Science.gov

Sample records for pseudomonas aeruginosa caused

  1. [Necrotizing fasciitis caused by pseudomonas aeruginosa (an obervation)].

    PubMed

    Abada, A; Benhmidoune, L; Tahiri, H; Essalim, K; Chakib, A; Elbelhadji, M; Rachid, R; Zaghloul, K; Amraoui, A

    2007-01-01

    Necrotizing fasciitis is an exceptional and severe form of subcutaneous gangrene which requires early diagnosis and emergency treatment. We report the case of a 24 year old woman presenting with necrotizing fasciitis after pansinusitis resistant to treatment. The germ detected was pseudomonas aeruginosa. The infection was controled with intensive care, antibiotics and surgical resection of necrotic tissues. The aim of this observation is to highlight the clinical characteristics of this disease, and to insist on the necessity to recognize the early symptoms and to start treatment as soon as possible.

  2. [Hospital infections caused by Pseudomonas aeruginosa. Significance in intensive therapy].

    PubMed

    Sidorenko, S V; Gel'fand, E B; Mamontova, O A

    1999-01-01

    The significance of P. aeruginosa as an agent of hospital infections in intensive care departments is determined by high prevalence of this microorganism, its natural and acquired resistance to antibiotics of various groups, and severity of the infection it induces. The resistance of P. aeruginosa to antibiotics is different in different regions. Among the strains isolated in Moscow in intensive care wards for newborns 9% were resistant to meropenem, 10% to amicacine, 15% to imipramine, 16% to cefepime, 37% to ceftasidime, 45% to piperacylline/tasobactam, 45% to ciprofloxacine, and 60% to gentamicin; 1.5% of these strains were resistant to all tested antibiotics. High prevalence of antibiotic resistance among P. aeruginosa impedes the choice of drugs for empirical antibiotic therapy and increases the significance of microbiological diagnosis. Even if an agent is sensitive to such antibiotics as semisynthetic penicillines and aminoglycosides, their use as monotherapy in infections caused by P. aeruginosa is ineffective. Carbapenemes, III- IV generations cefalosporines, and fluoroquinolones can be used as mono therapy.

  3. Chronic Pseudomonas aeruginosa cervical osteomyelitis

    PubMed Central

    Meher, Sujeet Kumar; Jain, Harsh; Tripathy, Laxmi Narayan; Basu, Sunandan

    2016-01-01

    Pseudomonas aeruginosa is a rare cause of osteomyelitis of the cervical spine and is usually seen in the background of intravenous drug use and immunocompromised state. Very few cases of osteomyelitis of the cervical spine caused by pseudomonas aeruginosa have been reported in otherwise healthy patients. This is a case presentation of a young female, who in the absence of known risk factors for cervical osteomyelitis presented with progressively worsening neurological signs and symptoms. PMID:27891039

  4. Chloronychia: green nail syndrome caused by Pseudomonas aeruginosa in elderly persons.

    PubMed

    Chiriac, Anca; Brzezinski, Piotr; Foia, Liliana; Marincu, Iosif

    2015-01-01

    Green nails, also known as chloronychia or green nail syndrome, are characterized by green discoloration of the nail plate (greenish-yellow, greenish-brown, greenish-black), proximal chronic non-tender paronychia, and distolateral onycholysis. The cause is Pseudomonas aeruginosa infection of the nail plate in persons whose hands are constantly exposed to water, soaps, and detergents or are subject to mechanical trauma, especially in the elderly. Green or black coloration of the nails should raise suspicion for Pseudomonas infection and be treated with an oral quinolone (ciprofloxacin), particularly in aged patients. We present three cases of green nails in elderly persons.

  5. Red death in Caenorhabditis elegans caused by Pseudomonas aeruginosa PAO1.

    PubMed

    Zaborin, Alexander; Romanowski, Kathleen; Gerdes, Svetlana; Holbrook, Christopher; Lepine, Francois; Long, Jason; Poroyko, Valeriy; Diggle, Stephen P; Wilke, Andreas; Righetti, Karima; Morozova, Irina; Babrowski, Trissa; Liu, Donald C; Zaborina, Olga; Alverdy, John C

    2009-04-14

    During host injury, Pseudomonas aeruginosa can be cued to express a lethal phenotype within the intestinal tract reservoir-a hostile, nutrient scarce environment depleted of inorganic phosphate. Here we determined if phosphate depletion activates a lethal phenotype in P. aeruginosa during intestinal colonization. To test this, we allowed Caenorhabditis elegans to feed on lawns of P. aeruginosa PAO1 grown on high and low phosphate media. Phosphate depletion caused PAO1 to kill 60% of nematodes whereas no worms died on high phosphate media. Unexpectedly, intense redness was observed in digestive tubes of worms before death. Using a combination of transcriptome analyses, mutants, and reporter constructs, we identified 3 global virulence systems that were involved in the "red death" response of P. aeruginosa during phosphate depletion; they included phosphate signaling (PhoB), the MvfR-PQS pathway of quorum sensing, and the pyoverdin iron acquisition system. Activation of all 3 systems was required to form a red colored PQS+Fe(3+) complex which conferred a lethal phenotype in this model. When pyoverdin production was inhibited in P. aeruginosa by providing excess iron, red death was attenuated in C. elegans and mortality was decreased in mice intestinally inoculated with P. aeruginosa. Introduction of the red colored PQS+Fe(3+) complex into the digestive tube of C. elegans or mouse intestine caused mortality associated with epithelial disruption and apoptosis. In summary, red death in C. elegans reveals a triangulated response between PhoB, MvfR-PQS, and pyoverdin in response to phosphate depletion that activates a lethal phenotype in P. aeruginosa.

  6. Pseudomonas aeruginosa contamination of mouth swabs during production causing a major outbreak

    PubMed Central

    Iversen, Bjørn G; Eriksen, Hanne-Merete; Bø, Gjermund; Hagestad, Kristian; Jacobsen, Trond; Engeset, Eva; Lassen, Jørgen; Aavitsland, Preben

    2007-01-01

    Background In 2002 we investigated an outbreak comprising 231 patients in Norway, caused by Pseudomonas aeruginosa and linked to the use of contaminated mouth swabs called Dent-O-Sept. Here we describe the extent of contamination of the swabs, and identify critical points in the production process that made the contamination possible, in order to prevent future outbreaks. Methods Environmental investigation with microbiological examination of production, ingredients and product, molecular typing of bacteria and a system audit of production. Results Of the 1565 swabs examined from 149 different production batches the outbreak strain of P. aeruginosa was detected in 76 swabs from 12 batches produced in 2001 and 2002. In total more than 250 swabs were contaminated with one or more microbial species. P. aeruginosa was detected from different spots along the production line. The audit revealed serious breeches of production regulations. Health care institutions reported non-proper use of the swabs and weaknesses in their purchasing systems. Conclusion Biofilm formation in the wet part of the production is the most plausible explanation for the continuous contamination of the swabs with P. aeruginosa over a period of at least 30 weeks. When not abiding to production regulations fatal consequences for the users may ensue. For the most vulnerable patient groups only documented quality-controlled, high-level disinfected products and items should be used in the oropharynx. PMID:17355630

  7. Accelerated corrosion of 2205 duplex stainless steel caused by marine aerobic Pseudomonas aeruginosa biofilm.

    PubMed

    Xu, Dake; Xia, Jin; Zhou, Enze; Zhang, Dawei; Li, Huabing; Yang, Chunguang; Li, Qi; Lin, Hai; Li, Xiaogang; Yang, Ke

    2017-02-01

    Microbiologically influenced corrosion (MIC) of 2205 duplex stainless steel (DSS) in the presence of Pseudomonas aeruginosa was investigated through electrochemical and surface analyses. The electrochemical results showed that P. aeruginosa significantly reduced the corrosion resistance of 2205 DSS. Confocal laser scanning microscopy (CLSM) images showed that the depths of the largest pits on 2205 DSS with and without P. aeruginosa were 14.0 and 4.9μm, respectively, indicating that the pitting corrosion was accelerated by P. aeruginosa. X-ray photoelectron spectroscopy (XPS) results revealed that CrO3 and CrN formed on the 2205 DSS surface in the presence of P. aeruginosa.

  8. X-ray Irradiated Vaccine Confers protection against Pneumonia caused by Pseudomonas Aeruginosa

    PubMed Central

    Li, Yanyan; Wang, Zhenling; Liu, Xiaoxiao; Tang, Jianying; Peng, Bin; Wei, Yuquan

    2016-01-01

    Pseudomonas aeruginosa is a gram-negative bacterium and one of the leading causes of nosocomial infection worldwide, however, no effective vaccine is currently available in the market. Here, we demonstrate that inactivation of the bacteria by X-ray irradiation inhibits its replication capability but retained antigenic expression functionally thus allowing its use as a potential vaccine. Mice immunized by this vaccine were challenged by the parental strain, the O-antigen-homologous strain PAO-1 (O2/O5) and heterologous strain PAO-6 (O6) in an acute pneumonia model. We further measured the protective effect of the vaccine, as well as host innate and cellular immunity responses. We found immunized mice could protect against both strains. Notably, the antiserum only had significant protective role against similar bacteria, while adoptive transfer of lymphocytes significantly controlled the spread of the virulent heterologous serogroup PAO-6 infection, and the protective role could be reversed by CD4 rather than CD8 antibody. We further revealed that vaccinated mice could rapidly recruit neutrophils to the airways early after intranasal challenge by PAO-6, and the irradiated vaccine was proved to be protective by the generated CD4+ IL-17+ Th17 cells. In conclusion, the generation of inactivated but metabolically active microbes is a promising strategy for safely vaccinating against Pseudomonas aeruginosa. PMID:26879055

  9. [Pneumonia due to Pseudomonas aeruginosa].

    PubMed

    Vallés, Jordi; Mariscal, Dolors

    2005-12-01

    Pseudomonas aeruginosa is one of the leading causes of Gram-negative nosocomial pneumonia. It is the most common cause of ventilator-associated pneumonia and carries the highest mortality among hospital-acquired infections. P. aeruginosa produces a large number of toxins and surface components that make it especially virulent compared with other microorganisms. These include pili, flagella, membrane bound lipopolysaccharide, and secreted products such as exotoxins A, S and U, elastase, alkaline protease, cytotoxins and phospholipases. The most common mechanism of infection in mechanically ventilated patients is through aspiration of upper respiratory tract secretions previously colonized in the process of routine nursing care or via contaminated hands of hospital personnel. Intravenous therapy with an antipseudomonal regimen should be started immediately when P. aeruginosa pneumonia is suspected or confirmed. Empiric therapy with drugs active against P. aeruginosa should be started, especially in patients who have received previous antibiotics or present late-onset pneumonia.

  10. A Rare Case of Fatal Endocarditis and Sepsis Caused by Pseudomonas aeruginosa in a Patient with Chronic Renal Failure

    PubMed Central

    Vijan, Vikrant; Vupputuri, Anjith; Nandakumar, Sandya; Mathew, Navin

    2016-01-01

    Nosocomial catheter-related and Arteriovenous fistula (AV)-related infections are significant concern in patients undergoing haemodialysis. These infections are associated with multiple complications as well as mortality and demands immediate and appropriate management. While coagulase-negative staphylococci, S.aureus, and Escherichia coli are the most common causes of catheter-related infections in haemodialysis patients, such infections caused by Pseudomonas aeruginosa are relatively rare. Here, we present an unusual case of 36-year-old male patient with chronic renal failure, who developed endocarditis and sepsis from Pseudomonas aeruginosa infection of the left hand arteriovenous fistula. The bacteraemia in the present case caused multiple complications including dry gangrene of bilateral lower limbs, stroke, endophthalmitis, left brachial artery thrombosis and vegetations on the interventricular septum and aortic wall. Despite antibiotic treatment, the patient suffered a cardiac arrest and could not be revived. PMID:27630891

  11. Pseudomonas aeruginosa outbreak in a pediatric oncology care unit caused by an errant water jet into contaminated siphons.

    PubMed

    Schneider, Henriette; Geginat, Gernot; Hogardt, Michael; Kramer, Alexandra; Dürken, Matthias; Schroten, Horst; Tenenbaum, Tobias

    2012-06-01

    We analyzed an outbreak of invasive infections with an exotoxin U positive Pseudomonas aeruginosa strain within a pediatric oncology care unit. Environmental sampling and molecular characterization of the Pseudomonas aeruginosa strains led to identification of the outbreak source. An errant water jet into the sink within patient rooms was observed. Optimized outbreak management resulted in an abundance of further Pseudomonas aeruginosa infections within the pediatric oncology care unit.

  12. Effect of infectious dose and season on development of hemorrhagic pneumonia in mink caused by Pseudomonas aeruginosa.

    PubMed

    Salomonsen, Charlotte Mark; Chriél, Mariann; Jensen, Trine H; Rangstrup-Christensen, Lena; Høiby, Niels; Hammer, Anne Sofie

    2013-07-01

    Hemorrhagic pneumonia is an acute and fatal disease of farmed mink caused by Pseudomonas aeruginosa. The pathogenesis of this disease has not yet been resolved. Mink are the only animals known to be susceptible to acute, contagious, and fatal lung infections caused by P. aeruginosa. The purpose of this study was to investigate the correlation between dose-response and season of infection and to clarify whether Danish mink are carriers of P. aeruginosa on their nasal mucosa during the season for hemorrhagic pneumonia. To elucidate the pathogenesis of the disease, an infectious dose-response trial was carried out on adult mink and mink kits, both in the season for hemorrhagic pneumonia (November) as well as out of season (July). It proved difficult to infect mink via the intra-nasal route. Only 4 out of 60 infected mink developed clinical disease and were euthanized, all of them in November, illustrating that predisposing factors in the mink itself and not infectious dose might be crucial for disease development. We were able to culture P. aeruginosa from the nasal cavity of the clinically healthy experimental mink 8 d after inoculation. This indicated that the mink can carry P. aeruginosa on their nasal mucosa without developing the disease. It was not possible, however, to culture P. aeruginosa from the nasal cavity of clinically healthy mink obtained from farms in November, which indicates that the organism is not a normal part of the nasal mucosal flora of mink.

  13. Interleukin-17 Is Required for Control of Chronic Lung Infection Caused by Pseudomonas aeruginosa

    PubMed Central

    Bayes, Hannah K.; Ritchie, Neil D.

    2016-01-01

    Chronic pulmonary infection with Pseudomonas aeruginosa is a feature of cystic fibrosis (CF) and other chronic lung diseases. Cytokines of the interleukin-17 (IL-17) family have been proposed as important in the host response to P. aeruginosa infection through their role in augmenting antibacterial immune responses, although their proinflammatory effect may contribute to lung damage that occurs as a result of chronic infection. We set out to explore the role of IL-17 in the host response to chronic P. aeruginosa infection. We used a murine model of chronic pulmonary infection with CF-related strains of P. aeruginosa. We demonstrate that IL-17 cytokine signaling is essential for mouse survival and prevention of chronic infection at 2 weeks postinoculation using two different P. aeruginosa strains. Following infection, there was a marked expansion of cells within mediastinal lymph nodes, comprised mainly of innate lymphoid cells (ILCs); ∼90% of IL-17-producing (IL-17+) cells had markers consistent with group 3 ILCs. A smaller percentage of IL-17+ cells had markers consistent with a B1 phenotype. In lung homogenates harvested 14 days following infection, there was a significant expansion of IL-17+ cells; about 50% of these were CD3+, split equally between CD4+ Th17 cells and γδ T cells, while the CD3− IL-17+ cells were almost exclusively group 3 ILCs. Further experiments with B cell-deficient mice showed that B cell production of IL-17 or natural antibodies did not provide any defense against chronic P. aeruginosa infection. Thus, IL-17 rather than antibody is a key element in host defense against chronic pulmonary infection with P. aeruginosa. PMID:27698020

  14. Pseudomonas aeruginosa: breaking down barriers.

    PubMed

    Berube, Bryan J; Rangel, Stephanie M; Hauser, Alan R

    2016-02-01

    Many bacterial pathogens have evolved ingenious ways to escape from the lung during pneumonia to cause bacteremia. Unfortunately, the clinical consequences of this spread to the bloodstream are frequently dire. It is therefore important to understand the molecular mechanisms used by pathogens to breach the lung barrier. We have recently shown that Pseudomonas aeruginosa, one of the leading causes of hospital-acquired pneumonia, utilizes the type III secretion system effector ExoS to intoxicate pulmonary epithelial cells. Injection of these cells leads to localized disruption of the pulmonary-vascular barrier and dissemination of P. aeruginosa to the bloodstream. We put these data in the context of previous studies to provide a holistic model of P. aeruginosa dissemination from the lung. Finally, we compare P. aeruginosa dissemination to that of other bacteria to highlight the complexity of bacterial pneumonia. Although respiratory pathogens use distinct and intricate strategies to escape from the lungs, a thorough understanding of these processes can lay the foundation for new therapeutic approaches for bacterial pneumonia.

  15. Epidemiological characteristics of Pseudomonas aeruginosa strains causing infection in an Italian general hospital. A one-year surveillance.

    PubMed

    Grigis, A; Farina, C; Moioli, F; Parea, M; Cirillo, D M; Goglio, A; Marchiaro, G

    1995-06-01

    During the 1989 calendar year, P. aeruginosa caused clinical infections in 0.46% of patients admitted to Ospedali Riuniti (a general hospital), Bergamo, Italy. Strains (n = 267) of P. aeruginosa were collected during this period, and epidemiological characteristics were studied. The mean prevalence of P. aeruginosa infection in inpatients was 1.1% (range 0.06-7.3), whereas outpatients showed a significantly lower prevalence of infection (0.05%). Strains were recovered from inpatients of surgical wards (n = 126; 47.2%), and outpatients (n = 15; 5.6%). Males were more often affected than females (2.7:1). Infection of the urinary tract was the most common (34.1%). Pseudomonas aeruginosa was also involved in lower respiratory tract infections (18.7%) and septicaemia (17.6%). Four typing methods were performed, i.e. serotyping, antibiotyping, pyocin typing, and restriction endonuclease analysis (REA). Serotypes O:11 and O:6 were endemic in the hospital. Some serotypes correlated with specific clinical wards. Pyocin typing was an unreliable epidemiological tool. However, antibiotyping showed the presence of some epidemic clusters, probably related to the antibiotic consumption of the patients. REA suggested the circulation of edemic P. aeruginosa strains in both the obstetrics and neurosurgery wards.

  16. Carbenicillin resistance of Pseudomonas aeruginosa.

    PubMed Central

    Rodríguez-Tebar, A; Rojo, F; Dámaso, D; Vázquez, D

    1982-01-01

    Four strains of Pseudomonas aeruginosa obtained from clinical isolates which are carbenicillin resistant were studied to find the cause(s) of resistance to this beta-lactam antibiotic. The electrophoresis patterns of the four strains (PH20610, PH20815, PH4011, and PH4301) were found to be different from those of a wild-type strain, P. aeruginosa NCTC 10662, and appeared to lack penicillin-binding protein 2. Affinity of other penicillin-binding proteins from strains PH20610 and PH20815 for carbenicillin seemed to be normal or slightly diminished. Electrophoretic patterns of penicillin-binding proteins from strains PH4011 and PH4301 had more profound differences, since the affinities of their penicillin-binding proteins 1a, 1b, and 4 for carbenicillin were decreased by nearly two orders of magnitude relative to the preparations from the wild-type strain. Kinetic studies on binding of carbenicillin to penicillin-binding proteins both in isolated membrane preparations and in intact cells revealed that carbenicillin penetration into resistant cells was a much slower process than in susceptible cells, suggesting that the outer envelope structures serve as an efficient barrier against carbenicillin entry into our P. aeruginosa strains from clinical isolates. PMID:6821456

  17. Cystic fibrosis-adapted Pseudomonas aeruginosa quorum sensing lasR mutants cause hyperinflammatory responses.

    PubMed

    LaFayette, Shantelle L; Houle, Daniel; Beaudoin, Trevor; Wojewodka, Gabriella; Radzioch, Danuta; Hoffman, Lucas R; Burns, Jane L; Dandekar, Ajai A; Smalley, Nicole E; Chandler, Josephine R; Zlosnik, James E; Speert, David P; Bernier, Joanie; Matouk, Elias; Brochiero, Emmanuelle; Rousseau, Simon; Nguyen, Dao

    2015-07-01

    Cystic fibrosis lung disease is characterized by chronic airway infections with the opportunistic pathogen Pseudomonas aeruginosa and severe neutrophilic pulmonary inflammation. P. aeruginosa undergoes extensive genetic adaptation to the cystic fibrosis (CF) lung environment, and adaptive mutations in the quorum sensing regulator gene lasR commonly arise. We sought to define how mutations in lasR alter host-pathogen relationships. We demonstrate that lasR mutants induce exaggerated host inflammatory responses in respiratory epithelial cells, with increased accumulation of proinflammatory cytokines and neutrophil recruitment due to the loss of bacterial protease- dependent cytokine degradation. In subacute pulmonary infections, lasR mutant-infected mice show greater neutrophilic inflammation and immunopathology compared with wild-type infections. Finally, we observed that CF patients infected with lasR mutants have increased plasma interleukin-8 (IL-8), a marker of inflammation. These findings suggest that bacterial adaptive changes may worsen pulmonary inflammation and directly contribute to the pathogenesis and progression of chronic lung disease in CF patients.

  18. Catheter-related infections caused by Pseudomonas aeruginosa: virulence factors involved and their relationships.

    PubMed

    Olejnickova, Katerina; Hola, Veronika; Ruzicka, Filip

    2014-11-01

    The nosocomial pathogen Pseudomonas aeruginosa is equipped with a large arsenal of cell-associated and secreted virulence factors which enhance its invasive potential. The complex relationships among virulence determinants have hitherto not been fully elucidated. In the present study, 175 catheter-related isolates were observed for the presence of selected virulence factors, namely extracellular enzymes and siderophore production, biofilm formation, resistance to antibiotics, and motility. A high percentage of the strains produced most of the tested virulence factors. A positive correlation was identified between the production of several exoproducts, and also between the formation of both types of biofilm. An opposite trend was observed between the two types of biofilm and the production of siderophores. Whereas the relationship between the submerged biofilm production (i.e. the biofilm formed on the solid surface below the water level) and the siderophore secretion was negative, the production of air-liquid interface (A-L) biofilm (i.e. the biofilm floating on the surface of the cultivation medium) and the siderophore secretion were positively correlated. All correlations were statistically significant at the level P = 0.05 with the correlation coefficient γ ≥ 0.50. Our results suggest that: (1) the co-production of the lytic enzymes and siderophores can play an important role in the pathogenesis of the catheter-related infections and should be taken into account when the virulence potential is assessed; (2) biofilm-positive strains are capable of forming both submerged and non-attached A-L biofilms; and (3) the different micro-environment in the submerged biofilm and A-L biofilm layers have opposite consequences for the production of other virulence factors.

  19. Pseudomonas quinolone signalling system: a component of quorum sensing cascade is a crucial player in the acute urinary tract infection caused by Pseudomonas aeruginosa.

    PubMed

    Bala, Anju; Chhibber, Sanjay; Harjai, Kusum

    2014-11-01

    Pseudomonas aeruginosa is an opportunistic pathogen which employs quorum sensing system to regulate several genes required for its survival and pathogenicity within the host. Besides acylhomoserine lactone (AHL) mediated las and rhl systems, this organism possesses Pseudomonas quinolone signalling (PQS) system based on alkyl quinolone signal molecules. The quinolone system represents another layer of sophistication in the complex quorum sensing cascade. Therefore, in the present study, we evaluated the contribution of the PQS system in the establishment of acute urinary tract infection (UTI) in the mouse model. For this, wild-type parent strain of P. aeruginosa MPAO1 and its isogenic single transposon mutant strains pqsH and pqsA were employed to induce UTI in mice. PQS molecules in the tissue homogenates of mice were detected by high performance thin layer chromatography (HP-TLC) method. Virulence of strains was assessed in terms of bacteriological count, histopathological lesions in the renal and bladder tissue and generation of pathological index markers like reactive nitrogen intermediates and malondialdehyde. HP-TLC analysis showed presence of PQS molecules in the renal and bladder tissue of mice infected with MPAO1 while no PQS was detected in case of pqsH and pqsA mutant strains. Results indicated that MPAO1 possessing fully functional PQS biosynthetic genes was highly virulent and caused acute pyelonephritis with severe inflammation and tissue destruction. On the contrary, significant reduction in the log count, mild tissue damage and declined levels of pathological markers were observed in mice infected with mutant strains as compared to MPAO1. Further among mutants, all these parameters were maximally impaired in the pqsA mutant in which synthesis of alkyl quinolones was completely abolished due to the transposon mutation in respective gene. Virulence of the pqsH mutant strain was lesser than that of the MPAO1 but higher than pqsA mutant. In addition, the

  20. Phosphate taxis in Pseudomonas aeruginosa.

    PubMed

    Kato, J; Ito, A; Nikata, T; Ohtake, H

    1992-08-01

    Pseudomonas aeruginosa was shown to be attracted to phosphate. The chemotactic response was induced by phosphate starvation. The specificity of chemoreceptors for phosphate was high so that no other tested phosphorus compounds elicited a chemotactic response as strong as that elicited by phosphate. Competition experiments showed that the chemoreceptors for phosphate appeared to be different from those for the common amino acids. Mutants constitutive for alkaline phosphatase showed the chemotactic response to phosphate regardless of whether the cells were starved for phosphate.

  1. Developing an international Pseudomonas aeruginosa reference panel.

    PubMed

    De Soyza, Anthony; Hall, Amanda J; Mahenthiralingam, Eshwar; Drevinek, Pavel; Kaca, Wieslaw; Drulis-Kawa, Zuzanna; Stoitsova, Stoyanka R; Toth, Veronika; Coenye, Tom; Zlosnik, James E A; Burns, Jane L; Sá-Correia, Isabel; De Vos, Daniel; Pirnay, Jean-Paul; Kidd, Timothy J; Reid, David; Manos, Jim; Klockgether, Jens; Wiehlmann, Lutz; Tümmler, Burkhard; McClean, Siobhán; Winstanley, Craig

    2013-12-01

    Pseudomonas aeruginosa is a major opportunistic pathogen in cystic fibrosis (CF) patients and causes a wide range of infections among other susceptible populations. Its inherent resistance to many antimicrobials also makes it difficult to treat infections with this pathogen. Recent evidence has highlighted the diversity of this species, yet despite this, the majority of studies on virulence and pathogenesis focus on a small number of strains. There is a pressing need for a P. aeruginosa reference panel to harmonize and coordinate the collective efforts of the P. aeruginosa research community. We have collated a panel of 43 P. aeruginosa strains that reflects the organism's diversity. In addition to the commonly studied clones, this panel includes transmissible strains, sequential CF isolates, strains with specific virulence characteristics, and strains that represent serotype, genotype or geographic diversity. This focussed panel of P. aeruginosa isolates will help accelerate and consolidate the discovery of virulence determinants, improve our understanding of the pathogenesis of infections caused by this pathogen, and provide the community with a valuable resource for the testing of novel therapeutic agents.

  2. Small Molecule Disruption of Quorum Sensing Cross-Regulation in Pseudomonas aeruginosa Causes Major and Unexpected Alterations to Virulence Phenotypes

    PubMed Central

    Welsh, Michael A.; Eibergen, Nora R.; Moore, Joseph D.; Blackwell, Helen E.

    2015-01-01

    The opportunistic pathogen Pseudomonas aeruginosa uses three interwoven quorum-sensing (QS) circuits—Las, Rhl, and Pqs—to regulate the global expression of myriad virulence-associated genes. Interception of these signaling networks with small molecules represents an emerging strategy for the development of anti-infective agents against this bacterium. In the current study, we applied a chemical approach to investigate how the Las-Rhl-Pqs QS hierarchy coordinates key virulence phenotypes in wild-type P. aeruginosa. We screened a focused library of synthetic, non-native N-acyl l-homoserine lactones and identified compounds that can drastically alter production of two important virulence factors: pyocyanin and rhamnolipid. We demonstrate that these molecules act by targeting RhlR in P. aeruginosa, a QS receptor that has seen far less scrutiny to date relative to other circuitry. Unexpectedly, modulation of RhlR activity by a single compound induces inverse regulation of pyocyanin and rhamnolipid, a result that was not predicted using genetic approaches to interrogate QS in P. aeruginosa. Further, we show that certain RhlR agonists strongly repress Pqs signaling, revealing disruption of Rhl-Pqs cross-regulation as a novel mechanism for QS inhibition. These compounds significantly expand the known repertoire of chemical probes available to study RhlR in P. aeruginosa. Moreover, our results suggest that designing chemical agents to disrupt Rhl-Pqs crosstalk could be an effective antivirulence strategy to fight this common pathogen. PMID:25574853

  3. Subinhibitory concentration of ciprofloxacin targets quorum sensing system of Pseudomonas aeruginosa causing inhibition of biofilm formation & reduction of virulence

    PubMed Central

    Gupta, Parul; Chhibber, Sanjay; Harjai, Kusum

    2016-01-01

    Background & objectives: Biofilms formed by Pseudomonas aeruginosa lead to persistent infections. Use of antibiotics for the treatment of biofilm induced infection poses a threat towards development of resistance. Therefore, the research is directed towards exploring the property of antibiotics which may alter the virulence of an organism besides altering its growth. The aim of this study was to evaluate the role of subinhibitory concentration of ciprofloxacin (CIP) in inhibiting biofilm formation and virulence of P. aeruginosa. Methods: Antibiofilm potential of subinhibitory concentration of CIP was evaluated in terms of log reduction, biofilm forming capacity and coverslip assay. P. aeruginosa isolates (grown in the presence and absence of sub-MIC of CIP) were also evaluated for inhibition in motility, virulence factor production and quorum sensing (QS) signal production. Results: Sub-minimum inhibitory concentration (sub-MIC) of CIP significantly reduced the motility of P. aeruginosa stand and strain and clinical isolates and affected biofilm forming capacity. Production of protease, elastase, siderophore, alginate, and rhamnolipid was also significantly reduced by CIP. Interpretation & conclusions: Reduction in virulence factors and biofilm formation was due to inhibition of QS mechanism which was indicated by reduced production of QS signal molecules by P. aeruginosa in presence of subinhibitory concentration of CIP. PMID:27488009

  4. Fmt bypass in Pseudomonas aeruginosa causes induction of MexXY efflux pump expression.

    PubMed

    Caughlan, Ruth E; Sriram, Shubha; Daigle, Denis M; Woods, Angela L; Buco, Jennifer; Peterson, Ron L; Dzink-Fox, Joann; Walker, Susan; Dean, Charles R

    2009-12-01

    The intrinsic resistance of P. aeruginosa PAO1 to the peptide deformylase inhibitor (PDF-I) LBM415 was mediated by the MexAB-OprM and MexXY-OprM efflux pumps, the latter of which was strongly induced by LBM415. Single-step exposure of PAO1 deleted for mexAB-oprM (therefore lacking both MexAB-OprM and MexXY-OprM functions) to PDF-Is selected for nfxB mutants, which express the MexCD-OprJ efflux pump, indicating that these compounds are also substrates for this pump. Selection of resistant mutants by use of levels of LBM415 greater than that accommodated by efflux yielded two additional groups of mutations, in the methionyl-tRNA(fmet) formyltransferase (fmt) and folD genes. Both mechanisms are known to impose an in vitro growth deficit (also observed here), presumably due to impairment of protein synthesis. We surmised that this inherent impairment of protein synthesis would upregulate expression of mexXY in a fashion similar to upregulation by LBM415 or by ribosome inhibitory compounds. Transcriptional profiling and/or mexX::lux promoter fusion analysis revealed that fmt and folD mutants were strongly upregulated for mexXY and another gene known to be required for upregulation of the pump, PA5471. Complementation of the fmt mutation in trans reversed this constitutive expression. This supports the notion that MexXY has a natural physiological function responding to impairment of ribosome function or protein synthesis and that fmt mutation (Fmt bypass) and folD mutation generate the intracellular mexXY-inducing signal.

  5. Pseudomonas aeruginosa Population Structure Revisited

    PubMed Central

    Pirnay, Jean-Paul; Bilocq, Florence; Pot, Bruno; Cornelis, Pierre; Zizi, Martin; Van Eldere, Johan; Deschaght, Pieter; Vaneechoutte, Mario; Jennes, Serge; Pitt, Tyrone; De Vos, Daniel

    2009-01-01

    At present there are strong indications that Pseudomonas aeruginosa exhibits an epidemic population structure; clinical isolates are indistinguishable from environmental isolates, and they do not exhibit a specific (disease) habitat selection. However, some important issues, such as the worldwide emergence of highly transmissible P. aeruginosa clones among cystic fibrosis (CF) patients and the spread and persistence of multidrug resistant (MDR) strains in hospital wards with high antibiotic pressure, remain contentious. To further investigate the population structure of P. aeruginosa, eight parameters were analyzed and combined for 328 unrelated isolates, collected over the last 125 years from 69 localities in 30 countries on five continents, from diverse clinical (human and animal) and environmental habitats. The analysed parameters were: i) O serotype, ii) Fluorescent Amplified-Fragment Length Polymorphism (FALFP) pattern, nucleotide sequences of outer membrane protein genes, iii) oprI, iv) oprL, v) oprD, vi) pyoverdine receptor gene profile (fpvA type and fpvB prevalence), and prevalence of vii) exoenzyme genes exoS and exoU and viii) group I pilin glycosyltransferase gene tfpO. These traits were combined and analysed using biological data analysis software and visualized in the form of a minimum spanning tree (MST). We revealed a network of relationships between all analyzed parameters and non-congruence between experiments. At the same time we observed several conserved clones, characterized by an almost identical data set. These observations confirm the nonclonal epidemic population structure of P. aeruginosa, a superficially clonal structure with frequent recombinations, in which occasionally highly successful epidemic clones arise. One of these clones is the renown and widespread MDR serotype O12 clone. On the other hand, we found no evidence for a widespread CF transmissible clone. All but one of the 43 analysed CF strains belonged to a ubiquitous P

  6. Risk assessment of Pseudomonas aeruginosa in water.

    PubMed

    Mena, Kristina D; Gerba, Charles P

    2009-01-01

    P. aeruginosa is part of a large group of free-living bacteria that are ubiquitous in the environment. This organism is often found in natural waters such as lakes and rivers in concentrations of 10/100 mL to >1,000/100 mL. However, it is not often found in drinking water. Usually it is found in 2% of samples, or less, and at concentrations up to 2,300 mL(-1) (Allen and Geldreich 1975) or more often at 3-4 CFU/mL. Its occurrence in drinking water is probably related more to its ability to colonize biofilms in plumbing fixtures (i.e., faucets, showerheads, etc.) than its presence in the distribution system or treated drinking water. P. aeruginosa can survive in deionized or distilled water (van der Jooij et al. 1982; Warburton et al. 1994). Hence, it may be found in low nutrient or oligotrophic environments, as well as in high nutrient environments such as in sewage and in the human body. P. aeruginosa can cause a wide range of infections, and is a leading cause of illness in immunocompromised individuals. In particular, it can be a serious pathogen in hospitals (Dembry et al. 1998). It can cause endocarditis, osteomyelitis, pneumonia, urinary tract infections, gastrointestinal infections, and meningitis, and is a leading cause of septicemia. P. aeruginosa is also a major cause of folliculitis and ear infections acquired by exposure to recreational waters containing the bacterium. In addition, it has been recognized as a serious cause of keratitis, especially in patients wearing contact lenses. P. aeruginosa is also a major pathogen in burn and cystic fibrosis (CF) patients and causes a high mortality rate in both populations (MOlina et al. 1991; Pollack 1995). P. aeruginosa is frequently found in whirlpools and hot tubs, sometimes in 94-100% of those tested at concenrations of <1 to 2,400 CFU/mL. The high concentrations found probably result from the relatively high temperatures of whirlpools, which favor the growth of P. aeruginosa, and the aeration which also

  7. Antibiotic Conditioned Growth Medium of Pseudomonas Aeruginosa

    ERIC Educational Resources Information Center

    Benathen, Isaiah A.; Cazeau, Barbara; Joseph, Njeri

    2004-01-01

    A simple method to study the consequences of bacterial antibiosis after interspecific competition between microorganisms is presented. Common microorganisms are used as the test organisms and Pseudomonas aeruginosa are used as the source of the inhibitor agents.

  8. Pseudomonas Aeruginosa: Resistance to the Max

    PubMed Central

    Poole, Keith

    2011-01-01

    Pseudomonas aeruginosa is intrinsically resistant to a variety of antimicrobials and can develop resistance during anti-pseudomonal chemotherapy both of which compromise treatment of infections caused by this organism. Resistance to multiple classes of antimicrobials (multidrug resistance) in particular is increasingly common in P. aeruginosa, with a number of reports of pan-resistant isolates treatable with a single agent, colistin. Acquired resistance in this organism is multifactorial and attributable to chromosomal mutations and the acquisition of resistance genes via horizontal gene transfer. Mutational changes impacting resistance include upregulation of multidrug efflux systems to promote antimicrobial expulsion, derepression of ampC, AmpC alterations that expand the enzyme's substrate specificity (i.e., extended-spectrum AmpC), alterations to outer membrane permeability to limit antimicrobial entry and alterations to antimicrobial targets. Acquired mechanisms contributing to resistance in P. aeruginosa include β-lactamases, notably the extended-spectrum β-lactamases and the carbapenemases that hydrolyze most β-lactams, aminoglycoside-modifying enzymes, and 16S rRNA methylases that provide high-level pan-aminoglycoside resistance. The organism's propensity to grow in vivo as antimicrobial-tolerant biofilms and the occurrence of hypermutator strains that yield antimicrobial resistant mutants at higher frequency also compromise anti-pseudomonal chemotherapy. With limited therapeutic options and increasing resistance will the untreatable P. aeruginosa infection soon be upon us? PMID:21747788

  9. Spaceflight Effects on Virulence of Pseudomonas Aeruginosa

    NASA Astrophysics Data System (ADS)

    Broadway, S.; Goins, T.; Crandell, C.; Richards, C.; Patel, M.; Pyle, B.

    2008-06-01

    Pseudomonas aeruginosa is an opportunistic pathogen found in the environment. It is known to infect the immunocompromised. The organism has about 25 virulence genes that play different roles in disease processes. Several exotoxin proteins may be produced, including ExoA, ExoS, ExoT and ExoY, and other virulence factors. In spaceflight, possible increased expression of P. aeruginosa virulence proteins could increase health risks for spaceflight crews who experience decreased immunity. Cultures of P. aeruginosa strains PA01 and PA103 grown on orbit on Shuttle Endeavour flight STS-123 vs. static ground controls were used for analysis. The production of ETA was quantitated using an ELISA procedure. Results showed that while flight cultures of PA103 produced slightly more ETA than corresponding ground controls, the opposite was found for PA01. While it appears that spaceflight has little effect on ETA, stimulation of other virulence factors could cause increased virulence of this organism in space flight. Similar increased virulence in spaceflight has been observed for other bacteria. This is important because astronauts may be more susceptible to opportunistic pathogens including P. aeruginosa.

  10. Neonatal epididymo-orchitis caused by Pseudomonas aeruginosa: a case report

    PubMed Central

    2010-01-01

    Epididymitis and epididymo-orchitis are an uncommon causes of acute testicular pain in neonatal boys, epididymo-orchitis is infection or inflammation of epididymis and testis it's may be associated with urinary tract infections or reflux of urine predisposed by an underlying vasal anomaly. Pediatricians should examine the testicles meticulously after a baby is born. We report a 7 day-old boy with urinary malformations (ureteral duplication, ureterocel and right hydro-ureteronephrosis) who presented with acute scrotum. The ultrasonography exploration of the testis showed findings consistent with epididymo-orchitis, confirmed by the needle scrotal aspiration of the pus. Further radiological investigations of urinary tract showed the multiples malformations. Epididymo-orchitis should be suspected initially with abnormal physical signs and laboratory findings. Prompt prescription of antibiotics is mandatory, and appropriate therapeutic measures (antibiotics) should be undertaken to prevent recurrences and sequelae. PMID:20205850

  11. Interaction of the Pseudomonas aeruginosa secretory products pyocyanin and pyochelin generates hydroxyl radical and causes synergistic damage to endothelial cells. Implications for Pseudomonas-associated tissue injury.

    PubMed Central

    Britigan, B E; Roeder, T L; Rasmussen, G T; Shasby, D M; McCormick, M L; Cox, C D

    1992-01-01

    Pyocyanin, a secretory product of Pseudomonas aeruginosa, has the capacity to undergo redox cycling under aerobic conditions with resulting generation of superoxide and hydrogen peroxide. By using spin trapping techniques in conjunction with electron paramagnetic resonance spectrometry (EPR), superoxide was detected during the aerobic reduction of pyocyanin by NADH or porcine endothelial cells. No evidence of hydroxyl radical formation was detected. Chromium oxalate eliminated the EPR spectrum of the superoxide-derived spin adduct resulting from endothelial cell exposure to pyocyanin, suggesting superoxide formation close to the endothelial cell plasma membrane. We have previously reported that iron bound to the P. aeruginosa siderophore pyochelin (ferripyochelin) catalyzes the formation of hydroxyl free radical from superoxide and hydrogen peroxide via the Haber-Weiss reaction. In the present study, spin trap evidence of hydroxyl radical formation was detected when NADH and pyocyanin were allowed to react in the presence of ferripyochelin. Similarly, endothelial cell exposure to pyocyanin and ferripyochelin also resulted in hydroxyl radical production which appeared to occur in close proximity to the cell surface. As assessed by 51Cr release, endothelial cells which were treated with pyocyanin or ferripyochelin alone demonstrated minimal injury. However, endothelial cell exposure to the combination of pyochelin and pyocyanin resulted in 55% specific 51Cr release. Injury was not observed with the substitution of iron-free pyochelin and was diminished by the presence of catalase or dimethyl thiourea. These data suggest the possibility that the P. aeruginosa secretory products pyocyanin and pyochelin may act synergistically via the generation of hydroxyl radical to damage local tissues at sites of pseudomonas infection. PMID:1469082

  12. Pseudomonas aeruginosa essentials: an update on investigation of essential genes.

    PubMed

    Juhas, Mario

    2015-11-01

    Pseudomonas aeruginosa is the leading cause of nosocomial infections, particularly in immunocompromised, cancer, burn and cystic fibrosis patients. Development of novel antimicrobials against P. aeruginosa is therefore of the highest importance. Although the first reports on P. aeruginosa essential genes date back to the early 2000s, a number of more sensitive genomic approaches have been used recently to better define essential genes in this organism. These analyses highlight the evolution of the definition of an 'essential' gene from the traditional to the context-dependent. Essential genes, particularly those indispensable under the clinically relevant conditions, are considered to be promising targets of novel antibiotics against P. aeruginosa. This review provides an update on the investigation of P. aeruginosa essential genes. Special focus is on recently identified P. aeruginosa essential genes and their exploitation for the development of antimicrobials.

  13. Glycerol metabolism promotes biofilm formation by Pseudomonas aeruginosa.

    PubMed

    Scoffield, Jessica; Silo-Suh, Laura

    2016-08-01

    Pseudomonas aeruginosa causes persistent infections in the airways of cystic fibrosis (CF) patients. Airway sputum contains various host-derived nutrients that can be utilized by P. aeruginosa, including phosphotidylcholine, a major component of host cell membranes. Phosphotidylcholine can be degraded by P. aeruginosa to glycerol and fatty acids to increase the availability of glycerol in the CF lung. In this study, we explored the role that glycerol metabolism plays in biofilm formation by P. aeruginosa. We report that glycerol metabolism promotes biofilm formation by both a chronic CF isolate (FRD1) and a wound isolate (PAO1) of P. aeruginosa. Moreover, loss of the GlpR regulator, which represses the expression of genes involved in glycerol metabolism, enhances biofilm formation in FRD1 through the upregulation of Pel polysaccharide. Taken together, our results suggest that glycerol metabolism may be a key factor that contributes to P. aeruginosa persistence by promoting biofilm formation.

  14. The Accessory Genome of Pseudomonas aeruginosa

    PubMed Central

    Kung, Vanderlene L.; Ozer, Egon A.; Hauser, Alan R.

    2010-01-01

    Summary: Pseudomonas aeruginosa strains exhibit significant variability in pathogenicity and ecological flexibility. Such interstrain differences reflect the dynamic nature of the P. aeruginosa genome, which is composed of a relatively invariable “core genome” and a highly variable “accessory genome.” Here we review the major classes of genetic elements comprising the P. aeruginosa accessory genome and highlight emerging themes in the acquisition and functional importance of these elements. Although the precise phenotypes endowed by the majority of the P. aeruginosa accessory genome have yet to be determined, rapid progress is being made, and a clearer understanding of the role of the P. aeruginosa accessory genome in ecology and infection is emerging. PMID:21119020

  15. Occurrence of Pseudomonas aeruginosa in Kuwait soil.

    PubMed

    Al-Saleh, Esmaeil; Akbar, Abrar

    2015-02-01

    Environmentally ubiquitous bacteria such as Pseudomonas aeruginosa evolved mechanisms to adapt and prevail under diverse conditions. In the current investigation, strains of P. aeruginosa demonstrating high rates of crude oil utilization and tolerance to high concentrations of heavy metals were found in both crude oil-contaminated and uncontaminated sites in Kuwait, and were dominant in the contaminated sites. The incidence of P. aeruginosa in tested soils implies the definitive pattern of crude oil contamination in the selection of the bacterial population in petroleum-contaminated sites in Kuwait. Surprisingly, the unculturable P. aeruginosa in different soil samples showed significant high similarity coefficients based on 16S-RFLP analyses, implying that the unculturable fraction of existing bacterial population in environmental samples is more stable and, hence, reliable for phylogenetic studies compared to the culturable bacteria.

  16. Osmoregulation in Pseudomonas aeruginosa under hyperosmotic shock.

    PubMed

    Velasco, R; Burgoa, R; Flores, E; Hernández, E; Villa, A; Vaca, S

    1995-01-01

    Pseudomonas aeruginosa PAO1 strain was found to be able to tolerate 700 mM NaCl. 0.5 mM of the osmoprotectant betaine restablished the growth of this strain in 1200 mM NaCl. Intracellular K+ and glutamate concentrations of P. aeruginosa PAO1 after an hyperosmotic shock (400 mM NaCl) showed a permanent increase. Adition of betaine (0.5 mM) to the medium with NaCl had an inhibitory effect on the intracellular accumulation of glutamate. The results indicate that P. aeruginosa PAO1 resists high NaCl concentrations, K+ accumulation and glutamate synthesis probably being the first mechanisms involved in adaptation to osmotic stress. Also is is demonstrated that betaine modulates intracellular glutamate levels in osmotically stressed P. aeruginosa PAO1.

  17. Draft Genome Sequences of Pseudomonas aeruginosa Isolates from Wounded Military Personnel.

    PubMed

    Arivett, Brock A; Ream, Dave C; Fiester, Steven E; Kidane, Destaalem; Actis, Luis A

    2016-08-11

    Pseudomonas aeruginosa, a Gram-negative bacterium that causes severe hospital-acquired infections, is grouped as an ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) pathogen because of its extensive drug resistance phenotypes and effects on human health worldwide. Five multidrug resistant P. aeruginosa strains isolated from wounded military personnel were sequenced and annotated in this work.

  18. [Infections and deaths of horned vipers, Cerastes cerastes (L., 1758) and lebetin vipers, Vipera lebetina (L., 1758) caused by Pseudomonas aeruginosa (Schröeter, 1885)].

    PubMed

    Slavtchev, R S; Chadli, A

    1984-12-01

    The authors present some data about the buccal and intestinal microflora of Ophidian Reptiles schooling in the vivaria of the Institute Pasteur of Tunis. They describe two cases of infestation and dead, chiefly symptomatology, of a horned Viper, Cerastes cerastes (L. 1758) and a lebetin Viper, Vipera lebetina (L., 1758) by Pseudomonas aeruginosa Schröeter, 1885.

  19. Comparative molecular docking analysis of cytoplasmic dynein light chain DYNLL1 with pilin to explore the molecular mechanism of pathogenesis caused by Pseudomonas aeruginosa PAO.

    PubMed

    Kausar, Samina; Asif, Muhammad; Bibi, Nousheen; Rashid, Sajid

    2013-01-01

    Cytoplasmic dynein light chain 1 (DYNLL1) is a component of large protein complex, which is implicated in cargo transport processes, and is known to interact with many cellular and viral proteins through its short consensus motif (K/R)XTQT. Still, it remains to be explored that bacterial proteins also exhibit similar recognition sequences to make them vulnerable to host defense mechanism. We employed multiple docking protocols including AUTODOCK, PatchDock, ZDOCK, DOCK/PIERR and CLUSPRO to explore the DYNLL1 and Pilin interaction followed by molecular dynamics simulation assays. Subsequent structural comparison of the predicted binding site for DYNLL1-Pilin complex against the experimentally verified DYNLL1 binding partners was performed to cross check the residual contributions and to determine the binding mode. On the basis of in silico analysis, here we describe a novel interaction of DYNLL1 and receptor binding domain of Pilin (the main protein constituent of bacterial type IV Pili) of gram negative bacteria Pseudomonas aeruginosa (PAO), which is the third most common nosocomial pathogen associated with the life-threatening infections. Evidently, our results underscore that Pilin specific motif (KSTQD) exhibits a close structural similarity to that of Vaccinia virus polymerase, P protein Rabies and P protein Mokola viruses. We speculate that binding of DYNLL1 to Pilin may trigger an uncontrolled inflammatory response of the host immune system during P. aeruginosa chronic infections thereby opening a new pioneering area to investigate the role of DYNLL1 in gram negative bacterial infections other than viral infections. Moreover, by manifesting a strict correspondence between sequence and function, our study anticipates a novel drug target site to control the complications caused by P. aeruginosa infections.

  20. Acquisition and Role of Molybdate in Pseudomonas aeruginosa

    PubMed Central

    Pederick, Victoria G.; Eijkelkamp, Bart A.; Ween, Miranda P.; Begg, Stephanie L.; Paton, James C.

    2014-01-01

    In microaerophilic or anaerobic environments, Pseudomonas aeruginosa utilizes nitrate reduction for energy production, a process dependent on the availability of the oxyanionic form of molybdenum, molybdate (MoO42−). Here, we show that molybdate acquisition in P. aeruginosa occurs via a high-affinity ATP-binding cassette permease (ModABC). ModA is a cluster D-III solute binding protein capable of interacting with molybdate or tungstate oxyanions. Deletion of the modA gene reduces cellular molybdate concentrations and results in inhibition of anaerobic growth and nitrate reduction. Further, we show that conditions that permit nitrate reduction also cause inhibition of biofilm formation and an alteration in fatty acid composition of P. aeruginosa. Collectively, these data highlight the importance of molybdate for anaerobic growth of P. aeruginosa and reveal novel consequences of nitrate reduction on biofilm formation and cell membrane composition. PMID:25172858

  1. Acquisition and role of molybdate in Pseudomonas aeruginosa.

    PubMed

    Pederick, Victoria G; Eijkelkamp, Bart A; Ween, Miranda P; Begg, Stephanie L; Paton, James C; McDevitt, Christopher A

    2014-11-01

    In microaerophilic or anaerobic environments, Pseudomonas aeruginosa utilizes nitrate reduction for energy production, a process dependent on the availability of the oxyanionic form of molybdenum, molybdate (MoO4 (2-)). Here, we show that molybdate acquisition in P. aeruginosa occurs via a high-affinity ATP-binding cassette permease (ModABC). ModA is a cluster D-III solute binding protein capable of interacting with molybdate or tungstate oxyanions. Deletion of the modA gene reduces cellular molybdate concentrations and results in inhibition of anaerobic growth and nitrate reduction. Further, we show that conditions that permit nitrate reduction also cause inhibition of biofilm formation and an alteration in fatty acid composition of P. aeruginosa. Collectively, these data highlight the importance of molybdate for anaerobic growth of P. aeruginosa and reveal novel consequences of nitrate reduction on biofilm formation and cell membrane composition.

  2. Interactions between Neutrophils and Pseudomonas aeruginosa in Cystic Fibrosis

    PubMed Central

    Rada, Balázs

    2017-01-01

    Cystic fibrosis (CF) affects 70,000 patients worldwide. Morbidity and mortality in CF is largely caused by lung complications due to the triad of impaired mucociliary clearance, microbial infections and chronic inflammation. Cystic fibrosis airway inflammation is mediated by robust infiltration of polymorphonuclear neutrophil granulocytes (PMNs, neutrophils). Neutrophils are not capable of clearing lung infections and contribute to tissue damage by releasing their dangerous cargo. Pseudomonas aeruginosa is an opportunistic pathogen causing infections in immunocompromised individuals. P. aeruginosa is a main respiratory pathogen in CF infecting most patients. Although PMNs are key to attack and clear P. aeruginosa in immunocompetent individuals, PMNs fail to do so in CF. Understanding why neutrophils cannot clear P. aeruginosa in CF is essential to design novel therapies. This review provides an overview of the antimicrobial mechanisms by which PMNs attack and eliminate P. aeruginosa. It also summarizes current advances in our understanding of why PMNs are incapable of clearing P. aeruginosa and how this bacterium adapts to and resists PMN-mediated killing in the airways of CF patients chronically infected with P. aeruginosa. PMID:28282951

  3. Influence of Pseudomonas Aeruginosa on Exacerbation in Patients with Bronchiectasis

    PubMed Central

    Chawla, Kiran; Vishwanath, Shashidhar; Manu, Mohan K; Lazer, Bernaitis

    2015-01-01

    Background: A majority of the studies done on the western population have shown that Pseudomonas aeruginosa causes many severe infections in patients with bronchiectasis as compared to other pathogens. There is scarcity of similar data from the Asian population. Materials and Methods: A prospective study was undertaken to identify the various pathogens isolated from the respiratory samples of 117 patients with bronchiectasis from south India and to compare the clinicomicrobiological profile of infections caused by P. aeruginosa and other respiratory pathogens. Results: The respiratory pathogens were isolated from 63 (53.8%) patients. P. aeruginosa was the most common isolate (46.0%) followed by Klebsiella pneumoniae (14.3%) and other pathogenic bacteria. Patients included in the P. aeruginosa group had a higher number of exacerbations (p: 0.008), greater number of hospital admissions (p: 0.007), a prolonged hospital stay (p: 0.03), and poor lung function, compared to the patients infected with the non-Pseudomonas group. Conclusion: It is necessary to investigate the etiology of respiratory tract infections among bronchiectasis patients followed by the prompt management of cases diagnosed with P. aeruginosa infections, so as to lower the morbidity and have a better prognosis. PMID:25722615

  4. Pseudomonas aeruginosa Dose-Response and Bathing Water Infection

    EPA Science Inventory

    Pseudomonas aeruginosa is the most commonly identified opportunistic pathogen associated with pool acquired bather disease. To better understand why this microorganism poses this protracted problem we recently appraised P. aeruginosa pool risk management. Much is known about the ...

  5. A case of Pseudomonas Aeruginosa commercial tattoo infection.

    PubMed

    Maloberti, A; Betelli, M; Perego, M R; Foresti, S; Scarabelli, G; Grassi, G

    2015-11-18

    Pseudomonas aeruginosa is an opportunistic Gram-negative bacterium that can cause disease in immunocompromised patients but also burn wounds and other cutaneous infections. We report the case of a 31 years old woman with a P. Aeruginosa commercial tattoo infection treated with intravenous antibiotic therapy. Today tattooing is increasingly common and despite specific regulations many cases of tattoo site infection are reported in the literature. Principal actual tattoo infective epidemiology includes Streptococcus pyogenes, Staphylococcus aureus and mycosis infections and parenteral transmission of HIV, HBV and HCV but also recently published cases of Methicillin-Resistant Staphylococcus aureus and non tuberculous mycobacterium tattoo infection.

  6. Mast cells protect against Pseudomonas aeruginosa-induced lung injury.

    PubMed

    Junkins, Robert D; Carrigan, Svetlana O; Wu, Zhengli; Stadnyk, Andrew W; Cowley, Elizabeth; Issekutz, Thomas; Berman, Jason; Lin, Tong-Jun

    2014-08-01

    Pseudomonas aeruginosa, an opportunistic pathogen, is the leading cause of morbidity and mortality in immune-compromised individuals. Maintaining the integrity of the respiratory epithelium is critical for an effective host response to P. aeruginosa. Given the close spatial relationship between mast cells and the respiratory epithelium, and the importance of tightly regulated epithelial permeability during lung infections, we examined whether mast cells influence airway epithelial integrity during P. aeruginosa lung infection in a mouse model. We found that mast cell-deficient Kit(W-sh)/Kit(W-sh) mice displayed greatly increased epithelial permeability, bacterial dissemination, and neutrophil accumulation compared with wild-type animals after P. aeruginosa infection; these defects were corrected on reconstitution with mast cells. An in vitro Transwell co-culture model further demonstrated that a secreted mast cell factor decreased epithelial cell apoptosis and tumor necrosis factor production after P. aeruginosa infection. Together, our data demonstrate a previously unrecognized role for mast cells in the maintenance of epithelial integrity during P. aeruginosa infection, through a mechanism that likely involves prevention of epithelial apoptosis and tumor necrosis factor production. Our understanding of mechanisms of the host response to P. aeruginosa will open new avenues for the development of successful preventative and treatment strategies.

  7. Regulation of Pseudomonas quinolone signal synthesis in Pseudomonas aeruginosa.

    PubMed

    Wade, Dana S; Calfee, M Worth; Rocha, Edson R; Ling, Elizabeth A; Engstrom, Elana; Coleman, James P; Pesci, Everett C

    2005-07-01

    Pseudomonas aeruginosa is an opportunistic pathogen that causes chronic lung infections in cystic fibrosis patients and is a major source of nosocomial infections. This bacterium controls many virulence factors by using two quorum-sensing systems, las and rhl. The las system is composed of the LasR regulator protein and its cell-to-cell signal, N-(3-oxododecanoyl) homoserine lactone, and the rhl system is composed of RhlR and the signal N-butyryl homoserine lactone. A third intercellular signal, the Pseudomonas quinolone signal (PQS; 2-heptyl-3-hydroxy-4-quinolone), also regulates numerous virulence factors. PQS synthesis requires the expression of multiple operons, one of which is pqsABCDE. Previous experiments showed that the transcription of this operon, and therefore PQS production, is negatively regulated by the rhl quorum-sensing system and positively regulated by the las quorum-sensing system and PqsR (also known as MvfR), a LysR-type transcriptional regulator protein. With the use of DNA mobility shift assays and beta-galactosidase reporter fusions, we have studied the regulation of pqsR and its relationship to pqsA, lasR, and rhlR. We show that PqsR binds the promoter of pqsA and that this binding increases dramatically in the presence of PQS, implying that PQS acts as a coinducer for PqsR. We have also mapped the transcriptional start site for pqsR and found that the transcription of pqsR is positively regulated by lasR and negatively regulated by rhlR. These results suggest that a regulatory chain occurs where pqsR is under the control of LasR and RhlR and where PqsR in turn controls pqsABCDE, which is required for the production of PQS.

  8. Pseudomonas aeruginosa biofilm, a programmed bacterial life for fitness.

    PubMed

    Lee, Keehoon; Yoon, Sang Sun

    2017-03-17

    Biofilm is a community of microbes that typically inhabits on surfaces and is encased in an extracellular matrix. Biofilms display very dissimilar characteristics to their planktonic counterparts. Biofilms are ubiquitous in the environments and influence our life tremendously in both positive and negative ways. Pseudomonas aeruginosa is a bacterium, known to produce robust biofilms. P. aeruginosa biofilms cause severe problems in immunocompromised patients including those with cystic fibrosis or wound infection. Moreover, the unique biofilm properties further complicates the eradication of the biofilm infection and leading to the development of chronic infections. In this review, we discuss a history of biofilm research and general characteristics of bacterial biofilms. Then, distinct features pertaining to each stage of P. aeruginosa biofilm development are highlighted. Furthermore, infections caused by biofilms of its own or in association with other bacterial species (i.e., multi-species biofilms) are discussed in detail.

  9. Epidemiology and Ecology of Opportunistic Premise Plumbing Pathogens: Legionella pneumophila, Mycobacterium avium, and Pseudomonas aeruginosa

    EPA Science Inventory

    BACKGROUND: Legionella pneumophila, Mycobacterium avium, and Pseudomonas aeruginosa are opportunistic premise plumbing pathogens (OPPPs) that persist and grow in household plumbing, habitats they share with humans. Infections caused by these OPPPs involve individuals with preexis...

  10. Tracking the immunopathological response to Pseudomonas aeruginosa during respiratory infections

    PubMed Central

    Cigana, Cristina; Lorè, Nicola Ivan; Riva, Camilla; De Fino, Ida; Spagnuolo, Lorenza; Sipione, Barbara; Rossi, Giacomo; Nonis, Alessandro; Cabrini, Giulio; Bragonzi, Alessandra

    2016-01-01

    Repeated cycles of infections, caused mainly by Pseudomonas aeruginosa, combined with a robust host immune response and tissue injury, determine the course and outcome of cystic fibrosis (CF) lung disease. As the disease progresses, P. aeruginosa adapts to the host modifying dramatically its phenotype; however, it remains unclear whether and how bacterial adaptive variants and their persistence influence the pathogenesis and disease development. Using in vitro and murine models of infection, we showed that P. aeruginosa CF-adaptive variants shaped the innate immune response favoring their persistence. Next, we refined a murine model of chronic pneumonia extending P. aeruginosa infection up to three months. In this model, including CFTR-deficient mice, we unveil that the P. aeruginosa persistence lead to CF hallmarks of airway remodelling and fibrosis, including epithelial hyperplasia and structure degeneration, goblet cell metaplasia, collagen deposition, elastin degradation and several additional markers of tissue damage. This murine model of P. aeruginosa chronic infection, reproducing CF lung pathology, will be instrumental to identify novel molecular targets and test newly tailored molecules inhibiting chronic inflammation and tissue damage processes in pre-clinical studies. PMID:26883959

  11. Iron Depletion Enhances Production of Antimicrobials by Pseudomonas aeruginosa

    PubMed Central

    Nguyen, Angela T.; Jones, Jace W.; Ruge, Max A.; Kane, Maureen A.

    2015-01-01

    ABSTRACT Cystic fibrosis (CF) is a heritable disease characterized by chronic, polymicrobial lung infections. While Staphylococcus aureus is the dominant lung pathogen in young CF patients, Pseudomonas aeruginosa becomes predominant by adulthood. P. aeruginosa produces a variety of antimicrobials that likely contribute to this shift in microbial populations. In particular, secretion of 2-alkyl-4(1H)-quinolones (AQs) contributes to lysis of S. aureus in coculture, providing an iron source to P. aeruginosa both in vitro and in vivo. We previously showed that production of one such AQ, the Pseudomonas quinolone signal (PQS), is enhanced by iron depletion and that this induction is dependent upon the iron-responsive PrrF small RNAs (sRNAs). Here, we demonstrate that antimicrobial activity against S. aureus during coculture is also enhanced by iron depletion, and we provide evidence that multiple AQs contribute to this activity. Strikingly, a P. aeruginosa ΔprrF mutant, which produces very little PQS in monoculture, was capable of mediating iron-regulated growth suppression of S. aureus. We show that the presence of S. aureus suppresses the ΔprrF1,2 mutant's defect in iron-regulated PQS production, indicating that a PrrF-independent iron regulatory pathway mediates AQ production in coculture. We further demonstrate that iron-regulated antimicrobial production is conserved in multiple P. aeruginosa strains, including clinical isolates from CF patients. These results demonstrate that iron plays a central role in modulating interactions of P. aeruginosa with S. aureus. Moreover, our studies suggest that established iron regulatory pathways of these pathogens are significantly altered during polymicrobial infections. IMPORTANCE Chronic polymicrobial infections involving Pseudomonas aeruginosa and Staphylococcus aureus are a significant cause of morbidity and mortality, as the interplay between these two organisms exacerbates infection. This is in part due to enhanced

  12. Pseudomonas aeruginosa ventilator-associated pneumonia management.

    PubMed

    Ramírez-Estrada, Sergio; Borgatta, Bárbara; Rello, Jordi

    2016-01-01

    Ventilator-associated pneumonia is the most common infection in intensive care unit patients associated with high morbidity rates and elevated economic costs; Pseudomonas aeruginosa is one of the most frequent bacteria linked with this entity, with a high attributable mortality despite adequate treatment that is increased in the presence of multiresistant strains, a situation that is becoming more common in intensive care units. In this manuscript, we review the current management of ventilator-associated pneumonia due to P. aeruginosa, the most recent antipseudomonal agents, and new adjunctive therapies that are shifting the way we treat these infections. We support early initiation of broad-spectrum antipseudomonal antibiotics in present, followed by culture-guided monotherapy de-escalation when susceptibilities are available. Future management should be directed at blocking virulence; the role of alternative strategies such as new antibiotics, nebulized treatments, and vaccines is promising.

  13. Pseudomonas aeruginosa ventilator-associated pneumonia management

    PubMed Central

    Ramírez-Estrada, Sergio; Borgatta, Bárbara; Rello, Jordi

    2016-01-01

    Ventilator-associated pneumonia is the most common infection in intensive care unit patients associated with high morbidity rates and elevated economic costs; Pseudomonas aeruginosa is one of the most frequent bacteria linked with this entity, with a high attributable mortality despite adequate treatment that is increased in the presence of multiresistant strains, a situation that is becoming more common in intensive care units. In this manuscript, we review the current management of ventilator-associated pneumonia due to P. aeruginosa, the most recent antipseudomonal agents, and new adjunctive therapies that are shifting the way we treat these infections. We support early initiation of broad-spectrum antipseudomonal antibiotics in present, followed by culture-guided monotherapy de-escalation when susceptibilities are available. Future management should be directed at blocking virulence; the role of alternative strategies such as new antibiotics, nebulized treatments, and vaccines is promising. PMID:26855594

  14. Cyanide production by Pseudomonas fluorescens and Pseudomonas aeruginosa.

    PubMed Central

    Askeland, R A; Morrison, S M

    1983-01-01

    Of 200 water isolates screened, five strains of Pseudomonas fluorescens and one strain of Pseudomonas aeruginosa were cyanogenic. Maximum cyanogenesis by two strains of P. fluorescens in a defined growth medium occurred at 25 to 30 degrees C over a pH range of 6.6 to 8.9. Cyanide production per cell was optimum at 300 mM phosphate. A linear relationship was observed between cyanogenesis and the log of iron concentration over a range of 3 to 300 microM. The maximum rate of cyanide production occurred during the transition from exponential to stationary growth phase. Radioactive tracer experiments with [1-14C]glycine and [2-14C]glycine demonstrated that the cyanide carbon originates from the number 2 carbon of glycine for both P. fluorescens and P. aeruginosa. Cyanide production was not observed in raw industrial wastewater or in sterile wastewater inoculated with pure cultures of cyanogenic Pseudomonas strains. Cyanide was produced when wastewater was amended by the addition of components of the defined growth medium. PMID:6410989

  15. Cyanide production by Pseudomonas fluorescens and Pseudomonas aeruginosa.

    PubMed

    Askeland, R A; Morrison, S M

    1983-06-01

    Of 200 water isolates screened, five strains of Pseudomonas fluorescens and one strain of Pseudomonas aeruginosa were cyanogenic. Maximum cyanogenesis by two strains of P. fluorescens in a defined growth medium occurred at 25 to 30 degrees C over a pH range of 6.6 to 8.9. Cyanide production per cell was optimum at 300 mM phosphate. A linear relationship was observed between cyanogenesis and the log of iron concentration over a range of 3 to 300 microM. The maximum rate of cyanide production occurred during the transition from exponential to stationary growth phase. Radioactive tracer experiments with [1-14C]glycine and [2-14C]glycine demonstrated that the cyanide carbon originates from the number 2 carbon of glycine for both P. fluorescens and P. aeruginosa. Cyanide production was not observed in raw industrial wastewater or in sterile wastewater inoculated with pure cultures of cyanogenic Pseudomonas strains. Cyanide was produced when wastewater was amended by the addition of components of the defined growth medium.

  16. Oxidation of 1-Tetradecene by Pseudomonas aeruginosa

    PubMed Central

    Markovetz, A. J.; Klug, M. J.; Forney, F. W.

    1967-01-01

    Pseudomonas aeruginosa strain Sol 20 was grown on 1-tetradecene as sole carbon source, and a vinyl-unsaturated 14-carbon monocarboxylic acid, 13-tetradecenoic acid, was identified from culture fluid. This acid was not produced when n-tetradecane served as substrate for growth. Oxidation of the methyl group represents one method of attack on the 1-alkene by this organism. Tentative identification of 2-tetradecanol indicates that an attack on the double bond is also occurring. α, ω-Dienes would not support growth. PMID:4962057

  17. Biotransformation of myrcene by Pseudomonas aeruginosa

    PubMed Central

    2011-01-01

    Background Dihydrolinalool and terpineol are sources of fragrances that provide a unique volatile terpenoid alcohol of low toxicity and thus are widely used in the perfumery industry, in folk medicine, and in aromatherapy. They are important chemical constituents of the essential oil of many plants. Previous studies have concerned the biotransformation of limonene by Pseudomonas putida. The objective of this research was to study biotransformation of myrcene by Pseudomonas aeruginosa. The culture preparation was done using such variables as different microbial methods and incubation periods to obtain maximum cells of P. aeruginosa for myrcene biotransformation. Results It was found that myrcene was converted to dihydrolinalool and 2,6-dimethyloctane in high percentages. The biotransformation products were identified by Fourier-transform infrared spectroscopy (FT-IR), ultraviolet (UV) analysis, gas chromatography (GC), and gas chromatography-mass spectroscopy (GC-MS). Comparison of the different incubation times showed that 3 days was more effective, the major products being 2,6-dimethyloctane (90.0%) and α-terpineol (7.7%) and comprising 97.7%. In contrast, the main compounds derived for an incubation time of 1.5 days were dihydrolinalool (79.5%) and 2,6-dimethyloctane (9.3%), with a total yield of 88.8%. PMID:21609445

  18. The Pseudomonas aeruginosa Pathogenicity Island PAPI-1 is transferred via a novel Type IV pilus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pseudomonas aeruginosa is a major cause of nosocomial infections, particularly in immunocompromised patients or in individuals with cystic fibrosis. The notable ability of P. aeruginosa to inhabit a broad range of environments including humans is in part due to its large and diverse genomic repertoi...

  19. Pseudomonas aeruginosa Lifestyle: A Paradigm for Adaptation, Survival, and Persistence

    PubMed Central

    Moradali, M. Fata; Ghods, Shirin; Rehm, Bernd H. A.

    2017-01-01

    Pseudomonas aeruginosa is an opportunistic pathogen affecting immunocompromised patients. It is known as the leading cause of morbidity and mortality in cystic fibrosis (CF) patients and as one of the leading causes of nosocomial infections. Due to a range of mechanisms for adaptation, survival and resistance to multiple classes of antibiotics, infections by P. aeruginosa strains can be life-threatening and it is emerging worldwide as public health threat. This review highlights the diversity of mechanisms by which P. aeruginosa promotes its survival and persistence in various environments and particularly at different stages of pathogenesis. We will review the importance and complexity of regulatory networks and genotypic-phenotypic variations known as adaptive radiation by which P. aeruginosa adjusts physiological processes for adaptation and survival in response to environmental cues and stresses. Accordingly, we will review the central regulatory role of quorum sensing and signaling systems by nucleotide-based second messengers resulting in different lifestyles of P. aeruginosa. Furthermore, various regulatory proteins will be discussed which form a plethora of controlling systems acting at transcriptional level for timely expression of genes enabling rapid responses to external stimuli and unfavorable conditions. Antibiotic resistance is a natural trait for P. aeruginosa and multiple mechanisms underlying different forms of antibiotic resistance will be discussed here. The importance of each mechanism in conferring resistance to various antipseudomonal antibiotics and their prevalence in clinical strains will be described. The underlying principles for acquiring resistance leading pan-drug resistant strains will be summarized. A future outlook emphasizes the need for collaborative international multidisciplinary efforts to translate current knowledge into strategies to prevent and treat P. aeruginosa infections while reducing the rate of antibiotic resistance

  20. Pseudomonas aeruginosa Lifestyle: A Paradigm for Adaptation, Survival, and Persistence.

    PubMed

    Moradali, M Fata; Ghods, Shirin; Rehm, Bernd H A

    2017-01-01

    Pseudomonas aeruginosa is an opportunistic pathogen affecting immunocompromised patients. It is known as the leading cause of morbidity and mortality in cystic fibrosis (CF) patients and as one of the leading causes of nosocomial infections. Due to a range of mechanisms for adaptation, survival and resistance to multiple classes of antibiotics, infections by P. aeruginosa strains can be life-threatening and it is emerging worldwide as public health threat. This review highlights the diversity of mechanisms by which P. aeruginosa promotes its survival and persistence in various environments and particularly at different stages of pathogenesis. We will review the importance and complexity of regulatory networks and genotypic-phenotypic variations known as adaptive radiation by which P. aeruginosa adjusts physiological processes for adaptation and survival in response to environmental cues and stresses. Accordingly, we will review the central regulatory role of quorum sensing and signaling systems by nucleotide-based second messengers resulting in different lifestyles of P. aeruginosa. Furthermore, various regulatory proteins will be discussed which form a plethora of controlling systems acting at transcriptional level for timely expression of genes enabling rapid responses to external stimuli and unfavorable conditions. Antibiotic resistance is a natural trait for P. aeruginosa and multiple mechanisms underlying different forms of antibiotic resistance will be discussed here. The importance of each mechanism in conferring resistance to various antipseudomonal antibiotics and their prevalence in clinical strains will be described. The underlying principles for acquiring resistance leading pan-drug resistant strains will be summarized. A future outlook emphasizes the need for collaborative international multidisciplinary efforts to translate current knowledge into strategies to prevent and treat P. aeruginosa infections while reducing the rate of antibiotic resistance

  1. [Resistance to antibiotics in Pseudomonas aeruginosa in Colombian hospitals].

    PubMed

    Villa, Lina M; Cortés, Jorge A; Leal, Aura L; Meneses, Andrés; Meléndez, Martha P

    2013-12-01

    Pseudomonas aeruginosa infections cause high morbidity and mortality. We performed a descriptive analysis of the rates of antibiotic resistance in isolates of P. aeruginosa in 33 hospitals enrolled in a surveillance network in Colombia. The study was conducted between January 2005 and December 2009 .9905 isolates of P. aeruginosa were identified, (4.9% of all strains). In intensive care units (ICU) P. aeruginosa showed an overall resistance to aztreonam, cefepime , ceftazidime, imipenem, meropenem , and piperacillin / tazobactam of 31.8% , 23.9% , 24.8%, 22.5%, 20.3% and 22.3%, respectively. Resistance rates increased for piperacillin/tazobactam, cefepime, and imipenem; remained unchanged for meropenem; and decreased for aminoglycosides, quinolones and ceftazidime. Resistance to one, two and three or more families of antibiotics was found in 17%, 12.5%, and 32.1%, respectively. In samples collected from the wards, the resistance rate was lower but usually over 10%. Antibiotic resistance in P. aeruginosa isolates in hospitalized patients and particularly in those admitted to ICUs in Colombia is high.

  2. Gold-functionalized magnetic nanoparticles restrict growth of Pseudomonas aeruginosa.

    PubMed

    Niemirowicz, Katarzyna; Swiecicka, Izabela; Wilczewska, Agnieszka Z; Misztalewska, Iwona; Kalska-Szostko, Beata; Bienias, Kamil; Bucki, Robert; Car, Halina

    2014-01-01

    Superparamagnetic iron oxide nanoparticles (SPIONs) and their derivatives (aminosilane and gold-coated) have been widely investigated in numerous medical applications, including their potential to act as antibacterial drug carriers that may penetrate into bacteria cells and biofilm mass. Pseudomonas aeruginosa is a frequent cause of infection in hospitalized patients, and significant numbers of currently isolated clinical strains are resistant to standard antibiotic therapy. Here we describe the impact of three types of SPIONs on the growth of P. aeruginosa during long-term bacterial culture. Their size, structure, and physicochemical properties were determined using transmission electron microscopy, X-ray diffraction analysis, and Fourier transform infrared spectroscopy. We observed significant inhibition of P. aeruginosa growth in bacterial cultures continued over 96 hours in the presence of gold-functionalized nanoparticles (Fe₃O₄@Au). At the 48-hour time point, growth of P. aeruginosa, as assessed by the number of colonies grown from treated samples, showed the highest inhibition (decreased by 40%). These data provide strong evidence that Fe₃O₄@Au can dramatically reduce growth of P. aeruginosa and provide a platform for further study of the antibacterial activity of this nanomaterial.

  3. Lichen secondary metabolite evernic acid as potential quorum sensing inhibitor against Pseudomonas aeruginosa.

    PubMed

    Gökalsın, Barış; Sesal, Nüzhet Cenk

    2016-09-01

    Cystic Fibrosis is a genetic disease and it affects the respiratory and digestive systems. Pseudomonas aeruginosa infections in Cystic Fibrosis are presented as the main cause for high mortality and morbidity rates. Pseudomonas aeruginosa populations can regulate their virulence gene expressions via the bacterial communication system: quorum sensing. Inhibition of quorum sensing by employing quorum sensing inhibitors can leave the bacteria vulnerable. Therefore, determining natural sources to obtain potential quorum sensing inhibitors is essential. Lichens have ethnobotanical value for their medicinal properties and it is possible that their secondary metabolites have quorum sensing inhibitor properties. This study aims to investigate an alternative treatment approach by utilizing lichen secondary metabolite evernic acid to reduce the expressions of Pseudomonas aeruginosa virulence factors by inhibiting quorum sensing. For this purpose, fluorescent monitor strains were utilized for quorum sensing inhibitor screens and quantitative reverse-transcriptase PCR analyses were conducted for comparison. Results indicate that evernic acid is capable of inhibiting Pseudomonas aeruginosa quorum sensing systems.

  4. Evaluation of antibiotic efficacy against infections caused by planktonic or biofilm cultures of Pseudomonas aeruginosa and Klebsiella pneumoniae in Galleria mellonella.

    PubMed

    Benthall, Gabriel; Touzel, Rebecca E; Hind, Charlotte K; Titball, Richard W; Sutton, J Mark; Thomas, Rachael J; Wand, Matthew E

    2015-11-01

    The lack of novel antibiotics for more than a decade has placed increased pressure on existing therapies to combat the emergence of multidrug-resistant (MDR) bacterial pathogens. This study evaluated the Galleria mellonella insect model in determining the efficacy of available antibiotics against planktonic and biofilm infections of MDR Pseudomonas aeruginosa and Klebsiella pneumoniae strains in comparison with in vitro minimum inhibitory concentration (MIC) determination. In general, in vitro analysis agreed with the G. mellonella studies, and susceptibility in Galleria identified different drug resistance mechanisms. However, the carbapenems tested appeared to perform better in vivo than in vitro, with meropenem and imipenem able to clear K. pneumoniae and P. aeruginosa infections with strains that had bla(NDM-1) and bla(VIM) carbapenemases. This study also established an implant model in G. mellonella to allow testing of antibiotic efficacy against biofilm-derived infections. A reduction in antibiotic efficacy of amikacin against K. pneumoniae and P. aeruginosa biofilms was observed compared with a planktonic infection. Ciprofloxacin was found to be less effective at clearing a P. aeruginosa biofilm infection compared with a planktonic infection, but no statistical difference was seen between K. pneumoniae biofilm and planktonic infections treated with this antibiotic (P>0.05). This study provides important information regarding the suitability of Galleria as a model for antibiotic efficacy testing both against planktonic and biofilm-derived MDR infections.

