Science.gov

Sample records for pseudokinase domain target

  1. Tribbles pseudokinases: novel targets for chemical biology and drug discovery?

    PubMed

    Foulkes, Daniel M; Byrne, Dominic P; Bailey, Fiona P; Eyers, Patrick A

    2015-10-01

    Tribbles (TRIB) proteins are pseudokinase mediators of eukaryotic signalling that have evolved important roles in lipoprotein metabolism, immune function and cellular differentiation and proliferation. In addition, an evolutionary-conserved modulation of PI3K/AKT signalling pathways highlights them as novel and rather unusual pharmaceutical targets. The three human TRIB family members are uniquely defined by an acidic pseudokinase domain containing a 'broken' α C-helix and a MEK (MAPK/ERK)-binding site at the end of the putative C-lobe and a distinct C-terminal peptide motif that interacts directly with a small subset of cellular E3 ubiquitin ligases. This latter interaction drives proteasomal-dependent degradation of networks of transcription factors, whose rate of turnover determines the biological attributes of individual TRIB family members. Defining the function of individual Tribs has been made possible through evaluation of individual TRIB knockout mice, siRNA/overexpression approaches and genetic screening in flies, where the single TRIB gene was originally described 15 years ago. The rapidly maturing TRIB field is primed to exploit chemical biology approaches to evaluate endogenous TRIB signalling events in intact cells. This will help define how TRIB-driven protein-protein interactions and the atypical TRIB ATP-binding site, fit into cellular signalling modules in experimental scenarios where TRIB-signalling complexes remain unperturbed. In this mini-review, we discuss how small molecules can reveal rate-limiting signalling outputs and functions of Tribs in cells and intact organisms, perhaps serving as guides for the development of new drugs. We predict that appropriate small molecule TRIB ligands will further accelerate the transition of TRIB pseudokinase analysis into the mainstream of cell signalling. PMID:26517930

  2. Pharmacological Targeting of the Pseudokinase Her3

    PubMed Central

    Xie, Ting; Lim, Sang Min; Westover, Kenneth D.; Dodge, Michael E.; Ercan, Dalia; Ficarro, Scott B.; Udayakumar, Durga; Gurbani, Deepak; Tae, Hyun Seop; Riddle, Steven M.; Sim, Taebo; Marto, Jarrod A.; Jänne, Pasi A.; Crews, Craig M.; Gray, Nathanael S.

    2014-01-01

    Her3 (ErbB3) belongs to the epidermal growth factor receptor tyrosine kinases and is well credentialed as an anti-cancer target but is thought to be “undruggable” using ATP-competitive small molecules because it lacks significant kinase activity. Here we report the first selective Her3 ligand, TX1-85-1, that forms a covalent bond with Cys721 located in the ATP-binding site of Her3. We demonstrate that covalent modification of Her3 inhibits Her3 signaling but not proliferation in some Her3 dependent cancer cell lines. Subsequent derivatization with a hydrophobic adamantane moiety demonstrates that the resultant bivalent ligand (TX2-121-1) enhances inhibition of Her3 dependent signaling. Treatment of cells with TX2-121-1 results in partial degradation of Her3 and serendipitously interferes with productive heterodimerization between Her3 with either Her2 or c-Met. These results suggest that small molecules will be capable of perturbing the biological function of Her3 and the approximately 60 other pseudokinases found in human cells. PMID:25326665

  3. Tyrosine Kinase 2-mediated Signal Transduction in T Lymphocytes Is Blocked by Pharmacological Stabilization of Its Pseudokinase Domain*

    PubMed Central

    Tokarski, John S.; Zupa-Fernandez, Adriana; Tredup, Jeffrey A.; Pike, Kristen; Chang, ChiehYing; Xie, Dianlin; Cheng, Lihong; Pedicord, Donna; Muckelbauer, Jodi; Johnson, Stephen R.; Wu, Sophie; Edavettal, Suzanne C.; Hong, Yang; Witmer, Mark R.; Elkin, Lisa L.; Blat, Yuval; Pitts, William J.; Weinstein, David S.; Burke, James R.

    2015-01-01

    Inhibition of signal transduction downstream of the IL-23 receptor represents an intriguing approach to the treatment of autoimmunity. Using a chemogenomics approach marrying kinome-wide inhibitory profiles of a compound library with the cellular activity against an IL-23-stimulated transcriptional response in T lymphocytes, a class of inhibitors was identified that bind to and stabilize the pseudokinase domain of the Janus kinase tyrosine kinase 2 (Tyk2), resulting in blockade of receptor-mediated activation of the adjacent catalytic domain. These Tyk2 pseudokinase domain stabilizers were also shown to inhibit Tyk2-dependent signaling through the Type I interferon receptor but not Tyk2-independent signaling and transcriptional cellular assays, including stimulation through the receptors for IL-2 (JAK1- and JAK3-dependent) and thrombopoietin (JAK2-dependent), demonstrating the high functional selectivity of this approach. A crystal structure of the pseudokinase domain liganded with a representative example showed the compound bound to a site analogous to the ATP-binding site in catalytic kinases with features consistent with high ligand selectivity. The results support a model where the pseudokinase domain regulates activation of the catalytic domain by forming receptor-regulated inhibitory interactions. Tyk2 pseudokinase stabilizers, therefore, represent a novel approach to the design of potent and selective agents for the treatment of autoimmunity. PMID:25762719

  4. Enhanced interaction between pseudokinase and kinase domains in Gcn2 stimulates eIF2α phosphorylation in starved cells.

    PubMed

    Lageix, Sebastien; Rothenburg, Stefan; Dever, Thomas E; Hinnebusch, Alan G

    2014-05-01

    The stress-activated protein kinase Gcn2 regulates protein synthesis by phosphorylation of translation initiation factor eIF2α, from yeast to mammals. The Gcn2 kinase domain (KD) is inherently inactive and requires allosteric stimulation by adjoining regulatory domains. Gcn2 contains a pseudokinase domain (YKD) required for high-level eIF2α phosphorylation in amino acid starved yeast cells; however, the role of the YKD in KD activation was unknown. We isolated substitutions of evolutionarily conserved YKD amino acids that impair Gcn2 activation without reducing binding of the activating ligand, uncharged tRNA, to the histidyl-tRNA synthetase-related domain of Gcn2. Several such Gcn- substitutions cluster in predicted helices E and I (αE and αI) of the YKD. We also identified Gcd- substitutions, evoking constitutive activation of Gcn2, mapping in αI of the YKD. Interestingly, αI Gcd- substitutions enhance YKD-KD interactions in vitro, whereas Gcn- substitutions in αE and αI suppress both this effect and the constitutive activation of Gcn2 conferred by YKD Gcd- substitutions. These findings indicate that the YKD interacts directly with the KD for activation of kinase function and identify likely sites of direct YKD-KD contact. We propose that tRNA binding to the HisRS domain evokes a conformational change that increases access of the YKD to sites of allosteric activation in the adjoining KD.

  5. The Tribbles 2 (TRB2) pseudokinase binds to ATP and autophosphorylates in a metal-independent manner

    PubMed Central

    Bailey, Fiona P.; Byrne, Dominic P.; Oruganty, Krishnadev; Eyers, Claire E.; Novotny, Christopher J.; Shokat, Kevan M.; Kannan, Natarajan; Eyers, Patrick A.

    2016-01-01

    The human Tribbles (TRB)-related pseudokinases are CAMK (calcium/calmodulin-dependent protein kinase)-related family members that have evolved a series of highly unusual motifs in the ‘pseudocatalytic’ domain. In canonical kinases, conserved amino acids bind to divalent metal ions and align ATP prior to efficient phosphoryl-transfer to substrates. However, in pseudokinases, atypical residues give rise to diverse and often unstudied biochemical and structural features that are thought to be central to cellular functions. TRB proteins play a crucial role in multiple signalling networks and overexpression confers cancer phenotypes on human cells, marking TRB pseudokinases out as a novel class of drug target. In the present paper, we report that the human pseudokinase TRB2 retains the ability to both bind and hydrolyse ATP weakly in vitro. Kinase activity is metal-independent and involves a catalytic lysine residue, which is conserved in TRB proteins throughout evolution alongside several unique amino acids in the active site. A similar low level of autophosphorylation is also preserved in the closely related human TRB3. By employing chemical genetics, we establish that the nucleotide-binding site of an ‘analogue-sensitive’ (AS) TRB2 mutant can be targeted with specific bulky ligands of the pyrazolo-pyrimidine (PP) chemotype. Our analysis confirms that TRB2 retains low levels of ATP binding and/or catalysis that is targetable with small molecules. Given the significant clinical successes associated with targeting of cancer-associated kinases with small molecule inhibitors, it is likely that similar approaches will be useful for further evaluating the TRB pseudokinases, with the translation of this information likely to furnish new leads for drug discovery. PMID:25583260

  6. Dimeric structure of pseudokinase RNase L bound to 2-5A reveals a basis for interferon induced antiviral activity

    PubMed Central

    Huang, Hao; Zeqiraj, Elton; Dong, Beihua; Jha, Babal Kant; Duffy, Nicole; Orlicky, Stephen; Thevakumaran, Neroshan; Talukdar, Manisha; Pillon, Monica C.; Ceccarelli, Derek F.; Wan, Leo; Juang, Yu-Chi; Mao, Daniel Y.L.; Gaughan, Christina; Brinton, Margo A.; Perelygin, Andrey A.; Kourinov, Igor; Guarné, Alba; Silverman, Robert H.; Sicheri, Frank

    2014-01-01

    Summary RNase L is an ankyrin repeat domain containing dual endoribonuclease-pseudokinase that is activated by unusual 2′,5′-oligoadenylate (2-5A) second messengers and which impedes viral infections in higher vertebrates. Despite its importance in interferon regulated antiviral innate immunity, relatively little is known about its precise mechanism of action. Here, we present a functional characterization of 2.5 Å and 3.25 Å X-ray crystal and small angle x-ray scattering structures of RNase L bound to a natural 2-5A activator with and without ADP or the non-hydrolysable ATP mimetic AMP-PNP. These studies reveal how recognition of 2-5A through interactions with the ankyrin repeat domain and the pseudokinase domain together with nucleotide binding, impose a rigid intertwined dimer configuration that is essential for RNase catalytic and anti-viral functions. The involvement of the pseudokinase domain of RNase L in 2-5A sensing, nucleotide binding, dimerization, and ribonuclease functions highlights the evolutionary adaptability of the eukaryotic protein kinase fold. PMID:24462203

  7. Targeting SH2 domains in breast cancer

    PubMed Central

    Morlacchi, Pietro; Robertson, Fredika M; Klostergaard, Jim; McMurray, John S

    2014-01-01

    Breast cancer is among the most commonly diagnosed cancer types in women worldwide and is the second leading cause of cancer-related disease in the USA. SH2 domains recruit signaling proteins to phosphotyrosine residues on aberrantly activated growth factor and cytokine receptors and contribute to cancer cell cycling, metastasis, angiogenesis and so on. Herein we review phosphopeptide mimetic and small-molecule approaches targeting the SH2 domains of Grb2, Grb7 and STAT3 that inhibit their targets and reduce proliferation in in vitro breast cancer models. Only STAT3 inhibitors have been evaluated in in vivo models and have led to tumor reduction. Taken together, these studies suggest that targeting SH2 domains is an important approach to the treatment of breast cancer. PMID:25495984

  8. Pseudokinases-remnants of evolution or key allosteric regulators?

    PubMed Central

    Zeqiraj, Elton; van Aalten, Daan MF

    2010-01-01

    Protein kinases provide a platform for the integration of signal transduction networks. A key feature of transmitting these cellular signals is the ability of protein kinases to activate one another by phosphorylation. A number of kinases are predicted by sequence homology to be incapable of phosphoryl group transfer due to degradation of their catalytic motifs. These are termed pseudokinases and because of the assumed lack of phosphoryltransfer activity their biological role in cellular transduction has been mysterious. Recent structure–function studies have uncovered the molecular determinants for protein kinase inactivity and have shed light to the biological functions and evolution of this enigmatic subset of the human kinome. Pseudokinases act as signal transducers by bringing together components of signalling networks, as well as allosteric activators of active protein kinases. PMID:21074407

  9. The Rhoptry Pseudokinase ROP54 Modulates Toxoplasma gondii Virulence and Host GBP2 Loading.

    PubMed

    Kim, Elliot W; Nadipuram, Santhosh M; Tetlow, Ashley L; Barshop, William D; Liu, Philip T; Wohlschlegel, James A; Bradley, Peter J

    2016-01-01

    Toxoplasma gondii uses unique secretory organelles called rhoptries to inject an array of effector proteins into the host cytoplasm that hijack host cell functions. We have discovered a novel rhoptry pseudokinase effector, ROP54, which is injected into the host cell upon invasion and traffics to the cytoplasmic face of the parasitophorous vacuole membrane (PVM). Disruption of ROP54 in a type II strain of T. gondii does not affect growth in vitro but results in a 100-fold decrease in virulence in vivo, suggesting that ROP54 modulates some aspect of the host immune response. We show that parasites lacking ROP54 are more susceptible to macrophage-dependent clearance, further suggesting that ROP54 is involved in evasion of innate immunity. To determine how ROP54 modulates parasite virulence, we examined the loading of two known innate immune effectors, immunity-related GTPase b6 (IRGb6) and guanylate binding protein 2 (GBP2), in wild-type and ∆rop54II mutant parasites. While no difference in IRGb6 loading was seen, we observed a substantial increase in GBP2 loading on the parasitophorous vacuole (PV) of ROP54-disrupted parasites. These results demonstrate that ROP54 is a novel rhoptry effector protein that promotes Toxoplasma infections by modulating GBP2 loading onto parasite-containing vacuoles. IMPORTANCE The interactions between intracellular microbes and their host cells can lead to the discovery of novel drug targets. During Toxoplasma infections, host cells express an array of immunity-related GTPases (IRGs) and guanylate binding proteins (GBPs) that load onto the parasite-containing vacuole to clear the parasite. To counter this mechanism, the parasite secretes effector proteins that traffic to the vacuole to disarm the immunity-related loading proteins and evade the immune response. While the interplay between host IRGs and Toxoplasma effector proteins is well understood, little is known about how Toxoplasma neutralizes the GBP response. We describe here a T

  10. The Rhoptry Pseudokinase ROP54 Modulates Toxoplasma gondii Virulence and Host GBP2 Loading

    PubMed Central

    Kim, Elliot W.; Nadipuram, Santhosh M.; Tetlow, Ashley L.; Barshop, William D.; Liu, Philip T.; Wohlschlegel, James A.

    2016-01-01

    ABSTRACT Toxoplasma gondii uses unique secretory organelles called rhoptries to inject an array of effector proteins into the host cytoplasm that hijack host cell functions. We have discovered a novel rhoptry pseudokinase effector, ROP54, which is injected into the host cell upon invasion and traffics to the cytoplasmic face of the parasitophorous vacuole membrane (PVM). Disruption of ROP54 in a type II strain of T. gondii does not affect growth in vitro but results in a 100-fold decrease in virulence in vivo, suggesting that ROP54 modulates some aspect of the host immune response. We show that parasites lacking ROP54 are more susceptible to macrophage-dependent clearance, further suggesting that ROP54 is involved in evasion of innate immunity. To determine how ROP54 modulates parasite virulence, we examined the loading of two known innate immune effectors, immunity-related GTPase b6 (IRGb6) and guanylate binding protein 2 (GBP2), in wild-type and ∆rop54II mutant parasites. While no difference in IRGb6 loading was seen, we observed a substantial increase in GBP2 loading on the parasitophorous vacuole (PV) of ROP54-disrupted parasites. These results demonstrate that ROP54 is a novel rhoptry effector protein that promotes Toxoplasma infections by modulating GBP2 loading onto parasite-containing vacuoles. IMPORTANCE The interactions between intracellular microbes and their host cells can lead to the discovery of novel drug targets. During Toxoplasma infections, host cells express an array of immunity-related GTPases (IRGs) and guanylate binding proteins (GBPs) that load onto the parasite-containing vacuole to clear the parasite. To counter this mechanism, the parasite secretes effector proteins that traffic to the vacuole to disarm the immunity-related loading proteins and evade the immune response. While the interplay between host IRGs and Toxoplasma effector proteins is well understood, little is known about how Toxoplasma neutralizes the GBP response. We describe

  11. Domain definition and target classification for CASP6.

    PubMed

    Tress, Michael; Tai, Chin-Hsien; Wang, Guoli; Ezkurdia, Iakes; López, Gonzalo; Valencia, Alfonso; Lee, Byungkook; Dunbrack, Roland L

    2005-01-01

    Assessment of structure predictions in CASP6 was based on single domains isolated from experimentally determined structures, which were categorized into comparative modeling, fold recognition, and new fold targets. Domain definitions were defined upon visual examination of the structures with the aid of automated domain-parsing programs. Domain categorization was determined by comparison of the target structures with those in the Protein Data Bank at the time each target expired and a variety of sequence and structure-based methods to determine potential homologous relationships. PMID:16187342

  12. Generating target system specifications from a domain model using CLIPS

    NASA Technical Reports Server (NTRS)

    Sugumaran, Vijayan; Gomaa, Hassan; Kerschberg, Larry

    1991-01-01

    The quest for reuse in software engineering is still being pursued and researchers are actively investigating the domain modeling approach to software construction. There are several domain modeling efforts reported in the literature and they all agree that the components that are generated from domain modeling are more conducive to reuse. Once a domain model is created, several target systems can be generated by tailoring the domain model or by evolving the domain model and then tailoring it according to the specified requirements. This paper presents the Evolutionary Domain Life Cycle (EDLC) paradigm in which a domain model is created using multiple views, namely, aggregation hierarchy, generalization/specialization hierarchies, object communication diagrams and state transition diagrams. The architecture of the Knowledge Based Requirements Elicitation Tool (KBRET) which is used to generate target system specifications is also presented. The preliminary version of KBRET is implemented in the C Language Integrated Production System (CLIPS).

  13. STRAD pseudokinases regulate axogenesis and LKB1 stability

    PubMed Central

    2014-01-01

    Background Neuronal polarization is an essential step of morphogenesis and connectivity in the developing brain. The serine/threonine kinase LKB1 is a key regulator of cell polarity, metabolism, tumorigenesis, and is required for axon formation. It is allosterically regulated by two related and evolutionarily conserved pseudokinases, STe20-Related ADapters (STRADs) α and β. The roles of STRADα and STRADβ in the developing nervous system are not fully defined, nor is it known whether they serve distinct functions. Results We find that STRADα is highly spliced and appears to be the primal STRAD paralog. We report that each STRAD is sufficient for axogenesis and promoting cell survival in the developing cortex. We also reveal a reciprocal protein-stabilizing relationship in vivo between LKB1 and STRADα, whereby STRADα specifically maintains LKB1 protein levels via cytoplasmic compartmentalization. Conclusions We demonstrate a novel role for STRADβ in axogenesis and also show for the first time in vivo that STRADα, but not STRADβ, is responsible for LKB1 protein stability. PMID:24594058

  14. Shared and distinct functions of the pseudokinase CORYNE (CRN) in shoot and root stem cell maintenance of Arabidopsis

    PubMed Central

    Somssich, Marc; Bleckmann, Andrea; Simon, Rüdiger

    2016-01-01

    Stem cell maintenance in plants depends on the activity of small secreted signaling peptides of the CLAVATA3/EMBRYO SURROUNDING REGION (CLE) family, which, in the shoot, act through at least three kinds of receptor complexes, CLAVATA1 (CLV1) homomers, CLAVATA2 (CLV2) / CORYNE (CRN) heteromers, and CLV1/CLV2/CRN multimers. In the root, the CLV2/CRN receptor complexes function in the proximal meristem to transmit signals from the CLE peptide CLE40. While CLV1 consists of an extracellular receptor domain and an intracellular kinase domain, CLV2, a leucine-rich repeat (LRR) receptor-like protein, and CRN, a protein kinase, have to interact to form a receptor–kinase complex. The kinase domain of CRN has been reported to be catalytically inactive, and it is not yet known how the CLV2/CRN complex can relay the perceived signal into the cells, and whether the kinase domain is necessary for signal transduction at all. In this study we show that the kinase domain of CRN is actively involved in CLV3 signal transduction in the shoot apical meristem of Arabidopsis, but it is dispensable for CRN protein function in root meristem maintenance. Hence, we provide an example of a catalytically inactive pseudokinase that is involved in two homologous pathways, but functions in distinctively different ways in each of them. PMID:27229734

  15. Superdiffusive motion of membrane-targeting C2 domains

    PubMed Central

    Campagnola, Grace; Nepal, Kanti; Schroder, Bryce W.; Peersen, Olve B.; Krapf, Diego

    2015-01-01

    Membrane-targeting domains play crucial roles in the recruitment of signalling molecules to the plasma membrane. For most peripheral proteins, the protein-to-membrane interaction is transient. After proteins dissociate from the membrane they have been observed to rebind following brief excursions in the bulk solution. Such membrane hops can have broad implications for the efficiency of reactions on membranes. We study the diffusion of membrane-targeting C2 domains using single-molecule tracking in supported lipid bilayers. The ensemble-averaged mean square displacement (MSD) exhibits superdiffusive behaviour. However, traditional time-averaged MSD analysis of individual trajectories remains linear and does not reveal superdiffusion. Our observations are explained in terms of bulk excursions that introduce jumps with a heavy-tail distribution. These hopping events allow proteins to explore large areas in a short time. The experimental results are shown to be consistent with analytical models of bulk-mediated diffusion and numerical simulations. PMID:26639944

  16. Superdiffusive motion of membrane-targeting C2 domains

    NASA Astrophysics Data System (ADS)

    Campagnola, Grace; Nepal, Kanti; Schroder, Bryce W.; Peersen, Olve B.; Krapf, Diego

    2015-12-01

    Membrane-targeting domains play crucial roles in the recruitment of signalling molecules to the plasma membrane. For most peripheral proteins, the protein-to-membrane interaction is transient. After proteins dissociate from the membrane they have been observed to rebind following brief excursions in the bulk solution. Such membrane hops can have broad implications for the efficiency of reactions on membranes. We study the diffusion of membrane-targeting C2 domains using single-molecule tracking in supported lipid bilayers. The ensemble-averaged mean square displacement (MSD) exhibits superdiffusive behaviour. However, traditional time-averaged MSD analysis of individual trajectories remains linear and does not reveal superdiffusion. Our observations are explained in terms of bulk excursions that introduce jumps with a heavy-tail distribution. These hopping events allow proteins to explore large areas in a short time. The experimental results are shown to be consistent with analytical models of bulk-mediated diffusion and numerical simulations.

  17. Coverage Assessment and Target Tracking in 3D Domains

    PubMed Central

    Boudriga, Noureddine; Hamdi, Mohamed; Iyengar, Sitharama

    2011-01-01

    Recent advances in integrated electronic devices motivated the use of Wireless Sensor Networks (WSNs) in many applications including domain surveillance and mobile target tracking, where a number of sensors are scattered within a sensitive region to detect the presence of intruders and forward related events to some analysis center(s). Obviously, sensor deployment should guarantee an optimal event detection rate and should reduce coverage holes. Most of the coverage control approaches proposed in the literature deal with two-dimensional zones and do not develop strategies to handle coverage in three-dimensional domains, which is becoming a requirement for many applications including water monitoring, indoor surveillance, and projectile tracking. This paper proposes efficient techniques to detect coverage holes in a 3D domain using a finite set of sensors, repair the holes, and track hostile targets. To this end, we use the concepts of Voronoi tessellation, Vietoris complex, and retract by deformation. We show in particular that, through a set of iterative transformations of the Vietoris complex corresponding to the deployed sensors, the number of coverage holes can be computed with a low complexity. Mobility strategies are also proposed to repair holes by moving appropriately sensors towards the uncovered zones. The tracking objective is to set a non-uniform WSN coverage within the monitored domain to allow detecting the target(s) by the set of sensors. We show, in particular, how the proposed algorithms adapt to cope with obstacles. Simulation experiments are carried out to analyze the efficiency of the proposed models. To our knowledge, repairing and tracking is addressed for the first time in 3D spaces with different sensor coverage schemes. PMID:22163733

  18. Targeting the inhibitor of Apoptosis Protein BIR3 binding domains.

    PubMed

    Jaquith, James B

    2014-05-01

    The Inhibitor of Apoptosis Proteins (IAPs) play a critical role in the regulation of cellular apoptosis and cytokine signaling. IAP family members include XIAP, cIAP1, cIAP2, NAIP, survivin, Apollon/Bruce, ML-IAP/livin and TIAP. The IAPs have been targeted using both antisense oligonucleotides and small molecule inhibitors. Several research teams have advanced compounds that bind the highly conserved BIR3 domains of the IAPs into clinical trials, as single agents and in combination with standard of care. This patent review highlights the medicinal chemistry strategies that have been applied to the development of clinical compounds. PMID:24998289

  19. Hydrophobic and Basic Domains Target Proteins to Lipid Droplets

    PubMed Central

    Ingelmo-Torres, Mercedes; González-Moreno, Elena; Kassan, Adam; Hanzal-Bayer, Michael; Tebar, Francesc; Herms, Albert; Grewal, Thomas; Hancock, John F.; Enrich, Carlos; Bosch, Marta; Gross, Steven P.; Parton, Robert G.; Pol, Albert

    2010-01-01

    In recent years, progress in the study of the lateral organization of the plasma membrane has led to the proposal that mammalian cells use two different organelles to store lipids: intracellular lipid droplets (LDs) and plasma membrane caveolae. Experimental evidence suggests that caveolin (CAV) may act as a sensitive lipid-organizing molecule that physically connects these two lipid-storing organelles. Here, we determine the sequences necessary for efficient sorting of CAV to LDs. We show that targeting is a process cooperatively mediated by two motifs. CAV's central hydrophobic domain (Hyd) anchors CAV to the endoplasmic reticulum (ER). Next, positively charged sequences (Pos-Seqs) mediate sorting of CAVs into LDs. Our findings were confirmed by identifying an equivalent, non-conserved but functionally interchangeable Pos-Seq in ALDI, a bona fide LD-resident protein. Using this information, we were able to retarget a cytosolic protein and convert it to an LD-resident protein. Further studies suggest three requirements for targeting via this mechanism: the positive charge of the Pos-Seq, physical proximity between Pos-Seq and Hyd and a precise spatial orientation between both motifs. The study uncovers remarkable similarities with the signals that target proteins to the membrane of mitochondria and peroxisomes PMID:19874557

  20. Fourier domain target transformation analysis in the thermal infrared

    NASA Technical Reports Server (NTRS)

    Anderson, D. L.

    1993-01-01

    Remote sensing uses of principal component analysis (PCA) of multispectral images include band selection and optimal color selection for display of information content. PCA has also been used for quantitative determination of mineral types and abundances given end member spectra. The preliminary results of the investigation of target transformation PCA (TTPCA) in the fourier domain to both identify end member spectra in an unknown spectrum, and to then calculate the relative concentrations of these selected end members are presented. Identification of endmember spectra in an unknown sample has previously been performed through bandmatching, expert systems, and binary classifiers. Both bandmatching and expert system techniques require the analyst to select bands or combinations of bands unique to each endmember. Thermal infrared mineral spectra have broad spectral features which vary subtly with composition. This makes identification of unique features difficult. Alternatively, whole spectra can be used in the classification process, in which case there is not need for an expert to identify unique spectra. Use of binary classifiers on whole spectra to identify endmember components has met with some success. These techniques can be used, along with a least squares fit approach on the endmembers identified, to derive compositional information. An alternative to the approach outlined above usese target transformation in conjunction with PCA to both identify and quantify the composition of unknown spectra. Preprocessing of the library and unknown spectra into the fourier domain, and using only a specific number of the components, allows for significant data volume reduction while maintaining a linear relationship in a Beer's Law sense. The approach taken here is to iteratively calculate concentrations, reducing the number of endmember components until only non-negative concentrations remain.

  1. A Role for Lipid Shells in Targeting Proteins to Caveolae, Rafts, and Other Lipid Domains

    NASA Astrophysics Data System (ADS)

    Anderson, Richard G. W.; Jacobson, Ken

    2002-06-01

    The surface membrane of cells is studded with morphologically distinct regions, or domains, like microvilli, cell-cell junctions, and coated pits. Each of these domains is specialized for a particular function, such as nutrient absorption, cell-cell communication, and endocytosis. Lipid domains, which include caveolae and rafts, are one of the least understood membrane domains. These domains are high in cholesterol and sphingolipids, have a light buoyant density, and function in both endocytosis and cell signaling. A major mystery, however, is how resident molecules are targeted to lipid domains. Here, we propose that the molecular address for proteins targeted to lipid domains is a lipid shell.

  2. Loss of Tribbles pseudokinase-3 promotes Akt-driven tumorigenesis via FOXO inactivation

    PubMed Central

    Salazar, M; Lorente, M; García-Taboada, E; Pérez Gómez, E; Dávila, D; Zúñiga-García, P; María Flores, J; Rodríguez, A; Hegedus, Z; Mosén-Ansorena, D; Aransay, A M; Hernández-Tiedra, S; López-Valero, I; Quintanilla, M; Sánchez, C; Iovanna, J L; Dusetti, N; Guzmán, M; Francis, S E; Carracedo, A; Kiss-Toth, E; Velasco, G

    2015-01-01

    Tribbles pseudokinase-3 (TRIB3) has been proposed to act as an inhibitor of AKT although the precise molecular basis of this activity and whether the loss of TRIB3 contributes to cancer initiation and progression remain to be clarified. In this study, by using a wide array of in vitro and in vivo approaches, including a Trib3 knockout mouse, we demonstrate that TRIB3 has a tumor-suppressing role. We also find that the mechanism by which TRIB3 loss enhances tumorigenesis relies on the dysregulation of the phosphorylation of AKT by the mTORC2 complex, which leads to an enhanced phosphorylation of AKT on Ser473 and the subsequent hyperphosphorylation and inactivation of the transcription factor FOXO3. These observations support the notion that loss of TRIB3 is associated with a more aggressive phenotype in various types of tumors by enhancing the activity of the mTORC2/AKT/FOXO axis. PMID:25168244

  3. Discoidin Domain Receptors: Potential Actors and Targets in Cancer

    PubMed Central

    Rammal, Hassan; Saby, Charles; Magnien, Kevin; Van-Gulick, Laurence; Garnotel, Roselyne; Buache, Emilie; El Btaouri, Hassan; Jeannesson, Pierre; Morjani, Hamid

    2016-01-01

    The extracellular matrix critically controls cancer cell behavior by inducing several signaling pathways through cell membrane receptors. Besides conferring structural properties to tissues around the tumor, the extracellular matrix is able to regulate cell proliferation, survival, migration, and invasion. Among these receptors, the integrins family constitutes a major class of receptors that mediate cell interactions with extracellular matrix components. Twenty years ago, a new class of extracellular matrix receptors has been discovered. These tyrosine kinase receptors are the two discoidin domain receptors DDR1 and DDR2. DDR1 was first identified in the Dictyostelium discoideum and was shown to mediate cell aggregation. DDR2 shares highly conserved sequences with DDR1. Both receptors are activated upon binding to collagen, one of the most abundant proteins in extracellular matrix. While DDR2 can only be activated by fibrillar collagen, particularly types I and III, DDR1 is mostly activated by type I and IV collagens. In contrast with classical growth factor tyrosine kinase receptors which display a rapid and transient activation, DDR1 and DDR2 are unique in that they exhibit delayed and sustained receptor phosphorylation upon binding to collagen. Recent studies have reported differential expression and mutations of DDR1 and DDR2 in several cancer types and indicate clearly that these receptors have to be taken into account as new players in the different aspects of tumor progression, from non-malignant to highly malignant and invasive stages. This review will discuss the current knowledge on the role of DDR1 and DDR2 in malignant transformation, cell proliferation, epithelial to mesenchymal transition, migratory, and invasive processes, and finally the modulation of the response to chemotherapy. These new insights suggest that DDR1 and DDR2 are new potential targets in cancer therapy. PMID:27014069

  4. Knowledge-based approach for generating target system specifications from a domain model

    NASA Technical Reports Server (NTRS)

    Gomaa, Hassan; Kerschberg, Larry; Sugumaran, Vijayan

    1992-01-01

    Several institutions in industry and academia are pursuing research efforts in domain modeling to address unresolved issues in software reuse. To demonstrate the concepts of domain modeling and software reuse, a prototype software engineering environment is being developed at George Mason University to support the creation of domain models and the generation of target system specifications. This prototype environment, which is application domain independent, consists of an integrated set of commercial off-the-shelf software tools and custom-developed software tools. This paper describes the knowledge-based tool that was developed as part of the environment to generate target system specifications from a domain model.

  5. Unsupervised Spatial Event Detection in Targeted Domains with Applications to Civil Unrest Modeling

    PubMed Central

    Zhao, Liang; Chen, Feng; Dai, Jing; Hua, Ting; Lu, Chang-Tien; Ramakrishnan, Naren

    2014-01-01

    Twitter has become a popular data source as a surrogate for monitoring and detecting events. Targeted domains such as crime, election, and social unrest require the creation of algorithms capable of detecting events pertinent to these domains. Due to the unstructured language, short-length messages, dynamics, and heterogeneity typical of Twitter data streams, it is technically difficult and labor-intensive to develop and maintain supervised learning systems. We present a novel unsupervised approach for detecting spatial events in targeted domains and illustrate this approach using one specific domain, viz. civil unrest modeling. Given a targeted domain, we propose a dynamic query expansion algorithm to iteratively expand domain-related terms, and generate a tweet homogeneous graph. An anomaly identification method is utilized to detect spatial events over this graph by jointly maximizing local modularity and spatial scan statistics. Extensive experiments conducted in 10 Latin American countries demonstrate the effectiveness of the proposed approach. PMID:25350136

  6. Using llama derived single domain antibodies to target botulinum neurotoxins

    NASA Astrophysics Data System (ADS)

    Swain, Marla D.; Anderson, George P.; Bernstein, Rachael D.; Liu, Jinny L.; Goldman, Ellen R.

    2010-04-01

    Llama serum contains both conventional IgG as well as unique forms of antibody that contain only heavy chains where antigen binding is mediated through a single variable domain. These variable domains can be expressed recombinantly and are referred to as single domain antibodies (sdAb). SdAb are among the smallest known naturally derived antigen binding fragments, possess good solubility, thermal stability, and can refold after heat and chemical denaturation. Llamas were immunized with either BoNT A or B toxoid and phage display libraries prepared. Single domain antibodies (sdAb) that were able to detect botulinum neurotoxin (BoNT) serotypes A and B were selected from their respective libraries. Here, the binders obtained by panning the BoNT B library on either BoNT B toxoid or BoNT B complex toxoid coated plates or BoNT B toxin coupled microspheres are described. Using these panning methods, we selected for binders that showed specificity for BoNT B. Phage displayed binders were screened, moved to a protein expression vector and soluble sdAb was produced. Using a Luminex flow cytometer binders were evaluated in direct binding assays. We have exploited the unique properties of sdAb and used them as biological recognition elements in immuno-based sensors that can detect BoNT B.

  7. Discovery of cancer drug targets by CRISPR-Cas9 screening of protein domains

    PubMed Central

    Shi, Junwei; Wang, Eric; Milazzo, Joseph P.; Wang, Zhihua; Kinney, Justin B.; Vakoc, Christopher R.

    2015-01-01

    CRISPR-Cas9 genome editing technology holds great promise for discovering therapeutic targets in cancer and other diseases. Current screening strategies target CRISPR-induced mutations to the 5’ exons of candidate genes1–5, but this approach often produces in-frame variants that retain functionality, which can obscure even strong genetic dependencies. Here we overcome this limitation by targeting CRISPR mutagenesis to exons encoding functional protein domains. This generates a higher proportion of null mutations and substantially increases the potency of negative selection. We show that the magnitude of negative selection reports the functional importance of individual protein domains of interest. A screen of 192 chromatin regulatory domains in murine acute myeloid leukemia cells identifies six known drug targets and 19 additional dependencies. A broader application of this approach may allow comprehensive identification of protein domains that sustain cancer cells and are suitable for drug targeting. PMID:25961408

  8. Domain is a moving target for relational learning.

    PubMed

    Katz, Jeffrey S; Sturz, Bradley R; Wright, Anthony A

    2010-02-01

    The domain for relational learning was manipulated by varying the training set size for pigeons that had learned the same/different (S/D) concept. Six pigeons that had learned a S/D task with pairs of pictures with a set size of 1024 picture items had their training set size reduced to 8 items. Training on the reduced 8-item set was followed by transfer testing that was repeated four times. Transfer performance following reduction of the training set to 8 items was 9.2% less than it had been when the pigeons were trained with the 1024-item set, but 25.8% above chance. This partial abstract-concept learning remained constant over the four tests with novel stimuli. The results show that a broad domain established by a large expanding training set can once again become restricted by further training with a small training set. PMID:20006686

  9. Targeting of a histone acetyltransferase domain to a promoter enhances protein expression levels in mammalian cells.

    PubMed

    Kwaks, T H J; Sewalt, R G A B; van Blokland, R; Siersma, T J; Kasiem, M; Kelder, A; Otte, A P

    2005-01-12

    Silencing of transfected genes in mammalian cells is a fundamental problem that probably involves the (in)accessibility status of chromatin. A potential solution to this problem is to provide a cell with protein factors that make the chromatin of a promoter more open or accessible for transcription. We tested this by targeting such proteins to different promoters. We found that targeting the p300 histone acetyltransferase (HAT) domain to strong viral or cellular promoters is sufficient to result in higher expression levels of a reporter protein. In contrast, targeting the chromatin-remodeling factor Brahma does not result in stable, higher protein expression levels. The long-term effects of the targeted p300HAT domain on protein expression levels are positively reinforced, when also anti-repressor elements are applied to flank the reporter construct. These elements were previously shown to be potent blockers of chromatin-associated repressors. The simultaneous application of the targeted p300HAT domain and anti-repressor elements conveys long-term stability to protein expression. Whereas no copy number dependency is achieved by targeting of the p300HAT domain alone, copy number dependency is improved when anti-repressor elements are included. We conclude that targeting of protein domains such as HAT domains helps to facilitate expression of transfected genes in mammalian cells. However, the simultaneous application of other genomic elements such as the anti-repressor elements prevents silencing more efficiently.

  10. The replication focus targeting sequence (RFTS) domain is a DNA-competitive inhibitor of Dnmt1.

    PubMed

    Syeda, Farisa; Fagan, Rebecca L; Wean, Matthew; Avvakumov, George V; Walker, John R; Xue, Sheng; Dhe-Paganon, Sirano; Brenner, Charles

    2011-04-29

    Dnmt1 (DNA methyltransferase 1) is the principal enzyme responsible for maintenance of cytosine methylation at CpG dinucleotides in the mammalian genome. The N-terminal replication focus targeting sequence (RFTS) domain of Dnmt1 has been implicated in subcellular localization, protein association, and catalytic function. However, progress in understanding its function has been limited by the lack of assays for and a structure of this domain. Here, we show that the naked DNA- and polynucleosome-binding activities of Dnmt1 are inhibited by the RFTS domain, which functions by virtue of binding the catalytic domain to the exclusion of DNA. Kinetic analysis with a fluorogenic DNA substrate established the RFTS domain as a 600-fold inhibitor of Dnmt1 enzymatic activity. The crystal structure of the RFTS domain reveals a novel fold and supports a mechanism in which an RFTS-targeted Dnmt1-binding protein, such as Uhrf1, may activate Dnmt1 for DNA binding.

  11. The Replication Focus Targeting Sequence (RFTS) Domain Is a DNA-competitive Inhibitor of Dnmt1

    SciTech Connect

    Syeda, Farisa; Fagan, Rebecca L.; Wean, Matthew; Avvakumov, George V.; Walker, John R.; Xue, Sheng; Dhe-Paganon, Sirano; Brenner, Charles

    2015-11-30

    Dnmt1 (DNA methyltransferase 1) is the principal enzyme responsible for maintenance of cytosine methylation at CpG dinucleotides in the mammalian genome. The N-terminal replication focus targeting sequence (RFTS) domain of Dnmt1 has been implicated in subcellular localization, protein association, and catalytic function. However, progress in understanding its function has been limited by the lack of assays for and a structure of this domain. Here, we show that the naked DNA- and polynucleosome-binding activities of Dnmt1 are inhibited by the RFTS domain, which functions by virtue of binding the catalytic domain to the exclusion of DNA. Kinetic analysis with a fluorogenic DNA substrate established the RFTS domain as a 600-fold inhibitor of Dnmt1 enzymatic activity. The crystal structure of the RFTS domain reveals a novel fold and supports a mechanism in which an RFTS-targeted Dnmt1-binding protein, such as Uhrf1, may activate Dnmt1 for DNA binding.

  12. Role of the hydrophobic domain in targeting caveolin-1 to lipid droplets

    PubMed Central

    Ostermeyer, Anne G.; Ramcharan, Lynne T.; Zeng, Youchun; Lublin, Douglas M.; Brown, Deborah A.

    2004-01-01

    Although caveolins normally reside in caveolae, they can accumulate on the surface of cytoplasmic lipid droplets (LDs). Here, we first provided support for our model that overaccumulation of caveolins in the endoplasmic reticulum (ER) diverts the proteins to nascent LDs budding from the ER. Next, we found that a mutant H-Ras, present on the cytoplasmic surface of the ER but lacking a hydrophobic peptide domain, did not accumulate on LDs. We used the fact that wild-type caveolin-1 accumulates in LDs after brefeldin A treatment or when linked to an ER retrieval motif to search for mutants defective in LD targeting. The hydrophobic domain, but no specific sequence therein, was required for LD targeting of caveolin-1. Certain Leu insertions blocked LD targeting, independently of hydrophobic domain length, but dependent on their position in the domain. We propose that proper packing of putative hydrophobic helices may be required for LD targeting of caveolin-1. PMID:14709541

  13. Fitting hidden Markov models of protein domains to a target species: application to Plasmodium falciparum

    PubMed Central

    2012-01-01

    Background Hidden Markov Models (HMMs) are a powerful tool for protein domain identification. The Pfam database notably provides a large collection of HMMs which are widely used for the annotation of proteins in new sequenced organisms. In Pfam, each domain family is represented by a curated multiple sequence alignment from which a profile HMM is built. In spite of their high specificity, HMMs may lack sensitivity when searching for domains in divergent organisms. This is particularly the case for species with a biased amino-acid composition, such as P. falciparum, the main causal agent of human malaria. In this context, fitting HMMs to the specificities of the target proteome can help identify additional domains. Results Using P. falciparum as an example, we compare approaches that have been proposed for this problem, and present two alternative methods. Because previous attempts strongly rely on known domain occurrences in the target species or its close relatives, they mainly improve the detection of domains which belong to already identified families. Our methods learn global correction rules that adjust amino-acid distributions associated with the match states of HMMs. These rules are applied to all match states of the whole HMM library, thus enabling the detection of domains from previously absent families. Additionally, we propose a procedure to estimate the proportion of false positives among the newly discovered domains. Starting with the Pfam standard library, we build several new libraries with the different HMM-fitting approaches. These libraries are first used to detect new domain occurrences with low E-values. Second, by applying the Co-Occurrence Domain Discovery (CODD) procedure we have recently proposed, the libraries are further used to identify likely occurrences among potential domains with higher E-values. Conclusion We show that the new approaches allow identification of several domain families previously absent in the P. falciparum proteome

  14. Versatile TPR domains accommodate different modes of target protein recognition and function.

    PubMed

    Allan, Rudi Kenneth; Ratajczak, Thomas

    2011-07-01

    The tetratricopeptide repeat (TPR) motif is one of many repeat motifs that form structural domains in proteins that can act as interaction scaffolds in the formation of multi-protein complexes involved in numerous cellular processes such as transcription, the cell cycle, protein translocation, protein degradation and host defence against invading pathogens. The crystal structures of many TPR domain-containing proteins have been determined, showing TPR motifs as two anti-parallel α-helices packed in tandem arrays to form a structure with an amphipathic groove which can bind a target peptide. This is however not the only mode of target recognition by TPR domains, with short amino acid insertions and alternative TPR motif conformations also shown to contribute to protein interactions, highlighting diversity in TPR domains and the versatility of this structure in mediating biological events.

  15. The Sushi domains of GABAB receptors function as axonal targeting signals.

    PubMed

    Biermann, Barbara; Ivankova-Susankova, Klara; Bradaia, Amyaouch; Abdel Aziz, Said; Besseyrias, Valerie; Kapfhammer, Josef P; Missler, Markus; Gassmann, Martin; Bettler, Bernhard

    2010-01-27

    GABA(B) receptors are the G-protein-coupled receptors for GABA, the main inhibitory neurotransmitter in the brain. Two receptor subtypes, GABA(B(1a,2)) and GABA(B(1b,2)), are formed by the assembly of GABA(B1a) and GABA(B1b) subunits with GABA(B2) subunits. The GABA(B1b) subunit is a shorter isoform of the GABA(B1a) subunit lacking two N-terminal protein interaction motifs, the sushi domains. Selectively GABA(B1a) protein traffics into the axons of glutamatergic neurons, whereas both the GABA(B1a) and GABA(B1b) proteins traffic into the dendrites. The mechanism(s) and targeting signal(s) responsible for the selective trafficking of GABA(B1a) protein into axons are unknown. Here, we provide evidence that the sushi domains are axonal targeting signals that redirect GABA(B1a) protein from its default dendritic localization to axons. Specifically, we show that mutations in the sushi domains preventing protein interactions preclude axonal localization of GABA(B1a). When fused to CD8alpha, the sushi domains polarize this uniformly distributed protein to axons. Likewise, when fused to mGluR1a the sushi domains redirect this somatodendritic protein to axons, showing that the sushi domains can override dendritic targeting information in a heterologous protein. Cell surface expression of the sushi domains is not required for axonal localization of GABA(B1a). Altogether, our findings are consistent with the sushi domains functioning as axonal targeting signals by interacting with axonally bound proteins along intracellular sorting pathways. Our data provide a mechanistic explanation for the selective trafficking of GABA(B(1a,2)) receptors into axons while at the same time identifying a well defined axonal delivery module that can be used as an experimental tool.

  16. The T1 domain of Kv1.3 mediates intracellular targeting to axons.

    PubMed

    Rivera, Jacqueline F; Chu, Po-Ju; Arnold, Don B

    2005-10-01

    Shaker K+ channels play an important role in modulating electrical excitability of axons. Recent work has demonstrated that the T1 tetramerization domain of Kv1.2 is both necessary and sufficient for targeting of the channel to the axonal surface [Gu, C., Jan, Y.N. & Jan, L.Y. (2003) Science,301, 646-649]. Here we use a related channel, Kv1.3, as a model to investigate cellular mechanisms that mediate axonal targeting. We show that the T1 domain of Kv1.3 is necessary and sufficient to mediate targeting of the channel to the axonal surface in pyramidal neurons in slices of cortex from neonatal rat. The T1 domain is also sufficient to cause preferential axonal localization of intracellular protein, which indicates that the domain probably does not work through compartment-specific endocytosis or compartment-specific vesicle docking. To determine whether the T1 domain mediates axonal trafficking of transport vesicles, we compared the trafficking of vesicles containing green fluorescent protein-labelled transferrin receptor with those containing the same protein fused with the T1 domain in living cortical neurons. Vesicles containing the wild-type transferrin receptor did not traffic to the axon, in accord with previously published results; however, those containing the transferrin receptor fused to T1 did traffic to the axon. These results are consistent with the T1 domain of Kv1.3 mediating axonal targeting by causing transport vesicles to traffic to axons and they represent the first evidence that such a mechanism might underlie axonal targeting. PMID:16262625

  17. Crystallization of the Focal Adhesion Kinase Targeting (FAT) Domain in a Primitive Orthorhombic Space Group

    SciTech Connect

    Magis,A.; Bailey, K.; Kurenova, E.; Hernandez Prada, J.; Cance, W.; Ostrov, D.

    2008-01-01

    X-ray diffraction data from the targeting (FAT) domain of focal adhesion kinase (FAK) were collected from a single crystal that diffracted to 1.99 Angstroms resolution and reduced to the primitive orthorhombic lattice. A single molecule was predicted to be present in the asymmetric unit based on the Matthews coefficient. The data were phased using molecular-replacement methods using an existing model of the FAK FAT domain. All structures of human focal adhesion kinase FAT domains solved to date have been solved in a C-centered orthorhombic space group.

  18. A conserved polybasic domain mediates plasma membrane targeting of Lgl and its regulation by hypoxia.

    PubMed

    Dong, Wei; Zhang, Xuejing; Liu, Weijie; Chen, Yi-jiun; Huang, Juan; Austin, Erin; Celotto, Alicia M; Jiang, Wendy Z; Palladino, Michael J; Jiang, Yu; Hammond, Gerald R V; Hong, Yang

    2015-10-26

    Lethal giant larvae (Lgl) plays essential and conserved functions in regulating both cell polarity and tumorigenesis in Drosophila melanogaster and vertebrates. It is well recognized that plasma membrane (PM) or cell cortex localization is crucial for Lgl function in vivo, but its membrane-targeting mechanisms remain poorly understood. Here, we discovered that hypoxia acutely and reversibly inhibits Lgl PM targeting through a posttranslational mechanism that is independent of the well-characterized atypical protein kinase C (aPKC) or Aurora kinase-mediated phosphorylations. Instead, we identified an evolutionarily conserved polybasic (PB) domain that targets Lgl to the PM via electrostatic binding to membrane phosphatidylinositol phosphates. Such PB domain-mediated PM targeting is inhibited by hypoxia, which reduces inositol phospholipid levels on the PM through adenosine triphosphate depletion. Moreover, Lgl PB domain contains all the identified phosphorylation sites of aPKC and Aurora kinases, providing a molecular mechanism by which phosphorylations neutralize the positive charges on the PB domain to inhibit Lgl PM targeting. PMID:26483556

  19. Domain adaptation of image classification based on collective target nearest-neighbor representation

    NASA Astrophysics Data System (ADS)

    Tang, Song; Ye, Mao; Liu, Qihe; Li, Fan

    2016-05-01

    In many practical applications, we frequently face the awkward problem in which an image classifier trained in a scenario is difficult to use in a new scenario. Traditionally, the probability inference-based methods are used to solve this problem. From the point of image representation, we propose an approach for domain adaption of image classification. First, all source samples are supposed to form the dictionary. Then, we encode the target sample by combining this dictionary and the local geometric information. Based on this new representation, called target nearest-neighbor representation, image classification can obtain good performance in the target domain. Our core contribution is that the nearest-neighbor information of the target sample is technically exploited to form more robust representation. Experimental results confirm the effectiveness of our method.

  20. Novel Inhibitors of AKT: Assessment of a Different Approach Targeting the Pleckstrin Homology Domain

    PubMed Central

    Meuillet, E.J.

    2014-01-01

    Protein kinase B/AKT plays a central role in cancer. The serine/threonine kinase is overexpressed or constitutively active in many cancers and has been validated as a therapeutic target for cancer treatment. However, targeting the kinase activity has revealed itself to be a challenge due to non-selectivity of the compounds towards other kinases. This review summarizes other approaches scientists have developed to inhibit the activity and function of AKT. They consist of targeting the pleckstrin homology (PH) domain of AKT. Indeed, upon the generation of 3-phosphorylated phosphatidylinositol phosphates (PI3Ps) by PI3-kinase (PI3K), AKT translocates from the cytosol to the plasma membrane and binds to the PI3Ps via its PH domain. Thus, several analogs of PI3Ps (PI Analogs or PIAs), alkylphospholipids (APLs), such as edelfosine or inositol phosphates (IPs) have been described to inhibit the binding of the PH domain to PI3Ps. Recent allostetic inhibitors and small molecules that do not bind the kinase domain but affect the kinase activity of AKT, presumably by interacting with the PH domain, have been also identified. Finally, several drug screening studies spawned novel chemical scaffolds that bind the PH domain of AKT. Together, these approaches have been more or less sucessful in vitro and to some extent translated in preclinical studies. Several of these new AKT PH domain inhibitors exhibit promising anti-tumor activity in mouse models and some of them show synergy with ionizing radiation and chemotherapy. Early clinical trials have started and results will attest to the validity and efficacy of such approaches in the near future. PMID:21649580

  1. A conserved polybasic domain mediates plasma membrane targeting of Lgl and its regulation by hypoxia

    PubMed Central

    Dong, Wei; Zhang, Xuejing; Liu, Weijie; Chen, Yi-jiun; Huang, Juan; Austin, Erin; Celotto, Alicia M.; Jiang, Wendy Z.; Palladino, Michael J.; Jiang, Yu; Hammond, Gerald R.V.

    2015-01-01

    Lethal giant larvae (Lgl) plays essential and conserved functions in regulating both cell polarity and tumorigenesis in Drosophila melanogaster and vertebrates. It is well recognized that plasma membrane (PM) or cell cortex localization is crucial for Lgl function in vivo, but its membrane-targeting mechanisms remain poorly understood. Here, we discovered that hypoxia acutely and reversibly inhibits Lgl PM targeting through a posttranslational mechanism that is independent of the well-characterized atypical protein kinase C (aPKC) or Aurora kinase–mediated phosphorylations. Instead, we identified an evolutionarily conserved polybasic (PB) domain that targets Lgl to the PM via electrostatic binding to membrane phosphatidylinositol phosphates. Such PB domain–mediated PM targeting is inhibited by hypoxia, which reduces inositol phospholipid levels on the PM through adenosine triphosphate depletion. Moreover, Lgl PB domain contains all the identified phosphorylation sites of aPKC and Aurora kinases, providing a molecular mechanism by which phosphorylations neutralize the positive charges on the PB domain to inhibit Lgl PM targeting. PMID:26483556

  2. Strategy to target the substrate binding site of SET domain protein methyltransferases.

    PubMed

    Nguyen, Kong T; Li, Fengling; Poda, Gennadiy; Smil, David; Vedadi, Masoud; Schapira, Matthieu

    2013-03-25

    Protein methyltransferases (PMTs) are a novel gene family of therapeutic relevance involved in chromatin-mediated signaling and other biological mechanisms. Most PMTs are organized around the structurally conserved SET domain that catalyzes the methylation of a substrate lysine. A few potent chemical inhibitors compete with the protein substrate, and all are anchored in the channel recruiting the methyl-accepting lysine. We propose a novel strategy to design focused chemical libraries targeting the substrate binding site, where a limited number of warheads each occupying the lysine-channel of multiple enzymes would be decorated by different substituents. A variety of sequence and structure-based approaches used to analyze the diversity of the lysine channel of SET domain PMTs support the relevance of this strategy. We show that chemical fragments derived from published inhibitors are valid warheads that can be used in the design of novel focused libraries targeting other PMTs.

  3. CopraRNA and IntaRNA: predicting small RNA targets, networks and interaction domains.

    PubMed

    Wright, Patrick R; Georg, Jens; Mann, Martin; Sorescu, Dragos A; Richter, Andreas S; Lott, Steffen; Kleinkauf, Robert; Hess, Wolfgang R; Backofen, Rolf

    2014-07-01

    CopraRNA (Comparative prediction algorithm for small RNA targets) is the most recent asset to the Freiburg RNA Tools webserver. It incorporates and extends the functionality of the existing tool IntaRNA (Interacting RNAs) in order to predict targets, interaction domains and consequently the regulatory networks of bacterial small RNA molecules. The CopraRNA prediction results are accompanied by extensive postprocessing methods such as functional enrichment analysis and visualization of interacting regions. Here, we introduce the functionality of the CopraRNA and IntaRNA webservers and give detailed explanations on their postprocessing functionalities. Both tools are freely accessible at http://rna.informatik.uni-freiburg.de. PMID:24838564

  4. CopraRNA and IntaRNA: predicting small RNA targets, networks and interaction domains

    PubMed Central

    Wright, Patrick R.; Georg, Jens; Mann, Martin; Sorescu, Dragos A.; Richter, Andreas S.; Lott, Steffen; Kleinkauf, Robert; Hess, Wolfgang R.; Backofen, Rolf

    2014-01-01

    CopraRNA (Comparative prediction algorithm for small RNA targets) is the most recent asset to the Freiburg RNA Tools webserver. It incorporates and extends the functionality of the existing tool IntaRNA (Interacting RNAs) in order to predict targets, interaction domains and consequently the regulatory networks of bacterial small RNA molecules. The CopraRNA prediction results are accompanied by extensive postprocessing methods such as functional enrichment analysis and visualization of interacting regions. Here, we introduce the functionality of the CopraRNA and IntaRNA webservers and give detailed explanations on their postprocessing functionalities. Both tools are freely accessible at http://rna.informatik.uni-freiburg.de. PMID:24838564

  5. Analysis of the protein domain and domain architecture content in fungi and its application in the search of new antifungal targets.

    PubMed

    Barrera, Alejandro; Alastruey-Izquierdo, Ana; Martín, María J; Cuesta, Isabel; Vizcaíno, Juan Antonio

    2014-07-01

    Over the past several years fungal infections have shown an increasing incidence in the susceptible population, and caused high mortality rates. In parallel, multi-resistant fungi are emerging in human infections. Therefore, the identification of new potential antifungal targets is a priority. The first task of this study was to analyse the protein domain and domain architecture content of the 137 fungal proteomes (corresponding to 111 species) available in UniProtKB (UniProt KnowledgeBase) by January 2013. The resulting list of core and exclusive domain and domain architectures is provided in this paper. It delineates the different levels of fungal taxonomic classification: phylum, subphylum, order, genus and species. The analysis highlighted Aspergillus as the most diverse genus in terms of exclusive domain content. In addition, we also investigated which domains could be considered promiscuous in the different organisms. As an application of this analysis, we explored three different ways to detect potential targets for antifungal drugs. First, we compared the domain and domain architecture content of the human and fungal proteomes, and identified those domains and domain architectures only present in fungi. Secondly, we looked for information regarding fungal pathways in public repositories, where proteins containing promiscuous domains could be involved. Three pathways were identified as a result: lovastatin biosynthesis, xylan degradation and biosynthesis of siroheme. Finally, we classified a subset of the studied fungi in five groups depending on their occurrence in clinical samples. We then looked for exclusive domains in the groups that were more relevant clinically and determined which of them had the potential to bind small molecules. Overall, this study provides a comprehensive analysis of the available fungal proteomes and shows three approaches that can be used as a first step in the detection of new antifungal targets.

  6. Evaluation of Waveform Structure Features on Time Domain Target Recognition under Cross Polarization

    NASA Astrophysics Data System (ADS)

    Selver, M. A.; Seçmen, M.; Zoral, E. Y.

    2016-08-01

    Classification of aircraft targets from scattered electromagnetic waves is a challenging application, which suffers from aspect angle dependency. In order to eliminate the adverse effects of aspect angle, various strategies were developed including the techniques that rely on extraction of several features and design of suitable classification systems to process them. Recently, a hierarchical method, which uses features that take advantage of waveform structure of the scattered signals, is introduced and shown to have effective results. However, this approach has been applied to the special cases that consider only a single planar component of electric field that cause no-cross polarization at the observation point. In this study, two small scale aircraft models, Boeing-747 and DC-10, are selected as the targets and various polarizations are used to analyse the cross-polarization effects on system performance of the aforementioned method. The results reveal the advantages and the shortcomings of using waveform structures in time-domain target identification.

  7. The TCF C-clamp DNA binding domain expands the Wnt transcriptome via alternative target recognition

    PubMed Central

    Hoverter, Nate P.; Zeller, Michael D.; McQuade, Miriam M.; Garibaldi, Angela; Busch, Anke; Selwan, Elizabeth M.; Hertel, Klemens J.; Baldi, Pierre; Waterman, Marian L.

    2014-01-01

    LEF/TCFs direct the final step in Wnt/β-catenin signalling by recruiting β-catenin to genes for activation of transcription. Ancient, non-vertebrate TCFs contain two DNA binding domains, a High Mobility Group box for recognition of the Wnt Response Element (WRE; 5′-CTTTGWWS-3′) and the C-clamp domain for recognition of the GC-rich Helper motif (5′-RCCGCC-3′). Two vertebrate TCFs (TCF-1/TCF7 and TCF-4/TCF7L2) use the C-clamp as an alternatively spliced domain to regulate cell-cycle progression, but how the C-clamp influences TCF binding and activity genome-wide is not known. Here, we used a doxycycline inducible system with ChIP-seq to assess how the C-clamp influences human TCF1 binding genome-wide. Metabolic pulse-labeling of nascent RNA with 4′Thiouridine was used with RNA-seq to connect binding to the Wnt transcriptome. We find that the C-clamp enables targeting to a greater number of gene loci for stronger occupancy and transcription regulation. The C-clamp uses Helper sites concurrently with WREs for gene targeting, but it also targets TCF1 to sites that do not have readily identifiable canonical WREs. The coupled ChIP-seq/4′Thiouridine-seq analysis identified new Wnt target genes, including additional regulators of cell proliferation. Thus, C-clamp containing isoforms of TCFs are potent transcriptional regulators with an expanded transcriptome directed by C-clamp-Helper site interactions. PMID:25414359

  8. Crystal Structures of Free and Ligand-Bound Focal Adhesion Targeting Domain of Pyk2

    SciTech Connect

    Lulo, J.; Yuzawa, S; Schlessinger, J

    2009-01-01

    Focal adhesion targeting (FAT) domains target the non-receptor tyrosine kinases FAK and Pyk2 to cellular focal adhesion areas, where the signaling molecule paxillin is also located. Here, we report the crystal structures of the Pyk2 FAT domain alone or in complex with paxillin LD4 peptides. The overall structure of Pyk2-FAT is an antiparallel four-helix bundle with an up-down, up-down, right-handed topology. In the LD4-bound FAT complex, two paxillin LD4 peptides interact with two opposite sides of Pyk2-FAT, at the surfaces of the a1a4 and a2a3 helices of each FAT molecule. We also demonstrate that, while paxillin is phosphorylated by Pyk2, complex formation between Pyk2 and paxillin does not depend on Pyk2 tyrosine kinase activity. These experiments reveal the structural basis underlying the selectivity of paxillin LD4 binding to the Pyk2 FAT domain and provide insights about the molecular details which influence the different behavior of these two closely-related kinases.

  9. KA1-targeted regulatory domain mutations activate Chk1 in the absence of DNA damage.

    PubMed

    Gong, Eun-Yeung; Smits, Veronique A J; Fumagallo, Felipe; Piscitello, Desiree; Morrice, Nick; Freire, Raimundo; Gillespie, David A

    2015-01-01

    The Chk1 protein kinase is activated in response to DNA damage through ATR-mediated phosphorylation at multiple serine-glutamine (SQ) residues within the C-terminal regulatory domain, however the molecular mechanism is not understood. Modelling indicates a high probability that this region of Chk1 contains a kinase-associated 1 (KA1) domain, a small, compact protein fold found in multiple protein kinases including SOS2, AMPK and MARK3. We introduced mutations into Chk1 designed to disrupt specific structural elements of the predicted KA1 domain. Remarkably, six of seven Chk1 KA1 mutants exhibit constitutive biological activity (Chk1-CA) in the absence of DNA damage, profoundly arresting cells in G2 phase of the cell cycle. Cell cycle arrest induced by selected Chk1-CA mutants depends on kinase catalytic activity, which is increased several-fold compared to wild-type, however phosphorylation of the key ATR regulatory site serine 345 (S345) is not required. Thus, mutations targeting the putative Chk1 KA1 domain confer constitutive biological activity by circumventing the need for ATR-mediated positive regulatory phosphorylation. PMID:26039276

  10. Modeling the tertiary structure of the patatin domain of neuropathy target esterase.

    PubMed

    Wijeyesakere, Sanjeeva J; Richardson, Rudy J; Stuckey, Jeanne A

    2007-04-01

    Neuropathy target esterase (NTE) is a transmembrane protein of unknown function whose specific chemical modification by certain organophosphorus (OP) compounds leads to distal axonopathy. Therefore, solving the 3D structure of NTE would advance the understanding of its pathogenic and physiologic roles. In this study, the tertiary structures of the patatin (catalytic) domain and the N-terminal transmembrane domain of NTE were modeled using the crystal structures of patatin (PDB ID 1oxw) and moricin (PDB ID 1kv4) as templates. Sequence alignments and secondary structure predictions were obtained from the INUB server (Buffalo, NY). O and PyMol were used to build the PNTE and NTE TMD chains from these sequence alignments. The PNTE model was refined in the presence of water using the crystallography and NMR system, while the NTE TMD model was refined in vacuo using the GROMOS implementation in the Swiss PDB viewer. The modeled active site of NTE was found to consist of a Ser966-Asp1086 catalytic dyad, which is characteristic of phospholipase A2 enzymes. The Ser966 Ogamma was located 2.93 A from the Odelta2 of Asp1086. In addition, our NTE model was found to contain a single N-terminal transmembrane domain. This modeling effort provided structural and mechanistic predictions about the catalytic domain of NTE that are being verified via experimental techniques.

  11. Dual streams of auditory afferents target multiple domains in the primate prefrontal cortex

    PubMed Central

    Romanski, L. M.; Tian, B.; Fritz, J.; Mishkin, M.; Goldman-Rakic, P. S.; Rauschecker, J. P.

    2009-01-01

    ‘What’ and ‘where’ visual streams define ventrolateral object and dorsolateral spatial processing domains in the prefrontal cortex of nonhuman primates. We looked for similar streams for auditory–prefrontal connections in rhesus macaques by combining microelectrode recording with anatomical tract-tracing. Injection of multiple tracers into physiologically mapped regions AL, ML and CL of the auditory belt cortex revealed that anterior belt cortex was reciprocally connected with the frontal pole (area 10), rostral principal sulcus (area 46) and ventral prefrontal regions (areas 12 and 45), whereas the caudal belt was mainly connected with the caudal principal sulcus (area 46) and frontal eye fields (area 8a). Thus separate auditory streams originate in caudal and rostral auditory cortex and target spatial and non-spatial domains of the frontal lobe, respectively. PMID:10570492

  12. Membrane domain formation—a key factor for targeted intracellular drug delivery

    PubMed Central

    Popov-Čeleketić, Dušan; van Bergen en Henegouwen, Paul M. P.

    2014-01-01

    Protein molecules, toxins and viruses internalize into the cell via receptor-mediated endocytosis (RME) using specific proteins and lipids in the plasma membrane. The plasma membrane is a barrier for many pharmaceutical agents to enter into the cytoplasm of target cells. In the case of cancer cells, tissue-specific biomarkers in the plasma membrane, like cancer-specific growth factor receptors, could be excellent candidates for RME-dependent drug delivery. Recent data suggest that agent binding to these receptors at the cell surface, resulting in membrane domain formation by receptor clustering, can be used for the initiation of RME. As a result, these pharmaceutical agents are internalized into the cells and follow different routes until they reach their final intracellular targets like lysosomes or Golgi. We propose that clustering induced formation of plasma membrane microdomains enriched in receptors, sphingolipids, and inositol lipids, leads to membrane bending which functions as the onset of RME. In this review we will focus on the role of domain formation in RME and discuss potential applications for targeted intracellular drug delivery. PMID:25520666

  13. In Silico Screening for Inhibitors of P-Glycoprotein That Target the Nucleotide Binding Domains

    PubMed Central

    Brewer, Frances K.; Follit, Courtney A.; Vogel, Pia D.

    2014-01-01

    Multidrug resistances and the failure of chemotherapies are often caused by the expression or overexpression of ATP-binding cassette transporter proteins such as the multidrug resistance protein, P-glycoprotein (P-gp). P-gp is expressed in the plasma membrane of many cell types and protects cells from accumulation of toxins. P-gp uses ATP hydrolysis to catalyze the transport of a broad range of mostly hydrophobic compounds across the plasma membrane and out of the cell. During cancer chemotherapy, the administration of therapeutics often selects for cells which overexpress P-gp, thereby creating populations of cancer cells resistant to a variety of chemically unrelated chemotherapeutics. The present study describes extremely high-throughput, massively parallel in silico ligand docking studies aimed at identifying reversible inhibitors of ATP hydrolysis that target the nucleotide-binding domains of P-gp. We used a structural model of human P-gp that we obtained from molecular dynamics experiments as the protein target for ligand docking. We employed a novel approach of subtractive docking experiments that identified ligands that bound predominantly to the nucleotide-binding domains but not the drug-binding domains of P-gp. Four compounds were found that inhibit ATP hydrolysis by P-gp. Using electron spin resonance spectroscopy, we showed that at least three of these compounds affected nucleotide binding to the transporter. These studies represent a successful proof of principle demonstrating the potential of targeted approaches for identifying specific inhibitors of P-gp. PMID:25270578

  14. Proposal of Dual Inhibitor Targeting ATPase Domains of Topoisomerase II and Heat Shock Protein 90

    PubMed Central

    Jun, Kyu-Yeon; Kwon, Youngjoo

    2016-01-01

    There is a conserved ATPase domain in topoisomerase II (topo II) and heat shock protein 90 (Hsp90) which belong to the GHKL (gyrase, Hsp90, histidine kinase, and MutL) family. The inhibitors that target each of topo II and Hsp90 are intensively studied as anti-cancer drugs since they play very important roles in cell proliferation and survival. Therefore the development of dual targeting anti-cancer drugs for topo II and Hsp90 is suggested to be a promising area. The topo II and Hsp90 inhibitors, known to bind to their ATP binding site, were searched. All the inhibitors investigated were docked to both topo II and Hsp90. Four candidate compounds as possible dual inhibitors were selected by analyzing the molecular docking study. The pharmacophore model of dual inhibitors for topo II and Hsp90 were generated and the design of novel dual inhibitor was proposed. PMID:27582553

  15. Sushi Domain-Containing Protein 3: A Potential Target for Breast Cancer.

    PubMed

    Yu, Zhenghong; Jiang, Enze; Wang, Xinxing; Shi, Yaqin; Shangguan, Anna Junjie; Zhang, Luo; Li, Jie

    2015-06-01

    Aromatase inhibitors (AIs) are the most effective endocrine treatment for estrogen receptor α-positive (ERα+) postmenopausal breast cancer. Identification of biomarkers that are able to predict AIs responsiveness of patients is a key for successful treatment. The currently used biomarkers for tamoxifen responsiveness, which including ERα as well as progesterone receptor can only predict part of the potential responders to AIs treatment. Sushi domain-containing protein 3 (SUSD3) is a potential novel biomarker of AIs responsiveness. The lack of SUSD3 expression in breast cancer tissue can be an important predictor for non-responsiveness to AI. Here we reviewed the property and function of SUSD3, its usage as a biomarker and the practicability for SUSD3 to become a target for immune therapy. We suggest this protein can be potentially measured or targeted for prevention, diagnostic, and therapeutic purposes for estrogen or progesterone-dependent disorders including breast cancer in women.

  16. Sushi Domain-Containing Protein 3: A Potential Target for Breast Cancer.

    PubMed

    Yu, Zhenghong; Jiang, Enze; Wang, Xinxing; Shi, Yaqin; Shangguan, Anna Junjie; Zhang, Luo; Li, Jie

    2015-06-01

    Aromatase inhibitors (AIs) are the most effective endocrine treatment for estrogen receptor α-positive (ERα+) postmenopausal breast cancer. Identification of biomarkers that are able to predict AIs responsiveness of patients is a key for successful treatment. The currently used biomarkers for tamoxifen responsiveness, which including ERα as well as progesterone receptor can only predict part of the potential responders to AIs treatment. Sushi domain-containing protein 3 (SUSD3) is a potential novel biomarker of AIs responsiveness. The lack of SUSD3 expression in breast cancer tissue can be an important predictor for non-responsiveness to AI. Here we reviewed the property and function of SUSD3, its usage as a biomarker and the practicability for SUSD3 to become a target for immune therapy. We suggest this protein can be potentially measured or targeted for prevention, diagnostic, and therapeutic purposes for estrogen or progesterone-dependent disorders including breast cancer in women. PMID:25556073

  17. Inactivation of Multiple Bacterial Histidine Kinases by Targeting the ATP-Binding Domain

    PubMed Central

    2015-01-01

    Antibacterial agents that exploit new targets will be required to combat the perpetual rise of bacterial resistance to current antibiotics. We are exploring the inhibition of histidine kinases, constituents of two-component systems. Two-component systems are the primary signaling pathways that bacteria utilize to respond to their environment. They are ubiquitous in bacteria and trigger various pathogenic mechanisms. To attenuate these signaling pathways, we sought to broadly target the histidine kinase family by focusing on their highly conserved ATP-binding domain. Development of a fluorescence polarization displacement assay facilitated high-throughput screening of ∼53 000 diverse small molecules for binding to the ATP-binding pocket. Of these compounds, nine inhibited the catalytic activity of two or more histidine kinases. These scaffolds could provide valuable starting points for the design of broadly effective HK inhibitors, global reduction of bacterial signaling, and ultimately, a class of antibiotics that function by a new mechanism of action. PMID:25531939

  18. Novel Kinase Inhibitors Targeting the PH Domain of AKT for Preventing and Treating Cancer | NCI Technology Transfer Center | TTC

    Cancer.gov

    The National Cancer Institute's Medical Oncology Branch is seeking statements of capability or interest from parties interested in licensing and co-development collaborative research to further develop, evaluate, or commercialize novel kinase inhibitors targeting the PH domain of AKT.

  19. DNA damage targets PKC{eta} to the nuclear membrane via its C1b domain

    SciTech Connect

    Tamarkin, Ana; Zurgil, Udi; Braiman, Alex; Hai, Naama; Krasnitsky, Ella; Maissel, Adva; Ben-Ari, Assaf; Yankelovich, Liat; Livneh, Etta

    2011-06-10

    Translocation to cellular membranes is one of the hallmarks of PKC activation, occurring as a result of the generation of lipid secondary messengers in target membrane compartments. The activation-induced translocation of PKCs and binding to membranes is largely directed by their regulatory domains. We have previously reported that PKC{eta}, a member of the novel subfamily and an epithelial specific isoform, is localized at the cytoplasm and ER/Golgi and is translocated to the plasma membrane and the nuclear envelope upon short-term activation by PMA. Here we show that PKC{eta} is shuttling between the cytoplasm and the nucleus and that upon etoposide induced DNA damage is tethered at the nuclear envelope. Although PKC{eta} expression and its phosphorylation on the hydrophobic motif (Ser675) are increased by etoposide, this phosphorylation is not required for its accumulation at the nuclear envelope. Moreover, we demonstrate that the C1b domain is sufficient for translocation to the nuclear envelope. We further show that, similar to full-length PKC{eta}, the C1b domain could also confer protection against etoposide-induced cell death. Our studies demonstrate translocation of PKC{eta} to the nuclear envelope, and suggest that its spatial regulation could be important for its cellular functions including effects on cell death.

  20. Time domain investigation of transceiver functions using a known reference target.

    PubMed

    Feuillade, C; Meredith, R W; Chotiros, N P; Clay, C S

    2002-12-01

    During August 1998, a bottom scattering tank experiment was performed at the Applied Research Laboratory, University of Texas to measure wideband acoustic reverberation from multiple objects (e.g., cobbles and pebbles) placed on a sediment simulation of the sea floor. In preparation for processing and analyzing the experimental data, time domain scattering measurements made with stainless steel and glass balls suspended in the water column were used to calibrate the sonar transceiver system by deconvolving the theoretical impulse response for steel and glass spheres, obtained via the Faran elastic sphere scattering model, from the scattered time signals. It is the analysis of these calibration measurements which forms the subject of this paper. Results show the critical importance of accurate input-output system calibrations for time domain sound scattering research, and successfully demonstrate a time domain method for accurately calibrating the complete sonar transceiver function, i.e., both the amplitude and time dependence, using a known reference target. The work has implications for boundary and volume scattering applications.

  1. Liver-targeting of interferon-alpha with tissue-specific domain antibodies.

    PubMed

    Coulstock, Edward; Sosabowski, Jane; Ovečka, Milan; Prince, Rob; Goodall, Laura; Mudd, Clare; Sepp, Armin; Davies, Marie; Foster, Julie; Burnet, Jerome; Dunlevy, Gráinne; Walker, Adam

    2013-01-01

    Interferon alpha (IFNα) is used for the treatment of hepatitis C infection and whilst efficacious it is associated with multiple adverse events including reduced leukocyte, erythrocyte, and platelet counts, fatigue, and depression. These events are most likely caused by systemic exposure to interferon. We therefore hypothesise that targeting the therapeutic directly to the intended site of action in the liver would reduce exposure in blood and peripheral tissue and hence improve the safety and tolerability of IFNα therapy. We genetically fused IFN to a domain antibody (dAb) specific to a hepatocyte restricted antigen, asialoglycoprotein receptor (ASGPR). Our results show that the murine IFNα2 homolog (mIFNα2) fused to an ASGPR specific dAb, termed DOM26h-196-61, could be expressed in mammalian tissue culture systems and retains the desirable biophysical properties and activity of both fusion partners when measured in vitro. Furthermore a clear increase in in vivo targeting of the liver by mIFNα2-ASGPR dAb fusion protein, compared to that observed with either unfused mIFNα2 or mIFNα2 fused to an isotype control dAb VHD2 (which does not bind ASGPR) was demonstrated using microSPECT imaging. We suggest that these findings may be applicable in the development of a liver-targeted human IFN molecule with improved safety and patient compliance in comparison to the current standard of care, which could ultimately be used as a treatment for human hepatitis virus infections.

  2. Effects of gender-related domain violations and sexual orientation on perceptions of male and female targets: an analogue study.

    PubMed

    Blashill, Aaron J; Powlishta, Kimberly K

    2012-10-01

    The current study examined factors that influenced heterosexual male and female raters' evaluations of male and female targets who were gay or heterosexual, and who displayed varying gender roles (i.e., typical vs. atypical) in multiple domains (i.e., activities, traits, and appearance). Participants were 305 undergraduate students from a private, midwestern Jesuit institution who read vignettes describing one of 24 target types and then rated the target on possession of positive and negative characteristics, psychological adjustment, and on measures reflecting the participants' anticipated behavior toward or comfort with the target. Results showed that gender atypical appearance and activity attributes (but not traits) were viewed more negatively than their gender typical counterparts. It was also found that male participants in particular viewed gay male targets as less desirable than lesbian and heterosexual male targets. These findings suggest a nuanced approach for understanding sexual prejudice, which incorporates a complex relationship among sex, gender, sexual orientation, and domain of gendered attributes. PMID:22722956

  3. Effects of gender-related domain violations and sexual orientation on perceptions of male and female targets: an analogue study.

    PubMed

    Blashill, Aaron J; Powlishta, Kimberly K

    2012-10-01

    The current study examined factors that influenced heterosexual male and female raters' evaluations of male and female targets who were gay or heterosexual, and who displayed varying gender roles (i.e., typical vs. atypical) in multiple domains (i.e., activities, traits, and appearance). Participants were 305 undergraduate students from a private, midwestern Jesuit institution who read vignettes describing one of 24 target types and then rated the target on possession of positive and negative characteristics, psychological adjustment, and on measures reflecting the participants' anticipated behavior toward or comfort with the target. Results showed that gender atypical appearance and activity attributes (but not traits) were viewed more negatively than their gender typical counterparts. It was also found that male participants in particular viewed gay male targets as less desirable than lesbian and heterosexual male targets. These findings suggest a nuanced approach for understanding sexual prejudice, which incorporates a complex relationship among sex, gender, sexual orientation, and domain of gendered attributes.

