTRS)

    Conti, Peter

    2001-01-01

    The main thrust of the program was to obtain UV spectroscopy of a number of massive and hot luminous (OB type) stars in the nearby galaxy called the Small Magellanic Cloud (SMC). The objective was to analyze their atmospheres and winds so as to determine the effect of the lower abundance of the SIVIC on these parameters. Furthermore, the differences in evolution could be investigated. Additionally, the UV spectra themselves would be suitably weighted and systematically combined to provide a template for comparison to very distant galaxies formed in the early history of the Universe which also have a low abundance of elements. The spectra have been obtained and the analysis is proceeding, primarily by the groups in Munich and at STScl who are the leads for this project. Given the important role of the nearby SMC galaxy as a template of low metal abundance, I have begun to investigate the YOUNGEST phases of massive star birth, before the most massive and hottest stars become optically visible. Typically these stars form in clusters, in some cases having tens to hundreds of OB type stars. In this phase, each star is still buried in its natal cloud and visible only in the infrared (IR) from its self-heated dust and/or from radio free-free emission of the surrounding hydrogen (HII) region. Efforts to find and identify these buried clusters were conducted using a large radio telescope. A number of these were found and further analysis of the data is underway. These clusters are not visible optically, but ought to be seen in the IR, and are a likely topic for HST photometry on NICMOS. A proposal to do this will be made next semester. These objects are the precursors of the optically visible clusters that contain massive and hot luminous stars.

  10. Space Observations of Starburst Galaxies

    NASA Technical Reports Server (NTRS)

    Heckman, Timothy M.; Leitherer, Claus

    1997-01-01

    Led by JHU postdoc Gerhardt Meurer, we completed our analysis of far-UV HST FOC images of nine nearby starbursts. We have been able to delineate the structure of the regions in which the unusually vigorous star-formation is occurring (Meurer et al 1995). At 0.1 arcsec (2 to 20 pc) resolution, the starbursts are resolved into multiple clumps and bright star clusters distributed over a region several hundred pc to a few kpc in size. This suggests that compact sites of star-formation may propagate from place to place within a larger central gas reservoir over the duration of the burst. The UV and optical properties of these clusters suggest that they may correspond to newly 'minted' globular clusters. These clusters typically produce about 10% to 50% of the far-UV light, and are preferentially located in the heart of the starburst, where the background UV surface brightness is highest. Thus, massive star cluster (globular cluster?) formation is a fundamental part of the starburst phenomenon. This confirms and generalizes the results of Whitmore et al (1993). Our starburst images are also being compared to our recent analysis of the HST FOC image of R136 in the LMC (De Marchi et al 1993). We have also extended our results on the UV photometric structure of starbursts to star-forming galaxies in the early universe (Meurer et al 1997). We show that the most actively- star-forming galaxies at all redshifts seem to have approximately the same bolometric surface-brightness, and that the high redshift galaxies may be larger and more luminous versions of local starbursts.

  11. Hot outflows in galaxy clusters

    NASA Astrophysics Data System (ADS)

    Kirkpatrick, C. C.; McNamara, B. R.

    2015-10-01

    The gas-phase metallicity distribution has been analysed for the hot atmospheres of 29 galaxy clusters using Chandra X-ray Observatory observations. All host brightest cluster galaxies (BCGs) with X-ray cavity systems produced by radio AGN. We find high elemental abundances projected preferentially along the cavities of 16 clusters. The metal-rich plasma was apparently lifted out of the BCGs with the rising X-ray cavities (bubbles) to altitudes between twenty and several hundred kiloparsecs. A relationship between the maximum projected altitude of the uplifted gas (the `iron radius') and jet power is found with the form R_Fe ∝ P_jet^{0.45}. The estimated outflow rates are typically tens of solar masses per year but exceed 100 M⊙ yr- 1 in the most powerful AGN. The outflow rates are 10-20 per cent of the cooling rates, and thus alone are unable to offset a cooling inflow. Nevertheless, hot outflows effectively redistribute the cooling gas and may play a significant role at regulating star formation and AGN activity in BCGs and presumably in giant elliptical galaxies. The metallicity distribution overall can be complex, perhaps due to metal-rich gas returning in circulation flows or being blown around in the hot atmospheres. Roughly 15 per cent of the work done by the cavities is expended lifting the metal-enriched gas, implying their nuclear black holes have increased in mass by at least ˜107-109 M⊙. Finally, we show that hot outflows can account for the broad, gas-phase metallicity distribution compared to the stellar light profiles of BCGs, and we consider a possible connection between hot outflows and cold molecular gas flows discovered in recent Atacama Large Millimeter Array observations.

  12. Quasar Absorption Lines and SDSS Galaxies

    NASA Astrophysics Data System (ADS)

    Shoemaker, Emileigh Suzanne; Scott, Jennifer E.; Oldak, Katarzyna

    2017-01-01

    We present the results of a study of the sightlines of 45 low redshift quasars (0.06 < z < 0.85) observed with HST/COS that lie within the footprint of the Sloan Digital Sky Survey. We use both the SDSS DR12 galaxy photometric data, including photometric redshifts, and the measured properties of the absorbers along with the known absorption characteristics of the intergalactic medium and the circumgalactic medium of galaxies to assign the most probable galaxy matches for each absorber in the sample, using estimated galaxy luminosities and virial radii as a discriminator. We show that the scheme can recover known galaxy-absorber matches found from spectroscopic data and thus provides a method for identifying likely pairs in photometric data sets as well as targets for spectroscopic follow up.

  13. Markarian 348: a tidally disturbed seyfert galaxy.

    PubMed

    Simkin, S M; Su, H J; VAN Gorkom, J; Hibbard, J

    1987-03-13

    Combined optical and radio images of galaxies can provide new insights into the sizes, masses, and possible evolution of these objects. Deep optical and neutral hydrogen images of Markarian 348, a type 2 Seyfert galaxy, show that it is a gigantic spiral (perhaps the largest known non-cluster galaxy). Measurements of the neutral hydrogen velocity field and spiral structure, and detection of an optical "tidal plume," all provide evidence that it has been subject to tidal disruption. The measured velocities yield a mass-to-light ratio for this object (within a radius of 130 kiloparsecs from its nucleus) that is similar to the ratio found for the inner regions of most galaxies of similar type. This is one of the few cases where detailed velocity measurements have demonstrated that a galaxy with an active nucleus has been subject to extensive tidal perturbation.

  14. Broad Absorption Line Quasars and Galaxy Evolution

    NASA Astrophysics Data System (ADS)

    Wills, B. J.

    2009-12-01

    Luminous QSOs are signposts to galaxy evolution. Local supermassive black holes are the faded relics of quasars in their heyday at redshifts ˜2. Relationships between the masses of these local supermassive black holes and their host galaxy bulges reveal an intimate link, fundamental to galaxy evolution: the newly evolving galaxy fuels the seed black hole through its accretion disk and by loss of angular momentum and energy in the form of outflowing winds. As the central engine approaches Eddington luminosities, winds drive away dusty gas, revealing a luminous QSO and halting star formation in the galaxy bulge. Relativistic winds are manifested in powerful radio jets in ˜10% of quasars, and sub-relativistic winds are revealed by broad blueshifted absorption troughs in the “broad absorption line” (BAL) quasars. Historically, BALs avoid powerful radio quasars. Here we examine the BALs to investigate this inverse connection.

