Science.gov

Sample records for pseudogene structural analysis

  1. Analysis of nuclear receptor pseudogenes in vertebrates: how the silent tell their stories.

    PubMed

    Zhang, Zhengdong D; Cayting, Philip; Weinstock, George; Gerstein, Mark

    2008-01-01

    Transcription factor pseudogenes have not been systematically studied before. Nuclear receptors (NRs) constitute one of the largest groups of transcription factors in animals (e.g., 48 NRs in human). The availability of whole-genome sequences enables a global inventory of the NR pseudogenes in a number of vertebrate model organisms. Here we identify the NR pseudogenes in 8 vertebrate organisms and make our results available online at http://www.pseudogene.org/nr. The assignments reveal that NR pseudogenes as a group have characteristics related to generation and distribution contrary to expectations derived from previous large-scale pseudogene studies. In particular, 1) despite its large size, the NR gene family has only a very small number of pseudogenes in each of the vertebrate genomes examined; 2) despite the low transcription levels of NR genes, except for one, all other NR pseudogenes identified in this study are retropseudogenes; and 3) no duplicated NR pseudogenes are found, contrary to the fact that the NR gene family was expanded through several waves of gene duplication events. Our analyses further reveal a number of interesting aspects of NR pseudogenes. Specifically, through careful sequence analysis, we identify remnant introns in 2 mouse retropseudogenes, psiRev-erbbeta and psiLRH1. Generated from partially processed pre-mRNAs, they appear to be rare examples of highly unusual "semiprocessed" pseudogenes. Second, by comparing the genomic sequences, we uncover a pseudogene that is unique to the human lineage relative to chimpanzee. Generated by a recent duplication of a segment in the human genome, this pseudogene is a "duplicated-processed" pseudogene, belonging to a new pseudogene species. Finally, FXRbeta was nonfunctionalized in the human lineage and thus appears to be an example of a rare unitary pseudogene. By comparing orthologous sequences, we dated the FXR-FXRbeta duplication and the nonfunctionalization of FXRbeta in primates.

  2. Structural characterization and chromosomal location of the mouse macrophage migration inhibitory factor gene and pseudogenes

    SciTech Connect

    Bozza, M.; Gerard, C.; Kolakowski, L.F. Jr.

    1995-06-10

    Macrophage migration inhibitory factor, MIF, is a cytokine released by T-lymphocytes, macrophages, and the pituitary gland that serves to integrate peripheral and central inflammatory responses. Ubiquitous expression and developmental regulation suggest that MIF may have additional roles outside of the immune system. Here we report the structure and chromosomal location of the mouse Mif gene and the partial characterization of five Mif pseudogenes. The mouse Mif gene spans less than 0.7 kb of chromosomal DNA and is composed of three exons. A comparison between the mouse and the human genes shows a similar gene structure and common regulatory elements in both promoter regions. The mouse Mif gene maps to the middle region of chromosome 10, between Bcr and S100b, which have been mapped to human chromosomes 22q11 and 21q22.3, respectively. The entire sequence of two pseudogenes demonstrates the absence of introns, the presence of the 5{prime} untranslated region of the cDNA, a 3{prime} poly(A) tail, and the lack of sequence similarity with untranscribed regions of the gene. The five pseudogenes are highly homologous to the cDNA, but contain a variable number of mutations that would produce mutated or truncated MIF-like proteins. Phylogenetic analyses of MIF genes and pseudogenes indicate several independent genetic events that can account for multiple genomic integrations. Three of the Mif pseudogenes were also mapped by interspecific backcross to chromosomes 1, 9, and 17. These results suggest that Mif pseudogenes originated by retrotransposition. 46 refs., 5 figs., 1 tab.

  3. Are Human Translated Pseudogenes Functional?

    PubMed

    Xu, Jinrui; Zhang, Jianzhi

    2016-03-01

    By definition, pseudogenes are relics of former genes that no longer possess biological functions. Operationally, they are identified based on disruptions of open reading frames (ORFs) or presumed losses of promoter activities. Intriguingly, a recent human proteomic study reported peptides encoded by 107 pseudogenes. These peptides may play currently unrecognized physiological roles. Alternatively, they may have resulted from accidental translations of pseudogene transcripts and possess no function. Comparing between human and macaque orthologs, we show that the nonsynonymous to synonymous substitution rate ratio (ω) is significantly smaller for translated pseudogenes than other pseudogenes. In particular, five of 34 translated pseudogenes amenable to evolutionary analysis have ω values significantly lower than 1, indicative of the action of purifying selection. This and other findings demonstrate that some but not all translated pseudogenes have selected functions at the protein level. Hence, neither ORF disruption nor presence of protein product disproves or proves gene functionality at the protein level.

  4. Structure and functional evaluation of porcine NANOG that is a single-exon gene and has two pseudogenes.

    PubMed

    Yang, Fan; Zhang, Jinglong; Liu, Yajun; Cheng, De; Wang, Huayan

    2015-02-01

    Nanog plays an important role in maintaining the pluripotency of murine and human embryonic stem cells. However, the molecular features and transcriptional regulation of the NANOG gene have not been well investigated in pig. Here, we report, for the first time, that porcine NANOG is encoded by a single exon gene (SEG) mapped on chromosome 1 and has two daughter genes, one pseudogene NANOGP1 on chromosome 5 and one tandem duplicate on chromosome 1. The duplicated pseudogene NANOGP2 has high sequence similarity to NANOG, but does not encode a functional protein due to deletions and in-frame stop codons. The NANOGP1 contains four exons and three introns, but is short of the homeodomain sequence. Transcriptome analysis confirmed that NANOG mRNA in porcine iPS cells is transcribed from the SEG NANOG, but not from NANOGP1, because the NANOGP1 promoter is highly methylated, as confirmed by global DNA methylation analysis. The NANOG protein encoded by NANOG retains N, H, and C1/W/C2 domains. The H domain is required for nuclear translocation, while the C1/W/C2 domain ensures the NANOG regulatory function. Overexpression of NANOG in porcine embryonic fibroblasts promoted upregulation of its target genes SOX2, KLF4, and c-MYC. In conclusion, the functional porcine NANOG that is different in chromosomal structure from mouse and human genes is a single exon gene and encodes the functional NANOG protein that can be specifically regulated by OCT4/SOX2, and can promote the activation of target pluripotent factors in vivo. PMID:25542179

  5. HOPPSIGEN: a database of human and mouse processed pseudogenes.

    PubMed

    Khelifi, Adel; Adel, Khelifi; Duret, Laurent; Laurent, Duret; Mouchiroud, Dominique; Dominique, Mouchiroud

    2005-01-01

    Processed pseudogenes result from reverse transcribed mRNAs. In general, because processed pseudogenes lack promoters, they are no longer functional from the moment they are inserted into the genome. Subsequently, they freely accumulate substitutions, insertions and deletions. Moreover, the ancestral structure of processed pseudogenes could be easily inferred using the sequence of their functional homologous genes. Owing to these characteristics, processed pseudogenes represent good neutral markers for studying genome evolution. Recently, there is an increasing interest for these markers, particularly to help gene prediction in the field of genome annotation, functional genomics and genome evolution analysis (patterns of substitution). For these reasons, we have developed a method to annotate processed pseudogenes in complete genomes. To make them useful to different fields of research, we stored them in a nucleic acid database after having annotated them. In this work, we screened both mouse and human complete genomes from ENSEMBL to find processed pseudogenes generated from functional genes with introns. We used a conservative method to detect processed pseudogenes in order to minimize the rate of false positive sequences. Within processed pseudogenes, some are still having a conserved open reading frame and some have overlapping gene locations. We designated as retroelements all reverse transcribed sequences and more strictly, we designated as processed pseudogenes, all retroelements not falling in the two former categories (having a conserved open reading or overlapping gene locations). We annotated 5823 retroelements (5206 processed pseudogenes) in the human genome and 3934 (3428 processed pseudogenes) in the mouse genome. Compared to previous estimations, the total number of processed pseudogenes was underestimated but the aim of this procedure was to generate a high-quality dataset. To facilitate the use of processed pseudogenes in studying genome structure

  6. Comprehensive analysis of amino acid and nucleotide composition in eukaryotic genomes, comparing genes and pseudogenes.

    PubMed

    Echols, Nathaniel; Harrison, Paul; Balasubramanian, Suganthi; Luscombe, Nicholas M; Bertone, Paul; Zhang, Zhaolei; Gerstein, Mark

    2002-06-01

    Based on searches for disabled homologs to known proteins, we have identified a large population of pseudogenes in four sequenced eukaryotic genomes-the worm, yeast, fly and human (chromosomes 21 and 22 only). Each of our nearly 2500 pseudogenes is characterized by one or more disablements mid-domain, such as premature stops and frameshifts. Here, we perform a comprehensive survey of the amino acid and nucleotide composition of these pseudogenes in comparison to that of functional genes and intergenic DNA. We show that pseudogenes invariably have an amino acid composition intermediate between genes and translated intergenic DNA. Although the degree of intermediacy varies among the four organisms, in all cases, it is most evident for amino acid types that differ most in occurrence between genes and intergenic regions. The same intermediacy also applies to codon frequencies, especially in the worm and human. Moreover, the intermediate composition of pseudogenes applies even though the composition of the genes in the four organisms is markedly different, showing a strong correlation with the overall A/T content of the genomic sequence. Pseudogenes can be divided into 'ancient' and 'modern' subsets, based on the level of sequence identity with their closest matching homolog (within the same genome). Modern pseudogenes usually have a much closer sequence composition to genes than ancient pseudogenes. Collectively, our results indicate that the composition of pseudogenes that are under no selective constraints progressively drifts from that of coding DNA towards non-coding DNA. Therefore, we propose that the degree to which pseudogenes approach a random sequence composition may be useful in dating different sets of pseudogenes, as well as to assess the rate at which intergenic DNA accumulates mutations. Our compositional analyses with the interactive viewer are available over the web at http://genecensus.org/pseudogene.

  7. Molecular analysis of functional and nonfunctional genes for human ferrochelatase: Isolation and characterization of a FECH pseudogene and its sublocation on chromosome 3

    SciTech Connect

    Whitcombe, D.M.; Albertson, D.G. ); Cox, T.M. )

    1994-04-01

    A pseudogene related to the functional gene (FECH) for the heme biosynthetic enzyme ferrochelatase (ferroheme-protolyase; EC 4.99.1.1.) was isolated from a human genomic library using a ferrochelatase cDNA hybridization probe. The pseudogene shows >80% overall nucleotide sequence identity to the functional gene (including the 3[prime] untranslated region and polyadenylation signals) but contains no intronic sequences in the region corresponding to the open reading frame of expressed ferrochelatase. Furthermore, the pseudogene sequence contains small deletions and insertions creating frameshifts and numerous termination codons, indicating that it does not encode a functional polypeptide. Northern blot analysis using pseudogene-specific probes failed to demonstrate transcripts in samples of human erythroid cell RNA in which ferrochelatase mRNA was readily detected. Southern blot experiments using restriction endonuclease-digested human genomic DNA probed either with ferrochelatase-specific cDNA fragments or pseudogene-specific genomic sequences confirmed the presence of distinct loci for the expressed and nonfunctional genes, respectively. Localization of the human ferrochelatase pseudogene to 3p22-p23 was determined by fluorescent metaphase chromosomal hybridization in situ using three genomic clones in [lambda]EMBL3 spanning a contiguous region of [approximately] 30 kb. This newly identified locus, distinct from the expressed FECH gene, on 18q22, is characteristic of a processed human pseudogene. The existence of the ferrochelatase pseudogene has practical implications for the molecular analysis of mutations responsible for erythropoietic protoporphyria in man. 24 refs., 3 figs.

  8. Comparative analysis of a putative tuberculosis-susceptibility gene, MC3R, and pseudogene sequences in cattle, African buffalo, hyena, rhinoceros and other African bovids and ruminants.

    PubMed

    Müller, A; Möller, M; Adams, L A; Warren, R M; Hoal, E G; van Helden, P D

    2012-01-01

    Studies in humans have suggested the possible involvement of melanocortin-3-receptor (MC3R) and other components of the central melanocortin system in host defense against mycobacteria. We report a genomic DNA nucleotide sequence highly homologous to human MC3R in several bovids and non-bovid African wildlife species. Nucleotide sequence analysis indicates that the orthologous genes of cattle and buffalo are highly homologous (89.4 and 90%, respectively) to the human MC3R gene. Sequence results also identified a typical non-functional, duplicated pseudogene, MC3RP, in 7 species from the family Bovidae. No pseudogene was found in animals outside Bovidae. The presence of the pseudogene in tuberculosis-susceptible species could have possible immunomodulatory effects on susceptibility to bovine tuberculosis infection, as well as a considerable influence on energy metabolism and food conversion efficiency. PMID:22286663

  9. Comparative analysis of a putative tuberculosis-susceptibility gene, MC3R, and pseudogene sequences in cattle, African buffalo, hyena, rhinoceros and other African bovids and ruminants.

    PubMed

    Müller, A; Möller, M; Adams, L A; Warren, R M; Hoal, E G; van Helden, P D

    2012-01-01

    Studies in humans have suggested the possible involvement of melanocortin-3-receptor (MC3R) and other components of the central melanocortin system in host defense against mycobacteria. We report a genomic DNA nucleotide sequence highly homologous to human MC3R in several bovids and non-bovid African wildlife species. Nucleotide sequence analysis indicates that the orthologous genes of cattle and buffalo are highly homologous (89.4 and 90%, respectively) to the human MC3R gene. Sequence results also identified a typical non-functional, duplicated pseudogene, MC3RP, in 7 species from the family Bovidae. No pseudogene was found in animals outside Bovidae. The presence of the pseudogene in tuberculosis-susceptible species could have possible immunomodulatory effects on susceptibility to bovine tuberculosis infection, as well as a considerable influence on energy metabolism and food conversion efficiency.

  10. The human mitochondrial elongation factor tu (EF-Tu) gene: cDNA sequence, genomic localization, genomic structure, and identification of a pseudogene.

    PubMed

    Ling, M; Merante, F; Chen, H S; Duff, C; Duncan, A M; Robinson, B H

    1997-09-15

    The human mitochondrial elongation factor Tu (EF-Tu) is nuclear-encoded and functions in the translational apparatus of mitochondria. The complete human EF-Tu cDNA sequence of 1677 base pairs (bp) with a 101 bp 5'-untranslated region, a 1368 bp coding region, and a 207 bp 3'-untranslated region, has been determined and updated. The predicted protein from this cDNA sequence is approximately 49.8 kDa in size and is composed of 455 amino acids (aa) with a putative N-terminal mitochondrial leader sequence of approximately 50 aa residues. The predicted amino acid sequence shows high similarity to other EF-Tu protein sequences from ox, yeast, and bacteria, and also shows limited similarity to human cystolic elongation factor 1 alpha. The complete size of this cDNA (1677 bp) obtained by cloning and sequencing was confirmed by Northern blot analysis, which showed a single transcript (mRNA) of approximately 1.7 kb in human liver. The genomic structure of this EF-Tu gene has been determined for the first time. This gene contains nine introns with a predicted size of approximately 3.6 kilobases (kb) and has been mapped to chromosome 16p11.2. In addition, an intronless pseudogene of approximately 1.7 kb with 92.6% nucleotide sequence similarity to the EF-Tu gene has also been identified and mapped to chromosome 17q11.2. PMID:9332382

  11. Analysis of Complete Genomes of Propionibacterium acnes Reveals a Novel Plasmid and Increased Pseudogenes in an Acne Associated Strain

    PubMed Central

    Fitz-Gibbon, Sorel; Tomida, Shuta; Li, Huiying

    2013-01-01

    The human skin harbors a diverse community of bacteria, including the Gram-positive, anaerobic bacterium Propionibacterium acnes. P. acnes has historically been linked to the pathogenesis of acne vulgaris, a common skin disease affecting over 80% of all adolescents in the US. To gain insight into potential P. acnes pathogenic mechanisms, we previously sequenced the complete genome of a P. acnes strain HL096PA1 that is highly associated with acne. In this study, we compared its genome to the first published complete genome KPA171202. HL096PA1 harbors a linear plasmid, pIMPLE-HL096PA1. This is the first described P. acnes plasmid. We also observed a five-fold increase of pseudogenes in HL096PA1, several of which encode proteins in carbohydrate transport and metabolism. In addition, our analysis revealed a few island-like genomic regions that are unique to HL096PA1 and a large genomic inversion spanning the ribosomal operons. Together, these findings offer a basis for understanding P. acnes virulent properties, host adaptation mechanisms, and its potential role in acne pathogenesis at the strain level. Furthermore, the plasmid identified in HL096PA1 may potentially provide a new opportunity for P. acnes genetic manipulation and targeted therapy against specific disease-associated strains. PMID:23762865

  12. Proteomics techniques for the detection of translated pseudogenes.

    PubMed

    Ucciferri, Nadia; Rocchiccioli, Silvia

    2014-01-01

    Increasing evidence indicates that pseudogenes can reach the translational process. Translated pseudogene products have in fact been found in various organisms, confuting the original definition of pseudogenes as genes without any coding potential. Proteomics is the main technology allowing the study of proteins and, when integrated with genomics, is defined as proteogenomics. In proteogenomics, the peptide-genome alignment drives the identification and annotation of gene products and allows for a better understanding of their function. In this chapter, we give a brief overview of the proteomic techniques applied to pseudogenes. In particular, we discuss peptide spectrum acquisition, mass data analysis, and genome database matching.

  13. Differentially-Expressed Pseudogenes in HIV-1 Infection.

    PubMed

    Gupta, Aditi; Brown, C Titus; Zheng, Yong-Hui; Adami, Christoph

    2015-10-01

    Not all pseudogenes are transcriptionally silent as previously thought. Pseudogene transcripts, although not translated, contribute to the non-coding RNA pool of the cell that regulates the expression of other genes. Pseudogene transcripts can also directly compete with the parent gene transcripts for mRNA stability and other cell factors, modulating their expression levels. Tissue-specific and cancer-specific differential expression of these "functional" pseudogenes has been reported. To ascertain potential pseudogene:gene interactions in HIV-1 infection, we analyzed transcriptomes from infected and uninfected T-cells and found that 21 pseudogenes are differentially expressed in HIV-1 infection. This is interesting because parent genes of one-third of these differentially-expressed pseudogenes are implicated in HIV-1 life cycle, and parent genes of half of these pseudogenes are involved in different viral infections. Our bioinformatics analysis identifies candidate pseudogene:gene interactions that may be of significance in HIV-1 infection. Experimental validation of these interactions would establish that retroviruses exploit this newly-discovered layer of host gene expression regulation for their own benefit.

  14. Characterization of pseudogenes in members of the order Frankineae.

    PubMed

    Sur, Saubashya; Saha, Sangita; Tisa, Louis S; Bothra, Asim K; Sen, Arnab

    2013-11-01

    Pseudogenes are defined as non-functional relatives of genes whose protein-coding abilities are lost and are no longer expressed within cells. They are an outcome of accumulation of mutations within a gene whose end product is not essential for survival. Proper investigation of the procedure of pseudogenization is relevant for estimating occurrence of duplications in genomes. Frankineae houses an interesting group of microorganisms, carving a niche in the microbial world. This study was undertaken with the objective of determining the abundance of pseudogenes, understanding strength of purifying selection, investigating evidence of pseudogene expression, and analysing their molecular nature, their origin, evolution and deterioration patterns amongst domain families. Investigation revealed the occurrence of 956 core pFAM families sharing common characteristics indicating co-evolution. WD40, Rve_3, DDE_Tnp_IS240 and phage integrase core domains are larger families, having more pseudogenes, signifying a probability of harmful foreign genes being disabled within transposable elements. High selective pressure depicted that gene families rapidly duplicating and evolving undoubtedly facilitated creation of a number of pseudogenes in Frankineae. Codon usage analysis between protein-coding genes and pseudogenes indicated a wide degree of variation with respect to different factors. Moreover, the majority of pseudogenes were under the effect of purifying selection. Frankineae pseudogenes were under stronger selective constraints, indicating that they were functional for a very long time and became pseudogenes abruptly. The origin and deterioration of pseudogenes has been attributed to selection and mutational pressure acting upon sequences for adapting to stressed soil environments. PMID:24287652

  15. Pseudogene evolution and natural selection for a compact genome.

    PubMed

    Petrov, D A; Hartl, D L

    2000-01-01

    Pseudogenes are nonfunctional copies of protein-coding genes that are presumed to evolve without selective constraints on their coding function. They are of considerable utility in evolutionary genetics because, in the absence of selection, different types of mutations in pseudogenes should have equal probabilities of fixation. This theoretical inference justifies the estimation of patterns of spontaneous mutation from the analysis of patterns of substitutions in pseudogenes. Although it is possible to test whether pseudogene sequences evolve without constraints for their protein-coding function, it is much more difficult to ascertain whether pseudogenes may affect fitness in ways unrelated to their nucleotide sequence. Consider the possibility that a pseudogene affects fitness merely by increasing genome size. If a larger genome is deleterious--for example, because of increased energetic costs associated with genome replication and maintenance--then deletions, which decrease the length of a pseudogene, should be selectively advantageous relative to insertions or nucleotide substitutions. In this article we examine the implications of selection for genome size relative to small (1-400 bp) deletions, in light of empirical evidence pertaining to the size distribution of deletions observed in Drosophila and mammalian pseudogenes. There is a large difference in the deletion spectra between these organisms. We argue that this difference cannot easily be attributed to selection for overall genome size, since the magnitude of selection is unlikely to be strong enough to significantly affect the probability of fixation of small deletions in Drosophila.

  16. HMGA1-pseudogenes and cancer

    PubMed Central

    De Martino, Marco; Forzati, Floriana; Arra, Claudio; Fusco, Alfredo; Esposito, Francesco

    2016-01-01

    Pseudogenes are DNA sequences with high homology to the corresponding functional gene, but, because of the accumulation of various mutations, they have lost their initial functions to code for proteins. Consequently, pseudogenes have been considered until few years ago dysfunctional relatives of the corresponding ancestral genes, and then useless in the course of genome evolution. However, several studies have recently established that pseudogenes are owners of key biological functions. Indeed, some pseudogenes control the expression of functional genes by competitively binding to the miRNAs, some of them generate small interference RNAs to negatively modulate the expression of functional genes, and some of them even encode functional mutated proteins. Here, we concentrate our attention on the pseudogenes of the HMGA1 gene, that codes for the HMGA1a and HMGA1b proteins having a critical role in development and cancer progression. In this review, we analyze the family of HMGA1 pseudogenes through three aspects: classification, characterization, and their possible function and involvement in cancer. PMID:26895108

  17. A unique element resembling a processed pseudogene.

    PubMed

    Robins, A J; Wang, S W; Smith, T F; Wells, J R

    1986-01-01

    We describe a unique DNA element with structural features of a processed pseudogene but with important differences. It is located within an 8.4-kilobase pair region of chicken DNA containing five histone genes, but it is not related to these genes. The presence of terminal repeats, an open reading frame (and stop codon), polyadenylation/processing signal, and a poly(A) rich region about 20 bases 3' to this, together with a lack of 5' promoter motifs all suggest a processed pseudogene. However, no parent gene can be detected in the genome by Southern blotting experiments and, in addition, codon boundary values and mid-base correlations are not consistent with a protein coding region of a eukaryotic gene. The element was detected in DNA from different chickens and in peafowl, but not in quail, pheasant, or turkey.

  18. A unique element resembling a processed pseudogene.

    PubMed

    Robins, A J; Wang, S W; Smith, T F; Wells, J R

    1986-01-01

    We describe a unique DNA element with structural features of a processed pseudogene but with important differences. It is located within an 8.4-kilobase pair region of chicken DNA containing five histone genes, but it is not related to these genes. The presence of terminal repeats, an open reading frame (and stop codon), polyadenylation/processing signal, and a poly(A) rich region about 20 bases 3' to this, together with a lack of 5' promoter motifs all suggest a processed pseudogene. However, no parent gene can be detected in the genome by Southern blotting experiments and, in addition, codon boundary values and mid-base correlations are not consistent with a protein coding region of a eukaryotic gene. The element was detected in DNA from different chickens and in peafowl, but not in quail, pheasant, or turkey. PMID:3941070

  19. Analysis of the CYP21A1P pseudogene: indication of mutational diversity and CYP21A2-like and duplicated CYP21A2 genes.

    PubMed

    Tsai, Li-Ping; Cheng, Ching-Feng; Chuang, Shu-Hua; Lee, Hsien-Hsiung

    2011-06-15

    The CYP21A1P gene downstream of the XA gene, carrying 15 deteriorated mutations, is a nonfunctional pseudogene that shares 98% nucleotide sequence homology with CYP21A2 located on chromosome 6p21.3. However, these mutations in the CYP21A1P gene are not totally involved in each individual. From our analysis of 100 healthy ethnic Chinese (i.e., Taiwanese) (n=200 chromosomes) using the polymerase chain reaction (PCR) products combined with an amplification-created restriction site (ACRS) method and DNA sequencing, we found that approximately 10% of CYP21A1P alleles (n=195 chromosomes) presented the CYP21A2 sequence; frequencies of P30, V281, Q318, and R356 in that locus were approximately 24%, 21%, 11%, and 34%, respectively, and approximately 90% of the CYP21A1P alleles had 15 mutated loci. In addition, approximately 2.5% (n=5 chromosomes) showed four haplotypes of the 3.7-kb TaqI-produced fragment of the CYP21A2-like gene and one duplicated CYP21A2 gene. We conclude that the pseudogene of the CYP21A1P mutation presents diverse variants. Moreover, the existence of the CYP21A2-like gene is more abundant than that of the duplicated CYP21A2 gene downstream of the XA gene and could not be distinguished from the CYP21A2-TNXB gene; thus, it may be misdiagnosed by previously established methods for congenital adrenal hyperplasia caused by a 21-hydroxylase deficiency.

  20. HMGA1 pseudogenes as candidate proto-oncogenic competitive endogenous RNAs

    PubMed Central

    Esposito, Francesco; De Martino, Marco; Petti, Maria Grazia; Forzati, Floriana; Tornincasa, Mara; Federico, Antonella; Arra, Claudio; Pierantoni, Giovanna Maria; Fusco, Alfredo

    2014-01-01

    The High Mobility Group A (HMGA) are nuclear proteins that participate in the organization of nucleoprotein complexes involved in chromatin structure, replication and gene transcription. HMGA overexpression is a feature of human cancer and plays a causal role in cell transformation. Since non-coding RNAs and pseudogenes are now recognized to be important in physiology and disease, we investigated HMGA1 pseudogenes in cancer settings using bioinformatics analysis. Here we report the identification and characterization of two HMGA1 non-coding pseudogenes, HMGA1P6 and HMGA1P7. We show that their overexpression increases the levels of HMGA1 and other cancer-related proteins by inhibiting the suppression of their synthesis mediated by microRNAs. Consistently, embryonic fibroblasts from HMGA1P7-overexpressing transgenic mice displayed a higher growth rate and reduced susceptibility to senescence. Moreover, HMGA1P6 and HMGA1P7 were overexpressed in human anaplastic thyroid carcinomas, which are highly aggressive, but not in differentiated papillary carcinomas, which are less aggressive. Lastly, the expression of the HMGA1 pseudogenes was significantly correlated with HMGA1 protein levels thereby implicating HMGA1P overexpression in cancer progression. In conclusion, HMGA1P6 and HMGA1P7 are potential proto-oncogenic competitive endogenous RNAs. PMID:25268743

  1. Sequence Variability of a Human Pseudogene

    PubMed Central

    Martínez-Arias, Rosa; Calafell, Francesc; Mateu, Eva; Comas, David; Andrés, Aida; Bertranpetit, Jaume

    2001-01-01

    We have obtained haplotypes from the autosomal glucocerebrosidase pseudogene (psGBA) for 100 human chromosomes from worldwide populations, as well as for four chimpanzee and four gorilla chromosomes. In humans, in a 5420-nucleotide stretch analyzed, variation comprises 17 substitutions, a 3-bp deletion, and a length polymorphism at a polyadenine tract. The substitution rate on the pseudogene (1.23 ± 0.22 × 10−9 per nucleotide and year) is within the range of previous estimates considering phylogenetic estimations. Recombination within the pseudogene was recognized, although the low variability of this locus prevented an accurate measure of recombination rates. At least 13% of the psGBA sequence could be attributed to gene conversion from the contiguous GBA gene, whereas the reciprocal event has been shown to lead to Gaucher disease. Human psGBA sequences showed a recent coalescence time (∼200,000 yr ago), and the most ancestral haplotype was found only in Africans; both observations are compatible with the replacement hypothesis of human origins. In a deeper timeframe, phylogenetic analysis showed that the duplication event that created psGBA could be dated at ∼27 million years ago, in agreement with previous estimates. PMID:11381033

  2. Plastid trnF pseudogenes are present in Jaltomata, the sister genus of Solanum (Solanaceae): molecular evolution of tandemly repeated structural mutations.

    PubMed

    Poczai, Péter; Hyvönen, Jaakko

    2013-11-01

    Extensive gene duplication arranged in a tandem array is rare in the plastome of embryophytes. Interestingly, we found pseudogene copies of the trnF gene in the genus Jaltomata, the sister genus of Solanum where such gene duplication has been previously reported. In each Jaltomata sequence available we found two pseudogene copies in close 5'-proximity to the original functional gene. The size of each pseudogene copy ranged between 17 and 48 bp and the anticodon domain was identified as the most conserved element. A common ATT(G)n motif is particularly interesting and its modifications were found to border the 3' of the duplicated regions. Other motifs were partial residues, or entire parts of the T- and D-domains, and both domains proved to be variable in length among the pseudogenes identified. The residues of the 3' and 5' acceptor stem were not found among the copies. We further compared the newly discovered copies of Jaltomata with those ones previously described from Solanum and inferred phylogenetic relationships of the copies aligned. The evolution of Solanum copies, in contrast to Jaltomata, is hard to explain as resulting only in parsimonious changes since reticulate evolutionary patterns were detected among the copies. The dynamic evolutionary patterns of Solanum might be explained by possible inter- or intrachromosomal recombination.

  3. [Peculiarities of phosphoglycerate kinase-1 pseudogene evolution in Schrenck salamander (Salamandrella schrenckii Strauch, 1870)].

    PubMed

    Malyarchuk, B A; Denisova, G A; Derenko, M V

    2013-07-01

    Processed copies of genes generally evolve in neutral mode as pseudogenes, however, some of them might be important sources of new functional genes. The psiPGK1 pseudogene has been discovered in Schrenck salamander (Salamandrella schrenckii, Amphibia, Caudata, Hynobiidae) via polymerase chain reaction used to amplify the phosphoglycerate kinase 1 gene (PGK1). This pseudogene is an intronless copy of PGK1 gene absent of exon 6. Analysis of psiPGK1 pseudogene polymorphism has demonstrated that it lacks mutations, which results in shifts in the stop codons and reading frames, as well as that the interspecies variation of this pseudogene was inconsistent with the neutral model of evolution. In addition, the pattern of phylogeographic differentiation of the psiPGK1 variants mainly coincides with that observed in mitochondrial DNA. These observations allow it to be suggested that the psiPGK1 pseudogene is a new functional gene in the Schrenck salamander. PMID:24450152

  4. Molecular analysis of a U3 RNA gene locus in tomato: transcription signals, the coding region, expression in transgenic tobacco plants and tandemly repeated pseudogenes.

    PubMed

    Kiss, T; Solymosy, F

    1990-04-25

    By screening a tomato genomic library with a tomato U3 RNA probe, we detected a U3 genomic locus whose coding region was determined by primer extension (5' end) and direct RNA sequencing of purified U3 RNA from tomato (3' end). Tomato U3 RNA is 216 nucleotides long, contains all the four evolutionarily highly conserved sequence blocks (Boxes A to D), has at its 5' end a cap not precipitable with anti-m3G antibodies and can be folded into a peculiar secondary structure with two stem-loops at its 5' end. A tagged derivative of the U3 gene was faithfully expressed in transgenic tobacco plants. In the 5' flanking region both plant-specific UsnRNA transcription signals [the TATA-like sequence and the upstream sequence element (USE)] were present, but were positioned closer to each other and also to the cap site in the U3 gene than in the genes for the plant spliceosomal UsnRNAs studied so far. The 3' flanking region of the tomato U3 gene lacked the consensus sequence of the putative termination signal established for the plant spliceosomal UsnRNA genes and contained a pyrimidine-rich tract (R1) followed by four tandemly repeated U3 pseudogenes (U3.1 ps to U3.4 ps) flanked by slightly altered forms (R2 to R5) of R1 and most probably generated by DNA-mediated events. Our results are in line with the conjecture that the enzyme transcribing the tomato U3 gene has different structural requirements for transcriptional activity than the enzyme transcribing plant U1, U2 and U5 genes.

  5. Characterization and genomic mapping of genes and pseudogenes of a new human protein tyrosine phosphatase

    SciTech Connect

    Zhao, Zhaoyang; Lee, Cheng-Chi; Monckton, D.G.

    1996-07-01

    Previously described protein tyrosine phosphatases (PTPs) are classified into three types according to their sequence homology and structural features. Here we describe the characterization of genes and pseudogenes of a member of a fourth type of PTP, designated protein tyrosine phosphatase 4A (PTP4A). The 167-amino-acid human PTPs, but does not show any other sequence homology to any of the previously described PTPs. Two cDNA encoding PTP4A that differed in their noncoding regions were isolated. Another cDNA that has a high level of sequence identity with these two cDNAs and a deletion in the coding region was also isolated. Northern analysis using a probe from a common 3{prime}-untranslated region of the cDNAs recognized mRNAs of about 2 and 4 kb. Both species of mRNA were seen in all human adult and fetal tissues tested. Fluorescence in situ hybridization mapping of the corresponding yeast artificial chromosome clones and sequence-tagged site analysis suggested that one of the PTP4A coding genes is located at 1p35 and the other is on chromosome 11. A processed pseudogene for PTP4A was found in the BRCA1 region of 17q21 and shares 96% sequence identity to one of the PTP4A coding cDNAs. Our studies also suggest the existence of another processed pseudogene on chromosome 11. 31 refs., 6 figs., 1 tab.

  6. Pseudogenes as an alternative source of natural antisense transcripts

    PubMed Central

    2010-01-01

    Background Naturally occurring antisense transcripts (NATs) are non-coding RNAs that may regulate the activity of sense transcripts to which they bind because of complementarity. NATs that are not located in the gene they regulate (trans-NATs) have better chances to evolve than cis-NATs, which is evident when the sense strand of the cis-NAT is part of a protein coding gene. However, the generation of a trans-NAT requires the formation of a relatively large region of complementarity to the gene it regulates. Results Pseudogene formation may be one evolutionary mechanism that generates trans-NATs to the parental gene. For example, this could occur if the parental gene is regulated by a cis-NAT that is copied as a trans-NAT in the pseudogene. To support this we identified human pseudogenes with a trans-NAT to the parental gene in their antisense strand by analysis of the database of expressed sequence tags (ESTs). We found that the mutations that appeared in these trans-NATs after the pseudogene formation do not show the flat distribution that would be expected in a non functional transcript. Instead, we found higher similarity to the parental gene in a region nearby the 3' end of the trans-NATs. Conclusions Our results do not imply a functional relation of the trans-NAT arising from pseudogenes over their respective parental genes but add evidence for it and stress the importance of duplication mechanisms of genetic material in the generation of non-coding RNAs. We also provide a plausible explanation for the large transcripts that can be found in the antisense strand of some pseudogenes. PMID:21047404

  7. Pseudogene redux with new biological significance.

    PubMed

    Salmena, Leonardo

    2014-01-01

    The study of pseudogenes, originally dismissed as genomic relics of evolutionary selection, has seen a resurgence in scientific literature, in addition to being a peculiar topic of discussion in theological debates. For a long time, pseudogenes have been touted as a beacon of natural selection and a definitive proof of evolution due to the slow mutation rate that differentiated them from their parental genes and ultimately caused their genetic demise as functional genes. It now seems that "creationists" have co-opted some recent reports identifying unheralded biological functions to pseudogens and other noncoding RNAs as evidence to undermine the existence of evolution and supporting intelligent design. This issue of Methods in Molecular Biology focused on pseudogenes will certainly not end, nor enter this debate; however, scientists who are also genomics and pseudogene enthusiasts will certainly appreciate that many scientists are thinking about these particular genetic elements in new and interesting ways. With this new interest in a biological significance and "non-junk" role for pseudogenes and other noncoding RNAs, new methods and approaches are being developed to unlock the mystery of these ancient artifacts we know as pseudogenes. In this brief introductory chapter we highlight the renewed interest in pseudogenes and review a rationale for intensification of pseudogene-related research.

  8. Mutational analysis of CYP21A2 gene and CYP21A1P pseudogene: long-range PCR on genomic DNA.

    PubMed

    Lee, Hsien-Hsiung

    2014-01-01

    CYP21A2, the gene that codes for P450c21 (Steroid 21-hydroxylase), has a duplicated pseudogene called CYP21A1P. The gene and the pseudogene share 98 % and 96 % sequence homology in exons and in noncoding sequences, respectively, and are located 30 kb apart within the HLA class III human histocompatibility complex locus on chromosome 6p21.3. CYP21A1P is inactive due to the presence of 11 deteriorated mutations in its coding region. These mutations can be transferred to the functional CYP21A2 through intergenic recombination during meiosis or mitosis and lead to the congenital adrenal hyperplasia (CAH) resulting from 21-hydroxylase deficiency. Conversely, portions of CYP21A2 sequence can be transferred to CYP21A1P, modifying the haplotype. Here, we describe a well-established protocol that can be used to unambiguously study the mutational profile of CYP21A2 gene and CYP21A1P pseudogene. The protocol is based on long-range PCR amplification with allele-specific primers, followed by DNA sequencing of smaller fragments.

  9. Global Intersection of Long Non-Coding RNAs with Processed and Unprocessed Pseudogenes in the Human Genome

    PubMed Central

    Milligan, Michael J.; Harvey, Erin; Yu, Albert; Morgan, Ashleigh L.; Smith, Daniela L.; Zhang, Eden; Berengut, Jonathan; Sivananthan, Jothini; Subramaniam, Radhini; Skoric, Aleksandra; Collins, Scott; Damski, Caio; Morris, Kevin V.; Lipovich, Leonard

    2016-01-01

    Pseudogenes are abundant in the human genome and had long been thought of purely as nonfunctional gene fossils. Recent observations point to a role for pseudogenes in regulating genes transcriptionally and post-transcriptionally in human cells. To computationally interrogate the network space of integrated pseudogene and long non-coding RNA regulation in the human transcriptome, we developed and implemented an algorithm to identify all long non-coding RNA (lncRNA) transcripts that overlap the genomic spans, and specifically the exons, of any human pseudogenes in either sense or antisense orientation. As inputs to our algorithm, we imported three public repositories of pseudogenes: GENCODE v17 (processed and unprocessed, Ensembl 72); Retroposed Pseudogenes V5 (processed only), and Yale Pseudo60 (processed and unprocessed, Ensembl 60); two public lncRNA catalogs: Broad Institute, GENCODE v17; NCBI annotated piRNAs; and NHGRI clinical variants. The data sets were retrieved from the UCSC Genome Database using the UCSC Table Browser. We identified 2277 loci containing exon-to-exon overlaps between pseudogenes, both processed and unprocessed, and long non-coding RNA genes. Of these loci we identified 1167 with Genbank EST and full-length cDNA support providing direct evidence of transcription on one or both strands with exon-to-exon overlaps. The analysis converged on 313 pseudogene-lncRNA exon-to-exon overlaps that were bidirectionally supported by both full-length cDNAs and ESTs. In the process of identifying transcribed pseudogenes, we generated a comprehensive, positionally non-redundant encyclopedia of human pseudogenes, drawing upon multiple, and formerly disparate public pseudogene repositories. Collectively, these observations suggest that pseudogenes are pervasively transcribed on both strands and are common drivers of gene regulation. PMID:27047535

  10. Differential Expression of OCT4 Pseudogenes in Pluripotent and Tumor Cell Lines

    PubMed Central

    Poursani, Ensieh M.; Mohammad Soltani, Bahram; Mowla, Seyed Javad

    2016-01-01

    Objective The human OCT4 gene, the most important pluripotency marker, can generate at least three different transcripts (OCT4A, OCT4B, and OCT4B1) by alternative splicing. OCT4A is the main isoform responsible for the stemness property of embryonic stem (ES) cells. There also exist eight processed OCT4 pseudogenes in the human genome with high homology to the OCT4A, some of which are transcribed in various cancers. Recent conflicting reports on OCT4 expression in tumor cells and tissues emphasize the need to discriminate the expression of OCT4A from other variants as well as OCT4 pseudogenes. Materials and Methods In this experimental study, DNA sequencing confirmed the authenticity of transcripts of OCT4 pseudogenes and their expression patterns were investigated in a panel of different human cell lines by reverse transcription-polymerase chain reaction (RT-PCR). Results Differential expression of OCT4 pseudogenes in various human cancer and pluripotent cell lines was observed. Moreover, the expression pattern of OCT4-pseudogene 3 (OCT4-pg3) followed that of OCT4A during neural differentiation of the pluripotent cell line of NTERA-2 (NT2). Although OCT4-pg3 was highly expressed in undifferentiated NT2 cells, its expression was rapidly down-regulated upon induction of neural differentiation. Analysis of protein expression of OCT4A, OCT4-pg1, OCT4-pg3, and OCT4-pg4 by Western blotting indicated that OCT4 pseudogenes cannot produce stable proteins. Consistent with a newly proposed competitive role of pseudogene microRNA docking sites, we detected miR-145 binding sites on all transcripts of OCT4 and OCT4 pseudogenes. Conclusion Our study suggests a potential coding-independent function for OCT4 pseudogenes during differentiation or tumorigenesis. PMID:27054116

  11. Automatic annotation of eukaryotic genes, pseudogenes and promoters

    PubMed Central

    Solovyev, Victor; Kosarev, Peter; Seledsov, Igor; Vorobyev, Denis

    2006-01-01

    Background The ENCODE gene prediction workshop (EGASP) has been organized to evaluate how well state-of-the-art automatic gene finding methods are able to reproduce the manual and experimental gene annotation of the human genome. We have used Softberry gene finding software to predict genes, pseudogenes and promoters in 44 selected ENCODE sequences representing approximately 1% (30 Mb) of the human genome. Predictions of gene finding programs were evaluated in terms of their ability to reproduce the ENCODE-HAVANA annotation. Results The Fgenesh++ gene prediction pipeline can identify 91% of coding nucleotides with a specificity of 90%. Our automatic pseudogene finder (PSF program) found 90% of the manually annotated pseudogenes and some new ones. The Fprom promoter prediction program identifies 80% of TATA promoters sequences with one false positive prediction per 2,000 base-pairs (bp) and 50% of TATA-less promoters with one false positive prediction per 650 bp. It can be used to identify transcription start sites upstream of annotated coding parts of genes found by gene prediction software. Conclusion We review our software and underlying methods for identifying these three important structural and functional genome components and discuss the accuracy of predictions, recent advances and open problems in annotating genomic sequences. We have demonstrated that our methods can be effectively used for initial automatic annotation of the eukaryotic genome. PMID:16925832

  12. Pseudogene-derived endogenous siRNAs and their function.

    PubMed

    Chan, Wen-Ling; Chang, Jan-Gowth

    2014-01-01

    Pseudogenes were once considered genomic fossils, but recent studies indicate that they may function as gene regulators through the generation of endogenous small interfering RNAs (esiRNAs), antisense RNAs, and decoys for microRNAs. In this review, we summarize pseudogene study methods, emphasizing relevant publicly available resources, and we describe a systematic pipeline to identify pseudogene-derived esiRNAs and their targets, which can lead to a deeper understanding of pseudogene function.

  13. Embryonic expression of the human 40-kD keratin: evidence from a processed pseudogene sequence.

    PubMed Central

    Savtchenko, E S; Schiff, T A; Jiang, C K; Freedberg, I M; Blumenberg, M

    1988-01-01

    Analysis of the cytoskeletal components of early murine embryos has detected expression of two keratin proteins, K#8 and K#18, at the 4-8-cell stage. Comparable data for human embryos do not exist, although several processed pseudogenes corresponding to K#8 and K#18 have been discovered in the human genome. Because only genes that are expressed in pre-germ-line and germ-line cells can give rise to processed pseudogenes, the existence of human K#8 and K#18 processed pseudogenes is prima facie evidence for expression of keratins K#8 and K#18 in the early human embryo. We have cloned and determined the complete sequence of a processed pseudogene corresponding to another acidic human keratin. Comparison of its sequence with known sequences of other mammalian keratins indicates that the pseudogene arose from a reverse transcript of a correctly initiated and terminated functional human K#19 gene. This implies expression of K#19 keratin in addition to K#8 and K#18 in the early human embryo. We have proposed previously that K#19 evolved specifically to redress unbalanced production of various basic keratins, and our current evidence, that it is expressed at an early stage of development, implies that K#19 may fulfill this same role during human embryogenesis. Images Figure 3 PMID:2461075

  14. Mycobacterium leprae: genes, pseudogenes and genetic diversity

    PubMed Central

    Singh, Pushpendra; Cole, Stewart T

    2011-01-01

    Leprosy, which has afflicted human populations for millenia, results from infection with Mycobacterium leprae, an unculturable pathogen with an exceptionally long generation time. Considerable insight into the biology and drug resistance of the leprosy bacillus has been obtained from genomics. M. leprae has undergone reductive evolution and pseudogenes now occupy half of its genome. Comparative genomics of four different strains revealed remarkable conservation of the genome (99.995% identity) yet uncovered 215 polymorphic sites, mainly single nucleotide polymorphisms, and a handful of new pseudogenes. Mapping these polymorphisms in a large panel of strains defined 16 single nucleotide polymorphism-subtypes that showed strong geographical associations and helped retrace the evolution of M. leprae. PMID:21162636

  15. The IL-9 receptor gene (IL9R): Genomic structure, chromosomal localization in the pseudoautosomal region of the long arm of sex chromosomes, and identification of IL9R pseudogenes at 9qter, 10pter, 16pter, 18pter

    SciTech Connect

    Kermouni, A.; Godelaine, D.; Lurquin, C.; Szikora, J.P.

    1995-09-20

    Cosmids containing the human IL-9 receptor (R) gene (IL9R) have been isolated from a genomic library using the IL9R cDNA as a probe. We have shown that the human IL9R gene is composed of 11 exons and 10 introns, stretching over {approx} 17 kb, and is located within the pseudoautosomal region of the Xq and Yq chromosome, in the vicinity of the telomere. Analysis of the 5` flanking region revealed multiple transcription initiation sites as well as potential binding motifs for AP1, AP2, AP3, Sp1, and NF-kB, although this region lacks a TATA box. Using the human IL9R cosmid as a probe to perform fluorescence in situ hybridization, additional signals were identified in the subtelomeric regions of chromosomes 9q, 10p, 16p, and 18p. IL9R homologs located on chromosomes 9 and 18 were partially characterized, while those located on chromosomes 16 and 10 were completely sequenced. Although they are similiar to the IL9R gene ({approx} 90% identity), none of these copies encodes a functional receptor: none of them contains sequences homologous to the 5` flanking region or exon 1 of the IL9R gene, and the remaining ORFs have been inactivated by various point mutations and deletions. Taken together, our results indicate that the IL9R gene is located at Xq28 and Yq12, in the long arm pseudoautosomal region, and that four IL9R pseudogenes are located on 9q34, 10p15, 16p13.3 and 18p11.3, probably dispersed as the result of translocations during evolution. 42 refs., 6 figs., 3 tabs.

  16. Length distribution of long interspersed nucleotide elements (LINEs) and processed pseudogenes of human endogenous retroviruses: implications for retrotransposition and pseudogene detection.

    PubMed

    Pavlícek, Adam; Paces, Jan; Zíka, Radek; Hejnar, Jirí

    2002-10-30

    Deciphering the human genome includes reliable identification and structural characterization of individual retrotransposon elements. The most active group of autonomous transposable elements, the long interspersed nuclear elements (LINE), transpose themselves as well as other RNAs, including those of human endogenous retroviruses (HERV). During this transposition, however, the LINE-encoded reverse transcriptase (RT) often abortively dissociates from the RNA template, leaving a prematurely terminated, 5' truncated copy. We have analyzed the length distributions of LINEs and of processed pseudogenes derived from HERV-W. As expected, we have found that the majority of 5' truncated LINEs and HERV-W processed pseudogenes show a prevalence of very short elements terminated close to the 3' end. On the other hand, the number of complete elements is far above the expectation. The characteristic distribution in both cases indicates two important conclusions: (i) dissociation of LINE RT from the template cannot be fully explained by low processivity of RT modelled as a stochastic, Poisson-type process. (ii) Currently cited numbers of pseudogenes within the human genome are underestimated, since a large percentage of pseudogenes are terminated in the 3' untranslated region and remain undetectable in translated homology searches of protein databases against the human genome.

  17. A nuclear ribosomal DNA pseudogene in triatomines opens a new research field of fundamental and applied implications in Chagas disease

    PubMed Central

    Zuriaga, María Angeles; Mas-Coma, Santiago; Bargues, María Dolores

    2015-01-01

    A pseudogene, designated as "ps(5.8S+ITS-2)", paralogous to the 5.8S gene and internal transcribed spacer (ITS)-2 of the nuclear ribosomal DNA (rDNA), has been recently found in many triatomine species distributed throughout North America, Central America and northern South America. Among characteristics used as criteria for pseudogene verification, secondary structures and free energy are highlighted, showing a lower fit between minimum free energy, partition function and centroid structures, although in given cases the fit only appeared to be slightly lower. The unique characteristics of "ps(5.8S+ITS-2)" as a processed or retrotransposed pseudogenic unit of the ghost type are reviewed, with emphasis on its potential functionality compared to the functionality of genes and spacers of the normal rDNA operon. Besides the technical problem of the risk for erroneous sequence results, the usefulness of "ps(5.8S+ITS-2)" for specimen classification, phylogenetic analyses and systematic/taxonomic studies should be highlighted, based on consistence and retention index values, which in pseudogenic sequence trees were higher than in functional sequence trees. Additionally, intraindividual, interpopulational and interspecific differences in pseudogene amount and the fact that it is a pseudogene in the nuclear rDNA suggests a potential relationships with fitness, behaviour and adaptability of triatomine vectors and consequently its potential utility in Chagas disease epidemiology and control. PMID:25760450

  18. The pseudogenes of Mycobacterium leprae reveal the functional relevance of gene order within operons

    PubMed Central

    Muro, Enrique M.; Mah, Nancy; Moreno-Hagelsieb, Gabriel; Andrade-Navarro, Miguel A.

    2011-01-01

    Almost 50 years following the discovery of the prokaryotic operon, the functional relevance of gene order within operons remains unclear. In this work, we take advantage of the eroded genome of Mycobacterium leprae to add evidence supporting the notion that functionally less important genes have a tendency to be located at the end of its operons. M. leprae’s genome includes 1133 pseudogenes and 1614 protein-coding genes and can be compared with the close genome of M. tuberculosis. Assuming M. leprae’s pseudogenes to represent dispensable genes, we have studied the position of these pseudogenes in the operons of M. leprae and of their orthologs in M. tuberculosis. We observed that both tend to be located in the 3′ (downstream) half of the operon (P-values of 0.03 and 0.18, respectively). Analysis of pseudogenes in all available prokaryotic genomes confirms this trend (P-value of 7.1 × 10−7). In a complementary analysis, we found a significant tendency for essential genes to be located at the 5′ (upstream) half of the operon (P-value of 0.006). Our work provides an indication that, in prokarya, functionally less important genes have a tendency to be located at the end of operons, while more relevant genes tend to be located toward operon starts. PMID:21051341

  19. The pseudogenes of Mycobacterium leprae reveal the functional relevance of gene order within operons.

    PubMed

    Muro, Enrique M; Mah, Nancy; Moreno-Hagelsieb, Gabriel; Andrade-Navarro, Miguel A

    2011-03-01

    Almost 50 years following the discovery of the prokaryotic operon, the functional relevance of gene order within operons remains unclear. In this work, we take advantage of the eroded genome of Mycobacterium leprae to add evidence supporting the notion that functionally less important genes have a tendency to be located at the end of its operons. M. leprae's genome includes 1133 pseudogenes and 1614 protein-coding genes and can be compared with the close genome of M. tuberculosis. Assuming M. leprae's pseudogenes to represent dispensable genes, we have studied the position of these pseudogenes in the operons of M. leprae and of their orthologs in M. tuberculosis. We observed that both tend to be located in the 3' (downstream) half of the operon (P-values of 0.03 and 0.18, respectively). Analysis of pseudogenes in all available prokaryotic genomes confirms this trend (P-value of 7.1 × 10(-7)). In a complementary analysis, we found a significant tendency for essential genes to be located at the 5' (upstream) half of the operon (P-value of 0.006). Our work provides an indication that, in prokarya, functionally less important genes have a tendency to be located at the end of operons, while more relevant genes tend to be located toward operon starts.

  20. Structural Analysis

    NASA Technical Reports Server (NTRS)

    1991-01-01

    After an 800-foot-tall offshore oil recovery platform collapsed, the engineers at Engineering Dynamics, Inc., Kenner, LA, needed to learn the cause of the collapse, and analyze the proposed repairs. They used STAGSC-1, a NASA structural analysis program with geometric and nonlinear buckling analysis. The program allowed engineers to determine the deflected and buckling shapes of the structural elements. They could then view the proposed repairs under the pressure that caused the original collapse.

  1. Functional evidence of post-transcriptional regulation by pseudogenes.

    PubMed

    Muro, Enrique M; Mah, Nancy; Andrade-Navarro, Miguel A

    2011-11-01

    Pseudogenes have been mainly considered as functionless evolutionary relics since their discovery in 1977. However, multiple mechanisms of pseudogene functionality have been proposed both at the transcriptional and post-transcriptional level. This review focuses on the role of pseudogenes as post-transcriptional regulators. Two lines of research have recently presented strong evidence of their potential function as post-transcriptional regulators of the corresponding parental genes from which they originate. First, pseudogene genomic sequences can encode siRNAs. Second, pseudogene transcripts can act as indirect post-transcriptional regulators decoying ncRNA, in particular miRNAs that target the parental gene. This has been demonstrated for PTEN and KRAS, two genes involved in tumorigenesis. The role of pseudogenes in disease has not been proven and seems to be the next research landmark. In this review, we chronicle the events following the initial discovery of the 'useless' pseudogene to its breakthrough as a functional molecule with hitherto unbeknownst potential to influence human disease.

  2. Identification of 11 pseudogenes in the DNA methyltransferase gene family in rodents and humans and implications for the functional loci.

    PubMed

    Lees-Murdock, Diane J; McLoughlin, Gerard A; McDaid, Jennifer R; Quinn, Lisa M; O'Doherty, Alan; Hiripi, László; Hack, Catherine J; Walsh, Colum P

    2004-07-01

    DNA (cytosine-5-)-methyltransferase genes are important for normal development in mice and humans. We describe here 11 pseudogenes spread among human, mouse, and rat belonging to this gene family, ranging from 1 pseudogene in humans to 7 in rat, all belonging to the Dnmt3 subfamily. All except 1 rat Dnmt3b pseudogene appear to be transcriptionally silent. Dnmt3a2, a transcript variant of Dnmt3a starting at an alternative promoter, had the highest number of processed pseudogenes, while none were found for the canonical Dnmt3a, suggesting the former transcript is more highly expressed in germ cells. Comparison of human, mouse, and rat Dnmt3a2 sequences also suggests that human exon 8 is a recent acquisition. Alignment of the 3'UTR of Dnmt3a2 among the functional genes and the processed pseudogenes suggested that a second polyadenylation site downstream of the RefSeq poly(A) was being used in mice, resulting in a longer 3'UTR, a finding confirmed by RT-PCR in mouse tissues. We also found conserved cytoplasmic polyadenylation elements, usually implicated in regulating translation in oocytes, in Dnmt3b and Dnmt1. Expression of DNMT3B in the mouse oocyte was confirmed by immunocytochemistry. These results clarify the structure of a number of loci in the three species examined and provide some useful insights into the structure and evolution of this gene family.

  3. Pseudogene-expressed RNAs: a new frontier in cancers.

    PubMed

    Shi, Xuefei; Nie, Fengqi; Wang, Zhaoxia; Sun, Ming

    2016-02-01

    Over the past decade, the importance of non-protein-coding functional elements in the human genome has emerged from the water and been identified as a key revelation in post-genomic biology. Since the completion of the ENCODE (Encyclopedia of DNA Elements) and FANTOM (Functional Annotation of Mammals) project, tens of thousands of pseudogenes as well as numerous long non-coding RNA (lncRNA) genes were identified. However, while pseudogenes were initially regarded as non-functional relics littering the human genome during evolution, recent studies have revealed that they play critical roles at multiple levels in diverse physiological and pathological processes, especially in cancer through parental-gene-dependent or parental-gene-independent regulation. Herein, we review the current knowledge of pseudogenes and synthesize the nascent evidence for functional properties and regulatory modalities exerted by pseudogene-transcribed RNAs in human cancers and prospect the potential as molecular signatures in cancer reclassification and tailored therapy.

  4. Protein prenyltransferases: anchor size, pseudogenes and parasites.

    PubMed

    Maurer-Stroh, Sebastian; Washietl, Stefan; Eisenhaber, Frank

    2003-07-01

    Lipid modification of eukaryotic proteins by protein prenyltransferases is required for critical signaling pathways, cell cycle progression, cytoskeleton remodeling, induction of apoptosis and vesicular trafficking. This review analyzes the influence of distinct states of sequential posttranslational processing that can be obtained after single or double prenylation, reversible palmitoylation, proteolytic cleavage of the C-terminus and possible reversible carboxymethylation. This series of modifications, as well as the exact length of the prenyl anchor, are determinants in protein-membrane and specific protein-protein interactions of protein prenyltransferase substrates. Furthermore, the occurrence and distribution of pseudogenes of protein prenyltransferase subunits are discussed. Besides being developed as anti-cancer agents, prenyltransferase inhibitors are effective against an increasing number of parasitic diseases. Extensive screens for protein prenyltransferases in genomic data of fungal and protozoan pathogens unveil a series of new pharmacologic targets for prenyltransferase inhibition, including the parasites Brugia malayi, Onchocerca volvulus, Aspergillus nidulans, Pneumocystis carinii, Entamoeba histolytica, Strongyloides stercoralis, Trichinella spiralis and Cryptosporidium parvum.

  5. Pseudogenization of testis-specific Lfg5 predates human/Neanderthal divergence.

    PubMed

    Mariotti, Marco; Smith, Temple F; Sudmant, Peter H; Goldberger, Gabriel

    2014-05-01

    Recent reviews discussed the critical roles of apoptosis in human spermatogenesis and infertility. These reviews highlight the FasL-induced caspase cascade in apoptosis lending importance to our discovery of the pseudogene status of the Lfg5 gene in modern humans, Neanderthal and the Denisovan. This gene is a member of the ancient and highly conserved apoptosis Lifeguard family. This pseudogenization is the result of a premature stop codon at the 3'-end of exon 8 not found in any other ortholog. With the current exception of the domesticated bovine and buffalo, Lfg5's expression in mammals is testis-specific. A full analysis of this gene, its phylogenetic context and its recent hominin changes suggest its inactivation was likely under selection in human evolution.

  6. Pseudogenes: pseudo-functional or key regulators in health and disease?

    PubMed

    Pink, Ryan Charles; Wicks, Kate; Caley, Daniel Paul; Punch, Emma Kathleen; Jacobs, Laura; Carter, David Raul Francisco

    2011-05-01

    Pseudogenes have long been labeled as "junk" DNA, failed copies of genes that arise during the evolution of genomes. However, recent results are challenging this moniker; indeed, some pseudogenes appear to harbor the potential to regulate their protein-coding cousins. Far from being silent relics, many pseudogenes are transcribed into RNA, some exhibiting a tissue-specific pattern of activation. Pseudogene transcripts can be processed into short interfering RNAs that regulate coding genes through the RNAi pathway. In another remarkable discovery, it has been shown that pseudogenes are capable of regulating tumor suppressors and oncogenes by acting as microRNA decoys. The finding that pseudogenes are often deregulated during cancer progression warrants further investigation into the true extent of pseudogene function. In this review, we describe the ways in which pseudogenes exert their effect on coding genes and explore the role of pseudogenes in the increasingly complex web of noncoding RNA that contributes to normal cellular regulation.

  7. A processed pseudogene contributes to apparent mule deer prion gene heterogeneity.

    PubMed

    Brayton, Kelly A; O'Rourke, Katherine I; Lyda, Amy K; Miller, Michael W; Knowles, Donald P

    2004-02-01

    Pathogenesis and transmission of the prion disorders (transmissible spongiform encephalopathies, TSEs) are mediated by a modified isoform of the prion protein (PrP). Prion protein gene (PRNP) alleles associated with relative susceptibility to TSE have been identified in sheep, humans and possibly elk. Comparable data have not been derived for mule deer, a species susceptible to the TSE chronic wasting disease (CWD). Initial analysis of the open reading frame (ORF) in exon 3 of the mule deer PRNP gene revealed polymorphisms in all 145 samples analyzed, with 10 potential polymorphic sites. Because 144/145 (99.3%) of the samples were heterozygous for a coding change (N/S) at codon 138 (bp 412) and a non-coding polymorphism at bp 418, and individual deer with three or four different alleles were identified a possible gene duplication was indicated. Analysis of BAC clones containing mule deer PRNP genes revealed a full length functional gene and a processed pseudogene. The pseudogene was characteristic of previously described retroelements, in that it lacks introns and is flanked by repeat sequences. Three alleles of the functional gene were identified, with coding changes only at codons 20 (D/G) and 225 (S/F). Determination of PRNP functional gene alleles from 47 CWD-positive mule deer showed the predominant allele encoded 20D225S (frequency 0.85). When alleles were grouped by coding changes in the functional gene, four of the six possible peptide combinations were identified in infected deer. Three pseudogene alleles with coding changes in exon 3 were identified in the mule deer samples examined. Because the TSEs appear to be "protein only" disorders, the presence of an untranslated pseudogene is not expected to affect disease resistance. Therefore, selection of a genotyping method specific for the functional gene is critical for large-scale studies to identify the role of the PRNP gene in susceptibility to CWD in mule deer.

  8. Ontogeny of the avian intestinal immunoglobulin repertoire: modification in CDR3 length and conserved VH-pseudogene usage.

    PubMed

    den Hartog, Gerco; Crooijmans, Richard P M A; Parmentier, Henk K; Savelkoul, Huub F J; Bos, Nicolaas A; Lammers, Aart

    2013-12-01

    Immunoglobulins play an important role in maintenance of mucosal homeostasis in the gut. The antigen binding specificity of these immunoglobulins depends for a large part on the hypervariable CDR3 region. To gain knowledge about isotype-specific development of the CDR3 repertoire we examined CDR3 spectratypes at multiple time points between 4 and 70 days post hatch. In order to identify clonal expansions deviation from the normal distribution (SS) and the average CDR3 length was calculated. IgA-CDR3 regions were studied in more detail by DNA sequence analysis at day 7 and 70 and preferential VH pseudogene usage was estimated. The SS of CDR3 repertoires of the IgM, IgG and IgA isotypes successively increased, but for each isotype this increase was transiently. The length of the CDR3 regions decreased with age for IgM becoming similar to the CDR3 length of IgA at day 70. The IgA- and IgG-CDR3 lengths did not change with age. On average, the CDR3 length of IgA was the shortest. IgA CDR3 sequences were similar between animals aged 7 and 70 days. A limited number of pseudogenes was used, and no differences in pseudogene usage were observed between animals aged 7 and 70 days. Of the identified VH pseudogenes, half of the sequences used VH15, whilst a number of the pseudogenes were not used at all. We conclude that CDR3 spectratype profiles change during aging, whilst at the CDR3-sequence level, variation in VH pseudogene usage for ileal IgA is limited suggesting conservation during ontogeny.

  9. Pseudogene-Expressed RNAs: Emerging Roles in Gene Regulation and Disease.

    PubMed

    Grandér, Dan; Johnsson, Per

    2016-01-01

    Pseudogenes have for long been considered as non-functional relics littering the human genome. Only now, it is becoming apparent that many pseudogenes are transcribed into long noncoding RNAs, some with proven biological functions. Here, we review the current knowledge of pseudogenes and their widespread functional properties with an emphasis on pseudogenes that have been functionally investigated in greater detail. Pseudogenes are emerging as a novel class of long noncoding RNAs functioning, for example, through microRNA sponging and chromatin remodeling. The examples discussed herein underline that pseudogene-encoded RNAs are important regulatory molecules involved in diseases such as cancer.

  10. A coding-independent function of gene and pseudogene mRNAs regulates tumour biology

    PubMed Central

    Poliseno, Laura; Salmena, Leonardo; Zhang, Jiangwen; Carver, Brett; Haveman, William J.; Pandolfi, Pier Paolo

    2011-01-01

    The canonical role of messenger RNA (mRNA) is to deliver protein-coding information to sites of protein synthesis. However, given that microRNAs bind to RNAs, we hypothesized that RNAs possess a biological role in cancer cells that relies upon their ability to compete for microRNA binding and is independent of their protein-coding function. As a paradigm for the protein-coding-independent role of RNAs, we describe the functional relationship between the mRNAs produced by the PTEN tumour suppressor gene and its pseudogene (PTENP1) and the critical consequences of this interaction. We find that PTENP1 is biologically active as determined by its ability to regulate cellular levels of PTEN, and that it can exert a growth-suppressive role. We also show that PTENP1 locus is selectively lost in human cancer. We extend our analysis to other cancer-related genes that possess pseudogenes, such as oncogenic KRAS. Further, we demonstrate that the transcripts of protein coding genes such as PTEN are also biologically active. Together, these findings attribute a novel biological role to expressed pseudogenes, as they can regulate coding gene expression, and reveal a non-coding function for mRNAs. PMID:20577206

  11. Data supporting the design and evaluation of a universal primer pair for pseudogene-free amplification of HPRT1 in real-time PCR

    PubMed Central

    Valadan, Reza; Hedayatizadeh-Omran, Akbar; Alhosseini-Abyazani, Mahdyieh Naghavi; Amjadi, Omolbanin; Rafiei, Alireza; Tehrani, Mohsen; Alizadeh-Navaei, Reza

    2015-01-01

    Hypoxanthine-guanine phosphoribosyltransferase 1 (HPRT1) is a common housekeeping gene for sample normalization in the quantitative reverse transcriptase polymerase chain (qRT-PCR). However, co-amplification of HPRT1 pseudogenes may affect accurate results obtained in qRT-PCR. We designed a primer pair (HPSF) for pseudogene-free amplification of HPRT1 in qRT-PCR [1]. We showed specific amplification of HPRT1 mRNA in some common laboratory cell lines, including HeLa, NIH/3T3, CHO, BHK, COS-7 and VERO. This article provides data supporting the presence and location of HPRT1 pseudogenes within human and mouse genome, and the strategies used for designing primers that avoid the co-amplification of contaminating pseudogenes in qRT-PCR. In silico analysis of human genome showed three homologous sequences for HPRT1 on chromosomes 4, 5 and 11. The mRNA sequence of HPRT1 was aligned with the pseudogenes, and the primers were designed toward 5′ end of HPRT1 mRNA that was only specific to HPRT1 mRNA not to the pseudogenes. The standard curve plot generated by HPSF primers showed the correlation coefficient of 0.999 and the reaction efficiency of 99.5%. Our findings suggest that HPSF primers can be recommended as a candidate primer pair for accurate and reproducible qRT-PCR assays. PMID:26217821

  12. Data supporting the design and evaluation of a universal primer pair for pseudogene-free amplification of HPRT1 in real-time PCR.