  4. Single-Domain Antibodies Targeting Neuraminidase Protect against an H5N1 Influenza Virus Challenge

    PubMed Central

    Cardoso, Francisco Miguel; Ibañez, Lorena Itatí; Van den Hoecke, Silvie; De Baets, Sarah; Smet, Anouk; Roose, Kenny; Schepens, Bert; Descamps, Francis J.; Fiers, Walter; Muyldermans, Serge

    2014-01-01

    ABSTRACT Influenza virus neuraminidase (NA) is an interesting target of small-molecule antiviral drugs. We isolated a set of H5N1 NA-specific single-domain antibodies (N1-VHHm) and evaluated their in vitro and in vivo antiviral potential. Two of them inhibited the NA activity and in vitro replication of clade 1 and 2 H5N1 viruses. We then generated bivalent derivatives of N1-VHHm by two methods. First, we made N1-VHHb by genetically joining two N1-VHHm moieties with a flexible linker. Second, bivalent N1-VHH-Fc proteins were obtained by genetic fusion of the N1-VHHm moiety with the crystallizable region of mouse IgG2a (Fc). The in vitro antiviral potency against H5N1 of both bivalent N1-VHHb formats was 30- to 240-fold higher than that of their monovalent counterparts, with 50% inhibitory concentrations in the low nanomolar range. Moreover, single-dose prophylactic treatment with bivalent N1-VHHb or N1-VHH-Fc protected BALB/c mice against a lethal challenge with H5N1 virus, including an oseltamivir-resistant H5N1 variant. Surprisingly, an N1-VHH-Fc fusion without in vitro NA-inhibitory or antiviral activity also protected mice against an H5N1 challenge. Virus escape selection experiments indicated that one amino acid residue close to the catalytic site is required for N1-VHHm binding. We conclude that single-domain antibodies directed against influenza virus NA protect against H5N1 virus infection, and when engineered with a conventional Fc domain, they can do so in the absence of detectable NA-inhibitory activity. IMPORTANCE Highly pathogenic H5N1 viruses are a zoonotic threat. Outbreaks of avian influenza caused by these viruses occur in many parts of the world and are associated with tremendous economic loss, and these viruses can cause very severe disease in humans. In such cases, small-molecule inhibitors of the viral NA are among the few treatment options for patients. However, treatment with such drugs often results in the emergence of resistant viruses

  5. Proposed docking interface between peptidoglycan and the target recognition domain of zoocin A

    SciTech Connect

    Chen, Yinghua; Simmonds, Robin S.; Timkovich, Russell

    2013-11-15

    Highlights: •Peptidoglycan added to zoocin rTRD perturbs NMR resonances around W115. •Simulations predict docking to a shallow surface groove near W115. •The docking interface is similar to mammalian antibody–antigen sites. •EDTA binds to a distinct surface site. -- Abstract: A docking model is proposed for the target recognition domain of the lytic exoenzyme zoocin A with the peptidoglycan on the outer cell surface of sensitive bacterial strains. Solubilized fragments from such peptidoglycans perturb specific backbone and side chain amide resonances in the recombinant form of the domain designated rTRD as detected in two-dimensional {sup 1}H–{sup 15}N correlation NMR spectra. The affected residues comprise a shallow surface cleft on the protein surface near W115, N53, N117, and Q105 among others, which interacts with the peptide portion of the peptidoglycan. Calculations with AutoDock Vina provide models of the docking interface. There is approximate homology between the rTDR-peptidoglycan docking site and the antigen binding site of Fab antibodies with the immunoglobin fold. EDTA was also found to bind to rTRD, but at a site distinct from the proposed peptidoglycan docking site.

  6. Structure-Guided Discovery of Antitubercular Agents That Target the Gyrase ATPase Domain.

    PubMed

    Jeankumar, Variam U; Saxena, Shalini; Vats, Rahul; Reshma, Rudraraju Srilakshmi; Janupally, Renuka; Kulkarni, Pushkar; Yogeeswari, Perumal; Sriram, Dharmarajan

    2016-03-01

    In this study we explored the pharmaceutically underexploited ATPase domain of DNA gyrase (GyrB) as a potential platform for developing novel agents that target Mycobacterium tuberculosis. In this effort a combination of ligand- and structure-based pharmacophore modeling was used to identify structurally diverse small-molecule inhibitors of the mycobacterial GyrB domain based on the crystal structure of the enzyme with a pyrrolamide inhibitor (PDB ID: 4BAE). Pharmacophore modeling and subsequent in vitro screening resulted in an initial hit compound 5 [(E)-5-(5-(2-(1H-benzo[d]imidazol-2-yl)-2-cyanovinyl)furan-2-yl)isophthalic acid; IC50 =4.6±0.1 μm], which was subsequently tailored through a combination of molecular modeling and synthetic chemistry to yield the optimized lead compound 24 [(E)-3-(5-(2-cyano-2-(5-methyl-1H-benzo[d]imidazol-2-yl)vinyl)thiophen-2-yl)benzoic acid; IC50 =0.3±0.2 μm], which was found to display considerable in vitro efficacy against the purified GyrB enzyme and potency against the H37 Rv strain of M. tuberculosis. Structural handles were also identified that will provide a suitable foundation for further optimization of these potent analogues.

  7. Polycomb group targeting through different binding partners of RING1B C-terminal domain.

    PubMed

    Wang, Renjing; Taylor, Alexander B; Leal, Belinda Z; Chadwell, Linda V; Ilangovan, Udayar; Robinson, Angela K; Schirf, Virgil; Hart, P John; Lafer, Eileen M; Demeler, Borries; Hinck, Andrew P; McEwen, Donald G; Kim, Chongwoo A

    2010-08-11

    RING1B, a Polycomb Group (PcG) protein, binds methylated chromatin through its association with another PcG protein called Polycomb (Pc). However, RING1B can associate with nonmethylated chromatin suggesting an alternate mechanism for RING1B interaction with chromatin. Here, we demonstrate that two proteins with little sequence identity between them, the Pc cbox domain and RYBP, bind the same surface on the C-terminal domain of RING1B (C-RING1B). Pc cbox and RYBP each fold into a nearly identical, intermolecular beta sheet with C-RING1B and a loop structure which are completely different in the two proteins. Both the beta sheet and loop are required for stable binding and transcription repression. Further, a mutation engineered to disrupt binding on the Drosophila dRING1 protein prevents chromatin association and PcG function in vivo. These results suggest that PcG targeting to different chromatin locations relies, in part, on binding partners of C-RING1B that are diverse in sequence and structure.

  8. Acidic domain in dentin phosphophoryn facilitates cellular uptake: implications in targeted protein delivery.

    PubMed

    Ravindran, Sriram; Snee, Preston T; Ramachandran, Amsaveni; George, Anne

    2013-05-31

    Dentin phosphophoryn is nature's most acidic protein found predominantly in the dentin extracellular matrix. Its unique amino acid composition containing Asp-Ser (DS)-rich repeats makes it highly anionic. It has a low isoelectric point (pI 1.1) and, therefore, tends to be negatively charged at physiological pH. Phosphophoryn is normally associated with matrix mineralization as it can bind avidly to Ca(2+). It is well known that several macromolecules present in the extracellular matrix can be internalized and localized to specific intracellular compartments. In this study we demonstrate that dentin phosphophoryn (DPP) is internalized by several cell types via a non-conventional endocytic process. Utilizing a DSS polypeptide derived from DPP, we demonstrate the repetitive DSS-rich domain facilitates that endocytosis. As a proof-of-concept, we further demonstrate the use of this polypeptide as a protein delivery vehicle by delivering the osteoblast transcription factor Runx2 to the nucleus of mesenchymal cells. The functionality of the endocytosed Runx2 protein was demonstrated by performing gene expression analysis of Runx2 target genes. Nuclear localization was also demonstrated with the fusion protein DSS-Runx2 conjugated to quantum dots in two- and three-dimensional culture models in vitro and in vivo. Overall, we demonstrate that the DSS domain of DPP functions as a novel cell-penetrating peptide, and these findings demonstrate new opportunities for intracellular delivery of therapeutic proteins and cell tracking in vivo.

  9. Subregions of the adenovirus E1A transactivation domain target multiple components of the TFIID complex.

    PubMed Central

    Geisberg, J V; Chen, J L; Ricciardi, R P

    1995-01-01

    Transcriptional activation by the adenovirus E1A 289R protein requires direct contacts with the TATA box-binding protein (TBP) and also displays a critical requirement for TBP-associated factors (TAFs) (T.G. Boyer and A. J. Berk, Genes Dev. 7:1810-1823, 1993; J. V. Geisberg, W. S. Lee, A. J. Berk, and R. P. Ricciardi, Proc. Natl. Acad. Sci. USA 91:2488-2492, 1994; W. S. Lee, C. C. Kao, G. O. Bryant, X. Liu, and A. J. Berk, Cell 67:365-376, 1991; and Q. Zhou, P. M. Lieberman, T. G. Boyer, and A. J. Berk, Genes Dev. 6:1964-1974, 1992). In this report, we demonstrate that the activation domain of E1A (CR3) specifically binds to two TAFs, human TAFII250 (hTAFII250) and Drosophila TAFII110 (dTAFII110). These interactions can take place both in vivo and in vitro and require the carboxy-terminal region of CR3; the zinc finger region of CR3, which binds TBP, is not needed to bind these TAFs. We mapped the E1A-binding sites on hTAFII250 to an internal region that contains a number of structural motifs, including an HMG box, a bromodomain, and direct repeats. This represents the first demonstration that hTAFII250 may serve as a target of a transcriptional activator. We also mapped the E1A binding on dTAFII110 to its C-terminal region. This is of significance since, by contrast, Sp1-mediated activation requires binding to the N-terminal domain of dTAFII110. Thus, distinct surfaces of dTAFII110 can serve as target sites for different activators. Our results indicate that E1A may activate transcription, in part, through direct contacts of the CR3 subdomains with selected components of the TFIID complex. PMID:7565781

  10. Multiple domains of ADAMTS13 are targeted by autoantibodies against ADAMTS13 in patients with acquired idiopathic thrombotic thrombocytopenic purpura

    PubMed Central

    Zheng, X. Long; Wu, Haifeng M.; Shang, Dezhi; Falls, Erica; Skipwith, Christopher G.; Cataland, Spero R.; Bennett, Charles L.; Kwaan, Hau C.

    2010-01-01

    Background Type G immunoglobulins against ADAMTS13 are the primary cause of acquired (idiopathic) thrombotic thrombocytopenic purpura. However, the domains of ADAMTS13 which the type G anti-ADAMT13 immunoglobulins target have not been investigated in a large cohort of patients with thrombotic thrombocytopenic purpura. Design and Methods Sixty-seven patients with acquired idiopathic thrombotic thrombocytopenic purpura were prospectively collected from three major U.S. centers. An enzyme-linked immunosorbent assay determined plasma concentrations of anti-ADAMTS13 type G immunoglobulins, whereas immunoprecipitation plus western blotting determined the binding domains of these type G immunoglobulins. Results Plasma anti-ADAMTS13 type G immunoglobulins from 67 patients all bound full-length ADAMTS13 and a variant truncated after the eighth TSP1 repeat (delCUB). Approximately 97% (65/67) of patients harbored type G immunoglobulins targeted against a variant truncated after the spacer domain (MDTCS). However, only 12% of patients’ samples reacted with a variant lacking the Cys-rich and spacer domains (MDT). In addition, approximately 37%, 31%, and 46% of patients’ type G immunoglobulins interacted with the ADAMTS13 fragment containing TSP1 2-8 repeats (T2-8), CUB domains, and TSP1 5-8 repeats plus CUB domains (T5-8CUB), respectively. The presence of type G immunoglobulins targeted against the T2-8 and/or CUB domains was inversely correlated with the patients’ platelet counts on admission. Conclusions This multicenter study further demonstrated that the multiple domains of ADAMTS13, particularly the Cys-rich and spacer domains, are frequently targeted by anti-ADAMTS13 type G immunoglobulins in patients with acquired (idiopathic) thrombotic thrombocytopenic purpura. Our data shed more light on the pathogenesis of acquired thrombotic thrombocytopenic purpura and provide further rationales for adjunctive immunotherapy. PMID:20378566

  11. Targeting Id protein interactions by an engineered HLH domain induces human neuroblastoma cell differentiation.

    PubMed

    Ciarapica, R; Annibali, D; Raimondi, L; Savino, M; Nasi, S; Rota, R

    2009-04-30

    Inhibitor of DNA-binding (Id) proteins prevent cell differentiation, promote growth and sustain tumour development. They do so by binding to E proteins and other transcription factors through the helix-loop-helix (HLH) domain, and inhibiting transcription. This makes HLH-mediated Id protein interactions an appealing therapeutic target. We have used the dominant interfering HLH dimerization mutant 13I to model the impact of Id inhibition in two human neuroblastoma cell lines: LA-N-5, similar to immature neuroblasts, and SH-EP, resembling more immature precursor cells. We have validated 13I as an Id inhibitor by showing that it selectively binds to Ids, impairs complex formation with RB, and relieves repression of E protein-activated transcription. Id inactivation by 13I enhances LA-N-5 neural features and causes SH-EP cells to acquire neuronal morphology, express neuronal proteins such as N-CAM and NF-160, proliferate more slowly, and become responsive to retinoic acid. Concomitantly, 13I augments the cell-cycle inhibitor p27(Kip1) and reduces the angiogenic factor vascular endothelial growth factor. These effects are Id specific, being counteracted by Id overexpression. Furthermore, 13I strongly impairs tumorigenic properties in agar colony formation and cell invasion assays. Targeting Id dimerization may therefore be effective for triggering differentiation and restraining neuroblastoma cell tumorigenicity.

  12. Molecular functions of the TLE tetramerization domain in Wnt target gene repression

    PubMed Central

    Chodaparambil, Jayanth V; Pate, Kira T; Hepler, Margretta R D; Tsai, Becky P; Muthurajan, Uma M; Luger, Karolin; Waterman, Marian L; Weis, William I

    2014-01-01

    Wnt signaling activates target genes by promoting association of the co-activator β-catenin with TCF/LEF transcription factors. In the absence of β-catenin, target genes are silenced by TCF-mediated recruitment of TLE/Groucho proteins, but the molecular basis for TLE/TCF-dependent repression is unclear. We describe the unusual three-dimensional structure of the N-terminal Q domain of TLE1 that mediates tetramerization and binds to TCFs. We find that differences in repression potential of TCF/LEFs correlates with their affinities for TLE-Q, rather than direct competition between β-catenin and TLE for TCFs as part of an activation–repression switch. Structure-based mutation of the TLE tetramer interface shows that dimers cannot mediate repression, even though they bind to TCFs with the same affinity as tetramers. Furthermore, the TLE Q tetramer, not the dimer, binds to chromatin, specifically to K20 methylated histone H4 tails, suggesting that the TCF/TLE tetramer complex promotes structural transitions of chromatin to mediate repression. PMID:24596249

  13. Modulators of Hepatic Lipoprotein Metabolism Identified in a Search for Small-Molecule Inducers of Tribbles Pseudokinase 1 Expression

    PubMed Central

    Nagiec, Marek M.; Skepner, Adam P.; Negri, Joseph; Eichhorn, Michelle; Kuperwasser, Nicolas; Comer, Eamon; Muncipinto, Giovanni; Subramanian, Aravind; Clish, Clary; Musunuru, Kiran; Duvall, Jeremy R.; Foley, Michael; Perez, Jose R.; Palmer, Michelle A. J.

    2015-01-01

    Recent genome wide association studies have linked tribbles pseudokinase 1 (TRIB1) to the risk of coronary artery disease (CAD). Based on the observations that increased expression of TRIB1 reduces secretion of VLDL and is associated with lower plasma levels of LDL cholesterol and triglycerides, higher plasma levels of HDL cholesterol and reduced risk for myocardial infarction, we carried out a high throughput phenotypic screen based on quantitative RT-PCR assay to identify compounds that induce TRIB1 expression in human HepG2 hepatoma cells. In a screen of a collection of diversity-oriented synthesis (DOS)-derived compounds, we identified a series of benzofuran-based compounds that upregulate TRIB1 expression and phenocopy the effects of TRIB1 cDNA overexpression, as they inhibit triglyceride synthesis and apoB secretion in cells. In addition, the compounds downregulate expression of MTTP and APOC3, key components of the lipoprotein assembly pathway. However, CRISPR-Cas9 induced chromosomal disruption of the TRIB1 locus in HepG2 cells, while confirming its regulatory role in lipoprotein metabolism, demonstrated that the effects of benzofurans persist in TRIB1-null cells indicating that TRIB1 is sufficient but not necessary to transmit the effects of the drug. Remarkably, active benzofurans, as well as natural products capable of TRIB1 upregulation, also modulate hepatic cell cholesterol metabolism by elevating the expression of LDLR transcript and LDL receptor protein, while reducing the levels of PCSK9 transcript and secreted PCSK9 protein and stimulating LDL uptake. The effects of benzofurans are not masked by cholesterol depletion and are independent of the SREBP-2 regulatory circuit, indicating that these compounds represent a novel class of chemically tractable small-molecule modulators that shift cellular lipoprotein metabolism in HepG2 cells from lipogenesis to scavenging. PMID:25811180

  14. ErbB3/HER3 intracellular domain is competent to bind ATP and catalyze autophosphorylation

    SciTech Connect

    Shi, Fumin; Telesco, Shannon E.; Liu, Yingting; Radhakrishnan, Ravi; Lemmon, Mark A.

    2010-06-21

    ErbB3/HER3 is one of four members of the human epidermal growth factor receptor (EGFR/HER) or ErbB receptor tyrosine kinase family. ErbB3 binds neuregulins via its extracellular region and signals primarily by heterodimerizing with ErbB2/HER2/Neu. A recently appreciated role for ErbB3 in resistance of tumor cells to EGFR/ErbB2-targeted therapeutics has made it a focus of attention. However, efforts to inactivate ErbB3 therapeutically in parallel with other ErbB receptors are challenging because its intracellular kinase domain is thought to be an inactive pseudokinase that lacks several key conserved (and catalytically important) residues - including the catalytic base aspartate. We report here that, despite these sequence alterations, ErbB3 retains sufficient kinase activity to robustly trans-autophosphorylate its intracellular region - although it is substantially less active than EGFR and does not phosphorylate exogenous peptides. The ErbB3 kinase domain binds ATP with a K{sub d} of approximately 1.1 {micro}M. We describe a crystal structure of ErbB3 kinase bound to an ATP analogue, which resembles the inactive EGFR and ErbB4 kinase domains (but with a shortened {alpha}C-helix). Whereas mutations that destabilize this configuration activate EGFR and ErbB4 (and promote EGFR-dependent lung cancers), a similar mutation conversely inactivates ErbB3. Using quantum mechanics/molecular mechanics simulations, we delineate a reaction pathway for ErbB3-catalyzed phosphoryl transfer that does not require the conserved catalytic base and can be catalyzed by the 'inactive-like'configuration observed crystallographically. These findings suggest that ErbB3 kinase activity within receptor dimers may be crucial for signaling and could represent an important therapeutic target.

  15. Integration of decoy domains derived from protein targets of pathogen effectors into plant immune receptors is widespread.

    PubMed

    Kroj, Thomas; Chanclud, Emilie; Michel-Romiti, Corinne; Grand, Xavier; Morel, Jean-Benoit

    2016-04-01

    Plant immune receptors of the class of nucleotide-binding and leucine-rich repeat domain (NLR) proteins can contain additional domains besides canonical NB-ARC (nucleotide-binding adaptor shared by APAF-1, R proteins, and CED-4 (NB-ARC)) and leucine-rich repeat (LRR) domains. Recent research suggests that these additional domains act as integrated decoys recognizing effectors from pathogens. Proteins homologous to integrated decoys are suspected to be effector targets and involved in disease or resistance. Here, we scrutinized 31 entire plant genomes to identify putative integrated decoy domains in NLR proteins using the Interpro search. The involvement of the Zinc Finger-BED type (ZBED) protein containing a putative decoy domain, called BED, in rice (Oryza sativa) resistance was investigated by evaluating susceptibility to the blast fungus Magnaporthe oryzae in rice over-expression and knock-out mutants. This analysis showed that all plants tested had integrated various atypical protein domains into their NLR proteins (on average 3.5% of all NLR proteins). We also demonstrated that modifying the expression of the ZBED gene modified disease susceptibility. This study suggests that integration of decoy domains in NLR immune receptors is widespread and frequent in plants. The integrated decoy model is therefore a powerful concept to identify new proteins involved in disease resistance. Further in-depth examination of additional domains in NLR proteins promises to unravel many new proteins of the plant immune system. PMID:26848538

  16. Targeted mutagenesis results in an activation of DNA methyltransferase 1 and confirms an autoinhibitory role of its RFTS domain.

    PubMed

    Bashtrykov, Pavel; Rajavelu, Arumugam; Hackner, Benjamin; Ragozin, Sergey; Carell, Thomas; Jeltsch, Albert

    2014-03-21

    The N-terminal regulatory part of DNA methyltransferase 1 (Dnmt1) contains a replication foci targeting sequence (RFTS) domain, which is involved in the recruitment of Dnmt1 to replication forks. The RFTS domain has been observed in a crystal structure to bind to the catalytic domain of the enzyme and block its catalytic centre. Removal of the RFTS domain led to activation of Dnmt1, thus suggesting an autoinhibitory role of this domain. Here, we destabilised the interaction of the RFTS domain with the catalytic domain by site-directed mutagenesis and purified the corresponding Dnmt1 variants. Our data show that these mutations resulted in an up to fourfold increase in Dnmt1 methylation activity in vitro. Activation of Dnmt1 was not accompanied by a change in its preference for methylation of hemimethylated CpG sites. We also show that the Dnmt1 E572R/D575R variant has a higher DNA methylation activity in human cells after transfection into HCT116 cells, which are hypomorphic for Dnmt1. Our findings strongly support the autoinhibitory role of the RFTS domain, and indicate that it contributes to the regulation of Dnmt1 activity in cells.

  17. Discovery of novel potent ΔF508-CFTR correctors that target the nucleotide binding domain.

    PubMed

    Odolczyk, Norbert; Fritsch, Janine; Norez, Caroline; Servel, Nathalie; da Cunha, Melanie Faria; Bitam, Sara; Kupniewska, Anna; Wiszniewski, Ludovic; Colas, Julien; Tarnowski, Krzysztof; Tondelier, Danielle; Roldan, Ariel; Saussereau, Emilie L; Melin-Heschel, Patricia; Wieczorek, Grzegorz; Lukacs, Gergely L; Dadlez, Michal; Faure, Grazyna; Herrmann, Harald; Ollero, Mario; Becq, Frédéric; Zielenkiewicz, Piotr; Edelman, Aleksander

    2013-10-01

    The deletion of Phe508 (ΔF508) in the first nucleotide binding domain (NBD1) of CFTR is the most common mutation associated with cystic fibrosis. The ΔF508-CFTR mutant is recognized as improperly folded and targeted for proteasomal degradation. Based on molecular dynamics simulation results, we hypothesized that interaction between ΔF508-NBD1 and housekeeping proteins prevents ΔF508-CFTR delivery to the plasma membrane. Based on this assumption we applied structure-based virtual screening to identify new low-molecular-weight compounds that should bind to ΔF508-NBD1 and act as protein-protein interaction inhibitors. Using different functional assays for CFTR activity, we demonstrated that in silico-selected compounds induced functional expression of ΔF508-CFTR in transfected HeLa cells, human bronchial CF cells in primary culture, and in the nasal epithelium of homozygous ΔF508-CFTR mice. The proposed compounds disrupt keratin8-ΔF508-CFTR interaction in ΔF508-CFTR HeLa cells. Structural analysis of ΔF508-NBD1 in the presence of these compounds suggests their binding to NBD1. We conclude that our strategy leads to the discovery of new compounds that are among the most potent correctors of ΔF508-CFTR trafficking defect known to date.

  18. Linking Single Domain Antibodies that Recognize Different Epitopes on the Same Target

    PubMed Central

    Glaven, Richard H.; Anderson, George P.; Zabetakis, Dan; Liu, Jinny L.; Long, Nina C.; Goldman, Ellen R.

    2012-01-01

    Single domain antibodies (sdAb) are the recombinantly expressed variable regions from the heavy-chain-only antibodies found in camelids and sharks. SdAb are able to bind antigens with high affinity, and most are capable of refolding after heat or chemical denaturation to bind antigen again. Starting with our previously isolated ricin binding sdAb determined to bind to four non-overlapping epitopes, we constructed a series of sdAb pairs, which were genetically linked through peptides of different length. We designed the series so that the sdAb are linked in both orientations with respect to the joining peptide. We confirmed that each of the sdAb in the constructs was able to bind to the ricin target, and have evidence that they are both binding ricin simultaneously. Through this work we determined that the order of genetically linked sdAb seems more important than the linker length. The genetically linked sdAb allowed for improved ricin detection with better limits of detection than the best anti-ricin monoclonal we evaluated, however they were not able to refold as well as unlinked component sdAb. PMID:25585631

  19. Pharmacological targeting of the β-amyloid precursor protein intracellular domain

    PubMed Central

    Branca, Caterina; Sarnico, Ilenia; Ruotolo, Roberta; Lanzillotta, Annamaria; Viscomi, Arturo Roberto; Benarese, Marina; Porrini, Vanessa; Lorenzini, Luca; Calzà, Laura; Imbimbo, Bruno Pietro; Ottonello, Simone; Pizzi, Marina

    2014-01-01

    Amyloid precursor protein (APP) intracellular domain (AICD) is a product of APP processing with transcriptional modulation activity, whose overexpression causes various Alzheimer's disease (AD)-related dysfunctions. Here we report that 1-(3′,4′-dichloro-2-fluoro[1,1′-biphenyl]-4-yl)-cyclopropanecarboxylic acid) (CHF5074), a compound that favorably affects neurodegeneration, neuroinflammation and memory deficit in transgenic mouse models of AD, interacts with the AICD and impairs its nuclear activity. In neuroglioma-APPswe cells, CHF5074 shifted APP cleavage from Aβ42 to the less toxic Aβ38 peptide without affecting APP-C-terminal fragment, nor APP levels. As revealed by photoaffinity labeling, CHF5074 does not interact with γ-secretase, but binds to the AICD and lowers its nuclear translocation. In vivo treatment with CHF5074 reduced AICD occupancy as well as histone H3 acetylation levels and transcriptional output of the AICD-target gene KAI1. The data provide new mechanistic insights on this compound, which is under clinical investigation for AD treatment/prevention, as well as on the contribution of the AICD to AD pathology. PMID:24714650

  20. Targeting of Nir2 to lipid droplets is regulated by a specific threonine residue within its PI-transfer domain.

    PubMed

    Litvak, Vladimir; Shaul, Yoav D; Shulewitz, Mark; Amarilio, Roy; Carmon, Shari; Lev, Sima

    2002-09-01

    Nir2, like its Drosophila homolog retinal degeneration B (RdgB), contains an N-terminal phosphatidylinositol-transfer protein (PI-TP)-like domain. Previous studies have suggested that RdgB plays an important role in the fly phototransduction cascade and that its PI-transfer domain is critical for this function. In this domain, a specific mutation, T59E, induces a dominant retinal degeneration phenotype. Here we show that a similar mutation, T59E in the human Nir2 protein, targets Nir2 to spherical cytosolic structures identified as lipid droplets by the lipophilic dye Nile red. A truncated Nir2T59E mutant consisting of only the PI-transfer domain was also targeted to lipid droplets, whereas neither the wild-type Nir2 nor the Nir2T59A mutant was associated with lipid droplets under regular growth conditions. However, oleic-acid treatment caused translocation of wild-type Nir2, but not translocation of the T59A mutant, to lipid droplets. This treatment also induced partial targeting of endogenous Nir2, which is mainly associated with the Golgi apparatus, to lipid droplets. Targeting of Nir2 to lipid droplets was attributed to its enhanced threonine phosphorylation. These results suggest that a specific threonine within the PI-transfer domain of Nir2 provides a regulatory site for targeting to lipid droplets. In conjunction with the role of PI-TPs in lipid transport, this targeting may affect intracellular lipid trafficking and distribution and may provide the molecular basis underlying the dominant effect of the RdgB-T59E mutant on retinal degeneration. PMID:12225667

  1. Identification of Potential Drug Targets Implicated in Parkinson's Disease from Human Genome: Insights of Using Fused Domains in Hypothetical Proteins as Probes

    PubMed Central

    Rathankar, N.; Nirmala, K. A.; Khanduja, Varun; Nagendra, H. G.

    2011-01-01

    High-throughput genome sequencing has led to data explosion in sequence databanks, with an imbalance of sequence-structure-function relationships, resulting in a substantial fraction of proteins known as hypothetical proteins. Functions of such proteins can be assigned based on the analysis and characterization of the domains that they are made up of. Domains are basic evolutionary units of proteins and most proteins contain multiple domains. A subset of multidomain proteins is fused domains (overlapping domains), wherein sequence overlaps between two or more domains occur. These fused domains are a result of gene fusion events and their implication in diseases is well established. Hence, an attempt has been made in this paper to identify the fused domain containing hypothetical proteins from human genome homologous to parkinsonian targets present in KEGG database. The results of this research identified 18 hypothetical proteins, with domains fused with ubiquitin domains and having homology with targets present in parkinsonian pathway. PMID:22389811

  2. A sting in the tail: the N-terminal domain of the androgen receptor as a drug target

    PubMed Central

    Monaghan, Amy E; McEwan, Iain J

    2016-01-01

    The role of androgen receptor (AR) in the initiation and progression of prostate cancer (PCa) is well established. Competitive inhibition of the AR ligand-binding domain (LBD) has been the staple of antiandrogen therapies employed to combat the disease in recent years. However, their efficacy has often been limited by the emergence of resistance, mediated through point mutations, and receptor truncations. As a result, the prognosis for patients with malignant castrate resistant disease remains poor. The amino-terminal domain (NTD) of the AR has been shown to be critical for AR function. Its modular activation function (AF-1) is important for both gene regulation and participation in protein-protein interactions. However, due to the intrinsically disordered structure of the domain, its potential as a candidate for therapeutic intervention has been dismissed in the past. The recent emergence of the small molecule EPI-001 has provided evidence that AR-NTD can be targeted therapeutically, independent of the LBD. Targeting of AR-NTD has the potential to disrupt multiple intermolecular interactions between AR and its coregulatory binding partners, in addition to intramolecular cross-talk between the domains of the AR. Therapeutics targeting these protein-protein interactions or NTD directly should also have efficacy against emerging AR splice variants which may play a role in PCa progression. This review will discuss the role of intrinsic disorder in AR function and illustrate how emerging therapies might target NTD in PCa. PMID:27212126

  3. miRNA863-3p sequentially targets negative immune regulator ARLPKs and positive regulator SERRATE upon bacterial infection

    PubMed Central

    Niu, Dongdong; Lii, Yifan E.; Chellappan, Padmanabhan; Lei, Lei; Peralta, Karl; Jiang, Chunhao; Guo, Jianhua; Coaker, Gitta; Jin, Hailing

    2016-01-01

    Plant small RNAs play important roles in gene regulation during pathogen infection. Here we show that miR863-3p is induced by the bacterial pathogen Pseudomonas syringae carrying various effectors. Early during infection, miR863-3p silences two negative regulators of plant defence, atypical receptor-like pseudokinase1 (ARLPK1) and ARLPK2, both lacking extracellular domains and kinase activity, through mRNA degradation to promote immunity. ARLPK1 associates with, and may function through another negative immune regulator ARLPK1-interacting receptor-like kinase 1 (AKIK1), an active kinase with an extracellular domain. Later during infection, miR863-3p silences SERRATE, which is essential for miRNA accumulation and positively regulates defence, through translational inhibition. This results in decreased miR863-3p levels, thus forming a negative feedback loop to attenuate immune responses after successful defence. This is an example of a miRNA that sequentially targets both negative and positive regulators of immunity through two modes of action to fine-tune the timing and amplitude of defence responses. PMID:27108563

  4. Selection of intracellular single-domain antibodies targeting the HIV-1 Vpr protein by cytoplasmic yeast two-hybrid system.

    PubMed

    Matz, Julie; Hérate, Cécile; Bouchet, Jérôme; Dusetti, Nelson; Gayet, Odile; Baty, Daniel; Benichou, Serge; Chames, Patrick

    2014-01-01

    The targeting of HIV-1 using antibodies is of high interest as molecular tools to better understand the biology of the virus or as a first step toward the design of new inhibitors targeting critical viral intracellular proteins. Small and highly stable llama-derived single-domain antibodies can often be functionally expressed as intracellular antibodies in the cytoplasm of eukaryotic cells. Using a selection method based on the Sos Recruitment System, a cytoplasmic yeast two-hybrid approach, we have isolated single-domain antibodies able to bind HIV-1 Vpr and Capside proteins in the yeast cytoplasm. One anti-Vpr single domain antibody was able to bind the HIV-1 regulatory Vpr protein in the cytoplasm of eukaryotic cells, leading to its delocalization from the nucleus to the cytoplasm. To our knowledge, this is the first description of a functional single-domain intrabody targeting HIV-1 Vpr, isolated using an in vivo cytoplasmic selection method that alleviates some limitations of the conventional yeast two-hybrid system.

  5. Selection of Intracellular Single-Domain Antibodies Targeting the HIV-1 Vpr Protein by Cytoplasmic Yeast Two-Hybrid System

    PubMed Central

    Matz, Julie; Hérate, Cécile; Bouchet, Jérôme; Dusetti, Nelson; Gayet, Odile; Baty, Daniel; Benichou, Serge; Chames, Patrick

    2014-01-01

    The targeting of HIV-1 using antibodies is of high interest as molecular tools to better understand the biology of the virus or as a first step toward the design of new inhibitors targeting critical viral intracellular proteins. Small and highly stable llama-derived single-domain antibodies can often be functionally expressed as intracellular antibodies in the cytoplasm of eukaryotic cells. Using a selection method based on the Sos Recruitment System, a cytoplasmic yeast two-hybrid approach, we have isolated single-domain antibodies able to bind HIV-1 Vpr and Capside proteins in the yeast cytoplasm. One anti-Vpr single domain antibody was able to bind the HIV-1 regulatory Vpr protein in the cytoplasm of eukaryotic cells, leading to its delocalization from the nucleus to the cytoplasm. To our knowledge, this is the first description of a functional single-domain intrabody targeting HIV-1 Vpr, isolated using an in vivo cytoplasmic selection method that alleviates some limitations of the conventional yeast two-hybrid system. PMID:25436999

  6. Real-Time Investigation of Referential Domains in Unscripted Conversation: A Targeted Language Game Approach

    ERIC Educational Resources Information Center

    Brown-Schmidt, Sarah; Tanenhaus, Michael K.

    2008-01-01

    Two experiments examined the restriction of referential domains during unscripted conversation by analyzing the modification and online interpretation of referring expressions. Experiment 1 demonstrated that from the earliest moments of processing, addressees interpreted referring expressions with respect to referential domains constrained by the…

  7. Targeting of the GRIP domain to the trans-Golgi network is conserved from protists to animals.

    PubMed

    McConville, Malcolm J; Ilgoutz, Steven C; Teasdale, Rohan D; Foth, Bernardo J; Matthews, Antony; Mullin, Kylie A; Gleeson, Paul A

    2002-09-01

    The GRIP domain, found in a family of coiled-coil peripheral membrane Golgi proteins, is a specific targeting sequence for the trans-Golgi network of animal cells. In this study we show that a coiled-coil protein with a GRIP domain occurs in the primitive eukaryote, Trypanosoma brucei, and that reporter proteins containing this domain can be used as a marker for the poorly characterized trans Golgi/trans-Golgi network of trypanosomatid parasites. The T. brucei GRIP domain, when fused to the carboxyl terminus of the green fluorescent protein (GFP-TbGRIP), was efficiently localized to the Golgi apparatus of transfected COS cells. Overexpression of GFP-TbGRIP in COS cells displaced the endogenous GRIP protein, GCC1p, from the Golgi apparatus indicating that the trypanosomatid and mammalian GRIP sequences interact with similar membrane determinants. GFP fusion proteins containing either the T. brucei GRIP domain or the human p230 GRIP (p230GRIP) domain were also expressed in the trypanosomatid parasite, Leishmania mexicana, and localized by fluorescence and immuno-electron microscopy to the trans face of the single Golgi apparatus and a short tubule that extended from the Golgi apparatus. Binding of GFP-p230GRIP to Golgi membranes in L. mexicana was abrogated by mutation of a critical tyrosine residue in the p230 GRIP domain. The levels of GFP-GRIP fusion proteins were dramatically reduced in stationary-phase L. mexicana promastigotes, suggesting that specific Golgi trafficking steps may be down-regulated as the promastigotes cease dividing. This study provides a protein marker for the trans-Golgi network of trypanosomatid parasites and suggests that the GRIP domain binds to a membrane component that has been highly conserved in eukaryotic evolution.

  8. Analysis of Organelle Targeting by DIL Domains of the Arabidopsis Myosin XI Family

    PubMed Central

    Sattarzadeh, Amirali; Schmelzer, Elmon; Hanson, Maureen R.

    2011-01-01

    The Arabidopsis thaliana genome encodes 13 myosin XI motor proteins. Previous insertional mutant analysis has implicated substantial redundancy of function of plant myosin XIs in transport of intracellular organelles. Considerable information is available about the interaction of cargo with the myosin XI-homologous yeast myosin V protein myo2p. We identified a region in each of 12 myosin XI sequences that correspond to the yeast myo2p secretory-vesicle binding domain (the “DIL” domain). Structural modeling of the myosin DIL domain region of plant myosin XIs revealed significant similarity to the yeast myo2p and myo4p DIL domains. Transient expression of YFP fusions with the Arabidopsis myosin XI DIL domain resulted in fluorescent labeling of a variety of organelles, including the endoplasmic reticulum, peroxisomes, Golgi, and nuclear envelope. With the exception of the YFP::MYA1 DIL fusion, expression of the DIL–YFP fusions resulted in loss of motility of labeled organelles, consistent with a dominant-negative effect. Certain fusions resulted in localization to the cytoplasm, plasma membrane, or to unidentified vesicles. The same YFP-domain fusion sometimes labeled more than one organelle. Expression of a YFP fusion to a yeast myo2p DIL domain resulted in labeling of plant peroxisomes. Fusions with some of the myosin XI domains resulted in labeling of known cargoes of the particular myosin XI; however, certain myosin XI YFP fusions labeled organelles that had not previously been found to be detectably affected by mutations nor by expression of dominant-negative constructs. PMID:22645548

  9. Targeting diverse protein-protein interaction interfaces with α/β-peptides derived from the Z-domain scaffold.

    PubMed

    Checco, James W; Kreitler, Dale F; Thomas, Nicole C; Belair, David G; Rettko, Nicholas J; Murphy, William L; Forest, Katrina T; Gellman, Samuel H

    2015-04-14

    Peptide-based agents derived from well-defined scaffolds offer an alternative to antibodies for selective and high-affinity recognition of large and topologically complex protein surfaces. Here, we describe a strategy for designing oligomers containing both α- and β-amino acid residues ("α/β-peptides") that mimic several peptides derived from the three-helix bundle "Z-domain" scaffold. We show that α/β-peptides derived from a Z-domain peptide targeting vascular endothelial growth factor (VEGF) can structurally and functionally mimic the binding surface of the parent peptide while exhibiting significantly decreased susceptibility to proteolysis. The tightest VEGF-binding α/β-peptide inhibits the VEGF165-induced proliferation of human umbilical vein endothelial cells. We demonstrate the versatility of this strategy by showing how principles underlying VEGF signaling inhibitors can be rapidly extended to produce Z-domain-mimetic α/β-peptides that bind to two other protein partners, IgG and tumor necrosis factor-α. Because well-established selection techniques can identify high-affinity Z-domain derivatives from large DNA-encoded libraries, our findings should enable the design of biostable α/β-peptides that bind tightly and specifically to diverse targets of biomedical interest. Such reagents would be useful for diagnostic and therapeutic applications.

  10. The role of the PH domain in the signal-dependent membrane targeting of Sos.

    PubMed Central

    Chen, R H; Corbalan-Garcia, S; Bar-Sagi, D

    1997-01-01

    The pleckstrin homology (PH) domain is a conserved protein module present in diverse signal transducing proteins. To investigate the function of the PH domain of the Ras exchanger Sos, we have generated a recombinant (His)6-tagged PH domain from human Sos1 (PH-Sos). Here we show that PH-Sos binds with high affinity(1.5 microM) to lipid vesicles containing the negatively charged phospholipid phosphatidylinositol 4,5-bisphosphate (PIP2). When microinjected into serum-deprived rat embryo fibroblasts or COS cells, PH-Sos displays a homogenous subcellular distribution. However, PH-Sos rapidly accumulates in the plasma membrane following serum stimulation and, under these conditions, is localized preferentially to the leading edge of motile cells. Surprisingly, the membrane localization of PH-Sos is not dependent on its ability to bind PIP2. Overexpression of the PH domain of Sos has a pronounced dominant-negative effect on serum-induced activation of the Ras signaling pathway. These results suggest that the PH domain of Sos participates in regulating the inducible association of Sos with the membrane, and indicate the presence of specific ligands that interact with this domain to bring about the activation of Ras. PMID:9135150

  11. Time-domain response of a metal detector to a target buried in soil with frequency-dependent magnetic susceptibility

    NASA Astrophysics Data System (ADS)

    Das, Y.

    2006-05-01

    The work reported in this paper is a part of on-going studies to clarify how and to what extent soil electromagnetic properties affect the performance of induction metal detectors widely used in humanitarian demining. This paper studies the specific case of the time-domain response of a small metallic sphere buried in a non-conducting soil half-space with frequency-dependent complex magnetic susceptibility. The sphere is chosen as a simple prototype for the small metal parts in low-metal landmines, while soil with dispersive magnetic susceptibility is a good model for some soils that are known to adversely affect the performance of metal detectors. The included analysis and computations extend previous work which has been done mostly in the frequency domain. Approximate theoretical expressions for weakly magnetic soils are found to fit the experimental data very well, which allowed the estimation of soil model parameters, albeit in an ad hoc manner. Soil signal is found to exceed target signal (due to an aluminum sphere of radius 0.0127 m) in many cases, even for the weakly magnetic Cambodian laterite used in the experiments. How deep a buried target is detected depends on many other factors in addition to the relative strength of soil and target signals. A general statement cannot thus be made regarding detectability of a target in soil based on the presented results. However, computational results complemented with experimental data extend the understanding of the effect that soil has on metal detectors.

  12. Toxic PR poly-dipeptides encoded by the C9orf72 repeat expansion target LC domain polymers

    PubMed Central

    Lin, Yi; Mori, Eiichiro; Kato, Masato; Xiang, Siheng; Wu, Leeju; Kwon, Ilmin; McKnight, Steven L.

    2016-01-01

    Summary Two complementary approaches were used in search of the intracellular targets of the toxic PR poly-dipeptide encoded by the repeat sequences expanded in the C9orf72 form of amyotrophic lateral sclerosis. The top categories of PRn-bound proteins include constituents of non-membrane invested cellular organelles and intermediate filaments. PRn targets are enriched for the inclusion of low complexity (LC) sequences. Evidence is presented indicating that LC sequences represent the direct target of PRn binding, and that interaction between the PRn poly-dipeptide and LC domains is polymer-dependent. These studies indicate that PRn-mediated toxicity may result from broad impediments to the dynamics of cell structure and information flow from gene to message to protein. PMID:27768897

  13. Domain based assays of individual antibody concentrations in an oligoclonal combination targeting a single protein

    PubMed Central

    Meng, Q.; Li, M.; Silberg, M.A.; Conrad, F.; Bettencourt, J.; To, R.; Huang, C.; Ma, J.; Meyer, K.; Shimizu, R.; Cao, L.; Tomic, M.T.; Marks, J.D.

    2014-01-01

    Quantitation of individual mAbs within a combined antibody drug product is required for preclinical and clinical drug development including pharmacokinetics (PK), toxicology, stability and biochemical characterization studies of such drugs. We have developed an antitoxin (XOMA 3AB) consisting of three recombinant monoclonal antibodies (mAbs) that potently neutralizes the known subtypes of type A botulinum neurotoxin (BoNT/A). The three mAbs bind non-overlapping BoNT/A epitopes with high affinity. XOMA3AB is being developed as a treatment for botulism resulting from BoNT/A. To develop antibody-specific assays, we cloned, expressed, and purified BoNT/A domains from E. coli. Each mAb bound only to its specific domain with affinity comparable to the binding to holotoxin. MAb specific domains were used to develop an ELISA for characterization of the integrity and binding activity of the three mAbs in the drug product. An electrochemiluminescence bridging assay was also developed that is robust to interference from components in serum and we demonstrate that it can be used for PK assays. This type of antigen engineering to generate mAb-specific domains is a general method allowing quantitation and characterization of individual mAbs in a mAb cocktail that bind the same protein and is superior to anti-idiotype approaches. PMID:22037290

  14. Subcellular targeting domains of Abutilon mosaic geminivirus movement protein BC1.

    PubMed

    Zhang, S C; Ghosh, R; Jeske, H

    2002-12-01

    Abutilon mosaic geminivirus (AbMV) encodes two movement proteins, BV1 and BC1, which mediate the intra- and intercellular transport of viral DNA in plants cooperatively. It has been shown previously that singly expressed BC1, fused to green fluorescent protein (GFP), accumulates preferentially either at the cell periphery or around the nucleus in separate plant cells. To define the BC1 domains responsible for understanding the subcellular sorting, deletion mutants were fused to GFP and expressed transiently in epidermal cells of non-host (Allium cepa) as well as of host (Nicotiana benthamiana) plants with basically the same results in both species. BC1-mediated intracellular sorting was dependent on two protein domains, an "anchor domain" (amino acids 117 to 180) which is necessary and sufficient to fix GFP:BC1 at the cell periphery and the nuclear environment, and a "pilot domain" (amino acids 1 to 49) in the absence of which the fusion proteins were found at both sites in the same cell simultaneously. PMID:12491102

  15. Atomic structure of the nuclear pore complex targeting domain of a Nup116 homologue from the yeast, Candida glabrata

    SciTech Connect

    Sampathkumar, Parthasarathy; Kim, Seung Joong; Manglicmot, Danalyn; Bain, Kevin T.; Gilmore, Jeremiah; Gheyi, Tarun; Phillips, Jeremy; Pieper, Ursula; Fernandez-Martinez, Javier; Franke, Josef D.; Matsui, Tsutomu; Tsuruta, Hiro; Atwell, Shane; Thompson, Devon A.; Emtage, J. Spencer; Wasserman, Stephen R.; Rout, Michael P.; Sali, Andrej; Sauder, J. Michael; Almo, Steven C.; Burley, Stephen K.

    2012-10-23

    The nuclear pore complex (NPC), embedded in the nuclear envelope, is a large, dynamic molecular assembly that facilitates exchange of macromolecules between the nucleus and the cytoplasm. The yeast NPC is an eightfold symmetric annular structure composed of {approx}456 polypeptide chains contributed by {approx}30 distinct proteins termed nucleoporins. Nup116, identified only in fungi, plays a central role in both protein import and mRNA export through the NPC. Nup116 is a modular protein with N-terminal 'FG' repeats containing a Gle2p-binding sequence motif and a NPC targeting domain at its C-terminus. We report the crystal structure of the NPC targeting domain of Candida glabrata Nup116, consisting of residues 882-1034 [CgNup116(882-1034)], at 1.94 {angstrom} resolution. The X-ray structure of CgNup116(882-1034) is consistent with the molecular envelope determined in solution by small-angle X-ray scattering. Structural similarities of CgNup116(882-1034) with homologous domains from Saccharomyces cerevisiae Nup116, S. cerevisiae Nup145N, and human Nup98 are discussed.

  16. Atomic Structure of the Nuclear Pore Complex targeting domain of a Nup116 homologue from the yeast, Candida glabrata

    PubMed Central

    Sampathkumar, Parthasarathy; Kim, Seung Joong; Manglicmot, Danalyn; Bain, Kevin T.; Gilmore, Jeremiah; Gheyi, Tarun; Phillips, Jeremy; Pieper, Ursula; Fernandez-Martinez, Javier; Franke, Josef D.; Matsui, Tsutomu; Tsuruta, Hiro; Atwell, Shane; Thompson, Devon A.; Emtage, J. Spencer; Wasserman, Stephen R.; Rout, Michael P.; Sali, Andrej; Sauder, J. Michael; Almo, Steven C.; Burley, Stephen K.

    2012-01-01

    The nuclear pore complex (NPC), embedded in the nuclear envelope, is a large, dynamic molecular assembly that facilitates exchange of macromolecules between the nucleus and cytoplasm. The yeast NPC is an eight-fold symmetric annular structure composed of ~456 polypeptide chains contributed by ~30 distinct proteins termed nucleoporins (Nups). Nup116, identified only in fungi, plays a central role in both protein import and mRNA export through the NPC. Nup116 is a modular protein with N-terminal “FG” repeats containing a Gle2p-binding sequence motif (GLEBS motif) and a NPC targeting domain at its C-terminus. We report the crystal structure of the NPC targeting domain of Candida glabrata Nup116, consisting of residues 882-1034 [CgNup116(882-1034)], at 1.94 Å resolution. The X-ray structure of CgNup116(882-1034) is consistent with the molecular envelope determined in solution by Small Angle X-ray Scattering (SAXS). Structural similarities of CgNup116(882-1034) with homologous domains from Saccharomyces cerevisiae Nup116, S. cerevisiaeNup145N, and human Nup98 are discussed. PMID:22544723

  17. Atomic structure of the nuclear pore complex targeting domain of a Nup116 homologue from the yeast, Candida glabrata.

    PubMed

    Sampathkumar, Parthasarathy; Kim, Seung Joong; Manglicmot, Danalyn; Bain, Kevin T; Gilmore, Jeremiah; Gheyi, Tarun; Phillips, Jeremy; Pieper, Ursula; Fernandez-Martinez, Javier; Franke, Josef D; Matsui, Tsutomu; Tsuruta, Hiro; Atwell, Shane; Thompson, Devon A; Emtage, J Spencer; Wasserman, Stephen R; Rout, Michael P; Sali, Andrej; Sauder, J Michael; Almo, Steven C; Burley, Stephen K

    2012-08-01

    The nuclear pore complex (NPC), embedded in the nuclear envelope, is a large, dynamic molecular assembly that facilitates exchange of macromolecules between the nucleus and the cytoplasm. The yeast NPC is an eightfold symmetric annular structure composed of ~456 polypeptide chains contributed by ~30 distinct proteins termed nucleoporins. Nup116, identified only in fungi, plays a central role in both protein import and mRNA export through the NPC. Nup116 is a modular protein with N-terminal "FG" repeats containing a Gle2p-binding sequence motif and a NPC targeting domain at its C-terminus. We report the crystal structure of the NPC targeting domain of Candida glabrata Nup116, consisting of residues 882-1034 [CgNup116(882-1034)], at 1.94 Å resolution. The X-ray structure of CgNup116(882-1034) is consistent with the molecular envelope determined in solution by small-angle X-ray scattering. Structural similarities of CgNup116(882-1034) with homologous domains from Saccharomyces cerevisiae Nup116, S. cerevisiae Nup145N, and human Nup98 are discussed. PMID:22544723

  18. Identification of overlapping DNA-binding and centromere-targeting domains in the human kinetochore protein CENP-C.

    PubMed Central

    Yang, C H; Tomkiel, J; Saitoh, H; Johnson, D H; Earnshaw, W C

    1996-01-01

    The kinetochore in eukaryotes serves as the chromosomal site of attachment for microtubules of the mitotic spindle and directs the movements necessary for proper chromosome segregation. In mammalian cells, the kinetochore is a highly differentiated trilaminar structure situated at the surface of the centromeric heterochromatin. CENP-C is a basic, DNA-binding protein that localizes to the inner kinetochore plate, the region that abuts the heterochromatin. Microinjection experiments using antibodies specific for CENP-C have demonstrated that this protein is required for the assembly and/or stability of the kinetochore as well as for a timely transition through mitosis. From these observations, it has been suggested that CENP-C is a structural protein that is involved in the organization or the kinetochore. In this report, we wished to identify and map the functional domains of CENP-C. Analysis of CENP-C truncation mutants expressed in vivo demonstrated that CENP-C possesses an autonomous centromere-targeting domain situated at the central region of the CENP-C polypeptide. Similarly, in vitro assays revealed that a region of CENP-C with the ability to bind DNA is also located at the center of the CENP-C molecule, where it overlaps the centromere-targeting domain. PMID:8668174

  19. Targeting diverse protein–protein interaction interfaces with α/β-peptides derived from the Z-domain scaffold

    SciTech Connect

    Checco, James W.; Kreitler, Dale F.; Thomas, Nicole C.; Belair, David G.; Rettko, Nicholas J.; Murphy, William L.; Forest, Katrina T.; Gellman, Samuel H.

    2015-04-14

    Peptide-based agents derived from well-defined scaffolds offer an alternative to antibodies for selective and high-affinity recognition of large and topologically complex protein surfaces. Here, we describe a strategy for designing oligomers containing both α- and β-amino acid residues ("α/β-peptides") that mimic several peptides derived from the three-helix bundle "Z-domain" scaffold. We show that α/β-peptides derived from a Z-domain peptide targeting vascular endothelial growth factor (VEGF) can structurally and functionally mimic the binding surface of the parent peptide while exhibiting significantly decreased susceptibility to proteolysis. The tightest VEGF-binding α/β-peptide inhibits the VEGF₁₆₅-induced proliferation of human umbilical vein endothelial cells. We demonstrate the versatility of this strategy by showing how principles underlying VEGF signaling inhibitors can be rapidly extended to produce Z-domain–mimetic α/β-peptides that bind to two other protein partners, IgG and tumor necrosis factor-α. Because well-established selection techniques can identify high-affinity Z-domain derivatives from large DNA-encoded libraries, our findings should enable the design of biostable α/β-peptides that bind tightly and specifically to diverse targets of biomedical interest. Such reagents would be useful for diagnostic and therapeutic applications.

  20. The rotaviral NSP3 protein stimulates translation of polyadenylated target mRNAs independently of its RNA-binding domain

    SciTech Connect

    Keryer-Bibens, Cecile; Legagneux, Vincent; Namanda-Vanderbeken, Allen; Cosson, Bertrand; Paillard, Luc; Poncet, Didier; Osborne, H. Beverley

    2009-12-11

    The non-structural protein 3 (NSP3) of rotaviruses is an RNA-binding protein that specifically recognises a 4 nucleotide sequence at the 3' extremity of the non-polyadenylated viral mRNAs. NSP3 also has a high affinity for eIF4G. These two functions are clearly delimited in separate domains the structures of which have been determined. They are joined by a central domain implicated in the dimerisation of the full length protein. The bridging function of NSP3 between the 3' end of the viral mRNA and eIF4G has been proposed to enhance the synthesis of viral proteins. However, this role has been questioned as knock-down of NSP3 did not impair viral protein synthesis. We show here using a MS2/MS2-CP tethering assay that a C-terminal fragment of NSP3 containing the eIF4G binding domain and the dimerisation domain can increase the expression of a protein encoded by a target reporter mRNA in HEK 293 cells. The amount of reporter mRNA in the cells is not significantly affected by the presence of the NSP3 derived fusion protein showing that the enhanced protein expression is due to increased translation. These results show that NSP3 can act as a translational enhancer even on a polyadenylated mRNA that should be a substrate for PABP1.

  1. Fast analysis of wide-band scattering from electrically large targets with time-domain parabolic equation method

    NASA Astrophysics Data System (ADS)

    He, Zi; Chen, Ru-Shan

    2016-03-01

    An efficient three-dimensional time domain parabolic equation (TDPE) method is proposed to fast analyze the narrow-angle wideband EM scattering properties of electrically large targets. The finite difference (FD) of Crank-Nicolson (CN) scheme is used as the traditional tool to solve the time-domain parabolic equation. However, a huge computational resource is required when the meshes become dense. Therefore, the alternating direction implicit (ADI) scheme is introduced to discretize the time-domain parabolic equation. In this way, the reduced transient scattered fields can be calculated line by line in each transverse plane for any time step with unconditional stability. As a result, less computational resources are required for the proposed ADI-based TDPE method when compared with both the traditional CN-based TDPE method and the finite-different time-domain (FDTD) method. By employing the rotating TDPE method, the complete bistatic RCS can be obtained with encouraging accuracy for any observed angle. Numerical examples are given to demonstrate the accuracy and efficiency of the proposed method.

  2. The intracellular carboxyl terminal domain of Vangl proteins contains plasma membrane targeting signals

    PubMed Central

    Iliescu, Alexandra; Gros, Philippe

    2014-01-01

    Vangl1 and Vangl2 are integral membrane proteins that play a critical role in establishing planar cell polarity (PCP) in epithelial cells and are required for convergent extension (CE) movements during embryogenesis. Their proper targeting to the plasma membrane (PM) is required for function. We created discrete deletions at the amino and carboxy termini of Vangl1 and monitored the effect of the mutations on PM targeting in Madin–Darby canine kidney cells. Our results show that the Vangl1 amino terminus lacks PM targeting determinants, and these are restricted to the carboxy terminus, including the predicted PDZBM motif at the C-terminus. PMID:24452931

  3. Peripartum depression and anxiety as an integrative cross domain target for psychiatric preventative measures.

    PubMed

    Babb, Jessica A; Deligiannidis, Kristina M; Murgatroyd, Christopher A; Nephew, Benjamin C

    2015-01-01

    Exposure to high levels of early life stress has been identified as a potent risk factor for neurodevelopmental delays in infants, behavioral problems and autism in children, but also for several psychiatric illnesses in adulthood, such as depression, anxiety, autism, and posttraumatic stress disorder. Despite having robust adverse effects on both mother and infant, the pathophysiology of peripartum depression and anxiety are poorly understood. The objective of this review is to highlight the advantages of using an integrated approach addressing several behavioral domains in both animal and clinical studies of peripartum depression and anxiety. It is postulated that a greater focus on integrated cross domain studies will lead to advances in treatments and preventative measures for several disorders associated with peripartum depression and anxiety.

  4. Mechanism of intermediate filament recognition by plakin repeat domains revealed by envoplakin targeting of vimentin

    PubMed Central

    Fogl, Claudia; Mohammed, Fiyaz; Al-Jassar, Caezar; Jeeves, Mark; Knowles, Timothy J.; Rodriguez-Zamora, Penelope; White, Scott A.; Odintsova, Elena; Overduin, Michael; Chidgey, Martyn

    2016-01-01

    Plakin proteins form critical connections between cell junctions and the cytoskeleton; their disruption within epithelial and cardiac muscle cells cause skin-blistering diseases and cardiomyopathies. Envoplakin has a single plakin repeat domain (PRD) which recognizes intermediate filaments through an unresolved mechanism. Herein we report the crystal structure of envoplakin's complete PRD fold, revealing binding determinants within its electropositive binding groove. Four of its five internal repeats recognize negatively charged patches within vimentin via five basic determinants that are identified by nuclear magnetic resonance spectroscopy. Mutations of the Lys1901 or Arg1914 binding determinants delocalize heterodimeric envoplakin from intracellular vimentin and keratin filaments in cultured cells. Recognition of vimentin is abolished when its residues Asp112 or Asp119 are mutated. The latter slot intermediate filament rods into basic PRD domain grooves through electrosteric complementarity in a widely applicable mechanism. Together this reveals how plakin family members form dynamic linkages with cytoskeletal frameworks. PMID:26935805

  5. Mechanism of intermediate filament recognition by plakin repeat domains revealed by envoplakin targeting of vimentin.

    PubMed

    Fogl, Claudia; Mohammed, Fiyaz; Al-Jassar, Caezar; Jeeves, Mark; Knowles, Timothy J; Rodriguez-Zamora, Penelope; White, Scott A; Odintsova, Elena; Overduin, Michael; Chidgey, Martyn

    2016-01-01

    Plakin proteins form critical connections between cell junctions and the cytoskeleton; their disruption within epithelial and cardiac muscle cells cause skin-blistering diseases and cardiomyopathies. Envoplakin has a single plakin repeat domain (PRD) which recognizes intermediate filaments through an unresolved mechanism. Herein we report the crystal structure of envoplakin's complete PRD fold, revealing binding determinants within its electropositive binding groove. Four of its five internal repeats recognize negatively charged patches within vimentin via five basic determinants that are identified by nuclear magnetic resonance spectroscopy. Mutations of the Lys1901 or Arg1914 binding determinants delocalize heterodimeric envoplakin from intracellular vimentin and keratin filaments in cultured cells. Recognition of vimentin is abolished when its residues Asp112 or Asp119 are mutated. The latter slot intermediate filament rods into basic PRD domain grooves through electrosteric complementarity in a widely applicable mechanism. Together this reveals how plakin family members form dynamic linkages with cytoskeletal frameworks. PMID:26935805

  6. Mechanism of intermediate filament recognition by plakin repeat domains revealed by envoplakin targeting of vimentin

    NASA Astrophysics Data System (ADS)

    Fogl, Claudia; Mohammed, Fiyaz; Al-Jassar, Caezar; Jeeves, Mark; Knowles, Timothy J.; Rodriguez-Zamora, Penelope; White, Scott A.; Odintsova, Elena; Overduin, Michael; Chidgey, Martyn

    2016-03-01

    Plakin proteins form critical connections between cell junctions and the cytoskeleton; their disruption within epithelial and cardiac muscle cells cause skin-blistering diseases and cardiomyopathies. Envoplakin has a single plakin repeat domain (PRD) which recognizes intermediate filaments through an unresolved mechanism. Herein we report the crystal structure of envoplakin's complete PRD fold, revealing binding determinants within its electropositive binding groove. Four of its five internal repeats recognize negatively charged patches within vimentin via five basic determinants that are identified by nuclear magnetic resonance spectroscopy. Mutations of the Lys1901 or Arg1914 binding determinants delocalize heterodimeric envoplakin from intracellular vimentin and keratin filaments in cultured cells. Recognition of vimentin is abolished when its residues Asp112 or Asp119 are mutated. The latter slot intermediate filament rods into basic PRD domain grooves through electrosteric complementarity in a widely applicable mechanism. Together this reveals how plakin family members form dynamic linkages with cytoskeletal frameworks.

  7. Mechanism of intermediate filament recognition by plakin repeat domains revealed by envoplakin targeting of vimentin.

    PubMed

    Fogl, Claudia; Mohammed, Fiyaz; Al-Jassar, Caezar; Jeeves, Mark; Knowles, Timothy J; Rodriguez-Zamora, Penelope; White, Scott A; Odintsova, Elena; Overduin, Michael; Chidgey, Martyn

    2016-01-01

    Plakin proteins form critical connections between cell junctions and the cytoskeleton; their disruption within epithelial and cardiac muscle cells cause skin-blistering diseases and cardiomyopathies. Envoplakin has a single plakin repeat domain (PRD) which recognizes intermediate filaments through an unresolved mechanism. Herein we report the crystal structure of envoplakin's complete PRD fold, revealing binding determinants within its electropositive binding groove. Four of its five internal repeats recognize negatively charged patches within vimentin via five basic determinants that are identified by nuclear magnetic resonance spectroscopy. Mutations of the Lys1901 or Arg1914 binding determinants delocalize heterodimeric envoplakin from intracellular vimentin and keratin filaments in cultured cells. Recognition of vimentin is abolished when its residues Asp112 or Asp119 are mutated. The latter slot intermediate filament rods into basic PRD domain grooves through electrosteric complementarity in a widely applicable mechanism. Together this reveals how plakin family members form dynamic linkages with cytoskeletal frameworks.

  8. PERIPARTUM DEPRESSION AND ANXIETY AS AN INTEGRATIVE CROSS DOMAIN TARGET FOR PSYCHIATRIC PREVENTATIVE MEASURES

    PubMed Central

    Babb, Jessica A.; Deligiannidis, Kristina M.; Murgatroyd, Christopher A.

    2014-01-01

    Exposure to high levels of early life stress has been identified as a potent risk factor for neurodevelopmental delays in infants, behavioral problems and autism in children, but also for several psychiatric illnesses in adulthood, such as depression, anxiety, autism, and posttraumatic stress disorder. Despite having robust adverse effects on both mother and infant, the pathophysiology of peripartum depression and anxiety are poorly understood. The objective of this review is to highlight the advantages of using an integrated approach addressing several behavioral domains in both animal and clinical studies of peripartum depression and anxiety. It is postulated that a greater focus on integrated cross domain studies will lead to advances in treatments and preventative measures for several disorders associated with peripartum depression and anxiety. PMID:24709228

  9. Experimental Study of High-Range-Resolution Medical Acoustic Imaging for Multiple Target Detection by Frequency Domain Interferometry

    NASA Astrophysics Data System (ADS)

    Kimura, Tomoki; Taki, Hirofumi; Sakamoto, Takuya; Sato, Toru

    2009-07-01

    We employed frequency domain interferometry (FDI) for use as a medical acoustic imager to detect multiple targets with high range resolution. The phase of each frequency component of an echo varies with the frequency, and target intervals can be estimated from the phase variance. This processing technique is generally used in radar imaging. When the interference within a range gate is coherent, the cross correlation between the desired signal and the coherent interference signal is nonzero. The Capon method works under the guiding principle that output power minimization cancels the desired signal with a coherent interference signal. Therefore, we utilize frequency averaging to suppress the correlation of the coherent interference. The results of computational simulations using a pseudoecho signal show that the Capon method with adaptive frequency averaging (AFA) provides a higher range resolution than a conventional method. These techniques were experimentally investigated and we confirmed the effectiveness of the proposed method of processing by FDI.

  10. Therapeutic targeting of two-pore-domain potassium (K(2P)) channels in the cardiovascular system.

    PubMed

    Wiedmann, Felix; Schmidt, Constanze; Lugenbiel, Patrick; Staudacher, Ingo; Rahm, Ann-Kathrin; Seyler, Claudia; Schweizer, Patrick A; Katus, Hugo A; Thomas, Dierk

    2016-05-01

    The improvement of treatment strategies in cardiovascular medicine is an ongoing process that requires constant optimization. The ability of a therapeutic intervention to prevent cardiovascular pathology largely depends on its capacity to suppress the underlying mechanisms. Attenuation or reversal of disease-specific pathways has emerged as a promising paradigm, providing a mechanistic rationale for patient-tailored therapy. Two-pore-domain K(+) (K(2P)) channels conduct outward K(+) currents that stabilize the resting membrane potential and facilitate action potential repolarization. K(2P) expression in the cardiovascular system and polymodal K2P current regulation suggest functional significance and potential therapeutic roles of the channels. Recent work has focused primarily on K(2P)1.1 [tandem of pore domains in a weak inwardly rectifying K(+) channel (TWIK)-1], K(2P)2.1 [TWIK-related K(+) channel (TREK)-1], and K(2P)3.1 [TWIK-related acid-sensitive K(+) channel (TASK)-1] channels and their role in heart and vessels. K(2P) currents have been implicated in atrial and ventricular arrhythmogenesis and in setting the vascular tone. Furthermore, the association of genetic alterations in K(2P)3.1 channels with atrial fibrillation, cardiac conduction disorders and pulmonary arterial hypertension demonstrates the relevance of the channels in cardiovascular disease. The function, regulation and clinical significance of cardiovascular K(2P) channels are summarized in the present review, and therapeutic options are emphasized.

  11. Design, synthesis and characterization of peptidomimetic conjugate of BODIPY targeting HER2 protein extracellular domain

    PubMed Central

    Banappagari, Sashikanth; McCall, Alecia; Fontenot, Krystal; Vicente, M. Graca H.; Gujar, Amit; Satyanarayanajois, Seetharama

    2013-01-01

    Among the EGFRs, HER2 is a major heterodimer partner and also has important implications in the formation of particular tumors. Interaction of HER2 protein with other EGFR proteins can be modulated by small molecule ligands and, hence, these protein-protein interactions play a key role in biochemical reactions related to control of cell growth. A peptidomimetic (compound 5-1) that binds to HER2 protein extracellular domain and inhibits protein-protein interactions of EGFRs was conjugated with BODIPY (4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene). Conjugation of BODIPY to the peptidomimetic was investigated by different approaches. The conjugate was characterized for its ability to bind to HER2 overexpressing SKBR-3 and BT-474 cells. Furthermore, cellular uptake of conjugate of BODIPY was studied in the presence of membrane tracker and Lyso tracker using confocal microscopy. Our results suggested that fluorescently labeled compound 5-7 binds to the extracellular domain and stays in the membrane for nearly 24 h. After 24 h there is an indication of internalization of the conjugate. Inhibition of protein-protein interaction and downstream signaling effect of compound 5-1 was also studied by proximity ligation assay and western blot analysis. Results suggested that compound 5-1 inhibits protein-protein interactions of HER2-HER3 and phosphorylation of HER2 in a time-dependent manner. PMID:23688700

  12. MADS domain transcription factors mediate short-range DNA looping that is essential for target gene expression in Arabidopsis.

    PubMed

    Mendes, Marta Adelina; Guerra, Rosalinda Fiorella; Berns, Markus Christian; Manzo, Carlo; Masiero, Simona; Finzi, Laura; Kater, Martin M; Colombo, Lucia

    2013-07-01

    MADS domain transcription factors are key regulators of eukaryotic development. In plants, the homeotic MIKC MADS factors that regulate floral organ identity have been studied in great detail. Based on genetic and protein-protein interaction studies, a floral quartet model was proposed that describes how these MADS domain proteins assemble into higher order complexes to regulate their target genes. However, despite the attractiveness of this model and its general acceptance in the literature, solid in vivo proof has never been provided. To gain deeper insight into the mechanisms of transcriptional regulation by MADS domain factors, we studied how SEEDSTICK (STK) and SEPALLATA3 (SEP3) directly regulate the expression of the reproductive meristem gene family transcription factor-encoding gene VERDANDI (VDD). Our data show that STK-SEP3 dimers can induce loop formation in the VDD promoter by binding to two nearby CC(A/T)6GG (CArG) boxes and that this is essential for promoter activity. Our in vivo data show that the size and position of this loop, determined by the choice of CArG element usage, is essential for correct expression. Our studies provide solid in vivo evidence for the floral quartet model. PMID:23847151

  13. Requirement of the FATC domain of protein kinase Tel1 for localization to DNA ends and target protein recognition.

    PubMed

    Ogi, Hiroo; Goto, Greicy H; Ghosh, Avik; Zencir, Sevil; Henry, Everett; Sugimoto, Katsunori

    2015-10-01

    Two large phosphatidylinositol 3-kinase-related protein kinases (PIKKs), ATM and ATR, play a central role in the DNA damage response pathway. PIKKs contain a highly conserved extreme C-terminus called the FRAP-ATM-TRRAP-C-terminal (FATC) domain. In budding yeast, ATM and ATR correspond to Tel1 and Mec1, respectively. In this study, we characterized functions of the FATC domain of Tel1 by introducing substitution or truncation mutations. One substitution mutation, termed tel1-21, and a truncation mutation, called tel1-ΔC, did not significantly affect the expression level. The tel1-21 mutation impaired the cellular response to DNA damage and conferred moderate telomere maintenance defect. In contrast, the tel1-ΔC mutation behaved like a null mutation, conferring defects in both DNA damage response and telomere maintenance. Tel1-21 protein localized to DNA ends as effectively as wild-type Tel1 protein, whereas Tel1-ΔC protein failed. Introduction of a hyperactive TEL1-hy mutation suppressed the tel1-21 mutation but not the tel1-ΔC mutation. In vitro analyses revealed that both Tel1-21 and Tel1-ΔC proteins undergo efficient autophosphorylation but exhibit decreased kinase activities toward the exogenous substrate protein, Rad53. Our results show that the FATC domain of Tel1 mediates localization to DNA ends and contributes to phosphorylation of target proteins.

  14. Targeted inhibition of tumour cell growth by a bispecific single-chain toxin containing an antibody domain and TGF alpha.

    PubMed Central

    Schmidt, M.; Wels, W.

    1996-01-01

    Overexpression of the epidermal growth factor receptor (EGFR) and ErbB-2 has been observed in a variety of human tumours, making these receptors promising targets for directed tumour therapy. Since many tumour cells express both ErbB-2 and EGFR and these receptors synergise in cellular transformation, therapeutic reagents simultaneously binding to ErbB-2 and EGFR might offer advantages for tumour therapy. We have previously described the potent anti-tumoral activity of a bispecific antibody toxin that contains ErbB-2- and EGFR-specific single-chain Fv (scFv) domains. Here we report the construction and functional characterisation of a novel bispecific recombinant toxin, scFv(FRP5)-TGF alpha-ETA. The fusion protein consists of the antigen-binding domain of the ErbB-2-specific MAb, FRP5, and the natural EGFR ligand, TGF alpha, inserted at different positions in truncated Pseudomonas exotoxin A. ScFv(FRP5)-TGF alpha-ETA protein displayed binding to EGFR and ErbB-2, thereby inducing activation of the receptors, which was dependent on the cellular context and the level of EGFR and ErbB-2 expression. The bispecific molecule was cytotoxic in vitro for tumour cells expressing various levels of the target receptors. In vivo scFv(FRP5)-TGF alpha-ETA potently inhibited the growth of established A431 tumour xenografts in nude mice. Images Figure 1 Figure 2 Figure 5 PMID:8826849

  15. Targeting the hepatitis B virus precore antigen with a novel IgNAR single variable domain intrabody.

    PubMed

    Walsh, Renae; Nuttall, Stewart; Revill, Peter; Colledge, Danni; Cabuang, Liza; Soppe, Sally; Dolezal, Olan; Griffiths, Kate; Bartholomeusz, Angeline; Locarnini, Stephen

    2011-03-01

    The Hepatitis B virus precore protein is processed in the endoplasmic reticulum (ER) into secreted hepatitis B e antigen (HBeAg), which acts as an immune tolerogen to establish chronic infection. Downregulation of secreted HBeAg should improve clinical outcome, as patients who effectively respond to current treatments (IFN-α) have significantly lower serum HBeAg levels. Here, we describe a novel reagent, a single variable domain (V(NAR)) of the shark immunoglobulin new antigen receptor (IgNAR) antibodies. V(NAR)s possess advantages in stability, size (~14 kDa) and cryptic epitope recognition compared to conventional antibodies. The V(NAR) domain displayed biologically useful affinity for recombinant and native HBeAg, and recognised a unique conformational epitope. To assess therapeutic potential in targeting intracellular precore protein to reduce secreted HBeAg, the V(NAR) was engineered for ER-targeted in vitro delivery to function as an intracellular antibody (intrabody). In vitro data from HBV/precore hepatocyte cell lines demonstrated effective intrabody regulation of precore/HBeAg.

  16. Human ISWI complexes are targeted by SMARCA5 ATPase and SLIDE domains to help resolve lesion-stalled transcription

    PubMed Central

    Aydin, Özge Z.; Marteijn, Jurgen A.; Ribeiro-Silva, Cristina; Rodríguez López, Aida; Wijgers, Nils; Smeenk, Godelieve; van Attikum, Haico; Poot, Raymond A.; Vermeulen, Wim; Lans, Hannes

    2014-01-01

    Chromatin compaction of deoxyribonucleic acid (DNA) presents a major challenge to the detection and removal of DNA damage. Helix-distorting DNA lesions that block transcription are specifically repaired by transcription-coupled nucleotide excision repair, which is initiated by binding of the CSB protein to lesion-stalled RNA polymerase II. Using live cell imaging, we identify a novel function for two distinct mammalian ISWI adenosine triphosphate (ATP)-dependent chromatin remodeling complexes in resolving lesion-stalled transcription. Human ISWI isoform SMARCA5/SNF2H and its binding partners ACF1 and WSTF are rapidly recruited to UV-C induced DNA damage to specifically facilitate CSB binding and to promote transcription recovery. SMARCA5 targeting to UV-C damage depends on transcription and histone modifications and requires functional SWI2/SNF2-ATPase and SLIDE domains. After initial recruitment to UV damage, SMARCA5 re-localizes away from the center of DNA damage, requiring its HAND domain. Our studies support a model in which SMARCA5 targeting to DNA damage-stalled transcription sites is controlled by an ATP-hydrolysis-dependent scanning and proofreading mechanism, highlighting how SWI2/SNF2 chromatin remodelers identify and bind nucleosomes containing damaged DNA. PMID:24990377

  17. Acquisition of a single EZH2 D1 domain mutation confers acquired resistance to EZH2-targeted inhibitors

    PubMed Central

    Baker, Theresa; Nerle, Sujata; Pritchard, Justin; Zhao, Boyang; Rivera, Victor M.

    2015-01-01

    Although targeted therapies have revolutionized cancer treatment, overcoming acquired resistance remains a major clinical challenge. EZH2 inhibitors (EZH2i), EPZ-6438 and GSK126, are currently in the early stages of clinical evaluation and the first encouraging signs of efficacy have recently emerged in the clinic. To anticipate mechanisms of resistance to EZH2i, we used a forward genetic platform combining a mutagenesis screen with next generation sequencing technology and identified a hotspot of secondary mutations in the EZH2 D1 domain (Y111 and I109). Y111D mutation within the WT or A677G EZH2 allele conferred robust resistance to both EPZ-6438 and GSK126, but it only drove a partial resistance within the Y641F allele. EZH2 mutants required histone methyltransferase (HMT) catalytic activity and the polycomb repressive complex 2 (PRC2) components, SUZ12 and EED, to drive drug resistance. Furthermore, D1 domain mutations not only blocked the ability of EZH2i to bind to WT and A677G mutant, but also abrogated drug binding to the Y641F mutant. These data provide the first cellular validation of the mechanistic model underpinning the oncogenic function of WT and mutant EZH2. Importantly, our findings suggest that acquired-resistance to EZH2i may arise in WT and mutant EZH2 patients through a single mutation that remains targetable by second generation EZH2i. PMID:26360609

  18. Targeting Cell Membrane Lipid Rafts by Stoichiometric Functionalization of Gold Nanoparticles With a Sphingolipid-Binding Domain Peptide.

    PubMed

    Paramelle, David; Nieves, Daniel; Brun, Benjamin; Kraut, Rachel S; Fernig, David G

    2015-04-22

    A non-membrane protein-based nanoparticle agent for the tracking of lipid rafts on live cells is produced by stoichiometric functionalization of gold nanoparticles with a previously characterized sphingolipid- and cell membrane microdomain-binding domain peptide (SBD). The SBD peptide is inserted in a self-assembled monolayer of peptidol and alkane thiol ethylene glycol, on gold nanoparticles surface. The stoichiometric functionalization of nanoparticles with the SBD peptide, essential for single molecule tracking, is achieved by means of non-affinity nanoparticle purification. The SBD-nanoparticles have remarkable long-term resistance to electrolyte-induced aggregation and ligand-exchange and have no detectable non-specific binding to live cells. Binding and diffusion of SBD-nanoparticles bound to the membrane of live cells is measured by real-time photothermal microscopy and shows the dynamics of sphingolipid-enriched microdomains on cells membrane, with evidence for clustering, splitting, and diffusion over time of the SBD-nanoparticle labeled membrane domains. The monofunctionalized SBD-nanoparticle is a promising targeting agent for the tracking of lipid rafts independently of their protein composition and the labelling requires no prior modification of the cells. This approach has potential for further functionalization of the particles to manipulate the organization of, or targeting to microdomains that control signaling events and thereby lead to novel diagnostics and therapeutics.

  19. Reversible phosphorylation as a molecular switch to regulate plasma membrane targeting of acylated SH4 domain proteins.

    PubMed

    Tournaviti, Stella; Pietro, Enrica San; Terjung, Stefan; Schafmeier, Tobias; Wegehingel, Sabine; Ritzerfeld, Julia; Schulz, Juliane; Smith, Deborah F; Pepperkok, Rainer; Nickel, Walter

    2009-08-01

    Acylated SH4 domains represent N-terminal targeting signals that anchor peripheral membrane proteins such as Src kinases in the inner leaflet of plasma membranes. Here we provide evidence for a novel regulatory mechanism that may control the levels of SH4 proteins being associated with plasma membranes. Using a fusion protein of the SH4 domain of Leishmania HASPB and GFP as a model system, we demonstrate that threonine 6 is a substrate for phosphorylation. Substitution of threonine 6 by glutamate (to mimic a phosphothreonine residue) resulted in a dramatic redistribution from plasma membranes to intracellular sites with a particular accumulation in a perinuclear region. As shown by both pharmacological inhibition and RNAi-mediated down-regulation of the threonine/ serine-specific phosphatases PP1 and PP2A, recycling back to the plasma membrane required dephosphorylation of threonine 6. We provide evidence that a cycle of phosphorylation and dephosphorylation may also be involved in intracellular targeting of other SH4 proteins such as the Src kinase Yes. PMID:19453972

  20. Cytoplasmic domain of δ subunit is important for the extra-synaptic targeting of GABAA receptor subtypes.

    PubMed

    Arslan, Ayla; von Engelhardt, Jakob; Wisden, William

    2014-12-01

    GABA(A) receptors (GABA(A)Rs) are hetero-pentameric chloride channels and the primary sites for fast synaptic inhibition. We have expressed recombinant γ2 and δ subunits of GABA(A)Rs in cultured hippocampal neurons to analyze the membrane targeting of synaptic and extra-synaptic GABA(A)Rs, a phenomenon not well understood. Our data demonstrate that the synaptic targeting of γ2-containing GABA(A)Rs (γ2-GABA(A)Rs) does not depend on the cytoplasmic loop of γ2 subunit, in parallel with previous findings, showing that the synaptic localization of γ2-GABA(A)Rs requires the TM4 domain of γ2 rather than the large cytoplasmic loop. On the other hand, we showed here that the extrasynaptic targeting of the δ-containing GABA(A)Rs (δ-GABA(A)Rs) depends on the cytoplasmic loop of δ subunit via an active or a passive mechanism. We also show that the amino acid sequences of δ loop is highly conserved across the whole span of vertebrate evolution suggesting an active role of δ loop in extra-synaptic targeting of corresponding receptor subtypes. PMID:25233879

  1. Resveratrol induces apoptosis by directly targeting Ras-GTPase-activating protein SH3 domain-binding protein 1.

    PubMed

    Oi, N; Yuan, J; Malakhova, M; Luo, K; Li, Y; Ryu, J; Zhang, L; Bode, A M; Xu, Z; Li, Y; Lou, Z; Dong, Z

    2015-05-14

    Resveratrol (trans-3,5,4'-truhydroxystilbene) possesses a strong anticancer activity exhibited as the induction of apoptosis through p53 activation. However, the molecular mechanism and direct target(s) of resveratrol-induced p53 activation remain elusive. Here, the Ras-GTPase-activating protein SH3 domain-binding protein 1 (G3BP1) was identified as a potential target of resveratrol, and in vitro binding assay results using resveratrol-conjugated Sepharose 4B beads confirmed their direct binding. Depletion of G3BP1 significantly diminishes resveratrol-induced p53 expression and apoptosis. We also found that G3BP1 negatively regulates p53 expression by interacting with ubiquitin-specific protease 10 (USP10), a deubiquitinating enzyme of p53. Disruption of the interaction of p53 with USP10 by G3BP1 interference leads to the suppression of p53 deubiquitination. Resveratrol, on the other hand, directly binds to G3BP1 and prevents the G3BP1/USP10 interaction, resulting in enhanced USP10-mediated deubiquitination of p53, and consequently increased p53 expression. These findings disclose a novel mechanism of resveratrol-induced p53 activation and resveratrol-induced apoptosis by direct targeting of G3BP1.