  5. Cryptic transposable phages of Pseudomonas aeruginosa

    SciTech Connect

    Krylov, V.N.; Mit`kina, L.N.; Pleteneva, E.A.; Aleshin, V.V.

    1995-11-01

    Frequencies of nucleotide sequences homologous to phage transposons (PT) of two species, D3112 and B3, were assessed in genomes of natural Pseudomonas aeruginosa strains by the dot-blot hybridization method. These strains were incapable of liberating viable phages on a lawn of the PA01 standard indicator strain of P. aeruginosa. It was shown that the homologies detected belong to two groups, high and intermediate, with respect to homology level. Homology patterns were classified as high when they provided signals comparable to those for hybridization in a positive control; patterns were classified as intermediate when the hybridization level was higher than the background level, but lower than in the positive control. Homologous PT sequences were designated as cryptic PT. Intact cryptic PT prophages were shown to exist in genomes of particular natural strains manifesting a higher level of hybridization. However, the growth of these phages was limited by the restriction system of strain PA01. It is possible to isolate strains maintaining the growth of some cryptic PT. These strains differed from P. aeruginosa with respect to the specificity of the restriction and modification system. Nevertheless, in most cases, the attempt to identify a novel host capable of maintaining growth of a cryptic PT failed. Natural strains often carry cryptic PT related to both known PT species, D3112 and B3. The frequency of cryptic PT is extremely high, reaching 30% in strains with a high level of homology only and up to 50% in all strains exhibiting homology. This high PT frequency is assumed to be associated with the considerable variation of P. aeruginosa. 15 refs., 1 fig., 2 tabs.

  6. Why Does the Healthy Cornea Resist Pseudomonas aeruginosa Infection?

    PubMed Central

    Evans, David J.; Fleiszig, Suzanne M. J.

    2013-01-01

    Purpose To provide our perspective on why the cornea is resistant to infection based on our research results with Pseudomonas aeruginosa. Perspective We focus on our current understanding of the interplay between bacteria, tear fluid and the corneal epithelium that determine health as the usual outcome, and propose a theoretical model for how contact lens wear might change those interactions to enable susceptibility to P. aeruginosa infection. Methods Use of “null-infection” in vivo models, cultured human corneal epithelial cells, contact lens-wearing animal models, and bacterial genetics help to elucidate mechanisms by which P. aeruginosa survive at the ocular surface, adheres, and traverses multilayered corneal epithelia. These models also help elucidate the molecular mechanisms of corneal epithelial innate defense. Results and Discussion Tear fluid and the corneal epithelium combine to make a formidable defense against P. aeruginosa infection of the cornea. Part of that defense involves the expression of antimicrobials such as β-defensins, the cathelicidin LL-37, cytokeratin-derived antimicrobial peptides, and RNase7. Immunomodulators such as SP-D and ST2 also contribute. Innate defenses of the cornea depend in part on MyD88, a key adaptor protein of TLR and IL-1R signaling, but the basal lamina represents the final barrier to bacterial penetration. Overcoming these defenses involves P. aeruginosa adaptation, expression of the type three secretion system, proteases, and P. aeruginosa biofilm formation on contact lenses. Conclusion After more than two decades of research focused on understanding how contact lens wear predisposes to P. aeruginosa infection, our working hypothesis places blame for microbial keratitis on bacterial adaptation to ocular surface defenses, combined with changes to the biochemistry of the corneal surface caused by trapping bacteria and tear fluid against the cornea under the lens. PMID:23601656

  7. Emergence of a mutL mutation causing multilocus sequence typing-pulsed-field gel electrophoresis discrepancy among Pseudomonas aeruginosa isolates from a cystic fibrosis patient.

    PubMed

    García-Castillo, María; Máiz, Luis; Morosini, María-Isabel; Rodríguez-Baños, Mercedes; Suarez, Lucrecia; Fernández-Olmos, Ana; Baquero, Fernando; Cantón, Rafael; del Campo, Rosa

    2012-05-01

    A multilocus sequence type (MLST) shift (from ST242 to ST996) was detected in Pseudomonas aeruginosa isolates with a uniform pulsed-field gel electrophoresis (PFGE) pattern obtained from a chronically colonized patient. MLST mutational change involved the mutL gene with the consequent emergence of a hypermutable phenotype. This observation challenges the required neutrality of mutL as an appropriate marker in MLST and alerts researchers to the limitations of MLST-only-based population studies in chronic infections under constant antibiotic selective pressure.

  8. Emergence of a mutL Mutation Causing Multilocus Sequence Typing–Pulsed-Field Gel Electrophoresis Discrepancy among Pseudomonas aeruginosa Isolates from a Cystic Fibrosis Patient

    PubMed Central

    García-Castillo, María; Máiz, Luis; Morosini, María-Isabel; Rodríguez-Baños, Mercedes; Suarez, Lucrecia; Fernández-Olmos, Ana; Baquero, Fernando; Cantón, Rafael

    2012-01-01

    A multilocus sequence type (MLST) shift (from ST242 to ST996) was detected in Pseudomonas aeruginosa isolates with a uniform pulsed-field gel electrophoresis (PFGE) pattern obtained from a chronically colonized patient. MLST mutational change involved the mutL gene with the consequent emergence of a hypermutable phenotype. This observation challenges the required neutrality of mutL as an appropriate marker in MLST and alerts researchers to the limitations of MLST-only-based population studies in chronic infections under constant antibiotic selective pressure. PMID:22322352

  9. Thermal mitigation of Pseudomonas aeruginosa biofilms

    PubMed Central

    O’Toole, Ann; Ricker, Erica B.; Nuxoll, Eric

    2015-01-01

    Bacterial biofilms infect 2 – 4 % of medical devices upon implantation, resulting in multiple surgeries and increased recovery time due to the very great increase in antibiotic resistance in the biofilm phenotype. This work investigates the feasibility of thermal mitigation of biofilms at physiologically accessible temperatures. Pseudomonas aeruginosa biofilms were cultured to high bacterial density (1.7 × 109 CFU cm−2) and subjected to thermal shocks ranging from 50 °C to 80 °C for durations of 1 to 30 min. The decrease in viable bacteria was closely correlated with an Arrhenius temperature dependence and Weibull-style time dependence, demonstrating up to six orders of magnitude reduction in bacterial load. The bacterial load for films with more conventional initial bacterial densities dropped below quantifiable levels, indicating thermal mitigation as a viable approach to biofilm control. PMID:26371591

  10. Virulence genome analysis of Pseudomonas aeruginosa VRFPA10 recovered from patient with scleritis.

    PubMed

    Murugan, Nandagopal; Malathi, Jambulingam; Umashankar, Vetrivel; Madhavan, Hajib Narahari Rao

    2017-06-01

    Infectious keratitis is a major cause of blindness, next to cataract and majority of cases are mainly caused by gram negative bacterium Pseudomonas aeruginosa (P. aeruginosa). In this study, we investigated a P. aeruginosa VRFPA10 genome which exhibited susceptibility to commonly used drugs in vitro but the patient had poor prognosis due to its hyper virulent nature. Genomic analysis of VRFPA10 deciphered multiple virulence factors and P.aeruginosa Genomic Islands (PAGIs) VRFPA10 genome which correlated with hyper virulence nature of the organism. The genome sequence has been deposited in DDBJ/EMBL/GenBank under the accession numbers LFMZ01000001-LFMZ01000044.

  11. Purification of extracellular lipase from Pseudomonas aeruginosa.

    PubMed Central

    Stuer, W; Jaeger, K E; Winkler, U K

    1986-01-01

    Lipase (triacylglycerol acylhydrolase, EC 3.1.1.3) was excreted by Pseudomonas aeruginosa PAC1R during the late logarithmic growth phase. Characterization of cell-free culture supernatants by sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed the presence of significant amounts of lipopolysaccharide, part of which seemed to be tightly bound to lipase. After concentration of culture supernatants by ultrafiltration, lipase-lipopolysaccharide complexes were dissociated by treatment with EDTA-Tris buffer and subsequent sonication in the presence of the zwitterionic detergent 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate. The solubilized lipase was purified by isoelectric focusing in an agarose gel containing the same detergent; the lipase activity appeared in a single peak corresponding to a distinct band in the silver-stained gel. The isoelectric point was 5.8. Analysis of purified lipase by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and scanning revealed an apparent molecular weight of 29,000 and a specific activity of 760 mu kat/mg of protein. Estimations based on these data showed that a single P. aeruginosa cell excreted about 200 molecules of lipase, each having a molecular activity of 2.2 X 10(4) per s. Images PMID:3096967

  12. Social cheating in Pseudomonas aeruginosa quorum sensing.

    PubMed

    Sandoz, Kelsi M; Mitzimberg, Shelby M; Schuster, Martin

    2007-10-02

    In a process termed quorum sensing, bacteria use diffusible chemical signals to coordinate cell density-dependent gene expression. In the human pathogen Pseudomonas aeruginosa, quorum sensing controls hundreds of genes, many of which encode extracellular virulence factors. Quorum sensing is required for P. aeruginosa virulence in animal models. Curiously, quorum sensing-deficient variants, most of which carry a mutation in the gene encoding the central quorum sensing regulator lasR, are frequently isolated from acute and chronic infections. The mechanism for their emergence is not known. Here we provide experimental evidence suggesting that these lasR mutants are social cheaters that cease production of quorum-controlled factors and take advantage of their production by the group. We detected an emerging subpopulation of lasR mutants after approximately 100 generations of in vitro evolution of the P. aeruginosa wild-type strain under culture conditions that require quorum sensing for growth. Under such conditions, quorum sensing appears to impose a metabolic burden on the proliferating bacterial cell, because quorum-controlled genes not normally induced until cessation of growth were highly expressed early in growth, and a defined lasR mutant showed a growth advantage when cocultured with the parent strain. The emergence of quorum-sensing-deficient variants in certain environments is therefore an indicator of high quorum sensing activity of the bacterial population as a whole. It does not necessarily indicate that quorum sensing is insignificant, as has previously been suggested. Thus, novel antivirulence strategies aimed at disrupting bacterial communication may be particularly effective in such clinical settings.

  13. Does Pseudomonas aeruginosa use intercellular signalling to build biofilm communities?

    PubMed

    Kirisits, Mary Jo; Parsek, Matthew R

    2006-12-01

    Pseudomonas aeruginosa is a Gram-negative bacterial species that causes several opportunistic human infections. This organism is also found in the environment, where it is renowned (like other Pseudomonads) for its ability to use a wide variety of compounds as carbon and energy sources. It is a model species for studying group-related behaviour in bacteria. Two types of group behaviour it engages in are intercellular signalling, or quorum sensing, and the formation of surface-associated communities called biofilms. Both quorum sensing and biofilm formation are important in the pathogenesis of P. aeruginosa infections. Quorum sensing regulates the expression of several secreted virulence factors and quorum sensing mutant strains are attenuated for virulence in animal models. Biofilms have been implicated in chronic infections. Two examples are the chronic lung infections afflicting people suffering from cystic fibrosis and colonization of indwelling medical devices. This review will discuss quorum sensing and biofilm formation and studies that link these two processes.

  14. Regulation of Pseudomonas aeruginosa Virulence by Distinct Iron Sources

    PubMed Central

    Reinhart, Alexandria A.; Oglesby-Sherrouse, Amanda G.

    2016-01-01

    Pseudomonas aeruginosa is a ubiquitous environmental bacterium and versatile opportunistic pathogen. Like most other organisms, P. aeruginosa requires iron for survival, yet iron rapidly reacts with oxygen and water to form stable ferric (FeIII) oxides and hydroxides, limiting its availability to living organisms. During infection, iron is also sequestered by the host innate immune system, further limiting its availability. P. aeruginosa’s capacity to cause disease in diverse host environments is due to its ability to scavenge iron from a variety of host iron sources. Work over the past two decades has further shown that different iron sources can affect the expression of distinct virulence traits. This review discusses how the individual components of P. aeruginosa’s iron regulatory network allow this opportunist to adapt to a multitude of host environments during infection. PMID:27983658

  15. Mucoid Pseudomonas aeruginosa caused by mucA mutations result in activation of TLR2 in addition to TLR5 in airway epithelial cells.

    PubMed

    Beaudoin, Trevor; Lafayette, Shantelle; Nguyen, Dao; Rousseau, Simon

    2012-11-09

    The presence of the mucoid phenotype of Pseudomonas aeruginosa is a marker of poor survival in cystic fibrosis. As CF lung disease results from chronic infection leading to airway inflammation, we determined whether the switch to a mucoid phenotype by P. aeruginosa has an impact on the inflammatory response of airway epithelial cells. Exposure of airway epithelial cells to non-mucoid and mucoid P. aeruginosa-derived material leads to p38α MAPK activation, a key protein kinase involved in transmitting inflammatory signals. However, while the non-mucoid strain PAO1 activates p38α MAPK pathway solely via TLR5, the mucoid strain PACF508 activates p38α MAPK via both TLR5 and TLR2. Inactivation of mucA (the gene responsible for the mucoid phenotype) in PAO1 leads to p38α MAPK activation by both TLR2 and TLR5, as observed in the clinical mucoid isolate PACF508. Therefore, the switch to mucoid phenotype may contribute to more inflammation via TLR2 activation in addition to TLR5. Our findings highlight an important and under recognized role for TLR2 in the response of airway epithelial cells to infection.

  16. Isolation of oxidase-negative Pseudomonas aeruginosa from sputum culture.

    PubMed

    Hampton, K D; Wasilauskas, B L

    1979-05-01

    Two isolates of Pseudomonas aeruginosa lacking characteristic indophenol oxidase were recovered from a sputum specimen. A discussion of the characteristic biochemical tests and antibiograms along with a possible explanation for this phenomenon is presented.

  17. First report of NDM-1-producing Pseudomonas aeruginosa in Egypt.

    PubMed

    Zafer, Mai Mahmoud; Amin, Mady; El Mahallawy, Hadir; Ashour, Mohammed Seif El-Din; Al Agamy, Mohamed

    2014-12-01

    This work reports the occurrence of New Delhi metallo-beta-lactamase 1 (NDM-1) in metallo-beta-lactamase-producing Pseudomonas aeruginosa in Egypt for the first time, and the presence of more than one blaMBL gene in carbapenem-resistant P. aeruginosa.

  18. The Regulatory Network of Pseudomonas aeruginosa

    PubMed Central

    2011-01-01

    Background Pseudomonas aeruginosa is an important bacterial model due to its metabolic and pathogenic abilities, which allow it to interact and colonize a wide range of hosts, including plants and animals. In this work we compile and analyze the structure and organization of an experimentally supported regulatory network in this bacterium. Results The regulatory network consists of 690 genes and 1020 regulatory interactions between their products (12% of total genes: 54% sigma and 16% of transcription factors). This complex interplay makes the third largest regulatory network of those reported in bacteria. The entire network is enriched for activating interactions and, peculiarly, self-activation seems to occur more prominent for transcription factors (TFs), which contrasts with other biological networks where self-repression is dominant. The network contains a giant component of 650 genes organized into 11 hierarchies, encompassing important biological processes, such as, biofilms formation, production of exopolysaccharide alginate and several virulence factors, and of the so-called quorum sensing regulons. Conclusions The study of gene regulation in P. aeruginosa is biased towards pathogenesis and virulence processes, all of which are interconnected. The network shows power-law distribution -input degree -, and we identified the top ten global regulators, six two-element cycles, the longest paths have ten steps, six biological modules and the main motifs containing three and four elements. We think this work can provide insights for the design of further studies to cover the many gaps in knowledge of this important bacterial model, and for the design of systems strategies to combat this bacterium. PMID:22587778

  19. Ambroxol interferes with Pseudomonas aeruginosa quorum sensing.

    PubMed

    Lu, Qi; Yu, Jialin; Yang, Xiqiang; Wang, Jiarong; Wang, Lijia; Lin, Yayin; Lin, Lihua

    2010-09-01

    The mucolytic agent ambroxol has been reported to interfere with the formation of Pseudomonas aeruginosa-derived biofilms in addition to reducing alginate production by undefined mechanisms. Since quorum sensing is a key regulator of virulence and biofilm formation, we examined the effects of ambroxol on P. aeruginosa PAO1 wild-type bacterial clearance rates, adhesion profiles and biofilm formation compared with the quorum sensing-deficient, double-mutant strains DeltalasR DeltarhlR and DeltalasI DeltarhlI. Data presented in this report demonstrated that ambroxol treatment reduced survival rates of the double-mutant strains compared with the wild-type strain in a dose-dependent manner even though the double-mutants had increased adhesion in the presence of ambroxol compared with the wild-type strain. The PAO1 wild-type strain produced a significantly thicker biofilm (21.64+/-0.57 microm) compared with the biofilms produced by the DeltalasR DeltarhlR (7.36+/-0.2 microm) and DeltalasI DeltarhlI (6.62+/-0.31 microm) isolates. Ambroxol treatment reduced biofilm thickness, increased areal porosity, and decreased the average diffusion distance and textual entropy of wild-type and double-mutant strains. However, compared with the double-mutant strains, the changes observed for the wild-type strain were more clearly defined. Finally, ambroxol exhibited significant antagonistic quorum-sensing properties, suggesting that it could be adapted for use clinically in the treatment of cystic fibrosis and to reduce biofilm formation and in the colonisation of indwelling devices.

  20. Mechanism of azithromycin inhibition of HSL synthesis in Pseudomonas aeruginosa

    PubMed Central

    Zeng, Jianming; Zhang, Ni; Huang, Bin; Cai, Renxin; Wu, Binning; E, Shunmei; Fang, Chengcai; Chen, Cha

    2016-01-01

    Pseudomonas aeruginosa is an opportunistic pathogen and a leading cause of nosocomial infections. Unfortunately, P. aeruginosa has low antibiotic susceptibility due to several chromosomally encoded antibiotic resistance genes. Hence, we carried out mechanistic studies to determine how azithromycin affects quorum sensing and virulence in P. aeruginosa. lasI and rhlI single and double mutants were constructed. We then undertook a quantitative approach to determine the optimal concentration of azithromycin and culture time that can affect the expression of HSLs. Furthermore, based on the above results, the effect on quorum sensing was analyzed at a transcriptional level. It was found that 2 μg/mL azithromycin caused a 79% decrease in 3-oxo-C12-HSL secretion during cultivation, while C4-HSL secretion was strongly repressed in the early stages. Azithromycin acts on ribosomes; to determine whether this can elicit alternative modes of gene expression, transcriptional regulation of representative virulence genes was analyzed. We propose a new relationship for lasI and rhlI: lasI acts as a cell density sensor, and rhlI functions as a fine-tuning mechanism for coordination between different quorum sensing systems. PMID:27075730

  1. Secretion of phospholipase C by Pseudomonas aeruginosa.

    PubMed Central

    Stinson, M W; Hayden, C

    1979-01-01

    The conditions necessary for the secretion of phospholipase C (phosphatidylcholine cholinephosphohydrolase) by Pseudomonas aeruginosa were studied. Enzyme secretion by washed cell suspensions required a carbon source and ammonium, potassium, and calcium ions. The calcium requirement could be substituted by magnesium and strontium but not by copper, manganese, cobalt, or zinc. During growth in liquid medium, cells secreted phospholipase C during late logarithmic and early stationary phases. Secretion was repressed by the addition of inorganic phosphate but not by organic phosphates, glucose, or sodium succinate. Studies with tetracycline indicated that de novo protein synthesis was necessary for the secretion of phospholipase C and that the exoenzyme was not released from a preformed periplasmic pool. Similarly, extraction of actively secreting cells with 0.2 M MgCl2 at pH 8.4 solubilized large quantities of the periplasmic enzyme alkaline phosphatase but insignificant amounts of phospholipase C. Bacteria continued to secrete enzyme for nearly 45 min after the addition of inorganic phosphate or rifampin. Images PMID:114487

  2. Comprehensive transposon mutant library of Pseudomonas aeruginosa

    PubMed Central

    Jacobs, Michael A.; Alwood, Ashley; Thaipisuttikul, Iyarit; Spencer, David; Haugen, Eric; Ernst, Stephen; Will, Oliver; Kaul, Rajinder; Raymond, Christopher; Levy, Ruth; Chun-Rong, Liu; Guenthner, Donald; Bovee, Donald; Olson, Maynard V.; Manoil, Colin

    2003-01-01

    We have developed technologies for creating saturating libraries of sequence-defined transposon insertion mutants in which each strain is maintained. Phenotypic analysis of such libraries should provide a virtually complete identification of nonessential genes required for any process for which a suitable screen can be devised. The approach was applied to Pseudomonas aeruginosa, an opportunistic pathogen with a 6.3-Mbp genome. The library that was generated consists of 30,100 sequence-defined mutants, corresponding to an average of five insertions per gene. About 12% of the predicted genes of this organism lacked insertions; many of these genes are likely to be essential for growth on rich media. Based on statistical analyses and bioinformatic comparison to known essential genes in E. coli, we estimate that the actual number of essential genes is 300-400. Screening the collection for strains defective in two defined multigenic processes (twitching motility and prototrophic growth) identified mutants corresponding to nearly all genes expected from earlier studies. Thus, phenotypic analysis of the collection may produce essentially complete lists of genes required for diverse biological activities. The transposons used to generate the mutant collection have added features that should facilitate downstream studies of gene expression, protein localization, epistasis, and chromosome engineering. PMID:14617778

  3. Comprehensive transposon mutant library of Pseudomonas aeruginosa.

    PubMed

    Jacobs, Michael A; Alwood, Ashley; Thaipisuttikul, Iyarit; Spencer, David; Haugen, Eric; Ernst, Stephen; Will, Oliver; Kaul, Rajinder; Raymond, Christopher; Levy, Ruth; Chun-Rong, Liu; Guenthner, Donald; Bovee, Donald; Olson, Maynard V; Manoil, Colin

    2003-11-25

    We have developed technologies for creating saturating libraries of sequence-defined transposon insertion mutants in which each strain is maintained. Phenotypic analysis of such libraries should provide a virtually complete identification of nonessential genes required for any process for which a suitable screen can be devised. The approach was applied to Pseudomonas aeruginosa, an opportunistic pathogen with a 6.3-Mbp genome. The library that was generated consists of 30,100 sequence-defined mutants, corresponding to an average of five insertions per gene. About 12% of the predicted genes of this organism lacked insertions; many of these genes are likely to be essential for growth on rich media. Based on statistical analyses and bioinformatic comparison to known essential genes in E. coli, we estimate that the actual number of essential genes is 300-400. Screening the collection for strains defective in two defined multigenic processes (twitching motility and prototrophic growth) identified mutants corresponding to nearly all genes expected from earlier studies. Thus, phenotypic analysis of the collection may produce essentially complete lists of genes required for diverse biological activities. The transposons used to generate the mutant collection have added features that should facilitate downstream studies of gene expression, protein localization, epistasis, and chromosome engineering.

  4. Bacteriophages for the treatment of Pseudomonas aeruginosa infections.

    PubMed

    Harper, D R; Enright, M C

    2011-07-01

    Bacteriophages were first identified in 1915 and were used as antimicrobial agents from 1919 onwards. Despite apparent successes and widespread application, early users did not understand the nature of these agents and their efficacy remained controversial. As a result, they were replaced in the west by chemical antibiotics once these became available. However, bacteriophages remained a common therapeutic approach in parts of Eastern Europe where they are still in use. Increasing levels of antibiotic-resistant bacterial infections are now driving demand for novel therapeutic approaches. In cases where antibiotic options are limited or nonexistent, the pressure for new agents is greatest. One of the most prominent areas of concern is multidrug-resistant Gram-negative bacteria. Pseudomonas aeruginosa is a prominent member of this class and is the cause of damaging infections that can be resistant to successful treatment with conventional antibiotics. At the same time, it exhibits a number of properties that make it a suitable target for bacteriophage-based approaches, including growth in biofilms that can hydrolyse following phage infection. Pseudomonas aeruginosa provides a striking example of an infection where clinical need and the availability of a practical therapy coincide.

  5. Effect of Human Burn Wound Exudate on Pseudomonas aeruginosa Virulence

    PubMed Central

    Gonzalez, Manuel R.; Fleuchot, Betty; Lauciello, Leonardo; Jafari, Paris; Applegate, Lee Ann; Raffoul, Wassim; Que, Yok-Ai

    2016-01-01

    ABSTRACT Burn wound sepsis is currently the main cause of morbidity and mortality after burn trauma. Infections by notorious pathogens such as Pseudomonas aeruginosa, Staphylococcus aureus, and Acinetobacter baumannii impair patient recovery and can even lead to fatality. In this study, we investigated the effect of burn wound exudates (BWEs) on the virulence of those pathogens. BWEs were collected within 7 days after burn trauma from 5 burn patients. We first monitored their effect on pathogen growth. In contrast to A. baumannii and S. aureus, P. aeruginosa was the only pathogen able to grow within these human fluids. Expression of typical virulence factors such as pyocyanin and pyoverdine was even enhanced compared the levels seen with standard laboratory medium. A detailed chemical composition analysis of BWE was performed, which enabled us to determine the major components of BWE and underline the metabolic modifications induced by burn trauma. These data are essential for the development of an artificial medium mimicking the burn wound environment and the establishment of an in vitro system to analyze the initial steps of burn wound infections. IMPORTANCE Microbial infection of severe burn wounds is currently a major medical challenge. Of the infections by bacteria able to colonize such injuries, those by Pseudomonas aeruginosa are among the most severe, causing major delays in burn patient recovery or leading to fatal issues. In this study, we investigated the growth properties of several burn wound pathogens in biological fluids secreted from human burn wounds. We found that P. aeruginosa strains were able to proliferate but not those of the other pathogens tested. In addition, burn wound exudates (BWEs) stimulate the expression of virulence factors in P. aeruginosa. The chemical composition analysis of BWEs enabled us to determine the major components of these fluids. These data are essential for the development of an artificial medium mimicking the

  6. Effect of Human Burn Wound Exudate on Pseudomonas aeruginosa Virulence.

    PubMed

    Gonzalez, Manuel R; Fleuchot, Betty; Lauciello, Leonardo; Jafari, Paris; Applegate, Lee Ann; Raffoul, Wassim; Que, Yok-Ai; Perron, Karl

    2016-01-01

    Burn wound sepsis is currently the main cause of morbidity and mortality after burn trauma. Infections by notorious pathogens such as Pseudomonas aeruginosa, Staphylococcus aureus, and Acinetobacter baumannii impair patient recovery and can even lead to fatality. In this study, we investigated the effect of burn wound exudates (BWEs) on the virulence of those pathogens. BWEs were collected within 7 days after burn trauma from 5 burn patients. We first monitored their effect on pathogen growth. In contrast to A. baumannii and S. aureus, P. aeruginosa was the only pathogen able to grow within these human fluids. Expression of typical virulence factors such as pyocyanin and pyoverdine was even enhanced compared the levels seen with standard laboratory medium. A detailed chemical composition analysis of BWE was performed, which enabled us to determine the major components of BWE and underline the metabolic modifications induced by burn trauma. These data are essential for the development of an artificial medium mimicking the burn wound environment and the establishment of an in vitro system to analyze the initial steps of burn wound infections. IMPORTANCE Microbial infection of severe burn wounds is currently a major medical challenge. Of the infections by bacteria able to colonize such injuries, those by Pseudomonas aeruginosa are among the most severe, causing major delays in burn patient recovery or leading to fatal issues. In this study, we investigated the growth properties of several burn wound pathogens in biological fluids secreted from human burn wounds. We found that P. aeruginosa strains were able to proliferate but not those of the other pathogens tested. In addition, burn wound exudates (BWEs) stimulate the expression of virulence factors in P. aeruginosa. The chemical composition analysis of BWEs enabled us to determine the major components of these fluids. These data are essential for the development of an artificial medium mimicking the burn wound

  7. Origin and Impact of Nitric Oxide in Pseudomonas aeruginosa Biofilms

    PubMed Central

    2015-01-01

    The formation of the organized bacterial community called biofilm is a crucial event in bacterial physiology. Given that biofilms are often refractory to antibiotics and disinfectants to which planktonic bacteria are susceptible, their formation is also an industrially and medically relevant issue. Pseudomonas aeruginosa, a well-known human pathogen causing acute and chronic infections, is considered a model organism to study biofilms. A large number of environmental cues control biofilm dynamics in bacterial cells. In particular, the dispersal of individual cells from the biofilm requires metabolic and morphological reprogramming in which the second messenger bis-(3′-5′)-cyclic dimeric GMP (c-di-GMP) plays a central role. The diatomic gas nitric oxide (NO), a well-known signaling molecule in both prokaryotes and eukaryotes, is able to induce the dispersal of P. aeruginosa and other bacterial biofilms by lowering c-di-GMP levels. In this review, we summarize the current knowledge on the molecular mechanisms connecting NO sensing to the activation of c-di-GMP-specific phosphodiesterases in P. aeruginosa, ultimately leading to c-di-GMP decrease and biofilm dispersal. PMID:26260455

  8. Measuring antimicrobial susceptibility of Pseudomonas aeruginosa using Poloxamer 407 gel.

    PubMed

    Yamada, Hiroyuki; Koike, Naohito; Ehara, Tomoko; Matsumoto, Tetsuya

    2011-04-01

    Pseudomonas aeruginosa is a Gram-negative bacterium that causes various opportunistic infections. Chronic and intractable infections with P. aeruginosa are closely related to the high levels of resistance displayed by this organism to antimicrobial agents and its ability to form biofilms. Although the standard method for examining antimicrobial resistance involves susceptibility testing using Mueller-Hinton agar or broth, this method does not take into account the influence of biofilm formation on antimicrobial susceptibility. Poloxamer 407 is a hydrophilic, nonionic surfactant of the more general class of copolymers that can be used to culture bacteria with similar properties as cells in a biofilm environment. Therefore, the aim of this study was to compare the antimicrobial susceptibility of bacteria cultured in Poloxamer 407 gel to those grown on Mueller-Hinton agar using the Kirby-Bauer disk diffusion method with 24 strains of P. aeruginosa. Antimicrobial sensibility differed between the two mediums, with >60% of the strains displaying increased resistance to β-lactams when cultured on Poloxamer 407 gel. In addition, scanning electron microscopy revealed that typical biofilm formation and extracellular polymeric substance production was only observed with bacteria grown on Poloxamer 407 gel. Therefore, antimicrobial susceptibility test using Poloxamer 407 gel may provide more accurate information and allow the selection of suitable antimicrobial agents for treating patients infected with biofilm-forming pathogens.

  9. Pseudomonas Aeruginosa Lectins As Targets for Novel Antibacterials

    PubMed Central

    Grishin, A. V.; Krivozubov, M. S.; Karyagina, A. S.; Gintsburg, A. L.

    2015-01-01

    Pseudomonas aeruginosa is one of the most widespread and troublesome opportunistic pathogens that is capable of colonizing various human tissues and organs and is often resistant to many currently used antibiotics. This resistance is caused by different factors, including the acquisition of specific resistance genes, intrinsic capability to diminish antibiotic penetration into the bacterial cell, and the ability to form biofilms. This situation has prompted the development of novel compounds differing in their mechanism of action from traditional antibiotics that suppress the growth of microorganisms or directly kill bacteria. Instead, these new compounds should decrease the pathogens’ ability to colonize and damage human tissues by inhibiting the virulence factors and biofilm formation. The lectins LecA and LecB that bind galactose and fucose, as well as oligo- and polysaccharides containing these sugars, are among the most thoroughly-studied targets for such novel antibacterials. In this review, we summarize the results of experiments highlighting the importance of these proteins for P. aeruginosa pathogenicity and provide information on existing lectins inhibitors and their effectiveness in various experimental models. Particular attention is paid to the effects of lectins inhibition in animal models of infection and in clinical practice. We argue that lectins inhibition is a perspective approach to combating P. aeruginosa. However, despite the existence of highly effective in vitro inhibitors, further experiments are required in order to advance these inhibitors into pre-clinical studies. PMID:26085942

  10. Resistance to pefloxacin in Pseudomonas aeruginosa.

    PubMed Central

    Michea-Hamzehpour, M; Lucain, C; Pechere, J C

    1991-01-01

    Mechanisms of resistance to pefloxacin were investigated in four isogenic Pseudomonas aeruginosa strains: S (parent isolate; MIC, 2 micrograms/ml), PT1 and PT2 (posttherapy isolates obtained in animals; MICs, 32 and 128 micrograms/ml, respectively), and PT2-r (posttherapy isolate obtained after six in vitro subpassages of PT2; MIC, 32 micrograms/ml). [2-3H]adenine incorporation (indirect evidence of DNA gyrase activity) in EDTA-permeabilized cells was less affected by pefloxacin in PT2 and PT2-r (50% inhibitory concentration, 0.27 and 0.26 microgram/ml, respectively) than it was in S and PT1 (50% inhibitory concentration, 0.04 and 0.05 microgram/ml, respectively). Reduced [14C]pefloxacin labeling of intact cells in strains PT1 and PT2 correlated with more susceptibility to EDTA and the presence of more calcium (P less than 0.05) and phosphorus in the outer membrane fractions. Outer membrane protein analysis showed reduced expression of protein D2 (47 kDa) in strains PT1 and PT2. Other proteins were apparently similar in all strains. The addition of calcium chloride (2 mM) to the sodium dodecyl sulfate-solubilized samples of outer membrane proteins, before heating and Western blotting, probed with monoclonal antibody anti-OmpF showed electrophoretic mobility changes of OmpF in strains PT1 and PT2 which were not seen in strain S. Calcium-induced changes were reversed with ethyleneglycoltetraacetate. Decreased [14C]pefloxacin labeling was further correlated with an altered lipopolysaccharide pattern and increased 3-deoxy-D-mannooctulosonic acid concentration (P less than 0.01). These findings suggested that resistance to pefloxacin is associated with altered DNA gyrase in strain PT2-r, with altered permeability in PT1, and with both mechanisms in PT2. The decreased expression of protein D2 and the higher calcium and lipopolysaccharide contents of the outer membrane could be responsible for the permeability deficiency in P. aeruginosa. Images PMID:1645509

  11. Bilateral Granulomatous and Fibrinoheterophilic Otitis Interna due to Pseudomonas aeruginosa in a Captive Little Bustard ( Tetrax tetrax ).

    PubMed

    Scala, Christopher; Langlois, Isabelle; Lemberger, Karin

    2015-06-01

    A captive juvenile little bustard ( Tetrax tetrax ) was presented for acute onset of right head tilt and right circling. The bird failed to respond to supportive care and systemic antibiotic therapy. A bilateral granulomatous and fibrinoheterophilic otitis interna due to Pseudomonas aeruginosa was diagnosed postmortem by histopathologic examination and bacterial culture. In bustards, Pseudomonas species have been documented in the normal bacterial flora of the oropharynx and are frequently reported in upper respiratory tract infections. This is the first report of a peripheral vestibular syndrome due to P aeruginosa otitis interna in a bustard species. Pseudomonas aeruginosa should be included as a possible cause of otitis and peripheral vestibular syndrome in bustards.

  12. A case of orbital apex syndrome due to Pseudomonas aeruginosa infection.

    PubMed

    Kusunoki, Takeshi; Kase, Kaori; Ikeda, Katsuhisa

    2011-09-28

    Orbital apex syndrome is commonly been thought to have a poor prognosis. Many cases of this syndrome have been reported to be caused by paranasal sinus mycosis. We encountered a very rare case (60-year-old woman) of sinusitis with orbital apex syndrome due to Pseudomonas aeruginosa infection. She had received insulin and dialysis for diabtes and diabetic nephropathy, moreover anticoagulants after heart by-pass surgery. She underwent endoscopic sinus operation and was treated with antibiotics, but her loss of left vision did not improve. Recently, sinusitis cases due to Pseudomonas aeruginosa were reported to be a increasing. Therefore, we should consider the possibility of Pseudomonas aeruginosa as well as mycosis as infections of the sinus, especially inpatients who are immunocompromised body.

  13. A case of orbital apex syndrome due to Pseudomonas aeruginosa infection

    PubMed Central

    Kusunoki, Takeshi; Kase, Kaori; Ikeda, Katsuhisa

    2011-01-01

    Orbital apex syndrome is commonly been thought to have a poor prognosis. Many cases of this syndrome have been reported to be caused by paranasal sinus mycosis. We encountered a very rare case (60-year-old woman) of sinusitis with orbital apex syndrome due to Pseudomonas aeruginosa infection. She had received insulin and dialysis for diabtes and diabetic nephropathy, moreover anticoagulants after heart by-pass surgery. She underwent endoscopic sinus operation and was treated with antibiotics, but her loss of left vision did not improve. Recently, sinusitis cases due to Pseudomonas aeruginosa were reported to be a increasing. Therefore, we should consider the possibility of Pseudomonas aeruginosa as well as mycosis as infections of the sinus, especially inpatients who are immunocompromised body. PMID:24765368

  14. Subtilase SprP exerts pleiotropic effects in Pseudomonas aeruginosa

    PubMed Central

    Pelzer, Alexander; Polen, Tino; Funken, Horst; Rosenau, Frank; Wilhelm, Susanne; Bott, Michael; Jaeger, Karl-Erich

    2014-01-01

    The open reading frame PA1242 in the genome of Pseudomonas aeruginosa PAO1 encodes a putative protease belonging to the peptidase S8 family of subtilases. The respective enzyme termed SprP consists of an N-terminal signal peptide and a so-called S8 domain linked by a domain of unknown function (DUF). Presumably, this DUF domain defines a discrete class of Pseudomonas proteins as homologous domains can be identified almost exclusively in proteins of the genus Pseudomonas. The sprP gene was expressed in Escherichia coli and proteolytic activity was demonstrated. A P. aeruginosa ΔsprP mutant was constructed and its gene expression pattern compared to the wild-type strain by genome microarray analysis revealing altered expression levels of 218 genes. Apparently, SprP is involved in regulation of a variety of different cellular processes in P. aeruginosa including pyoverdine synthesis, denitrification, the formation of cell aggregates, and of biofilms. PMID:24376018

  15. Subtilase SprP exerts pleiotropic effects in Pseudomonas aeruginosa.

    PubMed

    Pelzer, Alexander; Polen, Tino; Funken, Horst; Rosenau, Frank; Wilhelm, Susanne; Bott, Michael; Jaeger, Karl-Erich

    2014-02-01

    The open reading frame PA1242 in the genome of Pseudomonas aeruginosa PAO1 encodes a putative protease belonging to the peptidase S8 family of subtilases. The respective enzyme termed SprP consists of an N-terminal signal peptide and a so-called S8 domain linked by a domain of unknown function (DUF). Presumably, this DUF domain defines a discrete class of Pseudomonas proteins as homologous domains can be identified almost exclusively in proteins of the genus Pseudomonas. The sprP gene was expressed in Escherichia coli and proteolytic activity was demonstrated. A P. aeruginosa ∆sprP mutant was constructed and its gene expression pattern compared to the wild-type strain by genome microarray analysis revealing altered expression levels of 218 genes. Apparently, SprP is involved in regulation of a variety of different cellular processes in P. aeruginosa including pyoverdine synthesis, denitrification, the formation of cell aggregates, and of biofilms.

  16. Toxicogenomic response of Pseudomonas aeruginosa to ortho-phenylphenol

    PubMed Central

    Nde, Chantal W; Jang, Hyeung-Jin; Toghrol, Freshteh; Bentley, William E

    2008-01-01

    Background Pseudomonas aeruginosa (P. aeruginosa) is the most common opportunistic pathogen implicated in nosocomial infections and in chronic lung infections in cystic fibrosis patients. Ortho-phenylphenol (OPP) is an antimicrobial agent used as an active ingredient in several EPA registered disinfectants. Despite its widespread use, there is a paucity of information on its target molecular pathways and the cellular responses that it elucidates in bacteria in general and in P. aeruginosa in particular. An understanding of the OPP-driven gene regulation and cellular response it elicits will facilitate more effective utilization of this antimicrobial and possibly lead to the development of more effective disinfectant treatments. Results Herein, we performed a genome-wide transcriptome analysis of the cellular responses of P. aeruginosa exposed to 0.82 mM OPP for 20 and 60 minutes. Our data indicated that OPP upregulated the transcription of genes encoding ribosomal, virulence and membrane transport proteins after both treatment times. After 20 minutes of exposure to 0.82 mM OPP, genes involved in the exhibition of swarming motility and anaerobic respiration were upregulated. After 60 minutes of OPP treatment, the transcription of genes involved in amino acid and lipopolysaccharide biosynthesis were upregulated. Further, the transcription of the ribosome modulation factor (rmf) and an alternative sigma factor (rpoS) of RNA polymerase were downregulated after both treatment times. Conclusion Results from this study indicate that after 20 minutes of exposure to OPP, genes that have been linked to the exhibition of anaerobic respiration and swarming motility were upregulated. This study also suggests that the downregulation of the rmf and rpoS genes may be indicative of the mechanism by which OPP causes decreases in cell viability in P. aeruginosa. Consequently, a protective response involving the upregulation of translation leading to the increased synthesis of

  17. QapR (PA5506) represses an operon that negatively affects the Pseudomonas quinolone signal in Pseudomonas aeruginosa.

    PubMed

    Tipton, Kyle A; Coleman, James P; Pesci, Everett C

    2013-08-01

    Pseudomonas aeruginosa is a Gram-negative, opportunistic pathogen that can cause disease in varied sites within the human body and is a significant source of morbidity and mortality in those afflicted with cystic fibrosis. P. aeruginosa is able to coordinate group behaviors, such as virulence factor production, through the process of cell-to-cell signaling. There are three intercellular signaling systems employed by P. aeruginosa, and one of these systems utilizes the small molecule 2-heptyl-3-hydroxy-4-quinolone (Pseudomonas quinolone signal [PQS]). PQS is required for virulence in multiple infection models and has been found in the lungs of cystic fibrosis patients colonized by P. aeruginosa. In this study, we have identified an RpiR family transcriptional regulator, QapR, which is an autoregulatory repressor. We found that mutation of qapR caused overexpression of the qapR operon. We characterized the qapR operon to show that it contains genes qapR, PA5507, PA5508, and PA5509 and that QapR directly controls the transcription of these genes in a negative manner. We also show that derepression of this operon greatly reduces PQS concentration in P. aeruginosa. Our results suggest that qapR affects PQS concentration by repressing an enzymatic pathway that acts on PQS or a PQS precursor to lower the PQS concentration. We believe that this operon comprises a novel mechanism to regulate PQS concentration in P. aeruginosa.

  18. QapR (PA5506) Represses an Operon That Negatively Affects the Pseudomonas Quinolone Signal in Pseudomonas aeruginosa

    PubMed Central

    Tipton, Kyle A.; Coleman, James P.

    2013-01-01

    Pseudomonas aeruginosa is a Gram-negative, opportunistic pathogen that can cause disease in varied sites within the human body and is a significant source of morbidity and mortality in those afflicted with cystic fibrosis. P. aeruginosa is able to coordinate group behaviors, such as virulence factor production, through the process of cell-to-cell signaling. There are three intercellular signaling systems employed by P. aeruginosa, and one of these systems utilizes the small molecule 2-heptyl-3-hydroxy-4-quinolone (Pseudomonas quinolone signal [PQS]). PQS is required for virulence in multiple infection models and has been found in the lungs of cystic fibrosis patients colonized by P. aeruginosa. In this study, we have identified an RpiR family transcriptional regulator, QapR, which is an autoregulatory repressor. We found that mutation of qapR caused overexpression of the qapR operon. We characterized the qapR operon to show that it contains genes qapR, PA5507, PA5508, and PA5509 and that QapR directly controls the transcription of these genes in a negative manner. We also show that derepression of this operon greatly reduces PQS concentration in P. aeruginosa. Our results suggest that qapR affects PQS concentration by repressing an enzymatic pathway that acts on PQS or a PQS precursor to lower the PQS concentration. We believe that this operon comprises a novel mechanism to regulate PQS concentration in P. aeruginosa. PMID:23708133

  19. Bacteriophages of Pseudomonas aeruginosa: long-term prospects for use in phage therapy.

    PubMed

    Krylov, Victor N

    2014-01-01

    Bacteria Pseudomonas aeruginosa, being opportunistic pathogens, are the major cause of nosocomial infections and, in some cases, the primary cause of death. They are virtually untreatable with currently known antibiotics. Phage therapy is considered as one of the possible approaches to the treatment of P. aeruginosa infections. Difficulties in the implementation of phage therapy in medical practice are related, for example, to the insufficient number and diversity of virulent phages that are active against P. aeruginosa. Results of interaction of therapeutic phages with bacteria in different conditions and environments are studied insufficiently. A little is known about possible interactions of therapeutic phages with resident prophages and plasmids in clinical strains in the foci of infections. This chapter highlights the different approaches to solving these problems and possible ways to expand the diversity of therapeutic P. aeruginosa phages and organizational arrangements (as banks of phages) to ensure long-term use of phages in the treatment of P. aeruginosa infections.

  20. Anionic fluoroquinolones as antibacterials against biofilm-producing Pseudomonas aeruginosa.

    PubMed

    Long, Timothy E; Keding, Lexie C; Lewis, Demetria D; Anstead, Michael I; Withers, T Ryan; Yu, Hongwei D

    2016-02-15

    Pseudomonas aeruginosa is a common biofilm-forming bacterial pathogen implicated in diseases of the lungs. The extracellular polymeric substances (EPS) of respiratory Pseudomonas biofilms are largely comprised of anionic molecules such as rhamnolipids and alginate that promote a mucoid phenotype. In this Letter, we examine the ability of negatively-charged fluoroquinolones to transverse the EPS and inhibit the growth of mucoid P. aeruginosa. Anionic fluoroquinolones were further compared with standard antibiotics via a novel microdiffusion assay to evaluate drug penetration through pseudomonal alginate and respiratory mucus from a patient with cystic fibrosis.

  1. VDUP1 exacerbates bacteremic shock in mice infected with Pseudomonas aeruginosa.

    PubMed

    Piao, Zheng-Hao; Kim, Mi Sun; Jeong, Mira; Yun, Sohyun; Lee, Suk Hyung; Sun, Hu-Nan; Song, Hae Young; Suh, Hyun-Woo; Jung, Haiyoung; Yoon, Suk Ran; Kim, Tae-Don; Lee, Young-Ho; Choi, Inpyo

    2012-11-01

    Vitamin-D3 upregulated protein-1 (VDUP1) is a stress response protein. Pseudomonas aeruginosa (P. aeruginosa) infection is a leading cause of death. Mice infected with live P. aeruginosa exhibit significantly decreased VDUP1 expression. However, the function of VDUP1 during P. aeruginosa-induced mouse bacteremic shock is unknown. To address the function of VDUP1 in P. aeruginosa-infected mice, we constructed a bacteremic shock model wherein both wild-type and VDUP1-deficient mice were infected intra-peritoneally with live P. aeruginosa. We found that VDUP1-deficient mice were more resistant to P. aeruginosa-induced bacteremic shock than wild-type mice, as shown by the increased survival, accelerated bacterial clearance and suppression of cytokine overproduction of the VDUP1-deficient mice. VDUP1 promoted the recruitment of neutrophils into the peritoneal cavities of infected mice. VDUP1 impeded the phagocytosis of non-opsonized P. aeruginosa via phosphatidylinositide 3-kinase (PI3K) pathway in macrophages. P. aeruginosa infection induced the generation of reactive oxygen species (ROS), and the increased production of ROS by the peritoneal cells of VDUP1-deficient mice was advantageous in clearing the bacteria. Overall, VDUP1 aggravates bacteremic shock; thus, VDUP1 can be considered a target molecule for the inhibition of P. aeruginosa-induced bacteremic shock.

  2. Post-translational modifications in Pseudomonas aeruginosa revolutionized by proteomic analysis.

    PubMed

    Ouidir, Tassadit; Jouenne, Thierry; Hardouin, Julie

    2016-06-01

    Pseudomonas aeruginosa is an opportunistic pathogen that causes severe infections in vulnerable individuals. It is known that post-translational modifications (PTMs) play a key role in bacterial physiology. Their characterization is still challenging and the recent advances in proteomics allow large-scale and high-throughput analyses of PTMs. Here, we provide an overview of proteomic data about the modified proteins in P. aeruginosa. We emphasize the significant contribution of proteomics in knowledge enhancement of PTMs (phosphorylation, N-acetylation and glycosylation) and we discuss their importance in P. aeruginosa physiology.

  3. Comparison of UVB and UVC irradiation disinfection efficacies on Pseudomonas Aeruginosa (P. aeruginosa) biofilm

    NASA Astrophysics Data System (ADS)

    Argyraki, A.; Markvart, M.; Nielsen, Anne; Bjarnsholt, T.; Bjørndal, L.; Petersen, P. M.

    2016-04-01

    Disinfection routines are important in all clinical applications. The uprising problem of antibiotic resistance has driven major research efforts towards alternative disinfection approaches, involving light-based solutions. Pseudomonas aeruginosa (P. aeruginosa) is a common bacterium that can cause skin, soft tissue, lungs, kidney and urinary tract infections. Moreover, it can be found on and in medical equipment causing often cross infections in hospitals. The objective of this study was to test the efficiency, of two different light-based disinfection treatments, namely UVB and UVC irradiation, on P. aeruginosa biofilms at different growth stages. In our experiments a new type of UV light emitting diodes (LEDs) were used to deliver UV irradiation on the biofilms, in the UVB (296nm) and UVC (266nm) region. The killing rate was studied as a function of dose for 24h grown biofilms. The dose was ramped from 72J/m2 to 10000J/m2. It was shown that UVB irradiation was more effective than UVC irradiation in inactivating P. aeruginosa biofilms. No colony forming units (CFU) were observed for the UVB treated biofilms when the dose was 10000 J/m2 (CFU in control sample: 7.5 x 104). UVB irradiation at a dose of 20000J/m2 on mature biofilms (72h grown) resulted in a 3.9 log killing efficacy. The fact that the wavelength of 296nm exists in daylight and has such disinfection ability on biofilms gives new perspectives for applications within disinfection at hospitals.

  4. Mechanism of resistance to benzalkonium chloride by Pseudomonas aeruginosa.

    PubMed

    Sakagami, Y; Yokoyama, H; Nishimura, H; Ose, Y; Tashima, T

    1989-08-01

    The mechanisms of resistance of Pseudomonas aeruginosa to benzalkonium chloride (BC) were studied. The effluence of cell components was observed in susceptible P. aeruginosa by electron microscopy, but resistant P. aeruginosa seemed to be undamaged. No marked changes in cell surface potential between Escherichia coli NIHJC-2 and a spheroplast strain were found. The contents of phospholipids (PL) and fatty and neutral lipids (FNL) in the cell walls of resistant P. aeruginosa were higher than those in the cell walls of susceptible P. aeruginosa. The amounts of BC adsorbed to PL and FNL of cell walls of BC-resistant P. aeruginosa were lower than those for BC-susceptible P. aeruginosa. Fifteen species of cellular fatty acids were identified by capillary gas chromatography and gas chromatography-mass spectrometry. The ability of BC to permeate the cell wall was reduced because of the increase in cellular fatty acids. These results suggested that the resistance of P. aeruginosa to BC is mainly a result of increased in the contents of PL and FNL. In resistant P. aeruginosa, the decrease in the amount of BC adsorbed is likely to be the result of increases in the contents of PL and FNL.

  5. Mechanism of resistance to benzalkonium chloride by Pseudomonas aeruginosa.

    PubMed Central

    Sakagami, Y; Yokoyama, H; Nishimura, H; Ose, Y; Tashima, T

    1989-01-01

    The mechanisms of resistance of Pseudomonas aeruginosa to benzalkonium chloride (BC) were studied. The effluence of cell components was observed in susceptible P. aeruginosa by electron microscopy, but resistant P. aeruginosa seemed to be undamaged. No marked changes in cell surface potential between Escherichia coli NIHJC-2 and a spheroplast strain were found. The contents of phospholipids (PL) and fatty and neutral lipids (FNL) in the cell walls of resistant P. aeruginosa were higher than those in the cell walls of susceptible P. aeruginosa. The amounts of BC adsorbed to PL and FNL of cell walls of BC-resistant P. aeruginosa were lower than those for BC-susceptible P. aeruginosa. Fifteen species of cellular fatty acids were identified by capillary gas chromatography and gas chromatography-mass spectrometry. The ability of BC to permeate the cell wall was reduced because of the increase in cellular fatty acids. These results suggested that the resistance of P. aeruginosa to BC is mainly a result of increased in the contents of PL and FNL. In resistant P. aeruginosa, the decrease in the amount of BC adsorbed is likely to be the result of increases in the contents of PL and FNL. Images PMID:2506813

  6. Bactericidal antibody response to Pseudomonas aeruginosa by adults with urinary tract infections.

    PubMed Central

    Smalley, D L; Ourth, D D

    1979-01-01

    In this investigation we found that adults with upper urinary tract infections caused by Pseudomonas aeruginosa produced serum antibodies with bactericidal activity against the bacterium. Seventeen of 20 infected adults showed bactericidal activity with a titer range of 1:10 to 1:10,000. PMID:117024

  7. Phage selection restores antibiotic sensitivity in MDR Pseudomonas aeruginosa.

    PubMed

    Chan, Benjamin K; Sistrom, Mark; Wertz, John E; Kortright, Kaitlyn E; Narayan, Deepak; Turner, Paul E

    2016-05-26

    Increasing prevalence and severity of multi-drug-resistant (MDR) bacterial infections has necessitated novel antibacterial strategies. Ideally, new approaches would target bacterial pathogens while exerting selection for reduced pathogenesis when these bacteria inevitably evolve resistance to therapeutic intervention. As an example of such a management strategy, we isolated a lytic bacteriophage, OMKO1, (family Myoviridae) of Pseudomonas aeruginosa that utilizes the outer membrane porin M (OprM) of the multidrug efflux systems MexAB and MexXY as a receptor-binding site. Results show that phage selection produces an evolutionary trade-off in MDR P. aeruginosa, whereby the evolution of bacterial resistance to phage attack changes the efflux pump mechanism, causing increased sensitivity to drugs from several antibiotic classes. Although modern phage therapy is still in its infancy, we conclude that phages, such as OMKO1, represent a new approach to phage therapy where bacteriophages exert selection for MDR bacteria to become increasingly sensitive to traditional antibiotics. This approach, using phages as targeted antibacterials, could extend the lifetime of our current antibiotics and potentially reduce the incidence of antibiotic resistant infections.

  8. Azithromycin-Ciprofloxacin-Impregnated Urinary Catheters Avert Bacterial Colonization, Biofilm Formation, and Inflammation in a Murine Model of Foreign-Body-Associated Urinary Tract Infections Caused by Pseudomonas aeruginosa.

    PubMed

    Saini, Hina; Vadekeetil, Anitha; Chhibber, Sanjay; Harjai, Kusum

    2017-03-01

    Pseudomonas aeruginosa is a multifaceted pathogen causing a variety of biofilm-mediated infections, including catheter-associated urinary tract infections (CAUTIs). The high prevalence of CAUTIs in hospitals, their clinical manifestations, such as urethritis, cystitis, pyelonephritis, meningitis, urosepsis, and death, and the associated economic challenges underscore the need for management of these infections. Biomaterial modification of urinary catheters with two drugs seems an interesting approach to combat CAUTIs by inhibiting biofilm. Previously, we demonstrated the in vitro efficacy of urinary catheters impregnated with azithromycin (AZM) and ciprofloxacin (CIP) against P. aeruginosa Here, we report how these coated catheters impact the course of CAUTI induced by P. aeruginosa in a murine model. CAUTI was established in female LACA mice with uncoated or AZM-CIP-coated silicone implants in the bladder, followed by transurethral inoculation of 10(8) CFU/ml of biofilm cells of P. aeruginosa PAO1. AZM-CIP-coated implants (i) prevented biofilm formation on the implant's surface (P ≤ 0.01), (ii) restricted bacterial colonization in the bladder and kidney (P < 0.0001), (iii) averted bacteriuria (P < 0.0001), and (iv) exhibited no major histopathological changes for 28 days in comparison to uncoated implants, which showed persistent CAUTI. Antibiotic implants also overcame implant-mediated inflammation, as characterized by trivial levels of inflammatory markers such as malondialdehyde (P < 0.001), myeloperoxidase (P < 0.05), reactive oxygen species (P ≤ 0.001), and reactive nitrogen intermediates (P < 0.01) in comparison to those in uncoated implants. Further, AZM-CIP-coated implants showed immunomodulation by manipulating the release of inflammatory cytokines interleukin-6 (IL-6), tumor necrosis factor alpha (TNF-α), and IL-10 to the benefit of the host. Overall, the study demonstrates long-term in vivo effectiveness of AZM-CIP-impregnated catheters, which may

  9. Pseudomonas Aeruginosa Endocarditis in Acute Myeloid Leukemia: A Rare Complication

    PubMed Central

    J, Barshay; A, Nemets; A, Ducach; G, Lugassy

    2008-01-01

    Infectious endocarditis is a rarely encountered complication among leukemia patient during induction therapy. We describe a young patient who developed prolonged high fever after aggressive chemotherapy for Acute Myeloid Leukemia. Pseudomonas Aeruginosa endocarditis was found to be the etiology for the febrile state. Our purpose is to emphasize the need for an early diagnosis of this rare, albeit treatable complication. PMID:23675106

  10. Pseudomonas aeruginosa sepsis in stem cell transplantation patients.

    PubMed

    Fanci, Rosa; Pecile, Patrizia; Casalone, Enrico; Mengoni, Alessio; Tamburini, Elena; Guidi, Stefano; Cecconi, Daniela; Bosi, Alberto; Nicoletti, Pierluigi; Mastromei, Giorgio

    2006-07-01

    We report the epidemiological investigation of an outbreak of Pseudomonas aeruginosa infection in 6 patients who shared, during different periods, the same 2 rooms of a bone marrow transplantation unit. Phenotypic and molecular analysis of isolates from patients and from the environment strongly suggested a single, environmental source of infection.

  11. Production of mucoid exopolysaccharide during development of Pseudomonas aeruginosa biofilms.

    PubMed Central

    Hoyle, B D; Williams, L J; Costerton, J W

    1993-01-01

    Production of mucoid exopolysaccharide by planktonic, chemostat-derived, and adherent Pseudomonas aeruginosa 579 bacteria was separately monitored for 7 days by using a lacZ-algD promoter-reporter gene and assays of total carbohydrate and metabolic activity. Mucoid exopolysaccharide production was transiently elevated following adherence but declined to planktonic levels by day 7. PMID:8423105

  12. Emergence of colistin resistant Pseudomonas aeruginosa at Tabriz hospitals, Iran

    PubMed Central

    Goli, Hamid Reza; Nahaei, Mohammad Reza; Ahangarzadeh Rezaee, Mohammad; Hasani, Alka; Samadi Kafil, Hossein; Aghazadeh, Mohammad

    2016-01-01

    Background and Objectives: The prevalence of multidrug resistant Pseudomonas aeruginosa is the main reason of new drugs resurgence such as colistin. The main objectives of this study were to determine the antibiotic resistance pattern and the rate of colistin resistance along with its correlation with overexpression of MexAB-OprM and MexXY-OprM efflux pumps among P. aeruginosa isolates. Materials and Methods: Hundred clinical isolates were collected from 100 patients during 6 months in 2014. Susceptibility to the eight antibiotics was investigated using Kirby-Bauer and agar dilution methods. The Quantitative Real-time PCR was used to determine the expression levels of efflux genes. Results: Resistance rates to various antibiotics were as follows: ticarcillin (73%), ciprofloxacin (65%), aztreonam (60%), ceftazidime (55%), gentamicin (55%), imipenem (49%), piperacillin/tazobactam (34%) and colistin (2%). In disk diffusion method, only two isolates were non susceptible to colistin, however in agar dilution method the two isolates were confirmed as resistant and two others were intermediate resistant. Sixty eight (68%) isolates were multi-drug resistant and 10 isolates were susceptible to all tested antibiotics. Both colistin resistant isolates showed overexpression of both efflux pumps, but two intermediate resistant isolates exhibited reduction of efflux genes expression. Conclusions: Emergence of colistin resistance is increasing in P. aeruginosa indicating great challenge in the treatment of infections caused by MDR strains of this organism in Iran. ParRS may promote either induced or constitutive resistance to colistin through the activation of distinct mechanisms such as MDR efflux pumps, and LPS modification. PMID:27092226

  13. Immune surveillance mechanisms of the skin against the stealth infection strategy of Pseudomonas aeruginosa-review.

    PubMed

    Andonova, Maria; Urumova, Valentina

    2013-09-01

    The present review aims to provide insight into the complex interactions between the host and Pseudomonas aeruginosa-an opportunistic microbial agent causing skin infections. Heat, humidity and skin pH are among the factors beneficial for the development of this Gram-negative agent. To cause infection, Pseudomonas aeruginosa should first overcome the primary mechanisms of defense including the cell elements and humoral factors of the skin, as well as non-specific responses-phagocytosis, inflammation, acute phase response. All they are analysed with emphasis on the fact that their detailed understanding would help revealing their potential and allow for their efficient control. The microorganism, being more alterable and more flexible than the host, uses stealth strategies and modes of life. The review goes over the arsenal of virulence factors, used by Pseudomonas aeruginosa to attack the host defense mechanisms. The bacterial pathogenic strategies for invasion, resulting in collapse of skin defense are analysed. Several novel therapeutic approached to Pseudomonas aeruginosa skin infections are briefly reviewed.

  14. Electrochemically monitoring the antibiotic susceptibility of Pseudomonas aeruginosa biofilms.

    PubMed

    Webster, Thaddaeus A; Sismaet, Hunter J; Chan, I-ping J; Goluch, Edgar D

    2015-11-07

    The condition of cells in Pseudomonas aeruginosa biofilms was monitored via the electrochemical detection of the electro-active virulence factor pyocyanin in a fabricated microfluidic growth chamber coupled with a disposable three electrode cell. Cells were exposed to 4, 16, and 100 mg L(-1) colistin sulfate after overnight growth. At the end of testing, the measured maximum peak current (and therefore pyocyanin concentration) was reduced by approximately 68% and 82% in P. aeruginosa exposed to 16 and 100 mg L(-1) colistin sulfate, respectively. Samples were removed from the microfluidic chamber, analyzed for viability using staining, and streaked onto culture plates to confirm that the P. aeruginosa cells were affected by the antibiotics. The correlation between electrical signal drop and the viability of P. aeruginosa cells after antibiotic exposure highlights the usefulness of this approach for future low cost antibiotic screening applications.

  15. Oxylipins produced by Pseudomonas aeruginosa promote biofilm formation and virulence

    PubMed Central

    Martínez, Eriel; Campos-Gómez, Javier

    2016-01-01

    The oxygenation of unsaturated fatty acids by dioxygenases occurs in all kingdoms of life and produces physiologically important lipids called oxylipins. The biological roles of oxylipins have been extensively studied in animals, plants, algae and fungi, but remain largely unidentified in prokaryotes. The bacterium Pseudomonas aeruginosa displays a diol synthase activity that transforms several monounsaturated fatty acids into mono- and di-hydroxylated derivatives. Here we show that oxylipins derived from this activity inhibit flagellum-driven motility and upregulate type IV pilus-dependent twitching motility of P. aeruginosa. Consequently, these oxylipins promote bacterial organization in microcolonies, increasing the ability of P. aeruginosa to form biofilms in vitro and in vivo (in Drosophila flies). We also demonstrate that oxylipins produced by P. aeruginosa promote virulence in Drosophila flies and lettuce. Our study thus uncovers a role for prokaryotic oxylipins in the physiology and pathogenicity of bacteria. PMID:27929111

  16. Imported PER-1 producing Pseudomonas aeruginosa, PER-1 producing Acinetobacter baumanii and VIM-2-producing Pseudomonas aeruginosa strains in Hungary

    PubMed Central

    Szabó, Dora; Szentandrássy, Julia; Juhász, Zsuzsa; Katona, Katalin; Nagy, Károly; Rókusz, László

    2008-01-01

    Introduction Pseudomonas aeruginosa and Acinetobacter baumanii are important nosocomial pathogens with wide intrinsic resistance. However, due to the dissemination of the acquired resistance mechanisms, such as extended-spectrum beta-lactamase (ESBL) and metallo beta-lactamase (MBL) production, multidrug resistant strains have been isolated more often. Case presentation We report a case of a Hungarian tourist, who was initially hospitalized in Egypt and later transferred to Hungary. On the day of admission PER-1-producing P. aeruginosa, PER-1 producing A. baumannii, SHV-5-producing Klebsiella pneumoniae and VIM-2-producing P. aeruginosa isolates were subcultured from the patient's samples in Hungary. Comparing the pulsed-field gel electrophoresis (PFGE) patterns of the P. aeruginosa strains from the patient to the P. aeruginosa strains occurring in this hospital, we can state that the PER-1-producing P. aeruginosa and VIM-2-producing P. aeruginosa had external origin. Conclusion This is the first report of PER-1-producing P. aeruginosa,and PER-1-producing A. baumanii strains in Hungary. This case highlights the importance of spreading of the beta-lactamase-mediated resistance mechanisms between countries and continents, showing the importance of careful screening and the isolation of patients arriving from a different country. PMID:18513394

  17. In vivo efficacy of biapenem with ME1071, a novel metallo-β-lactamase (MBL) inhibitor, in a murine model mimicking ventilator-associated pneumonia caused by MBL-producing Pseudomonas aeruginosa.

    PubMed

    Yamada, Koichi; Yanagihara, Katsunori; Kaku, Norihito; Harada, Yosuke; Migiyama, Yohei; Nagaoka, Kentaro; Morinaga, Yoshitomo; Nakamura, Shigeki; Imamura, Yoshifumi; Miyazaki, Taiga; Izumikawa, Koichi; Kakeya, Hiroshi; Hasegawa, Hiroo; Yasuoka, Akira; Kohno, Shigeru

    2013-09-01

    ME1071, a maleic acid derivative, is a novel, specific inhibitor of metallo-β-lactamases (MBLs). In vitro, ME1071 can potentiate the activity of carbapenems against MBL-producing Pseudomonas aeruginosa. To confirm the clinical efficacy of ME1071 in ventilator-associated pneumonia (VAP) caused by MBL-producing P. aeruginosa, a mouse model that mimics VAP by placement of a plastic tube in the bronchus was used. Biapenem (100 mg/kg) or ME1071 plus biapenem (each 100 mg/kg) was administered intraperitoneally every 12 h beginning at 12 h after inoculation. Survival was evaluated over 7 days. At 30 h post infection, mice were sacrificed and the numbers of viable bacteria in the lungs and bronchoalveolar lavage fluid (BALF) were compared. Histopathological analysis of lung specimens was also performed. The pharmacokinetics of ME1071 was analysed after initial treatment. The ME1071 plus biapenem combination group displayed significantly longer survival compared with the control and biapenem monotherapy groups (P<0.05). Furthermore, the number of viable bacteria in the lungs was significantly lower in the combination group (P<0.05). Histopathological examination of lung specimens indicated that progression of lung inflammation was prevented in the combination group. Furthermore, total cell and neutrophil counts, as well as cytokine levels, in BALF were significantly decreased (P<0.05) in the combination group. The percentage time above the MIC (%T>MIC) for biapenem without ME1071 was 0% in plasma; however, this value was elevated to 10.8% with ME1071. These results suggest that ME1071 is potent and effective for treatment of VAP caused by MBL-producing P. aeruginosa.

  18. Molecular epidemiology of Pseudomonas aeruginosa in an intensive care unit.

    PubMed Central

    Döring, G.; Hörz, M.; Ortelt, J.; Grupp, H.; Wolz, C.

    1993-01-01

    Genotyping was used to analyse Pseudomonas aeruginosa isolates from sink drains and 15 intubated patients as part of a 3-month prospective study of strain transmission in a medical-surgical intensive care unit. Ninety percent of all washbasin drains were persistently contaminated with several P. aeruginosa genotypes. In 60% (9/15) of the patients, P. aeruginosa colonization or infection was hospital-acquired: P. aeruginosa strains isolated from these patients were present in hospital sinks or in other patients before their admission. Since all patients were immobile, personnel were the probable route of transmission of P. aeruginosa in the hospital. The mechanism of strain transmission from sinks to hands during hand washing was investigated in a children's hospital. When P. aeruginosa was present at densities of > 10(5)/c.f.u. per ml in sink drains, hand washing resulted in hand contamination with P. aeruginosa via aerosol generation in the majority of experiments or P. aeruginosa was detected using an air sampler above the washing basin. High P. aeruginosa cfu were present at 4.30 h in the eight sinks (5.4 x 10(5)-7.0 x 10(10) c.f.u./ml), whereas at 13.00 h P. aeruginosa c.f.u. were significantly lower (3.1 x 10(2)-8.0 x 10(5) c.f.u./ml). These data reveal that the danger of bacterial contamination of hands during hand washing is highest in the morning. The identified transmission routes demand more effective hygienic measures in hospital settings particularly concerning personnel hands and sink drains. Images Fig. 1 PMID:8519308

  19. Subinhibitory bismuth-thiols reduce virulence of Pseudomonas aeruginosa.

    PubMed

    Wu, Chieh-Liang; Domenico, Philip; Hassett, Daniel J; Beveridge, Terry J; Hauser, Alan R; Kazzaz, Jeffrey A

    2002-06-01

    Pseudomonas aeruginosa is a common pathogen in mechanically ventilated patients and produces a wide array of virulence factors. Bismuth-thiols (BTs) are active in vitro against all bacterial lung pathogens, including P. aeruginosa. The objective of these studies was to examine the biochemical and morphologic effects of sublethal BT concentrations on P. aeruginosa and to evaluate virulence in cell culture. Bismuth-dimercaprol, at a fraction of the minimal inhibitory concentration, reduced alginate expression by 67% in P. aeruginosa, whereas subinhibitory bismuth-ethanedithiol (BisEDT) reduced alginate by 92% in P. syringae. BisEDT effects on lipopolysaccharide content and type III secreted cytoxins were examined by sodium dodecyl sulfate polyacrylamide gel electrophoresis. Subinhibitory BisEDT reduced cell-associated lipopolysaccharide, and inhibited processing of the secreted cytotoxic protein ExoU. BisEDT-induced outer membrane blebbing and aggregation of cytoplasmic material was noted in electron microscopy. Virulence of P. aeruginosa was assessed by adherence to epithelial cells and sensitivity to serum killing. BisEDT inhibited adherence of P. aeruginosa to 16HBE14o- cells by 28% and to a collagen matrix by 53%. BisEDT-treated bacteria were also 100-fold more sensitive to serum bactericidal activity. In summary, low BT concentrations affect P. aeruginosa in a variety of ways, the combination of which may help prevent or resolve respiratory tract infection.

  20. Dynorphin Activates Quorum Sensing Quinolone Signaling in Pseudomonas aeruginosa

    PubMed Central

    Zaborina, Olga; Lepine, Francois; Xiao, Gaoping; Valuckaite, Vesta; Chen, Yimei; Li, Terry; Ciancio, Mae; Zaborin, Alex; Petroff, Elaine; Turner, Jerrold R; Rahme, Laurence G; Chang, Eugene; Alverdy, John C

    2007-01-01

    There is now substantial evidence that compounds released during host stress directly activate the virulence of certain opportunistic pathogens. Here, we considered that endogenous opioids might function as such compounds, given that they are among the first signals to be released at multiple tissue sites during host stress. We tested the ability of various opioid compounds to enhance the virulence of Pseudomonas aeruginosa using pyocyanin production as a biological readout, and demonstrated enhanced virulence when P. aeruginosa was exposed to synthetic (U-50,488) and endogenous (dynorphin) κ-agonists. Using various mutants and reporter strains of P. aeruginosa, we identified involvement of key elements of the quorum sensing circuitry such as the global transcriptional regulator MvfR and the quorum sensing-related quinolone signaling molecules PQS, HHQ, and HQNO that respond to κ-opioids. The in vivo significance of κ-opioid signaling of P. aeruginosa was demonstrated in mice by showing that dynorphin is released from the intestinal mucosa following ischemia/reperfusion injury, activates quinolone signaling in P. aeruginosa, and enhances the virulence of P. aeruginosa against Lactobacillus spp. and Caenorhabditis elegans. Taken together, these data demonstrate that P. aeruginosa can intercept opioid compounds released during host stress and integrate them into core elements of quorum sensing circuitry leading to enhanced virulence. PMID:17367209

  1. Otopathogenic Pseudomonas aeruginosa Enters and Survives Inside Macrophages

    PubMed Central

    Mittal, Rahul; Lisi, Christopher V.; Kumari, Hansi; Grati, M’hamed; Blackwelder, Patricia; Yan, Denise; Jain, Chaitanya; Mathee, Kalai; Weckwerth, Paulo H.; Liu, Xue Z.

    2016-01-01

    Otitis media (OM) is a broad term describing a group of infectious and inflammatory disorders of the middle ear. Despite antibiotic therapy, acute OM can progress to chronic suppurative otitis media (CSOM) characterized by ear drum perforation and purulent discharge. Pseudomonas aeruginosa is the most common pathogen associated with CSOM. Although, macrophages play an important role in innate immune responses but their role in the pathogenesis of P. aeruginosa-induced CSOM is not known. The objective of this study is to examine the interaction of P. aeruginosa with primary macrophages. We observed that P. aeruginosa enters and multiplies inside human and mouse primary macrophages. This bacterial entry in macrophages requires both microtubule and actin dependent processes. Transmission electron microscopy demonstrated that P. aeruginosa was present in membrane bound vesicles inside macrophages. Interestingly, deletion of oprF expression in P. aeruginosa abrogates its ability to survive inside macrophages. Our results suggest that otopathogenic P. aeruginosa entry and survival inside macrophages is OprF-dependent. The survival of bacteria inside macrophages will lead to evasion of killing and this lack of pathogen clearance by phagocytes contributes to the persistence of infection in CSOM. Understanding host–pathogen interaction will provide novel avenues to design effective treatment modalities against OM. PMID:27917157

  2. Environmental Pseudomonads Inhibit Cystic Fibrosis Patient-Derived Pseudomonas aeruginosa.

    PubMed

    Chatterjee, Payel; Davis, Elizabeth; Yu, Fengan; James, Sarah; Wildschutte, Julia H; Wiegmann, Daniel D; Sherman, David H; McKay, Robert M; LiPuma, John J; Wildschutte, Hans

    2017-01-15

    Pseudomonas aeruginosa is an opportunistic pathogen which is evolving resistance to many currently used antibiotics. While much research has been devoted to the roles of pathogenic P. aeruginosa in cystic fibrosis (CF) patients, less is known of its ecological properties. P. aeruginosa dominates the lungs during chronic infection in CF patients, yet its abundance in some environments is less than that of other diverse groups of pseudomonads. Here, we sought to determine if clinical isolates of P. aeruginosa are vulnerable to environmental pseudomonads that dominate soil and water habitats in one-to-one competitions which may provide a source of inhibitory factors. We isolated a total of 330 pseudomonads from diverse habitats of soil and freshwater ecosystems and competed these strains against one another to determine their capacity for antagonistic activity. Over 900 individual inhibitory events were observed. Extending the analysis to P. aeruginosa isolates revealed that clinical isolates, including ones with increased alginate production, were susceptible to competition by multiple environmental strains. We performed transposon mutagenesis on one isolate and identified an ∼14.8-kb locus involved in antagonistic activity. Only two other environmental isolates were observed to carry the locus, suggesting the presence of additional unique compounds or interactions among other isolates involved in outcompeting P. aeruginosa This collection of strains represents a source of compounds that are active against multiple pathogenic strains. With the evolution of resistance of P. aeruginosa to currently used antibiotics, these environmental strains provide opportunities for novel compound discovery against drug-resistant clinical strains.

  3. Pseudomonas aeruginosa and Its Bacterial Components Influence the Cytokine Response in Thymocytes and Splenocytes

    PubMed Central

    Zimmermann, Corinna; Mausberg, Anne K.; Dehmel, Thomas; Kieseier, Bernd C.; Hartung, Hans-Peter; Hofstetter, Harald H.

    2016-01-01

    Infections with Pseudomonas aeruginosa may cause many different diseases. The spectrum of such infections in general includes inflammation and bacterial sepsis. Hospital-acquired pneumonia, naturally resistant to a wide range of antibiotics, is associated with a particularly high mortality rate in mechanically ventilated patients. The pathogenesis of P. aeruginosa is complex and mediated by several virulence factors, as well as cell-associated factors. We have previously demonstrated that stimulation with different bacteria triggers the cytokine response of thymocytes. In this study, we investigated the effect of P. aeruginosa and its different components on the cytokine production of immature and mature immune cells. We found that the induced cytokine pattern in the thymus and the spleen after infections with P. aeruginosa is primarily mediated by lipopolysaccharide (LPS) of the outer cell membrane, but other components of the bacterium can influence the cytokine secretion as well. Stimulation with heat-killed P. aeruginosa and LPS does not influence the amount of cytokine-producing CD4+ T cells but instead suppresses the emergence of Th17 cells. However, stimulation with P. aeruginosa or its components triggers the interleukin-17 (IL-17) response both in thymocytes and in splenocytes. We conclude that infections with P. aeruginosa affect the cytokine secretion of immature and mature cells and that IL-17 and Th17 cells play only a minor role in the development of pathological systemic inflammatory disease conditions during P. aeruginosa infections. Therefore, other inflammatory immune responses must be responsible for septic reactions of the host. PMID:26902726

  4. Pseudomonas aeruginosa adapts its iron uptake strategies in function of the type of infections.

    PubMed

    Cornelis, Pierre; Dingemans, Jozef

    2013-01-01

    Pseudomonas aeruginosa is a Gram-negative γ-Proteobacterium which is known for its capacity to colonize various niches, including some invertebrate and vertebrate hosts, making it one of the most frequent bacteria causing opportunistic infections. P. aeruginosa is able to cause acute as well as chronic infections and it uses different colonization and virulence factors to do so. Infections range from septicemia, urinary infections, burn wound colonization, and chronic colonization of the lungs of cystic fibrosis patients. Like the vast majority of organisms, P. aeruginosa needs iron to sustain growth. P. aeruginosa utilizes different strategies to take up iron, depending on the type of infection it causes. Two siderophores are produced by this bacterium, pyoverdine and pyochelin, characterized by high and low affinities for iron respectively. P. aeruginosa is also able to utilize different siderophores from other microorganisms (siderophore piracy). It can also take up heme from hemoproteins via two different systems. Under microaerobic or anaerobic conditions, P. aeruginosa is also able to take up ferrous iron via its Feo system using redox-cycling phenazines. Depending on the type of infection, P. aeruginosa can therefore adapt by switching from one iron uptake system to another as we will describe in this short review.