    PubMed

    Valadan, Reza; Hedayatizadeh-Omran, Akbar; Alhosseini-Abyazani, Mahdyieh Naghavi; Amjadi, Omolbanin; Rafiei, Alireza; Tehrani, Mohsen; Alizadeh-Navaei, Reza

    2015-09-01

    Hypoxanthine-guanine phosphoribosyltransferase 1 (HPRT1) is a common housekeeping gene for sample normalization in the quantitative reverse transcriptase polymerase chain (qRT-PCR). However, co-amplification of HPRT1 pseudogenes may affect accurate results obtained in qRT-PCR. We designed a primer pair (HPSF) for pseudogene-free amplification of HPRT1 in qRT-PCR [1]. We showed specific amplification of HPRT1 mRNA in some common laboratory cell lines, including HeLa, NIH/3T3, CHO, BHK, COS-7 and VERO. This article provides data supporting the presence and location of HPRT1 pseudogenes within human and mouse genome, and the strategies used for designing primers that avoid the co-amplification of contaminating pseudogenes in qRT-PCR. In silico analysis of human genome showed three homologous sequences for HPRT1 on chromosomes 4, 5 and 11. The mRNA sequence of HPRT1 was aligned with the pseudogenes, and the primers were designed toward 5' end of HPRT1 mRNA that was only specific to HPRT1 mRNA not to the pseudogenes. The standard curve plot generated by HPSF primers showed the correlation coefficient of 0.999 and the reaction efficiency of 99.5%. Our findings suggest that HPSF primers can be recommended as a candidate primer pair for accurate and reproducible qRT-PCR assays.

  13. A Rapid Genotyping Assay for Segregating Human Olfactory Receptor Pseudogenes

    PubMed Central

    Hinkley, Craig S.; Ismaili, Lindita

    2012-01-01

    Variation in odor perception between individuals is initiated by binding of “odorant” molecules to olfactory receptors (ORs) located in the nasal cavity. To determine the mechanism for variation in odor perception, identification of specific ligands for a large number of ORs is required. However, it has been difficult to identify specific ligands, and ligands have been identified for only 2–3% of the hundreds of mammalian ORs. One way to increase the number of identified ligands is to take advantage of >60 human OR genes that are segregating as a result of a single nucleotide polymorphism, between a functional intact allele and a nonfunctional pseudogene allele. Potential ligands for these ORs can be identified by correlating odor perception of an individual with their genotype [intact/intact (I/I) vs. pseudogene/pseudogene (P/P)] for an OR gene. For this type of study, genotypes must be determined for a large number of individuals. We have developed a PCR-based assay to distinguish between the intact and pseudogene alleles of 49 segregating human OR genes and to determine an individual's genotype for these genes. To facilitate rapid determination of genotypes for a large number of individuals, the assay uses a small number of simple steps and equipment commonly found in most molecular biology and biochemistry laboratories. Although this assay was developed to distinguish between polymorphisms in OR genes, it can easily be adapted for use in distinguishing single nucleotide polymorphisms in any gene or chromosomal locus. PMID:23002384

  14. HMGA1-pseudogene expression is induced in human pituitary tumors

    PubMed Central

    Esposito, Francesco; De Martino, Marco; D'Angelo, Daniela; Mussnich, Paula; Raverot, Gerald; Jaffrain-Rea, Marie-Lise; Fraggetta, Filippo; Trouillas, Jacqueline; Fusco, Alfredo

    2015-01-01

    Numerous studies have established that High Mobility Group A (HMGA) proteins play a pivotal role on the onset of human pituitary tumors. They are overexpressed in pituitary tumors, and, consistently, transgenic mice overexpressing either the Hmga1 or the Hmga2 gene develop pituitary tumors. In contrast with HMGA2, HMGA1 overexpression is not related to any rearrangement or amplification of the HMGA1 locus in these tumors. We have recently identified 2 HMGA1 pseudogenes, HMGA1P6 and HMGA1P7, acting as competitive endogenous RNA decoys for HMGA1 and other cancer related genes. Here, we show that HMGA1 pseudogene expression significantly correlates with HMGA1 mRNA levels in growth hormone and nonfunctioning pituitary adenomas likely inhibiting the repression of HMGA1 through microRNAs action. According to our functional studies, these HMGA1 pseudogenes enhance the proliferation and migration of the mouse pituitary tumor cell line, at least in part, through their upregulation. Our results point out that the overexpression of HMGA1P6 and HMGA1P7 could contribute to increase HMGA1 levels in human pituitary tumors, and then to pituitary tumorigenesis. PMID:25894544

  15. Nuclear rDNA pseudogenes in Chagas disease vectors: evolutionary implications of a new 5.8S+ITS-2 paralogous sequence marker in triatomines of North, Central and northern South America.

    PubMed

    Bargues, M Dolores; Zuriaga, M Angeles; Mas-Coma, Santiago

    2014-01-01

    A pseudogene, paralogous to rDNA 5.8S and ITS-2, is described in Meccus dimidiata dimidiata, M. d. capitata, M. d. maculippenis, M. d. hegneri, M. sp. aff. dimidiata, M. p. phyllosoma, M. p. longipennis, M. p. pallidipennis, M. p. picturata, M. p. mazzottii, Triatoma mexicana, Triatoma nitida and Triatoma sanguisuga, covering North America, Central America and northern South America. Such a nuclear rDNA pseudogene is very rare. In the 5.8S gene, criteria for pseudogene identification included length variability, lower GC content, mutations regarding the functional uniform sequence, and relatively high base substitutions in evolutionary conserved sites. At ITS-2 level, criteria were the shorter sequence and large proportion of insertions and deletions (indels). Pseudogenic 5.8S and ITS-2 secondary structures were different from the functional foldings, different one another, showing less negative values for minimum free energy (mfe) and centroid predictions, and lower fit between mfe, partition function, and centroid structures. A complete characterization indicated a processed pseudogenic unit of the ghost type, escaping from rDNA concerted evolution and with functionality subject to constraints instead of evolving free by neutral drift. Despite a high indel number, low mutation number and an evolutionary rate similar to the functional ITS-2, that pseudogene distinguishes different taxa and furnishes coherent phylogenetic topologies with resolution similar to the functional ITS-2. The discovery of a pseudogene in many phylogenetically related species is unique in animals and allowed for an estimation of its palaeobiogeographical origin based on molecular clock data, inheritance pathways, evolutionary rate and pattern, and geographical spread. Additional to the technical risk to be considered henceforth, this relict pseudogene, designated as "ps(5.8S+ITS-2)", proves to be a valuable marker for specimen classification, phylogenetic analyses, and systematic

  16. The emerging role of pseudogene expressed non-coding RNAs in cellular functions

    PubMed Central

    Groen, Jessica N.; Capraro, David; Morris, Kevin V.

    2014-01-01

    A paradigm shift is sweeping modern day molecular biology following the realisation that large amounts of “junk” DNA”, thought initially to be evolutionary remnants, may actually be functional. Several recent studies support a functional role for pseudogene-expressed non-coding RNAs in regulating their protein-coding counterparts. Several hundreds of pseudogenes have been reported as transcribed into RNA in a large variety of tissues and tumours. Most studies have focused on pseudogenes expressed in the sense direction, but some reports suggest that pseudogenes can also be transcribed as antisense RNAs (asRNAs). A few examples of key regulatory genes, such as PTEN and OCT4, have in fact been reported to be under the regulation of pseudogene-expressed asRNAs. Here, we review what are known about pseudogene expressed non-coding RNA mediated gene regulation and their roles in the control of epigenetic states. PMID:24842102

  17. The major and minor chicken vitellogenin genes are each adjacent to partially deleted pseudogene copies of the other.

    PubMed Central

    Silva, R; Fischer, A H; Burch, J B

    1989-01-01

    The major chicken vitellogenin gene (VTGII) has previously been cloned and sequenced. We now report the isolation of genomic clones that encompass a minor chicken vitellogenin gene (VTGIII) which is also expressed in the liver in response to estradiol. Our analysis reveals that a pseudogene for VTGII (psi VTGII) lies 1,426 base pairs upstream of this VTGIII gene. A reevaluation of published sequence data reveals that the converse is also true, namely, that a pseudogene for VTGIII (psi VTGIII) lies 1,345 base pairs downstream of the VTGII gene. Our results show that a 335-base-pair deletion has removed the psi VTGIII promoter and cap site but left residual estrogen response element in a region where nuclease-hypersensitive sites have been reported to be induced in response to estradiol. Images PMID:2796998

  18. Intron-exon organization of the active human protein S gene PS. alpha. and its pseudogene PS. beta. : Duplication and silencing during primate evolution

    SciTech Connect

    Ploos van Amstel, H.; Reitsma, P.H.; van der Logt, C.P.; Bertina, R.M. )

    1990-08-28

    The human protein S locus on chromosome 3 consists of two protein S genes, PS{alpha} and PS{beta}. Here the authors report the cloning and characterization of both genes. Fifteen exons of the PS{alpha} gene were identified that together code for protein S mRNA as derived from the reported protein S cDNAs. Analysis by primer extension of liver protein S mRNA, however, reveals the presence of two mRNA forms that differ in the length of their 5{prime}-noncoding region. Both transcripts contain a 5{prime}-noncoding region longer than found in the protein S cDNAs. The two products may arise from alternative splicing of an additional intron in this region or from the usage of two start sites for transcription. The intron-exon organization of the PS{alpha} gene fully supports the hypothesis that the protein S gene is the product of an evolutional assembling process in which gene modules coding for structural/functional protein units also found in other coagulation proteins have been put upstream of the ancestral gene of a steroid hormone binding protein. The PS{beta} gene is identified as a pseudogene. It contains a large variety of detrimental aberrations, viz., the absence of exon I, a splice site mutation, three stop codons, and a frame shift mutation. Overall the two genes PS{alpha} and PS{beta} show between their exonic sequences 96.5% homology. Southern analysis of primate DNA showed that the duplication of the ancestral protein S gene has occurred after the branching of the orangutan from the African apes. A nonsense mutation that is present in the pseudogene of man also could be identified in one of the two protein S genes of both chimpanzee and gorilla. This implicates that silencing of one of the two protein S genes must have taken place before the divergence of the three African apes.

  19. Nonlinear Structural Analysis

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Nonlinear structural analysis techniques for engine structures and components are addressed. The finite element method and boundary element method are discussed in terms of stress and structural analyses of shells, plates, and laminates.

  20. Decreased Transcription Factor Binding Levels Nearby Primate Pseudogenes Suggest Regulatory Degeneration

    PubMed Central

    Douglas, Gavin M.; Wilson, Michael D.; Moses, Alan M.

    2016-01-01

    Characteristics of pseudogene degeneration at the coding level are well-known, such as a shift toward neutral rates of nonsynonymous substitutions and gain of frameshift mutations. In contrast, degeneration of pseudogene transcriptional regulation is not well understood. Here, we test two predictions of regulatory degeneration along a pseudogenized lineage: 1) Decreased transcription factor (TF) binding and 2) accelerated evolution in putative cis-regulatory regions. We find evidence for decreased TF binding levels nearby two primate pseudogenes compared with functional liver genes. However, the majority of TF-bound sequences nearby pseudogenes do not show evidence for lineage-specific accelerated rates of evolution. We conclude that decreases in TF binding level could be a marker for regulatory degeneration, while sequence degeneration in primate cis-regulatory modules may be obscured by background rates of TF binding site turnover. PMID:26882985

  1. Determination of haploid DNA sequences in humans: application to the glucocerebrosidase pseudogene.

    PubMed

    Martínez-Arias, Rosa; Bertranpetit, Jaume; Comas, David

    2002-02-01

    Variation analyses in the human genome at the sequence level, especially human genetic population analysis and genetic epidemiology, are hampered by the difficulty to ascertain haplotypes on autosomal regions. We have designed a new methodological approach to obtain autosomal haploid sequences from diploid organisms. First, genotypes are unambiguously determined through long-range PCR and diploid DNA sequencing. Second, cloning the whole PCR-amplified segment and sequencing a single clone for those fragments that presented a heterozygous position discern the allelic phase. The second allele is deduced from the genotype, and the phase reconfirmed by sequencing a second clone. A hundred human chromosomes were analysed for a 5.4 kb encompassing the glucocerebrosidase pseudogene on human chromosome 1. Haplotypes were unambiguously ascertained for all samples. The manner to combine the used techniques makes this approach a novelty. Haploid sequences from diploid organisms are obtained in a less time consuming and more accurate manner than in other used procedures. PMID:12180141

  2. H2A/K pseudogene mutation may promote cell proliferation.

    PubMed

    Guo, Jisheng; Jing, Ruirui; Lv, Xin; Wang, Xiaoyue; Li, Junqiang; Li, Lin; Li, Cuiling; Wang, Daoguang; Bi, Baibing; Chen, Xinjun; Yang, Jing-Hua

    2016-05-01

    Little attention has been paid to the histone H2A/K pseudogene. Results from our laboratory showed that 7 of 10 kidney cancer patients carried a mutant H2A/K pseudogene; therefore, we were interested in determining the relationship between mutant H2A/K and cell proliferation. We used shotgun and label-free proteomics methods to study whether mutant H2A/K lncRNAs affected cell proliferation. Quantitative proteomic analysis indicated that the expression of mutant H2A/K lncRNAs resulted in the upregulation of many oncogenes, which promoted cell proliferation. Further interaction analyses revealed that a proliferating cell nuclear antigen (PCNA)-protein interaction network, with PCNA in the center, contributes to cell proliferation in cells expressing the mutant H2A/K lncRNAs. Western blotting confirmed the critical upregulation of PCNA by mutant H2A/K lncRNA expression. Finally, the promotion of cell proliferation by mutant H2A/K lncRNAs (C290T, C228A and A45G) was confirmed using cell proliferation assays. Although we did not determine the exact mechanism by which the oncogenes were upregulated by the mutant H2A/K lncRNAs, we confirmed that the mutant H2A/K lncRNAs promoted cell proliferation by upregulating PCNA and other oncogenes. The hypothesis that cell proliferation is promoted by the mutant H2A/K lncRNAs was supported by the protein expression and cell proliferation assay results. Therefore, mutant H2A/K lncRNAs may be a new factor in renal carcinogenesis.

  3. Characterization of the functional gene and several processed pseudogenes in the human triosephosphate isomerase gene family.

    PubMed Central

    Brown, J R; Daar, I O; Krug, J R; Maquat, L E

    1985-01-01

    The functional gene and three intronless pseudogenes for human triosephosphate isomerase were isolated from a recombinant DNA library and characterized in detail. The functional gene spans 3.5 kilobase pairs and is split into seven exons. Its promoter contains putative TATA and CCAAT boxes and is extremely rich in G and C residues (76%). The pseudogenes share a high degree of homology with the functional gene but contain mutations that preclude the synthesis of an active triosephosphate isomerase enzyme. Sequence divergence calculations indicate that these pseudogenes arose approximately 18 million years ago. We present evidence that there is a single functional gene in the human triosephosphate isomerase gene family. Images PMID:4022011

  4. Extraordinarily low evolutionary rates of short wavelength-sensitive opsin pseudogenes

    PubMed Central

    Yokoyama, Shozo; Starmer, William T.; Liu, Yang; Tada, Takashi; Britt, Lyle

    2013-01-01

    Aquatic organisms such as cichlids, coelacanths, seals, and cetaceans are active in UV-blue color environments, but many of them mysteriously lost their abilities to detect these colors. The loss of these functions is a consequence of the pseudogenization of their short wavelength-sensitive (SWS1) opsin genes without gene duplication. We show that the SWS1 gene (BdenS1ψ) of the deep-sea fish, pearleye (Benthalbella dentata), became a pseudogene in a similar fashion about 130 million years ago (Mya) yet it is still transcribed. The rates of nucleotide substitution (~1.4 × 10−9 /site/year) of the pseudogenes of these aquatic species as well as some prosimian and bat species are much smaller than the previous estimates for the globin and immunoglobulin pseudogenes. PMID:24125953

  5. The HLA class I gene family includes at least six genes and twelve pseudogenes and gene fragments

    SciTech Connect

    Geraghty, D.E. ); Koller, B.H.; Orr, H.T. ); Hansen, J.A. )

    1992-09-15

    The authors report the characterization of eight HLA class I homologous sequences isolated from cosmid and lambda libraries made from lymphoblastoid cell line 721 DNA. Four of these sequences, each contained within HindIII fragments of 1.7, 2.1, 3.0, and 8.0 kb, have class I homology extending over short intron-exon regions. The remaining four are found within 7.5-, 8.0-, 9.0-, and 16.0-kb HindIII fragments, the first having homology to the 5[prime] half of a class I gene whereas the latter three are homologous to the 3[prime] portion of a class I gene. When combined with the characterization of other class I clones, this work brings the total number of HLA class I homologous sequences cloned and characterized to 18. Restriction mapping of cosmid clones showed that some of these sequences are linked to one another and to other class I pseudogenes and genes within 50-kb regions. Reconstruction experiments using the 18 class I genes and pseudogenes were performed that indicated that all of the members of the HLA class I gene family detectable using HLA-A2 genomic DNA as probe had been cloned. An additional 19th member of the class I gene family was identified using an HLA-E cDNA probe. Further Southern analysis with other class I probes indicated the 19 sequences comprise the entire class I gene family in LCL 721. Locus-specific probes were isolated from five of the eight clones and were used in Southern analysis of diverse genomic DNA to examine the polymorphism of the pseudogene sequences, demonstrating that some of them were highly polymorphic and some were missing entirely in certain haplotypes. An additional class I sequence, not contained within the 721 genome, was identified and may be found in association with the HLA-A11-Bw60 haplotype. Sequence comparisons were carried out to examine the evolutionary relationships among the pseudogenes. Hypothetical events in the evolution of the class I region are discussed. 59 refs., 8 figs., 4 tabs.

  6. A New Family of Predicted Krüppel-Like Factor Genes and Pseudogenes in Placental Mammals

    PubMed Central

    Pei, Jimin; Grishin, Nick V.

    2013-01-01

    Krüppel-like factors (KLF) and specificity proteins (SP) constitute a family of zinc-finger-containing transcription factors that play important roles in a wide range of processes including differentiation and development of various tissues. The human genome possesses 17 KLF genes (KLF1–KLF17) and nine SP genes (SP1–SP9) with diverse functions. We used sequence similarity searches and gene synteny analysis to identify a new putative KLF gene/pseudogene named KLF18 that is present in most of the placental mammals with sequenced genomes. KLF18 is a chromosomal neighbor of the KLF17 gene and is likely a product of its duplication. Phylogenetic analyses revealed that mammalian predicted KLF18 proteins and KLF17 proteins experienced elevated rates of evolution and are grouped with KLF1/KLF2/KLF4 and non-mammalian KLF17. Predicted KLF18 proteins maintain conserved features in the zinc fingers of the SP/KLF family, while possessing repeats of a unique sequence motif in their N-terminal regions. No expression data have been reported for KLF18, suggesting that it either has highly restricted expression patterns and specialized functions, or could have become a pseudogene in extant placental mammals. Besides KLF18 genes/pseudogenes, we identified several KLF18-like genes such as Zfp352, Zfp352-like, and Zfp353 in the genomes of mouse and rat. These KLF18-like genes do not possess introns inside their coding regions, and gene expression data indicate that some of them may function in early embryonic development. They represent further expansions of KLF members in the murine lineage, most likely resulted from several events of retrotransposition and local gene duplication starting from an ancient spliced mRNA of KLF18. PMID:24244731

  7. Evolutionary conservation and disease gene association of the human genes composing pseudogenes.

    PubMed

    Sen, Kamalika; Ghosh, Tapash Chandra

    2012-06-15

    Pseudogenes, the 'genomic fossils' present portrayal of evolutionary history of human genome. The human genes configuring pseudogenes are also now coming forth as important resources in the study of human protein evolution. In this communication, we explored evolutionary conservation of the genes forming pseudogenes over the genes lacking any pseudogene and delving deeper, we probed an evolutionary rate difference between the disease genes in the two groups. We illustrated this differential evolutionary pattern by gene expressivity, number of regulatory miRNA targeting per gene, abundance of protein complex forming genes and lesser percentage of protein intrinsic disorderness. Furthermore, pseudogenes are observed to harbor sequence variations, over their entirety, those become degenerative disease-causing mutations though the disease involvement of their progenitors is still unexplored. Here, we unveiled an immense association of disease genes in the genes casting pseudogenes in human. We interpreted the issue by disease associated miRNA targeting, genes containing polymorphisms in miRNA target sites, abundance of genes having disease causing non-synonymous mutations, disease gene specific network properties, presence of genes having repeat regions, affluence of dosage sensitive genes and the presence of intrinsically unstructured protein regions.

  8. Enrichment of processed pseudogene transcripts in L1-ribonucleoprotein particles

    PubMed Central

    Mandal, Prabhat K.; Ewing, Adam D.; Hancks, Dustin C.; Kazazian, Haig H.

    2013-01-01

    Long INterspersed Elements (LINE-1s, L1s) are responsible for over one million retrotransposon insertions and 8000 processed pseudogenes (PPs) in the human genome. An active L1 encodes two proteins (ORF1p and ORF2p) that bind with L1 RNA and form L1-ribonucleoprotein particles (RNPs). Although it is believed that the RNA-binding property of ORF1p is critical to recruit other mobile RNAs to the RNP, the identity of recruited RNAs is largely unknown. Here, we used crosslinking and immunoprecipitation followed by deep sequencing to identify RNA components of L1-RNPs. Our results show that in addition to retrotransposed RNAs [L1, Alu and SINE-VNTR-Alu (SVA)], L1-RNPs are enriched with cellular mRNAs, which have PPs in the human genome. Using purified L1-RNPs, we show that PP-source RNAs preferentially serve as ORF2p templates in a reverse transcriptase assay. In addition, we find that exogenous ORF2p binds endogenous ORF1p, allowing reverse transcription of the same PP-source RNAs. These data demonstrate that interaction of a cellular RNA with the L1-RNP is an inside track to PP formation. PMID:23696454

  9. L1 elements, processed pseudogenes and retrogenes in mammalian genomes.

    PubMed

    Ding, Wenyong; Lin, Lin; Chen, Bing; Dai, Jianwu

    2006-12-01

    Long interspersed nuclear elements 1 (L1 elements or LINE1) are the most active autonomous retrotransposons in mammalian genomes. In addition to L1 elements themselves, other protein-coding mRNAs can also be reverse transcribed and integrated into the genome through the L1-mediated retrotransposition, leading to the formation of processed pseudogenes (PPs) and retrogenes, both of which are characterized by the lack of introns and the presence of a 3' polyA tract and flanking direct repeats. PPs are unable to encode a functional protein and have accumulated frameshift mutations and premature stop codons during evolution. A few of PPs are transcriptionally active. Retrogenes preserve undisrupted coding frames and are capable of encoding a functional protein that is identical or nearly identical to that of the progenitor gene. There is a significant excess of retrogenes that originate from the X chromosome and are retrotransposed into autosomes, and most of these retrogenes are specially expressed in male germ cells, suggesting the inactivation of X-linked genes during male meiosis provides a strong selection pressure on retrogenes originating from the X chromosome.

  10. Analysis of Geological Structures

    NASA Astrophysics Data System (ADS)

    Price, Neville J.; Cosgrove, John W.

    1990-08-01

    A knowledge of structural geology is fundamental to understanding the processes by which the earth's crust has evolved. It is a subject of fundamental importance to students of geology, experienced field geologists and academic researchers as well as to petroleum and mining engineers. In contrast to many structural textbooks which dwell upon geometrical descriptions of geological structures, this book emphasises mechanical principles and the way in which they can be used to understand how and why a wide range of geological structures develop. Structures on all scales are considered but the emphasis of the book is on those that can be seen on the scale of hand specimen or outcrop. Drawing on their considerable teaching experience the authors present a coherent and lucid analysis of geological structures which will be welcomed by a wide variety of earth scientists.

  11. Probabilistic Structural Analysis Program

    NASA Technical Reports Server (NTRS)

    Pai, Shantaram S.; Chamis, Christos C.; Murthy, Pappu L. N.; Stefko, George L.; Riha, David S.; Thacker, Ben H.; Nagpal, Vinod K.; Mital, Subodh K.

    2010-01-01

    NASA/NESSUS 6.2c is a general-purpose, probabilistic analysis program that computes probability of failure and probabilistic sensitivity measures of engineered systems. Because NASA/NESSUS uses highly computationally efficient and accurate analysis techniques, probabilistic solutions can be obtained even for extremely large and complex models. Once the probabilistic response is quantified, the results can be used to support risk-informed decisions regarding reliability for safety-critical and one-of-a-kind systems, as well as for maintaining a level of quality while reducing manufacturing costs for larger-quantity products. NASA/NESSUS has been successfully applied to a diverse range of problems in aerospace, gas turbine engines, biomechanics, pipelines, defense, weaponry, and infrastructure. This program combines state-of-the-art probabilistic algorithms with general-purpose structural analysis and lifting methods to compute the probabilistic response and reliability of engineered structures. Uncertainties in load, material properties, geometry, boundary conditions, and initial conditions can be simulated. The structural analysis methods include non-linear finite-element methods, heat-transfer analysis, polymer/ceramic matrix composite analysis, monolithic (conventional metallic) materials life-prediction methodologies, boundary element methods, and user-written subroutines. Several probabilistic algorithms are available such as the advanced mean value method and the adaptive importance sampling method. NASA/NESSUS 6.2c is structured in a modular format with 15 elements.

  12. Chromosomal mapping of the human and murine orphan receptors ERRalpha (ESRRA) and ERRbeta (ESRRB) and identification of a novel human ERRalpha-related pseudogene.

    PubMed

    Sladek, R; Beatty, B; Squire, J; Copeland, N G; Gilbert, D J; Jenkins, N A; Giguère, V

    1997-10-15

    The estrogen-related receptors ERRalpha and ERRbeta (formerly ERR1 and ERR2) form a subgroup of the steroid/thyroid/retinoid receptor family. ERRalpha and ERRbeta are homologous to the estrogen receptor and bind similar DNA targets; however, they are unable to activate gene transcription in response to estrogens. We have used interspecific backcross analysis to map the murine Estrra locus to chromosome 19 and Estrrb to mouse chromosome 12. Using fluorescence in situ hybridization, we have mapped the human ESRRA gene to chromosome 11q12-q13 and the human ESRRB gene to chromosome 14q24.3. In addition, we report the isolation of a processed human ERRalpha pseudogene mapping to chromosome 13q12.1. To our knowledge, this represents the first report of a pseudogene associated with a member of the nuclear receptor superfamily.

  13. [Cloning and identification of a mouse zinc finger protein gene ZF-12-related pseudogene].

    PubMed

    Li, Jian Zhong; Zhang, Ya Zhou; Wang, Shui Liang; Yang, Hua; Li, Jian; Yu, Long; Fu, Ji Liang

    2002-06-01

    The mouse zinc finger protein ZF-12 gene is homologous to human gene and encodes a protein of 368 amino acids, which contains four tandem C2H2-type zinc finger motifs in the N-terminal and one SCAN domain in the C-terminal. Some recent studies suggest that ZNF191 might be a hepatocarcinogenesis-associated gene. We screened a mouse lambda genomic library with a human ZNF191 cDNA probe and isolated a ZF-12-like gene, named ZF12p (GenBank AY040222). This intronless gene closely resembles ZF-12 but displays several mutations, suggesting that ZF12p represents a ZF-12-related pseudogene. RT-PCR analysis on total RNA from mouse tissue and bioinformatis analysis on promoter region of ZF12p gene, suggest the transcripts of ZF12p may be not synthesized. BLAST on the data of the human genome in the GenBank with ZNF191 cDNA and Southern blotting show there is no any psedogene related to ZNF191 gene in the human genome. The high similarity of ZF12p to ZF-12 might be of considerable importance for mutation and evolution analysis of ZF-12.

  14. Expression of the human amylase genes: Recent origin of a salivary amylase promoter from an actin pseudogene

    SciTech Connect

    Samuelson, L.C.; Gumucio, D.L.; Meisler, M.H. ); Wiebauer, K. )

    1988-09-12

    The human genes encoding salivary amylase (AMY1) and pancreatic amylase (AMY2) are nearly identical in structure and sequence. The authors have used ribonuclease protection studies to identify the functional gene copies in this multigene family. Riboprobes derived from each gene were hybridized to RNA from human pancreas, parotid and liver. The sizes of the protected fragments demonstrated that both pancreatic genes are expressed in pancreas. One of the pancreatic genes, AMY2B, is also transcribed at a low level in liver, but not from the promoter used in pancreas. AMY1 transcripts were detected in parotid, but not in pancreas or liver. Unexpected fragments protected by liver RNA led to the discovery that the 5{prime} regions of the five human amylase genes contain a processed {gamma}-actin pseudogene. The promoter and start site for transcription of AMY1 are recently derived from the 3{prime} untranslated region of {gamma}-actin. In addition, insertion of an endogenous retrovirus has interrupted the {gamma}-actin pseudogene in four of the five amylase genes.

  15. On "genomenclature": a comprehensive (and respectful) taxonomy for pseudogenes and other "junk DNA".

    PubMed Central

    Brosius, J; Gould, S J

    1992-01-01

    Genomic nomenclature has not kept pace with the levels and depth of analyzing and understanding genomic structure, function, and evolution. We wish to propose a general terminology that might aid the integrated study of evolution and molecular biology. Here we designate as a "nuon" any stretch of nucleic acid sequence that may be identifiable by any criterion. We show how such a general term will facilitate contemplation of the structural and functional contributions of such elements to the genome in its past, current, or future state. We focus in this paper on pseudogenes and dispersed repetitive elements, since their current names reflect the prevalent view that they constitute dispensable genomic noise (trash), rather than a vast repertoire of sequences with the capacity to shape an organism during evolution. This potential to contribute sequences for future use is reflected in the suggested terms "potonuons" or "potogenes." If such a potonuon has been coopted into a variant or novel function, an evolutionary process termed "exaptation," we employ the term "xaptonuon." If a potonuon remains without function (nonaptive nuon), it is a "nonaptation" and we term it "naptonuon." A number of examples for potonuons and xaptonuons are given. Images PMID:1279691

  16. Generation and reactivation of T-cell receptor A joining region pseudogenes in primates

    SciTech Connect

    Thiel, C.; Lanchbury, J.S.; Otting, N.

    1996-06-01

    Tandemly duplicated T-cell receptor (Tcr) AJ (J{alpha}) segments contribute significantly to TCRA chain junctional region diversity in mammals. Since only limited data exists on TCRA diversity in nonhuman primates, we examined the TCRAJ regions of 37 chimpanzee and 71 rhesus macaque TCRA cDNA clones derived from inverse polymerase chain reaction on peripheral blood mononuclear cell cDNA of healthy animals. Twenty-five different TCRAJ regions were characterized in the chimpanzee and 36 in the rhesus macaque. Each bears a close structural relationship to an equivalent human TCRAJ region. Conserved amino acid motifs are shared between all three species. There are indications that differences between nonhuman primates and humans exist in the generation of TCRAJ pseudogenes. The nucleotide and amino acid sequences of the various characterized TCRAJ of each species are reported and we compare our results to the available information on human genomic sequences. Although we provide evidence of dynamic processes modifying TCRAJ segments during primate evolution, their repertoire and primary structure appears to be relatively conserved. 21 refs., 2 figs.

  17. [Structural sensitivity analysis].

    PubMed

    Carrera-Hueso, F J; Ramón-Barrios, A

    2011-05-01

    The aim of this study was to perform a structural sensitivity analysis of a decision model and to identify its advantages and limitations. A previously published model of dinoprostone was modified, taking two scenarios into account: eliminating postpartum hemorrhages and including both hemorrhages and uterine hyperstimulation among the adverse effects. The result of the structural sensitivity analysis shows the robustness of the underlying model and confirmed the initial results: the intrauterine device is more cost-effective than intracervical dinoprostone gel. Structural sensitivity analyses should be congruent with the situation studied and clinically validated. Although uncertainty may be only slightly reduced, these analyses provide information and add greater validity and reliability to the model.

  18. Structural analysis of glucans

    PubMed Central

    Novak, Miroslav

    2014-01-01

    Glucans are most widespread polysaccharides in the nature. There is a large diversity in their molecular weight and configuration depending on the original source. According to the anomeric structure of glucose units it is possible to distinguish linear and branched α-, β- as well as mixed α,β-glucans with various glycoside bond positions and molecular masses. Isolation of glucans from raw sources needs removal of ballast compounds including proteins, lipids, polyphenols and other polysaccharides. Purity control of glucan fractions is necessary to evaluate the isolation and purification steps; more rigorous structural analyses of purified polysaccharides are required to clarify their structure. A set of spectroscopic, chemical and separation methods are used for this purpose. Among them, NMR spectroscopy is known as a powerful tool in structural analysis of glucans both in solution and in solid state. Along with chemolytic methods [methylation analysis (MA), periodate oxidation, partial chemical or enzymatic hydrolysis, etc.], correlation NMR experiments are able to determine the exact structure of tested polysaccharides. Vibration spectroscopic methods (FTIR, Raman) are sensitive to anomeric structure of glucans and can be used for purity control as well. Molecular weight distribution, homogeneity and branching of glucans can be estimated by size-exclusion chromatography (SEC), laser light scattering (LLS) and viscometry. PMID:25332993

  19. COI Structural Analysis Presentation

    NASA Technical Reports Server (NTRS)

    Cline, Todd; Stahl, H. Philip (Technical Monitor)

    2001-01-01

    This report discusses the structural analysis of the Next Generation Space Telescope Mirror System Demonstrator (NMSD) developed by Composite Optics Incorporated (COI) in support of the Next Generation Space Telescope (NGST) project. The mirror was submitted to Marshall Space Flight Center (MSFC) for cryogenic testing and evaluation. Once at MSFC, the mirror was lowered to approximately 40 K and the optical surface distortions were measured. Alongside this experiment, an analytical model was developed and used to compare to the test results. A NASTRAN finite element model was provided by COI and a thermal model was developed from it. Using the thermal model, steady state nodal temperatures were calculated based on the predicted environment of the large cryogenic test chamber at MSFC. This temperature distribution was applied in the structural analysis to solve for the deflections of the optical surface. Finally, these deflections were submitted for optical analysis and comparison to the interferometer test data.

  20. U6 snRNA Pseudogenes: Markers of Retrotransposition Dynamics in Mammals

    PubMed Central

    Doucet, Aurélien J.; Droc, Gaëtan; Siol, Oliver; Audoux, Jérôme; Gilbert, Nicolas

    2015-01-01

    Transposable elements comprise more than 45% of the human genome and long interspersed nuclear element 1 (LINE-1 or L1) is the only autonomous mobile element remaining active. Since its identification, it has been proposed that L1 contributes to the mobilization and amplification of other cellular RNAs and more recently, experimental demonstrations of this function has been described for many transcripts such as Alu, a nonautonomous mobile element, cellular mRNAs, or small noncoding RNAs. Detailed examination of the mobilization of various cellular RNAs revealed distinct pathways by which they could be recruited during retrotransposition; template choice or template switching. Here, by analyzing genomic structures and retrotransposition signatures associated with small nuclear RNA (snRNA) sequences, we identified distinct recruiting steps during the L1 retrotransposition cycle for the formation of snRNA-processed pseudogenes. Interestingly, some of the identified recruiting steps take place in the nucleus. Moreover, after comparison to other vertebrate genomes, we established that snRNA amplification by template switching is common to many LINE families from several LINE clades. Finally, we suggest that U6 snRNA copies can serve as markers of L1 retrotransposition dynamics in mammalian genomes. PMID:25761766

  1. Design oriented structural analysis

    NASA Technical Reports Server (NTRS)

    Giles, Gary L.

    1994-01-01

    Desirable characteristics and benefits of design oriented analysis methods are described and illustrated by presenting a synoptic description of the development and uses of the Equivalent Laminated Plate Solution (ELAPS) computer code. ELAPS is a design oriented structural analysis method which is intended for use in the early design of aircraft wing structures. Model preparation is minimized by using a few large plate segments to model the wing box structure. Computational efficiency is achieved by using a limited number of global displacement functions that encompass all segments over the wing planform. Coupling with other codes is facilitated since the output quantities such as deflections and stresses are calculated as continuous functions over the plate segments. Various aspects of the ELAPS development are discussed including the analytical formulation, verification of results by comparison with finite element analysis results, coupling with other codes, and calculation of sensitivity derivatives. The effectiveness of ELAPS for multidisciplinary design application is illustrated by describing its use in design studies of high speed civil transport wing structures.

  2. Structural dynamics analysis

    NASA Technical Reports Server (NTRS)

    Housner, J. M.; Anderson, M.; Belvin, W.; Horner, G.

    1985-01-01

    Dynamic analysis of large space antenna systems must treat the deployment as well as vibration and control of the deployed antenna. Candidate computer programs for deployment dynamics, and issues and needs for future program developments are reviewed. Some results for mast and hoop deployment are also presented. Modeling of complex antenna geometry with conventional finite element methods and with repetitive exact elements is considered. Analytical comparisons with experimental results for a 15 meter hoop/column antenna revealed the importance of accurate structural properties including nonlinear joints. Slackening of cables in this antenna is also a consideration. The technology of designing actively damped structures through analytical optimization is discussed and results are presented.

  3. Noise-induced multistability in the regulation of cancer by genes and pseudogenes

    NASA Astrophysics Data System (ADS)

    Petrosyan, K. G.; Hu, Chin-Kun

    2016-07-01

    We extend a previously introduced model of stochastic gene regulation of cancer to a nonlinear case having both gene and pseudogene messenger RNAs (mRNAs) self-regulated. The model consists of stochastic Boolean genetic elements and possesses noise-induced multistability (multimodality). We obtain analytical expressions for probabilities for the case of constant but finite number of microRNA molecules which act as a noise source for the competing gene and pseudogene mRNAs. The probability distribution functions display both the global bistability regime as well as even-odd number oscillations for a certain range of model parameters. Statistical characteristics of the mRNA's level fluctuations are evaluated. The obtained results of the extended model advance our understanding of the process of stochastic gene and pseudogene expressions that is crucial in regulation of cancer.

  4. Computational engine structural analysis

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Johns, R. H.

    1986-01-01

    A significant research activity at the NASA Lewis Research Center is the computational simulation of complex multidisciplinary engine structural problems. This simulation is performed using computational engine structural analysis (CESA) which consists of integrated multidisciplinary computer codes in conjunction with computer post-processing for problem-specific application. A variety of the computational simulations of specific cases are described in some detail in this paper. These case studies include: (1) aeroelastic behavior of bladed rotors, (2) high velocity impact of fan blades, (3) blade-loss transient response, (4) rotor/stator/squeeze-film/bearing interaction, (5) blade-fragment/rotor-burst containment, and (6) structural behavior of advanced swept turboprops. These representative case studies are selected to demonstrate the breath of the problems analyzed and the role of the computer including post-processing and graphical display of voluminous output data.

  5. Structured Data in Structural Analysis Software

    NASA Technical Reports Server (NTRS)

    Kunz, Donald L.; Hopkins, Stewart

    1987-01-01

    This paper discusses the use of computer data structures in finite-element structural analysis programs. A number of data structure types that have been shown to be useful in such programs are introduced and described. A simple finite-element model is used to demonstrate how the given set of data structure types naturally lend themselves to developing software for the model. Different methods of implementing data structures in the context of a program are discussed.

  6. Structural Analysis Made 'NESSUSary'

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Everywhere you look, chances are something that was designed and tested by a computer will be in plain view. Computers are now utilized to design and test just about everything imaginable, from automobiles and airplanes to bridges and boats, and elevators and escalators to streets and skyscrapers. Computer-design engineering first emerged in the 1970s, in the automobile and aerospace industries. Since computers were in their infancy, however, architects and engineers during the time were limited to producing only designs similar to hand-drafted drawings. (At the end of 1970s, a typical computer-aided design system was a 16-bit minicomputer with a price tag of $125,000.) Eventually, computers became more affordable and related software became more sophisticated, offering designers the "bells and whistles" to go beyond the limits of basic drafting and rendering, and venture into more skillful applications. One of the major advancements was the ability to test the objects being designed for the probability of failure. This advancement was especially important for the aerospace industry, where complicated and expensive structures are designed. The ability to perform reliability and risk assessment without using extensive hardware testing is critical to design and certification. In 1984, NASA initiated the Probabilistic Structural Analysis Methods (PSAM) project at Glenn Research Center to develop analysis methods and computer programs for the probabilistic structural analysis of select engine components for current Space Shuttle and future space propulsion systems. NASA envisioned that these methods and computational tools would play a critical role in establishing increased system performance and durability, and assist in structural system qualification and certification. Not only was the PSAM project beneficial to aerospace, it paved the way for a commercial risk- probability tool that is evaluating risks in diverse, down- to-Earth application

  7. Structural Analysis of Biodiversity

    PubMed Central

    Sirovich, Lawrence; Stoeckle, Mark Y.; Zhang, Yu

    2010-01-01

    Large, recently-available genomic databases cover a wide range of life forms, suggesting opportunity for insights into genetic structure of biodiversity. In this study we refine our recently-described technique using indicator vectors to analyze and visualize nucleotide sequences. The indicator vector approach generates correlation matrices, dubbed Klee diagrams, which represent a novel way of assembling and viewing large genomic datasets. To explore its potential utility, here we apply the improved algorithm to a collection of almost 17000 DNA barcode sequences covering 12 widely-separated animal taxa, demonstrating that indicator vectors for classification gave correct assignment in all 11000 test cases. Indicator vector analysis revealed discontinuities corresponding to species- and higher-level taxonomic divisions, suggesting an efficient approach to classification of organisms from poorly-studied groups. As compared to standard distance metrics, indicator vectors preserve diagnostic character probabilities, enable automated classification of test sequences, and generate high-information density single-page displays. These results support application of indicator vectors for comparative analysis of large nucleotide data sets and raise prospect of gaining insight into broad-scale patterns in the genetic structure of biodiversity. PMID:20195371

  8. Stem cell regulatory function mediated by expression of a novel mouse Oct4 pseudogene

    SciTech Connect

    Lin, Huey; Shabbir, Arsalan; Molnar, Merced; Lee, Techung . E-mail: chunglee@buffalo.edu

    2007-03-30

    Multiple pseudogenes have been proposed for embryonic stem (ES) cell-specific genes, and their abundance suggests that some of these potential pseudogenes may be functional. ES cell-specific expression of Oct4 regulates stem cell pluripotency and self-renewing state. Although Oct4 expression has been reported in adult tissues during gene reprogramming, the detected Oct4 signal might be contributed by Oct4 pseudogenes. Among the multiple Oct4 transcripts characterized here is a {approx}1 kb clone derived from P19 embryonal carcinoma stem cells, which shares a {approx}87% sequence homology with the parent Oct4 gene, and has the potential of encoding an 80-amino acid product (designated as Oct4P1). Adenoviral expression of Oct4P1 in mesenchymal stem cells promotes their proliferation and inhibits their osteochondral differentiation. These dual effects of Oct4P1 are reminiscent of the stem cell regulatory function of the parent Oct4, and suggest that Oct4P1 may be a functional pseudogene or a novel Oct4-related gene with a unique function in stem cells.

  9. Pseudogene CYP4Z2P 3′UTR promotes angiogenesis in breast cancer

    SciTech Connect

    Zheng, Lufeng; Li, Xiaoman; Gu, Yi; Ma, Yihua; Xi, Tao

    2014-10-24

    Highlights: • A new critical role of pseudogene CYP4Z2P 3′UTR in breast cancer is proposed. • We examine the level of pseudogene CYP4Z2P 3′UTR in breast cancer tissues. • The functions of CYP4Z2P 3′UTR and mechanism were studied. • The mechanism provides new insights for the breast cancer progression. - Abstract: Pseudogenes have long been marked as “false” genes, which are similar with real genes but have no apparent function. The 3′UTR is well-known to regulate gene expression post-transcriptionally. Our recent evidence, however, indicates novel functional roles of pseudogene CYP4Z2P 3′UTR (Z2P-UTR). We found that ectopic expression of Z2P-UTR in breast cancer cells significantly increased the expression of VEGF-A without affecting cell proliferation in vitro. Meanwhile, conditioned medium (CM) from Z2P-UTR overexpression cells enhanced proliferation, migration and tube formation of HUVEC, and promoted angiogenesis in ex vivo models. Also, CM increased the expression of VEGFR2 in HUVEC. Our data suggest that Z2P-UTR can promote breast cancer angiogenesis partly via paracrine pathway of VEGF-A/VEGFR2.

  10. Genomic organization of the murine G protein beta subunit genes and related processed pseudogenes.

    PubMed

    Kitanaka, J; Wang, X B; Kitanaka, N; Hembree, C M; Uhl, G R

    2001-12-01

    The functional significance of heterotrimeric guanine nucleotide binding protein (G protein) for the many physiological processes including the molecular mechanisms of drug addiction have been described. In investigating the changes of mRNA expression after acute psychostimulant administration, we previously identified a cDNA encoding a G protein beta1 subunit (Gbeta1) that was increased up to four-fold in certain brain regions after administration of psychostimulants. The mouse Gbeta1 gene (the mouse genetic symbol, GNB1) was mapped to chromosome 4, but little was known of its genetic features. To characterize the GNB1 gene further, we have cloned and analyzed the genomic structures of the mouse GNBI gene and its homologous sequences. The GNBI gene spans at least 50 kb, and consists of 12 exons and 11 introns. The exon/intron boundaries were determined and found to follow the GT/AG rule. Exons 3-11 encode the Gbeta1 protein, and the exon 2 is an alternative, resulting in putative two splicing variants. Although intron 11 is additional for GNBI compared with GNB2 and GNB3, the intron positions within the protein coding region of GNB1, GNB2 and GNB3 are identical, suggesting that GNB1 should have diverged from the ancestral gene family earlier than the genes for GNB2 and GNB3. We also found the 5'-truncated processed pseudogenes with 71-89% similarities to GNBI mRNA sequence, suggesting that the truncated cDNA copies, which have been reverse-transcribed from a processed mRNA for GNB1, might have been integrated into several new locations in the mouse genome. PMID:11913780

  11. Evolution of the human gastrokine locus and confounding factors regarding the pseudogenicity of GKN3

    PubMed Central

    Geahlen, Jessica H.; Lapid, Carlo; Thorell, Kaisa; Nikolskiy, Igor; Huh, Won Jae; Oates, Edward L.; Lennerz, Jochen K. M.; Tian, Xiaolin; Weis, Victoria G.; Khurana, Shradha S.; Lundin, Samuel B.; Templeton, Alan R.

    2013-01-01

    In a screen for genes expressed specifically in gastric mucous neck cells, we identified GKN3, the recently discovered third member of the gastrokine family. We present confirmatory mouse data and novel porcine data showing that mouse GKN3 expression is confined to mucous cells of the corpus neck and antrum base and is prominently expressed in metaplastic lesions. GKN3 was proposed originally to be expressed in some human populations and a pseudogene in others. To investigate that hypothesis, we studied human GKN3 evolution in the context of its paralogous genomic neighbors, GKN1 and GKN2. Haplotype analysis revealed that GKN3 mimics GKN2 in patterns of exonic SNP allocation, whereas GKN1 appeared to be more stringently selected. GKN3 showed signatures of both directional selection and population based selective sweeps in humans. One such selective sweep includes SNP rs10187256, originally identified as an ancestral tryptophan to premature STOP codon mutation. The derived (nonancestral) allele went to fixation in Asia. We show that another SNP, rs75578132, identified 5 bp downstream of rs10187256, exhibits a second selective sweep in almost all Europeans, some Latinos, and some Africans, possibly resulting from a reintroduction of European genes during African colonization. Finally, we identify a mutation that would destroy the splice donor site in the putative exon3-intron3 boundary, which occurs in all human genomes examined to date. Our results highlight a stomach-specific human genetic locus, which has undergone various selective sweeps across European, Asian, and African populations and thus reflects geographic and ethnic patterns in genome evolution. PMID:23715263

  12. Evolution of the human gastrokine locus and confounding factors regarding the pseudogenicity of GKN3.

    PubMed

    Geahlen, Jessica H; Lapid, Carlo; Thorell, Kaisa; Nikolskiy, Igor; Huh, Won Jae; Oates, Edward L; Lennerz, Jochen K M; Tian, Xiaolin; Weis, Victoria G; Khurana, Shradha S; Lundin, Samuel B; Templeton, Alan R; Mills, Jason C

    2013-08-01

    In a screen for genes expressed specifically in gastric mucous neck cells, we identified GKN3, the recently discovered third member of the gastrokine family. We present confirmatory mouse data and novel porcine data showing that mouse GKN3 expression is confined to mucous cells of the corpus neck and antrum base and is prominently expressed in metaplastic lesions. GKN3 was proposed originally to be expressed in some human populations and a pseudogene in others. To investigate that hypothesis, we studied human GKN3 evolution in the context of its paralogous genomic neighbors, GKN1 and GKN2. Haplotype analysis revealed that GKN3 mimics GKN2 in patterns of exonic SNP allocation, whereas GKN1 appeared to be more stringently selected. GKN3 showed signatures of both directional selection and population based selective sweeps in humans. One such selective sweep includes SNP rs10187256, originally identified as an ancestral tryptophan to premature STOP codon mutation. The derived (nonancestral) allele went to fixation in Asia. We show that another SNP, rs75578132, identified 5 bp downstream of rs10187256, exhibits a second selective sweep in almost all Europeans, some Latinos, and some Africans, possibly resulting from a reintroduction of European genes during African colonization. Finally, we identify a mutation that would destroy the splice donor site in the putative exon3-intron3 boundary, which occurs in all human genomes examined to date. Our results highlight a stomach-specific human genetic locus, which has undergone various selective sweeps across European, Asian, and African populations and thus reflects geographic and ethnic patterns in genome evolution. PMID:23715263

  13. Adaptive Gene Loss? Tracing Back the Pseudogenization of the Rabbit CCL8 Chemokine.

    PubMed

    van der Loo, Wessel; Magalhaes, Maria João; de Matos, Ana Lemos; Abrantes, Joana; Yamada, Fumio; Esteves, Pedro J

    2016-08-01

    Studies of the process of pseudogenization have widened our understanding of adaptive evolutionary change. In Rabbit, an alteration at the second extra-cellular loop of the CCR5 chemokine receptor was found to be associated with the pseudogenization of one of its prime ligands, the chemokine CCL8. This relationship has raised questions about the existence of a causal link between both events, which would imply adaptive gene loss. This hypothesis is evaluated here by tracing back the history of the genetic modifications underlying the chemokine pseudogenization. The obtained data indicate that mutations at receptor and ligand genes occurred after the lineage split of New World Leporids versus Old World Leporids and prior to the generic split of the of Old World species studied, which occurred an estimated 8-9 million years ago. More important, they revealed the emergence, before this zoographical split, of a "slippery" nucleotide motif (CCCCGGG) at the 3' region of CCL8-exon2. Such motives are liable of generating +1G or -1G frameshifts, which could, however, be overcome by "translesion" synthesis or somatic reversion. The CCL8 pseudogenization in the Old World lineage was apparently initiated by three synapomorphic point mutations at the exon2-intron2 boundary which provide at short range premature terminating codons, independently of the reading frame imposed by the slippery motif. The presence of this motif in New World Leporids might allow verifying this scenario. The importance of CCL8-CCR5 signaling in parasite-host interaction would suggest that the CCL8 knock-out in Old World populations might be related to changes in pathogenic environment.

  14. Adaptive Gene Loss? Tracing Back the Pseudogenization of the Rabbit CCL8 Chemokine.

    PubMed

    van der Loo, Wessel; Magalhaes, Maria João; de Matos, Ana Lemos; Abrantes, Joana; Yamada, Fumio; Esteves, Pedro J

    2016-08-01

    Studies of the process of pseudogenization have widened our understanding of adaptive evolutionary change. In Rabbit, an alteration at the second extra-cellular loop of the CCR5 chemokine receptor was found to be associated with the pseudogenization of one of its prime ligands, the chemokine CCL8. This relationship has raised questions about the existence of a causal link between both events, which would imply adaptive gene loss. This hypothesis is evaluated here by tracing back the history of the genetic modifications underlying the chemokine pseudogenization. The obtained data indicate that mutations at receptor and ligand genes occurred after the lineage split of New World Leporids versus Old World Leporids and prior to the generic split of the of Old World species studied, which occurred an estimated 8-9 million years ago. More important, they revealed the emergence, before this zoographical split, of a "slippery" nucleotide motif (CCCCGGG) at the 3' region of CCL8-exon2. Such motives are liable of generating +1G or -1G frameshifts, which could, however, be overcome by "translesion" synthesis or somatic reversion. The CCL8 pseudogenization in the Old World lineage was apparently initiated by three synapomorphic point mutations at the exon2-intron2 boundary which provide at short range premature terminating codons, independently of the reading frame imposed by the slippery motif. The presence of this motif in New World Leporids might allow verifying this scenario. The importance of CCL8-CCR5 signaling in parasite-host interaction would suggest that the CCL8 knock-out in Old World populations might be related to changes in pathogenic environment. PMID:27306379

  15. Pseudogenization of the tooth gene enamelysin (MMP20) in the common ancestor of extant baleen whales.

    PubMed

    Meredith, Robert W; Gatesy, John; Cheng, Joyce; Springer, Mark S

    2011-04-01

    Whales in the suborder Mysticeti are filter feeders that use baleen to sift zooplankton and small fish from ocean waters. Adult mysticetes lack teeth, although tooth buds are present in foetal stages. Cladistic analyses suggest that functional teeth were lost in the common ancestor of crown-group Mysticeti. DNA sequences for the tooth-specific genes, ameloblastin (AMBN), enamelin (ENAM) and amelogenin (AMEL), have frameshift mutations and/or stop codons in this taxon, but none of these molecular cavities are shared by all extant mysticetes. Here, we provide the first evidence for pseudogenization of a tooth gene, enamelysin (MMP20), in the common ancestor of living baleen whales. Specifically, pseudogenization resulted from the insertion of a CHR-2 SINE retroposon in exon 2 of MMP20. Genomic and palaeontological data now provide congruent support for the loss of enamel-capped teeth on the common ancestral branch of crown-group mysticetes. The new data for MMP20 also document a polymorphic stop codon in exon 2 of the pygmy sperm whale (Kogia breviceps), which has enamel-less teeth. These results, in conjunction with the evidence for pseudogenization of MMP20 in Hoffmann's two-toed sloth (Choloepus hoffmanni), another enamel-less species, support the hypothesis that the only unique, non-overlapping function of the MMP20 gene is in enamel formation.

  16. Human Nanog pseudogene8 promotes the proliferation of gastrointestinal cancer cells

    SciTech Connect

    Uchino, Keita; Hirano, Gen; Hirahashi, Minako; Isobe, Taichi; Shirakawa, Tsuyoshi; Kusaba, Hitoshi; Baba, Eishi; Tsuneyoshi, Masazumi; Akashi, Koichi

    2012-09-10

    There is emerging evidence that human solid tumor cells originate from cancer stem cells (CSCs). In cancer cell lines, tumor-initiating CSCs are mainly found in the side population (SP) that has the capacity to extrude dyes such as Hoechst 33342. We found that Nanog is expressed specifically in SP cells of human gastrointestinal (GI) cancer cells. Nucleotide sequencing revealed that NanogP8 but not Nanog was expressed in GI cancer cells. Transfection of NanogP8 into GI cancer cell lines promoted cell proliferation, while its inhibition by anti-Nanog siRNA suppressed the proliferation. Immunohistochemical staining of primary GI cancer tissues revealed NanogP8 protein to be strongly expressed in 3 out of 60 cases. In these cases, NanogP8 was found especially in an infiltrative part of the tumor, in proliferating cells with Ki67 expression. These data suggest that NanogP8 is involved in GI cancer development in a fraction of patients, in whom it presumably acts by supporting CSC proliferation. -- Highlights: Black-Right-Pointing-Pointer Nanog maintains pluripotency by regulating embryonic stem cells differentiation. Black-Right-Pointing-Pointer Nanog is expressed in cancer stem cells of human gastrointestinal cancer cells. Black-Right-Pointing-Pointer Nucleotide sequencing revealed that Nanog pseudogene8 but not Nanog was expressed. Black-Right-Pointing-Pointer Nanog pseudogene8 promotes cancer stem cells proliferation. Black-Right-Pointing-Pointer Nanog pseudogene8 is involved in gastrointestinal cancer development.

  17. Pseudogenization of the tooth gene enamelysin (MMP20) in the common ancestor of extant baleen whales

    PubMed Central

    Meredith, Robert W.; Gatesy, John; Cheng, Joyce; Springer, Mark S.

    2011-01-01

    Whales in the suborder Mysticeti are filter feeders that use baleen to sift zooplankton and small fish from ocean waters. Adult mysticetes lack teeth, although tooth buds are present in foetal stages. Cladistic analyses suggest that functional teeth were lost in the common ancestor of crown-group Mysticeti. DNA sequences for the tooth-specific genes, ameloblastin (AMBN), enamelin (ENAM) and amelogenin (AMEL), have frameshift mutations and/or stop codons in this taxon, but none of these molecular cavities are shared by all extant mysticetes. Here, we provide the first evidence for pseudogenization of a tooth gene, enamelysin (MMP20), in the common ancestor of living baleen whales. Specifically, pseudogenization resulted from the insertion of a CHR-2 SINE retroposon in exon 2 of MMP20. Genomic and palaeontological data now provide congruent support for the loss of enamel-capped teeth on the common ancestral branch of crown-group mysticetes. The new data for MMP20 also document a polymorphic stop codon in exon 2 of the pygmy sperm whale (Kogia breviceps), which has enamel-less teeth. These results, in conjunction with the evidence for pseudogenization of MMP20 in Hoffmann's two-toed sloth (Choloepus hoffmanni), another enamel-less species, support the hypothesis that the only unique, non-overlapping function of the MMP20 gene is in enamel formation. PMID:20861053

  18. A comparison of variation between a MHC pseudogene and microsatellite loci of the little greenbul (Andropadus virens)

    PubMed Central

    Aguilar, Andres; Smith, Thomas B; Wayne, Robert K

    2005-01-01

    Background We investigated genetic variation of a major histcompatibility complex (MHC) pseudogene (Anvi-DAB1) in the little greenbul (Andropadus virens) from four localities in Cameroon and one in Ivory Coast, West Africa. Previous microsatellite and mitochondrial DNA analyses had revealed little or no genetic differentiation among Cameroon localities but significant differentiation between localities in Cameroon and Ivory Coast. Results Levels of genetic variation, heterozygosity, and allelic diversity were high for the MHC pseudogene in Cameroon. Nucleotide diversity of the MHC pseudogene in Cameroon and Ivory Coast was comparable to levels observed in other avian species that have been studied for variation in nuclear genes. An excess of rare variants for the MHC pseudogene was found in the Cameroon population, but this excess was not statistically significant. Pairwise measures of population differentiation revealed high divergence between Cameroon and Ivory Coast for microsatellites and the MHC locus, although for the latter distance measures were much higher than the comparable microsatellite distances. Conclusion We provide the first ever comparison of variation in a putative MHC pseudogene to variation in neutral loci in a passerine bird. Our results are consistence with the action of neutral processes on the pseudogene and suggest they can provide an independent perspective on demographic history and population substructure. PMID:16159389

  19. Assignment of an intron-containing human heat-shock protein gene (hsp90[beta], HSPCB) to chromosome 6 near TCTE1 (6p21) and two intronless pseudogenes to chromosomes 4 and 15 by polymerase chain reaction amplification from a panel of hybrid cell lines

    SciTech Connect

    Durkin, A.S.; Nierman, W.C.; Maglott, D.R. ); Vamvakopoulos, N.C. ); Zoghbi, H.Y. )

    1993-11-01

    We report here the successful application of designing primers from intronic sequences to map a structural hsp90[beta] gene to a unique human chromosome distinct from potential pseudogenes or rodent background. Also, by designing primers that bracket an intron and detecting products from intronless genes, we localized two hsp90[beta] pseudogenes to human chromosomes 4 and 15. PCR primers were designed from the published human hsp90[beta] DNA sequence from exon 11 (nucleotides 7066-7085, 7181-7198), intron A (1659-1678, 1722-1741), intron B (8109, 8170-8187), and exons 3 and 4 to amplify across intron C (3391-3412, 3731-3752).

  20. Cold Spring Harbor symposia on quantitative biology. Volume XLVII, Part 1. Structures of DNA

    SciTech Connect

    Not Available

    1983-01-01

    The proceedings for the 47th Annual Cold Spring Harbor Symposia on Quantitative Biology are presented. This symposium focused on the Structure of DNA. Topics presented covered research in the handedness of DNA, conformational analysis, chemically modified DNA, chemical synthesis of DNA, DNA-protein interactions, DNA within nucleosomes, DNA methylation, DNA replication, gyrases and topoisomerases, recombining and mutating DNA, transcription of DNA and its regulation, the organization of genes along DNA, repetitive DNA and pseudogenes, and origins of replication, centromeres, and teleomeres.

  1. The tree squirrel HP-25 gene is a pseudogene.

    PubMed

    Kojima, M; Shiba, T; Kondo, N; Takamatsu, N

    2001-11-01

    The gene for the hibernation-specific protein HP-25 is expressed in the liver in hibernating species of the squirrel family (chipmunk and ground squirrel), but not in a nonhibernating species (tree squirrel). To investigate why the HP-25 gene is not expressed in the tree squirrel, we isolated the tree squirrel HP-25 gene and compared its gene structure and promoter activity with that of the chipmunk. The tree squirrel HP-25 gene is composed of three exons, and the gene structures are conserved between the tree squirrel and chipmunk. However, the tree squirrel HP-25 gene has an insertional mutation of 13 nucleotides in exon 2 that disrupts the ORF. In the chipmunk HP-25 gene, the 80-bp 5' flanking sequence is sufficient for the liver-specific promoter activity, and HNF-4, which binds to the sequence from nucleotides -67 to -51, is involved in its transcriptional regulation. In contrast, the corresponding tree squirrel 5' flanking sequence had almost no promoter activity in HepG2 cells, and HNF-4 did not bind to the corresponding region of the tree squirrel HP-25 gene. Furthermore, a tree squirrel-type G to A mutation at -57 in the chipmunk HP-25 gene promoter context abolished its binding to and transactivation by HNF-4. Thus, the point mutation in the HNF-4-binding site is likely to be involved in the lack of HP-25 gene expression in the tree squirrel.

  2. Regularized Generalized Structured Component Analysis

    ERIC Educational Resources Information Center

    Hwang, Heungsun

    2009-01-01

    Generalized structured component analysis (GSCA) has been proposed as a component-based approach to structural equation modeling. In practice, GSCA may suffer from multi-collinearity, i.e., high correlations among exogenous variables. GSCA has yet no remedy for this problem. Thus, a regularized extension of GSCA is proposed that integrates a ridge…

  3. Phylogenetic timing of mutation and deletion events in the primate-specific serine hydroxymethyltransferase pseudogene HSHMT-{Psi}{sub c}

    SciTech Connect

    Dill-Devor, R.M.; Devor, E.J.

    1994-09-01

    We recently discovered a processed pseudogene which arose from the cytosolic isoforms of the pyridoxal-phosphate binding enzyme serine hydroxymethyltransferase (HSHMT-cyt). This pseudogene, which we have designated HSHMT-{Psi}{sub c}, is located on chromosome 1. Compared to the published HSHMT-cyt cDNA sequence, the 281 bp pseudogene PCR product on which we have concentrated displays an 11 bp deletion and nineteen separate single base substitutions. One of these introduces a stop signal that eliminates more than one-third of the coding region of the gene. Both the mitochondrial and cytosolic SHMT isoforms show a great deal of evolutionary conservation both at the amino acid and nucleotide sequence levels. For this reason we have attempted to amplify and sequence our 281 bp product in more than a dozen non-human primate and eleven non-primate mammalian species. Our results indicate that the pseudogene HSHMT-{Psi}{sub c} is present only in primate genomes. Further, a number of the mutations observed in the human sequence are unique to our species while others can be attributed to events occurring prior to the divergence of ancestral lines. Finally, the 11 bp deletion is found only among the apes, thus placing the deletion event at a time no longer than 25 million years ago. Similar phylogenetic timing can be assigned to other changes in the HSHMT-{Psi}{sub c} sequence, thus allowing us to present a reasonably detailed mutational history for this pseudogene.

  4. Evolution of a pseudogene: exclusive survival of a functional mitochondrial nad7 gene supports Haplomitrium as the earliest liverwort lineage and proposes a secondary loss of RNA editing in Marchantiidae.

    PubMed

    Groth-Malonek, Milena; Wahrmund, Ute; Polsakiewicz, Monika; Knoop, Volker

    2007-04-01

    Gene transfer from the mitochondrion into the nucleus is a corollary of the endosymbiont hypothesis. The frequent and independent transfer of genes for mitochondrial ribosomal proteins is well documented with many examples in angiosperms, whereas transfer of genes for components of the respiratory chain is a rarity. A notable exception is the nad7 gene, encoding subunit 7 of complex I, in the liverwort Marchantia polymorpha, which resides as a full-length, intron-carrying and transcribed, but nonspliced pseudogene in the chondriome, whereas its functional counterpart is nuclear encoded. To elucidate the patterns of pseudogene degeneration, we have investigated the mitochondrial nad7 locus in 12 other liverworts of broad phylogenetic distribution. We find that the mitochondrial nad7 gene is nonfunctional in 11 of them. However, the modes of pseudogene degeneration vary: whereas point mutations, accompanied by single-nucleotide indels, predominantly introduce stop codons into the reading frame in marchantiid liverworts, larger indels introduce frameshifts in the simple thalloid and leafy jungermanniid taxa. Most notably, however, the mitochondrial nad7 reading frame appears to be intact in the isolated liverwort genus Haplomitrium. Its functional expression is shown by cDNA analysis identifying typical RNA-editing events to reconstitute conserved codon identities and also confirming functional splicing of the 2 liverwort-specific group II introns. We interpret our results 1) to indicate the presence of a functional mitochondrial nad7 gene in the earliest land plants and strongly supporting a basal placement of Haplomitrium among the liverworts, 2) to indicate different modes of pseudogene degeneration and chondriome evolution in the later branching liverwort clades, 3) to suggest a surprisingly long maintenance of a nonfunctional gene in the presumed oldest group of land plants, and 4) to support the model of a secondary loss of RNA-editing activity in marchantiid

  5. An apomixis-linked ORC3-like pseudogene is associated with silencing of its functional homolog in apomictic Paspalum simplex.