  2. Cytoplasmic domain of δ subunit is important for the extra-synaptic targeting of GABAA receptor subtypes.

    PubMed

    Arslan, Ayla; von Engelhardt, Jakob; Wisden, William

    2014-12-01

    GABA(A) receptors (GABA(A)Rs) are hetero-pentameric chloride channels and the primary sites for fast synaptic inhibition. We have expressed recombinant γ2 and δ subunits of GABA(A)Rs in cultured hippocampal neurons to analyze the membrane targeting of synaptic and extra-synaptic GABA(A)Rs, a phenomenon not well understood. Our data demonstrate that the synaptic targeting of γ2-containing GABA(A)Rs (γ2-GABA(A)Rs) does not depend on the cytoplasmic loop of γ2 subunit, in parallel with previous findings, showing that the synaptic localization of γ2-GABA(A)Rs requires the TM4 domain of γ2 rather than the large cytoplasmic loop. On the other hand, we showed here that the extrasynaptic targeting of the δ-containing GABA(A)Rs (δ-GABA(A)Rs) depends on the cytoplasmic loop of δ subunit via an active or a passive mechanism. We also show that the amino acid sequences of δ loop is highly conserved across the whole span of vertebrate evolution suggesting an active role of δ loop in extra-synaptic targeting of corresponding receptor subtypes.

  3. PopW of Ralstonia solanacearum, a new two-domain harpin targeting the plant cell wall.

    PubMed

    Li, Jian-Gang; Liu, Hong-Xia; Cao, Jing; Chen, Li-Feng; Gu, Chun; Allen, Caitilyn; Guo, Jian-Hua

    2010-05-01

    Harpins are extracellular glycine-rich proteins eliciting a hypersensitive response (HR). In this study, we identified a new harpin, PopW, from Ralstonia solanacearum strain ZJ3721. This 380-amino-acid protein is acidic, rich in glycine and serine, and lacks cysteine. When infiltrated into the leaves of tobacco (non-host), PopW induced a rapid tissue collapse via a heat-stable but protease-sensitive HR-eliciting activity. PopW has an N-terminal harpin domain (residues 1-159) and a C-terminal pectate lyase (PL) domain (residues 160-366); its HR-eliciting activity depends on its N-terminal domain. Analyses of subcellular localization and plasmolysis demonstrated that PopW targeted the onion cell wall. This was further confirmed by its ability to specifically bind to calcium pectate, a major component of the plant cell wall. However, PopW had no detectable PL activity. Western blotting revealed that PopW was secreted by the type III secretion system in an hrpB-dependent manner. Gene sequencing indicated that popW is conserved among 20 diverse strains of R. solanacearum. A popW-deficient mutant retained the ability of wild-type strain ZJ3721 to elicit HR in tobacco and to cause wilt disease in tomato (a host). We conclude that PopW is a new cell wall-associated, hrpB-dependent, two-domain harpin that is conserved across the R. solanacearum species complex. PMID:20447285

  4. The EBNA-2 N-Terminal Transactivation Domain Folds into a Dimeric Structure Required for Target Gene Activation

    PubMed Central

    Hennig, Janosch; Zou, Peijian; Nössner, Elfriede; Ling, Paul D.; Sattler, Michael; Kempkes, Bettina

    2015-01-01

    Epstein-Barr virus (EBV) is a γ-herpesvirus that may cause infectious mononucleosis in young adults. In addition, epidemiological and molecular evidence links EBV to the pathogenesis of lymphoid and epithelial malignancies. EBV has the unique ability to transform resting B cells into permanently proliferating, latently infected lymphoblastoid cell lines. Epstein-Barr virus nuclear antigen 2 (EBNA-2) is a key regulator of viral and cellular gene expression for this transformation process. The N-terminal region of EBNA-2 comprising residues 1-58 appears to mediate multiple molecular functions including self-association and transactivation. However, it remains to be determined if the N-terminus of EBNA-2 directly provides these functions or if these activities merely depend on the dimerization involving the N-terminal domain. To address this issue, we determined the three-dimensional structure of the EBNA-2 N-terminal dimerization (END) domain by heteronuclear NMR-spectroscopy. The END domain monomer comprises a small fold of four β-strands and an α-helix which form a parallel dimer by interaction of two β-strands from each protomer. A structure-guided mutational analysis showed that hydrophobic residues in the dimer interface are required for self-association in vitro. Importantly, these interface mutants also displayed severely impaired self-association and transactivation in vivo. Moreover, mutations of solvent-exposed residues or deletion of the α-helix do not impair dimerization but strongly affect the functional activity, suggesting that the EBNA-2 dimer presents a surface that mediates functionally important intra- and/or intermolecular interactions. Our study shows that the END domain is a novel dimerization fold that is essential for functional activity. Since this specific fold is a unique feature of EBNA-2 it might provide a novel target for anti-viral therapeutics. PMID:26024477

  5. Structure-Function Analysis of Rgs1 in Magnaporthe oryzae: Role of DEP Domains in Subcellular Targeting

    PubMed Central

    Ramanujam, Ravikrishna; Yishi, Xu; Liu, Hao; Naqvi, Naweed I.

    2012-01-01

    assign a specific vesicular/membrane targeting function for the N-terminal DEP domains of Rgs1 in the rice-blast fungus. PMID:22927898

  6. A bi-functional antibody-receptor domain fusion protein simultaneously targeting IGF-IR and VEGF for degradation

    PubMed Central

    Shen, Yang; Zeng, Lin; Novosyadlyy, Ruslan; Forest, Amelie; Zhu, Aiping; Korytko, Andrew; Zhang, Haifan; Eastman, Scott W; Topper, Michael; Hindi, Sagit; Covino, Nicole; Persaud, Kris; Kang, Yun; Burtrum, Douglas; Surguladze, David; Prewett, Marie; Chintharlapalli, Sudhakar; Wroblewski, Victor J; Shen, Juqun; Balderes, Paul; Zhu, Zhenping; Snavely, Marshall; Ludwig, Dale L

    2015-01-01

    Bi-specific antibodies (BsAbs), which can simultaneously block 2 tumor targets, have emerged as promising therapeutic alternatives to combinations of individual monoclonal antibodies. Here, we describe the engineering and development of a novel, human bi-functional antibody-receptor domain fusion molecule with ligand capture (bi-AbCap) through the fusion of the domain 2 of human vascular endothelial growth factor receptor 1 (VEGFR1) to an antibody directed against insulin-like growth factor – type I receptor (IGF-IR). The bi-AbCap possesses excellent stability and developability, and is the result of minimal engineering. Beyond potent neutralizing activities against IGF-IR and VEGF, the bi-AbCap is capable of cross-linking VEGF to IGF-IR, leading to co-internalization and degradation of both targets by tumor cells. In multiple mouse xenograft tumor models, the bi-AbCap improves anti-tumor activity over individual monotherapies. More importantly, it exhibits superior inhibition of tumor growth, compared with the combination of anti-IGF-IR and anti-VEGF therapies, via powerful blockade of both direct tumor cell growth and tumor angiogenesis. The unique “capture-for-degradation” mechanism of the bi-AbCap is informative for the design of next-generation bi-functional anti-cancer therapies directed against independent signaling pathways. The bi-AbCap design represents an alternative approach to the creation of dual-targeting antibody fusion molecules by taking advantage of natural receptor-ligand interactions. PMID:26073904

  7. Targeting a novel domain in podoplanin for inhibiting platelet-mediated tumor metastasis

    PubMed Central

    Sekiguchi, Takaya; Takemoto, Ai; Takagi, Satoshi; Takatori, Kazuki; Sato, Shigeo; Takami, Miho; Fujita, Naoya

    2016-01-01

    Podoplanin/Aggrus is a sialoglycoprotein expressed in various cancers. We previously identified podoplanin as a key factor in tumor-induced platelet aggregation. Podoplanin-mediated platelet aggregation enhances tumor growth and metastasis by secreting growth factors and by forming tumor emboli in the microvasculature. Thus, precise analysis of the mechanisms of podoplanin-mediated platelet aggregation is critical for developing anti-tumor therapies. Here we report the discovery of a novel platelet aggregation-inducing domain, PLAG4 (81-EDLPT-85). PLAG4 has high homology to the previously reported PLAG3 and contributes to the binding of its platelet receptor CLEC-2. Mutant analyses indicated that PLAG4 exhibits a predominant platelet-aggregating function relative to PLAG3 and that conserved Glu81/Asp82/Thr85 residues in PLAG4 are indispensable for CLEC-2 binding. By establishing anti-PLAG4-neutralizing monoclonal antibodies, we confirmed its role in CLEC-2 binding, platelet aggregation, and tumor emboli formation. Our results suggest the requirement of simultaneous inhibition of PLAG3/4 for complete suppression of podoplanin-mediated tumor growth and metastasis. PMID:26684030

  8. Targeted inhibition of disheveled PDZ domain via NSC668036 depresses fibrotic process

    SciTech Connect

    Wang, Cong; Dai, Jinghong; Sun, Zhaorui; Shi, Chaowen; Cao, Honghui; and others

    2015-02-01

    In this study, we determined the effects of transforming growth factor-beta (TGF-β) and Wnt/β-catenin signaling on myofibroblast differentiation of NIH/3T3 fibroblasts in vitro and evaluated the therapeutic efficacy of NSC668036 in bleomycin-induced pulmonary fibrosis murine model. In vitro study, NSC668036, a small organic inhibitor of the PDZ domain in Dvl, suppressed β-catenin-driven gene transcription and abolished TGF-β1-induced migration, expression of collagen I and α-smooth muscle actin (α-SMA) in fibroblasts. In vivo study, we found that NSC668036 significantly suppressed accumulation of collagen I, α-SMA, and TGF-β1 but increased the expression of CK19, Occludin and E-cadherin that can inhibit pulmonary fibrogenesis. Because fibrotic lung exhibit aberrant activation of Wnt/β-catenin signaling, these data collectively suggest that inhibition of Wnt/β-catenin signaling at the Dvl level may be an effective approach to the treatment of fibrotic lung diseases. - Highlights: • NSC668036 inhibited the proliferation and migration of NIH/3T3 fibroblasts. • NSC668036 suppressed the Wnt/β-catenin signaling pathway. • TGF-β-induced stimulation of profibrotic responses were inhibited by NSC668036. • NSC668036 can inhibit the development of bleomycin-induced pulmonary fibrosis.

  9. AlzPlatform: An Alzheimer’s Disease Domain-Specific Chemogenomics Knowledgebase for Polypharmacology and Target Identification Research

    PubMed Central

    2015-01-01

    Alzheimer’s disease (AD) is one of the most complicated progressive neurodegeneration diseases that involve many genes, proteins, and their complex interactions. No effective medicines or treatments are available yet to stop or reverse the progression of the disease due to its polygenic nature. To facilitate discovery of new AD drugs and better understand the AD neurosignaling pathways involved, we have constructed an Alzheimer’s disease domain-specific chemogenomics knowledgebase, AlzPlatform (www.cbligand.org/AD/) with cloud computing and sourcing functions. AlzPlatform is implemented with powerful computational algorithms, including our established TargetHunter, HTDocking, and BBB Predictor for target identification and polypharmacology analysis for AD research. The platform has assembled various AD-related chemogenomics data records, including 928 genes and 320 proteins related to AD, 194 AD drugs approved or in clinical trials, and 405 188 chemicals associated with 1 023 137 records of reported bioactivities from 38 284 corresponding bioassays and 10 050 references. Furthermore, we have demonstrated the application of the AlzPlatform in three case studies for identification of multitargets and polypharmacology analysis of FDA-approved drugs and also for screening and prediction of new AD active small chemical molecules and potential novel AD drug targets by our established TargetHunter and/or HTDocking programs. The predictions were confirmed by reported bioactivity data and our in vitro experimental validation. Overall, AlzPlatform will enrich our knowledge for AD target identification, drug discovery, and polypharmacology analyses and, also, facilitate the chemogenomics data sharing and information exchange/communications in aid of new anti-AD drug discovery and development. PMID:24597646

  10. Hypoxia-inducible miR-210 contributes to preeclampsia via targeting thrombospondin type I domain containing 7A.

    PubMed

    Luo, Rongcan; Wang, Yongqing; Xu, Peng; Cao, Guangming; Zhao, Yangyu; Shao, Xuan; Li, Yu-xia; Chang, Cheng; Peng, Chun; Wang, Yan-ling

    2016-01-22

    Preeclampsia, a relatively common pregnancy disorder, is a major contributor to maternal mortality and morbidity worldwide. An elevation in microRNA-210 (miR-210) expression in the placenta has been reported to be associated with preeclampsia. Our bioinformatic analysis showed that thrombospondin type I domain containing 7A (THSD7A) is a predicted target for miR-210. The aim of this study was to determine whether miR-210 is involved in preeclampsia through its targeting of THSD7A in human placental trophoblasts. In preeclamptic placental tissues, THSD7A levels were significantly downregulated, and were inversely correlated with the levels of miR-210. THSD7A was validated as a direct target of miR-210 using quantitative real time PCR (qRT-PCR), Western blotting, and dual luciferase assays in HTR8/SVneo cells. Transwell insert invasion assays showed that THSD7A mediated the invasion-inhibitory effect of miR-210 in HTR8/SVneo cells. Interestingly, hypoxia markedly increased miR-210 expression while suppressing THSD7A expression in a time-dependent manner in HTR8/SVneo cells. This study provides novel data on the function of THSD7A in human placental cells, and extends our knowledge of how miR-210 is involved in the development of the preeclampsia.

  11. Hypoxia-inducible miR-210 contributes to preeclampsia via targeting thrombospondin type I domain containing 7A

    PubMed Central

    Luo, Rongcan; Wang, Yongqing; Xu, Peng; Cao, Guangming; Zhao, Yangyu; Shao, Xuan; Li, Yu-xia; Chang, Cheng; Peng, Chun; Wang, Yan-ling

    2016-01-01

    Preeclampsia, a relatively common pregnancy disorder, is a major contributor to maternal mortality and morbidity worldwide. An elevation in microRNA-210 (miR-210) expression in the placenta has been reported to be associated with preeclampsia. Our bioinformatic analysis showed that thrombospondin type I domain containing 7A (THSD7A) is a predicted target for miR-210. The aim of this study was to determine whether miR-210 is involved in preeclampsia through its targeting of THSD7A in human placental trophoblasts. In preeclamptic placental tissues, THSD7A levels were significantly downregulated, and were inversely correlated with the levels of miR-210. THSD7A was validated as a direct target of miR-210 using quantitative real time PCR (qRT-PCR), Western blotting, and dual luciferase assays in HTR8/SVneo cells. Transwell insert invasion assays showed that THSD7A mediated the invasion-inhibitory effect of miR-210 in HTR8/SVneo cells. Interestingly, hypoxia markedly increased miR-210 expression while suppressing THSD7A expression in a time-dependent manner in HTR8/SVneo cells. This study provides novel data on the function of THSD7A in human placental cells, and extends our knowledge of how miR-210 is involved in the development of the preeclampsia. PMID:26796133

  12. Anti-tumoral effect of the mitochondrial target domain of Noxa delivered by an engineered Salmonella typhimurium.

    PubMed

    Jeong, Jae-Ho; Kim, Kwangsoo; Lim, Daejin; Jeong, Kwangjoon; Hong, Yeongjin; Nguyen, Vu H; Kim, Tae-Hyoung; Ryu, Sangryeol; Lim, Jeong-A; Kim, Jae Il; Kim, Geun-Joong; Kim, Sun Chang; Min, Jung-Joon; Choy, Hyon E

    2014-01-01

    Bacterial cancer therapy relies on the fact that several bacterial species are capable of targeting tumor tissue and that bacteria can be genetically engineered to selectively deliver therapeutic proteins of interest to the targeted tumors. However, the challenge of bacterial cancer therapy is the release of the therapeutic proteins from the bacteria and entry of the proteins into tumor cells. This study employed an attenuated Salmonella typhimurium to selectively deliver the mitochondrial targeting domain of Noxa (MTD) as a potential therapeutic cargo protein, and examined its anti-cancer effect. To release MTD from the bacteria, a novel bacterial lysis system of phage origin was deployed. To facilitate the entry of MTD into the tumor cells, the MTD was fused to DS4.3, a novel cell-penetrating peptide (CPP) derived from a voltage-gated potassium channel (Kv2.1). The gene encoding DS4.3-MTD and the phage lysis genes were placed under the control of PBAD , a promoter activated by L-arabinose. We demonstrated that DS4.3-MTD chimeric molecules expressed by the Salmonellae were anti-tumoral in cultured tumor cells and in mice with CT26 colon carcinoma.

  13. Two-pore domain potassium channels: potential therapeutic targets for the treatment of pain.

    PubMed

    Mathie, Alistair; Veale, Emma L

    2015-05-01

    Recent evidence points to a pivotal contribution of a variety of different potassium channels, including two-pore domain potassium (K2P) channels, in chronic pain processing. Expression of several different K2P channel subunits has been detected in nociceptive dorsal root ganglion neurons and trigeminal ganglion neurons, in particular, TREK1, TREK2, TRESK, TRAAK, TASK3 and TWIK1 channels. Of these, the strongest body of evidence from functional studies highlights the importance of TREK1, TRESK and, recently, TREK2 channels. For example, TREK1 knockout mice are more sensitive than wild-type mice to a number of painful stimuli but less sensitive to morphine-induced analgesia. TRESK knockdown mice show behavioural evidence of increased pain and increased sensitivity to painful pressure. Importantly, familial migraine with aura is associated with a dominant-negative mutation in human TRESK channels. Thus, the functional up-regulation of K2P channel activity may be a useful strategy in the development of new therapies for the treatment of pain. Whilst there are few currently available compounds that selectively and directly enhance the activity of TRESK and TREK2 channels, recent advances have been made in terms of identifying compounds that activate TREK1 channels and in understanding how they might act on the channel. Large-scale bio-informatic approaches and the further development of databases of putative ligands, channel structures and putative ligand binding sites on these structures may form the basis for future experimental strategies to detect novel molecules acting to enhance K2P channel activity that would be useful in the treatment of pain.

  14. Novel mutation in the replication focus targeting sequence domain of DNMT1 causes hereditary sensory and autonomic neuropathy IE.

    PubMed

    Yuan, Junhui; Higuchi, Yujiro; Nagado, Tatsui; Nozuma, Satoshi; Nakamura, Tomonori; Matsuura, Eiji; Hashiguchi, Akihiro; Sakiyama, Yusuke; Yoshimura, Akiko; Takashima, Hiroshi

    2013-03-01

    DNMT1, encoding DNA methyltransferase 1 (Dnmt1), is a critical enzyme which is mainly responsible for conversion of unmethylated DNA into hemimethylated DNA. To date, two phenotypes produced by DNMT1 mutations have been reported, including hereditary sensory and autonomic neuropathy (HSAN) type IE with mutations in exon 20, and autosomal dominant cerebellar ataxia, deafness, and narcolepsy caused by mutations in exon 21. We report a sporadic case in a Japanese patient with loss of pain and vibration sense, chronic osteomyelitis, autonomic system dysfunctions, hearing loss, and mild dementia, but without definite cerebellar ataxia. Electrophysiological studies revealed absent sensory nerve action potential with nearly normal motor nerve conduction studies. Brain magnetic resonance imaging revealed mild diffuse cerebral and cerebellar atrophy. Using a next-generation sequencing system, 16 candidate genes were analyzed and a novel missense mutation, c.1706A>G (p.His569Arg), was identified in exon 21 of DNMT1. Our findings suggest that mutation in exon 21 of DNMT1 may also produce a HSAN phenotype. Because all reported mutations of DNMT1 are concentrated in exons 20 and 21, which encode the replication focus targeting sequence (RFTS) domain of Dnmt1, the RFTS domain could be a mutation hot spot.

  15. Clustering of mammalian Hox genes with other H3K27me3 targets within an active nuclear domain.

    PubMed

    Vieux-Rochas, Maxence; Fabre, Pierre J; Leleu, Marion; Duboule, Denis; Noordermeer, Daan

    2015-04-14

    Embryogenesis requires the precise activation and repression of many transcriptional regulators. The Polycomb group proteins and the associated H3K27me3 histone mark are essential to maintain the inactive state of many of these genes. Mammalian Hox genes are targets of Polycomb proteins and form local 3D clusters centered on the H3K27me3 mark. More distal contacts have also been described, yet their selectivity, dynamics, and relation to other layers of chromatin organization remained elusive. We report that repressed Hox genes form mutual intra- and interchromosomal interactions with other genes located in strong domains labeled by H3K27me3. These interactions occur in a central and active nuclear environment that consists of the HiC compartment A, away from peripheral lamina-associated domains. Interactions are independent of nearby H3K27me3-marked loci and determined by chromosomal distance and cell-type-specific scaling factors, thus inducing a moderate reorganization during embryogenesis. These results provide a simplified view of nuclear organization whereby Polycomb proteins may have evolved to repress genes located in gene-dense regions whose position is restricted to central, active, nuclear environments.

  16. Clustering of mammalian Hox genes with other H3K27me3 targets within an active nuclear domain

    PubMed Central

    Vieux-Rochas, Maxence; Fabre, Pierre J.; Leleu, Marion; Duboule, Denis; Noordermeer, Daan

    2015-01-01

    Embryogenesis requires the precise activation and repression of many transcriptional regulators. The Polycomb group proteins and the associated H3K27me3 histone mark are essential to maintain the inactive state of many of these genes. Mammalian Hox genes are targets of Polycomb proteins and form local 3D clusters centered on the H3K27me3 mark. More distal contacts have also been described, yet their selectivity, dynamics, and relation to other layers of chromatin organization remained elusive. We report that repressed Hox genes form mutual intra- and interchromosomal interactions with other genes located in strong domains labeled by H3K27me3. These interactions occur in a central and active nuclear environment that consists of the HiC compartment A, away from peripheral lamina-associated domains. Interactions are independent of nearby H3K27me3-marked loci and determined by chromosomal distance and cell-type–specific scaling factors, thus inducing a moderate reorganization during embryogenesis. These results provide a simplified view of nuclear organization whereby Polycomb proteins may have evolved to repress genes located in gene-dense regions whose position is restricted to central, active, nuclear environments. PMID:25825760

  17. T-3364366 Targets the Desaturase Domain of Delta-5 Desaturase with Nanomolar Potency and a Multihour Residence Time.

    PubMed

    Miyahisa, Ikuo; Suzuki, Hideo; Mizukami, Atsushi; Tanaka, Yukiya; Ono, Midori; Hixon, Mark S; Matsui, Junji

    2016-09-01

    Delta-5 desaturase (D5D) catalyzes the conversion from dihomo-gamma linoleic acid (DGLA) to arachidonic acid (AA). DGLA and AA are common precursors of anti- and pro-inflammatory eicosanoids, respectively, making D5D an attractive drug target for inflammatory-related diseases. Despite several reports on D5D inhibitors, their biochemical mechanisms of action (MOAs) remain poorly understood, primarily due to the difficulty in performing quantitative enzymatic analysis. Herein, we report a radioligand binding assay to overcome this challenge and characterized T-3364366, a thienopyrimidinone D5D inhibitor, by use of the assay. T-3364366 is a reversible, slow-binding inhibitor with a dissociation half-life in excess of 2.0 h. The long residence time was confirmed in cellular washout assays. Domain swapping experiments between D5D and D6D support [(3)H]T-3364366 binding to the desaturase domain of D5D. The present study is the first to demonstrate biochemical MOA of desaturase inhibitors, providing important insight into drug discovery of desaturase enzymes. PMID:27660693

  18. Selectively Targeting the DNA-binding Domain of the Androgen Receptor as a Prospective Therapy for Prostate Cancer*

    PubMed Central

    Dalal, Kush; Roshan-Moniri, Mani; Sharma, Aishwariya; Li, Huifang; Ban, Fuqiang; Hessein, Mohamed; Hsing, Michael; Singh, Kriti; LeBlanc, Eric; Dehm, Scott; Tomlinson Guns, Emma S.; Cherkasov, Artem; Rennie, Paul S.

    2014-01-01

    The androgen receptor (AR) is a transcription factor that has a pivotal role in the occurrence and progression of prostate cancer. The AR is activated by androgens that bind to its ligand-binding domain (LBD), causing the transcription factor to enter the nucleus and interact with genes via its conserved DNA-binding domain (DBD). Treatment for prostate cancer involves reducing androgen production or using anti-androgen drugs to block the interaction of hormones with the AR-LBD. Eventually the disease changes into a castration-resistant form of PCa where LBD mutations render anti-androgens ineffective or where constitutively active AR splice variants, lacking the LBD, become overexpressed. Recently, we identified a surfaced exposed pocket on the AR-DBD as an alternative drug-target site for AR inhibition. Here, we demonstrate that small molecules designed to selectively bind the pocket effectively block transcriptional activity of full-length and splice variant AR forms at low to sub-micromolar concentrations. The inhibition is lost when residues involved in drug interactions are mutated. Furthermore, the compounds did not impede nuclear localization of the AR and blocked interactions with chromatin, indicating the interference of DNA binding with the nuclear form of the transcription factor. Finally, we demonstrate the inhibition of gene expression and tumor volume in mouse xenografts. Our results indicate that the AR-DBD has a surface site that can be targeted to inhibit all forms of the AR, including enzalutamide-resistant and constitutively active splice variants and thus may serve as a potential avenue for the treatment of recurrent and metastatic prostate cancer. PMID:25086042

  19. Cross-Protection of Influenza A Virus Infection by a DNA Aptamer Targeting the PA Endonuclease Domain

    PubMed Central

    Yuan, Shuofeng; Zhang, Naru; Singh, Kailash; Shuai, Huiping; Chu, Hin; Zhou, Jie; Chow, Billy K. C.

    2015-01-01

    Amino acid residues in the N-terminal of the PA subunit (PAN) of the influenza A virus polymerase play critical roles in endonuclease activity, protein stability, and viral RNA (vRNA) promoter binding. In addition, PAN is highly conserved among different subtypes of influenza virus, which suggests PAN to be a desired target in the development of anti-influenza agents. We selected DNA aptamers targeting the intact PA protein or the PAN domain of an H5N1 virus strain using systematic evolution of ligands by exponential enrichment (SELEX). The binding affinities of selected aptamers were measured, followed by an evaluation of in vitro endonuclease inhibitory activity. Next, the antiviral effects of enriched aptamers against influenza A virus infections were examined. A total of three aptamers targeting PA and six aptamers targeting PAN were selected. Our data demonstrated that all three PA-selected aptamers neither inhibited endonuclease activity nor exhibited antiviral efficacy, whereas four of the six PAN-selected aptamers inhibited both endonuclease activity and H5N1 virus infection. Among the four effective aptamers, one exhibited cross-protection against infections of H1N1, H5N1, H7N7, and H7N9 influenza viruses, with a 50% inhibitory concentration (IC50) of around 10 nM. Notably, this aptamer was identified at the 5th round but disappeared after the 10th round of selection, suggesting that the identification and evaluation of aptamers at early rounds of selection may be highly helpful for screening effective aptamers. Overall, our study provides novel insights for screening and developing effective aptamers for use as anti-influenza drugs. PMID:25918143

  20. Membrane Docking Geometry of GRP1 PH Domain Bound to a Target Lipid Bilayer: An EPR Site-Directed Spin-Labeling and Relaxation Study

    PubMed Central

    Landgraf, Kyle E.; Corbin, John A.; Falke, Joseph J.

    2012-01-01

    The second messenger lipid PIP3 (phosphatidylinositol-3,4,5-trisphosphate) is generated by the lipid kinase PI3K (phosphoinositide-3-kinase) in the inner leaflet of the plasma membrane, where it regulates a broad array of cell processes by recruiting multiple signaling proteins containing PIP3-specific pleckstrin homology (PH) domains to the membrane surface. Despite the broad importance of PIP3-specific PH domains, the membrane docking geometry of a PH domain bound to its target PIP3 lipid on a bilayer surface has not yet been experimentally determined. The present study employs EPR site-directed spin labeling and relaxation methods to elucidate the membrane docking geometry of GRP1 PH domain bound to bilayer-embedded PIP3. The model target bilayer contains the neutral background lipid PC and both essential targeting lipids: (i) PIP3 target lipid that provides specificity and affinity, and (ii) PS facilitator lipid that enhances the PIP3 on-rate via an electrostatic search mechanism. The EPR approach measures membrane depth parameters for 18 function-retaining spin labels coupled to the PH domain, and for calibration spin labels coupled to phospholipids. The resulting depth parameters, together with the known high resolution structure of the co-complex between GRP1 PH domain and the PIP3 headgroup, provide sufficient constraints to define an optimized, self-consistent membrane docking geometry. In this optimized geometry the PH domain engulfs the PIP3 headgroup with minimal bilayer penetration, yielding the shallowest membrane position yet described for a lipid binding domain. This binding interaction displaces the PIP3 headgroup from its lowest energy position and orientation in the bilayer, but the headgroup remains within its energetically accessible depth and angular ranges. Finally, the optimized docking geometry explains previous biophysical findings including mutations observed to disrupt membrane binding, and the rapid lateral diffusion observed for PIP3

  1. The COOH-terminal domain of the JIL-1 histone H3S10 kinase interacts with histone H3 and is required for correct targeting to chromatin.

    PubMed

    Bao, Xiaomin; Cai, Weili; Deng, Huai; Zhang, Weiguo; Krencik, Robert; Girton, Jack; Johansen, Jørgen; Johansen, Kristen M

    2008-11-21

    The JIL-1 histone H3S10 kinase in Drosophila localizes specifically to euchromatic interband regions of polytene chromosomes and is enriched 2-fold on the male X chromosome. JIL-1 can be divided into four main domains including an NH(2)-terminal domain, two separate kinase domains, and a COOH-terminal domain. Our results demonstrate that the COOH-terminal domain of JIL-1 is necessary and sufficient for correct chromosome targeting to autosomes but that both COOH- and NH(2)-terminal sequences are necessary for enrichment on the male X chromosome. We furthermore show that a small 53-amino acid region within the COOH-terminal domain can interact with the tail region of histone H3, suggesting that this interaction is necessary for the correct chromatin targeting of the JIL-1 kinase. Interestingly, our data indicate that the COOH-terminal domain alone is sufficient to rescue JIL-1 null mutant polytene chromosome defects including those of the male X chromosome. Nonetheless, we also found that a truncated JIL-1 protein which was without the COOH-terminal domain but retained histone H3S10 kinase activity was able to rescue autosome as well as partially rescue male X polytene chromosome morphology. Taken together these findings indicate that JIL-1 may participate in regulating chromatin structure by multiple and partially redundant mechanisms.

  2. Imaging site-specific peptide-targeting in tumor tissues using spectral-domain optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Ma, Lixin; Zhang, Miao; Yu, Ping

    2011-03-01

    We report imaging studies on site-specific peptide-targeting in tumor tissues using newly developed optical peptide probes and spectral-domain optical coherence tomography (SD-OCT). The system used two broadband superluminescent light emission diodes with different central wavelengths. An electro-optic modulation in the reference beam was used to get full-range deep imaging inside tumor tissues. The optical probes were based on Bombesin (BBN) that is a fourteen amino acid peptide. BBN has high binding affinity to gastrin-releasing peptide (GRP) receptors overexpressed on several human cancer cell lines. Fluorescence BBN probes were developed by conjugating the last eight residues of BBN, -Q-W-A-V-G-H-L-M-(NH2), with Alexa Flour 680 or Alexa Fluor 750 dye molecules via amino acid linker -G-G-G. The SD-OCT imaging can identify normal tissue and tumor tissue through the difference in scattering coefficient, and trace the BBN conjugate probes through the absorption of the dye molecules using the twowavelength algorithm. We performed the specific uptake and receptor-blocking experiments of the optical BBN probes in severely compromised immunodeficient mouse model bearing human PC-3 prostate tumor xenografts. Tumor and muscle tissues were collected and used for SD-OCT imaging. The SD-OCT images showed fluorescence traces of the BBN probes in the peptide-targeted tumor tissues. Our results demonstrated that SD-OCT is a potential tool for preclinical and clinical early cancer detection.

  3. Distinct regions of triadin are required for targeting and retention at the junctional domain of the sarcoplasmic reticulum.

    PubMed

    Rossi, Daniela; Bencini, Cristina; Maritati, Marina; Benini, Francesca; Lorenzini, Stefania; Pierantozzi, Enrico; Scarcella, Angela Maria; Paolini, Cecilia; Protasi, Feliciano; Sorrentino, Vincenzo

    2014-03-01

    Ca2+ release, which is necessary for muscle contraction, occurs at the j-SR (junctional domain of the sarcoplasmic reticulum). It requires the assembly of a large multiprotein complex containing the RyR (ryanodine receptor) and additional proteins, including triadin and calsequestrin. The signals which drive these proteins to the j-SR and how they assemble to form this multiprotein complex are poorly understood. To address aspects of these questions we studied the localization, dynamic properties and molecular interactions of triadin. We identified three regions, named TR1 (targeting region 1), TR2 and TR3, that contribute to the localization of triadin at the j-SR. FRAP experiments showed that triadin is stably associated with the j-SR and that this association is mediated by TR3. Protein pull-down experiments indicated that TR3 contains binding sites for calsequestrin-1 and that triadin clustering can be enhanced by binding to calsequestrin-1. These findings were confirmed by FRET experiments. Interestingly, the stable association of triadin to the j-SR was significantly decreased in myotubes from calsequestrin-1 knockout mice. Taken together, these results identify three regions in triadin that mediate targeting to the j-SR and reveal a role for calsequestrin-1 in promoting the stable association of triadin to the multiprotein complex associated with RyR. PMID:24325401

  4. Structural and functional analyses of minimal phosphopeptides targeting the polo-box domain of polo-like kinase 1

    SciTech Connect

    Yun, Sang-Moon; Moulaei, Tinoush; Lim, Dan; Bang, Jeong K.; Park, Jung-Eun; Shenoy, Shilpa R.; Liu, Fa; Kang, Young H.; Liao, Chenzhong; Soung, Nak-Kyun; Lee, Sunhee; Yoon, Do-Young; Lim, Yoongho; Lee, Dong-Hee; Otaka, Akira; Appella, Ettore; McMahon, James B.; Nicklaus, Marc C.; Burke, Jr., Terrence R.; Yaffe, Michael B.; Wlodawer, Alexander; Lee, Kyung S.

    2009-09-14

    Polo-like kinase-1 (Plk1) has a pivotal role in cell proliferation and is considered a potential target for anticancer therapy. The noncatalytic polo-box domain (PBD) of Plk1 forms a phosphoepitope binding module for protein-protein interaction. Here, we report the identification of minimal phosphopeptides that specifically interact with the PBD of human PLK1, but not those of the closely related PLK2 and PLK3. Comparative binding studies and analyses of crystal structures of the PLK1 PBD in complex with the minimal phosphopeptides revealed that the C-terminal SpT dipeptide functions as a high-affinity anchor, whereas the N-terminal residues are crucial for providing specificity and affinity to the interaction. Inhibition of the PLK1 PBD by phosphothreonine mimetic peptides was sufficient to induce mitotic arrest and apoptotic cell death. The mode of interaction between the minimal peptide and PBD may provide a template for designing therapeutic agents that target PLK1.

  5. Selective targeting of tumour neovasculature by a radiohalogenated human antibody fragment specific for the ED-B domain of fibronectin.

    PubMed

    Demartis, S; Tarli, L; Borsi, L; Zardi, L; Neri, D

    2001-04-01

    Angiogenesis is a characteristic feature of many aggressive tumours and other disorders. Antibodies capable of binding to new blood vessels, but not to mature vessels, could be used as selective targeting agents for immunoscintigraphic and radioimmunotherapeutic applications. Here we show that scFv(L19), a recombinant human antibody fragment with sub-nanomolar affinity for the ED-B domain of fibronectin, a marker of angiogenesis, can be stably labelled with iodine-125 and astatine-211 with full retention of immunoreactivity, using a trimethyl-stannyl benzoate bifunctional derivative. Biodistribution studies in mice bearing two different types of tumour grafted subcutaneously, followed by ex vivo micro-autoradiographic analysis, revealed that scFv(L19) rapidly localises around tumour blood vessels, but not around normal vessels. Four hours after intravenous injection of the stably radioiodinated scFv(L19), tumour to blood ratios were 6:1 in mice bearing the F9 murine teratocarcinoma and 9:1 in mice bearing an FE8 rat sarcoma. As expected, all other organs (including kidney) contained significantly less radioactivity than the tumour. Since the ED-B domain of fibronectin has an identical sequence in mouse and man, scFv(L19) is a pan-species antibody and the results presented here suggest clinical utility of radiolabelled scFv(L19) for the scintigraphic detection of angiogenesis in vivo. Furthermore, it should now be possible to investigate scFv(L19) for the selective delivery of 211At to the tumour neovasculature, causing the selective death of tumour endothelial cells and tumour collapse. PMID:11357506

  6. Deletion of the regulatory domain of protein kinase C alpha exposes regions in the hinge and catalytic domains that mediate nuclear targeting.

    PubMed

    James, G; Olson, E

    1992-02-01

    Members of the protein kinase C (PKC) family are characterized by an NH2-terminal regulatory domain containing binding sites for calcium, phosphatidylserine, and diacylglycerol (or tumor-promoting phorbol esters), a small central hinge region and a COOH-terminal catalytic domain. We have constructed fusion proteins in which the regulatory domain of PKC alpha was removed and replaced by a 19-amino acid leader sequence containing a myristoylation consensus or by the same sequence in which the amino-terminal glycine was changed to alanine to prevent myristoylation. The goal was to generate constitutively active mutants of PKC that were either membrane bound, due to their myristoylation, or cytoplasmic. Western blotting of fractions from COS cells transfected with plasmids encoding wild-type and mutant proteins revealed that PKC alpha resided entirely in a Triton X-100 soluble (TS) fraction, whereas both the myristoylated and nonmyristoylated mutants were associated primarily with the nuclear envelope fraction. A similar mutant that lacked the 19 amino acid leader sequence was also found almost entirely in the nuclear envelope, as was a truncation mutant containing only the regulatory domain, hinge region, and a small portion of the catalytic domain. However, an additional truncation mutant consisting of only the regulatory domain plus the first one-third of the hinge region was almost entirely in the TS fraction. A nonmyristoylated fusion protein containing only the catalytic domain was also found in the nuclear envelope. Immunostaining of cells transfected with these constructs revealed that both the myristoylated and nonmyristoylated mutants were localized in nuclei, whereas wild-type PKC alpha was primarily cytoplasmic and perinuclear. Phorbol dibutyrate treatment of PKC alpha-transfected cells resulted in increased perinuclear and nuclear staining. The results are consistent with a model in which activation of PKC, by phorbol esters or by deletion of the

  7. Arsenite Targets the Zinc Finger Domains of Tet Proteins and Inhibits Tet-Mediated Oxidation of 5-Methylcytosine.

    PubMed

    Liu, Shuo; Jiang, Ji; Li, Lin; Amato, Nicholas J; Wang, Zi; Wang, Yinsheng

    2015-10-01

    Arsenic toxicity is a serious public health problem worldwide that brings more than 100 million people into the risk of arsenic exposure from groundwater and food contamination. Although there is accumulating evidence linking arsenic exposure with aberrant cytosine methylation in the global genome or at specific genomic loci, very few have investigated the impact of arsenic on the oxidation of 5-methylcytosine (5-mC) mediated by the Ten-eleven translocation (Tet) family of proteins. Owing to the high binding affinity of As(III) toward cysteine residues, we reasoned that the highly conserved C3H-type zinc fingers situated in Tet proteins may constitute potential targets for arsenic binding. Herein, we found that arsenite could bind directly to the zinc fingers of Tet proteins in vitro and in cells, and this interaction substantially impaired the catalytic efficiency of Tet proteins in oxidizing 5-mC to 5-hydroxymethylcytosine (5-hmC), 5-formylcytosine (5-foC), and 5-carboxylcytosine (5-caC). Treatments with arsenite also led to a dose-dependent decrease in the level of 5-hmC, but not 5-mC, in DNA isolated from HEK293T cells overexpressing the catalytic domain of any of the three Tet proteins and from mouse embryonic stem cells. Together, our study unveiled, for the first time, that arsenite could alter epigenetic signaling by targeting the zinc fingers of Tet proteins and perturbing the Tet-mediated oxidation of 5-mC in vitro and in cells. Our results offer important mechanistic understanding of arsenic epigenotoxicity and carcinogenesis in mammalian systems and may lead to novel approaches for the chemoprevention of arsenic toxicity.

  8. The adenovirus E1A protein targets the SAGA but not the ADA transcriptional regulatory complex through multiple independent domains.

    PubMed

    Shuen, Michael; Avvakumov, Nikita; Walfish, Paul G; Brandl, Chris J; Mymryk, Joe S

    2002-08-23

    Expression of the adenovirus E1A protein in the simple eukaryote Saccharomyces cerevisiae inhibits growth. We tested four regions of E1A that alter growth and transcription in mammalian cells for their effects in yeast when expressed as fusions to the Gal4p DNA binding domain. Expression of the N-terminal/conserved region (CR) 1 or CR3, but not of the CR2 or the C-terminal portion of E1A, inhibited yeast growth. Growth inhibition was relieved by deletion of the genes encoding the yGcn5p, Ngg1p, or Spt7p components of the SAGA transcriptional regulatory complex, but not the Ahc1p component of the related ADA complex, indicating that the N-terminal/CR1 and CR3 regions of E1A target the SAGA complex independently. Expression of the pCAF acetyltransferase, a mammalian homologue of yGcn5p, also suppressed growth inhibition by either portion of E1A. Furthermore, the N-terminal 29 residues and the CR3 portion of E1A interacted independently with yGcn5p and pCAF in vitro. Thus, two separate regions of E1A target the yGcn5p component of the SAGA transcriptional activation complex. A subregion of the N-terminal/CR1 fragment spanning residues 30-69 within CR1 also inhibited yeast growth in a SAGA-dependent fashion. However, this region did not interact with yGcn5p or pCAF, suggesting that it makes a third contact with another SAGA component. Our results provide a new model system to elucidate mechanisms by which E1A and the SAGA complex regulate transcription and growth. PMID:12070146

  9. Two domain-disrupted hda6 alleles have opposite epigenetic effects on transgenes and some endogenous targets

    PubMed Central

    Zhang, Shoudong; Zhan, Xiangqiang; Xu, Xiaoming; Cui, Peng; Zhu, Jian-Kang; Xia, Yiji; Xiong, Liming

    2015-01-01

    HDA6 is a RPD3-like histone deacetylase. In Arabidopsis, it mediates transgene and some endogenous target transcriptional gene silencing (TGS) via histone deacetylation and DNA methylation. Here, we characterized two hda6 mutant alleles that were recovered as second-site suppressors of the DNA demethylation mutant ros1–1. Although both alleles derepressed 35S::NPTII and RD29A::LUC in the ros1–1 background, they had distinct effects on the expression of these two transgenes. In accordance to expression profiles of two transgenes, the alleles have distinct opposite methylation profiles on two reporter gene promoters. Furthermore, both alleles could interact in vitro and in vivo with the DNA methyltransferase1 with differential interactive strength and patterns. Although these alleles accumulated different levels of repressive/active histone marks, DNA methylation but not histone modifications in the two transgene promoters was found to correlate with the level of derepression of the reporter genes between the two had6 alleles. Our study reveals that mutations in different domains of HDA6 convey different epigenetic status that in turn controls the expression of the transgenes as well as some endogenous loci. PMID:26666962

  10. Two domain-disrupted hda6 alleles have opposite epigenetic effects on transgenes and some endogenous targets.

    PubMed

    Zhang, Shoudong; Zhan, Xiangqiang; Xu, Xiaoming; Cui, Peng; Zhu, Jian-Kang; Xia, Yiji; Xiong, Liming

    2015-12-15

    HDA6 is a RPD3-like histone deacetylase. In Arabidopsis, it mediates transgene and some endogenous target transcriptional gene silencing (TGS) via histone deacetylation and DNA methylation. Here, we characterized two hda6 mutant alleles that were recovered as second-site suppressors of the DNA demethylation mutant ros1-1. Although both alleles derepressed 35S::NPTII and RD29A::LUC in the ros1-1 background, they had distinct effects on the expression of these two transgenes. In accordance to expression profiles of two transgenes, the alleles have distinct opposite methylation profiles on two reporter gene promoters. Furthermore, both alleles could interact in vitro and in vivo with the DNA methyltransferase1 with differential interactive strength and patterns. Although these alleles accumulated different levels of repressive/active histone marks, DNA methylation but not histone modifications in the two transgene promoters was found to correlate with the level of derepression of the reporter genes between the two had6 alleles. Our study reveals that mutations in different domains of HDA6 convey different epigenetic status that in turn controls the expression of the transgenes as well as some endogenous loci.

  11. Adaptive Evolution Has Targeted the C-Terminal Domain of the RXLR Effectors of Plant Pathogenic Oomycetes[W

    PubMed Central

    Win, Joe; Morgan, William; Bos, Jorunn; Krasileva, Ksenia V.; Cano, Liliana M.; Chaparro-Garcia, Angela; Ammar, Randa; Staskawicz, Brian J.; Kamoun, Sophien

    2007-01-01

    Oomycete plant pathogens deliver effector proteins inside host cells to modulate plant defense circuitry and to enable parasitic colonization. These effectors are defined by a conserved motif, termed RXLR (for Arg, any amino acid, Leu, Arg), that is located downstream of the signal peptide and that has been implicated in host translocation. Because the phenotypes of RXLR effectors extend to plant cells, their genes are expected to be the direct target of the evolutionary forces that drive the antagonistic interplay between pathogen and host. We used the draft genome sequences of three oomycete plant pathogens, Phytophthora sojae, Phytophthora ramorum, and Hyaloperonospora parasitica, to generate genome-wide catalogs of RXLR effector genes and determine the extent to which these genes are under positive selection. These analyses revealed that the RXLR sequence is overrepresented and positionally constrained in the secretome of Phytophthora relative to other eukaryotes. The three examined plant pathogenic oomycetes carry complex and diverse sets of RXLR effector genes that have undergone relatively rapid birth and death evolution. We obtained robust evidence of positive selection in more than two-thirds of the examined paralog families of RXLR effectors. Positive selection has acted for the most part on the C-terminal region, consistent with the view that RXLR effectors are modular, with the N terminus involved in secretion and host translocation and the C-terminal domain dedicated to modulating host defenses inside plant cells. PMID:17675403

  12. Targeted inversion of a polar silencer within the HoxD complex re-allocates domains of enhancer sharing.

    PubMed

    Kmita, M; Kondo, T; Duboule, D

    2000-12-01

    Mammalian Hox genes are clustered at four genomic loci. During development, neighbouring genes are coordinately regulated by global enhancer sequences, which control multiple genes at once, as exemplified by the expression of series of contiguous Hoxd genes in either limbs or gut. The link between vertebrate Hox gene transcription and their clustered distribution is poorly understood. Experimental and comparative approaches have revealed that various mechanisms, such as gene clustering or global enhancer sequences, might have constrained this genomic organization and stabilized it throughout evolution. To understand what restricts the effect of a particular enhancer to a precise set of genes, we generated a loxP/Cre-mediated targeted inversion within the HoxD cluster. Mice carrying the inversion showed a reciprocal re-assignment of the limb versus gut regulatory specificities, suggesting the presence of a silencer element with a unidirectional property. This polar silencer appears to limit the number of genes that respond to one type of regulation and thus indicates how separate regulatory domains may be implemented within intricate gene clusters.

  13. Multi-target Chromogenic Whole-mount In Situ Hybridization for Comparing Gene Expression Domains in Drosophila Embryos

    PubMed Central

    Hauptmann, Giselbert; Söll, Iris; Krautz, Robert; Theopold, Ulrich

    2016-01-01

    To analyze gene regulatory networks active during embryonic development and organogenesis it is essential to precisely define how the different genes are expressed in spatial relation to each other in situ. Multi-target chromogenic whole-mount in situ hybridization (MC-WISH) greatly facilitates the instant comparison of gene expression patterns, as it allows distinctive visualization of different mRNA species in contrasting colors in the same sample specimen. This provides the possibility to relate gene expression domains topographically to each other with high accuracy and to define unique and overlapping expression sites. In the presented protocol, we describe a MC-WISH procedure for comparing mRNA expression patterns of different genes in Drosophila embryos. Up to three RNA probes, each specific for another gene and labeled by a different hapten, are simultaneously hybridized to the embryo samples and subsequently detected by alkaline phosphatase-based colorimetric immunohistochemistry. The described procedure is detailed here for Drosophila, but works equally well with zebrafish embryos. PMID:26862978

  14. Structural and functional analyses of minimal phosphopeptides targeting the polo-box domain of polo-like kinase 1

    PubMed Central

    Yun, Sang-Moon; Moulaei, Tinoush; Lim, Dan; Bang, Jeong K.; Park, Jung-Eun; Shenoy, Shilpa R.; Liu, Fa; Kang, Young Hwi; Liao, Chenzhong; Soung, Nak-Kyun; Lee, Sunhee; Yoon, Do-Young; Lim, Yoongho; Lee, Dong-Hee; Otaka, Akira; Appella, Ettore; McMahon, James B.; Nicklaus, Marc C.; Burke, Terrence R.; Yaffe, Michael B.; Wlodawer, Alexander; Lee, Kyung S.

    2009-01-01

    Plk1 plays a pivotal role in cell proliferation and is considered an attractive target for anti-cancer therapy. The noncatalytic polo-box domain (PBD) of Plk1 forms a phosphoepitope-binding module for protein-protein interaction. Here, we report the identification of minimal phosphopeptides that specifically interacted with the PBD of Plk1, but not the two closely-related Plk2 and Plk3. Comparative binding studies and analyses of crystal structures of the Plk1 PBD in complex with the minimal phosphopeptides revealed that the C-terminal SpT dipeptide functions as a high affinity anchor, whereas the N-terminal residues are critical for providing both specificity and affinity to the interaction. Inhibition of the Plk1 PBD by phospho-Thr mimetic peptides was sufficient to induce mitotic arrest and apoptotic cell death. Thus, the mode of the minimal peptide and PBD interaction may provide a template for designing anti-Plk1 therapeutic agents. PMID:19597481

  15. Incorporation of Peptides Targeting EGFR and FGFR1 into the Adenoviral Fiber Knob Domain and Their Evaluation as Targeted Cancer Therapies

    PubMed Central

    Uusi-Kerttula, Hanni; Legut, Mateusz; Davies, James; Jones, Rachel; Hudson, Emma; Hanna, Louise; Stanton, Richard J.; Chester, John D.

    2015-01-01

    Abstract Oncolytic virotherapies based on adenovirus 5 (Ad5) hold promise as adjunctive cancer therapies; however, their efficacy when delivered systemically is hampered by poor target cell specificity and preexisting anti-Ad5 immunity. Ovarian cancer represents a promising target for virotherapy, since the virus can be delivered locally into the peritoneal cavity. Both epidermal growth factor receptor (EGFR) and fibroblast growth factor receptor 1 (FGFR1) are overexpressed in the majority of human tumors, including ovarian cancer. To generate adenoviral vectors with improved tumor specificity, we generated a panel of Ad5 vectors with altered tropism for EGFR and FGFR, rather than the natural Ad5 receptor, hCAR. We have included mutations within AB loop of the viral fiber knob (KO1 mutation) to preclude interaction with hCAR, combined with insertions in the HI loop to incorporate peptides that bind either EGFR (peptide YHWYGYTPQNVI, GE11) or FGFR1 (peptides MQLPLAT, M*, and LSPPRYP, LS). Viruses were produced to high titers, and the integrity of the fiber protein was validated by Western blotting. The KO1 mutation efficiently ablated hCAR interactions, and significantly increased transduction was observed in hCARlow/EGFRhigh cell lines using Ad5.GE11, while transduction levels using Ad5.M* or Ad5.LS were not increased. In the presence of physiological concentrations of human blood clotting factor X (hFX), significantly increased levels of transduction via the hFX-mediated pathway were observed in cell lines, but not in primary tumor cells derived from epithelial ovarian cancer (EOC) ascites samples. Ad5-mediated transduction of EOC cells was completely abolished by the presence of 2.5% serum from patients, while, surprisingly, incorporation of the GE11 peptide resulted in significant evasion of neutralization in the same samples. We thus speculate that incorporation of the YHWYGYTPQNVI dodecapeptide within the fiber knob domain may provide a novel means of

  16. Rational design of YAP WW1 domain-binding peptides to target TGFβ/BMP/Smad-YAP interaction in heterotopic ossification.

    PubMed

    Chen, Dong; Liu, Shenghe; Zhang, Wen; Sun, Luyuan

    2015-11-01

    The transforming growth factor-β/bone morphogenic protein/Smad signaling pathway has been raised as a new and promising therapeutic target of heterotopic ossification, which is mediated by recruitment of transcription coactivator Yes-associated protein (YAP) to Smad. Here, we described a successful integration of computational modeling and experimental assay to rationally design novel peptide aptamers to disrupt YAP-Smad interaction by targeting YAP WW1 domain. In the protocol, a computational genetic evolution strategy was used to improve a population of potential YAP WW1-binding peptides generated from the YAP-recognition site in Smad protein, from which several promising peptides were selected and their affinities toward YAP WW1 domain were determined using binding assay. In addition, a high-activity peptide was further optimized based on its complex structure with YAP WW1 domain to derive a number of derivative peptides with higher binding potency to the domain. We also found that a strong YAP WW1 binder should have a negatively charged N-terminus, a positively charged C-terminus and a nonpolar core to match the electrostatic distribution pattern in peptide-binding pocket of YAP WW1 domain, which may also form additional nonbonded interactions such as hydrogen bond, salt bridge and π-π stacking to confer stability and specificity for the domain-peptide recognition.

  17. In vitro and In vivo Activity of Novel Small-Molecule Inhibitors Targeting the Pleckstrin Homology Domain of Protein Kinase B/AKT

    PubMed Central

    Moses, Sylvestor A.; Ali, M. Ahad; Zuohe, Song; Du-Cuny, Lei; Zhou, Li Li; Lemos, Robert; Ihle, Nathan; Skillman, A. Geoffrey; Zhang, Shuxing; Mash, Eugene A.; Powis, Garth; Meuillet, Emmanuelle J.

    2010-01-01

    The phosphatidylinositol 3-kinase/AKT signaling pathway plays a critical role in activating survival and antiapoptotic pathways within cancer cells. Several studies have shown that this pathway is constitutively activated in many different cancer types. The goal of this study was to discover novel compounds that bind to the pleckstrin homology (PH) domain of AKT, thereby inhibiting AKT activation. Using proprietary docking software, 22 potential PH domain inhibitors were identified. Surface plasmon resonance spectroscopy was used to measure the binding of the compounds to the expressed PH domain of AKT followed by an in vitro activity screen in Panc-1 and MiaPaCa-2 pancreatic cancer cell lines. We identified a novel chemical scaffold in several of the compounds that binds selectively to the PH domain of AKT, inducing a decrease in AKT activation and causing apoptosis at low micromolar concentrations. Structural modifications of the scaffold led to compounds with enhanced inhibitory activity in cells. One compound, 4-dodecyl-N-(1,3,4-thiadiazol-2-yl) benzenesulfonamide, inhibited AKT and its downstream targets in cells as well as in pancreatic cancer cell xenografts in immunocompromised mice; it also exhibited good antitumor activity. In summary, a pharmacophore for PH domain inhibitors targeting AKT function was developed. Computer-aided modeling, synthesis, and testing produced novel AKT PH domain inhibitors that exhibit promising preclinical properties. PMID:19491272

  18. Rational design of YAP WW1 domain-binding peptides to target TGFβ/BMP/Smad-YAP interaction in heterotopic ossification.

    PubMed

    Chen, Dong; Liu, Shenghe; Zhang, Wen; Sun, Luyuan

    2015-11-01

    The transforming growth factor-β/bone morphogenic protein/Smad signaling pathway has been raised as a new and promising therapeutic target of heterotopic ossification, which is mediated by recruitment of transcription coactivator Yes-associated protein (YAP) to Smad. Here, we described a successful integration of computational modeling and experimental assay to rationally design novel peptide aptamers to disrupt YAP-Smad interaction by targeting YAP WW1 domain. In the protocol, a computational genetic evolution strategy was used to improve a population of potential YAP WW1-binding peptides generated from the YAP-recognition site in Smad protein, from which several promising peptides were selected and their affinities toward YAP WW1 domain were determined using binding assay. In addition, a high-activity peptide was further optimized based on its complex structure with YAP WW1 domain to derive a number of derivative peptides with higher binding potency to the domain. We also found that a strong YAP WW1 binder should have a negatively charged N-terminus, a positively charged C-terminus and a nonpolar core to match the electrostatic distribution pattern in peptide-binding pocket of YAP WW1 domain, which may also form additional nonbonded interactions such as hydrogen bond, salt bridge and π-π stacking to confer stability and specificity for the domain-peptide recognition. PMID:26435515

  19. An S/T-Q cluster domain census unveils new putative targets under Tel1/Mec1 control

    PubMed Central

    2012-01-01

    Background The cellular response to DNA damage is immediate and highly coordinated in order to maintain genome integrity and proper cell division. During the DNA damage response (DDR), the sensor kinases Tel1 and Mec1 in Saccharomyces cerevisiae and ATM and ATR in human, phosphorylate multiple mediators which activate effector proteins to initiate cell cycle checkpoints and DNA repair. A subset of kinase substrates are recognized by the S/T-Q cluster domain (SCD), which contains motifs of serine (S) or threonine (T) followed by a glutamine (Q). However, the full repertoire of proteins and pathways controlled by Tel1 and Mec1 is unknown. Results To identify all putative SCD-containing proteins, we analyzed the distribution of S/T-Q motifs within verified Tel1/Mec1 targets and arrived at a unifying SCD definition of at least 3 S/T-Q within a stretch of 50 residues. This new SCD definition was used in a custom bioinformatics pipeline to generate a census of SCD-containing proteins in both yeast and human. In yeast, 436 proteins were identified, a significantly larger number of hits than were expected by chance. These SCD-containing proteins did not distribute equally across GO-ontology terms, but were significantly enriched for those involved in processes related to the DDR. We also found a significant enrichment of proteins involved in telophase and cytokinesis, protein transport and endocytosis suggesting possible novel Tel1/Mec1 targets in these pathways. In the human proteome, a wide range of similar proteins were identified, including homologs of some SCD-containing proteins found in yeast. This list also included high concentrations of proteins in the Mediator, spindle pole body/centrosome and actin cytoskeleton complexes. Conclusions Using a bioinformatic approach, we have generated a census of SCD-containing proteins that are involved not only in known DDR pathways but several other pathways under Tel1/Mec1 control suggesting new putative targets for these

  20. The PGRS Domain from PE_PGRS33 of Mycobacterium tuberculosis is Target of Humoral Immune Response in Mice and Humans.

    PubMed

    Cohen, Ingrid; Parada, Cristina; Acosta-Gío, Enrique; Espitia, Clara

    2014-01-01

    The PE_PGRS33 protein is a member of the PE family, which encompasses the PE and the PE_PGRS subfamilies. Among PE_PGRS's, this protein is one of the most studied antigens and its immunomodulatory properties are influence by both PE and PGRS domains. However, the contribution of these domains to the host immune recognition of the PE_PGRS33 protein and their potential role in latent tuberculosis infection in humans is still unknown. In this study, the immunogenic properties of the complete PE_PGRS33 protein and each domain separately were evaluated in BALB/c mice and latent tuberculosis infected (LTBI) humans. In mice, PE_PGRS33 and its domains induced similar antibody production and secretion of IFN-γ. PE_PGRS33 and the PE domain stimulated higher CD4(+) and CD8(+) T-cell proliferation compared to the PGRS domain. This demonstrated that the principal difference in the immune recognition of the domains is the higher activation of T-cell subpopulations involved in the control of tuberculosis. In humans, the secretion of IFN-γ in response to PE_PGRS33 was detected in both LTBI and in non-infected vaccinated individuals. The same was observed for antibody response, which targets epitopes located in the PGRS domain but not in the PE domain. These observations suggest that T and B cell responses to PE_PGRS33 are induced by BCG vaccination and can be maintained for many years in non-infected individuals. This also indicates that the IFN-γ response detected might not be associated with latent tuberculosis infection. These results contribute to the elucidation of the role of the PE_PGRS33 protein and its PE and PGRS domains in the immune response against Mycobacterium tuberculosis.

  1. The PGRS Domain from PE_PGRS33 of Mycobacterium tuberculosis is Target of Humoral Immune Response in Mice and Humans

    PubMed Central

    Cohen, Ingrid; Parada, Cristina; Acosta-Gío, Enrique; Espitia, Clara

    2014-01-01

    The PE_PGRS33 protein is a member of the PE family, which encompasses the PE and the PE_PGRS subfamilies. Among PE_PGRS’s, this protein is one of the most studied antigens and its immunomodulatory properties are influence by both PE and PGRS domains. However, the contribution of these domains to the host immune recognition of the PE_PGRS33 protein and their potential role in latent tuberculosis infection in humans is still unknown. In this study, the immunogenic properties of the complete PE_PGRS33 protein and each domain separately were evaluated in BALB/c mice and latent tuberculosis infected (LTBI) humans. In mice, PE_PGRS33 and its domains induced similar antibody production and secretion of IFN-γ. PE_PGRS33 and the PE domain stimulated higher CD4+ and CD8+ T-cell proliferation compared to the PGRS domain. This demonstrated that the principal difference in the immune recognition of the domains is the higher activation of T-cell subpopulations involved in the control of tuberculosis. In humans, the secretion of IFN-γ in response to PE_PGRS33 was detected in both LTBI and in non-infected vaccinated individuals. The same was observed for antibody response, which targets epitopes located in the PGRS domain but not in the PE domain. These observations suggest that T and B cell responses to PE_PGRS33 are induced by BCG vaccination and can be maintained for many years in non-infected individuals. This also indicates that the IFN-γ response detected might not be associated with latent tuberculosis infection. These results contribute to the elucidation of the role of the PE_PGRS33 protein and its PE and PGRS domains in the immune response against Mycobacterium tuberculosis. PMID:24904584

  2. The solution structure of the FATC domain of the protein kinase target of rapamycin suggests a role for redox-dependent structural and cellular stability.

    PubMed

    Dames, Sonja A; Mulet, José M; Rathgeb-Szabo, Klara; Hall, Michael N; Grzesiek, Stephan

    2005-05-27

    The target of rapamycin (TOR) is a highly conserved Ser/Thr kinase that plays a central role in the control of cellular growth. TOR has a characteristic multidomain structure. Only the kinase domain has catalytic function; the other domains are assumed to mediate interactions with TOR substrates and regulators. Except for the rapamycin-binding domain, there are no high-resolution structural data available for TOR. Here, we present a structural, biophysical, and mutagenesis study of the extremely conserved COOH-terminal FATC domain. The importance of this domain for TOR function has been highlighted in several publications. We show that the FATC domain, in its oxidized form, exhibits a novel structural motif consisting of an alpha-helix and a COOH-terminal disulfide-bonded loop between two completely conserved cysteine residues. Upon reduction, the flexibility of the loop region increases dramatically. The structural data, the redox potential of the disulfide bridge, and the biochemical data of a cysteine to serine mutant indicate that the intracellular redox potential can affect the cellular amount of the TOR protein via the FATC domain. Because the amount of TOR mRNA is not changed, the redox state of the FATC disulfide bond is probably influencing the degradation of TOR. PMID:15772072

  3. The interaction between the pleckstrin homology domain of ceramide kinase and phosphatidylinositol 4,5-bisphosphate regulates the plasma membrane targeting and ceramide 1-phosphate levels

    SciTech Connect

    Kim, Tack-Joong; Mitsutake, Susumu; Igarashi, Yasuyuki . E-mail: yigarash@pharm.hokudai.ac.jp

    2006-04-07

    Ceramide kinase (CERK) converts ceramide to ceramide-1-phosphate (C1P), which has recently emerged as a new bioactive molecule capable of regulating diverse cellular functions. The N-terminus of the CERK protein encompasses a sequence motif known as a pleckstrin homology (PH) domain. Although the PH domain was previously demonstrated to be an important domain for the subcellular localization of CERK, the precise properties of this domain remained unclear. In this study, we reveal that the PH domain of CERK exhibits high affinity for phosphatidylinositol 4,5-bisphosphate (PI(4,5)P{sub 2}), among other lipids. Furthermore, in COS7 cells, GFP-fused CERK translocated rapidly from the cytoplasm to the plasma membrane in response to hyper-osmotic stress, which is known to increase the intracellular PI(4,5)P{sub 2} levels, whereas a PH domain deletion mutant did not. Additionally, in [{sup 32}P]orthophosphate-labeled COS7 cells, the translocation of CERK to the plasma membrane induced a 2.8-fold increase in C1P levels. The study presented here provides insight into the crucial role of the CERK-PH domain in plasma membrane targeting, through its binding to PI(4,5)P{sub 2}, and subsequent induction of C1P production in the vicinity of the membrane.

  4. The matricellular protein CCN1 controls retinal angiogenesis by targeting VEGF, Src homology 2 domain phosphatase-1 and Notch signaling.

    PubMed

    Chintala, Hemabindu; Krupska, Izabela; Yan, Lulu; Lau, Lester; Grant, Maria; Chaqour, Brahim

    2015-07-01

    Physiological angiogenesis depends on the highly coordinated actions of multiple angiogenic regulators. CCN1 is a secreted cysteine-rich and integrin-binding matricellular protein required for proper cardiovascular development. However, our understanding of the cellular origins and activities of this molecule is incomplete. Here, we show that CCN1 is predominantly expressed in angiogenic endothelial cells (ECs) at the leading front of actively growing vessels in the mouse retina. Endothelial deletion of CCN1 in mice using a Cre-Lox system is associated with EC hyperplasia, loss of pericyte coverage and formation of dense retinal vascular networks lacking the normal hierarchical arrangement of arterioles, capillaries and venules. CCN1 is a product of an immediate-early gene that is transcriptionally induced in ECs in response to stimulation by vascular endothelial growth factor (VEGF). We found that CCN1 activity is integrated with VEGF receptor 2 (VEGF-R2) activation and downstream signaling pathways required for tubular network formation. CCN1-integrin binding increased the expression of and association between Src homology 2 domain-containing protein tyrosine phosphatase-1 (SHP-1) and VEGF-R2, which leads to rapid dephosphorylation of VEGF-R2 tyrosine, thus preventing EC hyperproliferation. Predictably, CCN1 further brings receptors/signaling molecules into proximity that are otherwise spatially separated. Furthermore, CCN1 induces integrin-dependent Notch activation in cultured ECs, and its targeted gene inactivation in vivo alters Notch-dependent vascular specification and remodeling, suggesting that functional levels of Notch signaling requires CCN1 activity. These data highlight novel functions of CCN1 as a naturally optimized molecule, fine-controlling key processes in physiological angiogenesis and safeguarding against aberrant angiogenic responses.

  5. The auto-inhibitory state of Rho guanine nucleotide exchange factor ARHGEF5/TIM can be relieved by targeting its SH3 domain with rationally designed peptide aptamers.

    PubMed

    He, Ping; Tan, De-Li; Liu, Hong-Xiang; Lv, Feng-Lin; Wu, Wei

    2015-04-01

    The short isoform of Rho guanine nucleotide exchange factor ARHGEF5 is known as TIM, which plays diverse roles in, for example, tumorigenesis, neuronal development and Src-induced podosome formation through the activation of its substrates, the Rho family of GTPases. The activation is auto-inhibited by a putative helix N-terminal to the DH domain of TIM, which is stabilized by the intramolecular interaction of C-terminal SH3 domain with a poly-proline sequence between the putative helix and the DH domain. In this study, we systematically investigated the structural basis, energetic landscape and biological implication underlying TIM auto-inhibition by using atomistic molecular dynamics simulations and binding free energy analysis. The computational study revealed that the binding of SH3 domain to poly-proline sequence is the prerequisite for the stabilization of TIM auto-inhibition. Thus, it is suggested that targeting SH3 domain with competitors of the poly-proline sequence would be a promising strategy to relieve the auto-inhibitory state of TIM. In this consideration, we rationally designed a number of peptide aptamers for competitively inhibiting the SH3 domain based on modeled TIM structure and computationally generated data. Peptide binding test and guanine nucleotide exchange analysis solidified that these designed peptides can both bind to the SH3 domain potently and activate TIM-catalyzed RhoA exchange reaction effectively. Interestingly, a positive correlation between the peptide affinity and induced exchange activity was observed. In addition, separate mutation of three conserved residues Pro49, Pro52 and Lys54 - they are required for peptide recognition by SH3 domain -- in a designed peptide to Ala would completely abolish the capability of this peptide activating TIM. All these come together to suggest an intrinsic relationship between peptide binding to SH3 domain and the activation of TIM.

  6. Kinase Associated-1 Domains Drive MARK/PAR1 Kinases to Membrane Targets by Binding Acidic Phospholipids

    SciTech Connect

    Moravcevic, Katarina; Mendrola, Jeannine M.; Schmitz, Karl R.; Wang, Yu-Hsiu; Slochower, David; Janmey, Paul A.; Lemmon, Mark A.

    2011-09-28

    Phospholipid-binding modules such as PH, C1, and C2 domains play crucial roles in location-dependent regulation of many protein kinases. Here, we identify the KA1 domain (kinase associated-1 domain), found at the C terminus of yeast septin-associated kinases (Kcc4p, Gin4p, and Hsl1p) and human MARK/PAR1 kinases, as a membrane association domain that binds acidic phospholipids. Membrane localization of isolated KA1 domains depends on phosphatidylserine. Using X-ray crystallography, we identified a structurally conserved binding site for anionic phospholipids in KA1 domains from Kcc4p and MARK1. Mutating this site impairs membrane association of both KA1 domains and intact proteins and reveals the importance of phosphatidylserine for bud neck localization of yeast Kcc4p. Our data suggest that KA1 domains contribute to coincidence detection, allowing kinases to bind other regulators (such as septins) only at the membrane surface. These findings have important implications for understanding MARK/PAR1 kinases, which are implicated in Alzheimer's disease, cancer, and autism.

  7. Enhancement of hERG channel activity by scFv antibody fragments targeted to the PAS domain.

    PubMed

    Harley, Carol A; Starek, Greg; Jones, David K; Fernandes, Andreia S; Robertson, Gail A; Morais-Cabral, João H

    2016-08-30

    The human human ether-à-go-go-related gene (hERG) potassium channel plays a critical role in the repolarization of the cardiac action potential. Changes in hERG channel function underlie long QT syndrome (LQTS) and are associated with cardiac arrhythmias and sudden death. A striking feature of this channel and KCNH channels in general is the presence of an N-terminal Per-Arnt-Sim (PAS) domain. In other proteins, PAS domains bind ligands and modulate effector domains. However, the PAS domains of KCNH channels are orphan receptors. We have uncovered a family of positive modulators of hERG that specifically bind to the PAS domain. We generated two single-chain variable fragments (scFvs) that recognize different epitopes on the PAS domain. Both antibodies increase the rate of deactivation but have different effects on channel activation and inactivation. Importantly, we show that both antibodies, on binding to the PAS domain, increase the total amount of current that permeates the channel during a ventricular action potential and significantly reduce the action potential duration recorded in human cardiomyocytes. Overall, these molecules constitute a previously unidentified class of positive modulators and establish that allosteric modulation of hERG channel function through ligand binding to the PAS domain can be attained. PMID:27516548

  8. Reciprocal regulation between O-GlcNAcylation and tribbles pseudokinase 2 (TRIB2) maintains transformative phenotypes in liver cancer cells.

    PubMed

    Yao, Bingjie; Xu, Yanli; Wang, Jiayi; Qiao, Yongxia; Zhang, Yue; Zhang, Xiao; Chen, Yan; Wu, Qi; Zhao, Yinghui; Zhu, Guoqing; Sun, Fenyong; Li, Zhi; Yuan, Hong

    2016-11-01

    TRIB2 has been identified as an onco-protein, and O-GlcNAcylation of target proteins has been reported to stimulate transformative phenotypes in liver cancer cells. However, the relationships between TRIB2 and O-GlcNAcylation are still unknown. The aim of this study was to investigate whether and how O-GlcNAcylation and TRIB2 regulate each other. We found that stimulation of O-GlcNAcylation elevates TRIB2 by enhancing its protein stability. TRIB2 can be O-GlcNAcylated by the hexosamine biosynthesis pathway (HBP). Also, O-GlcNAcylation boosting of transformative phenotypes of liver cancer cells might occur in a TRIB2-dependent manner. Interestingly, TRIB2 stimulated the metabolism of HBP, demonstrating that TRIB2 has positive feedback on O-GlcNAcylation. Notably, TRIB2 was found to maintain the stability of guanylate cyclase 1 alpha 3 (GUCY1A3), a key component of HBP, by interacting GUCY1A3 and reducing its ubiquitination. Importantly, TRIB2-dependent regulation of metabolism, transformative phenotypes, and O-GlcNAcylation all rely on GUCY1A3. Mouse experiments demonstrate that O-GlcNAcylation of TRIB2 is much higher in the livers of diabetic mice compared to control mice, suggesting that O-GlcNAcylation of TRIB2 might be critical for diabetes-associated liver cancer. Collectively, we have uncovered a positive auto-regulatory feedback between O-GlcNAcylation and TRIB2, which might be regarded as a promising therapeutic target for liver cancer. PMID:27515988

  9. Reciprocal regulation between O-GlcNAcylation and tribbles pseudokinase 2 (TRIB2) maintains transformative phenotypes in liver cancer cells.

    PubMed

    Yao, Bingjie; Xu, Yanli; Wang, Jiayi; Qiao, Yongxia; Zhang, Yue; Zhang, Xiao; Chen, Yan; Wu, Qi; Zhao, Yinghui; Zhu, Guoqing; Sun, Fenyong; Li, Zhi; Yuan, Hong

    2016-11-01

    TRIB2 has been identified as an onco-protein, and O-GlcNAcylation of target proteins has been reported to stimulate transformative phenotypes in liver cancer cells. However, the relationships between TRIB2 and O-GlcNAcylation are still unknown. The aim of this study was to investigate whether and how O-GlcNAcylation and TRIB2 regulate each other. We found that stimulation of O-GlcNAcylation elevates TRIB2 by enhancing its protein stability. TRIB2 can be O-GlcNAcylated by the hexosamine biosynthesis pathway (HBP). Also, O-GlcNAcylation boosting of transformative phenotypes of liver cancer cells might occur in a TRIB2-dependent manner. Interestingly, TRIB2 stimulated the metabolism of HBP, demonstrating that TRIB2 has positive feedback on O-GlcNAcylation. Notably, TRIB2 was found to maintain the stability of guanylate cyclase 1 alpha 3 (GUCY1A3), a key component of HBP, by interacting GUCY1A3 and reducing its ubiquitination. Importantly, TRIB2-dependent regulation of metabolism, transformative phenotypes, and O-GlcNAcylation all rely on GUCY1A3. Mouse experiments demonstrate that O-GlcNAcylation of TRIB2 is much higher in the livers of diabetic mice compared to control mice, suggesting that O-GlcNAcylation of TRIB2 might be critical for diabetes-associated liver cancer. Collectively, we have uncovered a positive auto-regulatory feedback between O-GlcNAcylation and TRIB2, which might be regarded as a promising therapeutic target for liver cancer.

  10. The SWI/SNF Subunit INI1 Contains an N-Terminal Winged Helix DNA Binding Domain that Is a Target for Mutations in Schwannomatosis

    PubMed Central

    Allen, Mark D.; Freund, Stefan M.V.; Zinzalla, Giovanna; Bycroft, Mark

    2015-01-01

    Summary SWI/SNF complexes use the energy of ATP hydrolysis to remodel chromatin. In mammals they play a central role in regulating gene expression during differentiation and proliferation. Mutations in SWI/SNF subunits are among the most frequent gene alterations in cancer. The INI1/hSNF5/SMARCB1 subunit is mutated in both malignant rhabdoid tumor, a highly aggressive childhood cancer, and schwannomatosis, a tumor-predisposing syndrome characterized by mostly benign tumors of the CNS. Here, we show that mutations in INI1 that cause schwannomatosis target a hitherto unidentified N-terminal winged helix DNA binding domain that is also present in the BAF45a/PHF10 subunit of the SWI/SNF complex. The domain is structurally related to the SKI/SNO/DAC domain, which is found in a number of metazoan chromatin-associated proteins. PMID:26073604

  11. The SWI/SNF Subunit INI1 Contains an N-Terminal Winged Helix DNA Binding Domain that Is a Target for Mutations in Schwannomatosis.

    PubMed

    Allen, Mark D; Freund, Stefan M V; Zinzalla, Giovanna; Bycroft, Mark

    2015-07-01

    SWI/SNF complexes use the energy of ATP hydrolysis to remodel chromatin. In mammals they play a central role in regulating gene expression during differentiation and proliferation. Mutations in SWI/SNF subunits are among the most frequent gene alterations in cancer. The INI1/hSNF5/SMARCB1 subunit is mutated in both malignant rhabdoid tumor, a highly aggressive childhood cancer, and schwannomatosis, a tumor-predisposing syndrome characterized by mostly benign tumors of the CNS. Here, we show that mutations in INI1 that cause schwannomatosis target a hitherto unidentified N-terminal winged helix DNA binding domain that is also present in the BAF45a/PHF10 subunit of the SWI/SNF complex. The domain is structurally related to the SKI/SNO/DAC domain, which is found in a number of metazoan chromatin-associated proteins.

  12. Targeting cysteine rich C1 domain of Scaffold protein Kinase Suppressor of Ras (KSR) with anthocyanidins and flavonoids - a binding affinity characterization study.

    PubMed

    Karthik, Dhananjayan; Majumder, Pulak; Palanisamy, Sivanandy; Khairunnisa, Kalathil; Venugopal, Varsha

    2014-01-01

    Kinase Suppressor of Ras (KSR) is a molecular scaffold that interacts with the core kinase components of the ERK cascade, Raf, MEK, ERK to provide spatial and temporal regulation of Ras-dependent ERK cascade signaling. Interruption of this mechanism can have a high influence in inhibiting the downstream signaling of the mutated tyrosine kinase receptor kinase upon ligand binding. Still none of the studies targeted to prevent the binding of Raf, MEK binding on kinase suppressor of RAS. In that perspective the cysteine rich C1 domain of scaffold proteins kinase suppressor of Ras-1 was targeted rather than its ATP binding site with small ligand molecules like flavones and anthocyanidins and analyzed through insilico docking studies. The binding energy evaluation shows the importance of hydroxyl groups at various positions on the flavone and anthocyanidin nucleus. Over all binding interaction shows these ligands occupied the potential sites of cysteine rich C1 domain of scaffold protein KSR. PMID:25352726

  13. Recombinant epidermal growth factor-like domain-1 from coagulation factor VII functionalized iron oxide nanoparticles for targeted glioma magnetic resonance imaging

    PubMed Central

    Liu, Heng; Chen, Xiao; Xue, Wei; Chu, Chengchao; Liu, Yu; Tong, Haipeng; Du, Xuesong; Xie, Tian; Liu, Gang; Zhang, Weiguo

    2016-01-01

    The highly infiltrative and invasive nature of glioma cells often leads to blurred tumor margins, resulting in incomplete tumor resection and tumor recurrence. Accurate detection and precise delineation of glioma help in preoperative delineation, surgical planning and survival prediction. In this study, recombinant epidermal growth factor-like domain-1, derived from human coagulation factor VII, was conjugated to iron oxide nanoparticles (IONPs) for targeted glioma magnetic resonance (MR) imaging. The synthesized EGF1-EGFP-IONPs exhibited excellent targeting ability toward tissue factor (TF)-positive U87MG cells and human umbilical vein endothelial cells in vitro, and demonstrated persistent and efficient MR contrast enhancement up to 12 h for preclinical glioma models with high targeting specificity in vivo. They hold great potential for clinical translation and developing targeted theranostics against brain glioma. PMID:27785017

  14. Sub-Domains of Ricin’s B Subunit as Targets of Toxin Neutralizing and Non-Neutralizing Monoclonal Antibodies

    PubMed Central

    Yermakova, Anastasiya; Vance, David J.; Mantis, Nicholas J.