  15. Chandra Observatory Reveals Spiral Galaxy's Boisterous Activity

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This Chandra X-ray observatory image of M83 shows numerous point-like neutron stars and black hole x-ray sources scattered throughout the disk of this spiral galaxy. The bright nuclear region of the galaxy glows prominently due to a burst of star formation that is estimated to have begun about 20 million years ago in the galaxy's time frame. The nuclear region, enveloped by a 7 million degree Celsius gas cloud of carbon, neon, magnesium, silicon, and sulfur atoms, contains a much higher concentration of neutron stars and black holes than the rest of the galaxy. Hot gas with a slightly lower temperature of 4 million degrees observed along the spiral arms of the galaxy suggests that star formation in this region may be occurring at a more sedate rate.

  16. Galaxy Zoo: multimergers and the Millennium Simulation

    NASA Astrophysics Data System (ADS)

    Darg, D. W.; Kaviraj, S.; Lintott, C. J.; Schawinski, K.; Silk, J.; Lynn, S.; Bamford, S.; Nichol, R. C.

    2011-09-01

    We present a catalogue of 39 multiple mergers, found using the mergers catalogue of the Galaxy Zoo project for z < 0.1, and compare them to corresponding semi-analytical galaxies from the Millennium Simulation. We estimate the (volume-limited) multimerger fraction of the local Universe using our sample and find it to be at least 2 orders of magnitude less than binary mergers - in good agreement with the simulations (especially the Munich group). We then investigate the properties of galaxies in binary mergers and multimergers (morphologies, colours, stellar masses and environment) and compare these results with those predicted by the semi-analytical galaxies. We find that multimergers favour galaxies with properties typical of elliptical morphologies and that this is in qualitative agreement with the models. Studies of multimergers thus provide an independent (and largely corroborating) test of the Millennium semi-analytical models.

  17. Mass-transfer induced activity in galaxies

    NASA Astrophysics Data System (ADS)

    Shlosman, Isaac

    Current research on the origin and evolution of active galaxies is comprehensively surveyed in this collaborative volume. Both of the proposed types of central activity --- active galactic nuclei and nuclear starbursts --- are analyzed with a particular emphasis on their relationship to the large-scale properties of the host galaxy. The crucial question is what triggers and fuels nuclear activity now and at earlier epochs. The topics covered here are gas flows near to massive black holes, the circumnuclear galactic regions, and the large-scale bars in disk galaxies. Aspects of nuclear bursts of star formation and the relationship between central activity and the gas and stellar dynamics of the host galaxy are addressed as well. The contributors of this book for professionals and graduate students are world experts on galaxy evolution.

  18. M81 Galaxy is Pretty in Pink

    NASA Technical Reports Server (NTRS)

    2007-01-01

    The perfectly picturesque spiral galaxy known as Messier 81, or M81, looks sharp in this new composite from NASA's Spitzer and Hubble space telescopes and NASA's Galaxy Evolution Explorer. M81 is a 'grand design' spiral galaxy, which means its elegant arms curl all the way down into its center. It is located about 12 million light-years away in the Ursa Major constellation and is one of the brightest galaxies that can be seen from Earth through telescopes.

    The colors in this picture represent a trio of light wavelengths: blue is ultraviolet light captured by the Galaxy Evolution Explorer; yellowish white is visible light seen by Hubble; and red is infrared light detected by Spitzer. The blue areas show the hottest, youngest stars, while the reddish-pink denotes lanes of dust that line the spiral arms. The orange center is made up of older stars.

  19. Galaxies of all Shapes Host Black Holes

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This artist's concept illustrates the two types of spiral galaxies that populate our universe: those with plump middles, or central bulges (upper left), and those lacking the bulge (foreground).

    New observations from NASA's Spitzer Space Telescope provide strong evidence that the slender, bulgeless galaxies can, like their chubbier counterparts, harbor supermassive black holes at their cores. Previously, astronomers thought that a galaxy without a bulge could not have a supermassive black hole. In this illustration, jets shooting away from the black holes are depicted as thin streams.

    The findings are reshaping theories of galaxy formation, suggesting that a galaxy's 'waistline' does not determine whether it will be home to a big black hole.

  20. Giant radio galaxies and cosmic web

    NASA Astrophysics Data System (ADS)

    Heinämäki, Pekka

    2016-10-01

    Giant radio galaxies create the welldistinguishable class of sources.These sources are characterized with edge-brightened radio lobes withhighly collimated radio jets and large linear sizes which make themthe largest individual structures in the Universe. They are also knownto be hosted by elliptical/disturbed host galaxies and avoid clustersand high galaxy density regions. Because of GRG, large linear sizeslobes extend well beyond the interstellar media and host galaxyhalo the evolution of the radio lobes may depend on interactionwith this environment. Using our method to extract filamentarystructure of the galaxies in our local universe we study whetherradio lobe properties in some giant radio galaxies are determinedon an interaction of this filament ambient.

  1. Cold atomic hydrogen in the inner galaxy

    NASA Technical Reports Server (NTRS)

    Dickey, J. M.; Garwood, R. W.

    1986-01-01

    The VLA is used to measure 21 cm absorption in directions with the absolute value of b less than 1 deg., the absolute value of 1 less than 25 deg. to probe the cool atomic gas in the inner galaxy. Abundant H I absorption is detected; typical lines are deep and narrow, sometimes blending in velocity with adjacent features. Unlike 21 cm emission not all allowed velocities are covered: large portions of the l-v diagram are optically thin. Although not similar to H I emission, the absorption shows a striking correspondence with CO emission in the inner galaxy: essentially every strong feature detected in one survey is seen in the other. The provisional conclusion is that in the inner galaxy most cool atomic gas is associated with molecular cloud complexes. There are few or no cold atomic clouds devoid of molecules in the inner galaxy, although these are common in the outer galaxy.

  2. The Intrinsic Shape of Galaxy Bulges

    NASA Astrophysics Data System (ADS)

    Méndez-Abreu, Jairo

    The knowledge of the intrinsic three-dimensional (3D) structure of galaxy components provides crucial information about the physical processes driving their formation and evolution. In this paper I discuss the main developments and results in the quest to better understand the 3D shape of galaxy bulges. I start by establishing the basic geometrical description of the problem. Our understanding of the intrinsic shape of elliptical galaxies and galaxy discs is then presented in a historical context, in order to place the role that the 3D structure of bulges play in the broader picture of galaxy evolution. Our current view on the 3D shape of the Milky Way bulge and future prospects in the field are also depicted.

  3. Superdense massive galaxies in the nearby universe

    NASA Astrophysics Data System (ADS)

    Ferré-Mateu, Anna; Trujillo, Ignacio

    2010-04-01

    At high-z the most superdense massive galaxies are supposed to be the result of gas-rich mergers resulting in compact remnant (Khochfar & Silk (2006); Naab et al. (2007)). After this, dry mergers are expected to be the mechanism that moves these very massive galaxies towards the current stellar mass size relation. Whitin these merging scenarios, a non-negligible fraction (1-10%) of these galaxies is expected to survive since that epoch retaining their compactness and presenting old stellar populations in the past universe.Using the NYU Value-Added Galaxy Catalog (DR6), we find only a tiny fraction of galaxies (~0.03%) with re ≤ 1.5 kpc and M* ≥ 8x1010M⊙ in the local Universe (z~0.2). Surprisingly, they are relatively young (~2Gyr) and metal rich ([Z/H]~0.2) These results have been published in Trujillo et al. (2009)

  4. Dust obscuration by an evolving galaxy population

    NASA Technical Reports Server (NTRS)

    Najita, Joan; Silk, Joseph; Wachter, Kenneth W.