    PubMed

    Siena, Lorena A; Ortiz, Juan Pablo A; Calderini, Ornella; Paolocci, Francesco; Cáceres, Maria E; Kaushal, Pankaj; Grisan, Simone; Pessino, Silvina C; Pupilli, Fulvio

    2016-03-01

    Apomixis in plants consists of asexual reproduction by seeds. Here we characterized at structural and functional levels an apomixis-linked sequence of Paspalum simplex homologous to subunit 3 of the ORIGIN RECOGNITION COMPLEX (ORC3). ORC is a multiprotein complex which controls DNA replication and cell differentiation in eukaryotes. Three PsORC3 copies were identified, each one characterized by a specific expression profile. Of these, PsORC3a, specific for apomictic genotypes, is a pseudogene that was poorly and constitutively expressed in all developmental stages of apomictic flowers, whereas PsORC3b, the putative functional gene in sexual flowers, showed a precise time-related regulation. Sense transcripts of PsORC3 were expressed in the female cell lineage of both apomictic and sexual reproductive phenotypes, and in aposporous initials. Although strong expression was detected in sexual early endosperm, no expression was present in the apomictic endosperm. Antisense PsORC3 transcripts were revealed exclusively in apomictic germ cell lineages. Defective orc3 mutants of rice and Arabidopsis showed normal female gametophytes although the embryo and endosperm were arrested at early phases of development. We hypothesize that PsORC3a is associated with the down-regulation of its functional homolog and with the development of apomictic endosperm which deviates from the canonical 2(maternal):1(paternal) genome ratio. PMID:26842983

  6. An apomixis-linked ORC3-like pseudogene is associated with silencing of its functional homolog in apomictic Paspalum simplex.

    PubMed

    Siena, Lorena A; Ortiz, Juan Pablo A; Calderini, Ornella; Paolocci, Francesco; Cáceres, Maria E; Kaushal, Pankaj; Grisan, Simone; Pessino, Silvina C; Pupilli, Fulvio

    2016-03-01

    Apomixis in plants consists of asexual reproduction by seeds. Here we characterized at structural and functional levels an apomixis-linked sequence of Paspalum simplex homologous to subunit 3 of the ORIGIN RECOGNITION COMPLEX (ORC3). ORC is a multiprotein complex which controls DNA replication and cell differentiation in eukaryotes. Three PsORC3 copies were identified, each one characterized by a specific expression profile. Of these, PsORC3a, specific for apomictic genotypes, is a pseudogene that was poorly and constitutively expressed in all developmental stages of apomictic flowers, whereas PsORC3b, the putative functional gene in sexual flowers, showed a precise time-related regulation. Sense transcripts of PsORC3 were expressed in the female cell lineage of both apomictic and sexual reproductive phenotypes, and in aposporous initials. Although strong expression was detected in sexual early endosperm, no expression was present in the apomictic endosperm. Antisense PsORC3 transcripts were revealed exclusively in apomictic germ cell lineages. Defective orc3 mutants of rice and Arabidopsis showed normal female gametophytes although the embryo and endosperm were arrested at early phases of development. We hypothesize that PsORC3a is associated with the down-regulation of its functional homolog and with the development of apomictic endosperm which deviates from the canonical 2(maternal):1(paternal) genome ratio.

  7. The Xist RNA gene evolved in eutherians by pseudogenization of a protein-coding gene.

    PubMed

    Duret, Laurent; Chureau, Corinne; Samain, Sylvie; Weissenbach, Jean; Avner, Philip

    2006-06-16

    The Xist noncoding RNA is the key initiator of the process of X chromosome inactivation in eutherian mammals, but its precise function and origin remain unknown. Although Xist is well conserved among eutherians, until now, no homolog has been identified in other mammals. We show here that Xist evolved, at least partly, from a protein-coding gene and that the loss of protein-coding function of the proto-Xist coincides with the four flanking protein genes becoming pseudogenes. This event occurred after the divergence between eutherians and marsupials, which suggests that mechanisms of dosage compensation have evolved independently in both lineages.

  8. A methylated Neurospora 5S rRNA pseudogene contains a transposable element inactivated by repeat-induced point mutation.

    PubMed Central

    Margolin, B S; Garrett-Engele, P W; Stevens, J N; Fritz, D Y; Garrett-Engele, C; Metzenberg, R L; Selker, E U

    1998-01-01

    In an analysis of 22 of the roughly 100 dispersed 5S rRNA genes in Neurospora crassa, a methylated 5S rRNA pseudogene, Psi63, was identified. We characterized the Psi63 region to better understand the control and function of DNA methylation. The 120-bp 5S rRNA-like region of Psi63 is interrupted by a 1.9-kb insertion that has characteristics of sequences that have been modified by repeat-induced point mutation (RIP). We found sequences related to this insertion in wild-type strains of N. crassa and other Neurospora species. Most showed evidence of RIP; but one, isolated from the N. crassa host of Psi63, showed no evidence of RIP. A deletion from near the center of this sequence apparently rendered it incapable of participating in RIP with the related full-length copies. The Psi63 insertion and the related sequences have features of transposons and are related to the Fot1 class of fungal transposable elements. Apparently Psi63 was generated by insertion of a previously unrecognized Neurospora transposable element into a 5S rRNA gene, followed by RIP. We name the resulting inactivated Neurospora transposon PuntRIP1 and the related sequence showing no evidence of RIP, but harboring a deletion that presumably rendered it defective for transposition, dPunt. PMID:9691037

  9. CODSTRAN: Composite durability structural analysis

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Smith, G. T.

    1978-01-01

    CODSTRAN (COmposite Durability STRuctural ANalysis) is an integrated computer program being developed for the prediction of defect growth and fracture of composite structures subjected to service loads and environments. CODSTRAN is briefly described with respect to organization, capabilities and present status. Application of CODSTRAN current capability to a flat composite laminate with a center slit which was subjected to axial tension loading predicted defect growth which is in good agreement with C-scan ultrasonic test records.

  10. Phosphoglycerate kinase pseudogenes in the tammar wallaby and other macropodid marsupials.

    PubMed

    Cooper, D W; Holland, E A; Rudman, K; Donald, J A; Zehavi-Feferman, R; McKenzie, L M; Sinclair, A H; Spencer, J A; Graves, J A; Poole, W E

    1994-09-01

    Phosphoglycerate kinase (EC 2.7.2.3; PGK) exists in two forms in marsupials. PGK1 is an X-linked house-keeping enzyme, and PGK2 is a mainly testis-specific enzyme under autosomal control. We have used PGK1 probes derived from two closely related species of macropodid marsupials (kangaroos and wallabies) to demonstrate the existence of a large family of pseudogenes in the tammar wallaby (Macropus eugenii). Over 30 fragments are detectable after Taq digestion. We estimate that there are 25-30 copies per genome. Most are autosomally inherited and are apparently not closely linked. Only two restriction fragments that appeared to be sex linked could be detected. Varying degrees of hybridization of fragments to the probes suggest different levels of homology, and hence different ages of origin. The existence of two PGK1 homologous restriction fragments from the X and a large number from the autosomes was also demonstrated by somatic cell hybridization for two other macropodid species, the wallaroo (M. robustus) and the red kangaroo (M. rufus). These results are compared with those from human and mouse, and it is suggested that the propensity of PGK1 to form pseudogenes is an ancient (approximately 130 MYR BP) characteristic of mammals. The high level of polymorphism detected in the tammar makes these PGK1 probes potentially useful for measuring genetic variability in this species and other macropodids.

  11. Experimental evolution of pseudogenization and gene loss in a plant RNA virus.

    PubMed

    Zwart, Mark P; Willemsen, Anouk; Daròs, José-Antonio; Elena, Santiago F

    2014-01-01

    Viruses have evolved highly streamlined genomes and a variety of mechanisms to compress them, suggesting that genome size is under strong selection. Horizontal gene transfer has, on the other hand, played an important role in virus evolution. However, evolution cannot integrate initially nonfunctional sequences into the viral genome if they are rapidly purged by selection. Here we report on the experimental evolution of pseudogenization in virus genomes using a plant RNA virus expressing a heterologous gene. When long 9-week passages were performed, the added gene was lost in all lineages, whereas viruses with large genomic deletions were fixed in only two out of ten 3-week lineages and none in 1-week lineages. Illumina next-generation sequencing revealed considerable convergent evolution in the 9- and 3-week lineages with genomic deletions. Genome size was correlated to within-host competitive fitness, although there was no correlation with virus accumulation or virulence. Within-host competitive fitness of the 3-week virus lineages without genomic deletions was higher than for the 1-week lineages. Our results show that the strength of selection for a reduced genome size and the rate of pseudogenization depend on demographic conditions. Moreover, for the 3-week passage condition, we observed increases in within-host fitness, whereas selection was not strong enough to quickly remove the nonfunctional heterologous gene. These results suggest a demographically determined "sweet spot" might exist, where heterologous insertions are not immediately lost while evolution can act to integrate them into the viral genome. PMID:24109604

  12. Phosphoglycerate kinase pseudogenes in the tammar wallaby and other macropodid marsupials.

    PubMed

    Cooper, D W; Holland, E A; Rudman, K; Donald, J A; Zehavi-Feferman, R; McKenzie, L M; Sinclair, A H; Spencer, J A; Graves, J A; Poole, W E

    1994-09-01

    Phosphoglycerate kinase (EC 2.7.2.3; PGK) exists in two forms in marsupials. PGK1 is an X-linked house-keeping enzyme, and PGK2 is a mainly testis-specific enzyme under autosomal control. We have used PGK1 probes derived from two closely related species of macropodid marsupials (kangaroos and wallabies) to demonstrate the existence of a large family of pseudogenes in the tammar wallaby (Macropus eugenii). Over 30 fragments are detectable after Taq digestion. We estimate that there are 25-30 copies per genome. Most are autosomally inherited and are apparently not closely linked. Only two restriction fragments that appeared to be sex linked could be detected. Varying degrees of hybridization of fragments to the probes suggest different levels of homology, and hence different ages of origin. The existence of two PGK1 homologous restriction fragments from the X and a large number from the autosomes was also demonstrated by somatic cell hybridization for two other macropodid species, the wallaroo (M. robustus) and the red kangaroo (M. rufus). These results are compared with those from human and mouse, and it is suggested that the propensity of PGK1 to form pseudogenes is an ancient (approximately 130 MYR BP) characteristic of mammals. The high level of polymorphism detected in the tammar makes these PGK1 probes potentially useful for measuring genetic variability in this species and other macropodids. PMID:8000135

  13. Measuring rDNA diversity in eukaryotic microbial systems: how intragenomic variation, pseudogenes, and PCR artifacts confound biodiversity estimates.

    PubMed

    Thornhill, Daniel J; Lajeunesse, Todd C; Santos, Scott R

    2007-12-01

    Molecular approaches have revolutionized our ability to study the ecology and evolution of micro-organisms. Among the most widely used genetic markers for these studies are genes and spacers of the rDNA operon. However, the presence of intragenomic rDNA variation, especially among eukaryotes, can potentially confound estimates of microbial diversity. To test this hypothesis, bacterially cloned PCR products of the internal transcribed spacer (ITS) region from clonal isolates of Symbiodinium, a large genus of dinoflagellates that live in symbiosis with many marine protists and invertebrate metazoa, were sequenced and analysed. We found widely differing levels of intragenomic sequence variation and divergence in representatives of Symbiodinium clades A to E, with only a small number of variants attributed to Taq polymerase/bacterial cloning error or PCR chimeras. Analyses of 5.8S-rDNA and ITS2 secondary structure revealed that some variants possessed base substitutions and/or indels that destabilized the folded form of these molecules; given the vital nature of secondary structure to the function of these molecules, these likely represent pseudogenes. When similar controls were applied to bacterially cloned ITS sequences from a recent survey of Symbiodinium diversity in Hawaiian Porites spp., most variants (approximately 87.5%) possessed unstable secondary structures, had unprecedented mutations, and/or were PCR chimeras. Thus, data obtained from sequencing of bacterially cloned rDNA genes can substantially exaggerate the level of eukaryotic microbial diversity inferred from natural samples if appropriate controls are not applied. These considerations must be taken into account when interpreting sequence data generated by bacterial cloning of multicopy genes such as rDNA.

  14. Structural analysis of aligned RNAs.

    PubMed

    Voss, Björn

    2006-01-01

    The knowledge about classes of non-coding RNAs (ncRNAs) is growing very fast and it is mainly the structure which is the common characteristic property shared by members of the same class. For correct characterization of such classes it is therefore of great importance to analyse the structural features in great detail. In this manuscript I present RNAlishapes which combines various secondary structure analysis methods, such as suboptimal folding and shape abstraction, with a comparative approach known as RNA alignment folding. RNAlishapes makes use of an extended thermodynamic model and covariance scoring, which allows to reward covariation of paired bases. Applying the algorithm to a set of bacterial trp-operon leaders using shape abstraction it was able to identify the two alternating conformations of this attenuator. Besides providing in-depth analysis methods for aligned RNAs, the tool also shows a fairly well prediction accuracy. Therefore, RNAlishapes provides the community with a powerful tool for structural analysis of classes of RNAs and is also a reasonable method for consensus structure prediction based on sequence alignments. RNAlishapes is available for online use and download at http://rna.cyanolab.de. PMID:17020924

  15. Structural Analysis of Communication Development.

    ERIC Educational Resources Information Center

    Conville, Richard L.

    This paper discusses the question of the legitimacy of applying structural analysis to actual human behavior and illustrates its legitimacy by using the reasoning in an essay by Paul Ricoeur. It then asks if the principles of communication development (obliqueness, exchange, and dying) derived from Helen Keller's experience of communication…

  16. Structural Analysis and Design Software

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Collier Research and Development Corporation received a one-of-a-kind computer code for designing exotic hypersonic aircraft called ST-SIZE in the first ever Langley Research Center software copyright license agreement. Collier transformed the NASA computer code into a commercial software package called HyperSizer, which integrates with other Finite Element Modeling and Finite Analysis private-sector structural analysis program. ST-SIZE was chiefly conceived as a means to improve and speed the structural design of a future aerospace plane for Langley Hypersonic Vehicles Office. Including the NASA computer code into HyperSizer has enabled the company to also apply the software to applications other than aerospace, including improved design and construction for offices, marine structures, cargo containers, commercial and military aircraft, rail cars, and a host of everyday consumer products.

  17. Efficient Analysis of Complex Structures

    NASA Technical Reports Server (NTRS)

    Kapania, Rakesh K.

    2000-01-01

    Last various accomplishments achieved during this project are : (1) A Survey of Neural Network (NN) applications using MATLAB NN Toolbox on structural engineering especially on equivalent continuum models (Appendix A). (2) Application of NN and GAs to simulate and synthesize substructures: 1-D and 2-D beam problems (Appendix B). (3) Development of an equivalent plate-model analysis method (EPA) for static and vibration analysis of general trapezoidal built-up wing structures composed of skins, spars and ribs. Calculation of all sorts of test cases and comparison with measurements or FEA results. (Appendix C). (4) Basic work on using second order sensitivities on simulating wing modal response, discussion of sensitivity evaluation approaches, and some results (Appendix D). (5) Establishing a general methodology of simulating the modal responses by direct application of NN and by sensitivity techniques, in a design space composed of a number of design points. Comparison is made through examples using these two methods (Appendix E). (6) Establishing a general methodology of efficient analysis of complex wing structures by indirect application of NN: the NN-aided Equivalent Plate Analysis. Training of the Neural Networks for this purpose in several cases of design spaces, which can be applicable for actual design of complex wings (Appendix F).

  18. Structural analysis of vibroacoustical processes

    NASA Technical Reports Server (NTRS)

    Gromov, A. P.; Myasnikov, L. L.; Myasnikova, Y. N.; Finagin, B. A.

    1973-01-01

    The method of automatic identification of acoustical signals, by means of the segmentation was used to investigate noises and vibrations in machines and mechanisms, for cybernetic diagnostics. The structural analysis consists of presentation of a noise or vibroacoustical signal as a sequence of segments, determined by the time quantization, in which each segment is characterized by specific spectral characteristics. The structural spectrum is plotted as a histogram of the segments, also as a relation of the probability density of appearance of a segment to the segment type. It is assumed that the conditions of ergodic processes are maintained.

  19. Structured Functional Principal Component Analysis

    PubMed Central

    Shou, Haochang; Zipunnikov, Vadim; Crainiceanu, Ciprian M.; Greven, Sonja

    2015-01-01

    Summary Motivated by modern observational studies, we introduce a class of functional models that expand nested and crossed designs. These models account for the natural inheritance of the correlation structures from sampling designs in studies where the fundamental unit is a function or image. Inference is based on functional quadratics and their relationship with the underlying covariance structure of the latent processes. A computationally fast and scalable estimation procedure is developed for high-dimensional data. Methods are used in applications including high-frequency accelerometer data for daily activity, pitch linguistic data for phonetic analysis, and EEG data for studying electrical brain activity during sleep. PMID:25327216

  20. The small RNA content of human sperm reveals pseudogene-derived piRNAs complementary to protein-coding genes.

    PubMed

    Pantano, Lorena; Jodar, Meritxell; Bak, Mads; Ballescà, Josep Lluís; Tommerup, Niels; Oliva, Rafael; Vavouri, Tanya

    2015-06-01

    At the end of mammalian sperm development, sperm cells expel most of their cytoplasm and dispose of the majority of their RNA. Yet, hundreds of RNA molecules remain in mature sperm. The biological significance of the vast majority of these molecules is unclear. To better understand the processes that generate sperm small RNAs and what roles they may have, we sequenced and characterized the small RNA content of sperm samples from two human fertile individuals. We detected 182 microRNAs, some of which are highly abundant. The most abundant microRNA in sperm is miR-1246 with predicted targets among sperm-specific genes. The most abundant class of small noncoding RNAs in sperm are PIWI-interacting RNAs (piRNAs). Surprisingly, we found that human sperm cells contain piRNAs processed from pseudogenes. Clusters of piRNAs from human testes contain pseudogenes transcribed in the antisense strand and processed into small RNAs. Several human protein-coding genes contain antisense predicted targets of pseudogene-derived piRNAs in the male germline and these piRNAs are still found in mature sperm. Our study provides the most extensive data set and annotation of human sperm small RNAs to date and is a resource for further functional studies on the roles of sperm small RNAs. In addition, we propose that some of the pseudogene-derived human piRNAs may regulate expression of their parent gene in the male germline.

  1. Molecular characterization of nuclear small subunit (18S)-rDNA pseudogenes in a symbiotic dinoflagellate (Symbiodinium, Dinophyta).

    PubMed

    Santos, Scott R; Kinzie, Robert A; Sakai, Kazuhiko; Coffroth, Mary Alice

    2003-01-01

    For the dinoflagellates, an important group of single-cell protists, some nuclear rDNA phylogenetic studies have reported the discovery of rDNA pseudogenes. However, it is unknown if these aberrant molecules are confined to free-living taxa or occur in other members of the group. We have cultured a strain of symbiotic dinoflagellate, belonging to the genus Symbiodinium, which produces three distinct amplicons following PCR for nuclear small subunit (18S) rDNA genes. These amplicons contribute to a unique restriction fragment length polymorphism pattern diagnostic for this particular strain. Sequence analyses revealed that the largest amplicon was the expected region of 18S-rDNA, while the two smaller amplicons are Symbiodinium nuclear 18S-rDNA genes that contain single long tracts of nucleotide deletions. Reverse transcription (RT)-PCR experiments did not detect RNA transcripts of these latter genes, suggesting that these molecules represent the first report of nuclear 18S-rDNA pseudogenes from the genome of Symbiodinium. As in the free-living dinoflagellates, nuclear rDNA pseudogenes are effective indicators of unique Symbiodinium strains. Furthermore, the evolutionary pattern of dinoflagellate nuclear rDNA pseudogenes appears to be unique among organisms studied to date, and future studies of these unusual molecules will provide insight on the cellular biology and genomic evolution of these protists.

  2. The small RNA content of human sperm reveals pseudogene-derived piRNAs complementary to protein-coding genes

    PubMed Central

    Pantano, Lorena; Jodar, Meritxell; Bak, Mads; Ballescà, Josep Lluís; Tommerup, Niels; Oliva, Rafael; Vavouri, Tanya

    2015-01-01

    At the end of mammalian sperm development, sperm cells expel most of their cytoplasm and dispose of the majority of their RNA. Yet, hundreds of RNA molecules remain in mature sperm. The biological significance of the vast majority of these molecules is unclear. To better understand the processes that generate sperm small RNAs and what roles they may have, we sequenced and characterized the small RNA content of sperm samples from two human fertile individuals. We detected 182 microRNAs, some of which are highly abundant. The most abundant microRNA in sperm is miR-1246 with predicted targets among sperm-specific genes. The most abundant class of small noncoding RNAs in sperm are PIWI-interacting RNAs (piRNAs). Surprisingly, we found that human sperm cells contain piRNAs processed from pseudogenes. Clusters of piRNAs from human testes contain pseudogenes transcribed in the antisense strand and processed into small RNAs. Several human protein-coding genes contain antisense predicted targets of pseudogene-derived piRNAs in the male germline and these piRNAs are still found in mature sperm. Our study provides the most extensive data set and annotation of human sperm small RNAs to date and is a resource for further functional studies on the roles of sperm small RNAs. In addition, we propose that some of the pseudogene-derived human piRNAs may regulate expression of their parent gene in the male germline. PMID:25904136

  3. Uncertainty Analysis of Composite Structures

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.; Starnes, James H., Jr.; Peters, Jeanne M.

    2000-01-01

    A two-phase approach and a computational procedure are presented for predicting the variability in the nonlinear response of composite structures associated with variations in the geometric and material parameters of the structure. In the first phase, hierarchical sensitivity analysis is used to identify the major parameters, which have the most effect on the response quantities of interest. In the second phase, the major parameters are taken to be fuzzy parameters, and a fuzzy set analysis is used to determine the range of variation of the response, associated with preselected variations in the major parameters. The effectiveness of the procedure is demonstrated by means of a numerical example of a cylindrical panel with four T-shaped stiffeners and a circular cutout.

  4. Grid Stiffened Structure Analysis Tool

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The Grid Stiffened Analysis Tool contract is contract performed by Boeing under NASA purchase order H30249D. The contract calls for a "best effort" study comprised of two tasks: (1) Create documentation for a composite grid-stiffened structure analysis tool, in the form of a Microsoft EXCEL spread sheet, that was developed by originally at Stanford University and later further developed by the Air Force, and (2) Write a program that functions as a NASTRAN pre-processor to generate an FEM code for grid-stiffened structure. In performing this contract, Task 1 was given higher priority because it enables NASA to make efficient use of a unique tool they already have; Task 2 was proposed by Boeing because it also would be beneficial to the analysis of composite grid-stiffened structures, specifically in generating models for preliminary design studies. The contract is now complete, this package includes copies of the user's documentation for Task 1 and a CD ROM & diskette with an electronic copy of the user's documentation and an updated version of the "GRID 99" spreadsheet.

  5. A pseudogene long noncoding RNA network regulates PTEN transcription and translation in human cells

    PubMed Central

    Johnsson, Per; Ackley, Amanda; Vidarsdottir, Linda; Lui, Weng-Onn; Corcoran, Martin; Grandér, Dan; Morris, Kevin V.

    2013-01-01

    PTEN is a tumor suppressor gene that has been shown to be under the regulatory control of a PTEN pseudogene expressed noncoding RNA, PTENpg1. Here, we characterize a previously unidentified PTENpg1 encoded antisense RNA (asRNA), which regulates PTEN transcription and PTEN mRNA stability. We find two PTENpg1 asRNA isoforms, alpha and beta. The alpha isoform functions in trans, localizes to the PTEN promoter, and epigenetically modulates PTEN transcription by the recruitment of DNMT3a and EZH2. In contrast, the beta isoform interacts with PTENpg1 through an RNA:RNA pairing interaction, which affects PTEN protein output via changes of PTENpg1 stability and microRNA sponge activity. Disruption of this asRNA-regulated network induces cell cycle arrest and sensitizes cells to doxorubicin, suggesting a biological function for the respective PTENpg1 expressed asRNAs. PMID:23435381

  6. The coding region of the human c-mos pseudogene contains Alu repeat insertions.

    PubMed

    Zabarovsky, E R; Chumakov, I M; Prassolov, V S; Kisselev, L L

    1984-10-01

    We have determined the nucleotide sequence of an 841-bp fragment derived from a segment of the human genome previously cloned by Chumakov et al. [Gene 17 (1982) 19-26] and Zabarovsky et al. [Gene 23 (1983) 379-384] and containing regions homologous to the viral mos gene probe. This sequence displays homology with part of the coding region of the human and murine c-mos genes, contains several termination codons, and is interrupted by two Alu-family elements flanked by short direct repeats. Probably, the progenitor of the human c-mos gene was duplicated approximately at the time of mammalian divergence, was converted to a pseudogene, and acquired insertions of two Alu elements.

  7. Identification of Mobile Elements and Pseudogenes in the Shewanella oneidensis MR-1 Genome

    SciTech Connect

    Romine, Margaret F.; Carlson, Timothy; Norbeck, Angela D.; McCue, Lee Ann; Lipton, Mary S.

    2008-05-01

    Shewanella oneidensis MR-1 is the first of 22 different Shewanella spp. whose genomes have been or are being sequenced and thus serves as the model organism for studying the functional repertoire of the Shewanella genus. The original MR-1 genome annotation revealed a large number of transposase genes and pseudogenes, indicating that many of the genome’s functions may be decaying. Comparative analyses of the sequenced Shewanella strains suggest that 209 genes in MR-1 have in-frame stop codons, frameshifts, or interruptions and/or are truncated and that 65 of the original pseudogene predictions were erroneous. Among the decaying functions are that of one of three chemotaxis clusters, type I pilus production, starch utilization, and nitrite respiration. Many of the mutations could be attributed to members of 41 different types of insertion sequence (IS) elements and three types of miniature inverted-repeat transposable elements identified here for the first time. The high copy numbers of individual mobile elements (up to 71) are expected to promote large-scale genome recombination events, as evidenced by the displacement of the algA promoter. The ability of MR-1 to acquire foreign genes via reactions catalyzed by both the integron integrase and the ISSod25-encoded integrases is suggested by the presence of attC sites and genes whose sequences are characteristic of other species downstream of each site. This large number of mobile elements and multiple potential sites for integrasemediated acquisition of foreign DNA indicate that the MR-1 genome is exceptionally dynamic, with many functions and regulatory control points in the process of decay or reinvention.

  8. Selection on a Variant Associated with Improved Viral Clearance Drives Local, Adaptive Pseudogenization of Interferon Lambda 4 (IFNL4)

    PubMed Central

    Key, Felix M.; Peter, Benjamin; Dennis, Megan Y.; Huerta-Sánchez, Emilia; Tang, Wei; Prokunina-Olsson, Ludmila; Nielsen, Rasmus; Andrés, Aida M.

    2014-01-01

    Interferon lambda 4 gene (IFNL4) encodes IFN-λ4, a new member of the IFN-λ family with antiviral activity. In humans IFNL4 open reading frame is truncated by a polymorphic frame-shift insertion that eliminates IFN-λ4 and turns IFNL4 into a polymorphic pseudogene. Functional IFN-λ4 has antiviral activity but the elimination of IFN-λ4 through pseudogenization is strongly associated with improved clearance of hepatitis C virus (HCV) infection. We show that functional IFN-λ4 is conserved and evolutionarily constrained in mammals and thus functionally relevant. However, the pseudogene has reached moderately high frequency in Africa, America, and Europe, and near fixation in East Asia. In fact, the pseudogenizing variant is among the 0.8% most differentiated SNPs between Africa and East Asia genome-wide. Its raise in frequency is associated with additional evidence of positive selection, which is strongest in East Asia, where this variant falls in the 0.5% tail of SNPs with strongest signatures of recent positive selection genome-wide. Using a new Approximate Bayesian Computation (ABC) approach we infer that the pseudogenizing allele appeared just before the out-of-Africa migration and was immediately targeted by moderate positive selection; selection subsequently strengthened in European and Asian populations resulting in the high frequency observed today. This provides evidence for a changing adaptive process that, by favoring IFN-λ4 inactivation, has shaped present-day phenotypic diversity and susceptibility to disease. PMID:25329461

  9. Association of a truncated cytochrome c processed pseudogene with a similarly truncated member from a long interspersed repeat family of rat.

    PubMed Central

    Scarpulla, R C

    1985-01-01

    The cytochrome c multigene family of rat contains approximately 30 processed pseudogenes that represent genomic DNA copies of three alternate mRNAs. Here, the DNA sequence of an unusual processed pseudogene reveals that it has a complete 3' noncoding region including a short poly A tail but unlike the others is abruptly truncated at its 5' end, 19 amino acid codons from the translation terminator. At this position the pseudogene is fused through 17 consecutive adenylic acid residues to a 1.3 kb repetitive sequence. This repetitive element is flanked by direct repeats and represents a truncated member from a major long interspersed repeat family. The rat element is a composite of sequences observed in long interspersed repeats from both rodents and primates. Comparison to the equivalent mouse sequences shows that the 5' half of the repeat distal to the pseudogene has an open reading frame and is highly conserved whereas the half adjacent to the pseudogene is evolutionarily unstable. The proportion of cytochrome c pseudogene recombinant clones containing this repetitive DNA is 3 fold greater than observed in random isolates and may reflect a general tendency of processed pseudogenes to associate with other repetitive sequences in the genome. Images PMID:2987808

  10. Phylogenomic and structural analyses of 18 complete plastomes across nearly all families of early-diverging eudicots, including an angiosperm-wide analysis of IR gene content evolution.

    PubMed

    Sun, Yanxia; Moore, Michael J; Zhang, Shoujun; Soltis, Pamela S; Soltis, Douglas E; Zhao, Tingting; Meng, Aiping; Li, Xiaodong; Li, Jianqiang; Wang, Hengchang

    2016-03-01

    The grade of early-diverging eudicots includes five major lineages: Ranunculales, Trochodendrales, Buxales, Proteales and Sabiaceae. To examine the evolution of plastome structure in early-diverging eudicots, we determined the complete plastome sequences of eight previously unsequenced early-diverging eudicot taxa, Pachysandra terminalis (Buxaceae), Meliosma aff. cuneifolia (Sabiaceae), Sabia yunnanensis (Sabiaceae), Epimedium sagittatum (Berberidaceae), Euptelea pleiosperma (Eupteleaceae), Akebia trifoliata (Lardizabalaceae), Stephania japonica (Menispermaceae) and Papaver somniferum (Papaveraceae), and compared them to previously published plastomes of the early-diverging eudicots Buxus, Tetracentron, Trochodendron, Nelumbo, Platanus, Nandina, Megaleranthis, Ranunculus, Mahonia and Macadamia. All of the newly sequenced plastomes share the same 79 protein-coding genes, 4 rRNA genes, and 30 tRNA genes, except for that of Epimedium, in which infA is pseudogenized and clpP is highly divergent and possibly a pseudogene. The boundaries of the plastid Inverted Repeat (IR) were found to vary significantly across early-diverging eudicots; IRs ranged from 24.3 to 36.4kb in length and contained from 18 to 33 genes. Based on gene content, the IR was classified into six types, with shifts among types characterized by high levels of homoplasy. Reconstruction of ancestral IR gene content suggested that 18 genes were likely present in the IR region of the ancestor of eudicots. Maximum likelihood phylogenetic analysis of a 79-gene, 97-taxon data set that included all available early-diverging eudicots and representative sampling of remaining angiosperm diversity largely agreed with previous estimates of early-diverging eudicot relationships, but resolved Trochodendrales rather than Buxales as sister to Gunneridae, albeit with relatively weak bootstrap support, conflicting with what has been found for these three clades in most previous analyses. In addition, Proteales was

  11. Structure and evolution of vertebrate aldehyde oxidases: from gene duplication to gene suppression.

    PubMed

    Kurosaki, Mami; Bolis, Marco; Fratelli, Maddalena; Barzago, Maria Monica; Pattini, Linda; Perretta, Gemma; Terao, Mineko; Garattini, Enrico

    2013-05-01

    Aldehyde oxidases (AOXs) and xanthine dehydrogenases (XDHs) belong to the family of molybdo-flavoenzymes. Although AOXs are not identifiable in fungi, these enzymes are represented in certain protists and the majority of plants and vertebrates. The physiological functions and substrates of AOXs are unknown. Nevertheless, AOXs are major drug metabolizing enzymes, oxidizing a wide range of aromatic aldehydes and heterocyclic compounds of medical/toxicological importance. Using genome sequencing data, we predict the structures of AOX genes and pseudogenes, reconstructing their evolution. Fishes are the most primitive organisms with an AOX gene (AOXα), originating from the duplication of an ancestral XDH. Further evolution of fishes resulted in the duplication of AOXα into AOXβ and successive pseudogenization of AOXα. AOXβ is maintained in amphibians and it is the likely precursors of reptilian, avian, and mammalian AOX1. Amphibian AOXγ is a duplication of AOXβ and the likely ancestor of reptilian and avian AOX2, which, in turn, gave rise to mammalian AOX3L1. Subsequent gene duplications generated the two mammalian genes, AOX3 and AOX4. The evolution of mammalian AOX genes is dominated by pseudogenization and deletion events. Our analysis is relevant from a structural point of view, as it provides information on the residues characterizing the three domains of each mammalian AOX isoenzyme. We cloned the cDNAs encoding the AOX proteins of guinea pig and cynomolgus monkeys, two unique species as to the evolution of this enzyme family. We identify chimeric RNAs from the human AOX3 and AOX3L1 pseudogenes with potential to encode a novel microRNA.

  12. Structural Analysis of Fungal Cerebrosides

    PubMed Central

    Barreto-Bergter, Eliana; Sassaki, Guilherme L.; de Souza, Lauro M.

    2011-01-01

    Of the ceramide monohexosides (CMHs), gluco- and galactosyl-ceramides are the main neutral glycosphingolipids expressed in fungal cells. Their structural determination is greatly dependent on the use of mass spectrometric techniques, including fast atom bombardment-mass spectrometry, electrospray ionization, and energy collision-induced dissociation mass spectrometry. Nuclear magnetic resonance has also been used successfully. Such a combination of techniques, combined with classical analytical separation, such as high-performance thin layer chromatography and column chromatography, has led to the structural elucidation of a great number of fungal CMHs. The structure of fungal CMH is conserved among fungal species and consists of a glucose or galactose residue attached to a ceramide moiety containing 9-methyl-4,8-sphingadienine with an amidic linkage to hydroxylated fatty acids, most commonly having 16 or 18 carbon atoms and unsaturation between C-3 and C-4. Along with their unique structural characteristics, fungal CMHs have a peculiar subcellular distribution and striking biological properties. Fungal cerebrosides were also characterized as antigenic molecules directly or indirectly involved in cell growth or differentiation in Schizophyllum commune, Cryptococcus neoformans, Pseudallescheria boydii, Candida albicans, Aspergillus nidulans, Aspergillus fumigatus, and Colletotrichum gloeosporioides. Besides classical techniques for cerebroside (CMH) analysis, we now describe new approaches, combining conventional thin layer chromatography and mass spectrometry, as well as emerging technologies for subcellular localization and distribution of glycosphingolipids by secondary ion mass spectrometry and imaging matrix-assisted laser desorption ionization time-of-flight. PMID:22164155

  13. Association between prostate cancer in black Americans and an allele of the PADPRP pseudogene locus on chromosome 13

    SciTech Connect

    Doll, J.A.; Suarez, B.K.; Donis-Keller, H.

    1996-02-01

    Black American men have a higher incidence of cancer of the prostate (CAP), multiple myeloma, and lung cancer than do white American men. The basis for these differences no doubt includes environmental influences, because American blacks have also been found to have a higher incidence of CAP than do African blacks. However, genetic factors may play a role as well. For example, Lyn et al. reported an increase in the frequency of an allele of the poly(ADP-ribose) polymerase (PADPRP) pseudogene locus on chromosome 13 in black Americans with CAP, suggesting the presence of a disease-susceptibility locus. Since only nine CAP patients were studied, proof of the significance of the finding for the general population of black Americans will rely on independent replication of the result and studies with larger sample sizes. We have doubled the number of black American CAP patients studied at the PADPRP pseudogene locus on chromosome 13 and compared them with white Americans with CAP, along with reference samples. In addition, we have determined allele frequencies by using a larger number of white individuals, from the CEPH reference pedigree resource, and a larger number of black Americans than previously reported, which may reflect more accurately the allele frequencies in these populations. We also find a statistically significant association between an allele at the PADPRP pseudogene locus and CAP in black Americans; however, it is not the same allele reported by Lyn et al. Furthermore, we tested CAP tumor DNA for chromosome 13 PADPRP pseudogene region deletions. In contrast to the report of Bhatia et al., we found no evidence for deletions that would suggest the presence of a tumor-suppressor gene in this region of chromosome 13. 16 refs., 2 tabs.

  14. Heterogeneity of Human Neutrophil CD177 Expression Results from CD177P1 Pseudogene Conversion

    PubMed Central

    Liang, Rong; Ohnesorg, Thomas; Cho, Vicky; Abhayaratna, Walter P.; Gatenby, Paul A.; Perera, Chandima; Zhang, Yafei; Whittle, Belinda; Sinclair, Andrew; Goodnow, Christopher C.; Field, Matthew; Andrews, T. Daniel; Cook, Matthew C.

    2016-01-01

    Most humans harbor both CD177neg and CD177pos neutrophils but 1–10% of people are CD177null, placing them at risk for formation of anti-neutrophil antibodies that can cause transfusion-related acute lung injury and neonatal alloimmune neutropenia. By deep sequencing the CD177 locus, we catalogued CD177 single nucleotide variants and identified a novel stop codon in CD177null individuals arising from a single base substitution in exon 7. This is not a mutation in CD177 itself, rather the CD177null phenotype arises when exon 7 of CD177 is supplied entirely by the CD177 pseudogene (CD177P1), which appears to have resulted from allelic gene conversion. In CD177 expressing individuals the CD177 locus contains both CD177P1 and CD177 sequences. The proportion of CD177hi neutrophils in the blood is a heritable trait. Abundance of CD177hi neutrophils correlates with homozygosity for CD177 reference allele, while heterozygosity for ectopic CD177P1 gene conversion correlates with increased CD177neg neutrophils, in which both CD177P1 partially incorporated allele and paired intact CD177 allele are transcribed. Human neutrophil heterogeneity for CD177 expression arises by ectopic allelic conversion. Resolution of the genetic basis of CD177null phenotype identifies a method for screening for individuals at risk of CD177 isoimmunisation. PMID:27227454

  15. Ruminants genome no longer contains Whey Acidic Protein gene but only a pseudogene.

    PubMed

    Hajjoubi, Siham; Rival-Gervier, Sylvie; Hayes, Hélène; Floriot, Sandrine; Eggen, André; Piumi, François; Chardon, Patrick; Houdebine, Louis-Marie; Thépot, Dominique

    2006-03-29

    Whey Acidic Protein (WAP) has been identified in the milk of only a few species, including mouse, rat, rabbit, camel, pig, tammar wallaby, brushtail possum, echidna and platypus. Despite intensive studies, it has not yet been found in the milk of Ruminants. We have isolated and characterized genomic WAP clones from ewe, goat and cow, identified their chromosomal localization and examined the expression of the endogenous WAP sequence in the mammary glands of all three species. The WAP sequences were localized on chromosome 4 (4q26) as expected from comparative mapping data. The three ruminant WAP sequences reveal the same deletion of a nucleotide at the end of the first exon when compared with the pig sequence. Due to this frameshift mutation, the putative proteins encoded by these sequences do not harbor the features of a usual WAP protein with two four-disulfide core domains. Moreover, RT-PCR experiments have shown that these sequences are not transcribed and are, thus, pseudogenes. This loss of functionality of the gene in Ruminants raises the question of the biological role of the WAP. Some putative roles previously suggested for WAP are discussed. PMID:16483732

  16. Nuclear mitochondrial pseudogenes in Austinograea alayseae hydrothermal vent crabs (Crustacea: Bythograeidae): effects on DNA barcoding.

    PubMed

    Kim, Se-Joo; Lee, Kyeong Yong; Ju, Se-Jong

    2013-09-01

    Members of the brachyuran crab family, Bythograeidae, are among the most abundant and common crabs in vent fields. However, their identification based on morphological characteristics often leads to incorrect species recognition due to a lack of taxonomic factors and the existence of sibling (or cryptic) species. For these reasons, we used DNA barcoding for vent crabs using mitochondrial cytochrome c oxidase subunit 1 (CO1). However, several nuclear mitochondrial pseudogenes (Numts) were amplified from Austinograea alayseae Guinot, 1990, using universal primers (Folmer primers). The Numts were characterized in six haplotypes, with 13.58-14.11% sequence divergence from A. alayseae, a higher nonsynonymous substitution ratio than true CO1, and the formation of an independent clade in bythograeids. In a neighbour-joining tree, the origin of the Numts would be expected to incorporate into the nucleus at an ancestral node of Austinograea, and they mutated more slowly in the nucleus than CO1 in the mitochondria. This evolutionary process may have resulted in the higher binding affinity of Numts for the Folmer primers than CO1. In the present study, we performed long PCR for the amplification of CO1 in A. alayseae. We also present evidence that Numts can introduce serious ambiguity into DNA barcoding, including overestimating the number of species in bythograeids. These results may help in conducting taxonomic studies using mitochondrial genes from organisms living in hydrothermal vent fields.

  17. Modeling, Analysis, and Optimization Issues for Large Space Structures

    NASA Technical Reports Server (NTRS)

    Pinson, L. D. (Compiler); Amos, A. K. (Compiler); Venkayya, V. B. (Compiler)

    1983-01-01

    Topics concerning the modeling, analysis, and optimization of large space structures are discussed including structure-control interaction, structural and structural dynamics modeling, thermal analysis, testing, and design.

  18. Is prnt a pseudogene? Identification of ram Prt in testis and ejaculated spermatozoa.

    PubMed

    Pimenta, Jorge; Domingos, Ana; Santos, Pedro; Marques, Carla C; Cantante, Cátia; Santos, Ana; Barbas, João P; Baptista, Maria C; Horta, António E M; Viegas, Aldino; Mesquita, Patrícia; Gonçalves, João; Fontes, Carlos A; Prates, José A M; Pereira, Rosa M L N

    2012-01-01

    A hallmark of prion diseases or transmissible spongiform encephalopaties is the conversion of the cellular prion protein (PrP(C)), expressed by the prion gene (prnp), into an abnormally folded isoform (PrP(Sc)) with amyloid-like features that causes scrapie in sheep among other diseases. prnp together with prnd (which encodes a prion-like protein designated as Doppel), and prnt (that encodes the prion protein testis specific--Prt) with sprn (shadow of prion protein gene, that encodes Shadoo or Sho) genes, constitute the "prion gene complex". Whereas a role for prnd in the proper functioning of male reproductive system has been confirmed, the function of prnt, a recently discovered prion family gene, comprises a conundrum leading to the assumption that ruminant prnt is a pseudogene with no protein expression. The main objective of the present study was to identify Prt localization in the ram reproductive system and simultaneously to elucidate if ovine prnt gene is transcribed into protein-coding RNA. Moreover, as Prt is a prnp-related protein, the amyloid propensity was also tested for ovine and caprine Prt. Recombinant Prt was used to immunize BALB/c mice, and the anti-Prt polyclonal antibody (APPA) immune response was evaluated by ELISA and Western Blot. When tested by indirect immunofluorescence, APPA showed high avidity to the ram sperm head apical ridge subdomain, before and after induced capacitation, but did not show the same behavior against goat spermatozoa, suggesting high antibody specificity against ovine-Prt. Prt was also found in the testis when assayed by immunohistochemistry during ram spermatogenesis, where spermatogonia, spermatocytes, spermatids and spermatozoa, stained positive. These observations strongly suggest ovine prnt to be a translated protein-coding gene, pointing to a role for Prt protein in the ram reproductive physiology. Besides, caprine Prt appears to exhibit a higher amyloid propensity than ovine Prt, mostly associated with its

  19. Distribution of nuclear mitochondrial pseudogenes in three pollinator fig wasps associated with Ficus pumila

    NASA Astrophysics Data System (ADS)

    Chen, Yan; Liu, Min; Compton, Stephen G.; Chen, Xiao-Yong

    2014-05-01

    Nuclear mitochondrial pseudogenes (NUMTs) are nuclear sequences transferred from mitochondrial genomes. Although widespread, their distribution patterns among populations or closely related species are rarely documented. We amplified and sequenced the mitochondrial cytochrome b (Cytb) gene to check for NUMTs in three fig wasp species that pollinate Ficus pumila (Wiebesia sp. 1, 2 and 3) in Southeastern China using direct and cloned sequencing. Unambiguous sequences (332) of 487 bp in length belonging to 33 haplotypes were found by direct sequencing. Their distribution was highly concordant with those of cytochrome c oxidase subunit I (COI). Obvious signs of co-amplification of NUMTs were indicated by their uneven distribution. NUMTs were observed in all individuals of 12 populations of Wiebesia sp. 3, and 13 individuals of three northern populations of Wiebesia sp. 1. Sequencing clones of potential co-amplification products confirmed that they were NUMTs. These NUMTs either clustered as NUMT clades basal to mtDNA Cytb clades (basal NUMTs), or together with Cytb haplotypes. Basal NUMTs had either stop codons or frame-shifting mutations resulting from deletion of a 106 bp fragment. In addition, no third codon or synonymous substitutions were detected within each NUMT clade. The phylogenetic tree indicated that basal NUMTs had been inserted into nuclei before divergence of the three species. No significant pairwise differences were detected in their ratios of third codon substitutions, suggesting that these NUMTs originated from one transfer event, with duplication in the nuclear genome resulting in the coexistence of the 381 bp copy. No significant substitution differences were detected between Cytb haplotypes and NUMTs that clustered with Cytb haplotypes. However, these NUMTs coexisted with Cytb haplotypes in multiple populations, suggesting that these NUMT haplotypes were recently inserted into the nuclear genome. Both basal and recently inserted NUMTs were rare

  20. The first intron of human c-fms proto-oncogene contains a processed pseudogene (RPL7P) for ribosomal protein L7

    SciTech Connect

    Sapi, E.; Flick, M.B.; Kacinski, B.M.

    1994-08-01

    During sequence analysis of the first intron of the human c-fms oncogene, we identified an open reading frame encoding the ribosomal protein L7 (RPL7). The presence of this sequence within intron 1 of the c-fms gene was confirmed by Southern blot hybridization and by sequence analysis of two independent cosmid clones (cos2-e and cos1-22) that span the human genomic c-fms locus. The RPL7 sequence was detected in a region of sequence overlapped by the cos2-e and cos1-22 cosmid clones but oriented opposite to the c-fms gene. We demonstrate that the sequence is identical to the full-length RPL7 cDNA sequence, but lacks any recognizable introns, has a 30-bp poly(A) tail, and is bracketed by two perfect direct repeats of 14 bp. We also showed that despite the fact that the 5{prime} flanking region of the RPL7 sequence contains a potential TATA box upstream of an intact open reading frame, this pseudogene (RPL7P) is not actively transcribed. 28 refs., 4 figs.

  1. Genomic organization of the human gene (CA5) and pseudogene for mitochondrial carbonic anhydrase V and their localization to chromosomes 16q and 16p

    SciTech Connect

    Nagao, Yoshiro; Sly, W.S.; Batanian, J.R.

    1995-08-10

    Carbonic anhydrase V (CA V) is expressed in mitochondrial matrix in liver and several other tissues. It is of interest for its putative roles in providing bicarbonate to carbamoyl phosphate synthetase for ureagenesis and to pyruvate carboxylase for gluconeogenesis and its possible importance in explaining certain inherited metabolic disorders with hyperammonemia and hypoglycemia. Following the recent characterization of the cDNA for human CA V, we report the isolation of the human gene from two {lambda} genomic libraries and its characterization. The CA V gene (CA5) is approximately 50 kb long and contains 7 exons and 6 introns. The exon-intron boundaries are found in positions identical to those determined for the previously described CA II, CA III, and CA VII genes. Like the CA VII gene, CA5 does not contain typical TATA and CAAT promoter elements in the 5{prime} flanking region but does contain a TTTAA sequence 147 nucleotides upstream of the initiation codon. CA5 also contains a 12-bp GT-rich segment beginning 13 bp downstream of the polyadenylation signal in the 3{prime} untranslated region of exon 7. FISH analysis allowed CA5 to be assigned to chromosome 16q24.3. An unprocessed pseudogene containing sequence homologous to exons 3-7 and introns 3-6 was also isolated and was assigned by FISH analysis to chromosome 16p11.2-p12. 22 refs., 4 figs., 1 tab.

  2. Fourier Analysis and Structure Determination--Part III: X-ray Crystal Structure Analysis.

    ERIC Educational Resources Information Center

    Chesick, John P.

    1989-01-01

    Discussed is single crystal X-ray crystal structure analysis. A common link between the NMR imaging and the traditional X-ray crystal structure analysis is reported. Claims that comparisons aid in the understanding of both techniques. (MVL)

  3. Structural analysis techniqes for remote sensing

    NASA Technical Reports Server (NTRS)

    Shapiro, L. G.

    1982-01-01

    The structural analysis of remotely sensed imagery is defined and basic techniques for implementing the process are described. Structural analysis uses knowledge of the properties of an entity, its parts and their relationships, and the relationships in which it participates at a higher level to locate and recognize objects in a visual scene. The representation of structural knowledge, the development of algorithms for using the knowledge to help analyze an image, and techniques for storage and retrieval of relational models are addressed.

  4. Fixation of the Human-Specific CMP-N-Acetylneuraminic Acid Hydroxylase Pseudogene and Implications of Haplotype Diversity for Human Evolution

    PubMed Central

    Hayakawa, Toshiyuki; Aki, Ikuko; Varki, Ajit; Satta, Yoko; Takahata, Naoyuki

    2006-01-01

    The human CMP-N-acetylneuraminic acid hydroxylase gene (CMAH) suffered deletion of an exon that encodes an active center for the enzyme ∼3.2 million years ago (MYA). We analyzed a 7.3-kb intronic region of 132 CMAH genes to explore the fixation process of this pseudogene and the demographic implication of its haplotype diversity. Fifty-six variable sites were sorted into 18 different haplotypes with significant linkage disequilibrium. Despite the rather low nucleotide diversity, the most recent common ancestor at CMAH dates to 2.9 MYA. This deep genealogy follows shortly after the original exon deletion, indicating that the deletion has fixed in the population, although whether this fixation was facilitated by natural selection remains to be resolved. Remarkable features are exceptionally long persistence of two lineages and the confinement of one lineage in Africa, implying that some African local populations were in relative isolation while others were directly involved in multiple African exoduses of the genus Homo. Importantly, haplotypes found in Eurasia suggest interbreeding between then-contemporaneous human species. Although population structure within Africa complicates the interpretation of phylogeographic information of haplotypes, the data support a single origin of modern humans, but not with complete replacement of archaic inhabitants by modern humans. PMID:16272417

  5. Probabilistic structural analysis by extremum methods

    NASA Technical Reports Server (NTRS)

    Nafday, Avinash M.

    1990-01-01

    The objective is to demonstrate discrete extremum methods of structural analysis as a tool for structural system reliability evaluation. Specifically, linear and multiobjective linear programming models for analysis of rigid plastic frames under proportional and multiparametric loadings, respectively, are considered. Kinematic and static approaches for analysis form a primal-dual pair in each of these models and have a polyhedral format. Duality relations link extreme points and hyperplanes of these polyhedra and lead naturally to dual methods for system reliability evaluation.

  6. Structural analysis of ultra-high speed aircraft structural components

    NASA Technical Reports Server (NTRS)

    Lenzen, K. H.; Siegel, W. H.

    1977-01-01

    The buckling characteristics of a hypersonic beaded skin panel were investigated under pure compression with boundary conditions similar to those found in a wing mounted condition. The primary phases of analysis reported include: (1) experimental testing of the panel to failure; (2) finite element structural analysis of the beaded panel with the computer program NASTRAN; and (3) summary of the semiclassical buckling equations for the beaded panel under purely compressive loads. A comparison of each of the analysis methods is also included.

  7. Automating Structural Analysis of Spacecraft Vehicles

    NASA Technical Reports Server (NTRS)

    Hrinda, Glenn A.

    2004-01-01

    A major effort within NASA's vehicle analysis discipline has been to automate structural analysis and sizing optimization during conceptual design studies of advanced spacecraft. Traditional spacecraft structural sizing has involved detailed finite element analysis (FEA) requiring large degree-of-freedom (DOF) finite element models (FEM). Creation and analysis of these models can be time consuming and limit model size during conceptual designs. The goal is to find an optimal design that meets the mission requirements but produces the lightest structure. A structural sizing tool called HyperSizer has been successfully used in the conceptual design phase of a reusable launch vehicle and planetary exploration spacecraft. The program couples with FEA to enable system level performance assessments and weight predictions including design optimization of material selections and sizing of spacecraft members. The software's analysis capabilities are based on established aerospace structural methods for strength, stability and stiffness that produce adequately sized members and reliable structural weight estimates. The software also helps to identify potential structural deficiencies early in the conceptual design so changes can be made without wasted time. HyperSizer's automated analysis and sizing optimization increases productivity and brings standardization to a systems study. These benefits will be illustrated in examining two different types of conceptual spacecraft designed using the software. A hypersonic air breathing, single stage to orbit (SSTO), reusable launch vehicle (RLV) will be highlighted as well as an aeroshell for a planetary exploration vehicle used for aerocapture at Mars. By showing the two different types of vehicles, the software's flexibility will be demonstrated with an emphasis on reducing aeroshell structural weight. Member sizes, concepts and material selections will be discussed as well as analysis methods used in optimizing the structure

  8. Confirmation of the potential usefulness of two human beta globin pseudogene markers to estimate gene flows to and from sub-Saharan Africans.

    PubMed

    Ciminelli, Bianca Maria; Pompei, Fiorenza; Relucenti, Michela; Lum, J Koji; Simporé, Jacques; Spedini, Gabriella; Martínez-Labarga, Cristina; Pardo, Miguel G

    2002-04-01

    Two polymorphic sites, -107 and -100 with respect to the "cap" site of the human beta globin pseudogene, recently discovered in our laboratory, turned out to have an ethnically complementary distribution. The first site is polymorphic in Europeans, North Africans, Indians (Hindu), and Oriental Asians, and monomorphic in sub-Saharan Africans. Conversely, the second site is polymorphic in sub-Saharan African populations and monomorphic in the aforementioned populations. Here we report the gene frequencies of these two polymorphic sites in nine additional populations (Egyptians, Spaniards, Japanese, Chinese, Filipinos, Vietnamese, Africans from Togo and from Benin, and Pygmies), confirming their ethnospecificity and, through the analysis of these two markers in Oromo and Amhara of Ethiopia (two mixed populations), their usefulness in genetic admixture studies. Moreover, we studied another marker polymorphic in sub-Saharan African populations only, a TaqI restriction fragment length polymorphism located in the same region as the present markers, demonstrating the absence of linkage disequilibrium between it and the -100 site, so that we can exclude that the information they provide is redundant.

  9. Of the Nine Cytidine Deaminase-Like Genes in Arabidopsis, Eight Are Pseudogenes and Only One Is Required to Maintain Pyrimidine Homeostasis in Vivo.

    PubMed

    Chen, Mingjia; Herde, Marco; Witte, Claus-Peter

    2016-06-01

    CYTIDINE DEAMINASE (CDA) catalyzes the deamination of cytidine to uridine and ammonia in the catabolic route of C nucleotides. The Arabidopsis (Arabidopsis thaliana) CDA gene family comprises nine members, one of which (AtCDA) was shown previously in vitro to encode an active CDA. A possible role in C-to-U RNA editing or in antiviral defense has been discussed for other members. A comprehensive bioinformatic analysis of plant CDA sequences, combined with biochemical functionality tests, strongly suggests that all Arabidopsis CDA family members except AtCDA are pseudogenes and that most plants only require a single CDA gene. Soybean (Glycine max) possesses three CDA genes, but only two encode functional enzymes and just one has very high catalytic efficiency. AtCDA and soybean CDAs are located in the cytosol. The functionality of AtCDA in vivo was demonstrated with loss-of-function mutants accumulating high amounts of cytidine but also CMP, cytosine, and some uridine in seeds. Cytidine hydrolysis in cda mutants is likely caused by NUCLEOSIDE HYDROLASE1 (NSH1) because cytosine accumulation is strongly reduced in a cda nsh1 double mutant. Altered responses of the cda mutants to fluorocytidine and fluorouridine indicate that a dual specific nucleoside kinase is involved in cytidine as well as uridine salvage. CDA mutants display a reduction in rosette size and have fewer leaves compared with the wild type, which is probably not caused by defective pyrimidine catabolism but by the accumulation of pyrimidine catabolism intermediates reaching toxic concentrations. PMID:27208239

  10. Mass spectrometry for pectin structure analysis.

    PubMed

    Ralet, Marie-Christine; Lerouge, Patrice; Quéméner, Bernard

    2009-09-28

    Pectin are extremely complex biopolymers made up of different structural domains. Enzymatic degradation followed by purification and structural analysis of the degradation products proved to be efficient tools for the understanding of pectin fine structure, including covalent interactions between pectic structural domains or with other cell wall polysaccharides. Due to its high sensitivity, high throughput and capacity to analyze mixtures, mass spectrometry has gained more and more importance as a tool for oligosaccharides structural characterization in the past 10 years. This review will focus on the combined use of mass spectrometry and enzymatic digestion for pectins structural characterization. PMID:19058795

  11. Structural analysis consultation using artificial intelligence

    NASA Technical Reports Server (NTRS)

    Melosh, R. J.; Marcal, P. V.; Berke, L.

    1978-01-01

    The primary goal of consultation is definition of the best strategy to deal with a structural engineering analysis objective. The knowledge base to meet the need is designed to identify the type of numerical analysis, the needed modeling detail, and specific analysis data required. Decisions are constructed on the basis of the data in the knowledge base - material behavior, relations between geometry and structural behavior, measures of the importance of time and temperature changes - and user supplied specifics characteristics of the spectrum of analysis types, the relation between accuracy and model detail on the structure, its mechanical loadings, and its temperature states. Existing software demonstrated the feasibility of the approach, encompassing the 36 analysis classes spanning nonlinear, temperature affected, incremental analyses which track the behavior of structural systems.

  12. Static Nonlinear Analysis In Concrete Structures

    SciTech Connect

    Hemmati, Ali

    2008-07-08

    Push-over analysis is a simple and applied approach which can be used for estimation of demand responses influenced by earthquake stimulations. The analysis is non-linear static analysis of the structure affected under increasing lateral loads and specifying the displacement--load diagram or structure capacity curve, draw the curve the base shear values and lateral deflection on the roof level of the building will be used. However, for estimation of the real behavior of the structure against earthquake, the non-linear dynamic analysis approaches and various accelerographs should be applied. Of course it should be noted that this approach especially in relation with tall buildings is complex and time consuming. In the article, the different patterns of lateral loading in push-over analysis have been compared with non-linear dynamic analysis approach so that the results represented accordingly. The researches indicated the uniformly--distributed loading is closer to real status.

  13. NAPS: Network Analysis of Protein Structures

    PubMed Central

    Chakrabarty, Broto; Parekh, Nita

    2016-01-01

    Traditionally, protein structures have been analysed by the secondary structure architecture and fold arrangement. An alternative approach that has shown promise is modelling proteins as a network of non-covalent interactions between amino acid residues. The network representation of proteins provide a systems approach to topological analysis of complex three-dimensional structures irrespective of secondary structure and fold type and provide insights into structure-function relationship. We have developed a web server for network based analysis of protein structures, NAPS, that facilitates quantitative and qualitative (visual) analysis of residue–residue interactions in: single chains, protein complex, modelled protein structures and trajectories (e.g. from molecular dynamics simulations). The user can specify atom type for network construction, distance range (in Å) and minimal amino acid separation along the sequence. NAPS provides users selection of node(s) and its neighbourhood based on centrality measures, physicochemical properties of amino acids or cluster of well-connected residues (k-cliques) for further analysis. Visual analysis of interacting domains and protein chains, and shortest path lengths between pair of residues are additional features that aid in functional analysis. NAPS support various analyses and visualization views for identifying functional residues, provide insight into mechanisms of protein folding, domain-domain and protein–protein interactions for understanding communication within and between proteins. URL:http://bioinf.iiit.ac.in/NAPS/. PMID:27151201

  14. NAPS: Network Analysis of Protein Structures.

    PubMed

    Chakrabarty, Broto; Parekh, Nita

    2016-07-01

    Traditionally, protein structures have been analysed by the secondary structure architecture and fold arrangement. An alternative approach that has shown promise is modelling proteins as a network of non-covalent interactions between amino acid residues. The network representation of proteins provide a systems approach to topological analysis of complex three-dimensional structures irrespective of secondary structure and fold type and provide insights into structure-function relationship. We have developed a web server for network based analysis of protein structures, NAPS, that facilitates quantitative and qualitative (visual) analysis of residue-residue interactions in: single chains, protein complex, modelled protein structures and trajectories (e.g. from molecular dynamics simulations). The user can specify atom type for network construction, distance range (in Å) and minimal amino acid separation along the sequence. NAPS provides users selection of node(s) and its neighbourhood based on centrality measures, physicochemical properties of amino acids or cluster of well-connected residues (k-cliques) for further analysis. Visual analysis of interacting domains and protein chains, and shortest path lengths between pair of residues are additional features that aid in functional analysis. NAPS support various analyses and visualization views for identifying functional residues, provide insight into mechanisms of protein folding, domain-domain and protein-protein interactions for understanding communication within and between proteins. URL:http://bioinf.iiit.ac.in/NAPS/. PMID:27151201

  15. Inhibitory effect of RNA-mediated knockdown of zinc finger protein 91 pseudogene on pancreatic cancer cell growth and invasion

    PubMed Central

    Huang, Weiyi; Li, Ning; Hu, Jiong; Wang, Lei

    2016-01-01

    Worldwide, human pancreatic cancer is a rare malignancy with a poor prognosis. Long non-coding RNAs (lncRNAs) are known to have a crucial role in cancer occurrence and progression; however, the role of pseudogene-expressed lncRNAs, a major type of lncRNA, have not been thoroughly analyzed in cancer. Therefore, the present study focused on zinc finger protein 91 pseudogene (ZFP91-P). ZFP91-P expression was initially detected in two pancreatic cancer cell lines by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and the highest expression of ZFP91-P was found in the BXPC-3-H cell line. Subsequently, BXPC-3-H cells were transfected with ZFP91-P short hairpin RNA (shRNA) using a plasmid vector and termed shZFP91-P. Cells transfected with negative control plasmid vector were termed shCon. MTT and Transwell assays were performed to analyze the proliferation and migration of BXPC-3-H cells, respectively, and western blotting was used to detect epithelial-mesenchymal transition markers, including vimentin and β-catenin. The present study showed that depletion of ZFP91-P markedly decreased pancreatic cancer cell proliferation and inhibited cell migration capacity. In addition, the expression of β-catenin increased while vimentin expression decreased. The current findings suggest that high expression of ZFP91-P promotes the migration of BXPC-3-H cells and may be a novel marker for early diagnosis for pancreatic cancer. PMID:27446435

  16. Structural analysis of stratocumulus convection

    NASA Technical Reports Server (NTRS)

    Siems, S. T.; Baker, M. B.; Bretherton, C. S.

    1990-01-01

    The 1 and 20 Hz data are examined from the Electra flights made on July 5, 1987. The flight legs consisted of seven horizontal turbulent legs at the inversion, midcloud, and below clouds, plus 4 soundings made within the same period. The Rosemont temperature sensor and the top and bottom dewpoint sensors were used to measure temperature and humidity at 1 Hz. Inversion structure and entrainment; local dynamics and large scale forcing; convective elements; and decoupling of cloud and subcloud are discussed in relationship to the results of the Electra flight.

  17. Thermal and structural analysis of Hermes

    NASA Astrophysics Data System (ADS)

    Petiau, C.

    1989-08-01

    After a brief recap of Hermes TPS and structure principles, we present the organization of thermal and structural analysis of the Hermes project, and we describe the way to resolve the problems of connections between calculations performed by the different Hermes partners. We describe in detail the interactions between the general model of TPS, used for global dimensioning of insulation, and refined thermal models giving an accurate temperature map inside details of "hot" and "cold" structures. The organization for structural analysis is based on a finite element general model which supports preliminary design, loads and vibration analyses. Boundary conditions for refined subpart analyses are cut to size, into the general model by a super element technique. This process involves the use by all partners of efficient computer codes, in the field of structural analysis and optimization integrated with CAD; for this Dassault proposes as a reference: the CATIA-ELFINI system.

  18. Semantic Antinomies and Deep Structure Analysis

    ERIC Educational Resources Information Center

    Zuber, Ryszard

    1975-01-01

    This article discusses constructions known as semantic antinomies, that is, the paradoxical results of false presuppositions, and how they can be dealt with by means of deep structure analysis. See FL 508 186 for availability. (CLK)

  19. Structural Dynamics and Data Analysis

    NASA Technical Reports Server (NTRS)

    Luthman, Briana L.