  5. Gallium-Protoporphyrin IX Inhibits Pseudomonas aeruginosa Growth by Targeting Cytochromes

    PubMed Central

    Hijazi, Sarah; Visca, Paolo; Frangipani, Emanuela

    2017-01-01

    Pseudomonas aeruginosa is a challenging pathogen due to both innate and acquired resistance to antibiotics. It is capable of causing a variety of infections, including chronic lung infection in cystic fibrosis (CF) patients. Given the importance of iron in bacterial physiology and pathogenicity, iron-uptake and metabolism have become attractive targets for the development of new antibacterial compounds. P. aeruginosa can acquire iron from a variety of sources to fulfill its nutritional requirements both in the environment and in the infected host. The adaptation of P. aeruginosa to heme iron acquisition in the CF lung makes heme utilization pathways a promising target for the development of new anti-Pseudomonas drugs. Gallium [Ga(III)] is an iron mimetic metal which inhibits P. aeruginosa growth by interfering with iron-dependent metabolism. The Ga(III) complex of the heme precursor protoporphyrin IX (GaPPIX) showed enhanced antibacterial activity against several bacterial species, although no inhibitory effect has been reported on P. aeruginosa. Here, we demonstrate that GaPPIX is indeed capable of inhibiting the growth of clinical P. aeruginosa strains under iron-deplete conditions, as those encountered by bacteria during infection, and that GaPPIX inhibition is reversed by iron. Using P. aeruginosa PAO1 as model organism, we show that GaPPIX enters cells through both the heme-uptake systems has and phu, primarily via the PhuR receptor which plays a crucial role in P. aeruginosa adaptation to the CF lung. We also demonstrate that intracellular GaPPIX inhibits the aerobic growth of P. aeruginosa by targeting cytochromes, thus interfering with cellular respiration. PMID:28184354

  6. Gallium-Protoporphyrin IX Inhibits Pseudomonas aeruginosa Growth by Targeting Cytochromes.

    PubMed

    Hijazi, Sarah; Visca, Paolo; Frangipani, Emanuela

    2017-01-01

    Pseudomonas aeruginosa is a challenging pathogen due to both innate and acquired resistance to antibiotics. It is capable of causing a variety of infections, including chronic lung infection in cystic fibrosis (CF) patients. Given the importance of iron in bacterial physiology and pathogenicity, iron-uptake and metabolism have become attractive targets for the development of new antibacterial compounds. P. aeruginosa can acquire iron from a variety of sources to fulfill its nutritional requirements both in the environment and in the infected host. The adaptation of P. aeruginosa to heme iron acquisition in the CF lung makes heme utilization pathways a promising target for the development of new anti-Pseudomonas drugs. Gallium [Ga(III)] is an iron mimetic metal which inhibits P. aeruginosa growth by interfering with iron-dependent metabolism. The Ga(III) complex of the heme precursor protoporphyrin IX (GaPPIX) showed enhanced antibacterial activity against several bacterial species, although no inhibitory effect has been reported on P. aeruginosa. Here, we demonstrate that GaPPIX is indeed capable of inhibiting the growth of clinical P. aeruginosa strains under iron-deplete conditions, as those encountered by bacteria during infection, and that GaPPIX inhibition is reversed by iron. Using P. aeruginosa PAO1 as model organism, we show that GaPPIX enters cells through both the heme-uptake systems has and phu, primarily via the PhuR receptor which plays a crucial role in P. aeruginosa adaptation to the CF lung. We also demonstrate that intracellular GaPPIX inhibits the aerobic growth of P. aeruginosa by targeting cytochromes, thus interfering with cellular respiration.

  7. Phage-antibiotic synergism: a possible approach to combatting Pseudomonas aeruginosa.

    PubMed

    Knezevic, Petar; Curcin, Sanja; Aleksic, Verica; Petrusic, Milivoje; Vlaski, Ljiljana

    2013-01-01

    Pseudomonas aeruginosa is a highly resistant opportunistic pathogen and an important etiological agent of various types of infections. During the last decade, P. aeruginosa phages have been extensively examined as alternative antimicrobial agents. The aim of the study was to determine antimicrobial effectiveness of combining subinhibitory concentrations of gentamicin, ceftriaxone, ciprofloxacin or polymyxin B with P. aeruginosa-specific bacteriophages belonging to families Podoviridae and Siphoviridae. The time-kill curve method showed that a combination of bacteriophages and subinhibitory concentrations of ceftriaxone generally reduced bacterial growth, and synergism was proven for a Siphoviridae phage σ-1 after 300 min of incubation. The detected alteration in morphology after ceftriaxone application, resulting in cell elongation, along with its specific mode of action, seemed to be a necessary but was not a sufficient reason for phage-antibiotic synergism. The phenomenon offers an opportunity for future development of treatment strategies for potentially lethal infections caused by P. aeruginosa.

  8. Pseudomonas aeruginosa Airway Infection Recruits and Modulates Neutrophilic Myeloid-Derived Suppressor Cells

    PubMed Central

    Öz, Hasan H.; Zhou, Benyuan; Voss, Pina; Carevic, Melanie; Schroth, Carolin; Frey, Nina; Rieber, Nikolaus; Hector, Andreas; Hartl, Dominik

    2016-01-01

    Pseudomonas aeruginosa is an opportunistic pathogen that causes infections mainly in patients with cystic fibrosis (CF) lung disease. Despite innate and adaptive immune responses upon infection, P. aeruginosa is capable of efficiently escaping host defenses, but the underlying immune mechanisms remain poorly understood. Myeloid-derived suppressor cells (MDSCs) are innate immune cells that are functionally characterized by their potential to suppress T- and natural killer (NK)-cell responses. Here we demonstrate, using an airway in vivo infection model, that P. aeruginosa recruits and activates neutrophilic MDSCs, which functionally suppress T-cell responses. We further show that the CF gene defect (CF transmembrane conductance regulator, CFTR) modulates the functionality, but not the recruitment or generation of neutrophilic MDSCs. Collectively, we define a mechanism by which P. aeruginosa airway infection undermines host immunity by modulating neutrophilic MDSCs in vivo. PMID:27965936

  9. Mechanisms of phagocytosis and host clearance of Pseudomonas aeruginosa.

    PubMed

    Lovewell, Rustin R; Patankar, Yash R; Berwin, Brent

    2014-04-01

    Pseudomonas aeruginosa is an opportunistic bacterial pathogen responsible for a high incidence of acute and chronic pulmonary infection. These infections are particularly prevalent in patients with chronic obstructive pulmonary disease and cystic fibrosis: much of the morbidity and pathophysiology associated with these diseases is due to a hypersusceptibility to bacterial infection. Innate immunity, primarily through inflammatory cytokine production, cellular recruitment, and phagocytic clearance by neutrophils and macrophages, is the key to endogenous control of P. aeruginosa infection. In this review, we highlight recent advances toward understanding the innate immune response to P. aeruginosa, with a focus on the role of phagocytes in control of P. aeruginosa infection. Specifically, we summarize the cellular and molecular mechanisms of phagocytic recognition and uptake of P. aeruginosa, and how current animal models of P. aeruginosa infection reflect clinical observations in the context of phagocytic clearance of the bacteria. Several notable phenotypic changes to the bacteria are consistently observed during chronic pulmonary infections, including changes to mucoidy and flagellar motility, that likely enable or reflect their ability to persist. These traits are likewise examined in the context of how the bacteria avoid phagocytic clearance, inflammation, and sterilizing immunity.

  10. Mechanisms of phagocytosis and host clearance of Pseudomonas aeruginosa

    PubMed Central

    Lovewell, Rustin R.; Patankar, Yash R.

    2014-01-01

    Pseudomonas aeruginosa is an opportunistic bacterial pathogen responsible for a high incidence of acute and chronic pulmonary infection. These infections are particularly prevalent in patients with chronic obstructive pulmonary disease and cystic fibrosis: much of the morbidity and pathophysiology associated with these diseases is due to a hypersusceptibility to bacterial infection. Innate immunity, primarily through inflammatory cytokine production, cellular recruitment, and phagocytic clearance by neutrophils and macrophages, is the key to endogenous control of P. aeruginosa infection. In this review, we highlight recent advances toward understanding the innate immune response to P. aeruginosa, with a focus on the role of phagocytes in control of P. aeruginosa infection. Specifically, we summarize the cellular and molecular mechanisms of phagocytic recognition and uptake of P. aeruginosa, and how current animal models of P. aeruginosa infection reflect clinical observations in the context of phagocytic clearance of the bacteria. Several notable phenotypic changes to the bacteria are consistently observed during chronic pulmonary infections, including changes to mucoidy and flagellar motility, that likely enable or reflect their ability to persist. These traits are likewise examined in the context of how the bacteria avoid phagocytic clearance, inflammation, and sterilizing immunity. PMID:24464809

  11. COMPARATIVE TAXONOMY OF CRYSTALLOGENIC STRAINS OF PSEUDOMONAS AERUGINOSA AND PSEUDOMONAS CHLORORAPHIS

    PubMed Central

    Haynes, William C.; Rhodes, Lenora J.

    1962-01-01

    Haynes, William C. (Northern Utilization Research and Development Division, Peoria, Ill.) and Lenora J. Rhodes. Comparative taxonomy of crystallogenic strains of Pseudomonas aeruginosa and Pseudomonas chlororaphis. J. Bacteriol. 84:1080–1084. 1962.—Only 11 of 39 strains received in the Agricultural Research Service Culture Collection under the designation Pseudonomas chlororaphis proved to be authentic; 28 were typical, pyocyanogenic strains of P. aeruginosa. The reason for this disproportionately high rate of misidentification apparently arises from an erroneous belief that the ability to produce green and yellow crystals of chlororaphin and oxychlororaphin is confined to P. chlororaphis. The ability of many strains of P. aeruginosa to do likewise is not well known. Inasmuch as the characteristic is not unique to P. chlororaphis, other criteria are required to distinguish crystallogenic strains of these species. After a taxonomic comparison of 18 strains of P. chlororaphis and 47 crystallogenic strains of P. aeruginosa, it was determined that there are three main distinctions: (i) P. aeruginosa grows well at 42 C but fails to grow upon serial transfer at 5 C, whereas P. chlororaphis fails to grow at 42 C, but grows well at 5 C: (ii) most strains of P. aeruginosa produce pyocyanin, whereas P. chlororaphis strains do not; (iii) P. aeruginosa cells possess only one or two polar flagella, whereas P. chlororaphis usually has at least four, sometimes as many as eight, polar flagella. PMID:13963593

  12. Phosphorylcholine Phosphatase: A Peculiar Enzyme of Pseudomonas aeruginosa

    PubMed Central

    Domenech, Carlos Eduardo; Otero, Lisandro Horacio; Beassoni, Paola Rita; Lisa, Angela Teresita

    2011-01-01

    Pseudomonas aeruginosa synthesizes phosphorylcholine phosphatase (PchP) when grown on choline, betaine, dimethylglycine or carnitine. In the presence of Mg2+ or Zn2+, PchP catalyzes the hydrolysis of p-nitrophenylphosphate (p-NPP) or phosphorylcholine (Pcho). The regulation of pchP gene expression is under the control of GbdR and NtrC; dimethylglycine is likely the metabolite directly involved in the induction of PchP. Therefore, the regulation of choline metabolism and consequently PchP synthesis may reflect an adaptive response of P. aeruginosa to environmental conditions. Bioinformatic and biochemistry studies shown that PchP contains two sites for alkylammonium compounds (AACs): one in the catalytic site near the metal ion-phosphoester pocket, and another in an inhibitory site responsible for the binding of the alkylammonium moiety. Both sites could be close to each other and interact through the residues 42E, 43E and 82YYY84. Zn2+ is better activator than Mg2+ at pH 5.0 and it is more effective at alleviating the inhibition produced by the entry of Pcho or different AACs in the inhibitory site. We postulate that Zn2+ induces at pH 5.0 a conformational change in the active center that is communicated to the inhibitory site, producing a compact or closed structure. However, at pH 7.4, this effect is not observed because to the hydrolysis of the [Zn2+L2−1L20(H2O)2] complex, which causes a change from octahedral to tetrahedral in the metal coordination geometry. This enzyme is also present in P. fluorescens, P. putida, P. syringae, and other organisms. We have recently crystallized PchP and solved its structure. PMID:21915373

  13. Fructooligosacharides Reduce Pseudomonas aeruginosa PAO1 Pathogenicity through Distinct Mechanisms

    PubMed Central

    Ortega-González, Mercedes; Sánchez de Medina, Fermín; Molina-Santiago, Carlos; López-Posadas, Rocío; Pacheco, Daniel; Krell, Tino; Martínez-Augustin, Olga; Abdelali, Daddaoua

    2014-01-01

    Pseudomonas aeruginosa is ubiquitously present in the environment and acts as an opportunistic pathogen on humans, animals and plants. We report here the effects of the prebiotic polysaccharide inulin and its hydrolysed form FOS on this bacterium. FOS was found to inhibit bacterial growth of strain PAO1, while inulin did not affect growth rate or yield in a significant manner. Inulin stimulated biofilm formation, whereas a dramatic reduction of the biofilm formation was observed in the presence of FOS. Similar opposing effects were observed for bacterial motility, where FOS inhibited the swarming and twitching behaviour whereas inulin caused its stimulation. In co-cultures with eukaryotic cells (macrophages) FOS and, to a lesser extent, inulin reduced the secretion of the inflammatory cytokines IL-6, IL-10 and TNF-α. Western blot experiments indicated that the effects mediated by FOS in macrophages are associated with a decreased activation of the NF-κB pathway. Since FOS and inulin stimulate pathway activation in the absence of bacteria, the FOS mediated effect is likely to be of indirect nature, such as via a reduction of bacterial virulence. Further, this modulatory effect is observed also with the highly virulent ptxS mutated strain. Co-culture experiments of P. aeruginosa with IEC18 eukaryotic cells showed that FOS reduces the concentration of the major virulence factor, exotoxin A, suggesting that this is a possible mechanism for the reduction of pathogenicity. The potential of these compounds as components of antibacterial and anti-inflammatory cocktails is discussed. PMID:24465697

  14. Fast and specific detection of Pseudomonas Aeruginosa from other pseudomonas species by PCR

    PubMed Central

    Jami Al-Ahmadi, G.; Zahmatkesh Roodsari, R.

    2016-01-01

    Summary Pseudomonas aeruginosa is an important life-threatening nosocomial pathogen that plays a prominent role in wound infections of burned patients. We designed this study to identify the isolates of P. aeruginosa recovered from burned patients at the genus and species level through primers targeting oprI and oprL genes, and analyzed their antimicrobial resistance pattern. Over a 2-month period, wound samples were taken from burned patients and plated on MacConkey agar. All suspected colonies were primarily screened for P. aeruginosa by a combination of phenotypic tests. Molecular identifications of colonies were done using specific primers for oprI and oprL genes. Bacterial isolates were recovered from burn wound infections. Based on phenotypical identification tests, 138 (34%) P. aeruginosa isolates were identified; whereas by molecular techniques, just 128 P. aeruginosa yielded amplicon of oprL gene using species-specific primers, verifying the identity of P. aeruginosa; the others yielded amplicon of oprI gene using genus-specific primers, confirming the identity of fluorescent pseudomonads. This study indicates that molecular detection of P. aeruginosa in burn patients employing the OprL gene target is a useful technique for the early and precise detection of P. aeruginosa. PCR detection should be carried out as well as phenotypic testing for the best aggressive antibiotic treatment of P. aeruginosa strains at an earlier stage. It also has significant benefits on clinical outcomes. PMID:28289359

  15. Efflux pumps expression and its association with porin down-regulation and β-lactamase production among Pseudomonas aeruginosa causing bloodstream infections in Brazil

    PubMed Central

    2010-01-01

    Background Multi-drug efflux pumps have been increasingly recognized as a major component of resistance in P. aeruginosa. We have investigated the expression level of efflux systems among clinical isolates of P. aeruginosa, regardless of their antimicrobial susceptibility profile. Results Aztreonam exhibited the highest in vitro activity against the P. aeruginosa isolates studied (64.4% susceptibility), whereas susceptibility rates of imipenem and meropenem were both 47.5%. The MexXY-OprM and MexAB-OprM efflux systems were overexpressed in 50.8% and 27.1% of isolates studied, respectively. Overexpression of the MexEF-OprN and MexCD-OprJ systems was not observed. AmpC β-lactamase was overexpressed in 11.9% of P. aeruginosa isolates. In addition, decreased oprD expression was also observed in 69.5% of the whole collection, and in 87.1% of the imipenem non-susceptible P. aeruginosa clinical isolates. The MBL-encoding genes blaSPM-1 and blaIMP-1 were detected in 23.7% and 1.7% P. aeruginosa isolates, respectively. The blaGES-1 was detected in 5.1% of the isolates, while blaGES-5 and blaCTX-M-2 were observed in 1.7% of the isolates evaluated. In the present study, we have observed that efflux systems represent an adjuvant mechanism for antimicrobial resistance. Conclusions Efflux systems in association of distinct mechanisms such as the porin down-regulation, AmpC overproduction and secondary β-lactamases play also an important role in the multi-drug resistance phenotype among P. aeruginosa clinical isolates. PMID:20704733

  16. Membrane proteomes of Pseudomonas aeruginosa and Acinetobacter baumannii.

    PubMed

    Dé, E; Cosette, P; Coquet, L; Siroy, A; Alexandre, S; Duncan, A; Naudin, B; Rihouey, C; Schaumann, A; Junter, G A; Jouenne, T

    2011-12-01

    Acinetobacter baumannii and Pseudomonas aeruginosa are known for their intrinsic resistance to antibiotics. Between mechanisms involved in this resistance, diminished expression of outer membrane proteins and up-regulation of efflux pumps play an important role. The characterization of membrane proteins is consequently necessary because of their importance in the antibiotic resistance but also in virulence. This review presents proteomic investigations aiming to describe the protein content of the membranes of these two bacterial species.

  17. [Properties of a nitrite reductase inhibitor protein from Pseudomonas aeruginosa].

    PubMed

    Karapetian, A V; Nalbandian, R M

    1993-08-01

    The amino acid composition and major physico-chemical properties of the "nonblue" copper protein isolated earlier from Pseudomonas aeruginosa have been determined. It has been found that the azurin oxidase, cytochrome c551 oxidase and superoxide dismutase activities of the enzyme are inhibited by this protein. The inhibition seems to be due to the protein interaction with the electron-accepting center of nitrite reductase.

  18. Sphingoid long chain bases prevent lung infection by Pseudomonas aeruginosa

    PubMed Central

    Pewzner-Jung, Yael; Tavakoli Tabazavareh, Shaghayegh; Grassmé, Heike; Becker, Katrin Anne; Japtok, Lukasz; Steinmann, Jörg; Joseph, Tammar; Lang, Stephan; Tuemmler, Burkhard; Schuchman, Edward H; Lentsch, Alex B; Kleuser, Burkhard; Edwards, Michael J; Futerman, Anthony H; Gulbins, Erich

    2014-01-01

    Cystic fibrosis patients and patients with chronic obstructive pulmonary disease, trauma, burn wound, or patients requiring ventilation are susceptible to severe pulmonary infection by Pseudomonas aeruginosa. Physiological innate defense mechanisms against this pathogen, and their alterations in lung diseases, are for the most part unknown. We now demonstrate a role for the sphingoid long chain base, sphingosine, in determining susceptibility to lung infection by P. aeruginosa. Tracheal and bronchial sphingosine levels were significantly reduced in tissues from cystic fibrosis patients and from cystic fibrosis mouse models due to reduced activity of acid ceramidase, which generates sphingosine from ceramide. Inhalation of mice with sphingosine, with a sphingosine analog, FTY720, or with acid ceramidase rescued susceptible mice from infection. Our data suggest that luminal sphingosine in tracheal and bronchial epithelial cells prevents pulmonary P. aeruginosa infection in normal individuals, paving the way for novel therapeutic paradigms based on inhalation of acid ceramidase or of sphingoid long chain bases in lung infection. PMID:25085879

  19. Ambroxol inhibits mucoid conversion of Pseudomonas aeruginosa and contributes to the bactericidal activity of ciprofloxacin against mucoid P. aeruginosa biofilms.

    PubMed

    Wang, Wenlei; Yu, Jialin; He, Yu; Wang, Zhengli; Li, Fang

    2016-07-01

    Pseudomonas aeruginosa is an opportunistic human pathogen that can cause severe infections in immunocompromised individuals. Because it forms biofilms, which protect against host immune attack and increase resistance to conventional antibiotics, mucoid P. aeruginosa is nearly impossible to eradicate. Moreover, mucoid conversion of P. aeruginosa in cystic fibrosis (CF) patients leads to poor outcomes. This conversion is mainly due to mucA gene mutation, which is thought to be induced by polymorphonuclear leukocytes (PMNs) and the reactive oxygen species they release. Ambroxol, a mucolytic agent with antioxidant characteristics, is used clinically, and this compound has recently been demonstrated to possess anti-biofilm properties. In this study, we found that ambroxol inhibits the H2 O2 -mediated conversion of P. aeruginosa from a non-mucoid to a mucoid phenotype, an effect that is due to its antioxidant property against H2 O2 . Furthermore, the bactericidal activity of ciprofloxacin against mucoid P. aeruginosa biofilms was increased in vitro when used in combination with ambroxol.

  20. Full Virulence of Pseudomonas aeruginosa Requires OprF▿

    PubMed Central

    Fito-Boncompte, Laurène; Chapalain, Annelise; Bouffartigues, Emeline; Chaker, Hichem; Lesouhaitier, Olivier; Gicquel, Gwendoline; Bazire, Alexis; Madi, Amar; Connil, Nathalie; Véron, Wilfried; Taupin, Laure; Toussaint, Bertrand; Cornelis, Pierre; Wei, Qing; Shioya, Koki; Déziel, Eric; Feuilloley, Marc G. J.; Orange, Nicole; Dufour, Alain; Chevalier, Sylvie

    2011-01-01

    OprF is a general outer membrane porin of Pseudomonas aeruginosa, a well-known human opportunistic pathogen associated with severe hospital-acquired sepsis and chronic lung infections of cystic fibrosis patients. A multiphenotypic approach, based on the comparative study of a wild-type strain of P. aeruginosa, its isogenic oprF mutant, and an oprF-complemented strain, showed that OprF is required for P. aeruginosa virulence. The absence of OprF results in impaired adhesion to animal cells, secretion of ExoT and ExoS toxins through the type III secretion system (T3SS), and production of the quorum-sensing-dependent virulence factors pyocyanin, elastase, lectin PA-1L, and exotoxin A. Accordingly, in the oprF mutant, production of the signal molecules N-(3-oxododecanoyl)-l-homoserine lactone and N-butanoyl-l-homoserine lactone was found to be reduced and delayed, respectively. Pseudomonas quinolone signal (PQS) production was decreased, while its precursor, 4-hydroxy-2-heptylquinoline (HHQ), accumulated in the cells. Taken together, these results show the involvement of OprF in P. aeruginosa virulence, at least partly through modulation of the quorum-sensing network. This is the first study showing a link between OprF, PQS synthesis, T3SS, and virulence factor production, providing novel insights into virulence expression. PMID:21189321

  1. Pathogenecity of Pseudomonas aeruginosa in Oreochromis mossambicus and treatment using lime oil nanoemulsion.

    PubMed

    Thomas, John; Thanigaivel, S; Vijayakumar, S; Acharya, Kuntal; Shinge, Dhairyasheel; Seelan, T Samuel Jeba; Mukherjee, Amitava; Chandrasekaran, Natarajan

    2014-04-01

    Fish diseases caused by Pseudomonas aeruginosa, a known pathogenic organism, is responsible for considerable economic losses in the commercial cultivation of Oreochromis mossambicus (Tilapia). The bacteria were injected into healthy fish through intramuscular injection, oral and immersion challenge. Infection was confirmed by histopathological investigation of the infected organs. Lime nanoemulsion was prepared and the effectiveness of the nanoemulsion was studied both in vitro and in vivo by well diffusion assay and in vivo in the artificially infected fish. Results showed that the lime nanoemulsion was effective against the P. aeruginosa infection in O. mossambicus both in vitro and in vivo.

  2. Solubility and bioactivity of the Pseudomonas quinolone signal are increased by a Pseudomonas aeruginosa-produced surfactant.

    PubMed

    Calfee, M Worth; Shelton, John G; McCubrey, James A; Pesci, Everett C

    2005-02-01

    Pseudomonas aeruginosa is a gram-negative bacterium that causes serious infections in immunocompromised individuals and cystic fibrosis patients. This opportunistic pathogen controls many of its virulence factors and cellular functions through the activity of three cell-to-cell signals, N-(3-oxododecanoyl)-L-homoserine lactone, N-butyryl-L-homoserine lactone, and the Pseudomonas quinolone signal (PQS). The activity of these signals is dependent upon their ability to dissolve in and freely diffuse through the aqueous solution in which P. aeruginosa happens to reside. Despite this, our data indicated that PQS was relatively insoluble in aqueous solutions, which led us to postulate that P. aeruginosa could be producing a PQS-solubilizing factor. In this report, we show that the P. aeruginosa-produced biosurfactant rhamnolipid greatly enhances the solubility of PQS in aqueous solutions. The enhanced solubility of PQS led to an increase in PQS bioactivity, as measured by both a gene induction assay and an apoptosis assay. This is the first demonstration of the importance of a bacterial surfactant in the solubilization and bioactivity of a cell-to-cell signal.

  3. Second harmonic generation imaging of corneal stroma after infection by Pseudomonas aeruginosa

    PubMed Central

    Robertson, Danielle M.; Rogers, Nathan A.; Petroll, W. Matthew; Zhu, Meifang

    2017-01-01

    Pseudomonas aeruginosa is a pathogenic gram-negative organism that has the ability to cause blinding corneal infections following trauma and during contact lens wear. In this study, we investigated the directional movement and orientation of an invasive corneal isolate of P. aeruginosa in the corneal stroma during infection of ex vivo and in vivo rabbit corneas using multiphoton fluorescence and second harmonic generation (SHG) imaging. Ex vivo, rabbit corneas were subject to three partial thickness wounds prior to inoculation. In vivo, New Zealand white rabbits were fit with P. aeruginosa laden contact lenses in the absence of a penetrating wound. At all time points tested, infiltration of the corneal stroma by P. aeruginosa revealed a high degree of alignment between the bacteria and collagen lamellae ex vivo (p < 0.001). In vivo, P. aeruginosa traveled throughout the stroma in discrete regions or bands. Within each region, the bacteria showed good alignment with collagen lamellae (P = 0.002). Interestingly, in both the in vitro and in vivo models, P. aeruginosa did not appear to cross the corneal limbus. Taken together, our findings suggest that P. aeruginosa exploits the precise spacing of collagen lamellae in the central cornea to facilitate spread throughout the stroma.

  4. Annona glabra Flavonoids Act As Antimicrobials by Binding to Pseudomonas aeruginosa Cell Walls

    PubMed Central

    Galvão, Stanley de S. L.; Monteiro, Andrea de S.; Siqueira, Ezequias P.; Bomfim, Maria Rosa Q.; Dias-Souza, Marcus Vinícius; Ferreira, Gabriella F.; Denadai, Angelo Márcio L.; Santos, Áquila R. C.; Lúcia dos Santos, Vera; de Souza-Fagundes, Elaine M.; Fernandes, Elizabeth S.; Monteiro-Neto, Valério

    2016-01-01

    Pseudomonas aeruginosa is an important pathogen in opportunistic infections in humans. The increased incidence of antimicrobial-resistant P. aeruginosa isolates has highlighted the need for novel and more potent therapies against this microorganism. Annona glabra is known for presenting different compounds with diverse biological activities, such as anti-tumor and immunomodulatory activities. Although other species of the family display antimicrobial actions, this has not yet been reported for A. glabra. Here, we investigated the antimicrobial activity of the ethyl acetate fraction (EAF) obtained from the leaf hydroalcoholic extract of A. glabra. EAF was bactericidal against different strains of P. aeruginosa. EAF also presented with a time- and concentration-dependent effect on P. aeruginosa viability. Testing of different EAF sub-fractions showed that the sub-fraction 32-33 (SF32-33) was the most effective against P. aeruginosa. Analysis of the chemical constituents of SF32-33 demonstrated a high content of flavonoids. Incubation of this active sub-fraction with P. aeruginosa ATCC 27983 triggered an endothermic reaction, which was accompanied by an increased electric charge, suggesting a high binding of SF32-33 compounds to bacterial cell walls. Collectively, our results suggest that A. glabra-derived compounds, especially flavonoids, may be useful for treating infections caused by P. aeruginosa. PMID:28066374

  5. SERS detection of the biomarker hydrogen cyanide from Pseudomonas aeruginosa cultures isolated from cystic fibrosis patients

    PubMed Central

    Lauridsen, Rikke Kragh; Sommer, Lea M.; Johansen, Helle Krogh; Rindzevicius, Tomas; Molin, Søren; Jelsbak, Lars; Engelsen, Søren Balling; Boisen, Anja

    2017-01-01

    Pseudomonas aeruginosa is the primary cause of chronic airway infections in cystic fibrosis (CF) patients. Persistent infections are seen from the first P. aeruginosa culture in about 75% of young CF patients, and it is important to discover new ways to detect P. aeruginosa at an earlier stage. The P. aeruginosa biomarker hydrogen cyanide (HCN) contains a triple bond, which is utilized in this study because of the resulting characteristic C≡N peak at 2135 cm−1 in a Raman spectrum. The Raman signal was enhanced by surface-enhanced Raman spectroscopy (SERS) on a Au-coated SERS substrate. After long-term infection, a mutation in the patho-adaptive lasR gene can alter the expression of HCN, which is why it is sometimes not possible to detect HCN in the breath of chronically infected patients. Four P. aeruginosa reference strains and 12 clinical P. aeruginosa strains isolated from CF children were evaluated, and HCN was clearly detected from overnight cultures of all wild type-like isolates and half of the later isolates from the same patients. The clinical impact could be that P. aeruginosa infections could be detected at an earlier stage, because daily breath sampling with an immediate output could be possible with a point-of-care SERS device. PMID:28349938

  6. Pseudomonas aeruginosa in a neonatal intensive care unit: molecular epidemiology and infection control measures

    PubMed Central

    2009-01-01

    Background Pseudomonas aeruginosa, a non-fermentative, gram-negative rod, is responsible for a wide variety of clinical syndromes in NICU patients, including sepsis, pneumonia, meningitis, diarrhea, conjunctivitis and skin infections. An increased number of infections and colonisations by P. aeruginosa has been observed in the neonatal intensive care unit (NICU) of our university hospital between 2005 and 2007. Methods Hand disinfection compliance before and after an educational programme on hand hygiene was evaluated. Identification of microrganisms was performed using conventional methods. Antibiotic susceptibility was evaluated by MIC microdilution. Genotyping was performed by PFGE analysis. Results The molecular epidemiology of Pseudomonas aeruginosa in the NICU of the Federico II University hospital (Naples, Italy) and the infection control measures adopted to stop the spreading of P. aeruginosa in the ward were described. From July 2005 to June 2007, P. aeruginosa was isolated from 135 neonates and caused severe infections in 11 of them. Macrorestriction analysis of clinical isolates from 90 neonates identified 20 distinct genotypes, one major PFGE type (A) being isolated from 48 patients and responsible for 4 infections in 4 of them, four other distinct recurrent genotypes being isolated in 6 to 4 patients. Seven environmental strains were isolated from the hand of a nurse and from three sinks on two occasions, two of these showing PFGE profiles A and G identical to two clinical isolates responsible for infection. The successful control of the outbreak was achieved through implementation of active surveillance of healthcare-associated infections in the ward together with environmental microbiological sampling and an intense educational programme on hand disinfection among the staff members. Conclusion P. aeruginosa infections in the NICU were caused by the cross-transmission of an epidemic clone in 4 neonates, and by the selection of sporadic clones in 7

  7. Within-host evolution of Pseudomonas aeruginosa reveals adaptation toward iron acquisition from hemoglobin.

    PubMed

    Marvig, Rasmus Lykke; Damkiær, Søren; Khademi, S M Hossein; Markussen, Trine M; Molin, Søren; Jelsbak, Lars

    2014-05-06

    ABSTRACT Pseudomonas aeruginosa airway infections are a major cause of mortality and morbidity of cystic fibrosis (CF) patients. In order to persist, P. aeruginosa depends on acquiring iron from its host, and multiple different iron acquisition systems may be active during infection. This includes the pyoverdine siderophore and the Pseudomonas heme utilization (phu) system. While the regulation and mechanisms of several iron-scavenging systems are well described, it is not clear whether such systems are targets for selection during adaptation of P. aeruginosa to the host environment. Here we investigated the within-host evolution of the transmissible P. aeruginosa DK2 lineage. We found positive selection for promoter mutations leading to increased expression of the phu system. By mimicking conditions of the CF airways in vitro, we experimentally demonstrate that increased expression of phuR confers a growth advantage in the presence of hemoglobin, thus suggesting that P. aeruginosa evolves toward iron acquisition from hemoglobin. To rule out that this adaptive trait is specific to the DK2 lineage, we inspected the genomes of additional P. aeruginosa lineages isolated from CF airways and found similar adaptive evolution in two distinct lineages (DK1 and PA clone C). Furthermore, in all three lineages, phuR promoter mutations coincided with the loss of pyoverdine production, suggesting that within-host adaptation toward heme utilization is triggered by the loss of pyoverdine production. Targeting heme utilization might therefore be a promising strategy for the treatment of P. aeruginosa infections in CF patients. IMPORTANCE Most bacterial pathogens depend on scavenging iron within their hosts, which makes the battle for iron between pathogens and hosts a hallmark of infection. Accordingly, the ability of the opportunistic pathogen Pseudomonas aeruginosa to cause chronic infections in cystic fibrosis (CF) patients also depends on iron-scavenging systems. While

  8. Ginger extract inhibits biofilm formation by Pseudomonas aeruginosa PA14.

    PubMed

    Kim, Han-Shin; Park, Hee-Deung

    2013-01-01

    Bacterial biofilm formation can cause serious problems in clinical and industrial settings, which drives the development or screening of biofilm inhibitors. Some biofilm inhibitors have been screened from natural products or modified from natural compounds. Ginger has been used as a medicinal herb to treat infectious diseases for thousands of years, which leads to the hypothesis that it may contain chemicals inhibiting biofilm formation. To test this hypothesis, we evaluated ginger's ability to inhibit Pseudomonas aeruginosa PA14 biofilm formation. A static biofilm assay demonstrated that biofilm development was reduced by 39-56% when ginger extract was added to the culture. In addition, various phenotypes were altered after ginger addition of PA14. Ginger extract decreased production of extracellular polymeric substances. This finding was confirmed by chemical analysis and confocal laser scanning microscopy. Furthermore, ginger extract formed noticeably less rugose colonies on agar plates containing Congo red and facilitated swarming motility on soft agar plates. The inhibition of biofilm formation and the altered phenotypes appear to be linked to a reduced level of a second messenger, bis-(3'-5')-cyclic dimeric guanosine monophosphate. Importantly, ginger extract inhibited biofilm formation in both Gram-positive and Gram-negative bacteria. Also, surface biofilm cells formed with ginger extract detached more easily with surfactant than did those without ginger extract. Taken together, these findings provide a foundation for the possible discovery of a broad spectrum biofilm inhibitor.

  9. Ginger Extract Inhibits Biofilm Formation by Pseudomonas aeruginosa PA14

    PubMed Central

    Kim, Han-Shin; Park, Hee-Deung

    2013-01-01

    Bacterial biofilm formation can cause serious problems in clinical and industrial settings, which drives the development or screening of biofilm inhibitors. Some biofilm inhibitors have been screened from natural products or modified from natural compounds. Ginger has been used as a medicinal herb to treat infectious diseases for thousands of years, which leads to the hypothesis that it may contain chemicals inhibiting biofilm formation. To test this hypothesis, we evaluated ginger’s ability to inhibit Pseudomonas aeruginosa PA14 biofilm formation. A static biofilm assay demonstrated that biofilm development was reduced by 39–56% when ginger extract was added to the culture. In addition, various phenotypes were altered after ginger addition of PA14. Ginger extract decreased production of extracellular polymeric substances. This finding was confirmed by chemical analysis and confocal laser scanning microscopy. Furthermore, ginger extract formed noticeably less rugose colonies on agar plates containing Congo red and facilitated swarming motility on soft agar plates. The inhibition of biofilm formation and the altered phenotypes appear to be linked to a reduced level of a second messenger, bis-(3′-5′)-cyclic dimeric guanosine monophosphate. Importantly, ginger extract inhibited biofilm formation in both Gram-positive and Gram-negative bacteria. Also, surface biofilm cells formed with ginger extract detached more easily with surfactant than did those without ginger extract. Taken together, these findings provide a foundation for the possible discovery of a broad spectrum biofilm inhibitor. PMID:24086697

  10. A network biology approach to denitrification in Pseudomonas aeruginosa

    DOE PAGES

    Arat, Seda; Bullerjahn, George S.; Laubenbacher, Reinhard

    2015-02-23

    Pseudomonas aeruginosa is a metabolically flexible member of the Gammaproteobacteria. Under anaerobic conditions and the presence of nitrate, P. aeruginosa can perform (complete) denitrification, a respiratory process of dissimilatory nitrate reduction to nitrogen gas via nitrite (NO₂), nitric oxide (NO) and nitrous oxide (N₂O). This study focuses on understanding the influence of environmental conditions on bacterial denitrification performance, using a mathematical model of a metabolic network in P. aeruginosa. To our knowledge, this is the first mathematical model of denitrification for this bacterium. Analysis of the long-term behavior of the network under changing concentration levels of oxygen (O₂), nitrate (NO₃),more » and phosphate (PO₄) suggests that PO₄ concentration strongly affects denitrification performance. The model provides three predictions on denitrification activity of P. aeruginosa under various environmental conditions, and these predictions are either experimentally validated or supported by pertinent biological literature. One motivation for this study is to capture the effect of PO₄ on a denitrification metabolic network of P. aeruginosa in order to shed light on mechanisms for greenhouse gas N₂O accumulation during seasonal oxygen depletion in aquatic environments such as Lake Erie (Laurentian Great Lakes, USA). Simulating the microbial production of greenhouse gases in anaerobic aquatic systems such as Lake Erie allows a deeper understanding of the contributing environmental effects that will inform studies on, and remediation strategies for, other hypoxic sites worldwide.« less

  11. Pseudomonas aeruginosa Virulence and Therapy: Evolving Translational Strategies

    PubMed Central

    Veesenmeyer, Jeffrey L.; Lisboa, Thiago; Rello, Jordi

    2009-01-01

    Structured abstract Objective Although most reviews of Pseudomonas aeruginosa therapeutics focus on antibiotics currently in use or in the pipeline, we review evolving translational strategies aimed at using virulence factor antagonists as adjuvant therapies. Data Source Current literature regarding P. aeruginosa virulence determinants and approaches that target them, with an emphasis on type III secretion, quorum-sensing, biofilms, and flagella. Data Extraction and Synthesis P. aeruginosa remains one of the most important pathogens in nosocomial infections, with high associated morbidity and mortality. Its predilection to develop resistance to antibiotics and expression of multiple virulence factors contributes to the frequent ineffectiveness of current therapies. Among the many P. aeruginosa virulence determinants that impact infections, type III secretion, quorum sensing, biofilm formation, and flagella have been the focus of much recent investigation. Here we review how increased understanding of these important bacterial structures and processes has enabled the development of novel approaches to inhibit each. These promising translational strategies may lead to the development of adjuvant therapies capable of improving outcomes. Conclusions Adjuvant therapies directed against virulence factors have the potential to improve outcomes in P. aeruginosa infections. PMID:19325463

  12. The Genomic Basis of Evolutionary Innovation in Pseudomonas aeruginosa

    PubMed Central

    Wagner, Andreas; MacLean, R. Craig

    2016-01-01

    Novel traits play a key role in evolution, but their origins remain poorly understood. Here we address this problem by using experimental evolution to study bacterial innovation in real time. We allowed 380 populations of Pseudomonas aeruginosa to adapt to 95 different carbon sources that challenged bacteria with either evolving novel metabolic traits or optimizing existing traits. Whole genome sequencing of more than 80 clones revealed profound differences in the genetic basis of innovation and optimization. Innovation was associated with the rapid acquisition of mutations in genes involved in transcription and metabolism. Mutations in pre-existing duplicate genes in the P. aeruginosa genome were common during innovation, but not optimization. These duplicate genes may have been acquired by P. aeruginosa due to either spontaneous gene amplification or horizontal gene transfer. High throughput phenotype assays revealed that novelty was associated with increased pleiotropic costs that are likely to constrain innovation. However, mutations in duplicate genes with close homologs in the P. aeruginosa genome were associated with low pleiotropic costs compared to mutations in duplicate genes with distant homologs in the P. aeruginosa genome, suggesting that functional redundancy between duplicates facilitates innovation by buffering pleiotropic costs. PMID:27149698

  13. The Genomic Basis of Evolutionary Innovation in Pseudomonas aeruginosa.

    PubMed

    Toll-Riera, Macarena; San Millan, Alvaro; Wagner, Andreas; MacLean, R Craig

    2016-05-01

    Novel traits play a key role in evolution, but their origins remain poorly understood. Here we address this problem by using experimental evolution to study bacterial innovation in real time. We allowed 380 populations of Pseudomonas aeruginosa to adapt to 95 different carbon sources that challenged bacteria with either evolving novel metabolic traits or optimizing existing traits. Whole genome sequencing of more than 80 clones revealed profound differences in the genetic basis of innovation and optimization. Innovation was associated with the rapid acquisition of mutations in genes involved in transcription and metabolism. Mutations in pre-existing duplicate genes in the P. aeruginosa genome were common during innovation, but not optimization. These duplicate genes may have been acquired by P. aeruginosa due to either spontaneous gene amplification or horizontal gene transfer. High throughput phenotype assays revealed that novelty was associated with increased pleiotropic costs that are likely to constrain innovation. However, mutations in duplicate genes with close homologs in the P. aeruginosa genome were associated with low pleiotropic costs compared to mutations in duplicate genes with distant homologs in the P. aeruginosa genome, suggesting that functional redundancy between duplicates facilitates innovation by buffering pleiotropic costs.

  14. Recent advances in the treatment of Pseudomonas aeruginosa infections in cystic fibrosis

    PubMed Central

    2011-01-01

    Chronic Pseudomonas aeruginosa lung infection in cystic fibrosis (CF) patients is caused by biofilm-growing mucoid strains. Biofilms can be prevented by early aggressive antibiotic prophylaxis or therapy, and they can be treated by chronic suppressive therapy. New results from one small trial suggest that addition of oral ciprofloxacin to inhaled tobramycin may reduce lung inflammation. Clinical trials with new formulations of old antibiotics for inhalation therapy (aztreonam lysine) against chronic P. aeruginosa infection improved patient-reported outcome, lung function, time to acute exacerbations and sputum density of P. aeruginosa. Other drugs such as quinolones are currently under investigation for inhalation therapy. A trial of the use of anti-Pseudomonas antibiotics for long-term prophylaxis showed no effect in patients who were not already infected. Use of azithromycin to treat CF patients without P. aeruginosa infection did not improve lung function. Here I review the recent advances in the treatment of P. aeruginosa lung infections with a focus on inhalation treatments targeted at prophylaxis and chronic suppressive therapy. PMID:21463524

  15. Evaluation of flagella and flagellin of Pseudomonas aeruginosa as vaccines.

    PubMed

    Campodónico, Victoria L; Llosa, Nicolás J; Grout, Martha; Döring, Gerd; Maira-Litrán, Tomás; Pier, Gerald B

    2010-02-01

    Pseudomonas aeruginosa is a serious pathogen in hospitalized, immunocompromised, and cystic fibrosis (CF) patients. P. aeruginosa is motile via a single polar flagellum made of polymerized flagellin proteins differentiated into two major serotypes: a and b. Antibodies to flagella delay onset of infection in CF patients, but whether immunity to polymeric flagella and that to monomeric flagellin are comparable has not been addressed, nor has the question of whether such antibodies might negatively impact Toll-like receptor 5 (TLR5) activation, an important component of innate immunity to P. aeruginosa. We compared immunization with flagella and that with flagellin for in vitro effects on motility, opsonic killing, and protective efficacy using a mouse pneumonia model. Antibodies to flagella were superior to antibodies to flagellin at inhibiting motility, promoting opsonic killing, and mediating protection against P. aeruginosa pneumonia in mice. Protection against the flagellar type strains PAK and PA01 was maximal, but it was only marginal against motile clinical isolates from flagellum-immunized CF patients who nonetheless became colonized with P. aeruginosa. Purified flagellin was a more potent activator of TLR5 than were flagella and also elicited higher TLR5-neutralizing antibodies than did immunization with flagella. Antibody to type a but not type b flagella or flagellin inhibited TLR5 activation by whole bacterial cells. Overall, intact flagella appear to be superior for generating immunity to P. aeruginosa, and flagellin monomers might induce antibodies capable of neutralizing innate immunity due to TLR5 activation, but solid immunity to P. aeruginosa based on flagellar antigens may require additional components beyond type a and type b proteins from prototype strains.

  16. Immunological evaluation of an alginate-based conjugate as a vaccine candidate against Pseudomonas aeruginosa.

    PubMed

    Farjah, Ali; Owlia, Parviz; Siadat, Seyed Davar; Mousavi, Seyed Fazlollah; Ardestani, Mehdi Shafiee; Mohammadpour, Hashem Khorsand

    2015-02-01

    Pseudomonas aeruginosa is an opportunistic pathogen that causes serious infections, is usually resistant to antimicrobial agents, and is the leading cause of morbidity and premature mortality in patients with cystic fibrosis (CF). Mucoid strains of P. aeruginosa produce a virulence factor known as alginate. Developing a strategy to raise opsonic antibodies against alginate could be promising for the treatment of P. aeruginosa infection in CF patients. Conjugation of alginate to a carrier protein is a good method for increasing the immunogenicity of alginate. We conjugated alginate to the outer membrane vesicle (OMV) of Neisseria meningitidis serogroup B, which is a safe carrier protein, and evaluated its efficacy in mice. To evaluate the immune response, total IgG, IgG1, IgG2a, and IgG2b titers were analyzed. Immunization of mice with the alginate-OMV conjugate raised the levels of opsonic antibodies, and the vaccinated mice were protected when challenged intranasally with P. aeruginosa. Further studies showed that the conjugated vaccine could eliminate P. aeruginosa from the lungs of infected mice. This study supports the proposal that immunization of mice with an alginate-OMV conjugate vaccine could be safe and protective against P. aeruginosa infection.

  17. Environmental Pseudomonads Inhibit Cystic Fibrosis Patient-Derived Pseudomonas aeruginosa

    PubMed Central

    Chatterjee, Payel; Davis, Elizabeth; Yu, Fengan; James, Sarah; Wildschutte, Julia H.; Wiegmann, Daniel D.; Sherman, David H.; McKay, Robert M.; LiPuma, John J.

    2016-01-01

    ABSTRACT Pseudomonas aeruginosa is an opportunistic pathogen which is evolving resistance to many currently used antibiotics. While much research has been devoted to the roles of pathogenic P. aeruginosa in cystic fibrosis (CF) patients, less is known of its ecological properties. P. aeruginosa dominates the lungs during chronic infection in CF patients, yet its abundance in some environments is less than that of other diverse groups of pseudomonads. Here, we sought to determine if clinical isolates of P. aeruginosa are vulnerable to environmental pseudomonads that dominate soil and water habitats in one-to-one competitions which may provide a source of inhibitory factors. We isolated a total of 330 pseudomonads from diverse habitats of soil and freshwater ecosystems and competed these strains against one another to determine their capacity for antagonistic activity. Over 900 individual inhibitory events were observed. Extending the analysis to P. aeruginosa isolates revealed that clinical isolates, including ones with increased alginate production, were susceptible to competition by multiple environmental strains. We performed transposon mutagenesis on one isolate and identified an ∼14.8-kb locus involved in antagonistic activity. Only two other environmental isolates were observed to carry the locus, suggesting the presence of additional unique compounds or interactions among other isolates involved in outcompeting P. aeruginosa. This collection of strains represents a source of compounds that are active against multiple pathogenic strains. With the evolution of resistance of P. aeruginosa to currently used antibiotics, these environmental strains provide opportunities for novel compound discovery against drug-resistant clinical strains. IMPORTANCE We demonstrate that clinical CF-derived isolates of P. aeruginosa are susceptible to competition in the presence of environmental pseudomonads. We observed that many diverse environmental strains exhibited varied

  18. Adherence of Pseudomonas aeruginosa to contact lenses

    SciTech Connect

    Miller, M.J.

    1988-01-01

    The purpose of this research was to examined the interactions of P. aeruginosa with hydrogel contact lenses and other substrata, and characterize adherence to lenses under various physiological and physicochemical conditions. Isolates adhered to polystyrene, glass, and hydrogel lenses. With certain lens types, radiolabeled cells showed decreased adherence with increasing water content of the lenses, however, this correlation with not found for all lenses. Adherence to rigid gas permeable lenses was markedly greater than adherence to hydrogels. Best adherence occurred near pH 7 and at a sodium chloride concentration of 50 mM. Passive adhesion of heat-killed cells to hydrogels was lower than the adherence obtained of viable cells. Adherence to hydrogels was enhanced by mucin, lactoferrin, lysozyme, IgA, bovine serum albumin, and a mixture of these macromolecules. Adherence to coated and uncoated lenses was greater with a daily-wear hydrogel when compared with an extended-wear hydrogel of similar polymer composition. Greater adherence was attributed to a higher concentration of adsorbed macromolecules on the 45% water-content lens in comparison to the 55% water-content lens.

  19. INHIBITION OF VIRULENCE FACTORS OF PSEUDOMONAS AERUGINOSA BY DICLOFENAC SODIUM.

    PubMed

    Abbas, Hisham A

    2015-01-01

    Resistance of Pseudomonas aeruginosa to antibiotics is a major problem. Targeting virulence factors is an alternative option to avoid the emergence of resistance to antibiotics. The effect of sub-inhibitory concentration of diclofenac sodium on the production of virulence factors of P. aeruginosa was investigated. The virulence factors included protease, haemolysin, pyocyanin and pyoverdin, in addition to pathogenic behaviors such as swimming and twitching motilities and biofilm formation. Diclofenac sodium showed significant inhibition of virulence factors as compared to the control. Diclofenac sodium decreased twitching and swimming motilities by 29.27% and 45.36%, respectively. The percentage of inhibition of pyocyanin by diclofenac sodium was 42.32%. On the other hand, pyoverdin was inhibited to a lesser extent (36.72%). Diclofenac sodium reduced protease by 52.58% and biofilm formation by 58.37%. Moreover, haemolytic activity in the presence of diclofenac sodium was 15.64% as compared to the control (100% haemolytic activity). The inhibitory activities may be due to inhibition of quorum sensing that regulates the expression of virulence factors. This study suggests the potential for the use of diclofenac sodium as an anti-virulence agent in the treatment of Pseudomonas aeruginosa infections.

  20. Response of Pseudomonas aeruginosa PAO1 to low shear modelled microgravity involves AlgU regulation.

    PubMed

    Crabbé, Aurélie; Pycke, Benny; Van Houdt, Rob; Monsieurs, Pieter; Nickerson, Cheryl; Leys, Natalie; Cornelis, Pierre

    2010-06-01

    As a ubiquitous environmental organism that is occasionally part of the human flora, Pseudomonas aeruginosa could pose a health hazard for the immunocompromised astronauts during long-term missions. Therefore, insights into the behaviour of P. aeruginosa under spaceflight conditions were gained using two spaceflight-analogue culture systems: the rotating wall vessel (RWV) and the random position machine (RPM). Microarray analysis of P. aeruginosa PAO1 grown in the low shear modelled microgravity (LSMMG) environment of the RWV, compared with the normal gravity control (NG), revealed an apparent regulatory role for the alternative sigma factor AlgU (RpoE-like). Accordingly, P. aeruginosa cultured in LSMMG exhibited increased alginate production and upregulation of AlgU-controlled transcripts, including those encoding stress-related proteins. The LSMMG increased heat and oxidative stress resistance and caused a decrease in the oxygen transfer rate of the culture. This study also showed the involvement of the RNA-binding protein Hfq in the LSMMG response, consistent with its previously identified role in the Salmonella LSMMG and spaceflight response. The global transcriptional response of P. aeruginosa grown in the RPM was highly similar to that in NG. Fluid mixing was assessed in both systems and is believed to be a pivotal factor contributing to transcriptional differences between RWV- and RPM-grown P. aeruginosa. This study represents the first step towards the identification of virulence mechanisms of P. aeruginosa activated in response to spaceflight-analogue conditions, and could direct future research regarding the risk assessment and prevention of Pseudomonas infections during spaceflight and in immunocompromised patients.

  1. Anti-Pseudomonas aeruginosa antibody detection in patients with bronchiectasis without cystic fibrosis

    PubMed Central

    Caballero, E; Drobnic, M; Perez, M; Manresa, J; Ferrer, A; Orriols, R

    2001-01-01

    BACKGROUND—Pseudomonas aeruginosa is a frequent cause of infection in patients with bronchiectasis. Differentiation between non-infected patients and those with different degrees of P aeruginosa infection could influence the management and prognosis of these patients. The diagnostic usefulness of serum IgG antibodies against P aeruginosa outer membrane proteins was determined in patients with bronchiectasis without cystic fibrosis.
METHODS—Fifty six patients were classified according to sputum culture into three groups: group A (n=18) with no P aeruginosa in any sample; group B (n=18) with P aeruginosa alternating with other microorganisms; and group C (n=20) with P aeruginosa in all sputum samples. Each patient had at least three sputum cultures in the 6 months prior to serum collection. Detection of antibodies was performed by Western blot and their presence against 20 protein bands (10-121 kd) was assessed.
RESULTS—Antibodies to more than four bands in total or to five individual bands (36, 26, 22, 20 or 18 kd) differentiated group B from group A, while antibodies to a total of more than eight bands or to 10 individual bands (104, 69, 63, 56, 50, 44, 30, 25, 22,13 kd) differentiated group C from group B. When discordant results between the total number of bands and the frequency of P aeruginosa isolation were obtained, the follow up of patients suggested that the former, in most cases, predicted chronic P aeruginosa colonisation.
CONCLUSION—In patients with bronchiectasis the degree of P aeruginosa infection can be determined by the number and type of outer membrane protein bands indicating which serum antibodies are present.

 PMID:11514685

  2. Detection of Metallo-Beta Lactamases Among Carbapenem-Resistant Pseudomonas aeruginosa

    PubMed Central

    Farajzadeh Sheikh, Ahmad; Rostami, Soodabeh; Jolodar, Abbas; Tabatabaiefar, Mohammad Amin; Khorvash, Farzin; Saki, Azadeh; Shoja, Saeed; Sheikhi, Raheleh

    2014-01-01

    Background: Carbapenems are important drugs used for the treatment of Pseudomonas aeruginosa infections, however metallo-β-lactamases (MBL) are able to efficiently hydrolyze these classes of drugs. Immediate detection of the MBL-producing P. aeruginosa is necessary in order to accurately treat infections caused by this organism. Objectives: To determine the prevalence of MBL producing P. aeruginosa in burn and non-burn patients by two phenotypic tests and polymerase chain reaction (PCR) and to compare phenotypic tests with PCR. Materials and Methods: A total of 223 non-duplicate strains of P. aeruginosa were collected from three teaching hospitals of Ahvaz, Iran. Antimicrobial susceptibility and minimum inhibitory concentrations (MICs) of carbapenems (imipenem, meropenem, doripenem and ertapenem) were determined by the Kirby-Bauer and E-test methods. Combined disk (CD) test, MBL E-test and PCR were performed for carbapenem-resistant P. aeruginosa isolates. Results: Amongst all the P. aeruginosa isolates, 58.7% were resistant to imipenem while 31.8%, 13.5% and 74.4% were resistant to meropenem, doripenem and ertapenem, respectively. Amongst all the P. aeruginosa isolates, 44.4% were multidrug resistant and 13.45% were resistant to all of the carbapenems. The CD test with doripenem disk / 750 μg ethylene diamine tetra acetic acid (EDTA) had the highest efficiency compared to the other phenotypic tests. blaIMP and blaVIM genes were detected in 11.7% and 0.4% of isolates, respectively. blaSPM and blaNDM genes were not observed. Conclusions: Epidemiological and regional evaluation of MBL-producing P. aeruginosa through simple and inexpensive methods should be considered for effective treatment of carbapenem-resistant P. aeruginosa infections. PMID:25774271

  3. The Pseudomonas aeruginosa AlgZR two-component system coordinates multiple phenotypes

    PubMed Central

    Okkotsu, Yuta; Little, Alexander S.; Schurr, Michael J.

    2014-01-01

    Pseudomonas aeruginosa is an opportunistic pathogen that causes a multitude of infections. These infections can occur at almost any site in the body and are usually associated with a breach of the innate immune system. One of the prominent sites where P. aeruginosa causes chronic infections is within the lungs of cystic fibrosis patients. P. aeruginosa uses two-component systems that sense environmental changes to differentially express virulence factors that cause both acute and chronic infections. The P. aeruginosa AlgZR two component system is one of its global regulatory systems that affects the organism's fitness in a broad manner. This two-component system is absolutely required for two P. aeruginosa phenotypes: twitching motility and alginate production, indicating its importance in both chronic and acute infections. Additionally, global transcriptome analyses indicate that it regulates the expression of many different genes, including those associated with quorum sensing, type IV pili, type III secretion system, anaerobic metabolism, cyanide and rhamnolipid production. This review examines the complex AlgZR regulatory network, what is known about the structure and function of each protein, and how it relates to the organism's ability to cause infections. PMID:24999454

  4. The Pseudomonas aeruginosa AlgZR two-component system coordinates multiple phenotypes.

    PubMed

    Okkotsu, Yuta; Little, Alexander S; Schurr, Michael J

    2014-01-01

    Pseudomonas aeruginosa is an opportunistic pathogen that causes a multitude of infections. These infections can occur at almost any site in the body and are usually associated with a breach of the innate immune system. One of the prominent sites where P. aeruginosa causes chronic infections is within the lungs of cystic fibrosis patients. P. aeruginosa uses two-component systems that sense environmental changes to differentially express virulence factors that cause both acute and chronic infections. The P. aeruginosa AlgZR two component system is one of its global regulatory systems that affects the organism's fitness in a broad manner. This two-component system is absolutely required for two P. aeruginosa phenotypes: twitching motility and alginate production, indicating its importance in both chronic and acute infections. Additionally, global transcriptome analyses indicate that it regulates the expression of many different genes, including those associated with quorum sensing, type IV pili, type III secretion system, anaerobic metabolism, cyanide and rhamnolipid production. This review examines the complex AlgZR regulatory network, what is known about the structure and function of each protein, and how it relates to the organism's ability to cause infections.

  5. Host defense mechanisms against pneumonia due to Pseudomonas aeruginosa.

    PubMed

    Pennington, J E; Ehrie, M G; Hickey, W F

    1984-01-01

    Pneumonia due to Pseudomonas aeruginosa is associated with unusually high mortalities. Accordingly, efforts to define better the most important components of lung defenses against this infection are justified as a prelude to defining improved management strategies. In this report, a guinea pig model of experimental aspiration pseudomonas pneumonia was employed for studies of cellular and humoral mechanisms of pulmonary defense. Animals treated with cortisone acetate plus cyclophosphamide experienced decreased survival from pneumonia, and survival rates correlated directly with the degree of myelosuppression. Numbers of pulmonary macrophages and polymorphonuclear neutrophils were reduced in drug-treated animals before impairment of macrophage antibacterial function. Thus, a reduction in numbers of phagocytes alone was sufficient to markedly reduce lung defenses. In additional experiments, normal guinea pigs were vaccinated with a lipopolysaccharide pseudomonas vaccine. Improved survival from pneumonia correlated with high titers of type-specific, heat-stable opsonic antibody. It is concluded that adequate numbers of lung phagocytes, plus type-specific opsonic antibody, represent the ideal status for lung defense against P. aeruginosa infection.

  6. Monocyte Profiles in Critically Ill Patients With Pseudomonas Aeruginosa Sepsis

    ClinicalTrials.gov

    2017-02-02

    Pseudomonas Infections; Pseudomonas Septicemia; Pseudomonas; Pneumonia; Pseudomonal Bacteraemia; Pseudomonas Urinary Tract Infection; Pseudomonas Gastrointestinal Tract Infection; Sepsis; Sepsis, Severe; Critically Ill

  7. Dueling quorum sensing systems in Pseudomonas aeruginosa control the production of the Pseudomonas quinolone signal (PQS).

    PubMed

    McGrath, Stephen; Wade, Dana S; Pesci, Everett C

    2004-01-15

    The opportunistic human pathogen Pseudomonas aeruginosa regulates the production of numerous virulence factors via the action of two separate but coordinated quorum sensing systems, las and rhl. These systems control the transcription of genes in response to population density through the intercellular signals N-(3-oxododecanoyl)-L-homoserine lactone (3-oxo-C(12)-HSL) and N-(butanoyl)-L-homoserine lactone (C(4)-HSL). A third P. aeruginosa signal, 2-heptyl-3-hydroxy-4-quinolone [Pseudomonas quinolone signal (PQS)], also plays a significant role in the transcription of multiple P. aeruginosa virulence genes. PQS is intertwined in the P. aeruginosa quorum sensing hierarchy with its production and bioactivity requiring the las and rhl quorum sensing systems, respectively. This report presents a preliminary transcriptional analysis of pqsA, the first gene of the recently discovered PQS biosynthetic gene cluster. We show that pqsA transcription required pqsR, a transcriptional activator protein encoded within the PQS biosynthetic gene cluster. It was also found that the transcription of pqsA and subsequent production of PQS was induced by the las quorum sensing system and repressed by the rhl quorum sensing system. In addition, PQS production was dependent on the ratio of 3-oxo-C(12)-HSL to C(4)-HSL, suggesting a regulatory balance between quorum sensing systems. These data are an important early step toward understanding the regulation of PQS synthesis and the role of PQS in P. aeruginosa intercellular signaling.

  8. [Strategies for management of difficult to treat Gram-negative infections: focus on Pseudomonas aeruginosa].

    PubMed

    Bassetti, Matteo

    2007-09-01

    Pseudomonas aeruginosa is often involved in the aetiology of numerous infections, particularly those occurring in hospital. The infections in which P. aeruginosa most frequently has a pathogenic role include respiratory tract infections, particularly those occurring in patients with chronic obstructive pulmonary disease (COPD), nosocomial pneumonia, ventilator-associated pneumonia, and cystic fibrosis, as well as those developing in patients with AIDS, bacteraemia, sepsis, urinary tract infections, especially those related to catheterisation or kidney transplants, infections in neutropenic patients, and skin infections, particular those developing in surgical wounds or in burns. Thus, in practice, P. aeruginosa is ubiquitously present in all body districts. Particular attention should also be given to the presence of P. aeruginosa in the community setting, for example when it causes community-acquired pneumonia in the elderly or pneumonia in patients with advanced stage COPD. The mortality rate of patients with severe P. aeruginosa infections is very high. Treatment should be initiated very promptly with the most suitable drug, perhaps making use of combination therapy with a beta-lactam and a fluoroquinolone when indicated, and continued for a sufficiently long period. As far as concerns future therapeutic options for the treatment of P. aeruginosa infections, the only two new molecules that will probably become available are doripenem and ceftobiprole. Given this prospective, trust must be placed in the already known drugs, exploiting them more appropriately.

  9. Drug Resistance of Pseudomonas aeruginosa and Enterobacter cloacae Isolated from ICU, Babol, Northern Iran

    PubMed Central

    Bayani, Masoomeh; Siadati, Sepideh; Rajabnia, Ramzan; Taher, Ali Asghar

    2013-01-01

    Multidrug resistant (MDR) bacteria are spread throughout the world which causes nosocomial infections, especially in Intensive Care Unit (ICU). This study aimed to investigate the resistance pattern of Pseudomonas aeruginosa and Enterobacter cloacae isolated from patients in the ICU. During 2011-2012, 30 isolates for each P. aeruginosa and E. cloacae were collected from the patients who acquired nosocomial infection after admition to the ICU at the hospitals affiliated to Babol University of Medical Sciences, Babol, northern Iran. Antimicrobial susceptibility test was performed for five category antibiotics by microdilution method. The data were analyzed by SPSS version 20 and p<0.05 was considered statistically significant. The highest resistance rate of P. aeruginosa was seen to amikacin (53.3%) followed by ceftazidime (43.3%). Also, 16.7% of E. cloacae was resistant to ceftazidime. Among P. aeruginosa isolates,18 (60%) were MDR while no E. cloacae isolates were MDR. The significant correlation was only demonstrated between MDR P. aeruginosa and the reason of hospitalization (P=0.004). In conclusion, there was alarming amount of P. aeruginosa MDR in patients in the ICU which could lead to a hazardous outcome for the patients. Therefore, new prevention policies regarding to hospital infection should be established. Also, the periodical assessment of bacterial resistance pattern particularly in ICUs should be performed. PMID:24551814

  10. Carbapenem resistance in Pseudomonas aeruginosa and Acinetobacter baumannii in the nosocomial setting in Latin America.

    PubMed

    Labarca, Jaime A; Salles, Mauro José Costa; Seas, Carlos; Guzmán-Blanco, Manuel

    2016-01-01

    Increasing prevalence of carbapenem-resistant Pseudomonas aeruginosa and Acinetobacter baumannii strains in the nosocomial setting in Latin America represents an emerging challenge to public health, as the range of therapeutic agents active against these pathogens becomes increasingly constrained. We review published reports from 2002 to 2013, compiling data from throughout the region on prevalence, mechanisms of resistance and molecular epidemiology of carbapenem-resistant strains of P. aeruginosa and A. baumannii. We find rates of carbapenem resistance up to 66% for P. aeruginosa and as high as 90% for A. baumannii isolates across the different countries of Latin America, with the resistance rate of A. baumannii isolates greater than 50% in many countries. An outbreak of the SPM-1 carbapenemase is a chief cause of resistance in P. aeruginosa strains in Brazil. Elsewhere in Latin America, members of the VIM family are the most important carbapenemases among P. aeruginosa strains. Carbapenem resistance in A. baumannii in Latin America is predominantly due to the oxacillinases OXA-23, OXA-58 and (in Brazil) OXA-143. Susceptibility of P. aeruginosa and A. baumannii to colistin remains high, however, development of resistance has already been detected in some countries. Better epidemiological data are needed to design effective infection control interventions.

  11. Comparative analysis of the volatile metabolomes of Pseudomonas aeruginosa clinical isolates.

    PubMed

    Bean, Heather D; Rees, Christiaan A; Hill, Jane E

    2016-11-21

    Pseudomonas aeruginosa is a nearly ubiquitous Gram-negative organism, well known to occupy a multitude of environmental niches and cause human infections at a variety of bodily sites, due to its metabolic flexibility, secondary to extensive genetic heterogeneity at the species level. Because of its dynamic metabolism and clinical importance, we sought to perform a comparative analysis on the volatile metabolome (the 'volatilome') produced by P. aeruginosa clinical isolates. In this study, we analyzed the headspace volatile molecules of 24 P. aeruginosa clinical isolates grown in vitro, using 2D gas chromatography time-of-flight mass spectrometry (GC  ×  GC-TOFMS). We identified 391 non-redundant compounds that we associate with the growth and metabolism of P. aeruginosa (the 'pan-volatilome'). Of these, 70 were produced by all 24 isolates (the 'core volatilome'), 52 by only a single isolate, and the remaining 269 volatile molecules by a subset. Sixty-five of the detected compounds could be assigned putative compound identifications, of which 43 had not previously been associated with P. aeruginosa. Using the accessory volatile molecules, we determined the inter-strain variation in the metabolomes of these isolates, clustering strains by their metabotypes. Assessing the extent of metabolomic diversity in P. aeruginosa through an analysis of the volatile molecules that it produces is a critical next step in the identification of novel diagnostic or prognostic biomarkers.

  12. Exopolysaccharide-repressing small molecules with antibiofilm and antivirulence activity against Pseudomonas aeruginosa.

    PubMed

    van Tilburg Bernardes, Erik; Charron-Mazenod, Laetitia; Reading, David J; Reckseidler-Zenteno, Shauna L; Lewenza, Shawn

    2017-02-21

    Biofilm formation is a universal virulence strategy in which bacteria grow in dense microbial communities enmeshed within a polymeric extracellular matrix that protects them from antibiotic exposure and the immune system. Pseudomonas aeruginosa is an archetypal biofilm-forming organism that utilizes a biofilm growth strategy to cause chronic lung infections in Cystic Fibrosis (CF) patients. The extracellular matrix of P. aeruginosa biofilms is comprised mainly of exopolysaccharides (EPS) and DNA. Both mucoid and non-mucoid isolates of P. aeruginosa produces the Pel and Psl EPS, each of which have important roles in antibiotic resistance, biofilm formation and immune evasion. Given the central importance of the EPS for biofilms, they are attractive targets for novel anti-infective compounds. In this study we used a high throughput gene expression screen to identify compounds that repress expression of the pel genes. The pel repressors demonstrated antibiofilm activity against microplate and flow chamber biofilms formed by wild type and hyperbiofilm forming strains. To determine the potential role of EPS in virulence, mutants in pel/psl were shown to have reduced virulence in the feeding behavior and slow killing virulence assays in Caenorhabditis elegans The antibiofilm molecules also reduced P. aeruginosa PAO1 virulence in the nematode slow killing model. Importantly, the combination of antibiotics and antibiofilm compounds increased killing of P. aeruginosa biofilms. These small molecules represent a novel anti-infective strategy for the possible treatment of chronic P. aeruginosa infections.

  13. Arginine Is a Critical Substrate for the Pathogenesis of Pseudomonas aeruginosa in Burn Wound Infections

    PubMed Central

    Everett, Jake; Turner, Keith; Cai, Qiuxian; Gordon, Vernita; Whiteley, Marvin

    2017-01-01

    ABSTRACT Environmental conditions affect bacterial behavior and can greatly influence the course of an infection. However, the environmental cues that elicit bacterial responses in specific infection sites are relatively unknown. Pseudomonas aeruginosa is ubiquitous in nature and typically innocuous. However, it is also one of the most prevalent causes of fatal sepsis in burn wound patients. The aim of this study was to determine the impact of environmental factors, specifically the availability of arginine, on the pathogenesis of P. aeruginosa in burn wound infections. Comparison of burned versus noninjured tissue revealed that l-arginine (l-Arg) was significantly depleted in burn wounds as a consequence of elevated arginase produced by myeloid-derived suppressor cells. We also observed that l-Arg was a potent chemoattractant for P. aeruginosa, and while low concentrations of l-Arg increased P. aeruginosa’s swimming motility, high concentrations resulted in diminished swimming. Based on these observations, we tested whether the administration of exogenous l-Arg into the burn wound could attenuate the virulence of P. aeruginosa in thermally injured mice. Administration of l-Arg resulted in decreased P. aeruginosa spread and sepsis and increased animal survival. Taken together, these data demonstrate that the availability of environmental arginine greatly influences the virulence of P. aeruginosa in vivo and may represent a promising phenotype-modulating tool for future therapeutic avenues. PMID:28292986

  14. Inhibition of Pseudomonas aeruginosa biofilm formation on wound dressings

    PubMed Central

    Brandenburg, Kenneth S.; Calderon, Diego F.; Kierski, Patricia R.; Brown, Amanda L.; Shah, Nihar M.; Abbott, Nicholas L.; Schurr, Michael J.; Murphy, Christopher J.; McAnulty, Jonathan F.; Czuprynski, Charles J.

    2016-01-01

    Chronic non-healing skin wounds often contain bacterial biofilms that prevent normal wound healing and closure and present challenges to the use of conventional wound dressings. We investigated inhibition of Pseudomonas aeruginosa biofilm formation, a common pathogen of chronic skin wounds, on a commercially available biological wound dressing. Building upon prior reports, we examined whether the amino acid tryptophan would inhibit P. aeruginosa biofilm formation on the 3-dimensional surface of the biological dressing. Bacterial biomass and biofilm polysaccharides were quantified using crystal violet staining or an enzyme linked lectin, respectively. Bacterial cells and biofilm matrix adherent to the wound dressing were visualized through scanning electron microscopy. D-/L-tryptophan inhibited P. aeruginosa biofilm formation on the wound dressing in a dose dependent manner and was not directly cytotoxic to immortalized human keratinocytes although there was some reduction in cellular metabolism or enzymatic activity. More importantly, D-/L-tryptophan did not impair wound healing in a splinted skin wound murine model. Furthermore, wound closure was improved when D-/L-tryptophan treated wound dressing with P. aeruginosa biofilms were compared with untreated dressings. These findings indicate that tryptophan may prove useful for integration into wound dressings to inhibit biofilm formation and promote wound healing. PMID:26342168

  15. 7-fluoroindole as an antivirulence compound against Pseudomonas aeruginosa.

    PubMed

    Lee, Jin-Hyung; Kim, Yong-Guy; Cho, Moo Hwan; Kim, Jung-Ae; Lee, Jintae

    2012-04-01

    The emergence of antibiotic resistance has necessitated new therapeutic approaches for combating persistent bacterial infection. An alternative approach is regulation of bacterial virulence instead of growth suppression, which can readily lead to drug resistance. The virulence of the opportunistic human pathogen Pseudomonas aeruginosa depends on a large number of extracellular factors and biofilm formation. Thirty-one natural and synthetic indole derivatives were screened. 7-fluoroindole (7FI) was identified as a compound that inhibits biofilm formation and blood hemolysis without inhibiting the growth of planktonic P. aeruginosa cells. Moreover, 7FI markedly reduced the production of quorum-sensing (QS)-regulated virulence factors 2-heptyl-3-hydroxy-4(1H)-quinolone, pyocyanin, rhamnolipid, two siderophores, pyoverdine and pyochelin. 7FI clearly suppressed swarming motility, protease activity and the production of a polymeric matrix in P. aeruginosa. However, unlike natural indole compounds, synthetic 7FI did not increase antibiotic resistance. Therefore, 7FI is a potential candidate for use in an antivirulence approach against persistent P. aeruginosa infection.

  16. Identification, cloning, and expression of Pseudomonas aeruginosa phosphorylcholine phosphatase gene.

    PubMed

    Massimelli, María J; Beassoni, Paola R; Forrellad, Marina A; Barra, José L; Garrido, Mónica N; Domenech, Carlos E; Lisa, Angela T

    2005-05-01

    Pseudomonas aeruginosa phosphorylcholine phosphatase (PChP) is a periplasmic enzyme produced simultaneously with the hemolytic phospholipase C (PLc-H) when the bacteria are grown in the presence of choline, betaine, dimethylglycine or carnitine. Molecular analysis of the P. aeruginosa mutant JUF8-00, after Tn5-751 mutagenesis, revealed that the PA5292 gene in the P. aeruginosa PAO1 genome was responsible for the synthesis of PChP. The enzyme expressed in E. coli, rPChP-Ec, purified by a chitin-binding column (IMPACT-CN system, New England BioLabs) was homogeneous after SDS-PAGE analysis. PChP was also expressed in P. aeruginosa PAO1-LAC, rPChP-Pa. Both recombinant enzymes exhibited a molecular mass of approximately 40 kDa, as expected for the size of the PA5292 gene, and catalyzed the hydrolysis of phosphorylcholine, phosphorylethanolamine, and p-nitrophenylphosphate. The saturation curve of rPChP-Ec and rPChP-Pa by phosphorylcholine revealed that these recombinant enzymes, like the purified native PChP, also contained the high- and low-affinity sites for phosphorylcholine and that the enzyme activity was inhibited by high substrate concentration.

  17. Effects of azithromycin in Pseudomonas aeruginosa burn wound infection

    PubMed Central

    Nichols, DP; Caceres, S; Caverly, L; Fratelli, C; Kim, SH; Malcolm, KC; Poch, KR; Saavedra, M; Solomon, G; Taylor-Cousar, J; Moskowitz, SM; Nick, JA

    2013-01-01

    Background Cutaneous thermal injuries (i.e. burns) remain a common form of debilitating trauma and outcomes are often worsened by wound infection with environmental bacteria, chiefly Pseudomonas aeruginosa. Materials and Methods We tested the effects of early administration of a single dose of azithromycin, with or without subsequent anti-pseudomonal antibiotics, in a mouse model of standardized thermal injury infected with P. aeruginosa on both wound site and systemic infection. We also tested the antimicrobial effects of these antibiotics alone or combined in comparative biofilm and planktonic cultures in vitro. Results In our model, early azithromycin administration significantly reduced wound and systemic infection without altering wound site or circulating neutrophil activity. The antimicrobial effect of azithromycin was additive with ciprofloxacin but significantly reduced the antimicrobial effect of tobramycin. This pattern was reproduced in biofilm cultures and not observed in planktonic cultures of P. aeruginosa. Conclusion these data suggest that early administration of azithromycin following burn-related trauma and infection may reduce P. aeruginosa infection and potential interactions with other antibiotics should be considered when designing future studies. PMID:23478086

  18. Phage Therapy: a Step Forward in the Treatment of Pseudomonas aeruginosa Infections

    PubMed Central

    Pires, Diana P.; Vilas Boas, Diana; Sillankorva, Sanna

    2015-01-01

    Antimicrobial resistance constitutes one of the major worldwide public health concerns. Bacteria are becoming resistant to the vast majority of antibiotics, and nowadays, a common infection can be fatal. To address this situation, the use of phages for the treatment of bacterial infections has been extensively studied as an alternative therapeutic strategy. Since Pseudomonas aeruginosa is one of the most common causes of health care-associated infections, many studies have reported the in vitro and in vivo antibacterial efficacy of phage therapy against this bacterium. This review collects data of all the P. aeruginosa phages sequenced to date, providing a better understanding about their biodiversity. This review further addresses the in vitro and in vivo results obtained by using phages to treat or prevent P. aeruginosa infections as well as the major hurdles associated with this therapy. PMID:25972556

  19. Volatile Compounds Emitted by Pseudomonas aeruginosa Stimulate Growth of the Fungal Pathogen Aspergillus fumigatus

    PubMed Central

    Briard, Benoit; Heddergott, Christoph

    2016-01-01

    ABSTRACT Chronic lung infections with opportunistic bacterial and fungal pathogens are a major cause of morbidity and mortality especially in patients with cystic fibrosis. Pseudomonas aeruginosa is the most frequently colonizing bacterium in these patients, and it is often found in association with the filamentous fungus Aspergillus fumigatus. P. aeruginosa is known to inhibit the growth of A. fumigatus in situations of direct contact, suggesting the existence of interspecies communication that may influence disease outcome. Our study shows that the lung pathogens P. aeruginosa and A. fumigatus can interact at a distance via volatile-mediated communication and expands our understanding of interspecific signaling in microbial communities. PMID:26980832

  20. Pseudomonas aeruginosa: arsenal of resistance mechanisms, decades of changing resistance profiles, and future antimicrobial therapies.