    1990-01-01

    The effect of an evolving luminosity function (LF) on the ability of foreground galaxies to obscure background sources is discussed, using the Press-Schechter/CDM standard evolving LF model. Galaxies are modeled as simplified versions of local spirals and Poisson statistics are used to estimate the fraction of sky covered by intervening dusty galaxies and the mean optical depths due to these galaxies. The results are compared to those obtained in the case of nonevolving luminosity function in a low-density universe. It is found that evolution of the galaxy LF does not allow the quasar dust obscuration hypothesis to be sustained for dust disks with plausible sizes. Even in a low-density universe, where evolution at z = less than 10 is unimportant, large disk radii are needed to achieve the desired obscuring effect. The mean fraction of sky covered is presented as a function of the redshift z along with adequate diagram illustrations.

  5. Angular Momentum in Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Del Popolo, A.

    We study the ``angular momentum catastrophe" in the framework of interaction among baryons and dark matter through dynamical friction. By means of Del Popolo (2009) model we simulate 14 galaxies similar to those investigated by van den Bosch, Burkert and Swaters (2001), and calculate the distribution of their spin parameters and the angular momenta. Our model gives the angular momentum distribution which is in agreement with the van den Bosch et al. observations. Our result shows that the ``angular momentum catastrophe" can be naturally solved in a model that takes into account the baryonic physics and the exchange of energy and angular momentum between the baryonic clumps and dark matter through dynamical friction.

  6. Stormy weather in galaxy clusters

    PubMed

    Burns

    1998-04-17

    Recent x-ray, optical, and radio observations coupled with particle and gas dynamics numerical simulations reveal an unexpectedly complex environment within clusters of galaxies, driven by ongoing accretion of matter from large-scale supercluster filaments. Mergers between clusters and continuous infall of dark matter and baryons from the cluster periphery produce long-lived "stormy weather" within the gaseous cluster atmosphere-shocks, turbulence, and winds of more than 1000 kilometers per second. This weather may be responsible for shaping a rich variety of extended radio sources, which in turn act as "barometers" and "anemometers" of cluster weather.

  7. Ring galaxies as the cradle for ULXs

    NASA Astrophysics Data System (ADS)

    Wolter, Anna

    2015-08-01

    Ring galaxies are unique laboratories where the effects of galaxy interactions can be studied and the final stages of stellar evolution investigated. They are characterized by high star formation rates (SFR) and low metallicity, which favours the formation of high mass remnants. The few ring galaxies for which high resolution X-ray data are available show enhanced X-ray emission, and large numbers of Ultraluminous X-ray sources (ULXs). Due to the peculiar morphology of ring galaxies, detected point sources in the ring are very likely to be physically associated with the galaxy, reducing the problem of contamination from spurious sources which affects other samples. However the evidence in the X-ray band is based on a very scanty sample of four galaxies.In order to find an unbiased sample with which to compare these findings, we have selected all the peculiar galaxies labelled as collisional rings with a spectroscopic redshift z<0.02 from the Arp & Madore `Catalogue of southern peculiar galaxies and associations'. This selection produces a sample of 12 galaxies which we have observed with Chandra and XMM-Newton. We will discuss the results of these observations and support for current models that propose low metallicity environments as the ideal cradle for ULXs. We will compare the results from this statistically selected sample with those from brighter and known ring galaxies in order to asses the likelihood to find IMBHs due to collision events. We will address the presence of other signs of interaction, from high SFR to multiwavelenght morphology and spectra (eg. IR, Halpha..).

  8. Restframe Optical Properties of Lyman Break Galaxies

    NASA Astrophysics Data System (ADS)

    Shapley, A. E.; Steidel, C. C.; Adelberger, K. L.; Pettini, M.; Dickinson, M. E.; Giavalisco, M.

    2000-12-01

    We review recent results from near-IR studies of z ~ 3 galaxies that have been selected by their broadband optical colors using the Lyman Break technique. Specifically, we discuss the use of near-IR imaging at J and Ks, in combination with previously obtained optical photometry, to untangle the degenerate effects of dust extinction and age on galaxy spectral energy distributions. We use the observed optical-to-infrared colors for a subsample of galaxies from our extensive high-redshift survey to constrain both the amount of dust and the ages of the observed stellar populations. Thus, we hope to learn about distribution of ages, unextincted star-formation rates, and formed stellar masses of these high-redshift galaxies. We also make use of the restframe UV luminosity function of Lyman Break galaxies, in combination with the distribution of restframe UV-to-optical colors (measured with the R-Ks color at z ~ 3), to determine the restframe optical luminosity function of Lyman Break galaxies. Finally, we describe new efforts, using near-infrared spectroscopy, to study familiar restframe optical nebular emission lines redshifted to 1.5 - 2.5 μm in z ~ 3 galaxies. The properties of these emission features should indicate the range of dynamical masses and metallicities of high redshift star-forming galaxies. We also hope to use the velocity offsets measured between restframe optical nebular lines, Lyman-α , and restframe-UV interstellar metal lines, to characterize the starburst-induced outflows present in Lyman Break galaxies, how they depend on other galaxy properties, and what their impact is on the surrounding intergalactic medium.

  9. Tracking star formation in dwarf cluster galaxies

    NASA Astrophysics Data System (ADS)

    Rude, Cody Millard

    The evolution of galaxies in dense environments can be affected by close encounters with neighboring galaxies and interactions with the intracluster medium (ICM). Dwarf galaxies may be especially susceptible to these effects due to their low mass. The goal of my dissertation research is to look for signs of star formation in cluster dwarf galaxies by measuring and comparing the r- and u-band luminosity functions of 15 low redshift Abell galaxy clusters using archival data from the Canada-France-Hawaii Telescope (CFHT). Luminosity functions, dwarf-to-giant ratios, and blue fractions are measured in four cluster-centric annuli from stacked cluster data. To account for differences in cluster optical richness, each cluster is scaled according to r200, where r200 is the radius of a sphere, centered on the cluster, whose average density is 200 times the critical density of the universe. The outer region of the cluster sample shows an increase in the faint-end slope of the u-band luminosity function relative to the r-band, indicating star formation in dwarf galaxies. The blue fraction for dwarf galaxies steadily rises with increasing cluster-centric radii. The change in the blue fraction of giant galaxies also increases, but at a lower rate. Additionally, the inner regions of clusters ranging from 0.185 < z < 0.7 from the "Cluster Lensing and Supernova survey with Hubble (CLASH)" are used to generate blue- and red-band luminosity functions, dwarf-to-giant ratios, and blue fractions. Comparisons of the inner region of the CLASH and CFHT clusters show an increase in the blue fraction of dwarf galaxies with redshift that is not present in giant galaxies.