    2013-01-01

    This project consists of two parts, the first will be the post-flight analysis of data from a Delta IV launch vehicle, and the second will be a Finite Element Analysis of a CubeSat. Shock and vibration data was collected on WGS-5 (Wideband Global SATCOM- 5) which was launched on a Delta IV launch vehicle. Using CAM (CAlculation with Matrices) software, the data is to be plotted into Time History, Shock Response Spectrum, and SPL (Sound Pressure Level) curves. In this format the data is to be reviewed and compared to flight instrumentation data from previous flights of the same launch vehicle. This is done to ensure the current mission environments, such as shock, random vibration, and acoustics, are not out of family with existing flight experience. In family means the peaks on the SRS curve for WGS-5 are similar to the peaks from the previous flights and there are no major outliers. The curves from the data will then be compiled into a useful format so that is can be peer reviewed then presented before an engineering review board if required. Also, the reviewed data will be uploaded to the Engineering Review Board Information System (ERBIS) to archive. The second part of this project is conducting Finite Element Analysis of a CubeSat. In 2010, Merritt Island High School partnered with NASA to design, build and launch a CubeSat. The team is now called StangSat in honor of their mascot, the mustang. Over the past few years, the StangSat team has built a satellite and has now been manifested for flight on a SpaceX Falcon 9 launch in 2014. To prepare for the final launch, a test flight was conducted in Mojave, California. StangSat was launched on a Prospector 18D, a high altitude rocket made by Garvey Spacecraft Corporation, along with their sister satellite CP9 built by California Polytechnic University. However, StangSat was damaged during an off nominal landing and this project will give beneficial insights into what loads the CubeSat experienced during the crash

  20. Probabilistic structural analysis for nuclear thermal propulsion

    NASA Technical Reports Server (NTRS)

    Shah, Ashwin

    1993-01-01

    Viewgraphs of probabilistic structural analysis for nuclear thermal propulsion are presented. The objective of the study was to develop a methodology to certify Space Nuclear Propulsion System (SNPS) Nozzle with assured reliability. Topics covered include: advantage of probabilistic structural analysis; space nuclear propulsion system nozzle uncertainties in the random variables; SNPS nozzle natural frequency; and sensitivity of primitive variable uncertainties SNPS nozzle natural frequency and shell stress.

  1. Septin crystallization for structural analysis.

    PubMed

    Valadares, N F; Garratt, R C

    2016-01-01

    Septins are filament-forming proteins found in many eukaryotes. Despite being important components of the cytoskeleton, only recently details of their macromolecular assemblies and crystal structures have started to appear in the literature. These are of fundamental importance to the understanding of cytoskeleton dynamics, membrane barrier formation, and bacterial caging, as well as essential cellular processes such as cell division, exocytosis, and vesicle trafficking. However, obtaining this data is frequently hindered by several experimental difficulties common to the majority of septin samples. Here we provide an overview of the current approaches to circumvent or minimize the experimental complications observed in septin crystallography focusing mainly, but not exclusively, on the choice of the septin construct and how to best prepare the sample itself. PMID:27473918

  2. Generalized Structured Component Analysis with Latent Interactions

    ERIC Educational Resources Information Center

    Hwang, Heungsun; Ho, Moon-Ho Ringo; Lee, Jonathan

    2010-01-01

    Generalized structured component analysis (GSCA) is a component-based approach to structural equation modeling. In practice, researchers may often be interested in examining the interaction effects of latent variables. However, GSCA has been geared only for the specification and testing of the main effects of variables. Thus, an extension of GSCA…

  3. Structural analysis of second-generation heliostats

    SciTech Connect

    Dunder, V.D.

    1981-12-01

    As part of the overall evaluation of the four second-generation heliostats, a finite element analysis was performed to evaluate structure performance of the mirror modules subjected to gravity, operational wind loads and survival wind loads. All designs evaluated were found to be structurally adequate.

  4. Impact analysis of composite aircraft structures

    NASA Technical Reports Server (NTRS)

    Pifko, Allan B.; Kushner, Alan S.

    1993-01-01

    The impact analysis of composite aircraft structures is discussed. Topics discussed include: background remarks on aircraft crashworthiness; comments on modeling strategies for crashworthiness simulation; initial study of simulation of progressive failure of an aircraft component constructed of composite material; and research direction in composite characterization for impact analysis.

  5. Fuzzy Clusterwise Generalized Structured Component Analysis

    ERIC Educational Resources Information Center

    Hwang, Heungsun; Desarbo, Wayne S.; Takane, Yoshio

    2007-01-01

    Generalized Structured Component Analysis (GSCA) was recently introduced by Hwang and Takane (2004) as a component-based approach to path analysis with latent variables. The parameters of GSCA are estimated by pooling data across respondents under the implicit assumption that they all come from a single, homogenous group. However, as has been…

  6. Thermal analysis considerations for large space structures

    NASA Technical Reports Server (NTRS)

    Adelman, H. M.; Shore, C. P.

    1983-01-01

    A number of issues and needs relative to thermal analysis of large space structures and space stations are discussed. Some indications of trends in the Langley thermal-structural analysis research program consistent with the issues and needs are also presented. The main heat transfer mechanism in space is radiation; consequently, there is a need for a strong thrust on improved radiation analysis capability. Also the important interactions among temperatures, deformations, and controls need to be accounted for. Finite element analysis capability seems to be lagging behind lumped-parameter capability or heat pipe analysis. The Langley plan will include improving radiation analysis capability, evaluating the errors involved in certain approximate analysis and modeling techniques for large space trusses, and continuing the development of integrated thermal-structural finite elements with an emphasis on radiation heat transfer. Work will be initiated to develop finite element analysis techniques for heat pipes. Finally, optimization research activities will be oriented toward methods to design flexible orbiting structures to account for thermal and thermal deformation requirements.

  7. Structural Analysis in a Conceptual Design Framework

    NASA Technical Reports Server (NTRS)

    Padula, Sharon L.; Robinson, Jay H.; Eldred, Lloyd B.

    2012-01-01

    Supersonic aircraft designers must shape the outer mold line of the aircraft to improve multiple objectives, such as mission performance, cruise efficiency, and sonic-boom signatures. Conceptual designers have demonstrated an ability to assess these objectives for a large number of candidate designs. Other critical objectives and constraints, such as weight, fuel volume, aeroelastic effects, and structural soundness, are more difficult to address during the conceptual design process. The present research adds both static structural analysis and sizing to an existing conceptual design framework. The ultimate goal is to include structural analysis in the multidisciplinary optimization of a supersonic aircraft. Progress towards that goal is discussed and demonstrated.

  8. Structural response analysis of tension leg platforms

    SciTech Connect

    Yoshida, K.; Oka, N.; Ozaki, M.

    1984-03-01

    A linear response analysis method of the Tension Leg Platform (TLP) subjected to regular waves is proposed. In this analysis method, flexibility of the superstructure can be taken into account in the equations of motion; response motions, tension variations of tendons and structural member forces are solved simultaneously. The applicability of this method is confirmed by comparison with the test results on two kinds of small-scale TLP models. The structural responses obtained from these calculations and their effects on tension variation of tendons are studied. Finally, several kinds of structural response characteristics are conclusively discussed.

  9. Seismic analysis of nuclear power plant structures

    NASA Technical Reports Server (NTRS)

    Go, J. C.

    1973-01-01

    Primary structures for nuclear power plants are designed to resist expected earthquakes of the site. Two intensities are referred to as Operating Basis Earthquake and Design Basis Earthquake. These structures are required to accommodate these seismic loadings without loss of their functional integrity. Thus, no plastic yield is allowed. The application of NASTRAN in analyzing some of these seismic induced structural dynamic problems is described. NASTRAN, with some modifications, can be used to analyze most structures that are subjected to seismic loads. A brief review of the formulation of seismic-induced structural dynamics is also presented. Two typical structural problems were selected to illustrate the application of the various methods of seismic structural analysis by the NASTRAN system.

  10. Structural-Thermal-Optical-Performance (STOP) Analysis

    NASA Technical Reports Server (NTRS)

    Bolognese, Jeffrey; Irish, Sandra

    2015-01-01

    The presentation will be given at the 26th Annual Thermal Fluids Analysis Workshop (TFAWS 2015) hosted by the Goddard Spaceflight Center (GSFC) Thermal Engineering Branch (Code 545). A STOP analysis is a multidiscipline analysis, consisting of Structural, Thermal and Optical Performance Analyses, that is performed for all space flight instruments and satellites. This course will explain the different parts of performing this analysis. The student will learn how to effectively interact with each discipline in order to accurately obtain the system analysis results.

  11. Thermal and structural analysis of Hermes

    NASA Astrophysics Data System (ADS)

    Petiau, C.

    1989-01-01

    The organization of the thermal and structural analysis of the Hermes project is described. A way to resolve the problem of connections between calculations performed by the different Hermes partners is outlined. The interactions between the general model of TPS (thermal protection system) used for global dimensioning of insulation, and refined thermal models giving accurate temperature map details of hot and cold structures, are described. The organization of the structural analysis is based on a finite element general model which supports preliminary design, loads and vibration analyses. Boundary conditions for refined subpart analyses, are cut to size, into the general model by super element techniques. This process involves the use by all partners of efficient computer codes. The Catia-Elfini software system is proposed as a possible code system for structural analysis and optimization purposes.

  12. Simultaneous analysis and design. [in structural engineering

    NASA Technical Reports Server (NTRS)

    Haftka, R. T.

    1985-01-01

    Optimization techniques are increasingly being used for performing nonlinear structural analysis. The development of element by element (EBE) preconditioned conjugate gradient (CG) techniques is expected to extend this trend to linear analysis. Under these circumstances the structural design problem can be viewed as a nested optimization problem. There are computational benefits to treating this nested problem as a large single optimization problem. The response variables (such as displacements) and the structural parameters are all treated as design variables in a unified formulation which performs simultaneously the design and analysis. Two examples are used for demonstration. A seventy-two bar truss is optimized subject to linear stress constraints and a wing box structure is optimized subject to nonlinear collapse constraints. Both examples show substantial computational savings with the unified approach as compared to the traditional nested approach.

  13. Thermal analysis of the TMT telescope structure

    NASA Astrophysics Data System (ADS)

    Cho, Myung; Corredor, Andrew; Vogiatzis, Konstantinos; Angeli, George

    2010-07-01

    Thermal performances of the Thirty Meter Telescope (TMT) structure were evaluated by finite element thermal models. The thermal models consist of the telescope optical assembly systems, instruments, laser facility, control and electronic equipments, and structural members. Temporal and spatial temperature distributions of the optical assembly systems and the telescope structure were calculated under various thermal conditions including air convections, conductions, heat flux loadings, and radiations. In order to capture thermal responses faithfully, a three-consecutive-day thermal environment data was implemented. This thermal boundary condition was created by CFD based on the environment conditions of the corresponding TMT site. The thermo-elastic analysis was made to predict thermal deformations of the telescope structure at every hour for three days. The line of sight calculation was made using the thermally induced structural deformations. Merit function was utilized to calculate the OPD maps after repositioning the optics based on a best fit of M1 segment deformations. The goal of this thermal analysis is to establish creditable thermal models by finite element analysis to simulate the thermal effects with the TMT site environment data. These thermal models can be utilized for estimating the thermal responses of the TMT structure. Thermal performance prediction of the TMT structure will guide us to assess the thermal impacts, and enables us to establish a thermal control strategy and requirements in order to minimize the thermal effects on the telescope structure due to heat dissipation from the telescope mounted equipment and systems.

  14. Probabilistic structural analysis computer code (NESSUS)

    NASA Technical Reports Server (NTRS)

    Shiao, Michael C.

    1988-01-01

    Probabilistic structural analysis has been developed to analyze the effects of fluctuating loads, variable material properties, and uncertain analytical models especially for high performance structures such as SSME turbopump blades. The computer code NESSUS (Numerical Evaluation of Stochastic Structure Under Stress) was developed to serve as a primary computation tool for the characterization of the probabilistic structural response due to the stochastic environments by statistical description. The code consists of three major modules NESSUS/PRE, NESSUS/FEM, and NESSUS/FPI. NESSUS/PRE is a preprocessor which decomposes the spatially correlated random variables into a set of uncorrelated random variables using a modal analysis method. NESSUS/FEM is a finite element module which provides structural sensitivities to all the random variables considered. NESSUS/FPI is Fast Probability Integration method by which a cumulative distribution function or a probability density function is calculated.

  15. Pseudogenization of sopA and sopE2 is functionally linked and contributes to virulence of Salmonella enterica serovar Typhi.

    PubMed

    Valenzuela, L M; Hidalgo, A A; Rodríguez, L; Urrutia, I M; Ortega, A P; Villagra, N A; Paredes-Sabja, D; Calderón, I L; Gil, F; Saavedra, C P; Mora, G C; Fuentes, J A

    2015-07-01

    The difference in host range between Salmonella enterica serovar Typhimurium (S. Typhimurium) and S. enterica serovar Typhi (S. Typhi) can be partially attributed to pseudogenes. Pseudogenes are genomic segments homologous to functional genes that do not encode functional products due to the presence of genetic defects. S. Typhi lacks several protein effectors implicated in invasion or other important processes necessary for full virulence of S. Typhimurium. SopA and SopE2, effectors that have been lost by pseudogenization in S. Typhi, correspond to an ubiquitin ligase involved in cytokine production by infected cells, and to a guanine exchange factor necessary for invasion of epithelial cells, respectively. We hypothesized that sopA and/or sopE pseudogenization contributed to the virulence of S. Typhi. In this work, we found that S. Typhi expressing S. Typhimurium sopE2 exhibited a decreased invasion in different epithelial cell lines compared with S. Typhi WT. S. Typhimurium sopA completely abolished the hypo-invasive phenotype observed in S. Typhi expressing S. Typhimurium sopE2, suggesting that functional SopA and SopE2 participate concertedly in the invasion process. Finally, the expression of S. Typhimurium sopA and/or sopE2 in S. Typhi, determined changes in the secretion of IL-8 and IL-18 in infected epithelial cells.

  16. Analysis and sizing of Mars aerobrake structure

    NASA Technical Reports Server (NTRS)

    Raju, I. S.; Craft, W. J.

    1993-01-01

    A cone-sphere aeroshell structure for aerobraking into Martian atmosphere is studied. Using this structural configuration, a space frame load-bearing structure is proposed. To generate this structure efficiently and to perform a variety of studies of several configurations, a mesh generator that utilizes only a few configurational parameters is developed. A finite element analysis program that analyzes space frame structures was developed. A sizing algorithm that arrives at a minimum mass configuration was developed and integrated into the finite element analysis program. A typical 135-ft-diam aerobrake configuration was analyzed and sized. The minimum mass obtained in this study using high modulus graphite/epoxy composite material members is compared with the masses obtained from two other aerobrake structures using lightweight erectable tetrahedral truss and part-spherical truss configurations. Excellent agreement for the minimum mass was obtained with the three different aerobrake structures. Also, the minimum mass using the present structure was obtained when the supports were not at the base but at about 75 percent of the base diameter.

  17. Analysis of flexible structures under lateral impact

    SciTech Connect

    Ramirez, D. F.; Razavi, H.

    2012-07-01

    Three methods for analysis of flexible structures under lateral impact are presented. The first proposed method (Method A) consists of: (1) modifying an available deceleration on a rigid target with conservation principles to account for structural flexibility; and (2) transient nonlinear analysis of the structure with the corrected forcing function. The second proposed method (Method B) is similar to Method A in obtaining the forcing function but it solves the equations of motion of an idealized two-degree-of-freedom system instead of directly using conservation principles. The last method simply provides the maximum force in the structure using the conservation of energy and linear momentum. A coupled simulation is also performed in LS-DYNA and compared against the proposed methods. A case study is presented to illustrate the applicability of all three methods and the LS-DYNA simulation. (authors)

  18. FTH1P3, a Novel H-Ferritin Pseudogene Transcriptionally Active, Is Ubiquitously Expressed and Regulated during Cell Differentiation

    PubMed Central

    Di Sanzo, Maddalena; Aversa, Ilenia; Santamaria, Gianluca; Gagliardi, Monica; Panebianco, Mariafranca; Biamonte, Flavia; Zolea, Fabiana; Faniello, Maria Concetta

    2016-01-01

    Ferritin, the major iron storage protein, performs its essential functions in the cytoplasm, nucleus and mitochondria. The variable assembly of 24 subunits of the Heavy (H) and Light (L) type composes the cytoplasmic molecule. In humans, two distinct genes code these subunits, both belonging to complex multigene families. Until now, one H gene has been identified with the coding sequence interrupted by three introns and more than 20 intronless copies widely dispersed on different chromosomes. Two of the intronless genes are actively transcribed in a tissue-specific manner. Herein, we report that FTH1P3, another intronless pseudogene, is transcribed. FTH1P3 transcript was detected in several cell lines and tissues, suggesting that its transcription is ubiquitary, as it happens for the parental ferritin H gene. Moreover, FTH1P3 expression is positively regulated during the cell differentiation process. PMID:26982978

  19. Structural analysis for a 40-story building

    NASA Technical Reports Server (NTRS)

    Hua, L.

    1972-01-01

    NASTRAN was chosen as the principal analytical tool for structural analysis of the Illinois Center Plaza Hotel Building in Chicago, Illinois. The building is a 40-story, reinforced concrete structure utilizing a monolithic slab-column system. The displacements, member stresses, and foundation loads due to wind load, live load, and dead load were obtained through a series of NASTRAN runs. These analyses and the input technique are described.

  20. Structural sensitivity analysis: Methods, applications and needs

    NASA Technical Reports Server (NTRS)

    Adelman, H. M.; Haftka, R. T.; Camarda, C. J.; Walsh, J. L.

    1984-01-01

    Innovative techniques applicable to sensitivity analysis of discretized structural systems are reviewed. The techniques include a finite difference step size selection algorithm, a method for derivatives of iterative solutions, a Green's function technique for derivatives of transient response, simultaneous calculation of temperatures and their derivatives, derivatives with respect to shape, and derivatives of optimum designs with respect to problem parameters. Computerized implementations of sensitivity analysis and applications of sensitivity derivatives are also discussed. Some of the critical needs in the structural sensitivity area are indicated along with plans for dealing with some of those needs.

  1. Structural sensitivity analysis: Methods, applications, and needs

    NASA Technical Reports Server (NTRS)

    Adelman, H. M.; Haftka, R. T.; Camarda, C. J.; Walsh, J. L.

    1984-01-01

    Some innovative techniques applicable to sensitivity analysis of discretized structural systems are reviewed. These techniques include a finite-difference step-size selection algorithm, a method for derivatives of iterative solutions, a Green's function technique for derivatives of transient response, a simultaneous calculation of temperatures and their derivatives, derivatives with respect to shape, and derivatives of optimum designs with respect to problem parameters. Computerized implementations of sensitivity analysis and applications of sensitivity derivatives are also discussed. Finally, some of the critical needs in the structural sensitivity area are indicated along with Langley plans for dealing with some of these needs.

  2. RNA Secondary Structure Analysis Using RNAstructure.

    PubMed

    Mathews, David H

    2014-06-17

    RNAstructure is a user-friendly program for the prediction and analysis of RNA secondary structure. It is available as a Web server, as a program with a graphical user interface, or as a set of command-line tools. The programs are available for Microsoft Windows, Macintosh OS X, or Linux. This unit provides protocols for RNA secondary structure prediction (using the Web server or the graphical user interface) and prediction of high-affinity oligonucleotide biding sites to a structured RNA target (using the graphical user interface).

  3. Improving transient analysis technology for aircraft structures

    NASA Technical Reports Server (NTRS)

    Melosh, R. J.; Chargin, Mladen

    1989-01-01

    Aircraft dynamic analyses are demanding of computer simulation capabilities. The modeling complexities of semi-monocoque construction, irregular geometry, high-performance materials, and high-accuracy analysis are present. At issue are the safety of the passengers and the integrity of the structure for a wide variety of flight-operating and emergency conditions. The technology which supports engineering of aircraft structures using computer simulation is examined. Available computer support is briefly described and improvement of accuracy and efficiency are recommended. Improved accuracy of simulation will lead to a more economical structure. Improved efficiency will result in lowering development time and expense.

  4. The Assessment of Structural Analysis Skills.

    ERIC Educational Resources Information Center

    Johnson, Dale D.; And Others

    Two studies were undertaken to continue a line of research designed to identify the subskills of word identification that correlate most highly with reading comprehension and to develop empirically based instruments to assess those subskills. The issues studied related to the broad area of structural analysis and concerned assessment of skills in…

  5. Turbine blade nonlinear structural and life analysis

    NASA Technical Reports Server (NTRS)

    Mcknight, R. L.; Laflen, J. H.; Halford, G. R.; Kaufman, A.

    1982-01-01

    The utility of advanced structural analysis and life prediction techniques was evaluated for the life assessment of a commercial air-cooled turbine blade with a history of tip cracking. Three dimensional, nonlinear finite element structural analyses were performed for the blade tip region. The computed strain-temperature history of the critical location was imposed on a uniaxial strain controlled test specimen to evaluate the validity of the structural analysis method. Experimental results indicated higher peak stresses and greater stress relaxation than the analytical predictions. Life predictions using the Strainrange Partitioning and Frequency Modified approaches predicted 1200 to 4420 cycles and 2700 cycles to crack initiation, respectively, compared to an observed life of 3000 cycles.

  6. Shape analysis of simulated breast anatomical structures

    NASA Astrophysics Data System (ADS)

    Contijoch, Francisco; Lynch, Jennifer M.; Pokrajac, David D.; Maidment, Andrew D. A.; Bakic, Predrag R.

    2012-03-01

    Recent advances in high-resolution 3D breast imaging, namely, digital breast tomosynthesis and dedicated breast CT, have enabled detailed analysis of the shape and distribution of anatomical structures in the breast. Such analysis is critically important, since the projections of breast anatomical structures make up the parenchymal pattern in clinical images which can mask the existing abnormalities or introduce false alarms; the parenchymal pattern is also correlated with the risk of cancer. As a first step towards the shape analysis of anatomical structures in the breast, we have analyzed an anthropomorphic software breast phantom. The phantom generation is based upon the recursive splitting of the phantom volume using octrees, which produces irregularly shaped tissue compartments, qualitatively mimicking the breast anatomy. The shape analysis was performed by fitting ellipsoids to the simulated tissue compartments. The ellipsoidal semi-axes were calculated by matching the moments of inertia of each individual compartment and of an ellipsoid. The distribution of Dice coefficients, measuring volumetric overlap between the compartment and the corresponding ellipsoid, as well as the distribution of aspect ratios, measuring relative orientations of the ellipsoids, were used to characterize various classes of phantoms with qualitatively distinctive appearance. A comparison between input parameters for phantom generation and the properties of fitted ellipsoids indicated the high level of user control in the design of software breast phantoms. The proposed shape analysis could be extended to clinical breast images, and used to inform the selection of simulation parameters for improved realism.

  7. Economic Evaluation of Computerized Structural Analysis

    NASA Technical Reports Server (NTRS)

    Fortin, P. E.

    1985-01-01

    This completed effort involved a technical and economic study of the capabilities of computer programs in the area of structural analysis. The applicability of the programs to NASA projects and to other users was studied. The applications in other industries was explored including both research and development and applied areas. The costs of several alternative analysis programs were compared. A literature search covered applicable technical literature including journals, trade publications and books. In addition to the literature search, several commercial companies that have developed computerized structural analysis programs were contacted and their technical brochures reviewed. These programs include SDRC I-DEAS, MSC/NASTRAN, SCADA, SUPERSAP, NISA/DISPLAY, STAAD-III, MICAS, GTSTRUDL, and STARS. These programs were briefly reviewed as applicable to NASA projects.

  8. Out of plane analysis for composite structures

    NASA Technical Reports Server (NTRS)

    Paul, P. C.; Saff, C. R.; Sanger, Kenneth B.; Mahler, M. A.; Kan, Han Pin; Kautz, Edward F.

    1990-01-01

    Simple two dimensional analysis techniques were developed to aid in the design of strong joints for integrally stiffened/bonded composite structures subjected to out of plane loads. It was found that most out of plane failures were due to induced stresses arising from rapid changes in load path direction or geometry, induced stresses due to changes in geometry caused by buckling, or direct stresses produced by fuel pressure or bearing loads. While the analysis techniques were developed to address a great variety of out of plane loading conditions, they were primarily derived to address the conditions described above. The methods were developed and verified using existing element test data. The methods were demonstrated using the data from a test failure of a high strain wingbox that was designed, built, and tested under a previous program. Subsequently, a set of design guidelines were assembled to assist in the design of safe, strong integral composite structures using the analysis techniques developed.

  9. Uncertain structural dynamics of aircraft panels and fuzzy structures analysis

    NASA Astrophysics Data System (ADS)

    Sparrow, Victor W.; Buehrle, Ralph D.

    2002-11-01

    Aircraft fuselage panels, seemingly simple structures, are actually complex because of the uncertainty of the attachments of the frame stiffeners and longitudinal stringers. It is clearly important to understand the dynamics of these panels because of the subsequent radiation into the passenger cabin, even when complete information is not available for all portions of the finite-element model. Over the last few years a fuzzy structures analysis (FSA) approach has been undertaken at Penn State and NASA Langley to quantify the uncertainty in modeling aircraft panels. A new MSC.Nastran [MSC.Software Corp. (Santa Ana, CA)] Direct Matrix Abstraction Program (DMAP) code was written and tested [AIAA paper 2001-1320, 42nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conf., Seattle, WA, 16 April 2001] and was applied to simple fuselage panel models [J. Acoust. Soc. Am. 109, 2410(A) (2001)]. Recently the work has focused on understanding the dynamics of a realistic aluminum fuselage panel, typical of today's aircraft construction. This presentation will provide an overview of the research and recent results will be given for the fuselage panel. Comparison between experiments and the FSA results will be shown for different fuzzy input parameters. [Work supported by NASA Research Cooperative Agreement NCC-1-382.

  10. Stochastic Simulation Tool for Aerospace Structural Analysis

    NASA Technical Reports Server (NTRS)

    Knight, Norman F.; Moore, David F.

    2006-01-01

    Stochastic simulation refers to incorporating the effects of design tolerances and uncertainties into the design analysis model and then determining their influence on the design. A high-level evaluation of one such stochastic simulation tool, the MSC.Robust Design tool by MSC.Software Corporation, has been conducted. This stochastic simulation tool provides structural analysts with a tool to interrogate their structural design based on their mathematical description of the design problem using finite element analysis methods. This tool leverages the analyst's prior investment in finite element model development of a particular design. The original finite element model is treated as the baseline structural analysis model for the stochastic simulations that are to be performed. A Monte Carlo approach is used by MSC.Robust Design to determine the effects of scatter in design input variables on response output parameters. The tool was not designed to provide a probabilistic assessment, but to assist engineers in understanding cause and effect. It is driven by a graphical-user interface and retains the engineer-in-the-loop strategy for design evaluation and improvement. The application problem for the evaluation is chosen to be a two-dimensional shell finite element model of a Space Shuttle wing leading-edge panel under re-entry aerodynamic loading. MSC.Robust Design adds value to the analysis effort by rapidly being able to identify design input variables whose variability causes the most influence in response output parameters.

  11. Coupled Aerodynamic-Thermal-Structural (CATS) Analysis

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Coupled Aerodynamic-Thermal-Structural (CATS) Analysis is a focused effort within the Numerical Propulsion System Simulation (NPSS) program to streamline multidisciplinary analysis of aeropropulsion components and assemblies. Multidisciplinary analysis of axial-flow compressor performance has been selected for the initial focus of this project. CATS will permit more accurate compressor system analysis by enabling users to include thermal and mechanical effects as an integral part of the aerodynamic analysis of the compressor primary flowpath. Thus, critical details, such as the variation of blade tip clearances and the deformation of the flowpath geometry, can be more accurately modeled and included in the aerodynamic analyses. The benefits of this coupled analysis capability are (1) performance and stall line predictions are improved by the inclusion of tip clearances and hot geometries, (2) design alternatives can be readily analyzed, and (3) higher fidelity analysis by researchers in various disciplines is possible. The goals for this project are a 10-percent improvement in stall margin predictions and a 2:1 speed-up in multidisciplinary analysis times. Working cooperatively with Pratt & Whitney, the Lewis CATS team defined the engineering processes and identified the software products necessary for streamlining these processes. The basic approach is to integrate the aerodynamic, thermal, and structural computational analyses by using data management and Non-Uniform Rational B-Splines (NURBS) based data mapping. Five software products have been defined for this task: (1) a primary flowpath data mapper, (2) a two-dimensional data mapper, (3) a database interface, (4) a blade structural pre- and post-processor, and (5) a computational fluid dynamics code for aerothermal analysis of the drum rotor. Thus far (1) a cooperative agreement has been established with Pratt & Whitney, (2) a Primary Flowpath Data Mapper has been prototyped and delivered to General Electric

  12. Structural analysis of light aircraft using NASTRAN

    NASA Technical Reports Server (NTRS)

    Wilkinson, M. T.; Bruce, A. C.

    1973-01-01

    An application of NASTRAN to the structural analysis of light aircraft was conducted to determine the cost effectiveness. A model of the Baby Ace D model homebuilt aircraft was used. The NASTRAN model of the aircraft consists of 193 grid points connected by 352 structural members. All members are either rod or beam elements, including bending of unsymmetrical cross sections and torsion of noncircular cross sections. The aerodynamic loads applied to the aircraft were in accordance with FAA regulations governing the utility category aircraft.

  13. Coupled structural/thermal/electromagnetic analysis/tailoring of graded composite structures

    NASA Technical Reports Server (NTRS)

    Mcknight, R. L.; Huang, H.; Hartle, M.

    1992-01-01

    Accomplishments are described for the third years effort of a 5-year program to develop a methodology for coupled structural/thermal/electromagnetic analysis/tailoring of graded composite structures. These accomplishments include: (1) structural analysis capability specialized for graded composite structures including large deformation and deformation position eigenanalysis technologies; (2) a thermal analyzer specialized for graded composite structures; (3) absorption of electromagnetic waves by graded composite structures; and (4) coupled structural thermal/electromagnetic analysis of graded composite structures.

  14. Structural analysis of ITER magnet feeders

    SciTech Connect

    Ilyin, Yuri; Gung, Chen-Yu; Bauer, Pierre; Chen, Yonghua; Jong, Cornelis; Devred, Arnaud; Mitchell, Neil; Lorriere, Philippe; Farek, Jaromir; Nannini, Matthieu

    2012-06-15

    This paper summarizes the results of the static structural analyses, which were conducted in support of the ITER magnet feeder design with the aim of validating certain components against the structural design criteria. While almost every feeder has unique features, they all share many common constructional elements and the same functional specifications. The analysis approach to assess the load conditions and stresses that have driven the design is equivalent for all feeders, except for particularities that needed to be modeled in each case. The mechanical analysis of the feeders follows the sub-modeling approach: the results of the global mechanical model of a feeder assembly are used as input for the detailed models of the feeder' sub-assemblies or single components. Examples of such approach, including the load conditions, stress assessment criteria and solutions for the most critical components, are discussed. It has been concluded that the feeder system is safe in the referential operation scenarios. (authors)

  15. Analysis of Open TEM-Waveguide Structures

    NASA Astrophysics Data System (ADS)

    Rambousky, R.; Garbe, H.

    This work belongs to a research project on the analysis and characterization of higher order modes occurring in open TEM-waveguide structures. An open TEM waveguide, derived from a conventional GTEM cell by removing the sidewalls, is investigated. The intrinsic resonances of the electromagnetic field occurring in the test volume of the waveguide are analyzed in frequency domain by computer simulation and measurement. This resonance behavior is compared to that of more simplified wire models, describing just the planar septum of the original TEM waveguide. The influence of the number of wires used in the wire model is investigated with respect to the resonant behavior. The use of wire structures is a prerequisite for application of transmission-line super theory (TLST) for further analysis.

  16. Structural analysis at aircraft conceptual design stage

    NASA Astrophysics Data System (ADS)

    Mansouri, Reza

    In the past 50 years, computers have helped by augmenting human efforts with tremendous pace. The aircraft industry is not an exception. Aircraft industry is more than ever dependent on computing because of a high level of complexity and the increasing need for excellence to survive a highly competitive marketplace. Designers choose computers to perform almost every analysis task. But while doing so, existing effective, accurate and easy to use classical analytical methods are often forgotten, which can be very useful especially in the early phases of the aircraft design where concept generation and evaluation demands physical visibility of design parameters to make decisions [39, 2004]. Structural analysis methods have been used by human beings since the very early civilization. Centuries before computers were invented; the pyramids were designed and constructed by Egyptians around 2000 B.C, the Parthenon was built by the Greeks, around 240 B.C, Dujiangyan was built by the Chinese. Persepolis, Hagia Sophia, Taj Mahal, Eiffel tower are only few more examples of historical buildings, bridges and monuments that were constructed before we had any advancement made in computer aided engineering. Aircraft industry is no exception either. In the first half of the 20th century, engineers used classical method and designed civil transport aircraft such as Ford Tri Motor (1926), Lockheed Vega (1927), Lockheed 9 Orion (1931), Douglas DC-3 (1935), Douglas DC-4/C-54 Skymaster (1938), Boeing 307 (1938) and Boeing 314 Clipper (1939) and managed to become airborne without difficulty. Evidencing, while advanced numerical methods such as the finite element analysis is one of the most effective structural analysis methods; classical structural analysis methods can also be as useful especially during the early phase of a fixed wing aircraft design where major decisions are made and concept generation and evaluation demands physical visibility of design parameters to make decisions

  17. Probabilistic seismic demand analysis of nonlinear structures

    NASA Astrophysics Data System (ADS)

    Shome, Nilesh

    Recent earthquakes in California have initiated improvement in current design philosophy and at present the civil engineering community is working towards development of performance-based earthquake engineering of structures. The objective of this study is to develop efficient, but accurate procedures for probabilistic analysis of nonlinear seismic behavior of structures. The proposed procedures help the near-term development of seismic-building assessments which require an estimation of seismic demand at a given intensity level. We also develop procedures to estimate the probability of exceedance of any specified nonlinear response level due to future ground motions at a specific site. This is referred as Probabilistic Seismic Demand Analysis (PSDA). The latter procedure prepares the way for the next stage development of seismic assessment that consider the uncertainties in nonlinear response and capacity. The proposed procedures require structure-specific nonlinear analyses for a relatively small set of recorded accelerograms and (site-specific or USGS-map-like) seismic hazard analyses. We have addressed some of the important issues of nonlinear seismic demand analysis, which are selection of records for structural analysis, the number of records to be used, scaling of records, etc. Initially these issues are studied through nonlinear analysis of structures for a number of magnitude-distance bins of records. Subsequently we introduce regression analysis of response results against spectral acceleration, magnitude, duration, etc., which helps to resolve these issues more systematically. We illustrate the demand-hazard calculations through two major example problems: a 5story and a 20-story SMRF building. Several simple, but quite accurate closed-form solutions have also been proposed to expedite the demand-hazard calculations. We find that vector-valued (e.g., 2-D) PSDA estimates demand hazard more accurately. This procedure, however, requires information about 2

  18. Wideband sensitivity analysis of plasmonic structures

    NASA Astrophysics Data System (ADS)

    Ahmed, Osman S.; Bakr, Mohamed H.; Li, Xun; Nomura, Tsuyoshi

    2013-03-01

    We propose an adjoint variable method (AVM) for efficient wideband sensitivity analysis of the dispersive plasmonic structures. Transmission Line Modeling (TLM) is exploited for calculation of the structure sensitivities. The theory is developed for general dispersive materials modeled by Drude or Lorentz model. Utilizing the dispersive AVM, sensitivities are calculated with respect to all the designable parameters regardless of their number using at most one extra simulation. This is significantly more efficient than the regular finite difference approaches whose computational overhead scales linearly with the number of design parameters. A Z-domain formulation is utilized to allow for the extension of the theory to a general material model. The theory has been successfully applied to a structure with teethshaped plasmonic resonator. The design variables are the shape parameters (widths and thicknesses) of these teeth. The results are compared to the accurate yet expensive finite difference approach and good agreement is achieved.

  19. Interval prediction in structural dynamic analysis

    NASA Technical Reports Server (NTRS)

    Hasselman, Timothy K.; Chrostowski, Jon D.; Ross, Timothy J.

    1992-01-01

    Methods for assessing the predictive accuracy of structural dynamic models are examined with attention given to the effects of modal mass, stiffness, and damping uncertainties. The methods are based on a nondeterministic analysis called 'interval prediction' in which interval variables are used to describe parameters and responses that are unknown. Statistical databases for generic modeling uncertainties are derived from experimental data and incorporated analytically to evaluate responses. Covariance matrices of modal mass, stiffness, and damping parameters are propagated numerically in models of large space structures by means of three methods. The test data tend to fall within the predicted intervals of uncertainty determined by the statistical databases. The present findings demonstrate the suitability of using data from previously analyzed and tested space structures for assessing the predictive accuracy of an analytical model.

  20. Phase analysis of amplitude binary mask structures

    NASA Astrophysics Data System (ADS)

    Puthankovilakam, Krishnaparvathy; Scharf, Toralf; Herzig, Hans Peter; Vogler, Uwe; Bramati, Arianna; Voelkel, Reinhard

    2016-03-01

    Shaping of light behind masks using different techniques is the milestone of the printing industry. The aerial image distribution or the intensity distribution at the printing distances defines the resolution of the structure after printing. Contrast and phase are the two parameters that play a major role in shaping of light to get the desired intensity pattern. Here, in contrast to many other contributions that focus on intensity, we discuss the phase evolution for different structures. The amplitude or intensity characteristics of the structures in a binary mask at different proximity gaps have been analyzed extensively for many industrial applications. But the phase evolution from the binary mask having OPC structures is not considered so far. The mask we consider here is the normal amplitude binary mask but having high resolution Optical Proximity Correction (OPC) structures for corners. The corner structures represent a two dimensional problem which is difficult to handle with simple rules of phase masks design and therefore of particular interest. The evolution of light from small amplitude structures might lead to high contrast by creating sharp phase changes or phase singularities which are points of zero intensity. We show the phase modulation at different proximity gaps and can visualize the shaping of light according to the phase changes. The analysis is done with an instrument called High Resolution Interference Microscopy (HRIM), a Mach-Zehnder interferometer that gives access to three-dimensional phase and amplitude images. The current paper emphasizes on the phase measurement of different optical proximity correction structures, and especially on corners of a binary mask.

  1. Structure soil structure interaction effects: Seismic analysis of safety related collocated concrete structures

    SciTech Connect

    Joshi, J.R.

    2000-06-20

    The Process, Purification and Stack Buildings are collocated safety related concrete shear wall structures with plan dimensions in excess of 100 feet. An important aspect of their seismic analysis was the determination of structure soil structure interaction (SSSI) effects, if any. The SSSI analysis of the Process Building, with one other building at a time, was performed with the SASSI computer code for up to 50 frequencies. Each combined model had about 1500 interaction nodes. Results of the SSSI analysis were compared with those from soil structure interaction (SSI) analysis of the individual buildings, done with ABAQUS and SASSI codes, for three parameters: peak accelerations, seismic forces and the in-structure floor response spectra (FRS). The results may be of wider interest due to the model size and the potential applicability to other deep soil layered sites. Results obtained from the ABAQUS analysis were consistently higher, as expected, than those from the SSI and SSSI analyses using the SASSI. The SSSI effect between the Process and Purification Buildings was not significant. The Process and Stack Building results demonstrated that under certain conditions a massive structure can have an observable effect on the seismic response of a smaller and less stiff structure.

  2. Remote geologic structural analysis of Yucca Flat

    NASA Astrophysics Data System (ADS)

    Foley, M. G.; Heasler, P. G.; Hoover, K. A.; Rynes, N. J.; Thiessen, R. L.; Alfaro, J. L.

    1991-12-01

    The Remote Geologic Analysis (RGA) system was developed by Pacific Northwest Laboratory (PNL) to identify crustal structures that may affect seismic wave propagation from nuclear tests. Using automated methods, the RGA system identifies all valleys in a digital elevation model (DEM), fits three-dimensional vectors to valley bottoms, and catalogs all potential fracture or fault planes defined by coplanar pairs of valley vectors. The system generates a cluster hierarchy of planar features having greater-than-random density that may represent areas of anomalous topography manifesting structural control of erosional drainage development. Because RGA uses computer methods to identify zones of hypothesized control of topography, ground truth using a well-characterized test site was critical in our evaluation of RGA's characterization of inaccessible test sites for seismic verification studies. Therefore, we applied RGA to a study area centered on Yucca Flat at the Nevada Test Site (NTS) and compared our results with both mapped geology and geologic structures and with seismic yield-magnitude models. This is the final report of PNL's RGA development project for peer review within the U.S. Department of Energy Office of Arms Control (OAC) seismic-verification community. In this report, we discuss the Yucca Flat study area, the analytical basis of the RGA system and its application to Yucca Flat, the results of the analysis, and the relation of the analytical results to known topography, geology, and geologic structures.

  3. Remote geologic structural analysis of Yucca Flat

    SciTech Connect

    Foley, M.G.; Heasler, P.G.; Hoover, K.A. ); Rynes, N.J. ); Thiessen, R.L.; Alfaro, J.L. )

    1991-12-01

    The Remote Geologic Analysis (RGA) system was developed by Pacific Northwest Laboratory (PNL) to identify crustal structures that may affect seismic wave propagation from nuclear tests. Using automated methods, the RGA system identifies all valleys in a digital elevation model (DEM), fits three-dimensional vectors to valley bottoms, and catalogs all potential fracture or fault planes defined by coplanar pairs of valley vectors. The system generates a cluster hierarchy of planar features having greater-than-random density that may represent areas of anomalous topography manifesting structural control of erosional drainage development. Because RGA uses computer methods to identify zones of hypothesized control of topography, ground truth using a well-characterized test site was critical in our evaluation of RGA's characterization of inaccessible test sites for seismic verification studies. Therefore, we applied RGA to a study area centered on Yucca Flat at the Nevada Test Site (NTS) and compared our results with both mapped geology and geologic structures and with seismic yield-magnitude models. This is the final report of PNL's RGA development project for peer review within the US Department of Energy Office of Arms Control (OAC) seismic-verification community. In this report, we discuss the Yucca Flat study area, the analytical basis of the RGA system and its application to Yucca Flat, the results of the analysis, and the relation of the analytical results to known topography, geology, and geologic structures. 41 refs., 39 figs., 2 tabs.

  4. Remote geologic structural analysis of Yucca Flat

    SciTech Connect

    Foley, M.G.; Heasler, P.G.; Hoover, K.A.; Rynes, N.J.; Thiessen, R.L.; Alfaro, J.L.

    1991-12-01

    The Remote Geologic Analysis (RGA) system was developed by Pacific Northwest Laboratory (PNL) to identify crustal structures that may affect seismic wave propagation from nuclear tests. Using automated methods, the RGA system identifies all valleys in a digital elevation model (DEM), fits three-dimensional vectors to valley bottoms, and catalogs all potential fracture or fault planes defined by coplanar pairs of valley vectors. The system generates a cluster hierarchy of planar features having greater-than-random density that may represent areas of anomalous topography manifesting structural control of erosional drainage development. Because RGA uses computer methods to identify zones of hypothesized control of topography, ground truth using a well-characterized test site was critical in our evaluation of RGA`s characterization of inaccessible test sites for seismic verification studies. Therefore, we applied RGA to a study area centered on Yucca Flat at the Nevada Test Site (NTS) and compared our results with both mapped geology and geologic structures and with seismic yield-magnitude models. This is the final report of PNL`s RGA development project for peer review within the US Department of Energy Office of Arms Control (OAC) seismic-verification community. In this report, we discuss the Yucca Flat study area, the analytical basis of the RGA system and its application to Yucca Flat, the results of the analysis, and the relation of the analytical results to known topography, geology, and geologic structures. 41 refs., 39 figs., 2 tabs.

  5. Structural Analysis Using Computer Based Methods

    NASA Technical Reports Server (NTRS)

    Dietz, Matthew R.

    2013-01-01

    The stiffness of a flex hose that will be used in the umbilical arms of the Space Launch Systems mobile launcher needed to be determined in order to properly qualify ground umbilical plate behavior during vehicle separation post T-0. This data is also necessary to properly size and design the motors used to retract the umbilical arms. Therefore an experiment was created to determine the stiffness of the hose. Before the test apparatus for the experiment could be built, the structure had to be analyzed to ensure it would not fail under given loading conditions. The design model was imported into the analysis software and optimized to decrease runtime while still providing accurate restlts and allow for seamless meshing. Areas exceeding the allowable stresses in the structure were located and modified before submitting the design for fabrication. In addition, a mock up of a deep space habitat and the support frame was designed and needed to be analyzed for structural integrity under different loading conditions. The load cases were provided by the customer and were applied to the structure after optimizing the geometry. Once again, weak points in the structure were located and recommended design changes were made to the customer and the process was repeated until the load conditions were met without exceeding the allowable stresses. After the stresses met the required factors of safety the designs were released for fabrication.

  6. To Be or Not to Be a Pseudogene: A Molecular Epidemiological Approach to the mclx Genes and Its Impact in Tuberculosis.

    PubMed

    Lopes Santos, Catarina; Nebenzahl-Guimaraes, Hanna; Vaz Mendes, Marta; van Soolingen, Dick; Correia-Neves, Margarida

    2015-01-01

    Tuberculosis presents a myriad of symptoms, progression routes and propagation patterns not yet fully understood. Whereas for a long time research has focused solely on the patient immunity and overall susceptibility, it is nowadays widely accepted that the genetic diversity of its causative agent, Mycobacterium tuberculosis, plays a key role in this dynamic. This study focuses on a particular family of genes, the mclxs (Mycobacterium cyclase/LuxR-like genes), which codify for a particular and nearly mycobacterial-exclusive combination of protein domains. mclxs genes were found to be pseudogenized by frameshift-causing insertion(s)/deletion(s) in a considerable number of M. tuberculosis complex strains and clinical isolates. To discern the functional implications of the pseudogenization, we have analysed the pattern of frameshift-causing mutations in a group of M. tuberculosis isolates while taking into account their microbial-, patient- and disease-related traits. Our logistic regression-based analyses have revealed disparate effects associated with the transcriptional inactivation of two mclx genes. In fact, mclx2 (Rv1358) pseudogenization appears to be primarily driven by the microbial phylogenetic background, being mainly related to the Euro-American (EAm) lineage; on the other hand, mclx3 (Rv2488c) presents a higher tendency for pseudogenization among isolates from patients born on the Western Pacific area, and from isolates causing extra-pulmonary infections. These results contribute to the overall knowledge on the biology of M. tuberculosis infection, whereas at the same time launch the necessary basis for the functional assessment of these so far overlooked genes.

  7. To Be or Not to Be a Pseudogene: A Molecular Epidemiological Approach to the mclx Genes and Its Impact in Tuberculosis

    PubMed Central

    Mendes, Marta Vaz; van Soolingen, Dick; Correia-Neves, Margarida

    2015-01-01

    Tuberculosis presents a myriad of symptoms, progression routes and propagation patterns not yet fully understood. Whereas for a long time research has focused solely on the patient immunity and overall susceptibility, it is nowadays widely accepted that the genetic diversity of its causative agent, Mycobacterium tuberculosis, plays a key role in this dynamic. This study focuses on a particular family of genes, the mclxs (Mycobacterium cyclase/LuxR-like genes), which codify for a particular and nearly mycobacterial-exclusive combination of protein domains. mclxs genes were found to be pseudogenized by frameshift-causing insertion(s)/deletion(s) in a considerable number of M. tuberculosis complex strains and clinical isolates. To discern the functional implications of the pseudogenization, we have analysed the pattern of frameshift-causing mutations in a group of M. tuberculosis isolates while taking into account their microbial-, patient- and disease-related traits. Our logistic regression-based analyses have revealed disparate effects associated with the transcriptional inactivation of two mclx genes. In fact, mclx2 (Rv1358) pseudogenization appears to be primarily driven by the microbial phylogenetic background, being mainly related to the Euro-American (EAm) lineage; on the other hand, mclx3 (Rv2488c) presents a higher tendency for pseudogenization among isolates from patients born on the Western Pacific area, and from isolates causing extra-pulmonary infections. These results contribute to the overall knowledge on the biology of M. tuberculosis infection, whereas at the same time launch the necessary basis for the functional assessment of these so far overlooked genes. PMID:26035295

  8. Structural Analysis of Sandwich Foam Panels

    SciTech Connect

    Kosny, Jan; Huo, X. Sharon

    2010-04-01

    The Sandwich Panel Technologies including Structural Insulated Panels (SIPs) can be used to replace the conventional wooden-frame construction method. The main purpose of this Cooperative Research and Development Agreement (CRADA) between UT-Battelle, LLC and SGI Venture, Inc. was to design a novel high R-value type of metal sandwich panelized technology. This CRADA project report presents design concept discussion and numerical analysis results from thermal performance study of this new building envelope system. The main objective of this work was to develop a basic concept of a new generation of wall panel technologies which will have R-value over R-20 will use thermal mass to improve energy performance in cooling dominated climates and will be 100% termite resistant. The main advantages of using sandwich panels are as follows: (1) better energy saving structural panels with high and uniform overall wall R-value across the elevation that could not be achieved in traditional walls; and (2) reducing the use of raw materials or need for virgin lumber. For better utilization of these Sandwich panels, engineers need to have a thorough understanding of the actual performance of the panels and system. Detailed analysis and study on the capacities and deformation of individual panels and its assembly have to be performed to achieve that goal. The major project activity was to conduct structural analysis of the stresses, strains, load capacities, and deformations of individual sandwich components under various load cases. The analysis simulated the actual loading conditions of the regular residential building and used actual material properties of the steel facings and foam.

  9. Molecular Eigensolution Symmetry Analysis and Fine Structure

    PubMed Central

    Harter, William G.; Mitchell, Justin C.

    2013-01-01

    Spectra of high-symmetry molecules contain fine and superfine level cluster structure related to J-tunneling between hills and valleys on rovibronic energy surfaces (RES). Such graphic visualizations help disentangle multi-level dynamics, selection rules, and state mixing effects including widespread violation of nuclear spin symmetry species. A review of RES analysis compares it to that of potential energy surfaces (PES) used in Born–Oppenheimer approximations. Both take advantage of adiabatic coupling in order to visualize Hamiltonian eigensolutions. RES of symmetric and D2 asymmetric top rank-2-tensor Hamiltonians are compared with Oh spherical top rank-4-tensor fine-structure clusters of 6-fold and 8-fold tunneling multiplets. Then extreme 12-fold and 24-fold multiplets are analyzed by RES plots of higher rank tensor Hamiltonians. Such extreme clustering is rare in fundamental bands but prevalent in hot bands, and analysis of its superfine structure requires more efficient labeling and a more powerful group theory. This is introduced using elementary examples involving two groups of order-6 (C6 and D3~C3v), then applied to families of Oh clusters in SF6 spectra and to extreme clusters. PMID:23344041

  10. Nonlinear frequency response analysis of structural vibrations

    NASA Astrophysics Data System (ADS)

    Weeger, Oliver; Wever, Utz; Simeon, Bernd

    2014-12-01

    In this paper we present a method for nonlinear frequency response analysis of mechanical vibrations of 3-dimensional solid structures. For computing nonlinear frequency response to periodic excitations, we employ the well-established harmonic balance method. A fundamental aspect for allowing a large-scale application of the method is model order reduction of the discretized equation of motion. Therefore we propose the utilization of a modal projection method enhanced with modal derivatives, providing second-order information. For an efficient spatial discretization of continuum mechanics nonlinear partial differential equations, including large deformations and hyperelastic material laws, we employ the concept of isogeometric analysis. Isogeometric finite element methods have already been shown to possess advantages over classical finite element discretizations in terms of higher accuracy of numerical approximations in the fields of linear vibration and static large deformation analysis. With several computational examples, we demonstrate the applicability and accuracy of the modal derivative reduction method for nonlinear static computations and vibration analysis. Thus, the presented method opens a promising perspective on application of nonlinear frequency analysis to large-scale industrial problems.

  11. Could pseudogenes be widespread in ants? Evidence of numts in the leafcutter ant Acromyrmex striatus (Roger, 1863) (Formicidae: Attini).

    PubMed

    Cristiano, Maykon Passos; Cardoso, Danon Clemes; Fernandes-Salomão, Tânia Maria

    2014-02-01

    The incorporation of fragments of mitochondrial DNA (mtDNA) in the nuclear genome, known as numts (nuclear mitochondrial pseudogenes), undermines general assumptions concerning the use of mtDNA in phylogenetic and phylogeographic studies. Accidental amplifications of these nuclear copies instead of the mitochondrial target can lead to crucial misinterpretations, thus the correct identification of numts and their differentiation from true mitochondrial sequences are important in preventing this kind of error. Our goal was to describe the existence of cytochrome b (cytb) numts in the leafcutter ant Acromyrmex striatus (Roger, 1863). PCR products were directly sequenced using a pair of universal primers designed to amplify the cytb gene of these insects. Other species of leafcutter ants were also sequenced. The sequences were analyzed and the numts were identified by the presence of double peaks, indels and premature stop codons. Only A. striatus clearly showed the presence of numts, while the other species displayed the expected amplification of the mtDNA cytb gene target using the same primer pair. We hope that our report will highlight the benefits and challenges of using mtDNA in the molecular phylogenetic reconstruction and phylogeographic studies of ants, while establishing the importance of numts reports for future studies.

  12. Dynamic analysis of flexible multibody structures

    NASA Technical Reports Server (NTRS)

    Hernried, Alan G.

    1989-01-01

    A system composed of several interconnected elastic components that may experience large angular motion relative to each other during operation is referred to as a flexible multibody structure. Several formulations were proposed for the determination of the dynamic response of controlled flexible multibody structures. In general, these formulations consist of superposing elastic deformations of the component body onto the large rigid body motion of the component. It was shown that this particular methodology for combining linear structural deformations with nonlinear kinematics can lead to erroneous response predictions when either the beam member is very flexible or the rotational speed is high. In addition, previous formulations introduce constraint equations to define the interrelations among system components. This approach increases the number of equations that must be solved, and may result in contraint violation when numerical error accumulates during the integration process. In order to overcome the difficulties, a new approach was suggested. The approach is essentially a finite element formulation which takes advantage of the fact that many multibody structures are joint dominated. The Large Angle Transient Dynamic Analysis (LATDYN) program for clarity of documentation, ease of use, user friendliness, modeling generality, and accuracy of results was evaluated. This required gaining a working familiarity with the code and performing several case studies.

  13. Probabilistic Computational Methods in Structural Failure Analysis

    NASA Astrophysics Data System (ADS)

    Krejsa, Martin; Kralik, Juraj

    2015-12-01

    Probabilistic methods are used in engineering where a computational model contains random variables. Each random variable in the probabilistic calculations contains uncertainties. Typical sources of uncertainties are properties of the material and production and/or assembly inaccuracies in the geometry or the environment where the structure should be located. The paper is focused on methods for the calculations of failure probabilities in structural failure and reliability analysis with special attention on newly developed probabilistic method: Direct Optimized Probabilistic Calculation (DOProC), which is highly efficient in terms of calculation time and the accuracy of the solution. The novelty of the proposed method lies in an optimized numerical integration that does not require any simulation technique. The algorithm has been implemented in mentioned software applications, and has been used several times in probabilistic tasks and probabilistic reliability assessments.

  14. Geometrically nonlinear analysis of laminated elastic structures

    NASA Technical Reports Server (NTRS)

    Reddy, J. N.

    1984-01-01

    Laminated composite plates and shells that can be used to model automobile bodies, aircraft wings and fuselages, and pressure vessels among many other were analyzed. The finite element method, a numerical technique for engineering analysis of structures, is used to model the geometry and approximate the solution. Various alternative formulations for analyzing laminated plates and shells are developed and their finite element models are tested for accuracy and economy in computation. These include the shear deformation laminate theory and degenerated 3-D elasticity theory for laminates.

  15. Structural reliability analysis of laminated CMC components

    NASA Technical Reports Server (NTRS)

    Duffy, Stephen F.; Palko, Joseph L.; Gyekenyesi, John P.

    1991-01-01

    For laminated ceramic matrix composite (CMC) materials to realize their full potential in aerospace applications, design methods and protocols are a necessity. The time independent failure response of these materials is focussed on and a reliability analysis is presented associated with the initiation of matrix cracking. A public domain computer algorithm is highlighted that was coupled with the laminate analysis of a finite element code and which serves as a design aid to analyze structural components made from laminated CMC materials. Issues relevant to the effect of the size of the component are discussed, and a parameter estimation procedure is presented. The estimation procedure allows three parameters to be calculated from a failure population that has an underlying Weibull distribution.

  16. Advanced composites structural concepts and materials technologies for primary aircraft structures: Structural response and failure analysis

    NASA Technical Reports Server (NTRS)

    Dorris, William J.; Hairr, John W.; Huang, Jui-Tien; Ingram, J. Edward; Shah, Bharat M.

    1992-01-01

    Non-linear analysis methods were adapted and incorporated in a finite element based DIAL code. These methods are necessary to evaluate the global response of a stiffened structure under combined in-plane and out-of-plane loading. These methods include the Arc Length method and target point analysis procedure. A new interface material model was implemented that can model elastic-plastic behavior of the bond adhesive. Direct application of this method is in skin/stiffener interface failure assessment. Addition of the AML (angle minus longitudinal or load) failure procedure and Hasin's failure criteria provides added capability in the failure predictions. Interactive Stiffened Panel Analysis modules were developed as interactive pre-and post-processors. Each module provides the means of performing self-initiated finite elements based analysis of primary structures such as a flat or curved stiffened panel; a corrugated flat sandwich panel; and a curved geodesic fuselage panel. This module brings finite element analysis into the design of composite structures without the requirement for the user to know much about the techniques and procedures needed to actually perform a finite element analysis from scratch. An interactive finite element code was developed to predict bolted joint strength considering material and geometrical non-linearity. The developed method conducts an ultimate strength failure analysis using a set of material degradation models.

  17. Structure-Function Analysis of Yeast Tubulin

    PubMed Central

    Luchniak, Anna; Fukuda, Yusuke; Gupta, Mohan L.

    2014-01-01

    Microtubules play essential roles in a wide variety of cellular processes including cell division, motility, and vesicular transport. Microtubule function depends on the polymerization dynamics of tubulin, and specific interactions between tubulin and diverse microtubule-associated proteins. To date, investigation of the structural and functional properties of tubulin and tubulin mutants has been limited by the inability to obtain functional protein from overexpression systems, and by the heterogeneous mixture of tubulin isotypes typically isolated from higher eukaryotes. The budding yeast, Saccharomyces cerevisiae, has emerged as a leading system for tubulin structure-function analysis. Yeast cells encode a single beta-tubulin gene and can be engineered to express just one, of two, alpha isotypes. Moreover, yeast allows site-directed modification of tubulin genes at the endogenous loci expressed under the native promoter and regulatory elements. These advantageous features provide a homogeneous and controlled environment for analysis of the functional consequences of specific mutations. Here we present techniques to generate site-specific tubulin mutations in diploid and haploid cells, assess the ability of the mutated protein to support cell viability, measure overall microtubule stability, and define changes in the specific parameters of microtubule dynamic instability. We also outline strategies to determine whether mutations disrupt interactions with microtubule-associated proteins. Microtubule-based functions in yeast are well defined, which allows the observed changes in microtubule properties to be related to the role of microtubules in specific cellular processes. PMID:23973083

  18. Structural Analysis of the JET TAE Antenna

    SciTech Connect

    Titus, P.H.; Snipes, J.; Fasoli, A.F.; Testa, D.; Walton, B.

    2005-05-15

    In this paper the mechanical design of the new active MHD antennas for JET is described and the structural/mechanical analysis for the antennas is presented. These new antennas replace the existing n = 1 or 2 saddle coils with a set of eight smaller antennas designed to excite Toroidal Alfven Eigenmodes (TAE's) with high toroidal mode number (n {approx} 10) in the frequency range of 30 kHz-500 kHz. TAE's with these higher mode numbers are expected in ITER and could enhance the loss of fast alpha particles in a burning plasma regime. By studying the properties of stable TAE's excited actively by these antennas, high performance regimes of operation avoiding unstable fast particle driven modes can be found. A more complete overview of the experiment may be found in Reference 1. Two antenna assemblies will be installed at toroidally opposite positions. Antenna wires are protected from the plasma heat flux by CFC tiles mounted on mini-limiters, located between the individual windings. The main structural element is a box section. The support scheme utilizes cantilevered brackets that connect to the saddle coils, and 'wing' brackets which add support to the top of the frame. Conservative estimates of the disruption currents in the MHD antennas and frame were used to calculate loading and resulting stress in the antenna structure. Fields, field transients, and halo current specifications were provided by JET. The frame originally was designed as a continuous loop, and was converted to an open structure to break eddy current loops. Antenna eddy currents were computed assuming the antenna is shorted. In the final design, frame forces primarily result from halo currents entering around the mini limiters that now protect the antenna windings. Accelerations due to the vessel disruption dynamic response were included in the loading. The antenna mechanical design has been shown to perform adequately for all identified disruption loading.

  19. Atomic-level analysis of membrane-protein structure.

    PubMed

    Hendrickson, Wayne A

    2016-06-01

    Membrane proteins are substantially more challenging than natively soluble proteins as subjects for structural analysis. Thus, membrane proteins are greatly underrepresented in structural databases. Recently, focused consortium efforts and advances in methodology for protein production, crystallographic analysis and cryo-EM analysis have accelerated the pace of atomic-level structure determination of membrane proteins.

  20. Purification and Structural Analysis of Desmoplakin.

    PubMed

    Choi, Hee-Jung; Weis, William I

    2016-01-01

    Desmoplakin (DP) is an obligate component of desmosomes, where it links the desmosomal cadherin/plakoglobin/plakophilin assembly to intermediate filaments. DP contains a large amino-terminal domain (DPNT) that binds to the cadherin/plakoglobin/plakophilin complex, a central coiled-coil domain that dimerizes the molecule, and a C-terminal domain (DPCT) that binds to intermediate filaments. DPNT contains a plakin domain, comprising a set of spectrin-like repeats. DPCT contains three plakin repeat domains, each formed by 4.5 repeats of a sequence motif known as a plakin repeat that bind to intermediate filaments. Here, we review purification, biochemical characterization, and structural analysis of the DPNT plakin domain and the DPCT plakin repeat domains.

  1. Recent developments in structural sensitivity analysis

    NASA Technical Reports Server (NTRS)

    Haftka, Raphael T.; Adelman, Howard M.

    1988-01-01

    Recent developments are reviewed in two major areas of structural sensitivity analysis: sensitivity of static and transient response; and sensitivity of vibration and buckling eigenproblems. Recent developments from the standpoint of computational cost, accuracy, and ease of implementation are presented. In the area of static response, current interest is focused on sensitivity to shape variation and sensitivity of nonlinear response. Two general approaches are used for computing sensitivities: differentiation of the continuum equations followed by discretization, and the reverse approach of discretization followed by differentiation. It is shown that the choice of methods has important accuracy and implementation implications. In the area of eigenproblem sensitivity, there is a great deal of interest and significant progress in sensitivity of problems with repeated eigenvalues. In addition to reviewing recent contributions in this area, the paper raises the issue of differentiability and continuity associated with the occurrence of repeated eigenvalues.

  2. Random motion analysis of flexible satellite structures

    NASA Technical Reports Server (NTRS)

    Huang, T. C.; Das, A.

    1978-01-01

    A singular perturbation formulation is used to study the responses of a flexible satellite when random measurement errors can occur. The random variables, at different instants of time, are assumed to be uncorrelated. Procedures for obtaining maxima and minima are described, and a variation of the linear method is developed for the formal solution of the two-point boundary-value problems represented by the variational equations. Random and deterministic solutions for the structural position coordinates are studied, and an analytic algorithm for treating the force equation of motion is developed. Since the random system indicated by the variational equation will always be asymptotically unstable, any analysis of stability must be based on the deterministic system.

  3. Structural analysis of nucleosomal barrier to transcription

    PubMed Central

    Gaykalova, Daria A.; Kulaeva, Olga I.; Volokh, Olesya; Shaytan, Alexey K.; Hsieh, Fu-Kai; Kirpichnikov, Mikhail P.; Sokolova, Olga S.; Studitsky, Vasily M.

    2015-01-01

    Thousands of human and Drosophila genes are regulated at the level of transcript elongation and nucleosomes are likely targets for this regulation. However, the molecular mechanisms of formation of the nucleosomal barrier to transcribing RNA polymerase II (Pol II) and nucleosome survival during/after transcription remain unknown. Here we show that both DNA–histone interactions and Pol II backtracking contribute to formation of the barrier and that nucleosome survival during transcription likely occurs through allosterically stabilized histone–histone interactions. Structural analysis indicates that after Pol II encounters the barrier, the enzyme backtracks and nucleosomal DNA recoils on the octamer, locking Pol II in the arrested state. DNA is displaced from one of the H2A/H2B dimers that remains associated with the octamer. The data reveal the importance of intranucleosomal DNA–protein and protein–protein interactions during conformational changes in the nucleosome structure on transcription. Mechanisms of nucleosomal barrier formation and nucleosome survival during transcription are proposed. PMID:26460019

  4. Analysis of structures with rotating, flexible substructures

    NASA Technical Reports Server (NTRS)

    Hopkins, A. Stewart; Likins, Peter

    1987-01-01

    A new methodology has been developed for the dynamic analysis of flexible structures, parts of which may be experiencing discrete motion relative to other parts. This methodology provides the capability of representing the continuum deformations typically treated using finite element methods. In addition, it provides the capability of representing the discrete motion at joints traditionally available with multibody methods. After decomposing the structure into substructures and associating a frame of reference with each substructure, the equations of motion for each substructure can be written explicitly including contributions due to the frame of reference generalized coordinates. By expanding the set of constraints to include constraints that eliminate the redundancy introduced by the frame generalized coordinates, the equations of motion become amenable to solution. The first digital computer program using this methodology, the General Rotorcraft Aeromechanical Stability Program (GRASP), was introduced in 1986. Although GRASP is limited to applications involving steady-state rotation, extension to arbitrary motions (including spin-up) can be accomplished by the selective retention of nonlinear terms in this formulation.