    PubMed

    El Zowalaty, Mohamed E; Al Thani, Asmaa A; Webster, Thomas J; El Zowalaty, Ahmed E; Schweizer, Herbert P; Nasrallah, Gheyath K; Marei, Hany E; Ashour, Hossam M

    2015-01-01

    Antimicrobial resistance is one of the most serious public health issues facing humans since the discovery of antimicrobial agents. The frequent, prolonged, and uncontrolled use of antimicrobial agents are major factors in the emergence of antimicrobial-resistant bacterial strains, including multidrug-resistant variants. Pseudomonas aeruginosa is a leading cause of nosocomial infections. The abundant data on the increased resistance to antipseudomonal agents support the need for global action. There is a paucity of new classes of antibiotics active against P. aeruginosa. Here, we discuss recent antibacterial resistance profiles and mechanisms of resistance by P. aeruginosa. We also review future potential methods for controlling antibiotic-resistant bacteria, such as phage therapy, nanotechnology and antipseudomonal vaccines.

  1. The roles of biofilm matrix polysaccharide Psl in mucoid Pseudomonas aeruginosa biofilms.

    PubMed

    Ma, Luyan; Wang, Shiwei; Wang, Di; Parsek, Matthew R; Wozniak, Daniel J

    2012-07-01

    The opportunistic pathogen Pseudomonas aeruginosa causes life-threatening, persistent infections in patients with cystic fibrosis (CF). Persistence is attributed to the ability of these bacteria to form structured communities (biofilms). Biofilms rely on an extracellular polymeric substances matrix to maintain structure. Psl exopolysaccharide is a key matrix component of nonmucoid biofilms, yet the role of Psl in mucoid biofilms is unknown. In this report, using a variety of mutants in a mucoid P. aeruginosa background, we found that deletion of Psl-encoding genes dramatically decreased their biofilm formation ability, indicating that Psl is also a critical matrix component of mucoid biofilms. Our data also suggest that the overproduction of alginate leads to mucoid biofilms, which occupy more space, whereas Psl-dependent biofilms are densely packed. These data suggest that Psl polysaccharide may have significant contributions in biofilm persistence in patients with CF and may be helpful for designing therapies for P. aeruginosa CF infection.

  2. Transcriptional Activation of Mucin by Pseudomonas aeruginosa Lipopolysaccharide in the Pathogenesis of Cystic Fibrosis Lung Disease

    NASA Astrophysics Data System (ADS)

    Li, Jian-Dong; Dohrman, Austin F.; Gallup, Marianne; Miyata, Susumu; Gum, James R.; Kim, Young S.; Nadel, Jay A.; Prince, Alice; Basbaum, Carol B.

    1997-02-01

    An unresolved question in cystic fibrosis (CF) research is how mutations of the CF transmembrane conductance regulator, a CI ion channel, cause airway mucus obstruction leading to fatal lung disease. Recent evidence has linked the CF transmembrane conductance regulator mutation to the onset and persistence of Pseudomonas aeruginosa infection in the airways, and here we provide evidence directly linking P. aeruginosa infection to mucus overproduction. We show that P. aeruginosa lipopolysaccharide profoundly upregulates transcription of the mucin gene MUC 2 in epithelial cells via inducible enhancer elements and that this effect is blocked by the tyrosine kinase inhibitors genistein and tyrphostin AG 126. These findings improve our understanding of CF pathogenesis and suggest that the attenuation of mucin production by lipopolysaccharide antagonists and tyrosine kinase inhibitors could reduce morbidity and mortality in this disease.

  3. Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia.

    PubMed Central

    Govan, J R; Deretic, V

    1996-01-01

    Respiratory infections with Pseudomonas aeruginosa and Burkholderia cepacia play a major role in the pathogenesis of cystic fibrosis (CF). This review summarizes the latest advances in understanding host-pathogen interactions in CF with an emphasis on the role and control of conversion to mucoidy in P. aeruginosa, a phenomenon epitomizing the adaptation of this opportunistic pathogen to the chronic chourse of infection in CF, and on the innate resistance to antibiotics of B. cepacia, person-to-person spread, and sometimes rapidly fatal disease caused by this organism. While understanding the mechanism of conversion to mucoidy in P. aeruginosa has progressed to the point where this phenomenon has evolved into a model system for studying bacterial stress response in microbial pathogenesis, the more recent challenge with B. cepacia, which has emerged as a potent bona fide CF pathogen, is discussed in the context of clinical issues, taxonomy, transmission, and potential modes of pathogenicity. PMID:8840786

  4. Pseudomonas aeruginosa dose response and bathing water infection.

    PubMed

    Roser, D J; van den Akker, B; Boase, S; Haas, C N; Ashbolt, N J; Rice, S A

    2014-03-01

    Pseudomonas aeruginosa is the opportunistic pathogen mostly implicated in folliculitis and acute otitis externa in pools and hot tubs. Nevertheless, infection risks remain poorly quantified. This paper reviews disease aetiologies and bacterial skin colonization science to advance dose-response theory development. Three model forms are identified for predicting disease likelihood from pathogen density. Two are based on Furumoto & Mickey's exponential 'single-hit' model and predict infection likelihood and severity (lesions/m2), respectively. 'Third-generation', mechanistic, dose-response algorithm development is additionally scoped. The proposed formulation integrates dispersion, epidermal interaction, and follicle invasion. The review also details uncertainties needing consideration which pertain to water quality, outbreaks, exposure time, infection sites, biofilms, cerumen, environmental factors (e.g. skin saturation, hydrodynamics), and whether P. aeruginosa is endogenous or exogenous. The review's findings are used to propose a conceptual infection model and identify research priorities including pool dose-response modelling, epidermis ecology and infection likelihood-based hygiene management.

  5. Flagellation of Pseudomonas aeruginosa in newly divided cells

    NASA Astrophysics Data System (ADS)

    Zhao, Kun; Lee, Calvin; Anda, Jaime; Wong, Gerard

    2015-03-01

    For monotrichous bacteria, Pseudomonas aeruginosa, after cell division, one daughter cell inherits the old flagellum from its mother cell, and the other grows a new flagellum during or after cell division. It had been shown that the new flagellum grows at the distal pole of the dividing cell when the two daughter cells haven't completely separated. However, for those daughter cells who grow new flagella after division, it still remains unknown at which pole the new flagellum will grow. Here, by combining our newly developed bacteria family tree tracking techniques with genetic manipulation method, we showed that for the daughter cell who did not inherit the old flagellum, a new flagellum has about 90% chances to grow at the newly formed pole. We proposed a model for flagellation of P. aeruginosa.

  6. Transport of Aromatic Amino Acids by Pseudomonas aeruginosa

    PubMed Central

    Kay, W. W.; Gronlund, Audrey F.

    1971-01-01

    Kinetic studies of the transport of aromatic amino acids by Pseudomonas aeruginosa revealed the existence of two high-affinity transport systems which recognized the three aromatic amino acids. From competition data and studies on the exchange of preformed aromatic amino acid pools, the first transport system was found to be functional with phenylalanine, tyrosine, and tryptophan (in order of decreasing activity), whereas the second system was active with tryptophan, phenylalanine, and tyrosine. The two systems also transported a number of aromatic amino acid analogues but not other amino acids. Mutants defective in each of the two and in both transport systems were isolated and described. When the amino acids were added at low external concentrations to cells growing logarithmically in glucose minimal medium, the tryptophan pool very quickly became saturated. Under identical conditions, phenylalanine and tyrosine each accumulated in the intracellular pool of P. aeruginosa at a concentration which was 10 times greater than that of tryptophan. PMID:4994029

  7. Mass Spectrometry Analysis of Pseudomonas aeruginosa Treated With Azithromycin

    PubMed Central

    Phelan, Vanessa V.; Fang, Jinshu; Dorrestein, Pieter C.

    2015-01-01

    In microbiology, changes in specialized metabolite production (cell-to-cell signaling metabolites, virulence factors and natural products) are measured using phenotypic assays. However, advances in mass spectrometry based techniques including imaging mass spectrometry (IMS) now allow researchers to directly visualize the production of specialized metabolites from microbial colony biofilms. In this study, a combination of IMS and liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to visualize the effect of the macrolide antibiotic azithromycin (AZM) on colony biofilms of Pseudomonas aeruginosa. While previous research suggested that AZM may inhibit cell-to-cell signaling of P. aeruginosa and thereby reducing pathogenicity, we observed no clear decrease in specialized metabolite production. PMID:25801585

  8. Production and characterization of the slime polysaccharide of Pseudomonas aeruginosa.

    PubMed

    Evans, L R; Linker, A

    1973-11-01

    The slime polysaccharides produced by Pseudomonas aeruginosa isolated from a variety of human infections were investigated. Slime production in culture seemed optimal when adequate amounts of carbohydrate were present and under conditions of either high osmotic pressure or inadequate protein supply. The polysaccharides produced by the organisms were similar to each other, to the slime of Azotobacter vinelandii, and to seaweed alginic acids. They were composed of beta-1,4-linked d-mannuronic acid residues and variable amounts of its 5-epimer l-guluronic acid. All bacterial polymers contained o-acetyl groups which are absent in the alginates. The polysaccharides differed considerably in the ratio of mannuronic to guluronic acid content and in the number of o-acetyl groups. The particular composition of the slime was not found to be characteristic for the disease process from which the mucoid variants of P. aeruginosa were obtained.

  9. Alginate Overproduction Affects Pseudomonas aeruginosa Biofilm Structure and Function

    PubMed Central

    Hentzer, Morten; Teitzel, Gail M.; Balzer, Grant J.; Heydorn, Arne; Molin, Søren; Givskov, Michael; Parsek, Matthew R.

    2001-01-01

    During the course of chronic cystic fibrosis (CF) infections, Pseudomonas aeruginosa undergoes a conversion to a mucoid phenotype, which is characterized by overproduction of the exopolysaccharide alginate. Chronic P. aeruginosa infections involve surface-attached, highly antibiotic-resistant communities of microorganisms organized in biofilms. Although biofilm formation and the conversion to mucoidy are both important aspects of CF pathogenesis, the relationship between them is at the present unclear. In this study, we report that the overproduction of alginate affects biofilm development on an abiotic surface. Biofilms formed by an alginate-overproducing strain exhibit a highly structured architecture and are significantly more resistant to the antibiotic tobramycin than a biofilm formed by an isogenic nonmucoid strain. These results suggest that an important consequence of the conversion to mucoidy is an altered biofilm architecture that shows increasing resistance to antimicrobial treatments. PMID:11514525

  10. Mass Spectrometry Analysis of Pseudomonas aeruginosa Treated with Azithromycin

    NASA Astrophysics Data System (ADS)

    Phelan, Vanessa V.; Fang, Jinshu; Dorrestein, Pieter C.

    2015-06-01

    In microbiology, changes in specialized metabolite production (cell-to-cell signaling metabolites, virulence factors, and natural products) are measured using phenotypic assays. However, advances in mass spectrometry-based techniques including imaging mass spectrometry (IMS) now allow researchers to directly visualize the production of specialized metabolites from microbial colony biofilms. In this study, a combination of IMS and liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to visualize the effect of the macrolide antibiotic azithromycin (AZM) on colony biofilms of Pseudomonas aeruginosa. Although previous research suggested that AZM may inhibit cell-to-cell signaling of P. aeruginosa and thereby reduce pathogenicity, we observed no clear decrease in specialized metabolite production.

  11. [Water used for hemodialysis equipment: where is Pseudomonas aeruginosa?].

    PubMed

    Ducki, Sébastien; Francini, Nicolas; Blech, Marie-Françoise

    2005-05-01

    The water used in dilution of the dialysis solutions constitutes an essential element of the efficiency and the safety of this therapeutics. Water must be specifically treated, and some technical rules must be respected, such as disinfection of the equipment for water treatment, to guarantee a satisfying level for whole the installation. This article reports the investigations, which were led to find the spring of Pseudomonas aeruginosa which contamined in a recurring way the water feeding dialysis equipment. The observation of samples'chronology and an analysis of the sanitary pad suggested a contamination during disinfection. Sample of residual water from the pump used for the injection of Dialox identified this reservoir as origin of the contamination. To stop this contamination by P. aeruginosa, a pump maintenance revision and purges of the system were used.

  12. Airway epithelial control of Pseudomonas aeruginosa infection in cystic fibrosis

    PubMed Central

    Campόdonico, Victoria L; Gadjeva, Mihaela; Paradis-Bleau, Catherine; Uluer, Ahmet; Pier, Gerald B

    2013-01-01

    Defective expression or function of the cystic fibrosis transmembrane conductance regulator (CFTR) underlies the hypersusceptibility of cystic fibrosis (CF) patients to chronic airway infections, particularly with Pseudomonas aeruginosa. CFTR is involved in the specific recognition of P. aeruginosa, thereby contributing to effective innate immunity and proper hydration of the airway surface layer (ASL). In CF, the airway epithelium fails to initiate an appropriate innate immune response, allowing the microbe to bind to mucus plugs that are then not properly cleared because of the dehydrated ASL. Recent studies have identified numerous CFTR-dependent factors that are recruited to the epithelial plasma membrane in response to infection and that are needed for bacterial clearance, a process that is defective in CF patients hypersusceptible to infection with this organism. PMID:18262467

  13. Pseudomonas aeruginosa exoenzyme S induces proliferation of human T lymphocytes.

    PubMed Central

    Mody, C H; Buser, D E; Syme, R M; Woods, D E

    1995-01-01

    Pseudomonas aeruginosa is a gram-negative bacterium that is responsible for devastating acute and chronic infections, which include bronchiectasis in cystic fibrosis, nosocomial pneumonia, and infection of burn wounds. Previous studies have demonstrated that these patients have impaired host responses, including cell-mediated immune responses, which are important in anti-Pseudomonas host defense. The P. aeruginosa exoproduct, exoenzyme S, has a number of characteristics which suggest that it might be important in cell-mediated immunity. To determine whether exoenzyme S activates lymphocytes to proliferate, peripheral blood mononuclear cells (PBMC) from normal volunteers were stimulated with purified exoenzyme S, and the lymphocyte response was assessed by measuring [3H]thymidine uptake and by counting the number of cells after various times in culture. Ninety-five percent of healthy adult donors had a lymphocyte response to exoenzyme S. The optimal lymphocyte response occurred on day 7, with 4 x 10(5) PBMC per microtiter well when cells were stimulated with 10 micrograms exoenzyme S per ml. [3H]thymidine uptake correlated with an increase in the number of mononuclear cells, indicating that proliferation occurred. In unseparated PBMC, T cells, and to a lesser extent B cells, proliferated. Purified T cells proliferated, while purified B cells proliferated only after the addition of irradiated T cells. Thus, T lymphocytes are necessary and sufficient for the proliferative response to exoenzyme S. We speculate that exoenzyme S from P. aeruginosa is important in T-lymphocyte-mediated host defense to P. aeruginosa. In strategies to enhance impaired cell-mediated immunity, exoenzyme S should be considered as a potential stimulant. PMID:7537248

  14. Phosphorylated tyrosine in the flagellum filament protein of Pseudomonas aeruginosa

    SciTech Connect

    Kelly-Wintenberg, K.; Anderson, T.; Montie, T.C. )

    1990-09-01

    Purified flagella from two strains of {sup 32}P-labeled Pseudomonas aeruginosa were shown to be phosphorylated. This was confirmed by autoradiography of flagellin protein in polyacrylamide gels. Thin-layer electrophoresis and autoradiography of flagellin partial hydrolysates indicated that phosphotyrosine was the major phosphorylated amino acid. High-pressure liquid chromatographic analysis confirmed the presence of phosphotyrosine in flagellum filament protein. Preliminary data indicated that less than one tyrosine per subunit was phosphorylated. No evidence was found for phosphorylation of serine or threonine. A function related to tyrosine phosphorylation has not been determined.

  15. Vaccines for Pseudomonas aeruginosa: A long and winding road

    PubMed Central

    Priebe, Gregory P.; Goldberg, Joanna B.

    2015-01-01

    Summary Despite the recognition of Pseudomonas aeruginosa is an opportunistic pathogen, no vaccine against this bacteria have come to market. This review describes the current state-of-the-art in vaccinology for this bacterium. This includes a discussion of those at risk for infection, the types of vaccines and the approaches for empirical and targeted antigen selection under development, as well as a perspective on where the field should go. In addition, the challenges in developing a vaccine for those individuals at risk are discussed. PMID:24575895

  16. The Approach to Pseudomonas aeruginosa in Cystic Fibrosis.

    PubMed

    Talwalkar, Jaideep S; Murray, Thomas S

    2016-03-01

    There is a high prevalence of Pseudomonas aeruginosa in patients with cystic fibrosis and clear epidemiologic links between chronic infection and morbidity and mortality exist. Prevention and early identification of infection are critical, and stand to improve with the advent of new vaccines and laboratory methods. Once the organism is identified, a variety of treatment options are available. Aggressive use of antipseudomonal antibiotics is the standard of care for acute pulmonary exacerbations in cystic fibrosis, and providers must take into account specific patient characteristics when making treatment decisions related to antibiotic selection, route and duration of administration, and site of care.

  17. Structural and Functional Characterization of Pseudomonas aeruginosa AlgX

    PubMed Central

    Riley, Laura M.; Weadge, Joel T.; Baker, Perrin; Robinson, Howard; Codée, Jeroen D. C.; Tipton, Peter A.; Ohman, Dennis E.; Howell, P. Lynne

    2013-01-01

    The exopolysaccharide alginate, produced by mucoid Pseudomonas aeruginosa in the lungs of cystic fibrosis patients, undergoes two different chemical modifications as it is synthesized that alter the properties of the polymer and hence the biofilm. One modification, acetylation, causes the cells in the biofilm to adhere better to lung epithelium, form microcolonies, and resist the effects of the host immune system and/or antibiotics. Alginate biosynthesis requires 12 proteins encoded by the algD operon, including AlgX, and although this protein is essential for polymer production, its exact role is unknown. In this study, we present the X-ray crystal structure of AlgX at 2.15 Å resolution. The structure reveals that AlgX is a two-domain protein, with an N-terminal domain with structural homology to members of the SGNH hydrolase superfamily and a C-terminal carbohydrate-binding module. A number of residues in the carbohydrate-binding module form a substrate recognition “pinch point” that we propose aids in alginate binding and orientation. Although the topology of the N-terminal domain deviates from canonical SGNH hydrolases, the residues that constitute the Ser-His-Asp catalytic triad characteristic of this family are structurally conserved. In vivo studies reveal that site-specific mutation of these residues results in non-acetylated alginate. This catalytic triad is also required for acetylesterase activity in vitro. Our data suggest that not only does AlgX protect the polymer as it passages through the periplasm but that it also plays a role in alginate acetylation. Our results provide the first structural insight for a wide group of closely related bacterial polysaccharide acetyltransferases. PMID:23779107

  18. The aliphatic amidase AmiE is involved in regulation of Pseudomonas aeruginosa virulence

    PubMed Central

    Clamens, Thomas; Rosay, Thibaut; Crépin, Alexandre; Grandjean, Teddy; Kentache, Takfarinas; Hardouin, Julie; Bortolotti, Perrine; Neidig, Anke; Mooij, Marlies; Hillion, Mélanie; Vieillard, Julien; Cosette, Pascal; Overhage, Joerg; O’Gara, Fergal; Bouffartigues, Emeline; Dufour, Alain; Chevalier, Sylvie; Guery, Benoit; Cornelis, Pierre; Feuilloley, Marc G. J.; Lesouhaitier, Olivier

    2017-01-01

    We have previously shown that the eukaryotic C-type natriuretic peptide hormone (CNP) regulates Pseudomonas aeruginosa virulence and biofilm formation after binding on the AmiC sensor, triggering the amiE transcription. Herein, the involvement of the aliphatic amidase AmiE in P. aeruginosa virulence regulation has been investigated. The proteome analysis of an AmiE over-producing strain (AmiE+) revealed an expression change for 138 proteins, including some that are involved in motility, synthesis of quorum sensing compounds and virulence regulation. We observed that the AmiE+ strain produced less biofilm compared to the wild type, and over-produced rhamnolipids. In the same line, AmiE is involved in P. aeruginosa motilities (swarming and twitching) and production of the quorum sensing molecules N-acyl homoserine lactones and Pseudomonas Quinolone Signal (PQS). We observed that AmiE overproduction reduced levels of HCN and pyocyanin causing a decreased virulence in different hosts (i.e. Dictyostelium discoideum and Caenorhabditis elegans). This phenotype was further confirmed in a mouse model of acute lung infection, in which AmiE overproduction resulted in an almost fully virulence decrease. Taken together, our data suggest that, in addition to its role in bacterial secondary metabolism, AmiE is involved in P. aeruginosa virulence regulation by modulating pilus synthesis and cell-to-cell communication. PMID:28117457

  19. Zingerone silences quorum sensing and attenuates virulence of Pseudomonas aeruginosa.

    PubMed

    Kumar, Lokender; Chhibber, Sanjay; Kumar, Rajnish; Kumar, Manoj; Harjai, Kusum

    2015-04-01

    Quorum sensing in Pseudomonas aeruginosa plays an imperative role in virulence factor, biofilm formation and antimicrobial resistance. Blocking quorum sensing pathways are viewed as viable anti-virulent therapy in association with traditional antimicrobial therapy. Anti-quorum sensing dietary phytochemicals with may prove to be a safe and viable choice as anti-virulent drug candidates. Previously, our lab proved zingerone as potent anti-biofilm agent hence; further its anti-virulent and anti-quorum activities were evaluated. Zingerone, besides decreasing swimming, swarming and twitching phenotypes of P. aeruginosa PAO1, reduced biofilm forming capacity and production of virulence factors including rhamnolipid, elastase, protease, pyocyanin, cell free and cell bound hemolysin (p<0.001) indicating anti-virulent property attributing towards attenuation of virulence of P. aeruginosa. Further zingerone not only had marked effect on the production of quorum sensing signal molecules by clinical isolates of P. aeruginosa but also showed significant interference with the activation of QS reporter strains. To study the mechanism of blocking quorum sensing cascade, in silico analysis was carried out. Anti-QS activity was attributed to interference with the ligand receptor interaction of zingerone with QS receptors (TraR, LasR, RhlR and PqsR). Zingerone showed a good comparative docking score to respective autoinducer molecules which was even higher than that of vanillin, a proven anti-quorum sensing phytochemical. The results of the present study revealed the anti-quorum sensing activity of zingerone targeting ligand-receptor interaction, hence proposing zingerone as a suitable anti-virulent drug candidate against P. aeruginosa infections.

  20. Inhibition of Pseudomonas aeruginosa Biofilm Formation by Traditional Chinese Medicinal Herb Herba patriniae

    PubMed Central

    Fu, Bo; Wu, Qiaolian; Dang, Minyan; Bai, Dangdang; Guo, Qiao

    2017-01-01

    New antimicrobial agents are urgently needed to treat infections caused by drug-resistant pathogens and by pathogens capable of persisting in biofilms. The aim of this study was to identify traditional Chinese herbs that could inhibit biofilm formation of Pseudomonas aeruginosa, an important human pathogen that causes serious and difficult-to-treat infections in humans. A luxCDABE-based reporter system was constructed to monitor the expression of six key biofilm-associated genes in P. aeruginosa. The reporters were used to screen a library of 36 herb extracts for inhibitory properties against these genes. The results obtained indicated that the extract of Herba patriniae displayed significant inhibitory effect on almost all of these biofilm-associated genes. Quantitative analysis showed that H. patriniae extract was able to significantly reduce the biofilm formation and dramatically altered the structure of the mature biofilms of P. aeruginosa. Further studies showed H. patriniae extract decreased exopolysaccharide production by P. aeruginosa and promoted its swarming motility, two features disparately associated with biofilm formation. These results provided a potential mechanism for the use of H. patriniae to treat bacterial infections by traditional Chinese medicines and revealed a promising candidate for exploration of new drugs against P. aeruginosa biofilm-associated infections. PMID:28377931

  1. Influence of Melaleuca alternifolia oil nanoparticles on aspects of Pseudomonas aeruginosa biofilm.

    PubMed

    Comin, Vanessa M; Lopes, Leonardo Q S; Quatrin, Priscilla M; de Souza, Márcia E; Bonez, Pauline C; Pintos, Francieli G; Raffin, Renata P; Vaucher, Rodrigo de A; Martinez, Diego S T; Santos, Roberto C V

    2016-04-01

    The Pseudomonas aeruginosa is a gram-negative bacillus and frequent cause of infection. This microorganism is resistant intrinsically to various drugs. The P. aeruginosa is associated with the biofilm formation, which causes worsen the prognosis and difficulty the treatment. The influence of Melaleuca alternifolia oil or "tree of tee" oil (TTO) and TTO nanoparticles on adhesion of P. aeruginosa in buccal epithelial cells was investigated. Also was determined the antimicrobial and antibiofilm activity against this microorganism. The TTO nanoparticles were produced by deposition of preformed polymer and the physic-chemical properties of nanoparticles were measured by electrophoresis and dynamic light scattering. The characterization of nanoparticle showed acceptable values for diameter and zeta potential. The evaluation of antimicrobial and antibiofilm activity against P. aeruginosa PAO1 was performed by microdilution indicating the minimal inhibitory concentration, and the potential antibiofilm. It was verified the action on virulence factors such the motility, besides the influence on adhesion in buccal epithelial cells. Both oil and nanoparticles showed a decrease in adhesion of microorganisms to buccal cells, decrease of biofilm and interfering on P. aeruginosa PAO1 motility. The nanostructuration of TTO, shows be a viable alternative against formed biofilm microorganisms.

  2. A long-chain flavodoxin protects Pseudomonas aeruginosa from oxidative stress and host bacterial clearance.

    PubMed

    Moyano, Alejandro J; Tobares, Romina A; Rizzi, Yanina S; Krapp, Adriana R; Mondotte, Juan A; Bocco, José L; Saleh, Maria-Carla; Carrillo, Néstor; Smania, Andrea M

    2014-02-01

    Long-chain flavodoxins, ubiquitous electron shuttles containing flavin mononucleotide (FMN) as prosthetic group, play an important protective role against reactive oxygen species (ROS) in various microorganisms. Pseudomonas aeruginosa is an opportunistic pathogen which frequently has to face ROS toxicity in the environment as well as within the host. We identified a single ORF, hereafter referred to as fldP (for fl avo d oxin from P . aeruginosa), displaying the highest similarity in length, sequence identity and predicted secondary structure with typical long-chain flavodoxins. The gene was cloned and expressed in Escherichia coli. The recombinant product (FldP) could bind FMN and exhibited flavodoxin activity in vitro. Expression of fldP in P. aeruginosa was induced by oxidative stress conditions through an OxyR-independent mechanism, and an fldP-null mutant accumulated higher intracellular ROS levels and exhibited decreased tolerance to H2O2 toxicity compared to wild-type siblings. The mutant phenotype could be complemented by expression of a cyanobacterial flavodoxin. Overexpression of FldP in a mutT-deficient P. aeruginosa strain decreased H2O2-induced cell death and the hypermutability caused by DNA oxidative damage. FldP contributed to the survival of P. aeruginosa within cultured mammalian macrophages and in infected Drosophila melanogaster, which led in turn to accelerated death of the flies. Interestingly, the fldP gene is present in some but not all P. aeruginosa strains, constituting a component of the P. aeruginosa accessory genome. It is located in a genomic island as part of a self-regulated polycistronic operon containing a suite of stress-associated genes. The collected results indicate that the fldP gene encodes a long-chain flavodoxin, which protects the cell from oxidative stress, thereby expanding the capabilities of P. aeruginosa to thrive in hostile environments.

  3. A Long-Chain Flavodoxin Protects Pseudomonas aeruginosa from Oxidative Stress and Host Bacterial Clearance

    PubMed Central

    Moyano, Alejandro J.; Krapp, Adriana R.; Mondotte, Juan A.; Bocco, José L.; Saleh, Maria-Carla; Carrillo, Néstor; Smania, Andrea M.

    2014-01-01

    Long-chain flavodoxins, ubiquitous electron shuttles containing flavin mononucleotide (FMN) as prosthetic group, play an important protective role against reactive oxygen species (ROS) in various microorganisms. Pseudomonas aeruginosa is an opportunistic pathogen which frequently has to face ROS toxicity in the environment as well as within the host. We identified a single ORF, hereafter referred to as fldP (for flavodoxin from P . aeruginosa), displaying the highest similarity in length, sequence identity and predicted secondary structure with typical long-chain flavodoxins. The gene was cloned and expressed in Escherichia coli. The recombinant product (FldP) could bind FMN and exhibited flavodoxin activity in vitro. Expression of fldP in P. aeruginosa was induced by oxidative stress conditions through an OxyR-independent mechanism, and an fldP-null mutant accumulated higher intracellular ROS levels and exhibited decreased tolerance to H2O2 toxicity compared to wild-type siblings. The mutant phenotype could be complemented by expression of a cyanobacterial flavodoxin. Overexpression of FldP in a mutT-deficient P. aeruginosa strain decreased H2O2-induced cell death and the hypermutability caused by DNA oxidative damage. FldP contributed to the survival of P. aeruginosa within cultured mammalian macrophages and in infected Drosophila melanogaster, which led in turn to accelerated death of the flies. Interestingly, the fldP gene is present in some but not all P. aeruginosa strains, constituting a component of the P. aeruginosa accessory genome. It is located in a genomic island as part of a self-regulated polycistronic operon containing a suite of stress-associated genes. The collected results indicate that the fldP gene encodes a long-chain flavodoxin, which protects the cell from oxidative stress, thereby expanding the capabilities of P. aeruginosa to thrive in hostile environments. PMID:24550745

  4. Role of Iron Uptake Systems in Pseudomonas aeruginosa Virulence and Airway Infection

    PubMed Central

    Minandri, Fabrizia; Imperi, Francesco; Frangipani, Emanuela; Bonchi, Carlo; Visaggio, Daniela; Facchini, Marcella; Pasquali, Paolo; Bragonzi, Alessandra

    2016-01-01

    Pseudomonas aeruginosa is a leading cause of hospital-acquired pneumonia and chronic lung infections in cystic fibrosis patients. Iron is essential for bacterial growth, and P. aeruginosa expresses multiple iron uptake systems, whose role in lung infection deserves further investigation. P. aeruginosa Fe3+ uptake systems include the pyoverdine and pyochelin siderophores and two systems for heme uptake, all of which are dependent on the TonB energy transducer. P. aeruginosa also has the FeoB transporter for Fe2+ acquisition. To assess the roles of individual iron uptake systems in P. aeruginosa lung infection, single and double deletion mutants were generated in P. aeruginosa PAO1 and characterized in vitro, using iron-poor media and human serum, and in vivo, using a mouse model of lung infection. The iron uptake-null mutant (tonB1 feoB) and the Fe3+ transport mutant (tonB1) did not grow aerobically under low-iron conditions and were avirulent in the mouse model. Conversely, the wild type and the feoB, hasR phuR (heme uptake), and pchD (pyochelin) mutants grew in vitro and caused 60 to 90% mortality in mice. The pyoverdine mutant (pvdA) and the siderophore-null mutant (pvdA pchD) grew aerobically in iron-poor media but not in human serum, and they caused low mortality in mice (10 to 20%). To differentiate the roles of pyoverdine in iron uptake and virulence regulation, a pvdA fpvR double mutant defective in pyoverdine production but expressing wild-type levels of pyoverdine-regulated virulence factors was generated. Deletion of fpvR in the pvdA background partially restored the lethal phenotype, indicating that pyoverdine contributes to the pathogenesis of P. aeruginosa lung infection by combining iron transport and virulence-inducing capabilities. PMID:27271740

  5. Genes required for and effects of alginate overproduction induced by growth of Pseudomonas aeruginosa on Pseudomonas isolation agar supplemented with ammonium metavanadate.

    PubMed

    Damron, F Heath; Barbier, Mariette; McKenney, Elizabeth S; Schurr, Michael J; Goldberg, Joanna B

    2013-09-01

    Pseudomonas aeruginosa is an opportunistic pathogen that can adapt to changing environments and can secrete an exopolysaccharide known as alginate as a protection response, resulting in a colony morphology and phenotype referred to as mucoid. However, how P. aeruginosa senses its environment and activates alginate overproduction is not fully understood. Previously, we showed that Pseudomonas isolation agar supplemented with ammonium metavanadate (PIAAMV) induces P. aeruginosa to overproduce alginate. Vanadate is a phosphate mimic and causes protein misfolding by disruption of disulfide bonds. Here we used PIAAMV to characterize the pathways involved in inducible alginate production and tested the global effects of P. aeruginosa growth on PIAAMV by a mutant library screen, by transcriptomics, and in a murine acute virulence model. The PA14 nonredundant mutant library was screened on PIAAMV to identify new genes that are required for the inducible alginate stress response. A functionally diverse set of genes encoding products involved in cell envelope biogenesis, peptidoglycan remodeling, uptake of phosphate and iron, phenazine biosynthesis, and other processes were identified as positive regulators of the mucoid phenotype on PIAAMV. Transcriptome analysis of P. aeruginosa cultures growing in the presence of vanadate showed differential expression of genes involved in virulence, envelope biogenesis, and cell stress pathways. In this study, it was observed that growth on PIAAMV attenuates P. aeruginosa in a mouse pneumonia model. Induction of alginate overproduction occurs as a stress response to protect P. aeruginosa, but it may be possible to modulate and inhibit these pathways based on the new genes identified in this study.

  6. [Pseudomonas aeruginosa bacteriaemia: new clinical and therapeutic aspects ].

    PubMed

    Janbon, F; Despaux, E; Lepeu, G; Jonquet, O; Santoni, A; Balmayer, B; Bertrand, A

    1982-06-01

    Fifty one cases of Pseudomonas aeruginosa bacteriaemia observed during the last 12 years are reported. Thirty five patients were over fifty years old; 92 p. cent were admitted for several days and about 50 p. cent were in post-operative period. A previous antibiotherapy and an impaired status are promotive factors. The respiratory or peritoneal origins are the most frequent. All patients were feverish; 24 have had an infectious shock which was inaugural in 12 cases. Seven pneumonitis, 3 endocarditis, one pericarditis and 2 osteitis were observed. An ecthyma gangrenosum was noted in three patients. Mortality was 70 p. cent. Comparison between recovered and died patients improved bad prognosis of old age, post operative period, neoplasic, previous organica weakness and pulmonary or peritoneal origins. Used alone, colimycin has seemed to be more effective than aminosid antibiotics; but their association with betalactamins was better. An in vitro study of the susceptibility of 100 Pseudomonas aeruginosa strains has proved the interest of piperacillin and cefsulodin; azlocillin, cefoperazone and ceftriaxone are just less effective.

  7. Autolysis and autoaggregation in Pseudomonas aeruginosa colony morphology mutants.

    PubMed

    D'Argenio, David A; Calfee, M Worth; Rainey, Paul B; Pesci, Everett C

    2002-12-01

    Two distinctive colony morphologies were noted in a collection of Pseudomonas aeruginosa transposon insertion mutants. One set of mutants formed wrinkled colonies of autoaggregating cells. Suppressor analysis of a subset of these mutants showed that this was due to the action of the regulator WspR and linked this regulator (and the chemosensory pathway to which it belongs) to genes that encode a putative fimbrial adhesin required for biofilm formation. WspR homologs, related in part by a shared GGDEF domain, regulate cell surface factors, including aggregative fimbriae and exopolysaccharides, in diverse bacteria. The second set of distinctive insertion mutants formed colonies that lysed at their center. Strains with the most pronounced lysis overproduced the Pseudomonas quinolone signal (PQS), an extracellular signal that interacts with quorum sensing. Autolysis was suppressed by mutation of genes required for PQS biosynthesis, and in one suppressed mutant, autolysis was restored by addition of synthetic PQS. The mechanism of autolysis may involve activation of the endogenous prophage and phage-related pyocins in the genome of strain PAO1. The fact that PQS levels correlated with autolysis suggests a fine balance in natural populations of P. aeruginosa between survival of the many and persistence of the few.

  8. Dissecting the Machinery That Introduces Disulfide Bonds in Pseudomonas aeruginosa

    PubMed Central

    Arts, Isabelle S.; Ball, Geneviève; Leverrier, Pauline; Garvis, Steven; Nicolaes, Valérie; Vertommen, Didier; Ize, Bérengère; Tamu Dufe, Veronica; Messens, Joris; Voulhoux, Romé; Collet, Jean-François

    2013-01-01

    ABSTRACT Disulfide bond formation is required for the folding of many bacterial virulence factors. However, whereas the Escherichia coli disulfide bond-forming system is well characterized, not much is known on the pathways that oxidatively fold proteins in pathogenic bacteria. Here, we report the detailed unraveling of the pathway that introduces disulfide bonds in the periplasm of the human pathogen Pseudomonas aeruginosa. The genome of P. aeruginosa uniquely encodes two DsbA proteins (P. aeruginosa DsbA1 [PaDsbA1] and PaDsbA2) and two DsbB proteins (PaDsbB1 and PaDsbB2). We found that PaDsbA1, the primary donor of disulfide bonds to secreted proteins, is maintained oxidized in vivo by both PaDsbB1 and PaDsbB2. In vitro reconstitution of the pathway confirms that both PaDsbB1 and PaDsbB2 shuttle electrons from PaDsbA1 to membrane-bound quinones. Accordingly, deletion of both P. aeruginosa dsbB1 (PadsbB1) and PadsbB2 is required to prevent the folding of several P. aeruginosa virulence factors and to lead to a significant decrease in pathogenicity. Using a high-throughput proteomic approach, we also analyzed the impact of PadsbA1 deletion on the global periplasmic proteome of P. aeruginosa, which allowed us to identify more than 20 new potential substrates of this major oxidoreductase. Finally, we report the biochemical and structural characterization of PaDsbA2, a highly oxidizing oxidoreductase, which seems to be expressed under specific conditions. By fully dissecting the machinery that introduces disulfide bonds in P. aeruginosa, our work opens the way to the design of novel antibacterial molecules able to disarm this pathogen by preventing the proper assembly of its arsenal of virulence factors. PMID:24327342

  9. Heterogeneity of Pseudomonas aeruginosa in Brazilian Cystic Fibrosis Patients

    PubMed Central

    Silbert, Suzane; Barth, Afonso Luis; Sader, Hélio S.

    2001-01-01

    The aim of this study was to assess the diversity and genomic variability of Pseudomonas aeruginosa isolates from cystic fibrosis (CF) patients being treated at a university hospital in Brazil. Ninety-seven isolates of P. aeruginosa from 43 CF patients were characterized by macrorestriction analysis of chromosomal DNA by pulsed-field gel electrophoresis (PFGE) and tested for susceptibility to 20 antimicrobial agents by broth microdilution. It was possible to evaluate single isolates from 20 patients and multiple isolates (two to seven) from 23 patients collected during a 22-month period. Among all of the unrelated patients, we detected only one pair of patients sharing a common strain. Among the 77 isolates from 23 patients who had multiple isolates analyzed, we identified 37 major types by PFGE, and five different colonization patterns were recognized. The isolates were susceptible to several antimicrobial agents, although consecutive isolates from the same patient may display differences in their susceptibilities. Mucoid isolates were more resistant (P < 0.001) than nonmucoid isolates to five antibiotics. Our results indicate that CF patients remain colonized by more than one strain of P. aeruginosa for long periods of time. In addition, the finding of several different genotypes in the same patient suggests that the colonizing strain may occasionally be replaced. PMID:11682517

  10. Exploitation of syndecan-1 shedding by Pseudomonas aeruginosa enhances virulence.

    PubMed

    Park, P W; Pier, G B; Hinkes, M T; Bernfield, M

    2001-05-03

    Cell-surface heparan sulphate proteoglycans (HSPGs) are ubiquitous and abundant receptors/co-receptors of extracellular ligands, including many microbes. Their role in microbial infections is poorly defined, however, because no cell-surface HSPG has been clearly connected to the pathogenesis of a particular microbe. We have previously shown that Pseudomonas aeruginosa, through its virulence factor LasA, enhances the in vitro shedding of syndecan-1-the predominant cell-surface HSPG of epithelia. Here we show that shedding of syndecan-1 is also activated by P. aeruginosa in vivo, and that the resulting syndecan-1 ectodomains enhance bacterial virulence in newborn mice. Newborn mice deficient in syndecan-1 resist P. aeruginosa lung infection but become susceptible when given purified syndecan-1 ectodomains or heparin, but not when given ectodomain core protein, indicating that the ectodomain's heparan sulphate chains are the effectors. In wild-type newborn mice, inhibition of syndecan-1 shedding or inactivation of the shed ectodomain's heparan sulphate chains prevents lung infection. Our findings uncover a pathogenetic mechanism in which a host response to tissue injury-syndecan-1 shedding-is exploited to enhance microbial virulence apparently by modulating host defences.

  11. Human immune response to Pseudomonas aeruginosa mucoid exopolysaccharide (alginate) vaccine.

    PubMed Central

    Pier, G B; DesJardin, D; Grout, M; Garner, C; Bennett, S E; Pekoe, G; Fuller, S A; Thornton, M O; Harkonen, W S; Miller, H C

    1994-01-01

    Chronic lung infection with mucoid Pseudomonas aeruginosa is the major pathologic feature of cystic fibrosis. Previous studies suggested that a failure to produce opsonic antibody to the mucoid exopolysaccharide (MEP; also called alginate) capsule is associated with the maintenance of chronic bacterial infection. Provision of MEP-specific opsonic antibodies has therapeutic potential. To evaluate the ability of MEP to elicit opsonic antibodies, humans were immunized with two lots of MEP vaccine that differed principally in molecular size. Lot 2 had a larger average MEP polymer size. Both vaccines were well tolerated, but lot 1 was poorly immunogenic, inducing long-lived opsonic antibodies in only 2 of 28 vaccinates given doses of 10 to 150 micrograms. In contrast, at the optimal dose of 100 micrograms, lot 2 elicited long-lived opsonic antibodies in 80 to 90% of the vaccinates. The antibodies elicited by both lots enhanced deposition of C3 onto mucoid P. aeruginosa cells and mediated opsonic killing of heterologous mucoid strains expressing distinct MEP antigens. These results indicate that the polymers of MEP with the largest molecular sizes safely elicit opsonic antibodies in a sufficiently large proportion of vaccinates to permit studies of active and passive immunization of cystic fibrosis patients against infection with mucoid P. aeruginosa. PMID:8063415

  12. Characterization of colony morphology variants isolated from Pseudomonas aeruginosa biofilms.

    PubMed

    Kirisits, Mary Jo; Prost, Lynne; Starkey, Melissa; Parsek, Matthew R

    2005-08-01

    In this study, we report the isolation of small, rough, strongly cohesive colony morphology variants from aging Pseudomonas aeruginosa PAO1 biofilms. Similar to many of the P. aeruginosa colony morphology variants previously described in the literature, these variants autoaggregate in liquid culture and hyperadhere to solid surfaces. They also exhibit increased hydrophobicity and reduced motility compared to the wild-type parent strain. Despite the similarities in appearance of our colony morphology variant isolates on solid medium, the isolates showed a range of responses in various phenotypic assays. These variants form biofilms with significant three-dimensional structure and more biomass than the wild-type parent. To further explore the nature of the variants, their transcriptional profiles were evaluated. The variants generally showed increased expression of the psl and pel loci, which have been previously implicated in the adherence of P. aeruginosa to solid surfaces. When a mutation in the psl locus was introduced into a colony morphology variant, the colony morphology was only partially affected, but hyperadherence and autoaggregation were lost. Finally, similar colony morphology variants were found in isolates from cystic fibrosis patients. These variants displayed many of the same characteristics as the laboratory variants, suggesting a link between laboratory and cystic fibrosis biofilms.

  13. Mycofabricated biosilver nanoparticles interrupt Pseudomonas aeruginosa quorum sensing systems

    PubMed Central

    Singh, Braj R.; Singh, Brahma N.; Singh, Akanksha; Khan, Wasi; Naqvi, Alim H.; Singh, Harikesh B.

    2015-01-01

    Quorum sensing (QS) is a chemical communication process that Pseudomonas aeruginosa uses to regulate virulence and biofilm formation. Disabling of QS is an emerging approach for combating its pathogenicity. Silver nanoparticles (AgNPs) have been widely applied as antimicrobial agents against human pathogenic bacteria and fungi, but not for the attenuation of bacterial QS. Here we mycofabricated AgNPs (mfAgNPs) using metabolites of soil fungus Rhizopus arrhizus BRS-07 and tested their effect on QS-regulated virulence and biofilm formation of P. aeruginosa. Transcriptional studies demonstrated that mfAgNPs reduced the levels of LasIR-RhlIR. Treatment of mfAgNPs inhibited biofilm formation, production of several virulence factors (e.g. LasA protease, LasB elastrase, pyocyanin, pyoverdin, pyochelin, rhamnolipid, and alginate) and reduced AHLs production. Further genes quantification analyses revealed that mfAgNPs significantly down-regulated QS-regulated genes, specifically those encoded to the secretion of virulence factors. The results clearly indicated the anti-virulence property of mfAgNPs by inhibiting P. aeruginosa QS signaling. PMID:26347993

  14. In vitro antimicrobial activity of LED irradiation on Pseudomonas aeruginosa.

    PubMed

    Petrini, Morena; Trentini, Paolo; Tripodi, Domenico; Spoto, Giuseppe; D'Ercole, Simonetta

    2017-03-01

    Pseudomonas aeruginosa is an opportunistic pathogen responsible of many deaths due to nosocomial pneumonia each year. It is particularly resistant to many different classes of antibiotics and disinfectants. For all these reasons, there is the necessity to find novel approaches of treatment. The aim of this study was to evaluate the effect of 880nm light emitting diodes (LED) irradiation on P. aeruginosa, in vitro. Different LED irradiation parameters (time, energy output and the addition of methylene blue and chlorhexidine) have been tested in order to evaluate the effects on this bacterium. After treatment, the colony forming units per milliliter (CFU mL-1) were recorded and the data were submitted to ANOVA and Bonferroni post hoc tests at a level of significance of 5%. A statistical significant reduction of bacterial count has been registered after 5min of LED irradiation. The antibacterial effect was directly proportional to irradiation time and the output energy. The pre-treatment with methylene blue, seems to be not effective against P. aeruginosa, independently from irradiation parameters. On the contrary, the contemporary action of LED and chlorhexidine has shown a great reduction of bacterial count that was statistical significant respect chlorhexidine and LED alone. The effect of LED irradiation was visible also after 24h, when a lower bacterial count characterized all irradiated samples respect controls.

  15. Indole and 7‐hydroxyindole diminish Pseudomonas aeruginosa virulence

    PubMed Central

    Lee, Jintae; Attila, Can; Cirillo, Suat L. G.; Cirillo, Jeffrey D.; Wood, Thomas K.

    2009-01-01

    Summary Indole is an extracellular biofilm signal for Escherichia coli, and many bacterial oxygenases readily convert indole to various oxidized compounds including 7‐hydroxyindole (7HI). Here we investigate the impact of indole and 7HI on Pseudomonas aeruginosa PAO1 virulence and quorum sensing (QS)‐regulated phenotypes; this strain does not synthesize these compounds but degrades them rapidly. Indole and 7HI both altered extensively gene expression in a manner opposite that of acylhomoserine lactones; the most repressed genes encode the mexGHI‐opmD multidrug efflux pump and genes involved in the synthesis of QS‐regulated virulence factors including pyocyanin (phz operon), 2‐heptyl‐3‐hydroxy‐4(1H)‐quinolone (PQS) signal (pqs operon), pyochelin (pch operon) and pyoverdine (pvd operon). Corroborating these microarray results, indole and 7HI decreased production of pyocyanin, rhamnolipid, PQS and pyoverdine and enhanced antibiotic resistance. In addition, indole affected the utilization of carbon, nitrogen and phosphorus, and 7HI abolished swarming motility. Furthermore, 7HI reduced pulmonary colonization of P. aeruginosa in guinea pigs and increased clearance in lungs. Hence, indole‐related compounds have potential as a novel antivirulence approach for the recalcitrant pathogen P. aeruginosa. PMID:21261883

  16. Indole and 7-hydroxyindole diminish Pseudomonas aeruginosa virulence.

    PubMed

    Lee, Jintae; Attila, Can; Cirillo, Suat L G; Cirillo, Jeffrey D; Wood, Thomas K

    2009-01-01

    Indole is an extracellular biofilm signal for Escherichia coli, and many bacterial oxygenases readily convert indole to various oxidized compounds including 7-hydroxyindole (7HI). Here we investigate the impact of indole and 7HI on Pseudomonas aeruginosa PAO1 virulence and quorum sensing (QS)-regulated phenotypes; this strain does not synthesize these compounds but degrades them rapidly. Indole and 7HI both altered extensively gene expression in a manner opposite that of acylhomoserine lactones; the most repressed genes encode the mexGHI-opmD multidrug efflux pump and genes involved in the synthesis of QS-regulated virulence factors including pyocyanin (phz operon), 2-heptyl-3-hydroxy-4(1H)-quinolone (PQS) signal (pqs operon), pyochelin (pch operon) and pyoverdine (pvd operon). Corroborating these microarray results, indole and 7HI decreased production of pyocyanin, rhamnolipid, PQS and pyoverdine and enhanced antibiotic resistance. In addition, indole affected the utilization of carbon, nitrogen and phosphorus, and 7HI abolished swarming motility. Furthermore, 7HI reduced pulmonary colonization of P. aeruginosa in guinea pigs and increased clearance in lungs. Hence, indole-related compounds have potential as a novel antivirulence approach for the recalcitrant pathogen P. aeruginosa.

  17. Strategies for improved rhamnolipid production by Pseudomonas aeruginosa PA1

    PubMed Central

    Pereira Jr, Nei; Freire, Denise M.G.

    2016-01-01

    Rhamnolipids are biosurfactants with potential for diversified industrial and environmental uses. The present study evaluated three strategies for increasing the production of rhamnolipid-type biosurfactants produced by Pseudomonas aeruginosa strain PA1. The influence of pH, the addition of P. aeruginosa spent culture medium and the use of a fed-batch process were examined. The culture medium adjusted to pH 7.0 was the most productive. Furthermore, the pH of the culture medium had a measurable effect on the ratio of synthesized mono- and dirhamnolipids. At pH values below 7.3, the proportion of monorhamnolipids decreased from 45 to 24%. The recycling of 20% of the spent culture medium in where P. aeruginosa was grown up to the later stationary phase was responsible for a 100% increase in rhamnolipid volumetric productivity in the new culture medium. Finally, the use of fed-batch operation under conditions of limited nitrogen resulted in a 3.8-fold increase in the amount of rhamnolipids produced (2.9 g L−1–10.9 g L−1). These results offer promising pathways for the optimization of processes for the production of rhamnolipids. PMID:27257553

  18. Gallium induces the production of virulence factors in Pseudomonas aeruginosa.

    PubMed

    García-Contreras, Rodolfo; Pérez-Eretza, Berenice; Lira-Silva, Elizabeth; Jasso-Chávez, Ricardo; Coria-Jiménez, Rafael; Rangel-Vega, Adrián; Maeda, Toshinari; Wood, Thomas K

    2014-02-01

    The novel antimicrobial gallium is a nonredox iron III analogue with bacteriostatic and bactericidal properties, effective for the treatment of Pseudomonas aeruginosa in vitro and in vivo in mouse and rabbit infection models. It interferes with iron metabolism, transport, and presumably its homeostasis. As gallium exerts its antimicrobial effects by competing with iron, we hypothesized that it ultimately will lead cells to an iron deficiency status. As iron deficiency promotes the expression of virulence factors in vitro and promotes the pathogenicity of P. aeruginosa in animal models, it is anticipated that treatment with gallium will also promote the production of virulence factors. To test this hypothesis, the reference strain PA14 and two clinical isolates from patients with cystic fibrosis were exposed to gallium, and their production of pyocyanin, rhamnolipids, elastase, alkaline protease, alginate, pyoverdine, and biofilm was determined. Gallium treatment induced the production of all the virulence factors tested in the three strains except for pyoverdine. In addition, as the Ga-induced virulence factors are quorum sensing controlled, co-administration of Ga and the quorum quencher brominated furanone C-30 was assayed, and it was found that C-30 alleviated growth inhibition from gallium. Hence, adding both C-30 and gallium may be more effective in the treatment of P. aeruginosa infections.

  19. Quorum sensing and policing of Pseudomonas aeruginosa social cheaters.

    PubMed

    Wang, Meizhen; Schaefer, Amy L; Dandekar, Ajai A; Greenberg, E Peter

    2015-02-17

    The bacterium Pseudomonas aeruginosa is an opportunistic human pathogen that uses a quorum sensing signal cascade to activate expression of dozens of genes when sufficient population densities have been reached. Quorum sensing controls production of several key virulence factors, including secreted proteases such as elastase. Cooperating groups of bacteria growing on protein are susceptible to social cheating by quorum-sensing defective mutants. A possible way to restrict cheater emergence is by policing where cooperators produce costly goods to sanction or punish cheats. The P. aeruginosa LasR-LasI quorum sensing system controls genes including those encoding proteases and also those encoding a second quorum-sensing system, the RhlR-RhlI system, which controls numerous genes including those for cyanide production. By using RhlR quorum sensing mutants and cyanide synthesis mutants, we show that cyanide production is costly and cyanide-producing cooperators use cyanide to punish LasR-null social cheaters. Cooperators are less susceptible to cyanide than are LasR mutants. These experiments demonstrate policing in P. aeruginosa, provide a mechanistic understanding of policing, and show policing involves the cascade organization of the two quorum sensing systems in this bacterium.

  20. Strategies for improved rhamnolipid production by Pseudomonas aeruginosa PA1.

    PubMed

    Soares Dos Santos, Alexandre; Pereira, Nei; Freire, Denise M G

    2016-01-01

    Rhamnolipids are biosurfactants with potential for diversified industrial and environmental uses. The present study evaluated three strategies for increasing the production of rhamnolipid-type biosurfactants produced by Pseudomonas aeruginosa strain PA1. The influence of pH, the addition of P. aeruginosa spent culture medium and the use of a fed-batch process were examined. The culture medium adjusted to pH 7.0 was the most productive. Furthermore, the pH of the culture medium had a measurable effect on the ratio of synthesized mono- and dirhamnolipids. At pH values below 7.3, the proportion of monorhamnolipids decreased from 45 to 24%. The recycling of 20% of the spent culture medium in where P. aeruginosa was grown up to the later stationary phase was responsible for a 100% increase in rhamnolipid volumetric productivity in the new culture medium. Finally, the use of fed-batch operation under conditions of limited nitrogen resulted in a 3.8-fold increase in the amount of rhamnolipids produced (2.9 g L(-1)-10.9 g L(-1)). These results offer promising pathways for the optimization of processes for the production of rhamnolipids.

  1. Proteolytic regulation of alginate overproduction in Pseudomonas aeruginosa.

    PubMed

    Damron, F Heath; Goldberg, Joanna B

    2012-05-01

    Pseudomonas aeruginosa, a Gram-negative bacterium, is a significant opportunistic pathogen associated with skin and soft tissue infections, nosocomial pneumonia and sepsis. In addition, it can chronically colonize the lungs of cystic fibrosis (CF) patients. Overproduction of the exopolysaccharide called alginate provides P. aeruginosa with a selective advantage and facilitates survival in the CF lung. The in vitro phenotype of alginate overproduction observed on solid culture media is referred to as mucoid. Expression of the alginate machinery and biosynthetic enzymes are controlled by the extracytoplasmic sigma factor, σ(22) (AlgU/T). The key negative regulator of both σ(22) activity and the mucoid phenotype is the cognate anti-sigma factor MucA. MucA sequesters σ(22) to the inner membrane inhibiting the sigma factor's transcriptional activity. The well-studied mechanism for transition to the mucoid phenotype is mutation of mucA, leading to loss of MucA function and therefore activation of σ(22) . Recently, regulated intramembrane proteolysis (RIP) has been recognized as a mechanism whereby proteolysis of the anti-sigma factor MucA leads to active σ(22) allowing P. aeruginosa to respond to environmental stress conditions by overproduction of alginate. The goal of this review is to illuminate the pathways leading to RIP that have been identified and proposed.

  2. General and condition-specific essential functions of Pseudomonas aeruginosa

    PubMed Central

    Lee, Samuel A.; Gallagher, Larry A.; Thongdee, Metawee; Staudinger, Benjamin J.; Lippman, Soyeon; Singh, Pradeep K.; Manoil, Colin

    2015-01-01

    The essential functions of a bacterial pathogen reflect the most basic processes required for its viability and growth, and represent potential therapeutic targets. Most screens for essential genes have assayed a single condition—growth in a rich undefined medium—and thus have not distinguished genes that are generally essential from those that are specific to this particular condition. To help define these classes for Pseudomonas aeruginosa, we identified genes required for growth on six different media, including a medium made from cystic fibrosis patient sputum. The analysis used the Tn-seq circle method to achieve high genome coverage and analyzed more than 1,000,000 unique insertion positions (an average of one insertion every 6.0 bp). We identified 352 general and 199 condition-specific essential genes. A subset of assignments was verified in individual strains with regulated expression alleles. The profile of essential genes revealed that, compared with Escherichia coli, P. aeruginosa is highly vulnerable to mutations disrupting central carbon-energy metabolism and reactive oxygen defenses. These vulnerabilities may arise from the stripped-down architecture of the organism’s carbohydrate utilization pathways and its reliance on respiration for energy generation. The essential function profile thus provides fundamental insights into P. aeruginosa physiology as well as identifying candidate targets for new antibacterial agents. PMID:25848053

  3. Mycofabricated biosilver nanoparticles interrupt Pseudomonas aeruginosa quorum sensing systems.

    PubMed

    Singh, Braj R; Singh, Brahma N; Singh, Akanksha; Khan, Wasi; Naqvi, Alim H; Singh, Harikesh B

    2015-09-08

    Quorum sensing (QS) is a chemical communication process that Pseudomonas aeruginosa uses to regulate virulence and biofilm formation. Disabling of QS is an emerging approach for combating its pathogenicity. Silver nanoparticles (AgNPs) have been widely applied as antimicrobial agents against human pathogenic bacteria and fungi, but not for the attenuation of bacterial QS. Here we mycofabricated AgNPs (mfAgNPs) using metabolites of soil fungus Rhizopus arrhizus BRS-07 and tested their effect on QS-regulated virulence and biofilm formation of P. aeruginosa. Transcriptional studies demonstrated that mfAgNPs reduced the levels of LasIR-RhlIR. Treatment of mfAgNPs inhibited biofilm formation, production of several virulence factors (e.g. LasA protease, LasB elastrase, pyocyanin, pyoverdin, pyochelin, rhamnolipid, and alginate) and reduced AHLs production. Further genes quantification analyses revealed that mfAgNPs significantly down-regulated QS-regulated genes, specifically those encoded to the secretion of virulence factors. The results clearly indicated the anti-virulence property of mfAgNPs by inhibiting P. aeruginosa QS signaling.

  4. Drosophila melanogaster as an Animal Model for the Study of Pseudomonas aeruginosa Biofilm Infections In Vivo

    PubMed Central

    Mulcahy, Heidi; Sibley, Christopher D.; Surette, Michael G.; Lewenza, Shawn

    2011-01-01

    Pseudomonas aeruginosa is an opportunistic pathogen capable of causing both acute and chronic infections in susceptible hosts. Chronic P. aeruginosa infections are thought to be caused by bacterial biofilms. Biofilms are highly structured, multicellular, microbial communities encased in an extracellular matrix that enable long-term survival in the host. The aim of this research was to develop an animal model that would allow an in vivo study of P. aeruginosa biofilm infections in a Drosophila melanogaster host. At 24 h post oral infection of Drosophila, P. aeruginosa biofilms localized to and were visualized in dissected Drosophila crops. These biofilms had a characteristic aggregate structure and an extracellular matrix composed of DNA and exopolysaccharide. P. aeruginosa cells recovered from in vivo grown biofilms had increased antibiotic resistance relative to planktonically grown cells. In vivo, biofilm formation was dependent on expression of the pel exopolysaccharide genes, as a pelB::lux mutant failed to form biofilms. The pelB::lux mutant was significantly more virulent than PAO1, while a hyperbiofilm strain (PAZHI3) demonstrated significantly less virulence than PAO1, as indicated by survival of infected flies at day 14 postinfection. Biofilm formation, by strains PAO1 and PAZHI3, in the crop was associated with induction of diptericin, cecropin A1 and drosomycin antimicrobial peptide gene expression 24 h postinfection. In contrast, infection with the non-biofilm forming strain pelB::lux resulted in decreased AMP gene expression in the fly. In summary, these results provide novel insights into host-pathogen interactions during P. aeruginosa oral infection of Drosophila and highlight the use of Drosophila as an infection model that permits the study of P. aeruginosa biofilms in vivo. PMID:21998591

  5. Two copies of blaNDM-1 gene are present in NDM-1 producing Pseudomonas aeruginosa isolates from Serbia.

    PubMed

    Jovčić, Branko; Lepšanović, Zorica; Begović, Jelena; Filipić, Brankica; Kojić, Milan

    2014-03-01

    New Delhi metallo-β-lactamase producing Pseudomonas aeruginosa isolates are of special interest since P. aeruginosa is a major cause of nosocomial infections, the treatment of which could now be jeopardized, especially in developing countries. Six additional NDM-1 positive P. aeruginosa clinical isolates belonging to two different genotypes were shown to be plasmid-free. PFGE-hybridization experiments revealed the chromosomal location of the blaNDM-1 gene. Restriction analysis and hybridization revealed that two copies of the blaNDM-1 gene are present in the genomes of all tested isolates, as in previously characterized P. aeruginosa MMA83. Moreover, it was shown that increasing imipenem concentration did not have the effect on copy number of the blaNDM-1 gene in the genome of P. aeruginosa MMA83.

  6. Influence of carbapenem resistance on mortality of patients with Pseudomonas aeruginosa infection: a meta-analysis

    PubMed Central

    Liu, Qianqian; Li, Xiaoqing; Li, Wenzhang; Du, Xinmiao; He, Jian-Qing; Tao, Chuanmin; Feng, Yulin

    2015-01-01

    Treatment of infectious diseases caused by the carbapenem-resistant Pseudomonas aeruginosa (CRPA) is becoming more challenging with each passing year. We conducted a meta-analysis to assess the impact of carbapenem resistance on mortality of patients with P. aeruginosa infection. We searched PUBMED, Web of science, EMBASE, Google Scholar and the Cochrane Library up to December 25, 2014, to identify published cohort or case-control studies. 17 studies, including 6660 patients carrying P. aeruginosa, were identified. The pooling analysis indicated that patients infected with CRPA had significantly higher mortality than those infected with carbapenem-susceptible P. aeruginosa (CSPA) (crude OR = 1.64; 95%CI = 1.40, 1.93; adjusted OR = 2.38; 95%CI = 1.53, 3.69). The elevated risk of mortality in patients with CRPA infection was not lessened when stratified by study design, sites of infection, or type of carbapenem, except that the estimate effect vanished in CRPA high-incidence region, South America (crude OR = 1.12; 95%CI = 0.64, 1.99). Begg’s (z = 0.95, p = 0.34) and Egger’s test (t = 1.23, p = 0.24) showed no evidence of publication bias. Our results suggest that carbapenem resistance may increase the mortality of patients with P. aeruginosa infection, whether under univariate or multivariate analysis. PMID:26108476

  7. In vitro and in vivo screening for novel essential cell-envelope proteins in Pseudomonas aeruginosa

    PubMed Central

    Fernández-Piñar, Regina; Lo Sciuto, Alessandra; Rossi, Alice; Ranucci, Serena; Bragonzi, Alessandra; Imperi, Francesco

    2015-01-01

    The Gram-negative bacterium Pseudomonas aeruginosa represents a prototype of multi-drug resistant opportunistic pathogens for which novel therapeutic options are urgently required. In order to identify new candidates as potential drug targets, we combined large-scale transposon mutagenesis data analysis and bioinformatics predictions to retrieve a set of putative essential genes which are conserved in P. aeruginosa and predicted to encode cell envelope or secreted proteins. By generating unmarked deletion or conditional mutants, we confirmed the in vitro essentiality of two periplasmic proteins, LptH and LolA, responsible for lipopolysaccharide and lipoproteins transport to the outer membrane respectively, and confirmed that they are important for cell envelope stability. LptH was also found to be essential for P. aeruginosa ability to cause infection in different animal models. Conversely, LolA-depleted cells appeared only partially impaired in pathogenicity, indicating that this protein likely plays a less relevant role during bacterial infection. Finally, we ruled out any involvement of the other six proteins under investigation in P. aeruginosa growth, cell envelope stability and virulence. Besides proposing LptH as a very promising drug target in P. aeruginosa, this study confirms the importance of in vitro and in vivo validation of potential essential genes identified through random transposon mutagenesis. PMID:26621210

  8. Community-acquired Pseudomonas aeruginosa bloodstream infection: a classification that should not falsely reassure the clinician.

    PubMed

    McCarthy, K L; Paterson, D L

    2016-12-09

    Pseudomonas aeruginosa bloodstream infection (BSI) is predominantly acquired in the hospital setting. Community-onset infection is less common. Differences in epidemiology, clinical features, microbiological factors and BSI outcomes led to the separation of bacterial community-onset BSI into the categories of healthcare-associated infection (HCAI) and community-acquired infection (CAI). Community-acquired P. aeruginosa BSI epidemiology is not well defined in the literature. In addition, it is also not clear if the same factors separate CAI and HCAI BSI caused by P. aeruginosa alone. A retrospective multicentre cohort study was performed looking at P. aeruginosa BSI from January 2008 to January 2011. Strict definitions for HCAI and CAI were applied. Extensive epidemiological, clinical and outcome data were obtained. Thirty-four CAI episodes and 156 HCAI episodes were analysed. The CAI group could be characterised into seven distinct categories based on comorbidities and clinically suspected source of infection. A pre-morbidly healthy group could not be identified. On multivariate analysis, the presence of a rheumatological or a gastrointestinal comorbidity were significantly associated with CAI. There was no significant difference in length of stay or rates of mortality between HCAI or CAI. The clinician should not be falsely reassured regarding outcome by the diagnosis of a community-acquired P. aeruginosa BSI.

  9. Evaluation of phytochemicals from medicinal plants of Myrtaceae family on virulence factor production by Pseudomonas aeruginosa.

    PubMed

    Musthafa, Khadar Syed; Sianglum, Wipawadee; Saising, Jongkon; Lethongkam, Sakkarin; Voravuthikunchai, Supayang Piyawan

    2017-03-15

    Virulence factors regulated by quorum sensing (QS) play a critical role in the pathogenesis of an opportunistic human pathogen, Pseudomonas aeruginosa in causing infections to the host. Hence, in the present work, the anti-virulence potential of the medicinal plant extracts and their derived phytochemicals from Myrtaceae family was evaluated against P. aeruginosa. In the preliminary screening of the tested medicinal plant extracts, Syzygium jambos and Syzygium antisepticum demonstrated a maximum inhibition in QS-dependent violacein pigment production by Chromobacterium violaceum DMST 21761. These extracts demonstrated an inhibitory activity over a virulence factor, pyoverdin, production by P. aeruginosa ATCC 27853. Gas chromatography-mass spectrometric (GC-MS) analysis revealed the presence of 23 and 12 phytochemicals from the extracts of S. jambos and S. antisepticum respectively. Three top-ranking phytochemicals, including phytol, ethyl linoleate and methyl linolenate, selected on the basis of docking score in molecular docking studies lowered virulence factors such as pyoverdin production, protease and haemolytic activities of P. aeruginosa to a significant level. In addition, the phytochemicals reduced rhamnolipid production by the organism. The work demonstrated an importance of plant-derived compounds as anti-virulence drugs to conquer P. aeruginosa virulence towards the host.

  10. Role of pili in the adherence of Pseudomonas aeruginosa to mouse epidermal cells.

    PubMed Central

    Sato, H; Okinaga, K

    1987-01-01

    Pili have been demonstrated to be the adhesins of Pseudomonas aeruginosa for mouse epidermal cells. The mechanisms of adhesion of P. aeruginosa to mouse epidermal cells was studied by using four mutants derived from a single strain: flagellated and piliated (F+P+), flagellated and nonpiliated (F+P-), nonflagellated and piliated (F-P+), and nonflagellated and nonpiliated (F-P-) mutants. F+P+ and F-P+ bacteria efficiently adhered to mouse epidermal cells, while F+P- and F-P- bacteria hardly adhered to mouse epidermal cells. The number of F+P+ bacteria that adhered to mouse epidermal cells was almost the same as that of F-P+ bacteria. The number of F+P- bacteria that adhered to mouse epidermal cells was almost the same as that of F-P- bacteria. The adhesion of P+ (F+P+ and F-P+) bacteria was inhibited by antipilus serum, while that of P- (F+P- and F-P-) bacteria was not inhibited by antipilus serum. There were no significant differences between the number of bacteria adhering to mouse epidermal cells isolated from normal skin and those adhering to cells isolated from burned skin. Heating of the mouse epidermal cell suspension had no effect on the adhesion of P. aeruginosa. These results suggest that pili mediate the adhesion of P. aeruginosa to mouse epidermal cells and that P. aeruginosa adheres efficiently to mouse epidermal cells despite the loss of cell viability caused by burning. PMID:2886430

  11. Human Granulocyte Macrophage Colony-Stimulating Factor Enhances Antibiotic Susceptibility of Pseudomonas aeruginosa Persister Cells

    PubMed Central

    Choudhary, Geetika S.; Yao, Xiangyu; Wang, Jing; Peng, Bo; Bader, Rebecca A.; Ren, Dacheng

    2015-01-01

    Bacterial persister cells are highly tolerant to antibiotics and cause chronic infections. However, little is known about the interaction between host immune systems with this subpopulation of metabolically inactive cells, and direct effects of host immune factors (in the absence of immune cells) on persister cells have not been studied. Here we report that human granulocyte macrophage-colony stimulating factor (GM-CSF) can sensitize the persister cells of Pseudomonas aeruginosa PAO1 and PDO300 to multiple antibiotics including ciprofloxacin, tobramycin, tetracycline, and gentamicin. GM-CSF also sensitized the biofilm cells of P. aeruginosa PAO1 and PDO300 to tobramycin in the presence of biofilm matrix degrading enzymes. The DNA microarray and qPCR results indicated that GM-CSF induced the genes for flagellar motility and pyocin production in the persister cells, but not the normal cells of P. aeruginosa PAO1. Consistently, the supernatants from GM-CSF treated P. aeruginosa PAO1 persister cell suspensions were found cidal to the pyocin sensitive strain P. aeruginosa PAK. Collectively, these findings suggest that host immune factors and bacterial persisters may directly interact, leading to enhanced susceptibility of persister cells to antibiotics. PMID:26616387

  12. In vitro and in vivo screening for novel essential cell-envelope proteins in Pseudomonas aeruginosa.

    PubMed

    Fernández-Piñar, Regina; Lo Sciuto, Alessandra; Rossi, Alice; Ranucci, Serena; Bragonzi, Alessandra; Imperi, Francesco

    2015-12-01

    The Gram-negative bacterium Pseudomonas aeruginosa represents a prototype of multi-drug resistant opportunistic pathogens for which novel therapeutic options are urgently required. In order to identify new candidates as potential drug targets, we combined large-scale transposon mutagenesis data analysis and bioinformatics predictions to retrieve a set of putative essential genes which are conserved in P. aeruginosa and predicted to encode cell envelope or secreted proteins. By generating unmarked deletion or conditional mutants, we confirmed the in vitro essentiality of two periplasmic proteins, LptH and LolA, responsible for lipopolysaccharide and lipoproteins transport to the outer membrane respectively, and confirmed that they are important for cell envelope stability. LptH was also found to be essential for P. aeruginosa ability to cause infection in different animal models. Conversely, LolA-depleted cells appeared only partially impaired in pathogenicity, indicating that this protein likely plays a less relevant role during bacterial infection. Finally, we ruled out any involvement of the other six proteins under investigation in P. aeruginosa growth, cell envelope stability and virulence. Besides proposing LptH as a very promising drug target in P. aeruginosa, this study confirms the importance of in vitro and in vivo validation of potential essential genes identified through random transposon mutagenesis.

  13. Effectiveness of Antipseudomonal Antibiotics and Mechanisms of Multidrug Resistance in Pseudomonas aeruginosa.

    PubMed

    El ZOWALATYl, Mohamed E; Gyetvaii, Bpla

    2016-01-01

    Pseudomonas aeruginosa is a leading human pathogen that causes serious infections at various tissues and organs leading to life threatening health problems and possible deadly outcomes. Resistance patterns vary widely whether it is from hospitals or community acquired infections. Reporting resistance profiles to a certain antibiotics provide valuable information in a given setting, but may be extrapolated outside the sampling location. In the present study, P. aeruginosa isolates were screened to determine their susceptibilities against anti-pseudomonal antimicrobial agents and possible existing mechanisms of resistance were determined. Eighty-six isolates of P. aeruginosa were recovered. Isolates representing different resistance profiles were screened for the existence of three different resistance mechanisms including drug inactivation due to metallo-β-lactamases, drug impermeability by outer membrane proteins and drug efflux. All tested isolates showed uniform susceptibility (100%, n = 86/86) to piperacillin, meropenem, amikacin, and polymyxin B. A single isolate was found to be imipenem resistant (99%, n = 85/86). The possible mechanisms of resistance of P. aeruginosa to imipenem involve active drug efflux pumps, outer membrane impermeability as well as drug inactivating enzymes. These findings demonstrate the fundamental importance of the in vitro susceptibility testing of antibiotics prior to antipseudomonal therapy and highlight the need for a continuous antimicrobial resistance surveillance programs to monitor the changing resistance patterns so that clinicians and health care officials are updated as to the most effective therapeutic agents to combat the serious outcomes of P. aeruginosa infections.

  14. Divergence of a strain of Pseudomonas aeruginosa during an outbreak of ovine mastitis.

    PubMed

    Wright, Elli A; Di Lorenzo, Valeria; Trappetti, Claudia; Liciardi, Manuele; Orru, Germano; Viti, Carlo; Bronowski, Christina; Hall, Amanda J; Darby, Alistair C; Oggioni, Marco R; Winstanley, Craig

    2015-01-30

    Bacterial infections causing mastitis in sheep can result in severe economic losses for farmers. A large survey of milk samples from ewes with mastitis in Sardinia, Italy, indicated an increasing prevalence of Pseudomonas aeruginosa infections. It has been shown previously that during chronic, biofilm-associated infections P. aeruginosa populations diversify. We report the phenotypic and genomic characterisation of two clonal P. aeruginosa isolates (PSE305 and PSE306) from a mastitis infection outbreak, representing distinct colony morphology variants. In addition to pigment production, PSE305 and PSE306 differed in phenotypic characteristics including biofilm formation, utilisation of various carbon and nitrogen sources, twitching motility. We found higher levels of expression of genes associated with biofilm formation (pelB) and twitching motility (flgD) in PSE305, compared to the biofilm and twitching-defective PSE306. Comparative genomics analysis revealed single nucleotide polymorphisms (SNPs) and minor insertion/deletion variations between PSE305 and PSE306, including a SNP mutation in the pilP gene of PSE306. By introducing a wild-type pilP gene we were able to partially complement the defective twitching motility of PSE306. There were also three larger regions of difference between the two genomes, indicating genomic instability. Hence, we have demonstrated that P. aeruginosa population divergence can occur during an outbreak of mastitis, leading to significant variations in phenotype and genotype, and resembling the behaviour of P. aeruginosa during chronic biofilm-associated infections.

  15. Influence of carbapenem resistance on mortality of patients with Pseudomonas aeruginosa infection: a meta-analysis.

    PubMed

    Liu, Qianqian; Li, Xiaoqing; Li, Wenzhang; Du, Xinmiao; He, Jian-Qing; Tao, Chuanmin; Feng, Yulin

    2015-06-25

    Treatment of infectious diseases caused by the carbapenem-resistant Pseudomonas aeruginosa (CRPA) is becoming more challenging with each passing year. We conducted a meta-analysis to assess the impact of carbapenem resistance on mortality of patients with P. aeruginosa infection. We searched PUBMED, Web of science, EMBASE, Google Scholar and the Cochrane Library up to December 25, 2014, to identify published cohort or case-control studies. 17 studies, including 6660 patients carrying P. aeruginosa, were identified. The pooling analysis indicated that patients infected with CRPA had significantly higher mortality than those infected with carbapenem-susceptible P. aeruginosa (CSPA) (crude OR = 1.64; 95%CI = 1.40, 1.93; adjusted OR = 2.38; 95%CI = 1.53, 3.69). The elevated risk of mortality in patients with CRPA infection was not lessened when stratified by study design, sites of infection, or type of carbapenem, except that the estimate effect vanished in CRPA high-incidence region, South America (crude OR = 1.12; 95%CI = 0.64, 1.99). Begg's (z = 0.95, p = 0.34) and Egger's test (t = 1.23, p = 0.24) showed no evidence of publication bias. Our results suggest that carbapenem resistance may increase the mortality of patients with P. aeruginosa infection, whether under univariate or multivariate analysis.

  16. Screening of Molecular Virulence Markers in Staphylococcus aureus and Pseudomonas aeruginosa Strains Isolated from Clinical Infections

    PubMed Central

    Cotar, Ani-Ioana; Chifiriuc, Mariana-Carmen; Dinu, Sorin; Bucur, Marcela; Iordache, Carmen; Banu, Otilia; Dracea, Olguta; Larion, Cristina; Lazar, Veronica

    2010-01-01

    Staphylococcus (S.) aureus and Pseudomonas (Ps.) aeruginosa are two of the most frequently opportunistic pathogens isolated in nosocomial infections, responsible for severe infections in immunocompromised hosts. The frequent emergence of antibiotic-resistant S. aureus and Ps. aeruginosa strains has determined the development of new strategies in order to elucidate the different mechanisms used by these bacteria at different stages of the infectious process, providing the scientists with new procedures for preventing, or at least improving, the control of S. aureus and Ps. aeruginosa infections. The purpose of this study was to characterize the molecular markers of virulence in S. aureus and Ps. aeruginosa strains isolated from different clinical specimens. We used multiplex and uniplex PCR assays to detect the genes encoding different cell-wall associated and extracellular virulence factors, in order to evaluate potential associations between the presence of putative virulence genes and the outcome of infections caused by these bacteria. Our results demonstrate that all the studied S. aureus and Ps. aeruginosa strains synthesize the majority of the investigated virulence determinants, probably responsible for different types of infections. PMID:21614207

  17. In vitro sensitivity of Acinetobacter baumannii and Pseudomonas aeruginosa to carbapenems among intensive care unit patients.