  10. Scaling relations for galaxies prior to reionization

    SciTech Connect

    Chen, Pengfei; Norman, Michael L.; Xu, Hao; Wise, John H.; O'Shea, Brian W. E-mail: mlnorman@ucsd.edu E-mail: jwise@gatech.edu

    2014-11-10

    The first galaxies in the universe are the building blocks of all observed galaxies. We present scaling relations for galaxies forming at redshifts z ≥ 15 when reionization is just beginning. We utilize the 'Rarepeak' cosmological radiation hydrodynamics simulation that captures the complete star formation history in over 3300 galaxies, starting with massive Population III stars that form in dark matter halos as small as ∼10{sup 6} M {sub ☉}. We make various correlations between the bulk halo quantities, such as virial, gas, and stellar masses and metallicities and their respective accretion rates, quantifying a variety of properties of the first galaxies up to halo masses of 10{sup 9} M {sub ☉}. Galaxy formation is not solely relegated to atomic cooling halos with virial temperatures greater than 10{sup 4} K, where we find a dichotomy in galaxy properties between halos above and below this critical mass scale. Halos below the atomic cooling limit have a stellar mass-halo mass relationship log M {sub *} ≅ 3.5 + 1.3log (M {sub vir}/10{sup 7} M {sub ☉}). We find a non-monotonic relationship between metallicity and halo mass for the smallest galaxies. Their initial star formation events enrich the interstellar medium and subsequent star formation to a median of 10{sup –2} Z {sub ☉} and 10{sup –1.5} Z {sub ☉}, respectively, in halos of total mass 10{sup 7} M {sub ☉}, which is then diluted by metal-poor inflows well beyond Population III pre-enrichment levels of 10{sup –3.5} Z {sub ☉}. The scaling relations presented here can be employed in models of reionization, galaxy formation, and chemical evolution in order to consider these galaxies forming prior to reionization.

  11. Blue diffuse dwarf galaxies: a clearer picture

    NASA Astrophysics Data System (ADS)

    James, Bethan L.; Koposov, Sergey E.; Stark, Daniel P.; Belokurov, Vasily; Pettini, Max; Olszewski, Edward W.; McQuinn, Kristen B. W.

    2017-03-01

    The search for chemically unevolved galaxies remains prevalent in the nearby Universe, mostly because these systems provide excellent proxies for exploring in detail the physics of high-z systems. The most promising candidates are extremely metal-poor galaxies (XMPs), i.e. galaxies with <1/10 solar metallicity. However, due to the bright emission-line-based search criteria traditionally used to find XMPs, we may not be sampling the full XMP population. In 2014, we reoriented this search using only morphological properties and uncovered a population of ∼150 'blue diffuse dwarf (BDD) galaxies', and published a sub-sample of 12 BDD spectra. Here, we present optical spectroscopic observations of a larger sample of 51 BDDs, along with their Sloan Digital Sky Survey (SDSS) photometric properties. With our improved statistics, we use direct-method abundances to confirm that BDDs are chemically unevolved (7.43 < 12 + log(O/H) < 8.01), with ∼20 per cent of our sample classified as being XMP galaxies, and find that they are actively forming stars at rates of ∼1-33 × 10-2 M⊙ yr-1 in H II regions randomly embedded in a blue, low-surface-brightness continuum. Stellar masses are calculated from population synthesis models and estimated to be in the range log (M*/M⊙) ≃ 5-9. Unlike other low-metallicity star-forming galaxies, BDDs are in agreement with the mass-metallicity relation at low masses, suggesting that they are not accreting large amounts of pristine gas relative to their stellar mass. BDD galaxies appear to be a population of actively star-forming dwarf irregular (dIrr) galaxies which fall within the class of low-surface-brightness dIrr galaxies. Their ongoing star formation and irregular morphology make them excellent analogues for galaxies in the early Universe.

  12. The Hunt for Dwarf Galaxies' Ancestors

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-01-01

    Dwarf galaxies are typically very faint, and are therefore hard to find. Given that, what are our chances of finding their distant ancestors, located billions of light-years away? A recent study aims to find out.Ancient CounterpartsDwarf galaxies are a hot topic right now, especially as we discover more and more of them nearby. Besides being great places to investigate a variety of astrophysical processes, local group dwarf galaxies are also representative of the most common type of galaxy in the universe. For many of these dwarf galaxies, their low masses and typically old stellar populations suggest that most of their stars were formed early in the universes history, and further star formation was suppressed when the universe was reionized at redshifts of z ~ 610. If this is true, most dwarf galaxies are essentially fossils: theyve evolved little since that point.To test this theory, wed like to find counterparts to our local group dwarf galaxies at these higher redshifts of z = 6 or 7. But dwarf galaxies, since they dont exhibit lots of active star formation, have very low surface brightnesses making them very difficult to detect. What are the chances that current or future telescope sensitivities will allow us to detect these? Thats the question Anna Patej and Abraham Loeb, two theorists at Harvard University, have addressed in a recent study.Entering a New RegimeThe surface brightness vs. size for 73 local dwarf galaxies scaled back to redshifts of z=6 (top) and z=7 (bottom). So far weve been able to observe high-redshift galaxies within the boxed region of the parameter space. JWST will open the shaded region of the parameter space, which includes some of the dwarf galaxies. [Patej Loeb 2015]Starting from observational data for 87 Local-Group dwarf galaxies, Patej and Loeb used a stellar population synthesis code to evolve the galaxies backward in time to redshifts of z = 6 and 7. Next, they narrowed this sample to only those dwarfs for which most star

  13. A Galaxy for Science and Research

    NASA Astrophysics Data System (ADS)

    2007-11-01

    During his visit to ESO's Very Large Telescope at Paranal, the European Commissioner for Science and Research, Janez Potočnik, participated in an observing sequence and took images of a beautiful spiral galaxy. ESO PR Photo 43/07 ESO PR Photo 49/07 Twisted Spiral Galaxy NGC 134 The visit took place on 27 October and the Commissioner observed with one of the FORS instruments on Antu, the first 8.2-m Unit Telescope of the VLT. "Two hours bus ride from the nearest town, Antofagasta, in the middle of nowhere and at 2 600 m altitude, rises a state of the art astronomical observatory at which scientists from across Europe venture to exploit some of the most advanced technologies and sophisticated techniques available within astronomy. One of the facilities is the VLT, the Very Large Telescope, with which, together with the other telescopes, scientists can study objects at the far edge of the Universe," wrote Potočnik on his blog. Known until now as a simple number in a catalogue, NGC 134, the 'Island in the Universe' that was observed by the Commissioner is replete with remarkable attributes, and the VLT has clapped its eyes on them. Just like our own Galaxy, NGC 134 is a barred spiral with its spiral arms loosely wrapped around a bright, bar-shaped central region. One feature that stands out is its warped disc. While a galaxy's disc is often pictured as a flat structure of gas and stars surrounding the galaxy's centre, a warped disc is a structure that, when viewed sideways, resembles a bent record album left out too long in the burning Sun. Warps are actually not atypical. More than half of the spiral galaxies do show warps one way or another, and our own Milky Way also has a small warp. Many theories exist to explain warps. One possibility is that warps are the aftermath of interactions or collisions between galaxies. These can also produce tails of material being pulled out from the galaxy. The VLT image reveals that NGC 134 also appears to have a tail of gas

  14. Intrinsic galaxy shapes and alignments - I. Measuring and modelling COSMOS intrinsic galaxy ellipticities

    NASA Astrophysics Data System (ADS)

    Joachimi, B.; Semboloni, E.; Bett, P. E.; Hartlap, J.; Hilbert, S.; Hoekstra, H.; Schneider, P.; Schrabback, T.