  5. Structures and Analysis of Carotenoid Molecules.

    PubMed

    Rodriguez-Amaya, Delia B

    2016-01-01

    Modifications of the usual C40 linear and symmetrical carotenoid skeleton give rise to a wide array of structures of carotenes and xanthophylls in plant tissues. These include acyclic, monocyclic and dicyclic carotenoids, along with hydroxy and epoxy xanthophylls and apocarotenoids. Carotenols can be unesterified or esterified (monoester) in one or two (diester) hydroxyl groups with fatty acids. E-Z isomerization increases the array of possible plant carotenoids even further. Screening and especially quantitative analysis are being carried out worldwide. Visible absorption spectrometry and near infrared reflectance spectroscopy have been used for the initial estimation of the total carotenoid content or the principal carotenoid content when large numbers of samples needed to be analyzed within a short time, as would be the case in breeding programs. Although inherently difficult, quantitative analysis of the individual carotenoids is essential. Knowledge of the sources of errors and means to avoid them has led to a large body of reliable quantitative compositional data on carotenoids. Reverse-phase HPLC with a photodiode array detector has been the preferred analytical technique, but UHPLC is increasingly employed. HPLC-MS has been used mainly for identification and NMR has been useful in unequivocally identifying geometric isomers. PMID:27485219

  6. Axonal trafficking of an antisense RNA transcribed from a pseudogene is regulated by classical conditioning

    PubMed Central

    Korneev, Sergei A.; Kemenes, Ildiko; Bettini, Natalia L.; Kemenes, George; Staras, Kevin; Benjamin, Paul R.; O'Shea, Michael

    2013-01-01

    Natural antisense transcripts (NATs) are endogenous RNA molecules that are complementary to known RNA transcripts. The functional significance of NATs is poorly understood, but their prevalence in the CNS suggests a role in brain function. Here we investigated a long NAT (antiNOS-2 RNA) associated with the regulation of nitric oxide (NO) production in the CNS of Lymnaea, an established model for molecular analysis of learning and memory. We show the antiNOS-2 RNA is axonally trafficked and demonstrate that this is regulated by classical conditioning. Critically, a single conditioning trial changes the amount of antiNOS-2 RNA transported along the axon. This occurs within the critical time window when neurotransmitter NO is required for memory formation. Our data suggest a role for the antiNOS-2 RNA in establishing memories through the regulation of NO signaling at the synapse. PMID:23293742

  7. Structure/load dependent vectors for linear structural dynamic analysis

    NASA Technical Reports Server (NTRS)

    Qin, Jiangning; Nguyen, Duc T.

    1992-01-01

    The dynamic solution vectors yielded by the present structure/load dependent-vectors method for large-scale linear structural dynamic analyses involving complex loadings can be used as starting vectors, so that both structure and load characteristics are encompassed by the basis vectors. The method is shown to entail fewer vectors than current alternatives for a given level of accuracy, especially in the cases of structures that have external concentrated masses. Numerical results are presented which illustrate the advantages of this dependent-vectors method relative to other reduction methods.

  8. A comprehensive analysis of the chorion locus in silkmoth

    PubMed Central

    Chen, Zhiwei; Nohata, Junko; Guo, Huizhen; Li, Shenglong; Liu, Jianqiu; Guo, Youbing; Yamamoto, Kimiko; Kadono-Okuda, Keiko; Liu, Chun; Arunkumar, Kallare P.; Nagaraju, Javaregowda; Zhang, Yan; Liu, Shiping; Labropoulou, Vassiliki; Swevers, Luc; Tsitoura, Panagiota; Iatrou, Kostas; Gopinathan, Karumathil P.; Goldsmith, Marian R.; Xia, Qingyou; Mita, Kazuei

    2015-01-01

    Despite more than 40 years of intense study, essential features of the silkmoth chorion (eggshell) are still not fully understood. To determine the precise structure of the chorion locus, we performed extensive EST analysis, constructed a bacterial artificial chromosome (BAC) contig, and obtained a continuous genomic sequence of 871,711 base pairs. We annotated 127 chorion genes in two segments interrupted by a 164 kb region with 5 non-chorion genes, orthologs of which were on chorion bearing scaffolds in 4 ditrysian families. Detailed transcriptome analysis revealed expression throughout choriogenesis of most chorion genes originally categorized as “middle”, and evidence for diverse regulatory mechanisms including cis-elements, alternative splicing and promoter utilization, and antisense RNA. Phylogenetic analysis revealed multigene family associations and faster evolution of early chorion genes and transcriptionally active pseudogenes. Proteomics analysis identified 99 chorion proteins in the eggshell and micropyle localization of 1 early and 6 Hc chorion proteins. PMID:26553298

  9. A comprehensive analysis of the chorion locus in silkmoth.

    PubMed

    Chen, Zhiwei; Nohata, Junko; Guo, Huizhen; Li, Shenglong; Liu, Jianqiu; Guo, Youbing; Yamamoto, Kimiko; Kadono-Okuda, Keiko; Liu, Chun; Arunkumar, Kallare P; Nagaraju, Javaregowda; Zhang, Yan; Liu, Shiping; Labropoulou, Vassiliki; Swevers, Luc; Tsitoura, Panagiota; Iatrou, Kostas; Gopinathan, Karumathil P; Goldsmith, Marian R; Xia, Qingyou; Mita, Kazuei

    2015-01-01

    Despite more than 40 years of intense study, essential features of the silkmoth chorion (eggshell) are still not fully understood. To determine the precise structure of the chorion locus, we performed extensive EST analysis, constructed a bacterial artificial chromosome (BAC) contig, and obtained a continuous genomic sequence of 871,711 base pairs. We annotated 127 chorion genes in two segments interrupted by a 164 kb region with 5 non-chorion genes, orthologs of which were on chorion bearing scaffolds in 4 ditrysian families. Detailed transcriptome analysis revealed expression throughout choriogenesis of most chorion genes originally categorized as "middle", and evidence for diverse regulatory mechanisms including cis-elements, alternative splicing and promoter utilization, and antisense RNA. Phylogenetic analysis revealed multigene family associations and faster evolution of early chorion genes and transcriptionally active pseudogenes. Proteomics analysis identified 99 chorion proteins in the eggshell and micropyle localization of 1 early and 6 Hc chorion proteins. PMID:26553298

  10. The high-affinity interleukin 8 receptor gene (IL8RA) maps to the 2q33-q36 region of the human genome: Cloning of a pseudogene (IL8RBP) for the low-affinity receptor

    SciTech Connect

    Mollereau, C. Laboratoire de Pharmacologie et Toxicologie Fondamentale du CNRS, Toulouse ); Muscatelli, F.; Mattei, M.G. ); Vassart, G. Universite libre de Bruxelles ); Parmentier, M. )

    1993-04-01

    The selective amplification by polymerase chain reaction (PCR) of gene fragments corresponding to new G-protein-coupled receptors resulted in the cloning of 18 orphan members of this gene family. Of these, three human clones amplified from genomic DNA (HGMP03, HGMP04, and HGMP05) were shown to be structurally related. Genomic clones corresponding to HGMP03 and HGMP05 were isolated and their putative coding region sequenced. Following the characterization of two interleukin 8 (IL-8) receptors, HGMP03 appeared to encode the high-affinity IL-8 receptor, whereas the partial clone HGMP04 encodes the low-affinity IL-8 receptor. Comparison with the cDNA sequence suggests that the high-affinity receptor gene is split by an intron in the 5[prime] untranslated region. The high-affinity receptor gene was mapped by in situ hybridization to the 2q33-q36 region of the human genome. The HGMP05 locus turned out to be a pseudogene for the low-affinity IL-8 receptor (87% identity), with multiple frameshifts and point mutations introducing stop codons. Southern blotting on genomic DNA did not allow the further detection of related loci in the human genome. 12 refs., 2 figs.

  11. Protein Structure Recognition: From Eigenvector Analysis to Structural Threading Method

    SciTech Connect

    Haibo Cao

    2003-12-12

    In this work, they try to understand the protein folding problem using pair-wise hydrophobic interaction as the dominant interaction for the protein folding process. They found a strong correlation between amino acid sequences and the corresponding native structure of the protein. Some applications of this correlation were discussed in this dissertation include the domain partition and a new structural threading method as well as the performance of this method in the CASP5 competition. In the first part, they give a brief introduction to the protein folding problem. Some essential knowledge and progress from other research groups was discussed. This part includes discussions of interactions among amino acids residues, lattice HP model, and the design ability principle. In the second part, they try to establish the correlation between amino acid sequence and the corresponding native structure of the protein. This correlation was observed in the eigenvector study of protein contact matrix. They believe the correlation is universal, thus it can be used in automatic partition of protein structures into folding domains. In the third part, they discuss a threading method based on the correlation between amino acid sequences and ominant eigenvector of the structure contact-matrix. A mathematically straightforward iteration scheme provides a self-consistent optimum global sequence-structure alignment. The computational efficiency of this method makes it possible to search whole protein structure databases for structural homology without relying on sequence similarity. The sensitivity and specificity of this method is discussed, along with a case of blind test prediction. In the appendix, they list the overall performance of this threading method in CASP5 blind test in comparison with other existing approaches.

  12. Structural analysis of galactoarabinan from duckweed.

    PubMed

    Yu, Li; Yu, Changjiang; Zhu, Ming; Cao, Yingping; Yang, Haiyan; Zhang, Xu; Ma, Yubin; Zhou, Gongke

    2015-03-01

    A highly branched galactoarabinan named DAG1 (Mw∼4.0×10(4) Da) was purified from Lemna aequinoctialis 6000 via 70% (v/v) ethanol extraction, followed by size-exclusion chromatography on Bio-Gel P2 and Superdex 75. Methylation analysis showed that DAG1 consisted of t-Araf, (1→5)-Araf, (1→2,5)-Araf, (1→3)-Galp, and (1→3,6)-Galp in a relative proportion of approximately 6:4:3:3:3, suggesting an arabinogalactan/galactoarabinan polysacchairde. With the aid of arabinan degrading enzymes, the structure of DAG1 repeating unit was further characterized by ELISA with specific monoclonal antibodies and Yariv reagent assay. Analyses indicated that the proposed repeating unit of DAG1 had a backbone composed of seven α-(1→5)-L-arabinofuranose residues where branching occurred at O-2 with either terminal arabinoses or arabinogalactan side chain. The arabinogalactan side chain was composed of six β-(1→3)-D-galactopyranose residues, half of which were ramified at O-6 with terminal arabinoses and the last galactose was terminated with arabinose.

  13. Coupled structural/thermal/electromagnetic analysis/tailoring of graded composite structures

    NASA Technical Reports Server (NTRS)

    Mcknight, R. L.; Chen, P. C.; Dame, L. T.; Huang, H.

    1992-01-01

    Accomplishments are described for the first year effort of a 5-year program to develop a methodology for coupled structural/thermal/electromagnetic analysis/tailoring of graded composite structures. These accomplishments include: (1) the results of the selective literature survey; (2) 8-, 16-, and 20-noded isoparametric plate and shell elements; (3) large deformation structural analysis; (4) eigenanalysis; (5) anisotropic heat transfer analysis; and (6) anisotropic electromagnetic analysis.

  14. Free-Vibration Analysis of Structures

    NASA Technical Reports Server (NTRS)

    Gupta, K. K.

    1985-01-01

    Improved numerical procedure more than twice as fast as previous methods. Unified numerical algorithm efficiently solves free-vibration problems of stationary or spinning structures with or without viscous or structural damping. Algorithm used to solve static problems involving multiple loads and to solve quadratic matrix eigenvalue problems associated with finite-dynamic-element structural discretization.

  15. Analysis and design technology for high-speed aircraft structures

    NASA Technical Reports Server (NTRS)

    Starnes, James H., Jr.; Camarda, Charles J.

    1992-01-01

    Recent high-speed aircraft structures research activities at NASA Langley Research Center are described. The following topics are covered: the development of analytical and numerical solutions to global and local thermal and structural problems, experimental verification of analysis methods, identification of failure mechanisms, and the incorporation of analysis methods into design and optimization strategies. The paper describes recent NASA Langley advances in analysis and design methods, structural and thermal concepts, and test methods.

  16. Probabilistic structural analysis of adaptive/smart/intelligent space structures

    NASA Technical Reports Server (NTRS)

    Pai, Shantaram S.; Chamis, Christos C.

    1991-01-01

    A three-bay, space, cantilever truss is probabilistically evaluated for adaptive/smart/intelligent behavior. For each behavior, the scatter (ranges) in buckling loads, vibration frequencies, and member axial forces are probabilistically determined. Sensitivities associated with uncertainties in the structure, material and load variables that describe the truss are determined for different probabilities. The relative magnitude for these sensitivities are used to identify significant truss variables that control/classify its behavior to respond as an adaptive/smart/intelligent structure. Results show that the probabilistic buckling loads and vibration frequencies increase for each truss classification, with a substantial increase for intelligent trusses. Similarly, the probabilistic member axial forces reduce for adaptive and intelligent trusses and increase for smart trusses.

  17. Probabilistic structural analysis of adaptive/smart/intelligent space structures

    NASA Technical Reports Server (NTRS)

    Pai, Shantaram S.; Chamis, Christos C.

    1992-01-01

    A three-bay, space, cantilever truss is probabilistically evaluated for adaptive/smart/intelligent behavior. For each behavior, the scatter (ranges) in buckling loads, vibration frequencies, and member axial forces are probabilistically determined. Sensitivities associated with uncertainties in the structure, material and load variables that describe the truss are determined for different probabilities. The relative magnitude for these sensitivities are used to identify significant truss variables that control/classify its behavior to respond as an adaptive/smart/intelligent structure. Results show that the probabilistic buckling loads and vibration frequencies increase for each truss classification, with a substantial increase for intelligent trusses. Similarly, the probabilistic member axial forces reduce for adaptive and intelligent trusses and increase for smart trusses.

  18. Transcriptional profiling reveals differential expression of a neuropeptide-like protein and pseudogenes in aryl hydrocarbon receptor-1 mutant Caenorhabditis elegans.

    PubMed

    Aarnio, Vuokko; Heikkinen, Liisa; Peltonen, Juhani; Goldsteins, Gundars; Lakso, Merja; Wong, Garry

    2014-03-01

    The aryl hydrocarbon receptor (AHR) functions in higher organisms in development, metabolism and toxic responses. Its Caenorhabditis elegans (C. elegans) ortholog, AHR-1, facilitates neuronal development, growth and movement. We investigated the effect of AHR mutation on the transcriptional profile of L4 stage C. elegans using RNA-seq and quantitative real time PCR in order to understand better AHR-1 function at the genomic level. Illumina HiSeq 2000 sequencing yielded 51.1, 61.2 and 54.0 million reads from wild-type controls, ahr-1(ia03) and ahr-1(ju145) mutants, respectively, providing detection of over 18,000 transcripts in each sample. Fourteen transcripts were over-expressed and 125 under-expressed in both ahr-1 mutants when compared to wild-type. Under-expressed genes included soluble guanylate cyclase (gcy) family genes, some of which were previously demonstrated to be regulated by AHR-1. A neuropeptide-like protein gene, nlp-20, and a F-box domain protein gene fbxa-192 and its pseudogenes fbxa-191 and fbxa-193 were also under-expressed. Conserved xenobiotic response elements were identified in the 5' flanking regions of some but not all of the gcy, nlp-20, and fbxa genes. These results extend previous studies demonstrating control of gcy family gene expression by AHR-1, and furthermore suggest a role of AHR-1 in regulation of a neuropeptide gene as well as pseudogenes.

  19. Pseudogene of dihydrolipoyl succinyltransferase (E2k) found by PCR amplification and direct sequencing of rodent-human cell hybrid DNAs

    SciTech Connect

    Cai, X.; Ali, G.; Blass, J.P.; Szabo, P.; Tanzi, R.E.

    1994-07-01

    Previous studies have indicated that the cDNA for the E2k component of the human {alpha}-ketoglutarate dehydrogenase complex (KGDHC) hybridized not only to a major locus on chromosome 14q24.3 in a region associated with familial Alzheimer`s disease and with Joseph-Machado disease, but also to another locus on chromosome 1p31. The authors now report that PCR of genomic DNA and direct sequencing indicated that the chromosome 1 locus is an intronless pseudogene. PCR of genomic DNA amplified E2k fragments from mouse-human cell hybrids containing human chromosome 1 DNA but not from hybrids containing human chromosome 14 DNA. The resulting amplicons were of comparable sizes to those when the cDNA was used to template. The direct sequencing of these amplicons confirmed the lack of introns and indicated a frame shift, which led to the presence of four termination codons early in the coding region. PCR followed by direct sequencing of the amplicons appears to be a convenient method for identifying intronless pseudogenes.

  20. A Fast Real-Time Polymerase Chain Reaction Method for Sensitive and Specific Detection of the Neisseria gonorrhoeae porA Pseudogene

    PubMed Central

    Hjelmevoll, Stig Ove; Olsen, Merethe Elise; Sollid, Johanna U. Ericson; Haaheim, Håkon; Unemo, Magnus; Skogen, Vegard

    2006-01-01

    Ever since the advent of molecular methods, the diagnostics of Neisseria gonorrhoeae has been troubled by false negative and false positive results compared with culture. Commensal Neisseria species and Neisseria meningitidis are closely related to N. gonorrhoeae and may cross-react when using molecular tests comprising too-low specificity. We have devised a real-time polymerase chain reaction (PCR), including an internal amplification control, that targets the N. gonorrhoeae porA pseudogene. DNA was automatically isolated on a BioRobot M48. Our subsequent PCR method amplified all of the different N. gonorrhoeae international reference strains (n = 34) and N. gonorrhoeae clinical isolates (n = 176) but not isolates of the 13 different nongonococcal Neisseria species (n = 68) that we tested. Furthermore, a panel of gram-negative bacterial (n = 18), gram-positive bacterial (n = 23), fungal (n = 1), and viral (n = 4) as well as human DNA did not amplify. The limit of detection was determined to be less than 7.5 genome equivalents/PCR reaction. In conclusion, the N. gonorrhoeae porA pseudogene real-time PCR developed in the present study is highly sensitive, specific, robust, rapid and reproducible, making it suitable for diagnosis of N. gonorrhoeae infection. PMID:17065426

  1. Advances in Computational Stability Analysis of Composite Aerospace Structures

    SciTech Connect

    Degenhardt, R.; Araujo, F. C. de

    2010-09-30

    European aircraft industry demands for reduced development and operating costs. Structural weight reduction by exploitation of structural reserves in composite aerospace structures contributes to this aim, however, it requires accurate and experimentally validated stability analysis of real structures under realistic loading conditions. This paper presents different advances from the area of computational stability analysis of composite aerospace structures which contribute to that field. For stringer stiffened panels main results of the finished EU project COCOMAT are given. It investigated the exploitation of reserves in primary fibre composite fuselage structures through an accurate and reliable simulation of postbuckling and collapse. For unstiffened cylindrical composite shells a proposal for a new design method is presented.

  2. ESF GROUND SUPPORT - STRUCTURAL STEEL ANALYSIS

    SciTech Connect

    T. Misiak

    1996-06-26

    The purpose and objective of this analysis are to expand the level of detail and confirm member sizes for steel sets included in the Ground Support Design Analysis, Reference 5.20. This analysis also provides bounding values and details and defines critical design attributes for alternative configurations of the steel set. One possible configuration for the steel set is presented. This analysis covers the steel set design for the Exploratory Studies Facility (ESF) entire Main Loop 25-foot diameter tunnel.

  3. APT/LEDA RFQ and support frame structural analysis

    SciTech Connect

    Ellis, S.

    1997-04-01

    This report documents structural analysis of the Accelerator Production of Tritium Low Energy Demonstration Accelerator (APT/LEDA) Radio Frequency Quadrupole (RFQ) accelerator structure and its associated support frame. This work was conducted for the Department of Energy in support of the APT/LEDA. Structural analysis of the RFQ was performed to quantify stress levels and deflections due to both vacuum loading and gravity loading. This analysis also verified the proposed support scheme geometry and quantified interface loads. This analysis also determined the necessary stiffness and strength requirements of the RFQ support frame verifying the conceptual design geometry and allowing specification of individual frame elements. Complete structural analysis of the frame was completed subsequently. This report details structural analysis of the RFQ assembly with regard to gravity and vacuum loads only. Thermally induced stresses from the Radio Frequency (RF) surface resistance heating were not considered.

  4. Integrated transient thermal-structural finite element analysis

    NASA Technical Reports Server (NTRS)

    Thornton, E. A.; Dechaumphai, P.; Wieting, A. R.; Tamma, K. K.

    1981-01-01

    An integrated thermal structural finite element approach for efficient coupling of transient thermal and structural analysis is presented. Integrated thermal structural rod and one dimensional axisymmetric elements considering conduction and convection are developed and used in transient thermal structural applications. The improved accuracy of the integrated approach is illustrated by comparisons with exact transient heat conduction elasticity solutions and conventional finite element thermal finite element structural analyses.

  5. Structural dynamics: Probabilistic structural analysis methods. Program overview

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.; Hopkins, Dale A.

    1991-01-01

    A brief description is provided of the fundamental aspects of a quantification process. Progress since the last structural durability conference in 1989 is summarized. The methodology to date and that to be developed during the life of the program is presented. The uncertain factors are presented. The approach is outlined that is required to achieve component and/or system certification in the shortest possible time for affordable reliability risk. Two new elements appear in a block diagram: (1) uncertainties in human factor, and (2) uncertainties in the computer code. Research to quantify the uncertainties in the human factor was initiated and is discussed.

  6. Advertising Agencies: An Analysis of Industry Structure.

    ERIC Educational Resources Information Center

    Smith, Sandra J.

    Noting that advertising agencies have not been examined as a collective industry, this paper looks at the development and structure of the advertising agency industry. The first portion of the paper discusses the development of the agency. The remaining two sections deal with trends in and the structure of the industry including: (1) the growth of…

  7. The Specific Analysis of Structural Equation Models

    ERIC Educational Resources Information Center

    McDonald, Roderick P.

    2004-01-01

    Conventional structural equation modeling fits a covariance structure implied by the equations of the model. This treatment of the model often gives misleading results because overall goodness of fit tests do not focus on the specific constraints implied by the model. An alternative treatment arising from Pearl's directed acyclic graph theory…

  8. Crystal structure analysis of intermetallic compounds

    NASA Technical Reports Server (NTRS)

    Conner, R. A., Jr.; Downey, J. W.; Dwight, A. E.

    1968-01-01

    Study concerns crystal structures and lattice parameters for a number of new intermetallic compounds. Crystal structure data have been collected on equiatomic compounds, formed between an element of the Sc, Ti, V, or Cr group and an element of the Co or Ni group. The data, obtained by conventional methods, are presented in an easily usable tabular form.

  9. Reliability analysis applied to structural tests

    NASA Technical Reports Server (NTRS)

    Diamond, P.; Payne, A. O.

    1972-01-01

    The application of reliability theory to predict, from structural fatigue test data, the risk of failure of a structure under service conditions because its load-carrying capability is progressively reduced by the extension of a fatigue crack, is considered. The procedure is applicable to both safe-life and fail-safe structures and, for a prescribed safety level, it will enable an inspection procedure to be planned or, if inspection is not feasible, it will evaluate the life to replacement. The theory has been further developed to cope with the case of structures with initial cracks, such as can occur in modern high-strength materials which are susceptible to the formation of small flaws during the production process. The method has been applied to a structure of high-strength steel and the results are compared with those obtained by the current life estimation procedures. This has shown that the conventional methods can be unconservative in certain cases, depending on the characteristics of the structure and the design operating conditions. The suitability of the probabilistic approach to the interpretation of the results from full-scale fatigue testing of aircraft structures is discussed and the assumptions involved are examined.

  10. Structural Configuration Systems Analysis for Advanced Aircraft Fuselage Concepts

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, Vivek; Welstead, Jason R.; Quinlan, Jesse R.; Guynn, Mark D.

    2016-01-01

    Structural configuration analysis of an advanced aircraft fuselage concept is investigated. This concept is characterized by a double-bubble section fuselage with rear mounted engines. Based on lessons learned from structural systems analysis of unconventional aircraft, high-fidelity finite-element models (FEM) are developed for evaluating structural performance of three double-bubble section configurations. Structural sizing and stress analysis are applied for design improvement and weight reduction. Among the three double-bubble configurations, the double-D cross-section fuselage design was found to have a relatively lower structural weight. The structural FEM weights of these three double-bubble fuselage section concepts are also compared with several cylindrical fuselage models. Since these fuselage concepts are different in size, shape and material, the fuselage structural FEM weights are normalized by the corresponding passenger floor area for a relative comparison. This structural systems analysis indicates that an advanced composite double-D section fuselage may have a relative structural weight ratio advantage over a conventional aluminum fuselage. Ten commercial and conceptual aircraft fuselage structural weight estimates, which are empirically derived from the corresponding maximum takeoff gross weight, are also presented and compared with the FEM- based estimates for possible correlation. A conceptual full vehicle FEM model with a double-D fuselage is also developed for preliminary structural analysis and weight estimation.

  11. Enabling Rapid and Robust Structural Analysis During Conceptual Design

    NASA Technical Reports Server (NTRS)

    Eldred, Lloyd B.; Padula, Sharon L.; Li, Wu

    2015-01-01

    This paper describes a multi-year effort to add a structural analysis subprocess to a supersonic aircraft conceptual design process. The desired capabilities include parametric geometry, automatic finite element mesh generation, static and aeroelastic analysis, and structural sizing. The paper discusses implementation details of the new subprocess, captures lessons learned, and suggests future improvements. The subprocess quickly compares concepts and robustly handles large changes in wing or fuselage geometry. The subprocess can rank concepts with regard to their structural feasibility and can identify promising regions of the design space. The automated structural analysis subprocess is deemed robust and rapid enough to be included in multidisciplinary conceptual design and optimization studies.

  12. A novel CFD/structural analysis of a cross parachute

    SciTech Connect

    LaFarge, R.A.; Nelsen, J.M.; Gwinn, K.W.

    1993-12-31

    A novel CFD/structural analysis was performed to predict functionality of a cross parachute under loadings near the structural limits of the parachute. The determination of parachute functionality was based on the computed structural integrity of the canopy and suspension lines. In addition to the standard aerodynamic pressure loading on the canopy, the structural analysis considered the reduction in fabric strength due to the computed aerodynamic heating. The intent was to illustrate the feasibility of such an analysis with the commercially available software PATRAN.

  13. Finite element-finite difference thermal/structural analysis of large space truss structures

    NASA Technical Reports Server (NTRS)

    Warren, Andrew H.; Arelt, Joseph E.; Eskew, William F.; Rogers, Karen M.

    1992-01-01

    A technique of automated and efficient thermal-structural processing of truss structures that interfaces the finite element and finite difference method was developed. The thermal-structural analysis tasks include development of the thermal and structural math models, thermal analysis, development of an interface and data transfer between the models, and finally an evaluation of the thermal stresses and displacements in the structure. Consequently, the objective of the developed technique was to minimize the model development time, in order to assure an automatic transfer of data between the thermal and structural models as well as to minimize the computer resources needed for the analysis itself. The method and techniques described are illustrated on the thermal/structural analysis of the Space Station Freedom main truss.

  14. Crystallization and Structure Analysis of Membrane Proteins

    NASA Astrophysics Data System (ADS)

    Newman, Richard

    In recent years, there has been great progress in the determination of high-resolution three-dimensional (3D) structures of membrane proteins. The first major breakthrough came with the crystallization (1) and X-ray crystallography (2,3) of the bacterial photosynthetic reaction center (see refs. 4 and 5 for reviews). The structure of another, entirely different membrane protein, the bacterial outer membrane porin from Rhodobacter capsulatus, has now been determined by X-ray crystallography (6). Recent results by electron crystallography of two-dimensional (2D) crystals have been most encouraging. The high-resolution 3D structure of bacteriorhodopsin (7) plant light-harvesting complex (8) and projection maps of several other membrane proteins at similar resolutions (9-11) have been obtained by this technique. Electron crystallography seems particularly appropriate for membrane proteins that are prone to form 2D crystals, and it is hoped that many more structures will be determined in this way.

  15. Solid Propellant Grain Structural Integrity Analysis

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The structural properties of solid propellant rocket grains were studied to determine the propellant resistance to stresses. Grain geometry, thermal properties, mechanical properties, and failure modes are discussed along with design criteria and recommended practices.

  16. Structural analysis of kasugamycin inhibition of translation

    PubMed Central

    Schuwirth, Barbara S; Day, J Michael; Hau, Cathy W; Janssen, Gary R; Dahlberg, Albert E; Cate, Jamie H Doudna; Vila-Sanjurjo, Antón

    2008-01-01

    The prokaryotic ribosome is an important target of antibiotic action. We determined the X-ray structure of the aminoglycoside kasugamycin (Ksg) in complex with the Escherichia coli 70S ribosome at 3.5-Å resolution. The structure reveals that the drug binds within the messenger RNA channel of the 30S subunit between the universally conserved G926 and A794 nucleotides in 16S ribosomal RNA, which are sites of Ksg resistance. To our surprise, Ksg resistance mutations do not inhibit binding of the drug to the ribosome. The present structural and biochemical results indicate that inhibition by Ksg and Ksg resistance are closely linked to the structure of the mRNA at the junction of the peptidyl-tRNA and exit-tRNA sites (P and E sites). PMID:16998486

  17. Analysis of structures under fire conditions

    NASA Astrophysics Data System (ADS)

    Kajaste-Rudnitski, Juri

    The prospect of the application of a standard finite element method program to study the ability of a structure to withstand fire is studied. The objective of using a finite element method program for structure fire resistance evaluation is to compliment, if not to substitute, the expensive fire tests of the natural size structural elements. Besides, an existing measurement technique provides limited scope of data: the temperature and displacement at the reference points of the structure. Furthermore, the simulation of the real fire situation is rather difficult in the laboratory conditions. The numerical model of the concrete type of material with temperature dependent properties is studied. The standard finite element method program ABAQUS chosen for this purpose enables users to create their own subroutines and insert them into the main program.

  18. Computer applications for engineering/structural analysis. Revision 1

    SciTech Connect

    Zaslawsky, M.; Samaddar, S.K.

    1991-12-31

    Analysts and organizations have a tendency to lock themselves into specific codes with the obvious consequences of not addressing the real problem and thus reaching the wrong conclusion. This paper discusses the role of the analyst in selecting computer codes. The participation and support of a computation division in modifying the source program, configuration management, and pre- and post-processing of codes are among the subjects discussed. Specific examples illustrating the computer code selection process are described in the following problem areas: soil structure interaction, structural analysis of nuclear reactors, analysis of waste tanks where fluid structure interaction is important, analysis of equipment, structure-structure interaction, analysis of the operation of the superconductor supercollider which includes friction and transient temperature, and 3D analysis of the 10-meter telescope being built in Hawaii. Validation and verification of computer codes and their impact on the selection process are also discussed.

  19. Probabilistic structural analysis algorithm development for computational efficiency

    NASA Technical Reports Server (NTRS)

    Wu, Y.-T.

    1991-01-01

    The PSAM (Probabilistic Structural Analysis Methods) program is developing a probabilistic structural risk assessment capability for the SSME components. An advanced probabilistic structural analysis software system, NESSUS (Numerical Evaluation of Stochastic Structures Under Stress), is being developed as part of the PSAM effort to accurately simulate stochastic structures operating under severe random loading conditions. One of the challenges in developing the NESSUS system is the development of the probabilistic algorithms that provide both efficiency and accuracy. The main probability algorithms developed and implemented in the NESSUS system are efficient, but approximate in nature. In the last six years, the algorithms have improved very significantly.

  20. Reevaluating Human Gene Annotation: A Second-Generation Analysis of Chromosome 22

    PubMed Central

    Collins, John E.; Goward, Melanie E.; Cole, Charlotte G.; Smink, Luc J.; Huckle, Elizabeth J.; Knowles, Sarah; Bye, Jacqueline M.; Beare, David M.; Dunham, Ian

    2003-01-01

    We report a second-generation gene annotation of human chromosome 22. Using expressed sequence databases, comparative sequence analysis, and experimental verification, we have extended genes, fused previously fragmented structures, and identified new genes. The total length in exons of annotation was increased by 74% over our previously published annotation and includes 546 protein-coding genes and 234 pseudogenes. Thirty-two potential protein-coding annotations are partial copies of other genes, and may represent duplications on an evolutionary path to change or loss of function. We also identified 31 non-protein-coding transcripts, including 16 possible antisense RNAs. By extrapolation, we estimate the human genome contains 29,000–36,000 protein-coding genes, 21,300 pseudogenes, and 1500 antisense RNAs. We suggest that our revised annotation criteria provide a paradigm for future annotation of the human genome. [Supplemental material is available online at www.genome.org. The sequence data from this study have been submitted to GenBank under accession nos. , -3, , , -2, , , , , -8, -6, , -81, -81, , , , , -3, -2, -2, , , , , , , -5, , , , , -7, , -8, –. The following individuals kindly provided reagents, samples, or unpublished information as indicated in the paper: J. Seilhamer, L. Stuve, H. Roest-Crollius, A. Levine, G. Slater, and J. Kent.] PMID:12529303

  1. Structural Analysis of the NCSX Vacuum Vessel

    SciTech Connect

    Fred Dahlgren; Art Brooks; Paul Goranson; Mike Cole; Peter Titus

    2004-09-28

    The NCSX (National Compact Stellarator Experiment) vacuum vessel has a rather unique shape being very closely coupled topologically to the three-fold stellarator symmetry of the plasma it contains. This shape does not permit the use of the common forms of pressure vessel analysis and necessitates the reliance on finite element analysis. The current paper describes the NCSX vacuum vessel stress analysis including external pressure, thermal, and electro-magnetic loading from internal plasma disruptions and bakeout temperatures of up to 400 degrees centigrade. Buckling and dynamic loading conditions are also considered.

  2. Terahertz wave spectrum analysis of microstrip structure

    NASA Astrophysics Data System (ADS)

    Song, Mei-jing; Li, Jiu-sheng

    2011-11-01

    Terahertz wave is a kind of electromagnetic wave ranging from 0.1~10THz, between microwave and infrared, which occupies a special place in the electromagnetic spectrum. Terahertz radiation has a strong penetration for many media materials and nonpolar substance, for example, dielectric material, plastic, paper carton and cloth. In recent years, researchers around the world have paid great attention on terahertz technology, such as safety inspection, chemical biology, medical diagnosis and terahertz wave imaging, etc. Transmission properties of two-dimensional metal microstrip structures in the terahertz regime are presented and tested. Resonant terahertz transmission was demonstrated in four different arrays of subwavelength microstrip structure patterned on semiconductor. The effects of microstrip microstrip structure shape were investigated by using terahertz time-domain spectroscopy system. The resonant terahertz transmission has center frequency of 2.05 THz, transmission of 70%.

  3. Terahertz wave spectrum analysis of microstrip structure

    NASA Astrophysics Data System (ADS)

    Song, Mei-jing; Li, Jiu-sheng

    2012-03-01

    Terahertz wave is a kind of electromagnetic wave ranging from 0.1~10THz, between microwave and infrared, which occupies a special place in the electromagnetic spectrum. Terahertz radiation has a strong penetration for many media materials and nonpolar substance, for example, dielectric material, plastic, paper carton and cloth. In recent years, researchers around the world have paid great attention on terahertz technology, such as safety inspection, chemical biology, medical diagnosis and terahertz wave imaging, etc. Transmission properties of two-dimensional metal microstrip structures in the terahertz regime are presented and tested. Resonant terahertz transmission was demonstrated in four different arrays of subwavelength microstrip structure patterned on semiconductor. The effects of microstrip microstrip structure shape were investigated by using terahertz time-domain spectroscopy system. The resonant terahertz transmission has center frequency of 2.05 THz, transmission of 70%.

  4. Condensed Antenna Structural Models for Dynamics Analysis

    NASA Technical Reports Server (NTRS)

    Levy, R.

    1985-01-01

    Condensed degree-of-freedom models are compared with large degree-of-freedom finite-element models of a representative antenna-tipping and alidade structure, for both locked and free-rotor configurations. It is shown that: (1) the effective-mass models accurately reproduce the lower-mode natural frequencies of the finite element model; (2) frequency responses for the two types of models are in agreement up to at least 16 rad/s for specific points; and (3) transient responses computed for the same points are in good agreement. It is concluded that the effective-mass model, which best represents the five lower modes of the finite-element model, is a sufficient representation of the structure for future incorporation with a total servo control structure dynamic simulation.

  5. Total-System Approach To Design And Analysis Of Structures

    NASA Technical Reports Server (NTRS)

    Verderaime, V.

    1995-01-01

    Paper presents overview and study of, and comprehensive approach to, multidisciplinary engineering design and analysis of structures. Emphasizes issues related to design of semistatic structures in environments in which spacecraft launched, underlying concepts applicable to other structures within unique terrestrial, marine, or flight environments. Purpose of study to understand interactions among traditionally separate engineering design disciplines with view toward optimizing not only structure but also overall design process.

  6. Structural Analysis Using NX Nastran 9.0

    NASA Technical Reports Server (NTRS)

    Rolewicz, Benjamin M.

    2014-01-01

    NX Nastran is a powerful Finite Element Analysis (FEA) software package used to solve linear and non-linear models for structural and thermal systems. The software, which consists of both a solver and user interface, breaks down analysis into four files, each of which are important to the end results of the analysis. The software offers capabilities for a variety of types of analysis, and also contains a respectable modeling program. Over the course of ten weeks, I was trained to effectively implement NX Nastran into structural analysis and refinement for parts of two missions at NASA's Kennedy Space Center, the Restore mission and the Orion mission.

  7. Cognitive Diagnostic Analysis Using Hierarchically Structured Skills

    ERIC Educational Resources Information Center

    Su, Yu-Lan

    2013-01-01

    This dissertation proposes two modified cognitive diagnostic models (CDMs), the deterministic, inputs, noisy, "and" gate with hierarchy (DINA-H) model and the deterministic, inputs, noisy, "or" gate with hierarchy (DINO-H) model. Both models incorporate the hierarchical structures of the cognitive skills in the model estimation…

  8. RNA structural analysis by evolving SHAPE chemistry.

    PubMed

    Spitale, Robert C; Flynn, Ryan A; Torre, Eduardo A; Kool, Eric T; Chang, Howard Y

    2014-01-01

    RNA is central to the flow of biological information. From transcription to splicing, RNA localization, translation, and decay, RNA is intimately involved in regulating every step of the gene expression program, and is thus essential for health and understanding disease. RNA has the unique ability to base-pair with itself and other nucleic acids to form complex structures. Hence the information content in RNA is not simply its linear sequence of bases, but is also encoded in complex folding of RNA molecules. A general chemical functionality that all RNAs have is a 2'-hydroxyl group in the ribose ring, and the reactivity of the 2'-hydroxyl in RNA is gated by local nucleotide flexibility. In other words, the 2'-hydroxyl is reactive at single-stranded and conformationally flexible positions but is unreactive at nucleotides constrained by base-pairing. Recent efforts have been focused on developing reagents that modify RNA as a function of RNA 2' hydroxyl group reactivity. Such RNA structure probing techniques can be read out by primer extension in experiments termed RNA SHAPE (selective 2'- hydroxyl acylation and primer extension). Herein, we describe the efforts devoted to the design and utilization of SHAPE probes for characterizing RNA structure. We also describe current technological advances that are being applied to utilize SHAPE chemistry with deep sequencing to probe many RNAs in parallel. The merging of chemistry with genomics is sure to open the door to genome-wide exploration of RNA structure and function.

  9. Theses "Discussion" Sections: A Structural Move Analysis

    ERIC Educational Resources Information Center

    Nodoushan, Mohammad Ali Salmani; Khakbaz, Nafiseh

    2011-01-01

    The current study aimed at finding the probable differences between the move structure of Iranian MA graduates' thesis discussion subgenres and those of their non-Iranian counterparts, on the one hand, and those of journal paper authors, on the other. It also aimed at identifying the moves that are considered obligatory, conventional, or optional…

  10. An Efficient Analysis Methodology for Fluted-Core Composite Structures

    NASA Technical Reports Server (NTRS)

    Oremont, Leonard; Schultz, Marc R.

    2012-01-01

    The primary loading condition in launch-vehicle barrel sections is axial compression, and it is therefore important to understand the compression behavior of any structures, structural concepts, and materials considered in launch-vehicle designs. This understanding will necessarily come from a combination of test and analysis. However, certain potentially beneficial structures and structural concepts do not lend themselves to commonly used simplified analysis methods, and therefore innovative analysis methodologies must be developed if these structures and structural concepts are to be considered. This paper discusses such an analysis technique for the fluted-core sandwich composite structural concept. The presented technique is based on commercially available finite-element codes, and uses shell elements to capture behavior that would normally require solid elements to capture the detailed mechanical response of the structure. The shell thicknesses and offsets using this analysis technique are parameterized, and the parameters are adjusted through a heuristic procedure until this model matches the mechanical behavior of a more detailed shell-and-solid model. Additionally, the detailed shell-and-solid model can be strategically placed in a larger, global shell-only model to capture important local behavior. Comparisons between shell-only models, experiments, and more detailed shell-and-solid models show excellent agreement. The discussed analysis methodology, though only discussed in the context of fluted-core composites, is widely applicable to other concepts.

  11. Large-scale structural analysis: The structural analyst, the CSM Testbed and the NAS System

    NASA Technical Reports Server (NTRS)

    Knight, Norman F., Jr.; Mccleary, Susan L.; Macy, Steven C.; Aminpour, Mohammad A.

    1989-01-01

    The Computational Structural Mechanics (CSM) activity is developing advanced structural analysis and computational methods that exploit high-performance computers. Methods are developed in the framework of the CSM testbed software system and applied to representative complex structural analysis problems from the aerospace industry. An overview of the CSM testbed methods development environment is presented and some numerical methods developed on a CRAY-2 are described. Selected application studies performed on the NAS CRAY-2 are also summarized.

  12. Application of structured analysis to a telerobotic system

    NASA Technical Reports Server (NTRS)

    Dashman, Eric; Mclin, David; Harrison, F. W.; Soloway, Donald; Young, Steven

    1990-01-01

    The analysis and evaluation of a multiple arm telerobotic research and demonstration system developed by the NASA Intelligent Systems Research Laboratory (ISRL) is described. Structured analysis techniques were used to develop a detailed requirements model of an existing telerobotic testbed. Performance models generated during this process were used to further evaluate the total system. A commercial CASE tool called Teamwork was used to carry out the structured analysis and development of the functional requirements model. A structured analysis and design process using the ISRL telerobotic system as a model is described. Evaluation of this system focused on the identification of bottlenecks in this implementation. The results demonstrate that the use of structured methods and analysis tools can give useful performance information early in a design cycle. This information can be used to ensure that the proposed system meets its design requirements before it is built.

  13. Experiences with a preliminary NICE/SPAR structural analysis system

    NASA Technical Reports Server (NTRS)

    Lotts, C. G.; Greene, W. H.

    1985-01-01

    Development of a new structural analysis system based on the original SPAR finite element code and the NICE system is described. The system is denoted NICE/SPAR. NICE was designed at Lockheed Palo Alto Research Laboratory and contains data management utilities, a command language interpreter, and a command language definition for integrating engineering computational modules. SPAR is a system of programs used for finite element structural analysis developed for NASA by Engineering Information Systems, Inc. It includes many complementary structural analysis and utility functions which communicate through a common database. The work on NICE/SPAR was motivated by requirements for a highly modular and flexible structural analysis system to use as a tool in carrying out research in computational methods and exploring new computer hardware. Analysis examples are presented which demonstrate the benefits gained from a combination of the NICE command language with the SPAR computational modules.

  14. Complex eigenvalue analysis of rotating structures

    NASA Technical Reports Server (NTRS)

    Patel, J. S.; Seltzer, S. M.

    1972-01-01

    A FORTRAN subroutine to NASTRAN which constructs coriolis and centripetal acceleration matrices, and a centrifugal load vector due to spin about a selected point or about the mass center of the structure is discussed. The rigid translational degrees of freedom can be removed by using a transformation matrix T and its explicitly given inverse. These matrices are generated in the subroutine and their explicit expressions are given.

  15. Truncated Moment Analysis of Nucleon Structure Functions

    SciTech Connect

    A. Psaker; W. Melnitchouk; M. E. Christy; C. E. Keppel

    2007-11-16

    We employ a novel new approach using "truncated" moments, or integrals of structure functions over restricted regions of x, to study local quark-hadron duality, and the degree to which individual resonance regions are dominated by leading twists. Because truncated moments obey the same Q^2 evolution equations as the leading twist parton distributions, this approach makes possible for the first time a description of resonance region data and the phenomenon of quark-hadron duality directly from QCD.

  16. Probabilistic Computer Analysis for Rapid Evaluation of Structures.

    2007-03-29

    P-CARES 2.0.0, Probabilistic Computer Analysis for Rapid Evaluation of Structures, was developed for NRC staff use to determine the validity and accuracy of the analysis methods used by various utilities for structural safety evaluations of nuclear power plants. P-CARES provides the capability to effectively evaluate the probabilistic seismic response using simplified soil and structural models and to quickly check the validity and/or accuracy of the SSI data received from applicants and licensees. The code ismore » organized in a modular format with the basic modules of the system performing static, seismic, and nonlinear analysis.« less

  17. Probabilistic Computer Analysis for Rapid Evaluation of Structures.

    SciTech Connect

    XU, JIM

    2007-03-29

    P-CARES 2.0.0, Probabilistic Computer Analysis for Rapid Evaluation of Structures, was developed for NRC staff use to determine the validity and accuracy of the analysis methods used by various utilities for structural safety evaluations of nuclear power plants. P-CARES provides the capability to effectively evaluate the probabilistic seismic response using simplified soil and structural models and to quickly check the validity and/or accuracy of the SSI data received from applicants and licensees. The code is organized in a modular format with the basic modules of the system performing static, seismic, and nonlinear analysis.

  18. Acoustic Emission Analysis of Prestressed Concrete Structures

    NASA Astrophysics Data System (ADS)

    Elfergani, H. A.; Pullin, R.; Holford, K. M.

    2011-07-01

    Corrosion is a substantial problem in numerous structures and in particular corrosion is very serious in reinforced and prestressed concrete and must, in certain applications, be given special consideration because failure may result in loss of life and high financial cost. Furthermore corrosion cannot only be considered a long term problem with many studies reporting failure of bridges and concrete pipes due to corrosion within a short period after they were constructed. The concrete pipes which transport water are examples of structures that have suffered from corrosion; for example, the pipes of The Great Man-Made River Project of Libya. Five pipe failures due to corrosion have occurred since their installation. The main reason for the damage is corrosion of prestressed wires in the pipes due to the attack of chloride ions from the surrounding soil. Detection of the corrosion in initial stages has been very important to avoid other failures and the interruption of water flow. Even though most non-destructive methods which are used in the project are able to detect wire breaks, they cannot detect the presence of corrosion. Hence in areas where no excavation has been completed, areas of serious damage can go undetected. Therefore, the major problem which faces engineers is to find the best way to detect the corrosion and prevent the pipes from deteriorating. This paper reports on the use of the Acoustic Emission (AE) technique to detect the early stages of corrosion prior to deterioration of concrete structures.

  19. Nonlinear dynamic analysis of quasi-symmetric anisotropic structures

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.; Peters, Jeanne M.

    1987-01-01

    An efficient computational method for the nonlinear dynamic analysis of quasi-symmetric anisotropic structures is proposed. The application of mixed models simplifies the analytical development and improves the accuracy of the response predictions, and operator splitting allows the reduction of the analysis model of the quasi-symmetric structure to that of the corresponding symmetric structure. The preconditoned conjugate gradient provides a stable and effective technique for generating the unsymmetric response of the structure as the sum of a symmetrized response plus correction modes. The effectiveness of the strategy is demonstrated with the example of a laminated anisotropic shallow shell of quadrilateral planform subjected to uniform normal loading.

  20. Modal analysis of kagome-lattice structures

    NASA Astrophysics Data System (ADS)

    Perez, H.; Blakley, S.; Zheltikov, A. M.

    2015-05-01

    The first few lowest order circularly symmetric electromagnetic eigenmodes of a full kagome lattice are compared to those of a kagome lattice with a hexagonal defect. This analysis offers important insights into the physics behind the waveguiding properties of hollow-core fibers with a kagome-lattice cladding.

  1. Analysis of lossy composite terminating structures

    NASA Technical Reports Server (NTRS)

    Andre, R.; Dominek, A.; Munk, J.; Wang, N.

    1991-01-01

    A finite element solution and computer code for the electromagnetic scattering of inhomogeneous penetrable bodies is presented. The application for the code is for the analysis and design of leading and trailing edge terminations when conducting and nonconducting materials are used. Examples of simple triangular shaped terminations are also presented.

  2. Template matching method for the analysis of interstellar cloud structure

    NASA Astrophysics Data System (ADS)

    Juvela, M.

    2016-09-01

    Context. The structure of interstellar medium can be characterised at large scales in terms of its global statistics (e.g. power spectra) and at small scales by the properties of individual cores. Interest has been increasing in structures at intermediate scales, resulting in a number of methods being developed for the analysis of filamentary structures. Aims: We describe the application of the generic template-matching (TM) method to the analysis of maps. Our aim is to show that it provides a fast and still relatively robust way to identify elongated structures or other image features. Methods: We present the implementation of a TM algorithm for map analysis. The results are compared against rolling Hough transform (RHT), one of the methods previously used to identify filamentary structures. We illustrate the method by applying it to Herschel surface brightness data. Results: The performance of the TM method is found to be comparable to that of RHT but TM appears to be more robust regarding the input parameters, for example, those related to the selected spatial scales. Small modifications of TM enable one to target structures at different size and intensity levels. In addition to elongated features, we demonstrate the possibility of using TM to also identify other types of structures. Conclusions: The TM method is a viable tool for data quality control, exploratory data analysis, and even quantitative analysis of structures in image data.

  3. Pseudogenization of the Umami Taste Receptor Gene Tas1r1 in the Giant Panda Coincided with its Dietary Switch to Bamboo

    PubMed Central

    Zhao, Huabin; Yang, Jian-Rong; Xu, Huailiang; Zhang, Jianzhi

    2010-01-01

    Although it belongs to the order Carnivora, the giant panda is a vegetarian with 99% of its diet being bamboo. The draft genome sequence of the giant panda shows that its umami taste receptor gene Tas1r1 is a pseudogene, prompting the proposal that the loss of the umami perception explains why the giant panda is herbivorous. To test this hypothesis, we sequenced all six exons of Tas1r1 in another individual of the giant panda and five other carnivores. We found that the open reading frame (ORF) of Tas1r1 is intact in all these carnivores except the giant panda. The rate ratio (ω) of nonsynonymous to synonymous substitutions in Tas1r1 is significantly higher for the giant panda lineage than for other carnivore lineages. Based on the ω change and the observed number of ORF-disrupting substitutions, we estimated that the functional constraint on the giant panda Tas1r1 was relaxed ∼4.2 Ma, with its 95% confidence interval between 1.3 and 10 Ma. Our estimate matches the approximate date of the giant panda's dietary switch inferred from fossil records. It is probable that the giant panda's decreased reliance on meat resulted in the dispensability of the umami taste, leading to Tas1r1 pseudogenization, which in turn reinforced its herbivorous life style because of the diminished attraction of returning to meat eating in the absence of Tas1r1. Nonetheless, additional factors are likely involved because herbivores such as cow and horse still retain an intact Tas1r1. PMID:20573776

  4. Structural dynamic analysis of a ball joint

    NASA Astrophysics Data System (ADS)

    Hwang, Seok-Cheol; Lee, Kwon-Hee

    2012-11-01

    Ball joint is a rotating and swiveling element that is typically installed at the interface between two parts. In an automobile, the ball joint is the component that connects the control arms to the steering knuckle. The ball joint can also be installed in linkage systems for motion control applications. This paper describes the simulation strategy for a ball joint analysis, considering manufacturing process. Its manufacturing process can be divided into plugging and spinning. Then, the interested responses is selected as the stress distribution generated between its ball and bearing. In this paper, a commercial code of NX DAFUL using an implicit integration method is introduced to calculate the response. In addition, the gap analysis is performed to investigate the fitness, focusing on the response of the displacement of a ball stud. Also, the optimum design is suggested through case studies.

  5. Parallel processing in finite element structural analysis

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.

    1987-01-01

    A brief review is made of the fundamental concepts and basic issues of parallel processing. Discussion focuses on parallel numerical algorithms, performance evaluation of machines and algorithms, and parallelism in finite element computations. A computational strategy is proposed for maximizing the degree of parallelism at different levels of the finite element analysis process including: 1) formulation level (through the use of mixed finite element models); 2) analysis level (through additive decomposition of the different arrays in the governing equations into the contributions to a symmetrized response plus correction terms); 3) numerical algorithm level (through the use of operator splitting techniques and application of iterative processes); and 4) implementation level (through the effective combination of vectorization, multitasking and microtasking, whenever available).

  6. Structural analysis of hierarchically organized zeolites

    NASA Astrophysics Data System (ADS)

    Mitchell, Sharon; Pinar, Ana B.; Kenvin, Jeffrey; Crivelli, Paolo; Kärger, Jörg; Pérez-Ramírez, Javier

    2015-10-01

    Advances in materials synthesis bring about many opportunities for technological applications, but are often accompanied by unprecedented complexity. This is clearly illustrated by the case of hierarchically organized zeolite catalysts, a class of crystalline microporous solids that has been revolutionized by the engineering of multilevel pore architectures, which combine unique chemical functionality with efficient molecular transport. Three key attributes, the crystal, the pore and the active site structure, can be expected to dominate the design process. This review examines the adequacy of the palette of techniques applied to characterize these distinguishing features and their catalytic impact.

  7. Structural analysis of suerconducting bending magnets

    SciTech Connect

    Meuser, R.B.

    1980-05-01

    Mechanical stresses, displacements, and the effects of displacements upon aberrations of the magnetic field in the aperture have been calculated for a class of superconducting bending-magnet configurations. The analytical model employed for the coil is one in which elements are free to slide without restraint upon each other, and upon the surrounding structure. Coil configurations considered range from an idealized one in which the current density varies as cosine theta to more realistic ones consisting of regions of uniform current density. With few exceptions, the results for the more realistic coils closely match those of the cos theta coil.

  8. Analysis of dispersion characteristics of phononic structures

    SciTech Connect

    Parkhomenko, D. A. Kolenov, S. A.; Grigoruk, V. I.; Movchan, N. N.

    2011-05-15

    A general theory for calculating the dispersion of bulk acoustic waves in 3D and 2D phononic crystals made of anisotropic materials is presented, which is based on the plane-wave expansion method. Two approaches to separating acoustic modes in the dispersion diagrams are proposed. The pattern of the acoustic field distribution is studied as depending on the wavevector direction for various types of modes. Degeneracy of acoustic modes in directions different from the axes of symmetry of the phononic crystal is demonstrated. Possibilities of the proposed method are illustrated by the application to 3D and 2D silicon-based phononic crystal structures.

  9. Structural analysis of hierarchically organized zeolites

    PubMed Central

    Mitchell, Sharon; Pinar, Ana B.; Kenvin, Jeffrey; Crivelli, Paolo; Kärger, Jörg; Pérez-Ramírez, Javier

    2015-01-01

    Advances in materials synthesis bring about many opportunities for technological applications, but are often accompanied by unprecedented complexity. This is clearly illustrated by the case of hierarchically organized zeolite catalysts, a class of crystalline microporous solids that has been revolutionized by the engineering of multilevel pore architectures, which combine unique chemical functionality with efficient molecular transport. Three key attributes, the crystal, the pore and the active site structure, can be expected to dominate the design process. This review examines the adequacy of the palette of techniques applied to characterize these distinguishing features and their catalytic impact. PMID:26482337

  10. Molecular and structural analysis of viscoelastic properties

    NASA Astrophysics Data System (ADS)

    Yapp, Rebecca D.; Kalyanam, Sureshkumar; Insana, Michael F.

    2007-03-01

    Elasticity imaging is emerging as an important tool for breast cancer detection and monitoring of treatment. Viscoelastic image contrast in breast lesions is generated by disease specific processes that modify the molecular structure of connective tissues. We showed previously that gelatin hydrogels exhibit mechanical behavior similar to native collagen found in breast tissue and therefore are suitable as phantoms for elasticity imaging. This paper summarizes our study of the viscoelastic properties of hydrogels designed to discover molecular-scale sources of elasticity image contrast.

  11. Structure analysis on synthetic emerald crystals

    NASA Astrophysics Data System (ADS)

    Lee, Pei-Lun; Lee, Jiann-Shing; Huang, Eugene; Liao, Ju-Hsiou

    2013-05-01

    Single crystals of emerald synthesized by means of the flux method were adopted for crystallographic analyses. Emerald crystals with a wide range of Cr3+-doping content up to 3.16 wt% Cr2O3 were examined by X-ray single crystal diffraction refinement method. The crystal structures of the emerald crystals were refined to R 1 (all data) of 0.019-0.024 and w R 2 (all data) of 0.061-0.073. When Cr3+ substitutes for Al3+, the main adjustment takes place in the Al-octahedron and Be-tetrahedron. The effect of substitution of Cr3+ for Al3+ in the beryl structure results in progressively lengthening of the Al-O distance, while the length of the other bonds remains nearly unchanged. The substitution of Cr3+ for Al3+ may have caused the expansion of a axis, while keeping the c axis unchanged in the emerald lattice. As a consequence, the Al-O-Si and Al-O-Be bonding angles are found to decrease, while the angle of Si-O-Be increases as the Al-O distance increases during the Cr replacement.

  12. Analysis of hyperfine structure in photoassociation spectra

    NASA Astrophysics Data System (ADS)

    Bergeman, T.

    2008-05-01

    The low Doppler width in photoassociation spectra from cold atoms makes hyperfine structure clearly visible, especially with heavier alkali atoms. Recently the focus has been on photoassociation to weakly bound dimers [1,2]. However there are also useful data on somewhat more deeply bound levels [2] for which a different coupling scheme is appropriate. Following [3], we use a F = J + I representation, and develop a transformation between this and the usual case e representation which applies at asymptotically large internuclear distance. We hope to model and assign hyperfine structure in φ = 1 states, using appropriate ground and excited state wavefunctions. To obtain eigenvalues from very large DVR matrices, we use a ``stepwise diagonalization'' procedure, which appears to be more efficient than standard sparse matrix methods. [1] E. Tiesinga et al. PRA 71, 052703 (2005); K. M. Jones et al, RMP 78, 483 (2006). [2] Data on Rb2 from J. Qi, D. Wang, Y. Huang, H. Pechkis, E. Eyler, P. Gould, W. C. Stwalley, C. C. Tsai and D.J. Heinzen; Data on RbCs from A. J. Kerman, J. M. Sage, S. Sainis and D. DeMille. [3] B. Gao, PRA 54, 2022 (1996).

  13. Nonlinear transient analysis of joint dominated structures

    NASA Technical Reports Server (NTRS)

    Chapman, J. M.; Shaw, F. H.; Russell, W. C.

    1987-01-01

    A residual force technique is presented that can perform the transient analyses of large, flexible, and joint dominated structures. The technique permits substantial size reduction in the number of degrees of freedom describing the nonlinear structural models and can account for such nonlinear joint phenomena as free-play and hysteresis. In general, joints can have arbitrary force-state map representations but these are used in the form of residual force maps. One essential feature of the technique is to replace the arbitrary force-state maps describing the nonlinear joints with residual force maps describing the truss links. The main advantage of this replacement is that the incrementally small relative displacements and velocities across a joint are not monitored directly thereby avoiding numerical difficulties. Instead, very small and 'soft' residual forces are defined giving a numerically attractive form for the equations of motion and thereby permitting numerically stable integration algorithms. The technique was successfully applied to the transient analyses of a large 58 bay, 60 meter truss having nonlinear joints. A method to perform link testing is also presented.

  14. Structural and quantitative analysis of Equisetum alkaloids.

    PubMed

    Cramer, Luise; Ernst, Ludger; Lubienski, Marcus; Papke, Uli; Schiebel, Hans-Martin; Jerz, Gerold; Beuerle, Till

    2015-08-01

    Equisetum palustre L. is known for its toxicity for livestock. Several studies in the past addressed the isolation and identification of the responsible alkaloids. So far, palustrine (1) and N(5)-formylpalustrine (2) are known alkaloids of E. palustre. A HPLC-ESI-MS/MS method in combination with simple sample work-up was developed to identify and quantitate Equisetum alkaloids. Besides the two known alkaloids six related alkaloids were detected in different Equisetum samples. The structure of the alkaloid palustridiene (3) was derived by comprehensive 1D and 2D NMR experiments. N(5)-Acetylpalustrine (4) was also thoroughly characterized by NMR for the first time. The structure of N(5)-formylpalustridiene (5) is proposed based on mass spectrometry results. Twenty-two E. palustre samples were screened by a HPLC-ESI-MS/MS method after development of a simple sample work-up and in most cases the set of all eight alkaloids were detected in all parts of the plant. A high variability of the alkaloid content and distribution was found depending on plant organ, plant origin and season ranging from 88 to 597mg/kg dried weight. However, palustrine (1) and the alkaloid palustridiene (3) always represented the main alkaloids. For the first time, a comprehensive identification, quantitation and distribution of Equisetum alkaloids was achieved.

  15. Mixed time integration methods for transient thermal analysis of structures

    NASA Technical Reports Server (NTRS)

    Liu, W. K.

    1982-01-01

    The computational methods used to predict and optimize the thermal structural behavior of aerospace vehicle structures are reviewed. In general, two classes of algorithms, implicit and explicit, are used in transient thermal analysis of structures. Each of these two methods has its own merits. Due to the different time scales of the mechanical and thermal responses, the selection of a time integration method can be a different yet critical factor in the efficient solution of such problems. Therefore mixed time integration methods for transient thermal analysis of structures are being developed. The computer implementation aspects and numerical evaluation of these mixed time implicit-explicit algorithms in thermal analysis of structures are presented. A computationally useful method of estimating the critical time step for linear quadrilateral element is also given. Numerical tests confirm the stability criterion and accuracy characteristics of the methods. The superiority of these mixed time methods to the fully implicit method or the fully explicit method is also demonstrated.

  16. Failure Analysis and Mechanisms of Failure of Fibrous Composite Structures

    NASA Technical Reports Server (NTRS)

    Noor, A. K. (Compiler); Shuart, M. J. (Compiler); Starnes, J. H., Jr. (Compiler); Williams, J. G. (Compiler)

    1983-01-01

    The state of the art of failure analysis and current design practices, especially as applied to the use of fibrous composite materials in aircraft structures is discussed. Deficiencies in these technologies are identified, as are directions for future research.

  17. Progressive Failure Analysis Methodology for Laminated Composite Structures

    NASA Technical Reports Server (NTRS)

    Sleight, David W.

    1999-01-01

    A progressive failure analysis method has been developed for predicting the failure of laminated composite structures under geometrically nonlinear deformations. The progressive failure analysis uses C(exp 1) shell elements based on classical lamination theory to calculate the in-plane stresses. Several failure criteria, including the maximum strain criterion, Hashin's criterion, and Christensen's criterion, are used to predict the failure mechanisms and several options are available to degrade the material properties after failures. The progressive failure analysis method is implemented in the COMET finite element analysis code and can predict the damage and response of laminated composite structures from initial loading to final failure. The different failure criteria and material degradation methods are compared and assessed by performing analyses of several laminated composite structures. Results from the progressive failure method indicate good correlation with the existing test data except in structural applications where interlaminar stresses are important which may cause failure mechanisms such as debonding or delaminations.

  18. Applications of Mass Spectrometry to Structural Analysis of Marine Oligosaccharides

    PubMed Central

    Lang, Yinzhi; Zhao, Xia; Liu, Lili; Yu, Guangli

    2014-01-01

    Marine oligosaccharides have attracted increasing attention recently in developing potential drugs and biomaterials for their particular physical and chemical properties. However, the composition and sequence analysis of marine oligosaccharides are very challenging for their structural complexity and heterogeneity. Mass spectrometry (MS) has become an important technique for carbohydrate analysis by providing more detailed structural information, including molecular mass, sugar constituent, sequence, inter-residue linkage position and substitution pattern. This paper provides an overview of the structural analysis based on MS approaches in marine oligosaccharides, which are derived from some biologically important marine polysaccharides, including agaran, carrageenan, alginate, sulfated fucan, chitosan, glycosaminoglycan (GAG) and GAG-like polysaccharides. Applications of electrospray ionization mass spectrometry (ESI-MS) are mainly presented and the general applications of matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) are also outlined. Some technical challenges in the structural analysis of marine oligosaccharides by MS have also been pointed out. PMID:24983643

  19. Sensitivity analysis of discrete structural systems: A survey

    NASA Technical Reports Server (NTRS)

    Adelman, H. M.; Haftka, R. T.

    1984-01-01

    Methods for calculating sensitivity derivatives for discrete structural systems are surveyed, primarily covering literature published during the past two decades. Methods are described for calculating derivatives of static displacements and stresses, eigenvalues and eigenvectors, transient structural response, and derivatives of optimum structural designs with respect to problem parameters. The survey is focused on publications addressed to structural analysis, but also includes a number of methods developed in nonstructural fields such as electronics, controls, and physical chemistry which are directly applicable to structural problems. Most notable among the nonstructural-based methods are the adjoint variable technique from control theory, and the Green's function and FAST methods from physical chemistry.

  20. Statistical energy analysis of complex structures, phase 2

    NASA Technical Reports Server (NTRS)

    Trudell, R. W.; Yano, L. I.

    1980-01-01

    A method for estimating the structural vibration properties of complex systems in high frequency environments was investigated. The structure analyzed was the Materials Experiment Assembly, (MEA), which is a portion of the OST-2A payload for the space transportation system. Statistical energy analysis (SEA) techniques were used to model the structure and predict the structural element response to acoustic excitation. A comparison of the intial response predictions and measured acoustic test data is presented. The conclusions indicate that: the SEA predicted the response of primary structure to acoustic excitation over a wide range of frequencies; and the contribution of mechanically induced random vibration to the total MEA is not significant.

  1. Integrated transient thermal-structural finite element analysis

    NASA Technical Reports Server (NTRS)

    Thornton, E. A.; Decahaumphai, P.; Tamma, K. K.; Wieting, A. R.

    1981-01-01

    An integrated thermal-structural finite element approach for efficient coupling of transient thermal and structural analysis is presented. New integrated thermal-structural rod and one dimensional axisymmetric elements considering conduction and convection are developed and used in transient thermal-structural applications. The improved accuracy of the integrated approach is illustrated by comparisons with exact transient heat conduction-elasticity solutions and conventional finite element thermal-finite element structural analyses. Results indicate that the approach offers significant potential for further development with other elements.

  2. Reliability analysis of structures under periodic proof tests in service

    NASA Technical Reports Server (NTRS)

    Yang, J.-N.

    1976-01-01

    A reliability analysis of structures subjected to random service loads and periodic proof tests treats gust loads and maneuver loads as random processes. Crack initiation, crack propagation, and strength degradation are treated as the fatigue process. The time to fatigue crack initiation and ultimate strength are random variables. Residual strength decreases during crack propagation, so that failure rate increases with time. When a structure fails under periodic proof testing, a new structure is built and proof-tested. The probability of structural failure in service is derived from treatment of all the random variables, strength degradations, service loads, proof tests, and the renewal of failed structures. Some numerical examples are worked out.

  3. Analysis of Smart Composite Structures Including Debonding

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Aditi; Seeley, Charles E.