    2012-01-01

    The B subunit (RTB) of ricin toxin is a galactose (Gal)−/N-acetylgalactosamine (GalNac)-specific lectin that mediates attachment, entry, and intracellular trafficking of ricin in host cells. Structurally, RTB consists of two globular domains with identical folding topologies. Domains 1 and 2 are each comprised of three homologous sub-domains (α, β, γ) that likely arose by gene duplication from a primordial carbohydrate recognition domain (CRD), although only sub-domains 1α and 2γ retain functional lectin activity. As part of our ongoing effort to generate a comprehensive B cell epitope map of ricin, we report the characterization of three new RTB-specific monoclonal antibodies (mAbs). All three mAbs, JB4, B/J F9 and C/M A2, were initially identified based on their abilities to neutralize ricin in a Vero cell cytotoxicty assay and to partially (or completely) block ricin attachment to cell surfaces. However, only JB4 proved capable of neutralizing ricin in a macrophage apoptosis assay and in imparting passive immunity to mice in a model of systemic intoxication. Using a combination of techniques, including competitive ELISAs, pepscan analysis, differential reactivity by Western blot, as well as affinity enrichment of phage displayed peptides, we tentatively localized the epitopes recognized by the non-neutralizing mAbs B/J F9 and C/M A2 to sub-domains 2α and 2β, respectively. Furthermore, we propose that the epitope recognized by JB4 is within sub-domain 2γ, adjacent to RTB’s high affinity Gal/GalNAc CRD. These data suggest that recognition of RTB’s sub-domains 1α and 2γ are critical determinants of antibody neutralizing activity and protective immunity to ricin. PMID:22984492

  15. The Molecular Mechanism of Shiga Toxin Stx2e Neutralization by a Single-domain Antibody Targeting the Cell Receptor-binding Domain

    PubMed Central

    Lo, Alvin W. H.; Moonens, Kristof; De Kerpel, Maia; Brys, Lea; Pardon, Els; Remaut, Han; De Greve, Henri

    2014-01-01

    Shiga toxin Stx2e is the major known agent that causes edema disease in newly weaned pigs. This severe disease is characterized by neurological disorders, hemorrhagic lesions, and frequent fatal outcomes. Stx2e consists of an enzymatically active A subunit and five B subunits that bind to a specific glycolipid receptor on host cells. It is evident that antibodies binding to the A subunit or the B subunits of Shiga toxin variants may have the capability to inhibit their cytotoxicity. Here, we report the discovery and characterization of a VHH single domain antibody (nanobody) isolated from a llama phage display library that confers potent neutralizing capacity against Stx2e toxin. We further present the crystal structure of the complex formed between the nanobody (NbStx2e1) and the Stx2e toxoid, determined at 2.8 Å resolution. Structural analysis revealed that for each B subunit of Stx2e, one NbStx2e1 is interacting in a head-to-head orientation and directly competing with the glycolipid receptor binding site on the surface of the B subunit. The neutralizing NbStx2e1 can in the future be used to prevent or treat edema disease. PMID:25053417

  16. The molecular mechanism of Shiga toxin Stx2e neutralization by a single-domain antibody targeting the cell receptor-binding domain.

    PubMed

    Lo, Alvin W H; Moonens, Kristof; De Kerpel, Maia; Brys, Lea; Pardon, Els; Remaut, Han; De Greve, Henri

    2014-09-01

    Shiga toxin Stx2e is the major known agent that causes edema disease in newly weaned pigs. This severe disease is characterized by neurological disorders, hemorrhagic lesions, and frequent fatal outcomes. Stx2e consists of an enzymatically active A subunit and five B subunits that bind to a specific glycolipid receptor on host cells. It is evident that antibodies binding to the A subunit or the B subunits of Shiga toxin variants may have the capability to inhibit their cytotoxicity. Here, we report the discovery and characterization of a VHH single domain antibody (nanobody) isolated from a llama phage display library that confers potent neutralizing capacity against Stx2e toxin. We further present the crystal structure of the complex formed between the nanobody (NbStx2e1) and the Stx2e toxoid, determined at 2.8 Å resolution. Structural analysis revealed that for each B subunit of Stx2e, one NbStx2e1 is interacting in a head-to-head orientation and directly competing with the glycolipid receptor binding site on the surface of the B subunit. The neutralizing NbStx2e1 can in the future be used to prevent or treat edema disease. PMID:25053417

  17. An Intrabody Based on a Llama Single-domain Antibody Targeting the N-terminal α-Helical Multimerization Domain of HIV-1 Rev Prevents Viral Production*

    PubMed Central

    Vercruysse, Thomas; Pardon, Els; Vanstreels, Els; Steyaert, Jan; Daelemans, Dirk

    2010-01-01

    The human immunodeficiency virus, type 1 (HIV-1)-encoded Rev protein is essential for the expression of late viral mRNAs. Rev forms a large organized multimeric protein-protein complex on the Rev response element of these viral mRNA species and transports them from the nucleus to the cytoplasm, exploiting the CRM1-mediated cellular machinery. Here we report the selection of a nanobody, derived from a llama heavy-chain only antibody, that efficiently blocks the assembly of Rev multimers. The nanobody inhibits HIV-1 replication in cells and specifically suppresses the Rev-dependent expression of partially spliced and unspliced HIV-1 RNA. In HIV-susceptible cells, this nanobody thus has potential as an effective anti-HIV agent using genetic immunization strategies. Its binding site was mapped to Rev residues Lys-20 and Tyr-23 located in the N-terminal α-helical multimerization domain. In the presence of this nanobody, we observed an accumulation of dimeric Rev species, supporting a head-to-head/tail-to-tail molecular model for Rev assembly. The results indicate that the oligomeric assembly of Rev follows an ordered stepwise process and identify a new epitope within Rev that could guide strategies for the development of novel HIV inhibitors. PMID:20406803

  18. Cystathionine β-Synthase (CBS) Domain-containing Pyrophosphatase as a Target for Diadenosine Polyphosphates in Bacteria.

    PubMed

    Anashkin, Viktor A; Salminen, Anu; Tuominen, Heidi K; Orlov, Victor N; Lahti, Reijo; Baykov, Alexander A

    2015-11-13

    Among numerous proteins containing pairs of regulatory cystathionine β-synthase (CBS) domains, family II pyrophosphatases (CBS-PPases) are unique in that they generally contain an additional DRTGG domain between the CBS domains. Adenine nucleotides bind to the CBS domains in CBS-PPases in a positively cooperative manner, resulting in enzyme inhibition (AMP or ADP) or activation (ATP). Here we show that linear P(1),P(n)-diadenosine 5'-polyphosphates (ApnAs, where n is the number of phosphate residues) bind with nanomolar affinity to DRTGG domain-containing CBS-PPases of Desulfitobacterium hafniense, Clostridium novyi, and Clostridium perfringens and increase their activity up to 30-, 5-, and 7-fold, respectively. Ap4A, Ap5A, and Ap6A bound noncooperatively and with similarly high affinities to CBS-PPases, whereas Ap3A bound in a positively cooperative manner and with lower affinity, like mononucleotides. All ApnAs abolished kinetic cooperativity (non-Michaelian behavior) of CBS-PPases. The enthalpy change and binding stoichiometry, as determined by isothermal calorimetry, were ~10 kcal/mol nucleotide and 1 mol/mol enzyme dimer for Ap4A and Ap5A but 5.5 kcal/mol and 2 mol/mol for Ap3A, AMP, ADP, and ATP, suggesting different binding modes for the two nucleotide groups. In contrast, Eggerthella lenta and Moorella thermoacetica CBS-PPases, which contain no DRTGG domain, were not affected by ApnAs and showed no enthalpy change, indicating the importance of the DTRGG domain for ApnA binding. These findings suggest that ApnAs can control CBS-PPase activity and hence affect pyrophosphate level and biosynthetic activity in bacteria.

  19. Structure-based identification of CaMKIIα-interacting MUPP1 PDZ domains and rational design of peptide ligands to target such interaction in human fertilization.

    PubMed

    Zhang, Yi-Le; Han, Zhao-Feng; Sun, Ying-Pu

    2016-06-01

    The recognition and association between Ca(2+)/calmodulin-activated protein kinase II-α (CaMKIIα) and multi-PDZ domain protein 1 (MUPP1) plays an important role in sperm acrosome reaction and human fertilization, which is mediated by the binding of CaMKIIα's C-terminal tail to one or more PDZ domains of the scaffolding protein MUPP1. In this study, we attempt to identify the CaMKIIα-interacting MUPP1 PDZ domains and to design peptide ligands that can potently target and then competitively disrupt such interaction. Here, a synthetic biology approach was proposed to systematically characterize the structural basis, energetic property, dynamic behavior and biological implication underlying the intermolecular interactions between the C-terminal peptide of CaMKIIα and all the 13 PDZ domains of MUPP1. These domains can be grouped into four clusters in terms of their sequence, structure and physiochemical profile; different clusters appear to recognize different classes of PDZ-binding motifs. The cluster 3 includes two members, i.e. MUPP1 PDZ 5 and 11 domains, which were suggested to bind class II motif Φ-X-Φ(-COOH) of the C-terminal peptide SGAPSV(-COOH) of CaMKIIα. Subsequently, the two domains were experimentally measured as the moderate- and high-affinity binders of the peptide by using fluorescence titration (dissociation constants K d = 25.2 ± 4.6 and 0.47 ± 0.08 µM for peptide binding to PDZ 5 and 11, respectively), which was in line with theoretical prediction (binding free energies ΔG total = -7.6 and -9.2 kcal/mol for peptide binding to PDZ 5 and 11, respectively). A systematic mutation of SGAPSV(-COOH) residues suggested few favorable amino acids at different residue positions of the peptide, which were then combined to generate a number of potent peptide mutants for PDZ 11 domain. Consequently, two peptides (SIAPNV(-COOH) and SIVMNV(-COOH)) were identified to have considerably improved affinity with K d increase by ~tenfold relative to

  20. Two independent targeting signals in the cytoplasmic domain determine trans-Golgi network localization and endosomal trafficking of the proprotein convertase furin.

    PubMed Central

    Schäfer, W; Stroh, A; Berghöfer, S; Seiler, J; Vey, M; Kruse, M L; Kern, H F; Klenk, H D; Garten, W

    1995-01-01

    Furin, a subtilisin-like eukaryotic endoprotease, is responsible for proteolytic cleavage of cellular and viral proteins transported via the constitutive secretory pathway. Cleavage occurs at the C-terminus of basic amino acid sequences, such as R-X-K/R-R and R-X-X-R. Furin was found predominantly in the trans-Golgi network (TGN), but also in clathrin-coated vesicles dispatched from the TGN, on the plasma membrane as an integral membrane protein and in the medium as an anchorless enzyme. When furin was vectorially expressed in normal rat kidney (NRK) cells it accumulated in the TGN similarly to the endogenous glycoprotein TGN38, often used as a TGN marker protein. The signals determining TGN targeting of furin were investigated by mutational analysis of the cytoplasmic tail of furin and by using the hemagglutinin (HA) of fowl plague virus, a protein with cell surface destination, as a reporter molecule, in which membrane anchor and cytoplasmic tail were replaced by the respective domains of furin. The membrane-spanning domain of furin grafted to HA does not localize the chimeric molecule to the TGN, whereas the cytoplasmic domain does. Results obtained on furin mutants with substitutions and deletions of amino acids in the cytoplasmic tail indicate that wild-type furin is concentrated in the TGN by a mechanism involving two independent targeting signals, which consist of the acidic peptide CPSDSEEDEG783 and the tetrapeptide YKGL765. The acidic signal in the cytoplasmic domain of a HA-furin chimera is necessary and sufficient to localize the reporter molecule to the TGN, whereas YKGL is a determinant for targeting to the endosomes. The data support the concept that the acidic signal, which is the dominant one, retains furin in the TGN, whereas the YKGL motif acts as a retrieval signal for furin that has escaped to the cell surface. Images PMID:7781597

  1. Passive immunization targeting the N-terminal projection domain of tau decreases tau pathology and improves cognition in a transgenic mouse model of Alzheimer disease and tauopathies.

    PubMed

    Dai, Chun-ling; Chen, Xia; Kazim, Syed Faraz; Liu, Fei; Gong, Cheng-Xin; Grundke-Iqbal, Inge; Iqbal, Khalid

    2015-04-01

    Intraneuronal accumulation of abnormally hyperphosphorylated tau in the brain is a histopathological hallmark of Alzheimer's disease and a family of related neurodegenerative disorders collectively called tauopathies. At present there is no effective treatment available for these progressive neurodegenerative diseases which are clinically characterized by dementia in mid to old-age. Here we report the treatment of 14-17-months-old 3xTg-AD mice with tau antibodies 43D (tau 6-18) and 77E9 (tau 184-195) to the N-terminal projection domain of tau or mouse IgG as a control by intraperitoneal injection once a week for 4 weeks, and the effects of the passive immunization on reduction of hyperphosphorylated tau, Aβ accumulation and cognitive performance in these animals. We found that treatment with tau antibodies 43D and 77E9 reduced total tau level, decreased tau hyperphosphorylated at Ser199, Ser202/Thr205 (AT8), Thr205, Ser262/356 (12E8), and Ser396/404 (PHF-1) sites, and a trend to reduce Aβ pathology. Most importantly, targeting N-terminal tau especially by 43D (tau 6-18) improved reference memory in the Morris water maze task in 3xTg-AD mice. We did not observe any abnormality in general physical characteristics of the treated animals with either of the two antibodies during the course of this study. Taken together, our studies demonstrate for the first time (1) that passive immunization targeting normal tau can effectively clear the hyperphosphorylated protein and possibly reduce Aβ pathology from the brain and (2) that targeting N-terminal projection domain of tau containing amino acid 6-18 is especially beneficial. Thus, targeting selective epitopes of N-terminal domain of tau may present a novel effective therapeutic opportunity for Alzheimer disease and other tauopathies.

  2. Role of the N-terminal transmembrane domain in the endo-lysosomal targeting and function of the human ABCB6 protein

    PubMed Central

    Kiss, Katalin; Kucsma, Nora; Brozik, Anna; Tusnady, Gabor E.; Bergam, Ptissam; vanNiel, Guillaume; Szakacs, Gergely

    2015-01-01

    ATP-binding cassette, subfamily B (ABCB) 6 is a homodimeric ATP-binding cassette (ABC) transporter present in the plasma membrane and in the intracellular organelles. The intracellular localization of ABCB6 has been a matter of debate, as it has been suggested to reside in the mitochondria and the endo-lysosomal system. Using a variety of imaging modalities, including confocal microscopy and EM, we confirm the endo-lysosomal localization of ABCB6 and show that the protein is internalized from the plasma membrane through endocytosis, to be distributed to multivesicular bodies and lysosomes. In addition to the canonical nucleotide-binding domain (NBD) and transmembrane domain (TMD), ABCB6 contains a unique N-terminal TMD (TMD0), which does not show sequence homology to known proteins. We investigated the functional role of these domains through the molecular dissection of ABCB6. We find that the folding, dimerization, membrane insertion and ATP binding/hydrolysis of the core–ABCB6 complex devoid of TMD0 are preserved. However, in contrast with the full-length transporter, the core–ABCB6 construct is retained at the plasma membrane and does not appear in Rab5-positive endosomes. TMD0 is directly targeted to the lysosomes, without passage to the plasma membrane. Collectively, our results reveal that TMD0 represents an independently folding unit, which is dispensable for catalysis, but has a crucial role in the lysosomal targeting of ABCB6. PMID:25627919

  3. Multiple myeloma-associated hDIS3 mutations cause perturbations in cellular RNA metabolism and suggest hDIS3 PIN domain as a potential drug target

    PubMed Central

    Tomecki, Rafal; Drazkowska, Karolina; Kucinski, Iwo; Stodus, Krystian; Szczesny, Roman J.; Gruchota, Jakub; Owczarek, Ewelina P.; Kalisiak, Katarzyna; Dziembowski, Andrzej

    2014-01-01

    hDIS3 is a mainly nuclear, catalytic subunit of the human exosome complex, containing exonucleolytic (RNB) and endonucleolytic (PIN) active domains. Mutations in hDIS3 have been found in ∼10% of patients with multiple myeloma (MM). Here, we show that these mutations interfere with hDIS3 exonucleolytic activity. Yeast harboring corresponding mutations in DIS3 show growth inhibition and changes in nuclear RNA metabolism typical for exosome dysfunction. Construction of a conditional DIS3 knockout in the chicken DT40 cell line revealed that DIS3 is essential for cell survival, indicating that its function cannot be replaced by other exosome-associated nucleases: hDIS3L and hRRP6. Moreover, HEK293-derived cells, in which depletion of endogenous wild-type hDIS3 was complemented with exogenously expressed MM hDIS3 mutants, proliferate at a slower rate and exhibit aberrant RNA metabolism. Importantly, MM mutations are synthetically lethal with the hDIS3 PIN domain catalytic mutation both in yeast and human cells. Since mutations in PIN domain alone have little effect on cell physiology, our results predict the hDIS3 PIN domain as a potential drug target for MM patients with hDIS3 mutations. It is an interesting example of intramolecular synthetic lethality with putative therapeutic potential in humans. PMID:24150935

  4. Cross-domain targeted ontology subsets for annotation: the case of SNOMED CORE and RxNorm.

    PubMed

    López-García, Pablo; Lependu, Paea; Musen, Mark; Illarramendi, Arantza

    2014-02-01

    The benefits of using ontology subsets versus full ontologies are well-documented for many applications. In this study, we propose an efficient subset extraction approach for a domain using a biomedical ontology repository with mappings, a cross-ontology, and a source subset from a related domain. As a case study, we extracted a subset of drugs from RxNorm using the UMLS Metathesaurus, the NDF-RT cross-ontology, and the CORE problem list subset of SNOMED CT. The extracted subset, which we termed RxNorm/CORE, was 4% the size of the full RxNorm (0.4% when considering ingredients only). For evaluation, we used CORE and RxNorm/CORE as thesauri for the annotation of clinical documents and compared their performance to that of their respective full ontologies (i.e., SNOMED CT and RxNorm). The wide range in recall of both CORE (29-69%) and RxNorm/CORE (21-35%) suggests that more quantitative research is needed to assess the benefits of using ontology subsets as thesauri in annotation applications. Our approach to subset extraction, however, opens a door to help create other types of clinically useful domain specific subsets and acts as an alternative in scenarios where well-established subset extraction techniques might suffer from difficulties or cannot be applied.

  5. Exploration of resistive targets within shallow marine environments using the circular electrical dipole and the differential electrical dipole methods: a time-domain modelling study

    NASA Astrophysics Data System (ADS)

    Haroon, Amir; Mogilatov, Vladimir; Goldman, Mark; Bergers, Rainer; Tezkan, Bülent

    2016-05-01

    Two novel transient controlled source electromagnetic methods called circular electrical dipole (CED) and differential electrical dipole (DED) are theoretically analysed for applications in shallow marine environments. 1-D and 3-D time-domain modelling studies are used to investigate the detectability and applicability of the methods when investigating resistive layers/targets representing hydrocarbon-saturated formations. The results are compared to the conventional time-domain horizontal electrical dipole (HED) and vertical electrical dipole (VED) sources. The applied theoretical modelling studies demonstrate that CED and DED have higher signal detectability towards resistive targets compared to TD-CSEM, but demonstrate significantly poorer signal amplitudes. Future CED/DED applications will have to solve this issue prior to measuring. Furthermore, the two novel methods have very similar detectability characteristics towards 3-D resistive targets embedded in marine sediments as VED while being less susceptible towards non-verticality. Due to the complex transmitter design of CED/DED the systems are prone to geometrical errors. Modelling studies show that even small transmitter inaccuracies have strong effects on the signal characteristics of CED making an actual marine application difficult at the present time. In contrast, the DED signal is less affected by geometrical errors in comparison to CED and may therefore be more adequate for marine applications.

  6. Modular elements of the TPR domain in the Mps1 N terminus differentially target Mps1 to the centrosome and kinetochore.

    PubMed

    Marquardt, Joseph R; Perkins, Jennifer L; Beuoy, Kyle J; Fisk, Harold A

    2016-07-12

    Faithful segregation of chromosomes to two daughter cells is regulated by the formation of a bipolar mitotic spindle and the spindle assembly checkpoint, ensuring proper spindle function. Here we show that the proper localization of the kinase Mps1 (monopolar spindle 1) is critical to both these processes. Separate elements in the Mps1 N-terminal extension (NTE) and tetratricopeptide repeat (TPR) domains govern localization to either the kinetochore or the centrosome. The third TPR (TPR3) and the TPR-capping helix (C-helix) are each sufficient to target Mps1 to the centrosome. TPR3 binds to voltage-dependent anion channel 3, but although this is sufficient for centrosome targeting of Mps1, it is not necessary because of the presence of the C-helix. A version of Mps1 lacking both elements cannot localize to or function at the centrosome, but maintains kinetochore localization and spindle assembly checkpoint function, indicating that TPR3 and the C-helix define a bipartite localization determinant that is both necessary and sufficient to target Mps1 to the centrosome but dispensable for kinetochore targeting. In contrast, elements required for kinetochore targeting (the NTE and first two TPRs) are dispensable for centrosomal localization and function. These data are consistent with a separation of Mps1 function based on localization determinants within the N terminus.

  7. Molecular cloning and cold shock induced overexpression of the DNA encoding phor sensor domain from Mycobacterium tuberculosis as a target molecule for novel anti-tubercular drugs

    NASA Astrophysics Data System (ADS)

    Langi, Gladys Emmanuella Putri; Moeis, Maelita R.; Ihsanawati, Giri-Rachman, Ernawati Arifin

    2014-03-01

    Mycobacterium tuberculosis (Mtb), the sole cause of Tuberculosis (TB), is still a major global problem. The discovery of new anti-tubercular drugs is needed to face the increasing TB cases, especially to prevent the increase of cases with resistant Mtb. A potential novel drug target is the Mtb PhoR sensor domain protein which is the histidine kinase extracellular domain for receiving environmental signals. This protein is the initial part of the two-component system PhoR-PhoP regulating 114 genes related to the virulence of Mtb. In this study, the gene encoding PhoR sensor domain (SensPhoR) was subcloned from pGEM-T SensPhoR from the previous study (Suwanto, 2012) to pColdII. The construct pColdII SensPhoR was confirmed through restriction analysis and sequencing. Using the construct, SensPhoR was overexpressed at 15°C using Escherichia coli BL21 (DE3). Low temperature was chosen because according to the solubility prediction program of recombinant proteins from The University of Oklahama, the PhoR sensor domain has a chance of 79.8% to be expressed as insoluble proteins in Escherichia coli's (E. coli) cytoplasm. This prediction is also supported by other similar programs: PROSO and PROSO II. The SDS PAGE result indicated that the PhoR sensor domain recombinant protein was overexpressed. For future studies, this protein will be purified and used for structure analysis which can be used to find potential drugs through rational drug design.

  8. Fabrication of a Dual Substrate Display to Test Roles of Cell Adhesion Proteins in Vesicle Targeting to Plasma Membrane Domains

    PubMed Central

    Hunt, Stephen J.; Nelson, W. James

    2009-01-01

    While much is known of the molecular machinery involved in protein sorting during exocytosis, less is known about the spatial regulation of exocytosis at the plasma membrane (PM). This study outlines a novel method, Dual Substrate Display, used to formally test the hypothesis that E-cadherin-mediated adhesion directs basolateral vesicle exocytosis to specific sites at the PM. We show that vesicles containing the basolateral marker protein VSV-G preferentially target to sites of adhesion to E-cadherin rather than collagen VI or a control peptide. These results support the hypothesis that E-cadherin adhesion initiates signaling at the PM resulting in targeted sites for exocytosis. PMID:17803993

  9. Structure of the Legionella Virulence Factor, SidC Reveals a Unique PI(4)P-Specific Binding Domain Essential for Its Targeting to the Bacterial Phagosome

    PubMed Central

    Luo, Xi; Wasilko, David J.; Liu, Yao; Sun, Jiayi; Wu, Xiaochun; Luo, Zhao-Qing; Mao, Yuxin

    2015-01-01

    The opportunistic intracellular pathogen Legionella pneumophila is the causative agent of Legionnaires’ disease. L. pneumophila delivers nearly 300 effector proteins into host cells for the establishment of a replication-permissive compartment known as the Legionella-containing vacuole (LCV). SidC and its paralog SdcA are two effectors that have been shown to anchor on the LCV via binding to phosphatidylinositol-4-phosphate [PI(4)P] to facilitate the recruitment of ER proteins to the LCV. We recently reported that the N-terminal SNL (SidC N-terminal E3 Ligase) domain of SidC is a ubiquitin E3 ligase, and its activity is required for the recruitment of ER proteins to the LCV. Here we report the crystal structure of SidC (1-871). The structure reveals that SidC contains four domains that are packed into an arch-like shape. The P4C domain (PI(4)P binding of SidC) comprises a four α-helix bundle and covers the ubiquitin ligase catalytic site of the SNL domain. Strikingly, a pocket with characteristic positive electrostatic potentials is formed at one end of this bundle. Liposome binding assays of the P4C domain further identified the determinants of phosphoinositide recognition and membrane interaction. Interestingly, we also found that binding with PI(4)P stimulates the E3 ligase activity, presumably due to a conformational switch induced by PI(4)P from a closed form to an open active form. Mutations of key residues involved in PI(4)P binding significantly reduced the association of SidC with the LCV and abolished its activity in the recruitment of ER proteins and ubiquitin signals, highlighting that PI(4)P-mediated targeting of SidC is critical to its function in the remodeling of the bacterial phagosome membrane. Finally, a GFP-fusion with the P4C domain was demonstrated to be specifically localized to PI(4)P-enriched compartments in mammalian cells. This domain shows the potential to be developed into a sensitive and accurate PI(4)P probe in living cells. PMID

  10. The matrix-binding domain of microfibril-associated glycoprotein-1 targets active connective tissue growth factor to a fibroblast-produced extracellular matrix.

    PubMed

    Weinbaum, Justin S; Tranquillo, Robert T; Mecham, Robert P

    2010-11-10

    It is advantageous to use biomaterials in tissue engineering that stimulate extracellular matrix (ECM) production by the cellular component. Connective tissue growth factor (CTGF) stimulates type I collagen (COL1A1) transcription, but is functionally limited as a free molecule. Using a matrix-binding domain (MBD) from microfibril-associated glycoprotein-1, the fusion protein MBD-CTGF was targeted to the ECM and tested for COL1A1 transcriptional activation. MBD-CTGF produced by the ECM-synthesizing fibroblasts, or provided exogenously, localized to the elastic fiber ECM. MBD-CTGF, but not CTGF alone, led to a two-fold enhancement of COL1A1 expression. This study introduces a targeting technology that can be used to elevate collagen transcription in engineered tissues and thereby improve tissue mechanics.

  11. Role of P-Selectin Cytoplasmic Domain in Granular Targeting In Vivo and in Early Inflammatory Responses

    PubMed Central

    Hartwell, Daqing W.; Mayadas, Tanya N.; Berger, Gaëtan; Frenette, Paul S.; Rayburn, Helen; Hynes, Richard O.; Wagner, Denisa D.

    1998-01-01

    P-selectin is an adhesion receptor for leukocytes expressed on activated platelets and endothelial cells. The cytoplasmic domain of P-selectin was shown in vitro to contain signals required for both the sorting of this protein into storage granules and its internalization from the plasma membrane. To evaluate in vivo the role of the regulated secretion of P-selectin, we have generated a mouse that expresses P-selectin lacking the cytoplasmic domain (ΔCT mice). The deletion did not affect the sorting of P-selectin into α-granules of platelets but severely compromised the storage of P-selectin in endothelial cells. Unstored P-selectin was proteolytically shed from the plasma membrane, resulting in increased levels of soluble P-selectin in the plasma. The ΔCT–P-selectin appeared capable of mediating cell adhesion as it supported leukocyte rolling in the mutant mice. However, a secretagogue failed to upregulate leukocyte rolling in the ΔCT mice, indicating an absence of a releasable storage pool of P-selectin in the endothelium. Furthermore, the neutrophil influx into the inflamed peritoneum was only 30% of the wild-type level 2 h after stimulation. Our results suggest that different sorting mechanisms for P-selectin are used in platelets and endothelial cells and that the storage pool of P-selectin in endothelial cells is functionally important during early stages of inflammation. PMID:9817767

  12. Blue light-induced LOV domain dimerization enhances the affinity of Aureochrome 1a for its target DNA sequence

    PubMed Central

    Heintz, Udo; Schlichting, Ilme

    2016-01-01

    The design of synthetic optogenetic tools that allow precise spatiotemporal control of biological processes previously inaccessible to optogenetic control has developed rapidly over the last years. Rational design of such tools requires detailed knowledge of allosteric light signaling in natural photoreceptors. To understand allosteric communication between sensor and effector domains, characterization of all relevant signaling states is required. Here, we describe the mechanism of light-dependent DNA binding of the light-oxygen-voltage (LOV) transcription factor Aureochrome 1a from Phaeodactylum tricornutum (PtAu1a) and present crystal structures of a dark state LOV monomer and a fully light-adapted LOV dimer. In combination with hydrogen/deuterium-exchange, solution scattering data and DNA-binding experiments, our studies reveal a light-sensitive interaction between the LOV and basic region leucine zipper DNA-binding domain that together with LOV dimerization results in modulation of the DNA affinity of PtAu1a. We discuss the implications of these results for the design of synthetic LOV-based photosensors with application in optogenetics. DOI: http://dx.doi.org/10.7554/eLife.11860.001 PMID:26754770

  13. Testing ERBB2 p.L755S kinase domain mutation as a druggable target in a patient with advanced colorectal cancer.

    PubMed

    Aung, Kyaw L; Stockley, Tracy L; Serra, Stefano; Kamel-Reid, Suzanne; Bedard, Philippe L; Siu, Lillian L

    2016-09-01

    Recent advances in molecular profiling technologies allow genetic driver events in individual tumors to be identified. The hypothesis behind this ongoing molecular profiling effort is that improvement in patients' clinical outcomes will be achieved by inhibiting these discovered genetic driver events with matched targeted drugs. This hypothesis is currently being tested in oncology clinics with variable early results. Herein, we present our experience with a case of advanced colorectal cancer (CRC) with an ERBB2 p.L755S kinase domain mutation, a BRAF p.N581S mutation, and an APC p.Q1429fs mutation, together with a brief review of the literature describing the biological and clinical significance of ERRB2 kinase domain mutations in CRC. The patient was treated with trastuzumab combined with infusional 5-fluorouracil and leucovorin based on the presence of ERBB2 p.L755S kinase mutation in the tumor and based on the available evidence at the time when standard treatment options had been exhausted. However, there was no therapeutic response illustrating the challenges we face in managing patients with potentially targetable mutations where results from functional in vitro and in vivo studies lag behind those of genomic sequencing studies. Also lagging behind are clinical utility data from oncology clinics, hampering rapid therapeutic advances. Our case also highlights the logistical barriers associated with getting the most optimal therapeutic agents to the right patient in this era of personalized therapeutics based on cancer genomics. PMID:27626067

  14. Testing ERBB2 p.L755S kinase domain mutation as a druggable target in a patient with advanced colorectal cancer

    PubMed Central

    Aung, Kyaw L.; Stockley, Tracy L.; Serra, Stefano; Kamel-Reid, Suzanne; Bedard, Philippe L.; Siu, Lillian L.

    2016-01-01

    Recent advances in molecular profiling technologies allow genetic driver events in individual tumors to be identified. The hypothesis behind this ongoing molecular profiling effort is that improvement in patients’ clinical outcomes will be achieved by inhibiting these discovered genetic driver events with matched targeted drugs. This hypothesis is currently being tested in oncology clinics with variable early results. Herein, we present our experience with a case of advanced colorectal cancer (CRC) with an ERBB2 p.L755S kinase domain mutation, a BRAF p.N581S mutation, and an APC p.Q1429fs mutation, together with a brief review of the literature describing the biological and clinical significance of ERRB2 kinase domain mutations in CRC. The patient was treated with trastuzumab combined with infusional 5-fluorouracil and leucovorin based on the presence of ERBB2 p.L755S kinase mutation in the tumor and based on the available evidence at the time when standard treatment options had been exhausted. However, there was no therapeutic response illustrating the challenges we face in managing patients with potentially targetable mutations where results from functional in vitro and in vivo studies lag behind those of genomic sequencing studies. Also lagging behind are clinical utility data from oncology clinics, hampering rapid therapeutic advances. Our case also highlights the logistical barriers associated with getting the most optimal therapeutic agents to the right patient in this era of personalized therapeutics based on cancer genomics.

  15. Endocytotic routes of cobra cardiotoxins depend on spatial distribution of positively charged and hydrophobic domains to target distinct types of sulfated glycoconjugates on cell surface.

    PubMed

    Lee, Shao-Chen; Lin, Chien-Chu; Wang, Chia-Hui; Wu, Po-Long; Huang, Hsuan-Wei; Chang, Chung-I; Wu, Wen-guey

    2014-07-18

    Cobra cardiotoxins (CTX) are a family of three-fingered basic polypeptides known to interact with diverse targets such as heparan sulfates, sulfatides, and integrins on cell surfaces. After CTX bind to the membrane surface, they are internalized to intracellular space and exert their cytotoxicity via an unknown mechanism. By the combined in vitro kinetic binding, three-dimensional x-ray structure determination, and cell biology studies on the naturally abundant CTX homologues from the Taiwanese cobra, we showed that slight variations on the spatial distribution of positively charged or hydrophobic domains among CTX A2, A3, and A4 could lead to significant changes in their endocytotic pathways and action mechanisms via distinct sulfated glycoconjugate-mediated processes. The intracellular locations of these structurally similar CTX after internalization are shown to vary between the mitochondria and lysosomes via either dynamin2-dependent or -independent processes with distinct membrane cholesterol sensitivity. Evidence is presented to suggest that the shifting between the sulfated glycoconjugates as distinct targets of CTX A2, A3, and A4 might play roles in the co-evolutionary arms race between venomous snake toxins to cope with different membrane repair mechanisms at the cellular levels. The sensitivity of endocytotic routes to the spatial distribution of positively charged or hydrophobic domains may provide an explanation for the diverse endocytosis pathways of other cell-penetrating basic polypeptides.

  16. Testing ERBB2 p.L755S kinase domain mutation as a druggable target in a patient with advanced colorectal cancer

    PubMed Central

    Aung, Kyaw L.; Stockley, Tracy L.; Serra, Stefano; Kamel-Reid, Suzanne; Bedard, Philippe L.; Siu, Lillian L.

    2016-01-01

    Recent advances in molecular profiling technologies allow genetic driver events in individual tumors to be identified. The hypothesis behind this ongoing molecular profiling effort is that improvement in patients’ clinical outcomes will be achieved by inhibiting these discovered genetic driver events with matched targeted drugs. This hypothesis is currently being tested in oncology clinics with variable early results. Herein, we present our experience with a case of advanced colorectal cancer (CRC) with an ERBB2 p.L755S kinase domain mutation, a BRAF p.N581S mutation, and an APC p.Q1429fs mutation, together with a brief review of the literature describing the biological and clinical significance of ERRB2 kinase domain mutations in CRC. The patient was treated with trastuzumab combined with infusional 5-fluorouracil and leucovorin based on the presence of ERBB2 p.L755S kinase mutation in the tumor and based on the available evidence at the time when standard treatment options had been exhausted. However, there was no therapeutic response illustrating the challenges we face in managing patients with potentially targetable mutations where results from functional in vitro and in vivo studies lag behind those of genomic sequencing studies. Also lagging behind are clinical utility data from oncology clinics, hampering rapid therapeutic advances. Our case also highlights the logistical barriers associated with getting the most optimal therapeutic agents to the right patient in this era of personalized therapeutics based on cancer genomics. PMID:27626067

  17. CBF mediates adenovirus Ela trans-activation by interaction at the C-terminal promoter targeting domain of conserved region 3.

    PubMed

    Agoff, S N; Wu, B

    1994-12-01

    Genetic and biochemical evidence suggest that conserved region 3 (CR3) of the adenovirus Ela polypeptide can provide two distinct and separable functions: an N-terminal transcriptional activation region and a C-terminal promoter targeting region. It is thought that the promoter targeting region of Ela CR3 interacts with promoter-specific transcription factors, thereby bringing the activation region of Ela CR3 in proximity of the promoter. Here we report that CBF, a CCAAT-box-binding factor that regulates hsp70 gene expression and mediates Ela trans-activation in vivo, interacts with the promoter targeting region of Ela CR3 in vitro. Point mutations in Ela CR3 that are defective in stimulating transcription from the hsp70 promoter are also defective in stimulating transcription directed by a synthetic activator, GAL-CBF, composed of the DNA-binding domain of yeast GAL4 fused to CBF. These mutations fall into two classes with respect to their abilities to interact with CBF in vitro. Mutations in the transcriptional activation region of Ela CR3 do not affect binding to CBF, but mutation of the promoter targeting region of Ela CR3 prevents association with CBF in vitro.

  18. Resveratrol induces apoptosis by directly targeting Ras-GTPase activating protein SH3 domain binding protein 1 (G3BP1)

    PubMed Central

    Oi, Naomi; Yuan, Jian; Malakhova, Margarita; Luo, Kuntian; Li, Yunhui; Ryu, Joohyun; Zhang, Lei; Bode, Ann M.; Xu, Zengguang; Li, Yan; Lou, Zhenkun; Dong, Zigang

    2014-01-01

    Resveratrol possesses a strong anticancer activity exhibited as the induction of apoptosis through p53 activation. However, the molecular mechanism and direct target(s) of resveratrol-induced p53 activation remain elusive. Here, the Ras-GTPase activating protein SH3 domain binding protein 1 (G3BP1) was identified as a potential target of resveratrol, and in vitro binding assay results using resveratrol (RSVL)-conjugated Sepharose 4B beads confirmed their direct binding. Depletion of G3BP1 significantly diminishes resveratrol-induced p53 expression and apoptosis. We also found that G3BP1 negatively regulates p53 expression by interacting with ubiquitin-specific protease 10 (USP10), a deubiquitinating enzyme of p53. Disruption of the interaction of p53 with USP10 by G3BP1 interference leads to suppression of p53 deubiquitination. Resveratrol, on the other hand, directly binds to G3BP1 and prevents the G3BP1/USP10 interaction, resulting in enhanced USP10-mediated deubiquitination of p53 and consequently increased p53 expression. These findings disclose a novel mechanism of resveratrol-induced p53 activation and resveratrol-induced apoptosis by direct targeting of G3BP1. PMID:24998844

  19. Preferential entry of botulinum neurotoxin A Hc domain through intestinal crypt cells and targeting to cholinergic neurons of the mouse intestine.

    PubMed

    Couesnon, Aurélie; Molgó, Jordi; Connan, Chloé; Popoff, Michel R

    2012-01-01

    Botulism, characterized by flaccid paralysis, commonly results from botulinum neurotoxin (BoNT) absorption across the epithelial barrier from the digestive tract and then dissemination through the blood circulation to target autonomic and motor nerve terminals. The trafficking pathway of BoNT/A passage through the intestinal barrier is not yet fully understood. We report that intralumenal administration of purified BoNT/A into mouse ileum segment impaired spontaneous muscle contractions and abolished the smooth muscle contractions evoked by electric field stimulation. Entry of BoNT/A into the mouse upper small intestine was monitored with fluorescent HcA (half C-terminal domain of heavy chain) which interacts with cell surface receptor(s). We show that HcA preferentially recognizes a subset of neuroendocrine intestinal crypt cells, which probably represent the entry site of the toxin through the intestinal barrier, then targets specific neurons in the submucosa and later (90-120 min) in the musculosa. HcA mainly binds to certain cholinergic neurons of both submucosal and myenteric plexuses, but also recognizes, although to a lower extent, other neuronal cells including glutamatergic and serotoninergic neurons in the submucosa. Intestinal cholinergic neuron targeting by HcA could account for the inhibition of intestinal peristaltism and secretion observed in botulism, but the consequences of the targeting to non-cholinergic neurons remains to be determined. PMID:22438808

  20. Induction of necrosis via mitochondrial targeting of Melon necrotic spot virus replication protein p29 by its second transmembrane domain

    SciTech Connect

    Mochizuki, Tomofumi; Hirai, Katsuyuki; Kanda, Ayami; Ohnishi, Jun; Ohki, Takehiro; Tsuda, Shinya

    2009-08-01

    The virulence factor of Melon necrotic spot virus (MNSV), a virus that induces systemic necrotic spot disease on melon plants, was investigated. When the replication protein p29 was expressed in N. benthamiana using a Cucumber mosaic virus vector, necrotic spots appeared on the leaf tissue. Transmission electron microscopy revealed abnormal mitochondrial aggregation in these tissues. Fractionation of tissues expressing p29 and confocal imaging using GFP-tagged p29 revealed that p29 associated with the mitochondrial membrane as an integral membrane protein. Expression analysis of p29 deletion fragments and prediction of hydrophobic transmembrane domains (TMDs) in p29 showed that deletion of the second putative TMD from p29 led to deficiencies in both the mitochondrial localization and virulence of p29. Taken together, these results indicated that MNSV p29 interacts with the mitochondrial membrane and that p29 may be a virulence factor causing the observed necrosis.

  1. Arterivirus and Nairovirus Ovarian Tumor Domain-Containing Deubiquitinases Target Activated RIG-I To Control Innate Immune Signaling

    PubMed Central

    van Kasteren, Puck B.; Beugeling, Corrine; Ninaber, Dennis K.; Frias-Staheli, Natalia; van Boheemen, Sander; García-Sastre, Adolfo; Snijder, Eric J.

    2012-01-01

    The innate immune response constitutes the first line of defense against viral infection and is extensively regulated through ubiquitination. The removal of ubiquitin from innate immunity signaling factors by deubiquitinating enzymes (DUBs) therefore provides a potential opportunity for viruses to evade this host defense system. It was previously found that specific proteases encoded by the unrelated arteri- and nairoviruses resemble the ovarian tumor domain-containing (OTU) family of DUBs. In arteriviruses, this domain has been characterized before as a papain-like protease (PLP2) that is also involved in replicase polyprotein processing. In nairoviruses, the DUB resides in the polymerase protein but is not essential for RNA replication. Using both in vitro and cell-based assays, we now show that PLP2 DUB activity is conserved in all members of the arterivirus family and that both arteri- and nairovirus DUBs inhibit RIG-I-mediated innate immune signaling when overexpressed. The potential relevance of RIG-I-like receptor (RLR) signaling for the innate immune response against arterivirus infection is supported by our finding that in mouse embryonic fibroblasts, the production of beta interferon primarily depends on the recognition of arterivirus RNA by the pattern-recognition receptor MDA5. Interestingly, we also found that both arteri- and nairovirus DUBs inhibit RIG-I ubiquitination upon overexpression, suggesting that both MDA5 and RIG-I have a role in countering infection by arteriviruses. Taken together, our results support the hypothesis that arteri- and nairoviruses employ their deubiquitinating potential to inactivate cellular proteins involved in RLR-mediated innate immune signaling, as exemplified by the deubiquitination of RIG-I. PMID:22072774

  2. A mouse monoclonal antibody against dengue virus type 1 Mochizuki strain targeting envelope protein domain II and displaying strongly neutralizing but not enhancing activity.

    PubMed

    Yamanaka, Atsushi; Kotaki, Tomohiro; Konishi, Eiji

    2013-12-01

    Dengue fever and its more severe form, dengue hemorrhagic fever, are major global concerns. Infection-enhancing antibodies are major factors hypothetically contributing to increased disease severity. In this study, we generated 26 monoclonal antibodies (MAbs) against the dengue virus type 1 Mochizuki strain. We selected this strain because a relatively large number of unique and rare amino acids were found on its envelope protein. Although most MAbs showing neutralizing activities exhibited enhancing activities at subneutralizing doses, one MAb (D1-IV-7F4 [7F4]) displayed neutralizing activities without showing enhancing activities at lower concentrations. In contrast, another MAb (D1-V-3H12 [3H12]) exhibited only enhancing activities, which were suppressed by pretreatment of cells with anti-FcγRIIa. Although antibody engineering revealed that antibody subclass significantly affected 7F4 (IgG3) and 3H12 (IgG1) activities, neutralizing/enhancing activities were also dependent on the epitope targeted by the antibody. 7F4 recognized an epitope on the envelope protein containing E118 (domain II) and had a neutralizing activity 10- to 1,000-fold stronger than the neutralizing activity of previously reported human or humanized neutralizing MAbs targeting domain I and/or domain II. An epitope-blocking enzyme-linked immunosorbent assay (ELISA) indicated that a dengue virus-immune population possessed antibodies sharing an epitope with 7F4. Our results demonstrating induction of these antibody species (7F4 and 3H12) in Mochizuki-immunized mice may have implications for dengue vaccine strategies designed to minimize induction of enhancing antibodies in vaccinated humans. PMID:24049185

  3. Molecular docking based screening of novel designed chalcone series of compounds for their anti-cancer activity targeting EGFR kinase domain

    PubMed Central

    Rao, Chennu Maruthi Malya Prasada; Yejella, Rajendra Prasad; Rehman, Rehman Shaik Abdul; Basha, Syed Hussain

    2015-01-01

    Epidermal growth factor receptors (EGFR) are critical for the growth of many tumors and expressed at high levels in about one third of epithelial cancers. Hence, blockade of the binding sites for EGFR has been hypothesized as an effective anti-cancer therapy. Chalcone derivative compounds have been shown to be highly effective anti-cancer agents, however there are still so many novel derivatives possible, one of which might get us the best targeted EGFR inhibitor. In this effort directed towards the discovery of novel, potent anti-tumor agents for the treatment of cancer, in the present study a library of novel chalcone series of compounds has been designed and evaluated for their anti-cancer activity targeting EGFR kinase domain using various computational approaches. Among the twenty five novel designed chalcone series of compounds, all of them have found to be successfully docking inside the active binding domain of EGFR receptor target with a binding energy in a range of -6.10 to -9.25 Kcal/mol with predicted IC50 value range of 33.50 micor molar to 164.66 nano molar respectively. On the other hand, calculated 2DQSAR molecular descriptor properties of the compounds showed promising ADME parameters and found to be well in compliance with Lipinski׳s rule of five. Among all the twenty five compounds tested, compound 21 ((2E)-3-(anthracen-9-yl)-1-phenylprop-2-2n-1- one) was found to be the best lead like molecule with a binding energy of -9.25 kcal/mol with predicted IC50 value of 164.66 nano molar. Conclusively, novel designed compound 21 of the present study have shown promising anti-cancer potential worth considering for further evaluations. PMID:26339147

  4. Porcine bocavirus NP1 negatively regulates interferon signaling pathway by targeting the DNA-binding domain of IRF9.

    PubMed

    Zhang, Ruoxi; Fang, Liurong; Wang, Dang; Cai, Kaimei; Zhang, Huan; Xie, Lilan; Li, Yi; Chen, Huanchun; Xiao, Shaobo

    2015-11-01

    To subvert host antiviral immune responses, many viruses have evolved countermeasures to inhibit IFN signaling pathway. Porcine bocavirus (PBoV), a newly identified porcine parvovirus, has received attention because it shows clinically high co-infection prevalence with other pathogens in post-weaning multisystemic wasting syndrome (PWMS) and diarrheic piglets. In this study, we screened the structural and non-structural proteins encoded by PBoV and found that the non-structural protein NP1 significantly suppressed IFN-stimulated response element (ISRE) activity and subsequent IFN-stimulated gene (ISG) expression. However, NP1 affected neither the activation and translocation of STAT1/STAT2, nor the formation of the heterotrimeric transcription factor complex ISGF3 (STAT1/STAT2/IRF9). Detailed analysis demonstrated that PBoV NP1 blocked the ISGF3 DNA-binding activity by combining with the DNA-binding domain (DBD) of IRF9. In summary, these results indicate that PBoV NP1 interferes with type I IFN signaling pathway by blocking DNA binding of ISGF3 to attenuate innate immune responses.

  5. The mammalian heterochromatin protein 1 binds diverse nuclear proteins through a common motif that targets the chromoshadow domain

    SciTech Connect

    Lechner, Mark S. . E-mail: msl27@drexel.edu; Schultz, David C.; Negorev, Dmitri; Maul, Gerd G.; Rauscher, Frank J.

    2005-06-17

    The HP1 proteins regulate epigenetic gene silencing by promoting and maintaining chromatin condensation. The HP1 chromodomain binds to methylated histone H3. More enigmatic is the chromoshadow domain (CSD), which mediates dimerization, transcription repression, and interaction with multiple nuclear proteins. Here we show that KAP-1, CAF-1 p150, and NIPBL carry a canonical amino acid motif, PxVxL, which binds directly to the CSD with high affinity. We also define a new class of variant PxVxL CSD-binding motifs in Sp100A, LBR, and ATRX. Both canonical and variant motifs recognize a similar surface of the CSD dimer as demonstrated by a panel of CSD mutants. These in vitro binding results were confirmed by the analysis of polypeptides found associated with nuclear HP1 complexes and we provide the first evidence of the NIPBL/delangin protein in human cells, a protein recently implicated in the developmental disorder, Cornelia de Lange syndrome. NIPBL is related to Nipped-B, a factor participating in gene activation by remote enhancers in Drosophila melanogaster. Thus, this spectrum of direct binding partners suggests an expanded role for HP1 as factor participating in promoter-enhancer communication, chromatin remodeling/assembly, and sub-nuclear compartmentalization.

  6. Targeting subcellular localization through the polo-box domain: non-ATP competitive inhibitors recapitulate a PLK1 phenotype.

    PubMed

    McInnes, Campbell; Estes, Kara; Baxter, Merissa; Yang, Zhengguan; Farag, Doaa Boshra; Johnston, Paul; Lazo, John S; Wang, Jianjun; Wyatt, Michael D

    2012-08-01

    The polo-box domain (PBD) has critical roles in the mitotic functions of polo-like kinase 1 (PLK1). The replacement with partial ligand alternative through computational enrichment (REPLACE) strategy to develop inhibitors of protein-protein interactions has identified alternatives for the N-terminal tripeptide of a Cdc25C substrate. In addition, a peptide structure-activity relationship described key determinants and novel information useful for drug design. Fragment-ligated inhibitory peptides (FLIP) were generated with comparable affinity to peptide PBD inhibitors and possessed antiproliferative phenotypes in cells consistent with the observed decrease in PLK1 centrosomal localization. These FLIPs showed evidence of enhanced PLK1 inhibition in cells relative to peptides and induced monopolar and multipolar spindles, which stands in contrast to previously reported small-molecule PBD inhibitors that display phenotypes only partially representative of PLK1 knockdown. Progress obtained applying REPLACE validates this approach for identifying fragment alternatives for determinants of the Cdc25C-binding motif and extends its applicability of the strategy for discovering protein-protein interaction inhibitors. In addition, the described PBD inhibitors retain high specificity for PLK1 over PLK3 and therefore show promise as isotype selective, non-ATP competitive kinase inhibitors that provide new impetus for the development of PLK1-selective antitumor therapeutics.

  7. Characterization and target genes of nine human PRD-like homeobox domain genes expressed exclusively in early embryos

    PubMed Central

    Madissoon, Elo; Jouhilahti, Eeva-Mari; Vesterlund, Liselotte; Töhönen, Virpi; Krjutškov, Kaarel; Petropoulous, Sophie; Einarsdottir, Elisabet; Linnarsson, Sten; Lanner, Fredrik; Månsson, Robert; Hovatta, Outi; Bürglin, Thomas R.; Katayama, Shintaro; Kere, Juha

    2016-01-01

    PAIRED (PRD)-like homeobox genes belong to a class of predicted transcription factor genes. Several of these PRD-like homeobox genes have been predicted in silico from genomic sequence but until recently had no evidence of transcript expression. We found recently that nine PRD-like homeobox genes, ARGFX, CPHX1, CPHX2, DPRX, DUXA, DUXB, NOBOX, TPRX1 and TPRX2, were expressed in human preimplantation embryos. In the current study we characterized these PRD-like homeobox genes in depth and studied their functions as transcription factors. We cloned multiple transcript variants from human embryos and showed that the expression of these genes is specific to embryos and pluripotent stem cells. Overexpression of the genes in human embryonic stem cells confirmed their roles as transcription factors as either activators (CPHX1, CPHX2, ARGFX) or repressors (DPRX, DUXA, TPRX2) with distinct targets that could be explained by the amino acid sequence in homeodomain. Some PRD-like homeodomain transcription factors had high concordance of target genes and showed enrichment for both developmentally important gene sets and a 36 bp DNA recognition motif implicated in Embryo Genome Activation (EGA). Our data implicate a role for these previously uncharacterized PRD-like homeodomain proteins in the regulation of human embryo genome activation and preimplantation embryo development. PMID:27412763

  8. Characterization and target genes of nine human PRD-like homeobox domain genes expressed exclusively in early embryos

    PubMed Central

    Madissoon, Elo; Jouhilahti, Eeva-Mari; Vesterlund, Liselotte; Töhönen, Virpi; Krjutškov, Kaarel; Petropoulous, Sophie; Einarsdottir, Elisabet; Linnarsson, Sten; Lanner, Fredrik; Månsson, Robert; Hovatta, Outi; Bürglin, Thomas R.; Katayama, Shintaro; Kere, Juha

    2016-01-01

    PAIRED (PRD)-like homeobox genes belong to a class of predicted transcription factor genes. Several of these PRD-like homeobox genes have been predicted in silico from genomic sequence but until recently had no evidence of transcript expression. We found recently that nine PRD-like homeobox genes, ARGFX, CPHX1, CPHX2, DPRX, DUXA, DUXB, NOBOX, TPRX1 and TPRX2, were expressed in human preimplantation embryos. In the current study we characterized these PRD-like homeobox genes in depth and studied their functions as transcription factors. We cloned multiple transcript variants from human embryos and showed that the expression of these genes is specific to embryos and pluripotent stem cells. Overexpression of the genes in human embryonic stem cells confirmed their roles as transcription factors as either activators (CPHX1, CPHX2, ARGFX) or repressors (DPRX, DUXA, TPRX2) with distinct targets that could be explained by the amino acid sequence in homeodomain. Some PRD-like homeodomain transcription factors had high concordance of target genes and showed enrichment for both developmentally important gene sets and a 36 bp DNA recognition motif implicated in Embryo Genome Activation (EGA). Our data implicate a role for these previously uncharacterized PRD-like homeodomain proteins in the regulation of human embryo genome activation and preimplantation embryo development. PMID:27412763

  9. Characterization of a Broadly Neutralizing Monoclonal Antibody That Targets the Fusion Domain of Group 2 Influenza A Virus Hemagglutinin

    PubMed Central

    Tan, Gene S.; Lee, Peter S.; Hoffman, Ryan M. B.; Mazel-Sanchez, Beryl; Krammer, Florian; Leon, Paul E.; Ward, Andrew B.; Wilson, Ian A.

    2014-01-01

    ABSTRACT Due to continuous changes to its antigenic regions, influenza viruses can evade immune detection and cause a significant amount of morbidity and mortality around the world. Influenza vaccinations can protect against disease but must be annually reformulated to match the current circulating strains. In the development of a broad-spectrum influenza vaccine, the elucidation of conserved epitopes is paramount. To this end, we designed an immunization strategy in mice to boost the humoral response against conserved regions of the hemagglutinin (HA) glycoprotein. Of note, generation and identification of broadly neutralizing antibodies that target group 2 HAs are rare and thus far have yielded only a few monoclonal antibodies (MAbs). Here, we demonstrate that mouse MAb 9H10 has broad and potent in vitro neutralizing activity against H3 and H10 group 2 influenza A subtypes. In the mouse model, MAb 9H10 protects mice against two divergent mouse-adapted H3N2 strains, in both pre- and postexposure administration regimens. In vitro and cell-free assays suggest that MAb 9H10 inhibits viral replication by blocking HA-dependent fusion of the viral and endosomal membranes early in the replication cycle and by disrupting viral particle egress in the late stage of infection. Interestingly, electron microscopy reconstructions of MAb 9H10 bound to the HA reveal that it binds a similar binding footprint to MAbs CR8020 and CR8043. IMPORTANCE The influenza hemagglutinin is the major antigenic target of the humoral immune response. However, due to continuous antigenic changes that occur on the surface of this glycoprotein, influenza viruses can escape the immune system and cause significant disease to the host. Toward the development of broad-spectrum therapeutics and vaccines against influenza virus, elucidation of conserved regions of influenza viruses is crucial. Thus, defining these types of epitopes through the generation and characterization of broadly neutralizing

  10. A humanized neutralizing antibody against MERS-CoV targeting the receptor-binding domain of the spike protein

    PubMed Central

    Li, Yan; Wan, Yuhua; Liu, Peipei; Zhao, Jincun; Lu, Guangwen; Qi, Jianxun; Wang, Qihui; Lu, Xuancheng; Wu, Ying; Liu, Wenjun; Zhang, Buchang; Yuen, Kwok-Yung; Perlman, Stanley; Gao, George F; Yan, Jinghua

    2015-01-01

    The newly-emerging Middle East respiratory syndrome coronavirus (MERS-CoV) can cause severe and fatal acute respiratory disease in humans. Despite global efforts, the potential for an associated pandemic in the future cannot be excluded. The development of effective counter-measures is urgent. MERS-CoV-specific anti-viral drugs or vaccines are not yet available. Using the spike receptor-binding domain of MERS-CoV (MERS-RBD) to immunize mice, we identified two neutralizing monoclonal antibodies (mAbs) 4C2 and 2E6. Both mAbs potently bind to MERS-RBD and block virus entry in vitro with high efficacy. We further investigated their mechanisms of neutralization by crystallizing the complex between the Fab fragments and the RBD, and solved the structure of the 4C2 Fab/MERS-RBD complex. The structure showed that 4C2 recognizes an epitope that partially overlaps the receptor-binding footprint in MERS-RBD, thereby interfering with the virus/receptor interactions by both steric hindrance and interface-residue competition. 2E6 also blocks receptor binding, and competes with 4C2 for binding to MERS-RBD. Based on the structure, we further humanized 4C2 by preserving only the paratope residues and substituting the remaining amino acids with the counterparts from human immunoglobulins. The humanized 4C2 (4C2h) antibody sustained similar neutralizing activity and biochemical characteristics to the parental mouse antibody. Finally, we showed that 4C2h can significantly abate the virus titers in lungs of Ad5-hCD26-transduced mice infected with MERS-CoV, therefore representing a promising agent for prophylaxis and therapy in clinical settings. PMID:26391698

  11. A fluorescent reporter protein containing AtRMR1 domains is targeted to the storage and central vacuoles in Arabidopsis thaliana and tobacco leaf cells.

    PubMed

    Scabone, Camila María; Frigerio, Lorenzo; Petruccelli, Silvana

    2011-10-01

    To develop a new strategy to target recombinant proteins to the vacuolar storage system in transgenic plants, the ability of the transmembrane and cytosolic domains of Arabidopsis receptor homology-transmembrane-RING H2-1 (AtRMR1) was evaluated. A secreted version of RFP (secRFP) and a fusion of it to the transmembrane and cytosolic domains of AtRMR1 (RFP-TMCT) were produced and studied both in transient and stable expression assays. Transient expression in leaves of Nicotiana tabacum showed that secRFP is secreted to the apoplast while its fusion to TMCT of AtRMR1 is sufficient to prevent secretion of the reporter. In tobacco leaves, RFP-TMCT reporter showed an endoplasmic reticulum pattern in early expression stages while in late expression stages, it was found in the vacuolar lumen. For the first time, the role of TM and CT domains of AtRMR1 in stable expression in Arabidopsis thaliana is presented; the fusion of TMCT to secRFP is sufficient to sort RFP to the lumen of the central vacuoles in leaves and roots and to the lumen of PSV in cotyledons of mature embryos. In addition, biochemical studies performed in extract from transgenic plants showed that RFP-TMCT is an integral membrane protein. Full-length RFP-TMCT was also found in the vacuolar lumen, suggesting internalization into destination vacuole. Not colocalization of RFP-TMCT with tonoplast and plasma membrane markers were observed. This membrane vacuolar determinant sorting signal could be used for future application in molecular pharming as an alternative means to sort proteins of interest to vacuoles.

  12. A fluorescent reporter protein containing AtRMR1 domains is targeted to the storage and central vacuoles in Arabidopsis thaliana and tobacco leaf cells.

    PubMed

    Scabone, Camila María; Frigerio, Lorenzo; Petruccelli, Silvana

    2011-10-01

    To develop a new strategy to target recombinant proteins to the vacuolar storage system in transgenic plants, the ability of the transmembrane and cytosolic domains of Arabidopsis receptor homology-transmembrane-RING H2-1 (AtRMR1) was evaluated. A secreted version of RFP (secRFP) and a fusion of it to the transmembrane and cytosolic domains of AtRMR1 (RFP-TMCT) were produced and studied both in transient and stable expression assays. Transient expression in leaves of Nicotiana tabacum showed that secRFP is secreted to the apoplast while its fusion to TMCT of AtRMR1 is sufficient to prevent secretion of the reporter. In tobacco leaves, RFP-TMCT reporter showed an endoplasmic reticulum pattern in early expression stages while in late expression stages, it was found in the vacuolar lumen. For the first time, the role of TM and CT domains of AtRMR1 in stable expression in Arabidopsis thaliana is presented; the fusion of TMCT to secRFP is sufficient to sort RFP to the lumen of the central vacuoles in leaves and roots and to the lumen of PSV in cotyledons of mature embryos. In addition, biochemical studies performed in extract from transgenic plants showed that RFP-TMCT is an integral membrane protein. Full-length RFP-TMCT was also found in the vacuolar lumen, suggesting internalization into destination vacuole. Not colocalization of RFP-TMCT with tonoplast and plasma membrane markers were observed. This membrane vacuolar determinant sorting signal could be used for future application in molecular pharming as an alternative means to sort proteins of interest to vacuoles. PMID:21611741

  13. A Targeted Mutation within the Feline Leukemia Virus (FeLV) Envelope Protein Immunosuppressive Domain To Improve a Canarypox Virus-Vectored FeLV Vaccine

    PubMed Central

    Schlecht-Louf, Géraldine; Mangeney, Marianne; El-Garch, Hanane; Lacombe, Valérie; Poulet, Hervé

    2014-01-01

    We previously delineated a highly conserved immunosuppressive (IS) domain within murine and primate retroviral envelope proteins that is critical for virus propagation in vivo. The envelope-mediated immunosuppression was assessed by the ability of the proteins, when expressed by allogeneic tumor cells normally rejected by engrafted mice, to allow these cells to escape, at least transiently, immune rejection. Using this approach, we identified key residues whose mutation (i) specifically abolishes immunosuppressive activity without affecting the “mechanical” function of the envelope protein and (ii) significantly enhances humoral and cellular immune responses elicited against the virus. The objective of this work was to study the immunosuppressive activity of the envelope protein (p15E) of feline leukemia virus (FeLV) and evaluate the effect of its abolition on the efficacy of a vaccine against FeLV. Here we demonstrate that the FeLV envelope protein is immunosuppressive in vivo and that this immunosuppressive activity can be “switched off” by targeted mutation of a specific amino acid. As a result of the introduction of the mutated envelope sequence into a previously well characterized canarypox virus-vectored vaccine (ALVAC-FeLV), the frequency of vaccine-induced FeLV-specific gamma interferon (IFN-γ)-producing cells was increased, whereas conversely, the frequency of vaccine-induced FeLV-specific interleukin-10 (IL-10)-producing cells was reduced. This shift in the IFN-γ/IL-10 response was associated with a higher efficacy of ALVAC-FeLV against FeLV infection. This study demonstrates that FeLV p15E is immunosuppressive in vivo, that the immunosuppressive domain of p15E can modulate the FeLV-specific immune response, and that the efficacy of FeLV vaccines can be enhanced by inhibiting the immunosuppressive activity of the IS domain through an appropriate mutation. PMID:24198407

  14. Targeting the transient receptor potential vanilloid type 1 (TRPV1) assembly domain attenuates inflammation-induced hypersensitivity.

    PubMed

    Flynn, Robyn; Chapman, Kevin; Iftinca, Mircea; Aboushousha, Reem; Varela, Diego; Altier, Christophe

    2014-06-13

    The transient receptor potential channel vanilloid type 1 (TRPV1) is a non-selective cation channel expressed in sensory neurons of the dorsal root and trigeminal ganglia. TRPV1 is a polymodal channel activated by noxious heat, capsaicin, and protons. As a sensor for noxious stimuli, TRPV1 channel has been described as a key contributor to pain signaling. To form a functional channel, TRPV1 subunits must assemble into tetramers, and several studies have identified the TRPV1 C terminus as an essential element in subunit association. Here we combined biochemical assays with electrophysiology and imaging-based bimolecular fluorescence complementation (BiFC) and bioluminescence resonance energy transfer (BRET) in live cells to identify a short motif in the C-terminal tail of the TRPV1 subunit that governs channel assembly. Removing this region through early truncation or targeted deletion results in loss of subunit association and channel function. Importantly, we found that interfering with TRPV1 subunit association using a plasma membrane-tethered peptide attenuated mechanical and thermal hypersensitivity in two mouse models of inflammatory hyperalgesia. This represents a novel mechanism to disrupt TRPV1 subunit assembly and hence may offer a new analgesic tool for pain relief.

  15. Targeting the Transient Receptor Potential Vanilloid Type 1 (TRPV1) Assembly Domain Attenuates Inflammation-induced Hypersensitivity*

    PubMed Central

    Flynn, Robyn; Chapman, Kevin; Iftinca, Mircea; Aboushousha, Reem; Varela, Diego; Altier, Christophe

    2014-01-01

    The transient receptor potential channel vanilloid type 1 (TRPV1) is a non-selective cation channel expressed in sensory neurons of the dorsal root and trigeminal ganglia. TRPV1 is a polymodal channel activated by noxious heat, capsaicin, and protons. As a sensor for noxious stimuli, TRPV1 channel has been described as a key contributor to pain signaling. To form a functional channel, TRPV1 subunits must assemble into tetramers, and several studies have identified the TRPV1 C terminus as an essential element in subunit association. Here we combined biochemical assays with electrophysiology and imaging-based bimolecular fluorescence complementation (BiFC) and bioluminescence resonance energy transfer (BRET) in live cells to identify a short motif in the C-terminal tail of the TRPV1 subunit that governs channel assembly. Removing this region through early truncation or targeted deletion results in loss of subunit association and channel function. Importantly, we found that interfering with TRPV1 subunit association using a plasma membrane-tethered peptide attenuated mechanical and thermal hypersensitivity in two mouse models of inflammatory hyperalgesia. This represents a novel mechanism to disrupt TRPV1 subunit assembly and hence may offer a new analgesic tool for pain relief. PMID:24808184

  16. Targeting the transient receptor potential vanilloid type 1 (TRPV1) assembly domain attenuates inflammation-induced hypersensitivity.

    PubMed

    Flynn, Robyn; Chapman, Kevin; Iftinca, Mircea; Aboushousha, Reem; Varela, Diego; Altier, Christophe

    2014-06-13

    The transient receptor potential channel vanilloid type 1 (TRPV1) is a non-selective cation channel expressed in sensory neurons of the dorsal root and trigeminal ganglia. TRPV1 is a polymodal channel activated by noxious heat, capsaicin, and protons. As a sensor for noxious stimuli, TRPV1 channel has been described as a key contributor to pain signaling. To form a functional channel, TRPV1 subunits must assemble into tetramers, and several studies have identified the TRPV1 C terminus as an essential element in subunit association. Here we combined biochemical assays with electrophysiology and imaging-based bimolecular fluorescence complementation (BiFC) and bioluminescence resonance energy transfer (BRET) in live cells to identify a short motif in the C-terminal tail of the TRPV1 subunit that governs channel assembly. Removing this region through early truncation or targeted deletion results in loss of subunit association and channel function. Importantly, we found that interfering with TRPV1 subunit association using a plasma membrane-tethered peptide attenuated mechanical and thermal hypersensitivity in two mouse models of inflammatory hyperalgesia. This represents a novel mechanism to disrupt TRPV1 subunit assembly and hence may offer a new analgesic tool for pain relief. PMID:24808184

  17. Structure of the Brachydanio Rerio Polo-Like Kinase 1 (Plk1) Catalytic Domain in Complex With An Extended Inhibitor Targeting the Adaptive Pocket of the Enzyme

    SciTech Connect

    Elling, R.A.; Fucini, R.V.; Hanan, E.J.; Barr, K.J.; Zhu, J.; Paulvannan, K.; Yang, W.; Romanowski, M.J.

    2009-05-18

    Polo-like kinase 1 (Plk1) is a member of the Polo-like kinase family of serine/threonine kinases involved in the regulation of cell-cycle progression and cytokinesis and is an attractive target for the development of anticancer therapeutics. The catalytic domain of this enzyme shares significant primary amino-acid homology and structural similarity with another mitotic kinase, Aurora A. While screening an Aurora A library of ATP-competitive compounds, a urea-containing inhibitor with low affinity for mouse Aurora A but with submicromolar potency for human and zebrafish Plk1 (hPlk1 and zPlk1, respectively) was identified. A crystal structure of the zebrafish Plk1 kinase domain-inhibitor complex reveals that the small molecule occupies the purine pocket and extends past the catalytic lysine into the adaptive region of the active site. Analysis of the structures of this protein-inhibitor complex and of similar small molecules cocrystallized with other kinases facilitates understanding of the specificity of the inhibitor for Plk1 and documents for the first time that Plk1 can accommodate extended ATP-competitive compounds that project toward the adaptive pocket and help the enzyme order its activation segment.

  18. Targeting two-pore domain K+ channels TREK-1 and TASK-3 for the treatment of depression: a new therapeutic concept

    PubMed Central

    Borsotto, M; Veyssiere, J; Moha ou Maati, H; Devader, C; Mazella, J; Heurteaux, C

    2015-01-01

    Depression is a disease that is particularly frequent, affecting up to 20% of the population in Western countries. The origins of this pathology involve multiple genes as well as environmental and developmental factors leading to a disorder that remains difficult to treat. Several therapies for depression have been developed and these mainly target monoamine neurotransmitters. However, these treatments are not only associated with numerous adverse effects, but they are also ineffective for more than one-third of patients. Therefore, the need to develop new concepts to treat depression is crucial. Recently, studies using knockout mouse models have provided evidence for a crucial role of two members of the two-pore domain potassium channel (K2P) family, tandem P-domain weak inward rectifying K+ (TWIK)-related K+ channel 1 (TREK-1) and TWIK-related acid-sensitive K+ channel 3 (TASK-3) in the pathophysiology of depression. It is believed that TREK-1 and TASK-3 antagonists could lead to the development of new antidepressants. Herein, we describe the discovery of spadin, a natural peptide released from the maturation of the neurotensin receptor-3 (also known as sortilin), which specifically blocks the activity of the TREK-1 channel and displays particular antidepressant properties, with a rapid onset of action and the absence of adverse effects. The development of such molecules may open a new era in the field of psychiatry. PMID:25263033

  19. The same site on the integrase-binding domain of lens epithelium–derived growth factor is a therapeutic target for MLL leukemia and HIV

    PubMed Central

    Murai, Marcelo J.; Pollock, Jonathan; He, Shihan; Miao, Hongzhi; Purohit, Trupta; Yokom, Adam; Hess, Jay L.; Muntean, Andrew G.; Grembecka, Jolanta

    2014-01-01

    Lens epithelium-derived growth factor (LEDGF) is a chromatin-associated protein implicated in leukemia and HIV type 1 infection. LEDGF associates with mixed-lineage leukemia (MLL) fusion proteins and menin and is required for leukemic transformation. To better understand the molecular mechanism underlying the LEDGF integrase-binding domain (IBD) interaction with MLL fusion proteins in leukemia, we determined the solution structure of the MLL-IBD complex. We found a novel MLL motif, integrase domain binding motif 2 (IBM2), which binds to a well-defined site on IBD. Point mutations within IBM2 abolished leukemogenic transformation by MLL-AF9, validating that this newly identified motif is essential for the oncogenic activity of MLL fusion proteins. Interestingly, the IBM2 binding site on IBD overlaps with the binding site for the HIV integrase (IN), and IN was capable of efficiently sequestering IBD from the menin-MLL complex. A short IBM2 peptide binds to IBD directly and inhibits both the IBD-MLL/menin and IBD-IN interactions. Our findings show that the same site on IBD is involved in binding to MLL and HIV-IN, revealing an attractive approach to simultaneously target LEDGF in leukemia and HIV. PMID:25305204

  20. Crystal Structure of USP7 Ubiquitin-like Domains with an ICP0 Peptide Reveals a Novel Mechanism Used by Viral and Cellular Proteins to Target USP7

    PubMed Central

    Capar, Adam; Zheng, Hong; Frappier, Lori; Saridakis, Vivian

    2015-01-01

    Herpes simplex virus-1 immediate-early protein ICP0 activates viral genes during early stages of infection, affects cellular levels of multiple host proteins and is crucial for effective lytic infection. Being a RING-type E3 ligase prone to auto-ubiquitination, ICP0 relies on human deubiquitinating enzyme USP7 for protection against 26S proteasomal mediated degradation. USP7 is involved in apoptosis, epigenetics, cell proliferation and is targeted by several herpesviruses. Several USP7 partners, including ICP0, GMPS, and UHRF1, interact through its C-terminal domain (CTD), which contains five ubiquitin-like (Ubl) structures. Despite the fact that USP7 has emerged as a drug target for cancer therapy, structural details of USP7 regulation and the molecular mechanism of interaction at its CTD have remained elusive. Here, we mapped the binding site between an ICP0 peptide and USP7 and determined the crystal structure of the first three Ubl domains bound to the ICP0 peptide, which showed that ICP0 binds to a loop on Ubl2. Sequences similar to the USP7-binding site in ICP0 were identified in GMPS and UHRF1 and shown to bind USP7-CTD through Ubl2. In addition, co-immunoprecipitation assays in human cells comparing binding to USP7 with and without a Ubl2 mutation, confirmed the importance of the Ubl2 binding pocket for binding ICP0, GMPS and UHRF1. Therefore we have identified a novel mechanism of USP7 recognition that is used by both viral and cellular proteins. Our structural information was used to generate a model of near full-length USP7, showing the relative position of the ICP0/GMPS/UHRF1 binding pocket and the structural basis by which it could regulate enzymatic activity. PMID:26046769

  1. Targeting RING domains of Mdm2-MdmX E3 complex activates apoptotic arm of the p53 pathway in leukemia/lymphoma cells.

    PubMed

    Wu, W; Xu, C; Ling, X; Fan, C; Buckley, B P; Chernov, M V; Ellis, L; Li, F; Muñoz, I G; Wang, X

    2015-12-31

    Reactivation of tumor-suppressor p53 for targeted cancer therapy is an attractive strategy for cancers bearing wild-type (WT) p53. Targeting the Mdm2-p53 interface or MdmX ((MDM4), mouse double minute 4)-p53 interface or both has been a focus in the field. However, targeting the E3 ligase activity of Mdm2-MdmX really interesting new gene (RING)-RING interaction as a novel anticancer strategy has never been explored. In this report, we describe the identification and characterization of small molecule inhibitors targeting Mdm2-MdmX RING-RING interaction as a new class of E3 ligase inhibitors. With a fluorescence resonance energy transfer-based E3 activity assay in high-throughput screening of a chemical library, we identified inhibitors (designated as MMRis (Mdm2-MdmX RING domain inhibitors)) that specifically inhibit Mdm2-MdmX E3 ligase activity toward Mdm2 and p53 substrates. MMRi6 and its analog MMRi64 are capable of disrupting Mdm2-MdmX interactions in vitro and activating p53 in cells. In leukemia cells, MMRi64 potently induces downregulation of Mdm2 and MdmX. In contrast to Nutlin3a, MMRi64 only induces the expression of pro-apoptotic gene PUMA (p53 upregulated modulator of apoptosis) with minimal induction of growth-arresting gene p21. Consequently, MMRi64 selectively induces the apoptotic arm of the p53 pathway in leukemia/lymphoma cells. Owing to the distinct mechanisms of action of MMRi64 and Nutlin3a, their combination synergistically induces p53 and apoptosis. Taken together, this study reveals that Mdm2-MdmX has a critical role in apoptotic response of the p53 pathway and MMRi64 may serve as a new pharmacological tool for p53 studies and a platform for cancer drug development.

  2. Nuclear localization domains of GATA activator Gln3 are required for transcription of target genes through dephosphorylation in Saccharomyces cerevisiae.

    PubMed

    Numamoto, Minori; Tagami, Shota; Ueda, Yusuke; Imabeppu, Yusuke; Sasano, Yu; Sugiyama, Minetaka; Maekawa, Hiromi; Harashima, Satoshi

    2015-08-01

    The GATA transcription activator Gln3 in the budding yeast (Saccharomyces cerevisiae) activates transcription of nitrogen catabolite repression (NCR)-sensitive genes. In cells grown in the presence of preferred nitrogen sources, Gln3 is phosphorylated in a TOR-dependent manner and localizes in the cytoplasm. In cells grown in non-preferred nitrogen medium or treated with rapamycin, Gln3 is dephosphorylated and is transported from the cytoplasm to the nucleus, thereby activating the transcription of NCR-sensitive genes. Caffeine treatment also induces dephosphorylation of Gln3 and its translocation to the nucleus and transcription of NCR-sensitive genes. However, the details of the mechanism by which phosphorylation controls Gln3 localization and transcriptional activity are unknown. Here, we focused on two regions of Gln3 with nuclear localization signal properties (NLS-K, and NLS-C) and one with nuclear export signal (NES). We constructed various mutants for our analyses: gln3 containing point mutations in all potential phosphoacceptor sites (Thr-339, Ser-344, Ser-347, Ser-355, Ser-391) in the NLS and NES regions to produce non-phosphorylatable (alanine) or mimic-phosphorylatable (aspartic acid) residues; and deletion mutants. We found that phosphorylation of Gln3 was impaired in all of these mutations and that the aspartic acid substitution mutants showed drastic reduction of Gln3-mediated transcriptional activity despite the fact that the mutations had no effect on nuclear localization of Gln3. Our observations suggest that these regions are required for transcription of target genes presumably through dephosphorylation.

  3. Conserved Structural Domains in FoxD4L1, a Neural Forkhead Box Transcription Factor, Are Required to Repress or Activate Target Genes

    PubMed Central

    Klein, Steven L.; Neilson, Karen M.; Orban, John; Yaklichkin, Sergey; Hoffbauer, Jennifer; Mood, Kathy; Daar, Ira O.; Moody, Sally A.

    2013-01-01

    FoxD4L1 is a forkhead transcription factor that expands the neural ectoderm by down-regulating genes that promote the onset of neural differentiation and up-regulating genes that maintain proliferative neural precursors in an immature state. We previously demonstrated that binding of Grg4 to an Eh-1 motif enhances the ability of FoxD4L1 to down-regulate target neural genes but does not account for all of its repressive activity. Herein we analyzed the protein sequence for additional interaction motifs and secondary structure. Eight conserved motifs were identified in the C-terminal region of fish and frog proteins. Extending the analysis to mammals identified a high scoring motif downstream of the Eh-1 domain that contains a tryptophan residue implicated in protein-protein interactions. In addition, secondary structure prediction programs predicted an α-helical structure overlapping with amphibian-specific Motif 6 in Xenopus, and similarly located α-helical structures in other vertebrate FoxD proteins. We tested functionality of this site by inducing a glutamine-to-proline substitution expected to break the predicted α-helical structure; this significantly reduced FoxD4L1’s ability to repress zic3 and irx1. Because this mutation does not interfere with Grg4 binding, these results demonstrate that at least two regions, the Eh-1 motif and a more C-terminal predicted α-helical/Motif 6 site, additively contribute to repression. In the N-terminal region we previously identified a 14 amino acid motif that is required for the up-regulation of target genes. Secondary structure prediction programs predicted a short β-strand separating two acidic domains. Mutant constructs show that the β-strand itself is not required for transcriptional activation. Instead, activation depends upon a glycine residue that is predicted to provide sufficient flexibility to bring the two acidic domains into close proximity. These results identify conserved predicted motifs with secondary

  4. Adaptive immunity against Leishmania nucleoside hydrolase maps its c-terminal domain as the target of the CD4+ T cell-driven protective response.