    2013-05-01

    The statistical properties of the ellipticities of galaxy images depend on how galaxies form and evolve, and therefore constrain models of galaxy morphology, which are key to the removal of the intrinsic alignment contamination of cosmological weak lensing surveys, as well as to the calibration of weak lensing shape measurements. We construct such models based on the halo properties of the Millennium Simulation and confront them with a sample of 90 000 galaxies from the COSMOS Survey, covering three decades in luminosity and redshifts out to z = 2. The ellipticity measurements are corrected for effects of point spread function smearing, spurious image distortions and measurement noise. Dividing galaxies into early, late and irregular types, we find that early-type galaxies have up to a factor of 2 lower intrinsic ellipticity dispersion than late-type galaxies. None of the samples shows evidence for redshift evolution, while the ellipticity dispersion for late-type galaxies scales strongly with absolute magnitude at the bright end. The simulation-based models reproduce the main characteristics of the intrinsic ellipticity distributions although which model fares best depends on the selection criteria of the galaxy sample. We observe fewer close-to-circular late-type galaxy images in COSMOS than expected for a sample of randomly oriented circular thick discs and discuss possible explanations for this deficit.

  15. The Arecibo Galaxy Environment Survey: Observations towards the NGC 7817/7798 Galaxy Pair

    NASA Astrophysics Data System (ADS)

    Harrison, Amanda; Robert Minchin

    2016-01-01

    The Arecibo Galaxy Environment Survey (AGES) examines the environment of neutral hydrogen gas in the interstellar medium. AGES uses the 305m Arecibo Radio Telescope and the Arecibo L-Band Feed Array to create a deep field neutral hydrogen survey which we used to detect galaxies in an area five square degrees around the galaxy pair NGC 7817/7798. By finding and investigating hydrogen rich galaxies we hope to gain a better understanding of how the environment affects galaxy evolution. H1 line profiles were made for the detected H1 emission and ten galaxies which had the characteristic double-horned feature were found. NGC 7798 was not detected, but NGC 7817 and the other galaxies were cross-identified in NASA/IPAC Extragalactic Database as well as in Sloan Digital Sky Survey to obtain optical data. Out of the ten, two of the sources were uncatalogued. We analyzed the hydrogen spectra and aperture photometry to learn about the characteristics of these galaxies such as their heliocentric velocity, flux, and mass of the neutral hydrogen. Furthermore, we graphed the Tully-Fisher and the Baryonic Tully-Fisher of the ten sources and found that most followed the relation. One that is the biggest outlier is suspected be a galaxy cluster while other outliers may be caused by ram pressure stripping deforming the galaxy.

  16. The HIX galaxy survey I: Study of the most gas rich galaxies from HIPASS

    NASA Astrophysics Data System (ADS)

    Lutz, K. A.; Kilborn, V. A.; Catinella, B.; Koribalski, B. S.; Brown, T. H.; Cortese, L.; Dénes, H.; Józsa, G. I. G.; Wong, O. I.

    2017-01-01

    We present the H I eXtreme (HIX) galaxy survey targeting some of the most H I rich galaxies in the southern hemisphere. The 13 HIX galaxies have been selected to host the most massive H I discs at a given stellar luminosity. We compare these galaxies to a control sample of average galaxies detected in the H I Parkes All Sky Survey (Hipass, Barnes et al. 2001). As the control sample is matched in stellar luminosity, we find that the stellar properties of HIX galaxies are similar to the control sample. Furthermore, the specific star formation rate and optical morphology do not differ between HIX and control galaxies. We find, however, the HIX galaxies to be less efficient in forming stars. For the most H I massive galaxy in our sample (ESO075-G006, log M_{HI} [M⊙] = (10.8 ± 0.1)) the kinematic properties are the reason for inefficient star formation and H I excess. Examining the Australian Telescope Compact Array (ATCA) H I imaging and Wide Field Spectrograph (WIFES) optical spectra of ESO075-G006 reveals an undisturbed galaxy without evidence for recent major, violent accretion events. A tilted-ring fit to the H I disc together with the gas-phase oxygen abundance distribution supports the scenario that gas has been constantly accreted onto ESO075-G006 but the high specific angular momentum makes ESO075-G006 very inefficient in forming stars. Thus a massive H I disc has been built up.

  17. Galaxy And Mass Assembly (GAMA): galaxy environments and star formation rate variations

    NASA Astrophysics Data System (ADS)

    Wijesinghe, D. B.; Hopkins, A. M.; Brough, S.; Taylor, E. N.; Norberg, P.; Bauer, A.; Brown, M. J. I.; Cameron, E.; Conselice, C. J.; Croom, S.; Driver, S.; Grootes, M. W.; Jones, D. H.; Kelvin, L.; Loveday, J.; Pimbblet, K. A.; Popescu, C. C.; Prescott, M.; Sharp, R.; Baldry, I.; Sadler, E. M.; Liske, J.; Robotham, A. S. G.; Bamford, S.; Bland-Hawthorn, J.; Gunawardhana, M.; Meyer, M.; Parkinson, H.; Drinkwater, M. J.; Peacock, J.; Tuffs, R.

    2012-07-01

    We present a detailed investigation into the effects of galaxy environment on their star formation rates (SFRs) using galaxies observed in the Galaxy And Mass Assembly (GAMA) survey. We use three independent volume-limited samples of galaxies within z < 0.2 and Mr < -17.8. We investigate the known SFR-density relationship and explore in detail the dependence of SFR on stellar mass and density. We show that the SFR-density trend is only visible when we include the passive galaxy population along with the star-forming population. This SFR-density relation is absent when we consider only the star-forming population of galaxies, consistent with previous work. While there is a strong dependence of the EWHα on density we find, as in previous studies, that these trends are largely due to the passive galaxy population and this relationship is absent when considering a 'star-forming' sample of galaxies. We find that stellar mass has the strongest influence on SFR and EWHα with the environment having no significant effect on the star formation properties of the star-forming population. We also show that the SFR-density relationship is absent for both early- and late-type star-forming galaxies. We conclude that the stellar mass has the largest impact on the current SFR of a galaxy, and any environmental effect is not detectable. The observation that the trends with density are due to the changing morphology fraction with density implies that the time-scales must be very short for any quenching of the SFR in infalling galaxies. Alternatively, galaxies may in fact undergo predominantly in situ evolution where the infall and quenching of galaxies from the field into dense environments is not the dominant evolutionary mode.

  18. The void galaxy survey: photometry, structure and identity of void galaxies

    NASA Astrophysics Data System (ADS)

    Beygu, B.; Peletier, R. F.; Hulst, J. M. van der; Jarrett, T. H.; Kreckel, K.; Weygaert, R. van de; van Gorkom, J. H.; Aragon-Calvo, M. A.