    1997-01-01

    Smart composite structures with distributed sensors and actuators have the capability to actively respond to a changing environment while offering significant weight savings and additional passive controllability through ply tailoring. Piezoelectric sensing and actuation of composite laminates is the most promising concept due to the static and dynamic control capabilities. Essential to the implementation of these smart composites are the development of accurate and efficient modeling techniques and experimental validation. This research addresses each of these important topics. A refined higher order theory is developed to model composite structures with surface bonded or embedded piezoelectric transducers. These transducers are used as both sensors and actuators for closed loop control. The theory accurately captures the transverse shear deformation through the thickness of the smart composite laminate while satisfying stress free boundary conditions on the free surfaces. The theory is extended to include the effect of debonding at the actuator-laminate interface. The developed analytical model is implemented using the finite element method utilizing an induced strain approach for computational efficiency. This allows general laminate geometries and boundary conditions to be analyzed. The state space control equations are developed to allow flexibility in the design of the control system. Circuit concepts are also discussed. Static and dynamic results of smart composite structures, obtained using the higher order theory, are correlated with available analytical data. Comparisons, including debonded laminates, are also made with a general purpose finite element code and available experimental data. Overall, very good agreement is observed. Convergence of the finite element implementation of the higher order theory is shown with exact solutions. Additional results demonstrate the utility of the developed theory to study piezoelectric actuation of composite

  4. An expert system for integrated structural analysis and design optimization for aerospace structures

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The results of a research study on the development of an expert system for integrated structural analysis and design optimization is presented. An Object Representation Language (ORL) was developed first in conjunction with a rule-based system. This ORL/AI shell was then used to develop expert systems to provide assistance with a variety of structural analysis and design optimization tasks, in conjunction with procedural modules for finite element structural analysis and design optimization. The main goal of the research study was to provide expertise, judgment, and reasoning capabilities in the aerospace structural design process. This will allow engineers performing structural analysis and design, even without extensive experience in the field, to develop error-free, efficient and reliable structural designs very rapidly and cost-effectively. This would not only improve the productivity of design engineers and analysts, but also significantly reduce time to completion of structural design. An extensive literature survey in the field of structural analysis, design optimization, artificial intelligence, and database management systems and their application to the structural design process was first performed. A feasibility study was then performed, and the architecture and the conceptual design for the integrated 'intelligent' structural analysis and design optimization software was then developed. An Object Representation Language (ORL), in conjunction with a rule-based system, was then developed using C++. Such an approach would improve the expressiveness for knowledge representation (especially for structural analysis and design applications), provide ability to build very large and practical expert systems, and provide an efficient way for storing knowledge. Functional specifications for the expert systems were then developed. The ORL/AI shell was then used to develop a variety of modules of expert systems for a variety of modeling, finite element analysis, and

  5. Implementation of efficient sensitivity analysis for optimization of large structures

    NASA Technical Reports Server (NTRS)

    Umaretiya, J. R.; Kamil, H.

    1990-01-01

    The paper presents the theoretical bases and implementation techniques of sensitivity analyses for efficient structural optimization of large structures, based on finite element static and dynamic analysis methods. The sensitivity analyses have been implemented in conjunction with two methods for optimization, namely, the Mathematical Programming and Optimality Criteria methods. The paper discusses the implementation of the sensitivity analysis method into our in-house software package, AutoDesign.

  6. Pore structure analysis of American coals

    SciTech Connect

    Gallegos, D.P.; Smith, D.M.; Stermer, D.L.

    1987-01-01

    The pore structure of 19 American coals, representing a wide range of rank and geographic origin, has been studied via gas adsorption, mercury porosimetry, helium displacement and NMR spin-lattice relaxation measurements. Nitrogen adsorption at 77 K was used to determine surface area in the pore range of r/sub p/ > approx. = 1nm and carbon dioxide adsorption at 273 K was used to obtain the total surface area. Porosimetry results were complicated by inter-particle void filling, surface roughness/porosity and sample compression. By employing a range of particle sizes, information concerning the relative magnitude of these mechanisms was ascertained as a function of pressure. Spin-lattice relaxation measurements of water contained in saturated coal were used to find pore size distributions over a broad range of T/sub 1/, the spin-lattice relaxation time. Good qualitative agreement was obtained between these measurements and gas adsorption/condensation results. 13 refs., 3 figs., 1 tab.

  7. Sensitivity Analysis for Coupled Aero-structural Systems

    NASA Technical Reports Server (NTRS)

    Giunta, Anthony A.

    1999-01-01

    A novel method has been developed for calculating gradients of aerodynamic force and moment coefficients for an aeroelastic aircraft model. This method uses the Global Sensitivity Equations (GSE) to account for the aero-structural coupling, and a reduced-order modal analysis approach to condense the coupling bandwidth between the aerodynamic and structural models. Parallel computing is applied to reduce the computational expense of the numerous high fidelity aerodynamic analyses needed for the coupled aero-structural system. Good agreement is obtained between aerodynamic force and moment gradients computed with the GSE/modal analysis approach and the same quantities computed using brute-force, computationally expensive, finite difference approximations. A comparison between the computational expense of the GSE/modal analysis method and a pure finite difference approach is presented. These results show that the GSE/modal analysis approach is the more computationally efficient technique if sensitivity analysis is to be performed for two or more aircraft design parameters.

  8. Microfabricated structures for integrated DNA analysis.

    PubMed Central

    Burns, M A; Mastrangelo, C H; Sammarco, T S; Man, F P; Webster, J R; Johnsons, B N; Foerster, B; Jones, D; Fields, Y; Kaiser, A R; Burke, D T

    1996-01-01

    Photolithographic micromachining of silicon is a candidate technology for the construction of high-throughput DNA analysis devices. However, the development of complex silicon microfabricated systems has been hindered in part by the lack of a simple, versatile pumping method for integrating individual components. Here we describe a surface-tension-based pump able to move discrete nanoliter drops through enclosed channels using only local heating. This thermocapillary pump can accurately mix, measure, and divide drops by simple electronic control. In addition, we have constructed thermal-cycling chambers, gel electrophoresis channels, and radiolabeled DNA detectors that are compatible with the fabrication of thermocapillary pump channels. Since all of the components are made by conventional photolithographic techniques, they can be assembled into more complex integrated systems. The combination of pump and components into self-contained miniaturized devices may provide significant improvements in DNA analysis speed, portability, and cost. The potential of microfabricated systems lies in the low unit cost of silicon-based construction and in the efficient sample handling afforded by component integration. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:8643614

  9. Probabilistic structural analysis methods for select space propulsion system components

    NASA Technical Reports Server (NTRS)

    Millwater, H. R.; Cruse, T. A.

    1989-01-01

    The Probabilistic Structural Analysis Methods (PSAM) project developed at the Southwest Research Institute integrates state-of-the-art structural analysis techniques with probability theory for the design and analysis of complex large-scale engineering structures. An advanced efficient software system (NESSUS) capable of performing complex probabilistic analysis has been developed. NESSUS contains a number of software components to perform probabilistic analysis of structures. These components include: an expert system, a probabilistic finite element code, a probabilistic boundary element code and a fast probability integrator. The NESSUS software system is shown. An expert system is included to capture and utilize PSAM knowledge and experience. NESSUS/EXPERT is an interactive menu-driven expert system that provides information to assist in the use of the probabilistic finite element code NESSUS/FEM and the fast probability integrator (FPI). The expert system menu structure is summarized. The NESSUS system contains a state-of-the-art nonlinear probabilistic finite element code, NESSUS/FEM, to determine the structural response and sensitivities. A broad range of analysis capabilities and an extensive element library is present.

  10. A Family Structure Approach to the Analysis of Poverty.

    ERIC Educational Resources Information Center

    Stuby, Richard G.

    A typological approach to the analysis of poverty, based on selected characteristics of family structure, is suggested since the family unit is a concrete or actual structure in society, and much of the research and many of the action programs of the war on poverty have implicitly invoked some concept of the family. The typology of family…

  11. Reliability Analysis of Brittle, Thin Walled Structures

    SciTech Connect

    Jonathan A Salem and Lynn Powers

    2007-02-09

    One emerging application for ceramics is diesel particulate filters being used order to meet EPA regulations going into effect in 2008. Diesel particulates are known to be carcinogenic and thus need to be minimized. Current systems use filters made from ceramics such as mullite and corderite. The filters are brittle and must operate at very high temperatures during a burn out cycle used to remove the soot buildup. Thus the filters are subjected to thermal shock stresses and life time reliability analysis is required. NASA GRC has developed reliability based design methods and test methods for such applications, such as CARES/Life and American Society for Testing and Materials (ASTM) C1499 “Standard Test Method for Equibiaxial Strength of Ceramics.”

  12. Stress analysis for structures with surface cracks

    NASA Technical Reports Server (NTRS)

    Bell, J. C.

    1978-01-01

    Two basic forms of analysis, one treating stresses around arbitrarily loaded circular cracks, the other treating stresses due to loads arbitrarily distributed on the surface of a half space, are united by a boundary-point least squares method to obtain analyses for stresses from surface cracks in places or bars. Calculations were for enough cases to show how effects from the crack vary with the depth-to-length ratio, the fractional penetration ratio, the obliquity of the load, and to some extent the fractional span ratio. The results include plots showing stress intensity factors, stress component distributions near the crack, and crack opening displacement patterns. Favorable comparisons are shown with two kinds of independent experiments, but the main method for confirming the results is by wide checking of overall satisfaction of boundary conditions, so that external confirmation is not essential. Principles involved in designing analyses which promote dependability of the results are proposed and illustrated.

  13. Partial Wave Analysis of Coupled Photonic Structures

    NASA Technical Reports Server (NTRS)

    Fuller, Kirk A.; Smith, David D.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    The very high quality factors sustained by microcavity optical resonators are relevant to applications in wavelength filtering, routing, switching, modulation, and multiplexing/demultiplexing. Increases in the density of photonic elements require that attention be paid to how electromagnetic (EM) coupling modifies their optical properties. This is especially true when cavity resonances are involved, in which case, their characteristics may be fundamentally altered. Understanding the optical properties of microcavities that are near or in contact with photonic elements---such as other microcavities, nanostructures, couplers, and substrates---can be expected to advance our understanding of the roles that these structures may play in VLSI photonics, biosensors and similar device technologies. Wc present results from recent theoretical studies of the effects of inter- and intracavity coupling on optical resonances in compound spherical particles. Concentrically stratified spheres and bispheres constituted from homogeneous and stratified spheres are subjects of this investigation. A new formulation is introduced for the absorption of light in an arbitrary layer of a multilayered sphere, which is based on multiple reflections of the spherical partial waves of the Lorenz-Mie solution for scattering by a sphere. Absorption efficiencies, which can be used to profile cavity resonances and to infer fluorescence yields or the onset of nonlinear optical processes in the microcavities, are presented. Splitting of resonances in these multisphere systems is paid particular attention, and consequences for photonic device development and possible performance enhancements through carefully designed architectures that exploit EM coupling are considered.

  14. Analysis of boron carbides' electronic structure

    NASA Technical Reports Server (NTRS)

    Howard, Iris A.; Beckel, Charles L.

    1986-01-01

    The electronic properties of boron-rich icosahedral clusters were studied as a means of understanding the electronic structure of the icosahedral borides such as boron carbide. A lower bound was estimated on bipolaron formation energies in B12 and B11C icosahedra, and the associated distortions. While the magnitude of the distortion associated with bipolaron formation is similar in both cases, the calculated formation energies differ greatly, formation being much more favorable on B11C icosahedra. The stable positions of a divalent atom relative to an icosahedral borane was also investigated, with the result that a stable energy minimum was found when the atom is at the center of the borane, internal to the B12 cage. If incorporation of dopant atoms into B12 cages in icosahedral boride solids is feasible, novel materials might result. In addition, the normal modes of a B12H12 cluster, of the C2B10 cage in para-carborane, and of a B12 icosahedron of reduced (D sub 3d) symmetry, such as is found in the icosahedral borides, were calculated. The nature of these vibrational modes will be important in determining, for instance, the character of the electron-lattice coupling in the borides, and in analyzing the lattice contribution to the thermal conductivity.

  15. Coupled structural/thermal/electromagnetic analysis/tailoring of graded composite structures

    NASA Technical Reports Server (NTRS)

    Hartle, M. S.; Mcknight, R. L.; Huang, H.; Holt, R.

    1992-01-01

    Described here are the accomplishments of a 5-year program to develop a methodology for coupled structural, thermal, electromagnetic analysis tailoring of graded component structures. The capabilities developed over the course of the program are the analyzer module and the tailoring module for the modeling of graded materials. Highlighted accomplishments for the past year include the addition of a buckling analysis capability, the addition of mode shape slope calculation for flutter analysis, verification of the analysis modules using simulated components, and verification of the tailoring module.

  16. Alternative Test Criteria in Covariance Structure Analysis: A Unified Approach.

    ERIC Educational Resources Information Center

    Satorra, Albert

    1989-01-01

    Within covariance structural analysis, a unified approach to asymptotic theory of alternative test criteria for testing parametric restrictions is provided. More general statistics for addressing the case where the discrepancy function is not asymptotically optimal, and issues concerning power analysis and the asymptotic theory of testing-related…

  17. Tempered Water Lower Port Connector Structural Analysis Verification

    SciTech Connect

    CREA, B.A.

    2000-05-05

    Structural analysis of the lower port connection of the Tempered Water System of the Cold Vacuum Drying Facility was performed. Subsequent detailed design changes to enhance operability resulted in the need to re-evaluate the bases of the original analysis to verify its continued validity. This evaluation is contained in Appendix A of this report. The original evaluation is contained in Appendix B.

  18. Application of integrated fluid-thermal-structural analysis methods

    NASA Technical Reports Server (NTRS)

    Wieting, Allan R.; Dechaumphai, Pramote; Bey, Kim S.; Thornton, Earl A.; Morgan, Ken

    1988-01-01

    Hypersonic vehicles operate in a hostile aerothermal environment which has a significant impact on their aerothermostructural performance. Significant coupling occurs between the aerodynamic flow field, structural heat transfer, and structural response creating a multidisciplinary interaction. Interfacing state-of-the-art disciplinary analysis methods is not efficient, hence interdisciplinary analysis methods integrated into a single aerothermostructural analyzer are needed. The NASA Langley Research Center is developing such methods in an analyzer called LIFTS (Langley Integrated Fluid-Thermal-Structural) analyzer. The evolution and status of LIFTS is reviewed and illustrated through applications.

  19. Nonlinear and Failure Analysis of Composite Structures

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.; Starnes, James H. (Technical Monitor)

    2002-01-01

    The overall goal of this research is to assess the effect of discontinuities and uncertainties on the nonlinear response and failure of stiffened composite panels subjected to combined mechanical and thermal loads. The key elements of the study are: (a) study of the effects of stiffener geometry and of transverse stresses on the response, damage initiation and propagation in stiffened composite panels; (b) use of hierarchical sensitivity coefficients to identify the major parameters that affect the response and damage in each of the different levels in the hierarchy (micromechanical, layer, panel, subcomponent and component levels); and, (c) application of fuzzy set techniques to identify the range and variation of possible responses. The computational models developed are used in conjunction with experiments to understand the physical phenomena associated with the nonlinear response and failure of stiffened composite panels. A toolkit is developed for use in conjunction with deterministic analysis programs to help the designer in assessing the effect of uncertainties in the different computational model parameters on the variability of the response quantities.

  20. Structural analysis of Aircraft fuselage splice joint

    NASA Astrophysics Data System (ADS)

    Udaya Prakash, R.; Kumar, G. Raj; Vijayanandh, R.; Senthil Kumar, M.; Ramganesh, T.

    2016-09-01

    In Aviation sector, composite materials and its application to each component are one of the prime factors of consideration due to the high strength to weight ratio, design flexibility and non-corrosive so that the composite materials are widely used in the low weight constructions and also it can be treated as a suitable alternative to metals. The objective of this paper is to estimate and compare the suitability of a composite skin joint in an aircraft fuselage with different joints by simulating the displacement, normal stress, vonmises stress and shear stress with the help of numerical solution methods. The reference Z-stringer component of this paper is modeled by CATIA and numerical simulation is carried out by ANSYS has been used for splice joint presents in the aircraft fuselage with three combinations of joints such as riveted joint, bonded joint and hybrid joint. Nowadays the stringers are using to avoid buckling of fuselage skin, it has joined together by rivets and they are connected end to end by splice joint. Design and static analysis of three-dimensional models of joints such as bonded, riveted and hybrid are carried out and results are compared.

  1. Acoustic response analysis of large light space structures

    NASA Astrophysics Data System (ADS)

    Defosse, H.; Mercier, F.

    1989-10-01

    The dynamic behavior of large lightweight aerospace structures under reverberant acoustic excitation is investigated. A review of the modal superposition theory is presented, along with an improved analysis method of air mass and acoustic radiation damping effects. An efficient postprocessor uses classic finite element codes to compute structural responses up to medium frequencies. Experiments performed on a honeycomb panel demonstrate the importance of two factors for the accurate analysis of the vibroacoustic responses of such aerospace structures: specifically, it is shown that the low frequency response calculations should include correlation characteristics of the excitation pressure field, and the test data processing should include pressure cross spectra calculations. Theoretical and analytical results are compared to assess air effects on a rigid circular plate. Dynamic analysis of large lightweight aerospace structures under a vacuum hypothesis may lead to a significant overestimation of predicted levels.

  2. Automated analysis of fundamental features of brain structures.

    PubMed

    Lancaster, Jack L; McKay, D Reese; Cykowski, Matthew D; Martinez, Michael J; Tan, Xi; Valaparla, Sunil; Zhang, Yi; Fox, Peter T

    2011-12-01

    Automated image analysis of the brain should include measures of fundamental structural features such as size and shape. We used principal axes (P-A) measurements to measure overall size and shape of brain structures segmented from MR brain images. The rationale was that quantitative volumetric studies of brain structures would benefit from shape standardization as had been shown for whole brain studies. P-A analysis software was extended to include controls for variability in position and orientation to support individual structure spatial normalization (ISSN). The rationale was that ISSN would provide a bias-free means to remove elementary sources of a structure's spatial variability in preparation for more detailed analyses. We studied nine brain structures (whole brain, cerebral hemispheres, cerebellum, brainstem, caudate, putamen, hippocampus, inferior frontal gyrus, and precuneus) from the 40-brain LPBA40 atlas. This paper provides the first report of anatomical positions and principal axes orientations within a standard reference frame, in addition to "shape/size related" principal axes measures, for the nine brain structures from the LPBA40 atlas. Analysis showed that overall size (mean volume) for internal brain structures was preserved using shape standardization while variance was reduced by more than 50%. Shape standardization provides increased statistical power for between-group volumetric studies of brain structures compared to volumetric studies that control only for whole brain size. To test ISSN's ability to control for spatial variability of brain structures we evaluated the overlap of 40 regions of interest (ROIs) in a standard reference frame for the nine different brain structures before and after processing. Standardizations of orientation or shape were ineffective when not combined with position standardization. The greatest reduction in spatial variability was seen for combined standardizations of position, orientation and shape. These

  3. Improved finite element methodology for integrated thermal structural analysis

    NASA Technical Reports Server (NTRS)

    Dechaumphai, P.; Thornton, E. A.

    1982-01-01

    An integrated thermal-structural finite element approach for efficient coupling of thermal and structural analysis is presented. New thermal finite elements which yield exact nodal and element temperatures for one dimensional linear steady state heat transfer problems are developed. A nodeless variable formulation is used to establish improved thermal finite elements for one dimensional nonlinear transient and two dimensional linear transient heat transfer problems. The thermal finite elements provide detailed temperature distributions without using additional element nodes and permit a common discretization with lower order congruent structural finite elements. The accuracy of the integrated approach is evaluated by comparisons with analytical solutions and conventional finite element thermal structural analyses for a number of academic and more realistic problems. Results indicate that the approach provides a significant improvement in the accuracy and efficiency of thermal stress analysis for structures with complex temperature distributions.

  4. Probabilistic structural analysis of space propulsion system LOX post

    NASA Technical Reports Server (NTRS)

    Newell, J. F.; Rajagopal, K. R.; Ho, H. W.; Cunniff, J. M.

    1990-01-01

    The probabilistic structural analysis program NESSUS (Numerical Evaluation of Stochastic Structures Under Stress; Cruse et al., 1988) is applied to characterize the dynamic loading and response of the Space Shuttle main engine (SSME) LOX post. The design and operation of the SSME are reviewed; the LOX post structure is described; and particular attention is given to the generation of composite load spectra, the finite-element model of the LOX post, and the steps in the NESSUS structural analysis. The results are presented in extensive tables and graphs, and it is shown that NESSUS correctly predicts the structural effects of changes in the temperature loading. The probabilistic approach also facilitates (1) damage assessments for a given failure model (based on gas temperature, heat-shield gap, and material properties) and (2) correlation of the gas temperature with operational parameters such as engine thrust.

  5. Recent advances in numerical analysis of structural eigenvalue problems

    NASA Technical Reports Server (NTRS)

    Gupta, K. K.

    1973-01-01

    A wide range of eigenvalue problems encountered in practical structural engineering analyses is defined, in which the structures are assumed to be discretized by any suitable technique such as the finite-element method. A review of the usual numerical procedures for the solution of such eigenvalue problems is presented and is followed by an extensive account of recently developed eigenproblem solution procedures. Particular emphasis is placed on the new numerical algorithms and associated computer programs based on the Sturm sequence method. Eigenvalue algorithms developed for efficient solution of natural frequency and buckling problems of structures are presented, as well as some eigenvalue procedures formulated in connection with the solution of quadratic matrix equations associated with free vibration analysis of structures. A new algorithm is described for natural frequency analysis of damped structural systems.

  6. Structural analysis methods development for turbine hot section components

    NASA Technical Reports Server (NTRS)

    Thompson, R. L.

    1989-01-01

    The structural analysis technologies and activities of the NASA Lewis Research Center's gas turbine engine HOT Section Technoloogy (HOST) program are summarized. The technologies synergistically developed and validated include: time-varying thermal/mechanical load models; component-specific automated geometric modeling and solution strategy capabilities; advanced inelastic analysis methods; inelastic constitutive models; high-temperature experimental techniques and experiments; and nonlinear structural analysis codes. Features of the program that incorporate the new technologies and their application to hot section component analysis and design are described. Improved and, in some cases, first-time 3-D nonlinear structural analyses of hot section components of isotropic and anisotropic nickel-base superalloys are presented.

  7. Advances in Structural Integrity Analysis Methods for Aging Metallic Airframe Structures with Local Damage

    NASA Technical Reports Server (NTRS)

    Starnes, James H., Jr.; Newman, James C., Jr.; Harris, Charles E.; Piascik, Robert S.; Young, Richard D.; Rose, Cheryl A.

    2003-01-01

    Analysis methodologies for predicting fatigue-crack growth from rivet holes in panels subjected to cyclic loads and for predicting the residual strength of aluminum fuselage structures with cracks and subjected to combined internal pressure and mechanical loads are described. The fatigue-crack growth analysis methodology is based on small-crack theory and a plasticity induced crack-closure model, and the effect of a corrosive environment on crack-growth rate is included. The residual strength analysis methodology is based on the critical crack-tip-opening-angle fracture criterion that characterizes the fracture behavior of a material of interest, and a geometric and material nonlinear finite element shell analysis code that performs the structural analysis of the fuselage structure of interest. The methodologies have been verified experimentally for structures ranging from laboratory coupons to full-scale structural components. Analytical and experimental results based on these methodologies are described and compared for laboratory coupons and flat panels, small-scale pressurized shells, and full-scale curved stiffened panels. The residual strength analysis methodology is sufficiently general to include the effects of multiple-site damage on structural behavior.

  8. Coupled structural/thermal/electromagnetic analysis/tailoring of graded composite structures

    NASA Technical Reports Server (NTRS)

    Mcknight, R. L.; Huang, H.; Hartle, M.

    1992-01-01

    Accomplishments are described for the fourth years effort of a 5-year program to develop a methodology for coupled structural/thermal/electromagnetic analysis/tailoring of graded component structures. These accomplishments include: (1) demonstration of coupled solution capability; (2) alternate CSTEM electromagnetic technology; (3) CSTEM acoustic capability; (4) CSTEM tailoring; (5) CSTEM composite micromechanics using ICAN; and (6) multiple layer elements in CSTEM.

  9. A discourse on sensitivity analysis for discretely-modeled structures

    NASA Technical Reports Server (NTRS)

    Adelman, Howard M.; Haftka, Raphael T.

    1991-01-01

    A descriptive review is presented of the most recent methods for performing sensitivity analysis of the structural behavior of discretely-modeled systems. The methods are generally but not exclusively aimed at finite element modeled structures. Topics included are: selections of finite difference step sizes; special consideration for finite difference sensitivity of iteratively-solved response problems; first and second derivatives of static structural response; sensitivity of stresses; nonlinear static response sensitivity; eigenvalue and eigenvector sensitivities for both distinct and repeated eigenvalues; and sensitivity of transient response for both linear and nonlinear structural response.

  10. Reanalysis, compatibility and correlation in analysis of modified antenna structures

    NASA Technical Reports Server (NTRS)

    Levy, R.

    1989-01-01

    A simple computational procedure is synthesized to process changes in the microwave-antenna pathlength-error measure when there are changes in the antenna structure model. The procedure employs structural modification reanalysis methods combined with new extensions of correlation analysis to provide the revised rms pathlength error. Mainframe finite-element-method processing of the structure model is required only for the initial unmodified structure, and elementary postprocessor computations develop and deal with the effects of the changes. Several illustrative computational examples are included. The procedure adapts readily to processing spectra of changes for parameter studies or sensitivity analyses.

  11. Course transformation: Content, structure and effectiveness analysis

    NASA Astrophysics Data System (ADS)

    DuHadway, Linda P.

    The organization of learning materials is often limited by the systems available for delivery of such material. Currently, the learning management system (LMS) is widely used to distribute course materials. These systems deliver the material in a text-based, linear way. As online education continues to expand and educators seek to increase their effectiveness by adding more effective active learning strategies, these delivery methods become a limitation. This work demonstrates the possibility of presenting course materials in a graphical way that expresses important relations and provides support for manipulating the order of those materials. The ENABLE system gathers data from an existing course, uses text analysis techniques, graph theory, graph transformation, and a user interface to create and present graphical course maps. These course maps are able to express information not currently available in the LMS. Student agents have been developed to traverse these course maps to identify the variety of possible paths through the material. The temporal relations imposed by the current course delivery methods have been replaced by prerequisite relations that express ordering that provides educational value. Reducing the connections to these more meaningful relations allows more possibilities for change. Technical methods are used to explore and calibrate linear and nonlinear models of learning. These methods are used to track mastery of learning material and identify relative difficulty values. Several probability models are developed and used to demonstrate that data from existing, temporally based courses can be used to make predictions about student success in courses using the same material but organized without the temporal limitations. Combined, these demonstrate the possibility of tools and techniques that can support the implementation of a graphical course map that allows varied paths and provides an enriched, more informative interface between the educator

  12. Aircraft Structural Mass Property Prediction Using Conceptual-Level Structural Analysis

    NASA Technical Reports Server (NTRS)

    Sexstone, Matthew G.

    1998-01-01

    This paper describes a methodology that extends the use of the Equivalent LAminated Plate Solution (ELAPS) structural analysis code from conceptual-level aircraft structural analysis to conceptual-level aircraft mass property analysis. Mass property analysis in aircraft structures has historically depended upon parametric weight equations at the conceptual design level and Finite Element Analysis (FEA) at the detailed design level ELAPS allows for the modeling of detailed geometry, metallic and composite materials, and non-structural mass coupled with analytical structural sizing to produce high-fidelity mass property analyses representing fully configured vehicles early in the design process. This capability is especially valuable for unusual configuration and advanced concept development where existing parametric weight equations are inapplicable and FEA is too time consuming for conceptual design. This paper contrasts the use of ELAPS relative to empirical weight equations and FEA. ELAPS modeling techniques are described and the ELAPS-based mass property analysis process is detailed Examples of mass property stochastic calculations produced during a recent systems study are provided This study involved the analysis of three remotely piloted aircraft required to carry scientific payloads to very high altitudes at subsonic speeds. Due to the extreme nature of this high-altitude flight regime,few existing vehicle designs are available for use in performance and weight prediction. ELAPS was employed within a concurrent engineering analysis process that simultaneously produces aerodynamic, structural, and static aeroelastic results for input to aircraft performance analyses. The ELAPS models produced for each concept were also used to provide stochastic analyses of wing structural mass properties. The results of this effort indicate that ELAPS is an efficient means to conduct multidisciplinary trade studies at the conceptual design level.

  13. Aircraft Structural Mass Property Prediction Using Conceptual-Level Structural Analysis

    NASA Technical Reports Server (NTRS)

    Sexstone, Matthew G.

    1998-01-01

    This paper describes a methodology that extends the use of the Equivalent LAminated Plate Solution (ELAPS) structural analysis code from conceptual-level aircraft structural analysis to conceptual-level aircraft mass property analysis. Mass property analysis in aircraft structures has historically depended upon parametric weight equations at the conceptual design level and Finite Element Analysis (FEA) at the detailed design level. ELAPS allows for the modeling of detailed geometry, metallic and composite materials, and non-structural mass coupled with analytical structural sizing to produce high-fidelity mass property analyses representing fully configured vehicles early in the design process. This capability is especially valuable for unusual configuration and advanced concept development where existing parametric weight equations are inapplicable and FEA is too time consuming for conceptual design. This paper contrasts the use of ELAPS relative to empirical weight equations and FEA. ELAPS modeling techniques are described and the ELAPS-based mass property analysis process is detailed. Examples of mass property stochastic calculations produced during a recent systems study are provided. This study involved the analysis of three remotely piloted aircraft required to carry scientific payloads to very high altitudes at subsonic speeds. Due to the extreme nature of this high-altitude flight regime, few existing vehicle designs are available for use in performance and weight prediction. ELAPS was employed within a concurrent engineering analysis process that simultaneously produces aerodynamic, structural, and static aeroelastic results for input to aircraft performance analyses. The ELAPS models produced for each concept were also used to provide stochastic analyses of wing structural mass properties. The results of this effort indicate that ELAPS is an efficient means to conduct multidisciplinary trade studies at the conceptual design level.

  14. Computational simulation for analysis and synthesis of impact resilient structure

    NASA Astrophysics Data System (ADS)

    Djojodihardjo, Harijono

    2013-10-01

    Impact resilient structures are of great interest in many engineering applications varying from civil, land vehicle, aircraft and space structures, to mention a few examples. To design such structure, one has to resort fundamental principles and take into account progress in analytical and computational approaches as well as in material science and technology. With such perspectives, this work looks at a generic beam and plate structure subject to impact loading and carry out analysis and numerical simulation. The first objective of the work is to develop a computational algorithm to analyze flat plate as a generic structure subjected to impact loading for numerical simulation and parametric study. The analysis will be based on dynamic response analysis. Consideration is given to the elastic-plastic region. The second objective is to utilize the computational algorithm for direct numerical simulation, and as a parallel scheme, commercial off-the shelf numerical code is utilized for parametric study, optimization and synthesis. Through such analysis and numerical simulation, effort is devoted to arrive at an optimum configuration in terms of loading, structural dimensions, material properties and composite lay-up, among others. Results will be discussed in view of practical applications.

  15. Structural constraints identified with covariation analysis in ribosomal RNA.

    PubMed

    Shang, Lei; Xu, Weijia; Ozer, Stuart; Gutell, Robin R

    2012-01-01

    Covariation analysis is used to identify those positions with similar patterns of sequence variation in an alignment of RNA sequences. These constraints on the evolution of two positions are usually associated with a base pair in a helix. While mutual information (MI) has been used to accurately predict an RNA secondary structure and a few of its tertiary interactions, early studies revealed that phylogenetic event counting methods are more sensitive and provide extra confidence in the prediction of base pairs. We developed a novel and powerful phylogenetic events counting method (PEC) for quantifying positional covariation with the Gutell lab's new RNA Comparative Analysis Database (rCAD). The PEC and MI-based methods each identify unique base pairs, and jointly identify many other base pairs. In total, both methods in combination with an N-best and helix-extension strategy identify the maximal number of base pairs. While covariation methods have effectively and accurately predicted RNAs secondary structure, only a few tertiary structure base pairs have been identified. Analysis presented herein and at the Gutell lab's Comparative RNA Web (CRW) Site reveal that the majority of these latter base pairs do not covary with one another. However, covariation analysis does reveal a weaker although significant covariation between sets of nucleotides that are in proximity in the three-dimensional RNA structure. This reveals that covariation analysis identifies other types of structural constraints beyond the two nucleotides that form a base pair.

  16. Purification and Structural Analysis of Plectin and BPAG1e.

    PubMed

    Manso, José A; García Rubio, Inés; Gómez-Hernández, María; Ortega, Esther; Buey, Rubén M; Carballido, Ana M; Carabias, Arturo; Alonso-García, Noelia; de Pereda, José M

    2016-01-01

    Plectin and BPAG1e belong to the plakin family of high-molecular-weight proteins that interconnect the cytoskeletal systems and anchor them to junctional complexes. Plectin and BPAG1e are prototypical plakins with a similar tripartite modular structure. The N- and C-terminal regions are built of multiple discrete structural domains, while the central rod domain mediates dimerization by coiled-coil interactions. Owing to the mosaic organization of plakins, the structure of their constituent individual domains or small multi-domain segments can be analyzed isolated. Yet, understanding the integrated function of large regions, oligomers, and heterocomplexes of plakins is difficult due to the large and segmented structure. Here, we describe methods for the production of plectin and BPAG1e samples suitable for structural and biophysical analysis. In addition, we discuss the combination of hybrid methods that yield information at several resolution levels to study the complex, multi-domain, and flexible structure of plakins.

  17. Analysis and validation of carbohydrate three-dimensional structures

    SciTech Connect

    Lütteke, Thomas

    2009-02-01

    The article summarizes the information that is gained from and the errors that are found in carbohydrate structures in the Protein Data Bank. Validation tools that can locate these errors are described. Knowledge of the three-dimensional structures of the carbohydrate molecules is indispensable for a full understanding of the molecular processes in which carbohydrates are involved, such as protein glycosylation or protein–carbohydrate interactions. The Protein Data Bank (PDB) is a valuable resource for three-dimensional structural information on glycoproteins and protein–carbohydrate complexes. Unfortunately, many carbohydrate moieties in the PDB contain inconsistencies or errors. This article gives an overview of the information that can be obtained from individual PDB entries and from statistical analyses of sets of three-dimensional structures, of typical problems that arise during the analysis of carbohydrate three-dimensional structures and of the validation tools that are currently available to scientists to evaluate the quality of these structures.

  18. DTFM Modeling and Analysis Method for Gossamer Structures

    NASA Technical Reports Server (NTRS)

    Fang, Hou-Fei; Lou, Michael; Broduer, Steve (Technical Monitor)

    2001-01-01

    Gossamer systems are mostly composed of support structures formed by highly flexible, long tubular elements and pre-tensioned thin-film membranes. These systems offer order-of-magnitude reductions in mass and launch volume and will revolutionize the architecture and design of space flight systems that require large in-orbit configurations and apertures. A great interest has been generated in recent years to fly gossamer systems on near-term and future space missions. Modeling and analysis requirements for gossamer structures are unique. Simulation of in-space performance issues of gossamer structures, such as inflation deployment of flexible booms, formation and effects of wrinkle in tensioned membranes, synthesis of tubular and membrane elements into a complete structural system, usually cannot be accomplished by using the general-purpose finite-element structural analysis codes. This has led to the need of structural modeling and analysis capabilities specifically suitable for gossamer structures. The Distributed Transfer Function Method (DTFM) can potentially meet this urgent need. Additional information is contained in the original extended abstract.

  19. Validation of Design and Analysis Techniques of Tailored Composite Structures

    NASA Technical Reports Server (NTRS)

    Jegley, Dawn C. (Technical Monitor); Wijayratne, Dulnath D.

    2004-01-01

    Aeroelasticity is the relationship between the elasticity of an aircraft structure and its aerodynamics. This relationship can cause instabilities such as flutter in a wing. Engineers have long studied aeroelasticity to ensure such instabilities do not become a problem within normal operating conditions. In recent decades structural tailoring has been used to take advantage of aeroelasticity. It is possible to tailor an aircraft structure to respond favorably to multiple different flight regimes such as takeoff, landing, cruise, 2-g pull up, etc. Structures can be designed so that these responses provide an aerodynamic advantage. This research investigates the ability to design and analyze tailored structures made from filamentary composites. Specifically the accuracy of tailored composite analysis must be verified if this design technique is to become feasible. To pursue this idea, a validation experiment has been performed on a small-scale filamentary composite wing box. The box is tailored such that its cover panels induce a global bend-twist coupling under an applied load. Two types of analysis were chosen for the experiment. The first is a closed form analysis based on a theoretical model of a single cell tailored box beam and the second is a finite element analysis. The predicted results are compared with the measured data to validate the analyses. The comparison of results show that the finite element analysis is capable of predicting displacements and strains to within 10% on the small-scale structure. The closed form code is consistently able to predict the wing box bending to 25% of the measured value. This error is expected due to simplifying assumptions in the closed form analysis. Differences between the closed form code representation and the wing box specimen caused large errors in the twist prediction. The closed form analysis prediction of twist has not been validated from this test.

  20. Synchrotron IR microspectroscopy for protein structure analysis: Potential and questions

    DOE PAGESBeta

    Yu, Peiqiang

    2006-01-01

    Synchrotron radiation-based Fourier transform infrared microspectroscopy (S-FTIR) has been developed as a rapid, direct, non-destructive, bioanalytical technique. This technique takes advantage of synchrotron light brightness and small effective source size and is capable of exploring the molecular chemical make-up within microstructures of a biological tissue without destruction of inherent structures at ultra-spatial resolutions within cellular dimension. To date there has been very little application of this advanced technique to the study of pure protein inherent structure at a cellular level in biological tissues. In this review, a novel approach was introduced to show the potential of the newly developed, advancedmore » synchrotron-based analytical technology, which can be used to localize relatively “pure“ protein in the plant tissues and relatively reveal protein inherent structure and protein molecular chemical make-up within intact tissue at cellular and subcellular levels. Several complex protein IR spectra data analytical techniques (Gaussian and Lorentzian multi-component peak modeling, univariate and multivariate analysis, principal component analysis (PCA), and hierarchical cluster analysis (CLA) are employed to relatively reveal features of protein inherent structure and distinguish protein inherent structure differences between varieties/species and treatments in plant tissues. By using a multi-peak modeling procedure, RELATIVE estimates (but not EXACT determinations) for protein secondary structure analysis can be made for comparison purpose. The issues of pro- and anti-multi-peaking modeling/fitting procedure for relative estimation of protein structure were discussed. By using the PCA and CLA analyses, the plant molecular structure can be qualitatively separate one group from another, statistically, even though the spectral assignments are not known. The synchrotron-based technology provides a new approach for protein structure research in

  1. Development of load-dependent Ritz vector method for structural dynamic analysis of large space structures

    NASA Technical Reports Server (NTRS)

    Ricles, James M.

    1990-01-01

    The development and preliminary assessment of a method for dynamic structural analysis based on load-dependent Ritz vectors are presented. The vector basis is orthogonalized with respect to the mass and structural stiffness in order that the equations of motion can be uncoupled and efficient analysis of large space structure performed. A series of computer programs was developed based on the algorithm for generating the orthogonal load-dependent Ritz vectors. Transient dynamic analysis performed on the Space Station Freedom using the software was found to provide solutions that require a smaller number of vectors than the modal analysis method. Error norm based on the participation of the mass distribution of the structure and spatial distribution of structural loading, respectively, were developed in order to provide an indication of vector truncation. These norms are computed before the transient analysis is performed. An assessment of these norms through a convergence study of the structural response was performed. The results from this assessment indicate that the error norms can provide a means of judging the quality of the vector basis and accuracy of the transient dynamic solution.

  2. Nonlinear analysis of structures. [within framework of finite element method

    NASA Technical Reports Server (NTRS)

    Armen, H., Jr.; Levine, H.; Pifko, A.; Levy, A.

    1974-01-01

    The development of nonlinear analysis techniques within the framework of the finite-element method is reported. Although the emphasis is concerned with those nonlinearities associated with material behavior, a general treatment of geometric nonlinearity, alone or in combination with plasticity is included, and applications presented for a class of problems categorized as axisymmetric shells of revolution. The scope of the nonlinear analysis capabilities includes: (1) a membrane stress analysis, (2) bending and membrane stress analysis, (3) analysis of thick and thin axisymmetric bodies of revolution, (4) a general three dimensional analysis, and (5) analysis of laminated composites. Applications of the methods are made to a number of sample structures. Correlation with available analytic or experimental data range from good to excellent.

  3. Integration of radar and Landsat imagery for structural analysis

    SciTech Connect

    Dodge, R.L.

    1986-05-01

    Radar imagery contains information on texture, structural orientation, and topography that augments data interpretable from Landsat Multispectral Scanner and Thematic Mapper data. Integrating data available from these two remote-sensing systems results in a more complete interpretation of surface features related to subsurface structures. Examples of improved interpretation emphasize the importance of radar's variable illumination azimuth for recognizing structural trends in addition to those seen on Landsat data. Also, textural detail and increased resolution from radar imagery improve the interpretability of fracture patterns and fracture density, and high resolution and variable illumination angle enhance topographic detail and recognition of structurally controlled topography. Tonal variations in the visible-near infrared, seen on Landsat data, can be related to fracture density, structurally controlled soil moisture conditions, and structurally controlled topography. Integrating the surface expression of structural features on the two types of data results in better maps of the surface expression of subsurface structures. Examples presented illustrate applications of such integrated analysis. Data from Landsat and radar sensors can be integrated visually, during the interpretation process, or digitally. Both approaches have advantages; visual integration is more practical for regional analysis, and digital integration can be applied in high-graded areas.

  4. Finite element thermo-viscoplastic analysis of aerospace structures

    NASA Technical Reports Server (NTRS)

    Pandey, Ajay K.; Dechaumphai, Pramote; Thornton, Earl A.

    1990-01-01

    The time-dependent thermo-viscoplastic response of aerospace structures subjected to intense aerothermal loads is predicted using the finite-element method. The finite-element analysis uses the Bodner-Partom unified viscoplastic constitutive relations to determine rate-dependent nonlinear material behavior. The methodology is verified by comparison with experimental data and other numerical results for a uniaxially-loaded bar. The method is then used (1) to predict the structural response of a rectangular plate subjected to line heating along a centerline, and (2) to predict the thermal-structural response of a convectively-cooled engine cowl leading edge subjected to aerodynamic shock-shock interference heating. Compared to linear elastic analysis, the viscoplastic analysis results in lower peak stresses and regions of plastic deformations.

  5. Aero-Structural Interaction, Analysis, and Shape Sensitivity

    NASA Technical Reports Server (NTRS)

    Newman, James C., III

    1999-01-01

    A multidisciplinary sensitivity analysis technique that has been shown to be independent of step-size selection is examined further. The accuracy of this step-size independent technique, which uses complex variables for determining sensitivity derivatives, has been previously established. The primary focus of this work is to validate the aero-structural analysis procedure currently being used. This validation consists of comparing computed and experimental data obtained for an Aeroelastic Research Wing (ARW-2). Since the aero-structural analysis procedure has the complex variable modifications already included into the software, sensitivity derivatives can automatically be computed. Other than for design purposes, sensitivity derivatives can be used for predicting the solution at nearby conditions. The use of sensitivity derivatives for predicting the aero-structural characteristics of this configuration is demonstrated.

  6. Finite-element thermo-viscoplastic analysis of aerospace structures

    NASA Technical Reports Server (NTRS)

    Pandey, Ajay; Dechaumphai, Pramote; Thornton, Earl A.

    1990-01-01

    The time-dependent thermo-viscoplastic response of aerospace structures subjected to intense aerothermal loads is predicted using the finite-element method. The finite-element analysis uses the Bodner-Partom unified viscoplastic constitutive relations to determine rate-dependent nonlinear material behavior. The methodology is verified by comparison with experimental data and other numerical results for a uniaxially-loaded bar. The method is then used (1) to predict the structural response of a rectangular plate subjected to line heating along a centerline, and (2) to predict the thermal-structural response of a convectively-cooled engine cowl leading edge subjected to aerodynamic shock-shock interference heating. Compared to linear elastic analysis, the viscoplastic analysis results in lower peak stresses and regions of plastic deformations.

  7. New technique for structural analysis of low-relief basins

    SciTech Connect

    Berger, Z.

    1986-05-01

    A new technique for structural analysis of low-relief basins integrates Landsat data with other geologic data sets such as gravity, magnetic, subsurface, and production data. Five analytical steps are recommended, and examples are supported by surface and subsurface controls. These steps are: (1) analyzing exposed structures that form the basin margin; (2) recognizing structural trends within the basin; (3) recognizing buried and obscured structures within the basin; (4) constructing an exploration model; and (5) generating new leads for the entire region. Examples cited are from various low-relief basins such as the Powder River, and the Central Basin platform of west Texas. Surface expressions of buried and obscured structures are attributed to differential compaction, loading, structural reactivation, and other processes related to abnormal flows of ground and surface waters near the structures. These well-recognized processes occur under various climatic and surface conditions. Landsat data can be used in low-relief frontier areas as a reconnaissance tool to identify regional trends, structural types, and potentially prospective structures. These data can also be used in low-relief mature areas to locate subtle structures not identified by other exploration techniques.

  8. Process for structural geologic analysis of topography and point data

    DOEpatents

    Eliason, Jay R.; Eliason, Valerie L. C.

    1987-01-01

    A quantitative method of geologic structural analysis of digital terrain data is described for implementation on a computer. Assuming selected valley segments are controlled by the underlying geologic structure, topographic lows in the terrain data, defining valley bottoms, are detected, filtered and accumulated into a series line segments defining contiguous valleys. The line segments are then vectorized to produce vector segments, defining valley segments, which may be indicative of the underlying geologic structure. Coplanar analysis is performed on vector segment pairs to determine which vectors produce planes which represent underlying geologic structure. Point data such as fracture phenomena which can be related to fracture planes in 3-dimensional space can be analyzed to define common plane orientation and locations. The vectors, points, and planes are displayed in various formats for interpretation.

  9. Recent literature on structural modeling, identification, and analysis

    NASA Technical Reports Server (NTRS)

    Craig, Roy R., Jr.

    1990-01-01

    The literature on the mathematical modeling of large space structures is first reviewed, with attention given to continuum models, model order reduction, substructuring, and computational techniques. System identification and mode verification are then discussed with reference to the verification of mathematical models of large space structures. In connection with analysis, the paper surveys recent research on eigensolvers and dynamic response solvers for large-order finite-element-based models.

  10. Random dynamic analysis of multi-body offshore structures

    SciTech Connect

    Langley, R.S.

    1984-01-01

    A general method for the dynamic analysis of multi-body offshore structures is presented, based on a constraint matrix approach. A method of deriving the constraint matrix for a general structure is given, and used to derive the equations of motion of a whole system from those of it's component parts. The response of the system to both first and second order random wave forces is found and used to calculate the forces and moments in the connecting mechanisms.

  11. A computer program for cyclic plasticity and structural fatigue analysis

    NASA Technical Reports Server (NTRS)

    Kalev, I.

    1980-01-01

    A computerized tool for the analysis of time independent cyclic plasticity structural response, life to crack initiation prediction, and crack growth rate prediction for metallic materials is described. Three analytical items are combined: the finite element method with its associated numerical techniques for idealization of the structural component, cyclic plasticity models for idealization of the material behavior, and damage accumulation criteria for the fatigue failure.

  12. Structural Configuration Analysis of Crew Exploration Vehicle Concepts

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, V.

    2006-01-01

    Structural configuration modeling and finite element analysis of crew exploration vehicle (CEV) concepts are presented. In the structural configuration design approach, parametric solid models of the pressurized shell and tanks are developed. The CEV internal cabin pressure is same as in the International Space Station (ISS) to enable docking with the ISS without an intermediate airlock. Effects of this internal pressure load on the stress distribution, factor of safety, mass and deflections are investigated. Uniform 7 mm thick skin shell, 5 mm thick shell with ribs and frames, and isogrid skin construction options are investigated. From this limited study, the isogrid construction appears to provide most strength/mass ratio. Initial finite element analysis results on the service module tanks are also presented. These rapid finite element analyses, stress and factor of safety distribution results are presented as a part of lessons learned and to build up a structural mass estimation and sizing database for future technology support. This rapid structural analysis process may also facilitate better definition of the vehicles and components for rapid prototyping. However, these structural analysis results are highly conceptual and exploratory in nature and do not reflect current configuration designs being conducted at the program level by NASA and industry.

  13. Fuzzy Structures Analysis of Aircraft Panels in NASTRAN

    NASA Technical Reports Server (NTRS)

    Sparrow, Victor W.; Buehrle, Ralph D.

    2001-01-01

    This paper concerns an application of the fuzzy structures analysis (FSA) procedures of Soize to prototypical aerospace panels in MSC/NASTRAN, a large commercial finite element program. A brief introduction to the FSA procedures is first provided. The implementation of the FSA methods is then disclosed, and the method is validated by comparison to published results for the forced vibrations of a fuzzy beam. The results of the new implementation show excellent agreement to the benchmark results. The ongoing effort at NASA Langley and Penn State to apply these fuzzy structures analysis procedures to real aircraft panels is then described.

  14. Development and Application of Viscoplastic Models in Nonlinear Structural Analysis

    NASA Technical Reports Server (NTRS)

    Keith, Theo G., Jr.; Arya, Vinod K.

    1996-01-01

    A number of numerical solution technologies were developed for advanced analysis capabilities involving the finite element method in advanced constitutive modeling and structural analysis for improved and rational designs of aerospace propulsive systems. These technologies were incorporated into several advanced viscoplastic models and were applied to a wide spectrum of structural engineering problems involving extremes of thermal/mechanical loading. Results of the research performed under the grant were presented at a number of scientific meetings and conferences and have resulted in numerous publications.

  15. Structural dynamic analysis of the Space Shuttle Main Engine

    NASA Technical Reports Server (NTRS)

    Scott, L. P.; Jamison, G. T.; Mccutcheon, W. A.; Price, J. M.

    1981-01-01

    This structural dynamic analysis supports development of the SSME by evaluating components subjected to critical dynamic loads, identifying significant parameters, and evaluating solution methods. Engine operating parameters at both rated and full power levels are considered. Detailed structural dynamic analyses of operationally critical and life limited components support the assessment of engine design modifications and environmental changes. Engine system test results are utilized to verify analytic model simulations. The SSME main chamber injector assembly is an assembly of 600 injector elements which are called LOX posts. The overall LOX post analysis procedure is shown.

  16. Dynamic analysis of piping using the structural overlap method

    SciTech Connect

    Curreri, J.; Bezler, P.; Hartzman, M.

    1981-03-01

    The structural overlap method is a procedure for analyzing the dynamic response of a piping system by performing a separate analysis on subsystems of the complete structure. Specific cases were investigated to obtain an estimate of the validity and application of the method. The case studies were increased in complexity in order to examine some of the problems involved in implementing the method. It is concluded that the overlap method should not be substituted for a complete analysis of a full system. However, if a sufficiently high natural frequency is associated with the overlap section or the overlap section is a substantial portion of the system, acceptable results could be obtained.

  17. Structure calculation, refinement and validation using CcpNmr Analysis

    PubMed Central

    Skinner, Simon P.; Goult, Benjamin T.; Fogh, Rasmus H.; Boucher, Wayne; Stevens, Tim J.; Laue, Ernest D.; Vuister, Geerten W.

    2015-01-01

    CcpNmr Analysis provides a streamlined pipeline for both NMR chemical shift assignment and structure determination of biological macromolecules. In addition, it encompasses tools to analyse the many additional experiments that make NMR such a pivotal technique for research into complex biological questions. This report describes how CcpNmr Analysis can seamlessly link together all of the tasks in the NMR structure-determination process. It details each of the stages from generating NMR restraints [distance, dihedral, hydrogen bonds and residual dipolar couplings (RDCs)], exporting these to and subsequently re-importing them from structure-calculation software (such as the programs CYANA or ARIA) and analysing and validating the results obtained from the structure calculation to, ultimately, the streamlined deposition of the completed assignments and the refined ensemble of structures into the PDBe repository. Until recently, such solution-structure determination by NMR has been quite a laborious task, requiring multiple stages and programs. However, with the new enhancements to CcpNmr Analysis described here, this process is now much more intuitive and efficient and less error-prone. PMID:25615869

  18. Structural Damage Prediction and Analysis for Hypervelocity Impacts: Handbook

    NASA Technical Reports Server (NTRS)

    Elfer, N. C.

    1996-01-01

    This handbook reviews the analysis of structural damage on spacecraft due to hypervelocity impacts by meteoroid and space debris. These impacts can potentially cause structural damage to a Space Station module wall. This damage ranges from craters, bulges, minor penetrations, and spall to critical damage associated with a large hole, or even rupture. The analysis of damage depends on a variety of assumptions and the area of most concern is at a velocity beyond well controlled laboratory capability. In the analysis of critical damage, one of the key questions is how much momentum can actually be transfered to the pressure vessel wall. When penetration occurs without maximum bulging at high velocity and obliquities (if less momentum is deposited in the rear wall), then large tears and rupture may be avoided. In analysis of rupture effects of cylindrical geometry, biaxial loading, bending of the crack, a central hole strain rate and R-curve effects are discussed.

  19. Factors Influencing Progressive Failure Analysis Predictions for Laminated Composite Structure

    NASA Technical Reports Server (NTRS)

    Knight, Norman F., Jr.

    2008-01-01

    Progressive failure material modeling methods used for structural analysis including failure initiation and material degradation are presented. Different failure initiation criteria and material degradation models are described that define progressive failure formulations. These progressive failure formulations are implemented in a user-defined material model for use with a nonlinear finite element analysis tool. The failure initiation criteria include the maximum stress criteria, maximum strain criteria, the Tsai-Wu failure polynomial, and the Hashin criteria. The material degradation model is based on the ply-discounting approach where the local material constitutive coefficients are degraded. Applications and extensions of the progressive failure analysis material model address two-dimensional plate and shell finite elements and three-dimensional solid finite elements. Implementation details are described in the present paper. Parametric studies for laminated composite structures are discussed to illustrate the features of the progressive failure modeling methods that have been implemented and to demonstrate their influence on progressive failure analysis predictions.

  20. NRT Rotor Structural / Aeroelastic Analysis for the Preliminary Design Review

    SciTech Connect

    Ennis, Brandon Lee; Paquette, Joshua A.

    2015-10-01

    This document describes the initial structural design for the National Rotor Testbed blade as presented during the preliminary design review at Sandia National Laboratories on October 28- 29, 2015. The document summarizes the structural and aeroelastic requirements placed on the NRT rotor for satisfactory deployment at the DOE/SNL SWiFT experimental facility to produce high-quality datasets for wind turbine model validation. The method and result of the NRT blade structural optimization is also presented within this report, along with analysis of its satisfaction of the design requirements.

  1. Stress-strain analysis and optimal design of aircraft structures

    NASA Astrophysics Data System (ADS)

    Liakhovenko, I. A.

    The papers contained in this volume present results of theoretical and experimental research related to the stress-strain analysis and optimal design of aircraft structures. Topics discussed include a study of the origin of residual stresses and strains in the transparencies of supersonic aircraft, methodology for studying the fracture of aircraft structures in static tests, and the stability of a multispan panel under combined loading. The discussion also covers optimization of the stiffness and mass characteristics of lifting surface structures modeled by an elastic beam, a study of the strength of a closed system of wings, and a method for the optimal design of a large-aspect-ratio wing.

  2. Advanced stress analysis methods applicable to turbine engine structures

    NASA Technical Reports Server (NTRS)

    Pian, T. H. H.

    1985-01-01

    Advanced stress analysis methods applicable to turbine engine structures are investigated. Constructions of special elements which containing traction-free circular boundaries are investigated. New versions of mixed variational principle and version of hybrid stress elements are formulated. A method is established for suppression of kinematic deformation modes. semiLoof plate and shell elements are constructed by assumed stress hybrid method. An elastic-plastic analysis is conducted by viscoplasticity theory using the mechanical subelement model.

  3. Towards a document structure editor for software requirements analysis

    NASA Technical Reports Server (NTRS)

    Kowalski, Vincent J.; Lekkos, Anthony A.

    1986-01-01

    Of the six or seven phases of the software engineering life cycle, requirements analysis tends to be the least understood and the least formalized. Correspondingly, a scarcity of useful software tools exist which aid in the development of user and system requirements. It is proposed that requirements analysis should culminate in a set of documents similar to those that usually accompany a delivered Software product. The design of a software tool, the Document Structure Editor, which facilitates the development of such documentation.

  4. Improved finite element methodology for integrated thermal structural analysis

    NASA Technical Reports Server (NTRS)

    Dechaumphai, P.; Thornton, E. A.

    1982-01-01

    An integrated thermal-structural finite element approach for efficient coupling of thermal and structural analyses is presented. New thermal finite elements which yield exact nodal and element temperature for one dimensional linear steady state heat transfer problems are developed. A nodeless variable formulation is used to establish improved thermal finite elements for one dimensional nonlinear transient and two dimensional linear transient heat transfer problems. The thermal finite elements provide detailed temperature distributions without using additional element nodes and permit a common discretization with lower order congruent structural finite elements. The accuracy of the integrated approach is evaluated by comparisons with analytical solutions and conventional finite element thermal-structural analyses for a number of academic and more realistic problems. Results indicate that the approach provides a significant improvement in the accuracy and efficiency of thermal stress analysis for structures with complex temperature distributions.

  5. Time-dependent reliability analysis and condition assessment of structures

    SciTech Connect

    Ellingwood, B.R.

    1997-01-01

    Structures generally play a passive role in assurance of safety in nuclear plant operation, but are important if the plant is to withstand the effect of extreme environmental or abnormal events. Relative to mechanical and electrical components, structural systems and components would be difficult and costly to replace. While the performance of steel or reinforced concrete structures in service generally has been very good, their strengths may deteriorate during an extended service life as a result of changes brought on by an aggressive environment, excessive loading, or accidental loading. Quantitative tools for condition assessment of aging structures can be developed using time-dependent structural reliability analysis methods. Such methods provide a framework for addressing the uncertainties attendant to aging in the decision process.

  6. Seismic response analysis of an instrumented building structure

    USGS Publications Warehouse

    Li, H.-J.; Zhu, S.-Y.; Celebi, M.

    2003-01-01

    The Sheraton - Universal hotel, an instrumented building lying in North Hollywood, USA is selected for case study in this paper. The finite element method is used to produce a linear time - invariant structural model, and the SAP2000 program is employed for the time history analysis of the instrumented structure under the base excitation of strong motions recorded in the basement during the Northridge, California earthquake of 17 January 1994. The calculated structural responses are compared with the recorded data in both time domain and frequency domain, and the effects of structural parameters evaluation and indeterminate factors are discussed. Some features of structural response, such as the reason why the peak responses of acceleration in the ninth floor are larger than those in the sixteenth floor, are also explained.

  7. Computational analysis of RNA structures with chemical probing data.

    PubMed

    Ge, Ping; Zhang, Shaojie

    2015-06-01

    RNAs play various roles, not only as the genetic codes to synthesize proteins, but also as the direct participants of biological functions determined by their underlying high-order structures. Although many computational methods have been proposed for analyzing RNA structures, their accuracy and efficiency are limited, especially when applied to the large RNAs and the genome-wide data sets. Recently, advances in parallel sequencing and high-throughput chemical probing technologies have prompted the development of numerous new algorithms, which can incorporate the auxiliary structural information obtained from those experiments. Their potential has been revealed by the secondary structure prediction of ribosomal RNAs and the genome-wide ncRNA function annotation. In this review, the existing probing-directed computational methods for RNA secondary and tertiary structure analysis are discussed.

  8. Topological framework for local structure analysis in condensed matter

    PubMed Central

    Lazar, Emanuel A.; Han, Jian; Srolovitz, David J.

    2015-01-01

    Physical systems are frequently modeled as sets of points in space, each representing the position of an atom, molecule, or mesoscale particle. As many properties of such systems depend on the underlying ordering of their constituent particles, understanding that structure is a primary objective of condensed matter research. Although perfect crystals are fully described by a set of translation and basis vectors, real-world materials are never perfect, as thermal vibrations and defects introduce significant deviation from ideal order. Meanwhile, liquids and glasses present yet more complexity. A complete understanding of structure thus remains a central, open problem. Here we propose a unified mathematical framework, based on the topology of the Voronoi cell of a particle, for classifying local structure in ordered and disordered systems that is powerful and practical. We explain the underlying reason why this topological description of local structure is better suited for structural analysis than continuous descriptions. We demonstrate the connection of this approach to the behavior of physical systems and explore how crystalline structure is compromised at elevated temperatures. We also illustrate potential applications to identifying defects in plastically deformed polycrystals at high temperatures, automating analysis of complex structures, and characterizing general disordered systems. PMID:26460045

  9. Selecting Earthquake Records for Nonlinear Dynamic Analysis of Structures

    SciTech Connect

    Rodriguez, Mario E.

    2008-07-08

    An area in earthquake risk reduction that needs an urgent examination is the selection of earthquake records for nonlinear dynamic analysis of structures. An often-mentioned shortcoming from results of nonlinear dynamic analyses of structures is that these results are limited to the type of records that these analyses use as input data. This paper proposes a procedure for selecting earthquake records for nonlinear dynamic analysis of structures. This procedure uses a seismic damage index evaluated using the hysteretic energy dissipated by a Single Degree of Freedom System (SDOF) representing a multi-degree-of freedom structure responding to an earthquake record, and the plastic work capacity of the system at collapse. The type of structural system is considered using simple parameters. The proposed method is based on the evaluation of the damage index for a suite of earthquake records and a selected type of structural system. A set of 10 strong ground motion records is analyzed to show an application of the proposed procedure for selecting earthquake records for structural design.

  10. Structural analysis of airborne flux estimates over a region

    NASA Technical Reports Server (NTRS)

    Caramori, Paulo; Schuepp, Peter; Desjardins, Raymond; Macpherson, Ian

    1994-01-01

    Aircraft-based observations of turbulence fields of velocity, moisture, and temperature are used to study coherent turbulent structures that dominate turbulent transfer of moisture and heat above three different eco-systems. Flux traces are defragmented, to reconstruct the presumed full size (along the sampled transect) of these structures, and flux traces are simplified by elimination of those that contribute negligibly to the flux estimate. Structures are analyzed in terms of size, spatial distribution, and contribution to the flux, in the four 'quadrant' modes of eddy-covariance transfer (excess up/down and deficit up/down). The effect of nonlinear detrending of moisture and temperature data on this 'structural analysis,' over surfaces with heterogeneous surface wetness, is also examined. Results over grassland, wetland, and moist and dry agricultural land, show that nonlinear detrending may provide a more physically realistic description of structures. Significant differences are observed between structure size and associated relative flux contribution, between moist and dry areas, with smaller structures playing a more important role over the moist areas. Structure size generally increases with height, as spatial reorganization from smaller structures into larger ones takes place. This coincides with a gradual loss of surface 'signature' (position and clustering of plumes above localized source areas). The data are expected to provide a basis for an eventual statistical description of boundary-layer transfer events , and help to interpret the link between boundary-layer transfer and hydrological surface conditions.

  11. Structured Analysis and the Data Flow Diagram: Tools for Library Analysis.

    ERIC Educational Resources Information Center

    Carlson, David H.

    1986-01-01

    This article discusses tools developed to aid the systems analysis process (program evaluation and review technique, Gantt charts, organizational charts, decision tables, flowcharts, hierarchy plus input-process-output). Similarities and differences among techniques, library applications of analysis, structured systems analysis, and the data flow…

  12. Structural Health Monitoring Analysis for the Orbiter Wing Leading Edge

    NASA Technical Reports Server (NTRS)

    Yap, Keng C.

    2010-01-01

    This viewgraph presentation reviews Structural Health Monitoring Analysis for the Orbiter Wing Leading Edge. The Wing Leading Edge Impact Detection System (WLE IDS) and the Impact Analysis Process are also described to monitor WLE debris threats. The contents include: 1) Risk Management via SHM; 2) Hardware Overview; 3) Instrumentation; 4) Sensor Configuration; 5) Debris Hazard Monitoring; 6) Ascent Response Summary; 7) Response Signal; 8) Distribution of Flight Indications; 9) Probabilistic Risk Analysis (PRA); 10) Model Correlation; 11) Impact Tests; 12) Wing Leading Edge Modeling; 13) Ascent Debris PRA Results; and 14) MM/OD PRA Results.

  13. Mixed time integration methods for transient thermal analysis of structures

    NASA Technical Reports Server (NTRS)

    Liu, W. K.

    1983-01-01

    The computational methods used to predict and optimize the thermal-structural behavior of aerospace vehicle structures are reviewed. In general, two classes of algorithms, implicit and explicit, are used in transient thermal analysis of structures. Each of these two methods has its own merits. Due to the different time scales of the mechanical and thermal responses, the selection of a time integration method can be a difficult yet critical factor in the efficient solution of such problems. Therefore mixed time integration methods for transient thermal analysis of structures are being developed. The computer implementation aspects and numerical evaluation of these mixed time implicit-explicit algorithms in thermal analysis of structures are presented. A computationally-useful method of estimating the critical time step for linear quadrilateral element is also given. Numerical tests confirm the stability criterion and accuracy characteristics of the methods. The superiority of these mixed time methods to the fully implicit method or the fully explicit method is also demonstrated.

  14. Equivalent Skin Analysis of Wing Structures Using Neural Networks

    NASA Technical Reports Server (NTRS)

    Liu, Youhua; Kapania, Rakesh K.

    2000-01-01

    An efficient method of modeling trapezoidal built-up wing structures is developed by coupling. in an indirect way, an Equivalent Plate Analysis (EPA) with Neural Networks (NN). Being assumed to behave like a Mindlin-plate, the wing is solved using the Ritz method with Legendre polynomials employed as the trial functions. This analysis method can be made more efficient by avoiding most of the computational effort spent on calculating contributions to the stiffness and mass matrices from each spar and rib. This is accomplished by replacing the wing inner-structure with an "equivalent" material that combines to the skin and whose properties are simulated by neural networks. The constitutive matrix, which relates the stress vector to the strain vector, and the density of the equivalent material are obtained by enforcing mass and stiffness matrix equities with rec,ard to the EPA in a least-square sense. Neural networks for the material properties are trained in terms of the design variables of the wing structure. Examples show that the present method, which can be called an Equivalent Skin Analysis (ESA) of the wing structure, is more efficient than the EPA and still fairly good results can be obtained. The present ESA is very promising to be used at the early stages of wing structure design.