    PubMed

    Guzek, A; Korzeniewski, K; Nitsch-Osuch, Aneta; Rybicki, Z; Prokop, E

    2013-01-01

    Acinetobacter baumannii and Pseudomonas aeruginosa pathogens are the most common causes of fatal pneumonia among patients treated in Intensive Care Units (ICU). Carbapenems remain a group of antibiotics characterized by the highest effectiveness in treatment of heavy infections of the lower respiratory tract. This study compared in vitro sensitivity of A. baumannii and P. aeruginosa to three carbapenems: imipenem, meropenem and doripenem. The material was collected from 71 patients treated in the ICU from April 2009 to January 2010. Bronchial tree was the predominant source of samples. Fifty-four strains of A. baumannii and 17 strains of P. aeruginosa were analyzed. Sensitivity to carbapenems was interpreted in line with Clinical and Laboratory Standard Institute (CLSI) and European Committee for Antimicrobial Susceptibility Testing (EUCAST) criteria (imipenem and meropenem) or in compliance with the Food and Drug Administration (FDA) and CLSI guidelines (doripenem). We found that A. baumannii was significantly more often sensitive to imipenem than to doripenem and meropenem, but only according to the CLSI and FDA and not EUCAST criteria. The sensitivity of P. aeruginosa was higher to imipenem than to doripenem and meropenem, according to both CLSI and EUCAST criteria (64.7 %). We conclude that the EUCAST criteria demonstrate a higher rigor than those of CLSI and FDA in the determination of carbapenems sensitivity. Imipenem appears more effective than doripenem and meropenem in treatment of A. baumannii and P. aeruginosa infections.

  18. Analysis of the swimming activity of Pseudomonas aeruginosa by using photonic force microscope

    NASA Astrophysics Data System (ADS)

    Chan, Chia-Han; Chang, Bo-Jui; Huang, Ying-Jung; Fan, Chia-Chieh; Peng, Hwei-Ling; Chi, Sien; Hsu, Long

    2005-08-01

    Swimming activity of flagella is a main factor of the motility of bacteria. Flagella expressed on the surface of bacterial species serve as a primary means of motility including swimming. We propose to use optical tweezers to analyze the swimming activity of bacteria. The sample bacteria in the work is Pseudomonas aeruginosa, and it is a gram-negative bacterium and often causes leading to burn wound infections, urinary-tract infections, and pneumonia. The single polar flagellum of P. aeruginosa has been demonstrated to be important virulence and colonization factor of this opportunistic pathogen. We demonstrate a gene to regulate the bacterial swimming activity in P. aeruginosa PAO1 by biological method. However, the change of flagellar morphology was not observed by electron microscopy analysis, suggesting that the gene regulates the flagellar rotation that could not be detected by biological method. PFM exhibits a spatial resolution of a few nanometers to detect the relative position of the probe at an acquisition rate over 1 MHz. By binding a probe such as a bead or a quantum dot on the flagella, we expect the rotation of the probe due to the flagella could be detected. It is expected that the study of the swimming activity of P. aeruginosa provide potent method for the pathogenic role of the flagella in P. aeruginosa.

  19. Use of an ultraviolet light at point-of-dispense faucet to eliminate Pseudomonas aeruginosa.

    PubMed

    Gerba, Charles P

    2015-05-01

    Tap water is believed to be a significant source of Pseudomonas aeruginosa in health care environments. This study evaluated an ultraviolet (UV) light point-of-dispense water treatment system for control of P aeruginosa. No P aeruginosa was detected in 30 different water dispensers in which the UV light device had been operating for 1-34 months. In comparison, P aeruginosa was found in other taps that did not feature this UV light system.

  20. Functionalized polyanilines disrupt Pseudomonas aeruginosa and Staphylococcus aureus biofilms.

    PubMed

    Gizdavic-Nikolaidis, Marija R; Pagnon, Joanne C; Ali, Naseem; Sum, Reuben; Davies, Noel; Roddam, Louise F; Ambrose, Mark

    2015-12-01

    The purpose of the present study was to investigate the antimicrobial effects of functionalized polyanilines (fPANIs) against stationary phase cells and biofilms of Pseudomonas aeruginosa and Staphylococcus aureus using homopolymer of sulfanilic acid (poly-SO3H) as a model. The chemically synthesized poly-SO3H was characterized using Fourier Transform Infra-Red (FTIR) and Ultraviolet-Visible (UV-Vis) spectroscopies. The molecular weight (Mw) and elemental analysis of homopolymer poly-SO3H were also examined. We found that poly-SO3H was bactericidal against stationary phase cells of P. aeruginosa and S. aureus at a concentration of 20 mgml(-1). Surprisingly, we discovered that the same concentration (20 mgml(-1)) of poly-SO3H significantly disrupted and killed bacterial cells present in pre-established forty-eight hour static biofilms of these organisms, as shown by crystal violet and bacterial live/dead fluorescence staining assays. In support of these data, poly-SO3H extensively diminished the expression of bacterial genes related to biofilm formation in stationary phase cells of P. aeruginosa, and seemed to greatly reduce the amount of the quorum sensing molecule N-(3-oxododecanoyl)-l-homoserine lactone (3OC12-HSL) able to be recovered from biofilms of this organism. Furthermore, we found that poly-SO3H was able to effectively penetrate and kill cells in biofilms formed by the P. aeruginosa (AESIII) isolate derived from the sputum of a cystic fibrosis patient. Taken together, the results of the present study emphasise the broad antimicrobial activities of fPANI, and suggest that they could be developed further and used in some novel ways to construct medical devices and/or industrial equipment that are refractory to colonization by biofilm-forming bacteria.

  1. Enterobactin-mediated iron transport in Pseudomonas aeruginosa.

    PubMed Central

    Poole, K; Young, L; Neshat, S

    1990-01-01

    A pyoverdine-deficient strain of Pseudomonas aeruginosa was unable to grow in an iron-deficient minimal medium in the presence of the nonmetabolizable iron chelator ethylene diamine-di(omega-hydroxyphenol acetic acid) (EDDHA), although addition of enterobactin to EDDHA-containing minimal media did restore growth of the pyoverdine-deficient P. aeruginosa. Consistent with the apparent ability of enterobactin to provide iron to P. aeruginosa, enterobactin-dependent 55Fe3+ uptake was observed in cells of P. aeruginosa previously grown in an iron-deficient medium containing enterobactin (or enterobactin-containing Escherichia coli culture supernatant). This uptake was energy dependent, was observable at low concentrations (60 nM) of FeCl3, and was absent in cells cultured without enterobactin. A novel protein with a molecular weight of approximately 80,000 was identified in the outer membranes of cells grown in iron-deficient minimal medium containing enterobactin, concomitant with the induction of enterobactin-dependent iron uptake. A Tn501 insertion mutant lacking this protein was isolated and shown to be deficient in enterobactin-mediated iron transport at 60 nM FeCl3, although it still exhibited enterobactin-dependent growth in iron-deficient medium containing EDDHA. It was subsequently observed that the mutant was, however, capable of enterobactin-mediated iron transport at much higher concentrations (600 nM) of FeCl3. Indeed, enterobactin-dependent iron uptake at this concentration of iron was observed in both the mutant and parent strains irrespective of whether they had been cultured in the presence of enterobactin.(ABSTRACT TRUNCATED AT 250 WORDS) Images PMID:2174865

  2. Genetics of O-Antigen Biosynthesis in Pseudomonas aeruginosa

    PubMed Central

    Rocchetta, H. L.; Burrows, L. L.; Lam, J. S.

    1999-01-01

    Pathogenic bacteria produce an elaborate assortment of extracellular and cell-associated bacterial products that enable colonization and establishment of infection within a host. Lipopolysaccharide (LPS) molecules are cell surface factors that are typically known for their protective role against serum-mediated lysis and their endotoxic properties. The most heterogeneous portion of LPS is the O antigen or O polysaccharide, and it is this region which confers serum resistance to the organism. Pseudomonas aeruginosa is capable of concomitantly synthesizing two types of LPS referred to as A band and B band. The A-band LPS contains a conserved O polysaccharide region composed of d-rhamnose (homopolymer), while the B-band O-antigen (heteropolymer) structure varies among the 20 O serotypes of P. aeruginosa. The genes coding for the enzymes that direct the synthesis of these two O antigens are organized into two separate clusters situated at different chromosomal locations. In this review, we summarize the organization of these two gene clusters to discuss how A-band and B-band O antigens are synthesized and assembled by dedicated enzymes. Examples of unique proteins required for both A-band and B-band O-antigen synthesis and for the synthesis of both LPS and alginate are discussed. The recent identification of additional genes within the P. aeruginosa genome that are homologous to those in the A-band and B-band gene clusters are intriguing since some are able to influence O-antigen synthesis. These studies demonstrate that P. aeruginosa represents a unique model system, allowing studies of heteropolymeric and homopolymeric O-antigen synthesis, as well as permitting an examination of the interrelationship of the synthesis of LPS molecules and other virulence determinants. PMID:10477307

  3. Bactericidal activities of cathelicidin LL-37 and select cationic lipids against the hypervirulent Pseudomonas aeruginosa strain LESB58.

    PubMed

    Wnorowska, Urszula; Niemirowicz, Katarzyna; Myint, Melissa; Diamond, Scott L; Wróblewska, Marta; Savage, Paul B; Janmey, Paul A; Bucki, Robert

    2015-07-01

    Pseudomonas aeruginosa Liverpool epidemic strain (LES) infections in cystic fibrosis (CF) patients are associated with transmissibility and increased patient morbidity. This study was designed to assess the in vitro activities of cathelicidin LL-37 peptide (LL-37) and select cationic lipids against Pseudomonas aeruginosa LESB58 in CF sputum and in a setting mimicking the CF airway. We found that LL-37 naturally present in airway surface fluid and some nonpeptide cationic lipid molecules such as CSA-13, CSA-90, CSA-131, and D2S have significant, but broadly differing, bactericidal activities against P. aeruginosa LESB58. We observed strong inhibition of LL-37 bactericidal activity in the presence of purified bacteriophage Pf1, which is highly expressed by P. aeruginosa LES, but the activities of the cationic lipids CSA-13 and CSA-131 were not affected by this polyanionic virus. Additionally, CSA-13 and CSA-131 effectively prevent LESB58 biofilm formation, which is stimulated by Pf1 bacteriophage, DNA, or F-actin. CSA-13 and CSA-131 display strong antibacterial activities against different clinical strains of P. aeruginosa, and their activities against P. aeruginosa LESB58 and Xen5 strains were maintained in CF sputum. These data indicate that synthetic cationic lipids (mimics of natural antimicrobial peptides) are suitable for developing an effective treatment against CF lung P. aeruginosa infections, including those caused by LES strains.

  4. Bactericidal Activities of Cathelicidin LL-37 and Select Cationic Lipids against the Hypervirulent Pseudomonas aeruginosa Strain LESB58

    PubMed Central

    Wnorowska, Urszula; Niemirowicz, Katarzyna; Myint, Melissa; Diamond, Scott L.; Wróblewska, Marta; Savage, Paul B.; Janmey, Paul A.

    2015-01-01

    Pseudomonas aeruginosa Liverpool epidemic strain (LES) infections in cystic fibrosis (CF) patients are associated with transmissibility and increased patient morbidity. This study was designed to assess the in vitro activities of cathelicidin LL-37 peptide (LL-37) and select cationic lipids against Pseudomonas aeruginosa LESB58 in CF sputum and in a setting mimicking the CF airway. We found that LL-37 naturally present in airway surface fluid and some nonpeptide cationic lipid molecules such as CSA-13, CSA-90, CSA-131, and D2S have significant, but broadly differing, bactericidal activities against P. aeruginosa LESB58. We observed strong inhibition of LL-37 bactericidal activity in the presence of purified bacteriophage Pf1, which is highly expressed by P. aeruginosa LES, but the activities of the cationic lipids CSA-13 and CSA-131 were not affected by this polyanionic virus. Additionally, CSA-13 and CSA-131 effectively prevent LESB58 biofilm formation, which is stimulated by Pf1 bacteriophage, DNA, or F-actin. CSA-13 and CSA-131 display strong antibacterial activities against different clinical strains of P. aeruginosa, and their activities against P. aeruginosa LESB58 and Xen5 strains were maintained in CF sputum. These data indicate that synthetic cationic lipids (mimics of natural antimicrobial peptides) are suitable for developing an effective treatment against CF lung P. aeruginosa infections, including those caused by LES strains. PMID:25870055

  5. Microbiologically Influenced Corrosion of 2707 Hyper-Duplex Stainless Steel by Marine Pseudomonas aeruginosa Biofilm.

    PubMed

    Li, Huabing; Zhou, Enze; Zhang, Dawei; Xu, Dake; Xia, Jin; Yang, Chunguang; Feng, Hao; Jiang, Zhouhua; Li, Xiaogang; Gu, Tingyue; Yang, Ke

    2016-02-05

    Microbiologically Influenced Corrosion (MIC) is a serious problem in many industries because it causes huge economic losses. Due to its excellent resistance to chemical corrosion, 2707 hyper duplex stainless steel (2707 HDSS) has been used in the marine environment. However, its resistance to MIC was not experimentally proven. In this study, the MIC behavior of 2707 HDSS caused by the marine aerobe Pseudomonas aeruginosa was investigated. Electrochemical analyses demonstrated a positive shift in the corrosion potential and an increase in the corrosion current density in the presence of the P. aeruginosa biofilm in the 2216E medium. X-ray photoelectron spectroscopy (XPS) analysis results showed a decrease in Cr content on the coupon surface beneath the biofilm. The pit imaging analysis showed that the P. aeruginosa biofilm caused a largest pit depth of 0.69 μm in 14 days of incubation. Although this was quite small, it indicated that 2707 HDSS was not completely immune to MIC by the P. aeruginosa biofilm.

  6. Microbiologically Influenced Corrosion of 2707 Hyper-Duplex Stainless Steel by Marine Pseudomonas aeruginosa Biofilm

    PubMed Central

    Li, Huabing; Zhou, Enze; Zhang, Dawei; Xu, Dake; Xia, Jin; Yang, Chunguang; Feng, Hao; Jiang, Zhouhua; Li, Xiaogang; Gu, Tingyue; Yang, Ke

    2016-01-01

    Microbiologically Influenced Corrosion (MIC) is a serious problem in many industries because it causes huge economic losses. Due to its excellent resistance to chemical corrosion, 2707 hyper duplex stainless steel (2707 HDSS) has been used in the marine environment. However, its resistance to MIC was not experimentally proven. In this study, the MIC behavior of 2707 HDSS caused by the marine aerobe Pseudomonas aeruginosa was investigated. Electrochemical analyses demonstrated a positive shift in the corrosion potential and an increase in the corrosion current density in the presence of the P. aeruginosa biofilm in the 2216E medium. X-ray photoelectron spectroscopy (XPS) analysis results showed a decrease in Cr content on the coupon surface beneath the biofilm. The pit imaging analysis showed that the P. aeruginosa biofilm caused a largest pit depth of 0.69 μm in 14 days of incubation. Although this was quite small, it indicated that 2707 HDSS was not completely immune to MIC by the P. aeruginosa biofilm. PMID:26846970

  7. Fusarium solani onychomycosis of the thumbnail coinfected with Pseudomonas aeruginosa: report of two cases.

    PubMed

    Yang, Yun-Seok; Ahn, Jae-Jun; Shin, Min-Kyung; Lee, Mu-Hyoung

    2011-03-01

    Fusarium species are non-dermatophytic moulds, which are commonly known soil saprophytes and important plant pathogens, and have been frequently reported to be aetiological agents of opportunistic infections in humans. The prevalence of onychomycosis caused by Fusarium species varies in the literature because of geographical differences in mould distribution and diagnostic methods. Onychomycosis caused by Fusarium species is considered rare in Korea, and only four cases have been described to date. Pseudomonas aeruginosa also can infect nails and cause green nail syndrome, and recent research has shown that fungal infection may potentiate the colonisation or growth of P. aeruginosa within a nail. Furthermore, such coinfection with P. aeruginosa can prevent the isolation of the fungus because of bacterial overgrowth in culture. The authors report the cases of two immunocompetent patients with F. solani onychomycosis coinfected with P. aeruginosa. Both presented with a greenish/yellowish discolouration and thickening of a thumbnail, and were treated with systemic ciprofloxacin in combination with itraconazole or terbinafine.

  8. Effect of novel antibacterial gallium-carboxymethyl cellulose on Pseudomonas aeruginosa.

    PubMed

    Valappil, Sabeel P; Yiu, Humphrey H P; Bouffier, Laurent; Hope, Christopher K; Evans, Gary; Claridge, John B; Higham, Susan M; Rosseinsky, Matthew J

    2013-02-07

    Gallium has emerged as a new therapeutic agent due partly to the scarcity in development of new antibiotics. In this study, a novel antibacterial gallium exchanged carboxymethyl cellulose (Ga-CMC) has been developed and tested for the susceptibility on a common bacteria, Pseudomonas aeruginosa. The results show that an increase in average molecular weight (MW) from 90 k, 250 k to 700 k of Ga-CMC caused a decrease in antimicrobial activity against planktonic P. aeruginosa. Gallium loading of the Ga-CMC (250 k) samples was altered by varying the amount of functionality (0.7, 0.9 and 1.2 acid groups per mole of carbohydrate) which affected also its antimicrobial activity against planktonic P. aeruginosa. Further, the ability to prevent the growth of biofilms of P. aeruginosa was tested on MW = 250 k samples with 0.9 acid groups per mole of carbohydrate as this sample showed the most promising activity against planktonic P. aeruginosa. Gallium was found to reduce biofilm growth of P. aeruginosa with a maximum effect (0.85 log(10) CFU reduction compared to sodium-carboxymethyl cellulose, Na-CMC) after 24 h. Results of the solubility and ion exchange studies show that this compound is suitable for the controlled release of Ga(3+) upon their breakdown in the presence of bacteria. SEM EDX analysis confirmed that Ga(3+) ions are evenly exchanged on the cellulose surface and systematic controls were carried out to ensure that antibacterial activity is solely due to the presence of gallium as samples intrinsic acidity or nature of counterion did not affect the activity. The results presented here highlight that Ga-CMC may be useful in controlled drug delivery applications, to deliver gallium ions in order to prevent infections due to P. aeruginosa biofilms.

  9. The prevalence and resistance patterns of Pseudomonas aeruginosa in a tertiary care hospital in Kosovo.

    PubMed

    Lila, Greta; Mulliqi-Osmani, Gjyle; Bajrami, Rrezarta; Kurti, Arsim; Azizi, Elvir; Raka, Lul

    2017-03-01

    Pseudomonas aeruginosa is a Gram-negative bacterium that continues to a leading cause of opportunistic nosocomial infections. The rapid increase in drug resistance in clinical isolates of this pathogen is a worldwide concern. The aim of this study was to investigate the distribution rate, prevalence and resistance patterns of P. aeruginosa in clinical specimens from the University Clinical Centre of Kosovo (UCCK). During a three-year period, 553 P. aeruginosa isolates were collected from patients admitted to a variety of UCCK units. The P. aeruginosa isolates were identified using standard laboratory procedures, and the susceptibility of the isolates to antimicrobial agents was investigated using the Kirby-Bauer disk diffusion assay according to European Committee on Antimicrobial Susceptibility Testing (EUCAST) (2013-2015) guidelines. P. aeruginosa was the second most frequently isolated pathogen. The isolation rate of P. aeruginosa was 7.6%, 10.1% and 8.6% in 2013, 2014 and 2015, respectively. Most clinical samples were from ICU (380, 68.7%). There was a statistically significant difference between ICU and non-ICU (p<0.05). P. aeruginosa isolates were most frequently isolated from the respiratory tract (323, 58.4%). The rate of resistance against most of the tested antimicrobials has increased, especially for carbapenems. Imipenem resistance was 25.2%, 26.5%, and 37.7% and meropenem resistance was 20.1%, 23.4%, and 36% in 2013, 2014 and 2015, respectively. This study provides important data on current antimicrobial resistance, and the results demonstrate that the resistance rates are progressively increasing. There is an urgent need to emphasise the prudent use of antibiotics and strictly adhere to the concept of "reserve drugs" to minimise the misuse of available antimicrobials. The acquisition and analysis of prevalence and resistance data will be an important tool to identify targets for quality improvement in Kosovo and will support the preparation of

  10. The evolutionary stability of cytochrome c-551 in Pseudomonas aeruginosa and Pseudomonas fluorescens biotype C

    PubMed Central

    Ambler, R. P.

    1974-01-01

    Cytochrome c-551 was prepared from nine different strains of Pseudomonas aeruginosa and six of Pseudomonas fluorescens biotype C, and their amino acid sequences were compared with the sequences previously determined for the cytochromes of type strains of each species. The standard of sequence examination was such that all single amino acid substitutions, delections or insertions ought to have been detected. Balanced double changes in sites in the same part of the sequence might have escaped detection. The standard of some of the quantitative amino acid analyses was not as high as would be required for the investigation of completely unknown sequences. Eight of the Ps. aeruginosa sequences could not be distinguished from the type sequence, whereas the ninth had a single amino acid substitution. The sequences from Ps. fluorescens biotype C were more varied, differing in from zero to four substitutions from the type sequence, with the most diverse sequences differing in seven positions. The results for Ps. aeruginosa are interpreted as evidence that neutral mutations are not responsible for much molecular evolution. The superficially paradoxical differences in the results for the two species are discussed. PMID:4362497

  11. The role of two Pseudomonas aeruginosa anthranilate synthases in tryptophan and quorum signal production

    PubMed Central

    Palmer, Gregory C.; Jorth, Peter A.

    2013-01-01

    Pseudomonas aeruginosa is a Gram-negative, opportunistic pathogen that causes infections in the lungs of individuals with the genetic disease cystic fibrosis. Density-dependent production of toxic factors regulated by the Pseudomonas quinolone signal (2-heptyl-3-hydroxy-4-quinolone; PQS) have been proposed to be involved in P. aeruginosa virulence. PQS biosynthesis requires conversion of the central metabolite chorismate to anthranilate by anthranilate synthase. This reaction is also the first step in tryptophan biosynthesis. P. aeruginosa possesses two functional anthranilate synthases, TrpEG and PhnAB, and these enzymes are not functionally redundant, as trpEG mutants are tryptophan auxotrophs but produce PQS while mutants in phnAB are tryptophan prototrophs but do not produce PQS in minimal media. The goal of the work described in this paper was to determine the mechanism for this lack of functional complementation of TrpEG and PhnAB. Our results reveal that overexpression of either enzyme compensates for tryptophan auxotrophy and PQS production in the trpEG and phnAB mutants respectively, leading to the hypothesis that differential regulation of these genes is responsible for the lack of functional complementation. In support of this hypothesis, trpEG was shown to be expressed primarily during low-density growth while phnAB was expressed primarily at high density. Furthermore, dysregulation of phnAB expression eliminated tryptophan auxotrophy in the P. aeruginosa trpEG mutant. Based on these data, we propose a model for anthranilate sequestration by differential transcriptional regulation of the two P. aeruginosa anthranilate synthase enzymes. PMID:23449919

  12. Virulence Gene Profiles of Multidrug-Resistant Pseudomonas aeruginosa Isolated From Iranian Hospital Infections

    PubMed Central

    Fazeli, Nastaran; Momtaz, Hassan

    2014-01-01

    Background: The most common hospital-acquired pathogen is Pseudomonas aeruginosa. It is a multidrug resistant bacterium causing systemic infections. Objectives: The present study was carried out in order to investigate the distribution of virulence factors and antibiotic resistance properties of Pseudomonas aeruginosa isolated from various types of hospital infections in Iran. Patients and Methods: Two-hundred and seventeen human infection specimens were collected from Baqiyatallah and Payambaran hospitals in Tehran, Iran. The clinical samples were cultured immediately and samples positive for P. aeruginosa were analyzed for the presence of antibiotic resistance and bacterial virulence genes using PCR (polymerase chain reaction). Antimicrobial susceptibility testing was performed using disk diffusion methodology with Müeller–Hinton agar. Results: Fifty-eight out of 127 (45.66%) male infection specimens and 44 out of 90 (48.88%) female infection specimens harbored P. aeruginosa. Also, 65% (in male specimens) and 21% (in female specimens) of respiratory system infections were positive for P. aeruginosa, which was a high rate. The genes encoding exoenzyme S (67.64%) and phospholipases C (45.09%) were the most common virulence genes found among the strains. The incidences of various β-lactams encoding genes, including blaTEM, blaSHV, blaOXA, blaCTX-M, blaDHA, and blaVEB were 94.11%, 16.66%, 15.68%, 18.62%, 21.56%, and 17.64%, respectively. The most commonly detected fluoroquinolones encoding gene was gyrA (15. 68%). High resistance levels to penicillin (100%), tetracycline (90.19%), streptomycin (64.70%), and erythromycin (43.13%) were observed too. Conclusions: Our findings should raise awareness about antibiotic resistance in hospitalized patients in Iran. Clinicians should exercise caution in prescribing antibiotics, especially in cases of human infections. PMID:25763199

  13. Arginine Is a Critical Substrate for the Pathogenesis of Pseudomonas aeruginosa in Burn Wound Infections.

    PubMed

    Everett, Jake; Turner, Keith; Cai, Qiuxian; Gordon, Vernita; Whiteley, Marvin; Rumbaugh, Kendra

    2017-03-14

    Environmental conditions affect bacterial behavior and can greatly influence the course of an infection. However, the environmental cues that elicit bacterial responses in specific infection sites are relatively unknown. Pseudomonas aeruginosa is ubiquitous in nature and typically innocuous. However, it is also one of the most prevalent causes of fatal sepsis in burn wound patients. The aim of this study was to determine the impact of environmental factors, specifically the availability of arginine, on the pathogenesis of P. aeruginosa in burn wound infections. Comparison of burned versus noninjured tissue revealed that l-arginine (l-Arg) was significantly depleted in burn wounds as a consequence of elevated arginase produced by myeloid-derived suppressor cells. We also observed that l-Arg was a potent chemoattractant for P. aeruginosa, and while low concentrations of l-Arg increased P. aeruginosa's swimming motility, high concentrations resulted in diminished swimming. Based on these observations, we tested whether the administration of exogenous l-Arg into the burn wound could attenuate the virulence of P. aeruginosa in thermally injured mice. Administration of l-Arg resulted in decreased P. aeruginosa spread and sepsis and increased animal survival. Taken together, these data demonstrate that the availability of environmental arginine greatly influences the virulence of P. aeruginosa in vivo and may represent a promising phenotype-modulating tool for future therapeutic avenues.IMPORTANCE Despite our growing understanding of the pathophysiology of burn wounds and the evolution of techniques and practices to manage infections, sepsis remains a significant medical concern for burn patients. P. aeruginosa continues to be a leader among all causes of bacteremic infections due to its tendency to cause complications in immunocompromised patients and its ubiquitous presence in the hospital setting. With the unforgiving emergence of multidrug-resistant strains, it

  14. Therapeutic effect of Pseudomonas aeruginosa phage YH30 on mink hemorrhagic pneumonia.

    PubMed

    Gu, Jingmin; Li, Xinwei; Yang, Mei; Du, Chongtao; Cui, Ziyin; Gong, Pengjuan; Xia, Feifei; Song, Jun; Zhang, Lei; Li, Juecheng; Yu, Chuang; Sun, Changjiang; Feng, Xin; Lei, Liancheng; Han, Wenyu

    2016-07-15

    Hemorrhagic pneumonia caused by Pseudomonas aeruginosa remains one of the most costly infectious diseases among farmed mink and commonly leads to large economic losses during mink production. The objective of this study was to investigate the potential of using phages as a therapy against hemorrhagic pneumonia in mink. A broad-host-range phage from the Podoviridae family, YH30, was isolated using the mink-originating P. aeruginosa (serotype G) D7 strain as a host. The genome of YH30 was 72,192bp (54.92% G+C), contained 86 open reading frames and lacked regions encoding known virulence factors, integration-related proteins or antibiotic resistance determinants. These characteristics make YH30 eligible for use in phage therapy. The results of a curative treatment experiment demonstrated that a single intranasal administration of YH30 was sufficient to cure hemorrhagic pneumonia in mink. The mean colony count of P. aeruginosa in the blood and lung of YH30-protected mink was less than 10(3) CFU/mL (g) within 24h of bacterial challenge and ultimately became undetectable, whereas that in unprotected mink reached more than 10(8) CFU/mL (g). Additionally, YH30 dramatically improved the pathological manifestations of lung injury in mink with hemorrhagic pneumonia. Our work demonstrates the potential of phages to treat P. aeruginosa-caused hemorrhagic pneumonia in mink.

  15. Characterization of alanine catabolism in Pseudomonas aeruginosa and its importance for proliferation in vivo.

    PubMed

    Boulette, Megan L; Baynham, Patricia J; Jorth, Peter A; Kukavica-Ibrulj, Irena; Longoria, Aissa; Barrera, Karla; Levesque, Roger C; Whiteley, Marvin

    2009-10-01

    The opportunistic pathogen Pseudomonas aeruginosa causes a variety of infections in immunocompromised individuals, including individuals with the heritable disease cystic fibrosis. Like the carbon sources metabolized by many disease-causing bacteria, the carbon sources metabolized by P. aeruginosa at the host infection site are unknown. We recently reported that l-alanine is a preferred carbon source for P. aeruginosa and that two genes potentially involved in alanine catabolism (dadA and dadX) are induced during in vivo growth in the rat peritoneum and during in vitro growth in sputum (mucus) collected from the lungs of individuals with cystic fibrosis. The goals of this study were to characterize factors required for alanine catabolism in P. aeruginosa and to assess the importance of these factors for in vivo growth. Our results reveal that dadA and dadX are arranged in an operon and are required for catabolism of l-alanine. The dad operon is inducible by l-alanine, d-alanine, and l-valine, and induction is dependent on the transcriptional regulator Lrp. Finally, we show that a mutant unable to catabolize dl-alanine displays decreased competitiveness in a rat lung model of infection.

  16. Swimming Motility Mediates the Formation of Neutrophil Extracellular Traps Induced by Flagellated Pseudomonas aeruginosa

    PubMed Central

    Sil, Payel; Chassaing, Benoit; Yoo, Dae-goon; Gewirtz, Andrew T.; Goldberg, Joanna B.; McCarter, Linda L.; Rada, Balázs

    2016-01-01

    Pseudomonas aeruginosa is an opportunistic pathogen causing severe infections often characterized by robust neutrophilic infiltration. Neutrophils provide the first line of defense against P. aeruginosa. Aside from their defense conferred by phagocytic activity, neutrophils also release neutrophil extracellular traps (NETs) to immobilize bacteria. Although NET formation is an important antimicrobial process, the details of its mechanism are largely unknown. The identity of the main components of P. aeruginosa responsible for triggering NET formation is unclear. In this study, our focus was to identify the main bacterial factors mediating NET formation and to gain insight into the underlying mechanism. We found that P. aeruginosa in its exponential growth phase promoted strong NET formation in human neutrophils while its NET-inducing ability dramatically decreased at later stages of bacterial growth. We identified the flagellum as the primary component of P. aeruginosa responsible for inducing NET extrusion as flagellum-deficient bacteria remained seriously impaired in triggering NET formation. Purified P. aeruginosa flagellin, the monomeric component of the flagellum, does not stimulate NET formation in human neutrophils. P. aeruginosa-induced NET formation is independent of the flagellum-sensing receptors TLR5 and NLRC4 in both human and mouse neutrophils. Interestingly, we found that flagellar motility, not flagellum binding to neutrophils per se, mediates NET release induced by flagellated bacteria. Immotile, flagellar motor-deficient bacterial strains producing paralyzed flagella did not induce NET formation. Forced contact between immotile P. aeruginosa and neutrophils restored their NET-inducing ability. Both the motAB and motCD genetic loci encoding flagellar motor genes contribute to maximal NET release; however the motCD genes play a more important role. Phagocytosis of P. aeruginosa and superoxide production by neutrophils were also largely dependent upon

  17. Requirements for Pseudomonas aeruginosa acute burn and chronic surgical wound infection.

    PubMed

    Turner, Keith H; Everett, Jake; Trivedi, Urvish; Rumbaugh, Kendra P; Whiteley, Marvin

    2014-07-01

    Opportunistic infections caused by Pseudomonas aeruginosa can be acute or chronic. While acute infections often spread rapidly and can cause tissue damage and sepsis with high mortality rates, chronic infections can persist for weeks, months, or years in the face of intensive clinical intervention. Remarkably, this diverse infectious capability is not accompanied by extensive variation in genomic content, suggesting that the genetic capacity to be an acute or a chronic pathogen is present in most P. aeruginosa strains. To investigate the genetic requirements for acute and chronic pathogenesis in P. aeruginosa infections, we combined high-throughput sequencing-mediated transcriptome profiling (RNA-seq) and genome-wide insertion mutant fitness profiling (Tn-seq) to characterize gene expression and fitness determinants in murine models of burn and non-diabetic chronic wound infection. Generally we discovered that expression of a gene in vivo is not correlated with its importance for fitness, with the exception of metabolic genes. By combining metabolic models generated from in vivo gene expression data with mutant fitness profiles, we determined the nutritional requirements for colonization and persistence in these infections. Specifically, we found that long-chain fatty acids represent a major carbon source in both chronic and acute wounds, and P. aeruginosa must biosynthesize purines, several amino acids, and most cofactors during infection. In addition, we determined that P. aeruginosa requires chemotactic flagellar motility for fitness and virulence in acute burn wound infections, but not in non-diabetic chronic wound infections. Our results provide novel insight into the genetic requirements for acute and chronic P. aeruginosa wound infections and demonstrate the power of using both gene expression and fitness profiling for probing bacterial virulence.

  18. Distal and proximal promoters co-regulate pqsR expression in Pseudomonas aeruginosa.

    PubMed

    Farrow, John M; Pesci, Everett C

    2016-12-23

    The ubiquitous bacterium Pseudomonas aeruginosa is an opportunistic pathogen that can cause serious infections in immunocompromised individuals. P. aeruginosa virulence is controlled partly by intercellular communication, and the transcription factor PqsR is a necessary component in the P. aeruginosa cell-to-cell signaling network. PqsR acts as the receptor for the Pseudomonas quinolone signal, and it controls the production of 2-alkyl-4-quinolone molecules which are important for pathogenicity. Previous studies showed that the expression of pqsR is positively controlled by the quorum-sensing regulator LasR, but it was unclear how LasR is able to induce pqsR transcription. In this report, we further investigated the control of pqsR, and discovered two separate promoter sites that contribute to pqsR expression. LasR-mediated activation occurs at the distal promoter site, but this activation can be antagonized by the regulator CysB. The proximal promoter site also contributes to pqsR transcription, but initiation at this site is inhibited by a negative regulatory sequence element, and potentially by the H-NS family members MvaT and MvaU. We propose a model where positive and negative regulatory influences at each promoter site are integrated to modify pqsR expression. This arrangement could allow for information from both environmental signals and cell-to-cell communication to influence PqsR levels.

  19. Interactions of Methicillin Resistant Staphylococcus aureus USA300 and Pseudomonas aeruginosa in Polymicrobial Wound Infection

    PubMed Central

    Pastar, Irena; Nusbaum, Aron G.; Gil, Joel; Patel, Shailee B.; Chen, Juan; Valdes, Jose; Stojadinovic, Olivera; Plano, Lisa R.; Tomic-Canic, Marjana; Davis, Stephen C.

    2013-01-01

    Understanding the pathology resulting from Staphylococcus aureus and Pseudomonas aeruginosa polymicrobial wound infections is of great importance due to their ubiquitous nature, increasing prevalence, growing resistance to antimicrobial agents, and ability to delay healing. Methicillin-resistant S. aureus USA300 is the leading cause of community-associated bacterial infections resulting in increased morbidity and mortality. We utilized a well-established porcine partial thickness wound healing model to study the synergistic effects of USA300 and P. aeruginosa on wound healing. Wound re-epithelialization was significantly delayed by mixed-species biofilms through suppression of keratinocyte growth factor 1. Pseudomonas showed an inhibitory effect on USA300 growth in vitro while both species co-existed in cutaneous wounds in vivo. Polymicrobial wound infection in the presence of P. aeruginosa resulted in induced expression of USA300 virulence factors Panton-Valentine leukocidin and α-hemolysin. These results provide evidence for the interaction of bacterial species within mixed-species biofilms in vivo and for the first time, the contribution of virulence factors to the severity of polymicrobial wound infections. PMID:23451098

  20. Siderophore as a potential plant growth-promoting agent produced by Pseudomonas aeruginosa JAS-25.

    PubMed

    Sulochana, M B; Jayachandra, S Y; Kumar, S Anil; Parameshwar, A B; Reddy, K Mohan; Dayanand, A

    2014-09-01

    Siderophores scavenges Fe(+3) from the vicinity of the roots of plants, and thus limit the amount of iron required for the growth of pathogens such as Fusarium oxysporum, Pythium ultimum, and Fusarium udum, which cause wilt and root rot disease in crops. The ability of Pseudomonas to grow and to produce siderophore depends upon the iron content, pH, and temperature. Maximum yield of siderophore of 130 μM was observed at pH 7.0 ± 0.2 and temperature of 30 °C at 30 h. The threshold level of iron was 50 μM, which increases up to 150 μM, favoring growth but drastically affecting the production of siderophore by Pseudomonas aeruginosa JAS-25. The seeds of agricultural crops like Cicer arietinum (chick pea), Cajanus cajan (pigeon pea), and Arachis hypogaea (ground nut) were treated with P. aeruginosa JAS-25, which enhanced the seed germination, root length, shoot length, and dry weight of chick pea, pigeon pea, and ground nut plants under pot studies. The efficient growth of the plants was not only due to the biocontrol activity of the siderophore produced by P. aeruginosa JAS-25 but also may be by the production of indole acetic acid (IAA), which influences the growth of the plants as phytohormones.

  1. A physical genome map of Pseudomonas aeruginosa PAO.

    PubMed Central

    Römling, U; Grothues, D; Bautsch, W; Tümmler, B

    1989-01-01

    A complete macrorestriction map of the 5.9 Mb genome of Pseudomonas aeruginosa PAO (DSM 1707) was constructed by the combination of various one- and two-dimensional pulsed field gel electrophoresis techniques. A total of 51 restriction sites (36 SpeI sites, 15 DpnI sites) were placed on the physical map yielding an average resolution of 110 kb. Several genes encoding virulence factors and enzymes of metabolic pathways were located on the anonymous map by Southern hybridization. Distances between the gene loci were similar on the genetic and physical maps, suggesting an even distribution of genome mobility throughout the bacterial chromosome. The four rRNA operons were organized in pairs of inverted repeats. The two-dimensional macro-restriction techniques described herein are generally applicable for the genome mapping of any prokaryote and lower eukaryote which yields resolvable fragment patterns on two-dimensional pulsed field gels. Images PMID:2512121

  2. Heat shock mediated labelling of Pseudomonas aeruginosa with quantum dots.

    PubMed

    Kumar, Natasha; Wiraja, Christian; Palanisamy, Kannan; Marsili, Enrico; Xu, Chenjie

    2016-06-01

    Biocompatible nanoparticles are good candidates to label bacteria for imaging and diagnosis purposes. A high labeling efficiency reduces the concentration of nanoparticles required for labeling and allows the labeled bacteria to be tracked for longer periods. This report explores the optimal labeling strategy for Pseudomonas aeruginosa, a common gram-negative opportunistic pathogen, with quantum dots. Three strategies including direct incubation, calcium chloride treatment, and heat shock are compared and the labeling efficiency is assessed through fluorescence microscopy and flow cytometry analysis. Of the three, heat shock is finally selected due to its comparable labeling efficiency and simplicity. Through the assay of the respiration rate of bacteria together with morphology analysis, the heat shock process does not show any negative effect over the cells activity even at sub-toxic concentrations.

  3. Decrease of Pseudomonas aeruginosa biofilm formation by food waste materials.

    PubMed

    Maderova, Zdenka; Horska, Katerina; Kim, Sang-Ryoung; Lee, Chung-Hak; Pospiskova, Kristyna; Safarikova, Mirka; Safarik, Ivo

    2016-01-01

    The formation of bacterial biofilm on various surfaces has significant negative economic effects. The aim of this study was to find a simple procedure to decrease the Pseudomonas aeruginosa biofilm formation in a water environment by using different food waste biological materials as signal molecule adsorbents. The selected biomaterials did not reduce the cell growth but affected biofilm formation. Promising biomaterials were magnetically modified in order to simplify manipulation and facilitate their magnetic separation. The best biocomposite, magnetically modified spent grain, exhibited substantial adsorption of signal molecules and decreased the biofilm formation. These results suggest that selected food waste materials and their magnetically responsive derivatives could be applied to solve biofilm problems in water environment.

  4. Production of proteinase on noncarbohydrate carbon sources by Pseudomonas aeruginosa.

    PubMed

    Morihara, K

    1965-09-01

    Proteinase production by Pseudomonas aeruginosa was studied in medium containing noncarbohydrate materials, especially various hydrocarbons, as the sole carbon source. On heavy oil, kerosene, n-paraffinic hydrocarbon of C(12), C(14), or C(16), and propylene glycol, the bacteria grew well and high protinase production was observed. However, production on paraffinic hydrocarbon differed remarkably with strains of varied origins. The elastase-positive strain, IFO 3455, showed abundant growth and high proteinase production on medium containing a paraffin of C(12), C(14), or C(16), whereas the elastase-negative strain, IFO 3080, showed little growth on the same medium. Neither elastase-positive nor elastase-negative strains, however, utilized n-paraffins of C(5) to C(10), or various aromatic hydrocarbons such as benzene, naphthalene, phenanthrene, and anthracene. The proteinases produced on the noncarbohydrate medium were identical with those produced in glucose medium.

  5. Bioengineered lysozyme in combination therapies for Pseudomonas aeruginosa lung infections

    PubMed Central

    Griswold, Karl E; Bement, Jenna L; Teneback, Charlotte C; Scanlon, Thomas C; Wargo, Matthew J; Leclair, Laurie W

    2014-01-01

    There is increasing urgency in the battle against drug-resistant bacterial pathogens, and this public health crisis has created a desperate need for novel antimicrobial agents. Recombinant human lysozyme represents one interesting candidate for treating pulmonary infections, but the wild type enzyme is subject to electrostatic mediated inhibition by anionic biopolymers that accumulate in the infected lung. We have redesigned lysozyme’s electrostatic potential field, creating a genetically engineered variant that is less susceptible to polyanion inhibition, yet retains potent bactericidal activity. A recent publication demonstrated that the engineered enzyme outperforms wild type lysozyme in a murine model of Pseudomonas aeruginosa lung infection. Here, we expand upon our initial studies and consider dual therapies that combine lysozymes with an antimicrobial peptide. Consistent with our earlier results, the charge modified lysozyme combination outperformed its wild type counterpart, yielding more than an order-of-magnitude reduction in bacterial burden following treatment with a single dose. PMID:24637705

  6. Pseudomonas aeruginosa KUCD1, a possible candidate for cadmium bioremediation

    PubMed Central

    Sinha, Sangram; Mukherjee, Samir Kumar

    2009-01-01

    A cadmium (8 mM) resistant Pseudomonas aeruginosa strain KUCd1 exhibiting high Cd accumulation under in vitro aerobic condition has been reported. The isolate showed a significant ability to remove more than 75% and 89% of the soluble cadmium during the active growth phase from the growth medium and from Cd-amended industrial wastewater under growth supportive condition. Transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDXS) suggest the presence of Cd in the cells from mid stationary phase. The cell fractionation study revealed membrane and periplasm to be the major accumulating site in this strain. The chemical nature of the accumulated Cd was studied by X-ray powder diffraction analysis. PMID:24031411

  7. Crystal structure of PvdO from Pseudomonas aeruginosa.

    PubMed

    Yuan, Zenglin; Gao, Fei; Bai, Guohui; Xia, Hengchuan; Gu, Lichuan; Xu, Sujuan

    2017-02-26

    Pyoverdine I (PVDI) is a water-soluble fluorescein siderophore with strong iron chelating ability from the gram-negative pathogen Pseudomonas aeruginosa PAO1. Compared to common siderophores, PVDI is a relatively large compound whose synthesis requires a group of enzymes with different catalytic activities. In addition to four nonribosomal peptide synthetases (NRPS) which are responsible for the production of the peptide backbone of PVDI, several additional enzymes are associated with the modification of the side chains. PvdO is one of these enzymes and participates in PVDI precursor maturation in the periplasm. We determined the crystal structure of PvdO at 1.24 Å resolution. The PvdO structure shares a common fold with some FGly-generating enzymes (FGE) and is stabilized by Ca(2+). However, the catalytic residues in FGE are not observed in PvdO, indicating PvdO adopts a unique catalytic mechanism.

  8. Magnetic fields suppress Pseudomonas aeruginosa biofilms and enhance ciprofloxacin activity.

    PubMed

    Bandara, H M H N; Nguyen, D; Mogarala, S; Osiñski, M; Smyth, H D C

    2015-01-01

    Due to the refractory nature of pathogenic microbial biofilms, innovative biofilm eradication strategies are constantly being sought. Thus, this study addresses a novel approach to eradicate Pseudomonas aeruginosa biofilms. Magnetic nanoparticles (MNP), ciprofloxacin (Cipro), and magnetic fields were systematically evaluated in vitro for their relative anti-biofilm contributions. Twenty-four-hour biofilms exposed to aerosolized MNPs, Cipro, or a combination of both, were assessed in the presence or absence of magnetic fields (Static one-sided, Static switched, Oscillating, Static + oscillating) using changes in bacterial metabolism, biofilm biomass, and biofilm imaging. The biofilms exposed to magnetic fields alone exhibited significant metabolic and biomass reductions (p < 0.05). When biofilms were treated with a MNP/Cipro combination, the most significant metabolic and biomass reductions were observed when exposed to static switched magnetic fields (p < 0.05). The exposure of P. aeruginosa biofilms to a static switched magnetic field alone, or co-administration with MNP/Cipro/MNP + Cipro appears to be a promising approach to eradicate biofilms of this bacterium.

  9. Chromosomal DNA deletion confers phage resistance to Pseudomonas aeruginosa.

    PubMed

    Le, Shuai; Yao, Xinyue; Lu, Shuguang; Tan, Yinling; Rao, Xiancai; Li, Ming; Jin, Xiaolin; Wang, Jing; Zhao, Yan; Wu, Nicholas C; Lux, Renate; He, Xuesong; Shi, Wenyuan; Hu, Fuquan

    2014-04-28

    Bacteria develop a broad range of phage resistance mechanisms, such as prevention of phage adsorption and CRISPR/Cas system, to survive phage predation. In this study, Pseudomonas aeruginosa PA1 strain was infected with lytic phage PaP1, and phage-resistant mutants were selected. A high percentage (~30%) of these mutants displayed red pigmentation phenotype (Red mutant). Through comparative genomic analysis, one Red mutant PA1r was found to have a 219.6 kb genomic fragment deletion, which contains two key genes hmgA and galU related to the observed phenotypes. Deletion of hmgA resulted in the accumulation of a red compound homogentisic acid; while A galU mutant is devoid of O-antigen, which is required for phage adsorption. Intriguingly, while the loss of galU conferred phage resistance, it significantly attenuated PA1r in a mouse infection experiment. Our study revealed a novel phage resistance mechanism via chromosomal DNA deletion in P. aeruginosa.

  10. Type IV pili mechanochemically regulate virulence factors in Pseudomonas aeruginosa

    PubMed Central

    Persat, Alexandre; Inclan, Yuki F.; Engel, Joanne N.; Stone, Howard A.; Gitai, Zemer

    2015-01-01

    Bacteria have evolved a wide range of sensing systems to appropriately respond to environmental signals. Here we demonstrate that the opportunistic pathogen Pseudomonas aeruginosa detects contact with surfaces on short timescales using the mechanical activity of its type IV pili, a major surface adhesin. This signal transduction mechanism requires attachment of type IV pili to a solid surface, followed by pilus retraction and signal transduction through the Chp chemosensory system, a chemotaxis-like sensory system that regulates cAMP production and transcription of hundreds of genes, including key virulence factors. Like other chemotaxis pathways, pili-mediated surface sensing results in a transient response amplified by a positive feedback that increases type IV pili activity, thereby promoting long-term surface attachment that can stimulate additional virulence and biofilm-inducing pathways. The methyl-accepting chemotaxis protein-like chemosensor PilJ directly interacts with the major pilin subunit PilA. Our results thus support a mechanochemical model where a chemosensory system measures the mechanically induced conformational changes in stretched type IV pili. These findings demonstrate that P. aeruginosa not only uses type IV pili for surface-specific twitching motility, but also as a sensor regulating surface-induced gene expression and pathogenicity. PMID:26041805

  11. Identification of Pseudomonas aeruginosa Phenazines that Kill Caenorhabditis elegans

    PubMed Central

    Cezairliyan, Brent; Vinayavekhin, Nawaporn; Grenfell-Lee, Daniel; Yuen, Grace J.; Saghatelian, Alan; Ausubel, Frederick M.

    2013-01-01

    Pathogenic microbes employ a variety of methods to overcome host defenses, including the production and dispersal of molecules that are toxic to their hosts. Pseudomonas aeruginosa, a Gram-negative bacterium, is a pathogen of a diverse variety of hosts including mammals and the nematode Caenorhabditis elegans. In this study, we identify three small molecules in the phenazine class that are produced by P. aeruginosa strain PA14 that are toxic to C. elegans. We demonstrate that 1-hydroxyphenazine, phenazine-1-carboxylic acid, and pyocyanin are capable of killing nematodes in a matter of hours. 1-hydroxyphenazine is toxic over a wide pH range, whereas the toxicities of phenazine-1-carboxylic acid and pyocyanin are pH-dependent at non-overlapping pH ranges. We found that acidification of the growth medium by PA14 activates the toxicity of phenazine-1-carboxylic acid, which is the primary toxic agent towards C. elegans in our assay. Pyocyanin is not toxic under acidic conditions and 1-hydroxyphenazine is produced at concentrations too low to kill C. elegans. These results suggest a role for phenazine-1-carboxylic acid in mammalian pathogenesis because PA14 mutants deficient in phenazine production have been shown to be defective in pathogenesis in mice. More generally, these data demonstrate how diversity within a class of metabolites could affect bacterial toxicity in different environmental niches. PMID:23300454

  12. Pseudomonas aeruginosa: my research passion. Interview by Hannah Branch.

    PubMed

    Hazlett, Linda

    2013-07-01

    Linda Hazlett is a department chair and distinguished professor at Wayne State University (MI, USA). Her research is focused on the host immune response to Pseudomonas aeruginosa and its role in ocular infections. Dr Hazlett has been funded continuously by the NIH by R01 support for 34 years. She is currently principal investigator of two R01 grants from the National Eye Institute that study pathogenesis of P. aeruginosa in the eye. Dr Hazlett oversees four Course Directors who lead Year 1 medical student teaching, in addition to two graduate course directors. Furthermore, although not involved in medical teaching, she educates graduate students and mentors a Research Scientist and a Research Assistant Professor. Throughout her career, Dr Hazlett has achieved several honors and awards including Distinguished Professor at Wayne State University (2008), National Eye Institute Core Center (P30) grant for 1987-2013, Chair of Physiology Search 2008-2009, Member of the Academy of Scholars at Wayne State University, Association for Research in Vision and Ophthalmology fellow at the Gold Medal level (2009) and was an invited speaker at the Gordon Conference 2010.

  13. Production and properties of crude enterotoxin of Pseudomonas aeruginosa.

    PubMed

    Grover, S; Batish, V K; Srinivasan, R A

    1990-05-01

    Pseudomonas aeruginosa CTM-3 was found to be the most potentially enterotoxigenic strain out of the 12 isolates recovered from milk, as a high fluid length ratio, i.e. F/L (1.1) in rabbit gut and a strong permeability response in rabbit skin (38.5 mm2 necrotic zone) was obtained with this culture. No clear-cut relationship between the two tests was observed. Six of the ethidium bromide (300 micrograms/ml) cured variants of this culture completely lost their ability to produce enterotoxin indicating the possible involvement of a plasmid in enterotoxin synthesis. The crude enterotoxin from P. aeruginosa CTM-3 was completely inactivated in 15 s at 72 degrees C. However, it was fairly stable at pH values in the range 4.5-7.5. Both pepsin and trypsin inactivated the enterotoxin activity at a concentration of 40 micrograms/ml. Organic acids, formalin and hydrogen peroxide had no significant effect on the enterotoxin activity. The need for further investigations with purified preparations is emphasized.

  14. Mechanical destruction of pseudomonas aeruginosa biofilms by ultrasound exposure

    NASA Astrophysics Data System (ADS)

    Xu, Jin; Bigelow, Timothy A.; Halverson, Larry J.; Middendorf, Jill; Rusk, Ben

    2012-10-01

    Medical implants are prone to colonization by bacterial biofilms, which are highly resistant to antibiotics. Normally, surgery is required to replace the infected implant. One promising non-invasive treatment option is to destroy the biofilm with high-intensity focused ultrasound (HIFU) exposure. In our study, Pseudomonas aeruginosa bacterial biofilms were grown on graphite disks in a flow chamber for three days prior to exposing them to ultrasound pulses of varying duration or burst period. The pulses were 20 cycles in duration at a frequency of 1.1 MHz from a spherically focused transducer (f/1, 63 mm focal length), creating peak compressional and rarefactional pressures at the disk surface of 30 and 13 MPa, respectively. P. aeruginosa were tagged with GFP and cells killed by HIFU were visualized using propidium iodide, which permeates membranes of dead cells, to aid determining the extent of biofilm destruction and whether cells are alive or dead. Our results indicate that a 30-s exposure and 6-ms pulse period or those combinations with the same number of pulses, were sufficient to destroy the biofilm and to kill the remaining cells. Reducing the number of pulses decreased biofilm destruction, leaving more dead and live bacteria on the surface.

  15. Pseudomonas aeruginosa sabotages the generation of host proresolving lipid mediators.

    PubMed

    Flitter, Becca A; Hvorecny, Kelli L; Ono, Emiko; Eddens, Taylor; Yang, Jun; Kwak, Daniel H; Bahl, Christopher D; Hampton, Thomas H; Morisseau, Christophe; Hammock, Bruce D; Liu, Xinyu; Lee, Janet S; Kolls, Jay K; Levy, Bruce D; Madden, Dean R; Bomberger, Jennifer M

    2017-01-03

    Recurrent Pseudomonas aeruginosa infections coupled with robust, damaging neutrophilic inflammation characterize the chronic lung disease cystic fibrosis (CF). The proresolving lipid mediator, 15-epi lipoxin A4 (15-epi LXA4), plays a critical role in limiting neutrophil activation and tissue inflammation, thus promoting the return to tissue homeostasis. Here, we show that a secreted P. aeruginosa epoxide hydrolase, cystic fibrosis transmembrane conductance regulator inhibitory factor (Cif), can disrupt 15-epi LXA4 transcellular biosynthesis and function. In the airway, 15-epi LXA4 production is stimulated by the epithelial-derived eicosanoid 14,15-epoxyeicosatrienoic acid (14,15-EET). Cif sabotages the production of 15-epi LXA4 by rapidly hydrolyzing 14,15-EET into its cognate diol, eliminating a proresolving signal that potently suppresses IL-8-driven neutrophil transepithelial migration in vitro. Retrospective analyses of samples from patients with CF supported the translational relevance of these preclinical findings. Elevated levels of Cif in bronchoalveolar lavage fluid were correlated with lower levels of 15-epi LXA4, increased IL-8 concentrations, and impaired lung function. Together, these findings provide structural, biochemical, and immunological evidence that the bacterial epoxide hydrolase Cif disrupts resolution pathways during bacterial lung infections. The data also suggest that Cif contributes to sustained pulmonary inflammation and associated loss of lung function in patients with CF.

  16. Genotyping of Pseudomonas aeruginosa isolated from cockroaches and human urine.

    PubMed

    Saitou, Keiko; Furuhata, Katsunori; Fukuyama, Masafumi

    2010-10-01

    Molecular-epidemiological analysis of Pseudomonas aeruginosa isolated from cockroaches captured in hospitals and from patient urine was performed, employing randomly amplified polymorphic DNA (RAPD) analysis to investigate the usefulness of RAPD analysis. Four specific bands at positions of 993, 875, 521, and 402 bp were commonly detected using primer 272 in 16 of 45 cockroach-derived strains (35.6%), but not in 21 urine-derived strains. On analysis using primer 208, 4 specific bands at positions of 1,235, 1,138, 1,068, and 303 bp were commonly detected in 15 of the 45 cockroach-derived (33.3%) and 10 of the 21 patient urine-derived (47.6%) strains, in a total of 25 of 66 strains (37.8%). On cluster analysis, 12 (48.5%) and 16 (66.7%) clusters were grouped based on a homology of 89% or greater, using primer 272 and primer 208, respectively, showing that primer 208 was suitable for the confirmation of diversity. Seven patterns were clustered based on 100% homology using either primer, and 6 of these consisted of only cockroach-derived strains. In the individual groups with 100% homology, all strains in the group were isolated at an identical site during the same period. P. aeruginosa isolated from cockroaches showed diverse genotypes suggesting several sources of contamination, indicating the necessity for investigating infection control targeting cockroaches inhabiting hospitals.

  17. Pseudomonas aeruginosa Exopolyphosphatase Is Also a Polyphosphate: ADP Phosphotransferase.

    PubMed

    Beassoni, Paola R; Gallarato, Lucas A; Boetsch, Cristhian; Garrido, Mónica N; Lisa, Angela T

    2015-01-01

    Pseudomonas aeruginosa exopolyphosphatase (paPpx; EC 3.6.1.11) catalyzes the hydrolysis of polyphosphates (polyP), producing polyPn-1 plus inorganic phosphate (Pi). In a recent work we have shown that paPpx is involved in the pathogenesis of P. aeruginosa. The present study was aimed at performing the biochemical characterization of this enzyme. We found some properties that were already described for E. coli Ppx (ecPpx) but we also discovered new and original characteristics of paPpx: (i) the peptide that connects subdomains II and III is essential for enzyme activity; (ii) NH4 (+) is an activator of the enzyme and may function at concentrations lower than those of K(+); (iii) Zn(2+) is also an activator of paPpx and may substitute Mg(2+) in the catalytic site; and (iv) paPpx also has phosphotransferase activity, dependent on Mg(2+) and capable of producing ATP regardless of the presence or absence of K(+) or NH4 (+) ions. In addition, we detected that the active site responsible for the phosphatase activity is also responsible for the phosphotransferase activity. Through the combination of molecular modeling and docking techniques, we propose a model of the paPpx N-terminal domain in complex with a polyP chain of 7 residues long and a molecule of ADP to explain the phosphotransferase activity.

  18. Computer simulation of the rough lipopolysaccharide membrane of Pseudomonas aeruginosa.

    PubMed Central

    Lins, R D; Straatsma, T P

    2001-01-01

    Lipopolysaccharides (LPSs) form the major constituent of the outer membrane of Gram-negative bacteria, and are believed to play a key role in processes that govern microbial metal binding, microbial adsorption to mineral surfaces, and microbe-mediated oxidation/reduction reactions at the bacterial exterior surface. A computational modeling capability is being developed for the study of geochemical reactions at the outer bacterial envelope of Gram-negative bacteria. A molecular model for the rough LPS of Pseudomonas aeruginosa has been designed based on experimentally determined structural information. An electrostatic model was developed based on Hartree-Fock SCF calculations of the complete LPS molecule to obtain partial atomic charges. The exterior of the bacterial membrane was assembled by replication of a single LPS molecule and a single phospholipid molecule. Molecular dynamics simulations of the rough LPS membrane of P. aeruginosa were carried out and trajectories were analyzed for the energetic and structural factors that determine the role of LPS in processes at the cell surface. PMID:11463645

  19. The increasing threat of Pseudomonas aeruginosa high-risk clones.

    PubMed

    Oliver, Antonio; Mulet, Xavier; López-Causapé, Carla; Juan, Carlos

    2015-01-01

    The increasing prevalence of chronic and hospital-acquired infections produced by multidrug-resistant (MDR) or extensively drug-resistant (XDR) Pseudomonas aeruginosa strains is associated with significant morbidity and mortality. This growing threat results from the extraordinary capacity of this pathogen for developing resistance through chromosomal mutations and from the increasing prevalence of transferable resistance determinants, particularly those encoding carbapenemases or extended-spectrum β-lactamases (ESBLs). P. aeruginosa has a nonclonal epidemic population structure, composed of a limited number of widespread clones which are selected from a background of a large quantity of rare and unrelated genotypes that are recombining at high frequency. Indeed, recent concerning reports have provided evidence of the existence of MDR/XDR global clones, denominated high-risk clones, disseminated in hospitals worldwide; ST235, ST111, and ST175 are likely those more widespread. Noteworthy, the vast majority of infections by MDR, and specially XDR, strains are produced by these and few other clones worldwide. Moreover, the association of high-risk clones, particularly ST235, with transferable resistance is overwhelming; nearly 100 different horizontally-acquired resistance elements and up to 39 different acquired β-lactamases have been reported so far among ST235 isolates. Likewise, MDR internationally-disseminated epidemic strains, such as the Liverpool Epidemic Strain (LES, ST146), have been noted as well among cystic fibrosis patients. Here we review the population structure, epidemiology, antimicrobial resistance mechanisms and virulence of the P. aeruginosa high-risk clones. The phenotypic and genetic factors potentially driving the success of high-risk clones, the aspects related to their detection in the clinical microbiology laboratory and the implications for infection control and public health are also discussed.

  20. Pseudomonas aeruginosa EftM Is a Thermoregulated Methyltransferase*

    PubMed Central

    Owings, Joshua P.; Kuiper, Emily G.; Prezioso, Samantha M.; Meisner, Jeffrey; Varga, John J.; Zelinskaya, Natalia; Dammer, Eric B.; Duong, Duc M.; Seyfried, Nicholas T.; Albertí, Sebastián; Conn, Graeme L.; Goldberg, Joanna B.

    2016-01-01

    Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen that trimethylates elongation factor-thermo-unstable (EF-Tu) on lysine 5. Lysine 5 methylation occurs in a temperature-dependent manner and is generally only seen when P. aeruginosa is grown at temperatures close to ambient (25 °C) but not at higher temperatures (37 °C). We have previously identified the gene, eftM (for EF-Tu-modifying enzyme), responsible for this modification and shown its activity to be associated with increased bacterial adhesion to and invasion of respiratory epithelial cells. Bioinformatic analyses predicted EftM to be a Class I S-adenosyl-l-methionine (SAM)-dependent methyltransferase. An in vitro methyltransferase assay was employed to show that, in the presence of SAM, EftM directly trimethylates EF-Tu. A natural variant of EftM, with a glycine to arginine substitution at position 50 in the predicted SAM-binding domain, lacks both SAM binding and enzyme activity. Mass spectrometry analysis of the in vitro methyltransferase reaction products revealed that EftM exclusively methylates at lysine 5 of EF-Tu in a distributive manner. Consistent with the in vivo temperature dependence of methylation of EF-Tu, preincubation of EftM at 37 °C abolished methyltransferase activity, whereas this activity was retained when EftM was preincubated at 25 °C. Irreversible protein unfolding at 37 °C was observed, and we propose that this instability is the molecular basis for the temperature dependence of EftM activity. Collectively, our results show that EftM is a thermolabile, SAM-dependent methyltransferase that directly trimethylates lysine 5 of EF-Tu in P. aeruginosa. PMID:26677219

  1. Biotic inactivation of the Pseudomonas aeruginosa quinolone signal molecule.

    PubMed

    Soh, Eliza Ye-Chen; Chhabra, Siri R; Halliday, Nigel; Heeb, Stephan; Müller, Christine; Birmes, Franziska S; Fetzner, Susanne; Cámara, Miguel; Chan, Kok-Gan; Williams, Paul

    2015-11-01

    In Pseudomonas aeruginosa, quorum sensing (QS) regulates the production of secondary metabolites, many of which are antimicrobials that impact on polymicrobial community composition. Consequently, quenching QS modulates the environmental impact of P. aeruginosa. To identify bacteria capable of inactivating the QS signal molecule 2-heptyl-3-hydroxy-4(1H)-quinolone (PQS), a minimal medium containing PQS as the sole carbon source was used to enrich a Malaysian rainforest soil sample. This yielded an Achromobacter xylosoxidans strain (Q19) that inactivated PQS, yielding a new fluorescent compound (I-PQS) confirmed as PQS-derived using deuterated PQS. The I-PQS structure was elucidated using mass spectrometry and nuclear magnetic resonance spectroscopy as 2-heptyl-2-hydroxy-1,2-dihydroquinoline-3,4-dione (HHQD). Achromobacter xylosoxidans Q19 oxidized PQS congeners with alkyl chains ranging from C1 to C5 and also N-methyl PQS, yielding the corresponding 2-hydroxy-1,2-dihydroquinoline-3,4-diones, but was unable to inactivate the PQS precursor HHQ. This indicates that the hydroxyl group at position 3 in PQS is essential and that A. xylosoxidans inactivates PQS via a pathway involving the incorporation of oxygen at C2 of the heterocyclic ring. The conversion of PQS to HHQD also occurred on incubation with 12/17 A. xylosoxidans strains recovered from cystic fibrosis patients, with P. aeruginosa and with Arthrobacter, suggesting that formation of hydroxylated PQS may be a common mechanism of inactivation.

  2. Regional Control of Chromosome Segregation in Pseudomonas aeruginosa

    PubMed Central

    Lagage, Valentine

    2016-01-01

    Chromosome segregation in bacteria occurs concomitantly with DNA replication, and the duplicated regions containing the replication origin oriC are generally the first to separate and migrate to their final specific location inside the cell. In numerous bacterial species, a three-component partition machinery called the ParABS system is crucial for chromosome segregation. This is the case in the gammaproteobacterium Pseudomonas aeruginosa, where impairing the ParABS system is very detrimental for growth, as it increases the generation time and leads to the formation of anucleate cells and to oriC mispositioning inside the cell. In this study, we investigate in vivo the ParABS system in P. aeruginosa. Using chromatin immuno-precipitation coupled with high throughput sequencing, we show that ParB binds to four parS site located within 15 kb of oriC in vivo, and that this binding promotes the formation of a high order nucleoprotein complex. We show that one parS site is enough to prevent anucleate cell formation, therefore for correct chromosome segregation. By displacing the parS site from its native position on the chromosome, we demonstrate that parS is the first chromosomal locus to be separated upon DNA replication, which indicates that it is the site of force exertion of the segregation process. We identify a region of approximatively 650 kb surrounding oriC in which the parS site must be positioned for chromosome segregation to proceed correctly, and we called it “competence zone” of the parS site. Mutant strains that have undergone specific genetic rearrangements allow us to propose that the distance between oriC and parS defines this “competence zone”. Implications for the control of chromosome segregation in P. aeruginosa are discussed. PMID:27820816

  3. Excessive inflammatory response of cystic fibrosis mice to bronchopulmonary infection with Pseudomonas aeruginosa.

    PubMed Central

    Heeckeren, A; Walenga, R; Konstan, M W; Bonfield, T; Davis, P B; Ferkol, T

    1997-01-01

    In cystic fibrosis (CF), defective function of the cystic fibrosis transmembrane conductance regulator (CFTR) in airway epithelial cells and submucosal glands results in chronic pulmonary infection with Pseudomonas aeruginosa. The pulmonary infection incites an intense host inflammatory response, causing progressive suppurative pulmonary disease. Mouse models of CF, however, fail to develop pulmonary disease spontaneously. We examined the effects of bronchopulmonary infection on mice homozygous for the S489X mutation of the CFTR gene using an animal model of chronic Pseudomonas endobronchial infection. Slurries of sterile agarose beads or beads containing a clinical isolate of mucoid P. aeruginosa were instilled in the right lung of normal or CF mice. The mortality of CF mice inoculated with Pseudomonas-laden beads was significantly higher than that of normal animals: 82% of infected CF mice, but only 23% of normal mice, died within 10 d of infection (P = 0.023). The concentration of inflammatory mediators, including TNF-alpha, murine macrophage inflammatory protein-2, and KC/N51, in bronchoalveolar lavage fluid in CF mice 3 d after infection and before any mortality, was markedly elevated compared with normal mice. This inflammatory response also correlated with weight loss observed in both CF and normal littermates after inoculation. Thus, this model may permit examination of the relationship of bacterial infections, inflammation, and the cellular and genetic defects in CF. PMID:9389746

  4. Ga@C-dots as an antibacterial agent for the eradication of Pseudomonas aeruginosa.

    PubMed

    Kumar, Vijay Bhooshan; Natan, Michal; Jacobi, Gila; Porat, Ze'ev; Banin, Ehud; Gedanken, Aharon

    2017-01-01

    The opportunistic pathogen Pseudomonas aeruginosa causes infections that are difficult to treat by antibiotic therapy. This research article reports on the synthesis of gallium (Ga) doped in carbon (C)-dots (Ga@C-dots) and their antimicrobial activity against free-living P. aeruginosa bacteria. The synthesis of Ga@C-dots was carried out by sonicating molten Ga (for 2.5 h) in polyethylene glycol-400, which acts as both a medium and carbon source. The resultant Ga@C-dots, having an average diameter of 9±2 nm, showed remarkably enhanced antibacterial activity compared with undoped C-dots. This was reflected by the much lower concentration of Ga doped within Ga@C-dots which was required for full inhibition of the bacterial growth. These results highlight the possibility of using Ga@C-dots as potential antimicrobial agents.

  5. Ga@C-dots as an antibacterial agent for the eradication of Pseudomonas aeruginosa

    PubMed Central

    Kumar, Vijay Bhooshan; Natan, Michal; Jacobi, Gila; Porat, Ze’ev; Banin, Ehud; Gedanken, Aharon

    2017-01-01

    The opportunistic pathogen Pseudomonas aeruginosa causes infections that are difficult to treat by antibiotic therapy. This research article reports on the synthesis of gallium (Ga) doped in carbon (C)-dots (Ga@C-dots) and their antimicrobial activity against free-living P. aeruginosa bacteria. The synthesis of Ga@C-dots was carried out by sonicating molten Ga (for 2.5 h) in polyethylene glycol-400, which acts as both a medium and carbon source. The resultant Ga@C-dots, having an average diameter of 9±2 nm, showed remarkably enhanced antibacterial activity compared with undoped C-dots. This was reflected by the much lower concentration of Ga doped within Ga@C-dots which was required for full inhibition of the bacterial growth. These results highlight the possibility of using Ga@C-dots as potential antimicrobial agents. PMID:28176980

  6. 6-Gingerol reduces Pseudomonas aeruginosa biofilm formation and virulence via quorum sensing inhibition

    PubMed Central

    Kim, Han-Shin; Lee, Sang-Hoon; Byun, Youngjoo; Park, Hee-Deung

    2015-01-01

    Pseudomonas aeruginosa is a well-known pathogenic bacterium that forms biofilms and produces virulence factors via quorum sensing (QS). Interfering with normal QS interactions between signal molecules and their cognate receptors is a developing strategy for attenuating its virulence. Here we tested the hypothesis that 6-gingerol, a pungent oil of fresh ginger, reduces biofilm formation and virulence by antagonistically binding to P. aeruginosa QS receptors. In silico studies demonstrated molecular binding occurs between 6-gingerol and the QS receptor LasR through hydrogen bonding and hydrophobic interactions. Experimentally 6-gingerol reduced biofilm formation, several virulence factors (e.g., exoprotease, rhamnolipid, and pyocyanin), and mice mortality. Further transcriptome analyses demonstrated that 6-gingerol successfully repressed QS-induced genes, specifically those related to the production of virulence factors. These results strongly support our hypothesis and offer insight into the molecular mechanism that caused QS gene repression. PMID:25728862

  7. In vivo imaging of bioluminescent Pseudomonas aeruginosa in an acute murine airway infection model.

    PubMed

    Munder, Antje; Wölbeling, Florian; Klockgether, Jens; Wiehlmann, Lutz; Tümmler, Burkhard

    2014-10-01

    Non-invasive bioluminescence imaging allows the analysis of infectious diseases in small animal models. In this study, an acute airway infection of C3H/HeN mice with luxCDABE transformed Pseudomonas aeruginosa TBCF10839 and an isogenic transposon mutant was followed by optical imaging in vivo. Using the disease-causing dose of 2.0 × 10(6) CFU of the cystic fibrosis airway isolate TBCF10839, subtle luminescence of the lungs was inconsistently visible for the first hour after infection. Conversely, using a 100-fold higher dose of the strongly virulence-attenuated transposon mutant, the robust signal of bioluminescent bacteria increased over 24 h. To monitor murine airway infections with P. aeruginosa in vivo by bioluminescence, one should select an attenuated mutant of a virulent strain or a wild type strain that naturally lacks virulence determinants and/or that has acquired a low virulence persister phenotype by patho-adaptive mutations.

  8. Successful Management of Multidrug-Resistant Pseudomonas aeruginosa Pneumonia after Kidney Transplantation in a Dog

    PubMed Central

    PARK, Kyung-Mee; NAM, Hyun-Suk; WOO, Heung-Myong

    2013-01-01

    ABSTRACT An 8-year-old male mongrel dog that had undergone renal transplantation was presented 25 days later with an acute cough, anorexia and exercise intolerance. During the investigation, neutrophilic leukocytosis was noted, and thoracic radiographs revealed caudal lung lobe infiltration. While being treated with two broad-spectrum antibiotics, clinical signs worsened. Pneumonia due to infection with multidrug-resistant (MDR) Pseudomonas (P.) aeruginosa, sensitive only to imipenem and amikacin, was confirmed by bacteria isolation. After treatment with imipenem-cilastatin without reducing the immunosuppressant dose, clinical signs completely resolved. During the 2-year follow-up period, no recurrence was observed. To the best of authors’ knowledge, this is the first report of pneumonia caused by MDR P. aeruginosa in a renal recipient dog and successful management of this disease. PMID:23842146

  9. Quantifying Pseudomonas aeruginosa quinolones and examining their interactions with lipids.

    PubMed

    Palmer, Gregory C; Schertzer, Jeffrey W; Mashburn-Warren, Lauren; Whiteley, Marvin

    2011-01-01

    Pseudomonas aeruginosa produces a quorum sensing molecule termed the Pseudomonas Quinolone Signal (2-heptyl-3-hydroxy-4-quinolone; PQS) that regulates an array of genes involved in virulence. This chapter addresses four related techniques useful for detecting and quantifying PQS. First, extraction of PQS from complex mixtures (e.g. cell cultures) is described. Separation of PQS from extracts by Thin-Layer Chromatography (TLC) is used in combination with the natural fluorescence of the molecule for quantification. A second separation technique for the PQS precursor HHQ using High-Performance Liquid Chromatography (HPLC) is also described, and this assay exploits the molecule's characteristic absorbance for quantification. A third method for quantification of PQS from simple mixtures (e.g. enzyme assays) using fluorescence is outlined. Finally, a protocol for determining PQS interactions with membrane lipids through Fluorescence Resonance Energy Transfer (FRET) is presented. These techniques allow for quantification and characterization of PQS from diverse environments, a prerequisite to understanding the biological functions of QS molecules.

  10. Chemically defined antimicrobial susceptibility test medium for Pseudomonas aeruginosa.

    PubMed

    Jorgensen, J H; Lee, J C; Jones, P M

    1977-03-01

    A chemically defined growth medium containing physiological concentrations of magnesium and calcium ions was utilized in a microdilution procedure for antimicrobial drug susceptibility testing of Pseudomonas aeruginosa. Determinations of growth end points were simplified by use of sodium citrate as a sole carbon source and bromothymol blue as a pH indicator. Growth of the test organisms was detectable by a change in the indicator color from green to blue after alkalinization of the medium due to citrate utilization. Minimal inhibitory concentrations of amikacin, carbenicillin, gentamicin, and tobramycin were determined on 100 recent clinical isolates of Pseudomonas. Parallel determinations using the microdilution procedure and a conventional tube-broth dilution technique incorporating Mueller-Hinton broth with identical magnesium and calcium content generally agreed within one twofold dilution. Modal minimal inhibitory concentrations for susceptible strains using the microdilution method were: amikacin, 6 mug/ml; carbenicillin, 50 mug/ml; gentamicin, 1.5 mug/ml; tobramycin, 1.5 mug/ml. This modified microdilution technique allowed rapid, definitive minimal inhibitory concentration determinations, using growth end points defined by a color indicator change.

  11. Rapid detection of Pseudomonas aeruginosa biomarkers in biological fluids using surface-enhanced Raman scattering

    NASA Astrophysics Data System (ADS)

    Wu, Xiaomeng; Chen, Jing; Zhao, Yiping; Zughaier, Susu M.

    2014-05-01

    Pseudomonas aeruginosa (PA) is an opportunistic pathogen that causes major infection not only in Cystic Fibrosis patients but also in chronic obstructive pulmonary disease and in critically ill patients in intensive care units. Successful antibiotic treatment of the infection relies on accurate and rapid identification of the infectious agents. Conventional microbiological detection methods usually take more than 3 days to obtain accurate results. We have developed a rapid diagnostic technique based on surface-enhanced Raman scattering to directly identify PA from biological fluids. P. aeruginosa strains, PAO1 and PA14, are cultured in lysogeny broth, and the SERS spectra of the broth show the signature Raman peaks from pyocyanin and pyoverdine, two major biomarkers that P. aeruginosa secretes during its growth, as well as lipopolysaccharides. This provides the evidence that the presence of these biomarkers can be used to indicate P. aeruginosa infection. A total of 22 clinical exhaled breath condensates (EBC) samples were obtained from subjects with CF disease and from non-CF healthy donors. SERS spectra of these EBC samples were obtained and further analyzed by both principle component analysis and partial least square-discriminant analysis (PLS-DA). PLS-DA can discriminate the samples with P. aeruginosa infection and the ones without P. aeruginosa infection at 99.3% sensitivity and 99.6% specificity. In addition, this technique can also discriminate samples from subject with CF disease and healthy donor with 97.5% sensitivity and 100% specificity. These results demonstrate the potential of using SERS of EBC samples as a rapid diagnostic tool to detect PA infection.

  12. Pathogenic Effects of Biofilm on Pseudomonas Aeruginosa Pulmonary Infection and Its Relationship to Cytokines

    PubMed Central

    Cai, Shuangqi; Li, Yanan; Wang, Ke; Cen, Yanling; Lu, Huasong; Dong, Biying; Chen, Yiqiang; Kong, Jinliang

    2016-01-01

    Background An animal (Sprague-Dawley rat) model of Pseudomonas aeruginosa biofilm associated with chronic pulmonary infection in vivo was established and the effects of the biofilm on P. aeruginosa and its relationship to cytokines were investigated. Material/Methods Biofilm of P. aeruginosa in alginate beads and planktonic PA0725 were purified by anion-exchange chromatograph. Sprague-Dawley (SD) rats were immunized with the biofilm and then inhaled the same strain of P. aeruginosa. Anti-biofilm antibody titer was detected using the enzyme linked immunosorbent assay (ELISA) method. The cell count and differential count in the bronchoalveolar lavage fluid (BALF) were measured. The levels of cytokines (IL-17, IL-1β, MIP-2, and G-CSF) and tumor necrosis factor (TNF)-α in sera were also measured using an ELISA kit. Results The sera anti-biofilm IgG antibody titer of immunized SD rats was increased significantly on the 5th and 8th days after inhalation. The IL-17 concentration was significantly higher on the 8th day after inhalation. The results indicated that when biofilm-pre-immunized rats were challenged with inhalation of PA0725 of P. aeruginosa, the biofilm acted as an antigen substance and mediated the antibody reaction of the antigen, which might cause serious airway inflammatory response and lung tissue injury. This effect may be related to IL-17. Conclusions P. aeruginosa biofilm protected the bacterium from antibiotics and might induce host immune damage in lung tissue and facilitate bacterium evading the host barrier. PMID:27941713

  13. Influence of the hydrodynamic environment on quorum sensing in Pseudomonas aeruginosa biofilms.

    PubMed

    Kirisits, Mary Jo; Margolis, Jeffrey J; Purevdorj-Gage, Boloroo L; Vaughan, Benjamin; Chopp, David L; Stoodley, Paul; Parsek, Matthew R

    2007-11-01

    We provide experimental and modeling evidence that the hydrodynamic environment can impact quorum sensing (QS) in a Pseudomonas aeruginosa biofilm. The amount of biofilm biomass required for full QS induction of the population increased as the flow rate increased.