    2017-01-01

    We analyse photometry from deep B-band images of 59 void galaxies in the Void Galaxy Survey (VGS), together with their near-infrared 3.6 μm and 4.5 μm Spitzer photometry. The VGS galaxies constitute a sample of void galaxies that were selected by a geometric-topological procedure from the Sloan Digital Sky Survey Data Release 7 data release, and which populate the deep interior of voids. Our void galaxies span a range of absolute B-magnitude from MB = -15.5 to -20, while at the 3.6 μm band their magnitudes range from M3.6 = -18 to -24. Their B-[3.6] colour and structural parameters indicate these are star-forming galaxies. A good reflection of the old stellar population, the near-infrared band photometry also provide a robust estimate of the stellar mass, which for the VGS galaxies we confirm to be smaller than 3 × 1010 M⊙. In terms of the structural parameters and morphology, our findings align with other studies in that our VGS galaxy sample consists mostly of small late-type galaxies. Most of them are similar to Sd-Sm galaxies, although a few are irregularly shaped galaxies. The sample even includes two early-type galaxies, one of which is an AGN. Their Sérsic indices are nearly all smaller than n = 2 in both bands and they also have small half-light radii. In all, we conclude that the principal impact of the void environment on the galaxies populating them mostly concerns their low stellar mass and small size.

  19. Quasar induced galaxy formation: a new paradigm?

    NASA Astrophysics Data System (ADS)

    Elbaz, D.; Jahnke, K.; Pantin, E.; Le Borgne, D.; Letawe, G.

    2009-12-01

    Aims: We discuss observational evidence that quasars play a key role in the formation of galaxies, starting from the detailed study of the quasar HE0450-2958 and extending the discussion to a series of converging evidence that radio jets may trigger galaxy formation. Methods: We use mid infrared imaging with VISIR at the ESO-VLT to model the mid to far infrared energy distribution of the system and the stellar population of the companion galaxy using optical VLT-FORS spectroscopy. The results are combined with optical, CO, radio continuum imaging from ancillary data. Results: The direct detection with VISIR of the 7 kpc distant companion galaxy of HE0450-2958 allows us to spatially separate the sites of quasar and star formation activity in this composite system made of two ultra-luminous infrared galaxies (ULIRGs), where the quasar generates the bulk of the mid infrared light and the companion galaxy powered by star formation dominates in the far infrared. No host galaxy has yet been detected for this quasar, but the companion galaxy stellar mass would bring HE0450-2958 in the local M{BH} - Mstar^bulge relation if it were to merge with the QSO. This is bound to happen because of their close distance (7 kpc) and low relative velocity ( 60-200 km s-1). We conclude that we may be witnessing the building of the M{BH} - Mstar^bulge relation, or at least of a major event in that process. The star formation rate ( 340 M⊙ yr-1), age (40-200 Myr) and stellar mass ( [5-6]×1010 M⊙) are consistent with jet-induced formation of the companion galaxy. We suggest that HE0450-2958 may be fueled by fresh material from cold gas accretion from intergalactic filaments. We map the projected galaxy density surrounding the QSO as a potential tracer of intergalactic filaments and discuss a putative detection. Comparison to other systems suggest that an inside-out formation of quasar host galaxies and jet-induced galaxy formation may be a common process. Two tests are proposed for

  20. Understanding Galaxy Cluster MKW10

    NASA Astrophysics Data System (ADS)

    Sanders, Tim; Henry, Swain; Coble, Kimberly A.; Rosenberg, Jessica L.; Koopmann, Rebecca A.

    2015-01-01

    As part of the Undergraduate ALFALFA Team (UAT), we are studying the galaxy cluster MKW 10 (RA = 175.454, Dec = 10.306, z ~ 0.02), a poor cluster with a compact core in which tidal interactions have occurred. This cluster has been observed in HI and Hα. We used SDSS and NED to search for optical counterparts. By comparing data at multiple wavelengths, we hope to understand the structure, environment, and star formation history of this cluster. Following the techniques of others involved in the groups project and using the program TOPCAT to manipulate the data, we explored both the spatial and velocity distributions to determine cluster membership. We have determined that this cluster consists of 11 galaxies, mostly spiral in shape. Chicago State University is new the UAT and we began our work after taking part in the winter workshop at Arecibo.This work was supported by: Undergraduate ALFALFA Team NSF Grant AST-1211005 and the Illinois Space Grant Consortium.

  1. Metallic Winds in Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Robles-Valdez, F.; Rodríguez-González, A.; Hernández-Martínez, L.; Esquivel, A.

    2017-02-01

    We present results from models of galactic winds driven by energy injected from nuclear (at the galactic center) and non-nuclear starbursts. The total energy of the starburst is provided by very massive young stellar clusters, which can push the galactic interstellar medium and produce an important outflow. Such outflow can be a well or partially mixed wind, or a highly metallic wind. We have performed adiabatic 3D N-Body/Smooth Particle Hydrodynamics simulations of galactic winds using the gadget-2 code. The numerical models cover a wide range of parameters, varying the galaxy concentration index, gas fraction of the galactic disk, and radial distance of the starburst. We show that an off-center starburst in dwarf galaxies is the most effective mechanism to produce a significant loss of metals (material from the starburst itself). At the same time, a non-nuclear starburst produces a high efficiency of metal loss, in spite of having a moderate to low mass loss rate.

  2. Dusty Feedback from Massive Black Holes in Two Elliptical Galaxies

    NASA Technical Reports Server (NTRS)

    Temi, P.; Brighenti, F.; Mathews, W. G.; Amblard, A.; Riguccini, L.

    2013-01-01

    Far-infrared dust emission from elliptical galaxies informs us about galaxy mergers, feedback energy outbursts from supermassive black holes and the age of galactic stars. We report on the role of AGN feedback observationally by looking for its signatures in elliptical galaxies at recent epochs in the nearby universe. We present Herschel observations of two elliptical galaxies with strong and spatially extended FIR emission from colder grains 5-10 kpc distant from the galaxy cores. Extended excess cold dust emission is interpreted as evidence of recent feedback-generated AGN energy outbursts in these galaxies, visible only in the FIR, from buoyant gaseous outflows from the galaxy cores.

  3. Deficiency of "Thin" Stellar Bars in Seyfert Host Galaxies.

    PubMed

    Shlosman; Peletier; Knapen

    2000-06-01

    Using all available major samples of Seyfert galaxies and their corresponding closely matched control samples of nonactive galaxies, we find that the bar ellipticities (or axial ratios) in Seyfert galaxies are systematically different from those in nonactive galaxies. Overall, there is a deficiency of bars with large ellipticities (i.e., "thin" or "strong" bars) in Seyfert galaxies compared to nonactive galaxies. Accompanied with a large dispersion due to small number statistics, this effect is strictly speaking at the 2 sigma level. To obtain this result, the active galaxy samples of near-infrared surface photometry were matched to those of normal galaxies in type, host galaxy ellipticity, absolute magnitude, and, to some extent, redshift. We discuss possible theoretical explanations of this phenomenon within the framework of galactic evolution, and, in particular, of radial gas redistribution in barred galaxies. Our conclusions provide further evidence that Seyfert hosts differ systematically from their nonactive counterparts on scales of a few kiloparsecs.