  15. Nonlinear damage detection in composite structures using bispectral analysis

    NASA Astrophysics Data System (ADS)

    Ciampa, Francesco; Pickering, Simon; Scarselli, Gennaro; Meo, Michele

    2014-03-01

    Literature offers a quantitative number of diagnostic methods that can continuously provide detailed information of the material defects and damages in aerospace and civil engineering applications. Indeed, low velocity impact damages can considerably degrade the integrity of structural components and, if not detected, they can result in catastrophic failure conditions. This paper presents a nonlinear Structural Health Monitoring (SHM) method, based on ultrasonic guided waves (GW), for the detection of the nonlinear signature in a damaged composite structure. The proposed technique, based on a bispectral analysis of ultrasonic input waveforms, allows for the evaluation of the nonlinear response due to the presence of cracks and delaminations. Indeed, such a methodology was used to characterize the nonlinear behaviour of the structure, by exploiting the frequency mixing of the original waveform acquired from a sparse array of sensors. The robustness of bispectral analysis was experimentally demonstrated on a damaged carbon fibre reinforce plastic (CFRP) composite panel, and the nonlinear source was retrieved with a high level of accuracy. Unlike other linear and nonlinear ultrasonic methods for damage detection, this methodology does not require any baseline with the undamaged structure for the evaluation of the nonlinear source, nor a priori knowledge of the mechanical properties of the specimen. Moreover, bispectral analysis can be considered as a nonlinear elastic wave spectroscopy (NEWS) technique for materials showing either classical or non-classical nonlinear behaviour.

  16. Composite Structure Modeling and Analysis of Advanced Aircraft Fuselage Concepts

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, Vivek; Sorokach, Michael R.

    2015-01-01

    NASA Environmentally Responsible Aviation (ERA) project and the Boeing Company are collabrating to advance the unitized damage arresting composite airframe technology with application to the Hybrid-Wing-Body (HWB) aircraft. The testing of a HWB fuselage section with Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) construction is presently being conducted at NASA Langley. Based on lessons learned from previous HWB structural design studies, improved finite-element models (FEM) of the HWB multi-bay and bulkhead assembly are developed to evaluate the performance of the PRSEUS construction. In order to assess the comparative weight reduction benefits of the PRSEUS technology, conventional cylindrical skin-stringer-frame models of a cylindrical and a double-bubble section fuselage concepts are developed. Stress analysis with design cabin-pressure load and scenario based case studies are conducted for design improvement in each case. Alternate analysis with stitched composite hat-stringers and C-frames are also presented, in addition to the foam-core sandwich frame and pultruded rod-stringer construction. The FEM structural stress, strain and weights are computed and compared for relative weight/strength benefit assessment. The structural analysis and specific weight comparison of these stitched composite advanced aircraft fuselage concepts demonstrated that the pressurized HWB fuselage section assembly can be structurally as efficient as the conventional cylindrical fuselage section with composite stringer-frame and PRSEUS construction, and significantly better than the conventional aluminum construction and the double-bubble section concept.

  17. Finite element forced vibration analysis of rotating cyclic structures

    NASA Technical Reports Server (NTRS)

    Elchuri, V.; Smith, G. C. C.

    1981-01-01

    A capability was added to the general purpose finite element program NASTRAN Level 17.7 to conduct forced vibration analysis of tuned cyclic structures rotating about their axes of symmetry. The effects of Coriolis and centripetal accelerations together with those due to linear acceleration of the axis of rotation were included. The theoretical development of this capability is presented.

  18. Teaching Reading: Mexico's Global Method of Structural Analysis.

    ERIC Educational Resources Information Center

    Orozco, Cecilio

    In 1985, the Global Method of Structural Analysis (GMSA) for teaching reading was introduced to first and second graders in Mexico. Breaking away from the more traditional educational methods, it established a basis for more flexible education and effectively utilized critical thinking skills. The preparation stage (reading readiness) begins in…

  19. The NASA NASTRAN structural analysis computer program - New content

    NASA Technical Reports Server (NTRS)

    Weidman, D. J.

    1978-01-01

    Capabilities of a NASA-developed structural analysis computer program, NASTRAN, are evaluated with reference to finite-element modelling. Applications include the automotive industry as well as aerospace. It is noted that the range of sub-programs within NASTRAN has expanded, while keeping user cost low.

  20. Structural analysis of closure bolts for shipping casks

    SciTech Connect

    Mok, G.C.; Fischer, L.E.

    1993-04-01

    This paper identifies the active forces and moments in a closure bolt of a shipping cask. It examines the interactions of these forces/moments and suggest simplified methods for their analysis. The paper also evaluates the role that the forces and moments play in the structure integrity of the closure bolt and recommends stress limits and desirable practices to ensure its integrity.

  1. Structural Damage Prediction and Analysis for Hypervelocity Impact: Consulting

    NASA Technical Reports Server (NTRS)

    1995-01-01

    A portion of the contract NAS8-38856, 'Structural Damage Prediction and Analysis for Hypervelocity Impacts,' from NASA Marshall Space Flight Center (MSFC), included consulting which was to be documented in the final report. This attachment to the final report contains memos produced as part of that consulting.

  2. Analysis Methods for Progressive Damage of Composite Structures

    NASA Technical Reports Server (NTRS)

    Rose, Cheryl A.; Davila, Carlos G.; Leone, Frank A.

    2013-01-01

    This document provides an overview of recent accomplishments and lessons learned in the development of general progressive damage analysis methods for predicting the residual strength and life of composite structures. These developments are described within their State-of-the-Art (SoA) context and the associated technology barriers. The emphasis of the authors is on developing these analysis tools for application at the structural level. Hence, modeling of damage progression is undertaken at the mesoscale, where the plies of a laminate are represented as a homogenous orthotropic continuum. The aim of the present effort is establish the ranges of validity of available models, to identify technology barriers, and to establish the foundations of the future investigation efforts. Such are the necessary steps towards accurate and robust simulations that can replace some of the expensive and time-consuming "building block" tests that are currently required for the design and certification of aerospace structures.

  3. Analysis of forest structure using thematic mapper simulator data

    NASA Technical Reports Server (NTRS)

    Peterson, D. L.; Westman, W. E.; Brass, J. A.; Stephenson, N. J.; Ambrosia, V. G.; Spanner, M. A.

    1986-01-01

    The potential of Thematic Mapper Simulator (TMS) data for sensing forest structure information has been explored by principal components and feature selection techniques. In a survey of forest structural properties conducted for 123 field sites of the Sequoia National Park, the canopy closure could be well estimated (r = 0.62 to 0.69) by a variety of channel bands and band ratios, without reference to the forest type. Estimation of the basal area was less successful (r = 0.51 or less) on the average, but could be improved for certain forest types when data were stratified by floristic composition. To achieve such a stratification, individual sites were ordinated by a detrended correspondence analysis based on the canopy of dominant species. The analysis of forest structure in the Sequoia data suggests that total basal area can be best predicted in stands of lower density, and in younger even-aged managed stands.

  4. Structural Simulations and Conservation Analysis -Historic Building Information Model (HBIM)

    NASA Astrophysics Data System (ADS)

    Dore, C.; Murphy, M.; McCarthy, S.; Brechin, F.; Casidy, C.; Dirix, E.

    2015-02-01

    In this paper the current findings to date of the Historic Building Information Model (HBIM) of the Four Courts in Dublin are presented. The Historic Building Information Model (HBIM) forms the basis for both structural and conservation analysis to measure the impact of war damage which still impacts on the building. The laser scan survey was carried out in the summer of 2014 of the internal and external structure. After registration and processing of the laser scan survey, the HBIM was created of the damaged section of the building and is presented as two separate workflows in this paper. The first is the model created from historic data, the second a procedural and segmented model developed from laser scan survey of the war damaged drum and dome. From both models structural damage and decay simulations will be developed for documentation and conservation analysis.

  5. VIPR III VADR SPIDER Structural Design and Analysis

    NASA Technical Reports Server (NTRS)

    Li, Wesley; Chen, Tony

    2016-01-01

    In support of the National Aeronautics and Space Administration (NASA) Vehicle Integrated Propulsion Research (VIPR) Phase III team to evaluate the volcanic ash environment effects on the Pratt & Whitney F117-PW-100 turbofan engine, NASA Armstrong Flight Research Center has successfully performed structural design and analysis on the Volcanic Ash Distribution Rig (VADR) and the Structural Particulate Integration Device for Engine Research (SPIDER) for the ash ingestion test. Static and dynamic load analyses were performed to ensure no structural failure would occur during the test. Modal analysis was conducted, and the results were used to develop engine power setting avoidance zones. These engine power setting avoidance zones were defined to minimize the dwell time when the natural frequencies of the VADR/SPIDER system coincided with the excitation frequencies of the engine which was operating at various revolutions per minute. Vortex-induced vibration due to engine suction air flow during the ingestion test was also evaluated, but was not a concern.

  6. Analysis, structural characterization, and bioactivity of oligosaccharides derived from lactose.

    PubMed

    Moreno, F Javier; Montilla, Antonia; Villamiel, Mar; Corzo, Nieves; Olano, Agustín

    2014-06-01

    The increasing interest for prebiotic carbohydrates as functional food ingredients has promoted the synthesis of galactooligosaccharides and new lactose derivatives. This review provides a comprehensive overview on the chromatographic analysis, structural characterization, and bioactivity studies of lactose-derived oligosaccharides. The most common chromatographic techniques used for the separation and structural characterization of this type of oligosaccharides, including GC and HPLC in different operational modes, coupled to various detectors are discussed. Insights on oligosaccharide MS fragmentation patterns, using different ionization sources and mass analyzers, as well as data on structural analysis by NMR spectroscopy are also described. Finally, this article deals with the bioactive effects of galacto oligosaccharides and oligosaccharides derived from lactulose on the gastrointestinal and immune systems, which support their consumption to provide significant health benefits.

  7. Open pore structure analysis of lithium bearing ceramics

    NASA Astrophysics Data System (ADS)

    Elbel, H.

    1988-07-01

    The analysis of the open pore structure includes mercury porosimetry, helium stereopycnometry, gas permeability and specific surface area measurements. These methods were used in the analysis of different types of Li 2SiO 3 and Li 4SiO 4 specimens whose behaviour is tested under operation conditions in various irradiation experiments. Mercury porosimetry yielded density of the specimens, size distribution of the channels and amount of the open porosity. The correlation between mercury pressure and channel diameter was approximated by the Washburn equation. Density determinations by means of helium stereopycnometry demonstrated the existence of open pore volume below the mercury porosimetry detection. Additional information about the structure of open porosity was obtained by gas permeability measurements evaluated using the Carman relation, which is a generalization of the Hagen-Poiseuille law. This approach correlates structure parameters of the open porosity with permeability coefficients. The specific surface area was determined by applying the BET theory to volumetric nitrogen gas adsorption.

  8. Neural networks in structural analysis and design - An overview

    NASA Technical Reports Server (NTRS)

    Hajela, P.; Berke, L.

    1992-01-01

    The present paper provides an overview of the state-of-the-art in the application of neural networks in problems of structural analysis and design, including a survey of published applications in structural engineering. Such applications have included, among others, the use of neural networks in modeling nonlinear analysis of structures, as a rapid reanalysis capability in optimal design, and in developing problem parameter sensitivity of optimal solutions for use in multilevel decomposition based design. While most of the applications reported in the literature have been restricted to the use of the multilayer perceptron architecture and minor variations thereof, other network architectures have also been successfully explored, including the ART network, the counterpropagation network and the Hopfield-Tank model.

  9. Structural analysis of box beams using symbolic manipulation technique

    NASA Astrophysics Data System (ADS)

    Sathyamoorthy, M.; Sirigiri, Ravindra

    1993-04-01

    The aeroelastic analysis of aircraft wings requires an accurate determination of the influence coefficients. In the past, energy methods have been commonly used to analyze box-type structures and the results have been found to agree well with the experiments. However, when analysis of large wing-type structures is desired, it becomes necessary to automate the energy method. In this article, a method has been developed based on symbolic manipulation as an automated technique to find solutions to box-type structures. Various manipulations required for the energy method have been automatically implemented in a computer program with solutions available at each stage in a symbolic form. The numerical results for several example problems have been compared with alternate theoretical as well as experimental results. Good agreement has been noted in all the cases considered in this article.

  10. CYP2D6: novel genomic structures and alleles

    PubMed Central

    Kramer, Whitney E.; Walker, Denise L.; O’Kane, Dennis J.; Mrazek, David A.; Fisher, Pamela K.; Dukek, Brian A.; Bruflat, Jamie K.; Black, John L.

    2010-01-01

    Objective CYP2D6 is a polymorphic gene. It has been observed to be deleted, to be duplicated and to undergo recombination events involving the CYP2D7 pseudogene and surrounding sequences. The objective of this study was to discover the genomic structure of CYP2D6 recombinants that interfere with clinical genotyping platforms that are available today. Methods Clinical samples containing rare homozygous CYP2D6 alleles, ambiguous readouts, and those with duplication signals and two different alleles were analyzed by long-range PCR amplification of individual genes, PCR fragment analysis, allele-specific primer extension assay, and DNA sequencing to characterize alleles and genomic structure. Results Novel alleles, genomic structures, and the DNA sequence of these structures are described. Interestingly, in 49 of 50 DNA samples that had CYP2D6 gene duplications or multiplications where two alleles were detected, the chromosome containing the duplication or multiplication had identical tandem alleles. Conclusion Several new CYP2D6 alleles and genomic structures are described which will be useful for CYP2D6 genotyping. The findings suggest that the recombination events responsible for CYP2D6 duplications and multiplications are because of mechanisms other than interchromosomal crossover during meiosis. PMID:19741566

  11. Extensive duplication events account for multiple control regions and pseudo-genes in the mitochondrial genome of the velvet worm Metaperipatus inae (Onychophora, Peripatopsidae).

    PubMed

    Braband, Anke; Podsiadlowski, Lars; Cameron, Stephen L; Daniels, Savel; Mayer, Georg

    2010-10-01

    The phylogeny of Onychophora (velvet worms) is unresolved and even the monophyly of the two major onychophoran subgroups, Peripatidae and Peripatopsidae, is uncertain. Previous studies of complete mitochondrial genomes from two onychophoran species revealed two strikingly different gene arrangement patterns from highly conserved in a representative of Peripatopsidae to highly derived in a species of Peripatidae, suggesting that these data might be informative for clarifying the onychophoran phylogeny. In order to assess the diversity of mitochondrial genomes among onychophorans, we analyzed the complete mitochondrial genome of Metaperipatus inae, a second representative of Peripatopsidae from Chile. Compared to the proposed ancestral gene order in Onychophora, the mitochondrial genome of M. inae shows dramatic rearrangements, although all protein-coding and ribosomal RNA genes are encoded on the same strands as in the ancestral peripatopsid genome. The retained strand affiliation of all protein-coding and ribosomal RNA genes and the occurrence of three control regions and several pseudo-genes suggest that the derived mitochondrial gene arrangement pattern in M. inae evolved by partial genome duplications, followed by a subsequent loss of redundant genes. Our findings, thus, confirm the diversity of the mitochondrial gene arrangement patterns among onychophorans and support their utility for clarifying the phylogeography of Onychophora, in particular of the Peripatopsidae species from South Africa and Chile. PMID:20510379

  12. Extensive duplication events account for multiple control regions and pseudo-genes in the mitochondrial genome of the velvet worm Metaperipatus inae (Onychophora, Peripatopsidae).

    PubMed

    Braband, Anke; Podsiadlowski, Lars; Cameron, Stephen L; Daniels, Savel; Mayer, Georg

    2010-10-01

    The phylogeny of Onychophora (velvet worms) is unresolved and even the monophyly of the two major onychophoran subgroups, Peripatidae and Peripatopsidae, is uncertain. Previous studies of complete mitochondrial genomes from two onychophoran species revealed two strikingly different gene arrangement patterns from highly conserved in a representative of Peripatopsidae to highly derived in a species of Peripatidae, suggesting that these data might be informative for clarifying the onychophoran phylogeny. In order to assess the diversity of mitochondrial genomes among onychophorans, we analyzed the complete mitochondrial genome of Metaperipatus inae, a second representative of Peripatopsidae from Chile. Compared to the proposed ancestral gene order in Onychophora, the mitochondrial genome of M. inae shows dramatic rearrangements, although all protein-coding and ribosomal RNA genes are encoded on the same strands as in the ancestral peripatopsid genome. The retained strand affiliation of all protein-coding and ribosomal RNA genes and the occurrence of three control regions and several pseudo-genes suggest that the derived mitochondrial gene arrangement pattern in M. inae evolved by partial genome duplications, followed by a subsequent loss of redundant genes. Our findings, thus, confirm the diversity of the mitochondrial gene arrangement patterns among onychophorans and support their utility for clarifying the phylogeography of Onychophora, in particular of the Peripatopsidae species from South Africa and Chile.

  13. Mitochondrial DNA as a non-invasive biomarker: accurate quantification using real time quantitative PCR without co-amplification of pseudogenes and dilution bias.

    PubMed

    Malik, Afshan N; Shahni, Rojeen; Rodriguez-de-Ledesma, Ana; Laftah, Abas; Cunningham, Phil

    2011-08-19

    Circulating mitochondrial DNA (MtDNA) is a potential non-invasive biomarker of cellular mitochondrial dysfunction, the latter known to be central to a wide range of human diseases. Changes in MtDNA are usually determined by quantification of MtDNA relative to nuclear DNA (Mt/N) using real time quantitative PCR. We propose that the methodology for measuring Mt/N needs to be improved and we have identified that current methods have at least one of the following three problems: (1) As much of the mitochondrial genome is duplicated in the nuclear genome, many commonly used MtDNA primers co-amplify homologous pseudogenes found in the nuclear genome; (2) use of regions from genes such as β-actin and 18S rRNA which are repetitive and/or highly variable for qPCR of the nuclear genome leads to errors; and (3) the size difference of mitochondrial and nuclear genomes cause a "dilution bias" when template DNA is diluted. We describe a PCR-based method using unique regions in the human mitochondrial genome not duplicated in the nuclear genome; unique single copy region in the nuclear genome and template treatment to remove dilution bias, to accurately quantify MtDNA from human samples.

  14. Identification and Evolution of Functional Alleles of the Previously Described Pollen Specific Myrosinase Pseudogene AtTGG6 in Arabidopsis thaliana

    PubMed Central

    Fu, Lili; Han, Bingying; Tan, Deguan; Wang, Meng; Ding, Mei; Zhang, Jiaming

    2016-01-01

    Myrosinases are β-thioglucoside glucohydrolases and serve as defense mechanisms against insect pests and pathogens by producing toxic compounds. AtTGG6 in Arabidopsis thaliana was previously reported to be a myrosinase pseudogene but specifically expressed in pollen. However, we found that AlTGG6, an ortholog to AtTGG6 in A. lyrata (an outcrossing relative of A. thaliana) was functional, suggesting that functional AtTGG6 alleles may still exist in A. thaliana. AtTGG6 alleles in 29 A. thaliana ecotypes were cloned and sequenced. Results indicate that ten alleles were functional and encoded Myr II type myrosinase of 512 amino acids, and myrosinase activity was confirmed by overexpressing AtTGG6 in Pichia pastoris. However, the 19 other ecotypes had disabled alleles with highly polymorphic frame-shift mutations and diversified sequences. Thirteen frame-shift mutation types were identified, which occurred independently many times in the evolutionary history within a few thousand years. The functional allele was expressed specifically in pollen similar to the disabled alleles but at a higher expression level, suggesting its role in defense of pollen against insect pests such as pollen beetles. However, the defense function may have become less critical after A. thaliana evolved to self-fertilization, and thus resulted in loss of function in most ecotypes. PMID:26907263

  15. Structural Analysis of the Redesigned Ice/Frost Ramp Bracket

    NASA Technical Reports Server (NTRS)

    Phillips, D. R.; Dawicke, D. S.; Gentz, S. J.; Roberts, P. W.; Raju, I. S.

    2007-01-01

    This paper describes the interim structural analysis of a redesigned Ice/Frost Ramp bracket for the Space Shuttle External Tank (ET). The proposed redesigned bracket consists of mounts for attachment to the ET wall, supports for the electronic/instrument cables and propellant repressurization lines that run along the ET, an upper plate, a lower plate, and complex bolted connections. The eight nominal bolted connections are considered critical in the summarized structural analysis. Each bolted connection contains a bolt, a nut, four washers, and a non-metallic spacer and block that are designed for thermal insulation. A three-dimensional (3D) finite element model of the bracket is developed using solid 10-node tetrahedral elements. The loading provided by the ET Project is used in the analysis. Because of the complexities associated with accurately modeling the bolted connections in the bracket, the analysis is performed using a global/local analysis procedure. The finite element analysis of the bracket identifies one of the eight bolted connections as having high stress concentrations. A local area of the bracket surrounding this bolted connection is extracted from the global model and used as a local model. Within the local model, the various components of the bolted connection are refined, and contact is introduced along the appropriate interfaces determined by the analysts. The deformations from the global model are applied as boundary conditions to the local model. The results from the global/local analysis show that while the stresses in the bolts are well within yield, the spacers fail due to compression. The primary objective of the interim structural analysis is to show concept viability for static thermal testing. The proposed design concept would undergo continued design optimization to address the identified analytical assumptions and concept shortcomings, assuming successful thermal testing.

  16. Structural Analysis Methods for Structural Health Management of Future Aerospace Vehicles

    NASA Technical Reports Server (NTRS)

    Tessler, Alexander

    2007-01-01

    Two finite element based computational methods, Smoothing Element Analysis (SEA) and the inverse Finite Element Method (iFEM), are reviewed, and examples of their use for structural health monitoring are discussed. Due to their versatility, robustness, and computational efficiency, the methods are well suited for real-time structural health monitoring of future space vehicles, large space structures, and habitats. The methods may be effectively employed to enable real-time processing of sensing information, specifically for identifying three-dimensional deformed structural shapes as well as the internal loads. In addition, they may be used in conjunction with evolutionary algorithms to design optimally distributed sensors. These computational tools have demonstrated substantial promise for utilization in future Structural Health Management (SHM) systems.

  17. Thermal-structural analysis of electron gun with control grid.

    PubMed

    Yao, Lieming; Zhang, Kai; Yu, Hailong; Huang, Tao; Li, Bin

    2012-02-01

    Steady state thermal-structural analysis of electron guns is essential due to the requirement of high reliability in beam performance. Temperatures and displacements for all the components of an electron gun with a control grid are computed. Steady-state thermal analysis has been carried out for various cathode temperatures and various intercepted powers on the control grid to determine the temperature of the control grid. These results are verified experimentally based on measured results from an assembled electron gun. Structural analysis of the electron gun is used to evaluate the deformation of the inner electrodes under the hot condition. The results show that the thermal stress slightly changes the characteristics of the gun. The obtained thermal deformation data can be helpful to modify the design dimensions and assembly of an electron gun.

  18. Integrative Analysis of Metabolic Models – from Structure to Dynamics

    PubMed Central

    Hartmann, Anja; Schreiber, Falk

    2015-01-01

    The characterization of biological systems with respect to their behavior and functionality based on versatile biochemical interactions is a major challenge. To understand these complex mechanisms at systems level modeling approaches are investigated. Different modeling formalisms allow metabolic models to be analyzed depending on the question to be solved, the biochemical knowledge and the availability of experimental data. Here, we describe a method for an integrative analysis of the structure and dynamics represented by qualitative and quantitative metabolic models. Using various formalisms, the metabolic model is analyzed from different perspectives. Determined structural and dynamic properties are visualized in the context of the metabolic model. Interaction techniques allow the exploration and visual analysis thereby leading to a broader understanding of the behavior and functionality of the underlying biological system. The System Biology Metabolic Model Framework (SBM2 – Framework) implements the developed method and, as an example, is applied for the integrative analysis of the crop plant potato. PMID:25674560

  19. Design and analysis of composite structures with stress concentrations

    NASA Technical Reports Server (NTRS)

    Garbo, S. P.

    1983-01-01

    An overview of an analytic procedure which can be used to provide comprehensive stress and strength analysis of composite structures with stress concentrations is given. The methodology provides designer/analysts with a user-oriented procedure which, within acceptable engineering accuracy, accounts for the effects of a wide range of application design variables. The procedure permits the strength of arbitrary laminate constructions under general bearing/bypass load conditions to be predicted with only unnotched unidirectional strength and stiffness input data required. Included is a brief discussion of the relevancy of this analysis to the design of primary aircraft structure; an overview of the analytic procedure with theory/test correlations; and an example of the use and interaction of this strength analysis relative to the design of high-load transfer bolted composite joints.

  20. Probabilistic structural analysis using a general purpose finite element program

    NASA Astrophysics Data System (ADS)

    Riha, D. S.; Millwater, H. R.; Thacker, B. H.

    1992-07-01

    This paper presents an accurate and efficient method to predict the probabilistic response for structural response quantities, such as stress, displacement, natural frequencies, and buckling loads, by combining the capabilities of MSC/NASTRAN, including design sensitivity analysis and fast probability integration. Two probabilistic structural analysis examples have been performed and verified by comparison with Monte Carlo simulation of the analytical solution. The first example consists of a cantilevered plate with several point loads. The second example is a probabilistic buckling analysis of a simply supported composite plate under in-plane loading. The coupling of MSC/NASTRAN and fast probability integration is shown to be orders of magnitude more efficient than Monte Carlo simulation with excellent accuracy.

  1. ACT Payload Shroud Structural Concept Analysis and Optimization

    NASA Technical Reports Server (NTRS)

    Zalewski, Bart B.; Bednarcyk, Brett A.

    2010-01-01

    Aerospace structural applications demand a weight efficient design to perform in a cost effective manner. This is particularly true for launch vehicle structures, where weight is the dominant design driver. The design process typically requires many iterations to ensure that a satisfactory minimum weight has been obtained. Although metallic structures can be weight efficient, composite structures can provide additional weight savings due to their lower density and additional design flexibility. This work presents structural analysis and weight optimization of a composite payload shroud for NASA s Ares V heavy lift vehicle. Two concepts, which were previously determined to be efficient for such a structure are evaluated: a hat stiffened/corrugated panel and a fiber reinforced foam sandwich panel. A composite structural optimization code, HyperSizer, is used to optimize the panel geometry, composite material ply orientations, and sandwich core material. HyperSizer enables an efficient evaluation of thousands of potential designs versus multiple strength and stability-based failure criteria across multiple load cases. HyperSizer sizing process uses a global finite element model to obtain element forces, which are statistically processed to arrive at panel-level design-to loads. These loads are then used to analyze each candidate panel design. A near optimum design is selected as the one with the lowest weight that also provides all positive margins of safety. The stiffness of each newly sized panel or beam component is taken into account in the subsequent finite element analysis. Iteration of analysis/optimization is performed to ensure a converged design. Sizing results for the hat stiffened panel concept and the fiber reinforced foam sandwich concept are presented.

  2. Total systems design analysis of high performance structures

    NASA Technical Reports Server (NTRS)

    Verderaime, V.

    1993-01-01

    Designer-control parameters were identified at interdiscipline interfaces to optimize structural systems performance and downstream development and operations with reliability and least life-cycle cost. Interface tasks and iterations are tracked through a matrix of performance disciplines integration versus manufacturing, verification, and operations interactions for a total system design analysis. Performance integration tasks include shapes, sizes, environments, and materials. Integrity integrating tasks are reliability and recurring structural costs. Significant interface designer control parameters were noted as shapes, dimensions, probability range factors, and cost. Structural failure concept is presented, and first-order reliability and deterministic methods, benefits, and limitations are discussed. A deterministic reliability technique combining benefits of both is proposed for static structures which is also timely and economically verifiable. Though launch vehicle environments were primarily considered, the system design process is applicable to any surface system using its own unique filed environments.

  3. Lumped mass modelling for the dynamic analysis of aircraft structures

    NASA Technical Reports Server (NTRS)

    Abu-Saba, Elias G.; Shen, Ji Yao; Mcginley, William M.; Montgomery, Raymond C.

    1992-01-01

    Aircraft structures may be modelled by lumping the masses at particular strategic points and the flexibility or stiffness of the structure is obtained with reference to these points. Equivalent moments of inertia for the section at these positions are determined. The lumped masses are calculated based on the assumption that each point will represent the mass spread on one half of the space on each side. Then these parameters are used in the differential equation of motion and the eigen characteristics are determined. A comparison is made with results obtained by other established methods. The lumped mass approach in the dynamic analysis of complicated structures provides an easier means of predicting the dynamic characteristics of these structures. It involves less computer time and avoids computational errors that are inherent in the numerical solution of complicated systems.

  4. Kinetic analysis of pre-ribosome structure in vivo.

    PubMed

    Swiatkowska, Agata; Wlotzka, Wiebke; Tuck, Alex; Barrass, J David; Beggs, Jean D; Tollervey, David

    2012-12-01

    Pre-ribosomal particles undergo numerous structural changes during maturation, but their high complexity and short lifetimes make these changes very difficult to follow in vivo. In consequence, pre-ribosome structure and composition have largely been inferred from purified particles and analyzed in vitro. Here we describe techniques for kinetic analyses of the changes in pre-ribosome structure in living cells of Saccharomyces cerevisiae. To allow this, in vivo structure probing by DMS modification was combined with affinity purification of newly synthesized 20S pre-rRNA over a time course of metabolic labeling with 4-thiouracil. To demonstrate that this approach is generally applicable, we initially analyzed the accessibility of the region surrounding cleavage site D site at the 3' end of the mature 18S rRNA region of the pre-rRNA. This revealed a remarkably flexible structure throughout 40S subunit biogenesis, with little stable RNA-protein interaction apparent. Analysis of folding in the region of the 18S central pseudoknot was consistent with previous data showing U3 snoRNA-18S rRNA interactions. Dynamic changes in the structure of the hinge between helix 28 (H28) and H44 of pre-18S rRNA were consistent with recently reported interactions with the 3' guide region of U3 snoRNA. Finally, analysis of the H18 region indicates that the RNA structure matures early, but additional protection appears subsequently, presumably reflecting protein binding. The structural analyses described here were performed on total, affinity-purified, newly synthesized RNA, so many classes of RNA and RNA-protein complex are potentially amenable to this approach.

  5. Probabilistic Finite Element Analysis & Design Optimization for Structural Designs

    NASA Astrophysics Data System (ADS)

    Deivanayagam, Arumugam

    This study focuses on implementing probabilistic nature of material properties (Kevlar® 49) to the existing deterministic finite element analysis (FEA) of fabric based engine containment system through Monte Carlo simulations (MCS) and implementation of probabilistic analysis in engineering designs through Reliability Based Design Optimization (RBDO). First, the emphasis is on experimental data analysis focusing on probabilistic distribution models which characterize the randomness associated with the experimental data. The material properties of Kevlar® 49 are modeled using experimental data analysis and implemented along with an existing spiral modeling scheme (SMS) and user defined constitutive model (UMAT) for fabric based engine containment simulations in LS-DYNA. MCS of the model are performed to observe the failure pattern and exit velocities of the models. Then the solutions are compared with NASA experimental tests and deterministic results. MCS with probabilistic material data give a good prospective on results rather than a single deterministic simulation results. The next part of research is to implement the probabilistic material properties in engineering designs. The main aim of structural design is to obtain optimal solutions. In any case, in a deterministic optimization problem even though the structures are cost effective, it becomes highly unreliable if the uncertainty that may be associated with the system (material properties, loading etc.) is not represented or considered in the solution process. Reliable and optimal solution can be obtained by performing reliability optimization along with the deterministic optimization, which is RBDO. In RBDO problem formulation, in addition to structural performance constraints, reliability constraints are also considered. This part of research starts with introduction to reliability analysis such as first order reliability analysis, second order reliability analysis followed by simulation technique that

  6. Design and Analysis of Muon Beam Stop Support Structures

    SciTech Connect

    Okafor, Udenna

    2015-01-01

    The primary objective of this thesis is to design and analyze support structures to be used in the installation, test and final positioning of the MBS throughout the life of the Mu2e experiment. There several requirements for the MBS imposed by both the scope of the experiment and, other components within the DS bore. The functions of the MBS are: 1. To limit the induced rates in the Tracker, the Calorimeter and the Cosmic Ray Veto due to backsplash-and-secondary interactions, and 2. To reduce radiation levels external to the Detector solenoid. The structures used in supporting the MBS will also adhere to requirements imposed by its functions. These requirements are critical to the support structures and affect design decisions. Other requirements critical to the design are imposed by the weight, positional tolerance and assembly procedure of the MBS, and also, the magnetic field and vacuum dose rate of the DS bore. A detailed breakdown of how each requirement affects the structural design can be found in chapter 2. Chapter 3 describes the design of each support structure and its attachment to the MBS while chapter 4 describes the results from structural analysis of the support structures. Chapter 5 describes evaluation for the design through testing and calculations while the conclusion in chapter 6 reports the current status at the time of this thesis submission with a plan for future work to be completed until final design and installation.

  7. Structure-Based Phylogenetic Analysis of the Lipocalin Superfamily

    PubMed Central

    Lakshmi, Balasubramanian; Mishra, Madhulika; Srinivasan, Narayanaswamy; Archunan, Govindaraju

    2015-01-01

    Lipocalins constitute a superfamily of extracellular proteins that are found in all three kingdoms of life. Although very divergent in their sequences and functions, they show remarkable similarity in 3-D structures. Lipocalins bind and transport small hydrophobic molecules. Earlier sequence-based phylogenetic studies of lipocalins highlighted that they have a long evolutionary history. However the molecular and structural basis of their functional diversity is not completely understood. The main objective of the present study is to understand functional diversity of the lipocalins using a structure-based phylogenetic approach. The present study with 39 protein domains from the lipocalin superfamily suggests that the clusters of lipocalins obtained by structure-based phylogeny correspond well with the functional diversity. The detailed analysis on each of the clusters and sub-clusters reveals that the 39 lipocalin domains cluster based on their mode of ligand binding though the clustering was performed on the basis of gross domain structure. The outliers in the phylogenetic tree are often from single member families. Also structure-based phylogenetic approach has provided pointers to assign putative function for the domains of unknown function in lipocalin family. The approach employed in the present study can be used in the future for the functional identification of new lipocalin proteins and may be extended to other protein families where members show poor sequence similarity but high structural similarity. PMID:26263546

  8. Recent advances in computational structural reliability analysis methods

    NASA Technical Reports Server (NTRS)

    Thacker, Ben H.; Wu, Y.-T.; Millwater, Harry R.; Torng, Tony Y.; Riha, David S.

    1993-01-01

    The goal of structural reliability analysis is to determine the probability that the structure will adequately perform its intended function when operating under the given environmental conditions. Thus, the notion of reliability admits the possibility of failure. Given the fact that many different modes of failure are usually possible, achievement of this goal is a formidable task, especially for large, complex structural systems. The traditional (deterministic) design methodology attempts to assure reliability by the application of safety factors and conservative assumptions. However, the safety factor approach lacks a quantitative basis in that the level of reliability is never known and usually results in overly conservative designs because of compounding conservatisms. Furthermore, problem parameters that control the reliability are not identified, nor their importance evaluated. A summary of recent advances in computational structural reliability assessment is presented. A significant level of activity in the research and development community was seen recently, much of which was directed towards the prediction of failure probabilities for single mode failures. The focus is to present some early results and demonstrations of advanced reliability methods applied to structural system problems. This includes structures that can fail as a result of multiple component failures (e.g., a redundant truss), or structural components that may fail due to multiple interacting failure modes (e.g., excessive deflection, resonate vibration, or creep rupture). From these results, some observations and recommendations are made with regard to future research needs.

  9. The model of local mode analysis for structural acoustics of box structures

    NASA Astrophysics Data System (ADS)

    Ngai, King-Wah

    Structure-borne noise is a new noise pollution problem emerging from railway concrete box structures in Hong Kong. Its low frequency noise with intermittent effect can cause considerable nuisance to neighborhoods. The tonal noise peaks in this low frequency range should be one of the important factors in structure-borne noise analysis. In the acoustic field, the deterministic analysis of all the resonant modes of vibration is generally considered as not practical. Many acoustic experts use the statistical energy analysis as the main tool for the noise investigation whereas the application of the experimental modal analysis in the structural acoustic problem is comparatively rare. In the past, most studies mainly focused on the structure-borne noise measurement and analysis. The detail study of the cause of structure-borne noise is lack, especially for the rectangular concrete box structure. In this dissertation, an experimental and analytical approach is adopted to study a typical concrete box model. This thesis aims at confirming the importance of modal analysis in the structure-borne noise study and then at identifying the local vibration modes along the cross-section of box structure. These local modes are responsible for the structure-borne noise radiation. The findings of this study suggest that the web of viaduct cross-section is not as rigid as assumed in the conventional viaduct design and the web face is likely to be more flexible in the vertical displacement of the concrete viaduct. Two types of local vibration modes along the cross-section are identified: the centre mode and the web mode. At the top panel of the viaduct, the centre mode has movement in the middle but not at the edges. The web mode has movement at the edges with the middle fixed. The combined centre and web mode has been found to be important in the structural acoustics of the concrete box structure. In the actual concrete viaduct, the coincidence frequency is especially low (often around

  10. A new structural analysis/synthesis capability - ACCESS. [Approximation Concepts Code for Efficient Structural Synthesis

    NASA Technical Reports Server (NTRS)

    Schmit, L. A.; Miura, H.

    1975-01-01

    The creation of an efficient automated capability for minimum weight design of structures is reported. The ACCESS 1 computer program combines finite element analysis techniques and mathematical programming algorithms using an innovative collection of approximation concepts. Design variable linking, constraint deletion techniques and approximate analysis methods are used to generate a sequence of small explicit mathematical programming problems which retain the essential features of the design problem. Organization of the finite element analysis is carefully matched to the design optimization task. The efficiency of the ACCESS 1 program is demonstrated by giving results for several example problems.

  11. Python package for model STructure ANalysis (pySTAN)

    NASA Astrophysics Data System (ADS)

    Van Hoey, Stijn; van der Kwast, Johannes; Nopens, Ingmar; Seuntjens, Piet

    2013-04-01

    The selection and identification of a suitable hydrological model structure is more than fitting parameters of a model structure to reproduce a measured hydrograph. The procedure is highly dependent on various criteria, i.e. the modelling objective, the characteristics and the scale of the system under investigation as well as the available data. Rigorous analysis of the candidate model structures is needed to support and objectify the selection of the most appropriate structure for a specific case (or eventually justify the use of a proposed ensemble of structures). This holds both in the situation of choosing between a limited set of different structures as well as in the framework of flexible model structures with interchangeable components. Many different methods to evaluate and analyse model structures exist. This leads to a sprawl of available methods, all characterized by different assumptions, changing conditions of application and various code implementations. Methods typically focus on optimization, sensitivity analysis or uncertainty analysis, with backgrounds from optimization, machine-learning or statistics amongst others. These methods also need an evaluation metric (objective function) to compare the model outcome with some observed data. However, for current methods described in literature, implementations are not always transparent and reproducible (if available at all). No standard procedures exist to share code and the popularity (and amount of applications) of the methods is sometimes more dependent on the availability than the merits of the method. Moreover, new implementations of existing methods are difficult to verify and the different theoretical backgrounds make it difficult for environmental scientists to decide about the usefulness of a specific method. A common and open framework with a large set of methods can support users in deciding about the most appropriate method. Hence, it enables to simultaneously apply and compare different

  12. Horizontal Structure: A Neo-Piagetian Analysis of Structural Parallels across Domains.

    ERIC Educational Resources Information Center

    McKeough, Anne M.

    An analysis of children's narrative composition and art revealed concurrent development at both a general structural level and at a fine-grained detail level. A three-part study investigated whether this general cognitive pattern would be maintained across a different range of tasks: literary composition, scientific reasoning, and working memory.…

  13. Structure of RIASEC Scores in China: A Structural Meta-Analysis

    ERIC Educational Resources Information Center

    Long, Lirong; Tracey, Terence J. G.

    2006-01-01

    A structural meta-analysis was conducted to evaluate the fit of four different representations of the relations among RIASEC types, Holland's (1985, 1997) circular order model, Gati's (1991) three-group partition model, Rounds and Tracey's (1996) alternative three-group partition model, and Liu and Rounds' (2003) modified octant model, on 29…

  14. Residual Strength Analysis Methodology: Laboratory Coupons to Structural Components

    NASA Technical Reports Server (NTRS)

    Dawicke, D. S.; Newman, J. C., Jr.; Starnes, J. H., Jr.; Rose, C. A.; Young, R. D.; Seshadri, B. R.

    2000-01-01

    The NASA Aircraft Structural Integrity (NASIP) and Airframe Airworthiness Assurance/Aging Aircraft (AAA/AA) Programs have developed a residual strength prediction methodology for aircraft fuselage structures. This methodology has been experimentally verified for structures ranging from laboratory coupons up to full-scale structural components. The methodology uses the critical crack tip opening angle (CTOA) fracture criterion to characterize the fracture behavior and a material and a geometric nonlinear finite element shell analysis code to perform the structural analyses. The present paper presents the results of a study to evaluate the fracture behavior of 2024-T3 aluminum alloys with thickness of 0.04 inches to 0.09 inches. The critical CTOA and the corresponding plane strain core height necessary to simulate through-the-thickness effects at the crack tip in an otherwise plane stress analysis, were determined from small laboratory specimens. Using these parameters, the CTOA fracture criterion was used to predict the behavior of middle crack tension specimens that were up to 40 inches wide, flat panels with riveted stiffeners and multiple-site damage cracks, 18-inch diameter pressurized cylinders, and full scale curved stiffened panels subjected to internal pressure and mechanical loads.

  15. The Least Squares Stochastic Finite Element Method in Structural Stability Analysis of Steel Skeletal Structures

    NASA Astrophysics Data System (ADS)

    Kamiński, M.; Szafran, J.

    2015-05-01

    The main purpose of this work is to verify the influence of the weighting procedure in the Least Squares Method on the probabilistic moments resulting from the stability analysis of steel skeletal structures. We discuss this issue also in the context of the geometrical nonlinearity appearing in the Stochastic Finite Element Method equations for the stability analysis and preservation of the Gaussian probability density function employed to model the Young modulus of a structural steel in this problem. The weighting procedure itself (with both triangular and Dirac-type) shows rather marginal influence on all probabilistic coefficients under consideration. This hybrid stochastic computational technique consisting of the FEM and computer algebra systems (ROBOT and MAPLE packages) may be used for analogous nonlinear analyses in structural reliability assessment.

  16. The Riccati transfer matrix method. [for computerized structural analysis

    NASA Technical Reports Server (NTRS)

    Horner, G. C.; Pilkey, W. D.

    1977-01-01

    The Riccati transfer matrix method is a new technique for analyzing structural members. This new technique makes use of an existing large catalog of transfer matrices for various structural members such as rotating shafts. The numerical instability encountered when calculating high resonant frequencies, static response of a flexible member on a stiff foundation, or the response of a long member by the transfer matrix method is eliminated by the Riccati transfer matrix method. The computational time and storage requirements of the Riccati transfer matrix method are about half the values for the transfer matrix method. A rotating shaft analysis demonstrates the numerical accuracy of the method.

  17. Structure and function analysis of protein-nucleic acid complexes

    NASA Astrophysics Data System (ADS)

    Kuznetsova, S. A.; Oretskaya, T. S.

    2016-05-01

    The review summarizes published data on the results and achievements in the field of structure and function analysis of protein-nucleic acid complexes by means of main physical and biochemical methods, including X-ray diffraction, nuclear magnetic resonance spectroscopy, electron and atomic force microscopy, small-angle X-ray and neutron scattering, footprinting and cross-linking. Special attention is given to combined approaches. The advantages and limitations of each method are considered, and the prospects of their application for wide-scale structural studies in vivo are discussed. The bibliography includes 145 references.

  18. Structural analysis in real time using continuous monitoring

    NASA Astrophysics Data System (ADS)

    Braunstein, Juergen; Viano, Charles; Hodac, Bernard

    2005-05-01

    OSMOS developed a completely automatic monitoring-system, which is ideal for the determination and monitoring of the structural state of civil engineering structures. Static and dynamic data are recorded as needed and are available via internet for further analysis. In case of bridges, automatic calculation of the axle load of the flowing traffic is implemented, a weigh in motion system (WIMS). When configurable thresholds are exceeded alarms are sent by SMS, e-mail, SNMP-trap for facility-management-systems or by fax.

  19. Structure and function analysis of protein–nucleic acid complexes

    NASA Astrophysics Data System (ADS)

    Kuznetsova, S. A.; Oretskaya, T. S.

    2016-05-01

    The review summarizes published data on the results and achievements in the field of structure and function analysis of protein–nucleic acid complexes by means of main physical and biochemical methods, including X-ray diffraction, nuclear magnetic resonance spectroscopy, electron and atomic force microscopy, small-angle X-ray and neutron scattering, footprinting and cross-linking. Special attention is given to combined approaches. The advantages and limitations of each method are considered, and the prospects of their application for wide-scale structural studies in vivo are discussed. The bibliography includes 145 references.

  20. Synthesis of aircraft structures using integrated design and analysis methods

    NASA Technical Reports Server (NTRS)

    Sobieszczanski-Sobieski, J.; Goetz, R. C.

    1978-01-01

    A systematic research is reported to develop and validate methods for structural sizing of an airframe designed with the use of composite materials and active controls. This research program includes procedures for computing aeroelastic loads, static and dynamic aeroelasticity, analysis and synthesis of active controls, and optimization techniques. Development of the methods is concerned with the most effective ways of integrating and sequencing the procedures in order to generate structural sizing and the associated active control system, which is optimal with respect to a given merit function constrained by strength and aeroelasticity requirements.

  1. Structural cluster analysis of chemical reactions in solution

    NASA Astrophysics Data System (ADS)

    Gallet, Grégoire A.; Pietrucci, Fabio

    2013-08-01

    We introduce a simple and general approach to the problem of clustering structures from atomic trajectories of chemical reactions in solution. By considering distance metrics which are invariant under permutation of identical atoms or molecules, we demonstrate that it is possible to automatically resolve as distinct structural clusters the configurations corresponding to reactants, products, and transition states, even in presence of atom-exchanges and of hundreds of solvent molecules. Our approach strongly simplifies the analysis of large trajectories and it opens the way to the construction of kinetic network models of activated processes in solution employing the available efficient schemes developed for proteins conformational ensembles.

  2. Design and Analysis of a Stiffened Composite Structure Repair Concept

    NASA Technical Reports Server (NTRS)

    Przekop, Adam

    2011-01-01

    A design and analysis of a repair concept applicable to a stiffened thin-skin composite panel based on the Pultruded Rod Stitched Efficient Unitized Structure is presented. Since the repair concept is a bolted repair using metal components, it can easily be applied in the operational environment. Initial analyses are aimed at validating the finite element modeling approach by comparing with available test data. Once confidence in the analysis approach is established several repair configurations are explored and the most efficient one presented. Repairs involving damage to the top of the stiffener alone are considered in addition to repairs involving a damaged stiffener, flange and underlying skin. High fidelity finite element modeling techniques such as mesh-independent definition of compliant fasteners, elastic-plastic metallic material properties and geometrically nonlinear analysis are utilized in the effort. The results of the analysis are presented and factors influencing the design are assessed and discussed.

  3. Structural analysis of airborne flux estimates over a region

    SciTech Connect

    Caramori, P.; Schuepp, P. ); Desjardins, R. ); MacPherson, I. )

    1994-05-01

    Aircraft-based observations of turbulence fields of velocity, moisture, and temperature are used to study coherent turbulent structures that dominate turbulent transfer of moisture and heat above three different ecosystems. Flux traces are defragmented, to reconstruct the presumed full size (along the sampled transect) of these structures, and flux traces are simplified by elimination of those that contribute negligibly to the flux estimates. Structures are analyzed in terms of size, spatial distribution, and contribution to the flux, in the four [open quotes]quadrant[close quotes] modes of eddy-covariance transfer (excess up/down and deficit up/down). The effect of nonlinear detrending of moisture and temperature data on this [open quotes]structural analysis,[close quotes] over surfaces with heterogeneous surface wetness, is also examined. Results over grassland, wetland, and moist and dry agricultural land, show that nonlinear detrending may provide a more physically realistic description of structures. Significant difference are observed between structure size and associated relative flux contribution, between moist and dry areas, with smaller structures playing a more important role over the moist areas. Structure size generally increases with height, as spatial reorganization from smaller structures into larger ones takes place. This coincides with a gradual loss of surface [open quotes]signature[close quotes] (position and clustering of plumes above localized source area). The data are expected to provide a basis for an eventual statistical description of boundary-layer transfer events, and help to interpret the link between boundary-layer transfer and hydrological surface conditions. 48 refs., 15 figs. 2 tabs.

  4. Design-Oriented Analysis of Aircraft Fuselage Structures

    NASA Technical Reports Server (NTRS)

    Giles, Gary L.

    1998-01-01

    A design-oriented analysis capability for aircraft fuselage structures that utilizes equivalent plate methodology is described. This new capability is implemented as an addition to the existing wing analysis procedure in the Equivalent Laminated Plate Solution (ELAPS) computer code. The wing and fuselage analyses are combined to model entire airframes. The paper focuses on the fuselage model definition, the associated analytical formulation and the approach used to couple the wing and fuselage analyses. The modeling approach used to minimize the amount of preparation of input data by the user and to facilitate the making of design changes is described. The fuselage analysis is based on ring and shell equations but the procedure is formulated to be analogous to that used for plates in order to take advantage of the existing code in ELAPS. Connector springs are used to couple the wing and fuselage models. Typical fuselage analysis results are presented for two analytical models. Results for a ring-stiffened cylinder model are compared with results from conventional finite-element analyses to assess the accuracy of this new analysis capability. The connection of plate and ring segments is demonstrated using a second model that is representative of the wing structure for a channel-wing aircraft configuration.

  5. Multiscale analysis of structure development in expanded starch snacks

    NASA Astrophysics Data System (ADS)

    van der Sman, R. G. M.; Broeze, J.

    2014-11-01

    In this paper we perform a multiscale analysis of the food structuring process of the expansion of starchy snack foods like keropok, which obtains a solid foam structure. In particular, we want to investigate the validity of the hypothesis of Kokini and coworkers, that expansion is optimal at the moisture content, where the glass transition and the boiling line intersect. In our analysis we make use of several tools, (1) time scale analysis from the field of physical transport phenomena, (2) the scale separation map (SSM) developed within a multiscale simulation framework of complex automata, (3) the supplemented state diagram (SSD), depicting phase transition and glass transition lines, and (4) a multiscale simulation model for the bubble expansion. Results of the time scale analysis are plotted in the SSD, and give insight into the dominant physical processes involved in expansion. Furthermore, the results of the time scale analysis are used to construct the SSM, which has aided us in the construction of the multiscale simulation model. Simulation results are plotted in the SSD. This clearly shows that the hypothesis of Kokini is qualitatively true, but has to be refined. Our results show that bubble expansion is optimal for moisture content, where the boiling line for gas pressure of 4 bars intersects the isoviscosity line of the critical viscosity 106 Pa.s, which runs parallel to the glass transition line.

  6. Advanced stress analysis methods applicable to turbine engine structures

    NASA Technical Reports Server (NTRS)

    Pian, Theodore H. H.

    1991-01-01

    The following tasks on the study of advanced stress analysis methods applicable to turbine engine structures are described: (1) constructions of special elements which contain traction-free circular boundaries; (2) formulation of new version of mixed variational principles and new version of hybrid stress elements; (3) establishment of methods for suppression of kinematic deformation modes; (4) construction of semiLoof plate and shell elements by assumed stress hybrid method; and (5) elastic-plastic analysis by viscoplasticity theory using the mechanical subelement model.

  7. Simple technique for structural thermal-screening analysis. [LMFBR

    SciTech Connect

    Yang, C.C.; Dalcher, A.W.

    1982-01-01

    A closed form solution to one dimensional transient heat conduction problem is suggested for the thermal screening analysis of arbitrary input transients. This formulation has been derived from a classical solution and been applied to thermal screening analyses of nuclear structural components. Direct output in the form of computer plots is particularly useful not only for visualization of transient responses but also the selection of umbrella transients used in the detailed analyses of nuclear components especially for high temperature applications. An example is given to demonstrate the usefulness of this technique in the design analysis of heat transport system equipments.

  8. Thermal/structural analysis of a transpiration cooled nozzle

    NASA Technical Reports Server (NTRS)

    Gregory, Peyton B.; Thompson, Jon E.; Babcock, Dale A.; Gray, Carl E., Jr.; Mouring, Chris A.

    1992-01-01

    The 8-foot High Temperature Tunnel (HTT) at LaRC is a combustion driven, high enthalpy blow down wind tunnel. In Mar. 1991, during check out of the transpiration cooled nozzle, pieces of platelets were found in the tunnel test section. It was determined that incorrect tolerancing between the platelets and the housing was the primary cause of the platelet failure. An analysis was performed to determine the tolerance layout between the platelets and the housing to meet the structural and performance criteria under a range of thermal, pressure, and bolt preload conditions. Three recommendations resulted as a product of this analysis.

  9. Ulysses Data Analysis: Magnetic Topology of Heliospheric Structures

    NASA Technical Reports Server (NTRS)

    Crooker, Nancy

    2001-01-01

    In this final technical report on research funded by a NASA grant, a project overview is given by way of summaries on nine published papers. Research has included: 1) Using suprathermal electron data to study heliospheric magnetic structures; 2) Analysis of magnetic clouds, coronal mass ejections (CME), and the heliospheric current sheet (HCS); 3) Analysis of the corotating interaction region (CIR) which develop from interactions between solar wind streams of different velocities; 4) Use of Ulysses data in the interpretation of heliospheric events and phenomena.

  10. Stress analysis for wall structure in mobile hot cell design

    NASA Astrophysics Data System (ADS)

    Bahrin, Muhammad Hannan; Rahman, Anwar Abdul; Hamzah, Mohd Arif; Mamat, Mohd Rizal; Azman, Azraf; Hasan, Hasni

    2016-01-01

    Malaysian Nuclear Agency is developing a Mobile Hot Cell (MHC) in order to handle and manage Spent High Activity Radioactive Sources (SHARS) such as teletherapy heads and irradiators. At present, there are only two units of MHC in the world, in South Africa and China. Malaysian Mobile Hot cell is developed by Malaysian Nuclear Agency with the assistance of IAEA expert, based on the design of South Africa and China, but with improved features. Stress analysis has been performed on the design in order to fulfil the safety requirement in operation of MHC. This paper discusses the loading analysis effect from the sand to the MHC wall structure.

  11. In situ structural analysis of the human nuclear pore complex.

    PubMed

    von Appen, Alexander; Kosinski, Jan; Sparks, Lenore; Ori, Alessandro; DiGuilio, Amanda L; Vollmer, Benjamin; Mackmull, Marie-Therese; Banterle, Niccolo; Parca, Luca; Kastritis, Panagiotis; Buczak, Katarzyna; Mosalaganti, Shyamal; Hagen, Wim; Andres-Pons, Amparo; Lemke, Edward A; Bork, Peer; Antonin, Wolfram; Glavy, Joseph S; Bui, Khanh Huy; Beck, Martin

    2015-10-01

    Nuclear pore complexes are fundamental components of all eukaryotic cells that mediate nucleocytoplasmic exchange. Determining their 110-megadalton structure imposes a formidable challenge and requires in situ structural biology approaches. Of approximately 30 nucleoporins (Nups), 15 are structured and form the Y and inner-ring complexes. These two major scaffolding modules assemble in multiple copies into an eight-fold rotationally symmetric structure that fuses the inner and outer nuclear membranes to form a central channel of ~60 nm in diameter. The scaffold is decorated with transport-channel Nups that often contain phenylalanine-repeat sequences and mediate the interaction with cargo complexes. Although the architectural arrangement of parts of the Y complex has been elucidated, it is unclear how exactly it oligomerizes in situ. Here we combine cryo-electron tomography with mass spectrometry, biochemical analysis, perturbation experiments and structural modelling to generate, to our knowledge, the most comprehensive architectural model of the human nuclear pore complex to date. Our data suggest previously unknown protein interfaces across Y complexes and to inner-ring complex members. We show that the transport-channel Nup358 (also known as Ranbp2) has a previously unanticipated role in Y-complex oligomerization. Our findings blur the established boundaries between scaffold and transport-channel Nups. We conclude that, similar to coated vesicles, several copies of the same structural building block--although compositionally identical--engage in different local sets of interactions and conformations.

  12. In situ structural analysis of the human nuclear pore complex

    PubMed Central

    Ori, Alessandro; DiGuilio, Amanda L.; Vollmer, Benjamin; Mackmull, Marie-Therese; Banterle, Niccolo; Parca, Luca; Kastritis, Panagiotis; Buczak, Katarzyna; Mosalaganti, Shyamal; Hagen, Wim; Andres-Pons, Amparo; Lemke, Edward A.; Bork, Peer; Antonin, Wolfram; Glavy, Joseph S.; Bui, Khanh Huy; Beck, Martin

    2016-01-01

    Summary Nuclear pore complexes (NPCs) are fundamental components of all eukaryotic cells that mediate nucleocytoplasmic exchange. Elucidating their 110 MDa structure imposes a formidable challenge and requires in situ structural biology approaches. Fifteen out of about thirty nucleoporins (Nups) are structured and form the Y- and inner ring complexes. These two major scaffolding modules assemble in multiple copies into an eight-fold rotationally symmetric structure that fuses the inner and outer nuclear membranes to form a central channel of ∼60 nm in diameter 1. The scaffold is decorated with transport channel Nups that often contain phenylalanine (FG)-repeat sequences and mediate the interaction with cargo complexes. Although the architectural arrangement of parts of the Y-complex has been elucidated, it is unclear how exactly it oligomerizes in situ. Here, we combined cryo electron tomography with mass spectrometry, biochemical analysis, perturbation experiments and structural modeling to generate the most comprehensive architectural model of the NPC to date. Our data suggest previously unknown protein interfaces across Y-complexes and to inner ring complex members. We demonstrate that the higher eukaryotic transport channel Nup358 (RanBP2) has a previously unanticipated role in Y-complex oligomerization. Our findings blur the established boundaries between scaffold and transport channel Nups. We conclude that, similarly to coated vesicles, multiple copies of the same structural building block - although compositionally identical - engage in different local sets of interactions and conformations. PMID:26416747

  13. Initial postbuckling analysis of elastoplastic thin-shear structures

    NASA Technical Reports Server (NTRS)

    Carnoy, E. G.; Panosyan, G.

    1984-01-01

    The design of thin shell structures with respect to elastoplastic buckling requires an extended analysis of the influence of initial imperfections. For conservative design, the most critical defect should be assumed with the maximum allowable magnitude. This defect is closely related to the initial postbuckling behavior. An algorithm is given for the quasi-static analysis of the postbuckling behavior of structures that exhibit multiple buckling points. the algorithm based upon an energy criterion allows the computation of the critical perturbation which will be employed for the definition of the critical defect. For computational efficiency, the algorithm uses the reduced basis technique with automatic update of the modal basis. The method is applied to the axisymmetric buckling of cylindrical shells under axial compression, and conclusions are given for future research.

  14. Development of Probabilistic Structural Analysis Integrated with Manufacturing Processes

    NASA Technical Reports Server (NTRS)

    Pai, Shantaram S.; Nagpal, Vinod K.

    2007-01-01

    An effort has been initiated to integrate manufacturing process simulations with probabilistic structural analyses in order to capture the important impacts of manufacturing uncertainties on component stress levels and life. Two physics-based manufacturing process models (one for powdered metal forging and the other for annular deformation resistance welding) have been linked to the NESSUS structural analysis code. This paper describes the methodology developed to perform this integration including several examples. Although this effort is still underway, particularly for full integration of a probabilistic analysis, the progress to date has been encouraging and a software interface that implements the methodology has been developed. The purpose of this paper is to report this preliminary development.

  15. Musical structure analysis using similarity matrix and dynamic programming

    NASA Astrophysics Data System (ADS)

    Shiu, Yu; Jeong, Hong; Kuo, C.-C. Jay

    2005-10-01

    Automatic music segmentation and structure analysis from audio waveforms based on a three-level hierarchy is examined in this research, where the three-level hierarchy includes notes, measures and parts. The pitch class profile (PCP) feature is first extracted at the note level. Then, a similarity matrix is constructed at the measure level, where a dynamic time warping (DTW) technique is used to enhance the similarity computation by taking the temporal distortion of similar audio segments into account. By processing the similarity matrix, we can obtain a coarse-grain music segmentation result. Finally, dynamic programming is applied to the coarse-grain segments so that a song can be decomposed into several major parts such as intro, verse, chorus, bridge and outro. The performance of the proposed music structure analysis system is demonstrated for pop and rock music.

  16. The ATLAS integrated structural analysis and design software system

    NASA Technical Reports Server (NTRS)

    Dreisbach, R. L.; Giles, G. L.

    1978-01-01

    The ATLAS system provides an extensive set of integrated technical computer-program modules for the analysis and design of general structural configurations, as well as capabilities that are particularly suited for the aeroelastic design of flight vehicles. The system is based on the stiffness formulation of the finite element structural analysis method and can be executed in batch and interactive computing environments on CDC 6600/CYBER computers. Problem-definition input data are written in an engineering-oriented language using a free field format. Input-data default values, generation options, and data quality checks provided by the preprocessors minimize the amount of data and flowtime for problem definition/verfication. Postprocessors allow selected input and calculated data to be extracted, manipulated, and displayed via on-line and off-line prints or plots for monitoring and verifying problem solutions. The sequence and mode of execution of selected program modules are controlled by a common user-oriented language.

  17. Analysis of fine structure in the nuclear continuum

    SciTech Connect

    Shevchenko, A.; Kalmykov, Y.; Neumann-Cosel, P. von; Ponomarev, V. Yu.; Richter, A.; Wambach, J.; Carter, J.; Usman, I.; Cooper, G. R. J.; Fearick, R. W.

    2008-02-15

    Fine structure has been shown to be a general phenomenon of nuclear giant resonances of different multipolarities over a wide mass range. In this article we assess various techniques that have been proposed to extract quantitative information from the fine structure in terms of characteristic scales. These include the so-called local scaling dimension, the entropy index method, Fourier analysis, and continuous and discrete wavelet transforms. As an example, results on the isoscalar giant quadrupole resonance in {sup 208}Pb from high-energy-resolution inelastic proton scattering and calculations with the quasiparticle-phonon model are analyzed. Wavelet analysis, both continuous and discrete, of the spectra is shown to be a powerful tool to extract the magnitude and localization of characteristic scales.

  18. Dynamic analysis of a structure with Coulomb friction

    SciTech Connect

    Shah, V.N.; Gilmore, C.B.

    1982-01-01

    A modal superposition method for the dynamic analysis of a structure with Coulomb friction is presented. The finite element method is used to derive the equations of motion, and the nonlinearities due to friction are represented by a pseudoforce vector. A structure standing freely on the ground may slide during a seismic event. The relative displacement response may be divided into two parts: elastic deformation and rigid body motion. The presence of rigid body motion necessitates the inclusion of the higher modes in the transient analysis. Three single degree-of-freedom problems are solved to verify this method. In a fourth problem, the dynamic response of a platform standing freely on the ground is analyzed during a seismic event.

  19. Dynamic analysis of a structure with Coulomb friction

    SciTech Connect

    Shah, V.N.; Gilmore, C.B.

    1982-01-01

    A modal superposition method for the dynamic analysis of a structure with Coulomb friction is presented. The finite element method is used to derive the equations of motion, and the nonlinearities due to friction are represented by pseudo-force vector. A structure standing freely on the ground may slide during a seismic event. The relative displacement response may be divided into two parts: elastic deformation and rigid body motion. The presence of rigid body motion necessitates the inclusion of the higher modes in the transient analysis. Three single degree-of-freedom problems are solved to verify this method. In a fourth problem, the dynamic response of a platform standing freely on the ground is analyzed during a seismic event.

  20. Static analysis of cable networks and their supporting structures

    SciTech Connect

    Mitsugi, J.

    1994-04-01

    A nonlinear static analysis method for cable structures, particularly emphasizing cable networks, is presented. Cable strains are measured from the current geometry and compressed cables are analytically disassembled with the construction of the equilibrium equation and the stiffness matrix. Finite rotations of cable intersections, referred to as nodes, and cable elements passing through more than two nodes are included in the formulation. An integrated analysis with a linear finite element method is also presented to account for the elastic deformations of supporting structures for the cable networks. The formulation is programmed for a CRAY2 supercomputer using parallel processing to solve the linear equations. Applications of the method used for mesh antenna development are also presented. 13 refs.

  1. Thermal and structural analysis of a filter vessel ceramic tubesheet

    SciTech Connect

    Mallett, R.H.; Swindeman, R.W.; Zievers, J.F.

    1995-08-01

    A ceramic tubesheet assembly for a hot gas filter vessel is analyzed using the finite element method to determine stresses under differential pressure loading. The stresses include local concentration effects. Selection of the stress measures for evaluation of structural integrity is discussed. Specification of stress limits based upon limited data is considered. Stress results from this ongoing design analysis technology project are shown for one design concept.

  2. Forced vibration analysis of rotating cyclic structures in NASTRAN

    NASA Technical Reports Server (NTRS)

    Elchuri, V.; Gallo, A. M.; Skalski, S. C.

    1981-01-01

    A new capability was added to the general purpose finite element program NASTRAN Level 17.7 to conduct forced vibration analysis of tuned cyclic structures rotating about their axis of symmetry. The effects of Coriolis and centripetal accelerations together with those due to linear acceleration of the axis of rotation were included. The theoretical, user's, programmer's and demonstration manuals for this new capability are presented.

  3. Energy minimization versus pseudo force technique for nonlinear structural analysis

    NASA Technical Reports Server (NTRS)

    Kamat, M. P.; Hayduk, R. J.

    1980-01-01

    The effectiveness of using minimization techniques for the solution of nonlinear structural analysis problems is discussed and demonstrated by comparison with the conventional pseudo force technique. The comparison involves nonlinear problems with a relatively few degrees of freedom. A survey of the state-of-the-art of algorithms for unconstrained minimization reveals that extension of the technique to large scale nonlinear systems is possible.

  4. Analysis of time-domain scattering by periodic structures

    NASA Astrophysics Data System (ADS)

    Gao, Yixian; Li, Peijun

    2016-11-01

    This paper is devoted to the mathematical analysis of a time-domain electromagnetic scattering by periodic structures which are known as diffraction gratings. The scattering problem is reduced equivalently into an initial-boundary value problem in a bounded domain by using an exact transparent boundary condition. The well-posedness and stability of the solution are established for the reduced problem. Moreover, a priori energy estimates are obtained with minimum regularity requirement for the data and explicit dependence on the time.

  5. Fractal analysis of the hierarchic structure of fossil coal surface

    SciTech Connect

    Alekseev, A.D.; Vasilenko, T.A.; Kirillov, A.K.