    PubMed

    Nico, Dirlei; Claser, Carla; Borja-Cabrera, Gulnara P; Travassos, Luiz R; Palatnik, Marcos; Soares, Irene da Silva; Rodrigues, Mauricio Martins; Palatnik-de-Sousa, Clarisa B

    2010-01-01

    Nucleoside hydrolases (NHs) show homology among parasite protozoa, fungi and bacteria. They are vital protagonists in the establishment of early infection and, therefore, are excellent candidates for the pathogen recognition by adaptive immune responses. Immune protection against NHs would prevent disease at the early infection of several pathogens. We have identified the domain of the NH of L. donovani (NH36) responsible for its immunogenicity and protective efficacy against murine visceral leishmaniasis (VL). Using recombinant generated peptides covering the whole NH36 sequence and saponin we demonstrate that protection against L. chagasi is related to its C-terminal domain (amino-acids 199-314) and is mediated mainly by a CD4+ T cell driven response with a lower contribution of CD8+ T cells. Immunization with this peptide exceeds in 36.73±12.33% the protective response induced by the cognate NH36 protein. Increases in IgM, IgG2a, IgG1 and IgG2b antibodies, CD4+ T cell proportions, IFN-γ secretion, ratios of IFN-γ/IL-10 producing CD4+ and CD8+ T cells and percents of antibody binding inhibition by synthetic predicted epitopes were detected in F3 vaccinated mice. The increases in DTH and in ratios of TNFα/IL-10 CD4+ producing cells were however the strong correlates of protection which was confirmed by in vivo depletion with monoclonal antibodies, algorithm predicted CD4 and CD8 epitopes and a pronounced decrease in parasite load (90.5-88.23%; p = 0.011) that was long-lasting. No decrease in parasite load was detected after vaccination with the N-domain of NH36, in spite of the induction of IFN-γ/IL-10 expression by CD4+ T cells after challenge. Both peptides reduced the size of footpad lesions, but only the C-domain reduced the parasite load of mice challenged with L. amazonensis. The identification of the target of the immune response to NH36 represents a basis for the rationale development of a bivalent vaccine against leishmaniasis and for multivalent

  5. Adaptive Immunity against Leishmania Nucleoside Hydrolase Maps Its C-Terminal Domain as the Target of the CD4+ T Cell–Driven Protective Response

    PubMed Central

    Nico, Dirlei; Claser, Carla; Borja-Cabrera, Gulnara P.; Travassos, Luiz R.; Palatnik, Marcos; da Silva Soares, Irene; Rodrigues, Mauricio Martins; Palatnik-de-Sousa, Clarisa B.

    2010-01-01

    Nucleoside hydrolases (NHs) show homology among parasite protozoa, fungi and bacteria. They are vital protagonists in the establishment of early infection and, therefore, are excellent candidates for the pathogen recognition by adaptive immune responses. Immune protection against NHs would prevent disease at the early infection of several pathogens. We have identified the domain of the NH of L. donovani (NH36) responsible for its immunogenicity and protective efficacy against murine visceral leishmaniasis (VL). Using recombinant generated peptides covering the whole NH36 sequence and saponin we demonstrate that protection against L. chagasi is related to its C-terminal domain (amino-acids 199–314) and is mediated mainly by a CD4+ T cell driven response with a lower contribution of CD8+ T cells. Immunization with this peptide exceeds in 36.73±12.33% the protective response induced by the cognate NH36 protein. Increases in IgM, IgG2a, IgG1 and IgG2b antibodies, CD4+ T cell proportions, IFN-γ secretion, ratios of IFN-γ/IL-10 producing CD4+ and CD8+ T cells and percents of antibody binding inhibition by synthetic predicted epitopes were detected in F3 vaccinated mice. The increases in DTH and in ratios of TNFα/IL-10 CD4+ producing cells were however the strong correlates of protection which was confirmed by in vivo depletion with monoclonal antibodies, algorithm predicted CD4 and CD8 epitopes and a pronounced decrease in parasite load (90.5–88.23%; p = 0.011) that was long-lasting. No decrease in parasite load was detected after vaccination with the N-domain of NH36, in spite of the induction of IFN-γ/IL-10 expression by CD4+ T cells after challenge. Both peptides reduced the size of footpad lesions, but only the C-domain reduced the parasite load of mice challenged with L. amazonensis. The identification of the target of the immune response to NH36 represents a basis for the rationale development of a bivalent vaccine against leishmaniasis and for

  6. Targeting polyIC to EGFR over-expressing cells using a dsRNA binding protein domain tethered to EGF.

    PubMed

    Edinger, Nufar; Lebendiker, Mario; Klein, Shoshana; Zigler, Maya; Langut, Yael; Levitzki, Alexander

    2016-01-01

    Selective delivery of drugs to tumor cells can increase potency and reduce toxicity. In this study, we describe a novel recombinant chimeric protein, dsRBEC, which can bind polyIC and deliver it selectively into EGFR over-expressing tumor cells. dsRBEC, comprises the dsRNA binding domain (dsRBD) of human PKR (hPKR), which serves as the polyIC binding moiety, fused to human EGF (hEGF), the targeting moiety. dsRBEC shows high affinity towards EGFR and triggers ligand-induced endocytosis of the receptor, thus leading to the selective internalization of polyIC into EGFR over-expressing tumor cells. The targeted delivery of polyIC by dsRBEC induced cellular apoptosis and the secretion of IFN-β and other pro-inflammatory cytokines. dsRBEC-delivered polyIC is much more potent than naked polyIC and is expected to reduce the toxicity caused by systemic delivery of polyIC. PMID:27598772

  7. Targeting polyIC to EGFR over-expressing cells using a dsRNA binding protein domain tethered to EGF

    PubMed Central

    Edinger, Nufar; Lebendiker, Mario; Klein, Shoshana; Zigler, Maya; Langut, Yael; Levitzki, Alexander

    2016-01-01

    Selective delivery of drugs to tumor cells can increase potency and reduce toxicity. In this study, we describe a novel recombinant chimeric protein, dsRBEC, which can bind polyIC and deliver it selectively into EGFR over-expressing tumor cells. dsRBEC, comprises the dsRNA binding domain (dsRBD) of human PKR (hPKR), which serves as the polyIC binding moiety, fused to human EGF (hEGF), the targeting moiety. dsRBEC shows high affinity towards EGFR and triggers ligand-induced endocytosis of the receptor, thus leading to the selective internalization of polyIC into EGFR over-expressing tumor cells. The targeted delivery of polyIC by dsRBEC induced cellular apoptosis and the secretion of IFN-β and other pro-inflammatory cytokines. dsRBEC-delivered polyIC is much more potent than naked polyIC and is expected to reduce the toxicity caused by systemic delivery of polyIC. PMID:27598772

  8. Extending half-life by indirect targeting of the neonatal Fc receptor (FcRn) using a minimal albumin binding domain.

    PubMed

    Andersen, Jan Terje; Pehrson, Rikard; Tolmachev, Vladimir; Daba, Muluneh Bekele; Abrahmsén, Lars; Ekblad, Caroline

    2011-02-18

    The therapeutic and diagnostic efficiency of engineered small proteins, peptides, and chemical drug candidates is hampered by short in vivo serum half-life. Thus, strategies to tailor their biodistribution and serum persistence are highly needed. An attractive approach is to take advantage of the exceptionally long circulation half-life of serum albumin or IgG, which is attributed to a pH-dependent interaction with the neonatal Fc receptor (FcRn) rescuing these proteins from intracellular degradation. Here, we present molecular evidence that a minimal albumin binding domain (ABD) derived from streptococcal protein G can be used for efficient half-life extension by indirect targeting of FcRn. We show that ABD, and ABD recombinantly fused to an Affibody molecule, in complex with albumin does not interfere with the strictly pH-dependent FcRn-albumin binding kinetics. The same result was obtained in the presence of IgG. An in vivo study performed in rat confirmed that the clinically relevant human epidermal growth factor 2 (HER2)-targeting Affibody molecule fused to ABD has a similar half-life and biodistribution profile as serum albumin. The proof-of-concept described may be broadly applicable to extend the in vivo half-life of short lived biological or chemical drugs ultimately resulting in enhanced therapeutic or diagnostic efficiency, a more favorable dosing regimen, and improved patient compliance.

  9. Characterization of the C-Terminal Nuclease Domain of Herpes Simplex Virus pUL15 as a Target of Nucleotidyltransferase Inhibitors.

    PubMed

    Masaoka, Takashi; Zhao, Haiyan; Hirsch, Danielle R; D'Erasmo, Michael P; Meck, Christine; Varnado, Brittany; Gupta, Ankit; Meyers, Marvin J; Baines, Joel; Beutler, John A; Murelli, Ryan P; Tang, Liang; Le Grice, Stuart F J

    2016-02-01

    The natural product α-hydroxytropolones manicol and β-thujaplicinol inhibit replication of herpes simplex viruses 1 and 2 (HSV-1 and HSV-2, respectively) at nontoxic concentrations. Because these were originally developed as divalent metal-sequestering inhibitors of the ribonuclease H activity of HIV-1 reverse transcriptase, α-hydroxytropolones likely target related HSV proteins of the nucleotidyltransferase (NTase) superfamily, which share an "RNase H-like" fold. One potential candidate is pUL15, a component of the viral terminase molecular motor complex, whose C-terminal nuclease domain, pUL15C, has recently been crystallized. Crystallography also provided a working model for DNA occupancy of the nuclease active site, suggesting potential protein-nucleic acid contacts over a region of ∼ 14 bp. In this work, we extend crystallographic analysis by examining pUL15C-mediated hydrolysis of short, closely related DNA duplexes. In addition to defining a minimal substrate length, this strategy facilitated construction of a dual-probe fluorescence assay for rapid kinetic analysis of wild-type and mutant nucleases. On the basis of its proposed role in binding the phosphate backbone, studies with pUL15C variant Lys700Ala showed that this mutation affected neither binding of duplex DNA nor binding of small molecule to the active site but caused a 17-fold reduction in the turnover rate (kcat), possibly by slowing conversion of the enzyme-substrate complex to the enzyme-product complex and/or inhibiting dissociation from the hydrolysis product. Finally, with a view of pUL15-associated nuclease activity as an antiviral target, the dual-probe fluorescence assay, in combination with differential scanning fluorimetry, was used to demonstrate inhibition by several classes of small molecules that target divalent metal at the active site. PMID:26829613

  10. Dual Targeting of Bromodomain and Extraterminal Domain Proteins, and WNT or MAPK Signaling, Inhibits c-MYC Expression and Proliferation of Colorectal Cancer Cells.

    PubMed

    Tögel, Lars; Nightingale, Rebecca; Chueh, Anderly C; Jayachandran, Aparna; Tran, Hoanh; Phesse, Toby; Wu, Rui; Sieber, Oliver M; Arango, Diego; Dhillon, Amardeep S; Dawson, Mark A; Diez-Dacal, Beatriz; Gahman, Timothy C; Filippakopoulos, Panagis; Shiau, Andrew K; Mariadason, John M

    2016-06-01

    Inhibitors of the bromodomain and extraterminal domain (BET) protein family attenuate the proliferation of several tumor cell lines. These effects are mediated, at least in part, through repression of c-MYC. In colorectal cancer, overexpression of c-MYC due to hyperactive WNT/β-catenin/TCF signaling is a key driver of tumor progression; however, effective strategies to target this oncogene remain elusive. Here, we investigated the effect of BET inhibitors (BETi) on colorectal cancer cell proliferation and c-MYC expression. Treatment of 20 colorectal cancer cell lines with the BETi JQ1 identified a subset of highly sensitive lines. JQ1 sensitivity was higher in cell lines with microsatellite instability but was not associated with the CpG island methylator phenotype, c-MYC expression or amplification status, BET protein expression, or mutation status of TP53, KRAS/BRAF, or PIK3CA/PTEN Conversely, JQ1 sensitivity correlated significantly with the magnitude of c-MYC mRNA and protein repression. JQ1-mediated c-MYC repression was not due to generalized attenuation of β-catenin/TCF-mediated transcription, as JQ1 had minimal effects on other β-catenin/TCF target genes or β-catenin/TCF reporter activity. BETi preferentially target super-enhancer-regulated genes, and a super-enhancer in c-MYC was recently identified in HCT116 cells to which BRD4 and effector transcription factors of the WNT/β-catenin/TCF and MEK/ERK pathways are recruited. Combined targeting of c-MYC with JQ1 and inhibitors of these pathways additively repressed c-MYC and proliferation of HCT116 cells. These findings demonstrate that BETi downregulate c-MYC expression and inhibit colorectal cancer cell proliferation and identify strategies for enhancing the effects of BETi on c-MYC repression by combinatorial targeting the c-MYC super-enhancer. Mol Cancer Ther; 15(6); 1217-26. ©2016 AACR. PMID:26983878

  11. Adoptive immunotherapy with genetically engineered T cells: modification of the IgG1 Fc 'spacer' domain in the extracellular moiety of chimeric antigen receptors avoids 'off-target' activation and unintended initiation of an innate immune response.

    PubMed

    Hombach, A; Hombach, A A; Abken, H

    2010-10-01

    Chimeric antigen receptors (CARs, immunoreceptors) are frequently used to redirect T cells with pre-defined specificity, in particular towards tumour cells for use in adoptive immunotherapy of malignant diseases. Specific targeting is mediated by an extracellularly located antibody-derived binding domain, which is joined to the transmembrane and intracellular CD3ζ moiety for T-cell activation. Stable CAR expression in T cells, however, requires a spacer domain interposed between the binding and the transmembrane domain and which is commonly the constant IgG1 Fc domain. We here revealed that CARs with Fc spacer domain bind to IgG Fc gamma receptors (FcγRs), thereby unintentionally activating innate immune cells, including monocytes and natural killer (NK) cells, which consequently secrete high amounts of pro-inflammatory cytokines. Engineered T cells, on the other hand, are likewise activated by FcγR binding resulting in cytokine secretion and lysis of monocytes and NK cells independently of the redirected specificity. To reduce FcγR binding, we modified the spacer domain without affecting CAR expression and antigen binding. Engineered with the modified CAR, T cells are not activated in presence of FcγR(+) cells, thereby minimizing the risk of off-target activation while preserving their redirected targeting specificity.

  12. The haloarchaeal MCM proteins: bioinformatic analysis and targeted mutagenesis of the β7-β8 and β9-β10 hairpin loops and conserved zinc binding domain cysteines

    PubMed Central

    Kristensen, Tatjana P.; Maria Cherian, Reeja; Gray, Fiona C.; MacNeill, Stuart A.

    2014-01-01

    The hexameric MCM complex is the catalytic core of the replicative helicase in eukaryotic and archaeal cells. Here we describe the first in vivo analysis of archaeal MCM protein structure and function relationships using the genetically tractable haloarchaeon Haloferax volcanii as a model system. Hfx. volcanii encodes a single MCM protein that is part of the previously identified core group of haloarchaeal MCM proteins. Three structural features of the N-terminal domain of the Hfx. volcanii MCM protein were targeted for mutagenesis: the β7-β8 and β9-β10 β-hairpin loops and putative zinc binding domain. Five strains carrying single point mutations in the β7-β8 β-hairpin loop were constructed, none of which displayed impaired cell growth under normal conditions or when treated with the DNA damaging agent mitomycin C. However, short sequence deletions within the β7-β8 β-hairpin were not tolerated and neither was replacement of the highly conserved residue glutamate 187 with alanine. Six strains carrying paired alanine substitutions within the β9-β10 β-hairpin loop were constructed, leading to the conclusion that no individual amino acid within that hairpin loop is absolutely required for MCM function, although one of the mutant strains displays greatly enhanced sensitivity to mitomycin C. Deletions of two or four amino acids from the β9-β10 β-hairpin were tolerated but mutants carrying larger deletions were inviable. Similarly, it was not possible to construct mutants in which any of the conserved zinc binding cysteines was replaced with alanine, underlining the likely importance of zinc binding for MCM function. The results of these studies demonstrate the feasibility of using Hfx. volcanii as a model system for reverse genetic analysis of archaeal MCM protein function and provide important confirmation of the in vivo importance of conserved structural features identified by previous bioinformatic, biochemical and structural studies. PMID:24723920

  13. Development and Use of Assay Conditions Suited to Screening for and Profiling of SET-Domain-Targeted Inhibitors of the MLL/SET1 Family of Lysine Methyltransferases

    PubMed Central

    Ferry, Joseph J.; Smith, Robert F.; Denney, Natalie; Walsh, Colin P.; McCauley, Lauren; Qian, Jie; Ma, Haiching; Horiuchi, Kurumi Y.

    2015-01-01

    Abstract Methylation of histone H3 lysine-4 (H3K4) is an important, regulatory, epigenetic post-translational modification associated with actively transcribed genes. In humans, the principal mediators of this modification are part of the MLL/SET1 family of methyltransferases, which comprises six members, MLLs1–4 and SET1A/SET1B. Aberrations in the structure, expression, and regulation of these enzymes are implicated in various disease states, making them important potential targets for drug discovery, particularly for oncology indications. The MLL/SET1 family members are most enzymatically active when part of a “core complex,” the catalytic SET-domain-containing subunits bound to a subcomplex consisting of the proteins WDR5, RbBP5, Ash2L and a homodimer of DPY-30 (WRAD2). The necessity of MLL/SET1 members to bind WRAD2 for full activity is the basis of a particular drug development strategy, which seeks to disrupt the interaction between the MLL/SET1 subunits and WDR5. This strategy is not without its theoretical and practical drawbacks, some of which relate to the ease with which complexes of Escherichia coli-expressed MLL/SET1 and WRAD2 fall apart. As an alternative strategy, we explore ways to stabilize the complex, focusing on the use of an excess of WRAD2 to drive the binding equilibria toward complex formation while maintaining low concentrations of the catalytic subunits. The purpose of this approach is to seek inhibitors that bind the SET domain, an approach proven successful with the related, but inherently more stable, enhancer of zeste homolog 2 (EZH2) complex. PMID:26065558

  14. Targeting zinc finger domains with small molecules: solution structure and binding studies of the RanBP2-type zinc finger of RBM5

    PubMed Central

    Farina, Biancamaria; Fattorusso, Roberto

    2012-01-01

    The RNA Binding Motif protein 5 (RBM5), also known as Luca15 or H37, is a component of prespliceosomal complexes, that regulates the alternative splicing of several mRNAs, such as Fas and caspase-2. The rbm5 gene is located at the 2p21.3 chromosomal region, which is strongly associated with lung cancer and many other cancers. Both increased and decreased levels of RBM5 can play a role in tumor progression. In particular, down-regulation of rbm5 is involved in lung cancer and other cancers upon Ras activation, and, also, represents a molecular signature associated with metastasis in various solid tumors. On the other hand, up-regulation of rbm5 occurs in breast and ovarian cancer. Moreover, RBM5 was also found to be involved in the early stage of the HIV-1 viral cycle, representing a potential target for the treatment of the HIV-1 infection. While the molecular basis for RNA recognition and ubiquitin interaction have been structurally characterized, small molecules binding this ZF domain that may contribute to characterize their activity and to develop potential therapeutic agents have not been yet reported. Via an NMR screening of a fragment library we identified several binders and the complex of the most promising one, named compound 1, with the RBM5 ZF1 was structurally characterized in solution. Interestingly, the binding mechanism reveals that compound 1 occupies the RNA binding pocket and is therefore able to compete with the RNA to bind RBM5 RanBP2-type ZF domain, as indicated by NMR studies. PMID:22162216

  15. Rationally Targeted Mutations at the V1V2 Domain of the HIV-1 Envelope to Augment Virus Neutralization by Anti-V1V2 Monoclonal Antibodies.

    PubMed

    Shen, Guomiao; Upadhyay, Chitra; Zhang, Jing; Pan, Ruimin; Zolla-Pazner, Susan; Kong, Xiang-Peng; Hioe, Catarina E

    2015-01-01

    HIV-1 envelope glycoproteins (Env) are the only viral antigens present on the virus surface and serve as the key targets for virus-neutralizing antibodies. However, HIV-1 deploys multiple strategies to shield the vulnerable sites on its Env from neutralizing antibodies. The V1V2 domain located at the apex of the HIV-1 Env spike is known to encompass highly variable loops, but V1V2 also contains immunogenic conserved elements recognized by cross-reactive antibodies. This study evaluates human monoclonal antibodies (mAbs) against V2 epitopes which overlap with the conserved integrin α4β7-binding LDV/I motif, designated as the V2i (integrin) epitopes. We postulate that the V2i Abs have weak or no neutralizing activities because the V2i epitopes are often occluded from antibody recognition. To gain insights into the mechanisms of the V2i occlusion, we evaluated three elements at the distal end of the V1V2 domain shown in the structure of V2i epitope complexed with mAb 830A to be important for antibody recognition of the V2i epitope. Amino-acid substitutions at position 179 that restore the LDV/I motif had minimal effects on virus sensitivity to neutralization by most V2i mAbs. However, a charge change at position 153 in the V1 region significantly increased sensitivity of subtype C virus ZM109 to most V2i mAbs. Separately, a disulfide bond introduced to stabilize the hypervariable region of V2 loop also enhanced virus neutralization by some V2i mAbs, but the effects varied depending on the virus. These data demonstrate that multiple elements within the V1V2 domain act independently and in a virus-dependent fashion to govern the antibody recognition and accessibility of V2i epitopes, suggesting the need for multi-pronged strategies to counter the escape and the shielding mechanisms obstructing the V2i Abs from neutralizing HIV-1. PMID:26491873

  16. A human biotin acceptor domain allows site-specific conjugation of an enzyme to an antibody-avidin fusion protein for targeted drug delivery.

    PubMed

    Asai, Tsuneaki; Trinh, Ryan; Ng, Patrick P; Penichet, Manuel L; Wims, Letitia A; Morrison, Sherie L

    2005-02-01

    We have previously constructed an antibody-avidin (Av) fusion protein, anti-transferrin receptor (TfR) IgG3-Av, which can deliver biotinylated molecules to cells expressing the TfR. We now describe the use of the fusion protein for antibody-directed enzyme prodrug therapy (ADEPT). The 67 amino acid carboxyl-terminal domain (P67) of human propionyl-CoA carboxylase alpha subunit can be metabolically biotinylated at a fixed lysine residue. We genetically fused P67 to the carboxyl terminus of the yeast enzyme FCU1, a derivative of cytosine deaminase that can convert the non-toxic prodrug 5-fluorocytosine to the cytotoxic agent 5-fluorouracil. When produced in Escherichia coli cells overexpressing a biotin protein ligase, the FCU1-P67 fusion protein was efficiently mono-biotinylated. In the presence of 5-fluorocytosine, the biotinylated fusion protein conjugated to anti-rat TfR IgG3-Av efficiently killed rat Y3-Ag1.2.3 myeloma cells in vitro, while the same protein conjugated to an irrelevant (anti-dansyl) antibody fused to Av showed no cytotoxic effect. Efficient tumor cell killing was also observed when E. coli purine nucleoside phosphorylase was similarly targeted to the tumor cells in the presence of the prodrug 2-fluoro-2'-deoxyadenosine. These results suggest that when combined with P67-based biotinylation, anti-TfR IgG3-Av could serve as a universal delivery vector for targeted chemotherapy of cancer.

  17. Eps15 Homology Domain-containing Protein 3 Regulates Cardiac T-type Ca2+ Channel Targeting and Function in the Atria*

    PubMed Central

    Curran, Jerry; Musa, Hassan; Kline, Crystal F.; Makara, Michael A.; Little, Sean C.; Higgins, John D.; Hund, Thomas J.; Band, Hamid; Mohler, Peter J.

    2015-01-01

    Proper trafficking of membrane-bound ion channels and transporters is requisite for normal cardiac function. Endosome-based protein trafficking of membrane-bound ion channels and transporters in the heart is poorly understood, particularly in vivo. In fact, for select cardiac cell types such as atrial myocytes, virtually nothing is known regarding endosomal transport. We previously linked the C-terminal Eps15 homology domain-containing protein 3 (EHD3) with endosome-based protein trafficking in ventricular cardiomyocytes. Here we sought to define the roles and membrane protein targets for EHD3 in atria. We identify the voltage-gated T-type Ca2+ channels (CaV3.1, CaV3.2) as substrates for EHD3-dependent trafficking in atria. Mice selectively lacking EHD3 in heart display reduced expression and targeting of both Cav3.1 and CaV3.2 in the atria. Furthermore, functional experiments identify a significant loss of T-type-mediated Ca2+ current in EHD3-deficient atrial myocytes. Moreover, EHD3 associates with both CaV3.1 and CaV3.2 in co-immunoprecipitation experiments. T-type Ca2+ channel function is critical for proper electrical conduction through the atria. Consistent with these roles, EHD3-deficient mice demonstrate heart rate variability, sinus pause, and atrioventricular conduction block. In summary, our findings identify CaV3.1 and CaV3.2 as substrates for EHD3-dependent protein trafficking in heart, provide in vivo data on endosome-based trafficking pathways in atria, and implicate EHD3 as a key player in the regulation of atrial myocyte excitability and cardiac conduction. PMID:25825486

  18. The replication foci targeting sequence (RFTS) of DNMT1 functions as a potent histone H3 binding domain regulated by autoinhibition.

    PubMed

    Misaki, Toshinori; Yamaguchi, Luna; Sun, Jia; Orii, Minami; Nishiyama, Atsuya; Nakanishi, Makoto

    2016-02-12

    DNA methyltransferase 1 (DNMT1) plays an essential role in propagation of the DNA methylation pattern to daughter cells. The replication foci targeting sequence (RFTS) of DNMT1 is required for the recruitment of DNMT1 to DNA methylation sites through direct binding to ubiquitylated histone H3 mediated by UHRF1 (Ubiquitin-like containing PHD and RING finger domains 1). Recently, it has been reported that the RFTS plugs the catalytic pocket of DNMT1 in an intermediated manner and inhibits its DNA methyltransferase activity. However, it is unclear whether this binding affects RFTS function in terms of recruitment to DNA methylation sites. Using Xenopus egg extracts, we demonstrate here that abrogation of the interaction between the RFTS and the catalytic center of DNMT1, by deletion of the C-terminal portion or disruption of the hydrogen bond, results in non-ubiquitylated histone H3 binding and abnormal accumulation of DNMT1 on the chromatin. Interestingly, DNMT1 mutants identified in patients with a neurodegenerative disease, ADCA-DN, bound to non-ubiquitylated histone H3 and accumulated on chromatin during S phase in Xenopus egg extracts. These results suggest that the interaction between the RFTS and the catalytic center of DNMT1 serves as an autoinhibitory mechanism for suppressing the histone H3 binding of DNMT1 and ensuring the accurate recruitment of DNMT1 to sites of DNA methylation. The autoinhibitory mechanism may play an important role in the regulation of gene expression in neurogenesis.

  19. Analysis of p53 transactivation domain mutants reveals Acad11 as a metabolic target important for p53 pro-survival function

    PubMed Central

    Jiang, Dadi; LaGory, Edward L.; Brož, Daniela Kenzelmann; Bieging, Kathryn T.; Brady, Colleen A.; Link, Nichole; Abrams, John M.; Giaccia, Amato J.; Attardi, Laura D.

    2015-01-01

    SUMMARY The p53 tumor suppressor plays a key role in maintaining cellular integrity. In response to diverse stress signals, p53 can trigger apoptosis to eliminate damaged cells or cell-cycle arrest to enable cells to cope with stress and survive. However, the transcriptional networks underlying p53 pro-survival function are incompletely understood. Here, we show that in oncogenic-Ras-expressing cells, p53 promotes oxidative phosphorylation (OXPHOS) and cell survival upon glucose starvation. Analysis of p53 transcriptional activation domain mutants reveals that these responses depend on p53 transactivation function. Using gene expression profiling and ChIP-seq analysis, we identify several p53-inducible fatty acid metabolism-related genes. One such gene, Acad11, encoding a protein involved in fatty acid oxidation, is required for efficient OXPHOS and cell survival upon glucose starvation. This study provides new mechanistic insight into the pro-survival function of p53 and suggests that targeting this pathway may provide a strategy for therapeutic intervention based on metabolic perturbation. PMID:25704813

  20. A protein-targeting strategy used to develop a selective inhibitor of the E17K point mutation in the PH domain of Akt1

    NASA Astrophysics Data System (ADS)

    Deyle, Kaycie M.; Farrow, Blake; Qiao Hee, Ying; Work, Jeremy; Wong, Michelle; Lai, Bert; Umeda, Aiko; Millward, Steven W.; Nag, Arundhati; Das, Samir; Heath, James R.

    2015-05-01

    Ligands that can bind selectively to proteins with single amino-acid point mutations offer the potential to detect or treat an abnormal protein in the presence of the wild type (WT). However, it is difficult to develop a selective ligand if the point mutation is not associated with an addressable location, such as a binding pocket. Here we report an all-chemical synthetic epitope-targeting strategy that we used to discover a 5-mer peptide with selectivity for the E17K-transforming point mutation in the pleckstrin homology domain of the Akt1 oncoprotein. A fragment of Akt1 that contained the E17K mutation and an I19[propargylglycine] substitution was synthesized to form an addressable synthetic epitope. Azide-presenting peptides that clicked covalently onto this alkyne-presenting epitope were selected from a library using in situ screening. One peptide exhibits a 10:1 in vitro selectivity for the oncoprotein relative to the WT, with a similar selectivity in cells. This 5-mer peptide was expanded into a larger ligand that selectively blocks the E17K Akt1 interaction with its PIP3 (phosphatidylinositol (3,4,5)-trisphosphate) substrate.

  1. Male germ cell expression of the PAS domain kinase PASKIN and its novel target eukaryotic translation elongation factor eEF1A1.

    PubMed

    Eckhardt, Katrin; Troger, Juliane; Reissmann, Jana; Katschinski, Dörthe M; Wagner, Klaus F; Stengel, Petra; Paasch, Uwe; Hunziker, Peter; Borter, Emanuela; Barth, Sandra; Schlafli, Philipp; Spielmann, Patrick; Stiehl, Daniel P; Camenisch, Gieri; Wenger, Roland H

    2007-01-01

    PASKIN links energy flux and protein synthesis in yeast, regulates glycogen synthesis in mammals, and has been implicated in glucose-stimulated insulin production in pancreatic beta-cells. Using newly generated monoclonal antibodies, PASKIN was localized in the nuclei of human testis germ cells and in the midpiece of human sperm tails. A speckle-like nuclear pattern was observed for endogenous PASKIN in HeLa cells in addition to its cytoplasmic localization. By yeast two-hybrid screening, we identified the multifunctional eukaryotic translation elongation factor eEF1A1 as a novel interaction partner of PASKIN. This interaction was mapped to the PAS A and kinase domains of PASKIN and to the C-terminus of eEF1A1 using mammalian two-hybrid and GST pull-down assays. Kinase assays, mass spectrometry and site-directed mutagenesis revealed PASKIN auto-phosphorylation as well as eEF1A1 target phosphorylation mainly but not exclusively at Thr432. Wild-type but not kinase-inactive PASKIN increased the in vitro translation of a reporter cRNA. Whereas eEF1A1 did not localize to the nucleus, it co-localizes with PASKIN to the cytoplasm of HeLa cells. The two proteins also showed a remarkably similar localization in the midpiece of the sperm tail. These data suggest regulation of eEF1A1 by PASKIN-dependent phosphorylation in somatic as well as in sperm cells. PMID:17595531

  2. Animal Protection and Structural Studies of a Consensus Sequence Vaccine Targeting the Receptor Binding Domain of the Type IV Pilus of Pseudomonas aeruginosa

    SciTech Connect

    Kao, Daniel J.; Churchill, Mair E.A.; Irvin, Randall T.; Hodges, Robert S.

    2008-09-23

    One of the main obstacles in the development of a vaccine against Pseudomonas aeruginosa is the requirement that it is protective against a wide range of virulent strains. We have developed a synthetic-peptide consensus-sequence vaccine (Cs1) that targets the host receptor-binding domain (RBD) of the type IV pilus of P. aeruginosa. Here, we show that this vaccine provides increased protection against challenge by the four piliated strains that we have examined (PAK, PAO, KB7 and P1) in the A.BY/SnJ mouse model of acute P. aeruginosa infection. To further characterize the consensus sequence, we engineered Cs1 into the PAK monomeric pilin protein and determined the crystal structure of the chimeric Cs1 pilin to 1.35 {angstrom} resolution. The substitutions (T130K and E135P) used to create Cs1 do not disrupt the conserved backbone conformation of the pilin RBD. In fact, based on the Cs1 pilin structure, we hypothesize that the E135P substitution bolsters the conserved backbone conformation and may partially explain the immunological activity of Cs1. Structural analysis of Cs1, PAK and K122-4 pilins reveal substitutions of non-conserved residues in the RBD are compensated for by complementary changes in the rest of the pilin monomer. Thus, the interactions between the RBD and the rest of the pilin can either be mediated by polar interactions of a hydrogen bond network in some strains or by hydrophobic interactions in others. Both configurations maintain a conserved backbone conformation of the RBD. Thus, the backbone conformation is critical in our consensus-sequence vaccine design and that cross-reactivity of the antibody response may be modulated by the composition of exposed side-chains on the surface of the RBD. This structure will guide our future vaccine design by focusing our investigation on the four variable residue positions that are exposed on the RBD surface.

  3. Oral Streptococci Utilize a Siglec-Like Domain of Serine-Rich Repeat Adhesins to Preferentially Target Platelet Sialoglycans in Human Blood

    PubMed Central

    Deng, Lingquan; Bensing, Barbara A.; Thamadilok, Supaporn; Yu, Hai; Lau, Kam; Chen, Xi; Ruhl, Stefan; Sullam, Paul M.; Varki, Ajit

    2014-01-01

    Damaged cardiac valves attract blood-borne bacteria, and infective endocarditis is often caused by viridans group streptococci. While such bacteria use multiple adhesins to maintain their normal oral commensal state, recognition of platelet sialoglycans provides an intermediary for binding to damaged valvular endocardium. We use a customized sialoglycan microarray to explore the varied binding properties of phylogenetically related serine-rich repeat adhesins, the GspB, Hsa, and SrpA homologs from Streptococcus gordonii and Streptococcus sanguinis species, which belong to a highly conserved family of glycoproteins that contribute to virulence for a broad range of Gram-positive pathogens. Binding profiles of recombinant soluble homologs containing novel sialic acid-recognizing Siglec-like domains correlate well with binding of corresponding whole bacteria to arrays. These bacteria show multiple modes of glycan, protein, or divalent cation-dependent binding to synthetic glycoconjugates and isolated glycoproteins in vitro. However, endogenous asialoglycan-recognizing clearance receptors are known to ensure that only fully sialylated glycans dominate in the endovascular system, wherein we find these particular streptococci become primarily dependent on their Siglec-like adhesins for glycan-mediated recognition events. Remarkably, despite an excess of alternate sialoglycan ligands in cellular and soluble blood components, these adhesins selectively target intact bacteria to sialylated ligands on platelets, within human whole blood. These preferred interactions are inhibited by corresponding recombinant soluble adhesins, which also preferentially recognize platelets. Our data indicate that circulating platelets may act as inadvertent Trojan horse carriers of oral streptococci to the site of damaged endocardium, and provide an explanation why it is that among innumerable microbes that gain occasional access to the bloodstream, certain viridans group streptococci have a

  4. The SMARCA2/4 ATPase domain surpasses the bromodomain as a drug target in SWI/SNF mutant cancers: Insights from cDNA rescue and PFI-3 inhibitor studies

    PubMed Central

    Vangamudi, Bhavatarini; Kost-Alimova, Maria; Nottebaum, Lisa; Shi, Xi; Zhan, Yanai; Leo, Elisabetta; Mahadeshwar, Harshad S.; Protopopov, Alexei; Futreal, Andrew; Tieu, Trang N.; Peoples, Mike; Heffernan, Timothy P.; Marszalek, Joseph R.; Toniatti, Carlo; Petrocchi, Alessia; Verhelle, Dominique; Owen, Dafydd R.; Draetta, Giulio; Jones, Philip; Palmer, Wylie S.; Sharma, Shikhar; Andersen, Jannik N.

    2015-01-01

    The SWI/SNF multi-subunit complex modulates chromatin structure through the activity of two mutually exclusive catalytic subunits, SMARCA2 and SMARCA4, which both contain a bromodomain and an ATPase domain. Using RNAi, cancer-specific vulnerabilities have been identified in SWI/SNF mutant tumors, including SMARCA4-deficient lung cancer, however, the contribution of conserved, druggable protein domains to this anticancer phenotype is unknown. Here, we functionally deconstruct the SMARCA2/4 paralog dependence of cancer cells using bioinformatics, genetic and pharmacological tools. We evaluate a selective SMARCA2/4 bromodomain inhibitor (PFI-3) and characterize its activity in chromatin-binding and cell-functional assays focusing on cells with altered SWI/SNF complex (e.g. Lung, Synovial Sarcoma, Leukemia, and Rhabdoid tumors). We demonstrate that PFI-3 is a potent, cell-permeable probe capable of displacing ectopically expressed, GFP-tagged SMARCA2-bromodomain from chromatin, yet contrary to target knockdown, the inhibitor fails to display an antiproliferative phenotype. Mechanistically, the lack of pharmacological efficacy is reconciled by the failure of bromodomain inhibition to displace endogenous, full-length SMARCA2 from chromatin as determined by in situ cell extraction, chromatin immunoprecipitation and target gene expression studies. Further, using inducible RNAi and cDNA complementation (bromodomain- and ATPase-dead constructs), we unequivocally identify the ATPase domain, and not the bromodomain of SMARCA2, as the relevant therapeutic target with the catalytic activity suppressing defined transcriptional programs. Taken together, our complementary genetic and pharmacological studies exemplify a general strategy for multi-domain protein drug-target validation and in case of SMARCA2/4 highlight the potential for drugging the more challenging helicase/ATPase domain to deliver on the promise of synthetic-lethality therapy. PMID:26139243

  5. Targeted expression of the inositol 1,4,5-triphosphate receptor (IP3R) ligand-binding domain releases Ca2+ via endogenous IP3R channels.

    PubMed

    Várnai, Péter; Balla, András; Hunyady, László; Balla, Tamas

    2005-05-31

    Virtually all functions of a cell are influenced by cytoplasmic [Ca(2+)] increases. Inositol 1,4,5-trisphosphate receptor (IP(3)R) channels, located in the endoplasmic reticulum (ER), release Ca(2+) in response to binding of the second messenger, IP(3).IP(3)Rs thus are part of the information chain interpreting external signals and transforming them into cytoplasmic Ca(2+) transients. IP(3)Rs function as tetramers, each unit comprising an N-terminal ligand-binding domain (LBD) and a C-terminal channel domain linked by a long regulatory region. It is not yet understood how the binding of IP(3) to the LBD regulates the gating properties of the channel. Here, we use the expression of IP(3) binding protein domains tethered to the surface of the endoplasmic reticulum (ER) to show that the all-helical domain of the IP(3)R LBD is capable of depleting the ER Ca(2+) pools by opening the endogenous IP(3)Rs, even without IP(3) binding. This effect requires the domain to be within 50 A of the ER membrane and is impaired by the presence of the N-terminal inhibitory segment on the LBD. These findings raise the possibility that the helical domain of the LBD functions as an effector module possibly interacting with the channel domain, thereby being part of the gating mechanisms by which the IP(3)-induced conformational change within the LBD regulates Ca(2+) release.

  6. The SMARCA2/4 ATPase Domain Surpasses the Bromodomain as a Drug Target in SWI/SNF-Mutant Cancers: Insights from cDNA Rescue and PFI-3 Inhibitor Studies.

    PubMed

    Vangamudi, Bhavatarini; Paul, Thomas A; Shah, Parantu K; Kost-Alimova, Maria; Nottebaum, Lisa; Shi, Xi; Zhan, Yanai; Leo, Elisabetta; Mahadeshwar, Harshad S; Protopopov, Alexei; Futreal, Andrew; Tieu, Trang N; Peoples, Mike; Heffernan, Timothy P; Marszalek, Joseph R; Toniatti, Carlo; Petrocchi, Alessia; Verhelle, Dominique; Owen, Dafydd R; Draetta, Giulio; Jones, Philip; Palmer, Wylie S; Sharma, Shikhar; Andersen, Jannik N

    2015-09-15

    The SWI/SNF multisubunit complex modulates chromatin structure through the activity of two mutually exclusive catalytic subunits, SMARCA2 and SMARCA4, which both contain a bromodomain and an ATPase domain. Using RNAi, cancer-specific vulnerabilities have been identified in SWI/SNF-mutant tumors, including SMARCA4-deficient lung cancer; however, the contribution of conserved, druggable protein domains to this anticancer phenotype is unknown. Here, we functionally deconstruct the SMARCA2/4 paralog dependence of cancer cells using bioinformatics, genetic, and pharmacologic tools. We evaluate a selective SMARCA2/4 bromodomain inhibitor (PFI-3) and characterize its activity in chromatin-binding and cell-functional assays focusing on cells with altered SWI/SNF complex (e.g., lung, synovial sarcoma, leukemia, and rhabdoid tumors). We demonstrate that PFI-3 is a potent, cell-permeable probe capable of displacing ectopically expressed, GFP-tagged SMARCA2-bromodomain from chromatin, yet contrary to target knockdown, the inhibitor fails to display an antiproliferative phenotype. Mechanistically, the lack of pharmacologic efficacy is reconciled by the failure of bromodomain inhibition to displace endogenous, full-length SMARCA2 from chromatin as determined by in situ cell extraction, chromatin immunoprecipitation, and target gene expression studies. Furthermore, using inducible RNAi and cDNA complementation (bromodomain- and ATPase-dead constructs), we unequivocally identify the ATPase domain, and not the bromodomain of SMARCA2, as the relevant therapeutic target with the catalytic activity suppressing defined transcriptional programs. Taken together, our complementary genetic and pharmacologic studies exemplify a general strategy for multidomain protein drug-target validation and in case of SMARCA2/4 highlight the potential for drugging the more challenging helicase/ATPase domain to deliver on the promise of synthetic-lethality therapy.

  7. CASP9 Target Classification

    PubMed Central

    Kinch, Lisa N.; Shi, Shuoyong; Cheng, Hua; Cong, Qian; Pei, Jimin; Mariani, Valerio; Schwede, Torsten; Grishin, Nick V.

    2011-01-01

    The Critical Assessment of Protein Structure Prediction round 9 (CASP9) aimed to evaluate predictions for 129 experimentally determined protein structures. To assess tertiary structure predictions, these target structures were divided into domain-based evaluation units that were then classified into two assessment categories: template based modeling (TBM) and template free modeling (FM). CASP9 targets were split into domains of structurally compact evolutionary modules. For the targets with more than one defined domain, the decision to split structures into domains for evaluation was based on server performance. Target domains were categorized based on their evolutionary relatedness to existing templates as well as their difficulty levels indicated by server performance. Those target domains with sequence-related templates and high server prediction performance were classified as TMB, while those targets without identifiable templates and low server performance were classified as FM. However, using these generalizations for classification resulted in a blurred boundary between CASP9 assessment categories. Thus, the FM category included those domains without sequence detectable templates (25 target domains) as well as some domains with difficult to detect templates whose predictions were as poor as those without templates (5 target domains). Several interesting examples are discussed, including targets with sequence related templates that exhibit unusual structural differences, targets with homologous or analogous structure templates that are not detectable by sequence, and targets with new folds. PMID:21997778

  8. The resolvase/invertase domain of the site-specific recombinase TnpX is functional and recognizes a target sequence that resembles the junction of the circular form of the Clostridium perfringens transposon Tn4451.

    PubMed Central

    Crellin, P K; Rood, J I

    1997-01-01

    Tn4451 is a 6.3-kb chloramphenicol resistance transposon from Clostridium perfringens and is found on the conjugative plasmid pIP401. The element undergoes spontaneous excision from multicopy plasmids in Escherichia coli and C. perfringens and conjugative excision from pIP401 in C. perfringens. Tn4451 is excised as a circular molecule which is probably the transposition intermediate. Excision of Tn4451 is dependent upon the site-specific recombinase TnpX, which contains potential motifs associated with both the resolvase/invertase and integrase families of recombinases. Site-directed mutagenesis of conserved amino acid residues within these domains was used to show that the resolvase/invertase domain was essential for TnpX-mediated excision of Tn4451 from multicopy plasmids in E. coli. An analysis of Tn4451 target sites revealed that the transposition process showed target site specificity. The Tn4451 target sequence resembled the junction of the circular form, and insertion occurred at a GA dinucleotide. Tn4451 insertions were flanked by directly repeated GA dinucleotides, and there was also a GA at the junction of the circular form, where the left and right termini of Tn4451 were fused. We propose a model for Tn4451 excision and insertion in which the resolvase/invertase domain of TnpX introduces 2-bp staggered cuts at these GA dinucleotides. Analysis of Tn4451 derivatives with altered GA dinucleotides provided experimental evidence to support the model. PMID:9260958

  9. Perspectives for the use of structural information and chemical genetics to develop inhibitors of Janus kinases

    PubMed Central

    Haan, Claude; Behrmann, Iris; Haan, Serge

    2010-01-01

    Abstract Gain-of-function mutations in the genes encoding Janus kinases have been discovered in various haematologic diseases. Jaks are composed of a FERM domain, an SH2 domain, a pseudokinase domain and a kinase domain, and a complex interplay of the Jak domains is involved in regulation of catalytic activity and association to cytokine receptors. Most activating mutations are found in the pseudokinase domain. Here we present recently discovered mutations in the context of our structural models of the respective domains. We describe two structural hotspots in the pseudokinase domain of Jak2 that seem to be associated either to myeloproliferation or to lymphoblastic leukaemia, pointing at the involvement of distinct signalling complexes in these disease settings. The different domains of Jaks are discussed as potential drug targets. We present currently available inhibitors targeting Jaks and indicate structural differences in the kinase domains of the different Jaks that may be exploited in the development of specific inhibitors. Moreover, we discuss recent chemical genetic approaches which can be applied to Jaks to better understand the role of these kinases in their biological settings and as drug targets. PMID:20132407

  10. Targeting and import mechanism of coiled-coil helix coiled-coil helix domain-containing protein 3 (ChChd3) into the mitochondrial intermembrane space.

    PubMed

    Darshi, Manjula; Trinh, Kristina N; Murphy, Anne N; Taylor, Susan S

    2012-11-16

    Coiled-coil helix coiled-coil helix domain-containing protein 3 (ChChd3) is a mitochondrial inner membrane (IM) protein facing toward the intermembrane space (IMS). In the IMS, ChChd3 complexes with multiple proteins at the crista junctions and contact sites and plays a key role in maintaining crista integrity. ChChd3 is myristoylated at the N terminus and has a CHCH domain with twin CX(9)C motifs at its C terminus. The CHCH domain proteins are traditionally imported and trapped in the IMS by using a disulfide relay system mediated by Mia40 and Erv1. In this study, we systematically analyzed the role of the myristoylation and the CHCH domain in the import and mitochondrial localization of ChChd3. Based on our results, we predict that myristoylation promotes binding of ChChd3 to the outer membrane and that the CHCH domain translocates the protein across the outer membrane. By analysis of the CHCH domain cysteine mutants, we further show that they have distinct roles in binding to Mia40 in the IMS and proper folding of the protein. The transient disulfide-bonded intermediate with Mia40 is formed preferentially between the second cysteine in helix 1, Cys(193), and the active site cysteine in Mia40, Cys(55). Although each of the four cysteines is essential for folding of the protein and binding to mitofilin and Sam50, they are not involved in import. Together our results indicate that both the myristoylation and the CHCH domain are essential for the import and mitochondrial localization of ChChd3. Once imported, ChChd3 binds to Mia40 for further folding and assembly into macromolecular complexes.

  11. A monoclonal antibody targeting ErbB2 domain III inhibits ErbB2 signaling and suppresses the growth of ErbB2-overexpressing breast tumors

    PubMed Central

    Meng, Y; Zheng, L; Yang, Y; Wang, H; Dong, J; Wang, C; Zhang, Y; Yu, X; Wang, L; Xia, T; Zhang, D; Guo, Y; Li, B

    2016-01-01

    The anti-ErbB2 antibodies trastuzumab and pertuzumab in combination have recently been approved for the treatment of patients with ErbB2-positive metastatic breast cancer. Pertuzumab, which binds to ErbB2 near the center of domain II, and trastuzumab, which binds to the juxtamembrane region of ErbB2 domain IV, directly interfere with domain II- and domain IV-mediated heterodimerization contacts, respectively. In this study, we report a novel anti-ErbB2 antibody, 3E10, which binds to an epitope in domain III that appears to be located opposite to the dimerization interfaces in domain II and domain IV of ErbB2. Our data show that the 3E10 antibody inhibits ErbB2 heterodimerization via a mechanism that strikingly differs from trastuzumab and pertuzumab. It could be speculated that the 3E10 antibody may affect ErbB2 heterodimerization by causing major conformational changes of ErbB2. Furthermore, 3E10 provides synergistic inhibition of ErbB2 heterodimerization and signaling in combination with either trastuzumab or pertuzumab. The combination of these three anti-ErbB2 antibodies that have complementary mechanisms of action appears to be an extremely potent ErbB2 heterodimerization blocker. Compared with trastuzumab plus pertuzumab, the combination of trastuzumab, pertuzumab and 3E10 provides a more potent blockade of ErbB2 signaling. Consistent with this, trastuzumab plus pertuzumab plus 3E10 results in greater in vitro and in vivo antitumor activity in ErbB2-overexpressing breast tumor models, suggesting its potential use for treating ErbB2-overexpressing breast cancer. PMID:26999718

  12. Interactions of the Protein-tyrosine Phosphatase-α with the Focal Adhesion Targeting Domain of Focal Adhesion Kinase Are Involved in Interleukin-1 Signaling in Fibroblasts*

    PubMed Central

    Wang, Qin; Wang, Yongqiang; Fritz, Dominik; Rajshankar, Dhaarmini; Downey, Gregory P.; McCulloch, Christopher A.

    2014-01-01

    Interleukin-1 (IL-1) signaling in fibroblasts is mediated through focal adhesions, organelles that are enriched with adaptor and cytoskeletal proteins that regulate signal transduction. We examined interactions of the focal adhesion kinase (FAK) with protein-tyrosine phosphatase-α (PTP-α) in IL-1 signaling. In wild type and FAK knock-out mouse embryonic fibroblasts, we found by immunoblotting, immunoprecipitation, immunostaining, and gene silencing that FAK is required for IL-1-mediated sequestration of PTPα to focal adhesions. Immunoprecipitation and pulldown assays of purified proteins demonstrated a direct interaction between FAK and PTPα, which was dependent on the FAT domain of FAK and by an intact membrane-proximal phosphatase domain of PTPα. Recruitment of PTPα to focal adhesions, IL-1-induced Ca2+ release from the endoplasmic reticulum, ERK activation, and IL-6, MMP-3, and MMP-9 expression were all blocked in FAK knock-out fibroblasts. These processes were restored in FAK knock-out cells transfected with wild type FAK, FAT domain, and FRNK. Our data indicate that IL-1-induced signaling through focal adhesions involves interactions between the FAT domain of FAK and PTPα. PMID:24821720

  13. Interactions of the protein-tyrosine phosphatase-α with the focal adhesion targeting domain of focal adhesion kinase are involved in interleukin-1 signaling in fibroblasts.

    PubMed

    Wang, Qin; Wang, Yongqiang; Fritz, Dominik; Rajshankar, Dhaarmini; Downey, Gregory P; McCulloch, Christopher A

    2014-06-27

    Interleukin-1 (IL-1) signaling in fibroblasts is mediated through focal adhesions, organelles that are enriched with adaptor and cytoskeletal proteins that regulate signal transduction. We examined interactions of the focal adhesion kinase (FAK) with protein-tyrosine phosphatase-α (PTP-α) in IL-1 signaling. In wild type and FAK knock-out mouse embryonic fibroblasts, we found by immunoblotting, immunoprecipitation, immunostaining, and gene silencing that FAK is required for IL-1-mediated sequestration of PTPα to focal adhesions. Immunoprecipitation and pulldown assays of purified proteins demonstrated a direct interaction between FAK and PTPα, which was dependent on the FAT domain of FAK and by an intact membrane-proximal phosphatase domain of PTPα. Recruitment of PTPα to focal adhesions, IL-1-induced Ca(2+) release from the endoplasmic reticulum, ERK activation, and IL-6, MMP-3, and MMP-9 expression were all blocked in FAK knock-out fibroblasts. These processes were restored in FAK knock-out cells transfected with wild type FAK, FAT domain, and FRNK. Our data indicate that IL-1-induced signaling through focal adhesions involves interactions between the FAT domain of FAK and PTPα.

  14. FBI-1 can stimulate HIV-1 Tat activity and is targeted to a novel subnuclear domain that includes the Tat-P-TEFb-containing nuclear speckles.

    PubMed

    Pendergrast, P Shannon; Wang, Chen; Hernandez, Nouria; Huang, Sui

    2002-03-01

    FBI-1 is a cellular POZ-domain-containing protein that binds to the HIV-1 LTR and associates with the HIV-1 transactivator protein Tat. Here we show that elevated levels of FBI-1 specifically stimulate Tat activity and that this effect is dependent on the same domain of FBI-1 that mediates Tat-FBI-1 association in vivo. FBI-1 also partially colocalizes with Tat and Tat's cellular cofactor, P-TEFb (Cdk9 and cyclin T1), at the splicing-factor-rich nuclear speckle domain. Further, a less-soluble population of FBI-1 distributes in a novel peripheral-speckle pattern of localization as well as in other nuclear regions. This distribution pattern is dependent on the FBI-1 DNA binding domain, on the presence of cellular DNA, and on active transcription. Taken together, these results suggest that FBI-1 is a cellular factor that preferentially associates with active chromatin and that can specifically stimulate Tat-activated HIV-1 transcription.

  15. Structural basis for membrane targeting by the MVB12-associated [beta]-prism domain of the human ESCRT-I MVB12 subunit

    SciTech Connect

    Boura, Evzen; Hurley, James H.

    2012-03-15

    MVB12-associated {beta}-prism (MABP) domains are predicted to occur in a diverse set of membrane-associated bacterial and eukaryotic proteins, but their existence, structure, and biochemical properties have not been characterized experimentally. Here, we find that the MABP domains of the MVB12A and B subunits of ESCRT-I are functional modules that bind in vitro to liposomes containing acidic lipids depending on negative charge density. The MABP domain is capable of autonomously localizing to subcellular puncta and to the plasma membrane. The 1.3-{angstrom} atomic resolution crystal structure of the MVB12B MABP domain reveals a {beta}-prism fold, a hydrophobic membrane-anchoring loop, and an electropositive phosphoinositide-binding patch. The basic patch is open, which explains how it senses negative charge density but lacks stereoselectivity. These observations show how ESCRT-I could act as a coincidence detector for acidic phospholipids and protein ligands, enabling it to function both in protein transport at endosomes and in cytokinesis and viral budding at the plasma membrane.

  16. Structure of the second RRM domain of Nrd1, a fission yeast MAPK target RNA binding protein, and implication for its RNA recognition and regulation

    SciTech Connect

    Kobayashi, Ayaho; Kanaba, Teppei; Satoh, Ryosuke; Fujiwara, Toshinobu; Ito, Yutaka; Sugiura, Reiko; Mishima, Masaki

    2013-07-19

    Highlights: •Solution structure of the second RRM of Nrd1 was determined. •RNA binding site of the second RRM was estimated. •Regulatory mechanism of RNA binding by phosphorylation is discussed. -- Abstract: Negative regulator of differentiation 1 (Nrd1) is known as a negative regulator of sexual differentiation in fission yeast. Recently, it has been revealed that Nrd1 also regulates cytokinesis, in which physical separation of the cell is achieved by a contractile ring comprising many proteins including actin and myosin. Cdc4, a myosin II light chain, is known to be required for cytokinesis. Nrd1 binds and stabilizes Cdc4 mRNA, and thereby suppressing the cytokinesis defects of the cdc4 mutants. Interestingly, Pmk1 MAPK phosphorylates Nrd1, resulting in markedly reduced RNA binding activity. Furthermore, Nrd1 localizes to stress granules in response to various stresses, and Pmk1 phosphorylation enhances the localization. Nrd1 consists of four RRM domains, although the mechanism by which Pmk1 regulates the RNA binding activity of Nrd1 is unknown. In an effort to delineate the relationship between Nrd1 structure and function, we prepared each RNA binding domain of Nrd1 and examined RNA binding to chemically synthesized oligo RNA using NMR. The structure of the second RRM domain of Nrd1 was determined and the RNA binding site on the second RRM domain was mapped by NMR. A plausible mechanism pertaining to the regulation of RNA binding activity by phosphorylation is also discussed.

  17. Domain Engineering

    NASA Astrophysics Data System (ADS)

    Bjørner, Dines

    Before software can be designed we must know its requirements. Before requirements can be expressed we must understand the domain. So it follows, from our dogma, that we must first establish precise descriptions of domains; then, from such descriptions, “derive” at least domain and interface requirements; and from those and machine requirements design the software, or, more generally, the computing systems.

  18. Tandem mass spectrometry identifies many mouse brain O-GlcNAcylated proteins including EGF domain-specific O-GlcNAc transferase targets.

    PubMed

    Alfaro, Joshua F; Gong, Cheng-Xin; Monroe, Matthew E; Aldrich, Joshua T; Clauss, Therese R W; Purvine, Samuel O; Wang, Zihao; Camp, David G; Shabanowitz, Jeffrey; Stanley, Pamela; Hart, Gerald W; Hunt, Donald F; Yang, Feng; Smith, Richard D

    2012-05-01

    O-linked N-acetylglucosamine (O-GlcNAc) is a reversible posttranslational modification of Ser and Thr residues on cytosolic and nuclear proteins of higher eukaryotes catalyzed by O-GlcNAc transferase (OGT). O-GlcNAc has recently been found on Notch1 extracellular domain catalyzed by EGF domain-specific OGT. Aberrant O-GlcNAc modification of brain proteins has been linked to Alzheimer's disease (AD). However, understanding specific functions of O-GlcNAcylation in AD has been impeded by the difficulty in characterization of O-GlcNAc sites on proteins. In this study, we modified a chemical/enzymatic photochemical cleavage approach for enriching O-GlcNAcylated peptides in samples containing ∼100 μg of tryptic peptides from mouse cerebrocortical brain tissue. A total of 274 O-GlcNAcylated proteins were identified. Of these, 168 were not previously known to be modified by O-GlcNAc. Overall, 458 O-GlcNAc sites in 195 proteins were identified. Many of the modified residues are either known phosphorylation sites or located proximal to known phosphorylation sites. These findings support the proposed regulatory cross-talk between O-GlcNAcylation and phosphorylation. This study produced the most comprehensive O-GlcNAc proteome of mammalian brain tissue with both protein identification and O-GlcNAc site assignment. Interestingly, we observed O-β-GlcNAc on EGF-like repeats in the extracellular domains of five membrane proteins, expanding the evidence for extracellular O-GlcNAcylation by the EGF domain-specific OGT. We also report a GlcNAc-β-1,3-Fuc-α-1-O-Thr modification on the EGF-like repeat of the versican core protein, a proposed substrate of Fringe β-1,3-N-acetylglucosaminyltransferases.

  19. FBI-1 Can Stimulate HIV-1 Tat Activity and Is Targeted to a Novel Subnuclear Domain that Includes the Tat-P-TEFb—containing Nuclear Speckles

    PubMed Central

    Pendergrast, P. Shannon; Wang, Chen; Hernandez, Nouria; Huang, Sui

    2002-01-01

    FBI-1 is a cellular POZ-domain–containing protein that binds to the HIV-1 LTR and associates with the HIV-1 transactivator protein Tat. Here we show that elevated levels of FBI-1 specifically stimulate Tat activity and that this effect is dependent on the same domain of FBI-1 that mediates Tat-FBI-1 association in vivo. FBI-1 also partially colocalizes with Tat and Tat's cellular cofactor, P-TEFb (Cdk9 and cyclin T1), at the splicing-factor–rich nuclear speckle domain. Further, a less-soluble population of FBI-1 distributes in a novel peripheral-speckle pattern of localization as well as in other nuclear regions. This distribution pattern is dependent on the FBI-1 DNA binding domain, on the presence of cellular DNA, and on active transcription. Taken together, these results suggest that FBI-1 is a cellular factor that preferentially associates with active chromatin and that can specifically stimulate Tat-activated HIV-1 transcription. PMID:11907272

  20. The Trithorax-mimic allele of Enhancer of zeste renders active domains of target genes accessible to polycomb-group-dependent silencing in Drosophila melanogaster.

    PubMed Central

    Bajusz, I; Sipos, L; Györgypál, Z; Carrington, E A; Jones, R S; Gausz, J; Gyurkovics, H

    2001-01-01

    Two antagonistic groups of genes, the trithorax- and the Polycomb-group, are proposed to maintain the appropriate active or inactive state of homeotic genes set up earlier by transiently expressed segmentation genes. Although some details about the mechanism of maintenance are available, it is still unclear how the initially active or inactive chromatin domains are recognized by either the trithorax-group or the Polycomb-group proteins. We describe an unusual dominant allele of a Polycomb-group gene, Enhancer of zeste, which mimics the phenotype of loss-of-function mutations in trithorax-group genes. This mutation, named E(z)(Trithorax mimic) [E(z)(Trm)], contains a single-amino-acid substitution in the conserved SET domain. The strong dominant trithorax-like phenotypes elicited by this E(z) allele suggest that the mutated arginine-741 plays a critical role in distinguishing between active and inactive chromatin domains of the homeotic gene complexes. We have examined the modification of E(z)(Trm) phenotypes by mutant alleles of PcG and trxG genes and other mutations that alter the phosphorylation of nuclear proteins, covalent modifications of histones, or histone dosage. These data implicate some trxG genes in transcriptional repression as well as activation and provide genetic evidence for involvement of histone modifications in PcG/trxG-dependent transcriptional regulation. PMID:11729158

  1. TRIM14 inhibits hepatitis C virus infection by SPRY domain-dependent targeted degradation of the viral NS5A protein.

    PubMed

    Wang, Shanshan; Chen, Yongzhi; Li, Chunfeng; Wu, Yaoxing; Guo, Lei; Peng, Changwei; Huang, Yueping; Cheng, Genhong; Qin, F Xiao-Feng

    2016-01-01

    Tripartite motif 14 (TRIM14) was reported to function as a mitochondrial signaling adaptor in mediating innate immune responses. However, the involvement of TRIM14 in host defense against viral infection and molecular mechanisms remain unclear. Here, we demonstrated that enforced expression of TRIM14 could potently inhibit the infection and replication of HCV in hepatocytes, whereas TRIM14 knockout cells became more susceptible to HCV infection. Interestingly, further experiments revealed that such anti-HCV activity was independent of activating the NF-κB or interferon pathways but required the C-terminal SPRY domain of no signaling capacity. In searching for mechanisms how TRIM14 exerts its antiviral function we found that TRIM14 interacted with HCV encoded non-structural protein NS5A and could strongly induce its degradation dependent on the NS5A1 subdomain. Interestingly extensive domain mapping analyses revealed that NS5A degradation was mediated by the highly conserved SPRY domain of TRIM14, which might involve the K48 ubiquitination pathway. Collectively, our work uncovered a new mechanism responsible for host defense against HCV infection, and could potentially aid the development of novel anti-HCV therapeutics. PMID:27578425

  2. TRIM14 inhibits hepatitis C virus infection by SPRY domain-dependent targeted degradation of the viral NS5A protein

    PubMed Central

    Wang, Shanshan; Chen, Yongzhi; Li, Chunfeng; Wu, Yaoxing; Guo, Lei; Peng, Changwei; Huang, Yueping; Cheng, Genhong; Qin, F. Xiao-Feng

    2016-01-01

    Tripartite motif 14 (TRIM14) was reported to function as a mitochondrial signaling adaptor in mediating innate immune responses. However, the involvement of TRIM14 in host defense against viral infection and molecular mechanisms remain unclear. Here, we demonstrated that enforced expression of TRIM14 could potently inhibit the infection and replication of HCV in hepatocytes, whereas TRIM14 knockout cells became more susceptible to HCV infection. Interestingly, further experiments revealed that such anti-HCV activity was independent of activating the NF-κB or interferon pathways but required the C-terminal SPRY domain of no signaling capacity. In searching for mechanisms how TRIM14 exerts its antiviral function we found that TRIM14 interacted with HCV encoded non-structural protein NS5A and could strongly induce its degradation dependent on the NS5A1 subdomain. Interestingly extensive domain mapping analyses revealed that NS5A degradation was mediated by the highly conserved SPRY domain of TRIM14, which might involve the K48 ubiquitination pathway. Collectively, our work uncovered a new mechanism responsible for host defense against HCV infection, and could potentially aid the development of novel anti-HCV therapeutics. PMID:27578425

  3. Transformation/Transcription Domain-Associated Protein (TRRAP)-Mediated Regulation of Wee1

    PubMed Central

    Calonge, Teresa M.; Eshaghi, Majid; Liu, Jianhua; Ronai, Ze'ev; O'Connell, Matthew J.

    2010-01-01

    The G2 DNA damage checkpoint inhibits Cdc2 and mitotic entry through the dual regulation of Wee1 and Cdc25 by the Chk1 effector kinase. Upregulation of Chk1 by mutation or overexpression bypasses the requirement for upstream regulators or DNA damage to promote a G2 cell cycle arrest. We screened in fission yeast for mutations that rendered cells resistant to overexpressed chk1+. We identified a mutation in tra1, which encodes one of two homologs of transformation/transcription domain-associated protein (TRRAP), an ATM/R-related pseudokinase that scaffolds several histone acetyltransferase (HAT) complexes. Inhibition of histone deacetylases reverts the resistance to overexpressed chk1+, suggesting this phenotype is due to a HAT activity, although expression of checkpoint and cell cycle genes is not greatly affected. Cells with mutant or deleted tra1 activate Chk1 normally and are checkpoint proficient. However, these cells are semi-wee even when overexpressing chk1+ and accumulate inactive Wee1 protein. The changed division response (Cdr) kinases Cdr1 and Cdr2 are negative regulators of Wee1, and we show that they are required for the Tra1-dependent alterations to Wee1 function. This identifies Tra1 as another component controlling the timing of entry into mitosis via Cdc2 activation. PMID:20194963

  4. Single-domain antibody-based and linker-free bispecific antibodies targeting FcγRIII induce potent antitumor activity without recruiting regulatory T cells.

    PubMed

    Rozan, Caroline; Cornillon, Amélie; Pétiard, Corinne; Chartier, Martine; Behar, Ghislaine; Boix, Charlotte; Kerfelec, Brigitte; Robert, Bruno; Pèlegrin, André; Chames, Patrick; Teillaud, Jean-Luc; Baty, Daniel

    2013-08-01

    Antibody-dependent cell-mediated cytotoxicity, one of the most prominent modes of action of antitumor antibodies, suffers from important limitations due to the need for optimal interactions with Fcγ receptors. In this work, we report the design of a new bispecific antibody format, compact and linker-free, based on the use of llama single-domain antibodies that are capable of circumventing most of these limitations. This bispecific antibody format was created by fusing single-domain antibodies directed against the carcinoembryonic antigen and the activating FcγRIIIa receptor to human Cκ and CH1 immunoglobulin G1 domains, acting as a natural dimerization motif. In vitro and in vivo characterization of these Fab-like bispecific molecules revealed favorable features for further development as a therapeutic molecule. They are easy to produce in Escherichia coli, very stable, and elicit potent lysis of tumor cells by human natural killer cells at picomolar concentrations. Unlike conventional antibodies, they do not engage inhibitory FcγRIIb receptor, do not compete with serum immunoglobulins G for receptor binding, and their cytotoxic activity is independent of Fc glycosylation and FcγRIIIa polymorphism. As opposed to anti-CD3 bispecific antitumor antibodies, they do not engage regulatory T cells as these latter cells do not express FcγRIII. Studies in nonobese diabetic/severe combined immunodeficient gamma mice xenografted with carcinoembryonic antigen-positive tumor cells showed that Fab-like bispecific molecules in the presence of human peripheral blood mononuclear cells significantly slow down tumor growth. This new compact, linker-free bispecific antibody format offers a promising approach for optimizing antibody-based therapies.

  5. Paring Down HIV Env: Design and Crystal Structure of a Stabilized Inner Domain of HIV-1 gp120 Displaying a Major ADCC Target of the A32 Region.

    PubMed

    Tolbert, William D; Gohain, Neelakshi; Veillette, Maxime; Chapleau, Jean-Philippe; Orlandi, Chiara; Visciano, Maria L; Ebadi, Maryam; DeVico, Anthony L; Fouts, Timothy R; Finzi, Andrés; Lewis, George K; Pazgier, Marzena

    2016-05-01

    Evidence supports a role of antibody-dependent cellular cytotoxicity (ADCC) toward transitional epitopes in the first and second constant (C1-C2) regions of gp120 (A32-like epitopes) in preventing HIV-1 infection and in vaccine-induced protection. Here, we describe the first successful attempt at isolating the inner domain (ID) of gp120 as an independent molecule that encapsulates the A32-like region within a minimal structural unit of the HIV-1 Env. Through structure-based design, we developed ID2, which consists of the ID expressed independently of the outer domain and stabilized in the CD4-bound conformation by an inter-layer disulfide bond. ID2 expresses C1-C2 epitopes in the context of CD4-triggered full-length gp120 but without any known neutralizing epitope present. Thus, ID2 represents a novel probe for the analysis and/or selective induction of antibody responses to the A32 epitope region. We also present the crystal structure of ID2 complexed with mAb A32, which defines its epitope.

  6. Human antibodies targeting the C-type lectin-like domain of the tumor endothelial cell marker clec14a regulate angiogenic properties in vitro

    PubMed Central

    Ki, M K; Jeoung, M H; Choi, J R; Rho, S-S; Kwon, Y-G; Shim, H; Chung, J; Hong, H J; Song, B D; Lee, S

    2013-01-01

    It has been suggested that clec14a may be involved in tumor angiogenesis. However, a molecular mechanism has not been clearly identified. In this study, we show for the first time that C-type lectin-like domain (CTLD) of clec14a may be important for regulating cell migration and filopodia formation. Using phage display technology, recombinant human antibodies specific to the CTLDs of human and mouse clec14a (clec14a-CTLD (immunoglobulin G) IgG) were selected. Functional assays using the antibodies showed that clec14a-CTLD IgGs specifically blocked endothelial cell migration and tube formation without affecting cell viability or activation. Further, clec14a-CTLD IgGs inhibited clec14a-mediated cell–cell contact by blocking interaction between CTLDs. Finally, clec14a cross-linking by the clec14a-CTLD IgGs significantly downregulated clec14a expression on the surface of endothelial cells. These results strongly suggest that the clec14a-CTLD may be a key domain in angiogenesis, and that clec14a-CTLD IgGs specifically inhibit angiogenesis by modulating CTLD-mediated cell interactions and clec14a expression on the surface of endothelial cells. PMID:23644659

  7. Paring Down HIV Env: Design and Crystal Structure of a Stabilized Inner Domain of HIV-1 gp120 Displaying a Major ADCC Target of the A32 Region.

    PubMed

    Tolbert, William D; Gohain, Neelakshi; Veillette, Maxime; Chapleau, Jean-Philippe; Orlandi, Chiara; Visciano, Maria L; Ebadi, Maryam; DeVico, Anthony L; Fouts, Timothy R; Finzi, Andrés; Lewis, George K; Pazgier, Marzena

    2016-05-01

    Evidence supports a role of antibody-dependent cellular cytotoxicity (ADCC) toward transitional epitopes in the first and second constant (C1-C2) regions of gp120 (A32-like epitopes) in preventing HIV-1 infection and in vaccine-induced protection. Here, we describe the first successful attempt at isolating the inner domain (ID) of gp120 as an independent molecule that encapsulates the A32-like region within a minimal structural unit of the HIV-1 Env. Through structure-based design, we developed ID2, which consists of the ID expressed independently of the outer domain and stabilized in the CD4-bound conformation by an inter-layer disulfide bond. ID2 expresses C1-C2 epitopes in the context of CD4-triggered full-length gp120 but without any known neutralizing epitope present. Thus, ID2 represents a novel probe for the analysis and/or selective induction of antibody responses to the A32 epitope region. We also present the crystal structure of ID2 complexed with mAb A32, which defines its epitope. PMID:27041594

  8. Mutational analysis of Kaposica reveals that bridging of MG2 and CUB domains of target protein is crucial for the cofactor activity of RCA proteins.

    PubMed

    Gautam, Avneesh Kumar; Panse, Yogesh; Ghosh, Payel; Reza, Malik Johid; Mullick, Jayati; Sahu, Arvind

    2015-10-13

    The complement system has evolved to annul pathogens, but its improper regulation is linked with diseases. Efficient regulation of the system is primarily provided by a family of proteins termed regulators of complement activation (RCA). The knowledge of precise structural determinants of RCA proteins critical for imparting the regulatory activities and the molecular events underlying the regulatory processes, nonetheless, is still limited. Here, we have dissected the structural requirements of RCA proteins that are crucial for one of their two regulatory activities, the cofactor activity (CFA), by using the Kaposi's sarcoma-associated herpesvirus RCA homolog Kaposica as a model protein. We have scanned the entire Kaposica molecule by sequential mutagenesis using swapping and site-directed mutagenesis, which identified residues critical for its interaction with C3b and factor I. Mapping of these residues onto the modeled structure of C3b-Kaposica-factor I complex supported the mutagenesis data. Furthermore, the model suggested that the C3b-interacting residues bridge the CUB (complement C1r-C1s, Uegf, Bmp1) and MG2 (macroglobulin-2) domains of C3b. Thus, it seems that stabilization of the CUB domain with respect to the core of the C3b molecule is central for its CFA. Identification of CFA-critical regions in Kaposica guided experiments in which the equivalent regions of membrane cofactor protein were swapped into decay-accelerating factor. This strategy allowed CFA to be introduced into decay-accelerating factor, suggesting that viral and human regulators use a common mechanism for CFA.

  9. Nucleocytoplasmic Distribution of Budding Yeast Protein Kinase A Regulatory Subunit Bcy1 Requires Zds1 and Is Regulated by Yak1-Dependent Phosphorylation of Its Targeting Domain

    PubMed Central

    Griffioen, Gerard; Branduardi, Paola; Ballarini, Annalisa; Anghileri, Paola; Norbeck, Joakim; Baroni, Maurizio D.; Ruis, Helmut

    2001-01-01

    In Saccharomyces cerevisiae the subcellular distribution of Bcy1 is carbon source dependent. In glucose-grown cells, Bcy1 is almost exclusively nuclear, while it appears more evenly distributed between nucleus and cytoplasm in carbon source-derepressed cells. Here we show that phosphorylation of its N-terminal domain directs Bcy1 to the cytoplasm. Biochemical fractionation revealed that the cytoplasmic fraction contains mostly phosphorylated Bcy1, whereas unmodified Bcy1 is predominantly present in the nuclear fraction. Site-directed mutagenesis of two clusters (I and II) of serines near the N terminus to alanine resulted in an enhanced nuclear accumulation of Bcy1 in ethanol-grown cells. In contrast, substitutions to Asp led to a dramatic increase of cytoplasmic localization in glucose-grown cells. Bcy1 modification was found to be dependent on Yak1 kinase and, consequently, in ethanol-grown yak1 cells the Bcy1 remained nuclear. A two-hybrid screen aimed to isolate genes encoding proteins that interact with the Bcy1 N-terminal domain identified Zds1. In ethanol-grown zds1 cells, cytoplasmic localization of Bcy1 was largely absent, while overexpression of ZDS1 led to increased cytoplasmic Bcy1 localization. Zds1 does not regulate Bcy1 modification since this was found to be unaffected in zds1 cells. However, in zds1 cells cluster II-mediated, but not cluster I-mediated, cytoplasmic localization of Bcy1 was found to be absent. Altogether, these results suggest that Zds1-mediated cytoplasmic localization of Bcy1 is regulated by carbon source-dependent phosphorylation of cluster II serines, while cluster I acts in a Zds1-independent manner. PMID:11134339

  10. Mitoxantrone targets the ATP-binding site of FAK, binds the FAK kinase domain and decreases FAK, Pyk-2, c-Src, and IGF-1R in vitro kinase activities.

    PubMed

    Golubovskaya, Vita M; Ho, Baotran; Zheng, Min; Magis, Andrew; Ostrov, David; Cance, William G

    2013-05-01

    Focal Adhesion Kinase (FAK) is a non-receptor kinase that is overexpressed in many types of tumors and plays a key role in cell adhesion, spreading, motility, proliferation, invasion, angiogenesis, and survival. Recently, FAK has been proposed as a target for cancer therapy, and we performed computer modeling and screening of the National Cancer Institute (NCI) small molecule compounds database to target the ATP-binding site of FAK, K454. More than 140,000 small molecule compounds were docked into the crystal structure of the kinase domain of FAK in 100 different orientations using DOCK5.1 that identified small molecule compounds, targeting the K454 site, called A-compounds. To find the therapeutic efficacy of these compounds, we examined the effect of twenty small molecule compounds on cell viability by MTT assays in different cancer cell lines. One compound, A18 (1,4-bis(diethylamino)-5,8- dihydroxy anthraquinon) was a mitoxantrone derivative and significantly decreased viability in most of the cells comparable to the to the level of FAK kinase inhibitors TAE-226 (Novartis, Inc) and PF-573,228 (Pfizer). The A18 compound specifically blocked autophosphorylation of FAK like TAE-226 and PF-228. ForteBio Octet Binding assay demonstrated that mitoxantrone (1,4-dihydroxy- 5,8-bis[2-(2-hydroxyethylamino) ethylamino] anthracene-9,10-dione directly binds the FAK-kinase domain. In addition, mitoxantrone significantly decreased the viability of breast cancer cells in a dose-dependent manner and inhibited the kinase activity of FAK and Y56/577 FAK phosphorylation at 10-20 μM. Mitoxantrone did not affect phosphorylation of EGFR, but decreased Pyk-2, c-Src, and IGF-1R kinase activities. The data demonstrate that mitoxantrone decreases cancer viability, binds FAK-Kinase domain, inhibits its kinase activity, and also inhibits in vitro kinase activities of Pyk-2 and IGF-1R. Thus, this novel function of the mitoxantrone drug can be critical for future development of anti

  11. STAS Domain Structure and Function

    PubMed Central

    Sharma, Alok K.; Rigby, Alan C.; Alper, Seth L.

    2011-01-01

    Pendrin shares with nearly all SLC26/SulP anion transporters a carboxy-terminal cytoplasmic segment organized around a Sulfate Transporter and Anti-Sigma factor antagonist (STAS) domain. STAS domains of divergent amino acid sequence exhibit a conserved fold of 4 β strands interspersed among 5 α helices. The first STAS domain proteins studied were single-domain anti-sigma factor antagonists (anti-anti-σ). These anti-anti-σ indirectly stimulate bacterial RNA polymerase by inactivating inhibitory anti-σ kinases, liberating σ factors to direct specific transcription of target genes or operons. Some STAS domains are nucleotide-binding phosphoproteins or nucleotidases. Others are interaction/transduction modules within multidomain sensors of light, oxygen and other gasotransmitters, cyclic nucleotides, inositol phosphates, and G proteins. Additional multidomain STAS protein sequences suggest functions in sensing, metabolism, or transport of nutrients such as sugars, amino acids, lipids, anions, vitamins, or hydrocarbons. Still other multidomain STAS polypeptides include histidine and serine/threonine kinase domains and ligand-activated transcription factor domains. SulP/SLC26 STAS domains and adjacent sequences interact with other transporters, cytoskeletal scaffolds, and with enzymes metabolizing transported anion substrates, forming putative metabolons. STAS domains are central to membrane targeting of many SulP/SLC26 anion transporters, and STAS domain mutations are associated with at least three human recessive diseases. This review summarizes STAS domain structure and function. PMID:22116355

  12. Inhibition of tumor angiogenesis and tumor growth by the DSL domain of human Delta-like 1 targeted to vascular endothelial cells.