  4. Record-breaking ancient galaxy clusters

    NASA Astrophysics Data System (ADS)

    2003-12-01

    A tale of two record-breaking clusters hi-res Size hi-res: 768 kb Credits: for RDCS1252: NASA, ESA, J.Blakeslee (Johns Hopkins Univ.), M.Postman (Space Telescope Science Inst.) and P.Rosati, Chris Lidman & Ricardo Demarco (European Southern Observ.) for TNJ1338: NASA, ESA, G.Miley (Leiden Observ.) and R.Overzier (Leiden Obs) A tale of two record-breaking clusters Looking back in time to when the universe was in its formative youth, the Advanced Camera for Surveys (ACS) aboard the NASA/ESA Hubble Space Telescope captured these revealing images of two galaxy clusters. The image at left, which is made with an additional infrared exposure taken with the European Southern Observatory’s Very Large Telescope, shows mature galaxies in a massive cluster that existed when the cosmos was 5000 million years old. The cluster, called RDCS1252.9-2927, is as massive as ‘300 trillion’ suns and is the most massive known cluster for its epoch. The image reveals the core of the cluster and is part of a much larger mosaic of the entire cluster. Dominating the core are a pair of large, reddish elliptical galaxies [near centre of image]. Their red colour indicates an older population of stars. Most of the stars are at least 1000 million years old. The two galaxies appear to be interacting and may eventually merge to form a larger galaxy that is comparable to the brightest galaxies seen in present-day clusters. The red galaxies surrounding the central pair are also cluster members. The cluster probably contains many thousands of galaxies, but only about 50 can be seen in this image. The full mosaic (heic0313d) reveals several hundred cluster members. Many of the other galaxies in the image, including several of the blue galaxies, are foreground or background galaxies. The colour-composite image was assembled from two observations (through i and z filters) taken between May and June 2002 by the ACS Wide Field Camera, and one image with the ISAAC instrument on the VLT taken in 2002

  5. Galaxy morphology - An unsupervised machine learning approach

    NASA Astrophysics Data System (ADS)

    Schutter, A.; Shamir, L.

    2015-09-01

    Structural properties poses valuable information about the formation and evolution of galaxies, and are important for understanding the past, present, and future universe. Here we use unsupervised machine learning methodology to analyze a network of similarities between galaxy morphological types, and automatically deduce a morphological sequence of galaxies. Application of the method to the EFIGI catalog show that the morphological scheme produced by the algorithm is largely in agreement with the De Vaucouleurs system, demonstrating the ability of computer vision and machine learning methods to automatically profile galaxy morphological sequences. The unsupervised analysis method is based on comprehensive computer vision techniques that compute the visual similarities between the different morphological types. Rather than relying on human cognition, the proposed system deduces the similarities between sets of galaxy images in an automatic manner, and is therefore not limited by the number of galaxies being analyzed. The source code of the method is publicly available, and the protocol of the experiment is included in the paper so that the experiment can be replicated, and the method can be used to analyze user-defined datasets of galaxy images.

  6. Feedback in high redshift radio galaxies

    NASA Astrophysics Data System (ADS)

    De Breuck, Carlos; Nesvadba, Nicole; Lehnert, Matthew; Best, Philip

    High redshift radio galaxies are among the best objects to study AGN feedback in action, as they are among the most massive galaxies (1011 - 1012 M ) hosting powerful radio-loud AGN. I will present near-infrared imaging spectroscopy of a sample of over 50 radio galaxies at 2 < z < 5 using SINFONI at the VLT. We identify kpc-sized outflows of few x 1010 M of ionized gas, located along the radio source axis. Velocity fields are consistent with bipolar outflows, with total velocity offsets of 1000 km/s. FWHMs 1000 km/s suggest strong turbulence. The geometry is consistent with the radio source driving these outflows. Over the lifetime of the radio source (˜ 107 yr), these outflows can eject up to 1011 M of gas out of the gravitational potential of the host galaxy. Such mass loss would be sufficient to terminate star formation within the host galaxy. I will also present results from an ongoing follow-up programme to study the molecular gas in these high z radio galaxies using the IRAM interferometer. In several sources, we find a remarkable deficit in cold molecular relative to ionized gas, which may imply that significant fractions of the interstellar medium of these galaxies are participating in the winds.

  7. Galaxy interactions and strength of nuclear activity

    NASA Technical Reports Server (NTRS)

    Simkin, S. M.

    1990-01-01

    Analysis of data in the literature for differential velocities and projected separations of nearby Seyfert galaxies with possible companions shows a clear difference in projected separations between type 1's and type 2's. This kinematic difference between the two activity classes reinforces other independent evidence that their different nuclear characteristics are related to a non-nuclear physical distinction between the two classes. The differential velocities and projected separations of the galaxy pairs in this sample yield mean galaxy masses, sizes, and mass to light ratios which are consistent with those found by the statistical methods of Karachentsev. Although the galaxy sample discussed here is too small and too poorly defined to provide robust support for these conclusions, the results strongly suggest that nuclear activity in Seyfert galaxies is associated with gravitational perturbations from companion galaxies, and that there are physical distinctions between the host companions of Seyfert 1 and Seyfert 2 nuclei which may depend both on the environment and the structure of the host galaxy itself.

  8. The Cores of Elliptical Galaxies in Coma

    NASA Astrophysics Data System (ADS)

    Lucey, John

    1995-07-01

    The cores of galaxies are astrophysically unique. They canhost high energy nuclei, star formation and perhaps even blackholes. HST observations have established that the cores ofellipticals are related to their global properties, and so canbe used as diagnostics of the physical processes occurring atthe time of formation. HST images of galaxy cores havedistinguished two different types of core luminosity profiles:`soft' and `hard' types. It is suggested that luminous, slowlyrotating galaxies have `soft' cores and the less luminousdisky galaxies have `hard' cores. This can be interpreted interms of a formation scenario based on a merger hierarchy inwhich the low luminosity systems experience highly dissipativemergers, but as the luminous systems are assembled the mergersbecome increasingly stellar. In this picture, the type of corea galaxy generates is intimately related to its evolutionaryhistory, i.e. the degree of interaction/merging experiencedand the availability of cold gas. In turn, this should notonly depend on luminosity but also on the galaxy's localenvironment. Here we propose to test the gaseous/stellarmerger picture by imaging a set of Coma cluster ellipticalsfrom a wide range of cluster radii. In the gas poorenvironment of the cluster core there may be insufficent coldgas for the low luminosity galaxies to form `hard' cores.Similarly, at the cluster turnround radius even luminousgalaxies may have experienced a dissipative core formation andpossess

  9. The gas content in starburst galaxies

    NASA Technical Reports Server (NTRS)

    Mirabel, I. F.; Sanders, D. B.

    1987-01-01

    The results from two large and homogeneous surveys, one in H I, the other in CO, are used for a statistical review of the gaseous properties of bright infrared galaxies. A constant ratio between the thermal FIR radiation and nonthermal radio emission is a universal property of star formation in spiral galaxies. The current rate of star formation in starburst galaxies is found to be 3-20 times larger than in the Milky Way. Galaxies with the higher FIR luminosities and warmer dust, have the larger mass fractions of molecular to atomic interstellar gas, and in some instances, striking deficiencies of neutral hydrogen are found. A statistical blueshift of the optical systemic velocities relative to the radio systemic velocities, may be due to an outward motion of the optical line-emitting gas. From the high rates of star formation, and from the short times required for the depletion of the interstellar gas, it is concluded that the most luminous infrared galaxies represent a brief but important phase in the evolution of some galaxies, when two galaxies merge changing substantially their overall properties.