  14. Exome Sequencing Reveals Primary Immunodeficiencies in Children with Community-Acquired Pseudomonas aeruginosa Sepsis.

    PubMed

    Asgari, Samira; McLaren, Paul J; Peake, Jane; Wong, Melanie; Wong, Richard; Bartha, Istvan; Francis, Joshua R; Abarca, Katia; Gelderman, Kyra A; Agyeman, Philipp; Aebi, Christoph; Berger, Christoph; Fellay, Jacques; Schlapbach, Luregn J

    2016-01-01

    One out of three pediatric sepsis deaths in high income countries occur in previously healthy children. Primary immunodeficiencies (PIDs) have been postulated to underlie fulminant sepsis, but this concept remains to be confirmed in clinical practice. Pseudomonas aeruginosa (P. aeruginosa) is a common bacterium mostly associated with health care-related infections in immunocompromised individuals. However, in rare cases, it can cause sepsis in previously healthy children. We used exome sequencing and bioinformatic analysis to systematically search for genetic factors underpinning severe P. aeruginosa infection in the pediatric population. We collected blood samples from 11 previously healthy children, with no family history of immunodeficiency, who presented with severe sepsis due to community-acquired P. aeruginosa bacteremia. Genomic DNA was extracted from blood or tissue samples obtained intravitam or postmortem. We obtained high-coverage exome sequencing data and searched for rare loss-of-function variants. After rigorous filtrations, 12 potentially causal variants were identified. Two out of eight (25%) fatal cases were found to carry novel pathogenic variants in PID genes, including BTK and DNMT3B. This study demonstrates that exome sequencing allows to identify rare, deleterious human genetic variants responsible for fulminant sepsis in apparently healthy children. Diagnosing PIDs in such patients is of high relevance to survivors and affected families. We propose that unusually severe and fatal sepsis cases in previously healthy children should be considered for exome/genome sequencing to search for underlying PIDs.

  15. Effect of biosurfactants on Pseudomonas aeruginosa and Staphylococcus aureus biofilms in a BioFlux channel.

    PubMed

    Diaz De Rienzo, M A; Stevenson, P S; Marchant, R; Banat, I M

    2016-07-01

    Recent studies have indicated that biosurfactants play a role both in maintaining channels between multicellular structures in biofilms and in dispersal of cells from biofilms. A combination of caprylic acid (0.01 % v/v) together with rhamnolipids (0.04 % v/v) was applied to biofilms of Pseudomonas aeruginosa ATCC 15442, Staphylococcus aureus ATCC 9144 and a mixed culture under BioFlux flowthrough conditions and caused disruption of the biofilms. The biofilms were also treated with a combination of rhamnolipids (0.04 % v/v) and sophorolipids (0.01 %). Control treatments with PBS 1× had no apparent effect on biofilm disruption. The Gram-positive bacterium (S. aureus ATCC 9144) was more sensitive than P. aeruginosa ATCC 15442 in terms of disruption and viability as shown by Live/Dead staining. Disruption of biofilms of P. aeruginosa ATCC 15442 was minimal. Oxygen consumption by biofilms, after different treatments with biosurfactants, confirms that sophorolipid on its own is unable to kill/inhibit cells of P. aeruginosa ATCC 15442, and even when used in combination with rhamnolipids, under static conditions, no decrease in the cell viability was observed. Cells in biofilms exposed to mono-rhamnolipids (0.04 % v/v) showed behaviour typical of exposure to bacteriostatic compounds, but when exposed to di-rhamnolipids (0.04 % v/v), they displayed a pattern characteristic of bactericidal compounds.

  16. Evolution of Pseudomonas aeruginosa virulence as a result of phage predation.

    PubMed

    Hosseinidoust, Zeinab; van de Ven, Theo G M; Tufenkji, Nathalie

    2013-10-01

    The rapid increase in the emergence of antibiotic-resistant bacteria has attracted attention to bacteriophages for treating and preventing bacterial infections. Bacteriophages can drive the diversification of Pseudomonas aeruginosa, giving rise to phage-resistant variants with different phenotypes from their ancestral hosts. In this study, we sought to investigate the effect of phage resistance on cytotoxicity of host populations toward cultured mammalian cells. The library of phage-resistant P. aeruginosa PAO1 variants used was developed previously via experimental evolution of an isogenic host population using phages PP7 and E79. Our results presented herein indicate that the phage-resistant variants developed in a heterogeneous phage environment exhibit a greater ability to impede metabolic action of cultured human keratinocytes and have a greater tendency to cause membrane damage even though they cannot invade the cells in large numbers. They also show a heightened resistance to phagocytosis by model murine macrophages. Furthermore, all isolates produced higher levels of at least one of the secreted virulence factors, namely, total proteases, elastase, phospholipase C, and hemolysins. Reverse transcription-quantitative PCR (RT-qPCR) revealed upregulation in the transcription of a number of genes associated with virulence of P. aeruginosa for the phage-resistant variants. The results of this study indicate a significant change in the in vitro virulence of P. aeruginosa following phage predation and highlight the need for caution in the selection and design of phages and phage cocktails for therapeutic use.

  17. Biogenic tellurium nanorods as a novel antivirulence agent inhibiting pyoverdine production in Pseudomonas aeruginosa.

    PubMed

    Mohanty, Anee; Kathawala, Mustafa Hussain; Zhang, Jianhua; Chen, Wei Ning; Loo, Joachim Say Chye; Kjelleberg, Staffan; Yang, Liang; Cao, Bin

    2014-05-01

    While antibiotic resistance in bacteria is rapidly increasing, the development of new antibiotics has decreased in recent years. Antivirulence drugs disarming rather than killing pathogens have been proposed to alleviate the problem of resistance inherent to existing biocidal antibiotics. Here, we report a nontoxic biogenic nanomaterial as a novel antivirulence agent to combat bacterial infections caused by Pseudomonas aeruginosa. We synthesized, in an environmentally benign fashion, tellurium nanorods (TeNRs) using the metal-reducing bacterium Shewanella oneidensis, and found that the biogenic TeNRs could effectively inhibit the production of pyoverdine, one of the most important virulence factors in P. aeruginosa. Our results suggest that amyloids and extracellular polysaccharides Pel and Psl are not involved in the interactions between P. aeruginosa and the biogenic TeNRs, while flagellar movement plays an important role in the cell-TeNRs interaction. We further showed that the TeNRs (up to 100 µg/mL) did not exhibit cytotoxicity to human bronchial epithelial cells and murine macrophages. Thus, biogenic TeNRs hold promise as a novel antivirulence agent against P. aeruginosa.

  18. Loss of Social Behaviours in Populations of Pseudomonas aeruginosa Infecting Lungs of Patients with Cystic Fibrosis

    PubMed Central

    Jiricny, Natalie; Molin, Søren; Foster, Kevin; Diggle, Stephen P.; Scanlan, Pauline D.; Ghoul, Melanie; Johansen, Helle Krogh; Santorelli, Lorenzo A.; Popat, Roman; West, Stuart A.; Griffin, Ashleigh S.

    2014-01-01

    Pseudomonas aeruginosa, is an opportunistic, bacterial pathogen causing persistent and frequently fatal infections of the lung in patients with cystic fibrosis. Isolates from chronic infections differ from laboratory and environmental strains in a range of traits and this is widely interpreted as the result of adaptation to the lung environment. Typically, chronic strains carry mutations in global regulation factors that could effect reduced expression of social traits, raising the possibility that competitive dynamics between cooperative and selfish, cheating strains could also drive changes in P. aeruginosa infections. We compared the expression of cooperative traits - biofilm formation, secretion of exo-products and quorum sensing (QS) - in P. aeruginosa isolates that were estimated to have spent different lengths of time in the lung based on clinical information. All three exo-products involved in nutrient acquisition were produced in significantly smaller quantities with increased duration of infection, and patterns across four QS signal molecules were consistent with accumulation over time of mutations in lasR, which are known to disrupt the ability of cells to respond to QS signal. Pyocyanin production, and the proportion of cells in biofilm relative to motile, free-living cells in liquid culture, did not change. Overall, our results confirm that the loss of social behaviour is a consistent trend with time spent in the lung and suggest that social dynamics are potentially relevant to understanding the behaviour of P. aeruginosa in lung infections. PMID:24454693

  19. Exome Sequencing Reveals Primary Immunodeficiencies in Children with Community-Acquired Pseudomonas aeruginosa Sepsis

    PubMed Central

    Asgari, Samira; McLaren, Paul J.; Peake, Jane; Wong, Melanie; Wong, Richard; Bartha, Istvan; Francis, Joshua R.; Abarca, Katia; Gelderman, Kyra A.; Agyeman, Philipp; Aebi, Christoph; Berger, Christoph; Fellay, Jacques; Schlapbach, Luregn J.; Posfay-Barbe, Klara

    2016-01-01

    One out of three pediatric sepsis deaths in high income countries occur in previously healthy children. Primary immunodeficiencies (PIDs) have been postulated to underlie fulminant sepsis, but this concept remains to be confirmed in clinical practice. Pseudomonas aeruginosa (P. aeruginosa) is a common bacterium mostly associated with health care-related infections in immunocompromised individuals. However, in rare cases, it can cause sepsis in previously healthy children. We used exome sequencing and bioinformatic analysis to systematically search for genetic factors underpinning severe P. aeruginosa infection in the pediatric population. We collected blood samples from 11 previously healthy children, with no family history of immunodeficiency, who presented with severe sepsis due to community-acquired P. aeruginosa bacteremia. Genomic DNA was extracted from blood or tissue samples obtained intravitam or postmortem. We obtained high-coverage exome sequencing data and searched for rare loss-of-function variants. After rigorous filtrations, 12 potentially causal variants were identified. Two out of eight (25%) fatal cases were found to carry novel pathogenic variants in PID genes, including BTK and DNMT3B. This study demonstrates that exome sequencing allows to identify rare, deleterious human genetic variants responsible for fulminant sepsis in apparently healthy children. Diagnosing PIDs in such patients is of high relevance to survivors and affected families. We propose that unusually severe and fatal sepsis cases in previously healthy children should be considered for exome/genome sequencing to search for underlying PIDs. PMID:27703454

  20. Extracts of Cordia gilletii de wild (Boraginaceae) quench the quorum sensing of Pseudomonas aeruginosa PAO1

    PubMed Central

    Okusa, Philippe N.; Rasamiravaka, Tsiry; Vandeputte, Olivier; Stévigny, Caroline; Jaziri, Mondher El; Duez, Pierre

    2014-01-01

    Aim: The fight against infectious diseases and antimicrobial resistances needs the exploration of new active compounds with new proprieties like disrupting quorum sensing (QS) mechanisms, which is a cell-to-cell communication that regulates bacterial virulence factors. In this work, leaves and root barks extracts of a Congolese medicinal plant, Cordia gilletii, were investigated for their effect on the production of Pseudomonas aeruginosa major virulence factors regulated by QS. Materials and Methods: The effect of C. gilletii extracts on virulence factors of P. aeruginosa PAO1 was studied by the evaluation of the production of pyocyanine, elastase and biofilm; and by the measurement of the expression of QS-related genes. Results: The dichloromethane extract from root barks was found to quench the production of pyocyanin, a QS-dependent virulence factor in P. aeruginosa PAO1. Moreover, this extract specifically inhibits the expression of several QS-regulated genes (i.e. lasB, rhlA, lasI, lasR, rhlI, and rhlR) and reduces biofilm formation by PAO1. Conclusion: This study contributes to explain the efficacy of C. gilletii in the traditional treatment of infectious diseases caused by P. aeruginosa. PMID:26401363

  1. Pseudomonas aeruginosa population structure revisited under environmental focus: impact of water quality and phage pressure.

    PubMed

    Selezska, Katherina; Kazmierczak, Marlon; Müsken, Mathias; Garbe, Julia; Schobert, Max; Häussler, Susanne; Wiehlmann, Lutz; Rohde, Christine; Sikorski, Johannes

    2012-08-01

    Pseudomonas aeruginosa attracts research attention as a common opportunistic nosocomial pathogen causing severe health problems in humans. Nevertheless, its primary habitat is the natural environment. Here, we relate the genetic diversity of 381 environmental isolates from rivers in northern Germany to ecological factors such as river system, season of sampling and different levels of water quality. From representatives of 99 environmental clones, also in comparison with 91 clinical isolates, we determined motility phenotypes, virulence factors, biofilm formation, serotype and the resistance to seven environmental P.aeruginosa phages. The integration of genetic, ecological and phenotypic data showed (i) the presence of several extended clonal complexes (ecc) which are non-uniformly distributed across different water qualities, and (ii) a correlation of the hosts' serotype composition with susceptibility towards distinct groups of environmental phages. For at least one ecc (eccB), we assumed the ecophysiological differences on environmental water adaptation and phage resistance to be so distinct as to reinforce an environmentally driven cladogenic split from the remainder of P.aeruginosa. In summary, we conclude that the majority of the microevolutionary population dynamics of P.aeruginosa were shaped by the natural environment and not by the clinical habitat.

  2. Loss of social behaviours in populations of Pseudomonas aeruginosa infecting lungs of patients with cystic fibrosis.

    PubMed

    Jiricny, Natalie; Molin, Søren; Foster, Kevin; Diggle, Stephen P; Scanlan, Pauline D; Ghoul, Melanie; Johansen, Helle Krogh; Santorelli, Lorenzo A; Popat, Roman; West, Stuart A; Griffin, Ashleigh S

    2014-01-01

    Pseudomonas aeruginosa, is an opportunistic, bacterial pathogen causing persistent and frequently fatal infections of the lung in patients with cystic fibrosis. Isolates from chronic infections differ from laboratory and environmental strains in a range of traits and this is widely interpreted as the result of adaptation to the lung environment. Typically, chronic strains carry mutations in global regulation factors that could effect reduced expression of social traits, raising the possibility that competitive dynamics between cooperative and selfish, cheating strains could also drive changes in P. aeruginosa infections. We compared the expression of cooperative traits - biofilm formation, secretion of exo-products and quorum sensing (QS) - in P. aeruginosa isolates that were estimated to have spent different lengths of time in the lung based on clinical information. All three exo-products involved in nutrient acquisition were produced in significantly smaller quantities with increased duration of infection, and patterns across four QS signal molecules were consistent with accumulation over time of mutations in lasR, which are known to disrupt the ability of cells to respond to QS signal. Pyocyanin production, and the proportion of cells in biofilm relative to motile, free-living cells in liquid culture, did not change. Overall, our results confirm that the loss of social behaviour is a consistent trend with time spent in the lung and suggest that social dynamics are potentially relevant to understanding the behaviour of P. aeruginosa in lung infections.

  3. Cranberry-derived proanthocyanidins impair virulence and inhibit quorum sensing of Pseudomonas aeruginosa

    PubMed Central

    Maisuria, Vimal B.; Los Santos, Yossef Lopez-de; Tufenkji, Nathalie; Déziel, Eric

    2016-01-01

    Bacteria have evolved multiple strategies for causing infections that include producing virulence factors, undertaking motility, developing biofilms, and invading host cells. N-acylhomoserine lactone (AHL)-mediated quorum sensing (QS) tightly regulates the expression of multiple virulence factors in the opportunistic pathogenic bacterium Pseudomonas aeruginosa. Thus, inhibiting QS could lead to health benefits. In this study, we demonstrate an anti-virulence activity of a cranberry extract rich in proanthocyanidins (cerPAC) against P. aeruginosa in the model host Drosophila melanogaster and show this is mediated by QS interference. cerPAC reduced the production of QS-regulated virulence determinants and protected D. melanogaster from fatal infection by P. aeruginosa PA14. Quantification of AHL production using liquid chromatography-mass spectrometry confirmed that cerPAC effectively reduced the level of AHLs produced by the bacteria. Furthermore, monitoring QS signaling gene expression revealed that AHL synthases LasI/RhlI and QS transcriptional regulators LasR/RhlR genes were inhibited and antagonized, respectively, by cerPAC. Molecular docking studies suggest that cranberry-derived proanthocyanidin binds to QS transcriptional regulators, mainly interacting with their ligand binding sites. These findings provide insights into the underlying mechanisms of action of a cerPAC to restrict the virulence of P. aeruginosa and can have implications in the development of alternative approaches to control infections. PMID:27503003

  4. Lung epithelial MyD88 drives early pulmonary clearance of Pseudomonas aeruginosa by a flagellin dependent mechanism.

    PubMed

    Anas, Adam A; van Lieshout, Miriam H P; Claushuis, Theodora A M; de Vos, Alex F; Florquin, Sandrine; de Boer, Onno J; Hou, Baidong; Van't Veer, Cornelis; van der Poll, Tom

    2016-08-01

    Pseudomonas aeruginosa is a flagellated pathogen frequently causing pneumonia in hospitalized patients and sufferers of chronic lung disease. Here we investigated the role of the common Toll-like receptor (TLR) adaptor myeloid differentiation factor (MyD)88 in myeloid vs. lung epithelial cells in clearance of P. aeruginosa from the airways. Mice deficient for MyD88 in lung epithelial cells (Sftpccre-MyD88-lox mice) or myeloid cells (LysMcre-MyD88-lox mice) and bone marrow chimeric mice deficient for TLR5 (the receptor recognizing Pseudomonas flagellin) in either parenchymal or hematopoietic cells were infected with P. aeruginosa via the airways. Sftpccre-MyD88-lox mice demonstrated a reduced influx of neutrophils into the bronchoalveolar space and an impaired early antibacterial defense after infection with P. aeruginosa, whereas the response of LysMcre-MyD88-lox mice did not differ from control mice. The immune-enhancing role of epithelial MyD88 was dependent on recognition of pathogen-derived flagellin by epithelial TLR5, as demonstrated by an unaltered clearance of mutant P. aeruginosa lacking flagellin from the lungs of Sftpccre-MyD88-lox mice and an impaired bacterial clearance in bone marrow chimeric mice lacking TLR5 in parenchymal cells. These data indicate that early clearance of P. aeruginosa from the airways is dependent on flagellin-TLR5-MyD88-dependent signaling in respiratory epithelial cells.

  5. Pseudomonas aeruginosa serA Gene Is Required for Bacterial Translocation through Caco-2 Cell Monolayers.

    PubMed

    Yasuda, Masashi; Nagata, Syouya; Yamane, Satoshi; Kunikata, Chinami; Kida, Yutaka; Kuwano, Koichi; Suezawa, Chigusa; Okuda, Jun

    2017-01-01

    To specify critical factors responsible for Pseudomonas aeruginosa penetration through the Caco-2 cell epithelial barrier, we analyzed transposon insertion mutants that demonstrated a dramatic reduction in penetration activity relative to P. aeruginosa PAO1 strain. From these strains, mutations could be grouped into five classes, specifically flagellin-associated genes, pili-associated genes, heat-shock protein genes, genes related to the glycolytic pathway, and biosynthesis-related genes. Of these mutants, we here focused on the serA mutant, as the association between this gene and penetration activity is yet unknown. Inactivation of the serA gene caused significant repression of bacterial penetration through Caco-2 cell monolayers with decreased swimming and swarming motilities, bacterial adherence, and fly mortality rate, as well as repression of ExoS secretion; however, twitching motility was not affected. Furthermore, L-serine, which is known to inhibit the D-3-phosphoglycerate dehydrogenase activity of the SerA protein, caused significant reductions in penetration through Caco-2 cell monolayers, swarming and swimming motilities, bacterial adherence to Caco-2 cells, and virulence in flies in the wild-type P. aeruginosa PAO1 strain. Together, these results suggest that serA is associated with bacterial motility and adherence, which are mediated by flagella that play a key role in the penetration of P. aeruginosa through Caco-2 cell monolayers. Oral administration of L-serine to compromised hosts might have the potential to interfere with bacterial translocation and prevent septicemia caused by P. aeruginosa through inhibition of serA function.

  6. Pseudomonas aeruginosa serA Gene Is Required for Bacterial Translocation through Caco-2 Cell Monolayers

    PubMed Central

    Yasuda, Masashi; Nagata, Syouya; Yamane, Satoshi; Kunikata, Chinami; Kida, Yutaka; Kuwano, Koichi; Suezawa, Chigusa; Okuda, Jun

    2017-01-01

    To specify critical factors responsible for Pseudomonas aeruginosa penetration through the Caco-2 cell epithelial barrier, we analyzed transposon insertion mutants that demonstrated a dramatic reduction in penetration activity relative to P. aeruginosa PAO1 strain. From these strains, mutations could be grouped into five classes, specifically flagellin-associated genes, pili-associated genes, heat-shock protein genes, genes related to the glycolytic pathway, and biosynthesis-related genes. Of these mutants, we here focused on the serA mutant, as the association between this gene and penetration activity is yet unknown. Inactivation of the serA gene caused significant repression of bacterial penetration through Caco-2 cell monolayers with decreased swimming and swarming motilities, bacterial adherence, and fly mortality rate, as well as repression of ExoS secretion; however, twitching motility was not affected. Furthermore, L-serine, which is known to inhibit the D-3-phosphoglycerate dehydrogenase activity of the SerA protein, caused significant reductions in penetration through Caco-2 cell monolayers, swarming and swimming motilities, bacterial adherence to Caco-2 cells, and virulence in flies in the wild-type P. aeruginosa PAO1 strain. Together, these results suggest that serA is associated with bacterial motility and adherence, which are mediated by flagella that play a key role in the penetration of P. aeruginosa through Caco-2 cell monolayers. Oral administration of L-serine to compromised hosts might have the potential to interfere with bacterial translocation and prevent septicemia caused by P. aeruginosa through inhibition of serA function. PMID:28046014

  7. The effects of D-Tyrosine combined with amikacin on the biofilms of Pseudomonas aeruginosa.

    PubMed

    She, Pengfei; Chen, Lihua; Liu, Hongbo; Zou, Yaru; Luo, Zhen; Koronfel, Asmaa; Wu, Yong

    2015-09-01

    The biofilm formation of microorganisms causes persistent tissue infections resistant to treatment with antimicrobial agents. Pseudomonas aeruginosa is commonly isolated from the airways of patients with chronic fibrosis (CF) and often forms biofilms, which are extremely hard to eradicate and a major cause of mortality and morbidity. Recent studies have shown that D-amino acids (D-AAs) inhibited and disrupted biofilm formation by causing the release of the protein component of the polymeric matrix. However, the effects of D-AAs combined with common antibiotics on biofilms have rarely been studied. The current study first determined whether D-AAs disrupted the biofilms of PAO1 and the clinical airway isolates of P. aeruginosa. It was then determined whether combinations of D-Tyr (the most effective one) and the antibiotic amikacin (AMK) enhanced the activity against these biofilms. The results of the current study showed that D-Tyr is the most effective among those that disassemble the D-amino acids (D-leucine, D-methionine, D-Tyrptophan, and D-tryptophan), and D-Tyr at concentrations higher than 5 mM significantly reduced the biofilm biomass of P. aeruginosa (p < 0.05) without influencing bacterial growth. It was also revealed that D-Tyr improved the efficacy of AMK to combat P. aeruginosa biofilms, as indicated by a reduction in the minimal biofilm-inhibiting concentration (MBIC50 and MBIC90) without a change in the minimal inhibitory concentration (MIC) of planktonic bacteria. Thus, the findings indicated that D-Tyr supplementation overcame the resistance of P. aeruginosa biofilms to AMK, which might be helpful for preventing AMK overuse when this specific D-Tyr is recommended for combatting these biofilms. Also, toxicity of the liver and kidney from AMK could be potentially mitigated by co-delivery with D-Tyr.

  8. Photodynamic antimicrobial therapy to inhibit pseudomonas aeruginosa of corneal isolates (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Durkee, Heather A.; Relhan, Nidhi; Arboleda, Alejandro; Halili, Francisco; De Freitas, Carolina; Alawa, Karam; Aguilar, Mariela C.; Amescua, Guillermo; Miller, Darlene; Parel, Jean-Marie

    2016-03-01

    Keratitis associated with Pseudomonas aeruginosa is difficult to manage. Treatment includes antibiotic eye drops, however, some strains of Pseudomonas aeruginosa are resistant. Current research efforts are focused on finding alternative and adjunct therapies to treat multi-drug resistant bacteria. One promising alternate technique is photodynamic therapy (PDT). The purpose of this study was to evaluate the effect of riboflavin- and rose bengal-mediated PDT on Pseudomonas aeruginosa keratitis isolates in vitro. Two isolates (S+U- and S-U+) of Pseudomonas aeruginosa were derived from keratitis patients and exposed to five experimental groups: (1) Control (dark, UV-A irradiation, 525nm irradiation); (2) 0.1% riboflavin (dark, UV-A irradiation); and (3) 0.1% rose bengal, (4) 0.05% rose bengal and (5) 0.01% rose bengal (dark, 525nm irradiation). Three days after treatment, in dark conditions of all concentration of riboflavin and rose bengal showed no inhibition in both S+U- and S-U+ strains of Pseudomonas aeruginosa. In 0.1% and 0.05% rose bengal irradiated groups, for both S+U- and S-U+ strains, there was complete inhibition of bacterial growth in the central 50mm zone corresponding to the diameter of the green light source. These in vitro results suggest that rose bengal photodynamic therapy may be an effective adjunct treatment for Pseudomonas aeruginosa keratitis.

  9. A case of acute epididymo-orchitis due to Pseudomonas aeruginosa presenting as ARDS in an immunocompetent host.

    PubMed

    Singhal, Sameer; Wagh, D D; Kashikar, Shivali; Lonkar, Yeshwant

    2011-01-01

    Acute eididymo-orchitis is the most common cause of intrascrotal inflammation, and retrograde ascent of pathogens is the usual route of infection. Here we intend to present a case of young boy, not sexually active, suffering from acute epididymo-orchitis due to Pseudomonas aeruginosa presented with acute respiratory distress syndrome. Proper timely diagnosis of the primary cause and prompt treatment including support with non invasive ventilation lead to a favourable outcome in the same case.

  10. Draft Genome Sequence of Beneficial Rice Rhizosphere Isolate Pseudomonas aeruginosa PUPa3

    PubMed Central

    Uzelac, Gordana; Bertani, Iris; Kojic, Milan; Paszkiewicz, Konrad H.; Studholme, David J.; Passos da Silva, Daniel

    2014-01-01

    Pseudomonas aeruginosa PUPa3 is a rhizosphere-colonizing and plant growth-promoting strain isolated from the rhizosphere of rice. This strain has, however, been shown to be pathogenic in two nonmammalian infection models. Here we report the draft genome sequence of P. aeruginosa PUPa3. PMID:24994800

  11. Draft Genome Sequence of Beneficial Rice Rhizosphere Isolate Pseudomonas aeruginosa PUPa3.

    PubMed

    Uzelac, Gordana; Bertani, Iris; Kojic, Milan; Paszkiewicz, Konrad H; Studholme, David J; Passos da Silva, Daniel; Venturi, Vittorio

    2014-07-03

    Pseudomonas aeruginosa PUPa3 is a rhizosphere-colonizing and plant growth-promoting strain isolated from the rhizosphere of rice. This strain has, however, been shown to be pathogenic in two nonmammalian infection models. Here we report the draft genome sequence of P. aeruginosa PUPa3.

  12. Network-assisted investigation of virulence and antibiotic-resistance systems in Pseudomonas aeruginosa

    NASA Astrophysics Data System (ADS)

    Hwang, Sohyun; Kim, Chan Yeong; Ji, Sun-Gou; Go, Junhyeok; Kim, Hanhae; Yang, Sunmo; Kim, Hye Jin; Cho, Ara; Yoon, Sang Sun; Lee, Insuk

    2016-05-01

    Pseudomonas aeruginosa is a Gram-negative bacterium of clinical significance. Although the genome of PAO1, a prototype strain of P. aeruginosa, has been extensively studied, approximately one-third of the functional genome remains unknown. With the emergence of antibiotic-resistant strains of P. aeruginosa, there is an urgent need to develop novel antibiotic and anti-virulence strategies, which may be facilitated by an approach that explores P. aeruginosa gene function in systems-level models. Here, we present a genome-wide functional network of P. aeruginosa genes, PseudomonasNet, which covers 98% of the coding genome, and a companion web server to generate functional hypotheses using various network-search algorithms. We demonstrate that PseudomonasNet-assisted predictions can effectively identify novel genes involved in virulence and antibiotic resistance. Moreover, an antibiotic-resistance network based on PseudomonasNet reveals that P. aeruginosa has common modular genetic organisations that confer increased or decreased resistance to diverse antibiotics, which accounts for the pervasiveness of cross-resistance across multiple drugs. The same network also suggests that P. aeruginosa has developed mechanism of trade-off in resistance across drugs by altering genetic interactions. Taken together, these results clearly demonstrate the usefulness of a genome-scale functional network to investigate pathogenic systems in P. aeruginosa.

  13. Network-assisted investigation of virulence and antibiotic-resistance systems in Pseudomonas aeruginosa

    PubMed Central

    Hwang, Sohyun; Kim, Chan Yeong; Ji, Sun-Gou; Go, Junhyeok; Kim, Hanhae; Yang, Sunmo; Kim, Hye Jin; Cho, Ara; Yoon, Sang Sun; Lee, Insuk

    2016-01-01

    Pseudomonas aeruginosa is a Gram-negative bacterium of clinical significance. Although the genome of PAO1, a prototype strain of P. aeruginosa, has been extensively studied, approximately one-third of the functional genome remains unknown. With the emergence of antibiotic-resistant strains of P. aeruginosa, there is an urgent need to develop novel antibiotic and anti-virulence strategies, which may be facilitated by an approach that explores P. aeruginosa gene function in systems-level models. Here, we present a genome-wide functional network of P. aeruginosa genes, PseudomonasNet, which covers 98% of the coding genome, and a companion web server to generate functional hypotheses using various network-search algorithms. We demonstrate that PseudomonasNet-assisted predictions can effectively identify novel genes involved in virulence and antibiotic resistance. Moreover, an antibiotic-resistance network based on PseudomonasNet reveals that P. aeruginosa has common modular genetic organisations that confer increased or decreased resistance to diverse antibiotics, which accounts for the pervasiveness of cross-resistance across multiple drugs. The same network also suggests that P. aeruginosa has developed mechanism of trade-off in resistance across drugs by altering genetic interactions. Taken together, these results clearly demonstrate the usefulness of a genome-scale functional network to investigate pathogenic systems in P. aeruginosa. PMID:27194047

  14. Draft Genome Sequence of Pseudomonas aeruginosa Strain RB, a Bacterium Capable of Synthesizing Cadmium Selenide Nanoparticles.

    PubMed

    Ayano, Hiroyuki; Kuroda, Masashi; Soda, Satoshi; Ike, Michihiko

    2014-05-15

    Pseudomonas aeruginosa strain RB is a bacterium capable of synthesizing cadmium selenide (CdSe) nanoparticles and was isolated from a soil sample. Here, we present the draft genome sequence of P. aeruginosa strain RB. To the best of our knowledge, this is the first report of a draft genome of a CdSe-synthesizing bacterium.

  15. Plasmid-Determined Resistance to Boron and Chromium Compounds in Pseudomonas aeruginosa

    PubMed Central

    Summers, Anne O.; Jacoby, George A.

    1978-01-01

    Plasmids determining resistance to arsenic, mercury, silver, and tellurium compounds in Escherichia coli and Pseudomonas aeruginosa were tested for resistance to 40 other metal compounds. Resistance to trivalent boron and hexavalent chromium compounds was a property of certain P. aeruginosa plasmids. PMID:96730

  16. Novel bacteriophage therapy for controlling metallo-beta-lactamase producing Pseudomonas aeruginosa infection in Catfish

    PubMed Central

    2013-01-01

    Background The bacteriophage therapy is an effective antimicrobial approach with potentially important applications in medicine and biotechnology which can be seen as an additional string in the bow. Emerging drug resistant bacteria in aquaculture industry due to unrestricted use of antibiotics warrants more sustainable and environmental friendly strategies for controlling fish infections. The isolated bacteria from fish lesions was characterised based on isolation on selective and differential medium like Pseudomonas agar, gram staining, biochemical tests and 16SrRNA sequencing. The metallo-beta-lactamase (MBL) producing bacterial isolate was evaluated using Imipenem - Ethylenediaminetetraacetic acid (EDTA) disk method. The specific bacteriophage was isolated and concentrated using coal bed developed in our lab at CSIR-NEERI. The isolated and enriched bacteriophage was characterised by nucleotide sequencing and electron microscopy. The phage therapy was applied for treating ulcerative lesion in fish. Results The pathogenic bacterium responsible for causing ulcerative lesions in catfish species (Clarias gariepinus) was identified as Pseudomonas aeruginosa. One out of twenty P. aeruginosa isolate showing multi drug resistance (MDR) was incidentally found to be MBL producing as determined by Imipenem-EDTA disk method. The phage therapy effectively cured the ulcerative lesions of the infected fish in 8–10 days of treatment, with a sevenfold reduction of the lesion with untreated infection control. Conclusion Bacteriophage therapy can have potential applications soon as an alternative or as a complement to antibiotic treatment in the aquaculture. We present bacteriophage therapy as a treatment method for controlling MDR P. aeruginosa infection in C. gariepinus. To the best of our knowledge this is a first report of application of phage therapy against MBL producing P. aeruginosa isolated from aquatic ecosystem. PMID:24369750

  17. Biofilm Formation Mechanisms of Pseudomonas aeruginosa Predicted via Genome-Scale Kinetic Models of Bacterial Metabolism

    PubMed Central

    Vital-Lopez, Francisco G.; Reifman, Jaques; Wallqvist, Anders

    2015-01-01

    A hallmark of Pseudomonas aeruginosa is its ability to establish biofilm-based infections that are difficult to eradicate. Biofilms are less susceptible to host inflammatory and immune responses and have higher antibiotic tolerance than free-living planktonic cells. Developing treatments against biofilms requires an understanding of bacterial biofilm-specific physiological traits. Research efforts have started to elucidate the intricate mechanisms underlying biofilm development. However, many aspects of these mechanisms are still poorly understood. Here, we addressed questions regarding biofilm metabolism using a genome-scale kinetic model of the P. aeruginosa metabolic network and gene expression profiles. Specifically, we computed metabolite concentration differences between known mutants with altered biofilm formation and the wild-type strain to predict drug targets against P. aeruginosa biofilms. We also simulated the altered metabolism driven by gene expression changes between biofilm and stationary growth-phase planktonic cultures. Our analysis suggests that the synthesis of important biofilm-related molecules, such as the quorum-sensing molecule Pseudomonas quinolone signal and the exopolysaccharide Psl, is regulated not only through the expression of genes in their own synthesis pathway, but also through the biofilm-specific expression of genes in pathways competing for precursors to these molecules. Finally, we investigated why mutants defective in anthranilate degradation have an impaired ability to form biofilms. Alternative to a previous hypothesis that this biofilm reduction is caused by a decrease in energy production, we proposed that the dysregulation of the synthesis of secondary metabolites derived from anthranilate and chorismate is what impaired the biofilms of these mutants. Notably, these insights generated through our kinetic model-based approach are not accessible from previous constraint-based model analyses of P. aeruginosa biofilm

  18. Biofilm Formation Mechanisms of Pseudomonas aeruginosa Predicted via Genome-Scale Kinetic Models of Bacterial Metabolism.

    PubMed

    Vital-Lopez, Francisco G; Reifman, Jaques; Wallqvist, Anders

    2015-10-01

    A hallmark of Pseudomonas aeruginosa is its ability to establish biofilm-based infections that are difficult to eradicate. Biofilms are less susceptible to host inflammatory and immune responses and have higher antibiotic tolerance than free-living planktonic cells. Developing treatments against biofilms requires an understanding of bacterial biofilm-specific physiological traits. Research efforts have started to elucidate the intricate mechanisms underlying biofilm development. However, many aspects of these mechanisms are still poorly understood. Here, we addressed questions regarding biofilm metabolism using a genome-scale kinetic model of the P. aeruginosa metabolic network and gene expression profiles. Specifically, we computed metabolite concentration differences between known mutants with altered biofilm formation and the wild-type strain to predict drug targets against P. aeruginosa biofilms. We also simulated the altered metabolism driven by gene expression changes between biofilm and stationary growth-phase planktonic cultures. Our analysis suggests that the synthesis of important biofilm-related molecules, such as the quorum-sensing molecule Pseudomonas quinolone signal and the exopolysaccharide Psl, is regulated not only through the expression of genes in their own synthesis pathway, but also through the biofilm-specific expression of genes in pathways competing for precursors to these molecules. Finally, we investigated why mutants defective in anthranilate degradation have an impaired ability to form biofilms. Alternative to a previous hypothesis that this biofilm reduction is caused by a decrease in energy production, we proposed that the dysregulation of the synthesis of secondary metabolites derived from anthranilate and chorismate is what impaired the biofilms of these mutants. Notably, these insights generated through our kinetic model-based approach are not accessible from previous constraint-based model analyses of P. aeruginosa biofilm

  19. Effector Mechanisms of Protection against Pseudomonas aeruginosa Keratitis in Immunized Rats

    PubMed Central

    Thakur, A.; Kyd, J.; Xue, M.; Willcox, M. D. P.; Cripps, A.

    2001-01-01

    Pseudomonas aeruginosa is an opportunistic pathogen which causes sight-threatening corneal infections in humans. The purpose of this study was to evaluate various immunization routes that may provide protection against Pseudomonas keratitis and to define the molecular mechanisms involved in the protection. Sprague-Dawley rats (10 to 12 weeks old) were immunized using paraformaldehyde-killed P. aeruginosa (strain 6206) via oral, nasal, and intra-Peyer's patch (IPP) routes followed by an ocular topical booster dose. Scratched corneas were challenged with an infective dose of P. aeruginosa. Following clinical examination, eyes were enucleated for histology, polymorphonuclear leukocyte (PMN) quantitation, bacterial count, enzyme-linked immunosorbent assay, and RNase protection assay. PMN infiltration was higher early (4 h) during the infection in immunized rats than in nonimmunized rats. Later during the infection, the number of PMNs diminished in immunized rats while in nonimmunized animals the number of PMNs continued to increase. Bacteria were cleared much faster from immunized groups than from the nonimmunized group, and the nasally immunized group had the most efficacious response among the immunized groups. Nasal and IPP immunization groups had increased cytokine expression of interleukin-2 (IL-2) and IL-5 and differed from each other for IL-6. All three immunized groups had significantly reduced IL-1β levels when compared with the nonimmunized rats and a significantly altered profile for CINC-1 expression. This study has shown that the route of immunization modulates the inflammatory response to ocular P. aeruginosa infection, thus affecting the severity of keratitis and adverse pathology, with nasal immunization being the most effective. PMID:11292752

  20. Role of the Pseudomonas quinolone signal (PQS) in sensitising Pseudomonas aeruginosa to UVA radiation.

    PubMed

    Pezzoni, Magdalena; Meichtry, Martín; Pizarro, Ramón A; Costa, Cristina S

    2015-01-01

    One of the main stress factors that bacteria face in the environment is solar ultraviolet-A (UVA) radiation, which leads to lethal effects through oxidative damage. The aim of this work was to investigate the role of 2-heptyl-3-hydroxi-4-quinolone (the Pseudomonas quinolone signal or PQS) in the response of Pseudomonas aeruginosa to UVA radiation. PQS is an intercellular quorum sensing signal associated to membrane vesicles which, among other functions, regulates genes related to iron acquisition, forms stable complexes with iron and participates in oxidative phenomena. UVA exposure of the wild-type PAO1 strain and a pqsA mutant unable to produce PQS revealed a sensitising role for this signal. Research into the mechanism involved in this phenomenon revealed that catalase, an essential factor in the UVA defence, is not related to PQS-mediated UVA sensitivity. Absorption of UVA by PQS produced its own photo-degradation, oxidation of the probe 2',7'- dichlorodihydrofluorescein and generation of singlet oxygen and superoxide anion, suggesting that this signal could be acting as an endogenous photosensitiser. The results presented in this study could explain the high sensitivity to UVA of P. aeruginosa when compared to enteric bacteria.

  1. Secretion of Pseudomonas aeruginosa Type III Cytotoxins is Dependent on Pseudomonas Quinolone Signal Concentration

    PubMed Central

    Singh, G.; Wu, B.; Baek, M.S.; Camargo, A.; Nguyen, A.; Slusher, N.A.; Srinivasan, R.; Wiener-Kronish, J.P.; Lynch, S.V.

    2010-01-01

    Pseudomonas aeruginosa is an opportunistic pathogen that can, like other bacterial species, exist in antimicrobial resistant sessile biofilms and as free-swimming, planktonic cells. Specific virulence factors are typically associated with each lifestyle and several two-component response regulators have been shown to reciprocally regulate transition between biofilm-associated chronic, and free-swimming acute infections. Quorum sensing (QS) signal molecules belonging to the las and rhl systems are known to regulate virulence gene expression by P. aeruginosa. However the impact of a recently described family of novel quorum sensing signals produced by the Pseudomonas Quinolone Signal (PQS) biosynthetic pathway, on the transition between these modes of infection is less clear. Using clonal isolates from a patient developing ventilator-associated pneumonia, we demonstrated that clinical observations were mirrored by an in vitro temporal shift in isolate phenotype from a non-secreting, to a Type III cytotoxin secreting (TTSS) phenotype and further, that this phenotypic change was PQS-dependent. While intracellular type III cytotoxin levels were unaffected by PQS concentration, cytotoxin secretion was dependent on this signal molecule. Elevated PQS concentrations were associated with inhibition of cytotoxin secretion coincident with expression of virulence factors such as elastase and pyoverdin. In contrast, low concentrations or the inability to biosynthesize PQS resulted in a reversal of this phenotype. These data suggest that expression of specific P. aeruginosa virulence factors appears to be reciprocally regulated and that an additional level of PQS-dependent posttranslational control, specifically governing type III cytotoxin secretion, exists in this species. PMID:20570614

  2. Pyocyanin Production by Pseudomonas aeruginosa Confers Resistance to Ionic Silver

    PubMed Central

    Merrett, Neil D.

    2014-01-01

    Silver in its ionic form (Ag+), but not the bulk metal (Ag0), is toxic to microbial life forms and has been used for many years in the treatment of wound infections. The prevalence of bacterial resistance to silver is considered low due to the nonspecific nature of its toxicity. However, the recent increased use of silver as an antimicrobial agent for medical, consumer, and industrial products has raised concern that widespread silver resistance may emerge. Pseudomonas aeruginosa is a common pathogen that produces pyocyanin, a redox toxin and a reductant for molecular oxygen and ferric (Fe3+) ions. The objective of this study was to determine whether pyocyanin reduces Ag+ to Ag0, which may contribute to silver resistance due to lower bioavailability of the cation. Using surface plasmon resonance spectroscopy and scanning electron microscopy, pyocyanin was confirmed to be a reductant for Ag+, forming Ag0 nanoparticles and reducing the bioavailability of free Ag+ by >95% within minutes. Similarly, a pyocyanin-producing strain of P. aeruginosa (PA14) reduced Ag+ but not a pyocyanin-deficient (ΔphzM) strain of the bacterium. Challenge of each strain with Ag+ (as AgNO3) gave MICs of 20 and 5 μg/ml for the PA14 and ΔphzM strains, respectively. Removal of pyocyanin from the medium strain PA14 was grown in or its addition to the medium that ΔphzM mutant was grown in gave MICs of 5 and 20 μg/ml, respectively. Clinical isolates demonstrated similar pyocyanin-dependent resistance to Ag+. We conclude that pseudomonal silver resistance exists independently of previously recognized intracellular mechanisms and may be more prevalent than previously considered. PMID:25001302

  3. Sequences and expression of pyruvate dehydrogenase genes from Pseudomonas aeruginosa.

    PubMed Central

    Rae, J L; Cutfield, J F; Lamont, I L

    1997-01-01

    A mutant of Pseudomonas aeruginosa, OT2100, which appeared to be defective in the production of the fluorescent yellow-green siderophore pyoverdine had been isolated previously following transposon mutagenesis (T. R. Merriman and I. L. Lamont, Gene 126:17-23, 1993). DNA from either side of the transposon insertion site was cloned, and the sequence was determined. The mutated gene had strong identity with the dihydrolipoamide acetyltransferase (E2) components of pyruvate dehydrogenase (PDH) from other bacterial species. Enzyme assays revealed that the mutant was defective in the E2 subunit of PDH, preventing assembly of a functional complex. PDH activity in OT2100 cell extracts was restored when extract from an E1 mutant was added. On the basis of this evidence, OT2100 was identified as an aceB or E2 mutant. A second gene, aceA, which is likely to encode the E1 component of PDH, was identified upstream from aceB. Transcriptional analysis revealed that aceA and aceB are expressed as a 5-kb polycistronic transcript from a promoter upstream of aceA. An intergenic region of 146 bp was located between aceA and aceB, and a 2-kb aceB transcript that originated from a promoter in the intergenic region was identified. DNA fragments upstream of aceA and aceB were shown to have promoter activities in P. aeruginosa, although only the aceA promoter was active in Escherichia coli. It is likely that the apparent pyoverdine-deficient phenotype of mutant OT2100 is a consequence of acidification of the growth medium due to accumulation of pyruvic acid in the absence of functional PDH. PMID:9171401

  4. Biological Markers of Pseudomonas aeruginosa Epidemic High-Risk Clones

    PubMed Central

    Mulet, Xavier; Cabot, Gabriel; Ocampo-Sosa, Alain A.; Domínguez, M. Angeles; Zamorano, Laura; Juan, Carlos; Tubau, Fe; Rodríguez, Cristina; Moyà, Bartolomé; Peña, Carmen; Martínez-Martínez, Luis

    2013-01-01

    A limited number of Pseudomonas aeruginosa genotypes (mainly ST-111, ST-175, and ST-235), known as high-risk clones, are responsible for epidemics of nosocomial infections by multidrug-resistant (MDR) or extensively drug-resistant (XDR) strains worldwide. We explored the potential biological parameters that may explain the success of these clones. A total of 20 isolates from each of 4 resistance groups (XDR, MDR, ModR [resistant to 1 or 2 classes], and MultiS [susceptible to all antipseudomonals]), recovered from a multicenter study of P. aeruginosa bloodstream infections performed in 10 Spanish hospitals, were analyzed. A further set of 20 XDR isolates belonging to epidemic high-risk clones (ST-175 [n = 6], ST-111 [n = 7], and ST-235 [n = 7]) recovered from different geographical locations was also studied. When unknown, genotypes were documented through multilocus sequence typing. The biological parameters evaluated included twitching, swimming, and swarming motility, biofilm formation, production of pyoverdine and pyocyanin, spontaneous mutant frequencies, and the in vitro competition index (CI) obtained with a flow cytometry assay. All 20 (100%) XDR, 8 (40%) MDR, and 1 (5%) ModR bloodstream isolate from the multicenter study belonged to high-risk clones. No significant differences were observed between clonally diverse ModR and MultiS isolates for any of the parameters. In contrast, MDR/XDR high-risk clones showed significantly increased biofilm formation and mutant frequencies but significantly reduced motility (twitching, swimming, and swarming), production of pyoverdine and pyocyanin, and fitness. The defined biological markers of high-risk clones, which resemble those resulting from adaptation to chronic infections, could be useful for the design of specific treatment and infection control strategies. PMID:23979744

  5. Crystal structure of the flavoenzyme PA4991 from Pseudomonas aeruginosa

    SciTech Connect

    Jacewicz, Agata; Schnell, Robert; Lindqvist, Ylva; Schneider, Gunter

    2016-01-22

    PA4991 is a FAD-dependent oxidoreductase from the pathogen P. aeruginosa that is essential for virulence and survival in the infected host. The structure of this enzyme, determined to 2.4 Å resolution, reveals that PA4991 belongs to the GR{sub 2} family of flavoenzymes. The locus PA4991 in Pseudomonas aeruginosa encodes an open reading frame that has been identified as essential for the virulence and/or survival of this pathogenic organism in the infected host. Here, it is shown that this gene encodes a monomeric FAD-binding protein of molecular mass 42.2 kDa. The structure of PA4991 was determined by a combination of molecular replacement using a search model generated with Rosetta and phase improvement by a low-occupancy heavy-metal derivative. PA4991 belongs to the GR{sub 2} family of FAD-dependent oxidoreductases, comprising an FAD-binding domain typical of the glutathione reductase family and a second domain dominated by an eight-stranded mixed β-sheet. Most of the protein–FAD interactions are via the FAD-binding domain, but the isoalloxazine ring is located at the domain interface and interacts with residues from both domains. A comparison with the structurally related glycine oxidase and glycerol-3-phosphate dehydrogenase shows that in spite of very low amino-acid sequence identity (<18%) several active-site residues involved in substrate binding in these enzymes are conserved in PA4991. However, enzymatic assays show that PA4991 does not display amino-acid oxidase or glycerol-3-phosphate dehydrogenase activities, suggesting that it requires different substrates for activity.

  6. Structural Characterization of Novel Pseudomonas aeruginosa Type IV Pilins

    SciTech Connect

    Nguyen, Y.; Jackson, S; Aidoo, F; Junop, M; Burrows, L

    2010-01-01

    Pseudomonas aeruginosa type IV pili, composed of PilA subunits, are used for attachment and twitching motility on surfaces. P. aeruginosa strains express one of five phylogenetically distinct PilA proteins, four of which are associated with accessory proteins that are involved either in pilin posttranslational modification or in modulation of pilus retraction dynamics. Full understanding of pilin diversity is crucial for the development of a broadly protective pilus-based vaccine. Here, we report the 1.6-{angstrom} X-ray crystal structure of an N-terminally truncated form of the novel PilA from strain Pa110594 (group V), which represents the first non-group II pilin structure solved. Although it maintains the typical T4a pilin fold, with a long N-terminal {alpha}-helix and four-stranded antiparallel {beta}-sheet connected to the C-terminus by a disulfide-bonded loop, the presence of an extra helix in the {alpha}{beta}-loop and a disulfide-bonded loop with helical character gives the structure T4b pilin characteristics. Despite the presence of T4b features, the structure of PilA from strain Pa110594 is most similar to the Neisseria gonorrhoeae pilin and is also predicted to assemble into a fiber similar to the GC pilus, based on our comparative pilus modeling. Interactions between surface-exposed areas of the pilin are suggested to contribute to pilus fiber stability. The non-synonymous sequence changes between group III and V pilins are clustered in the same surface-exposed areas, possibly having an effect on accessory protein interactions. However, based on our high-confidence model of group III PilA{sub PA14}, compensatory changes allow for maintenance of a similar shape.

  7. Protein Network of the Pseudomonas aeruginosa Denitrification Apparatus

    PubMed Central

    Borrero-de Acuña, José Manuel; Rohde, Manfred; Wissing, Josef; Jänsch, Lothar; Schobert, Max; Molinari, Gabriella; Timmis, Kenneth N.

    2016-01-01

    ABSTRACT Oxidative phosphorylation using multiple-component, membrane-associated protein complexes is the most effective way for a cell to generate energy. Here, we systematically investigated the multiple protein-protein interactions of the denitrification apparatus of the pathogenic bacterium Pseudomonas aeruginosa. During denitrification, nitrate (Nar), nitrite (Nir), nitric oxide (Nor), and nitrous oxide (Nos) reductases catalyze the reaction cascade of NO3− → NO2− → NO → N2O → N2. Genetic experiments suggested that the nitric oxide reductase NorBC and the regulatory protein NosR are the nucleus of the denitrification protein network. We utilized membrane interactomics in combination with electron microscopy colocalization studies to elucidate the corresponding protein-protein interactions. The integral membrane proteins NorC, NorB, and NosR form the core assembly platform that binds the nitrate reductase NarGHI and the periplasmic nitrite reductase NirS via its maturation factor NirF. The periplasmic nitrous oxide reductase NosZ is linked via NosR. The nitrate transporter NarK2, the nitrate regulatory system NarXL, various nitrite reductase maturation proteins, NirEJMNQ, and the Nos assembly lipoproteins NosFL were also found to be attached. A number of proteins associated with energy generation, including electron-donating dehydrogenases, the complete ATP synthase, almost all enzymes of the tricarboxylic acid (TCA) cycle, and the Sec system of protein transport, among many other proteins, were found to interact with the denitrification proteins. This deduced nitrate respirasome is presumably only one part of an extensive cytoplasmic membrane-anchored protein network connecting cytoplasmic, inner membrane, and periplasmic proteins to mediate key activities occurring at the barrier/interface between the cytoplasm and the external environment. IMPORTANCE The processes of cellular energy generation are catalyzed by large multiprotein enzyme complexes

  8. Detection of extended spectrum beta lactamases, ampc beta lactamases and metallobetalactamases in clinical isolates of ceftazidime resistant Pseudomonas Aeruginosa.

    PubMed

    Umadevi, Sivaraman; Joseph, Noyal M; Kumari, Kandha; Easow, Joshy M; Kumar, Shailesh; Stephen, Selvaraj; Srirangaraj, Sreenivasan; Raj, Sruthi

    2011-10-01

    We studied the prevalence of ceftazidime resistance in Pseudomonas aeruginosa and the rates of extended-spectrum β-lactamase (ESBL), AmpC β-lactamase (AmpC) and metallo-β-lactamase (MBL) production among the ceftazidime resistant Pseudomonas aeruginosa. A very high rate of MBL production was observed, which suggested it to be an important contributing factor for ceftazidime resistance among Pseudomonas aeruginosa.

  9. Characterization of five newly isolated bacteriophages active against Pseudomonas aeruginosa clinical strains.

    PubMed

    Kwiatek, Magdalena; Mizak, Lidia; Parasion, Sylwia; Gryko, Romuald; Olender, Alina; Niemcewicz, Marcin

    2015-01-01

    Pseudomonas aeruginosa is an opportunistic pathogen that causes serious infections, especially in patients with immunodeficiency. It exhibits multiple mechanisms of resistance, including efflux pumps, antibiotic modifying enzymes and limited membrane permeability. The primary reason for the development of novel therapeutics for P. aeruginosa infections is the declining efficacy of conventional antibiotic therapy. These clinical problems caused a revitalization of interest in bacteriophages, which are highly specific and have very effective antibacterial activity as well as several other advantages over traditional antimicrobial agents. Above all, so far, no serious or irreversible side effects of phage therapy have been described. Five newly purified P. aeruginosa phages named vB_PaeM_WP1, vB_PaeM_WP2, vB_PaeM_WP3, vB_PaeM_WP4 and vB_PaeP_WP5 have been characterized as potential candidates for use in phage therapy. They are representatives of the Myoviridae and Podoviridae families. Their host range, genome size, structural proteins and stability in various physical and chemical conditions were tested. The results of these preliminary investigations indicate that the newly isolated bacteriophages may be considered for use in phagotherapy.

  10. Profile of Virulence Factors in the Multi-Drug Resistant Pseudomonas aeruginosa Strains of Human Urinary Tract Infections (UTI)

    PubMed Central

    Habibi, Asghar; Honarmand, Ramin

    2015-01-01

    Background: Putative virulence factors are responsible for the pathogenicity of UTIs caused by Pseudomonas aeruginosa (P. aeruginosa). Resistance of P. aeruginosa to commonly used antibiotics is caused by the extreme overprescription of those antibiotics. Objectives: The goal of the present study was to investigate the prevalence of virulence factors and the antibiotic resistance patterns of P. aeruginosa isolates in UTI cases in Iran. Patients and Methods: Two hundred and fifty urine samples were collected from patients who suffered from UTIs. Samples were cultured immediately, and those that were P. aeruginosa-positive were analyzed for the presence of virulence genes using polymerase chain reaction (PCR) testing. Antimicrobial susceptibility testing (AST) was performed using the disk diffusion method. Results: Of the 250 urine samples analyzed, 8 samples (3.2%) were positive for P. aeruginosa. The prevalence of P. aeruginosa in male and female patients was 2.7% and 3.5%, respectively, (P = 0.035). In patients less than 10 years old, it was 4.2%, and in patients more than 55 years old, it was 4.2%. These were the most commonly infected groups. The highest levels of resistance were seen against ampicillin (87.5%), norfloxacin (62.5%), gentamycin (62.5%), amikacin (62.5%), and aztreonam (62.5%), while the lowest were seen for meropenem (0%), imipenem (12.5%), and polymyxin B (12.5%). LasB (87.5%), pclH (75%), pilB (75%), and exoS (75%) were the most commonly detected virulence factors in the P. aeruginosa isolates. Conclusions: It is logical to first prescribe meropenem, imipenem, and polymyxin B in cases of UTIs caused by P. aeruginosa. Medical practitioners should be aware of the presence of levels of antibiotic resistance in hospitalized UTI patients in Iran. PMID:26756017

  11. Human Tear Fluid Protects against Pseudomonas aeruginosa Keratitis in a Murine Experimental Model▿

    PubMed Central

    Kwong, Mary S. F.; Evans, David J.; Ni, Minjian; Cowell, Brigitte A.; Fleiszig, Suzanne M. J.

    2007-01-01

    Pseudomonas aeruginosa keratitis is an acute sight-threatening infection. We previously reported that human tear fluid could protect individual human corneal epithelial cells in vitro against invasion by and cytotoxicity due to clinical and laboratory isolates of P. aeruginosa and that the protective mechanism was independent of bacteriostatic activity. In the present study, we examined the effects of human tear fluid in vivo. Tears were collected from healthy human volunteers and were studied in vivo in mice. The effects on the virulence of both invasive and cytotoxic clinical isolates of P. aeruginosa were examined. Tear fluid was found to reduce the severity of disease when corneas were challenged with cytotoxic bacteria immediately after scratch injury, and it completely protected against susceptibility to infection by a cytotoxic strain in a model in which corneas were infected during the healing process 6 h after scratching. Visible protection correlated with the inhibition of bacterial colonization 1, 4, and 48 h postinoculation. Tear fluid also significantly reduced the severity of infections caused by invasive P. aeruginosa in the 6-h-healing model. This result also coincided with significantly reduced bacterial colonization at 48 h. In vitro, human tear fluid significantly reduced the ability of invasive and cytotoxic bacteria to translocate across corneal epithelia and increased transepithelial resistance with or without bacterial inoculation. These data show that human tear fluid can protect against P. aeruginosa corneal infection in vivo and that the mechanism likely involves enhanced epithelial barrier function in addition to protection of individual epithelial cells against bacterial internalization and cytotoxicity. PMID:17325054

  12. Correlation Between Virulence Genotype and Fluoroquinolone Resistance in Carbapenem-Resistant Pseudomonas aeruginosa

    PubMed Central

    Cho, Hye Hyun; Kwon, Kye Chul; Kim, Semi

    2014-01-01

    Background Pseudomonas aeruginosa is a clinically important pathogen that causes opportunistic infections and nosocomial outbreaks. Recently, the type III secretion system (TTSS) has been shown to play an important role in the virulence of P. aeruginosa. ExoU, in particular, has the greatest impact on disease severity. We examined the relationship among the TTSS effector genotype (exoS and exoU), fluoroquinolone resistance, and target site mutations in 66 carbapenem-resistant P. aeruginosa strains. Methods Sixty-six carbapenem-resistant P. aeruginosa strains were collected from patients in a university hospital in Daejeon, Korea, from January 2008 to May 2012. Minimum inhibitory concentrations (MICs) of fluoroquinolones (ciprofloxacin and levofloxacin) were determined by using the agar dilution method. We used PCR and sequencing to determine the TTSS effector genotype and quinolone resistance-determining regions (QRDRs) of the respective target genes gyrA, gyrB, parC, and parE. Results A higher proportion of exoU+ strains were fluoroquinolone-resistant than exoS+ strains (93.2%, 41/44 vs. 45.0%, 9/20; P≤0.0001). Additionally, exoU+ strains were more likely to carry combined mutations than exoS+ strains (97.6%, 40/41 vs. 70%, 7/10; P=0.021), and MIC increased as the number of active mutations increased. Conclusions The recent overuse of fluoroquinolone has led to both increased resistance and enhanced virulence of carbapenem-resistant P. aeruginosa. These data indicate a specific relationship among exoU genotype, fluoroquinolone resistance, and resistance-conferring mutations. PMID:24982833

  13. Triclosan-induced modification of unsaturated fatty acid metabolism and growth in Pseudomonas aeruginosa PAO1.

    PubMed

    Bullard, James W; Champlin, Franklin R; Burkus, Janna; Millar, Sarah Y; Conrad, Robert S

    2011-03-01

    Triclosan is a broad-spectrum antimicrobial agent having low toxicity which facilitates its incorporation into numerous personal and health care products. Although triclosan acts against a wide range of gram-positive and gram-negative bacteria by affecting fatty acid biosynthesis, it is ineffective against the opportunistic pathogen Pseudomonas aeruginosa. Wild-type strain P. aeruginosa PAO1 was used as a model system to determine the effects of triclosan on fatty acid metabolism in resistant microorganisms. This was accomplished by cultivating P. aeruginosa PAO1 cultures in the presence of different concentrations of triclosan, monitoring growth rates turbidimetrically, and harvesting in stationary phase. Readily extractable lipids (RELs) were obtained from freeze-dried cells after washing and analyzed using gas chromatography coupled with mass spectrometry. Resultant data demonstrated that triclosan caused dose-dependent increases in the amounts of trans-C(16:1) and trans-C(18:1) fatty acids, with concomitant decreases in their respective cyclopropyl analogs. Triclosan did not affect the relative concentrations of saturated, cis unsaturated, or the overall ratios of combined C(16) to C(18) fatty acid species. The readily extractable lipid fractions contained triclosan proportional to triclosan concentrations in the growth media. The presence or absence of triclosan in either liquid or solid media did not affect the antimicrobial susceptibilities of P. aeruginosa PAO1 to a battery of unrelated antimicrobials. Triclosan decreased growth rate in a dose-dependent manner at soluble concentrations. Incorporation of triclosan into the REL fraction was accompanied by increased levels of trans unsaturated fatty acids, decreased levels of cyclopropyl fatty acids, and decrease in growth rate. These alterations may contribute to triclosan resistance in P. aeruginosa PAO1.

  14. Effect of Shear Stress on Pseudomonas aeruginosa Isolated from the Cystic Fibrosis Lung

    PubMed Central

    Dingemans, Jozef; Monsieurs, Pieter; Yu, Sung-Huan; Crabbé, Aurélie; Förstner, Konrad U.; Malfroot, Anne

    2016-01-01

    ABSTRACT Chronic colonization of the lungs by Pseudomonas aeruginosa is one of the major causes of morbidity and mortality in cystic fibrosis (CF) patients. To gain insights into the characteristic biofilm phenotype of P. aeruginosa in the CF lungs, mimicking the CF lung environment is critical. We previously showed that growth of the non-CF-adapted P. aeruginosa PAO1 strain in a rotating wall vessel, a device that simulates the low fluid shear (LS) conditions present in the CF lung, leads to the formation of in-suspension, self-aggregating biofilms. In the present study, we determined the phenotypic and transcriptomic changes associated with the growth of a highly adapted, transmissible P. aeruginosa CF strain in artificial sputum medium under LS conditions. Robust self-aggregating biofilms were observed only under LS conditions. Growth under LS conditions resulted in the upregulation of genes involved in stress response, alginate biosynthesis, denitrification, glycine betaine biosynthesis, glycerol metabolism, and cell shape maintenance, while genes involved in phenazine biosynthesis, type VI secretion, and multidrug efflux were downregulated. In addition, a number of small RNAs appeared to be involved in the response to shear stress. Finally, quorum sensing was found to be slightly but significantly affected by shear stress, resulting in higher production of autoinducer molecules during growth under high fluid shear (HS) conditions. In summary, our study revealed a way to modulate the behavior of a highly adapted P. aeruginosa CF strain by means of introducing shear stress, driving it from a biofilm lifestyle to a more planktonic lifestyle. PMID:27486191

  15. Characterization of the Pseudomonas aeruginosa Lol system as a lipoprotein sorting mechanism.

    PubMed

    Tanaka, Shin-Ya; Narita, Shin-Ichiro; Tokuda, Hajime

    2007-05-04

    Escherichia coli lipoproteins are localized to either the inner or the outer membrane depending on the residue that is present next to the N-terminal acylated Cys. Asp at position 2 causes the retention of lipoproteins in the inner membrane. In contrast, the accompanying study (9) revealed that the residues at positions 3 and 4 determine the membrane specificity of lipoproteins in Pseudomonas aeruginosa. Since the five Lol proteins involved in the sorting of E. coli lipoproteins are conserved in P. aeruginosa, we examined whether or not the Lol proteins of P. aeruginosa are also involved in lipoprotein sorting but utilize different signals. The genes encoding LolCDE, LolA, and LolB homologues were cloned and expressed. The LolCDE homologue thus purified was reconstituted into proteoliposomes with lipoproteins. When incubated in the presence of ATP and a LolA homologue, the reconstituted LolCDE homologue released lipoproteins, leading to the formation of a LolA-lipoprotein complex. Lipoproteins were then incorporated into the outer membrane depending on a LolB homologue. As revealed in vivo, lipoproteins with Lys and Ser at positions 3 and 4, respectively, remained in proteoliposomes. On the other hand, E. coli LolCDE released lipoproteins with this signal and transferred them to LolA of not only E. coli but also P. aeruginosa. These results indicate that Lol proteins are responsible for the sorting of lipoproteins to the outer membrane of P. aeruginosa, as in the case of E. coli, but respond differently to inner membrane retention signals.

  16. The exopolysaccharide alginate protects Pseudomonas aeruginosa biofilm bacteria from IFN-gamma-mediated macrophage killing.

    PubMed

    Leid, Jeff G; Willson, Carey J; Shirtliff, Mark E; Hassett, Daniel J; Parsek, Matthew R; Jeffers, Alyssa K

    2005-12-01

    The ability of Pseudomonas aeruginosa to form biofilms and cause chronic infections in the lungs of cystic fibrosis patients is well documented. Numerous studies have revealed that P. aeruginosa biofilms are highly refractory to antibiotics. However, dramatically fewer studies have addressed P. aeruginosa biofilm resistance to the host's immune system. In planktonic, unattached (nonbiofilm) P. aeruginosa, the exopolysaccharide alginate provides protection against a variety of host factors yet the role of alginate in protection of biofilm bacteria is unclear. To address this issue, we tested wild-type strains PAO1, PA14, the mucoid cystic fibrosis isolate, FRD1 (mucA22+), and the respective isogenic mutants which lacked the ability to produce alginate, for their susceptibility to human leukocytes in the presence and absence of IFN-gamma. Human leukocytes, in the presence of recombinant human IFN-gamma, killed biofilm bacteria lacking alginate after a 4-h challenge at 37 degrees C. Bacterial killing was dependent on the presence of IFN-gamma. Killing of the alginate-negative biofilm bacteria was mediated through mononuclear cell phagocytosis since treatment with cytochalasin B, which prevents actin polymerization, inhibited leukocyte-specific bacterial killing. By direct microscopic observation, phagocytosis of alginate-negative biofilm bacteria was significantly increased in the presence of IFN-gamma vs all other treatments. Addition of exogenous, purified alginate to the alginate-negative biofilms restored resistance to human leukocyte killing. Our results suggest that although alginate may not play a significant role in bacterial attachment, biofilm development, and formation, it may play an important role in protecting mucoid P. aeruginosa biofilm bacteria from the human immune system.

  17. Hypertrophic Cranial Pachymeningitis and Skull Base Osteomyelitis by Pseudomonas Aeruginosa: Case Report and Review of the Literature

    PubMed Central

    Caldas, Ana Rita; Brandao, Mariana; Paula, Filipe Seguro; Castro, Elsa; Farinha, Fatima; Marinho, Antonio

    2012-01-01

    Hypertrophic cranial pachymeningitis (HCP) is an uncommon disorder characterized by localized or diffuse thickening of the dura mater, and it usually presents with multiple cranial neurophaties. It has been associated with a variety of inflammatory, infectious, traumatic, toxic and neoplasic diseases, when no specific cause is found the process is called idiopathic. The infectious cases occur in patients under systemic immunosuppression, which have an evident contiguous source or those who have undergone neurosurgical procedures. We describe a case of a 62-year-old immunosuppressed woman with diabetes and rheumatoid arthritis, which had HCP and osteomyelitis of the skull base caused by pseudomonas aeruginosa, presenting with headache and diplopia. We believe this is the second documented case of pachymeningitis secondary to this microorganism. As a multifactorial disease, it is essencial to determine the specific causative agent of HCP before making treatment decisions, and great care is needed with immunocompromised patients. Keywords Pseudomonas aeruginosa; Hypertrophic pachymeningitis; Ophtalmoplegia, optical neuropathy; Osteomyelitis; Skull base PMID:22505989

  18. Prevention of Pseudomonas aeruginosa adhesion by electric currents.

    PubMed

    Shim, Soojin; Hong, Seok Hoon; Tak, Yongsug; Yoon, Jeyong

    2011-02-01

    The process of controlling bacterial adhesion using an electric current deserves attention because of its ease of automation and environmentally friendly nature. This study investigated the role of electric currents (negative, positive, alternating) for preventing adhesion of Pseudomonas aeruginosa and achieving bacterial inactivation. Indium tin oxide (ITO) film was used as a working electrode to observe adhesion and inactivation under electric polarization. Electric current types were classified into negative, positive, and alternating current. The working electrode acted as a cathode or anode by applying a negative or positive current, and an alternating current indicates that the negative current was combined sequentially with the positive current. The numbers of adhered cells were compared under a flow condition, and the in situ behavior of the bacterial cells and the extent of their inactivation were also investigated using time-lapse recording and live/dead staining, respectively. The application of a negative current prevented bacterial adhesion significantly (∼81% at 15.0 μA cm(-2)). The positive current did not significantly inhibit adhesion (<20% at 15.0 μA cm(-2)), compared to the nonpolarized case. The alternating current had a similar effect as the negative current on preventing bacterial adhesion, but it also exhibited bactericidal effects, making it the most suitable method for bacterial adhesion control.

  19. PA0148 from Pseudomonas aeruginosa Catalyzes the Deamination of Adenine

    SciTech Connect

    Goble, A.M.; Swaminathan, S.; Zhang, Z.; Sauder, J. M.; Burley, S. K.; Raushel, F. M.

    2011-08-02

    Four proteins from NCBI cog1816, previously annotated as adenosine deaminases, have been subjected to structural and functional characterization. Pa0148 (Pseudomonas aeruginosa PAO1), AAur1117 (Arthrobacter aurescens TC1), Sgx9403e, and Sgx9403g have been purified and their substrate profiles determined. Adenosine is not a substrate for any of these enzymes. All of these proteins will deaminate adenine to produce hypoxanthine with k{sub cat}/K{sub m} values that exceed 10{sup 5} M{sup -1} s{sup -1}. These enzymes will also accept 6-chloropurine, 6-methoxypurine, N-6-methyladenine, and 2,6-diaminopurine as alternate substrates. X-ray structures of Pa0148 and AAur1117 have been determined and reveal nearly identical distorted ({beta}/{alpha}){sub 8} barrels with a single zinc ion that is characteristic of members of the amidohydrolase superfamily. Structures of Pa0148 with adenine, 6-chloropurine, and hypoxanthine were also determined, thereby permitting identification of the residues responsible for coordinating the substrate and product.

  20. Pa0148 from Pseudomonas aeruginosa Catalyzes the Deamination of Adenine

    SciTech Connect

    A Goble; Z Zhang; J Sauder; S Burley; S Swaminathan; F Raushel

    2011-12-31

    Four proteins from NCBI cog1816, previously annotated as adenosine deaminases, have been subjected to structural and functional characterization. Pa0148 (Pseudomonas aeruginosa PAO1), AAur1117 (Arthrobacter aurescens TC1), Sgx9403e, and Sgx9403g have been purified and their substrate profiles determined. Adenosine is not a substrate for any of these enzymes. All of these proteins will deaminate adenine to produce hypoxanthine with k{sub cat}/K{sub m} values that exceed 10{sup 5} M{sup -1} s{sup -1}. These enzymes will also accept 6-chloropurine, 6-methoxypurine, N-6-methyladenine, and 2,6-diaminopurine as alternate substrates. X-ray structures of Pa0148 and AAur1117 have been determined and reveal nearly identical distorted ({beta}/{alpha}){sub 8} barrels with a single zinc ion that is characteristic of members of the amidohydrolase superfamily. Structures of Pa0148 with adenine, 6-chloropurine, and hypoxanthine were also determined, thereby permitting identification of the residues responsible for coordinating the substrate and product.

  1. Uranyl Precipitation by Pseudomonas aeruginosa via Controlled Polyphosphate Metabolism

    PubMed Central

    Renninger, Neil; Knopp, Roger; Nitsche, Heino; Clark, Douglas S.; Keasling, Jay D.

    2004-01-01

    The polyphosphate kinase gene from Pseudomonas aeruginosa was overexpressed in its native host, resulting in the accumulation of 100 times the polyphosphate seen with control strains. Degradation of this polyphosphate was induced by carbon starvation conditions, resulting in phosphate release into the medium. The mechanism of polyphosphate degradation is not clearly understood, but it appears to be associated with glycogen degradation. Upon suspension of the cells in 1 mM uranyl nitrate, nearly all polyphosphate that had accumulated was degraded within 48 h, resulting in the removal of nearly 80% of the uranyl ion and >95% of lesser-concentrated solutions. Electron microscopy, energy-dispersive X-ray spectroscopy, and time-resolved laser-induced fluorescence spectroscopy (TRLFS) suggest that this removal was due to the precipitation of uranyl phosphate at the cell membrane. TRLFS also indicated that uranyl was initially sorbed to the cell as uranyl hydroxide and was then precipitated as uranyl phosphate as phosphate was released from the cell. Lethal doses of radiation did not halt phosphate secretion from polyphosphate-filled cells under carbon starvation conditions. PMID:15574942

  2. Paraffin Oxidation in Pseudomonas aeruginosa I. Induction of Paraffin Oxidation

    PubMed Central

    van Eyk, J.; Bartels, Trude J.

    1968-01-01

    The induction of paraffin oxidation in intact cells of Pseudomonas aeruginosa was investigated. Oxidation of 14C-heptane by cell-free extracts of adapted cells showed that the activity of whole cells is a reliable reflection of the synthesis of the first enzyme in the degradation of n-alkanes. Induction was significantly affected by glucose and could be completely repressed by malate. The amino acids l-proline, l-alanine, l-arginine, and l-tyrosine exhibited a rather low repressor action. Malonate, a nonrepressive carbon source, allowed gratuitous enzyme synthesis. A number of compounds which did not sustain growth were found to be suitable substitutes for paraffins as an inducer. Among these were cyclopropane and diethoxymethane. The induction studied under conditions of gratuity with the latter compound as an inducer showed immediate linear kinetics only at saturating inducer concentrations. With n-hexane as the inducer, a lag time was always observed, even when high concentrations were used. PMID:4979100

  3. Electron Flow through Nitrotyrosinate in Pseudomonas aeruginosa Azurin

    PubMed Central

    Warren, Jeffrey J.; Herrera, Nadia; Hill, Michael G.; Winkler, Jay R.; Gray, Harry B.

    2013-01-01

    We have designed ruthenium-modified Pseudomonas aeruginosa azurins that incorporate 3-nitrotyrosine (NO2YOH) between Ru(2,2′-bipyridine)2(imidazole)(histidine) and Cu redox centers in electron transfer (ET) pathways. We investigated the structures and reactivities of three different systems: RuH107NO2YOH109, RuH124NO2YOH122, and RuH126NO2YOH122. RuH107NO2YOH109, unlabeled H124NO2YOH122, and unlabeled H126NO2YOH122 were structurally characterized. The pKas of NO2YOH at positions 122 and 109 are 7.2 and 6.0, respectively. Reduction potentials of 3-nitrotyrosinate (NO2YO−)-modified azurins were estimated from cyclic and differential pulse voltammetry data: oxidation of NO2YO−122 occurs near 1.1 versus NHE; that for NO2YO−109 is near 1.2 V. Our analysis of transient optical spectroscopic experiments indicates that hopping via NO2YO− enhances CuI oxidation rates over single-step ET by factors of 32 (RuH107NO2YO−109), 46 (RuH126NO2YO−122), and 13 (RuH124NO2YO−122). PMID:23859602

  4. Biosurfactant Production by Pseudomonas aeruginosa from Renewable Resources.

    PubMed

    Thavasi, R; Subramanyam Nambaru, V R M; Jayalakshmi, S; Balasubramanian, T; Banat, Ibrahim M

    2011-01-01

    This study deals with production and characterization of biosurfactant from renewable resources by Pseudomonas aeruginosa. Biosurfactant production was carried out in 3L fermentor using waste motor lubricant oil and peanut oil cake. Maximum biomass (11.6 mg/ml) and biosurfactant production (8.6 mg/ml) occurred with peanut oil cake at 120 and 132 h respectively. Characterization of the biosurfactant revealed that, it is a lipopeptide with chemical composition of protein (50.2%) and lipid (49.8%). The biosurfactant (1 mg/ml) was able to emulsify waste motor lubricant oil, crude oil, peanut oil, kerosene, diesel, xylene, naphthalene and anthracene, comparatively the emulsification activity was higher than the activity found with Triton X-100 (1 mg/ml). Results obtained in the present study showed the possibility of biosurfactant production using renewable, relatively inexpensive and easily available resources. Emulsification activity found with the biosurfactant against different hydrocarbons showed its possible application in bioremediation of environments polluted with various hydrocarbons.

  5. Variability in Pseudomonas aeruginosa Lipopolysaccharide Expression during Crude Oil Degradation

    PubMed Central

    Norman, R. Sean; Frontera-Suau, Roberto; Morris, Pamela J.