    PubMed

    Zhao, Xing-Cheng; Dou, Guo-Rui; Wang, Li; Liang, Liang; Tian, Deng-Mei; Cao, Xiu-Li; Qin, Hong-Yan; Wang, Chun-Mei; Zhang, Ping; Han, Hua

    2013-07-01

    The growth of solid tumors depends on neovascularization. Several therapies targeting tumor angiogenesis have been developed. However, poor response in some tumors and emerging resistance necessitate further investigations of new drug targets. Notch signal pathway plays a pivotal role in vascular development and tumor angiogenesis. Either blockade or forced activation of this pathway can inhibit angiogenesis. As blocking Notch pathway results in the formation of vascular neoplasm, activation of Notch pathway to prevent tumor angiogenesis might be an alternative choice. However, an in vivo deliverable reagent with highly efficient Notch-activating capacity has not been developed. Here, we generated a polypeptide, hD1R, which consists of the Delta-Serrate-Lag-2 fragment of the human Notch ligand Delta-like 1 and an arginine-glycine-aspartate (RGD) motif targeting endothelial cells (ECs). We showed that hD1R could bind to ECs specifically through its RGD motif and effectively triggered Notch signaling in ECs. We demonstrated both in vitro and in vivo that hD1R inhibited angiogenic sprouting and EC proliferation. In tumor-bearing mice, the injection of hD1R effectively repressed tumor growth, most likely through increasing tumor hypoxia and tissue necrosis. The amount and width of vessels reduced remarkably in tumors of mice treated with hD1R. Moreover, vessels in tumors of mice treated with hD1R recruited more NG2(+) perivascular cells and were better perfused. Combined application of hD1R and chemotherapy with cisplatin and teniposide revealed that these two treatments had additive antitumor effects. Our study provided a new strategy for antiangiogenic tumor therapy.

  13. Cross-domain human action recognition.

    PubMed

    Bian, Wei; Tao, Dacheng; Rui, Yong

    2012-04-01

    Conventional human action recognition algorithms cannot work well when the amount of training videos is insufficient. We solve this problem by proposing a transfer topic model (TTM), which utilizes information extracted from videos in the auxiliary domain to assist recognition tasks in the target domain. The TTM is well characterized by two aspects: 1) it uses the bag-of-words model trained from the auxiliary domain to represent videos in the target domain; and 2) it assumes each human action is a mixture of a set of topics and uses the topics learned from the auxiliary domain to regularize the topic estimation in the target domain, wherein the regularization is the summation of Kullback-Leibler divergences between topic pairs of the two domains. The utilization of the auxiliary domain knowledge improves the generalization ability of the learned topic model. Experiments on Weizmann and KTH human action databases suggest the effectiveness of the proposed TTM for cross-domain human action recognition.

  14. p53 down-regulates SARS coronavirus replication and is targeted by the SARS-unique domain and PLpro via E3 ubiquitin ligase RCHY1.

    PubMed

    Ma-Lauer, Yue; Carbajo-Lozoya, Javier; Hein, Marco Y; Müller, Marcel A; Deng, Wen; Lei, Jian; Meyer, Benjamin; Kusov, Yuri; von Brunn, Brigitte; Bairad, Dev Raj; Hünten, Sabine; Drosten, Christian; Hermeking, Heiko; Leonhardt, Heinrich; Mann, Matthias; Hilgenfeld, Rolf; von Brunn, Albrecht

    2016-08-30

    Highly pathogenic severe acute respiratory syndrome coronavirus (SARS-CoV) has developed strategies to inhibit host immune recognition. We identify cellular E3 ubiquitin ligase ring-finger and CHY zinc-finger domain-containing 1 (RCHY1) as an interacting partner of the viral SARS-unique domain (SUD) and papain-like protease (PL(pro)), and, as a consequence, the involvement of cellular p53 as antagonist of coronaviral replication. Residues 95-144 of RCHY1 and 389-652 of SUD (SUD-NM) subdomains are crucial for interaction. Association with SUD increases the stability of RCHY1 and augments RCHY1-mediated ubiquitination as well as degradation of p53. The calcium/calmodulin-dependent protein kinase II delta (CAMK2D), which normally influences RCHY1 stability by phosphorylation, also binds to SUD. In vivo phosphorylation shows that SUD does not regulate phosphorylation of RCHY1 via CAMK2D. Similarly to SUD, the PL(pro)s from SARS-CoV, MERS-CoV, and HCoV-NL63 physically interact with and stabilize RCHY1, and thus trigger degradation of endogenous p53. The SARS-CoV papain-like protease is encoded next to SUD within nonstructural protein 3. A SUD-PL(pro) fusion interacts with RCHY1 more intensively and causes stronger p53 degradation than SARS-CoV PL(pro) alone. We show that p53 inhibits replication of infectious SARS-CoV as well as of replicons and human coronavirus NL63. Hence, human coronaviruses antagonize the viral inhibitor p53 via stabilizing RCHY1 and promoting RCHY1-mediated p53 degradation. SUD functions as an enhancer to strengthen interaction between RCHY1 and nonstructural protein 3, leading to a further increase in in p53 degradation. The significance of these findings is that down-regulation of p53 as a major player in antiviral innate immunity provides a long-sought explanation for delayed activities of respective genes. PMID:27519799

  15. p53 down-regulates SARS coronavirus replication and is targeted by the SARS-unique domain and PLpro via E3 ubiquitin ligase RCHY1.

    PubMed

    Ma-Lauer, Yue; Carbajo-Lozoya, Javier; Hein, Marco Y; Müller, Marcel A; Deng, Wen; Lei, Jian; Meyer, Benjamin; Kusov, Yuri; von Brunn, Brigitte; Bairad, Dev Raj; Hünten, Sabine; Drosten, Christian; Hermeking, Heiko; Leonhardt, Heinrich; Mann, Matthias; Hilgenfeld, Rolf; von Brunn, Albrecht

    2016-08-30

    Highly pathogenic severe acute respiratory syndrome coronavirus (SARS-CoV) has developed strategies to inhibit host immune recognition. We identify cellular E3 ubiquitin ligase ring-finger and CHY zinc-finger domain-containing 1 (RCHY1) as an interacting partner of the viral SARS-unique domain (SUD) and papain-like protease (PL(pro)), and, as a consequence, the involvement of cellular p53 as antagonist of coronaviral replication. Residues 95-144 of RCHY1 and 389-652 of SUD (SUD-NM) subdomains are crucial for interaction. Association with SUD increases the stability of RCHY1 and augments RCHY1-mediated ubiquitination as well as degradation of p53. The calcium/calmodulin-dependent protein kinase II delta (CAMK2D), which normally influences RCHY1 stability by phosphorylation, also binds to SUD. In vivo phosphorylation shows that SUD does not regulate phosphorylation of RCHY1 via CAMK2D. Similarly to SUD, the PL(pro)s from SARS-CoV, MERS-CoV, and HCoV-NL63 physically interact with and stabilize RCHY1, and thus trigger degradation of endogenous p53. The SARS-CoV papain-like protease is encoded next to SUD within nonstructural protein 3. A SUD-PL(pro) fusion interacts with RCHY1 more intensively and causes stronger p53 degradation than SARS-CoV PL(pro) alone. We show that p53 inhibits replication of infectious SARS-CoV as well as of replicons and human coronavirus NL63. Hence, human coronaviruses antagonize the viral inhibitor p53 via stabilizing RCHY1 and promoting RCHY1-mediated p53 degradation. SUD functions as an enhancer to strengthen interaction between RCHY1 and nonstructural protein 3, leading to a further increase in in p53 degradation. The significance of these findings is that down-regulation of p53 as a major player in antiviral innate immunity provides a long-sought explanation for delayed activities of respective genes.

  16. p53 down-regulates SARS coronavirus replication and is targeted by the SARS-unique domain and PLpro via E3 ubiquitin ligase RCHY1

    PubMed Central

    Ma-Lauer, Yue; Carbajo-Lozoya, Javier; Müller, Marcel A.; Deng, Wen; Lei, Jian; Meyer, Benjamin; Kusov, Yuri; von Brunn, Brigitte; Bairad, Dev Raj; Hünten, Sabine; Drosten, Christian; Hermeking, Heiko; Leonhardt, Heinrich; Mann, Matthias; Hilgenfeld, Rolf; von Brunn, Albrecht

    2016-01-01

    Highly pathogenic severe acute respiratory syndrome coronavirus (SARS-CoV) has developed strategies to inhibit host immune recognition. We identify cellular E3 ubiquitin ligase ring-finger and CHY zinc-finger domain-containing 1 (RCHY1) as an interacting partner of the viral SARS-unique domain (SUD) and papain-like protease (PLpro), and, as a consequence, the involvement of cellular p53 as antagonist of coronaviral replication. Residues 95–144 of RCHY1 and 389–652 of SUD (SUD-NM) subdomains are crucial for interaction. Association with SUD increases the stability of RCHY1 and augments RCHY1-mediated ubiquitination as well as degradation of p53. The calcium/calmodulin-dependent protein kinase II delta (CAMK2D), which normally influences RCHY1 stability by phosphorylation, also binds to SUD. In vivo phosphorylation shows that SUD does not regulate phosphorylation of RCHY1 via CAMK2D. Similarly to SUD, the PLpros from SARS-CoV, MERS-CoV, and HCoV-NL63 physically interact with and stabilize RCHY1, and thus trigger degradation of endogenous p53. The SARS-CoV papain-like protease is encoded next to SUD within nonstructural protein 3. A SUD–PLpro fusion interacts with RCHY1 more intensively and causes stronger p53 degradation than SARS-CoV PLpro alone. We show that p53 inhibits replication of infectious SARS-CoV as well as of replicons and human coronavirus NL63. Hence, human coronaviruses antagonize the viral inhibitor p53 via stabilizing RCHY1 and promoting RCHY1-mediated p53 degradation. SUD functions as an enhancer to strengthen interaction between RCHY1 and nonstructural protein 3, leading to a further increase in in p53 degradation. The significance of these findings is that down-regulation of p53 as a major player in antiviral innate immunity provides a long-sought explanation for delayed activities of respective genes. PMID:27519799

  17. Targeting sub-cellular localization through the Polo-Box Domain: non-ATP competitive Inhibitors recapitulate a PLK1 phenotype

    PubMed Central

    McInnes, Campbell; Estes, Kara; Baxter, Merissa; Yang, Zhengguan; Farag, Doaa Boshra; Johnston, Paul; Lazo, John S.; Wang, Jianjun; Wyatt, Michael D.

    2013-01-01

    The polo-box domain (PBD) has critical roles in the mitotic functions of PLK1. The REPLACE strategy to develop inhibitors of protein-protein interactions has identified alternatives for the N-terminal tripeptide of a Cdc25C substrate. In addition, a peptide structure activity relationship described key determinants and novel information useful for drug design. Fragment ligated inhibitory peptides (FLIPs) were generated with comparable affinity to peptide PBD inhibitors and possessed anti-proliferative phenotypes in cells consistent with the observed decrease in PLK1 centrosomal localization. These FLIPs demonstrated evidence of enhanced PLK1 inhibition in cells relative to peptides and induced monopolar and multipolar spindles, which stands in contrast to previously reported small molecule PBD inhibitors that display phenotypes only partially representative of PLK1 knockdown. Progress obtained applying REPLACE validates this approach for identifying fragment alternatives for determinants of the Cdc25C binding motif and extends its applicability of the strategy for discovering protein-protein interaction inhibitors. In addition, the described PBD inhibitors retain high specificity for PLK1 over PLK3 and therefore show promise as isotype selective, non-ATP competitive kinase inhibitors that provide new impetus for the development of PLK1 selective anti-tumor therapeutics. PMID:22848093

  18. Response of SCP-2L domain of human MFE-2 to ligand removal: binding site closure and burial of peroxisomal targeting signal.

    PubMed

    Lensink, M F; Haapalainen, A M; Hiltunen, J K; Glumoff, T; Juffer, A H

    2002-10-11

    In the study of the structure and function relationship of human MFE-2, we have investigated the dynamics of human MFE-2SCP-2L (hSCP-2L) and its response to ligand removal. A comparison was made with homologous rabbit SCP-2. Breathing and a closing motion are found, identifiable with an adjustment in size and a closing off of the binding pocket. Crucial residues for structural integrity have been identified. Particularly mobile areas of the protein are loop 1 that is connecting helices A and C in space, and helix D, next to the entrance of the pocket. In hSCP-2L, the binding pocket gets occupied by Phe93, which is making a tight hydrophobic contact with Trp36. In addition, it is found that the C-terminal peroxisomal targeting signal (PTS1) that is solvent exposed in the complexed structure becomes buried when no ligand is present. Moreover, an anti-correlation exists between burial of PTS1 and the size of the binding pocket. The results are in accordance with plant nsLTPs, where a similar accommodation of binding pocket size was found after ligand binding/removal. Furthermore, the calculations support the suggestion of a ligand-assisted targeting mechanism.

  19. The E3 ubiquitin ligase protein associated with Myc (Pam) regulates mammalian/mechanistic target of rapamycin complex 1 (mTORC1) signaling in vivo through N- and C-terminal domains.

    PubMed

    Han, Sangyeul; Kim, Sun; Bahl, Samira; Li, Lin; Burande, Clara F; Smith, Nicole; James, Marianne; Beauchamp, Roberta L; Bhide, Pradeep; DiAntonio, Aaron; Ramesh, Vijaya

    2012-08-31

    Pam and its homologs (the PHR protein family) are large E3 ubiquitin ligases that function to regulate synapse formation and growth in mammals, zebrafish, Drosophila, and Caenorhabditis elegans. Phr1-deficient mouse models (Phr1(Δ8,9) and Phr1(Magellan), with deletions in the N-terminal putative guanine exchange factor region and the C-terminal ubiquitin ligase region, respectively) exhibit axon guidance/outgrowth defects and striking defects of major axon tracts in the CNS. Our earlier studies identified Pam to be associated with tuberous sclerosis complex (TSC) proteins, ubiquitinating TSC2 and regulating mammalian/mechanistic target of rapamycin (mTOR) signaling. Here, we examine the potential involvement of the TSC/mTOR complex 1(mTORC1) signaling pathway in Phr1-deficient mouse models. We observed attenuation of mTORC1 signaling in the brains of both Phr1(Δ8,9) and Phr1(Magellan) mouse models. Our results establish that Pam regulates TSC/mTOR signaling in vitro and in vivo through two distinct domains. To further address whether Pam regulates mTORC1 through two functionally independent domains, we undertook heterozygous mutant crossing between Phr1(Δ8,9) and Phr1(Magellan) mice to generate a compound heterozygous model to determine whether these two domains can complement each other. mTORC1 signaling was not attenuated in the brains of double mutants (Phr1(Δ8,9/Mag)), confirming that Pam displays dual regulation of the mTORC1 pathway through two functional domains. Our results also suggest that although dysregulation of mTORC1 signaling may be responsible for the corpus callosum defects, other neurodevelopmental defects observed with Phr1 deficiency are independent of mTORC1 signaling. The ubiquitin ligase complex containing Pam-Fbxo45 likely targets additional synaptic and axonal proteins, which may explain the overlapping neurodevelopmental defects observed in Phr1 and Fbxo45 deficiency.

  20. The E3 Ubiquitin Ligase Protein Associated with Myc (Pam) Regulates Mammalian/Mechanistic Target of Rapamycin Complex 1 (mTORC1) Signaling in Vivo through N- and C-terminal Domains*

    PubMed Central

    Han, Sangyeul; Kim, Sun; Bahl, Samira; Li, Lin; Burande, Clara F.; Smith, Nicole; James, Marianne; Beauchamp, Roberta L.; Bhide, Pradeep; DiAntonio, Aaron; Ramesh, Vijaya

    2012-01-01

    Pam and its homologs (the PHR protein family) are large E3 ubiquitin ligases that function to regulate synapse formation and growth in mammals, zebrafish, Drosophila, and Caenorhabditis elegans. Phr1-deficient mouse models (Phr1Δ8,9 and Phr1Magellan, with deletions in the N-terminal putative guanine exchange factor region and the C-terminal ubiquitin ligase region, respectively) exhibit axon guidance/outgrowth defects and striking defects of major axon tracts in the CNS. Our earlier studies identified Pam to be associated with tuberous sclerosis complex (TSC) proteins, ubiquitinating TSC2 and regulating mammalian/mechanistic target of rapamycin (mTOR) signaling. Here, we examine the potential involvement of the TSC/mTOR complex 1(mTORC1) signaling pathway in Phr1-deficient mouse models. We observed attenuation of mTORC1 signaling in the brains of both Phr1Δ8,9 and Phr1Magellan mouse models. Our results establish that Pam regulates TSC/mTOR signaling in vitro and in vivo through two distinct domains. To further address whether Pam regulates mTORC1 through two functionally independent domains, we undertook heterozygous mutant crossing between Phr1Δ8,9 and Phr1Magellan mice to generate a compound heterozygous model to determine whether these two domains can complement each other. mTORC1 signaling was not attenuated in the brains of double mutants (Phr1Δ8,9/Mag), confirming that Pam displays dual regulation of the mTORC1 pathway through two functional domains. Our results also suggest that although dysregulation of mTORC1 signaling may be responsible for the corpus callosum defects, other neurodevelopmental defects observed with Phr1 deficiency are independent of mTORC1 signaling. The ubiquitin ligase complex containing Pam-Fbxo45 likely targets additional synaptic and axonal proteins, which may explain the overlapping neurodevelopmental defects observed in Phr1 and Fbxo45 deficiency. PMID:22798074

  1. A VLP-based vaccine targeting domain III of the West Nile virus E protein protects from lethal infection in mice

    PubMed Central

    2010-01-01

    Background Since its first appearance in the USA in 1999, West Nile virus (WNV) has spread in the Western hemisphere and continues to represent an important public health concern. In the absence of effective treatment, there is a medical need for the development of a safe and efficient vaccine. Live attenuated WNV vaccines have shown promise in preclinical and clinical studies but might carry inherent risks due to the possibility of reversion to more virulent forms. Subunit vaccines based on the large envelope (E) glycoprotein of WNV have therefore been explored as an alternative approach. Although these vaccines were shown to protect from disease in animal models, multiple injections and/or strong adjuvants were required to reach efficacy, underscoring the need for more immunogenic, yet safe DIII-based vaccines. Results We produced a conjugate vaccine against WNV consisting of recombinantly expressed domain III (DIII) of the E glycoprotein chemically cross-linked to virus-like particles derived from the recently discovered bacteriophage AP205. In contrast to isolated DIII protein, which required three administrations to induce detectable antibody titers in mice, high titers of DIII-specific antibodies were induced after a single injection of the conjugate vaccine. These antibodies were able to neutralize the virus in vitro and provided partial protection from a challenge with a lethal dose of WNV. Three injections of the vaccine induced high titers of virus-neutralizing antibodies, and completely protected mice from WNV infection. Conclusions The immunogenicity of DIII can be strongly enhanced by conjugation to virus-like particles of the bacteriophage AP205. The superior immunogenicity of the conjugate vaccine with respect to other DIII-based subunit vaccines, its anticipated favourable safety profile and low production costs highlight its potential as an efficacious and cost-effective prophylaxis against WNV. PMID:20604940

  2. Thioacylation is required for targeting G-protein subunit G(o1alpha) to detergent-insoluble caveolin-containing membrane domains.

    PubMed Central

    Guzzi, F; Zanchetta, D; Chini, B; Parenti, M

    2001-01-01

    alpha-Subunits of heterotrimeric G(i)-like proteins (alpha(i), alpha(o) and alpha(z)) associate with the cytoplasmic leaflet of the plasma membrane by means of N-terminally linked myristic acid and palmitic acid. An additional role for palmitate has been recently suggested by the observation that fusion with the palmitoylated N-terminus of alpha(i1) relocalizes cytosolic green-fluorescent-protein reporter to low buoyancy, Triton-insoluble membrane domains (TIFF; Triton-insoluble floating fraction), enriched with caveolin-1 [Galbiati, Volonté, Meani, Milligan, Lublin, Lisanti and Parenti (1999) J. Biol. Chem 274, 5843-5850]. Here we show that, upon transient expression in transfected COS-7 cells, myristoylated and palmitoylated alpha(o) (alpha(o)wt, where wt is wild-type) is exclusively found in TIFF, from where non-palmitoylated alpha(o)wt and alpha(o)C3S (Cys(3)-->Ser) mutant are excluded. Moreover, alpha(o) fused to N-terminally truncated human vasopressin V2 receptor (V2TR-alpha(o)), lacking myristate and palmitate, still localizes at the plasma membrane by means of first transmembrane helix of V2R, but is excluded from TIFF. Likewise, alpha(o)C3S does not partition into TIFF, even when its membrane avidity is enhanced by co-expression of betagamma-subunits. Thus membrane association, in the absence of added palmitate, is not sufficient to confer partitioning of alpha(o) within TIFF, suggesting that palmitoylation is a signal for membrane compartmentalization of dually acylated alpha-subunits. PMID:11284718

  3. Discoidin domain receptor 1 is a novel transcriptional target of ZEB1 in breast epithelial cells undergoing H-Ras-induced epithelial to mesenchymal transition

    PubMed Central

    Koh, Minsoo; Woo, Yunjung; Valiathan, Rajeshwari R.; Jung, Hae Yoen; Park, So Yeon; Kim, Yong Nyun; Kim, Hyeong-Reh Choi; Fridman, Rafael; Moon, Aree

    2016-01-01

    The epithelial-to-mesenchymal transition (EMT) process allows carcinoma cells to dissociate from the primary tumor thereby facilitating tumor cell invasion and metastasis. Ras-dependent hyperactive signaling is commonly associated with tumorigenesis, invasion, EMT, and metastasis. However, the downstream effectors by which Ras regulates EMT remain ill defined. In this study, we show that the H-Ras pathway leads to mesenchymal-like phenotypic changes in human breast epithelial cells by controlling the ZEB1/microRNA–200c axis. Moreover, H-Ras suppresses the expression of the discoidin domain receptor 1 (DDR1), a collagen receptor tyrosine kinase, via ZEB1, thus identifying ZEB1 as a novel transcriptional repressor of DDR1. Mutation studies on the putative promoter of the DDR1 gene revealed that bipartite Z- and E-box elements play a key role in transcriptional repression of DDR1 in Hs578T and MDA-MB-231 breast carcinoma cell lines by ZEB1. Furthermore, we found an inverse correlation between ZEB1 and DDR1 expression in various cancer cell lines and in human breast carcinoma tissues. Consistently, overexpression of DDR1 reduced the invasive phenotype of mesenchymal-like triple-negative breast cancer cells in 3D cultures and in vivo. Thus, ZEB1’s role in maintenance of EMT in breast carcinoma cells is mediated in part by its ability to suppress DDR1 expression and consequently contribute to the activation of the invasive phenotype. Taken together, our results unveil a novel H-Ras/ZEB1/DDR1 network that contributes to breast cancer progression in triple-negative breast cancers. PMID:25155634

  4. Tandem Mass Spectrometry identifies many mouse brain O-GlcNAcylated proteins including EGF domain-specific O-GlcNAc transferase targets

    SciTech Connect

    Alfaro, Joshua F.; Gong, Cheng-Xin; Monroe, Matthew E.; Aldrich, Joshua T.; Clauss, Therese RW; Purvine, Samuel O.; Wang, Zihao; Camp, David G.; Shabanowitz, Jeffrey; Stanley, Pamela; Hart, Gerald W.; Hunt, Donald F.; Yang, Feng; Smith, Richard D.

    2012-05-08

    O-Linked N-Acetylglucosamine (O-GlcNAc) is a reversible post-translational modification of Ser and Thr residues on cytosolic and nuclear proteins found in all higher eukaryotes. Aberrant O-GlcNAc modification of brain proteins has been linked to Alzheimer's disease (AD). However, understanding specific functions of O-GlcNAcylation in AD has been impeded by the difficulty in characterization of O-GlcNAc sites on proteins. In this study, we modified a chemical/enzymatic photochemical cleavage approach for enriching O-GlcNAcylated peptides in samples containing {approx}100 {micro}g of tryptic peptides from mouse cerebrocortical brain tissue. A total of 274 O-GlcNAcylated proteins were identified. Of these 168 were not previously known to be modified by O-GlcNAc. Overall, 458 O-GlcNAc sites on Ser and Thr residues in 195 proteins were identified. Many of the modified residues are either known phosphorylation sites or located in close proximity to known phosphorylation sites. These findings support the proposed regulatory crosstalk between O-GlcNAcylation and phosphorylation. This study produced the most comprehensive O-GlcNAc proteome of mammalian brain tissue with both protein identification and O-GlcNAc site assignment. Interestingly, we observed O-{beta}-GlcNAc on EGF-like repeats in the extracellular domains of five membrane proteins, thus representing the first evidence for extracellular O-GlcNAcylation in mammalian systems by the ER-resident O-GlcNAc transferase (EOGT). We also report a GlcNAc-{beta}-1,3-Fuc-{alpha}-1-O-Thr modification on the EGF-like repeat of the Versican core protein, a novel substrate of Fringe {beta}1,3-N-acetylglucosaminyltransferases.

  5. The cytoplasmic domain of the gamete membrane fusion protein HAP2 targets the protein to the fusion site in Chlamydomonas and regulates the fusion reaction.

    PubMed

    Liu, Yanjie; Pei, Jimin; Grishin, Nick; Snell, William J

    2015-03-01

    Cell-cell fusion between gametes is a defining step during development of eukaryotes, yet we know little about the cellular and molecular mechanisms of the gamete membrane fusion reaction. HAP2 is the sole gamete-specific protein in any system that is broadly conserved and shown by gene disruption to be essential for gamete fusion. The wide evolutionary distribution of HAP2 (also known as GCS1) indicates it was present in the last eukaryotic common ancestor and, therefore, dissecting its molecular properties should provide new insights into fundamental features of fertilization. HAP2 acts at a step after membrane adhesion, presumably directly in the merger of the lipid bilayers. Here, we use the unicellular alga Chlamydomonas to characterize contributions of key regions of HAP2 to protein location and function. We report that mutation of three strongly conserved residues in the ectodomain has no effect on targeting or fusion, although short deletions that include those residues block surface expression and fusion. Furthermore, HAP2 lacking a 237-residue segment of the cytoplasmic region is expressed at the cell surface, but fails to localize at the apical membrane patch specialized for fusion and fails to rescue fusion. Finally, we provide evidence that the ancient HAP2 contained a juxta-membrane, multi-cysteine motif in its cytoplasmic region, and that mutation of a cysteine dyad in this motif preserves protein localization, but substantially impairs HAP2 fusion activity. Thus, the ectodomain of HAP2 is essential for its surface expression, and the cytoplasmic region targets HAP2 to the site of fusion and regulates the fusion reaction.

  6. The cytoplasmic domain of the gamete membrane fusion protein HAP2 targets the protein to the fusion site in Chlamydomonas and regulates the fusion reaction

    PubMed Central

    Liu, Yanjie; Pei, Jimin; Grishin, Nick; Snell, William J.

    2015-01-01

    Cell-cell fusion between gametes is a defining step during development of eukaryotes, yet we know little about the cellular and molecular mechanisms of the gamete membrane fusion reaction. HAP2 is the sole gamete-specific protein in any system that is broadly conserved and shown by gene disruption to be essential for gamete fusion. The wide evolutionary distribution of HAP2 (also known as GCS1) indicates it was present in the last eukaryotic common ancestor and, therefore, dissecting its molecular properties should provide new insights into fundamental features of fertilization. HAP2 acts at a step after membrane adhesion, presumably directly in the merger of the lipid bilayers. Here, we use the unicellular alga Chlamydomonas to characterize contributions of key regions of HAP2 to protein location and function. We report that mutation of three strongly conserved residues in the ectodomain has no effect on targeting or fusion, although short deletions that include those residues block surface expression and fusion. Furthermore, HAP2 lacking a 237-residue segment of the cytoplasmic region is expressed at the cell surface, but fails to localize at the apical membrane patch specialized for fusion and fails to rescue fusion. Finally, we provide evidence that the ancient HAP2 contained a juxta-membrane, multi-cysteine motif in its cytoplasmic region, and that mutation of a cysteine dyad in this motif preserves protein localization, but substantially impairs HAP2 fusion activity. Thus, the ectodomain of HAP2 is essential for its surface expression, and the cytoplasmic region targets HAP2 to the site of fusion and regulates the fusion reaction. PMID:25655701

  7. Target-specific cytotoxic effects on HER2-expressing cells by the tripartite fusion toxin ZHER2:2891-ABD-PE38X8, including a targeting affibody molecule and a half-life extension domain.

    PubMed

    Liu, Hao; Seijsing, Johan; Frejd, Fredrik Y; Tolmachev, Vladimir; Gräslund, Torbjörn

    2015-08-01

    Development of cancer treatment regimens including immunotoxins is partly hampered by their immunogenicity. Recently, deimmunized versions of toxins have been described, potentially being better suited for translation to the clinic. In this study, a recombinant tripartite fusion toxin consisting of a deimmunized version of exotoxin A from Pseudomonas aeruginosa (PE38) genetically fused to an affibody molecule specifically interacting with the human epidermal growth factor receptor 2 (HER2), and also an albumin binding domain (ABD) for half-life extension, has been produced and characterized in terms of functionality of the three moieties. Biosensor based assays showed that the fusion toxin was able to interact with human and mouse serum albumin, but not with bovine serum albumin and that it interacted with HER2 (KD=5 nM). Interestingly, a complex of the fusion toxin and human serum albumin also interacted with HER2 but with a somewhat weaker affinity (KD=12 nM). The IC50-values of the fusion toxin ranged from 6 to 300 pM on SKOV-3, SKBR-3 and A549 cells and was lower for cells with higher surface densities of HER2. The fusion toxin was found specific for HER2 as shown by blocking available HER2 receptors with free affibody molecule before subjecting the cells to the toxin. Analysis of contact time showed that 10 min was sufficient to kill 50% of the cells. In conclusion, all three regions of the fusion toxin were found to be functional.

  8. Redirecting Specificity of T cells Using the Sleeping Beauty System to Express Chimeric Antigen Receptors by Mix-and-Matching of VL and VH Domains Targeting CD123+ Tumors.

    PubMed

    Thokala, Radhika; Olivares, Simon; Mi, Tiejuan; Maiti, Sourindra; Deniger, Drew; Huls, Helen; Torikai, Hiroki; Singh, Harjeet; Champlin, Richard E; Laskowski, Tamara; McNamara, George; Cooper, Laurence J N

    2016-01-01

    Adoptive immunotherapy infusing T cells with engineered specificity for CD19 expressed on B- cell malignancies is generating enthusiasm to extend this approach to other hematological malignancies, such as acute myelogenous leukemia (AML). CD123, or interleukin 3 receptor alpha, is overexpressed on most AML and some lymphoid malignancies, such as acute lymphocytic leukemia (ALL), and has been an effective target for T cells expressing chimeric antigen receptors (CARs). The prototypical CAR encodes a VH and VL from one monoclonal antibody (mAb), coupled to a transmembrane domain and one or more cytoplasmic signaling domains. Previous studies showed that treatment of an experimental AML model with CD123-specific CAR T cells was therapeutic, but at the cost of impaired myelopoiesis, highlighting the need for systems to define the antigen threshold for CAR recognition. Here, we show that CARs can be engineered using VH and VL chains derived from different CD123-specific mAbs to generate a panel of CAR+ T cells. While all CARs exhibited specificity to CD123, one VH and VL combination had reduced lysis of normal hematopoietic stem cells. This CAR's in vivo anti-tumor activity was similar whether signaling occurred via chimeric CD28 or CD137, prolonging survival in both AML and ALL models. Co-expression of inducible caspase 9 eliminated CAR+ T cells. These data help support the use of CD123-specific CARs for treatment of CD123+ hematologic malignancies. PMID:27548616

  9. Redirecting Specificity of T cells Using the Sleeping Beauty System to Express Chimeric Antigen Receptors by Mix-and-Matching of VL and VH Domains Targeting CD123+ Tumors.

    PubMed

    Thokala, Radhika; Olivares, Simon; Mi, Tiejuan; Maiti, Sourindra; Deniger, Drew; Huls, Helen; Torikai, Hiroki; Singh, Harjeet; Champlin, Richard E; Laskowski, Tamara; McNamara, George; Cooper, Laurence J N

    2016-01-01

    Adoptive immunotherapy infusing T cells with engineered specificity for CD19 expressed on B- cell malignancies is generating enthusiasm to extend this approach to other hematological malignancies, such as acute myelogenous leukemia (AML). CD123, or interleukin 3 receptor alpha, is overexpressed on most AML and some lymphoid malignancies, such as acute lymphocytic leukemia (ALL), and has been an effective target for T cells expressing chimeric antigen receptors (CARs). The prototypical CAR encodes a VH and VL from one monoclonal antibody (mAb), coupled to a transmembrane domain and one or more cytoplasmic signaling domains. Previous studies showed that treatment of an experimental AML model with CD123-specific CAR T cells was therapeutic, but at the cost of impaired myelopoiesis, highlighting the need for systems to define the antigen threshold for CAR recognition. Here, we show that CARs can be engineered using VH and VL chains derived from different CD123-specific mAbs to generate a panel of CAR+ T cells. While all CARs exhibited specificity to CD123, one VH and VL combination had reduced lysis of normal hematopoietic stem cells. This CAR's in vivo anti-tumor activity was similar whether signaling occurred via chimeric CD28 or CD137, prolonging survival in both AML and ALL models. Co-expression of inducible caspase 9 eliminated CAR+ T cells. These data help support the use of CD123-specific CARs for treatment of CD123+ hematologic malignancies.

  10. Redirecting Specificity of T cells Using the Sleeping Beauty System to Express Chimeric Antigen Receptors by Mix-and-Matching of VL and VH Domains Targeting CD123+ Tumors

    PubMed Central

    Olivares, Simon; Mi, Tiejuan; Maiti, Sourindra; Deniger, Drew; Huls, Helen; Torikai, Hiroki; Singh, Harjeet; Champlin, Richard E.; Laskowski, Tamara; McNamara, George; Cooper, Laurence J. N.

    2016-01-01

    Adoptive immunotherapy infusing T cells with engineered specificity for CD19 expressed on B- cell malignancies is generating enthusiasm to extend this approach to other hematological malignancies, such as acute myelogenous leukemia (AML). CD123, or interleukin 3 receptor alpha, is overexpressed on most AML and some lymphoid malignancies, such as acute lymphocytic leukemia (ALL), and has been an effective target for T cells expressing chimeric antigen receptors (CARs). The prototypical CAR encodes a VH and VL from one monoclonal antibody (mAb), coupled to a transmembrane domain and one or more cytoplasmic signaling domains. Previous studies showed that treatment of an experimental AML model with CD123-specific CAR T cells was therapeutic, but at the cost of impaired myelopoiesis, highlighting the need for systems to define the antigen threshold for CAR recognition. Here, we show that CARs can be engineered using VH and VL chains derived from different CD123-specific mAbs to generate a panel of CAR+ T cells. While all CARs exhibited specificity to CD123, one VH and VL combination had reduced lysis of normal hematopoietic stem cells. This CAR’s in vivo anti-tumor activity was similar whether signaling occurred via chimeric CD28 or CD137, prolonging survival in both AML and ALL models. Co-expression of inducible caspase 9 eliminated CAR+ T cells. These data help support the use of CD123-specific CARs for treatment of CD123+ hematologic malignancies. PMID:27548616

  11. Design of HIV-1 integrase inhibitors targeting the catalytic domain as well as its interaction with LEDGF/p75: a scaffold hopping approach using salicylate and catechol groups.

    PubMed

    Fan, Xing; Zhang, Feng-Hua; Al-Safi, Rasha I; Zeng, Li-Fan; Shabaik, Yumna; Debnath, Bikash; Sanchez, Tino W; Odde, Srinivas; Neamati, Nouri; Long, Ya-Qiu

    2011-08-15

    HIV-1 integrase (IN) is a validated therapeutic target for antiviral drug design. However, the emergence of viral strains resistant to clinically studied IN inhibitors demands the discovery of novel inhibitors that are structurally as well mechanistically different. Herein, we describe the design and discovery of novel IN inhibitors targeting the catalytic domain as well as its interaction with LEDGF/p75, which is essential for the HIV-1 integration as an IN cofactor. By merging the pharmacophores of salicylate and catechol, the 2,3-dihydroxybenzamide (5a) was identified as a new scaffold to inhibit the strand transfer reaction efficiently. Further structural modifications on the 2,3-dihydroxybenzamide scaffold revealed that the heteroaromatic functionality attached on the carboxamide portion and the piperidin-1-ylsulfonyl substituted at the phenyl ring are beneficial for the activity, resulting in a low micromolar IN inhibitor (5p, IC(50)=5 μM) with more than 40-fold selectivity for the strand transfer over the 3'-processing reaction. More significantly, this active scaffold remarkably inhibited the interaction between IN and LEDGF/p75 cofactor. The prototype example, N-(cyclohexylmethyl)-2,3-dihydroxy-5-(piperidin-1-ylsulfonyl) benzamide (5u) inhibited the IN-LEDGF/p75 interaction with an IC(50) value of 8 μM. Using molecular modeling, the mechanism of action was hypothesized to involve the chelation of the divalent metal ions inside the IN active site. Furthermore, the inhibitor of IN-LEDGF/p75 interaction was properly bound to the LEDGF/p75 binding site on IN. This work provides a new and efficient approach to evolve novel HIV-1 IN inhibitors from rational integration and optimization of previously reported inhibitors.

  12. Design of HIV-1 Integrase Inhibitors Targeting the Catalytic Domain as Well as Its Interaction with LEDGF/p75: A Scaffold Hopping Approach Using Salicylate and Catechol Groups

    PubMed Central

    Fan, Xing; Zhang, Feng-Hua; Al-Safi, Rasha I.; Zeng, Li-Fan; Shabaik, Yumna; Debnath, Bikash; Sanchez, Tino W.; Odde, Srinivas; Neamati, Nouri; Long, Ya-Qiu

    2011-01-01

    HIV-1 integrase (IN) is a validated therapeutic target for antiviral agents. However, the emergence of viral strains resistant to clinically studied IN inhibitors demands new structure and new mechanism IN inhibitors. Herein, we describe the design and discovery of novel IN inhibitors targeting the catalytic domain as well as its interaction with LEDGF/p75, which is essential for the HIV-1 integration as an IN cofactor. By merging the pharmacophores of salicylate and catechol, the 2,3-dihydroxybenzamide (5a) was identified as a new scaffold to inhibit the strand transfer reaction efficiently. Further structural modifications on the 2,3-dihydroxybenzamide scaffold revealed that the heteroaromatic functionality attached on the carboxamide portion and the piperidin-1-ylsulfonyl substituted at the phenyl ring are beneficial for the activity, resulting in a low micromolar IN inhibitor (5p, IC50 = 5 μM) with more than 40-fold selectivity for the strand transfer over the 3′-processing reaction. More significantly, this active scaffold remarkably inhibited the interaction between IN and LEDGF/p75 cofactor. The prototype example, N-(cyclohexylmethyl)-2,3-dihydroxy-5-(piperidin-1-ylsulfonyl) benzamide (5u) inhibited the IN-LEDGF/p75 interaction with an IC50 value of 8 μM. Based on the molecular modeling, the mechanism of action was hypothesized to involve the chelation of the divalent metal ions inside the IN active site. And the inhibitor of IN-LEDGF/p75 interaction was properly bound to the LEDGF/p75 binding site in IN protein. This work provided a new and efficient approach to evolve novel HIV-1 IN inhibitors from rational integration and optimization of previously reported inhibitors. PMID:21778063

  13. The group A streptococcal collagen-like protein-1, Scl1, mediates biofilm formation by targeting the extra domain A-containing variant of cellular fibronectin expressed in wounded tissue.

    PubMed

    Oliver-Kozup, Heaven; Martin, Karen H; Schwegler-Berry, Diane; Green, Brett J; Betts, Courtney; Shinde, Arti V; Van De Water, Livingston; Lukomski, Slawomir

    2013-02-01

    Wounds are known to serve as portals of entry for group A Streptococcus (GAS). Subsequent tissue colonization is mediated by interactions between GAS surface proteins and host extracellular matrix components. We recently reported that the streptococcal collagen-like protein-1, Scl1, selectively binds the cellular form of fibronectin (cFn) and also contributes to GAS biofilm formation on abiotic surfaces. One structural feature of cFn, which is predominantly expressed in response to tissue injury, is the presence of a spliced variant containing extra domain A (EDA/EIIIA). We now report that GAS biofilm formation is mediated by the Scl1 interaction with EDA-containing cFn. Recombinant Scl1 proteins that bound cFn also bound recombinant EDA within the C-C' loop region recognized by the α(9)β(1) integrin. The extracellular 2-D matrix derived from human dermal fibroblasts supports GAS adherence and biofilm formation. Altogether, this work identifies and characterizes a novel molecular mechanism by which GAS utilizes Scl1 to specifically target an extracellular matrix component that is predominantly expressed at the site of injury in order to secure host tissue colonization.

  14. Targeted delivery of a SNARE protease to sensory neurons using a single chain antibody (scFv) against the extracellular domain of P2X(3) inhibits the release of a pain mediator.

    PubMed

    Ma, Hui; Meng, Jianghui; Wang, Jiafu; Hearty, Stephen; Dolly, J Oliver; O'Kennedy, Richard

    2014-09-01

    P2X3 (P2X purinoceptor 3) is predominantly expressed on nociceptive sensory neurons and plays a crucial role in signalling leading to chronic inflammatory pain and some features of neuropathic pain. Thus it represents a potential target for pain therapeutics. BoNT/A (botulinum neurooxin type A) effectively relieves certain types of pain through inhibiting the neuronal release of pain peptides. A recombinant single-chain variable fragment (scFv) antibody designated MH7C was generated against the extracellular domain of P2X3 using phage display. The genes encoding the scFv and activated di-chain form of BoNT/A without the C-terminal-binding subdomain (LC-HN-HCN/A) were ligated and expressed in Escherichia coli cells as a composite fusion protein. The purified protein bound and entered P2X3-containing sensory neurons, cleaved synaptosomal-associated protein of 25 kDa and inhibited the release of a pain peptide. This novel fusion protein designated 'LC-HN-HCN/A-MH7C' has potential clinical applications in the treatment of chronic inflammatory and sympathetically maintained neuropathic pain.

  15. The adenoviral E1A N-terminal domain represses MYC transcription in human cancer cells by targeting both p300 and TRRAP and inhibiting MYC promoter acetylation of H3K18 and H4K16

    PubMed Central

    Zhao, Ling-Jun; Loewenstein, Paul M.; Green, Maurice

    2016-01-01

    Human cancers frequently arise from increased expression of proto-oncogenes, such as MYC and HER2. Understanding the cellular pathways regulating the transcription and expression of proto-oncogenes is important for targeted therapies for cancer treatment. Adenoviral (Ad) E1A 243R (243 aa residues) is a viral oncoprotein that interacts with key regulators of gene transcription and cell proliferation. We have shown previously that the 80 amino acid N-terminal transcriptional repression domain of E1A 243R (E1A 1-80) can target the histone acetyltransferase (HAT) p300 and repress HER2 in the HER2-overexpressing human breast cancer cell line SKBR3. Expression of E1A 1-80 induces death of SKBR3 and other cancer cell lines. In this study, we performed total cell RNA sequence analysis and identified MYC as the regulatory gene for cellular proliferation most strongly repressed by E1A 1-80. By RT-quantitative PCR analysis we show that repression of MYC in SKBR3 cells occurs early after expression of E1A 1-80, suggesting that MYC may be an early responder of E1A 1-80-mediated transcriptional repression. Of interest, while E1A 1-80 repression of MYC occurs in all eight human cancer cell lines examined, repression of HER2 is cell-type dependent. We demonstrate by ChIP analysis that MYC transcriptional repression by E1A 1-80 is associated with inhibition of acetylation of H3K18 and H4K16 on the MYC promoter, as well as inhibition of RNA Pol II binding to the MYC promoter. Deletion mutant analysis of E1A 1-80 suggests that both p300/CBP and TRRAP are involved in E1A 1-80 repression of MYC transcription. Further, E1A 1-80 interaction with p300/CBP and TRRAP is correlated with inhibition of H3K18 and H4K16 acetylation on the MYC promoter, respectively. Our results indicate that E1A 1-80 may target two important pathways for histone modification to repress transcription in human cancer cells. PMID:27382434

  16. The C1 domain-targeted isophthalate derivative HMI-1b11 promotes neurite outgrowth and GAP-43 expression through PKCα activation in SH-SY5Y cells.

    PubMed

    Talman, Virpi; Amadio, Marialaura; Osera, Cecilia; Sorvari, Salla; Boije Af Gennäs, Gustav; Yli-Kauhaluoma, Jari; Rossi, Daniela; Govoni, Stefano; Collina, Simona; Ekokoski, Elina; Tuominen, Raimo K; Pascale, Alessia

    2013-07-01

    Protein kinase C (PKC) is a family of serine/threonine phosphotransferases ubiquitously expressed and involved in multiple cellular functions, such as proliferation, apoptosis and differentiation. The C1 domain of PKC represents an attractive drug target, especially for developing PKC activators. Dialkyl 5-(hydroxymethyl)isophthalates are a novel group of synthetic C1 domain ligands that exhibit antiproliferative effect in HeLa cervical carcinoma cells. Here we selected two isophthalates, HMI-1a3 and HMI-1b11, and characterized their effects in the human neuroblastoma cell line SH-SY5Y. Both of the active isophthalates exhibited significant antiproliferative and differentiation-inducing effects. Since HMI-1b11 did not impair cell survival even at the highest concentration tested (20μM), and supported neurite growth and differentiation of SH-SY5Y cells, we focused on studying its downstream signaling cascades and effects on gene expression. Consistently, genome-wide gene expression microarray and gene set enrichment analysis indicated that HMI-1b11 (10μM) induced changes in genes mainly related to cell differentiation. In particular, further studies revealed that HMI-1b11 exposure induced up-regulation of GAP-43, a marker for neurite sprouting and neuronal differentiation. These effects were induced by a 7-min HMI-1b11 treatment and specifically depended on PKCα activation, since pretreatment with the selective inhibitor Gö6976 abolished the up-regulation of GAP-43 protein observed at 12h. In parallel, we found that a 7-min exposure to HMI-1b11 induced PKCα accumulation to the cytoskeleton, an effect that was again prevented by pretreatment with Gö6976. Despite similar binding affinities to PKC, the isophthalates had different effects on PKC-dependent ERK1/2 signaling: HMI-1a3-induced ERK1/2 phosphorylation was transient, while HMI-1b11 induced a rapid but prolonged ERK1/2 phosphorylation. Overall our data are in accordance with previous studies showing that

  17. Domain Transfer Learning for MCI Conversion Prediction.

    PubMed

    Cheng, Bo; Liu, Mingxia; Zhang, Daoqiang; Munsell, Brent C; Shen, Dinggang

    2015-07-01

    Machine learning methods have successfully been used to predict the conversion of mild cognitive impairment (MCI) to Alzheimer's disease (AD), by classifying MCI converters (MCI-C) from MCI nonconverters (MCI-NC). However, most existing methods construct classifiers using data from one particular target domain (e.g., MCI), and ignore data in other related domains (e.g., AD and normal control (NC)) that may provide valuable information to improve MCI conversion prediction performance. To address is limitation, we develop a novel domain transfer learning method for MCI conversion prediction, which can use data from both the target domain (i.e., MCI) and auxiliary domains (i.e., AD and NC). Specifically, the proposed method consists of three key components: 1) a domain transfer feature selection component that selects the most informative feature-subset from both target domain and auxiliary domains from different imaging modalities; 2) a domain transfer sample selection component that selects the most informative sample-subset from the same target and auxiliary domains from different data modalities; and 3) a domain transfer support vector machine classification component that fuses the selected features and samples to separate MCI-C and MCI-NC patients. We evaluate our method on 202 subjects from the Alzheimer's Disease Neuroimaging Initiative (ADNI) that have MRI, FDG-PET, and CSF data. The experimental results show the proposed method can classify MCI-C patients from MCI-NC patients with an accuracy of 79.4%, with the aid of additional domain knowledge learned from AD and NC.

  18. Conserved Pro-Glu (PE) and Pro-Pro-Glu (PPE) Protein Domains Target LipY Lipases of Pathogenic Mycobacteria to the Cell Surface via the ESX-5 Pathway*

    PubMed Central

    Daleke, Maria H.; Cascioferro, Alessandro; de Punder, Karin; Ummels, Roy; Abdallah, Abdallah M.; van der Wel, Nicole; Peters, Peter J.; Luirink, Joen; Manganelli, Riccardo; Bitter, Wilbert

    2011-01-01

    The type VII secretion system ESX-5 is a major pathway for export of PE and PPE proteins in pathogenic mycobacteria. These mycobacteria-specific protein families are characterized by conserved N-terminal domains of 100 and 180 amino acids, which contain the proline-glutamic acid (PE) and proline-proline-glutamic acid (PPE) motifs after which they are named. Here we investigated secretion of the triacylglycerol lipase LipY, which in fast-growing mycobacteria contains a signal sequence, but in slow-growing species appears to have replaced the signal peptide with a PE or PPE domain. Selected LipY homologues were expressed in wild-type Mycobacterium marinum and its corresponding ESX-5 mutant, and localization of the proteins was investigated by immunoblotting and electron microscopy. Our study shows that Mycobacterium tuberculosis PE-LipY (LipYtub) and M. marinum PPE-LipY (LipYmar) are both secreted to the bacterial surface in an ESX-5-dependent fashion. After transport, the PE/PPE domains are removed by proteolytic cleavage. In contrast, Mycobacterium gilvum LipY, which has a signal sequence, is not transported to the cell surface. Furthermore, we show that LipYtub and LipYmar require their respective PE and PPE domains for ESX-5-dependent secretion. The role of the PE domain in ESX-5 secretion was confirmed in a whole cell lipase assay, in which wild-type bacteria expressing full-length LipYtub, but not LipYtub lacking its PE domain, were shown to hydrolyze extracellular lipids. In conclusion, both PE and PPE domains contain a signal required for secretion of LipY by the ESX-5 system, and these domains are proteolytically removed upon translocation. PMID:21471225

  19. Both the hydrophobicity and a positively charged region flanking the C-terminal region of the transmembrane domain of signal-anchored proteins play critical roles in determining their targeting specificity to the endoplasmic reticulum or endosymbiotic organelles in Arabidopsis cells.

    PubMed

    Lee, Junho; Lee, Hyunkyung; Kim, Jinho; Lee, Sumin; Kim, Dae Heon; Kim, Sanguk; Hwang, Inhwan

    2011-04-01

    Proteins localized to various cellular and subcellular membranes play pivotal roles in numerous cellular activities. Accordingly, in eukaryotic cells, the biogenesis of organellar proteins is an essential process requiring their correct localization among various cellular and subcellular membranes. Localization of these proteins is determined by either cotranslational or posttranslational mechanisms, depending on the final destination. However, it is not fully understood how the targeting specificity of membrane proteins is determined in plant cells. Here, we investigate the mechanism by which signal-anchored (SA) proteins are differentially targeted to the endoplasmic reticulum (ER) or endosymbiotic organelles using in vivo targeting, subcellular fractionation, and bioinformatics approaches. For targeting SA proteins to endosymbiotic organelles, the C-terminal positively charged region (CPR) flanking the transmembrane domain (TMD) is necessary but not sufficient. The hydrophobicity of the TMD in CPR-containing proteins also plays a critical role in determining targeting specificity; TMDs with a hydrophobicity value >0.4 on the Wimley and White scale are targeted primarily to the ER, whereas TMDs with lower values are targeted to endosymbiotic organelles. Based on these data, we propose that the CPR and the hydrophobicity of the TMD play a critical role in determining the targeting specificity between the ER and endosymbiotic organelles.

  20. A JAK2 interdomain linker relays Epo receptor engagement signals to kinase activation.

    PubMed

    Zhao, Lequn; Dong, Hongyun; Zhang, Cheng Cheng; Kinch, Lisa; Osawa, Mitsujiro; Iacovino, Michelina; Grishin, Nikolai V; Kyba, Michael; Huang, Lily Jun-shen

    2009-09-25

    JAK2 (Janus kinase 2) is essential for cytokine receptor signaling, and several lines of evidence support a causal role of an activating JAK2 mutation in myeloproliferative disorders. JAK2 activity is autoinhibited by its pseudokinase domain in the basal state, and the inhibition is released by cytokine stimulation; how engagement of the cognate receptor triggers this release is unknown. From a functional screen for gain-of-function JAK2 mutations, we discovered 13 missense mutations, nine in the pseudokinase domain and four in the Src homology 2 (SH2)-pseudokinase domain linker. These mutations identified determinants for autoinhibition and inducible activation in JAK2. Two of the mutants, K539I and N622I, resulted in erythrocytosis in mice. Scanning mutagenesis of the SH2-pseudokinase domain linker indicated that its N-terminal part was essential for interaction of JAK2 with the Epo receptor, whereas certain mutations in the C-terminal region conferred constitutive activation. We further showed that substitutions for Glu(543)-Asp(544) in this linker or Leu(611), Arg(683), or Phe(694) in the hinge proximal region of the pseudokinase domain resulted in activated JAK2 mutants that could not be further stimulated by Epo. These results suggest that the SH2-pseudokinase domain linker acts as a switch that relays cytokine engagement to JAK2 activation by flexing the pseudokinase domain hinge. PMID:19638629

  1. EuPathDomains: the divergent domain database for eukaryotic pathogens.

    PubMed

    Ghouila, Amel; Terrapon, Nicolas; Gascuel, Olivier; Guerfali, Fatma Z; Laouini, Dhafer; Maréchal, Eric; Bréhélin, Laurent

    2011-06-01

    Eukaryotic pathogens (e.g. Plasmodium, Leishmania, Trypanosomes, etc.) are a major source of morbidity and mortality worldwide. In Africa, one of the most impacted continents, they cause millions of deaths and constitute an immense economic burden. While the genome sequence of several of these organisms is now available, the biological functions of more than half of their proteins are still unknown. This is a serious issue for bringing to the foreground the expected new therapeutic targets. In this context, the identification of protein domains is a key step to improve the functional annotation of the proteins. However, several domains are missed in eukaryotic pathogens because of the high phylogenetic distance of these organisms from the classical eukaryote models. We recently proposed a method, co-occurrence domain detection (CODD), that improves the sensitivity of Pfam domain detection by exploiting the tendency of domains to appear preferentially with a few other favorite domains in a protein. In this paper, we present EuPathDomains (http://www.atgc-montpellier.fr/EuPathDomains/), an extended database of protein domains belonging to ten major eukaryotic human pathogens. EuPathDomains gathers known and new domains detected by CODD, along with the associated confidence measurements and the GO annotations that can be deduced from the new domains. This database significantly extends the Pfam domain coverage of all selected genomes, by proposing new occurrences of domains as well as new domain families that have never been reported before. For example, with a false discovery rate lower than 20%, EuPathDomains increases the number of detected domains by 13% in Toxoplasma gondii genome and up to 28% in Cryptospordium parvum, and the total number of domain families by 10% in Plasmodium falciparum and up to 16% in C. parvum genome. The database can be queried by protein names, domain identifiers, Pfam or Interpro identifiers, or organisms, and should become a valuable

  2. Generalization Bounds Derived IPM-Based Regularization for Domain Adaptation.

    PubMed

    Meng, Juan; Hu, Guyu; Li, Dong; Zhang, Yanyan; Pan, Zhisong

    2016-01-01

    Domain adaptation has received much attention as a major form of transfer learning. One issue that should be considered in domain adaptation is the gap between source domain and target domain. In order to improve the generalization ability of domain adaption methods, we proposed a framework for domain adaptation combining source and target data, with a new regularizer which takes generalization bounds into account. This regularization term considers integral probability metric (IPM) as the distance between the source domain and the target domain and thus can bound up the testing error of an existing predictor from the formula. Since the computation of IPM only involves two distributions, this generalization term is independent with specific classifiers. With popular learning models, the empirical risk minimization is expressed as a general convex optimization problem and thus can be solved effectively by existing tools. Empirical studies on synthetic data for regression and real-world data for classification show the effectiveness of this method.

  3. Protein domain architectures.

    PubMed

    Mulder, Nicola J

    2010-01-01

    Proteins are composed of functional units, or domains, that can be found alone or in combination with other domains. Analysis of protein domain architectures and the movement of protein domains within and across different genomes provide clues about the evolution of protein function. The classification of proteins into families and domains is provided through publicly available tools and databases that use known protein domains to predict other members in new proteins sequences. Currently at least 80% of the main protein sequence databases can be classified using these tools, thus providing a large data set to work from for analyzing protein domain architectures. Each of the protein domain databases provide intuitive web interfaces for viewing and analyzing their domain classifications and provide their data freely for downloading. Some of the main protein family and domain databases are described here, along with their Web-based tools for analyzing domain architectures.

  4. Flowing on Riemannian manifold: domain adaptation by shifting covariance.

    PubMed

    Cui, Zhen; Li, Wen; Xu, Dong; Shan, Shiguang; Chen, Xilin; Li, Xuelong

    2014-12-01

    Domain adaptation has shown promising results in computer vision applications. In this paper, we propose a new unsupervised domain adaptation method called domain adaptation by shifting covariance (DASC) for object recognition without requiring any labeled samples from the target domain. By characterizing samples from each domain as one covariance matrix, the source and target domain are represented into two distinct points residing on a Riemannian manifold. Along the geodesic constructed from the two points, we then interpolate some intermediate points (i.e., covariance matrices), which are used to bridge the two domains. By utilizing the principal components of each covariance matrix, samples from each domain are further projected into intermediate feature spaces, which finally leads to domain-invariant features after the concatenation of these features from intermediate points. In the multiple source domain adaptation task, we also need to effectively integrate different types of features between each pair of source and target domains. We additionally propose an SVM based method to simultaneously learn the optimal target classifier as well as the optimal weights for different source domains. Extensive experiments demonstrate the effectiveness of our method for both single source and multiple source domain adaptation tasks.

  5. Domain adaptive boosting method and its applications

    NASA Astrophysics Data System (ADS)

    Geng, Jie; Miao, Zhenjiang

    2015-03-01

    Differences of data distributions widely exist among datasets, i.e., domains. For many pattern recognition, nature language processing, and content-based analysis systems, a decrease in performance caused by the domain differences between the training and testing datasets is still a notable problem. We propose a domain adaptation method called domain adaptive boosting (DAB). It is based on the AdaBoost approach with extensions to cover the domain differences between the source and target domains. Two main stages are contained in this approach: source-domain clustering and source-domain sample selection. By iteratively adding the selected training samples from the source domain, the discrimination model is able to achieve better domain adaptation performance based on a small validation set. The DAB algorithm is suitable for the domains with large scale samples and easy to extend for multisource adaptation. We implement this method on three computer vision systems: the skin detection model in single images, the video concept detection model, and the object classification model. In the experiments, we compare the performances of several commonly used methods and the proposed DAB. Under most situations, the DAB is superior.

  6. X-linked inhibitor of apoptosis protein (XIAP) lacking RING domain localizes to the nuclear and promotes cancer cell anchorage-independent growth by targeting the E2F1/Cyclin E axis.

    PubMed

    Cao, Zipeng; Li, Xueyong; Li, Jingxia; Luo, Wenjing; Huang, Chuanshu; Chen, Jingyuan

    2014-08-30

    The inhibitor of apoptosis protein XIAP (X-linked inhibitor of apoptosis protein) is a well-documented protein that is located in cytoplasm acting as a potent regulator of cell apoptosis. Here, we showed that expressing XIAP with RING (Really Interesting New Gene) domain deletion (XIAP△RING) in cancer cells promoted cancer cell anchorage-independent growth and G1/S phase transition companied with increasing cyclin e transcription activity and protein expression. Further studies revealed that XIAP△RING was mainly localized in nuclear with increased binding with E2F1, whereas XIAP with BIR (Baculoviral IAP Repeat) domains deletion (XIAP△BIRs) was entirely presented in cytoplasma with losing its binding with E2F1, suggesting that RING domain was able to inhibit BIR domains nuclear localization, by which impaired BIRs binding with E2F1 in cellular nucleus in intact cells. These studies identified a new function of XIAP protein in cellular nucleus is to regulate E2F1 transcriptional activity by binding with E2F1 in cancer cells. Our current finding of an effect of XIAP△RING expression on cancer cell anchorage-independent growth suggests that overexpression of this protein may contribute to genetic instability associated with cell cycle and checkpoint perturbations, in addition to its impact on cellular apoptosis. PMID:25216527

  7. X-linked inhibitor of apoptosis protein (XIAP) lacking RING domain localizes to the nuclear and promotes cancer cell anchorage-independent growth by targeting the E2F1/Cyclin E axis

    PubMed Central

    Cao, Zipeng; Li, Xueyong; Li, Jingxia; Luo, Wenjing; Huang, Chuanshu; Chen, Jingyuan

    2014-01-01

    The inhibitor of apoptosis protein XIAP (X-linked inhibitor of apoptosis protein) is a well-documented protein that is located in cytoplasm acting as a potent regulator of cell apoptosis. Here, we showed that expressing XIAP with RING (Really Interesting New Gene) domain deletion (XIAPΔRING) in cancer cells promoted cancer cell anchorage-independent growth and G1/S phase transition companied with increasing cyclin e transcription activity and protein expression. Further studies revealed that XIAPΔRING was mainly localized in nuclear with increased binding with E2F1, whereas XIAP with BIR (Baculoviral IAP Repeat) domains deletion (XIAPΔBIRs) was entirely presented in cytoplasma with losing its binding with E2F1, suggesting that RING domain was able to inhibit BIR domains nuclear localization, by which impaired BIRs binding with E2F1 in cellular nucleus in intact cells. These studies identified a new function of XIAP protein in cellular nucleus is to regulate E2F1 transcriptional activity by binding with E2F1 in cancer cells. Our current finding of an effect of XIAPΔRING expression on cancer cell anchorage-independent growth suggests that overexpression of this protein may contribute to genetic instability associated with cell cycle and checkpoint perturbations, in addition to its impact on cellular apoptosis. PMID:25216527

  8. Understanding the Public Domain.

    ERIC Educational Resources Information Center

    Russell, Carrie

    2003-01-01

    This overview of the public domain covers: defining the public domain; figuring out if a work is protected by copyright; being sure a work is in the public domain; asserting the copyright protection and term; the Creative Commons initiative; building the Information Commons; when permission is needed for using a public domain work; and special…

  9. Domain Specificity between Peer Support and Self-Concept

    ERIC Educational Resources Information Center

    Leung, Kim Chau; Marsh, Herbert W.; Craven, Rhonda G.; Yeung, Alexander S.; Abduljabbar, Adel S.

    2013-01-01

    Peer support interventions have mostly neglected the domain specificity of intervention effects. In two studies, the present investigation examined the domain specificity of peer support interventions targeting specific domains of self-concept. In Study 1, participants ("n" = 50) who had received an academically oriented peer support intervention…

  10. The C-terminal RNA binding motif of HuR is a multi-functional domain leading to HuR oligomerization and binding to U-rich RNA targets

    PubMed Central

    Scheiba, Rafael M; de Opakua, Alain Ibáñez; Díaz-Quintana, Antonio; Cruz-Gallardo, Isabel; Martínez-Cruz, Luis A; Martínez-Chantar, María L; Blanco, Francisco J; Díaz-Moreno, Irene

    2014-01-01

    Human antigen R (HuR) is a 32 kDa protein with 3 RNA Recognition Motifs (RRMs), which bind to Adenylate and uridylate Rich Elements (AREs) of mRNAs. Whereas the N-terminal and central domains (RRM1 and RRM2) are essential for AREs recognition, little is known on the C-terminal RRM3 beyond its implication in HuR oligomerization and apoptotic signaling. We have developed a detergent-based strategy to produce soluble RRM3 for structural studies. We have found that it adopts the typical RRM fold, does not interact with the RRM1 and RRM2 modules, and forms dimers in solution. Our NMR measurements, combined with Molecular Dynamics simulations and Analytical Ultracentrifugation experiments, show that the protein dimerizes through a helical region that contains the conserved W261 residue. We found that HuR RRM3 binds to 5′-mer U-rich RNA stretches through the solvent exposed side of its β-sheet, located opposite to the dimerization site. Upon mimicking phosphorylation by the S318D replacement, RRM3 mutant shows less ability to recognize RNA due to an electrostatic repulsion effect with the phosphate groups. Our study brings new insights of HuR RRM3 as a domain involved in protein oligomerization and RNA interaction, both functions regulated by 2 surfaces on opposite sides of the RRM domain. PMID:25584704

  11. The C-terminal RNA binding motif of HuR is a multi-functional domain leading to HuR oligomerization and binding to U-rich RNA targets.

    PubMed

    Scheiba, Rafael M; de Opakua, Alain Ibáñez; Díaz-Quintana, Antonio; Cruz-Gallardo, Isabel; Martínez-Cruz, Luis A; Martínez-Chantar, María L; Blanco, Francisco J; Díaz-Moreno, Irene

    2014-01-01

    Human antigen R (HuR) is a 32 kDa protein with 3 RNA Recognition Motifs (RRMs), which bind to Adenylate and uridylate Rich Elements (AREs) of mRNAs. Whereas the N-terminal and central domains (RRM1 and RRM2) are essential for AREs recognition, little is known on the C-terminal RRM3 beyond its implication in HuR oligomerization and apoptotic signaling. We have developed a detergent-based strategy to produce soluble RRM3 for structural studies. We have found that it adopts the typical RRM fold, does not interact with the RRM1 and RRM2 modules, and forms dimers in solution. Our NMR measurements, combined with Molecular Dynamics simulations and Analytical Ultracentrifugation experiments, show that the protein dimerizes through a helical region that contains the conserved W261 residue. We found that HuR RRM3 binds to 5'-mer U-rich RNA stretches through the solvent exposed side of its β-sheet, located opposite to the dimerization site. Upon mimicking phosphorylation by the S318D replacement, RRM3 mutant shows less ability to recognize RNA due to an electrostatic repulsion effect with the phosphate groups. Our study brings new insights of HuR RRM3 as a domain involved in protein oligomerization and RNA interaction, both functions regulated by 2 surfaces on opposite sides of the RRM domain. PMID:25584704

  12. Cross-domain active learning for video concept detection

    NASA Astrophysics Data System (ADS)

    Li, Huan; Li, Chao; Shi, Yuan; Xiong, Zhang; Hauptmann, Alexander G.

    2011-08-01

    As video data from a variety of different domains (e.g., news, documentaries, entertainment) have distinctive data distributions, cross-domain video concept detection becomes an important task, in which one can reuse the labeled data of one domain to benefit the learning task in another domain with insufficient labeled data. In this paper, we approach this problem by proposing a cross-domain active learning method which iteratively queries labels of the most informative samples in the target domain. Traditional active learning assumes that the training (source domain) and test data (target domain) are from the same distribution. However, it may fail when the two domains have different distributions because querying informative samples according to a base learner that initially learned from source domain may no longer be helpful for the target domain. In our paper, we use the Gaussian random field model as the base learner which has the advantage of exploring the distributions in both domains, and adopt uncertainty sampling as the query strategy. Additionally, we present an instance weighting trick to accelerate the adaptability of the base learner, and develop an efficient model updating method which can significantly speed up the active learning process. Experimental results on TRECVID collections highlight the effectiveness.

  13. Domain view: a web tool for protein domain visualization and analysis.

    PubMed

    Pan, Xiaokang; Bingman, Craig A; Wesenberg, Gary E; Sun, Zhaohui; Phillips, George N

    2010-12-01

    The identification of sequence-based protein domains and their boundaries is often a prelude to structure determination. An accurate prediction of disordered regions, secondary structures and low complexity segments of target protein sequences can improve the efficiency of selection in structural genomics and also aid in design of constructs for directed structural biology studies. At the Center for Eukaryotic Structural Genomics (CESG) we have developed DomainView, a web tool to visualize and analyze predicted protein domains, disordered regions, secondary structures and low complexity segments of target protein sequences for selection of experimental protein structure attempts. DomainView consists of a relational database and a web graphical-user interface. The database was developed based on MySQL, which stores data from target protein sequences and their domains, disordered regions, secondary structures and low complexity segments. The program of the web user interface is a Perl CGI script. When a user searches for a target protein sequence, the script displays the combinational information about the domains and other features of that target sequence graphically on a web page by querying the database. The graphical representation for each feature is linked to a web page showing more detailed annotation information or to a new window directly running the corresponding prediction program to show further information about that feature.

  14. ADAM metallopeptidase domain 17 (ADAM17) is naturally processed through major histocompatibility complex (MHC) class I molecules and is a potential immunotherapeutic target in breast, ovarian and prostate cancers

    PubMed Central

    Sinnathamby, G; Zerfass, J; Hafner, J; Block, P; Nickens, Z; Hobeika, A; Secord, A A; Lyerly, H K; Morse, M A; Philip, R

    2011-01-01

    Selection of suitable antigens is critical for the development of cancer vaccines. Most desirable are over-expressed cell surface proteins that may serve as targets for both antibodies and T cells, thus maximizing a concerted immune response. Towards this goal, we characterized the relevance of tumour necrosis factor-α-converting enzyme (ADAM17) for such targeted therapeutics. ADAM17 is one of the several metalloproteinases that play a key role in epidermal growth factor receptor (EGFR) signalling and has recently emerged as a new therapeutic target in several tumour types. In the present study, we analysed the expression profile of ADAM17 in a variety of normal and cancer cells of human origin and found that this protein is over-expressed on the surface of several types of cancer cells compared to the normal counterparts. Furthermore, we analysed the presentation of a human leucocyte antigen (HLA)-A2-restricted epitope from ADAM17 protein to specific T cells established from normal donors as well as ovarian cancer patients. Our analysis revealed that the HLA-A2-restricted epitope is processed efficiently and presented by various cancer cells and not by normal cells. Tumour-specific T cell activation results in the secretion of both interferon-γ and granzyme B that can be blocked by HLA-A2 specific antibodies. Collectively, our data present evidence that ADAM17 can be a potential target antigen to devise novel immunotherapeutic strategies against ovarian, breast and prostate cancer. PMID:21175594

  15. ADAM metallopeptidase domain 17 (ADAM17) is naturally processed through major histocompatibility complex (MHC) class I molecules and is a potential immunotherapeutic target in breast, ovarian and prostate cancers.

    PubMed

    Sinnathamby, G; Zerfass, J; Hafner, J; Block, P; Nickens, Z; Hobeika, A; Secord, A A; Lyerly, H K; Morse, M A; Philip, R

    2011-03-01

    Selection of suitable antigens is critical for the development of cancer vaccines. Most desirable are over-expressed cell surface proteins that may serve as targets for both antibodies and T cells, thus maximizing a concerted immune response. Towards this goal, we characterized the relevance of tumour necrosis factor-α-converting enzyme (ADAM17) for such targeted therapeutics. ADAM17 is one of the several metalloproteinases that play a key role in epidermal growth factor receptor (EGFR) signalling and has recently emerged as a new therapeutic target in several tumour types. In the present study, we analysed the expression profile of ADAM17 in a variety of normal and cancer cells of human origin and found that this protein is over-expressed on the surface of several types of cancer cells compared to the normal counterparts. Furthermore, we analysed the presentation of a human leucocyte antigen (HLA)-A2-restricted epitope from ADAM17 protein to specific T cells established from normal donors as well as ovarian cancer patients. Our analysis revealed that the HLA-A2-restricted epitope is processed efficiently and presented by various cancer cells and not by normal cells. Tumour-specific T cell activation results in the secretion of both interferon-γ and granzyme B that can be blocked by HLA-A2 specific antibodies. Collectively, our data present evidence that ADAM17 can be a potential target antigen to devise novel immunotherapeutic strategies against ovarian, breast and prostate cancer. PMID:21175594

  16. Semi-supervised domain adaptation on manifolds.

    PubMed

    Cheng, Li; Pan, Sinno Jialin

    2014-12-01

    In real-life problems, the following semi-supervised domain adaptation scenario is often encountered: we have full access to some source data, which is usually very large; the target data distribution is under certain unknown transformation of the source data distribution; meanwhile, only a small fraction of the target instances come with labels. The goal is to learn a prediction model by incorporating information from the source domain that is able to generalize well on the target test instances. We consider an explicit form of transformation functions and especially linear transformations that maps examples from the source to the target domain, and we argue that by proper preprocessing of the data from both source and target domains, the feasible transformation functions can be characterized by a set of rotation matrices. This naturally leads to an optimization formulation under the special orthogonal group constraints. We present an iterative coordinate descent solver that is able to jointly learn the transformation as well as the model parameters, while the geodesic update ensures the manifold constraints are always satisfied. Our framework is sufficiently general to work with a variety of loss functions and prediction problems. Empirical evaluations on synthetic and real-world experiments demonstrate the competitive performance of our method with respect to the state-of-the-art. PMID:25314712

  17. Multiple hypothesis tracking for the cyber domain

    NASA Astrophysics Data System (ADS)

    Schwoegler, Stefan; Blackman, Sam; Holsopple, Jared; Hirsch, Michael J.

    2011-09-01

    This paper discusses how methods used for conventional multiple hypothesis tracking (MHT) can be extended to domain-agnostic tracking of entities from non-kinematic constraints such as those imposed by cyber attacks in a potentially dense false alarm background. MHT is widely recognized as the premier method to avoid corrupting tracks with spurious data in the kinematic domain but it has not been extensively applied to other problem domains. The traditional approach is to tightly couple track maintenance (prediction, gating, filtering, probabilistic pruning, and target confirmation) with hypothesis management (clustering, incompatibility maintenance, hypothesis formation, and Nassociation pruning). However, by separating the domain specific track maintenance portion from the domain agnostic hypothesis management piece, we can begin to apply the wealth of knowledge gained from ground and air tracking solutions to the cyber (and other) domains. These realizations led to the creation of Raytheon's Multiple Hypothesis Extensible Tracking Architecture (MHETA). In this paper, we showcase MHETA for the cyber domain, plugging in a well established method, CUBRC's INFormation Engine for Real-time Decision making, (INFERD), for the association portion of the MHT. The result is a CyberMHT. We demonstrate the power of MHETA-INFERD using simulated data. Using metrics from both the tracking and cyber domains, we show that while no tracker is perfect, by applying MHETA-INFERD, advanced nonkinematic tracks can be captured in an automated way, perform better than non-MHT approaches, and decrease analyst response time to cyber threats.

  18. Domains and Naive Theories

    PubMed Central

    Gelman, Susan A.; Noles, Nicholaus S.

    2013-01-01

    Human cognition entails domain-specific cognitive processes that influence memory, attention, categorization, problem-solving, reasoning, and knowledge organization. This review examines domain-specific causal theories, which are of particular interest for permitting an examination of how knowledge structures change over time. We first describe the properties of commonsense theories, and how commonsense theories differ from scientific theories, illustrating with children’s classification of biological and non-biological kinds. We next consider the implications of domain-specificity for broader issues regarding cognitive development and conceptual change. We then examine the extent to which domain-specific theories interact, and how people reconcile competing causal frameworks. Future directions for research include examining how different content domains interact, the nature of theory change, the role of context (including culture, language, and social interaction) in inducing different frameworks, and the neural bases for domain-specific reasoning. PMID:24187603

  19. Targets and targeting.

    PubMed

    Will, E

    2001-08-01

    Using the vocabulary of ballistics in medicine for emphasis can result in misleading exaggeration and semantic confusion. The dual meaning of target as either aiming point (aim at) or outcome (aim to achieve) creates a muddle in the efforts to comply with quality assurance initiatives. Disentangling the two meanings allows new approaches to the clinical technology required in a modern health care environment. An example can be shown in new strategies for the management of renal anemia with iron and erythropoietin. The potential to shape outcome distributions through validated, preemptive intervention thresholds offers the predictable results required by patients and payers. Using the management of patient cohorts as a platform for outcomes creates no necessary conflict with individualized clinical care. Future guideline statements should include the likely characteristics of compliant outcome populations, as a prompt to clinical goals and as an indication of the necessary cost and effort of compliance with treatment standards. Overemphasis in language is no substitute for considered clinical methodology.

  20. Learning and Domain Adaptation

    NASA Astrophysics Data System (ADS)

    Mansour, Yishay

    Domain adaptation is a fundamental learning problem where one wishes to use labeled data from one or several source domains to learn a hypothesis performing well on a different, yet related, domain for which no labeled data is available. This generalization across domains is a very significant challenge for many machine learning applications and arises in a variety of natural settings, including NLP tasks (document classification, sentiment analysis, etc.), speech recognition (speakers and noise or environment adaptation) and face recognition (different lighting conditions, different population composition).

  1. Purification and Structural Analysis of LEM-Domain Proteins.

    PubMed

    Herrada, Isaline; Bourgeois, Benjamin; Samson, Camille; Buendia, Brigitte; Worman, Howard J; Zinn-Justin, Sophie

    2016-01-01

    LAP2-emerin-MAN1 (LEM)-domain proteins are modular proteins characterized by the presence of a conserved motif of about 50 residues. Most LEM-domain proteins localize at the inner nuclear membrane, but some are also found in the endoplasmic reticulum or nuclear interior. Their architecture has been analyzed by predicting the limits of their globular domains, determining the 3D structure of these domains and in a few cases calculating the 3D structure of specific domains bound to biological targets. The LEM domain adopts an α-helical fold also found in SAP and HeH domains of prokaryotes and unicellular eukaryotes. The LEM domain binds to BAF (barrier-to-autointegration factor; BANF1), which interacts with DNA and tethers chromatin to the nuclear envelope. LAP2 isoforms also share an N-terminal LEM-like domain, which binds DNA. The structure and function of other globular domains that distinguish LEM-domain proteins from each other have been characterized, including the C-terminal dimerization domain of LAP2α and C-terminal WH and UHM domains of MAN1. LEM-domain proteins also have large intrinsically disordered regions that are involved in intra- and intermolecular interactions and are highly regulated by posttranslational modifications in vivo.

  2. Visualizing domain wall and reverse domain superconductivity.

    PubMed

    Iavarone, M; Moore, S A; Fedor, J; Ciocys, S T; Karapetrov, G; Pearson, J; Novosad, V; Bader, S D

    2014-08-28

    In magnetically coupled, planar ferromagnet-superconductor (F/S) hybrid structures, magnetic domain walls can be used to spatially confine the superconductivity. In contrast to a superconductor in a uniform applied magnetic field, the nucleation of the superconducting order parameter in F/S structures is governed by the inhomogeneous magnetic field distribution. The interplay between the superconductivity localized at the domain walls and far from the walls leads to effects such as re-entrant superconductivity and reverse domain superconductivity with the critical temperature depending upon the location. Here we use scanning tunnelling spectroscopy to directly image the nucleation of superconductivity at the domain wall in F/S structures realized with Co-Pd multilayers and Pb thin films. Our results demonstrate that such F/S structures are attractive model systems that offer the possibility to control the strength and the location of the superconducting nucleus by applying an external magnetic field, potentially useful to guide vortices for computing application.

  3. Visualizing domain wall and reverse domain superconductivity

    PubMed Central

    Iavarone, M.; Moore, S. A.; Fedor, J.; Ciocys, S. T.; Karapetrov, G.; Pearson, J.; Novosad, V.; Bader, S. D.

    2014-01-01

    In magnetically coupled, planar ferromagnet-superconductor (F/S) hybrid structures, magnetic domain walls can be used to spatially confine the superconductivity. In contrast to a superconductor in a uniform applied magnetic field, the nucleation of the superconducting order parameter in F/S structures is governed by the inhomogeneous magnetic field distribution. The interplay between the superconductivity localized at the domain walls and far from the walls leads to effects such as re-entrant superconductivity and reverse domain superconductivity with the critical temperature depending upon the location. Here we use scanning tunnelling spectroscopy to directly image the nucleation of superconductivity at the domain wall in F/S structures realized with Co-Pd multilayers and Pb thin films. Our results demonstrate that such F/S structures are attractive model systems that offer the possibility to control the strength and the location of the superconducting nucleus by applying an external magnetic field, potentially useful to guide vortices for computing application. PMID:25164004

  4. Role of Electrostatic Interactions in Binding of Peptides and Intrinsically Disordered Proteins to Their Folded Targets: 2. The Model of Encounter Complex Involving the Double Mutant of the c-Crk N-SH3 Domain and Peptide Sos.

    PubMed

    Yuwen, Tairan; Xue, Yi; Skrynnikov, Nikolai R

    2016-03-29

    In the first part of this work (paper 1, Xue, Y. et al. Biochemistry 2014 , 53 , 6473 ), we have studied the complex between the 10-residue peptide Sos and N-terminal SH3 domain from adaptor protein c-Crk. In the second part (this paper), we designed the double mutant of the c-Crk N-SH3 domain, W169F/Y186L, with the intention to eliminate the interactions responsible for tight peptide-protein binding, while retaining the interactions that create the initial electrostatic encounter complex. The resulting system was characterized experimentally by measuring the backbone and side-chain (15)N relaxation rates, as well as binding shifts and (1)H(N) temperature coefficients. In addition, it was also modeled via a series of ∼5 μs molecular dynamics (MD) simulations recorded in a large water box under an Amber ff99SB*-ILDN force field. Similar to paper 1, we have found that the strength of arginine-aspartate and arginine-glutamate salt bridges is overestimated in the original force field. To address this problem we have applied the empirical force-field correction described in paper 1. Specifically, the Lennard-Jones equilibrium distance for the nitrogen-oxygen pair across Arg-to-Asp/Glu salt bridges has been increased by 3%. This modification led to MD models in good agreement with the experimental data. The emerging picture is that of a fuzzy complex, where the peptide "dances" over the surface of the protein, making transient contacts via salt-bridge interactions. Every once in a while the peptide assumes a certain more stable binding pose, assisted by a number of adventitious polar and nonpolar contacts. On the other hand, occasionally Sos flies off the protein surface; it is then guided by electrostatic steering to quickly reconnect with the protein. The dynamic interaction between Sos and the double mutant of c-Crk N-SH3 gives rise to only small binding shifts. The peptide retains a high degree of conformational mobility, although it is appreciably slowed down due

  5. Role of Electrostatic Interactions in Binding of Peptides and Intrinsically Disordered Proteins to Their Folded Targets: 2. The Model of Encounter Complex Involving the Double Mutant of the c-Crk N-SH3 Domain and Peptide Sos.