  10. Turbulence and Star Formation in Interacting Galaxies

    NASA Astrophysics Data System (ADS)

    Auge, Connor; Chien, Lisa

    2017-01-01

    We investigate the turbulent gas motion in the tidal bridges and tails of colliding galaxies to see if there is a relation between this phenomenon and star formation within these galaxies. Previous studies have shown that the higher-order statistical moments, i.e. skewness and kurtosis, of the neutral hydrogen (HI) gas are linked to their turbulent motion in a galaxy. Such turbulences are considered to be potentially crucial in enhancing star formation at regions where the gas density is low, for example, the outer disk of a spiral galaxy, a dwarf galaxy, and tidal tails in an interacting system. Here we present these studies on a sample of colliding galaxy systems in detail. We create skewness and kurtosis maps representing the distribution of turbulent gas in these galaxies as a whole system and of the individual regions we are interested in. These maps also inform us as to whether the gas motion in these regions is sub-sonic or super-sonic. In order to investigate the relation between the turbulent gas motion and the star formation in low-density regions such as tidal tails, we compare these maps to far-ultraviolet images taken by GALEX space telescope.

  11. A redshift survey of IRAS galaxies

    NASA Technical Reports Server (NTRS)

    Smith, Beverly J.; Kleinmann, S. G.; Huchra, J. P.; Low, F. J.

    1987-01-01

    Results are presented from a redshift survey of all 72 galaxies detected by IRAS in Band 3 at flux levels equal to or greater then 2 Jy. The luminosity function at the high luminosity end is proportional to L sup -2, however, a flattening was observed at the low luminosity end indicating that a single power law is not a good description of the entire luminosity function. Only three galaxies in the sample have emission line spectra indicative of AGN's, suggesting that, at least in nearby galaxies, unobscured nuclear activity is not a strong contributor to the far infrared flux. Comparisons between the selected IRAS galaxies and an optically complete sample taken from the CfA redshift survey show that they are more narrowly distributed than those optically selected, in the sence that the IRAS sample includes few galaxies of low absolute blue luminosity. It was also found that the space distributions of the two samples differ: the density enhancement or IRAS galaxies is only approx. 1/3 that of the optically selected galaxies in the core of the Coma cluster.

  12. On the clustering of faint red galaxies

    NASA Astrophysics Data System (ADS)

    Xu, Haojie; Zheng, Zheng; Guo, Hong; Zhu, Ju; Zehavi, Idit

    2016-08-01

    Faint red galaxies in the Sloan Digital Sky Survey show a puzzling clustering pattern in previous measurements. In the two-point correlation function (2PCF), they appear to be strongly clustered on small scales, indicating a tendency to reside in massive haloes as satellite galaxies. However, their weak clustering on large scales suggests that they are more likely to be found in low-mass haloes. The interpretation of the clustering pattern suffers from the large sample variance in the 2PCF measurements, given the small volume of the volume-limited sample of such faint galaxies. We present improved clustering measurements of faint galaxies by making a full use of a flux-limited sample to obtain volume-limited measurements with an increased effective volume. In the improved 2PCF measurements, the fractional uncertainties on large scales drop by more than 40 per cent, and the strong contrast between small-scale and large-scale clustering amplitudes seen in previous work is no longer prominent. From halo occupation distribution modelling of the measurements, we find that a considerable fraction of faint red galaxies to be satellites in massive haloes, a scenario supported by the strong covariance of small-scale 2PCF measurements and the relative spatial distribution of faint red galaxies and luminous galaxies. However, the satellite fraction is found to be degenerate with the slope of the distribution profile of satellites in inner haloes. We compare the modelling results with semi-analytic model predictions and discuss the implications.

  13. Off-center nuclei in galaxies

    NASA Technical Reports Server (NTRS)

    Miller, R. H.; Smith, B. F.

    1992-01-01

    The nucleus of a galaxy orbits around the mass centroid. Orbital motions appear overstable in numerical experiments started with a galaxy's nucleus at rest atop its mass centroid. The amplitude doubles in 6-10 orbital periods. Orbits precess, nutate, and change their amplitudes, but they keep fairly constant periods. Orbital periods are in resonance with local particle motions, and amplitudes reach a core radius. This resonance suggests that center motions are a local, rather than a global, phenomenon. The overstability implies that a galaxy cannot be formed in nature with its nucleus at rest atop its mass centroid, and that nuclei orbit the mass centroid in real galaxies. These center motions should show up observationally as a shift of the nucleus away from the center defined by nearby isophotes. Off-center nuclei have been reported in many galaxies (e.g., M33, M101, NGC 3379, NGC 3384). Other kinds of observations confirmed the picture of nonsteady galactic centers as well. Gas trapped in moving nuclear regions of a galaxy should show strange flow patterns with possible shocks. The nuclear regions of galaxies including Milky Way and of globular clusters are not likely to be in a static steady state.

  14. Early assembly of the most massive galaxies.

    PubMed

    Collins, Chris A; Stott, John P; Hilton, Matt; Kay, Scott T; Stanford, S Adam; Davidson, Michael; Hosmer, Mark; Hoyle, Ben; Liddle, Andrew; Lloyd-Davies, Ed; Mann, Robert G; Mehrtens, Nicola; Miller, Christopher J; Nichol, Robert C; Romer, A Kathy; Sahlén, Martin; Viana, Pedro T P; West, Michael J

    2009-04-02

    The current consensus is that galaxies begin as small density fluctuations in the early Universe and grow by in situ star formation and hierarchical merging. Stars begin to form relatively quickly in sub-galactic-sized building blocks called haloes which are subsequently assembled into galaxies. However, exactly when this assembly takes place is a matter of some debate. Here we report that the stellar masses of brightest cluster galaxies, which are the most luminous objects emitting stellar light, some 9 billion years ago are not significantly different from their stellar masses today. Brightest cluster galaxies are almost fully assembled 4-5 billion years after the Big Bang, having grown to more than 90 per cent of their final stellar mass by this time. Our data conflict with the most recent galaxy formation models based on the largest simulations of dark-matter halo development. These models predict protracted formation of brightest cluster galaxies over a Hubble time, with only 22 per cent of the stellar mass assembled at the epoch probed by our sample. Our findings suggest a new picture in which brightest cluster galaxies experience an early period of rapid growth rather than prolonged hierarchical assembly.

  15. X-raying galaxies: a Chandra legacy.

    PubMed

    Wang, Q Daniel

    2010-04-20

    This presentation reviews Chandra's major contribution to the understanding of nearby galaxies. After a brief summary on significant advances in characterizing various types of discrete x-ray sources, the presentation focuses on the global hot gas in and around galaxies, especially normal ones like our own. The hot gas is a product of stellar and active galactic nuclear feedback--the least understood part in theories of galaxy formation and evolution. Chandra observations have led to the first characterization of the spatial, thermal, chemical, and kinetic properties of the gas in our galaxy. The gas is concentrated around the galactic bulge and disk on scales of a few kiloparsec. The column density of chemically enriched hot gas on larger scales is at least an order magnitude smaller, indicating that it may not account for the bulk of the missing baryon matter predicted for the galactic halo according to the standard cosmology. Similar results have also been obtained for other nearby galaxies. The x-ray emission from hot gas is well correlated with the star formation rate and stellar mass, indicating that the heating is primarily due to the stellar feedback. However, the observed x-ray luminosity of the gas is typically less than a few percent of the feedback energy. Thus the bulk of the feedback (including injected heavy elements) is likely lost in galaxy-wide outflows. The results are compared with simulations of th