    2002-01-01

    Bacterial utilization of crude oil components, such as the n-alkanes, requires complex cell surface adaptation to allow adherence to oil. To better understand microbial cell surface adaptation to growth on crude oil, the cell surface characteristics of two Pseudomonas aeruginosa strains, U1 and U3, both isolated from the same crude oil-degrading microbial community enriched on Bonny Light crude oil (BLC), were compared. Analysis of growth rates demonstrated an increased lag time for U1 cells compared to U3 cells. Amendment with EDTA inhibited U1 and U3 growth and degradation of the n-alkane component of BLC, suggesting a link between cell surface structure and crude oil degradation. U1 cells demonstrated a smooth-to-rough colony morphology transition when grown on BLC, while U3 cells exhibited rough colony morphology at the outset. Combining high-resolution atomic force microscopy of the cell surface and sodium dodecyl sulfate-polyacrylamide gel electrophoresis of extracted lipopolysaccharides (LPS), we demonstrate that isolates grown on BLC have reduced O-antigen expression compared with that of glucose-grown cells. The loss of O-antigen resulted in shorter LPS molecules, increased cell surface hydrophobicity, and increased n-alkane degradation. PMID:12324360

  6. Electrical conductivity measurements of bacterial nanowires from Pseudomonas aeruginosa

    NASA Astrophysics Data System (ADS)

    Maruthupandy, Muthusamy; Anand, Muthusamy; Maduraiveeran, Govindhan; Sait Hameedha Beevi, Akbar; Jeeva Priya, Radhakrishnan

    2015-12-01

    The extracellular appendages of bacteria (flagella) that transfer electrons to electrodes are called bacterial nanowires. This study focuses on the isolation and separation of nanowires that are attached via Pseudomonas aeruginosa bacterial culture. The size and roughness of separated nanowires were measured using transmission electron microscopy (TEM) and atomic force microscopy (AFM), respectively. The obtained bacterial nanowires indicated a clear image of bacterial nanowires measuring 16 nm in diameter. The formation of bacterial nanowires was confirmed by microscopic studies (AFM and TEM) and the conductivity nature of bacterial nanowire was investigated by electrochemical techniques. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), which are nondestructive voltammetry techniques, suggest that bacterial nanowires could be the source of electrons—which may be used in various applications, for example, microbial fuel cells, biosensors, organic solar cells, and bioelectronic devices. Routine analysis of electron transfer between bacterial nanowires and the electrode was performed, providing insight into the extracellular electron transfer (EET) to the electrode. CV revealed the catalytic electron transferability of bacterial nanowires and electrodes and showed excellent redox activities. CV and EIS studies showed that bacterial nanowires can charge the surface by producing and storing sufficient electrons, behave as a capacitor, and have features consistent with EET. Finally, electrochemical studies confirmed the development of bacterial nanowires with EET. This study suggests that bacterial nanowires can be used to fabricate biomolecular sensors and nanoelectronic devices.

  7. Substituted Lactam and Cyclic Azahemiacetals Modulate Pseudomonas aeruginosa Quorum Sensing

    PubMed Central

    Malladi, Venkata L. A.; Sobczak, Adam J.; Maricic, Natalie; Murugapiran, Senthil Kumar; Schneper, Lisa; Makemson, John; Mathee, Kalai; Wnuk, Stanislaw F.

    2011-01-01

    Quorum sensing (QS) is a population-dependent signaling process bacteria use to control multiple processes including virulence that is critical for establishing infection. The most common QS signaling molecule used by Gram-negative bacteria are acylhomoserine lactones. The development of non-native acylhomoserine lactone (AHL) ligands has emerged as a promising new strategy to inhibit QS in Gram-negative bacteria. In this work, we have synthesized a set of optically pure γ-lactams and their reduced cyclic azahemiacetal analogues, bearing the additional alkylthiomethyl substituent, and evaluated their effect on the AHL-dependent Pseudomonas aeruginosa las and rhl QS pathways. The concentration of these ligands and the simple structural modification such as the length of the alkylthio substituent has notable effect on activity. The γ-lactam derivatives with nonylthio or dodecylthio chains acted as inhibitors of las signaling with moderate potency. The cyclic azahemiacetal with shorter propylthio or hexylthio substituent was found to strongly inhibit both las and rhl signaling at higher concentrations while the propylthio analogue strongly stimulated the las QS system at lower concentrations. PMID:21855349

  8. Inhibition of Neisseria gonorrhoeae by a Bacteriocin from Pseudomonas aeruginosa

    PubMed Central

    Morse, Stephen A.; Vaughan, Patrick; Johnson, Deanne; Iglewski, Barbara H.

    1976-01-01

    Supernatants from broth-grown cultures of Pseudomonas aeruginosa PA 103 exhibited bactericidal activity against Neisseria gonorrhoeae. The concentration of the bactericidal substance increased significantly after induction by mitomycin C. Purification was effected by salt fractionation, chromatography on diethylaminoethyl-cellulose, and sedimentation by centrifugation at 100,000 × g for 90 min. Electron microscopy of this purified preparation revealed structures resembling R-type pyocins in both the contracted and uncontracted state. Pyocins in the contracted state were observed in association with the gonococcal cell surface. No loss of bactericidal activity was observed after treatment with proteolytic enzymes. Standard pyocin typing procedures identified the pyocin pattern as 611 131. The bactericidal activity of this pyocin was examined on various species of Neisseria. Out of 56 strains of N. gonorrhoeae from disseminated and nondisseminated infections, all were susceptible to pyocin 611 131. However, only 3 of 20 strains of N. meningitidis and 5 of 16 strains of N. lactamica were susceptible. The bactericidal activity that pyocin 611 131 has for N. gonorrhoeae and other species of Neisseria is significant because it departs from the expected specificity that heretofore has distinguished bacteriocins from most “classical” antibiotics. Images PMID:825024

  9. Transcriptome Profiling of Antimicrobial Resistance in Pseudomonas aeruginosa

    PubMed Central

    Khaledi, Ariane; Schniederjans, Monika; Pohl, Sarah; Rainer, Roman; Bodenhofer, Ulrich; Xia, Boyang; Klawonn, Frank; Bruchmann, Sebastian; Preusse, Matthias; Eckweiler, Denitsa; Dötsch, Andreas

    2016-01-01

    Emerging resistance to antimicrobials and the lack of new antibiotic drug candidates underscore the need for optimization of current diagnostics and therapies to diminish the evolution and spread of multidrug resistance. As the antibiotic resistance status of a bacterial pathogen is defined by its genome, resistance profiling by applying next-generation sequencing (NGS) technologies may in the future accomplish pathogen identification, prompt initiation of targeted individualized treatment, and the implementation of optimized infection control measures. In this study, qualitative RNA sequencing was used to identify key genetic determinants of antibiotic resistance in 135 clinical Pseudomonas aeruginosa isolates from diverse geographic and infection site origins. By applying transcriptome-wide association studies, adaptive variations associated with resistance to the antibiotic classes fluoroquinolones, aminoglycosides, and β-lactams were identified. Besides potential novel biomarkers with a direct correlation to resistance, global patterns of phenotype-associated gene expression and sequence variations were identified by predictive machine learning approaches. Our research serves to establish genotype-based molecular diagnostic tools for the identification of the current resistance profiles of bacterial pathogens and paves the way for faster diagnostics for more efficient, targeted treatment strategies to also mitigate the future potential for resistance evolution. PMID:27216077

  10. Crystal structure of Pseudomonas aeruginosa bacteriophytochrome: Photoconversion and signal transduction

    PubMed Central

    Yang, Xiaojing; Kuk, Jane; Moffat, Keith

    2008-01-01

    Phytochromes are red-light photoreceptors that regulate light responses in plants, fungi, and bacteria via reversible photoconversion between red (Pr) and far-red (Pfr) light-absorbing states. Here we report the crystal structure at 2.9 Å resolution of a bacteriophytochrome from Pseudomonas aeruginosa with an intact, fully photoactive photosensory core domain in its dark-adapted Pfr state. This structure reveals how unusual interdomain interactions, including a knot and an “arm” structure near the chromophore site, bring together the PAS (Per-ARNT-Sim), GAF (cGMP phosphodiesterase/adenyl cyclase/FhlA), and PHY (phytochrome) domains to achieve Pr/Pfr photoconversion. The PAS, GAF, and PHY domains have topologic elements in common and may have a single evolutionary origin. We identify key interactions that stabilize the chromophore in the Pfr state and provide structural and mutational evidence to support the essential role of the PHY domain in efficient Pr/Pfr photoconversion. We also identify a pair of conserved residues that may undergo concerted conformational changes during photoconversion. Modeling of the full-length bacteriophytochrome structure, including its output histidine kinase domain, suggests how local structural changes originating in the photosensory domain modulate interactions between long, cross-domain signaling helices at the dimer interface and are transmitted to the spatially distant effector domain, thereby regulating its histidine kinase activity. PMID:18799746

  11. Investigation of ciprofloxacin penetration into Pseudomonas aeruginosa biofilms.

    PubMed Central

    Suci, P A; Mittelman, M W; Yu, F P; Geesey, G G

    1994-01-01

    Bacterial infections associated with indwelling medical devices often demonstrate an intrinsic resistance to antimicrobial therapies. In order to explore the possibility of transport limitation to biofilm bacteria as a contributing factor, the penetration of a fluoroquinolone antibiotic, ciprofloxacin, through Pseudomonas aeruginosa biofilms was investigated. Attenuated total reflection Fourier transform infrared (ATR/FT-IR) spectrometry was employed to monitor bacterial colonization of a germanium substratum, transport of ciprofloxacin to the biofilm-substratum interface, and interaction of biofilm components with the antibiotic in a flowing system. Transport of the antibiotic to the biofilm-substratum interface during the 21-min exposure to 100 micrograms/ml was found to be significantly impeded by the biofilm. Significant changes in IR bands of the biofilm in regions of the spectrum associated with RNA and DNA vibrational modes appeared following exposure to the antibiotic, indicating chemical modification of biofilm components. These results suggest that transport limitations may be an important factor in the antimicrobial resistance of biofilm bacteria and that ATR/FT-IR spectrometry may be used to follow the time course of antimicrobial action in biofilms in situ. Images PMID:7811031

  12. Child abuse followed by fatal systemic Pseudomonas aeruginosa infection.

    PubMed

    Senati, Massimo; Polacco, Matteo; Grassi, Vincenzo M; Carbone, Arnaldo; De-Giorgio, Fabio

    2013-01-01

    Child abuse has become an increasingly serious diagnostic challenge for physicians. The clinical manifestations include malnutrition and sometimes infection. In fact, stress in children has been reported to increase corticosteroid levels. As a consequence, the thymus begins an involution process, producing a severe impairment in cellular and humoral immunity. Here, we report the case of a 7-year-old child who suffered a prolonged history of abuse and died from a systemic Pseudomonas aeruginosa infection. An initial local chronic infection propagated to the pelvic lymph nodes in an immunologically weak body and evolved into abscesses/phlegmons of the pelvic tissue, sepsis, acute respiratory distress syndrome, multiple organ failure and finally, death. Abused children have to be considered as potentially immunologically impaired patients; therefore, it is very important to screen them for opportunistic infections. Moreover, a history of unusual or recurring infections may indicate abuse, especially neglect or malnutrition. In these cases, further investigations should be conducted to determine if a protective service case should be opened. Thus, there is a need for multidisciplinary cooperation to ensure the early identification and prevention of child abuse.

  13. Crystal structure of the flavoenzyme PA4991 from Pseudomonas aeruginosa

    PubMed Central

    Jacewicz, Agata; Schnell, Robert; Lindqvist, Ylva; Schneider, Gunter

    2016-01-01

    The locus PA4991 in Pseudomonas aeruginosa encodes an open reading frame that has been identified as essential for the virulence and/or survival of this pathogenic organism in the infected host. Here, it is shown that this gene encodes a monomeric FAD-binding protein of molecular mass 42.2 kDa. The structure of PA4991 was determined by a combination of molecular replacement using a search model generated with Rosetta and phase improvement by a low-occupancy heavy-metal derivative. PA4991 belongs to the GR2 family of FAD-dependent oxidoreductases, comprising an FAD-binding domain typical of the glutathione reductase family and a second domain dominated by an eight-stranded mixed β-sheet. Most of the protein–FAD interactions are via the FAD-binding domain, but the isoalloxazine ring is located at the domain interface and interacts with residues from both domains. A comparison with the structurally related glycine oxidase and glycerol-3-phosphate dehydrogenase shows that in spite of very low amino-acid sequence identity (<18%) several active-site residues involved in substrate binding in these enzymes are conserved in PA4991. However, enzymatic assays show that PA4991 does not display amino-acid oxidase or glycerol-3-phosphate dehydrogenase activities, suggesting that it requires different substrates for activity. PMID:26841760

  14. Novel polymeric nanoparticles targeting the lipopolysaccharides of Pseudomonas aeruginosa.

    PubMed

    Long, Y; Li, Z; Bi, Q; Deng, C; Chen, Z; Bhattachayya, S; Li, C

    2016-04-11

    Considering outburst of various infectious diseases globally, nanoparticle assisted targeted drug delivery has emerged as a promising strategy that can enhance the therapeutic efficacy and minimize the undesirable side effects of an antimicrobial agents. Molecular imprinting is a newly developed strategy that can synthesize a drug carrier with highly stable ligand-like 'cavity', may serve as a new platform of ligand-free targeted drug delivery systems. In this study, we use the amphiphilic lipopolysaccharides, derived from Pseudomonas aeruginosa as imprinting template and obtained an evenly distributed sub-40 nm polymeric nanoparticles by using inverse emulsion method. These molecularly imprinted nanoparticles (MIPNPs) showed specific binding to the lipopolysaccharide as determined by fluorescence polarization and microscale thermophoresis. MIPNPs showed selective recognition of target bacteria as detected by flow cytometry. Additionally, MIPNPs exhibited the in vivo targeting capabilities in both the keratitis model and meningitis model. Moreover, the photosensitizer methylene blue-loaded MIPNPs presented significantly strong inhibition of bacterial Growth, compared to non-imprinted controls for in vitro model of the photodynamic therapy. Our study shows an attempt to design a magic bullet by molecular imprinting that may provide a novel approach to generate synthetic carrier for targeting pathogen and treatment for a variety of infectious human diseases.

  15. Catalytic mechanism of the arylsulfatase promiscuous enzyme from Pseudomonas aeruginosa.

    PubMed

    Marino, Tiziana; Russo, Nino; Toscano, Marirosa

    2013-02-04

    To elucidate the working mechanism of the "broad substrate specificity" by the Pseudomonas aeruginosa aryl sulfatase (PAS) enzyme, we present here a full quantum chemical study performed at the density functional level. This enzyme is able to catalyze the hydrolysis of the original p-nitrophenyl-sulfate (PNPS) substrate and the promiscuous p-nitrophenyl-phosphate (PNPP) one with comparable reaction kinetics. Based on the obtained results, a multistep mechanism including activation of the nucleophile, the nucleophilic attack, and the cleavage of the S-O (P-O) bond is proposed. Regarding the phosphate monoester, the results indicate that only some steps of the promiscuous reaction are identical to those in the native process. Differences concern mainly the last step in which the His115 residue acts as a general base to accept the proton by the O atom of the FGly51 in the PNPS, whereas in PNPP, the Asp317 protonated residue works as a general acid to deliver a proton by a water molecule to the oxygen atom of the C-O bond. The shapes of the relative potential-energy surface (PES) are similar in the two examined cases but the rate-determining step is different (nucleophile attack vs. nucleophile activation). The influence of the dispersion contributions on the investigated reactions was also taken into account.

  16. Experimental Pseudomonas aeruginosa Infection of the Mouse Cornea

    PubMed Central

    Gerke, John R.; Magliocco, Michael V.

    1971-01-01

    Pseudomonas aeruginosa infection of human cornea is rare but serious. The work of previous investigators using experimental infection primarily of rabbit cornea resulted in successful therapy for 10 to 50% of clinical cases. The advantage of using the mouse is demonstrated. The methods we adapted for characterizing the untreated experimental infection included: incising the cornea to enable establishing the infection; corneal examination with a steroscopic microscope; grading corneal pathology; qualitative and quantitative monitoring of the infecting bacteria by culturing and staining sectioned and dissected tissues. The characteristics of the tissue pathology, host response, and infection were similar to those reported for other animals and man. Corneal pathology was frequently nearly maximal 1 day after infection; host response involved a progression of events of long duration; pathology persisted well beyond the period of bacterial infection. The infection was essentially noncommunicable, and invasiveness was limited to the tissues of the incised eye. The results show the possibility of tests for invasiveness of clinical isolates and for screening for therapeutic and prophylactic measures. PMID:16557955

  17. Characterization of the Newly Isolated Lytic Bacteriophages KTN6 and KT28 and Their Efficacy against Pseudomonas aeruginosa Biofilm.

    PubMed

    Danis-Wlodarczyk, Katarzyna; Olszak, Tomasz; Arabski, Michal; Wasik, Slawomir; Majkowska-Skrobek, Grazyna; Augustyniak, Daria; Gula, Grzegorz; Briers, Yves; Jang, Ho Bin; Vandenheuvel, Dieter; Duda, Katarzyna Anna; Lavigne, Rob; Drulis-Kawa, Zuzanna

    2015-01-01

    We here describe two novel lytic phages, KT28 and KTN6, infecting Pseudomonas aeruginosa, isolated from a sewage sample from an irrigated field near Wroclaw, in Poland. Both viruses show characteristic features of Pbunalikevirus genus within the Myoviridae family with respect to shape and size of head/tail, as well as LPS host receptor recognition. Genome analysis confirmed the similarity to other PB1-related phages, ranging between 48 and 96%. Pseudomonas phage KT28 has a genome size of 66,381 bp and KTN6 of 65,994 bp. The latent period, burst size, stability and host range was determined for both viruses under standard laboratory conditions. Biofilm eradication efficacy was tested on peg-lid plate assay and PET membrane surface. Significant reduction of colony forming units was observed (70-90%) in 24 h to 72 h old Pseudomonas aeruginosa PAO1 biofilm cultures for both phages. Furthermore, a pyocyanin and pyoverdin reduction tests reveal that tested phages lowers the amount of both secreted dyes in 48-72 h old biofilms. Diffusion and goniometry experiments revealed the increase of diffusion rate through the biofilm matrix after phage application. These characteristics indicate these phages could be used to prevent Pseudomonas aeruginosa infections and biofilm formation. It was also shown, that PB1-related phage treatment of biofilm caused the emergence of stable phage-resistant mutants growing as small colony variants.

  18. Characterization of the Newly Isolated Lytic Bacteriophages KTN6 and KT28 and Their Efficacy against Pseudomonas aeruginosa Biofilm

    PubMed Central

    Danis-Wlodarczyk, Katarzyna; Olszak, Tomasz; Arabski, Michal; Wasik, Slawomir; Majkowska-Skrobek, Grazyna; Augustyniak, Daria; Gula, Grzegorz; Briers, Yves; Jang, Ho Bin; Vandenheuvel, Dieter; Duda, Katarzyna Anna; Lavigne, Rob; Drulis-Kawa, Zuzanna

    2015-01-01

    We here describe two novel lytic phages, KT28 and KTN6, infecting Pseudomonas aeruginosa, isolated from a sewage sample from an irrigated field near Wroclaw, in Poland. Both viruses show characteristic features of Pbunalikevirus genus within the Myoviridae family with respect to shape and size of head/tail, as well as LPS host receptor recognition. Genome analysis confirmed the similarity to other PB1-related phages, ranging between 48 and 96%. Pseudomonas phage KT28 has a genome size of 66,381 bp and KTN6 of 65,994 bp. The latent period, burst size, stability and host range was determined for both viruses under standard laboratory conditions. Biofilm eradication efficacy was tested on peg-lid plate assay and PET membrane surface. Significant reduction of colony forming units was observed (70-90%) in 24 h to 72 h old Pseudomonas aeruginosa PAO1 biofilm cultures for both phages. Furthermore, a pyocyanin and pyoverdin reduction tests reveal that tested phages lowers the amount of both secreted dyes in 48-72 h old biofilms. Diffusion and goniometry experiments revealed the increase of diffusion rate through the biofilm matrix after phage application. These characteristics indicate these phages could be used to prevent Pseudomonas aeruginosa infections and biofilm formation. It was also shown, that PB1-related phage treatment of biofilm caused the emergence of stable phage-resistant mutants growing as small colony variants. PMID:25996839

  19. Comparative Molecular docking analysis of DNA Gyrase subunit A in Pseudomonas aeruginosaPAO1.

    PubMed

    Gupta, Aman; Sharma, Vanashika; Tewari, Ashish Kumar; Surenderkumar, Vipul; Wadhwa, Gulshan; Mathur, Ashwani; Sharma, Sanjeev Kumar; Jain, Chakresh Kumar

    2013-01-01

    Pseudomonas aeruginosa is an opportunistic bacterium known for causing chronic infections in cystic fibrosis and chronic obstructive pulmonary disease (COPD) patients. Recently, several drug targets in Pseudomonas aeruginosa PAO1 have been reported using network biology approaches on the basis of essentiality and topology and further ranked on network measures viz. degree and centrality. Till date no drug/ligand molecule has been reported against this targets.In our work we have identified the ligand /drug molecules, through Orthologous gene mapping against Bacillus subtilis subsp. subtilis str. 168 and performed modelling and docking analysis. From the predicted drug targets in PA PAO1, we selected those drug targets which show statistically significant orthology with a model organism and whose orthologs are present in all the selected drug targets of PA PAO1.Modeling of their structure has been done using I-Tasser web server. Orthologous gene mapping has been performed using Cluster of Orthologs (COGs) and based on orthology; drugs available for Bacillus sp. have been docked with PA PAO1 protein drug targets using MoleGro virtual docker version 4.0.2.Orthologous gene for PA3168 gyrA is BS gyrAfound in Bacillus subtilis subsp. subtilis str. 168. The drugs cited for Bacillus sp. have been docked with PA genes and energy analyses have been made. Based on Orthologous gene mapping andin-silico studies, Nalidixic acid is reported as an effective drug against PA3168 gyrA for the treatment of CF and COPD.

  20. Post-transcriptional regulation of gene PA5507 controls PQS concentration in Pseudomonas aeruginosa

    PubMed Central

    Tipton, Kyle A.; Coleman, James P.; Pesci, Everett C.

    2015-01-01

    Summary Pseudomonas aeruginosa can sense and respond to a myriad of environmental signals and utilizes a system of small molecules to communicate through intercellular signaling. The small molecule 2-heptyl-3-hydroxy-4-quinolone (Pseudomonas Quinolone Signal [PQS]) is one of these signals and its synthesis is important for virulence. Previously, we identified an RpiR-type transcriptional regulator, QapR, that positively affects PQS production by repressing the qapR operon. An in-frame deletion of this regulator caused P. aeruginosa to produce a greatly reduced concentration of PQS. Here, we report that QapR translation is linked to the downstream gene PA5507. We found that introduction of a premature stop codon within qapR eliminates transcriptional autorepression of the qapR operon as expected but has no effect on PQS concentration. This was investigated with a series of lacZ reporter fusions which showed that translation of QapR must terminate at, or close to, the native qapR stop codon in order for translation of PA5507 to occur. Also, it was shown that truncation of the 5′ end of the qapR transcript permitted PA5507 translation without translation of QapR. Our findings led us to conclude that PA5507 transcription and translation are both tightly controlled by QapR and this control is important for PQS homeostasis. PMID:25662317

  1. Biosynthesis of the Pseudomonas aeruginosa Extracellular Polysaccharides, Alginate, Pel, and Psl

    PubMed Central

    Franklin, Michael J.; Nivens, David E.; Weadge, Joel T.; Howell, P. Lynne

    2011-01-01

    Pseudomonas aeruginosa thrives in many aqueous environments and is an opportunistic pathogen that can cause both acute and chronic infections. Environmental conditions and host defenses cause differing stresses on the bacteria, and to survive in vastly different environments, P. aeruginosa must be able to adapt to its surroundings. One strategy for bacterial adaptation is to self-encapsulate with matrix material, primarily composed of secreted extracellular polysaccharides. P. aeruginosa has the genetic capacity to produce at least three secreted polysaccharides; alginate, Psl, and Pel. These polysaccharides differ in chemical structure and in their biosynthetic mechanisms. Since alginate is often associated with chronic pulmonary infections, its biosynthetic pathway is the best characterized. However, alginate is only produced by a subset of P. aeruginosa strains. Most environmental and other clinical isolates secrete either Pel or Psl. Little information is available on the biosynthesis of these polysaccharides. Here, we review the literature on the alginate biosynthetic pathway, with emphasis on recent findings describing the structure of alginate biosynthetic proteins. This information combined with the characterization of the domain architecture of proteins encoded on the Psl and Pel operons allowed us to make predictive models for the biosynthesis of these two polysaccharides. The results indicate that alginate and Pel share certain features, including some biosynthetic proteins with structurally or functionally similar properties. In contrast, Psl biosynthesis resembles the EPS/CPS capsular biosynthesis pathway of Escherichia coli, where the Psl pentameric subunits are assembled in association with an isoprenoid lipid carrier. These models and the environmental cues that cause the cells to produce predominantly one polysaccharide over the others are subjects of current investigation. PMID:21991261

  2. Alginate Lyase Promotes Diffusion of Aminoglycosides through the Extracellular Polysaccharide of Mucoid Pseudomonas aeruginosa

    PubMed Central

    Hatch, Richard A.; Schiller, Neal L.

    1998-01-01

    We demonstrated that a 2% suspension of Pseudomonas aeruginosa alginate completely blocked the diffusion of gentamicin and tobramycin, but not that of carbenicillin, illustrating how alginate production can help protect P. aeruginosa growing within alginate microcolonies in patients with cystic fibrosis (CF) from the effects of aminoglycosides. This aminoglycoside diffusion barrier was degraded with a semipurified preparation of P. aeruginosa alginate lyase, suggesting that this enzyme deserves consideration as an adjunctive agent for CF patients colonized by mucoid strains of P. aeruginosa. PMID:9559826

  3. Pseudomonas aeruginosa forms Biofilms in Acute InfectionIndependent of Cell-to-Cell Signaling

    SciTech Connect

    Schaber, J. Andy; Triffo, W.J.; Suh, Sang J.; Oliver, Jeffrey W.; Hastert, Mary C.; Griswold, John A.; Auer, Manfred; Hamood, Abdul N.; Rumbaugh, Kendra P.

    2006-09-20

    Biofilms are bacterial communities residing within a polysaccharide matrix that are associated with persistence and antibiotic resistance in chronic infections. We show that the opportunistic pathogen Pseudomonas aeruginosa forms biofilms within 8 hours of infection in thermally-injured mice, demonstrating that biofilms contribute to bacterial colonization in acute infections. P. aeruginosa biofilms were visualized within burned tissue surrounding blood vessels and adipose cells. Although quorum sensing (QS), a bacterial signaling mechanism, coordinates differentiation of biofilms in vitro, wild type and QS-deficient P. aeruginosa formed similar biofilms in vivo. Our findings demonstrate that P. aeruginosa forms biofilms on specific host tissues independent of QS.

  4. Ecthyma gangrenosum, a skin manifestation of Pseudomonas aeruginosa sepsis in a previously healthy child

    PubMed Central

    Biscaye, Stephanie; Demonchy, Diane; Afanetti, Mickael; Dupont, Audrey; Haas, Herve; Tran, Antoine

    2017-01-01

    Abstract Rationale: Ecthyma gangrenosum (Eg) is a necrotic lesion that is mostly seen in immunocompromised patients. It reflects a severe sepsis, possibly caused by Pseudomonas aeruginosa (Pa). Patient concerns: A healthy 3-year-old girl admitted to the Pediatric Emergency Department presented a sepsis-associated purpura with neurological and respiratory distress. Interventions: An empiric antibiotherapy (anti-meningococcal) was prescribed. Diagnoses: Forty-eight hours after admission, blood and wound cultures were positive for Pa. As a result, the decision was made to change the antibiotic therapy. Unfortunately, on day 3, the patient died. Exhaustive immunologic tests are presently being carried out. Outcomes: Eg caused by Pa is uncommon in healthy children, and purpura sepsis is usually caused by Neisseria meningitides infection. Lessons: Eg should be recognized rapidly so that the appropriate treatment can be prescribed as quickly as possible. PMID:28079790

  5. Formation of hydroxyl radicals contributes to the bactericidal activity of ciprofloxacin against Pseudomonas aeruginosa biofilms.

    PubMed

    Jensen, Peter Ø; Briales, Alejandra; Brochmann, Rikke P; Wang, Hengzhuang; Kragh, Kasper N; Kolpen, Mette; Hempel, Casper; Bjarnsholt, Thomas; Høiby, Niels; Ciofu, Oana

    2014-04-01

    Antibiotic-tolerant, biofilm-forming Pseudomonas aeruginosa has long been recognized as a major cause of chronic lung infections of cystic fibrosis patients. The mechanisms involved in the activity of antibiotics on biofilm are not completely clear. We have investigated whether the proposed induction of cytotoxic hydroxyl radicals (OH˙) during antibiotic treatment of planktonically grown cells may contribute to action of the commonly used antibiotic ciprofloxacin on P. aeruginosa biofilms. For this purpose, WT PAO1, a catalase deficient ΔkatA and a ciprofloxacin resistant mutant of PAO1 (gyrA), were grown as biofilms in microtiter plates and treated with ciprofloxacin. Formation of OH˙ and total amount of reactive oxygen species (ROS) was measured and viability was estimated. Formation of OH˙ and total ROS in PAO1 biofilms treated with ciprofloxacin was shown but higher levels were measured in ΔkatA biofilms, and no ROS production was seen in the gyrA biofilms. Treatment with ciprofloxacin decreased the viability of PAO1 and ΔkatA biofilms but not of gyrA biofilms. Addition of thiourea, a OH˙ scavenger, decreased the OH˙ levels and killing of PAO1 biofilm. Our study shows that OH˙ is produced by P. aeruginosa biofilms treated with ciprofloxacin, which may contribute to the killing of biofilm subpopulations.

  6. Modulation of Type III Secretion System in Pseudomonas aeruginosa: Involvement of the PA4857 Gene Product

    PubMed Central

    Zhu, Miao; Zhao, Jingru; Kang, Huaping; Kong, Weina; Zhao, Yuanyu; Wu, Min; Liang, Haihua

    2016-01-01

    Pseudomonas aeruginosa is an opportunistic pathogen that causes serious acute or chronic infections in humans. Acute infections typically involve the type III secretion systems (T3SSs) and bacterial motility, whereas chronic infections are often associated with biofilm formation and the type VI secretion system. To identify new genes required for pathogenesis, a transposon mutagenesis library was constructed and the gene PA4857, named tspR, was found to modulate T3SS gene expression. Deletion of P. aeruginosa tspR reduced the virulence in a mouse acute lung infection model and diminished cytotoxicity. Suppression of T3SS gene expression in the tspR mutant resulted from compromised translation of the T3SS master regulator ExsA. TspR negatively regulated two small RNAs, RsmY and RsmZ, which control RsmA. Our data demonstrated that defects in T3SS expression and biofilm formation in retS mutant could be partially restored by overexpression of tspR. Taken together, our results demonstrated that the newly identified retS-tspR pathway is coordinated with the retS-gacS system, which regulates the genes associated with acute and chronic infections and controls the lifestyle choice of P. aeruginosa. PMID:26858696

  7. Effects of Pseudomonas aeruginosa elastase on alveolar epithelial permeability in guinea pigs

    SciTech Connect

    Azghani, A.O.; Connelly, J.C.; Peterson, B.T.; Gray, L.D.; Collins, M.L.; Johnson, A.R. )

    1990-02-01

    Elastase-deficient mutants of Pseudomonas aeruginosa are less virulent than the wild type and are easily cleared from the lungs of guinea pigs. The effect of P. aeruginosa elastase on lung epithelium, however, is not yet understood. We addressed the hypothesis that breach of the epithelial barrier by elastase from P. aeruginosa allows invading organisms and toxic substances to penetrate the interstitium. We measured the clearance of aerosolized technetium-labeled albumin (molecular weight, 69,000) from the lungs of anesthetized guinea pigs with the aid of a gamma camera and a dedicated computer. Aerosols of the elastase (0.1 to 5 micrograms) increased the rate of clearance of labeled albumin from the lungs in proportion to the elastase dose. Electron microscopic studies using horseradish peroxidase as a tracer revealed that elastase interrupts intercellular tight junctions of the epithelial lining, thereby increasing the permeability to macromolecules. The amounts of elastase used in this report did not cause interstitial or alveolar edema, as determined by both postmortem extravascular lung water volume measurement and morphological examination. The data indicate that the elastase is a potentially important virulence factor in acute lung infection.

  8. Autophagy plays an essential role in the clearance of Pseudomonas aeruginosa by alveolar macrophages.

    PubMed

    Yuan, Kefei; Huang, Canhua; Fox, John; Laturnus, Donna; Carlson, Edward; Zhang, Binjie; Yin, Qi; Gao, Hongwei; Wu, Min

    2012-01-15

    Intracellular bacteria have been shown to cause autophagy, which impacts infectious outcomes, whereas extracellular bacteria have not been reported to activate autophagy. Here, we demonstrate that Pseudomonas aeruginosa, a Gram-negative extracellular bacterium, activates autophagy with considerably increased LC3 punctation in both an alveolar macrophage cell line (MH-S) and primary alveolar macrophages. Using the LC3 Gly120 mutant, we successfully demonstrated a hallmark of autophagy, conjugation of LC3 to phosphatidylethanolamine (PE). The accumulation of typical autophagosomes with double membranes was identified morphologically by transmission electron microscopy (TEM). Furthermore, the increase of PE-conjugated LC3 was indeed induced by infection rather than inhibition of lysosome degradation. P. aeruginosa induced autophagy through the classical beclin-1-Atg7-Atg5 pathway as determined by specific siRNA analysis. Rapamycin and IFN-γ (autophagy inducers) augmented bacterial clearance, whereas beclin-1 and Atg5 knockdown reduced intracellular bacteria. Thus, P. aeruginosa-induced autophagy represents a host protective mechanism, providing new insight into the pathogenesis of this infection.

  9. Interspecies competition triggers virulence and mutability in Candida albicans–Pseudomonas aeruginosa mixed biofilms

    PubMed Central

    Trejo-Hernández, Abigail; Andrade-Domínguez, Andrés; Hernández, Magdalena; Encarnación, Sergio

    2014-01-01

    Inter-kingdom and interspecies interactions are ubiquitous in nature and are important for the survival of species and ecological balance. The investigation of microbe-microbe interactions is essential for understanding the in vivo activities of commensal and pathogenic microorganisms. Candida albicans, a polymorphic fungus, and Pseudomonas aeruginosa, a Gram-negative bacterium, are two opportunistic pathogens that interact in various polymicrobial infections in humans. To determine how P. aeruginosa affects the physiology of C. albicans and vice versa, we compared the proteomes of each species in mixed biofilms versus single-species biofilms. In addition, extracellular proteins were analyzed. We observed that, in mixed biofilms, both species showed differential expression of virulence proteins, multidrug resistance-associated proteins, proteases and cell defense, stress and iron-regulated proteins. Furthermore, in mixed biofilms, both species displayed an increase in mutability compared with monospecific biofilms. This characteristic was correlated with the downregulation of enzymes conferring protection against DNA oxidation. In mixed biofilms, P. aeruginosa regulates its production of various molecules involved in quorum sensing and induces the production of virulence factors (pyoverdine, rhamnolipids and pyocyanin), which are major contributors to the ability of this bacterium to cause disease. Overall, our results indicate that interspecies competition between these opportunistic pathogens enhances the production of virulence factors and increases mutability and thus can alter the course of host-pathogen interactions in polymicrobial infections. PMID:24739628

  10. Pseudomonas aeruginosa Enolase Influences Bacterial Tolerance to Oxidative Stresses and Virulence

    PubMed Central

    Weng, Yuding; Chen, Fei; Liu, Yiwei; Zhao, Qiang; Chen, Ronghao; Pan, Xiaolei; Liu, Chang; Cheng, Zhihui; Jin, Shouguang; Jin, Yongxin; Wu, Weihui

    2016-01-01

    Pseudomonas aeruginosa is a Gram negative opportunistic pathogenic bacterium, which causes acute and chronic infections. Upon entering the host, bacteria alter global gene expression to adapt to host environment and avoid clearance by the host. Enolase is a glycolytic enzyme involved in carbon metabolism. It is also a component of RNA degradosome, which is involved in RNA processing and gene regulation. Here, we report that enolase is required for the virulence of P. aeruginosa in a murine acute pneumonia model. Mutation of enolase coding gene (eno) increased bacterial susceptibility to neutrophil mediated killing, which is due to reduced tolerance to oxidative stress. Catalases and alkyl hydroperoxide reductases play a major role in protecting the cell from oxidative damages. In the eno mutant, the expression levels of catalases (KatA and KatB) were similar as those in the wild type strain in the presence of H2O2, however, the expression levels of alkyl hydroperoxide reductases (AhpB and AhpC) were significantly reduced. Overexpression of ahpB but not ahpC in the eno mutant fully restored the bacterial resistance to H2O2 as well as neutrophil mediated killing, and partially restored bacterial virulence in the murine acute pneumonia model. Therefore, we have identified a novel role of enolase in the virulence of P. aeruginosa. PMID:28018326

  11. Global Analysis of the Membrane Subproteome of Pseudomonas aeruginosa using Liquid Chromatography-Tandem Mass Spectrometry

    SciTech Connect

    Blonder, Josip; Goshe, Michael B.; Xiao, Wenzhong; Camp, David G.; Wingerd, Mark A.; Davis, Ronald W.; Smith, Richard D.

    2004-05-30

    Pseudomonas aeruginosa is one of the most significant opportunistic bacterial pathogens in humans causing infections and premature death in patients with cystic fibrosis, AIDS, severe burns, organ transplants or cancer. Liquid chromatography coupled online with tandem mass spectrometry (LC-MS/MS) was used for the large-scale proteomic analysis of the P. aeruginosa membrane subproteome. Concomitantly, an affinity labeling technique, using iodoacetyl-PEO biotin to tag cysteinyl-containing proteins, permitted the enrichment and detection of lower abundance membrane proteins. The application of these approaches resulted in the identification of 786 proteins. A total of 333 proteins (42%) had a minimum of one transmembrane domain (TMD; ranging from 1 to 14) and 195 proteins were classified as hydrophobic based on their positive GRAVY values (ranging from 0.01 to 1.32). Key integral inner and outer membrane proteins involved in adaptation and antibiotic resistance were conclusively identified, including the detection of 53% of all predicted opr-type porins (outer integral membrane proteins) and all the components of the mexA-mexB-oprM transmembrane protein complex. This work represents the most comprehensive qualitative proteomic analysis of the membrane subproteome of P. aeruginosa and for prokaryotes in general to date.

  12. Pseudomonas aeruginosa Keratitis in Mice: Effects of Topical Bacteriophage KPP12 Administration

    PubMed Central

    Fukuda, Ken; Ishida, Waka; Uchiyama, Jumpei; Rashel, Mohammad; Kato, Shin-ichiro; Morita, Tamae; Muraoka, Asako; Sumi, Tamaki; Matsuzaki, Shigenobu; Daibata, Masanori; Fukushima, Atsuki

    2012-01-01

    The therapeutic effects of bacteriophage (phage) KPP12 in Pseudomonas aeruginosa keratitis were investigated in mice. Morphological analysis showed that phage KPP12 is a member of the family Myoviridae, morphotype A1, and DNA sequence analysis revealed that phage KPP12 is similar to PB1-like viruses. Analysis of the phage KPP12 genome did not identify any genes related to drug resistance, pathogenicity or lysogenicity, and so phage KPP12 may be a good candidate for therapeutic. KPP12 showed a broad host range for P. aeruginosa strains isolated from clinical ophthalmic infections. Inoculation of the scarified cornea with P. aeruginosa caused severe keratitis and eventual corneal perforation. Subsequent single-dose administration of KPP12 eye-drops significantly improved disease outcome, and preserved the structural integrity and transparency of the infected cornea. KPP12 treatment resulted in the suppression of neutrophil infiltration and greatly enhanced bacterial clearance in the infected cornea. These results indicate that bacteriophage eye-drops may be a novel adjunctive or alternative therapeutic agent for the treatment of infectious keratitis secondary to antibiotic-resistant bacteria. PMID:23082205

  13. Bacteriophage-based therapy in cystic fibrosis-associated Pseudomonas aeruginosa infections: rationale and current status.

    PubMed

    Hraiech, Sami; Brégeon, Fabienne; Rolain, Jean-Marc

    2015-01-01

    Pulmonary infections involving Pseudomonas aeruginosa are among the leading causes of the deterioration of the respiratory status of cystic fibrosis (CF) patients. The emergence of multidrug-resistant strains in such populations, favored by iterative antibiotic cures, has led to the urgent need for new therapies. Among them, bacteriophage-based therapies deserve a focus. One century of empiric use in the ex-USSR countries suggests that bacteriophages may have beneficial effects against a large range of bacterial infections. Interest in bacteriophages has recently renewed in Western countries, and the in vitro data available suggest that bacteriophage-based therapy may be of significant interest for the treatment of pulmonary infections in CF patients. Although the clinical data concerning this specific population are relatively scarce, the beginning of the first large randomized study evaluating bacteriophage-based therapy in burn infections suggests that the time has come to assess the effectiveness of this new therapy in CF P. aeruginosa pneumonia. Consequently, the aim of this review is, after a brief history, to summarize the evidence concerning bacteriophage efficacy against P. aeruginosa and, more specifically, the in vitro studies, animal models, and clinical trials targeting CF.

  14. Interspecies competition triggers virulence and mutability in Candida albicans-Pseudomonas aeruginosa mixed biofilms.

    PubMed

    Trejo-Hernández, Abigail; Andrade-Domínguez, Andrés; Hernández, Magdalena; Encarnación, Sergio

    2014-10-01

    Inter-kingdom and interspecies interactions are ubiquitous in nature and are important for the survival of species and ecological balance. The investigation of microbe-microbe interactions is essential for understanding the in vivo activities of commensal and pathogenic microorganisms. Candida albicans, a polymorphic fungus, and Pseudomonas aeruginosa, a Gram-negative bacterium, are two opportunistic pathogens that interact in various polymicrobial infections in humans. To determine how P. aeruginosa affects the physiology of C. albicans and vice versa, we compared the proteomes of each species in mixed biofilms versus single-species biofilms. In addition, extracellular proteins were analyzed. We observed that, in mixed biofilms, both species showed differential expression of virulence proteins, multidrug resistance-associated proteins, proteases and cell defense, stress and iron-regulated proteins. Furthermore, in mixed biofilms, both species displayed an increase in mutability compared with monospecific biofilms. This characteristic was correlated with the downregulation of enzymes conferring protection against DNA oxidation. In mixed biofilms, P. aeruginosa regulates its production of various molecules involved in quorum sensing and induces the production of virulence factors (pyoverdine, rhamnolipids and pyocyanin), which are major contributors to the ability of this bacterium to cause disease. Overall, our results indicate that interspecies competition between these opportunistic pathogens enhances the production of virulence factors and increases mutability and thus can alter the course of host-pathogen interactions in polymicrobial infections.

  15. In Vitro Effects of Carbenicillin Combined with Gentamicin or Polymyxin B Against Pseudomonas aeruginosa1

    PubMed Central

    Eickhoff, Theodore C.

    1969-01-01

    Disodium carbenicillin and gentamicin sulfate have both shown promise in the treatment of infections caused by Pseudomonas aeruginosa. This study was designed to explore possible synergistic relationships among the new as well as the established antimicrobial agents used to treat such infections. With an agar dilution technique, minimum inhibitory concentrations of 27 strains of P. aeruginosa were determined in two-dimensional tests. Graphs of equal biological activity (isobolograms) demonstrated moderate synergistic effects of the carbenicillin-gentamicin combination over therapeutically feasible concentration ranges. In contrast, the combination of carbenicillin and polymyxin B showed only additive or slightly antagonistic effects. Tests of bacterial killing confirmed the presence of carbenicillin-gentamicin synergy in 3 of 6 strains of P. aeruginosa, but did not show true antagonism between carbenicillin and polymyxin B. Clinical trials of both drug combinations are advisable to determine whether therapeutic results can be improved, and whether the dosages of gentamicin or polymyxin B can thereby be reduced to lessen their toxic hazards. PMID:4313764

  16. OprD Repression upon Metal Treatment Requires the RNA Chaperone Hfq in Pseudomonas aeruginosa

    PubMed Central

    Ducret, Verena; Gonzalez, Manuel R.; Scrignari, Tiziana; Perron, Karl

    2016-01-01

    The metal-specific CzcRS two-component system in Pseudomonas aeruginosa is involved in the repression of the OprD porin, causing in turn carbapenem antibiotic resistance in the presence of high zinc concentration. It has also been shown that CzcR is able to directly regulate the expression of multiple genes including virulence factors. CzcR is therefore an important regulator connecting (i) metal response, (ii) pathogenicity and (iii) antibiotic resistance in P. aeruginosa. Recent data have suggested that other regulators could negatively control oprD expression in the presence of zinc. Here we show that the RNA chaperone Hfq is a key factor acting independently of CzcR for the repression of oprD upon Zn treatment. Additionally, we found that an Hfq-dependent mechanism is necessary for the localization of CzcR to the oprD promoter, mediating oprD transcriptional repression. Furthermore, in the presence of Cu, CopR, the transcriptional regulator of the CopRS two-component system also requires Hfq for oprD repression. Altogether, these results suggest important roles for this RNA chaperone in the context of environment-sensing and antibiotic resistance in P. aeruginosa. PMID:27706108

  17. Pseudomonas aeruginosa, an emerging pathogen among burn patients in Kurdistan Province, Iran.

    PubMed

    Kalantar, Enayat; Taherzadeh, Shadi; Ghadimi, Tayeb; Soheili, Fariborz; Salimizand, Heiman; Hedayatnejad, Alireza

    2012-05-01

    This study was conducted to determine the incidence of Pseudomonas aeruginosa infections among burn patients at Tohid Hospital, Iran. A total of 176 clinical specimens were obtained from 145 burn patients admitted to the burn unit of Tohid Hospital to detect the presence of P. aeruginosa. Antimicrobial susceptibility testing was conducted to detect extended spectrum beta-lactamase (ESBL) producing P. aeruginiosa using Clinical and Laboratory Standards Institute guidelines with the double disc synergy test (DDST). A polymerase chain reaction was used to detect PER-1 and OXA-10 among the isolates. The mean age, total body surface area and length of hospital stay among patients were 29 years, 37.7%, and 10 days, respectively. Kerosene was the commonest cause of burn (60%), followed by gas (30%). During the study, P. aeruginosa was detected in 100 isolates. The antibiotics they were most commonly resistant to were cefotaxime, ceftriaxone and ciprofloxacin. Of the 100 P. aeroginusa isolates, 28% were positive for ESBL production with the DDST, 48% and 52% were PER-1 and OXA-10 producers, respectively. The high frequency of PER-1 and OXA-10 producers at this hospital is of concern considering their potential spread among burn patients.

  18. Energy metabolism and alginate biosynthesis in Pseudomonas aeruginosa: role of the tricarboxylic acid cycle.

    PubMed Central

    Schlictman, D; Kavanaugh-Black, A; Shankar, S; Chakrabarty, A M

    1994-01-01

    Infection with mucoid, alginate-producing strains of Pseudomonas aeruginosa is the leading cause of mortality among patients with cystic fibrosis. Alginate production by P. aeruginosa is not constitutive but is triggered by stresses such as starvation. The algR2 (also termed algQ) gene has been previously identified as being necessary for mucoidy; an algR2 mutant strain is unable to produce alginate when grown at 37 degrees C. We show here that the levels of phosphorylated succinyl coenzyme A synthetase (Scs) and nucleoside diphosphate kinase (Ndk), which form a complex in P. aeruginosa, are reduced in the algR2 mutant. We were able to correlate the lower level of phosphorylated Scs with a decrease in Scs activity. Western blots (immunoblots) also showed a decreased level of Ndk in the algR2 mutant, but the presence of another kinase activity sensitive to Tween 20 provides the missing Ndk function. The effect of AlgR2 on tricarboxylic acid (TCA) cycle enzymes appears to be specific for Scs, since none of the other TCA cycle enzymes measured showed a significant decrease in activity. Furthermore, the ability of the algR2 mutant to grow on TCA cycle intermediates, but not glucose, is impaired. These data indicate that AlgR2 is responsible for maintaining proper operation of the TCA cycle and energy metabolism. Images PMID:7928963

  19. Expression of a fully functional cd1 nitrite reductase from Pseudomonas aeruginosa in Pseudomonas stutzeri.

    PubMed

    Arese, Marzia; Zumft, Walter G; Cutruzzolà, Francesca

    2003-01-01

    Nitrite reductases are redox enzymes catalysing the one electron reduction of nitrite to nitrogen monoxide (NO) within the bacterial denitrification process. We have cloned the gene for cd(1) nitrite reductase (Pa-nirS) from Pseudomonas aeruginosa into the NiRS(-) strain MK202 of Pseudomonas stutzeri and expressed the enzyme under denitrifying conditions. In the MK202 strain, denitrification is abolished by the disruption of the endogenous nitrite reductase gene; thus, cells can be grown only in the presence of oxygen. After complementation with Pa-nirS gene, cells supplemented with nitrate can be grown in the absence of oxygen. The presence of nitrite reductase was proven in vivo by the demonstration of NO production, showing that the enzyme was expressed in the active form, containing both heme c and d(1). A purification procedure for the recombinant PaNir has been developed, based on the P. aeruginosa purification protocol; spectroscopic analysis of the purified protein fully confirms the presence of the d(1) heme cofactor. Moreover, the functional characterisation of the recombinant NiR has been carried out by monitoring the production of NO by the purified NiR enzyme in the presence of nitrite by an NO electrode. The full recovery of the denitrification properties in the P. stutzeri MK202 strain by genetic complementation with Pa-NiR underlines the high homology between enzymes of nitrogen oxianion respiration. Our work provides an expression system for cd(1) nitrite reductase and its site-directed mutants in a non-pathogenic strain and is a starting point for the in vivo study of recombinant enzyme variants.

  20. Effects of different concentrations of Pseudomonas aeruginosa on boar sperm quality.

    PubMed

    Sepúlveda, Lilian; Bussalleu, Eva; Yeste, Marc; Bonet, Sergi

    2014-11-30

    Bacteriospermia in boar ejaculates is a frequent finding that compromises the sperm quality and, consequently, causes economic losses in swine industry. The present study sought to evaluate the effect of different concentrations of Pseudomonas aeruginosa on boar sperm quality over a storing period of 11 days at 15-17 ° C. Ten commercial seminal doses coming from post-pubertal and healthy boars were artificially inoculated with different infective concentrations of P. aeruginosa, ranging from 2 × 10(8) to 2 × 10(4)cfu/mL. Negative controls were non-inoculated doses. Sperm quality, assessed as sperm motility (CASA), sperm viability, acrosome integrity and pH, as well as the bacterial growth, were checked after 0, 1, 2, 4, 7, 9 and 11 days of storage at 15-17 ° C. Results obtained showed significant decreases in the percentages of total and progressive sperm motility, sperm viability and acrosome integrity in the greatest infective concentrations (2 × 10(7) and 2 × 10(8)cfu/mL), when compared to the negative control. In contrast, there was no effect on seminal pH throughout the experiment. Results indicate the presence of P. aeruginosa in boar semen, apart from being a potential source for the spread of infectious diseases and harmful impact on sows, negatively affects the longevity and fertilizing ability of boar sperm when present in high concentrations. Thus, P. aeruginosa causes deleterious effects on boar sperm quality during liquid storage at 15-17 ° C, thus strict hygienic measures must be implemented in boar studs to minimize bacterial concentration of semen doses.

  1. Prospective Multicenter Study of the Impact of Carbapenem Resistance on Mortality in Pseudomonas aeruginosa Bloodstream Infections

    PubMed Central

    Suarez, Cristina; Gozalo, Mónica; Murillas, Javier; Almirante, Benito; Pomar, Virginia; Aguilar, Manuela; Granados, Ana; Calbo, Esther; Rodríguez-Baño, Jesús; Rodríguez, Fernando; Tubau, Fe; Martínez-Martínez, Luis; Oliver, Antonio

    2012-01-01

    The impact of antimicrobial resistance on clinical outcomes is the subject of ongoing investigations, although uncertainty remains about its contribution to mortality. We investigated the impact of carbapenem resistance on mortality in Pseudomonas aeruginosa bacteremia in a prospective multicenter (10 teaching hospitals) observational study of patients with monomicrobial bacteremia followed up for 30 days after the onset of bacteremia. The adjusted influence of carbapenem resistance on mortality was studied by using Cox regression analysis. Of 632 episodes, 487 (77%) were caused by carbapenem-susceptible P. aeruginosa (CSPA) isolates, and 145 (23%) were caused by carbapenem-resistant P. aeruginosa (CRPA) isolates. The median incidence density of nosocomial CRPA bacteremia was 2.3 episodes per 100,000 patient-days (95% confidence interval [CI], 1.9 to 2.8). The regression demonstrated a time-dependent effect of carbapenem resistance on mortality as well as a significant interaction with the Charlson index: the deleterious effect of carbapenem resistance on mortality decreased with higher Charlson index scores. The impact of resistance on mortality was statistically significant only from the fifth day after the onset of the bacteremia, reaching its peak values at day 30 (adjusted hazard ratio for a Charlson score of 0 at day 30, 9.9 [95% CI, 3.3 to 29.4]; adjusted hazard ratio for a Charlson score of 5 at day 30, 2.6 [95% CI, 0.8 to 8]). This study clarifies the relationship between carbapenem resistance and mortality in patients with P. aeruginosa bacteremia. Although resistance was associated with a higher risk of mortality, the study suggested that this deleterious effect may not be as great during the first days of the bacteremia or in the presence of comorbidities. PMID:22155832

  2. Pseudomonas aeruginosa facilitates Campylobacter jejuni growth in biofilms under oxic flow conditions.

    PubMed

    Culotti, Alessandro; Packman, Aaron I

    2015-12-01

    We investigated the growth of Campylobacter jejuni in biofilms with Pseudomonas aeruginosa under oxic flow conditions. We observed the growth of C. jejuni in mono-culture, deposited on pre-established P. aeruginosa biofilms, and co-inoculated with P. aeruginosa. In mono-culture, C. jejuni was unable to form biofilms. However, deposited C. jejuni continuously grew on pre-established P. aeruginosa biofilms for a period of 3 days. The growth of scattered C. jejuni clusters was strictly limited to the P. aeruginosa biofilm surface, and no intergrowth was observed. Co-culturing of C. jejuni and P. aeruginosa also enabled the growth of both organisms in biofilms, with C. jejuni clusters developing on the surface of the P. aeruginosa biofilm. Dissolved oxygen (DO) measurements in the medium showed that P. aeruginosa biofilms depleted the effluent DO from 9.0 to 0.5 mg L(-1) 24 hours after inoculation. The localized microaerophilic environment generated by P. aeruginosa promoted the persistence and growth of C. jejuni. Our findings show that P. aeruginosa not only prolongs the survival of C. jejuni under oxic conditions, but also enables the growth of C. jejuni on the surface of P. aeruginosa biofilms.

  3. Calcium induces tobramycin resistance in Pseudomonas aeruginosa by regulating RND efflux pumps.

    PubMed

    Khanam, Sharmily; Guragain, Manita; Lenaburg, Dirk L; Kubat, Ryan; Patrauchan, Marianna A

    2017-01-01

    Pseudomonas aeruginosa is an opportunistic multidrug resistant pathogen causing severe chronic infections. Our previous studies showed that elevated calcium (Ca(2+)) enhances production of several virulence factors and plant infectivity of the pathogen. Here we show that Ca(2+) increases resistance of P. aeruginosa PAO1 to tobramycin, antibiotic commonly used to treat Pseudomonas infections. LC-MS/MS-based comparative analysis of the membrane proteomes of P aeruginosa grown at elevated versus not added Ca(2+), determined that the abundances of two RND (resistance-nodulation-cell division) efflux pumps, MexAB-OprM and MexVW-OprM, were increased in the presence of elevated Ca(2+). Analysis of twelve transposon mutants with disrupted RND efflux pumps showed that six of them (mexB, muxC, mexY, mexJ, czcB, and mexE) contribute to Ca(2+)-induced tobramycin resistance. Transcriptional analyses by promoter activity and RT-qPCR showed that the expression of mexAB, muxABC, mexXY, mexJK, czcCBA, and mexVW is increased by elevated Ca(2+). Disruption of mexJ, mexC, mexI, and triA significantly decreased Ca(2+)-induced plant infectivity of the pathogen. Earlier, our group showed that PAO1 maintains intracellular Ca(2+) (Ca(2+)in) homeostasis, which mediates Ca(2+) regulation of P. aeruginosa virulence, and identified four putative Ca(2+) transporters involved in this process (Guragain et al., 2013). Here we show that three of these transporters (PA2435, PA2092, PA4614) play role in Ca(2+)-induced tobramycin resistance and one of them (PA2435) contributes to Ca(2+) regulation of mexAB-oprM promoter activity. Furthermore, mexJ, czcB, and mexE contribute to the maintenance of Ca(2+)in homeostasis. This provides the first evidence that Ca(2+)in homeostasis mediates Ca(2+) regulation of RND transport systems, which contribute to Ca(2+)-enhanced tobramycin resistance and plant infectivity in P. aeruginosa.

  4. Short term Candida albicans colonization reduces Pseudomonas aeruginosa-related lung injury and bacterial burden in a murine model

    PubMed Central

    2011-01-01

    Introduction Pseudomonas aeruginosa is a frequent cause of ventilator-acquired pneumonia (VAP). Candida tracheobronchial colonization is associated with higher rates of VAP related to P. aeruginosa. This study was designed to investigate whether prior short term Candida albicans airway colonization modulates the pathogenicity of P. aeruginosa in a murine model of pneumonia and to evaluate the effect of fungicidal drug caspofungin. Methods BALB/c mice received a single or a combined intratracheal administration of C. albicans (1 × 105 CFU/mouse) and P. aeruginosa (1 × 107 CFU/mouse) at time 0 (T0) upon C. albicans colonization, and Day 2. To evaluate the effect of antifungal therapy, mice received caspofungin intraperitoneally daily, either from T0 or from Day 1 post-colonization. After sacrifice at Day 4, lungs were analyzed for histological scoring, measurement of endothelial injury, and quantification of live P. aeruginosa and C. albicans. Blood samples were cultured for dissemination. Results A significant decrease in lung endothelial permeability, the amount of P. aeruginosa, and bronchiole inflammation was observed in case of prior C. albicans colonization. Mortality rate and bacterial dissemination were unchanged by prior C. albicans colonization. Caspofungin treatment from T0 (not from Day 1) increased their levels of endothelial permeability and lung P. aeruginosa load similarly to mice receiving P. aeruginosa alone. Conclusions P. aeruginosa-induced lung injury is reduced when preceded by short term C. albicans airway colonization. Antifungal drug caspofungin reverses that effect when used from T0 and not from Day 1. PMID:21689424

  5. Functional Characterization of Triclosan-Resistant Enoyl-acyl-carrier Protein Reductase (FabV) in Pseudomonas aeruginosa

    PubMed Central

    Huang, Yong-Heng; Lin, Jin-Shui; Ma, Jin-Cheng; Wang, Hai-Hong

    2016-01-01

    Pseudomonas aeruginosa is extremely resistant to triclosan. Previous studies have shown that P. aeruginosa encodes a triclosan-resistant enoyl-acyl-carrier protein reductase (ENR), FabV, and that deletion of fabV causes P. aeruginosa to be extremely sensitive to triclosan. In this report, we complemented a P. aeruginosa fabV deletion strain with several triclosan-resistant ENR encoding genes, including Vibrio cholerae fabV, Bacillus subtilis fabL and Enterococcus faecalis fabK. All complemented strains restored triclosan resistance to the level of the wild-type strain, which confirmed that triclosan-resistant ENR allows P. aeruginosa to be extremely resistant to triclosan. Moreover, fabV exhibits pleiotropic effects. Deletion of fabV led P. aeruginosa to show attenuated swarming motility, decreased rhamnolipid, pyoverdine and acyl-homoserine lactones (AHLs) production. Complementation of the fabV mutant with any one ENR encoding gene could restore these features to some extent, in comparison with the wild-type strain. Furthermore, we found that addition of exogenous AHLs could restore the fabV mutant strain to swarm on semisolid plates and to produce more virulence factors than the fabV mutant strain. These findings indicate that deletion of fabV reduced the activity of ENR in P. aeruginosa, decreased fatty acid synthesis, and subsequently depressed the production of AHLs and other virulence factors, which finally may led to a reduction in the pathogenicity of P. aeruginosa. Therefore, fabV should be an ideal target for the control of P. aeruginosa infectivity. PMID:27965638

  6. Effect of Tyrosol and Farnesol on Virulence and Antibiotic Resistance of Clinical Isolates of Pseudomonas aeruginosa.

    PubMed

    Abdel-Rhman, Shaymaa Hassan; El-Mahdy, Areej Mostafa; El-Mowafy, Mohammed

    2015-01-01

    Mixed-species biofilms could create a protected environment that allows for survival to external antimicrobials and allows different bacterial-fungal interactions. Pseudomonas aeruginosa-Candida albicans coexistence is an example for such mixed-species community. Numerous reports demonstrated how P. aeruginosa or its metabolites could influence the growth, morphogenesis, and virulence of C. albicans. In this study, we investigated how the C. albicans quorum sensing compounds, tyrosol and farnesol, might affect Egyptian clinical isolates of P. aeruginosa regarding growth, antibiotic sensitivity, and virulence. We could demonstrate that tyrosol possesses an antibacterial activity against P. aeruginosa (10 µM inhibited more than 50% of growth after 16 h cultivation). Moreover, we could show for the first time that tyrosol strongly inhibits the production of the virulence factors hemolysin and protease in P. aeruginosa, whereas farnesol inhibits, to lower extent, hemolysin production in this bacterial pathogen. Cumulatively, tyrosol is expected to strongly affect P. aeruginosa in mixed microbial biofilm.

  7. Epidemiological investigation of Pseudomonas aeruginosa nosocomial bacteraemia isolates by PCR-based DNA fingerprinting analysis.

    PubMed

    Liu, Y; Davin-Regli, A; Bosi, C; Charrel, R N; Bollet, C

    1996-11-01

    Between July 1994 and March 1995, 64 isolates of Pseudomonas aeruginosa were implicated in bacteraemia in 25 cancer patients in five wards of two hospitals. These, together with 24 environmental isolates and one isolate from a bacteraemia in a non-cancer patient were examined by three PCR-based DNA fingerprinting methods: random amplified polymorphic DNA (RAPD), enterobacterial-repetitive intergenic consensus (ERIC)-PCR, and 16S-23S spacer region-based RAPD. These methods were reproducible, discriminatory and showed close agreement; all indicated that 47 isolates that had caused bacteraemia in 19 cancer patients were indistinguishable. Seventeen other isolates that had caused bacteraemia in 10 cancer patients were discriminated into eight further groups, and the 24 environmental and non-cancer patient isolates into further distinct groups. No environmental source of the epidemic strain was found, but it was suspected that the outbreak was related to infusion implants.

  8. Identification and Characterization of a Chemical Compound that Inhibits Methionyl-tRNA Synthetase from Pseudomonas aeruginosa.

    PubMed

    Robles, Sara; Hu, Yanmei; Resto, Tahyra; Dean, Frank; Bullard, James M

    2017-03-30

    Pseudomonas aeruginosa is an opportunistic pathogen problematic in causing nosocomial infections and is highly susceptible to development of resistance to multiple antibiotics. The gene encoding methionyl-tRNA synthetase (MetRS) from P. aeruginosa was cloned and the resulting protein characterized. MetRS was kinetically evaluated and the KM for its three substrates, methionine, ATP and tRNAMet were determined to be 35, 515, and 29 μM, respectively. P. aeruginosa MetRS was used to screen two chemical compound libraries (1690) and a natural product compound was identified that inhibited the aminoacylation function. The compound inhibited P. aeruginosa MetRS with an IC50 of 70 μM. The minimum inhibitory concentration (MIC) of the compound was determined against nine clinically relevant bacterial strains, including efflux pump mutants and hypersensitive strains of P. aeruginosa and E. coli. The compound displayed broad spectrum anti-bacterial activity. The MIC against the hypersensitive strain of P. aeruginosa was 16 μg/ml. However, the compound was not effective against the wild-type and efflux pump mutant strains, indicating that efflux may not be responsible for the lack of activity against the wild-type strains. When tested in human cell cultures, the cytotoxicity concentration (CC50) was observed to be 30 μg/ml. The compound did not compete with methionine or ATP for binding MetRS, indicating that the mechanism of action of the compound likely occurs outside the active site of aminoacylation.

  9. Quorum-sensing inhibition abrogates the deleterious impact of Pseudomonas aeruginosa on airway epithelial repair.

    PubMed

    Ruffin, Manon; Bilodeau, Claudia; Maillé, Émilie; LaFayette, Shantelle L; McKay, Geoffrey A; Trinh, Nguyen Thu Ngan; Beaudoin, Trevor; Desrosiers, Martin-Yvon; Rousseau, Simon; Nguyen, Dao; Brochiero, Emmanuelle

    2016-09-01

    Chronic Pseudomonas aeruginosa lung infections are associated with progressive epithelial damage and lung function decline. In addition to its role in tissue injury, the persistent presence of P. aeruginosa-secreted products may also affect epithelial repair ability, raising the need for new antivirulence therapies. The purpose of our study was to better understand the outcomes of P. aeruginosa exoproducts exposure on airway epithelial repair processes to identify a strategy to counteract their deleterious effect. We found that P. aeruginosa exoproducts significantly decreased wound healing, migration, and proliferation rates, and impaired the ability of directional migration of primary non-cystic fibrosis (CF) human airway epithelial cells. Impact of exoproducts was inhibited after mutations in P. aeruginosa genes that encoded for the quorum-sensing (QS) transcriptional regulator, LasR, and the elastase, LasB, whereas impact was restored by LasB induction in ΔlasR mutants. P. aeruginosa purified elastase also induced a significant decrease in non-CF epithelial repair, whereas protease inhibition with phosphoramidon prevented the effect of P. aeruginosa exoproducts. Furthermore, treatment of P. aeruginosa cultures with 4-hydroxy-2,5-dimethyl-3(2H)-furanone, a QS inhibitor, abrogated the negative impact of P. aeruginosa exoproducts on airway epithelial repair. Finally, we confirmed our findings in human airway epithelial cells from patients with CF, a disease featuring P. aeruginosa chronic respiratory infection. These data demonstrate that secreted proteases under the control of the LasR QS system impair airway epithelial repair and that QS inhibitors could be of benefit to counteract the deleterious effect of P. aeruginosa in infected patients.-Ruffin, M., Bilodeau, C., Maillé, É., LaFayette, S. L., McKay, G. A., Trinh, N. T. N., Beaudoin, T., Desrosiers, M.-Y., Rousseau, S., Nguyen, D., Brochiero, E. Quorum-sensing inhibition abrogates the deleterious impact

  10. The Multiple Signaling Systems Regulating Virulence in Pseudomonas aeruginosa

    PubMed Central

    Nadal Jimenez, Pol; Koch, Gudrun; Thompson, Jessica A.; Xavier, Karina B.; Cool, Robbert H.

    2012-01-01

    Summary: Cell-to-cell communication is a major process that allows bacteria to sense and coordinately react to the fluctuating conditions of the surrounding environment. In several pathogens, this process triggers the production of virulence factors and/or a switch in bacterial lifestyle that is a major determining factor in the outcome and severity of the infection. Understanding how bacteria control these signaling systems is crucial to the development of novel antimicrobial agents capable of reducing virulence while allowing the immune system of the host to clear bacterial infection, an approach likely to reduce the selective pressures for development of resistance. We provide here an up-to-date overview of the molecular basis and physiological implications of cell-to-cell signaling systems in Gram-negative bacteria, focusing on the well-studied bacterium Pseudomonas aeruginosa. All of the known cell-to-cell signaling systems in this bacterium are described, from the most-studied systems, i.e., N-acyl homoserine lactones (AHLs), the 4-quinolones, the global activator of antibiotic and cyanide synthesis (GAC), the cyclic di-GMP (c-di-GMP) and cyclic AMP (cAMP) systems, and the alarmones guanosine tetraphosphate (ppGpp) and guanosine pentaphosphate (pppGpp), to less-well-studied signaling molecules, including diketopiperazines, fatty acids (diffusible signal factor [DSF]-like factors), pyoverdine, and pyocyanin. This overview clearly illustrates that bacterial communication is far more complex than initially thought and delivers a clear distinction between signals that are quorum sensing dependent and those relying on alternative factors for their production. PMID:22390972

  11. Isolation and characterization of gallium resistant Pseudomonas aeruginosa mutants.

    PubMed

    García-Contreras, Rodolfo; Lira-Silva, Elizabeth; Jasso-Chávez, Ricardo; Hernández-González, Ismael L; Maeda, Toshinari; Hashimoto, Takahiro; Boogerd, Fred C; Sheng, Lili; Wood, Thomas K; Moreno-Sánchez, Rafael

    2013-12-01

    Pseudomonas aeruginosa PA14 cells resistant to the novel antimicrobial gallium nitrate (Ga) were developed using transposon mutagenesis and by selecting spontaneous mutants. The mutants showing the highest growth in the presence of Ga were selected for further characterization. These mutants showed 4- to 12-fold higher Ga minimal inhibitory growth concentrations and a greater than 8-fold increase in the minimum biofilm eliminating Ga concentration. Both types of mutants produced Ga resistant biofilms whereas the formation of wild-type biofilms was strongly inhibited by Ga. The gene interrupted in the transposon mutant was hitA, which encodes a periplasmic iron binding protein that delivers Fe³⁺ to the HitB iron permease; complementation of the mutant with the hitA gene restored the Ga sensitivity. This hitA mutant showed a 14-fold decrease in Ga internalization versus the wild-type strain, indicating that the HitAB system is also involved in the Ga uptake. Ga uptake in the spontaneous mutant was also lower, although no mutations were found in the hitAB genes. Instead, this mutant harbored 64 non-silent mutations in several genes including those of the phenazine pyocyanin biosynthesis. The spontaneous mutant produced 2-fold higher pyocyanin basal levels than the wild-type; the addition of this phenazine to wild-type cultures protected them from the Ga bacteriostatic effect. The present data indicate that mutations affecting Ga transport and probably pyocyanin biosynthesis enable cells to develop resistance to Ga.

  12. Characterization of temporal protein production in Pseudomonas aeruginosa biofilms.

    PubMed

    Southey-Pillig, Christopher J; Davies, David G; Sauer, Karin

    2005-12-01

    Phenotypic and genetic evidence supporting the notion of biofilm formation as a developmental process is growing. In the present work, we provide additional support for this hypothesis by identifying the onset of accumulation of biofilm-stage specific proteins during Pseudomonas aeruginosa biofilm maturation and by tracking the abundance of these proteins in planktonic and three biofilm developmental stages. The onset of protein production was found to correlate with the progression of biofilms in developmental stages. Protein identification revealed that proteins with similar function grouped within similar protein abundance patterns. Metabolic and housekeeping proteins were found to group within a pattern separate from virulence, antibiotic resistance, and quorum-sensing-related proteins. The latter were produced in a progressive manner, indicating that attendant features that are characteristic of biofilms such as antibiotic resistance and virulence may be part of the biofilm developmental process. Mutations in genes for selected proteins from several protein production patterns were made, and the impact of these mutations on biofilm development was evaluated. The proteins cytochrome c oxidase, a probable chemotaxis transducer, a two-component response regulator, and MexH were produced only in mature and late-stage biofilms. Mutations in the genes encoding these proteins did not confer defects in growth, initial attachment, early biofilm formation, or twitching motility but were observed to arrest biofilm development at the stage of cell cluster formation we call the maturation-1 stage. The results indicated that expression of theses genes was required for the progression of biofilms into three-dimensional structures on abiotic surfaces and the completion of the biofilm developmental cycle. Reverse transcription-PCR analysis confirmed the detectable change in expression of the respective genes ccoO, PA4101, and PA4208. We propose a possible mechanism for the

  13. Preparation and biophysical characterization of recombinant Pseudomonas aeruginosa phosphorylcholine phosphatase.

    PubMed

    Beassoni, Paola R; Berti, Federico Pérez de; Otero, Lisandro H; Risso, Valeria A; Ferreyra, Raul G; Lisa, Angela T; Domenech, Carlos E; Ermácora, Mario R

    2010-06-01

    Pseudomonas aeruginosa infections constitute a widespread health problem with high economical and social impact, and the phosphorylcholine phosphatase (PchP) of this bacterium is a potential target for antimicrobial treatment. However, drug design requires high-resolution structural information and detailed biophysical knowledge not available for PchP. An obstacle in the study of PchP is that current methods for its expression and purification are suboptimal and allowed only a preliminary kinetic characterization of the enzyme. Herein, we describe a new procedure for the efficient preparation of recombinant PchP overexpressed in Escherichia coli. The enzyme is purified from urea solubilized inclusion bodies and refolded by dialysis. The product of PchP refolding is a mixture of native PchP and a kinetically-trapped, alternatively-folded aggregate that is very slowly converted into the native state. The properly folded and fully active enzyme is isolated from the refolding mixture by size-exclusion chromatography. PchP prepared by the new procedure was subjected to chemical and biophysical characterization, and its basic optical, hydrodynamic, metal-binding, and catalytic properties are reported. The unfolding of the enzyme was also investigated, and its thermal stability was determined. The obtained information should help to compare PchP with other phosphatases and to obtain a better understanding of its catalytic mechanism. In addition, preliminary trials showed that PchP prepared by the new protocol is suitable for crystallization, opening the way for high-resolution studies of the enzyme structure.

  14. Structural basis for effectiveness of siderophore-conjugated monocarbams against clinically relevant strains of Pseudomonas aeruginosa

    SciTech Connect

    Han, Seungil; Zaniewski, Richard P.; Marr, Eric S.; Lacey, Brian M.; Tomaras, Andrew P.; Evdokimov, Artem; Miller, J. Richard; Shanmugasundaram, Veerabahu

    2012-02-08

    Pseudomonas aeruginosa is an opportunistic Gram-negative pathogen that causes nosocomial infections for which there are limited treatment options. Penicillin-binding protein PBP3, a key therapeutic target, is an essential enzyme responsible for the final steps of peptidoglycan synthesis and is covalently inactivated by {beta}-lactam antibiotics. Here we disclose the first high resolution cocrystal structures of the P. aeruginosa PBP3 with both novel and marketed {beta}-lactams. These structures reveal a conformational rearrangement of Tyr532 and Phe533 and a ligand-induced conformational change of Tyr409 and Arg489. The well-known affinity of the monobactam aztreonam for P. aeruginosa PBP3 is due to a distinct hydrophobic aromatic wall composed of Tyr503, Tyr532, and Phe533 interacting with the gem-dimethyl group. The structure of MC-1, a new siderophore-conjugated monocarbam complexed with PBP3 provides molecular insights for lead optimization. Importantly, we have identified a novel conformation that is distinct to the high-molecular-weight class B PBP subfamily, which is identifiable by common features such as a hydrophobic aromatic wall formed by Tyr503, Tyr532, and Phe533 and the structural flexibility of Tyr409 flanked by two glycine residues. This is also the first example of a siderophore-conjugated triazolone-linked monocarbam complexed with any PBP. Energetic analysis of tightly and loosely held computed hydration sites indicates protein desolvation effects contribute significantly to PBP3 binding, and analysis of hydration site energies allows rank ordering of the second-order acylation rate constants. Taken together, these structural, biochemical, and computational studies provide a molecular basis for recognition of P. aeruginosa PBP3 and open avenues for future design of inhibitors of this class of PBPs.

  15. Increased bactericidal activity of colistin on Pseudomonas aeruginosa biofilms in anaerobic conditions

    PubMed Central

    Kolpen, Mette; Appeldorff, Cecilie F.; Brandt, Sarah; Mousavi, Nabi; Kragh, Kasper N.; Aydogan, Sevtap; Uppal, Haleema A.; Bjarnsholt, Thomas; Ciofu, Oana; Høiby, Niels; Jensen, Peter Ø.