    PubMed

    Yuwen, Tairan; Xue, Yi; Skrynnikov, Nikolai R

    2016-03-29

    In the first part of this work (paper 1, Xue, Y. et al. Biochemistry 2014 , 53 , 6473 ), we have studied the complex between the 10-residue peptide Sos and N-terminal SH3 domain from adaptor protein c-Crk. In the second part (this paper), we designed the double mutant of the c-Crk N-SH3 domain, W169F/Y186L, with the intention to eliminate the interactions responsible for tight peptide-protein binding, while retaining the interactions that create the initial electrostatic encounter complex. The resulting system was characterized experimentally by measuring the backbone and side-chain (15)N relaxation rates, as well as binding shifts and (1)H(N) temperature coefficients. In addition, it was also modeled via a series of ∼5 μs molecular dynamics (MD) simulations recorded in a large water box under an Amber ff99SB*-ILDN force field. Similar to paper 1, we have found that the strength of arginine-aspartate and arginine-glutamate salt bridges is overestimated in the original force field. To address this problem we have applied the empirical force-field correction described in paper 1. Specifically, the Lennard-Jones equilibrium distance for the nitrogen-oxygen pair across Arg-to-Asp/Glu salt bridges has been increased by 3%. This modification led to MD models in good agreement with the experimental data. The emerging picture is that of a fuzzy complex, where the peptide "dances" over the surface of the protein, making transient contacts via salt-bridge interactions. Every once in a while the peptide assumes a certain more stable binding pose, assisted by a number of adventitious polar and nonpolar contacts. On the other hand, occasionally Sos flies off the protein surface; it is then guided by electrostatic steering to quickly reconnect with the protein. The dynamic interaction between Sos and the double mutant of c-Crk N-SH3 gives rise to only small binding shifts. The peptide retains a high degree of conformational mobility, although it is appreciably slowed down due

  6. Alterations of the Wnt/beta-catenin pathway and its target genes for the N- and C-terminal domains of parathyroid hormone-related protein in bone from diabetic mice.

    PubMed

    Portal-Núñez, S; Lozano, D; de Castro, L Fernández; de Gortázar, A R; Nogués, X; Esbrit, P

    2010-07-16

    Type 1 diabetes mellitus (T1D) is associated with bone loss. Given that the Wnt/beta-catenin pathway is a major regulator of bone accrual, we assessed this pathway in mice with streptozotozin-induced T1D. In diabetic mouse long bones, we found alterations favouring the suppression of this pathway by using PCR arrays and beta-catenin immunostaining. Downregulation of sclerostin, an inhibitor of this pathway, also occurred, and related to increased osteocyte apoptosis. Our data show that both N- and C-terminal parathyroid hormone-related peptide fragments might exert osteogenic effects in this setting by targeting several genes of this pathway and increasing beta-catenin in osteoblastic cells.

  7. Binding of the N-terminal domain of the lactococcal bacteriophage TP901-1 CI repressor to its target DNA: a crystallography, small angle scattering, and nuclear magnetic resonance study.

    PubMed

    Frandsen, Kristian H; Rasmussen, Kim K; Jensen, Malene Ringkjøbing; Hammer, Karin; Pedersen, Margit; Poulsen, Jens-Christian N; Arleth, Lise; Lo Leggio, Leila

    2013-10-01

    In most temperate bacteriophages, regulation of the choice of lysogenic or lytic life cycle is controlled by a CI repressor protein. Inhibition of transcription is dependent on a helix-turn-helix motif, often located in the N-terminal domain (NTD), which binds to specific DNA sequences (operator sites). Here the crystal structure of the NTD of the CI repressor from phage TP901-1 has been determined at 1.6 Å resolution, and at 2.6 Å resolution in complex with a 9 bp double-stranded DNA fragment that constitutes a half-site of the OL operator. This N-terminal construct, comprising residues 2-74 of the CI repressor, is monomeric in solution as shown by nuclear magnetic resonance (NMR), small angle X-ray scattering, and gel filtration and is monomeric in the crystal structures. The binding interface between the NTD and the half-site in the crystal is very similar to the interface that can be mapped by NMR in solution with a full palindromic site. The interactions seen in the complexes (in the crystal and in solution) explain the observed affinity for the OR site that is lower than that for the OL site and the specificity for the recognized DNA sequence in comparison to that for other repressors. Compared with many well-studied phage repressor systems, the NTD from TP901-1 CI has a longer extended scaffolding helix that, interestingly, is strongly conserved in putative repressors of Gram-positive pathogens. On the basis of sequence comparisons, we suggest that these bacteria also possess repressor/antirepressor systems similar to that found in phage TP901-1. PMID:24047404

  8. Causal Learning Across Domains

    ERIC Educational Resources Information Center

    Schulz, Laura E.; Gopnik, Alison

    2004-01-01

    Five studies investigated (a) children's ability to use the dependent and independent probabilities of events to make causal inferences and (b) the interaction between such inferences and domain-specific knowledge. In Experiment 1, preschoolers used patterns of dependence and independence to make accurate causal inferences in the domains of…

  9. Domain wall filters

    SciTech Connect

    Baer, Oliver; Narayanan, Rajamani; Neuberger, Herbert; Witzel, Oliver

    2007-03-15

    We propose using the extra dimension separating the domain walls carrying lattice quarks of opposite handedness to gradually filter out the ultraviolet fluctuations of the gauge fields that are felt by the fermionic excitations living in the bulk. This generalization of the homogeneous domain wall construction has some theoretical features that seem nontrivial.

  10. Modeling Protein Domain Function

    ERIC Educational Resources Information Center

    Baker, William P.; Jones, Carleton "Buck"; Hull, Elizabeth

    2007-01-01

    This simple but effective laboratory exercise helps students understand the concept of protein domain function. They use foam beads, Styrofoam craft balls, and pipe cleaners to explore how domains within protein active sites interact to form a functional protein. The activity allows students to gain content mastery and an understanding of the…

  11. Biological Diversity and Molecular Plasticity of FIC Domain Proteins.

    PubMed

    Harms, Alexander; Stanger, Frédéric V; Dehio, Christoph

    2016-09-01

    The ubiquitous proteins with FIC (filamentation induced by cyclic AMP) domains use a conserved enzymatic machinery to modulate the activity of various target proteins by posttranslational modification, typically AMPylation. Following intensive study of the general properties of FIC domain catalysis, diverse molecular activities and biological functions of these remarkably versatile proteins are now being revealed. Here, we review the biological diversity of FIC domain proteins and summarize the underlying structure-function relationships. The original and most abundant genuine bacterial FIC domain proteins are toxins that use diverse molecular activities to interfere with bacterial physiology in various, yet ill-defined, biological contexts. Host-targeted virulence factors have evolved repeatedly out of this pool by exaptation of the enzymatic FIC domain machinery for the manipulation of host cell signaling in favor of bacterial pathogens. The single human FIC domain protein HypE (FICD) has a specific function in the regulation of protein stress responses. PMID:27482742

  12. Sputter target

    DOEpatents

    Gates, Willard G.; Hale, Gerald J.

    1980-01-01

    The disclosure relates to an improved sputter target for use in the deposition of hard coatings. An exemplary target is given wherein titanium diboride is brazed to a tantalum backing plate using a gold-palladium-nickel braze alloy.

  13. The Promise of Domain Adaptation

    NASA Astrophysics Data System (ADS)

    Mahabal, Ashish A.; Li, Jingling; Vaijanapurkar, Samarth; Bue, Brian; Miller, Adam; Donalek, Ciro; Djorgovski, Stanislav G.; Drake, Andrew J.; Graham, Matthew; CRTS, iPTF

    2016-01-01

    Most new surveys spend an appreciable time in collecting data on which to train classifiers before they can be used on future observations from the same dataset. The result generating phase can start much earlier if the training could incorporate data accumulated from older surveys enhanced with a small set from the new survey. This is exactly what Domain Adaptation (DA) allows us to do. The main idea behind DAs can be summarized thus: if we have two classes of separable objects in some feature space of a Source survey (S), we can define a hyperplane to separate the two types. In a second Target survey (T), for the same features the hyperplane would be inclined differently. DA methods get the mapping between the two hyperplanes using a small fraction of data from the Target (T) survey and can then be used to predict the classes of the remaining majority of data in T. We discuss the parameters that need to be tuned, the difficulties involved, and ways to improve the results. As we move towards bigger, and deeper surveys, being able to use existing labelled information to conduct classification in future surveys will be more cost-effective and promote time efficiency as well. Starting with the light curve data of 50,000 periodic objects from Catalina Real-Time Transient Survey (CRTS), we have applied domain adaptation techniques such as Geodesic Flow Kernel (GFK) with Random forest classifier and Co-training for domain adaptation (CODA) to the CRTS data which has 35,000 points overlapping with Palomar Transient Factory (PTF), and 12,000 with Lincoln Near-Earth Asteroid Research (LINEAR). The results suggest that domain adaptation is an area worth exploring as the knowledge between these surveys is transferable and the approaches to find the mappings between these surveys can be applied to the remaining data as well as for near future surveys such as CRTS-II, Zwicky Transient Facility (ZTF) and the Large Synoptic Survey Telescope (LSST) to name a few at the optical

  14. Visualizing Knowledge Domains.

    ERIC Educational Resources Information Center

    Borner, Katy; Chen, Chaomei; Boyack, Kevin W.

    2003-01-01

    Reviews visualization techniques for scientific disciplines and information retrieval and classification. Highlights include historical background of scientometrics, bibliometrics, and citation analysis; map generation; process flow of visualizing knowledge domains; measures and similarity calculations; vector space model; factor analysis;…

  15. Targeted antithrombotic protein micelles.

    PubMed

    Kim, Wookhyun; Haller, Carolyn; Dai, Erbin; Wang, Xiowei; Hagemeyer, Christoph E; Liu, David R; Peter, Karlheinz; Chaikof, Elliot L

    2015-01-26

    Activated platelets provide a promising target for imaging inflammatory and thrombotic events along with site-specific delivery of a variety of therapeutic agents. Multifunctional protein micelles bearing targeting and therapeutic proteins were now obtained by one-pot transpeptidation using an evolved sortase A. Conjugation to the corona of a single-chain antibody (scFv), which binds to the ligand-induced binding site (LIBS) of activated GPIIb/IIIa receptors, enabled the efficient detection of thrombi. The inhibition of thrombus formation was subsequently accomplished by incorporating the catalytically active domain of thrombomodulin (TM) onto the micelle corona for the local generation of activated protein C, which inhibits the formation of thrombin. An effective strategy has been developed for the preparation of protein micelles that can be targeted to sites of activated platelets with broad potential for treatment of acute thrombotic events. PMID:25504546

  16. Putative Domain-Domain Interactions in the Vesicular Stomatitis Virus L Polymerase Protein Appendage Region

    PubMed Central

    Ruedas, John B.

    2014-01-01

    concert to enable virus genome transcription and replication. But how the unique L protein carries out the multiplicity of individual steps in these two distinct processes is poorly understood. Using two different approaches, i.e., exchanging individual domains in the C-terminal appendage region of the protein between two closely related VSV serotypes and inserting unrelated protein domains, we shed light on requirements for domain-domain interactions and domain contiguity in polymerase function. These findings further our understanding of the conformational dynamics of NNS L polymerase proteins, which play an essential role in the pathogenic properties of these viruses and represent attractive targets for the development of antiviral measures. PMID:25297996

  17. Structured hints : extracting and abstracting domain expertise.

    SciTech Connect

    Hereld, M.; Stevens, R.; Sterling, T.; Gao, G. R.; Mathematics and Computer Science; California Inst. of Tech.; Louisiana State Univ.; Univ. of Delaware

    2009-03-16

    We propose a new framework for providing information to help optimize domain-specific application codes. Its design addresses problems that derive from the widening gap between the domain problem statement by domain experts and the architectural details of new and future high-end computing systems. The design is particularly well suited to program execution models that incorporate dynamic adaptive methodologies for live tuning of program performance and resource utilization. This new framework, which we call 'structured hints', couples a vocabulary of annotations to a suite of performance metrics. The immediate target is development of a process by which a domain expert describes characteristics of objects and methods in the application code that would not be readily apparent to the compiler; the domain expert provides further information about what quantities might provide the best indications of desirable effect; and the interactive preprocessor identifies potential opportunities for the domain expert to evaluate. Our development of these ideas is progressing in stages from case study, through manual implementation, to automatic or semi-automatic implementation. In this paper we discuss results from our case study, an examination of a large simulation of a neural network modeled after the neocortex.

  18. Domains in Ferroelectric Nanostructures

    NASA Astrophysics Data System (ADS)

    Gregg, Marty

    2010-03-01

    Ferroelectric materials have great potential in influencing the future of small scale electronics. At a basic level, this is because ferroelectric surfaces are charged, and so interact strongly with charge-carrying metals and semiconductors - the building blocks for all electronic systems. Since the electrical polarity of the ferroelectric can be reversed, surfaces can both attract and repel charges in nearby materials, and can thereby exert complete control over both charge distribution and movement. It should be no surprise, therefore, that microelectronics industries have already looked very seriously at harnessing ferroelectric materials in a variety of applications, from solid state memory chips (FeRAMs) to field effect transistors (FeFETs). In all such applications, switching the direction of the polarity of the ferroelectric is a key aspect of functional behavior. The mechanism for switching involves the field-induced nucleation and growth of domains. Domain coarsening, through domain wall propagation, eventually causes the entire ferroelectric to switch its polar direction. It is thus the existence and behavior of domains that determine the switching response, and ultimately the performance of the ferroelectric device. A major issue, associated with the integration of ferroelectrics into microelectronic devices, has been that the fundamental properties associated with ferroelectrics, when in bulk form, appear to change quite dramatically and unpredictably when at the nanoscale: new modes of behaviour, and different functional characteristics from those seen in bulk appear. For domains, in particular, the proximity of surfaces and boundaries have a dramatic effect: surface tension and depolarizing fields both serve to increase the equilibrium density of domains, such that minor changes in scale or morphology can have major ramifications for domain redistribution. Given the importance of domains in dictating the overall switching characteristics of a device

  19. Just how versatile are domains?

    PubMed Central

    2008-01-01

    Background Creating new protein domain arrangements is a frequent mechanism of evolutionary innovation. While some domains always form the same combinations, others form many different arrangements. This ability, which is often referred to as versatility or promiscuity of domains, its a random evolutionary model in which a domain's promiscuity is based on its relative frequency of domains. Results We show that there is a clear relationship across genomes between the promiscuity of a given domain and its frequency. However, the strength of this relationship differs for different domains. We thus redefine domain promiscuity by defining a new index, DV I ("domain versatility index"), which eliminates the effect of domain frequency. We explore links between a domain's versatility, when unlinked from abundance, and its biological properties. Conclusion Our results indicate that domains occurring as single domain proteins and domains appearing frequently at protein termini have a higher DV I. This is consistent with previous observations that the evolution of domain re-arrangements is primarily driven by fusion of pre-existing arrangements and single domains as well as loss of domains at protein termini. Furthermore, we studied the link between domain age, defined as the first appearance of a domain in the species tree, and the DV I. Contrary to previous studies based on domain promiscuity, it seems as if the DV I is age independent. Finally, we find that contrary to previously reported findings, versatility is lower in Eukaryotes. In summary, our measure of domain versatility indicates that a random attachment process is sufficient to explain the observed distribution of domain arrangements and that several views on domain promiscuity need to be revised. PMID:18854028

  20. Iterative Re-Weighted Instance Transfer for Domain Adaptation

    NASA Astrophysics Data System (ADS)

    Paul, A.; Rottensteiner, F.; Heipke, C.

    2016-06-01

    Domain adaptation techniques in transfer learning try to reduce the amount of training data required for classification by adapting a classifier trained on samples from a source domain to a new data set (target domain) where the features may have different distributions. In this paper, we propose a new technique for domain adaptation based on logistic regression. Starting with a classifier trained on training data from the source domain, we iteratively include target domain samples for which class labels have been obtained from the current state of the classifier, while at the same time removing source domain samples. In each iteration the classifier is re-trained, so that the decision boundaries are slowly transferred to the distribution of the target features. To make the transfer procedure more robust we introduce weights as a function of distance from the decision boundary and a new way of regularisation. Our methodology is evaluated using a benchmark data set consisting of aerial images and digital surface models. The experimental results show that in the majority of cases our domain adaptation approach can lead to an improvement of the classification accuracy without additional training data, but also indicate remaining problems if the difference in the feature distributions becomes too large.

  1. Axion domain wall baryogenesis

    SciTech Connect

    Daido, Ryuji; Kitajima, Naoya; Takahashi, Fuminobu

    2015-07-28

    We propose a new scenario of baryogenesis, in which annihilation of axion domain walls generates a sizable baryon asymmetry. Successful baryogenesis is possible for a wide range of the axion mass and decay constant, m≃10{sup 8}–10{sup 13} GeV and f≃10{sup 13}–10{sup 16} GeV. Baryonic isocurvature perturbations are significantly suppressed in our model, in contrast to various spontaneous baryogenesis scenarios in the slow-roll regime. In particular, the axion domain wall baryogenesis is consistent with high-scale inflation which generates a large tensor-to-scalar ratio within the reach of future CMB B-mode experiments. We also discuss the gravitational waves produced by the domain wall annihilation and its implications for the future gravitational wave experiments.

  2. Rating knowledge sharing in cross-domain collaborative filtering.

    PubMed

    Li, Bin; Zhu, Xingquan; Li, Ruijiang; Zhang, Chengqi

    2015-05-01

    Cross-domain collaborative filtering (CF) aims to share common rating knowledge across multiple related CF domains to boost the CF performance. In this paper, we view CF domains as a 2-D site-time coordinate system, on which multiple related domains, such as similar recommender sites or successive time-slices, can share group-level rating patterns. We propose a unified framework for cross-domain CF over the site-time coordinate system by sharing group-level rating patterns and imposing user/item dependence across domains. A generative model, say ratings over site-time (ROST), which can generate and predict ratings for multiple related CF domains, is developed as the basic model for the framework. We further introduce cross-domain user/item dependence into ROST and extend it to two real-world cross-domain CF scenarios: 1) ROST (sites) for alleviating rating sparsity in the target domain, where multiple similar sites are viewed as related CF domains and some items in the target domain depend on their correspondences in the related ones; and 2) ROST (time) for modeling user-interest drift over time, where a series of time-slices are viewed as related CF domains and a user at current time-slice depends on herself in the previous time-slice. All these ROST models are instances of the proposed unified framework. The experimental results show that ROST (sites) can effectively alleviate the sparsity problem to improve rating prediction performance and ROST (time) can clearly track and visualize user-interest drift over time.

  3. Structure of the human Nac1 POZ domain.

    PubMed

    Stead, Mark A; Carr, Stephen B; Wright, Stephanie C

    2009-05-01

    Nac1 is a POZ-domain transcription factor that is involved in the self-renewal of embryonic stem cells. It is overexpressed in ovarian serous carcinoma and targeting the interactions of its POZ domain is a potential therapeutic strategy. Nac1 lacks a zinc-finger DNA-binding domain and thereby differs from most other POZ-domain transcription factors. Here, the crystal structure of the Nac1 POZ domain at 2.1 A resolution is reported. The Nac1 POZ domain crystallized as a dimer in which the interaction interfaces between subunits resemble those found in the POZ-zinc finger transcription factors. The organization of the Nac1 POZ-domain core resembles reported POZ-domain structures, whereas the C-terminus differs markedly. The C-terminal alpha-helix of the Nac1 POZ domain is shorter than that observed in most other POZ-domain transcription factors; variation in the organization of this region may be a general feature of POZ-domain structures.

  4. LIQUID TARGET

    DOEpatents

    Martin, M.D.; Salsig, W.W. Jr.

    1959-01-13

    A liquid handling apparatus is presented for a liquid material which is to be irradiated. The apparatus consists essentially of a reservoir for the liquid, a target element, a drain tank and a drain lock chamber. The target is in the form of a looped tube, the upper end of which is adapted to be disposed in a beam of atomic particles. The lower end of the target tube is in communication with the liquid in the reservoir and a means is provided to continuously circulate the liquid material to be irradiated through the target tube. Means to heat the reservoir tank is provided in the event that a metal is to be used as the target material. The apparatus is provided with suitable valves and shielding to provide maximum safety in operation.

  5. Cellulose binding domain proteins

    DOEpatents

    Shoseyov, O.; Shpiegl, I.; Goldstein, M.; Doi, R.

    1998-11-17

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques. 16 figs.

  6. Cellulose binding domain proteins

    DOEpatents

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc; Doi, Roy

    1998-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  7. Domain Adaptation of Deformable Part-Based Models.

    PubMed

    Xu, Jiaolong; Ramos, Sebastian; Vázquez, David; López, Antonio M

    2014-12-01

    The accuracy of object classifiers can significantly drop when the training data (source domain) and the application scenario (target domain) have inherent differences. Therefore, adapting the classifiers to the scenario in which they must operate is of paramount importance. We present novel domain adaptation (DA) methods for object detection. As proof of concept, we focus on adapting the state-of-the-art deformable part-based model (DPM) for pedestrian detection. We introduce an adaptive structural SVM (A-SSVM) that adapts a pre-learned classifier between different domains. By taking into account the inherent structure in feature space (e.g., the parts in a DPM), we propose a structure-aware A-SSVM (SA-SSVM). Neither A-SSVM nor SA-SSVM needs to revisit the source-domain training data to perform the adaptation. Rather, a low number of target-domain training examples (e.g., pedestrians) are used. To address the scenario where there are no target-domain annotated samples, we propose a self-adaptive DPM based on a self-paced learning (SPL) strategy and a Gaussian Process Regression (GPR). Two types of adaptation tasks are assessed: from both synthetic pedestrians and general persons (PASCAL VOC) to pedestrians imaged from an on-board camera. Results show that our proposals avoid accuracy drops as high as 15 points when comparing adapted and non-adapted detectors. PMID:26353145

  8. Comparison of the domain and frequency domain state feedbacks

    SciTech Connect

    Zhang, S.Y.

    1986-01-01

    In this paper, we present explicitly the equivalence of the time domain and frequency domain state feedbacks, as well as the dynamic state feedback and a modified frequency domain state feedback, from the closed-loop transfer function point of view. The difference of the two approaches is also shown.

  9. Domain Specific vs Domain General: Implications for Dynamic Assessment

    ERIC Educational Resources Information Center

    Kaniel, Shlomo

    2010-01-01

    The article responds to the need for evidence-based dynamic assessment. The article is divided into two sections: In Part 1 we examine the scientific answer to the question of how far human mental activities and capabilities are domain general (DG) / domain specific (DS). A highly complex answer emerges from the literature review of domains such…

  10. AMIN domains have a predicted role in localization of diverse periplasmic protein complexes

    PubMed Central

    de Souza, Robson Francisco; Anantharaman, Vivek; de Souza, Sandro José; Aravind, L.; Gueiros-Filho, Frederico J.

    2008-01-01

    We describe AMIN (Amidase N-terminal domain), a novel protein domain found specifically in bacterial periplasmic proteins. AMIN domains are widely distributed among peptidoglycan hydrolases and transporter protein families. Based on experimental data, contextual information and phyletic profiles, we suggest that AMIN domains mediate the targeting of periplasmic or extracellular proteins to specific regions of the bacterial envelope. Contact: fgueiros@iq.usp.br Supplementary information: Supplementary data are available at Bioinformatics online. PMID:18723522

  11. Planning sensing actions for UAVs in urban domains

    NASA Astrophysics Data System (ADS)

    Peot, Mark A.; Altshuler, Thomas W.; Breiholz, Arlen; Bueker, Richard A.; Fertig, Kenneth W.; Hawkins, Aaron T.; Reddy, Sudhakar

    2005-10-01

    We illustrate an approach for planning UAV sensing actions in urban or constrained domains. We plan and optimize a collection strategy for a target of interest using Design Sheet, a numeric/symbolic algebraic constraint propagation package. Once a set of sensing plans have been developed, we use a probabilistic roadmap planning algorithm to plan a route for a fixed wing UAV through urban terrain to collect that information. This planner has several novel features to improve performance for urban domains.

  12. Frequency domain nonlinear optics

    NASA Astrophysics Data System (ADS)

    Legare, Francois

    2016-05-01

    The universal dilemma of gain narrowing occurring in fs amplifiers prevents ultra-high power lasers from delivering few-cycle pulses. This problem is overcome by a new amplification concept: Frequency domain Optical Parametric Amplification - FOPA. It enables simultaneous up-scaling of peak power and amplified spectral bandwidth and can be performed at any wavelength range of conventional amplification schemes, however, with the capability to amplify single cycles of light. The key idea for amplification of octave-spanning spectra without loss of spectral bandwidth is to amplify the broad spectrum ``slice by slice'' in the frequency domain, i.e. in the Fourier plane of a 4f-setup. The striking advantages of this scheme, are its capability to amplify (more than) one octave of bandwidth without shorting the corresponding pulse duration. This is because ultrabroadband phase matching is not defined by the properties of the nonlinear crystal employed but the number of crystals employed. In the same manner, to increase the output energy one simply has to increase the spectral extension in the Fourier plane and to add one more crystal. Thus, increasing pulse energy and shortening its duration accompany each other. A proof of principle experiment was carried out at ALLS on the sub-two cycle IR beam line and yielded record breaking performance in the field of few-cycle IR lasers. 100 μJ two-cycle pulses from a hollow core fibre compression setup were amplified to 1.43mJ without distorting spatial or temporal properties. Pulse duration at the input of FOPA and after FOPA remains the same. Recently, we have started upgrading this system to be pumped by 250 mJ to reach 40 mJ two-cycle IR few-cycle pulses and latest results will be presented at the conference. Furthermore, the extension of the concept of FOPA to other nonlinear optical processes will be discussed. Frequency domain nonlinear optics.

  13. On Probability Domains III

    NASA Astrophysics Data System (ADS)

    Frič, Roman; Papčo, Martin

    2015-12-01

    Domains of generalized probability have been introduced in order to provide a general construction of random events, observables and states. It is based on the notion of a cogenerator and the properties of product. We continue our previous study and show how some other quantum structures fit our categorical approach. We discuss how various epireflections implicitly used in the classical probability theory are related to the transition to fuzzy probability theory and describe the latter probability theory as a genuine categorical extension of the former. We show that the IF-probability can be studied via the fuzzy probability theory. We outline a "tensor modification" of the fuzzy probability theory.

  14. Tackling Targets.

    ERIC Educational Resources Information Center

    Further Education Unit, London (England).

    This document is designed to help British training and enterprise councils (TECs) and further education (FE) colleges develop and implement strategies for achieving the National Targets for Education and Training (NTET), which were developed by the Confederation of British Industry in 1992 and endorsed by the British government. The findings from…

  15. Transfer of high domain knowledge to a similar domain.

    PubMed

    Jessup, Ryan K

    2009-01-01

    Researchers have widely examined domain knowledge yet rarely investigate the transfer of knowledge from one domain to another. This study sought to fill in the literature gap concerning the impact of domain knowledge on memory in a similar situation. Specifically, this study examined whether high knowledge of baseball could enhance memory for the similar yet unknown domain of cricket, using a 2 (knowledge) x 2 (prime) design. An interaction occurred, indicating that when primed, baseball knowledge improves memory for cricket events in participants with high baseball knowledge but reduces memory in their low-knowledge counterparts. These results suggest that extensive knowledge in one domain allows it to serve as an organizational framework for incoming information in a similar domain; conversely, priming poorly understood domain knowledge results in negative transfer.

  16. Transfer of high domain knowledge to a similar domain.

    PubMed

    Jessup, Ryan K

    2009-01-01

    Researchers have widely examined domain knowledge yet rarely investigate the transfer of knowledge from one domain to another. This study sought to fill in the literature gap concerning the impact of domain knowledge on memory in a similar situation. Specifically, this study examined whether high knowledge of baseball could enhance memory for the similar yet unknown domain of cricket, using a 2 (knowledge) x 2 (prime) design. An interaction occurred, indicating that when primed, baseball knowledge improves memory for cricket events in participants with high baseball knowledge but reduces memory in their low-knowledge counterparts. These results suggest that extensive knowledge in one domain allows it to serve as an organizational framework for incoming information in a similar domain; conversely, priming poorly understood domain knowledge results in negative transfer. PMID:19353932

  17. Persistent search in single and multiple confined domains: a velocity-jump process model

    NASA Astrophysics Data System (ADS)

    Poll, Daniel B.; Kilpatrick, Zachary P.

    2016-05-01

    We analyze velocity-jump process models of persistent search for a single target on a bounded domain. The searcher proceeds along ballistic trajectories and is absorbed upon collision with the target boundary. When reaching the domain boundary, the searcher chooses a random direction for its new trajectory. For circular domains and targets, we can approximate the mean first passage time (MFPT) using a Markov chain approximation of the search process. Our analysis and numerical simulations reveal that the time to find the target decreases for targets closer to the domain boundary. When there is a small probability of direction-switching within the domain, we find the time to find the target decreases slightly with the turning probability. We also extend our exit time analysis to the case of partitioned domains, where there is a single target within one of multiple disjoint subdomains. Given an average time of transition between domains < T> , we find that the optimal rate of transition that minimizes the time to find the target obeys {β\\text{min}}\\propto 1/\\sqrt< T> .

  18. Structures of heterodimeric POZ domains of Miz1/BCL6 and Miz1/NAC1.

    PubMed

    Stead, Mark Alexander; Wright, Stephanie Claire

    2014-12-01

    The POZ domain is an evolutionarily conserved protein-protein interaction domain that is found in approximately 40 mammalian transcription factors. POZ domains mediate both homodimerization and the heteromeric interactions of different POZ-domain transcription factors with each other. Miz1 is a POZ-domain transcription factor that regulates cell-cycle arrest and DNA-damage responses. The activities of Miz1 are altered by its interaction with the POZ-domain transcriptional repressors BCL6 and NAC1, and these interactions have been implicated in tumourigenesis in B-cell lymphomas and in ovarian serous carcinomas that overexpress BCL6 and NAC1, respectively. A strategy for the purification of tethered POZ domains that form forced heterodimers is described, and crystal structures of the heterodimeric POZ domains of Miz1/BCL6 and of Miz1/NAC1 are reported. These structures will be relevant for the design of therapeutics that target POZ-domain interaction interfaces.

  19. Pattern recognition experiments in the mandala/cosine domain.

    PubMed

    Hsu, Y S; Prum, S; Kagel, J H; Andrews, H C

    1983-05-01

    The problem of recognition of objects in images is investigated from the simultaneous viewpoints of image bandwidth compression and automatic target recognition. A scenario is suggested in which recognition is implemented on features in the block cosine transform domain which is useful for data compression as well. While most image frames would be processed by the automatic recognition algorithms in the compressed domain without need for image reconstruction, this still allows for visual image classification of targets with poor recognition rates (by human viewing at the receiving terminal). It has been found that the Mandala sorting of the block cosine domain results in a more effective domain for selecting target identification parameters. Useful features from this Mandala/cosine domain are developed based upon correlation parameters and homogeneity measures which appear to successfully discriminate between natural and man-made objects. The Bhattacharyya feature discriminator is used to provide a 10:1 compression of the feature space for implementation of simple statistical decision surfaces (Gaussian and minimum distance classification). Imagery sensed in the visible spectra with a resolution of approximately 5-10 ft is used to illustrate the success of the technique on targets such as ships to be separated from clouds. A data set of 38 images is used for experimental verification with typical classification results ranging from the high 80's to low 90 percentile regions depending on the options choosen.

  20. LOB Domain Proteins: Beyond Lateral Organ Boundaries.

    PubMed

    Xu, Changzheng; Luo, Feng; Hochholdinger, Frank

    2016-02-01

    LATERAL ORGAN BOUNDARIES DOMAIN (LBD) proteins defined by a conserved LATERAL ORGAN BOUNDARIES (LOB) domain are key regulators of plant organ development. Recent studies have expanded their functional diversity beyond the definition of lateral organ boundaries to pollen development, plant regeneration, photomorphogenesis, pathogen response, and specific developmental functions in non-model plants, such as poplar and legumes. The identification of a range of upstream regulators, protein partners, and downstream targets of LBD family members has unraveled the molecular networks of LBD-dependent processes. Moreover, it has been demonstrated that LBD proteins have essential roles in integrating developmental changes in response to phytohormone signaling or environmental cues. As we discuss here, these novel discoveries of LBD functions and their molecular contexts promote a better understanding of this plant-specific transcription factor family. PMID:26616195

  1. Target assembly

    DOEpatents

    Lewis, Richard A.

    1980-01-01

    A target for a proton beam which is capable of generating neutrons for absorption in a breeding blanket includes a plurality of solid pins formed of a neutron emissive target material disposed parallel to the path of the beam and which are arranged axially in a plurality of layers so that pins in each layer are offset with respect to pins in all other layers, enough layers being used so that each proton in the beam will strike at least one pin with means being provided to cool the pins. For a 300 mA, 1 GeV beam (300 MW), stainless steel pins, 12 inches long and 0.23 inches in diameter are arranged in triangular array in six layers with one sixth of the pins in each layer, the number of pins being such that the entire cross sectional area of the beam is covered by the pins with minimum overlap of pins.

  2. Spectral Domain Phase Microscopy

    NASA Astrophysics Data System (ADS)

    Hendargo, Hansford C.; Ellerbee, Audrey K.; Izatt, Joseph A.

    Spectral domain phase microscopy (SDPM) is a functional extension of optical coherence tomography (OCT) using common-path interferometry to produce phase-referenced images of dynamic samples. Like OCT, axial resolution in SDPM is determined by the source coherence length, while lateral resolution is limited by diffraction in the microscope optics. However, the quantitative phase information SDPM generates is sensitive to nanometer-scale displacements of scattering structures. The use of a common-path optical geometry yields an imaging system with high phase stability. Due to coherence gating, SDPM can achieve full depth discrimination, allowing for independent motion resolution of subcellular structures throughout the sample volume. Here we review the basic theory of OCT and SDPM along with applications of SDPM in cellular imaging to measure topology, Doppler flow in single-celled organisms, time-resolved motions, rheological information of the cytoskeleton, and optical signaling of neural activation. Phase imaging limitations, artifacts, and sensitivity considerations are discussed.

  3. Beyond the Number Domain

    PubMed Central

    Cantlon, Jessica F.; Platt, Michael L.; Brannon, Elizabeth M.

    2009-01-01

    In a world without numbers, we would be unable to build a skyscraper, hold a national election, plan a wedding, or pay for a chicken at the market. The numerical symbols used in all these behaviors build on the approximate number system (ANS) which represents the number of discrete objects or events as a continuous mental magnitude. In this review, we first discuss evidence that the ANS bears a set of behavioral and brain signatures that are universally displayed across animal species, human cultures, and development. We then turn to the question of whether the ANS constitutes a specialized cognitive and neural domain--a question central to understanding how this system works, the nature of its evolutionary and developmental trajectory, and its physical instantiation in the brain. PMID:19131268

  4. Accelerator target

    DOEpatents

    Schlyer, D.J.; Ferrieri, R.A.; Koehler, C.

    1999-06-29

    A target includes a body having a depression in a front side for holding a sample for irradiation by a particle beam to produce a radioisotope. Cooling fins are disposed on a backside of the body opposite the depression. A foil is joined to the body front side to cover the depression and sample therein. A perforate grid is joined to the body atop the foil for supporting the foil and for transmitting the particle beam therethrough. A coolant is circulated over the fins to cool the body during the particle beam irradiation of the sample in the depression. 5 figs.

  5. Accelerator target

    DOEpatents

    Schlyer, David J.; Ferrieri, Richard A.; Koehler, Conrad

    1999-01-01

    A target includes a body having a depression in a front side for holding a sample for irradiation by a particle beam to produce a radioisotope. Cooling fins are disposed on a backside of the body opposite the depression. A foil is joined to the body front side to cover the depression and sample therein. A perforate grid is joined to the body atop the foil for supporting the foil and for transmitting the particle beam therethrough. A coolant is circulated over the fins to cool the body during the particle beam irradiation of the sample in the depression.

  6. Multifunctionalities driven by ferroic domains

    SciTech Connect

    Yang, J. C.; Huang, Y. L.; Chu, Y. H.; He, Q.

    2014-08-14

    Considerable attention has been paid to ferroic systems in pursuit of advanced applications in past decades. Most recently, the emergence and development of multiferroics, which exhibit the coexistence of different ferroic natures, has offered a new route to create functionalities in the system. In this manuscript, we step from domain engineering to explore a roadmap for discovering intriguing phenomena and multifunctionalities driven by periodic domain patters. As-grown periodic domains, offering exotic order parameters, periodic local perturbations and the capability of tailoring local spin, charge, orbital and lattice degrees of freedom, are introduced as modeling templates for fundamental studies and novel applications. We discuss related significant findings on ferroic domain, nanoscopic domain walls, and conjunct heterostructures based on the well-organized domain patterns, and end with future prospects and challenges in the field.

  7. Dynamical domain wall and localization

    NASA Astrophysics Data System (ADS)

    Toyozato, Yuta; Higuchi, Masafumi; Nojiri, Shin'ichi

    2016-03-01

    Based on the previous works (Toyozato et al., 2013 [24]; Higuchi and Nojiri, 2014 [25]), we investigate the localization of the fields on the dynamical domain wall, where the four-dimensional FRW universe is realized on the domain wall in the five-dimensional space-time. Especially we show that the chiral spinor can localize on the domain wall, which has not been succeeded in the past works as the seminal work in George et al. (2009) [23].

  8. Mapping the Moral Domain

    PubMed Central

    Graham, Jesse; Nosek, Brian A.; Haidt, Jonathan; Iyer, Ravi; Koleva, Spassena; Ditto, Peter H.

    2010-01-01

    The moral domain is broader than the empathy and justice concerns assessed by existing measures of moral competence, and it is not just a subset of the values assessed by value inventories. To fill the need for reliable and theoretically-grounded measurement of the full range of moral concerns, we developed the Moral Foundations Questionnaire (MFQ) based on a theoretical model of five universally available (but variably developed) sets of moral intuitions: Harm/care, Fairness/reciprocity, Ingroup/loyalty, Authority/respect, and Purity/sanctity. We present evidence for the internal and external validity of the scale and the model, and in doing so present new findings about morality: 1. Comparative model fitting of confirmatory factor analyses provides empirical justification for a five-factor structure of moral concerns. 2. Convergent/discriminant validity evidence suggests that moral concerns predict personality features and social group attitudes not previously considered morally relevant. 3. We establish pragmatic validity of the measure in providing new knowledge and research opportunities concerning demographic and cultural differences in moral intuitions. These analyses provide evidence for the usefulness of Moral Foundations Theory in simultaneously increasing the scope and sharpening the resolution of psychological views of morality. PMID:21244182

  9. Evolving Catalytic Properties of the MLL Family SET Domain

    PubMed Central

    Zhang, Ying; Mittal, Anshumali; Reid, James; Reich, Stephanie; Gamblin, Steven J.; Wilson, Jon R.

    2015-01-01

    Summary Methylation of histone H3 lysine-4 is a hallmark of chromatin associated with active gene expression. The activity of H3K4-specific modification enzymes, in higher eukaryotes the MLL (or KMT2) family, is tightly regulated. The MLL family has six members, each with a specialized function. All contain a catalytic SET domain that associates with a core multiprotein complex for activation. These SET domains segregate into three classes that correlate with the arrangement of targeting domains that populate the rest of the protein. Here we show that, unlike MLL1, the MLL4 SET domain retains significant activity without the core complex. We also present the crystal structure of an inactive MLL4-tagged SET domain construct and describe conformational changes that account for MLL4 intrinsic activity. Finally, our structure explains how the MLL SET domains are able to add multiple methyl groups to the target lysine, despite having the sequence characteristics of a classical monomethylase. PMID:26320581

  10. Hydrophobic Compounds Reshape Membrane Domains

    PubMed Central

    Barnoud, Jonathan; Rossi, Giulia; Marrink, Siewert J.; Monticelli, Luca

    2014-01-01

    Cell membranes have a complex lateral organization featuring domains with distinct composition, also known as rafts, which play an essential role in cellular processes such as signal transduction and protein trafficking. In vivo, perturbations of membrane domains (e.g., by drugs or lipophilic compounds) have major effects on the activity of raft-associated proteins and on signaling pathways, but they are difficult to characterize because of the small size of the domains, typically below optical resolution. Model membranes, instead, can show macroscopic phase separation between liquid-ordered and liquid-disordered domains, and they are often used to investigate the driving forces of membrane lateral organization. Studies in model membranes have shown that some lipophilic compounds perturb membrane domains, but it is not clear which chemical and physical properties determine domain perturbation. The mechanisms of domain stabilization and destabilization are also unknown. Here we describe the effect of six simple hydrophobic compounds on the lateral organization of phase-separated model membranes consisting of saturated and unsaturated phospholipids and cholesterol. Using molecular simulations, we identify two groups of molecules with distinct behavior: aliphatic compounds promote lipid mixing by distributing at the interface between liquid-ordered and liquid-disordered domains; aromatic compounds, instead, stabilize phase separation by partitioning into liquid-disordered domains and excluding cholesterol from the disordered domains. We predict that relatively small concentrations of hydrophobic species can have a broad impact on domain stability in model systems, which suggests possible mechanisms of action for hydrophobic compounds in vivo. PMID:25299598

  11. On Probability Domains

    NASA Astrophysics Data System (ADS)

    Frič, Roman; Papčo, Martin

    2010-12-01

    Motivated by IF-probability theory (intuitionistic fuzzy), we study n-component probability domains in which each event represents a body of competing components and the range of a state represents a simplex S n of n-tuples of possible rewards-the sum of the rewards is a number from [0,1]. For n=1 we get fuzzy events, for example a bold algebra, and the corresponding fuzzy probability theory can be developed within the category ID of D-posets (equivalently effect algebras) of fuzzy sets and sequentially continuous D-homomorphisms. For n=2 we get IF-events, i.e., pairs ( μ, ν) of fuzzy sets μ, ν∈[0,1] X such that μ( x)+ ν( x)≤1 for all x∈ X, but we order our pairs (events) coordinatewise. Hence the structure of IF-events (where ( μ 1, ν 1)≤( μ 2, ν 2) whenever μ 1≤ μ 2 and ν 2≤ ν 1) is different and, consequently, the resulting IF-probability theory models a different principle. The category ID is cogenerated by I=[0,1] (objects of ID are subobjects of powers I X ), has nice properties and basic probabilistic notions and constructions are categorical. For example, states are morphisms. We introduce the category S n D cogenerated by Sn=\\{(x1,x2,ldots ,xn)in In;sum_{i=1}nxi≤ 1\\} carrying the coordinatewise partial order, difference, and sequential convergence and we show how basic probability notions can be defined within S n D.

  12. Fractional diffusion on bounded domains

    SciTech Connect

    Defterli, Ozlem; D'Elia, Marta; Du, Qiang; Gunzburger, Max Donald; Lehoucq, Richard B.; Meerschaert, Mark M.

    2015-03-13

    We found that the mathematically correct specification of a fractional differential equation on a bounded domain requires specification of appropriate boundary conditions, or their fractional analogue. In this paper we discuss the application of nonlocal diffusion theory to specify well-posed fractional diffusion equations on bounded domains.

  13. Diversity in protein domain superfamilies

    PubMed Central

    Das, Sayoni; Dawson, Natalie L; Orengo, Christine A

    2015-01-01

    Whilst ∼93% of domain superfamilies appear to be relatively structurally and functionally conserved based on the available data from the CATH-Gene3D domain classification resource, the remainder are much more diverse. In this review, we consider how domains in some of the most ubiquitous and promiscuous superfamilies have evolved, in particular the plasticity in their functional sites and surfaces which expands the repertoire of molecules they interact with and actions performed on them. To what extent can we identify a core function for these superfamilies which would allow us to develop a ‘domain grammar of function’ whereby a protein's biological role can be proposed from its constituent domains? Clearly the first step is to understand the extent to which these components vary and how changes in their molecular make-up modifies function. PMID:26451979

  14. Feature-level sentiment analysis by using comparative domain corpora

    NASA Astrophysics Data System (ADS)

    Quan, Changqin; Ren, Fuji

    2016-06-01

    Feature-level sentiment analysis (SA) is able to provide more fine-grained SA on certain opinion targets and has a wider range of applications on E-business. This study proposes an approach based on comparative domain corpora for feature-level SA. The proposed approach makes use of word associations for domain-specific feature extraction. First, we assign a similarity score for each candidate feature to denote its similarity extent to a domain. Then we identify domain features based on their similarity scores on different comparative domain corpora. After that, dependency grammar and a general sentiment lexicon are applied to extract and expand feature-oriented opinion words. Lastly, the semantic orientation of a domain-specific feature is determined based on the feature-oriented opinion lexicons. In evaluation, we compare the proposed method with several state-of-the-art methods (including unsupervised and semi-supervised) using a standard product review test collection. The experimental results demonstrate the effectiveness of using comparative domain corpora.

  15. In vivo analysis of human nucleoporin repeat domain interactions

    PubMed Central

    Xu, Songli; Powers, Maureen A.

    2013-01-01

    The nuclear pore complex (NPC), assembled from ∼30 proteins termed nucleoporins (Nups), mediates selective nucleocytoplasmic trafficking. A subset of nucleoporins bear a domain with multiple phenylalanine–glycine (FG) motifs. As binding sites for transport receptors, FG Nups are critical in translocation through the NPC. Certain FG Nups are believed to associate via low-affinity, cohesive interactions to form the permeability barrier of the pore, although the form and composition of this functional barrier are debated. We used green fluorescent protein–Nup98/HoxA9 constructs with various numbers of repeats and also substituted FG domains from other nucleoporins for the Nup98 domain to directly compare cohesive interactions in live cells by fluorescence recovery after photobleaching (FRAP). We find that cohesion is a function of both number and type of FG repeats. Glycine–leucine–FG (GLFG) repeat domains are the most cohesive. FG domains from several human nucleoporins showed no interactions in this assay; however, Nup214, with numerous VFG motifs, displayed measurable cohesion by FRAP. The cohesive nature of a human nucleoporin did not necessarily correlate with that of its yeast orthologue. The Nup98 GLFG domain also functions in pore targeting through binding to Nup93, positioning the GLFG domain in the center of the NPC and supporting a role for this nucleoporin in the permeability barrier. PMID:23427268

  16. Separated matter and antimatter domains with vanishing domain walls

    SciTech Connect

    Dolgov, A.D.; Godunov, S.I.; Rudenko, A.S.; Tkachev, I.I. E-mail: sgodunov@itep.ru E-mail: tkachev@ms2.inr.ac.ru

    2015-10-01

    We present a model of spontaneous (or dynamical) C and CP violation where it is possible to generate domains of matter and antimatter separated by cosmologically large distances. Such C(CP) violation existed only in the early universe and later it disappeared with the only trace of generated baryonic and/or antibaryonic domains. So the problem of domain walls in this model does not exist. These features are achieved through a postulated form of interaction between inflaton and a new scalar field, realizing short time C(CP) violation.

  17. Geometry-induced fluctuations of olfactory searches in bounded domains

    NASA Astrophysics Data System (ADS)

    Rodríguez, Juan Duque; Gómez-Ullate, David; Mejía-Monasterio, Carlos

    2014-04-01

    In olfactory search an immobile target emits chemical molecules at constant rate. The molecules are transported by the medium, which is assumed to be turbulent. Considering a searcher able to detect such chemical signals and whose motion follows the infotaxis strategy, we study the statistics of the first-passage time to the target when the searcher moves on a finite two-dimensional lattice of different geometries. Far from the target, where the concentration of chemicals is low, the direction of the searcher's first movement is determined by the geometry of the domain and the topology of the lattice, inducing strong fluctuations on the average search time with respect to the initial position of the searcher. The domain is partitioned in well-defined regions characterized by the direction of the first movement. If the search starts over the interface between two different regions, large fluctuations in the search time are observed.

  18. Modeling software systems by domains

    NASA Technical Reports Server (NTRS)

    Dippolito, Richard; Lee, Kenneth

    1992-01-01

    The Software Architectures Engineering (SAE) Project at the Software Engineering Institute (SEI) has developed engineering modeling techniques that both reduce the complexity of software for domain-specific computer systems and result in systems that are easier to build and maintain. These techniques allow maximum freedom for system developers to apply their domain expertise to software. We have applied these techniques to several types of applications, including training simulators operating in real time, engineering simulators operating in non-real time, and real-time embedded computer systems. Our modeling techniques result in software that mirrors both the complexity of the application and the domain knowledge requirements. We submit that the proper measure of software complexity reflects neither the number of software component units nor the code count, but the locus of and amount of domain knowledge. As a result of using these techniques, domain knowledge is isolated by fields of engineering expertise and removed from the concern of the software engineer. In this paper, we will describe kinds of domain expertise, describe engineering by domains, and provide relevant examples of software developed for simulator applications using the techniques.

  19. Molecular insights into regulation of JAK2 in myeloproliferative neoplasms

    PubMed Central

    Hubbard, Stevan R.

    2015-01-01

    The critical role of Janus kinase-2 (JAK2) in regulation of myelopoiesis was established 2 decades ago, but identification of mutations in the pseudokinase domain of JAK2 in myeloproliferative neoplasms (MPNs) and in other hematologic malignancies highlighted the role of JAK2 in human disease. These findings have revolutionized the diagnostics of MPNs and led to development of novel JAK2 therapeutics. However, the molecular mechanisms by which mutations in the pseudokinase domain lead to hyperactivation of JAK2 and clinical disease have been unclear. Here, we describe recent advances in the molecular characterization of the JAK2 pseudokinase domain and how pathogenic mutations lead to constitutive activation of JAK2. PMID:25824690

  20. In situ dissection of RNA functional subunits by domain-specific chromatin isolation by RNA purification (dChIRP).

    PubMed

    Quinn, Jeffrey J; Chang, Howard Y

    2015-01-01

    Here we describe domain-specific chromatin isolation by RNA purification (dChIRP), a technique for dissecting the functional domains of a target RNA in situ. For an RNA of interest, dChIRP can identify domain-level intramolecular and intermolecular RNA-RNA, RNA-protein, and RNA-DNA interactions and maps the RNA's genomic binding sites with higher precision than domain-agnostic methods. We illustrate how this technique has been applied to the roX1 lncRNA to resolve its domain-level architecture, discover its protein- and chromatin-interacting domains, and map its occupancy on the X chromosome.

  1. Domain adaptation for semantic role labeling of clinical text

    PubMed Central

    Zhang, Yaoyun; Tang, Buzhou; Jiang, Min; Wang, Jingqi

    2015-01-01

    Objective Semantic role labeling (SRL), which extracts a shallow semantic relation representation from different surface textual forms of free text sentences, is important for understanding natural language. Few studies in SRL have been conducted in the medical domain, primarily due to lack of annotated clinical SRL corpora, which are time-consuming and costly to build. The goal of this study is to investigate domain adaptation techniques for clinical SRL leveraging resources built from newswire and biomedical literature to improve performance and save annotation costs. Materials and Methods Multisource Integrated Platform for Answering Clinical Questions (MiPACQ), a manually annotated SRL clinical corpus, was used as the target domain dataset. PropBank and NomBank from newswire and BioProp from biomedical literature were used as source domain datasets. Three state-of-the-art domain adaptation algorithms were employed: instance pruning, transfer self-training, and feature augmentation. The SRL performance using different domain adaptation algorithms was evaluated by using 10-fold cross-validation on the MiPACQ corpus. Learning curves for the different methods were generated to assess the effect of sample size. Results and Conclusion When all three source domain corpora were used, the feature augmentation algorithm achieved statistically significant higher F-measure (83.18%), compared to the baseline with MiPACQ dataset alone (F-measure, 81.53%), indicating that domain adaptation algorithms may improve SRL performance on clinical text. To achieve a comparable performance to the baseline method that used 90% of MiPACQ training samples, the feature augmentation algorithm required <50% of training samples in MiPACQ, demonstrating that annotation costs of clinical SRL can be reduced significantly by leveraging existing SRL resources from other domains. PMID:26063745

  2. Modulation of activation-loop phosphorylation by JAK inhibitors is binding mode dependent

    PubMed Central

    Bonenfant, Débora; Rubert, Joëlle; Vangrevelinghe, Eric; Scheufler, Clemens; Marque, Fanny; Régnier, Catherine H.; De Pover, Alain; Ryckelynck, Hugues; Bhagwat, Neha; Koppikar, Priya; Goel, Aviva; Wyder, Lorenza; Tavares, Gisele; Baffert, Fabienne; Pissot-Soldermann, Carole; Manley, Paul W.; Gaul, Christoph; Voshol, Hans; Levine, Ross L.; Sellers, William R.; Hofmann, Francesco; Radimerski, Thomas

    2016-01-01

    JAK inhibitors are being developed for the treatment of rheumatoid arthritis, psoriasis, myeloproliferative neoplasms and leukemias. Most of these drugs target the ATP-binding pocket and stabilize the active conformation of the JAK kinases. This type-I binding mode leads to an increase in JAK activation-loop phosphorylation, despite blockade of kinase function. Here we report that stabilizing the inactive state via type-II inhibition acts in the opposite manner, leading to a loss of activation-loop phosphorylation. We used X-ray crystallography to corroborate the binding mode and report for the first time the crystal structure of the JAK2 kinase domain in an inactive conformation. Importantly, JAK inhibitor-induced activation-loop phosphorylation requires receptor interaction, as well as intact kinase and pseudokinase domains. Hence, depending on the respective conformation stabilized by a JAK inhibitor, hyperphosphorylation of the activation-loop may or may not be elicited. PMID:22684457

  3. Concept Convergence in Empirical Domains

    NASA Astrophysics Data System (ADS)

    Ontañón, Santiago; Plaza, Enric

    How to achieve shared meaning is a significant issue when more than one intelligent agent is involved in the same domain. We define the task of concept convergence, by which intelligent agents can achieve a shared, agreed-upon meaning of a concept (restricted to empirical domains). For this purpose we present a framework that, integrating computational argumentation and inductive concept learning, allows a pair of agents to (1) learn a concept in an empirical domain, (2) argue about the concept's meaning, and (3) reach a shared agreed-upon concept definition. We apply this framework to marine sponges, a biological domain where the actual definitions of concepts such as orders, families and species are currently open to discussion. An experimental evaluation on marine sponges shows that concept convergence is achieved, within a reasonable number of interchanged arguments, and reaching short and accurate definitions (with respect to precision and recall).

  4. Structure of NS1A effector domain from the influenza A/Udorn/72 virus

    SciTech Connect

    Xia, Shuangluo; Monzingo, Arthur F.; Robertus, Jon D.

    2009-01-01

    The structure of the effector domain of the influenza protein NS1, a validated antiviral drug target, has been solved in two space groups. The nonstructural protein NS1A from influenza virus is a multifunctional virulence factor and a potent inhibitor of host immunity. It has two functional domains: an N-terminal 73-amino-acid RNA-binding domain and a C-terminal effector domain. Here, the crystallographic structure of the NS1A effector domain of influenza A/Udorn/72 virus is presented. Structure comparison with the NS1 effector domain from mouse-adapted influenza A/Puerto Rico/8/34 (PR8) virus strain reveals a similar monomer conformation but a different dimer interface. Further analysis and evaluation shows that the dimer interface observed in the structure of the PR8 NS1 effector domain is likely to be a crystallographic packing effect. A hypothetical model of the intact NS1 dimer is presented.

  5. Functional domains of the floral regulator AGAMOUS: characterization of the DNA binding domain and analysis of dominant negative mutations.

    PubMed Central

    Mizukami, Y; Huang, H; Tudor, M; Hu, Y; Ma, H

    1996-01-01

    The Arabidopsis MADS box gene AGAMOUS (AG) controls reproductive organ identity and floral meristem determinacy. The AG protein binds in vitro to DNA sequences similar to the targets of known MADS domain transcription factors. Whereas most plant MADS domain proteins begin with the MADS domain, AG and its orthologs contain a region N-terminal to the MADS domain. All plant MADS domain proteins share another region with moderate sequence similarity called the K domain. Neither the region (I region) that lies between the MADS and K domains nor the C-terminal region is conserved. We show here that the AG MADS domain and the I region are necessary and sufficient for DNA binding in vitro and that AG binds to DNA as a dimer. To investigate the in vivo function of the regions of AG not required for in vitro DNA binding, we introduced several AG constructs into wild-type plants and characterized their floral phenotypes. We show that transgenic Arabidopsis plants with a 35S-AG construct encoding an AG protein lacking the N-terminal region produced apetala 2 (ap2)-like flowers similar to those ectopically expressing AG proteins retaining the N-terminal region. This result suggests that the N-terminal region is not required to produce the ap2-like phenotype. In addition, transformants with a 35S-AG construct encoding an AG protein lacking the C-terminal region produced ag-like flowers, indicating that this truncated AG protein inhibits normal AG function. Finally, transformants with a 35S-AG construct encoding an AG protein lacking both K and C regions produced flowers with more stamens and carpels. The phenotypes of the AG transformants demonstrate that both the K domain and the C-terminal region have important and distinct in vivo functions. We discuss possible mechanisms through which AG may regulate downstream genes. PMID:8672883

  6. Current Domain Challenges in the Emergency Response Community

    SciTech Connect

    Barr, Jonathan L.; Peddicord, Annie M Boe; Burtner, Edwin R.; Mahy, Heidi A.

    2011-05-08

    This paper describes the development of a framework targeted to technology providers in order to better understand the grand domain challenges of the emergency response and management community (EM). In developing this framework, Pacific Northwest National Laboratory researchers interviewed subject matter experts (SMEs) across the EM domain and corroborated these findings with current literature. We are currently examining relationships and dependencies within the framework. A thorough understanding of these gaps and dependencies will allow for a more informed approach prioritizing research, developing tools, and applying technology to enhance performance in the EM community.

  7. Prevalence of the F-type lectin domain.

    PubMed

    Bishnoi, Ritika; Khatri, Indu; Subramanian, Srikrishna; Ramya, T N C

    2015-08-01

    F-type lectins are fucolectins with characteristic fucose and calcium-binding sequence motifs and a unique lectin fold (the "F-type" fold). F-type lectins are phylogenetically widespread with selective distribution. Several eukaryotic F-type lectins have been biochemically and structurally characterized, and the F-type lectin domain (FLD) has also been studied in the bacterial proteins, Streptococcus mitis lectinolysin and Streptococcus pneumoniae SP2159. However, there is little knowledge about the extent of occurrence of FLDs and their domain organization, especially, in bacteria. We have now mined the extensive genomic sequence information available in the public databases with sensitive sequence search techniques in order to exhaustively survey prokaryotic and eukaryotic FLDs. We report 437 FLD sequence clusters (clustered at 80% sequence identity) from eukaryotic, eubacterial and viral proteins. Domain architectures are diverse but mostly conserved in closely related organisms, and domain organizations of bacterial FLD-containing proteins are very different from their eukaryotic counterparts, suggesting unique specialization of FLDs to suit different requirements. Several atypical phylogenetic associations hint at lateral transfer. Among eukaryotes, we observe an expansion of FLDs in terms of occurrence and domain organization diversity in the taxa Mollusca, Hemichordata and Branchiostomi, perhaps coinciding with greater emphasis on innate immune strategies in these organisms. The naturally occurring FLDs with diverse domain organizations that we have identified here will be useful for future studies aimed at creating designer molecular platforms for directing desired biological activities to fucosylated glycoconjugates in target niches. PMID:25943580

  8. Prevalence of the F-type lectin domain.

    PubMed

    Bishnoi, Ritika; Khatri, Indu; Subramanian, Srikrishna; Ramya, T N C

    2015-08-01

    F-type lectins are fucolectins with characteristic fucose and calcium-binding sequence motifs and a unique lectin fold (the "F-type" fold). F-type lectins are phylogenetically widespread with selective distribution. Several eukaryotic F-type lectins have been biochemically and structurally characterized, and the F-type lectin domain (FLD) has also been studied in the bacterial proteins, Streptococcus mitis lectinolysin and Streptococcus pneumoniae SP2159. However, there is little knowledge about the extent of occurrence of FLDs and their domain organization, especially, in bacteria. We have now mined the extensive genomic sequence information available in the public databases with sensitive sequence search techniques in order to exhaustively survey prokaryotic and eukaryotic FLDs. We report 437 FLD sequence clusters (clustered at 80% sequence identity) from eukaryotic, eubacterial and viral proteins. Domain architectures are diverse but mostly conserved in closely related organisms, and domain organizations of bacterial FLD-containing proteins are very different from their eukaryotic counterparts, suggesting unique specialization of FLDs to suit different requirements. Several atypical phylogenetic associations hint at lateral transfer. Among eukaryotes, we observe an expansion of FLDs in terms of occurrence and domain organization diversity in the taxa Mollusca, Hemichordata and Branchiostomi, perhaps coinciding with greater emphasis on innate immune strategies in these organisms. The naturally occurring FLDs with diverse domain organizations that we have identified here will be useful for future studies aimed at creating designer molecular platforms for directing desired biological activities to fucosylated glycoconjugates in target niches.

  9. PDE and cognitive processing: beyond the memory domain.

    PubMed

    Heckman, P R A; Blokland, A; Ramaekers, J; Prickaerts, J

    2015-03-01

    Phosphodiesterase inhibitors (PDE-Is) enhance cAMP and/or cGMP signaling via reducing the degradation of these cyclic nucleotides. Both cAMP and cGMP signaling are essential for a variety of cellular functions and exert their effects both pre- and post-synaptically. Either of these second messengers relays and amplifies incoming signals at receptors on the cell surface making them important elements in signal transduction cascades and essential in cellular signaling in a variety of cell functions including neurotransmitter release and neuroprotection. Consequently, these processes can be influenced by PDE-Is as they increase cAMP and/or cGMP concentrations. PDE-Is have been considered as possible therapeutic agents to treat impaired memory function linked to several brain disorders, including depression, schizophrenia and Alzheimer's disease (AD). This review will, however, focus on the possible role of phosphodiesterases (PDEs) in cognitive decline beyond the memory domain. Here we will discuss the involvement of PDEs on three related domains: attention, information filtering (sensory- and sensorimotor gating) and response inhibition (drug-induced hyperlocomotion). Currently, these are emerging cognitive domains in the field of PDE research. Here we discuss experimental studies and the potential beneficial effects of PDE-I drugs on these cognitive domains, as effects of PDE-Is on these domains could potentially influence effects on memory performance. Overall, PDE4 seems to be the most promising target for all domains discussed in this review.

  10. Domain and Specification Models for Software Engineering

    NASA Technical Reports Server (NTRS)

    Iscoe, Neil; Liu, Zheng-Yang; Feng, Guohui

    1992-01-01

    This paper discusses our approach to representing application domain knowledge for specific software engineering tasks. Application domain knowledge is embodied in a domain model. Domain models are used to assist in the creation of specification models. Although many different specification models can be created from any particular domain model, each specification model is consistent and correct with respect to the domain model. One aspect of the system-hierarchical organization is described in detail.

  11. Domains in folding of model proteins.

    PubMed Central

    Abkevich, V. I.; Gutin, A. M.; Shakhnovich, E. I.

    1995-01-01

    By means of Monte Carlo simulation, we investigated the equilibrium between folded and unfolded states of lattice model proteins. The amino acid sequences were designed to have pronounced energy minimum target conformations of different length and shape. For short fully compact (36-mer) proteins, the all-or-none transition from the unfolded state to the native state was observed. This was not always the case for longer proteins. Among 12 designed sequences with the native structure of a fully compact 48-mer, a simple all-or-none transition was observed in only three cases. For the other nine sequences, three states of behavior-the native, denatured, and intermediate states-were found. The contiguous part of the native structure (domain) was conserved in the intermediate state, whereas the remaining part was completely unfolded and structureless. These parts melted separately from each other. PMID:7549881

  12. Transcriptional activation by the acidic domain of Vmw65 requires the integrity of the domain and involves additional determinants distinct from those necessary for TFIIB binding.

    PubMed Central

    Walker, S; Greaves, R; O'Hare, P

    1993-01-01

    In this work we have examined the requirements for activity of the acidic domain of Vmw65 (VP16) by deletion and site-directed mutagenesis of the region in the context of GAL4 fusion proteins. The results indicate that the present interpretation of what actually constitutes the activation domain is not correct. We demonstrate, using a promoter with one target site which is efficiently activated by the wild-type (wt) fusion protein, that amino acids distal to residue 453 are critical for activity. Truncation of the domain or substitution of residues in the distal region almost completely abrogate activity. However, inactivating mutations within the distal region are complemented by using a promoter containing multiple target sites. Moreover, duplication of the proximal region, but not the distal region, restores the ability to activate a promoter with a single target site. These results indicate some distinct qualitative difference between the proximal and distal regions. We have also examined the binding of nuclear proteins to the wt domain and to a variant with the distal region inactivated by mutation. The lack of activity of this variant is not explained by a lack of binding of TFIIB, a protein previously reported to be the likely target of the acidic domain. Therefore some additional function is involved in transcriptional activation by the acid domain, and determinants distinct from those involved in TFIIB binding are required for this function. Analysis of the total protein profiles binding to the wt and mutant domains has demonstrated the selective binding to the wt domain of a 135-kDa polypeptide, which is therefore a candidate component involved in this additional function. This is the first report to provide evidence for the proposal of a multiplicity of interactions within the acidic domain, by uncoupling requirements for one function from those for another. Images PMID:8395001

  13. Advances in targeted genome editing.

    PubMed

    Perez-Pinera, Pablo; Ousterout, David G; Gersbach, Charles A

    2012-08-01

    New technologies have recently emerged that enable targeted editing of genomes in diverse systems. This includes precise manipulation of gene sequences in their natural chromosomal context and addition of transgenes to specific genomic loci. This progress has been facilitated by advances in engineering targeted nucleases with programmable, site-specific DNA-binding domains, including zinc finger proteins and transcription activator-like effectors (TALEs). Recent improvements have enhanced nuclease performance, accelerated nuclease assembly, and lowered the cost of genome editing. These advances are driving new approaches to many areas of biotechnology, including biopharmaceutical production, agriculture, creation of transgenic organisms and cell lines, and studies of genome structure, regulation, and function. Genome editing is also being investigated in preclinical and clinical gene therapies for many diseases.

  14. Localization of resistive domains in inhomogeneous superconductors

    SciTech Connect

    Gurevich, A.V.; Mints, R.G.

    1981-01-01

    The properties of resistive domains due to the Joule heating in inhomogeneous superconductors with transport currents are studied. The equilibrium of a domain at an inhomogeneity of arbitrary type and with dimensions much smaller than the dimensions of the domain is investigated. It is shown that resistive domains can become localized at inhomogeneities. The temperature distribution in a domain and the current--voltage characteristic of the domain are determined. The stability of localized domains is discussed. It is shown that such domains give rise to a hysteresis in the destruction (recovery) of the superconductivity by the transport current.

  15. Predicting cognitive change within domains

    PubMed Central

    Duff, Kevin; Beglinger, Leigh J.; Moser, David J.; Paulsen, Jane S.

    2010-01-01

    Standardized regression based (SRB) formulas, a method for predicting cognitive change across time, traditionally use baseline performance on a neuropsychological measure to predict future performance on that same measure. However, there are instances in which the same tests may not be given at follow-up assessments (e.g., lack of continuity of provider, avoiding practice effects). The current study sought to expand this methodology by developing SRBs to predict performance on different tests within the same cognitive domain. Using a sample of 127 non-demented community-dwelling older adults assessed at baseline and after one year, two sets of SRBs were developed: 1. those predicting performance on the same test, and 2. those predicting performance on a different test within the same cognitive domain. The domains examined were learning and memory, processing speed, and language. Across both sets of SRBs, one year scores were significantly predicted by baseline scores, especially for the learning and memory and processing speed measures. Although SRBs developed for the same test were comparable to those developed for different tests within the same domain, less variance was accounted for as tests became less similar. The current results lend preliminary support for additional development of SRBs, both for same- and different-tests, as well as beginning to examine domain-based SRBs. PMID:20358479

  16. Functional domain walls in multiferroics

    NASA Astrophysics Data System (ADS)

    Meier, Dennis

    2015-11-01

    During the last decade a wide variety of novel and fascinating correlation phenomena has been discovered at domain walls in multiferroic bulk systems, ranging from unusual electronic conductance to inseparably entangled spin and charge degrees of freedom. The domain walls represent quasi-2D functional objects that can be induced, positioned, and erased on demand, bearing considerable technological potential for future nanoelectronics. Most of the challenges that remain to be solved before turning related device paradigms into reality, however, still fall in the field of fundamental condensed matter physics and materials science. In this topical review seminal experimental findings gained on electric and magnetic domain walls in multiferroic bulk materials are addressed. A special focus is put on the physical properties that emerge at so-called charged domain walls and the added functionality that arises from coexisting magnetic order. The research presented in this review highlights that we are just entering a whole new world of intriguing nanoscale physics that is yet to be explored in all its details. The goal is to draw attention to the persistent challenges and identify future key directions for the research on functional domain walls in multiferroics.

  17. Gradient Domain Guided Image Filtering.

    PubMed

    Kou, Fei; Chen, Weihai; Wen, Changyun; Li, Zhengguo

    2015-11-01

    Guided image filter (GIF) is a well-known local filter for its edge-preserving property and low computational complexity. Unfortunately, the GIF may suffer from halo artifacts, because the local linear model used in the GIF cannot represent the image well near some edges. In this paper, a gradient domain GIF is proposed by incorporating an explicit first-order edge-aware constraint. The edge-aware constraint makes edges be preserved better. To illustrate the efficiency of the proposed filter, the proposed gradient domain GIF is applied for single-image detail enhancement, tone mapping of high dynamic range images and image saliency detection. Both theoretical analysis and experimental results prove that the proposed gradient domain GIF can produce better resultant images, especially near the edges, where halos appear in the original GIF. PMID:26285153

  18. Faraday instability in deformable domains

    NASA Astrophysics Data System (ADS)

    Pucci, Giuseppe; Ben Amar, Martine; Couder, Yves

    2014-11-01

    We investigate the Faraday instability in floating liquid lenses, as an example of hydrodynamic instability that develops in a domain with flexible boundaries. We show that a mutual adaptation of the instability pattern and the domain shape occurs, as a result of the competition between the wave radiation pressure and the capillary response of the lens border. Two archetypes of behaviour are observed. In the first, stable shapes are obtained experimentally and predicted theoretically as the exact solutions of a Riccati equation, and they result from the equilibrium between wave radiation pressure and capillarity. In the second, the radiation pressure exceeds the capillary response of the lens border and leads to non-equilibrium behaviours, with breaking into smaller domains that have a complex dynamics including spontaneous propagation. The authors are grateful to Université Franco-Italienne (UFI) for financial support.

  19. Nucleation and spreading of a heterochromatic domain in fission yeast

    PubMed Central

    Obersriebnig, Michaela J.; Pallesen, Emil M. H.; Sneppen, Kim; Trusina, Ala; Thon, Geneviève

    2016-01-01

    Outstanding questions in the chromatin field bear on how large heterochromatin domains are formed in space and time. Positive feedback, where histone-modifying enzymes are attracted to chromosomal regions displaying the modification they catalyse, is believed to drive the formation of these domains; however, few quantitative studies are available to assess this hypothesis. Here we quantified the de novo establishment of a naturally occurring ∼20-kb heterochromatin domain in fission yeast through single-cell analyses, measuring the kinetics of heterochromatin nucleation in a region targeted by RNAi and its subsequent expansion. We found that nucleation of heterochromatin is stochastic and can take from one to ten cell generations. Further silencing of the full region takes another one to ten generations. Quantitative modelling of the observed kinetics emphasizes the importance of local feedback, where a nucleosome-bound enzyme modifies adjacent nucleosomes, combined with a feedback where recruited enzymes can act at a distance. PMID:27167753

  20. Nucleation and spreading of a heterochromatic domain in fission yeast.

    PubMed

    Obersriebnig, Michaela J; Pallesen, Emil M H; Sneppen, Kim; Trusina, Ala; Thon, Geneviève

    2016-01-01

    Outstanding questions in the chromatin field bear on how large heterochromatin domains are formed in space and time. Positive feedback, where histone-modifying enzymes are attracted to chromosomal regions displaying the modification they catalyse, is believed to drive the formation of these domains; however, few quantitative studies are available to assess this hypothesis. Here we quantified the de novo establishment of a naturally occurring ∼20-kb heterochromatin domain in fission yeast through single-cell analyses, measuring the kinetics of heterochromatin nucleation in a region targeted by RNAi and its subsequent expansion. We found that nucleation of heterochromatin is stochastic and can take from one to ten cell generations. Further silencing of the full region takes another one to ten generations. Quantitative modelling of the observed kinetics emphasizes the importance of local feedback, where a nucleosome-bound enzyme modifies adjacent nucleosomes, combined with a feedback where recruited enzymes can act at a distance. PMID:27167753

  1. Variable buoyancy system for unmanned multi-domain vehicles

    NASA Astrophysics Data System (ADS)

    MacLeod, Marc; Bryant, Matthew

    2016-04-01

    This paper presents the system design, construction, and testing of an active variable buoyancy system (VBS) actuator with applications to unmanned multi-domain vehicles. Unmanned multi-domain vehicles require nontraditional VBS designs because of their unique operation requirements. We present a VBS actuator design that targets multi-domain vehicle design objectives of high endurance, stealth, and underwater loitering. The design features a rigid ballast tank with an inner elastic bladder connected to a hydraulic pump and a proportionally controlled vent valve. The system working fluid is obtained from the ambient surrounding water and the elastic bladder separates the water from pressurized gas, thus preventing any gas from escaping during a venting operation. An analytic model of the VBS characterizing the system dynamics is derived. Ballast tank prototype design and construction is discussed. A VBS test platform vehicle is presented, featuring two ballast tanks, motor, pump, and RF receiver for control.

  2. Identification and Analysis of the SET-Domain Family in Silkworm, Bombyx mori.

    PubMed

    Zhao, Hailong; Zheng, Chunqin; Cui, Hongjuan

    2015-01-01

    As an important economic insect, Bombyx mori is also a useful model organism for lepidopteran insect. SET-domain-containing proteins belong to a group of enzymes named after a common domain that utilizes the cofactor S-adenosyl-L-methionine (SAM) to achieve methylation of its substrates. Many SET-domain-containing proteins have been shown to display catalytic activity towards particular lysine residues on histones, but emerging evidence also indicates that various nonhistone proteins are specifically targeted by this clade of enzymes. To explore their diverse functions of SET-domain superfamily in insect, we identified, cloned, and analyzed the SET-domains proteins in silkworm, Bombyx mori. Firstly, 24 genes containing SET domain from silkworm genome were characterized and 17 of them belonged to six subfamilies of SUV39, SET1, SET2, SUV4-20, EZ, and SMYD. Secondly, SET domains of silkworm SET-domain family were intraspecifically and interspecifically conserved, especially for the catalytic core "NHSC" motif, substrate binding site, and catalytic site in the SET domain. Lastly, further analyses indicated that silkworm SET-domain gene BmSu(var)3-9 owned different characterization and expression profiles compared to other invertebrates. Overall, our results provide a new insight into the functional and evolutionary features of SET-domain family.

  3. Fully Human VH Single Domains That Rival the Stability and Cleft Recognition of Camelid Antibodies.

    PubMed

    Rouet, Romain; Dudgeon, Kip; Christie, Mary; Langley, David; Christ, Daniel

    2015-05-01

    Human VH single domains represent a promising class of antibody fragments with applications as therapeutic modalities. Unfortunately, isolated human VH domains also generally display poor biophysical properties and a propensity to aggregate. This has encouraged the development of non-human antibody domains as alternative means of antigen recognition and, in particular, camelid (VHH) domains. Naturally devoid of light chain partners, these domains are characterized by favorable biophysical properties and propensity for cleft binding, a highly desirable characteristic, allowing the targeting of cryptic epitopes. In contrast, previously reported structures of human VH single domains had failed to recapitulate this property. Here we report the engineering and characterization of phage display libraries of stable human VH domains and the selection of binders against a diverse set of antigens. Unlike "camelized" human domains, the domains do not rely on potentially immunogenic framework mutations and maintain the structure of the VH/VL interface. Structure determination in complex with hen egg white lysozyme revealed an extended VH binding interface, with complementarity-determining region 3 deeply penetrating into the active site cleft, highly reminiscent of what has been observed for camelid domains. Taken together, our results demonstrate that fully human VH domains can be constructed that are not only stable and well expressed but also rival the cleft binding properties of camelid antibodies.

  4. Identification and Analysis of the SET-Domain Family in Silkworm, Bombyx mori

    PubMed Central

    Zhao, Hailong; Zheng, Chunqin; Cui, Hongjuan

    2015-01-01

    As an important economic insect, Bombyx mori is also a useful model organism for lepidopteran insect. SET-domain-containing proteins belong to a group of enzymes named after a common domain that utilizes the cofactor S-adenosyl-L-methionine (SAM) to achieve methylation of its substrates. Many SET-domain-containing proteins have been shown to display catalytic activity towards particular lysine residues on histones, but emerging evidence also indicates that various nonhistone proteins are specifically targeted by this clade of enzymes. To explore their diverse functions of SET-domain superfamily in insect, we identified, cloned, and analyzed the SET-domains proteins in silkworm, Bombyx mori. Firstly, 24 genes containing SET domain from silkworm genome were characterized and 17 of them belonged to six subfamilies of SUV39, SET1, SET2, SUV4-20, EZ, and SMYD. Secondly, SET domains of silkworm SET-domain family were intraspecifically and interspecifically conserved, especially for the catalytic core “NHSC” motif, substrate binding site, and catalytic site in the SET domain. Lastly, further analyses indicated that silkworm SET-domain gene BmSu(var)3-9 owned different characterization and expression profiles compared to other invertebrates. Overall, our results provide a new insight into the functional and evolutionary features of SET-domain family. PMID:26558257

  5. Aptamers for Targeted Drug Delivery

    PubMed Central

    Ray, Partha; White, Rebekah R.

    2010-01-01

    Aptamers are a class of therapeutic oligonucleotides that form specific three-dimensional structures that are dictated by their sequences. They are typically generated by an iterative screening process of complex nucleic acid libraries employing a process termed Systemic Evolution of Ligands by Exponential Enrichment (SELEX). SELEX has traditionally been performed using purified proteins, and cell surface receptors may be challenging to purify in their properly folded and modified conformations. Therefore, relatively few aptamers have been generated that bind cell surface receptors. However, improvements in recombinant fusion protein technology have increased the availability of receptor extracellular domains as purified protein targets, and the development of cell-based selection techniques has allowed selection against surface proteins in their native configuration on the cell surface. With cell-based selection, a specific protein target is not always chosen, but selection is performed against a target cell type with the goal of letting the aptamer choose the target. Several studies have demonstrated that aptamers that bind cell surface receptors may have functions other than just blocking receptor-ligand interactions. All cell surface proteins cycle intracellularly to some extent, and many surface receptors are actively internalized in response to ligand binding. Therefore, aptamers that bind cell surface receptors have been exploited for the delivery of a variety of cargoes into cells. This review focuses on recent progress and current challenges in the field of aptamer-mediated delivery. PMID:27713328

  6. Aptamers for Targeted Drug Delivery

    PubMed Central

    Ray, Partha; White, Rebekah R.

    2010-01-01

    Aptamers are a class of therapeutic oligonucleotides that form specific three-dimensional structures that are dictated by their sequences. They are typically generated by an iterative screening process of complex nucleic acid libraries employing a process termed Systemic Evolution of Ligands by Exponential Enrichment (SELEX). SELEX has traditionally been performed using purified proteins, and cell surface receptors may be challenging to purify in their properly folded and modified conformations. Therefore, relatively few aptamers have been generated that bind cell surface receptors. However, improvements in recombinant fusion protein technology have increased the availability of receptor extracellular domains as purified protein targets, and the development of cell-based selection techniques has allowed selection against surface proteins in their native configuration on the cell surface. With cell-based selection, a specific protein target is not always chosen, but selection is performed against a target cell type with the goal of letting the aptamer choose the target. Several studies have demonstrated that aptamers that bind cell surface receptors may have functions other than just blocking receptor-ligand interactions. All cell surface proteins cycle intracellularly to some extent, and many surface receptors are actively internalized in response to ligand binding. Therefore, aptamers that bind cell surface receptors have been exploited for the delivery of a variety of cargoes into cells. This review focuses on recent progress and current challenges in the field of aptamer-mediated delivery.