    2008-05-15

    The fractal analysis is described as method of studying images of surface of fossil coal, one of the natural sorbent, with the aim of determining its structural surface heterogeneity. The deformation effect as a reduction in the dimensions of heterogeneity boundaries is considered. It is shown that the theory of nonequilibrium dynamic systems permits to assess a formation level of heterogeneities involved into a sorbent composition by means of the Hurst factor.

  6. Structural Test and Analysis of a Hybrid Inflatable Antenna

    NASA Technical Reports Server (NTRS)

    Gaspar, James L.; Mann, Troy; Sreekantamurthy, Tham; Behun, Vaughn

    2007-01-01

    NASA is developing ultra-lightweight structures technology for communication antennas for space missions. One of the research goals is to evaluate the structural characteristics of inflatable and rigidizable antennas through test and analysis. Being able to test and analyze the structural characteristics of a full scale antenna is important to enable the simulation of various mission scenarios to determine system performance in space. Recent work completed to evaluate a Hybrid Inflatable Antenna concept will be discussed. Tests were completed on a 2-m prototype to optimize its static shape and identify its modal dynamics that are important for analytical model validation. These test results were used to evaluate a preliminary finite element model of the antenna, and this model development and correlation activity is also described in the paper.

  7. Structural and biochemical analysis of a bacterial glycosyltransferase

    PubMed Central

    Zhu, Fan; Wu, Ren; Zhang, Hua; Wu, Hui

    2014-01-01

    Summary Glycosyltransferases (GTs) are a large family of enzymes that specifically transfer sugar moieties to a diverse range of substrates. The process of bacterial glycosylation (such as biosynthesis of glycolipids, glycoproteins, and polysaccharides) has been studied extensively, yet the majority of GTs involved remains poorly characterized. Besides predicting enzymatic parameters of GTs, the resolution of three-dimensional structures of GTs can help to determine activity, donor sugar binding, and acceptor substrate binding sites. It also facilitates amino acid sequence-based structural modeling and biochemical characterization of their homologues. Here we describe a general procedure to accomplish expression and purification of soluble and active recombinant GTs. Enzymatic characterization, and crystallization of GTs, and data refinement for structural analysis are also covered in this protocol. PMID:23765651

  8. Statistical models of video structure for content analysis and characterization.

    PubMed

    Vasconcelos, N; Lippman, A

    2000-01-01

    Content structure plays an important role in the understanding of video. In this paper, we argue that knowledge about structure can be used both as a means to improve the performance of content analysis and to extract features that convey semantic information about the content. We introduce statistical models for two important components of this structure, shot duration and activity, and demonstrate the usefulness of these models with two practical applications. First, we develop a Bayesian formulation for the shot segmentation problem that is shown to extend the standard thresholding model in an adaptive and intuitive way, leading to improved segmentation accuracy. Second, by applying the transformation into the shot duration/activity feature space to a database of movie clips, we also illustrate how the Bayesian model captures semantic properties of the content. We suggest ways in which these properties can be used as a basis for intuitive content-based access to movie libraries.

  9. Performance analysis, quality function deployment and structured methods

    NASA Astrophysics Data System (ADS)

    Maier, M. W.

    Quality function deployment, (QFD), an approach to synthesizing several elements of system modeling and design into a single unit, is presented. Behavioral, physical, and performance modeling are usually considered as separate aspects of system design without explicit linkages. Structured methodologies have developed linkages between behavioral and physical models before, but have not considered the integration of performance models. QFD integrates performance models with traditional structured models. In this method, performance requirements such as cost, weight, and detection range are partitioned into matrices. Partitioning is done by developing a performance model, preferably quantitative, for each requirement. The parameters of the model become the engineering objectives in a QFD analysis and the models are embedded in a spreadsheet version of the traditional QFD matrices. The performance model and its parameters are used to derive part of the functional model by recognizing that a given performance model implies some structure to the functionality of the system.

  10. Development and structural analysis of adenosine site binding tankyrase inhibitors.

    PubMed

    Haikarainen, Teemu; Waaler, Jo; Ignatev, Alexander; Nkizinkiko, Yves; Venkannagari, Harikanth; Obaji, Ezeogo; Krauss, Stefan; Lehtiö, Lari

    2016-01-15

    Tankyrases 1 and 2, the specialized members of the ARTD protein family, are druggable biotargets whose inhibition may have therapeutic potential against cancer, metabolic disease, fibrotic disease, fibrotic wound healing and HSV viral infections. We have previously identified a novel tankyrase inhibitor scaffold, JW55, and showed that it reduces mouse colon adenoma formation in vivo. Here we expanded the scaffold and profiled the selectivity of the compounds against a panel of human ARTDs. The scaffold also enables a fine modulation of selectivity towards either tankyrase 1 or tankyrase 2. In order to get insight about the binding mode of the inhibitors, we solved crystal structures of the compounds in complex with tankyrase 2. The compounds bind to the adenosine pocket of the catalytic domain and cause changes in the protein structure that are modulated by the chemical modifications of the compounds. The structural analysis allows further rational development of this compound class as a potent and selective tankyrase inhibitor. PMID:26706174

  11. Development and structural analysis of adenosine site binding tankyrase inhibitors.

    PubMed

    Haikarainen, Teemu; Waaler, Jo; Ignatev, Alexander; Nkizinkiko, Yves; Venkannagari, Harikanth; Obaji, Ezeogo; Krauss, Stefan; Lehtiö, Lari

    2016-01-15

    Tankyrases 1 and 2, the specialized members of the ARTD protein family, are druggable biotargets whose inhibition may have therapeutic potential against cancer, metabolic disease, fibrotic disease, fibrotic wound healing and HSV viral infections. We have previously identified a novel tankyrase inhibitor scaffold, JW55, and showed that it reduces mouse colon adenoma formation in vivo. Here we expanded the scaffold and profiled the selectivity of the compounds against a panel of human ARTDs. The scaffold also enables a fine modulation of selectivity towards either tankyrase 1 or tankyrase 2. In order to get insight about the binding mode of the inhibitors, we solved crystal structures of the compounds in complex with tankyrase 2. The compounds bind to the adenosine pocket of the catalytic domain and cause changes in the protein structure that are modulated by the chemical modifications of the compounds. The structural analysis allows further rational development of this compound class as a potent and selective tankyrase inhibitor.

  12. Computational modeling and impact analysis of textile composite structures

    NASA Astrophysics Data System (ADS)

    Hur, Hae-Kyu

    This study is devoted to the development of an integrated numerical modeling enabling one to investigate the static and the dynamic behaviors and failures of 2-D textile composite as well as 3-D orthogonal woven composite structures weakened by cracks and subjected to static-, impact- and ballistic-type loads. As more complicated modeling about textile composite structures is introduced, some of homogenization schemes, geometrical modeling and crack propagations become more difficult problems to solve. To overcome these problems, this study presents effective mesh-generation schemes, homogenization modeling based on a repeating unit cell and sinusoidal functions, and also a cohesive element to study micro-crack shapes. This proposed research has two: (1) studying behavior of textile composites under static loads, (2) studying dynamic responses of these textile composite structures subjected to the transient/ballistic loading. In the first part, efficient homogenization schemes are suggested to show the influence of textile architectures on mechanical characteristics considering the micro modeling of repeating unit cell. Furthermore, the structures of multi-layered or multi-phase composites combined with different laminar such as a sub-laminate, are considered to find the mechanical characteristics. A simple progressive failure mechanism for the textile composites is also presented. In the second part, this study focuses on three main phenomena to solve the dynamic problems: micro-crack shapes, textile architectures and textile effective moduli. To obtain a good solutions of the dynamic problems, this research attempts to use four approaches: (I) determination of governing equations via a three-level hierarchy: micro-mechanical unit cell analysis, layer-wise analysis accounting for transverse strains and stresses, and structural analysis based on anisotropic plate layers, (II) development of an efficient computational approach enabling one to perform transient

  13. Low energy booster radio frequency cavity structural analysis

    SciTech Connect

    Jones, K.

    1993-04-01

    The structural design of the Superconducting Super Collider Low Energy Booster (LEB) Radio Frequency (RF) Cavity is very unique. The cavity is made of three different materials which all contribute to its structural strength while at the same time providing a good medium for magnetic properties. Its outer conductor is made of thin walled stainless steel which is later copper plated to reduce the electrical losses. Its tuner housing is made of a fiber reinforced composite laminate, similar to G10, glued to stainless steel plating. The stainless steel of the tuner is slotted to significantly diminish the magnetically-induced eddy currents. The composite laminate is bonded to the stainless steel to restore the structural strength that was lost in slotting. The composite laminate is also a barrier against leakage of the pressurized internal ferrite coolant fluid. The cavity`s inner conductor, made of copper and stainless steel, is subjected to high heat loads and must be liquid cooled. The requirements of the Cavity are very stringent and driven primarily by deflection, natural frequency and temperature. Therefore, very intricate finite element analysis was used to complement conventional hand analysis in the design of the cavity. Structural testing of the assembled prototype cavity is planned to demonstrate the compliance of the cavity design to all of its requirements.

  14. Functional and Structural Analysis of the Conserved EFhd2 Protein

    PubMed Central

    Acosta, Yancy Ferrer; Rodríguez Cruz, Eva N.; Vaquer, Ana del C.; Vega, Irving E.

    2013-01-01

    EFhd2 is a novel protein conserved from C. elegans to H. sapiens. This novel protein was originally identified in cells of the immune and central nervous systems. However, it is most abundant in the central nervous system, where it has been found associated with pathological forms of the microtubule-associated protein tau. The physiological or pathological roles of EFhd2 are poorly understood. In this study, a functional and structural analysis was carried to characterize the molecular requirements for EFhd2’s calcium binding activity. The results showed that mutations of a conserved aspartate on either EF-hand motif disrupted the calcium binding activity, indicating that these motifs work in pair as a functional calcium binding domain. Furthermore, characterization of an identified single-nucleotide polymorphisms (SNP) that introduced a missense mutation indicates the importance of a conserved phenylalanine on EFhd2 calcium binding activity. Structural analysis revealed that EFhd2 is predominantly composed of alpha helix and random coil structures and that this novel protein is thermostable. EFhd2’s thermo stability depends on its N-terminus. In the absence of the N-terminus, calcium binding restored EFhd2’s thermal stability. Overall, these studies contribute to our understanding on EFhd2 functional and structural properties, and introduce it into the family of canonical EF-hand domain containing proteins. PMID:22973849

  15. Recent innovations in the structural analysis of heparin.

    PubMed

    Yates, Edwin A; Rudd, Timothy R

    2016-06-01

    Heparin, the widely used anticoagulant drug, is unusual among major pharmaceutical agents being neither single chemical entity nor a defined mixture of compounds. Its composition, while conforming to approximate average disaccharide composition or sulfation levels, exhibits heterogeneity and variability depending on the source, as well as its geographical origin. Furthermore, individual polysaccharide chains, whose physico-chemical properties are extremely similar, cannot be separated with current state-of-the-art techniques, presenting a challenge to those interested in the quality control of heparin, in ensuring its provenance and safety, and those with an interest in investigating the relationships between its structure and biological activity. The review consists of two main sections: The first is the Introduction, comprising (i) The History, Occurrence and Use of Heparin and (ii) Approaches to Structure-Activity Relationships. The second section is Improved Techniques for Structural Analysis, comprising; (i) Separation and Identification, (ii) Spectroscopic Methods, (iii) Enzymatic Approaches and (iv) Other Physico-Chemical Approaches. The ~60 references cover recent technological advances in the study of heparin structural analysis, largely since 2010. PMID:27264867

  16. Advanced composites structural concepts and materials technologies for primary aircraft structures. Structural response and failure analysis: ISPAN modules users manual

    NASA Technical Reports Server (NTRS)

    Hairr, John W.; Huang, Jui-Ten; Ingram, J. Edward; Shah, Bharat M.

    1992-01-01

    The ISPAN Program (Interactive Stiffened Panel Analysis) is an interactive design tool that is intended to provide a means of performing simple and self contained preliminary analysis of aircraft primary structures made of composite materials. The program combines a series of modules with the finite element code DIAL as its backbone. Four ISPAN Modules were developed and are documented. These include: (1) flat stiffened panel; (2) curved stiffened panel; (3) flat tubular panel; and (4) curved geodesic panel. Users are instructed to input geometric and material properties, load information and types of analysis (linear, bifurcation buckling, or post-buckling) interactively. The program utilizing this information will generate finite element mesh and perform analysis. The output in the form of summary tables of stress or margins of safety, contour plots of loads or stress, and deflected shape plots may be generalized and used to evaluate specific design.

  17. Multilevel Dynamic Generalized Structured Component Analysis for Brain Connectivity Analysis in Functional Neuroimaging Data.

    PubMed

    Jung, Kwanghee; Takane, Yoshio; Hwang, Heungsun; Woodward, Todd S

    2016-06-01

    We extend dynamic generalized structured component analysis (GSCA) to enhance its data-analytic capability in structural equation modeling of multi-subject time series data. Time series data of multiple subjects are typically hierarchically structured, where time points are nested within subjects who are in turn nested within a group. The proposed approach, named multilevel dynamic GSCA, accommodates the nested structure in time series data. Explicitly taking the nested structure into account, the proposed method allows investigating subject-wise variability of the loadings and path coefficients by looking at the variance estimates of the corresponding random effects, as well as fixed loadings between observed and latent variables and fixed path coefficients between latent variables. We demonstrate the effectiveness of the proposed approach by applying the method to the multi-subject functional neuroimaging data for brain connectivity analysis, where time series data-level measurements are nested within subjects.

  18. PASCO- STRUCTURAL PANEL ANALYSIS AND SIZING CODE (MACINTOSH VERSION)

    NASA Technical Reports Server (NTRS)

    Lucas, S. H.

    1994-01-01

    The Panel Analysis and Sizing Code (PASCO) was developed for the buckling and vibration analysis and sizing of prismatic structures having an arbitrary cross section. PASCO is primarily intended for analyzing and sizing stiffened panels made of laminated orthotropic materials and is of particular value in analyzing and sizing filamentary composite structures. When used in the analysis mode, PASCO calculates laminate stiffnesses, lamina stress and strains (including the effects of temperature and panel bending), buckling loads, vibration frequencies, and overall panel stiffness. When used in the sizing mode, PASCO adjusts sizing variables to provide a low-mass panel design that carries a set of specified loadings without exceeding buckling or material strength allowables and that meets other design requirements such as upper and lower bounds on sizing variables, upper and lower bounds on overall bending, extensional and shear stiffnesses, and lower bounds on vibration frequencies. Although emphasis in PASCO is placed on flat panels having several identical bays, the only restriction on configuration modeling is that the structure is assumed to be prismatic. In addition, it is assumed that loads and temperatures do not vary along the length of a panel. Because of their wide application in aerospace structures, stiffened panels are readily handled by PASCO. The panel cross section may be composed of an arbitrary assemblage of thin, flat, rectangular plate elements that are connected together along their longitudinal edges. Each plate element consists of a balanced symmetric laminate of any number of layers of orthotropic material. Any group of element widths, layer thicknesses, and layer orientation angles may be selected as sizing variables. Substructuring is available to increase the efficiency of the analysis and to simplify the modeling of complicated structures. The Macintosh version of PASCO includes an interactive, graphic preprocessor called MacPASCO. The main

  19. PASCO- STRUCTURAL PANEL ANALYSIS AND SIZING CODE (DEC VAX VERSION)

    NASA Technical Reports Server (NTRS)

    Anderson, M. S.

    1994-01-01

    The Panel Analysis and Sizing Code (PASCO) was developed for the buckling and vibration analysis and sizing of prismatic structures having an arbitrary cross section. PASCO is primarily intended for analyzing and sizing stiffened panels made of laminated orthotropic materials and is of particular value in analyzing and sizing filamentary composite structures. When used in the analysis mode, PASCO calculates laminate stiffnesses, lamina stress and strains (including the effects of temperature and panel bending), buckling loads, vibration frequencies, and overall panel stiffness. When used in the sizing mode, PASCO adjusts sizing variables to provide a low-mass panel design that carries a set of specified loadings without exceeding buckling or material strength allowables and that meets other design requirements such as upper and lower bounds on sizing variables, upper and lower bounds on overall bending, extensional and shear stiffnesses, and lower bounds on vibration frequencies. Although emphasis in PASCO is placed on flat panels having several identical bays, the only restriction on configuration modeling is that the structure is assumed to be prismatic. In addition, it is assumed that loads and temperatures do not vary along the length of a panel. Because of their wide application in aerospace structures, stiffened panels are readily handled by PASCO. The panel cross section may be composed of an arbitrary assemblage of thin, flat, rectangular plate elements that are connected together along their longitudinal edges. Each plate element consists of a balanced symmetric laminate of any number of layers of orthotropic material. Any group of element widths, layer thicknesses, and layer orientation angles may be selected as sizing variables. Substructuring is available to increase the efficiency of the analysis and to simplify the modeling of complicated structures. The Macintosh version of PASCO includes an interactive, graphic preprocessor called MacPASCO. The main

  20. Selective amplification of an mRNA and related pseudogene for a human ADP-ribosylation factor, a guanine nucleotide-dependent protein activator of cholera toxin

    SciTech Connect

    Monaco, L.; Murtagh, J.J.; Newman, K.B.; Tsai, Su-Chen; Moss, J.; Vaughan, M. )

    1990-03-01

    ADP-ribosylation factors (ARFs) are {approx}20-kDa proteins that act as GTP-dependent allosteric activators of cholera toxin. With deoxyinosine-containing degenerate oligonucleotide primers corresponding to conserved GTP-binding domains in ARFs, the polymerase chain reaction (PCR) was used to amplify simultaneously from human DNA portions of three ARF genes that include codons for 102 amino acids, with intervening sequences. Amplification products that differed in size because of differences in intron sizes were separated by agarose gel electrophoresis. One amplified DNA contained no introns and had a sequence different from those of known AFRs. Based on this sequence, selective oligonucleotide probes were prepared and used to isolate clone {Psi}ARF 4, a putative ARF pseudogene, from a human genomic library in {lambda} phage EMBL3. Reverse transcription-PCR was then used to clone from human poly(A){sup +} RNA the cDNA corresponding to the expressed homolog of {Psi}ARF 4, referred to as human ARF 4. It appears that {Psi}ARF 4 arose during human evolution by integration of processed ARF 4 mRNA into the genome. Human ARF 4 differs from previously identified mammalian ARFs 1, 2, and 3. Hybridization of ARF 4-specific oligonucleotide probes with human, bovine, and rat RNA revealed a single 1.8-kilobase mRNA, which was clearly distinguished from the 1.9-kilobase mRNA for ARF 1 in these tissues. The PCR provides a powerful tool for investigating diversity in this and other multigene families, especially with primers targeted at domains believed to have functional significance.

  1. Molecular cloning and chromosomal localization of a pseudogene related to the human Acyl-CoA binding protein/diazepam binding inhibitor

    SciTech Connect

    Gersuk, V.H.; Rose, T.M.; Todaro, G.J.

    1995-01-20

    The acyl-CoA binding protein (ACBP) and the diazepam binding inhibitor (DBI) or endozepine are independent isolates of a single 86-amino-acid, 10-kDa protein. ACBP/DBI is highly conserved between species and has been identified in several diverse organisms, including human, cow, rat, frog, duck, insects, plants, and yeast. Although the genomic locus has not yet been cloned in humans, complementary DNA clones with different 5{prime} ends have been isolated and characterized. These cDNA clones appear to be encoded by a single gene. However, Southern blot analyses, in situ hybridizations, and somatic cell hybrid chromosomal mapping all suggest that there are multiple ACBP/DBI-related sequences in the genome. To identify potential members of this gene family, degenerate oligonucleotides corresponding to highly conserved regions of ACBP/DBI were used to screen a human genomic DNA library using the polymerase chain reaction. A novel gene, DBIP1, that is closely related to ACBP/DBI but is clearly distinct was identified. DBIP1 bears extensive sequence homology to ACBP/DBI but lacks the introns predicted by rat and duck genomic sequence studies. A 1-base deletion in the coding region results in a frameshift and, along with the absence of introns and the lack of a detectable transcript, suggests that DBIP1 is a pseudogene. ACBP/DBI has previously been mapped to chromosome 2, although this was recently disputed, and a chromosome 6 location was suggested. We show that ACBP/DBI is correctly placed on chromosome 2 and that the gene identified on chromosome 6 is DBIP1. 33 refs., 3 figs., 1 tab.

  2. The presence of an RHD pseudogene containing a 37 base pair duplication and a nonsense mutation in africans with the Rh D-negative blood group phenotype.

    PubMed

    Singleton, B K; Green, C A; Avent, N D; Martin, P G; Smart, E; Daka, A; Narter-Olaga, E G; Hawthorne, L M; Daniels, G

    2000-01-01

    Antigens of the Rh blood group system are encoded by 2 homologous genes, RHD and RHCE, that produce 2 red cell membrane proteins. The D-negative phenotype is considered to result, almost invariably, from homozygosity for a complete deletion of RHD. The basis of all PCR tests for predicting fetal D phenotype from DNA obtained from amniocytes or maternal plasma is detection of the presence of RHD. These tests are used in order to ascertain the risk of hemolytic disease of the newborn. We have identified an RHD pseudogene (RHD psi) in Rh D-negative Africans. RHDpsi contains a 37 base pair (bp) insert in exon 4, which may introduce a stop codon at position 210. The insert is a sequence duplication across the boundary of intron 3 and exon 4. RHDpsi contains another stop codon in exon 6. The frequency of RHDpsi in black South Africans is approximately 0.0714. Of 82 D-negative black Africans, 66% had RHDpsi, 15% had the RHD-CE-D hybrid gene associated with the VS+ V- phenotype, and only 18% completely lacked RHD. RHDpsi is present in about 24% of D-negative African Americans and 17% of D-negative South Africans of mixed race. No RHD transcript could be detected in D-negative individuals with RHDpsi, probably as a result of nonsense-mediated mRNA decay. Existing PCR-based methods for predicting D phenotype from DNA are not suitable for testing Africans or any population containing a substantial proportion of people with African ethnicity. Consequently, we have developed a new test that detects the 37 bp insert in exon 4 of RHDpsi. (Blood. 2000; 95:12-18)

  3. Presence of the RHD pseudogene and the hybrid RHD-CE-D(s) gene in Brazilians with the D-negative phenotype.

    PubMed

    Rodrigues, A; Rios, M; Pellegrino, J; Costa, F F; Castilho, L

    2002-07-01

    The molecular basis for RHD pseudogene or RHD Psi is a 37-bp insertion in exon 4 of RHD. This insertion, found in two-thirds of D-negative Africans, appears to introduce a stop codon at position 210. The hybrid RHD-CE-Ds, where the 3' end of exon 3 and exons 4 to 8 are derived from RHCE, is associated with the VS+V- phenotype, and leads to a D-negative phenotype in people of African origin. We determined whether Brazilian blood donors of heterogeneous ethnic origin had RHD Psi and RHD-CE-Ds. DNA from 206 blood donors were tested for RHD Psi by a multiplex PCR that detects RHD, RHD Psi and the C and c alleles of RHCE. The RHD genotype was determined by comparison of size of amplified products associated with the RHD gene in both intron 4 and exon 10/3'-UTR. VS was determined by amplification of exon 5 of RHCE, and sequencing of PCR products was used to analyze C733G (Leu245Val). Twenty-two (11%) of the 206 D-negative Brazilians studied had the RHD Psi, 5 (2%) had the RHD-CE-Ds hybrid gene associated with the VS+V- phenotype, and 179 (87%) entirely lacked RHD. As expected, RHD was deleted in all the 50 individuals of Caucasian descent. Among the 156 individuals of African descent, 22 (14%) had inactive RHD and 3% had the RHD-CE-Ds hybrid gene. These data confirm that the inclusion of two different multiplex PCR for RHD is essential to test the D-negative Brazilian population in order to avoid false-positive typing of polytransfused patients and fetuses.

  4. OCT4 pseudogene 5 upregulates OCT4 expression to promote proliferation by competing with miR-145 in endometrial carcinoma.

    PubMed

    Bai, Mingzhu; Yuan, Mu; Liao, Hong; Chen, Jiazhou; Xie, Binying; Yan, Dong; Xi, Xiaowei; Xu, Xianming; Zhang, Zhenbo; Feng, Youji

    2015-04-01

    OCT4 plays a critical role in the maintenance of stem cell pluripotency and proliferation, and is overexpressed in multiple human tumors, including endometrial cancer. OCT4 expression can be modulated by miR-145 and the OCT4 pseudogene 5 (OCT4-pg5), which share similar binding sites in the OCT4 3'-untranslated region. The goal of the present study was to evaluate the interaction between miR-145 and OCT4‑pg5 on OCT4 expression in endometrial cancer. We assessed OCT4-pg5 expression in 14 benign endometrium and 29 endometrial carcinoma samples. Furthermore, miR-145 mimic transfection was performed to explore its effect on OCT4-pg5 and OCT4 expression, and small interfering RNA (siRNA)-mediated knockdown of OCT4 was conducted to determine whether the effect of OCT4-pg5 on cellular growth was OCT4-dependent. We observed that OCT4-pg5 was abnormally activated in the endometrial carcinomas, and that overexpression of OCT4-pg5 contributed to enhanced cell proliferation and OCT4-PI3K/AKT-cyclin D1 signaling. Moreover, the miR-145 mimic depleted OCT4 expression, whereas elevated OCT4-pg5 restored OCT4 expression and OCT4-PI3K/AKT-cyclin D1 signaling. In conclusion, these data indicate that OCT4-pg5 can act as an RNA sponge to protect OCT4 transcripts from being inhibited by miR-145, providing novel insight into the control of OCT4 expression. PMID:25634023

  5. Mitochondrial DNA as a non-invasive biomarker: Accurate quantification using real time quantitative PCR without co-amplification of pseudogenes and dilution bias

    SciTech Connect

    Malik, Afshan N.; Shahni, Rojeen; Rodriguez-de-Ledesma, Ana; Laftah, Abas; Cunningham, Phil

    2011-08-19

    Highlights: {yields} Mitochondrial dysfunction is central to many diseases of oxidative stress. {yields} 95% of the mitochondrial genome is duplicated in the nuclear genome. {yields} Dilution of untreated genomic DNA leads to dilution bias. {yields} Unique primers and template pretreatment are needed to accurately measure mitochondrial DNA content. -- Abstract: Circulating mitochondrial DNA (MtDNA) is a potential non-invasive biomarker of cellular mitochondrial dysfunction, the latter known to be central to a wide range of human diseases. Changes in MtDNA are usually determined by quantification of MtDNA relative to nuclear DNA (Mt/N) using real time quantitative PCR. We propose that the methodology for measuring Mt/N needs to be improved and we have identified that current methods have at least one of the following three problems: (1) As much of the mitochondrial genome is duplicated in the nuclear genome, many commonly used MtDNA primers co-amplify homologous pseudogenes found in the nuclear genome; (2) use of regions from genes such as {beta}-actin and 18S rRNA which are repetitive and/or highly variable for qPCR of the nuclear genome leads to errors; and (3) the size difference of mitochondrial and nuclear genomes cause a 'dilution bias' when template DNA is diluted. We describe a PCR-based method using unique regions in the human mitochondrial genome not duplicated in the nuclear genome; unique single copy region in the nuclear genome and template treatment to remove dilution bias, to accurately quantify MtDNA from human samples.

  6. The crystal structure of triosephosphate isomerase (TIM) from Thermotoga maritima: a comparative thermostability structural analysis of ten different TIM structures.

    PubMed

    Maes, D; Zeelen, J P; Thanki, N; Beaucamp, N; Alvarez, M; Thi, M H; Backmann, J; Martial, J A; Wyns, L; Jaenicke, R; Wierenga, R K

    1999-11-15

    The molecular mechanisms that evolution has been employing to adapt to environmental temperatures are poorly understood. To gain some further insight into this subject we solved the crystal structure of triosephosphate isomerase (TIM) from the hyperthermophilic bacterium Thermotoga maritima (TmTIM). The enzyme is a tetramer, assembled as a dimer of dimers, suggesting that the tetrameric wild-type phosphoglycerate kinase PGK-TIM fusion protein consists of a core of two TIM dimers covalently linked to 4 PGK units. The crystal structure of TmTIM represents the most thermostable TIM presently known in its 3D-structure. It adds to a series of nine known TIM structures from a wide variety of organisms, spanning the range from psychrophiles to hyperthermophiles. Several properties believed to be involved in the adaptation to different temperatures were calculated and compared for all ten structures. No sequence preferences, correlated with thermal stability, were apparent from the amino acid composition or from the analysis of the loops and secondary structure elements of the ten TIMs. A common feature for both psychrophilic and T. maritima TIM is the large number of salt bridges compared with the number found in mesophilic TIMs. In the two thermophilic TIMs, the highest amount of accessible hydrophobic surface is buried during the folding and assembly process.

  7. An advanced probabilistic structural analysis method for implicit performance functions

    NASA Technical Reports Server (NTRS)

    Wu, Y.-T.; Millwater, H. R.; Cruse, T. A.

    1989-01-01

    In probabilistic structural analysis, the performance or response functions usually are implicitly defined and must be solved by numerical analysis methods such as finite element methods. In such cases, the most commonly used probabilistic analysis tool is the mean-based, second-moment method which provides only the first two statistical moments. This paper presents a generalized advanced mean value (AMV) method which is capable of establishing the distributions to provide additional information for reliability design. The method requires slightly more computations than the second-moment method but is highly efficient relative to the other alternative methods. In particular, the examples show that the AMV method can be used to solve problems involving non-monotonic functions that result in truncated distributions.

  8. A simplified method for elastic-plastic-creep structural analysis

    NASA Technical Reports Server (NTRS)

    Kaufman, A.

    1985-01-01

    A simplified inelastic analysis computer program (ANSYPM) was developed for predicting the stress-strain history at the critical location of a thermomechanically cycled structure from an elastic solution. The program uses an iterative and incremental procedure to estimate the plastic strains from the material stress-strain properties and a plasticity hardening model. Creep effects are calculated on the basis of stress relaxation at constant strain, creep at constant stress or a combination of stress relaxation and creep accumulation. The simplified method was exercised on a number of problems involving uniaxial and multiaxial loading, isothermal and nonisothermal conditions, dwell times at various points in the cycles, different materials and kinematic hardening. Good agreement was found between these analytical results and nonlinear finite element solutions for these problems. The simplified analysis program used less than 1 percent of the CPU time required for a nonlinear finite element analysis.

  9. A simplified method for elastic-plastic-creep structural analysis

    NASA Technical Reports Server (NTRS)

    Kaufman, A.

    1984-01-01

    A simplified inelastic analysis computer program (ANSYPM) was developed for predicting the stress-strain history at the critical location of a thermomechanically cycled structure from an elastic solution. The program uses an iterative and incremental procedure to estimate the plastic strains from the material stress-strain properties and a plasticity hardening model. Creep effects are calculated on the basis of stress relaxation at constant strain, creep at constant stress or a combination of stress relaxation and creep accumulation. The simplified method was exercised on a number of problems involving uniaxial and multiaxial loading, isothermal and nonisothermal conditions, dwell times at various points in the cycles, different materials and kinematic hardening. Good agreement was found between these analytical results and nonlinear finite element solutions for these problems. The simplified analysis program used less than 1 percent of the CPU time required for a nonlinear finite element analysis.

  10. Development of a simplified procedure for cyclic structural analysis

    NASA Technical Reports Server (NTRS)

    Kaufman, A.

    1984-01-01

    Development was extended of a simplified inelastic analysis computer program (ANSYMP) for predicting the stress-strain history at the critical location of a thermomechanically cycled structure from an elastic solution. The program uses an iterative and incremental procedure to estimate the plastic strains from the material stress-strain properties and a plasticity hardening model. Creep effects can be calculated on the basis of stress relaxation at constant strain, creep at constant stress, or a combination of stress relaxation and creep accumulation. The simplified method was exercised on a number of problems involving uniaxial and multiaxial loading, isothermal and nonisothermal conditions, dwell times at various points in the cycles, different materials, and kinematic hardening. Good agreement was found between these analytical results and nonlinear finite-element solutions for these problems. The simplified analysis program used less than 1 percent of the CPU time required for a nonlinear finite-element analysis.

  11. Quantitative Analysis of Cellular Metabolic Dissipative, Self-Organized Structures

    PubMed Central

    de la Fuente, Ildefonso Martínez

    2010-01-01

    One of the most important goals of the postgenomic era is understanding the metabolic dynamic processes and the functional structures generated by them. Extensive studies during the last three decades have shown that the dissipative self-organization of the functional enzymatic associations, the catalytic reactions produced during the metabolite channeling, the microcompartmentalization of these metabolic processes and the emergence of dissipative networks are the fundamental elements of the dynamical organization of cell metabolism. Here we present an overview of how mathematical models can be used to address the properties of dissipative metabolic structures at different organizational levels, both for individual enzymatic associations and for enzymatic networks. Recent analyses performed with dissipative metabolic networks have shown that unicellular organisms display a singular global enzymatic structure common to all living cellular organisms, which seems to be an intrinsic property of the functional metabolism as a whole. Mathematical models firmly based on experiments and their corresponding computational approaches are needed to fully grasp the molecular mechanisms of metabolic dynamical processes. They are necessary to enable the quantitative and qualitative analysis of the cellular catalytic reactions and also to help comprehend the conditions under which the structural dynamical phenomena and biological rhythms arise. Understanding the molecular mechanisms responsible for the metabolic dissipative structures is crucial for unraveling the dynamics of cellular life. PMID:20957111

  12. In situ structural analysis of the Yersinia enterocolitica injectisome.

    PubMed

    Kudryashev, Mikhail; Stenta, Marco; Schmelz, Stefan; Amstutz, Marlise; Wiesand, Ulrich; Castaño-Díez, Daniel; Degiacomi, Matteo T; Münnich, Stefan; Bleck, Christopher Ke; Kowal, Julia; Diepold, Andreas; Heinz, Dirk W; Dal Peraro, Matteo; Cornelis, Guy R; Stahlberg, Henning

    2013-01-01

    Injectisomes are multi-protein transmembrane machines allowing pathogenic bacteria to inject effector proteins into eukaryotic host cells, a process called type III secretion. Here we present the first three-dimensional structure of Yersinia enterocolitica and Shigella flexneri injectisomes in situ and the first structural analysis of the Yersinia injectisome. Unexpectedly, basal bodies of injectisomes inside the bacterial cells showed length variations of 20%. The in situ structures of the Y. enterocolitica and S. flexneri injectisomes had similar dimensions and were significantly longer than the isolated structures of related injectisomes. The crystal structure of the inner membrane injectisome component YscD appeared elongated compared to a homologous protein, and molecular dynamics simulations documented its elongation elasticity. The ring-shaped secretin YscC at the outer membrane was stretched by 30-40% in situ, compared to its isolated liposome-embedded conformation. We suggest that elasticity is critical for some two-membrane spanning protein complexes to cope with variations in the intermembrane distance. DOI:http://dx.doi.org/10.7554/eLife.00792.001. PMID:23908767

  13. Structural analysis of hepatitis C RNA genome using DNA microarrays

    PubMed Central

    Martell, María; Briones, Carlos; de Vicente, Aránzazu; Piron, María; Esteban, Juan I.; Esteban, Rafael; Guardia, Jaime; Gómez, Jordi

    2004-01-01

    Many studies have tried to identify specific nucleotide sequences in the quasispecies of hepatitis C virus (HCV) that determine resistance or sensitivity to interferon (IFN) therapy, unfortunately without conclusive results. Although viral proteins represent the most evident phenotype of the virus, genomic RNA sequences determine secondary and tertiary structures which are also part of the viral phenotype and can be involved in important biological roles. In this work, a method of RNA structure analysis has been developed based on the hybridization of labelled HCV transcripts to microarrays of complementary DNA oligonucleotides. Hybridizations were carried out at non-denaturing conditions, using appropriate temperature and buffer composition to allow binding to the immobilized probes of the RNA transcript without disturbing its secondary/tertiary structural motifs. Oligonucleotides printed onto the microarray covered the entire 5′ non-coding region (5′NCR), the first three-quarters of the core region, the E2–NS2 junction and the first 400 nt of the NS3 region. We document the use of this methodology to analyse the structural degree of a large region of HCV genomic RNA in two genotypes associated with different responses to IFN treatment. The results reported here show different structural degree along the genome regions analysed, and differential hybridization patterns for distinct genotypes in NS2 and NS3 HCV regions. PMID:15247323

  14. Analysis of asteroid (216) Kleopatra using dynamical and structural constraints

    SciTech Connect

    Hirabayashi, Masatoshi; Scheeres, Daniel J.

    2014-01-10

    This paper evaluates a dynamically and structurally stable size for Asteroid (216) Kleopatra. In particular, we investigate two different failure modes: material shedding from the surface and structural failure of the internal body. We construct zero-velocity curves in the vicinity of this asteroid to determine surface shedding, while we utilize a limit analysis to calculate the lower and upper bounds of structural failure under the zero-cohesion assumption. Surface shedding does not occur at the current spin period (5.385 hr) and cannot directly initiate the formation of the satellites. On the other hand, this body may be close to structural failure; in particular, the neck may be situated near a plastic state. In addition, the neck's sensitivity to structural failure changes as the body size varies. We conclude that plastic deformation has probably occurred around the neck part in the past. If the true size of this body is established through additional measurements, this method will provide strong constraints on the current friction angle for the body.

  15. Integrated visual analysis of protein structures, sequences, and feature data

    PubMed Central

    2015-01-01

    Background To understand the molecular mechanisms that give rise to a protein's function, biologists often need to (i) find and access all related atomic-resolution 3D structures, and (ii) map sequence-based features (e.g., domains, single-nucleotide polymorphisms, post-translational modifications) onto these structures. Results To streamline these processes we recently developed Aquaria, a resource offering unprecedented access to protein structure information based on an all-against-all comparison of SwissProt and PDB sequences. In this work, we provide a requirements analysis for several frequently occuring tasks in molecular biology and describe how design choices in Aquaria meet these requirements. Finally, we show how the interface can be used to explore features of a protein and gain biologically meaningful insights in two case studies conducted by domain experts. Conclusions The user interface design of Aquaria enables biologists to gain unprecedented access to molecular structures and simplifies the generation of insight. The tasks involved in mapping sequence features onto structures can be conducted easier and faster using Aquaria. PMID:26329268

  16. In situ structural analysis of the Yersinia enterocolitica injectisome

    PubMed Central

    Kudryashev, Mikhail; Stenta, Marco; Schmelz, Stefan; Amstutz, Marlise; Wiesand, Ulrich; Castaño-Díez, Daniel; Degiacomi, Matteo T; Münnich, Stefan; Bleck, Christopher KE; Kowal, Julia; Diepold, Andreas; Heinz, Dirk W; Dal Peraro, Matteo; Cornelis, Guy R; Stahlberg, Henning

    2013-01-01

    Injectisomes are multi-protein transmembrane machines allowing pathogenic bacteria to inject effector proteins into eukaryotic host cells, a process called type III secretion. Here we present the first three-dimensional structure of Yersinia enterocolitica and Shigella flexneri injectisomes in situ and the first structural analysis of the Yersinia injectisome. Unexpectedly, basal bodies of injectisomes inside the bacterial cells showed length variations of 20%. The in situ structures of the Y. enterocolitica and S. flexneri injectisomes had similar dimensions and were significantly longer than the isolated structures of related injectisomes. The crystal structure of the inner membrane injectisome component YscD appeared elongated compared to a homologous protein, and molecular dynamics simulations documented its elongation elasticity. The ring-shaped secretin YscC at the outer membrane was stretched by 30–40% in situ, compared to its isolated liposome-embedded conformation. We suggest that elasticity is critical for some two-membrane spanning protein complexes to cope with variations in the intermembrane distance. DOI: http://dx.doi.org/10.7554/eLife.00792.001 PMID:23908767

  17. Analysis of Asteroid (216) Kleopatra Using Dynamical and Structural Constraints

    NASA Astrophysics Data System (ADS)

    Hirabayashi, Masatoshi; Scheeres, Daniel J.

    2014-01-01

    This paper evaluates a dynamically and structurally stable size for Asteroid (216) Kleopatra. In particular, we investigate two different failure modes: material shedding from the surface and structural failure of the internal body. We construct zero-velocity curves in the vicinity of this asteroid to determine surface shedding, while we utilize a limit analysis to calculate the lower and upper bounds of structural failure under the zero-cohesion assumption. Surface shedding does not occur at the current spin period (5.385 hr) and cannot directly initiate the formation of the satellites. On the other hand, this body may be close to structural failure; in particular, the neck may be situated near a plastic state. In addition, the neck's sensitivity to structural failure changes as the body size varies. We conclude that plastic deformation has probably occurred around the neck part in the past. If the true size of this body is established through additional measurements, this method will provide strong constraints on the current friction angle for the body.

  18. Advanced methods for 3-D inelastic structural analysis for hot engine structures

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.

    1989-01-01

    Three-dimensional Inelastic Analysis Methods are described. These methods were incorporated into a series of new computer codes embodying a progression of mathematical models (mechanics of materials, specialty finite element, boundary element) for streamlined analysis of hot engine structures such as: (1) combustor liners, (2) turbine blades, and (3) turbine vanes. These models address the effects of high temperatures and thermal/mechanical loadings on the local (stress/strain) and global (displacements, frequencies, amplitudes, buckling) structural behavior of the three respective components. The methods and the three computer codes, referred to as MOMM (Mechanics Of Materials Model), MHOST (MARC-Hot Section Technology), and BEST3D (Boundary Element Stress Technology), have been developed and are briefly described.

  19. The analytic solution of the structural analysis problem and its use in structural synthesis

    NASA Astrophysics Data System (ADS)

    Fuchs, M. B.

    An overview is presented of the analytic expressions for the inverse of the stiffness matrix, the nodal displacements, and the internal forces in linear elastic redundant structures. The inverse of the stiffness matrix and the nodal displacements are obtained using Binet and Cauchy's theorem on the product of compound matrices. The formula for the internal forces is derived from the principles of structural mechanics. This approach is shown to apply to all framed structures via the unimodal stiffnesses of its elements. Approximate models are constructed which are exact at preselected points along a line in the analysis space. An argument is also made for the use of multilinear polynomials as an alternative to Taylor expansion-based approximations.

  20. Data acquisition and analysis at the Structural Biology Center

    SciTech Connect

    Westbrook, M.L.; Coleman, T.A.; Daly, R.T.; Pflugrath, J.W.

    1996-12-31

    The Structural Biology Center (SBC), a national user facility for macromolecular crystallography located at Argonne National Laboratory`s Advanced Photon Source, is currently being built and commissioned. SBC facilities include a bending-magnet beamline, an insertion-device beamline, laboratory and office space adjacent to the beamlines, and associated instrumentation, experimental apparatus, and facilities. SBC technical facilities will support anomalous dispersion phasing experiments, data collection from microcrystals, data collection from crystals with large molecular structures and rapid data collection from multiple related crystal structures for protein engineering and drug design. The SBC Computing Systems and Software Engineering Group is tasked with developing the SBC Control System, which includes computing systems, network, and software. The emphasis of SBC Control System development has been to provide efficient and convenient beamline control, data acquisition, and data analysis for maximal facility and experimenter productivity. This paper describes the SBC Control System development, specifically data acquisition and analysis at the SBC, and the development methods used to meet this goal.

  1. A hybrid neurocomputing/numerical strategy for nonlinear structural analysis

    NASA Technical Reports Server (NTRS)

    Szewczyk, Z. Peter; Noor, Ahmed K.

    1995-01-01

    A hybrid neurocomputing/numerical strategy is presented for geometrically nonlinear analysis of structures. The strategy combines model-free data processing capabilities of computational neural networks with a Pade approximants-based perturbation technique to predict partial information about the nonlinear response of structures. In the hybrid strategy, multilayer feedforward neural networks are used to extend the validity of solutions by using training samples produced by Pade approximations to the Taylor series expansion of the response function. The range of validity of the training samples is taken to be the radius of convergence of Pade approximants and is estimated by setting a tolerance on the diverging approximants. The norm of residual vector of unbalanced forces in a given element is used as a measure to assess the quality of network predictions. To further increase the accuracy and the range of network predictions, additional training data are generated by either applying linear regression to weight matrices or expanding the training data by using predicted coefficients in a Taylor series. The effectiveness of the hybrid strategy is assessed by performing large-deflection analysis of a doubly-curved composite panel with a circular cutout, and postbuckling analyses of stiffened composite panels subjected to an in-plane edge shear load. In all the problems considered, the hybrid strategy is used to predict selective information about the structural response, namely the total strain energy and the maximum displacement components only.

  2. Structural analysis of bioceramic materials for denture application

    NASA Astrophysics Data System (ADS)

    Rauf, Nurlaela; Tahir, Dahlang; Arbiansyah, Muhammad

    2016-03-01

    Structural analysis has been performed on bioceramic materials for denture application by using X-ray diffraction (XRD), X-ray fluorescence (XRF), and Scanning Electron Microscopy (SEM). XRF is using for analysis chemical composition of raw materials. XRF shows the ratio 1 : 1 : 1 : 1 between feldspar, quartz, kaolin and eggshell, respectively, resulting composition CaO content of 56.78 %, which is similar with natural tooth. Sample preparation was carried out on temperature of 800 °C, 900 °C and 1000 °C. X-ray diffraction result showed that the structure is crystalline with trigonal crystal system for SiO2 (a=b=4.9134 Å and c=5.4051 Å) and CaH2O2 (a=b=3.5925 Å and c=4.9082 Å). Based on the Scherrer's equation showed the crystallite size of the highest peak (SiO2) increase with increasing the temperature preparation. The highest hardness value (87 kg/mm2) and match with the standards of dentin hardness. The surface structure was observed by using SEM also discussed.

  3. Structure-preserving sparse decomposition for facial expression analysis.

    PubMed

    Taheri, Sima; Qiang Qiu; Chellappa, Rama

    2014-08-01

    Although facial expressions can be decomposed in terms of action units (AUs) as suggested by the facial action coding system, there have been only a few attempts that recognize expression using AUs and their composition rules. In this paper, we propose a dictionary-based approach for facial expression analysis by decomposing expressions in terms of AUs. First, we construct an AU-dictionary using domain experts' knowledge of AUs. To incorporate the high-level knowledge regarding expression decomposition and AUs, we then perform structure-preserving sparse coding by imposing two layers of grouping over AU-dictionary atoms as well as over the test image matrix columns. We use the computed sparse code matrix for each expressive face to perform expression decomposition and recognition. Since domain experts' knowledge may not always be available for constructing an AU-dictionary, we also propose a structure-preserving dictionary learning algorithm, which we use to learn a structured dictionary as well as divide expressive faces into several semantic regions. Experimental results on publicly available expression data sets demonstrate the effectiveness of the proposed approach for facial expression analysis.

  4. Regional gravity analysis of the crustal structure of Tunisia

    NASA Astrophysics Data System (ADS)

    Jallouli, Chokri; Mickus, Kevin

    2000-01-01

    Gravity data were integrated with seismic refraction/reflection data, well data and geological investigations to determine a general crustal structure of Tunisia. The gravity data analysis included the construction of a complete Bouguer gravity anomaly map, residual gravity anomaly maps, horizontal gravity gradient maps and a 2.5-D gravity model. Residual gravity anomaly maps illustrate crustal anomalies associated with various structural domains within Tunisia including the Sahel Block, Saharian Flexure, Erg Oriental Basin, Algerian Anticlinorium, Gafsa Trough, Tunisian Trough, Kasserine Platform and the Tell Mountains. Gravity anomalies associated with these features are interpreted to be caused either by thickening or thinning of Palæozoic and younger sediments or by crustal thinning. Analysis of the residual gravity anomaly and horizontal gravity gradient maps also determined a number of anomalies that may be associated with previously unknown structures. A north-south trending gravity model in general indicated similar subsurface bodies as a coincident seismic model. However, thinner Mesozoic sediments within the Tunisian Trough, thinner Palæozoic sediments in the Gafsa Trough, and a greater offset on the Saharian Flexure were required by the gravity data. Additionally, basement uplifts under the Kasserine Platform and Gafsa Trough, not imaged by seismic data, were required by the gravity data. The gravity model revealed two previously unknown basins north and south of the Algerian Anticlinorium (5 km), while the Erg Oriental Basin is composed of at least two sub-basins, each with a depth of 5 km.

  5. Membrane dish analysis: A summary of structural and optical analysis capabilities

    SciTech Connect

    Steele, C.R.; Balch, C.D.; Jorgensen, G.J.; Wendelin, T.; Lewandowski, A.

    1991-11-01

    Research at SERI within the Department of Energy's Solar Thermal Technology Program has focused on the development of membrane dish concentrators for space and terrestrial power applications. As potentially lightweight, inexpensive, high-performance structures, they are excellent candidates for space-deployable energy sources as well as cost-effective terrestrial energy concepts. A thorough engineering research treatment of these types of structures consists primarily of two parts: (1) structural mechanics of the membrane and ring support and (2) analysis and characterization of the concentrator optical performance. It is important to understand the effects of the membrane's structure and support system on the optical performance of the concentrator. This requires an interface between appropriate structural and optical models. Until recently, such models and the required interface have not existed. This report documents research that has been conducted at SERI in this area. It is a compilation of several papers describing structural models of membrane dish structures and optical models used to predict dish concentrator optical and thermal performance. The structural models were developed under SERI subcontract by Dr. Steele and Dr. Balch of Stanford University. The optical model was developed in-house by SERI staff. In addition, the interface between the models is described. It allows easy and thorough characterization of membrane dish systems from the mechanics to the resulting optical performance. The models described herein have been and continue to be extremely useful to SERI, industry, and universities involved with the modeling and analysis of lightweight membrane concentrators for solar thermal applications.

  6. Examining brain microstructure using structure tensor analysis of histological sections.

    PubMed

    Budde, Matthew D; Frank, Joseph A

    2012-10-15

    The mammalian central nervous system has a tremendous structural complexity, and diffusion tensor imaging (DTI) is unique in its ability to extract microstructural tissue properties at a macroscopic scale. However, despite its widespread use and applications in clinical and research settings, accurate validation of DTI has notoriously lagged the advances in image acquisition and analysis. In this report, we demonstrate an approach to visualize and quantify the microscopic features of histological sections on multiple length scales using techniques derived from image texture analysis. Structure tensor (ST) analysis was applied to fluorescence microscopy images of rat brain sections to visualize and quantify tissue microstructure. Images were digitally color-coded based on the local orientation in the pixelwise ST implementation, which allowed direct visualization of white matter complexity at the microscopic level. A piecewise ST algorithm was also employed to quantify anisotropy and orientation at a resolution comparable to that typically acquired with DTI. Anisotropy measured with ST analysis of stained histological sections was highly correlated with anisotropy measured by ex vivo DTI of the same brains (R(2)=0.92). Furthermore, angular histograms, or Fiber Orientation Distributions (FODs), were computed to mimic similar measures derived from high angular resolution diffusion imaging methods. The FODs for each pixel were fit to a mixture of von Mises distributions to identify putative regions of multiple fiber populations (i.e. crossing fibers). Despite its current application to two-dimensional microscopy, the ST analysis is a novel approach to visualize and quantify microstructure in the central nervous system in both health and disease, and advances the available set of tools for validating DTI and other diffusion MRI techniques. PMID:22759994

  7. Design sensitivity analysis of rotorcraft airframe structures for vibration reduction

    NASA Technical Reports Server (NTRS)

    Murthy, T. Sreekanta

    1987-01-01

    Optimization of rotorcraft structures for vibration reduction was studied. The objective of this study is to develop practical computational procedures for structural optimization of airframes subject to steady-state vibration response constraints. One of the key elements of any such computational procedure is design sensitivity analysis. A method for design sensitivity analysis of airframes under vibration response constraints is presented. The mathematical formulation of the method and its implementation as a new solution sequence in MSC/NASTRAN are described. The results of the application of the method to a simple finite element stick model of the AH-1G helicopter airframe are presented and discussed. Selection of design variables that are most likely to bring about changes in the response at specified locations in the airframe is based on consideration of forced response strain energy. Sensitivity coefficients are determined for the selected design variable set. Constraints on the natural frequencies are also included in addition to the constraints on the steady-state response. Sensitivity coefficients for these constraints are determined. Results of the analysis and insights gained in applying the method to the airframe model are discussed. The general nature of future work to be conducted is described.

  8. Enhanced bone structural analysis through pQCT image preprocessing.

    PubMed

    Cervinka, T; Hyttinen, J; Sievanen, H

    2010-05-01

    Several factors, including preprocessing of the image, can affect the reliability of pQCT-measured bone traits, such as cortical area and trabecular density. Using repeated scans of four different liquid phantoms and repeated in vivo scans of distal tibiae from 25 subjects, the performance of two novel preprocessing methods, based on the down-sampling of grayscale intensity histogram and the statistical approximation of image data, was compared to 3 x 3 and 5 x 5 median filtering. According to phantom measurements, the signal to noise ratio in the raw pQCT images (XCT 3000) was low ( approximately 20dB) which posed a challenge for preprocessing. Concerning the cortical analysis, the reliability coefficient (R) was 67% for the raw image and increased to 94-97% after preprocessing without apparent preference for any method. Concerning the trabecular density, the R-values were already high ( approximately 99%) in the raw images leaving virtually no room for improvement. However, some coarse structural patterns could be seen in the preprocessed images in contrast to a disperse distribution of density levels in the raw image. In conclusion, preprocessing cannot suppress the high noise level to the extent that the analysis of mean trabecular density is essentially improved, whereas preprocessing can enhance cortical bone analysis and also facilitate coarse structural analyses of the trabecular region.

  9. Structural analysis of tropical cyclone using INSAT-3D observations

    NASA Astrophysics Data System (ADS)

    Jaiswal, Neeru; Kishtawal, C. M.

    2016-05-01

    The continuous observations from visible and thermal infrared (TIR) channels of geostationary satellites are highly useful for obtaining the features associated with the shape and dynamics of cloud structures within the tropical cyclones (TCs). As TC develops from an unstructured cloud cluster and intensifies, the cloud structures become more axisymmetric around the centre of the TC. To better understand the structure of TC during different stages of its evolution i.e. from its cyclogenesis to maturity and dissipation, the continuous satellite observations plays a key role. The high spatial and temporal resolution observations from geostationary satellites are very useful in order to analyze the cloud organization during the cyclogenesis. The gradient of the brightness temperatures measures the level of symmetry of each structure, which characterizes the degree of cloud organization of the TC. In the present work, the structural analysis of TC during its life period using the observations from Indian geostationary satellite INSAT-3D has been discussed. The visible and TIR observations from INSAT-3D satellite were used to fix the center position of the cyclone which is an input for the cyclone track and intensity prediction models. This data is also used to estimate the intensity of cyclone in the advanced Dvorak technique (ADT), and in the estimation of radius of maximum winds (Rmax) of TC which is an essential input parameter for the prediction of storm surge associated to the cyclones. The different patterns of cloud structure during the intensification stage, eye-wall formation and dissipation have been discussed. The early identification of these features helps in predicting the rapid intensification of TC which in turn improves the intensity predictions.

  10. A Structural Analysis of the Lewiston Basin, Clarkston, WA

    NASA Astrophysics Data System (ADS)

    Alloway, M.; Watkinson, A.; Reidel, S. P.

    2010-12-01

    The Lewiston Structure is located in southeastern Washington / west-central Idaho and is a generally E-W trending asymmetric, non-cylindrical anticline in the Columbia River Basalt Group (CRBG) that transfers displacement into the Limekiln fault system to the southeast. A serial cross-section analysis and 3-D construction of this structure shows how the fold varies along its trend and sheds light on the deformational history of the Lewiston Basin. Construction of the fold’s 3-D form shows that the fold’s wavelength increases and amplitude decreases eastward along its trend. Balanced cross-sections show approximately 5% shortening across the structure which is consistent with the Yakima Fold Belt (YFB). Although the structure is similar to the YFB, it does not form part of a belt and its local nature has been suggested to mark the cratonic boundary of the Cretaceous. Discovery of an angular unconformity in the Grande Ronde Basalt - reverse polarity unit 1 (GRB-R1) proves that the NE trending section of the fold was deforming during emplacement of R1 and allows separation of the fold into two structural domains. Analysis of the two domains using the Gauss method for heterogeneous fault-slip data indicate NW-SE shortening during R1 time and N-S shortening for post CRBG emplacement. Furthermore, slip data for strain-inversion and specification of spatial-distribution patterns help identify the existence of a transpressional tectonic environment. The nature of faulting associated with the Lewiston Structure is a topic of some debate, namely the presence of a reverse fault on the southern limb of the fold conspicuously hidden by the Snake River. The reverse fault under debate outcrops to the east of the field area and is GRB-R2 (reverse polarity unit 2) thrust over Pliocene gravels. Better control on unit thicknesses and map contacts rule out the possibility of a reverse fault exposed on the surface of the southern limb of the fold in the field area. This major fault

  11. Muscle structure, cryo-methods and image analysis.

    PubMed

    Squire, J; Edman, A C; Freundlich, A; Harford, J; Sjöström, M

    1982-02-01

    Negatively stained cryo-sections from glutaraldehyde fixed, anti-freeze treated muscle, quench-frozen in Freon cooled by liquid nitrogen, show improved preservation of axial structure of the myofibrils compared with conventional plastic sections. Such sections are being used both to characterize the structural differences inthe M-bands of different vertebrate muscles and fibre types and also to define the axial distribution of myosin crossbridges and non-myosin proteins in the crossbridge region of the A-band. Combined with analysis of the transverse A-band structure from plastic sections, the cryo-sections are helping to reconstruct a three-dimensional picture of the molecular architecture of the A-band. This, in turn, is providing the necessary structural background with which to interpret the wealth of published X-ray diffraction data on muscle. Such data should reveal the nature of the contractile event itself. Since good X-ray diffraction patterns can be obtained from living muscles, these can be compared with optical diffraction patterns from muscle cryo-sections as a means of testing the degree of preservation in the sections. Muscle is therefore an excellent tissue with which to evaluate new cryo-techniques. PMID:7086884

  12. Structure and biochemical analysis of a secretin pilot protein

    PubMed Central

    Lario, Paula I; Pfuetzner, Richard A; Frey, Elizabeth A; Creagh, Louise; Haynes, Charles; Maurelli, Anthony T; Strynadka, Natalie C J

    2005-01-01

    The ability to translocate virulence proteins into host cells through a type III secretion apparatus (TTSS) is a hallmark of several Gram-negative pathogens including Shigella, Salmonella, Yersinia, Pseudomonas, and enteropathogenic Escherichia coli. In common with other types of bacterial secretion apparatus, the assembly of the TTSS complex requires the preceding formation of its integral outer membrane secretin ring component. We have determined at 1.5 Å the structure of MxiM28–142, the Shigella pilot protein that is essential for the assembly and membrane association of the Shigella secretin, MxiD. This represents the first atomic structure of a secretin pilot protein from the several bacterial secretion systems containing an orthologous secretin component. A deep hydrophobic cavity is observed in the novel ‘cracked barrel' structure of MxiM, providing a specific binding domain for the acyl chains of bacterial lipids, a proposal that is supported by our various lipid/MxiM complex structures. Isothermal titration analysis shows that the C-terminal domain of the secretin, MxiD525–570, hinders lipid binding to MxiM. PMID:15775974

  13. Demographic analysis from summaries of an age-structured population

    USGS Publications Warehouse

    Link, W.A.; Royle, J. Andrew; Hatfield, J.S.

    2003-01-01

    Demographic analyses of age-structured populations typically rely on life history data for individuals, or when individual animals are not identified, on information about the numbers of individuals in each age class through time. While it is usually difficult to determine the age class of a randomly encountered individual, it is often the case that the individual can be readily and reliably assigned to one of a set of age classes. For example, it is often possible to distinguish first-year from older birds. In such cases, the population age structure can be regarded as a latent variable governed by a process prior, and the data as summaries of this latent structure. In this article, we consider the problem of uncovering the latent structure and estimating process parameters from summaries of age class information. We present a demographic analysis for the critically endangered migratory population of whooping cranes (Grus americana), based only on counts of first-year birds and of older birds. We estimate age and year-specific survival rates. We address the controversial issue of whether management action on the breeding grounds has influenced recruitment, relating recruitment rates to the number of seventh-year and older birds, and examining the pattern of variation through time in this rate.

  14. STRUCTURELAB: a heterogeneous bioinformatics system for RNA structure analysis.

    PubMed

    Shapiro, B A; Kasprzak, W

    1996-08-01

    STRUCTURELAB is a computational system that has been developed to permit the use of a broad array of approaches for the analysis of the structure of RNA. The goal of the development is to provide a large set of tools that can be well integrated with experimental biology to aid in the process of the determination of the underlying structure of RNA sequences. The approach taken views the structure determination problem as one of dealing with a database of many computationally generated structures and provides the capability to analyze this data set from different perspectives. Many algorithms are integrated into one system that also utilizes a heterogeneous computing approach permitting the use of several computer architectures to help solve the posed problems. These different computational platforms make it relatively easy to incorporate currently existing programs as well as newly developed algorithms and to best match these algorithms to the appropriate hardware. The system has been written in Common Lisp running on SUN or SGI Unix workstations, and it utilizes a network of participating machines defined in reconfigurable tables. A window-based interface makes this heterogeneous environment as transparent to the user as possible. PMID:9076633

  15. Structure function analysis of mirror fabrication and support errors

    NASA Astrophysics Data System (ADS)

    Hvisc, Anastacia M.; Burge, James H.

    2007-09-01

    Telescopes are ultimately limited by atmospheric turbulence, which is commonly characterized by a structure function. The telescope optics will not further degrade the performance if their errors are small compared to the atmospheric effects. Any further improvement to the mirrors is not economical since there is no increased benefit to performance. Typically the telescope specification is written in terms of an image size or encircled energy and is derived from the best seeing that is expected at the site. Ideally, the fabrication and support errors should never exceed atmospheric turbulence at any spatial scale, so it is instructive to look at how these errors affect the structure function of the telescope. The fabrication and support errors are most naturally described by Zernike polynomials or by bending modes for the active mirrors. This paper illustrates an efficient technique for relating this modal analysis to wavefront structure functions. Data is provided for efficient calculation of structure function given coefficients for Zernike annular polynomials. An example of this procedure for the Giant Magellan Telescope primary mirror is described.

  16. Analysis of the structural consensus of the zinc coordination centers of metalloprotein structures.

    PubMed

    Patel, Kirti; Kumar, Anil; Durani, Susheel

    2007-10-01

    In a recent sequence-analysis study it was concluded that up to 10% of the human proteome could be comprised of zinc proteins, quite varied in the functional spread. The native structures of only few of the proteins are actually established. The elucidation of rest of the sequences of not just human but even other actively investigated genomes may benefit from knowledge of the structural consensus of the zinc-binding centers of the currently known zinc proteins. Nearly four hundred X-ray and NMR structures in the database of zinc-protein structures available as of April 2007 were investigated for geometry and conformation in the zinc-binding centers; separately for the structural and catalytic proteins and individually in the zinc centers coordinated to three and four amino-acid ligands. Enhanced cysteine involvement in agreement with the observation in human proteome has been detected in contrast with previous reports. Deviations from ideal coordination geometries are detected, possible underlying reasons are investigated, and correlations of geometry and conformation in zinc-coordination centers with protein function are established, providing possible benchmarks for putative zinc-binding patterns of the burgeoning genome data.

  17. Analysis of interstellar fragmentation structure based on IRAS images

    NASA Technical Reports Server (NTRS)

    Scalo, John M.

    1989-01-01

    The goal of this project was to develop new tools for the analysis of the structure of densely sampled maps of interstellar star-forming regions. A particular emphasis was on the recognition and characterization of nested hierarchical structure and fractal irregularity, and their relation to the level of star formation activity. The panoramic IRAS images provided data with the required range in spatial scale, greater than a factor of 100, and in column density, greater than a factor of 50. In order to construct a densely sampled column density map of a cloud complex which is both self-gravitating and not (yet?) stirred up much by star formation, a column density image of the Taurus region has been constructed from IRAS data. The primary drawback to using the IRAS data for this purpose is that it contains no velocity information, and the possible importance of projection effects must be kept in mind.

  18. Modeling and analysis of LAMOST primary mirror support structure

    NASA Astrophysics Data System (ADS)

    Gong, Xuefei; Cui, Xiangqun

    2002-07-01

    The Large Sky Area Multi-object Fiber Spectroscopic Telescope (LAMOST) is a national large scientific project in China at the beginning of this century. It is an unconventional designed modern optical telescope and has the both large field of view and large aperture. The spherical primary mirror MB in LAMOST is a segmented mirror with 37 sub-mirrors. The MB will be supported by a very stable truss structure and the mirror surface will be kept in a high optical accuracy. This paper presents the work on the finite element model of the truss structure of MB and gives the results of static and dynamic analysis with this model especially for the optimization of the higher stiffness and the lighter weight.

  19. Continuum soil modeling in the static analysis of buried structures

    SciTech Connect

    Julyk, L.J.; Marlow, R.S.; Moore, C.J.; Day, J.P.; Dyrness, A.D.

    1993-10-01

    Soil loading traditionally has been modeled as a hydrostatic pressure, a practice acceptable for many design applications. In the analyses of buried structure with predictive goals, soil compliance and load redistribution in the presence of soil plasticity are important factors to consider in determining the appropriate response of the structure. In the analysis of existing buried waste-storage tanks at the US Department of Energy`s Hanford Site, three soil-tank interaction modeling considerations are addressed. First, the soil interacts with the tank as the tank expands and contracts during thermal cycles associated with changes in the heat generated by the waste material as a result of additions and subtractions of the waste. Second, the soil transfers loads from the surface to the tank and provides support by resisting radial displacement of the tank haunch. Third, conventional finite-element mesh development causes artificial stress concentrations in the soil associated with differential settlement.

  20. Modal testing and analysis of NOVA laser structures

    SciTech Connect

    Burdick, R.B.; Weaver, H.J.; Pastrnak, J.W.

    1984-09-01

    NOVA, currently the world's most powerful laser system, is an ongoing project at the Lawrence Livermore National Laboratory in California. The project seeks to develop a feasible method of achieving controlled fusion reaction, initiated by multiple laser beams targeted on a tiny fuel pellet. The NOVA system consists of several large steel framed structures, the largest of which is the Target Chamber Tower. In conjunction with design engineers, the tower was first modelled and analyzed by sophisticated finite element techniques. A modal test was then conducted on the tower structure to evaluate its vibrational characteristics and seismic integrity as well as for general comparison to the finite element results. This paper will discuss the procedure used in the experimental modal analysis and the results obtained from that test.