    2015-01-01

    Tolerance towards antibiotics of Pseudomonas aeruginosa biofilms is recognized as a major cause of therapeutic failure of chronic lung infection in cystic fibrosis (CF) patients. This lung infection is characterized by antibiotic-tolerant biofilms in mucus with zones of O2 depletion mainly due to polymorphonuclear leukocytic activity. In contrast to the main types of bactericidal antibiotics, it has not been possible to establish an association between the bactericidal effects of colistin and the production of detectable levels of OH ˙ on several strains of planktonic P. aeruginosa. Therefore, we propose that production of OH ˙ may not contribute significantly to the bactericidal activity of colistin on P. aeruginosa biofilm. Thus, we investigated the effect of colistin treatment on biofilm of wild-type PAO1, a catalase-deficient mutant (ΔkatA) and a colistin-resistant CF isolate cultured in microtiter plates in normoxic- or anoxic atmosphere with 1 mM nitrate. The killing of bacteria during colistin treatment was measured by CFU counts, and the OH⋅ formation was measured by 3′-(p-hydroxylphenyl fluorescein) fluorescein (HPF) fluorescence. Validation of the assay was done by hydrogen peroxide treatment. OH⋅ formation was undetectable in aerobic PAO1 biofilms during 3 h of colistin treatment. Interestingly, we demonstrate increased susceptibility of P. aeruginosa biofilms towards colistin during anaerobic conditions. In fact, the maximum enhancement of killing by anaerobic conditions exceeded 2 logs using 4 mg L−1 of colistin compared to killing at aerobic conditions. PMID:26458402

  16. D‐amino acids do not inhibit Pseudomonas aeruginosa biofilm formation

    PubMed Central

    Frye, Mitchell; Gagnon, Patricia; Vogel, Joseph P.; Chole, Richard

    2016-01-01

    Objective Pseudomonas aeruginosa, a known biofilm‐forming organism, is an opportunistic pathogen that plays an important role in chronic otitis media, tracheitis, cholesteatoma, chronic wounds, and implant infections. Eradication of biofilm infections has been a challenge because the biofilm phenotype provides bacteria with a protective environment from the immune system and antibiotics; thus, there has been great interest in adjunctive molecules that may inhibit biofilm formation or cause biofilm dispersal. There are reports that D‐amino acids may inhibit biofilms. In this study, we test the ability of various D‐amino acids to inhibit P. aeruginosa biofilm formation in vitro. Study Design We evaluated the effect of D‐alanine (10 mM), D‐leucine (10 mM), D‐methionine (10 mM), D‐tryptophan (10 mM), and D‐tyrosine (10 uM and 1 mM) on biofilm formation in two commonly studied laboratory strains of P. aeruginosa: PAO1 and PA14. Methods Biofilms were grown in 24‐well and 96‐well tissue culture plates, documented photographically and stained with 0.1% crystal violet and solubilized in 33% glacial acetic acid for quantification. Results In strains PAO1 and PA14, the addition of D‐amino acids did not result in an inhibitory effect on biofilm growth in 24‐well plates. Repeating the study in 96‐well plates confirmed our findings that D‐amino acids do not inhibit biofilm formation of P. aeruginosa. Conclusion We conclude that D‐amino acids only slow the production of biofilms rather than completely prevent biofilm formation; therefore, D‐amino acids represent a poor option for potential clinically therapeutic interventions. Level of Evidence N/A. PMID:28286870

  17. Biofilm Formation and Virulence Factors Among Pseudomonas aeruginosa Isolated From Burn Patients

    PubMed Central

    Ghanbarzadeh Corehtash, Zahra; Khorshidi, Ahmad; Firoozeh, Farzaneh; Akbari, Hosein; Mahmoudi Aznaveh, Azam

    2015-01-01

    Background: Pseudomonas aeruginosa possesses a variety of virulence factors and infections caused by multidrug-resistant P. aeruginosa (MDRPA) in burn patients are a public health problem. Objectives: The aim of this study was to determine the antibiotic resistance pattern, the biofilm formation, the prevalence of MDRPA and two virulence genes (nan1 and exoA) among P. aeruginosa isolated from burn patients. Patients and Methods: A total of 144 isolates of P. aeruginosa were collected from burn patient at the Burn Centre of Tehran, Iran, between March 2013 and July 2013. Antibiotic susceptibility test was performed via agar disk diffusion method. The ability of producing biofilm was examined by crystal violet microtiter plate assay and the prevalence of the exoA and nan1 genes among the isolates was determined by polymerase chain reaction (PCR). Results: A high rate of resistance was seen against ciprofloxacin (93.7%), aztreonam (86.8%), piperacillin (85.4%), ceftazidime (82.6%), amikacin (82%) and imipenem (79.2%). In total, 93.1% of the isolates were characterized as MDRPA. Biofilm formation was seen in 92.4% of the isolates. The prevalence of the exoA and nan1 genes were 75% and 11.8% among the isolates, respectively. Conclusions: The high rate of MDRPA and its ability to produce biofilm is an alarm for public health. The statistical analysis showed that biofilm production in the MDRPA isolates was significantly higher than that in the non–MDRPA isolates (P < 0.001). PMID:26587205

  18. Evaluation of efflux pumps gene expression in resistant Pseudomonas aeruginosa isolates in an Iranian referral hospital

    PubMed Central

    Pourakbari, Babak; Yaslianifard, Sahar; Yaslianifard, Somaye; Mahmoudi, Shima; Keshavarz-Valian, Sepideh; Mamishi, Setareh

    2016-01-01

    Background and Objectives: Pseudomonas aeruginosa (PA) is one of the most important causes of nosocomial infections and has an intrinsic resistance to many antibiotics. Among all the resistance-nodulation-division (RND) pumps of P. aeruginosa, MexAB-OprM is the first efflux pump found to target multiple classes of antibiotics. This study was aimed to evaluate the expression level of genes expressing MexAB-OprM in clinical isolates of P. aeruginosa. Materials and Methods: In this study, 45 P. aeruginosa strains were isolated from patients admitted to Children’s Medical Center Hospital, an Iranian referral hospital. Disk diffusion and Minimum Inhibitory Concentration (MIC) methods were used for determination of the patterns of resistance to antibiotics. Real-time PCR was used to investigate the expression level of genes of MexAB-OprM efflux pump. Results: Among 45 resistant PA isolates, the frequency of genes overexpression was as follows: MexA (n=25, 55.5%), MexB (n=24, 53.3%) and OprM (n=16, 35.5%). In addition, in 28 strains (62%) overexpression was observed in one of the studied three genes of MexAB-OprM efflux pump. Conclusion: In our study 28 isolates (62%) had increased expression level of efflux pumps genes, MexAB-OprM. Although the efflux pumps play important roles in increasing the resistance towards different antibiotics but the role of other agents and mechanisms in evolution of resistance should not be ignored. Since the concomitant overproduction of other Mex efflux systems might have additive effects on antibiotic resistance, the co-expressing of a multicomponent efflux pump is recommended. On the other hand, the concomitant overproduction of two Mex pumps might have additive effects on resistance to antibiotic. Therefore co-expressing of Mex efflux systems is recommended. PMID:28210464

  19. A High-Content, Phenotypic Screen Identifies Fluorouridine as an Inhibitor of Pyoverdine Biosynthesis and Pseudomonas aeruginosa Virulence.

    PubMed

    Kirienko, Daniel R; Revtovich, Alexey V; Kirienko, Natalia V

    2016-01-01

    Pseudomonas aeruginosa is an opportunistic pathogen that causes severe health problems. Despite intensive investigation, many aspects of microbial virulence remain poorly understood. We used a high-throughput, high-content, whole-organism, phenotypic screen to identify small molecules that inhibit P. aeruginosa virulence in Caenorhabditis elegans. Approximately half of the hits were known antimicrobials. A large number of hits were nonantimicrobial bioactive compounds, including the cancer chemotherapeutic 5-fluorouracil. We determined that 5-fluorouracil both transiently inhibits bacterial growth and reduces pyoverdine biosynthesis. Pyoverdine is a siderophore that regulates the expression of several virulence determinants and is critical for pathogenesis in mammals. We show that 5-fluorouridine, a downstream metabolite of 5-fluorouracil, is responsible for inhibiting pyoverdine biosynthesis. We also show that 5-fluorouridine, in contrast to 5-fluorouracil, is a genuine antivirulence compound, with no bacteriostatic or bactericidal activity. To our knowledge, this is the first report utilizing a whole-organism screen to identify novel compounds with antivirulent properties effective against P. aeruginosa. IMPORTANCE Despite intense research effort from scientists and the advent of the molecular age of biomedical research, many of the mechanisms that underlie pathogenesis are still understood poorly, if at all. The opportunistic human pathogen Pseudomonas aeruginosa causes a variety of soft tissue infections and is responsible for over 50,000 hospital-acquired infections per year. In addition, P. aeruginosa exhibits a striking degree of innate and acquired antimicrobial resistance, complicating treatment. It is increasingly important to understand P. aeruginosa virulence. In an effort to gain this information in an unbiased fashion, we used a high-throughput phenotypic screen to identify small molecules that disrupted bacterial pathogenesis and increased host

  20. Research on the treatment of Pseudomonas aeruginosa pneumonia in children by macrolide antibiotics

    PubMed Central

    Huang, Xu-qiang; Deng, Li; Lu, Gen; He, Chun-hui; Wu, Pei-qiong; Xie, Zhi-wei; Ashraf, Muhammad Aqeel

    2015-01-01

    To observe a therapeutic effect of macrolide antibiotics in children with Pseudomonas aeruginosa pneumonia. Fifty-four cases of children with Pseudomonas aeruginosa pneumonia were randomly divided into an observation group (n=30) and a control group (n=24). The observation group was treated with macrolide antibiotics and cefoperazone/sulbactam. The control group was treated with cefoperazone/sulbactam during a course of 10–14 days. The total effective rate was 93.3% in the observation group, and 58.3% in the control group, and results in the observation group were superior to the control group notably (P>0.05). There were no significant differences in bacterial clearance rate, adverse reaction rate between two groups (P>0.05). The combined application of cefoperazone/sulbactam with macrolide antibiotics to treat Pseudomonas aeruginosa pneumonia in children would be a more effective clinical method. PMID:28352740

  1. Multidrug resistant Pseudomonas aeruginosa infection in children undergoing chemotherapy and hematopoietic stem cell transplantation

    PubMed Central

    Caselli, Désirée; Cesaro, Simone; Ziino, Ottavio; Zanazzo, Giulio; Manicone, Rosaria; Livadiotti, Susanna; Cellini, Monica; Frenos, Stefano; Milano, Giuseppe M.; Cappelli, Barbara; Licciardello, Maria; Beretta, Chiara; Aricò, Maurizio; Castagnola, Elio

    2010-01-01

    Pseudomonas aeruginosa is one leading gram-negative organism associated with nosocomial infections. Bacteremia is life-threatening in the immunocompromised host. Increasing frequency of multi-drug-resistant (MDRPA) strains is concerning. We started a retrospective survey in the pediatric hematology oncology Italian network. Between 2000 and 2008, 127 patients with Pseudomonas aeruginosa bacteremia were reported from 12 centers; 31.4% of isolates were MDRPA. Death within 30 days of a positive blood culture occurred in 19.6% (25/127) of total patients; in patients with MDRPA infection it occurred in 35.8% (14/39). In the multivariate analysis, only MDRPA had significant association with infection-related death. This is the largest series of Pseudomonas aeruginosa bacteremia cases from pediatric hematology oncology centers. Monitoring local bacterial isolates epidemiology is mandatory and will allow empiric antibiotic therapy to be tailored to reduce fatalities. PMID:20305140

  2. Strong incidence of Pseudomonas aeruginosa on bacterial rrs and ITS genetic structures of cystic fibrosis sputa

    PubMed Central

    Pages-Monteiro, Laurence; Marti, Romain; Commun, Carine; Alliot, Nolwenn; Bardel, Claire; Meugnier, Helene; Perouse-de-Montclos, Michele; Reix, Philippe; Durieu, Isabelle; Durupt, Stephane; Vandenesch, Francois; Freney, Jean; Cournoyer, Benoit; Doleans-Jordheim, Anne

    2017-01-01

    Cystic fibrosis (CF) lungs harbor a complex community of interacting microbes, including pathogens like Pseudomonas aeruginosa. Meta-taxogenomic analysis based on V5-V6 rrs PCR products of 52 P. aeruginosa-positive (Pp) and 52 P. aeruginosa-negative (Pn) pooled DNA extracts from CF sputa suggested positive associations between P. aeruginosa and Stenotrophomonas and Prevotella, but negative ones with Haemophilus, Neisseria and Burkholderia. Internal Transcribed Spacer analyses (RISA) from individual DNA extracts identified three significant genetic structures within the CF cohorts, and indicated an impact of P. aeruginosa. RISA clusters Ip and IIIp contained CF sputa with a P. aeruginosa prevalence above 93%, and of 24.2% in cluster IIp. Clusters Ip and IIIp showed lower RISA genetic diversity and richness than IIp. Highly similar cluster IIp RISA profiles were obtained from two patients harboring isolates of a same P. aeruginosa clone, suggesting convergent evolution in the structure of their microbiota. CF patients of cluster IIp had received significantly less antibiotics than patients of clusters Ip and IIIp but harbored the most resistant P. aeruginosa strains. Patients of cluster IIIp were older than those of Ip. The effects of P. aeruginosa on the RISA structures could not be fully dissociated from the above two confounding factors but several trends in these datasets support the conclusion of a strong incidence of P. aeruginosa on the genetic structure of CF lung microbiota. PMID:28282386

  3. Nosocomial Infections with IMP-19−Producing Pseudomonas aeruginosa Linked to Contaminated Sinks, France

    PubMed Central

    Amoureux, Lucie; Riedweg, Karena; Chapuis, Angélique; Bador, Julien; Siebor, Eliane; Péchinot, André; Chrétien, Marie-Lorraine; de Curraize, Claire

    2017-01-01

    We isolated IMP-19–producing Pseudomonas aeruginosa from 7 patients with nosocomial infections linked to contaminated sinks in France. We showed that blaIMP-19 was located on various class 1 integrons among 8 species of gram-negative bacilli detected in sinks: P. aeruginosa, Achromobacter xylosoxidans, A. aegrifaciens, P. putida, Stenotrophomonas maltophilia, P. mendocina, Comamonas testosteroni, and Sphingomonas sp. PMID:28098548

  4. Antibiotic Tolerance Induced by Lactoferrin in Clinical Pseudomonas aeruginosa Isolates from Cystic Fibrosis Patients

    PubMed Central

    Andrés, María T.; Viejo-Diaz, Mónica; Pérez, Francisco; Fierro, José F.

    2005-01-01

    Lactoferrin-induced cell depolarization and a delayed tobramycin-killing effect on Pseudomonas aeruginosa cells were correlated. This antibiotic tolerance effect (ATE) reflects the ability of a defense protein to modify the activity of an antibiotic as a result of its modulatory effect on bacterial physiology. P. aeruginosa isolates from cystic fibrosis patients showed higher ATE values (≤6-fold) than other clinical strains. PMID:15793153

  5. Growing Menace of Antibacterial Resistance in Clinical Isolates of Pseudomonas aeruginosa in Nepal: An Insight of Beta-Lactamase Production

    PubMed Central

    Dhital, Rabindra; Puri, Ram; Chaudhary, Niraj; Khatiwada, Suresh

    2016-01-01

    Introduction. Pseudomonas aeruginosa is the most frequently isolated organism as it acts as the opportunistic pathogen and can cause infections in immunosuppressed patients. The production of different types of beta-lactamases renders this organism resistant to many commonly used antimicrobials. Therefore, the aim of this study was to document the antibiotic resistance rate in Pseudomonas aeruginosa isolated from different clinical specimens. Methods. Pseudomonas aeruginosa recovered was identified by standard microbiological methods. Antibiotic susceptibility testing was performed by modified Kirby-Bauer disc diffusion method following Clinical and Laboratory Standard Institute (CLSI) guidelines and all the suspected isolates were tested for the production of ESBLs, MBLs, and AmpC. Results. Out of total (178) isolates, 83.1% were recovered from the inpatient department (IPD). Majority of the isolates mediated resistance towards the beta-lactam antibiotics, while nearly half of the isolates were resistant to ciprofloxacin. Most of the aminoglycosides used showed resistance rate up to 75% but amikacin proved to be better option. No resistance to polymyxin was observed. ESBLs, MBLs, and AmpC mediated resistance was seen in 33.1%, 30.9%, and 15.7% isolates, respectively. Conclusions. Antibiotic resistance rate and beta-lactamase mediated resistance were high. Thus, regular surveillance of drug resistance is of utmost importance. PMID:27642599

  6. Swimming Behavior of Pseudomonas aeruginosa Studied by Holographic 3D Tracking

    PubMed Central

    Vater, Svenja M.; Weiße, Sebastian; Maleschlijski, Stojan; Lotz, Carmen; Koschitzki, Florian; Schwartz, Thomas; Obst, Ursula; Rosenhahn, Axel

    2014-01-01

    Holographic 3D tracking was applied to record and analyze the swimming behavior of Pseudomonas aeruginosa. The obtained trajectories allow to qualitatively and quantitatively analyze the free swimming behavior of the bacterium. This can be classified into five distinct swimming patterns. In addition to the previously reported smooth and oscillatory swimming motions, three additional patterns are distinguished. We show that Pseudomonas aeruginosa performs helical movements which were so far only described for larger microorganisms. Occurrence of the swimming patterns was determined and transitions between the patterns were analyzed. PMID:24498187

  7. Metabolic profile of sodium dodecyl sulphate (SDS) biodegradation by Pseudomonas aeruginosa (MTCC 10311).

    PubMed

    Ambily, P S; Jisha, M S

    2014-09-01

    Sodium dodecyl sulfate (SDS) is one of the main components in the detergent and cosmetic industries. Its bioremediation by suitable microorganism has received greater attention. Pseudomonas aeruginosa MTCC 10311 was isolated from detergent contaminated soil which had degraded 96% of SDS in 48 hrs. Attempts were made to study the metabolic byproducts of SDS degradation using GC-MS analysis. Analysis of ether extracts of surfactant established the sequential production of Dodecanol, Dodecanal and Decanoic acid. At this point, the pathway diverged into the formation of acid residues through beta oxidation. This SDS degrading isolate, Pseudomonas aeruginosa can be exploited for decontamination of detergent contaminated waste water.

  8. Expeditive synthesis of trithiotriazine-cored glycoclusters and inhibition of Pseudomonas aeruginosa biofilm formation

    PubMed Central

    Smadhi, Meriem; Gingras, Marc; Abderrahim, Raoudha

    2014-01-01

    Summary Readily accessible, low-valency glycoclusters based on a triazine core bearing D-galactose and L-fucose epitopes are able to inhibit biofilm formation by Pseudomonas aeruginosa. These multivalent ligands are simple to synthesize, are highly soluble, and can be either homofunctional or heterofunctional. The galactose-decorated cluster shows good affinity for Pseudomonas aeruginosa lectin lecA. They are convenient biological probes for investigating the roles of lecA and lecB in biofilm formation. PMID:25246957

  9. Biodegradation of methyl parathion and endosulfan using Pseudomonas aeruginosa and Trichoderma viridae.

    PubMed

    Senthilkumar, S; Anthonisamy, A; Arunkumar, S; Sivakumari, V

    2011-01-01

    Microorganisms play an important role in the bioconversion and total breakdown of pesticides in the environment. This study was conducted to assess the pesticide degradation (endosulfan and methyl parathion) ability of the bacteria and fungi (Pseudomonas aeruginosa and Trichoderma viridae). The screening test conducted to reveal the ability to degrade endosulfan and methyl parathion shows that Trichoderma viridae was effective compared to Pseudomonas aeruginosa. The pesticide degradation was estimated by optical density method. Methyl parathion was highly degraded compared to endosulfan. This study clearly proves that pesticides and their residue degradation can be accelerated by employing microbes which can be effectively utilized both as biocontrol agent and soil cleanser.

  10. Selection of phages and conditions for the safe phage therapy against Pseudomonas aeruginosa infections.

    PubMed

    Krylov, Victor; Shaburova, Olga; Pleteneva, Elena; Krylov, Sergey; Kaplan, Alla; Burkaltseva, Maria; Polygach, Olga; Chesnokova, Elena

    2015-02-01

    The emergence of multidrug-resistant bacterial pathogens forced us to consider the phage therapy as one of the possible alternative approaches to treatment. The purpose of this paper is to consider the conditions for the safe, long-term use of phage therapy against various infections caused by Pseudomonas aeruginosa. We describe the selection of the most suitable phages, their most effective combinations and some approaches for the rapid recognition of phages unsuitable for use in therapy. The benefits and disadvantages of the various different approaches to the preparation of phage mixtures are considered, together with the specific conditions that are required for the safe application of phage therapy in general hospitals and the possibilities for the development of personalized phage therapy.

  11. Reduced virulence of Pseudomonas aeruginosa grown in the presence of benzalkonium chloride.

    PubMed Central

    Adair, F W; Liauw, H L; Geftic, S G; Gelzer, J

    1975-01-01

    Resistant cells of Pseudomonas aeruginosa ATCC 9027 which were grown in the presence of 1 mg of benzalkonium chloride (BC) per ml caused only a mild conjunctivitis when they were dropped onto the scratched corneas of rabbits. In contrast, cells of the BC-sensitive parent strain induced a severe keratoconjunctivitis. In addition, the BC-grown cells also had a reduced capacity to produce kidney infections in mice as compared to the parent strain. BC-grown cells acted as weak complex antigens which conferred slight protection against lethal doses of BC-grown cells. No cross-protection to cells of the parent strain occurred. The data indicate that growth in the presence of BC results in cells with reduced virulence. Images PMID:809470

  12. Pseudomonas aeruginosa biofilm growth inhibition on medical plastic materials by immobilized esterases and acylase.

    PubMed

    Kisch, Johannes Martin; Utpatel, Christian; Hilterhaus, Lutz; Streit, Wolfgang R; Liese, Andreas

    2014-09-05

    Biofilms are matrix-encapsulated cell aggregates that cause problems in technical and health-related areas; for example, 65 % of all human infections are biofilm associated. This is mainly due to their ameliorated resistance against antimicrobials and immune systems. Pseudomonas aeruginosa, a biofilm-forming organism, is commonly responsible for nosocomial infections. Biofilm development is partly mediated by signal molecules, such as acyl-homoserine lactones (AHLs) in Gram-negative bacteria. We applied horse liver esterase, porcine kidney acylase, and porcine liver esterase; these can hydrolyze AHLs, thereby inhibiting biofilm formation. As biofilm infections are often related to foreign material introduced into the human body, we immobilized the enzymes on medical plastic materials. Biofilm formation was quantified by Crystal Violet staining and confocal laser scanning microscopy, revealing up to 97 % (on silicone), 54 % (on polyvinyl chloride), and 77 % (on polyurethane) reduced biomass after 68 h growth.

  13. Antibacterial effect of gallium and silver on Pseudomonas aeruginosa treated with gallium-silver-phosphate-based glasses.

    PubMed

    Valappil, Sabeel P; Higham, Susan M

    2014-01-01

    Gallium and silver incorporated phosphate-based glasses were evaluated for antibacterial effect on the growth of Pseudomonas aeruginosa, which is a leading cause of opportunistic infections. The glasses were produced by conventional melt quenching methods at 1100°C for 1 h. Glass degradation studies were conducted by weight loss method. Disc diffusion assay and cell viability assay displayed statistically significant (p ≤ 0.0005) effect on P. aeruginosa growth which increased with decreasing calcium content in the glasses. The gallium ion release rates (1.83, 0.69 and 0.48 ppm·h(-1)) and silver ion release rates (2.97, 2.84 and 2.47 ppm·h(-1)) were found to account for this variation. Constant depth film fermentor was used to evaluate the anti-biofilm properties of the glasses. Both gallium and silver in the glass contributed to biofilm growth inhibitory effect on P. aeruginosa (up to 2.68 reduction in log 10 values of the viable counts compared with controls). The glasses were found to deliver gallium and silver in a controlled way and exerted cumulative antibacterial action on planktonic and biofilm growth of P. aeruginosa. The antibacterial, especially anti-biofilm, properties of the gallium and silver incorporated phosphate-based glasses make them a potential candidate to combat infections caused by P. aeruginosa.

  14. [Molecular typification of Pseudomonas aeruginosa strains isolated from patients with cystic fibrosis].

    PubMed

    Iglesias, N G; Marengo, J M; Rentería, F; Gatti, B; Segal, E; Semorile, L

    2008-01-01

    Cystic fibrosis is the most frequent lethal genetic disease that affects the caucasian population. The main cause of morbidity is the chronic lung infection, being the infection caused by Pseudomonas aeruginosa the most difficult to eradicate. This bacteria can be acquired in direct form, by person-to-person transfer, or indirectly, by hospital acquired infection. The Centro Provincial de Referencia de Fibrosis Quistica functioning in the Hospital de Niños "Sor María Ludovica", in La Plata, cares almost 220 patients aged two months to 45 years. The life expectancy depends of factors like the early diagnosis of the disease and the later acquisition of the chronic lung infection. The purpose of this work was the molecular typing of P. aeruginosa isolates obtained from cystic fibrosis patients to evaluate the genomic relationship among them. The study was carried out using RAPD-PCR. The analysis showed a great genetic heterogeneity among the isolates. The separation of the patients in groups in accordance with its bacteriology, that implies the attendance in different days and the implementation of isolation (or segregation) measures had demonstrated to be, in addition to other strategies, effective in the reduction of cross infections.

  15. Pseudomonas aeruginosa porphobilinogen synthase assembly state regulators: hit discovery and initial SAR studies

    PubMed Central

    Reitz, Allen B.; Ramirez, Ursula D.; Stith, Linda; Du, Yanming; Smith, Garry R.; Jaffe, Eileen K.

    2010-01-01

    Porphobilinogen synthase (PBGS) catalyzes the first common step in the biosynthesis of the essential heme, chlorophyll and vitamin B12 heme pigments. PBGS activity is regulated by assembly state, with certain oligomers exhibiting biological activity and others either partially or completely inactive, affording an innovative means of allosteric drug action. Pseudomonas aeruginosa PBGS is functionally active as an octamer, and inactive as a dimer. We have identified a series of compounds that stabilize the inactive P. aeruginosa dimer by a computational prescreen followed by native PAGE gel mobility shift analysis. From those results, we have prepared related thiadiazoles and evaluated their ability to regulate P. aeruginosa PBGS assembly state. PMID:21643541

  16. Specific cleavage of human type III and IV collagens by Pseudomonas aeruginosa elastase.

    PubMed Central

    Heck, L W; Morihara, K; McRae, W B; Miller, E J

    1986-01-01

    Purified Pseudomonas aeruginosa elastase cleaved human type III and IV collagens with the formation of specific cleavage products. Furthermore, type I collagen appeared to be slowly cleaved by both P. aeruginosa elastase and alkaline protease. These cleavage fragments from type III and IV collagens were separated from the intact collagen chains by SDS polyacrylamide gradient gel electrophoresis run under reducing conditions, and they were detected by their characteristic Coomassie blue staining pattern. The results of these studies suggest that the pathogenesis of tissue invasion and hemorrhagic tissue necrosis observed in P. aeruginosa infections may be related to the degradation of these collagen types by bacterial extracellular proteases. Images PMID:3079727

  17. R-type pyocin is required for competitive growth advantage between Pseudomonas aeruginosa strains.

    PubMed

    Heo, Yun-Jeong; Chung, In-Young; Choi, Kelly B; Cho, You-Hee

    2007-01-01

    R-type pyocin is a bacteriophage tail-shaped bacteriocin produced by Pseudomonas aeruginosa, but its physiological roles are relatively unknown. Here we describe a role of R-type pyocin in the competitive growth advantages between P. aeruginosa strains. Partial purification and gene disruption revealed that the major killing activity from the culture supernatant of PA14 is attributed to R-type pyocin, neither F-type nor S-type pyocins. These findings may provide insight into the forces governing P. aeruginosa population dynamics to promote and maintain its biodiversity.

  18. Enzyme-Mediated Quenching of the Pseudomonas Quinolone Signal (PQS) Promotes Biofilm Formation of Pseudomonas aeruginosa by Increasing Iron Availability

    PubMed Central

    Tettmann, Beatrix; Niewerth, Christine; Kirschhöfer, Frank; Neidig, Anke; Dötsch, Andreas; Brenner-Weiss, Gerald; Fetzner, Susanne; Overhage, Joerg

    2016-01-01

    The 2-alkyl-3-hydroxy-4(1H)-quinolone 2,4-dioxygenase HodC was previously described to cleave the Pseudomonas quinolone signal, PQS, which is exclusively used in the complex quorum sensing (QS) system of Pseudomonas aeruginosa, an opportunistic pathogen employing QS to regulate virulence and biofilm development. Degradation of PQS by exogenous addition of HodC to planktonic cells of P. aeruginosa attenuated production of virulence factors, and reduced virulence in planta. However, proteolytic cleavage reduced the efficacy of HodC. Here, we identified the secreted protease LasB of P. aeruginosa to be responsible for HodC degradation. In static biofilms of the P. aeruginosa PA14 lasB::Tn mutant, the catalytic activity of HodC led to an increase in viable biomass in newly formed but also in established biofilms, and reduced the expression of genes involved in iron metabolism and siderophore production, such as pvdS, pvdL, pvdA, and pvdQ. This is likely due to an increase in the levels of bioavailable iron by degradation of PQS, which is able to sequester iron from the surrounding environment. Thus, HodC, despite its ability to quench the production of virulence factors, is contraindicated for combating P. aeruginosa biofilms. PMID:28018312

  19. Assessment of biofilm formation in Pseudomonas aeruginosa by antisense mazE-PNA.

    PubMed

    Valadbeigi, Hassan; Sadeghifard, Nourkhoda; Salehi, Majid Baseri

    2017-03-01

    The hallmark patogenicity in Pseudomonas aeruginosa (P. aeruginosa) is biofilm formation that is not easy to eradicate, because it has variety mechanisms for antibiotic resistance. In addition, toxin-antitoxin (TA) system may play role in biofilm formation. The current study aimed to evaluate the role of TA loci in biofilm formation. Therefore, 18 P. aeruginosa clinical isolates were collected and evaluated for specific biofilm and TA genes. The analysis by RT-qPCR demonstrated that expression of mazE antitoxin in biofilm formation was increase. On the other hand, mazE antitoxin TA system was used as target for antisense PNA. mazE-PNA was able to influence in biofilm formation and was inhibit at 5,10 and 15 μM concentrations biofilm formation in P. aeruginosa. Therefore, it could be highlighted target for anti-biofilm target to eradicate P. aeruginosa biofilm producer.

  20. Pseudomonas aeruginosa PAO1 resistance to Zinc pyrithione: phenotypic changes suggest the involvement of efflux pumps.

    PubMed

    Abdel Malek, Suzanne M; Al-Adham, Ibrahim S; Matalka, Khalid Z; Collier, Philip J

    2009-08-01

    The aim of this study is to investigate the involvement of an efflux pump in the development of Pseudomonas aeruginosa resistance to zinc pyrithione (ZnPT). In the presence of efflux inhibitor carbonyl cyanide m-chlorophenyl-hydrazone (CCCP), the minimum inhibitory concentration of ZnPT for P. aeruginosa resistant cells is reduced significantly (p < 0.05). In addition, the concentration of ZnPT excluded by the resistant bacteria was reduced significantly (p < 0.01). However, the above reductions did not reach the levels measured for P. aeruginosa PAO1 sensitive strain. Furthermore, such changes in P. aeruginosa resistant cells were correlated with the overexpression of outer membrane proteins, reduced sensitivity toward imipenem (p < 0.01) and increased sensitivity toward sulphatriad and chloramphenicol (p < 0.05). In a continuation to a previous study, we conclude that P. aeruginosa resistance to ZnPT is multifactorial and involves induced efflux systems.

  1. Insights into the respiratory tract microbiota of patients with cystic fibrosis during early Pseudomonas aeruginosa colonization

    DOE PAGES

    Keravec, Marlène; Mounier, Jérôme; Prestat, Emmanuel; ...

    2015-08-09

    Pseudomonas aeruginosa plays a major role in cystic fibrosis (CF) progression. Therefore, it is important to understand the initial steps of P. aeruginosa infection. The structure and dynamics of CF respiratory tract microbial communities during the early stages of P. aeruginosa colonization were characterized by pyrosequencing and cloning-sequencing. The respiratory microbiota showed high diversity, related to the young age of the CF cohort (mean age 10 years). Wide inter- and intra-individual variations were revealed. A common core microbiota of 5 phyla and 13 predominant genera was found, the majority of which were obligate anaerobes. A few genera were significantly moremore » prevalent in patients never infected by P. aeruginosa. Persistence of an anaerobic core microbiota regardless of P. aeruginosa status suggests a major role of certain anaerobes in the pathophysiology of lung infections in CF. Some genera may be potential biomarkers of pulmonary infection state.« less

  2. Insights into the respiratory tract microbiota of patients with cystic fibrosis during early Pseudomonas aeruginosa colonization

    SciTech Connect

    Keravec, Marlene; Mounier, Jerome; Prestat , Emmanuel; Vallet, Sophie; Jansson, Janet K.; Bergaud , Gaetaqn; Rosec, Silvain; Gourious, Stephanie; Rault, Gilles; Coton, Emmanuel; Barbier, George; Hery-Arnaud, Geneveieve

    2015-08-09

    Abstract Pseudomonas aeruginosa plays a major role in cystic fibrosis (CF) progression. Therefore, it is important to understand the initial steps of P. aeruginosa infection. The structure and dynamics of CF respiratory tract microbial communities during the early stages of P. aeruginosa colonization were characterized by pyrosequencing and cloning-sequencing. The respiratory microbiota showed high diversity, related to the young age of the CF cohort (mean age 10 years). Wide inter- and intra-individual variations were revealed. A common core microbiota of 5 phyla and 13 predominant genera was found, the majority of which were obligate anaerobes. A few genera were significantly more prevalent in patients never infected by P. aeruginosa. Persistence of an anaerobic core microbiota regardless of P. aeruginosa status suggests a major role of certain anaerobes in the pathophysiology of lung infections in CF. Some genera may be potential biomarkers of pulmonary infection state.

  3. Pseudomonas aeruginosa on vinyl-canvas inflatables and foam teaching aids in swimming pools.

    PubMed

    Schets, F M; van den Berg, H H J L; Baan, R; Lynch, G; de Roda Husman, A M

    2014-12-01

    Swimming pool-related Pseudomonas aeruginosa infections mainly result in folliculitis and otitis externa. P. aeruginosa forms biofilms on surfaces in the swimming pool environment. The presence of P. aeruginosa on inflatables and foam teaching aids in 24 public swimming pools in the Netherlands was studied. Samples (n = 230) were taken from 175 objects and analysed for P. aeruginosa by culture. Isolated P. aeruginosa were tested for antibiotic resistance by disk diffusion. P. aeruginosa was detected in 63 samples (27%), from 47 objects (27%) in 19 (79%) swimming pools. More vinyl-canvas objects (44%) than foam objects (20%) were contaminated, as were wet objects (43%) compared to dry objects (13%). Concentrations were variable, and on average higher on vinyl-canvas than on foam objects. Forty of 193 (21%) P. aeruginosa isolates from 11 different objects were (intermediate) resistant to one or more of 12 clinically relevant antibiotics, mostly to imipenem and aztreonam. The immediate risk of a P. aeruginosa infection from exposure to swimming pool objects seems limited, but the presence of P. aeruginosa on pool objects is unwanted and requires attention of pool managers and responsible authorities. Strict drying and cleaning policies are needed for infrequently used vinyl-canvas objects.

  4. Cystic fibrosis transmembrane conductance regulator and caveolin-1 regulate epithelial cell internalization of Pseudomonas aeruginosa

    PubMed Central

    Bajmoczi, Milan; Gadjeva, Mihaela; Alper, Seth L.; Pier, Gerald B.; Golan, David E.

    2009-01-01

    Patients with cystic fibrosis (CF) exhibit defective innate immunity and are susceptible to chronic lung infection with Pseudomonas aeruginosa. To investigate the molecular bases for the hypersusceptibility of CF patients to P. aeruginosa, we used the IB3-1 cell line with two defective CF transmembrane conductance regulator (CFTR) genes (ΔF508/W1282X) to generate isogenic stable, clonal lung epithelial cells expressing wild-type (WT)-CFTR with an NH2-terminal green fluorescent protein (GFP) tag. GFP-CFTR exhibited posttranslational modification, subcellular localization, and anion transport function typical of WT-CFTR. P. aeruginosa internalization, a component of effective innate immunity, required functional CFTR and caveolin-1, as shown by: 1) direct correlation between GFP-CFTR expression levels and P. aeruginosa internalization; 2) enhanced P. aeruginosa internalization by aminoglycoside-induced read through of the CFTR W1282X allele in IB3-1 cells; 3) decreased P. aeruginosa internalization following siRNA knockdown of GFP-CFTR or caveolin-1; and 4) spatial association of P. aeruginosa with GFP-CFTR and caveolin-1 at the cell surface. P. aeruginosa internalization also required free lateral diffusion of GFP-CFTR, allowing for bacterial coclustering with GFP-CFTR and caveolin-1 at the plasma membrane. Thus efficient initiation of innate immunity to P. aeruginosa requires formation of an epithelial “internalization platform” involving both caveolin-1 and functional, laterally mobile CFTR. PMID:19386787

  5. Cystic fibrosis transmembrane conductance regulator and caveolin-1 regulate epithelial cell internalization of Pseudomonas aeruginosa.

    PubMed

    Bajmoczi, Milan; Gadjeva, Mihaela; Alper, Seth L; Pier, Gerald B; Golan, David E

    2009-08-01

    Patients with cystic fibrosis (CF) exhibit defective innate immunity and are susceptible to chronic lung infection with Pseudomonas aeruginosa. To investigate the molecular bases for the hypersusceptibility of CF patients to P. aeruginosa, we used the IB3-1 cell line with two defective CF transmembrane conductance regulator (CFTR) genes (DeltaF508/W1282X) to generate isogenic stable, clonal lung epithelial cells expressing wild-type (WT)-CFTR with an NH(2)-terminal green fluorescent protein (GFP) tag. GFP-CFTR exhibited posttranslational modification, subcellular localization, and anion transport function typical of WT-CFTR. P. aeruginosa internalization, a component of effective innate immunity, required functional CFTR and caveolin-1, as shown by: 1) direct correlation between GFP-CFTR expression levels and P. aeruginosa internalization; 2) enhanced P. aeruginosa internalization by aminoglycoside-induced read through of the CFTR W1282X allele in IB3-1 cells; 3) decreased P. aeruginosa internalization following siRNA knockdown of GFP-CFTR or caveolin-1; and 4) spatial association of P. aeruginosa with GFP-CFTR and caveolin-1 at the cell surface. P. aeruginosa internalization also required free lateral diffusion of GFP-CFTR, allowing for bacterial coclustering with GFP-CFTR and caveolin-1 at the plasma membrane. Thus efficient initiation of innate immunity to P. aeruginosa requires formation of an epithelial "internalization platform" involving both caveolin-1 and functional, laterally mobile CFTR.

  6. Synthesis, processing, and transport of Pseudomonas aeruginosa elastase.

    PubMed

    Kessler, E; Safrin, M

    1988-11-01

    Three cell-associated elastase precursors with approximate molecular weights of 60,000 (P), 56,000 (Pro I), and 36,000 (Pro II) were identified in Pseudomonas aeruginosa cells by pulse-labeling with [35S]methionine and immunoprecipitation. In the absence of inhibitors, cells of a wild-type strain as well as those of the secretion-defective mutant PAKS 18 accumulated Pro II as the only elastase-related radioactive protein. EDTA but not EGTA [ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid] inhibited the formation of Pro II, and this inhibition was accompanied by the accumulation of Pro I. P accumulated in cells labeled in the presence of ethanol (with or without EDTA), dinitrophenol plus EDTA, or carbonyl cyanide m-chlorophenyl hydrazone plus EDTA. Pro I and Pro II were localized to the periplasm, and as evident from pulse-chase experiments, Pro I was converted to the mature extracellular enzyme with Pro II as an intermediate of the reaction. P was located to the membrane fraction. Pro I but not Pro II was immunoprecipitated by antibodies specific to a protein of about 20,000 molecular weight (P20), which, as we showed before (Kessler and Safrin, J. Bacteriol. 170:1215-1219, 1988), forms a complex with an inactive periplasmic elastase precursor of about 36,000 molecular weight. Our results suggest that the elastase is made by the cells as a preproenzyme (P), containing a signal sequence of about 4,000 molecular weight and a "pro" sequence of about 20,000 molecular weight. Processing and export of the preproenzyme involve the formation of two periplasmic proenzyme species: proelastase I (56 kilodaltons [kDa]) and proelastase II (36 kDa). The former is short-lived, whereas proelastase II accumulates temporarily in the periplasm, most likely as a complex with the 20-kDa propeptide released from proelastase I upon conversion to proelastase II. The final step in elastase secretion seems to required both the proteolytic removal of a small peptide

  7. Extensive reduction of cell viability and enhanced matrix production in Pseudomonas aeruginosa PAO1 flow biofilms treated with a D-amino acid mixture.

    PubMed

    Sanchez, Zoe; Tani, Akio; Kimbara, Kazuhide

    2013-02-01

    Treatment of Pseudomonas aeruginosa PAO1 flow biofilms with a D-amino acid mixture caused significant reductions in cell biomass by 75% and cell viability by 71%. No biofilm disassembly occurred, and matrix production increased by 30%, thereby providing a thick protective cover for remaining viable or persister cells.

  8. Successful treatment of multi-resistant Pseudomonas aeruginosa osteomyelitis after allogeneic bone marrow transplantation with a combination of colistin and tigecycline.

    PubMed

    Stanzani, Marta; Tumietto, Fabio; Giannini, Maria Benedetta; Bianchi, Giuseppe; Nanetti, Anna; Vianelli, Nicola; Arpinati, Mario; Giovannini, Maddalena; Bonifazi, Francesca; Bandini, Giuseppe; Baccarani, Michele

    2007-12-01

    A case of osteomyelitis caused by multidrug-resistant Pseudomonas aeruginosa is reported in a patient who underwent allogeneic bone marrow transplantation for acute lymphoblastic leukaemia. The patient was successfully treated by prolonged administration of a full dose of colistin and tigecycline, and surgical curettage with the positioning of resorbable calcium sulfate pellets loaded with colistin.

  9. [Performance evaluation of VITEK 2 system in meropenem susceptibility testing of clinical Pseudomonas aeruginosa isolates].

    PubMed

    Acuner, Ibrahim Cağatay; Bayramoğlu, Gülçin; Birinci, Asuman; Cekiç Cihan, Ciğdem; Bek, Yüksel; Durupınar, Belma

    2011-07-01

    Pseudomonas aeruginosa is an important opportunistic pathogen associated with various community-acquired or nosocomial infections. Multi-drug resistant P.aeruginosa strains increasingly cause epidemics and spread in various hospital wards and geographic regions. Carbapenems are among the most effective antimicrobials in the treatment of multi-drug resistant P.aeruginosa infections, and meropenem is the most successful among alternatives in initial therapy. Particularly in severe infections, inappropriate or inadequate initial antimicrobial therapy is independently associated with adverse clinical and economic outcomes. Availability of accurate and rapid susceptibility testing is a priority. Most of the automated microbiology systems can provide rapid results within 8 to 12 hours. In comparison to standard methods, problems in the antimicrobial susceptibility testing of particular microorganisms and antimicrobial agents have been reported for automated microbiology systems. Failures have been reported previously especially in the susceptibility testing of P.aeruginosa versus carbapenem. Most of these studies are designed according to the Food and Drug Administration (FDA, USA) performance analysis scheme (Class II Special Controls Guidance Document: Antimicrobial Susceptibility Test Systems) in a simplified form. However, there are many lacking issues in the design of most of these studies. Among these, insufficient sample size, use of inappropriate reference method, lack of reproducibility testing, and inadequate distribution of study isolates in interpretative categories are of notice. There are only few studies in the literature that evaluate the performance of automated systems in antimicrobial susceptibility testing of carbapenems in clinical P.aeruginosa isolates with a sufficient sample size (n ? 100). However, most of these studies still have one or more major deficiencies in the study design. Furthermore, none of these studies evaluate the performance of

  10. Impact of fish oils on the outcomes of a mouse model of acute Pseudomonas aeruginosa pulmonary infection.

    PubMed

    Caron, Emilie; Desseyn, Jean-Luc; Sergent, Luce; Bartke, Nana; Husson, Marie-Odile; Duhamel, Alain; Gottrand, Frédéric

    2015-01-28

    Pseudomonas aeruginosa is an opportunistic Gram-negative bacterium that causes pneumonia in immunocompromised humans and severe pulmonary damage in patients with cystic fibrosis. Imbalanced fatty acid incorporation in membranes, including increased arachidonic acid and decreased DHA concentrations, is known to play a critical role in chronic inflammation associated with bacterial infection. Other lipids, such as EPA and alkylglycerols, are also known to play a role in inflammation, particularly by stimulating the immune system, decreasing inflammation and inhibiting bacterial growth. In this context, the goal of the present study was to assess the effect of dietary DHA/EPA, in a 2:1 ratio, and alkylglycerols, as natural compounds extracted from oils of rays and chimeras, respectively, on the inflammatory reaction induced by P. aeruginosa pulmonary infection in mice. To this end, mice were fed with a control diet or isolipidic, isoenergetic diets prepared with oils enriched in DHA/EPA (2:1) or alkylglycerols for 5 weeks before the induction of acute P. aeruginosa lung infection by endotracheal instillation. In our model, DHA/EPA (2:1) significantly improved the survival of mice after infection, which was associated with the acceleration of bacterial clearance and the resolution of inflammation leading to the improvement of pulmonary injuries. By contrast, alkylglycerols did not affect the outcomes of P. aeruginosa infection. Our findings suggest that supplementation with ray oil enriched in DHA/EPA (2:1) can be considered as a preventive treatment for patients at risk for P. aeruginosa infection.

  11. Pseudomonas aeruginosa utilises its type III secretion system to kill the free-living amoeba Acanthamoeba castellanii.

    PubMed

    Abd, Hadi; Wretlind, Bengt; Saeed, Amir; Idsund, Eva; Hultenby, Kjell; Sandström, Gunnar

    2008-01-01

    Pseudomonas aeruginosa is a free-living and common environmental bacterium. It is an opportunistic and nosocomial pathogen causing serious human health problems. To overcome its predators, such as macrophages and environmental phagocytes, it utilises different survival strategies, such as the formation of microcolonies and the production of toxins mediated by a type III secretion system (TTSS). The aim of this study was to examine interaction of TTSS effector proteins of P. aeruginosa PA103 with Acanthamoeba castellanii by co-cultivation, viable count, eosin staining, electron microscopy, apoptosis assay, and statistical analysis. The results showed that P. aeruginosa PA103 induced necrosis and apoptosis to kill A. castellanii by the effects of TTSS effector proteins ExoU, ExoS, ExoT, and ExoY. In comparison, Acanthamoeba cultured alone and co-cultured with P. aeruginosa PA103 lacking the known four TTSS effector proteins were not killed. The results are consistent with P. aeruginosa being a strict extracellular bacterium that needs TTSS to survive in the environment, because the TTSS effector proteins are able to kill its eukaryotic predators, such as Acanthamoeba.

  12. Inhibition of Pseudomonas aeruginosa and Escherichia coli O157:H7 biofilm formation by plant metabolite ε-viniferin.

    PubMed

    Cho, Hyun Seob; Lee, Jin-Hyung; Ryu, Shi Yong; Joo, Sang Woo; Cho, Moo Hwan; Lee, Jintae

    2013-07-24

    Pathogenic biofilms are associated with persistent infection due to their high resistances to diverse antibiotics. Pseudomonas aeruginosa infects plants, animals, and humans and is a major cause of nosocomial diseases in patients with cystic fibrosis. In the present study, the antibiofilm abilities of 522 plant extracts against P. aeruginosa PA14 were examined. Three Carex plant extracts at a concentration of 200 μg/mL inhibited P. aeruginosa biofilm formation by >80% without affecting planktonic cell growth. In the most active extract of Carex pumila , resveratrol dimer ε-viniferin was one of the main antibiofilm compounds against P. aeruginosa. Interestingly, ε-viniferin at 10 μg/mL inhibited biofilm formation of enterohemorrhagic Escherichia coli O157:H7 by 98%. Although Carex extracts and trans-resveratrol are known to possess antimicrobial activity, this study is the first to report that C. pumila extract and ε-viniferin have antibiofilm activity against P. aeruginosa and E. coli O157:H7.

  13. Aloe vera Gel: Effective Therapeutic Agent against Multidrug-Resistant Pseudomonas aeruginosa Isolates Recovered from Burn Wound Infections.

    PubMed

    Goudarzi, Mehdi; Fazeli, Maryam; Azad, Mehdi; Seyedjavadi, Sima Sadat; Mousavi, Reza

    2015-01-01

    Objective. Aloe vera is an herbal medicinal plant with biological activities, such as antimicrobial, anticancer, anti-inflammatory, and antidiabetic ones, and immunomodulatory properties. The purpose of this study was investigation of in vitro antimicrobial activity of A. vera gel against multidrug-resistant (MDR) Pseudomonas aeruginosa isolated from patients with burn wound infections. Methods. During a 6-month study, 140 clinical isolates of P. aeruginosa were collected from patients admitted to the burn wards of a hospital in Tehran, Iran. Antimicrobial susceptibility test was carried out against the pathogens using the A. vera gel and antibiotics (imipenem, gentamicin, and ciprofloxacin). Results. The antibiogram revealed that 47 (33.6%) of all isolates were MDR P. aeruginosa. The extract isolated from A. vera has antibacterial activity against all of isolates. Also, 42 (89.4%) isolates were inhibited by A. vera gel extract at minimum inhibitory concentration (MIC) ≤ 200 µg/mL. MIC value of A. vera gel for other isolates (10.6%) was 800 µg/mL. All of MDR P. aeruginosa strains were inhibited by A. vera at similar MIC50 and MIC90 200 µg/mL. Conclusion. Based on our results, A. vera gel at various concentrations can be used as an effective antibacterial agent in order to prevent wound infection caused by P. aeruginosa.

  14. Genetic and physiological characterization of Pseudomonas aeruginosa mutants affected in the catabolic ornithine carbamoyltransferase.

    PubMed Central

    Hass, D; Evans, R; Mercenier, A; Simon, J P; Stalon, V

    1979-01-01

    In Pseudomonas aeruginosa arginine can be degraded by the arginine "dihydrolase" system, consisting of arginine deiminase, catabolic ornithine carbamoyltransferase, and carbamate kinase. Mutants of P. aeruginosa strain PAO affected in the structural gene (arcB) of the catabolic ornithine carbamoyltransferase were isolated. Firt, and argF mutation (i.e., a block in the anabolic ornithine carbamoyltransferase) was suppressed specifically by a mutationally altered catabolic ornithine carbamoyltransferase capable of functioning in the anabolic direction. The suppressor locus arcB (Su) was mapped by transduction between hisII and argA. Second, mutants having lost suppressor activity were obtained. The Su- mutations were very closely linked to arcB (Su) and caused strongly reduced ornithine carbamoyltransferase activities in vitro. Under aerobic conditions, a mutant (PA0630) which had less than 1% of the wild-type catabolic ornithine carbamoyltransferase activity grew on arginine as the only carbon and nitrogen source, at the wild-type growth rate. When oxygen was limiting, strain PA0630 grown on arginine excreted citrulline in the stationary growth phase. These observations suggest that during aerobic growth arginine is not degraded exclusively via the dihydrolase pathway. PMID:113384

  15. Bioactive Organocopper Compound from Pseudomonas aeruginosa Inhibits the Growth of Xanthomonas citri subsp. citri

    PubMed Central

    de Oliveira, Admilton G.; Spago, Flavia R.; Simionato, Ane S.; Navarro, Miguel O. P.; da Silva, Caroline S.; Barazetti, André R.; Cely, Martha V. T.; Tischer, Cesar A.; San Martin, Juca A. B.; de Jesus Andrade, Célia G. T.; Novello, Cláudio R.; Mello, João C. P.; Andrade, Galdino

    2016-01-01

    Citrus canker is a very destructive disease of citrus species. The challenge is to find new compounds that show strong antibiotic activity and low toxicity to plants and the environment. The objectives of the present study were (1) to extract, purify and evaluate the secondary metabolites with antibiotic activity produced by Pseudomonas aeruginosa LV strain in vitro against Xanthomonas citri subsp. citri (strain 306), (2) to determine the potential of semi-purified secondary metabolites in foliar application to control citrus canker under greenhouse conditions, and (3) to identify antibiotic activity in orange leaf mesophyll infected with strain 306, by electron microscopy. Two pure bioactive compounds were isolated, an organocopper antibiotic compound (OAC) and phenazine-1-carboxamide. Phenazine-1-carboxamide did not show any antibiotic activity under the experimental conditions used in this study. The OAC showed a high level of antibiotic activity with a minimum inhibitory concentration of 0.12 μg mL-1. In greenhouse tests for control of citrus canker in orange trees, the semi-purified fraction F3d reduced lesion formation by about 97%. The concentration used was 500 times lower than that for the recommended commercial copper-based product. Electron microscopy showed that F3d altered the exopolysaccharide matrix and caused cell lysis of the pathogen inside the citrus canker lesions. These results suggest that secondary metabolites produced by inducing P. aeruginosa LV strain have a high potential to be used as a bioproduct to control citrus canker. PMID:26903992

  16. Anaerobic killing of mucoid Pseudomonas aeruginosa by acidified nitrite derivatives under cystic fibrosis airway conditions

    PubMed Central

    Yoon, Sang Sun; Coakley, Ray; Lau, Gee W.; Lymar, Sergei V.; Gaston, Benjamin; Karabulut, Ahmet C.; Hennigan, Robert F.; Hwang, Sung-Hei; Buettner, Garry; Schurr, Michael J.; Mortensen, Joel E.; Burns, Jane L.; Speert, David; Boucher, Richard C.; Hassett, Daniel J.

    2006-01-01

    Mucoid, mucA mutant Pseudomonas aeruginosa cause chronic lung infections in cystic fibrosis (CF) patients and are refractory to phagocytosis and antibiotics. Here we show that mucoid bacteria perish during anaerobic exposure to 15 mM nitrite (NO2–) at pH 6.5, which mimics CF airway mucus. Killing required a pH lower than 7, implicating formation of nitrous acid (HNO2) and NO, that adds NO equivalents to cellular molecules. Eighty-seven percent of CF isolates possessed mucA mutations and were killed by HNO2 (3-log reduction in 4 days). Furthermore, antibiotic-resistant strains determined were also equally sensitive to HNO2. More importantly, HNO2 killed mucoid bacteria (a) in anaerobic biofilms; (b) in vitro in ultrasupernatants of airway secretions derived from explanted CF patient lungs; and (c) in mouse lungs in vivo in a pH-dependent fashion, with no organisms remaining after daily exposure to HNO2 for 16 days. HNO2 at these levels of acidity and NO2– also had no adverse effects on cultured human airway epithelia in vitro. In summary, selective killing by HNO2 may provide novel insights into the important clinical goal of eradicating mucoid P. aeruginosa from the CF airways. PMID:16440061

  17. The Healing Effect of Scrophularia Striata on Experimental Burn Wounds Infected to Pseudomonas Aeruginosa in Rat

    PubMed Central

    Tanideh, Nader; Haddadi, Mohammad Hossein; Rokni-Hosseini, Mohammad Hossein; Hossienzadeh, Masood; Mehrabani, Davood; Sayehmiri, Kourosh; Koohi-Hossienabadi, Omid

    2015-01-01

    BACKGROUND The cause of death in burn patients after 48 hours of hospitalization has been reported to be bacterial infections. Recently, due to the compounds accelerating the healing process and the intense reduction of treatment side effects, medicinal plants are used to cure burn wound infections. This study aims to investigate the medicinal effect of the ethanolic extract of Scrophularia striata on burn wound infection in in-vivo and in-vitro in comparison with silver sulfadiazine (SSD). METHODS One hundred and fifty male Sprague Dawley rats were divided into 3 equal groups. A hot plate of 1×1cm was used to create second degree burn wounds. The ethanolic extract of S. striata was provided through percolation method. Group 1 was treated with SSD, group 2 with S. striata, and group 3 was considered as control group. All animals were infected to Pseudomonas aeruginosa. On days 3, 7, 10, 14, and 21 after burn wound injury, the animals were euthanized and were evaluated histologically. The MIC and MBC were determined using the micro dilution method. RESULTS The rate of wound healing was significantly greater in S. striata group in comparison to SSD and control groups. CONCLUSION S. striata contains was shown to have anti-bacterial and wound healing effects while this effect was significantly more than SSD denoting to its use when needed for burn wounds infected to P. aeruginosa. PMID:25606472

  18. [Anti Pseudomonas aeruginosa antibiotic therapy in cystic fibrosis (exclusion of macrolides)].

    PubMed

    Sermet-Gaudelus, I; Ferroni, A; Vrielinck, S; Lebourgeois, M; Chedevergne, F; Lenoir, G

    2006-10-01

    Antibiotherapy is one of the main treatment in cystic fibrosis. Pseudomonas aeruginosa infection is one of the main causes of pulmonary degradation. The chronic sputum colonisation is characterized by the emergence of the mucoid phenotype, the formation of biofilm and the induction of excessive inflammatory response and consecutive tissue lesion. The choice of antibiotics depends on quantitative and qualitative analysis of sputum, bacteria resistance phenotypes and severity of infection. Treatment of P. aeruginosa is different in case of first colonization or chronic infection. In the first case, parenteral antibiotherapy (beta-lactams-aminoglycosids) followed by inhaled antibiotherapy may eradicate the germ. In the other case, superinfections can be treated with parenteral biantibiothérapy (beta-lactams or quinolons and aminoglycosides) during 15 to 21 days. This is associated with a better nutritional and respiratory status and a prolonged survival. Inhaled antibiotics between the courses have decreased the number of superinfections. This prolonged antibiotherapy must be monitored because of possible induction of bacterial resistance, nephrotoxicity and ototoxicity of aminosids and allergy to beta-lactams.

  19. Bioactive Organocopper Compound from Pseudomonas aeruginosa Inhibits the Growth of Xanthomonas citri subsp. citri.

    PubMed

    de Oliveira, Admilton G; Spago, Flavia R; Simionato, Ane S; Navarro, Miguel O P; da Silva, Caroline S; Barazetti, André R; Cely, Martha V T; Tischer, Cesar A; San Martin, Juca A B; de Jesus Andrade, Célia G T; Novello, Cláudio R; Mello, João C P; Andrade, Galdino

    2016-01-01

    Citrus canker is a very destructive disease of citrus species. The challenge is to find new compounds that show strong antibiotic activity and low toxicity to plants and the environment. The objectives of the present study were (1) to extract, purify and evaluate the secondary metabolites with antibiotic activity produced by Pseudomonas aeruginosa LV strain in vitro against Xanthomonas citri subsp. citri (strain 306), (2) to determine the potential of semi-purified secondary metabolites in foliar application to control citrus canker under greenhouse conditions, and (3) to identify antibiotic activity in orange leaf mesophyll infected with strain 306, by electron microscopy. Two pure bioactive compounds were isolated, an organocopper antibiotic compound (OAC) and phenazine-1-carboxamide. Phenazine-1-carboxamide did not show any antibiotic activity under the experimental conditions used in this study. The OAC showed a high level of antibiotic activity with a minimum inhibitory concentration of 0.12 μg mL(-1). In greenhouse tests for control of citrus canker in orange trees, the semi-purified fraction F3d reduced lesion formation by about 97%. The concentration used was 500 times lower than that for the recommended commercial copper-based product. Electron microscopy showed that F3d altered the exopolysaccharide matrix and caused cell lysis of the pathogen inside the citrus canker lesions. These results suggest that secondary metabolites produced by inducing P. aeruginosa LV strain have a high potential to be used as a bioproduct to control citrus canker.

  20. Case report: Pseudomonas aeruginosa-related intervertebral discitis in a young boy with medulloblastoma.

    PubMed

    Mazza, E; Spreafico, F; Cefalo, G; Scaramuzza, D; Massimino, M

    2004-07-01

    We report a case of a 15-year-old boy with desmoplastic medulloblastoma of the posterior fossa (T3M3, according to Chang classification) incompletely resected, with leptomeningeal and nodular spread in the posterior fossa and in the cervical and thoracic tracts of the spine, treated with sequential high dose iv chemotherapy and with hyperfractionated cranio-spinal radiotherapy. While on maintenance chemotherapy, the boy developed fever and septic status caused by Pseudomonas aeruginosa, and 1 week later also low back pain. Magnetic resonance imaging (MRI) demonstrated abnormal signal in the fourth ventricle and in the dorso-lumbar tract suggesting medulloblastoma recurrence, so he started with a chemotherapy program. Due to a worsening of back pain, a second MRI of the spine was performed that showed a spondilodiscitis of T11-T12 and L1-L2 discs. The histological and cultural examination of a fine-needle biopsy of the L1-L2 disc revealed the presence of P. aeruginosa. So patient was treated with intensive antibiotic therapy with resolution of the infection. Spondilodiscitis is a rare complication in neoplastic patients, maybe due to either immunodeficient status or invasive procedures such as lumbar puncture. This case demonstrates that MRI is a useful method for differentiating between infection and malignancy in the spine, but sometimes it may be difficult to distinguish metastatic tumor from a lesion due to spondilodiscitis. In this case surgicopathological assessment is crucial and mandatory.

  1. Production and characteristics of a heavy metals removing bioflocculant produced by Pseudomonas aeruginosa.

    PubMed

    Eman Zakaria, Gomaa

    2012-01-01

    TIhe flocculating activity ofa bioflocculant produced by Pseudomonas aeruginosa ATCC-10145 using kaolin clay was assayed. The influence of carbon, nitrogen sources, pH and culture temperature on bioflocculant production was investigated. The effects of cationic compounds, bioflocculant dosage, pH and temperature on flocculating activity were also determined. Of the cations tested, Ca2+, K+, Na+, Zn2+, Mg2+ and Cu2+ improved flocculating activity whereas Fe3+ and Al3+ caused its inhibition. The highest flocculating activity was observed at pH 7.0.The bioflocculant had a good flocculating activity of 80.50% for kaolin suspension with a dosage of only 1%. The bioflocculant was heat-stable and its activity was only decreased to 60.16% after heating at 100 degrees C for 60 min. Chemical analyses of the purified bioflocculant indicated that it was a sugar-protein derivative, composed of protein (27%, w/w) and carbohydrate (89%,w/w) including neutral sugar, uronic acid and amino sugar as the principal constituents in the relative weight proportions of 30.6%, 2.35% and 0.78%, respectively. The elemental analysis of the bioflocculant revealed the mass proportion of C, H and N was 19.06, 3.88 and 4.32 (%), correspondingly. Fourier transform infrared analysis showed that the exopolymers consisted of carboxyl, hydroxyl, amino and sugar derivative groups. The heavy metal adsorption by the bioflocculant of Pseudomonas aeruginosa was found to be influenced by the initial metal concentration, bioflocculant concentration and pH of the biosorption solution. This study demonstrates that microbial bioflocculant has potential to be used as an alternative bioremedial tool for industrial effluents and wastewater treatments which are co-contaminated with heavy metals.

  2. Eradication of Pseudomonas aeruginosa biofilms by atmospheric pressure non-thermal plasma.

    PubMed

    Alkawareek, Mahmoud Y; Algwari, Qais Th; Laverty, Garry; Gorman, Sean P; Graham, William G; O'Connell, Deborah; Gilmore, Brendan F

    2012-01-01

    Bacteria exist, in most environments, as complex, organised communities of sessile cells embedded within a matrix of self-produced, hydrated extracellular polymeric substances known as biofilms. Bacterial biofilms represent a ubiquitous and predominant cause of both chronic infections and infections associated with the use of indwelling medical devices such as catheters and prostheses. Such infections typically exhibit significantly enhanced tolerance to antimicrobial, biocidal and immunological challenge. This renders them difficult, sometimes impossible, to treat using conventional chemotherapeutic agents. Effective alternative approaches for prevention and eradication of biofilm associated chronic and device-associated infections are therefore urgently required. Atmospheric pressure non-thermal plasmas are gaining increasing attention as a potential approach for the eradication and control of bacterial infection and contamination. To date, however, the majority of studies have been conducted with reference to planktonic bacteria and rather less attention has been directed towards bacteria in the biofilm mode of growth. In this study, the activity of a kilohertz-driven atmospheric pressure non-thermal plasma jet, operated in a helium oxygen mixture, against Pseudomonas aeruginosa in vitro biofilms was evaluated. Pseudomonas aeruginosa biofilms exhibit marked susceptibility to exposure of the plasma jet effluent, following even relatively short (≈ 10's s) exposure times. Manipulation of plasma operating conditions, for example, plasma operating frequency, had a significant effect on the bacterial inactivation rate. Survival curves exhibit a rapid decline in the number of surviving cells in the first 60 seconds followed by slower rate of cell number reduction. Excellent anti-biofilm activity of the plasma jet was also demonstrated by both confocal scanning laser microscopy and metabolism of the tetrazolium salt, XTT, a measure of bactericidal activity.

  3. Eradication of Pseudomonas aeruginosa Biofilms by Atmospheric Pressure Non-Thermal Plasma

    PubMed Central

    Alkawareek, Mahmoud Y.; Algwari, Qais Th.; Laverty, Garry; Gorman, Sean P.; Graham, William G.; O'Connell, Deborah; Gilmore, Brendan F.

    2012-01-01

    Bacteria exist, in most environments, as complex, organised communities of sessile cells embedded within a matrix of self-produced, hydrated extracellular polymeric substances known as biofilms. Bacterial biofilms represent a ubiquitous and predominant cause of both chronic infections and infections associated with the use of indwelling medical devices such as catheters and prostheses. Such infections typically exhibit significantly enhanced tolerance to antimicrobial, biocidal and immunological challenge. This renders them difficult, sometimes impossible, to treat using conventional chemotherapeutic agents. Effective alternative approaches for prevention and eradication of biofilm associated chronic and device-associated infections are therefore urgently required. Atmospheric pressure non-thermal plasmas are gaining increasing attention as a potential approach for the eradication and control of bacterial infection and contamination. To date, however, the majority of studies have been conducted with reference to planktonic bacteria and rather less attention has been directed towards bacteria in the biofilm mode of growth. In this study, the activity of a kilohertz-driven atmospheric pressure non-thermal plasma jet, operated in a helium oxygen mixture, against Pseudomonas aeruginosa in vitro biofilms was evaluated. Pseudomonas aeruginosa biofilms exhibit marked susceptibility to exposure of the plasma jet effluent, following even relatively short (∼10′s s) exposure times. Manipulation of plasma operating conditions, for example, plasma operating frequency, had a significant effect on the bacterial inactivation rate. Survival curves exhibit a rapid decline in the number of surviving cells in the first 60 seconds followed by slower rate of cell number reduction. Excellent anti-biofilm activity of the plasma jet was also demonstrated by both confocal scanning laser microscopy and metabolism of the tetrazolium salt, XTT, a measure of bactericidal activity. PMID

  4. [Evaluation of a hospital outbreak related to carbapenem-resistant Pseudomonas aeruginosa].

    PubMed

    Cekin, Yeşim; Karagöz, Alper; Kızılateş, Filiz; Cekin, Ayhan Hilmi; Oztoprak Çuvalcı, Nefise; Bülbüller, Nurullah; Durmaz, Rıza

    2013-10-01

    Pseudomonas aeruginosa is an important nosocomial pathogen that causes opportunistic infections and hospital outbreaks. During October 2012, carbapenem-resistant P.aeruginosa strains with similar antibiotic resistance patterns, were isolated from specimens sent from the intensive care and plastic surgery units in our hospital. Thus a hospital outbreak was suspected. The microbiology laboratory database was retrospectively searched and all strains of P.aeruginosa isolated during the four month period, starting with the initial carbapenem-resistant strain in August 2012, was evaluated as a hospital outbreak. The aim of this study was to define the outbreak by investigating the clonal relationship between the strains, to detect the potential environmental sources and to evaluate the period of the outbreak, risk factors and the efficiency of infection control measures. The study was conducted between August-November 2012. Twenty patients with carbapenem-resistant P.aeruginosa (CRPA) positive cultures were included in the study. The control group consisted of 22 patients with carbapenem-susceptible P.aeruginosa (CSPA) positive cultures. The clonal relationship between 26 CRPA strains was studied by pulsed-field gel electrophoresis (PFGE). The PFGE results indicated that CRPA strains in our hospital were not related to a single clone, however, there were four major clones composed of four to eight strains. Logistic regression analysis indicated that the risk increased 15.7 fold (95% CI: 1.19-207.76) by the use of carbapenem, 76.8 fold (95% CI: 2.03-2901.30) by surgical procedures and 0.787 fold (95% CI: 0.63-0.97) by the duration of hospital stay. Surveillance cultures from health-care personel and the environment performed in course of the outbreak, yielded no growth of a strain with the similar antibiotic resistance pattern. The spread of CRPA has been controlled by the use of effective precautionary measures, regressing the isolate number to 0-1 strain/month. Since

  5. Quinolone signaling in the cell-to-cell communication system of Pseudomonas aeruginosa

    PubMed Central

    Pesci, Everett C.; Milbank, Jared B. J.; Pearson, James P.; McKnight, Susan; Kende, Andrew S.; Greenberg, E. Peter; Iglewski, Barbara H.

    1999-01-01

    Numerous species of bacteria use an elegant regulatory mechanism known as quorum sensing to control the expression of specific genes in a cell-density dependent manner. In Gram-negative bacteria, quorum sensing systems function through a cell-to-cell signal molecule (autoinducer) that consists of a homoserine lactone with a fatty acid side chain. Such is the case in the opportunistic human pathogen Pseudomonas aeruginosa, which contains two quorum sensing systems (las and rhl) that operate via the autoinducers, N-(3-oxododecanoyl)-l-homoserine lactone and N-butyryl-l-homoserine lactone. The study of these signal molecules has shown that they bind to and activate transcriptional activator proteins that specifically induce numerous P. aeruginosa virulence genes. We report here that P. aeruginosa produces another signal molecule, 2-heptyl-3-hydroxy-4-quinolone, which has been designated as the Pseudomonas quinolone signal. It was found that this unique cell-to-cell signal controlled the expression of lasB, which encodes for the major virulence factor, LasB elastase. We also show that the synthesis and bioactivity of Pseudomonas quinolone signal were mediated by the P. aeruginosa las and rhl quorum sensing systems, respectively. The demonstration that 2-heptyl-3-hydroxy-4-quinolone can function as an intercellular signal sheds light on the role of secondary metabolites and shows that P. aeruginosa cell-to-cell signaling is not restricted to acyl-homoserine lactones. PMID:10500159

  6. Low concentrations of ethanol stimulate biofilm and pellicle formation in Pseudomonas aeruginosa.

    PubMed

    Tashiro, Yosuke; Inagaki, Aya; Ono, Kaori; Inaba, Tomohiro; Yawata, Yutaka; Uchiyama, Hiroo; Nomura, Nobuhiko

    2014-01-01

    Biofilms are communities of surface-attached microbial cells that resist environmental stresses. In this study, we found that low concentrations of ethanol increase biofilm formation in Pseudomonas aeruginosa PAO1 but not in a mutant of it lacking both Psl and Pel exopolysaccharides. Low concentrations of ethanol also increased pellicle formation at the air-liquid interface.

  7. Antimicrobial potential of bioconverted products of omega-3 fatty acids by Pseudomonas aeruginosa PR3

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bioconverted omega-3 fatty acids, eicosapentaenoic acid (bEPA) and docosahexanoic acid (bDHA), obtained from the microbial conversion of non-bioconverted eicosapentaenoic and docosahexaenoic acids by Pseudomonas aeruginosa PR3 were evaluated for their antimicrobial potential. bEPA and bDHA at 5 µl/...

  8. Natural bactericidal surfaces: mechanical rupture of Pseudomonas aeruginosa cells by cicada wings.

    PubMed

    Ivanova, Elena P; Hasan, Jafar; Webb, Hayden K; Truong, Vi Khanh; Watson, Gregory S; Watson, Jolanta A; Baulin, Vladimir A; Pogodin, Sergey; Wang, James Y; Tobin, Mark J; Löbbe, Christian; Crawford, Russell J

    2012-08-20

    Natural superhydrophobic surfaces are often thought to have antibiofouling potential due to their self-cleaning properties. However, when incubated on cicada wings, Pseudomonas aeruginosa cells are not repelled; instead they are penetrated by the nanopillar arrays present on the wing surface, resulting in bacterial cell death. Cicada wings are effective antibacterial, as opposed to antibiofouling, surfaces.

  9. Clonal Dissemination of Pseudomonas aeruginosa Isolates Producing Extended-Spectrum β-Lactamase SHV-2a

    PubMed Central

    Jeannot, Katy; Fournier, Damien; Müller, Emeline; Cholley, Pascal

    2013-01-01

    From January to December 2011, 24 Pseudomonas aeruginosa strains producing the extended-spectrum β-lactamase SHV-2a were identified in 13 hospitals in France. With one exception, all the strains belonged to the same clone. Double-disk synergy tests with cefepime and clavulanate were able to detect all the SHV-2a-positive isolates. PMID:23241379

  10. Clonal dissemination of Pseudomonas aeruginosa isolates producing extended-spectrum β-lactamase SHV-2a.

    PubMed

    Jeannot, Katy; Fournier, Damien; Müller, Emeline; Cholley, Pascal; Plésiat, Patrick

    2013-02-01

    From January to December 2011, 24 Pseudomonas aeruginosa strains producing the extended-spectrum β-lactamase SHV-2a were identified in 13 hospitals in France. With one exception, all the strains belonged to the same clone. Double-disk synergy tests with cefepime and clavulanate were able to detect all the SHV-2a-positive isolates.

  11. Highly sensitive and rapid detection of Pseudomonas aeruginosa based on magnetic enrichment and magnetic separation.

    PubMed

    Tang, Yongjun; Zou, Jun; Ma, Chao; Ali, Zeeshan; Li, Zhiyang; Li, Xiaolong; Ma, Ninging; Mou, Xianbo; Deng, Yan; Zhang, Liming; Li, Kai; Lu, Guangming; Yang, Haowen; He, Nongyue

    2013-01-01

    A method for highly sensitive and rapid detection of Pseudomonas aeruginosa, based on magnetic enrichment and magnetic separation, is described in this paper. The magnetic nanoparticles (MNPs) were applied to adsorb genome DNA after the sample was lysed. The DNA binding MNPs were directly subjected to polymerase chain reaction (PCR) to amplify gyrB specific sequence of Pseudomonas aeruginosa. The biotin labeled PCR products were detected by chemiluminescence when they were successively incubated with the probes-modified MNPs and alkaline phosphatase (ALP) labeled streptavidin (SA). Agarose gel electrophoresis analyses approved the method of in situ PCR to be highly reliable. The factors which could affect the chemiluminiscence were studied in detail. The results showed that the MNPs of 400 nm in diameter are beneficial to the detection. The sequence length and the binding site of the probe with a target sequence have obvious effects on the detection. The optimal concentration of the probes, hybridization temperature and hybridization time were 10 μM, 60 ºC and 60 mins, respectively. The method of in situ PCR based on MNPs can greatly improve the utilization rate of the DNA template ultimately enhancing the detection sensitivity. Experiment results proved that the primer and probe had high specificity, and Pseudomonas aeruginosa was successfully detected with detection limits as low as 10 cfu/mL by this method, while the detection of a single Pseudomonas aeruginosa can also be achieved.

  12. Imipenem antagonism of the in vitro activity of piperacillin against Pseudomonas aeruginosa.

    PubMed Central

    Bertram, M A; Young, L S

    1984-01-01

    The MICs of imipenem and piperacillin, alone and in combination, against Pseudomonas aeruginosa were determined in a checkerboard titration microdilution assay. A dramatic, one-way antagonism of imipenem for piperacillin was demonstrated in 28 of the 35 strains examined; antagonism was associated with the induction of a beta-lactamase. PMID:6435517

  13. The Role of Newly Discovered Exotoxin (S Toxin) in Pseudomonas aeruginosa Infections

    DTIC Science & Technology

    1981-08-01

    Pseudomonas aeruginosa and Enterobacter aerogenes and bilirubin and SGOT of 280 units. On the third day after his initial procedure he was begun on...Some characteristics of th.. outer membrane material released by growing enterotoxigenic Escherichia cali. Infect. Immun. 29:704-713, 1980.

  14. CHARACTERIZATION OF PB2+ UPTAKE AND SEQUESTRATION IN PSEUDOMONAS AERUGINOSA CHL004

    EPA Science Inventory

    In laboratory studies, the soil isolate Pseudomonas aeruginosa CHL004 (Vesper et al 1996) has been found to concentrated Pb2+ in the cytoplasm by formation of particles that contain Pb2+ and phosphorus. Upon examination of the washed lyophilized cells grown in the presence of lea...

  15. Draft Genome Sequence of a Pseudomonas aeruginosa Strain Able To Decompose N,N-Dimethyl Formamide

    PubMed Central

    Yan, Ming; Xu, Lin; Wei, Li; Zhang, Liting

    2016-01-01

    Pseudomonas aeruginosa is a Gram-negative bacterium, which uses a variety of organic chemicals as carbon sources. Here, we report the genome sequence of the Cu1510 isolate from wastewater containing a high concentration of N,N-dimethyl formamide. PMID:26847883

  16. Prevention of bloodstream infections by photodynamic inactivation of multiresistant Pseudomonas aeruginosa in burn wounds

    NASA Astrophysics Data System (ADS)

    Hashimoto, M. C. E.; Prates, R. A.; Toffoli, D. J.; Courrol, L. C.; Ribeiro, M. S.

    2010-02-01

    Bloodstream infections are potentially life-threatening diseases. They can cause serious secondary infections, and may result in endocarditis, severe sepsis or toxic-shock syndrome. Pseudomonas aeruginosa is an opportunistic pathogen and one of the most important etiological factors responsible for nosocomial infections, mainly in immuno-compromissed hosts, characteristic of patients with severe burns. Its multiresistance to antibiotics produces many therapeutic problems, and for this reason, the development of an alternative method to antibiotic therapy is needed. Photodynamic inactivation (PDI) may be an effective and alternative therapeutic option to prevent bloodstream infections in patients with severe burns. In this study we report the use of PDI to prevent bloodstream infections in mice with third-degree burns. Burns were produced on the back of the animals and they were infected with 109 cfu/mL of multi-resistant (MR) P. aeruginosa. Fifteen animals were divided into 3 groups: control, PDT blue and PDT red. PDT was performed thirty minutes after bacterial inoculation using 10μM HB:La+3 and a light-emitting diode (LED) emitting at λ=460nm+/-20nm and a LED emitting at λ=645 nm+/-10nm for 120s. Blood of mice were colected at 7h, 10h, 15h, 18h and 22h pos-infection (p.i.) for bacterial counting. Control group presented 1×104 cfu/mL in bloodstream at 7h p.i. increasing to 1×106 at 22h, while mice PDT-treated did not present any bacteria at 7h; only at 22h p.i. they presented 1×104cfu/mL. These results suggest that HB:La+3 associated to blue LED or red LED is effective to delay and diminish MR P.aeruginosa bloodstream invasion in third-degree-burned mice.

  17. Effect of Pseudomonas aeruginosa on sperm capacitation and protein phosphorylation of boar spermatozoa.

    PubMed

    Sepúlveda, Lilian; Bussalleu, Eva; Yeste, Marc; Bonet, Sergi

    2016-05-01

    Several studies have reported the detrimental effects that bacteriospermia causes on boar sperm quality, but little is known about its effects on IVC. Considering that, the present study sought to evaluate the effects of different concentrations of Pseudomonas aeruginosa on different indicators of capacitation status (sperm viability, membrane lipid disorder, sperm motility kinematics, and protein phosphorylation of boar spermatozoa) after IVC. Flow cytometry and computer assisted sperm analysis (CASA) revealed that the presence of P aeruginosa in boar sperm samples, mostly at concentrations greater than 10(6) CFU/mL, is associated with a significant (P < 0.05) decrease in the percentages of both sperm membrane integrity and sperm with low membrane lipid disorder, and also with a reduction in sperm motility kinetic parameters when compared with results obtained from the control sample, which presented the typical motility pattern of capacitated-like boar spermatozoa. Moreover, Western blot results also showed significant (P < 0.05) changes in the levels of tyrosine, serine, and threonine protein phosphorylation because of bacterial contamination, the decrease in phosphotyrosine levels of p32, a well-known marker of IVC achievement in boar sperm, being the most relevant. Indeed, after 3 hours of IVC, phosphotyrosine levels of p32 in the control sample were 3.13 ± 0.81, whereas in the tubes with 10(6) and 10(8) CFU/mL were 1.05 ± 0.20 and 0.36 ± 0.07, respectively. Therefore, the present study provides novel data regarding the effects of bacterial contamination on boar sperm, suggesting that the presence of P aeruginosa affects the fertilizing ability of boar sperm by altering its ability to accomplish IVC.

  18. Genome-wide patterns of recombination in the opportunistic human pathogen Pseudomonas aeruginosa.

    PubMed

    Dettman, Jeremy R; Rodrigue, Nicolas; Kassen, Rees

    2014-12-04

    The bacterium Pseudomonas aeruginosa is a significant cause of acute nosocomial infections as well as chronic respiratory infections in patients with cystic fibrosis (CF). Recent reports of the intercontinental spread of a CF-specific epidemic strain, combined with high intrinsic levels of antibiotic resistance, have made this opportunistic pathogen an important public health concern. Strain-specific differences correlate with variation in clinical outcomes of infected CF patients, increasing the urgency to understand the evolutionary origin of genetic factors conferring important phenotypes that enable infection, virulence, or resistance. Here, we describe the genome-wide patterns of homologous and nonhomologous recombination in P. aeruginosa, and the extent to which the genomes are affe