  7. Parallel implementation of the biorthogonal multiresolution time-domain method

    NASA Astrophysics Data System (ADS)

    Zhu, Xianyang; Carin, Lawrence; Dogaru, Traian

    2003-05-01

    The three-dimensional biorthogonal multiresolution time-domain (Bi-MRTD) method is presented for both free-space and half-space scattering problems. The perfectly matched layer (PML) is used as an absorbing boundary condition. It has been shown that improved numerical-dispersion properties can be obtained with the use of smooth, compactly supported wavelet functions as the basis, whereas we employ the Cohen-Daubechies-Fouveau (CDF) biorthogonal wavelets. When a CDF-wavelet expansion is used, the spatial-sampling rate can be reduced considerably compared with that of the conventional finite-difference time-domain (FDTD) method, implying that larger targets can be simulated without sacrificing accuracy. We implement the Bi-MRTD on a cluster of allocated-memory machines, using the message-passing interface (MPI), such that very large targets can be modeled. Numerical results are compared with analytical ones and with those obtained by use of the traditional FDTD method.

  8. Target motion detecting impulse Doppler radar system

    NASA Astrophysics Data System (ADS)

    Jehle, Robert E.; Hudson, David F.

    1992-03-01

    Radiant energy intermittently emitted from a transmitter is reflected as echo pulses from a moving target being interrogated to produce Doppler signals by counting of photons of the echo pulses during time domain intervals between emission from the transmitter. Such counting of photons is limited to the time domain intervals by operational control of a laser pump through which a reference beam is generated at an energy level activating detectors irradiated by such beam to count the photons absorbed therein after capture of the photons by a receiving antenna.

  9. Target motion detecting impulse Doppler radar system

    NASA Astrophysics Data System (ADS)

    Jehle, Robert E.; Hudson, David F.

    1993-06-01

    Radiant energy intermittently emitted from a transmitter is reflected as echo pulses from a moving target being interrogated to produce Doppler signals by counting of photons of the echo pulses during time domain intervals between emission from the transmitter. Such counting of photons is limited to the time domain intervals by operational control of a laser pump through which a reference beam is generated at an energy level activating detectors irradiated by such beam to count the photons absorbed therein after capture or the photons by a receiving antenna.

  10. The IRBIT domain adds new functions to the AHCY family.

    PubMed

    Devogelaere, Benoit; Sammels, Eva; De Smedt, Humbert

    2008-07-01

    During the past few years, the IRBIT domain has emerged as an important add-on of S-adenosyl-L-homocystein hydrolase (AHCY), thereby creating the new family of AHCY-like proteins. In this review, we discuss the currently available data on this new family of proteins. We describe the IRBIT domain as a unique part of these proteins and give an overview of its regulation via (de)phosphorylation and proteolysis. The second part of this review is focused on the potential functions of the AHCY-like proteins. We propose that the IRBIT domain serves as an anchor for targeting AHCY-like proteins towards cytoplasmic targets. This leads to regulation of (i) intracellular Ca2+ via the inositol 1,4,5-trisphosphate receptor (IP3R), (ii) intracellular pH via the Na+/HCO3 - cotransporters (NBCs); whereas inactivation of the IRBIT domain induces (iii) nuclear translocation and regulation of AHCY activity. Dysfunction of AHCY-like proteins will disturb these three important functions, with various biological implications. PMID:18536033

  11. The IRBIT domain adds new functions to the AHCY family.

    PubMed

    Devogelaere, Benoit; Sammels, Eva; De Smedt, Humbert

    2008-07-01

    During the past few years, the IRBIT domain has emerged as an important add-on of S-adenosyl-L-homocystein hydrolase (AHCY), thereby creating the new family of AHCY-like proteins. In this review, we discuss the currently available data on this new family of proteins. We describe the IRBIT domain as a unique part of these proteins and give an overview of its regulation via (de)phosphorylation and proteolysis. The second part of this review is focused on the potential functions of the AHCY-like proteins. We propose that the IRBIT domain serves as an anchor for targeting AHCY-like proteins towards cytoplasmic targets. This leads to regulation of (i) intracellular Ca2+ via the inositol 1,4,5-trisphosphate receptor (IP3R), (ii) intracellular pH via the Na+/HCO3 - cotransporters (NBCs); whereas inactivation of the IRBIT domain induces (iii) nuclear translocation and regulation of AHCY activity. Dysfunction of AHCY-like proteins will disturb these three important functions, with various biological implications.

  12. Proteasomes and protein conjugation across domains of life

    PubMed Central

    Maupin-Furlow, Julie

    2012-01-01

    Like other energy-dependent proteases, proteasomes, which are found across the three domains of life, are self-compartmentalized and important in the early steps of proteolysis. Proteasomes degrade improperly synthesized, damaged or misfolded proteins and hydrolyse regulatory proteins that must be specifically removed or cleaved for cell signalling. In eukaryotes, proteins are typically targeted for proteasome-mediated destruction through polyubiquitylation, although ubiquitin-independent pathways also exist. Interestingly, actinobacteria and archaea also covalently attach small proteins (prokaryotic ubiquitin-like protein (Pup) and small archaeal modifier proteins (Samps), respectively) to certain proteins, and this may serve to target the modified proteins for degradation by proteasomes. PMID:22183254

  13. Evidence for a requirement for both phospholipid and phosphotyrosine binding via the Shc phosphotyrosine-binding domain in vivo.

    PubMed Central

    Ravichandran, K S; Zhou, M M; Pratt, J C; Harlan, J E; Walk, S F; Fesik, S W; Burakoff, S J

    1997-01-01

    The adapter protein Shc is a critical component of mitogenic signaling pathways initiated by a number of receptors. Shc can directly bind to several tyrosine-phosphorylated receptors through its phosphotyrosine-binding (PTB) domain, and a role for the PTB domain in phosphotyrosine-mediated signaling has been well documented. The structure of the Shc PTB domain demonstrated a striking homology to the structures of pleckstrin homology domains, which suggested acidic phospholipids as a second ligand for the Shc PTB domain. Here we demonstrate that Shc binding via its PTB domain to acidic phospholipids is as critical as binding to phosphotyrosine for leading to Shc phosphorylation. Through structure-based, targeted mutagenesis of the Shc PTB domain, we first identified the residues within the PTB domain critical for phospholipid binding in vitro. In vivo, the PTB domain was essential for localization of Shc to the membrane, as mutant Shc proteins that failed to interact with phospholipids in vitro also failed to localize to the membrane. We also observed that PTB domain-dependent targeting to the membrane preceded the PTB domain's interaction with the tyrosine-phosphorylated receptor and that both events were essential for tyrosine phosphorylation of Shc following receptor activation. Thus, Shc, through its interaction with two different ligands, is able to accomplish both membrane localization and binding to the activated receptor via a single PTB domain. PMID:9271429

  14. A Method to Examine Content Domain Structures

    ERIC Educational Resources Information Center

    D'Agostino, Jerome; Karpinski, Aryn; Welsh, Megan

    2011-01-01

    After a test is developed, most content validation analyses shift from ascertaining domain definition to studying domain representation and relevance because the domain is assumed to be set once a test exists. We present an approach that allows for the examination of alternative domain structures based on extant test items. In our example based on…

  15. Domain Specificity and Variability in Cognitive Development.

    ERIC Educational Resources Information Center

    Gelman, Rochel

    2000-01-01

    Maintains that there are core-specific and non-core-specific domains of knowledge, but that only the core-specific domains benefit from innate skeletal structures. Asserts that core skeletal domains are universally shared, even though their particular foci may vary. Emphasizes that individuals vary in terms of the noncore domains they acquire.…

  16. Cellulose binding domain fusion proteins

    DOEpatents

    Shoseyov, O.; Yosef, K.; Shpiegl, I.; Goldstein, M.A.; Doi, R.H.

    1998-02-17

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques. 16 figs.

  17. Development in the Food Domain.

    ERIC Educational Resources Information Center

    Rozin, Paul

    1990-01-01

    Discusses problems of general interest in developmental psychology that can be successfully studied in the domain of food; these include (1) development of food likes and dislikes; (2) establishment of the edible/inedible distinction; (3) disgust and contagion; (4) transgenerational communication of preferences; and (5) transition to food…

  18. Cellulose binding domain fusion proteins

    DOEpatents

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc A.; Doi, Roy H.

    1998-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  19. Structural basis of diverse membrane target recognitions by ankyrins.

    PubMed

    Wang, Chao; Wei, Zhiyi; Chen, Keyu; Ye, Fei; Yu, Cong; Bennett, Vann; Zhang, Mingjie

    2014-01-01

    Ankyrin adaptors together with their spectrin partners coordinate diverse ion channels and cell adhesion molecules within plasma membrane domains and thereby promote physiological activities including fast signaling in the heart and nervous system. Ankyrins specifically bind to numerous membrane targets through their 24 ankyrin repeats (ANK repeats), although the mechanism for the facile and independent evolution of these interactions has not been resolved. Here we report the structures of ANK repeats in complex with an inhibitory segment from the C-terminal regulatory domain and with a sodium channel Nav1.2 peptide, respectively, showing that the extended, extremely conserved inner groove spanning the entire ANK repeat solenoid contains multiple target binding sites capable of accommodating target proteins with very diverse sequences via combinatorial usage of these sites. These structures establish a framework for understanding the evolution of ankyrins' membrane targets, with implications for other proteins containing extended ANK repeat domains. PMID:25383926

  20. Target detection and identification using synthetic aperture acoustics

    NASA Astrophysics Data System (ADS)

    Knox, Mary; Tantum, Stacy; Collins, Leslie

    2014-05-01

    Recent research has shown that synthetic aperture acoustic (SAA) imaging may be useful for object identification. The goal of this work is to use SAA information to detect and identify four types of objects: jagged rocks, river rocks, small concave capped cylinders, and large concave capped cylinders. More specifically, we examine the use of frequency domain features extracted from the SAA images. We utilize Support Vector Machines (SVMs) for target detection, where an SVM is trained on target and non-target (background) examples for each target type. Assuming perfect target detection, we then compare multivariate Gaussian models for target identification. Experimental results show that SAA-based frequency domain features are able to detect and identify the four types of objects.

  1. The BEN domain is a novel sequence-specific DNA-binding domain conserved in neural transcriptional repressors

    PubMed Central

    Dai, Qi; Ren, Aiming; Westholm, Jakub O.; Serganov, Artem A.; Patel, Dinshaw J.; Lai, Eric C.

    2013-01-01

    We recently reported that Drosophila Insensitive (Insv) promotes sensory organ development and has activity as a nuclear corepressor for the Notch transcription factor Suppressor of Hairless [Su(H)]. Insv lacks domains of known biochemical function but contains a single BEN domain (i.e., a “BEN-solo” protein). Our chromatin immunoprecipitation (ChIP) sequencing (ChIP-seq) analysis confirmed binding of Insensitive to Su(H) target genes in the Enhancer of split gene complex [E(spl)-C]; however, de novo motif analysis revealed a novel site strongly enriched in Insv peaks (TCYAATHRGAA). We validate binding of endogenous Insv to genomic regions bearing such sites, whose associated genes are enriched for neural functions and are functionally repressed by Insv. Unexpectedly, we found that the Insv BEN domain binds specifically to this sequence motif and that Insv directly regulates transcription via this motif. We determined the crystal structure of the BEN–DNA target complex, revealing homodimeric binding of the BEN domain and extensive nucleotide contacts via α helices and a C-terminal loop. Point mutations in key DNA-contacting residues severely impair DNA binding in vitro and capacity for transcriptional regulation in vivo. We further demonstrate DNA-binding and repression activities by the mammalian neural BEN-solo protein BEND5. Altogether, we define novel DNA-binding activity in a conserved family of transcriptional repressors, opening a molecular window on this extensive gene family. PMID:23468431

  2. Computational Analysis of the Binding Specificities of PH Domains

    PubMed Central

    Jiang, Zhi; Liang, Zhongjie; Shen, Bairong; Hu, Guang

    2015-01-01

    Pleckstrin homology (PH) domains share low sequence identities but extremely conserved structures. They have been found in many proteins for cellular signal-dependent membrane targeting by binding inositol phosphates to perform different physiological functions. In order to understand the sequence-structure relationship and binding specificities of PH domains, quantum mechanical (QM) calculations and sequence-based combined with structure-based binding analysis were employed in our research. In the structural aspect, the binding specificities were shown to correlate with the hydropathy characteristics of PH domains and electrostatic properties of the bound inositol phosphates. By comparing these structure properties with sequence-based profiles of physicochemical properties, PH domains can be classified into four functional subgroups according to their binding specificities and affinities to inositol phosphates. The method not only provides a simple and practical paradigm to predict binding specificities for functional genomic research but also gives new insight into the understanding of the basis of diseases with respect to PH domain structures. PMID:26881206

  3. Targeted therapies for cancer

    MedlinePlus

    ... page: //medlineplus.gov/ency/patientinstructions/000902.htm Targeted therapies for cancer To use the sharing features on ... cells so they cannot spread. How Does Targeted Therapy Work? Targeted therapy drugs work in a few ...

  4. The Myc Transactivation Domain Promotes Global Phosphorylation of the RNA Polymerase II Carboxy-Terminal Domain Independently of Direct DNA Binding▿ †

    PubMed Central

    Cowling, Victoria H.; Cole, Michael D.

    2007-01-01

    Myc is a transcription factor which is dependent on its DNA binding domain for transcriptional regulation of target genes. Here, we report the surprising finding that Myc mutants devoid of direct DNA binding activity and Myc target gene regulation can rescue a substantial fraction of the growth defect in myc−/− fibroblasts. Expression of the Myc transactivation domain alone induces a transcription-independent elevation of the RNA polymerase II (Pol II) C-terminal domain (CTD) kinases cyclin-dependent kinase 7 (CDK7) and CDK9 and a global increase in CTD phosphorylation. The Myc transactivation domain binds to the transcription initiation sites of these promoters and stimulates TFIIH binding in an MBII-dependent manner. Expression of the Myc transactivation domain increases CDK mRNA cap methylation, polysome loading, and the rate of translation. We find that some traditional Myc transcriptional target genes are also regulated by this Myc-driven translation mechanism. We propose that Myc transactivation domain-driven RNA Pol II CTD phosphorylation has broad effects on both transcription and mRNA metabolism. PMID:17242204

  5. Targeted Radionuclide Therapy of Melanoma.

    PubMed

    Norain, Abdullah; Dadachova, Ekaterina

    2016-05-01

    An estimated 60,000 individuals in the United States and 132,000 worldwide are yearly diagnosed with melanoma. Until recently, treatment options for patients with stages III-IV metastatic disease were limited and offered marginal, if any, improvement in overall survival. The situation changed with the introduction of B-RAF inhibitors and anti-cytotoxic T-lymphocyte antigen 4 and anti-programmed cell death protein 1 immunotherapies into the clinical practice. With only some patients responding well to the immune therapies and with very serious side effects and high costs of immunotherapy, there is still room for other approaches for the treatment of metastatic melanoma. Targeted radionuclide therapy of melanoma could be divided into the domains of radioimmunotherapy (RIT), radiolabeled peptides, and radiolabeled small molecules. RIT of melanoma is currently experiencing a renaissance with the clinical trials of alpha-emitter (213)Bi-labeled and beta-emitter (188)Rhenium-labeled monoclonal antibodies in patients with metastatic melanoma producing encouraging results. The investigation of the mechanism of efficacy of melanoma RIT points at killing of melanoma stem cells by RIT and involvement of immune system such as complement-dependent cytotoxicity. The domain of radiolabeled peptides for targeted melanoma therapy has been preclinical so far, with work concentrated on radiolabeled peptide analogues of melanocyte-stimulating hormone receptor and on melanin-binding peptides. The field of radiolabeled small molecule produced radioiodinated benzamides that cross the cellular membrane and bind to the intracellular melanin. The recent clinical trial demonstrated measurable antitumor effects and no acute or midterm toxicities. We are hopeful that the targeted radionuclide therapy of metastatic melanoma would become a clinical reality as a stand-alone therapy or in combination with the immunotherapies such as anti-PD1 programmed cell death protein 1 monoclonal antibodies

  6. In the Multi-domain Protein Adenylate Kinase, Domain Insertion Facilitates Cooperative Folding while Accommodating Function at Domain Interfaces

    PubMed Central

    Giri Rao, V. V. Hemanth; Gosavi, Shachi

    2014-01-01

    Having multiple domains in proteins can lead to partial folding and increased aggregation. Folding cooperativity, the all or nothing folding of a protein, can reduce this aggregation propensity. In agreement with bulk experiments, a coarse-grained structure-based model of the three-domain protein, E. coli Adenylate kinase (AKE), folds cooperatively. Domain interfaces have previously been implicated in the cooperative folding of multi-domain proteins. To understand their role in AKE folding, we computationally create mutants with deleted inter-domain interfaces and simulate their folding. We find that inter-domain interfaces play a minor role in the folding cooperativity of AKE. On further analysis, we find that unlike other multi-domain proteins whose folding has been studied, the domains of AKE are not singly-linked. Two of its domains have two linkers to the third one, i.e., they are inserted into the third one. We use circular permutation to modify AKE chain-connectivity and convert inserted-domains into singly-linked domains. We find that domain insertion in AKE achieves the following: (1) It facilitates folding cooperativity even when domains have different stabilities. Insertion constrains the N- and C-termini of inserted domains and stabilizes their folded states. Therefore, domains that perform conformational transitions can be smaller with fewer stabilizing interactions. (2) Inter-domain interactions are not needed to promote folding cooperativity and can be tuned for function. In AKE, these interactions help promote conformational dynamics limited catalysis. Finally, using structural bioinformatics, we suggest that domain insertion may also facilitate the cooperative folding of other multi-domain proteins. PMID:25393408

  7. The physical size of transcription factors is key to transcriptional regulation in chromatin domains

    NASA Astrophysics Data System (ADS)

    Maeshima, Kazuhiro; Kaizu, Kazunari; Tamura, Sachiko; Nozaki, Tadasu; Kokubo, Tetsuro; Takahashi, Koichi

    2015-02-01

    Genetic information, which is stored in the long strand of genomic DNA as chromatin, must be scanned and read out by various transcription factors. First, gene-specific transcription factors, which are relatively small (˜50 kDa), scan the genome and bind regulatory elements. Such factors then recruit general transcription factors, Mediators, RNA polymerases, nucleosome remodellers, and histone modifiers, most of which are large protein complexes of 1-3 MDa in size. Here, we propose a new model for the functional significance of the size of transcription factors (or complexes) for gene regulation of chromatin domains. Recent findings suggest that chromatin consists of irregularly folded nucleosome fibres (10 nm fibres) and forms numerous condensed domains (e.g., topologically associating domains). Although the flexibility and dynamics of chromatin allow repositioning of genes within the condensed domains, the size exclusion effect of the domain may limit accessibility of DNA sequences by transcription factors. We used Monte Carlo computer simulations to determine the physical size limit of transcription factors that can enter condensed chromatin domains. Small gene-specific transcription factors can penetrate into the chromatin domains and search their target sequences, whereas large transcription complexes cannot enter the domain. Due to this property, once a large complex binds its target site via gene-specific factors it can act as a ‘buoy’ to keep the target region on the surface of the condensed domain and maintain transcriptional competency. This size-dependent specialization of target-scanning and surface-tethering functions could provide novel insight into the mechanisms of various DNA transactions, such as DNA replication and repair/recombination.

  8. Intracellular targeting with engineered proteins.

    PubMed

    Miersch, Shane; Sidhu, Sachdev S

    2016-01-01

    If the isolation, production, and clinical use of insulin marked the inception of the age of biologics as therapeutics, the convergence of molecular biology and combinatorial engineering techniques marked its coming of age. The first wave of recombinant protein-based drugs in the 1980s demonstrated emphatically that proteins could be engineered, formulated, and employed for clinical advantage. Yet despite the successes of protein-based drugs such as antibodies, enzymes, and cytokines, the druggable target space for biologics is currently restricted to targets outside the cell. Insofar as estimates place the number of proteins either secreted or with extracellular domains in the range of 8000 to 9000, this represents only one-third of the proteome and circumscribes the pathways that can be targeted for therapeutic intervention. Clearly, a major objective for this field to reach maturity is to access, interrogate, and modulate the majority of proteins found inside the cell. However, owing to the large size, complex architecture, and general cellular impermeability of existing protein-based drugs, this poses a daunting challenge. In recent years, though, advances on the two related fronts of protein engineering and drug delivery are beginning to bring this goal within reach. First, prompted by the restrictions that limit the applicability of antibodies, intense efforts have been applied to identifying and engineering smaller alternative protein scaffolds for the modulation of intracellular targets. In parallel, innovative solutions for delivering proteins to the intracellular space while maintaining their stability and functional activity have begun to yield successes. This review provides an overview of bioactive intrabodies and alternative protein scaffolds amenable to engineering for intracellular targeting and also outlines advances in protein engineering and formulation for delivery of functional proteins to the interior of the cell to achieve therapeutic action.

  9. Intracellular targeting with engineered proteins

    PubMed Central

    Miersch, Shane; Sidhu, Sachdev S.

    2016-01-01

    If the isolation, production, and clinical use of insulin marked the inception of the age of biologics as therapeutics, the convergence of molecular biology and combinatorial engineering techniques marked its coming of age. The first wave of recombinant protein-based drugs in the 1980s demonstrated emphatically that proteins could be engineered, formulated, and employed for clinical advantage. Yet despite the successes of protein-based drugs such as antibodies, enzymes, and cytokines, the druggable target space for biologics is currently restricted to targets outside the cell. Insofar as estimates place the number of proteins either secreted or with extracellular domains in the range of 8000 to 9000, this represents only one-third of the proteome and circumscribes the pathways that can be targeted for therapeutic intervention. Clearly, a major objective for this field to reach maturity is to access, interrogate, and modulate the majority of proteins found inside the cell. However, owing to the large size, complex architecture, and general cellular impermeability of existing protein-based drugs, this poses a daunting challenge. In recent years, though, advances on the two related fronts of protein engineering and drug delivery are beginning to bring this goal within reach. First, prompted by the restrictions that limit the applicability of antibodies, intense efforts have been applied to identifying and engineering smaller alternative protein scaffolds for the modulation of intracellular targets. In parallel, innovative solutions for delivering proteins to the intracellular space while maintaining their stability and functional activity have begun to yield successes. This review provides an overview of bioactive intrabodies and alternative protein scaffolds amenable to engineering for intracellular targeting and also outlines advances in protein engineering and formulation for delivery of functional proteins to the interior of the cell to achieve therapeutic action

  10. Spline interpolation on unbounded domains

    NASA Astrophysics Data System (ADS)

    Skeel, Robert D.

    2016-06-01

    Spline interpolation is a splendid tool for multiscale approximation on unbounded domains. In particular, it is well suited for use by the multilevel summation method (MSM) for calculating a sum of pairwise interactions for a large set of particles in linear time. Outlined here is an algorithm for spline interpolation on unbounded domains that is efficient and elegant though not so simple. Further gains in efficiency are possible via quasi-interpolation, which compromises collocation but with minimal loss of accuracy. The MSM, which may also be of value for continuum models, embodies most of the best features of both hierarchical clustering methods (tree methods, fast multipole methods, hierarchical matrix methods) and FFT-based 2-level methods (particle-particle particle-mesh methods, particle-mesh Ewald methods).

  11. Gabor domain optical coherence microscopy

    NASA Astrophysics Data System (ADS)

    Murali, Supraja

    Time domain Optical Coherence Tomography (TD-OCT), first reported in 1991, makes use of the low temporal coherence properties of a NIR broadband laser to create depth sectioning of up to 2mm under the surface using optical interferometry and point to point scanning. Prior and ongoing work in OCT in the research community has concentrated on improving axial resolution through the development of broadband sources and speed of image acquisition through new techniques such as Spectral domain OCT (SD-OCT). In SD-OCT, an entire depth scan is acquired at once with a low numerical aperture (NA) objective lens focused at a fixed point within the sample. In this imaging geometry, a longer depth of focus is achieved at the expense of lateral resolution, which is typically limited to 10 to 20 mum. Optical Coherence Microscopy (OCM), introduced in 1994, combined the advantages of high axial resolution obtained in OCT with high lateral resolution obtained by increasing the NA of the microscope placed in the sample arm. However, OCM presented trade-offs caused by the inverse quadratic relationship between the NA and the DOF of the optics used. For applications requiring high lateral resolution, such as cancer diagnostics, several solutions have been proposed including the periodic manual re-focusing of the objective lens in the time domain as well as the spectral domain C-mode configuration in order to overcome the loss in lateral resolution outside the DOF. In this research, we report for the first time, high speed, sub-cellular imaging (lateral resolution of 2 mum) in OCM using a Gabor domain image processing algorithm with a custom designed and fabricated dynamic focus microscope interfaced to a Ti:Sa femtosecond laser centered at 800 nm within an SD-OCM configuration. It is envisioned that this technology will provide a non-invasive replacement for the current practice of multiple biopsies for skin cancer diagnosis. The research reported here presents three important advances

  12. Frequency domain optical parametric amplification

    NASA Astrophysics Data System (ADS)

    Schmidt, Bruno E.; Thiré, Nicolas; Boivin, Maxime; Laramée, Antoine; Poitras, François; Lebrun, Guy; Ozaki, Tsuneyuki; Ibrahim, Heide; Légaré, François

    2014-05-01

    Today’s ultrafast lasers operate at the physical limits of optical materials to reach extreme performances. Amplification of single-cycle laser pulses with their corresponding octave-spanning spectra still remains a formidable challenge since the universal dilemma of gain narrowing sets limits for both real level pumped amplifiers as well as parametric amplifiers. We demonstrate that employing parametric amplification in the frequency domain rather than in time domain opens up new design opportunities for ultrafast laser science, with the potential to generate single-cycle multi-terawatt pulses. Fundamental restrictions arising from phase mismatch and damage threshold of nonlinear laser crystals are not only circumvented but also exploited to produce a synergy between increased seed spectrum and increased pump energy. This concept was successfully demonstrated by generating carrier envelope phase stable, 1.43 mJ two-cycle pulses at 1.8 μm wavelength.

  13. Certifying Domain-Specific Policies

    NASA Technical Reports Server (NTRS)

    Lowry, Michael; Pressburger, Thomas; Rosu, Grigore; Koga, Dennis (Technical Monitor)

    2001-01-01

    Proof-checking code for compliance to safety policies potentially enables a product-oriented approach to certain aspects of software certification. To date, previous research has focused on generic, low-level programming-language properties such as memory type safety. In this paper we consider proof-checking higher-level domain -specific properties for compliance to safety policies. The paper first describes a framework related to abstract interpretation in which compliance to a class of certification policies can be efficiently calculated Membership equational logic is shown to provide a rich logic for carrying out such calculations, including partiality, for certification. The architecture for a domain-specific certifier is described, followed by an implemented case study. The case study considers consistency of abstract variable attributes in code that performs geometric calculations in Aerospace systems.

  14. Frequency domain optical parametric amplification

    PubMed Central

    Schmidt, Bruno E.; Thiré, Nicolas; Boivin, Maxime; Laramée, Antoine; Poitras, François; Lebrun, Guy; Ozaki, Tsuneyuki; Ibrahim, Heide; Légaré, François

    2014-01-01

    Today’s ultrafast lasers operate at the physical limits of optical materials to reach extreme performances. Amplification of single-cycle laser pulses with their corresponding octave-spanning spectra still remains a formidable challenge since the universal dilemma of gain narrowing sets limits for both real level pumped amplifiers as well as parametric amplifiers. We demonstrate that employing parametric amplification in the frequency domain rather than in time domain opens up new design opportunities for ultrafast laser science, with the potential to generate single-cycle multi-terawatt pulses. Fundamental restrictions arising from phase mismatch and damage threshold of nonlinear laser crystals are not only circumvented but also exploited to produce a synergy between increased seed spectrum and increased pump energy. This concept was successfully demonstrated by generating carrier envelope phase stable, 1.43 mJ two-cycle pulses at 1.8 μm wavelength. PMID:24805968

  15. Domain decomposition methods in aerodynamics

    NASA Technical Reports Server (NTRS)

    Venkatakrishnan, V.; Saltz, Joel

    1990-01-01

    Compressible Euler equations are solved for two-dimensional problems by a preconditioned conjugate gradient-like technique. An approximate Riemann solver is used to compute the numerical fluxes to second order accuracy in space. Two ways to achieve parallelism are tested, one which makes use of parallelism inherent in triangular solves and the other which employs domain decomposition techniques. The vectorization/parallelism in triangular solves is realized by the use of a recording technique called wavefront ordering. This process involves the interpretation of the triangular matrix as a directed graph and the analysis of the data dependencies. It is noted that the factorization can also be done in parallel with the wave front ordering. The performances of two ways of partitioning the domain, strips and slabs, are compared. Results on Cray YMP are reported for an inviscid transonic test case. The performances of linear algebra kernels are also reported.

  16. Cross-domain question classification in community question answering via kernel mapping

    NASA Astrophysics Data System (ADS)

    Su, Lei; Hu, Zuoliang; Yang, Bin; Li, Yiyang; Chen, Jun

    2015-10-01

    An increasingly popular method for retrieving information is via the community question answering (CQA) systems such as Yahoo! Answers and Baidu Knows. In CQA, question classification plays an important role to find the answers. However, the labeled training examples for statistical question classifier are fairly expensive to obtain, as they require the experienced human efforts. Meanwhile, unlabeled data are readily available. This paper employs the method of domain adaptation via kernel mapping to solve this problem. In detail, the kernel approach is utilized to map the target-domain data and the source-domain data into a common space, where the question classifiers are trained under the closer conditional probabilities. The kernel mapping function is constructed by domain knowledge. Therefore, domain knowledge could be transferred from the labeled examples in the source domain to the unlabeled ones in the targeted domain. The statistical training model can be improved by using a large number of unlabeled data. Meanwhile, the Hadoop Platform is used to construct the mapping mechanism to reduce the time complexity. Map/Reduce enable kernel mapping for domain adaptation in parallel in the Hadoop Platform. Experimental results show that the accuracy of question classification could be improved by the method of kernel mapping. Furthermore, the parallel method in the Hadoop Platform could effective schedule the computing resources to reduce the running time.

  17. Flexible time domain averaging technique

    NASA Astrophysics Data System (ADS)

    Zhao, Ming; Lin, Jing; Lei, Yaguo; Wang, Xiufeng

    2013-09-01

    Time domain averaging(TDA) is essentially a comb filter, it cannot extract the specified harmonics which may be caused by some faults, such as gear eccentric. Meanwhile, TDA always suffers from period cutting error(PCE) to different extent. Several improved TDA methods have been proposed, however they cannot completely eliminate the waveform reconstruction error caused by PCE. In order to overcome the shortcomings of conventional methods, a flexible time domain averaging(FTDA) technique is established, which adapts to the analyzed signal through adjusting each harmonic of the comb filter. In this technique, the explicit form of FTDA is first constructed by frequency domain sampling. Subsequently, chirp Z-transform(CZT) is employed in the algorithm of FTDA, which can improve the calculating efficiency significantly. Since the signal is reconstructed in the continuous time domain, there is no PCE in the FTDA. To validate the effectiveness of FTDA in the signal de-noising, interpolation and harmonic reconstruction, a simulated multi-components periodic signal that corrupted by noise is processed by FTDA. The simulation results show that the FTDA is capable of recovering the periodic components from the background noise effectively. Moreover, it can improve the signal-to-noise ratio by 7.9 dB compared with conventional ones. Experiments are also carried out on gearbox test rigs with chipped tooth and eccentricity gear, respectively. It is shown that the FTDA can identify the direction and severity of the eccentricity gear, and further enhances the amplitudes of impulses by 35%. The proposed technique not only solves the problem of PCE, but also provides a useful tool for the fault symptom extraction of rotating machinery.

  18. Field-Domain Ion Spectrometry

    NASA Technical Reports Server (NTRS)

    Bowers, W. D.; Chuan, R. L.

    1992-01-01

    Field-domain ion spectrometry (FDIS) is variant of established technique known as ion-mobility spectrometry. Operates at atmospheric pressure and only requires small pump to draw air sample into instrument. Strength of retarding electric field varied to distinguish among ions of different mobilities. New concept offers potential for development of small, (hand-held), low-power, portable devices detecting airborne chemical substances in real-time at concentrations at parts-per-billion level.

  19. Pyramidal inversion domain boundaries revisited

    SciTech Connect

    Remmele, T.; Albrecht, M.; Irmscher, K.; Fornari, R.; Strassburg, M.

    2011-10-03

    The structure of pyramidal inversion domain boundaries in GaN:Mg was investigated by aberration corrected transmission electron microscopy. The analysis shows the upper (0001) boundary to consist of a single Mg layer inserted between polarity inverted GaN layers in an abcab stacking. The Mg bound in these defects is at least one order of magnitude lower than the chemical Mg concentration. Temperature dependent Hall effect measurements show that up to 27% of the Mg acceptors is electrically compensated.

  20. Dynamics of domain wall networks

    SciTech Connect

    Eto, Minoru; Fujimori, Toshiaki; Nagashima, Takayuki; Sakai, Norisuke; Nitta, Muneto; Ohashi, Keisuke

    2007-12-15

    Networks or webs of domain walls are admitted in Abelian or non-Abelian gauge theory coupled to fundamental Higgs fields with complex masses. We examine the dynamics of the domain wall loops by using the moduli approximation and find a phase rotation induces a repulsive force which can be understood as a Noether charge of Q-solitons. Non-Abelian gauge theory allows different types of loops which can be deformed to each other by changing a modulus. This admits the moduli geometry like a sandglass made by gluing the tips of the two cigar-(cone-)like metrics of a single triangle loop. We conclude that the sizes of all loops tend to grow for a late time in general models with complex Higgs masses, while the sizes are stabilized at some values once triplet masses are introduced for the Higgs fields. We also show that the stationary motion on the moduli space of the domain wall webs represents 1/4 Bogomol'nyi-Prasad-Sommerfield Q-webs of walls.

  1. Aversive control: A separate domain?

    PubMed Central

    Hineline, Philip N.

    1984-01-01

    Traditionally, aversive control has been viewed as a separate domain within behavior theory. Sometimes this separateness has been based upon a distinction between reinforcement and punishment, and sometimes upon a distinction between positive and negative reinforcement. The latter is regarded here as the more compelling basis, due to some inherent procedural asymmetries. An approach to the interpretation of negative reinforcement is presented, with indication of types of experiments that support it and that also point to promising directions for further work. However, most of the interpretive issues that arise here are relevant to positively reinforced behavior as well. These include: possible reformulation of the operant/respondent distinction; the place of emotional concepts in behavior analysis; the need for simultaneous, complementary analysis on differing time scales; the understanding of behavioral situations with rewarding or aversive properties that depend as much upon the contingencies that the situations involve as upon the primary rewarding or aversive stimuli that they include. Thus, an adequate understanding of this domain, which has been traditionally viewed as distinct, has implications for all domains of behavior-analytic theory. PMID:16812404

  2. Aversive control: A separate domain?

    PubMed

    Hineline, P N

    1984-11-01

    Traditionally, aversive control has been viewed as a separate domain within behavior theory. Sometimes this separateness has been based upon a distinction between reinforcement and punishment, and sometimes upon a distinction between positive and negative reinforcement. The latter is regarded here as the more compelling basis, due to some inherent procedural asymmetries. An approach to the interpretation of negative reinforcement is presented, with indication of types of experiments that support it and that also point to promising directions for further work. However, most of the interpretive issues that arise here are relevant to positively reinforced behavior as well. These include: possible reformulation of the operant/respondent distinction; the place of emotional concepts in behavior analysis; the need for simultaneous, complementary analysis on differing time scales; the understanding of behavioral situations with rewarding or aversive properties that depend as much upon the contingencies that the situations involve as upon the primary rewarding or aversive stimuli that they include. Thus, an adequate understanding of this domain, which has been traditionally viewed as distinct, has implications for all domains of behavior-analytic theory.

  3. Aversive control: A separate domain?

    PubMed

    Hineline, P N

    1984-11-01

    Traditionally, aversive control has been viewed as a separate domain within behavior theory. Sometimes this separateness has been based upon a distinction between reinforcement and punishment, and sometimes upon a distinction between positive and negative reinforcement. The latter is regarded here as the more compelling basis, due to some inherent procedural asymmetries. An approach to the interpretation of negative reinforcement is presented, with indication of types of experiments that support it and that also point to promising directions for further work. However, most of the interpretive issues that arise here are relevant to positively reinforced behavior as well. These include: possible reformulation of the operant/respondent distinction; the place of emotional concepts in behavior analysis; the need for simultaneous, complementary analysis on differing time scales; the understanding of behavioral situations with rewarding or aversive properties that depend as much upon the contingencies that the situations involve as upon the primary rewarding or aversive stimuli that they include. Thus, an adequate understanding of this domain, which has been traditionally viewed as distinct, has implications for all domains of behavior-analytic theory. PMID:16812404

  4. Caspr2 autoantibodies target multiple epitopes

    PubMed Central

    Olsen, Abby L.; Lai, Yongjie; Dalmau, Josep; Scherer, Steven S.

    2015-01-01

    Objective: To better understand the mechanisms of autoantibodies to the axonal protein contactin-associated protein-like 2 (Caspr2) by studying their target epitopes. Methods: A plasmid for expressing Caspr2 was modified so that the various extracellular subdomains were deleted individually and in groups. Cultured cells were transfected to express these constructs and assayed by immunofluorescence staining with a commercial Caspr2 antibody and a panel of patient sera known to react with Caspr2. Western blotting was also performed. The role of glycosylation in immunogenicity was tested with tunicamycin and PNGase F treatment. Results: Patient antibodies bound to the extracellular domain of Caspr2. Neither native protein structure nor glycosylation was required for immunoreactivity. Caspr2 constructs with single or multidomain deletions were expressed on the plasma membrane. All deletion constructs were recognized by patients' sera, although reactivity was significantly reduced with deletion of the discoidin-like subdomain and strongly reduced or abolished with larger deletions of multiple N-terminal subdomains. Caspr2 with all subdomains deleted except the discoidin-like domain was still recognized by the antibodies. Conclusion: Caspr2 autoantibodies recognize multiple target epitopes in the extracellular domain of Caspr2, including one in the discoidin-like domain. Reactivity for some epitopes is not dependent on glycosylation or native protein structure. PMID:26185774

  5. Engineering Bispecificity into a Single Albumin-Binding Domain

    PubMed Central

    Nilvebrant, Johan; Alm, Tove; Hober, Sophia; Löfblom, John

    2011-01-01

    Bispecific antibodies as well as non-immunoglobulin based bispecific affinity proteins are considered to have a very high potential in future biotherapeutic applications. In this study, we report on a novel approach for generation of extremely small bispecific proteins comprised of only a single structural domain. Binding to tumor necrosis factor-α (TNF-α) was engineered into an albumin-binding domain while still retaining the original affinity for albumin, resulting in a bispecific protein composed of merely 46 amino acids. By diversification of the non albumin-binding side of the three-helix bundle domain, followed by display of the resulting library on phage particles, bispecific single-domain proteins were isolated using selections with TNF-α as target. Moreover, based on the obtained sequences from the phage selection, a second-generation library was designed in order to further increase the affinity of the bispecific candidates. Staphylococcal surface display was employed for the affinity maturation, enabling efficient isolation of improved binders as well as multiparameter-based sortings with both TNF-α and albumin as targets in the same selection cycle. Isolated variants were sequenced and the binding to albumin and TNF-α was analyzed. This analysis revealed an affinity for TNF-α below 5 nM for the strongest binders. From the multiparameter sorting that simultaneously targeted TNF-α and albumin, several bispecific candidates were isolated with high affinity to both antigens, suggesting that cell display in combination with fluorescence activated cell sorting is a suitable technology for engineering of bispecificity. To our knowledge, the new binders represent the smallest engineered bispecific proteins reported so far. Possibilities and challenges as well as potential future applications of this novel strategy are discussed. PMID:21991353

  6. Automatic target detection in cluttered IR images

    NASA Astrophysics Data System (ADS)

    Mueller, Markus; Korn, Axel

    1998-07-01

    Automatic target detection (ATR) generally refers to the localization of potential targets by computer processing of data from a variety of sensors. Automatic detection is applicable for data reduction purposes in the reconnaissance domain and is therefore aimed at reducing the workload on human operators. ATR covers activities such as the localization of individual objects in large areas or volumes for assessing the battlefield simulation. An increase of reliability and efficiency of the overall reconnaissance process is expected. The results of automatic image evaluation are offered to the image analyst as hypotheses. In this paper cluttered images from an infrared sensor are analyzed with the aim of finding Regions of Interest (ROIs), where hints for man-made objects have to be found. This analysis uses collateral data from acquisition time and location (e.g. day time, weather condition, resolution, sensor specification and orientation etc.). The assumed target size in the image is also compared by using collateral data. Based on the collateral data, the algorithm adjusts its parameters in order to find ROIs and to detect targets. Low contrast conditions can be successfully tackled if the directions of the grey value gradient are considered, which are nearly independent of the contrast. Blobs are generated by applying adaptive thresholds in the ROIs. Here the evaluation of histograms is very important for the extraction of structured features. The height, aspect angle, and camera parameters are approximately known for an estimation of target sizes in the image domain out of the collateral data.

  7. Domain-Independent Scientific Function Finding

    NASA Astrophysics Data System (ADS)

    Schaffer, Cullen R.

    1990-01-01

    Programs such as Bacon, Abacus, Coper, Kepler and others are designed to find functional relationships of scientific significance in quantitative data without relying on the deep domain knowledge scientists normally bring to bear in analytic work. Whether these systems actually perform as intended is an open question, however. To date, they have been supported only by anecdotal evidence --reports that a desirable answer has been found in one or more selected and often artificial cases. In this dissertation, I thus attempt to develop, not only new approaches to domain -independent scientific function finding, but, equally, a rigorous methodology under which research into such methods can be conducted. A fundamental problem with previous work is that it has investigated scientific data analysis in the abstract --without referring to actual scientific data. By contrast, the work reported here is founded on a collection of 352 real scientific data sets. This empirical base supports a number of strong conclusions. First, while researchers working with artificial data have targeted complex multivariate relations, real data provides powerful evidence that even the simplest bivariate relationships are difficult to identify reliably. Second, despite its ubiquitous presence in previous work, the notion of heuristic search of a potentially explosive space of formulas appears to help very little with the problem of reliably identifying basic bivariate relationships. Instead, third, substantial performance improvement results from viewing function finding as a decision problem, the problem of classifying data sets reliably within a fixed--and quite limited--system of functional categories. This dissertation presents what I believe to be the strongest domain-independent scientific function-finding algorithm currently in existence and, certainly, the only one which has been rigorously demonstrated. At the same time, it suggests fundamental limitations in the power of such

  8. Targeting of the Yeast Ty5 Retrotransposon to Silent Chromatin Is Mediated by Interactions between Integrase and Sir4p†

    PubMed Central

    Xie, Weiwu; Gai, Xiaowu; Zhu, Yunxia; Zappulla, David C.; Sternglanz, Rolf; Voytas, Daniel F.

    2001-01-01

    The Ty5 retrotransposons of Saccharomyces cerevisiae integrate preferentially into regions of silent chromatin at the telomeres and silent mating loci (HMR and HML). We define a Ty5-encoded targeting domain that spans 6 amino acid residues near the C terminus of integrase (LXSSXP). The targeting domain establishes silent chromatin when it is tethered to a weakened HMR-E silencer, and it disrupts telomeric silencing when it is overexpressed. As determined by both yeast two-hybrid and in vitro binding assays, the targeting domain interacts with the C terminus of Sir4p, a structural component of silent chromatin. This interaction is abrogated by mutations in the targeting domain that disrupt integration into silent chromatin, suggesting that recognition of Sir4p by the targeting domain is the primary determinant in Ty5 target specificity. PMID:11533248

  9. Experience with IPNS targets

    SciTech Connect

    Carpenter, J.M.; Hins, A.G.

    1993-12-31

    Three targets have operated in the IPNS Neutron Scattering Facility. The first, a depleted Uranium target, served from 1981 until it was replaced in 1988 by the Enriched Uranium Booster Target. The Booster Target had operated for nearly three years when it suffered a cladding leak and was replaced with the retired depleted Uranium target. That target reached its end-of-life after less than one year`s further operation, and was replaced with an identical one newly assembled from spare components, which is still operating satisfactorily. This paper reviews the operating history of the IPNS targets and the findings reached during analysis of the failures. Similarities with ISIS target experience, preliminary conclusions and plans for providing spares and improved targets are discussed. We present some preliminary results from the hot cell examination of the failed depleted Uranium target.

  10. Electrically charged targets

    DOEpatents

    Goodman, Ronald K.; Hunt, Angus L.

    1984-01-01

    Electrically chargeable laser targets and method for forming such charged targets in order to improve their guidance along a predetermined desired trajectory. This is accomplished by the incorporation of a small amount of an additive to the target material which will increase the electrical conductivity thereof, and thereby enhance the charge placed upon the target material for guidance thereof by electrostatic or magnetic steering mechanisms, without adversely affecting the target when illuminated by laser energy.

  11. Polarized internal target apparatus

    DOEpatents

    Holt, Roy J.

    1986-01-01

    A polarized internal target apparatus with a polarized gas target of improved polarization and density achieved by mixing target gas atoms with a small amount of alkali metal gas atoms, and passing a high intensity polarized light source into the mixture to cause the alkali metal gas atoms to become polarized which interact in spin exchange collisions with target gas atoms yielding polarized target gas atoms.

  12. Polarized internal target apparatus

    DOEpatents

    Holt, R.J.

    1984-10-10

    A polarized internal target apparatus with a polarized gas target of improved polarization and density (achieved by mixing target gas atoms with a small amount of alkali metal gas atoms, and passing a high intensity polarized light source into the mixture to cause the alkali metal gas atoms to become polarized which interact in spin exchange collisions with target gas atoms yielding polarized target gas atoms) is described.

  13. A new mechanism in the binding between Homer3 EVH1 domain and inositol 1,4,5 trisphosphate receptor suppressor domain.

    PubMed

    Wen, He; Kwon, Hyuk Nam; Park, Sunghyouk

    2014-06-01

    The suppressor domain of inositol 1,4,5 trisphosphate receptor (IP3R) has critical roles in regulating the calcium channel by interacting with many binding partners. The residue 49-53 (PPKKF) of the suppressor domain was suggested to be a canonical Homer EVH1 domain binding site and is also the first a part of calmodulin (CaM) binding site. As CaM-binding of the suppressor domain has been shown to involve large-scale conformational changes, we studied the binding characteristics of the Homer EVH1-suppressor domain with NMR spectroscopy and biochemical pull-down assays for mutants. Our data show that the suppressor domain employs the PPKKF motif in a similar but subtly different way compared to previously characterized interactions, and that the suppressor domain does not undergo large-scale conformational changes. Chemical shift assignments of the Homer3 EVH1 domain found that a new set of residues, located at the opposite side of the previously reported binding site, is also involved in binding, which was confirmed by mutant binding assays. Further analysis suggests that F40 in the new binding sites may have a critical role as a conformational lock-switch in Homer-target binding. The proposed mechanism is implicated in the signaling network involving calcium channels.

  14. Stress Domain Effects in French Phonology and Phonological Development*

    PubMed Central

    Rose, Yvan; dos Santos, Christophe

    2016-01-01

    In this paper, we discuss two distinct data sets. The first relates to the so-called allophonic process of closed-syllable laxing in Québec French, which targets final (stressed) vowels even though these vowels are arguably syllabified in open syllables in lexical representations. The second is found in the forms produced by a first language learner of European French, who displays an asymmetry in her production of CVC versus CVCV target (adult) forms. The former display full preservation (with concomitant manner harmony) of both consonants. The latter undergoes deletion of the initial syllable if the consonants are not manner-harmonic in the input. We argue that both patterns can be explained through a phonological process of prosodic strengthening targeting the head of the prosodic domain which, in the contexts described above, yields the incorporation of final consonants into the coda of the stressed syllable. PMID:27227170

  15. Lipid Cooperativity as a General Membrane-Recruitment Principle for PH Domains.

    PubMed

    Vonkova, Ivana; Saliba, Antoine-Emmanuel; Deghou, Samy; Anand, Kanchan; Ceschia, Stefano; Doerks, Tobias; Galih, Augustinus; Kugler, Karl G; Maeda, Kenji; Rybin, Vladimir; van Noort, Vera; Ellenberg, Jan; Bork, Peer; Gavin, Anne-Claude

    2015-09-01

    Many cellular processes involve the recruitment of proteins to specific membranes, which are decorated with distinctive lipids that act as docking sites. The phosphoinositides form signaling hubs, and we examine mechanisms underlying recruitment. We applied a physiological, quantitative, liposome microarray-based assay to measure the membrane-binding properties of 91 pleckstrin homology (PH) domains, the most common phosphoinositide-binding target. 10,514 experiments quantified the role of phosphoinositides in membrane recruitment. For most domains examined, the observed binding specificity implied cooperativity with additional signaling lipids. Analyses of PH domains with similar lipid-binding profiles identified a conserved motif, mutations in which-including some found in human cancers-induced discrete changes in binding affinities in vitro and protein mislocalization in vivo. The data set reveals cooperativity as a key mechanism for membrane recruitment and, by enabling the interpretation of disease-associated mutations, suggests avenues for the design of small molecules targeting PH domains.

  16. Sequence and structural analysis of BTB domain proteins

    PubMed Central

    Stogios, Peter J; Downs, Gregory S; Jauhal, Jimmy JS; Nandra, Sukhjeen K; Privé, Gilbert G

    2005-01-01

    Background The BTB domain (also known as the POZ domain) is a versatile protein-protein interaction motif that participates in a wide range of cellular functions, including transcriptional regulation, cytoskeleton dynamics, ion channel assembly and gating, and targeting proteins for ubiquitination. Several BTB domain structures have been experimentally determined, revealing a highly conserved core structure. Results We surveyed the protein architecture, genomic distribution and sequence conservation of BTB domain proteins in 17 fully sequenced eukaryotes. The BTB domain is typically found as a single copy in proteins that contain only one or two other types of domain, and this defines the BTB-zinc finger (BTB-ZF), BTB-BACK-kelch (BBK), voltage-gated potassium channel T1 (T1-Kv), MATH-BTB, BTB-NPH3 and BTB-BACK-PHR (BBP) families of proteins, among others. In contrast, the Skp1 and ElonginC proteins consist almost exclusively of the core BTB fold. There are numerous lineage-specific expansions of BTB proteins, as seen by the relatively large number of BTB-ZF and BBK proteins in vertebrates, MATH-BTB proteins in Caenorhabditis elegans, and BTB-NPH3 proteins in Arabidopsis thaliana. Using the structural homology between Skp1 and the PLZF BTB homodimer, we present a model of a BTB-Cul3 SCF-like E3 ubiquitin ligase complex that shows that the BTB dimer or the T1 tetramer is compatible in this complex. Conclusion Despite widely divergent sequences, the BTB fold is structurally well conserved. The fold has adapted to several different modes of self-association and interactions with non-BTB proteins. PMID:16207353

  17. GDP dissociation inhibitor domain II required for Rab GTPase recycling.

    PubMed

    Gilbert, P M; Burd, C G

    2001-03-16

    Rab GTPases are localized to distinct subsets of organelles within the cell, where they regulate SNARE-mediated membrane trafficking between organelles. One factor required for Rab localization and function is Rab GDP dissociation inhibitor (GDI), which is proposed to recycle Rab after vesicle fusion by extracting Rab from the membrane and loading Rab onto newly formed transport intermediates. GDI is composed of two domains; Rab binding is mediated by Domain I, and the function of Domain II is not known. In this study, Domain II of yeast GDI, encoded by the essential GDI1/SEC19 gene, was targeted in a genetic screen to obtain mutants that might lend insight into the function of this domain. In one gdi1 mutant, the cytosolic pools of all Rabs tested were depleted, and Rab accumulated on membranes, suggesting that this mutant Gdi1 protein has a general defect in extraction of Rab from membranes. In a second gdi1 mutant, the endosomal/vacuolar Rabs Vps21/Ypt51p and Ypt7p accumulated in the cytosol bound to Gdi1p, but localization of Ypt1p and Sec4p were not significantly affected. Using an in vitro assay which reconstitutes Gdi1p-mediated membrane loading of Rab, this mutant Gdi1p was found to be defective in loading of Vps21p but not Ypt1p. Loading of Vps21p by loading-defective Gdi1p was restored when acceptor membranes prepared from a deletion strain lacking Vps21p were used. These results suggest that membrane-associated Rab may regulate recruitment of GDI-Rab from the cytosol, possibly by regulating a GDI-Rab receptor. We conclude that Domain II of Gdi1p is essential for Rab loading and Rab extraction, and confirm that each of these activities is required for Gdi1p function in vivo.

  18. Generic domain models in software engineering

    NASA Technical Reports Server (NTRS)

    Maiden, Neil

    1992-01-01

    This paper outlines three research directions related to domain-specific software development: (1) reuse of generic models for domain-specific software development; (2) empirical evidence to determine these generic models, namely elicitation of mental knowledge schema possessed by expert software developers; and (3) exploitation of generic domain models to assist modelling of specific applications. It focuses on knowledge acquisition for domain-specific software development, with emphasis on tool support for the most important phases of software development.

  19. Diffusion in narrow domains and application to phototransduction

    NASA Astrophysics Data System (ADS)

    Reingruber, Jürgen; Holcman, David

    2009-03-01

    The mean time for a Brownian particle to find a small target inside a narrow domain is a key parameter for many chemical reactions occurring in cellular microstructures. Although current estimations are given for a large class of domains, they cannot be used for narrow domains often encountered in cellular biology, such as the synaptic cleft, narrow compartments in the outer segment of vertebrate photoreceptors, or neuron-glia contact. We compute here the mean time for a Brownian particle to hit a small target placed on the surface of a narrow cylinder. We then use this result to estimate the rate constant of cyclic-GMP (cGMP) hydrolysis by the activated enzyme phosphodiesterase (PDE) in the narrow microdomains that build up the outer segment of a rod photoreceptor. By controlling the cGMP concentration, PDE activity is at the basis of the early photoresponse chemical reaction cascade. Our approach allows us to compute the cGMP rate constant as a function of biophysical parameters.

  20. SH4-domain-induced plasma membrane dynamization promotes bleb-associated cell motility.

    PubMed

    Tournaviti, Stella; Hannemann, Sebastian; Terjung, Stefan; Kitzing, Thomas M; Stegmayer, Carolin; Ritzerfeld, Julia; Walther, Paul; Grosse, Robert; Nickel, Walter; Fackler, Oliver T

    2007-11-01

    SH4 domains provide bipartite membrane-targeting signals for oncogenic Src family kinases. Here we report the induction of non-apoptotic plasma membrane (PM) blebbing as a novel and conserved activity of SH4 domains derived from the prototypic Src kinases Src, Fyn, Yes and Lck as well as the HASPB protein of Leishmania parasites. SH4-domain-induced blebbing is highly dynamic, with bleb formation and collapse displaying distinct kinetics. These reorganizations of the PM are controlled by Rho but not Rac or Cdc42 GTPase signalling pathways. SH4-induced membrane blebbing requires the membrane association of the SH4 domain, is regulated by the activities of Rock kinase and myosin II ATPase, and depends on the integrity of F-actin as well as microtubules. Endogenous Src kinase activity is crucial for PM blebbing in SH4-domain-expressing cells, active Src and Rock kinases are enriched in SH4-domain-induced PM blebs, and PM blebbing correlates with enhanced cell invasion in 3D matrices. These results establish a novel link between SH4 domains, Src activity and Rho signalling, and implicate SH4-domain-mediated PM dynamization as a mechanism that influences invasiveness of cells transformed by SH4-domain-containing oncoproteins. PMID:17959630

  1. Cellular effects of phosphotyrosine-binding domain inhibitors on insulin receptor signaling and trafficking.

    PubMed Central

    Giorgetti-Peraldi, S; Ottinger, E; Wolf, G; Ye, B; Burke, T R; Shoelson, S E

    1997-01-01

    Shc and insulin receptor substrate 1 (IRS-1) are cytoplasmic substrates of tyrosine kinase receptors that engage, localize, and activate downstream SH2 enzymes. Each contains a phosphotyrosine-binding (PTB) domain that is structurally unrelated to SH2 domains. We have designed high-affinity, cellular inhibitors of the Shc PTB domain by incorporating nonnatural, phosphatase-resistant amino acids into short peptides. None of the inhibitors bind the IRS-1 PTB domain, consistent with distinct specificities for domains. The best inhibitor of the Shc domain was introduced by electroporation into Rat1 fibroblasts that express human insulin receptors. Insulin-stimulated phosphorylation of Shc was inhibited, with no effect on IRS-1, and downstream effects on mitogen-activated protein kinase and DNA synthesis were both inhibited. The PTB domain inhibitor had less influence on epidermal growth factor-induced effects and essentially no impact on serum- or phorbol ester-induced effects. The inhibitor did not affect insulin internalization and its degradation. We conclude that the PTB domain of Shc is critical for its phosphorylation by the insulin receptor, that Shc is an important mediator of insulin's mitogenic effects, and that Shc is not central to insulin receptor cycling in these cells. PTB domains can be inhibited selectively in cells and represent potential targets for drug discovery. PMID:9032245

  2. Conformational Dynamics in FKBP Domains: Relevance to Molecular Signaling and Drug Design.

    PubMed

    LeMaster, David M; Hernandez, Griselda

    2015-01-01

    Among the 22 FKBP domains in the human genome, FKBP12.6 and the first FKBP domains (FK1) of FKBP51 and FKBP52 are evolutionarily and structurally most similar to the archetypical FKBP12. As such, the development of inhibitors with selectivity among these four FKBP domains poses a significant challenge for structure-based design. The pleiotropic effects of these FKBP domains in a range of signaling processes such as the regulation of ryanodine receptor calcium channels by FKBP12 and FKBP12.6 and steroid receptor regulation by the FK1 domains of FKBP51 and FKBP52 amply justify the efforts to develop selective therapies. In contrast to their close structural similarities, these four FKBP domains exhibit a substantial diversity in their conformational flexibility. A number of distinct conformational transitions have been characterized for FKBP12 spanning timeframes from 20 s to 10 ns and in each case these dynamics have been shown to markedly differ from the conformational behavior for one or more of the other three FKBP domains. Protein flexibilitybased inhibitor design could draw upon the transitions that are significantly populated in only one of the targeted proteins. Both the similarities and differences among these four proteins valuably inform the understanding of how dynamical effects propagate across the FKBP domains as well as potentially how such intramolecular transitions might couple to the larger scale transitions that are central to the signaling complexes in which these FKBP domains function.

  3. Domain wall orientation and domain shape in KTiOPO4 crystals

    NASA Astrophysics Data System (ADS)

    Shur, V. Ya.; Vaskina, E. M.; Pelegova, E. V.; Chuvakova, M. A.; Akhmatkhanov, A. R.; Kizko, O. V.; Ivanov, M.; Kholkin, A. L.

    2016-09-01

    Domain shape evolution and domain wall motion have been studied in KTiOPO4 (KTP) ferroelectric single crystals using complementary experimental methods. The in situ visualization of domain kinetics has allowed revealing: (1) qualitative change of the domain shape, (2) dependence of the domain wall velocity on its orientation, (3) jump-like domain wall motion caused by domain merging, (4) effect of domain shape stability. The model of domain wall motion driven by generation of elementary steps (kink-pair nucleation) and subsequent kink motion is presented. The decrease in the relative velocity of the approaching parallel domain walls is attributed to electrostatic interaction. The effect of polarization reversal induced by chemical etching is observed. The obtained results are important for the development of domain engineering in the crystals of KTP family.

  4. Pectin Homogalacturonans: Nanostructural Characterization of Methylesterified Domains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Functionality of pectic hydrocolloids is largely dependent on the two major domains commonly found in their homogalacturonan (HG) regions, i.e., methylester protected domains (MPDs)and non methylesterified domains (NMDs). MPDs can participate in hydrogen bonding and hydrophobic interactions but unli...

  5. Frequency domain photoacoustic and fluorescence microscopy.

    PubMed

    Langer, Gregor; Buchegger, Bianca; Jacak, Jaroslaw; Klar, Thomas A; Berer, Thomas

    2016-07-01

    We report on simultaneous frequency domain optical-resolution photoacoustic and fluorescence microscopy with sub-µm lateral resolution. With the help of a blood smear, we show that photoacoustic and fluorescence images provide complementary information. Furthermore, we compare theoretically predicted signal-to-noise ratios of sinusoidal modulation in frequency domain with pulsed excitation in time domain. PMID:27446698

  6. Frequency domain photoacoustic and fluorescence microscopy.

    PubMed

    Langer, Gregor; Buchegger, Bianca; Jacak, Jaroslaw; Klar, Thomas A; Berer, Thomas

    2016-07-01

    We report on simultaneous frequency domain optical-resolution photoacoustic and fluorescence microscopy with sub-µm lateral resolution. With the help of a blood smear, we show that photoacoustic and fluorescence images provide complementary information. Furthermore, we compare theoretically predicted signal-to-noise ratios of sinusoidal modulation in frequency domain with pulsed excitation in time domain.

  7. Frequency domain photoacoustic and fluorescence microscopy

    PubMed Central

    Langer, Gregor; Buchegger, Bianca; Jacak, Jaroslaw; Klar, Thomas A.; Berer, Thomas

    2016-01-01

    We report on simultaneous frequency domain optical-resolution photoacoustic and fluorescence microscopy with sub-µm lateral resolution. With the help of a blood smear, we show that photoacoustic and fluorescence images provide complementary information. Furthermore, we compare theoretically predicted signal-to-noise ratios of sinusoidal modulation in frequency domain with pulsed excitation in time domain. PMID:27446698

  8. A systematic, family-wide investigation reveals that ~30% of mammalian PDZ domains engage in PDZ-PDZ interactions

    PubMed Central

    Chang, Bryan H.; Gujral, Taranjit S.; Karp, Ethan S.; BuKhalid, Raghida; Grantcharova, Viara P.; MacBeath, Gavin

    2012-01-01

    Summary PDZ domains are independently folded modules that typically mediate protein-protein interactions by binding to the C-termini of their target proteins. In a few instances, however, PDZ domains have been reported to dimerize with other PDZ domains. To investigate this noncanonical binding mode further, we used protein microarrays comprising virtually every mouse PDZ domain to systematically query all possible PDZ-PDZ pairs. We then used fluorescence polarization to retest and quantify novel interactions and co-affinity purification to test biophysically validated interactions in the context of their full-length proteins. Overall, we discovered 37 PDZ-PDZ interactions involving 46 PDZ domains (~30% of all PDZ domains tested), revealing that dimerization is a more frequently used binding mode than was previously appreciated. This suggests that many PDZ domains evolved to form multiprotein complexes by simultaneously interacting with more than one ligand. PMID:21944753

  9. IQGAP Proteins Reveal an Atypical Phosphoinositide (aPI) Binding Domain with a Pseudo C2 Domain Fold

    SciTech Connect

    Dixon, Miles J.; Gray, Alexander; Schenning, Martijn; Agacan, Mark; Tempel, Wolfram; Tong, Yufeng; Nedyalkova, Lyudmila; Park, Hee-Won; Leslie, Nicholas R.; van Aalten, Daan M.F.; Downes, C. Peter; Batty, Ian H.

    2012-10-16

    Class I phosphoinositide (PI) 3-kinases act through effector proteins whose 3-PI selectivity is mediated by a limited repertoire of structurally defined, lipid recognition domains. We describe here the lipid preferences and crystal structure of a new class of PI binding modules exemplified by select IQGAPs (IQ motif containing GTPase-activating proteins) known to coordinate cellular signaling events and cytoskeletal dynamics. This module is defined by a C-terminal 105-107 amino acid region of which IQGAP1 and -2, but not IQGAP3, binds preferentially to phosphatidylinositol 3,4,5-trisphosphate (PtdInsP3). The binding affinity for PtdInsP3, together with other, secondary target-recognition characteristics, are comparable with those of the pleckstrin homology domain of cytohesin-3 (general receptor for phosphoinositides 1), an established PtdInsP3 effector protein. Importantly, the IQGAP1 C-terminal domain and the cytohesin-3 pleckstrin homology domain, each tagged with enhanced green fluorescent protein, were both re-localized from the cytosol to the cell periphery following the activation of PI 3-kinase in Swiss 3T3 fibroblasts, consistent with their common, selective recognition of endogenous 3-PI(s). The crystal structure of the C-terminal IQGAP2 PI binding module reveals unexpected topological similarity to an integral fold of C2 domains, including a putative basic binding pocket. We propose that this module integrates select IQGAP proteins with PI 3-kinase signaling and constitutes a novel, atypical phosphoinositide binding domain that may represent the first of a larger group, each perhaps structurally unique but collectively dissimilar from the known PI recognition modules.

  10. Magnetically attached sputter targets

    DOEpatents

    Makowiecki, D.M.; McKernan, M.A.

    1994-02-15

    An improved method and assembly for attaching sputtering targets to cathode assemblies of sputtering systems which includes a magnetically permeable material is described. The magnetically permeable material is imbedded in a target base that is brazed, welded, or soldered to the sputter target, or is mechanically retained in the target material. Target attachment to the cathode is achieved by virtue of the permanent magnets and/or the pole pieces in the cathode assembly that create magnetic flux lines adjacent to the backing plate, which strongly attract the magnetically permeable material in the target assembly. 11 figures.

  11. Magnetically attached sputter targets

    DOEpatents

    Makowiecki, Daniel M.; McKernan, Mark A.

    1994-01-01

    An improved method and assembly for attaching sputtering targets to cathode assemblies of sputtering systems which includes a magnetically permeable material. The magnetically permeable material is imbedded in a target base that is brazed, welded, or soldered to the sputter target, or is mechanically retained in the target material. Target attachment to the cathode is achieved by virtue of the permanent magnets and/or the pole pieces in the cathode assembly that create magnetic flux lines adjacent to the backing plate, which strongly attract the magnetically permeable material in the target assembly.

  12. PTB or not to be: promiscuous, tolerant and Bizarro domains come of age.

    PubMed

    Farooq, Amjad; Zhou, Ming-Ming

    2004-09-01

    PTB domains are protein modules that usually interact with the cytoplasmic tail of a wide variety of growth factor receptors. In so doing, they mediate the transduction of extracellular information to specific downstream targets within the cell that ultimately determine the fate of a number of important biological processes such as cell growth and differentiation, cell cycle regulation and apoptosis. Recent structural and functional studies of PTB domains from a variety of cellular proteins have begun to shed light on the molecular mechanisms of action of these important protein modules. In the present review, we provide an account of such studies and suggest that PTB domains can be subdivided into three distinct categories on the basis of their topological differences. We also discuss the various mechanisms employed by the PTB domains in recognition of a diverse set of ligands without a consensus sequence. Finally, we discuss the role of molecular plasticity as a possible determinant of functional versatility of PTB domains. PMID:15590561

  13. Active site coupling in Plasmodium falciparum GMP synthetase is triggered by domain rotation.

    PubMed

    Ballut, Lionel; Violot, Sébastien; Shivakumaraswamy, Santosh; Thota, Lakshmi Prasoona; Sathya, Manu; Kunala, Jyothirmai; Dijkstra, Bauke W; Terreux, Raphaël; Haser, Richard; Balaram, Hemalatha; Aghajari, Nushin

    2015-11-23

    GMP synthetase (GMPS), a key enzyme in the purine biosynthetic pathway performs catalysis through a coordinated process across two catalytic pockets for which the mechanism remains unclear. Crystal structures of Plasmodium falciparum GMPS in conjunction with mutational and enzyme kinetic studies reported here provide evidence that an 85° rotation of the GATase domain is required for ammonia channelling and thus for the catalytic activity of this two-domain enzyme. We suggest that conformational changes in helix 371-375 holding catalytic residues and in loop 376-401 along the rotation trajectory trigger the different steps of catalysis, and establish the central role of Glu374 in allostery and inter-domain crosstalk. These studies reveal the mechanism of domain rotation and inter-domain communication, providing a molecular framework for the function of all single polypeptide GMPSs and form a solid basis for rational drug design targeting this therapeutically important enzyme.

  14. Young children bet on their numerical skills: metacognition in the numerical domain.

    PubMed

    Vo, Vy A; Li, Rosa; Kornell, Nate; Pouget, Alexandre; Cantlon, Jessica F

    2014-09-01

    Metacognition, the ability to assess one's own knowledge, has been targeted as a critical learning mechanism in mathematics education. Yet the early childhood origins of metacognition have proven difficult to study. Using a novel nonverbal task and a comprehensive set of metacognitive measures, we provided the strongest evidence to date that young children are metacognitive. We showed that children as young as 5 years made metacognitive "bets" on their numerical discriminations in a wagering task. However, contrary to previous reports from adults, our results showed that children's metacognition is domain specific: Their metacognition in the numerical domain was unrelated to their metacognition in another domain (emotion discrimination). Moreover, children's metacognitive ability in only the numerical domain predicted their school-based mathematics knowledge. The data provide novel evidence that metacognition is a fundamental, domain-dependent cognitive ability in children. The findings have implications for theories of uncertainty and reveal new avenues for training metacognition in children.

  15. Active site coupling in Plasmodium falciparum GMP synthetase is triggered by domain rotation

    PubMed Central

    Ballut, Lionel; Violot, Sébastien; Shivakumaraswamy, Santosh; Thota, Lakshmi Prasoona; Sathya, Manu; Kunala, Jyothirmai; Dijkstra, Bauke W.; Terreux, Raphaël; Haser, Richard; Balaram, Hemalatha; Aghajari, Nushin

    2015-01-01

    GMP synthetase (GMPS), a key enzyme in the purine biosynthetic pathway performs catalysis through a coordinated process across two catalytic pockets for which the mechanism remains unclear. Crystal structures of Plasmodium falciparum GMPS in conjunction with mutational and enzyme kinetic studies reported here provide evidence that an 85° rotation of the GATase domain is required for ammonia channelling and thus for the catalytic activity of this two-domain enzyme. We suggest that conformational changes in helix 371–375 holding catalytic residues and in loop 376–401 along the rotation trajectory trigger the different steps of catalysis, and establish the central role of Glu374 in allostery and inter-domain crosstalk. These studies reveal the mechanism of domain rotation and inter-domain communication, providing a molecular framework for the function of all single polypeptide GMPSs and form a solid basis for rational drug design targeting this therapeutically important enzyme. PMID:26592566

  16. One Health Core Competency Domains.

    PubMed

    Frankson, Rebekah; Hueston, William; Christian, Kira; Olson, Debra; Lee, Mary; Valeri, Linda; Hyatt, Raymond; Annelli, Joseph; Rubin, Carol

    2016-01-01

    The emergence of complex global challenges at the convergence of human, animal, and environmental health has catalyzed a movement supporting "One Health" approaches. Despite recognition of the importance of One Health approaches to address these complex challenges, little effort has been directed at identifying the seminal knowledge, skills, and attitudes necessary for individuals to successfully contribute to One Health efforts. Between 2008 and 2011, three groups independently embarked on separate initiatives to identify core competencies for professionals involved with One Health approaches. Core competencies were considered critically important for guiding curriculum development and continuing professional education, as they describe the knowledge, skills, and attitudes required to be effective. A workshop was convened in 2012 to synthesize the various strands of work on One Health competencies. Despite having different mandates, participants, and approaches, all of these initiatives identified similar core competency domains: management; communication and informatics; values and ethics; leadership; teams and collaboration; roles and responsibilities; and systems thinking. These core competency domains have been used to develop new continuing professional education programs for One Health professionals and help university curricula prepare new graduates to be able to contribute more effectively to One Health approaches. PMID:27679794

  17. One Health Core Competency Domains

    PubMed Central

    Frankson, Rebekah; Hueston, William; Christian, Kira; Olson, Debra; Lee, Mary; Valeri, Linda; Hyatt, Raymond; Annelli, Joseph; Rubin, Carol

    2016-01-01

    The emergence of complex global challenges at the convergence of human, animal, and environmental health has catalyzed a movement supporting “One Health” approaches. Despite recognition of the importance of One Health approaches to address these complex challenges, little effort has been directed at identifying the seminal knowledge, skills, and attitudes necessary for individuals to successfully contribute to One Health efforts. Between 2008 and 2011, three groups independently embarked on separate initiatives to identify core competencies for professionals involved with One Health approaches. Core competencies were considered critically important for guiding curriculum development and continuing professional education, as they describe the knowledge, skills, and attitudes required to be effective. A workshop was convened in 2012 to synthesize the various strands of work on One Health competencies. Despite having different mandates, participants, and approaches, all of these initiatives identified similar core competency domains: management; communication and informatics; values and ethics; leadership; teams and collaboration; roles and responsibilities; and systems thinking. These core competency domains have been used to develop new continuing professional education programs for One Health professionals and help university curricula prepare new graduates to be able to contribute more effectively to One Health approaches. PMID:27679794

  18. One Health Core Competency Domains

    PubMed Central

    Frankson, Rebekah; Hueston, William; Christian, Kira; Olson, Debra; Lee, Mary; Valeri, Linda; Hyatt, Raymond; Annelli, Joseph; Rubin, Carol

    2016-01-01

    The emergence of complex global challenges at the convergence of human, animal, and environmental health has catalyzed a movement supporting “One Health” approaches. Despite recognition of the importance of One Health approaches to address these complex challenges, little effort has been directed at identifying the seminal knowledge, skills, and attitudes necessary for individuals to successfully contribute to One Health efforts. Between 2008 and 2011, three groups independently embarked on separate initiatives to identify core competencies for professionals involved with One Health approaches. Core competencies were considered critically important for guiding curriculum development and continuing professional education, as they describe the knowledge, skills, and attitudes required to be effective. A workshop was convened in 2012 to synthesize the various strands of work on One Health competencies. Despite having different mandates, participants, and approaches, all of these initiatives identified similar core competency domains: management; communication and informatics; values and ethics; leadership; teams and collaboration; roles and responsibilities; and systems thinking. These core competency domains have been used to develop new continuing professional education programs for One Health professionals and help university curricula prepare new graduates to be able to contribute more effectively to One Health approaches.

  19. One Health Core Competency Domains.

    PubMed

    Frankson, Rebekah; Hueston, William; Christian, Kira; Olson, Debra; Lee, Mary; Valeri, Linda; Hyatt, Raymond; Annelli, Joseph; Rubin, Carol

    2016-01-01

    The emergence of complex global challenges at the convergence of human, animal, and environmental health has catalyzed a movement supporting "One Health" approaches. Despite recognition of the importance of One Health approaches to address these complex challenges, little effort has been directed at identifying the seminal knowledge, skills, and attitudes necessary for individuals to successfully contribute to One Health efforts. Between 2008 and 2011, three groups independently embarked on separate initiatives to identify core competencies for professionals involved with One Health approaches. Core competencies were considered critically important for guiding curriculum development and continuing professional education, as they describe the knowledge, skills, and attitudes required to be effective. A workshop was convened in 2012 to synthesize the various strands of work on One Health competencies. Despite having different mandates, participants, and approaches, all of these initiatives identified similar core competency domains: management; communication and informatics; values and ethics; leadership; teams and collaboration; roles and responsibilities; and systems thinking. These core competency domains have been used to develop new continuing professional education programs for One Health professionals and help university curricula prepare new graduates to be able to contribute more effectively to One Health approaches.

  20. Supramolecular organization of the human N-BAR domain in shaping the sarcolemma membrane.

    PubMed

    Daum, Bertram; Auerswald, Andrea; Gruber, Tobias; Hause, Gerd; Balbach, Jochen; Kühlbrandt, Werner; Meister, Annette

    2016-06-01

    The 30kDa N-BAR domain of the human Bin1 protein is essential for the generation of skeletal muscle T-tubules. By electron cryo-microscopy and electron cryo-tomography with a direct electron detector, we found that Bin1-N-BAR domains assemble into scaffolds of low long-range order that form flexible membrane tubules. The diameter of the tubules closely matches the curved shape of the N-BAR domain, which depends on the composition of the target membrane. These insights are fundamental to our understanding of T-tubule formation and function in human skeletal muscle.

  1. Supramolecular organization of the human N-BAR domain in shaping the sarcolemma membrane.

    PubMed

    Daum, Bertram; Auerswald, Andrea; Gruber, Tobias; Hause, Gerd; Balbach, Jochen; Kühlbrandt, Werner; Meister, Annette

    2016-06-01

    The 30kDa N-BAR domain of the human Bin1 protein is essential for the generation of skeletal muscle T-tubules. By electron cryo-microscopy and electron cryo-tomography with a direct electron detector, we found that Bin1-N-BAR domains assemble into scaffolds of low long-range order that form flexible membrane tubules. The diameter of the tubules closely matches the curved shape of the N-BAR domain, which depends on the composition of the target membrane. These insights are fundamental to our understanding of T-tubule formation and function in human skeletal muscle. PMID:27016283

  2. Structure of the GAT domain of the endosomal adapter protein Tom1.

    PubMed

    Xiao, Shuyan; Ellena, Jeffrey F; Armstrong, Geoffrey S; Capelluto, Daniel G S

    2016-06-01

    Cellular homeostasis requires correct delivery of cell-surface receptor proteins (cargo) to their target subcellular compartments. The adapter proteins Tom1 and Tollip are involved in sorting of ubiquitinated cargo in endosomal compartments. Recruitment of Tom1 to the endosomal compartments is mediated by its GAT domain's association to Tollip's Tom1-binding domain (TBD). In this data article, we report the solution NMR-derived structure of the Tom1 GAT domain. The estimated protein structure exhibits a bundle of three helical elements. We compare the Tom1 GAT structure with those structures corresponding to the Tollip TBD- and ubiquitin-bound states. PMID:26977434

  3. Word Domain Disambiguation via Word Sense Disambiguation

    SciTech Connect

    Sanfilippo, Antonio P.; Tratz, Stephen C.; Gregory, Michelle L.

    2006-06-04

    Word subject domains have been widely used to improve the perform-ance of word sense disambiguation al-gorithms. However, comparatively little effort has been devoted so far to the disambiguation of word subject do-mains. The few existing approaches have focused on the development of al-gorithms specific to word domain dis-ambiguation. In this paper we explore an alternative approach where word domain disambiguation is achieved via word sense disambiguation. Our study shows that this approach yields very strong results, suggesting that word domain disambiguation can be ad-dressed in terms of word sense disam-biguation with no need for special purpose algorithms.

  4. FLIR target screening

    NASA Technical Reports Server (NTRS)

    Aggarwal, R.

    1982-01-01

    Methods for the segmentation and recognition of individual targets sensed with forward looking infrared detectors are discussed. Particular attention is given to an adaptive multi-scenario target screener.

  5. Porous Nanocomposites with Integrated Internal Domains: Application to Separation Membranes

    PubMed Central

    Li, Wenle; Walz, John Y.

    2014-01-01

    Asymmetric membranes with layered structure have made significant achievements due to their balanced properties and multi-functionalities that come from a combination of multiple layers. However, issues such as delamination and substructure resistance are generated by the intrinsic layered structure. Here, we present a strategy to integrate the traditional layered structure into an asymmetric but continuous porous network. Through infiltrations of microparticles and nanoparticles to targeted regions, active domains are created inside the porous scaffold versus having them applied externally. The fabricated internal active domains are highly adjustable in terms of its dimensions, pore size, and materials. We demonstrate that it is a general method that can be applicable to a wide variety of particles regardless of their material, dimensions, or geometry. By eliminating the external layered structure, problems such as those mentioned above can be eliminated. This integration technique can be extended to other devices required a layered structure, such as solid oxide fuel cells and lithium ion battery. PMID:24646923

  6. Versatile communication strategies among tandem WW domain repeats

    PubMed Central

    Dodson, Emma Joy; Fishbain-Yoskovitz, Vered; Rotem-Bamberger, Shahar

    2015-01-01

    Interactions mediated by short linear motifs in proteins play major roles in regulation of cellular homeostasis since their transient nature allows for easy modulation. We are still far from a full understanding and appreciation of the complex regulation patterns that can be, and are, achieved by this type of interaction. The fact that many linear-motif-binding domains occur in tandem repeats in proteins indicates that their mutual communication is used extensively to obtain complex integration of information toward regulatory decisions. This review is an attempt to overview, and classify, different ways by which two and more tandem repeats cooperate in binding to their targets, in the well-characterized family of WW domains and their corresponding polyproline ligands. PMID:2571