Molecular Remodeling of Photosystem II during State Transitions in Chlamydomonas reinhardtii[W
Iwai, Masakazu; Takahashi, Yuichiro; Minagawa, Jun
2008-01-01
State transitions, or the redistribution of light-harvesting complex II (LHCII) proteins between photosystem I (PSI) and photosystem II (PSII), balance the light-harvesting capacity of the two photosystems to optimize the efficiency of photosynthesis. Studies on the migration of LHCII proteins have focused primarily on their reassociation with PSI, but the molecular details on their dissociation from PSII have not been clear. Here, we compare the polypeptide composition, supramolecular organization, and phosphorylation of PSII complexes under PSI- and PSII-favoring conditions (State 1 and State 2, respectively). Three PSII fractions, a PSII core complex, a PSII supercomplex, and a multimer of PSII supercomplex or PSII megacomplex, were obtained from a transformant of the green alga Chlamydomonas reinhardtii carrying a His-tagged CP47. Gel filtration and single particles on electron micrographs showed that the megacomplex was predominant in State 1, whereas the core complex was predominant in State 2, indicating that LHCIIs are dissociated from PSII upon state transition. Moreover, in State 2, strongly phosphorylated LHCII type I was found in the supercomplex but not in the megacomplex. Phosphorylated minor LHCIIs (CP26 and CP29) were found only in the unbound form. The PSII subunits were most phosphorylated in the core complex. Based on these observations, we propose a model for PSII remodeling during state transitions, which involves division of the megacomplex into supercomplexes, triggered by phosphorylation of LHCII type I, followed by LHCII undocking from the supercomplex, triggered by phosphorylation of minor LHCIIs and PSII core subunits. PMID:18757554
Chia, Catherine P.; Duesing, John H.; Arntzen, Charles J.
1986-01-01
Lutescens-1, a tobacco mutant with a maternally inherited dysfunction, displayed an unusual developmental phenotype. In vivo measurement of chlorophyll fluorescence revealed deterioration in photosystem II (PSII) function as leaves expanded. Analysis of thylakoid membrane proteins by polyacrylamide gel electrophoresis indicated the physical loss of nuclear- and chloroplast-encoded polypeptides comprising the PSII core complex concomitant with loss of activity. Freeze fracture electron micrographs of mutant thylakoids showed a reduced density, compared to wild type, of the EFs particles which have been shown previously to be the structural entity containing PSII core complexes and associated pigment-proteins. The selective loss of PSII cores from thylakoids resulted in a higher ratio of antenna chlorophyll to reaction centers and an altered 77 K chlorophyll fluorescence emission spectra; these data are interpreted to indicate functional isolation of light-harvesting chlorophyll a/b complexes in the absence of PSII centers. Examination of PSII reaction centers (which were present at lower levels in mutant membranes) by monitoring the light-dependent phosphorylation of PSII polypeptides and flash-induced O2 evolution patterns demonstrated that the PSII cores which were assembled in mutant thylakoids were functionally identical to those of wild type. We conclude that the lutescens-1 mutation affected the correct stoichiometry of PSII centers, in relation to other membrane constituents, by disrupting the proper assembly and maintenance of PSII complexes in lutescens-1 thylakoid membranes. Images Fig. 4 Fig. 5 Fig. 6 Fig. 7 PMID:16664990
Uphaus, R A; Fang, J Y; Picorel, R; Chumanov, G; Wang, J Y; Cotton, T M; Seibert, M
1997-04-01
The photosystem II (PSII) reaction center (RC) is a hydrophobic intrinsic protein complex that drives the water-oxidation process of photosynthesis. Unlike the bacterial RC complex, an X-ray crystal structure of the PSII RC is not available. In order to determine the physical dimensions of the isolated PSII RC complex, we applied Langmuir techniques to determine the cross-sectional area of an isolated RC in a condensed monolayer film. Low-angle X-ray diffraction results obtained by examining Langmuir-Blodgett multilayer films of alternating PSII RC/Cd stearate monolayers were used to determine the length (or height; z-direction, perpendicular to the plane of the original membrane) of the complex. The values obtained for a PSII RC monomer were 26 nm2 and 4.8 nm, respectively, and the structural integrity of the RC in the multilayer film was confirmed by several approaches. Assuming a cylindrical-type RC structure, the above dimensions lead to a predicted volume of about 125 nm3. This value is very close to the expected volume of 118 nm3, calculated from the known molecular weight and partial specific volume of the PSII RC proteins. This same type of comparison was also made with the Rhodobacter sphaeroides RC based on published data, and we conclude that the PSII RC is much shorter in length and has a more regular solid geometric structure than the bacterial RC. Furthermore, the above dimensions of the PSII RC and those of PSII core (RC plus proximal antenna) proteins protruding outside the plane of the PSII membrane into the lumenal space as imaged by scanning tunneling microscopy (Seibert, Aust. J. Pl. Physiol. 22, 161-166, 1995) fit easily into the known dimensions of the PSII core complex visualized by others as electron-density projection maps. From this we conclude that the in situ PSII core complex is a dimeric structure containing two copies of the PSII RC.
Lu, Yan; Hall, David A.; Last, Robert L.
2011-01-01
This work identifies LOW QUANTUM YIELD OF PHOTOSYSTEM II1 (LQY1), a Zn finger protein that shows disulfide isomerase activity, interacts with the photosystem II (PSII) core complex, and may act in repair of photodamaged PSII complexes. Two mutants of an unannotated small Zn finger containing a thylakoid membrane protein of Arabidopsis thaliana (At1g75690; LQY1) were found to have a lower quantum yield of PSII photochemistry and reduced PSII electron transport rate following high-light treatment. The mutants dissipate more excess excitation energy via nonphotochemical pathways than wild type, and they also display elevated accumulation of reactive oxygen species under high light. After high-light treatment, the mutants have less PSII–light-harvesting complex II supercomplex than wild-type plants. Analysis of thylakoid membrane protein complexes showed that wild-type LQY1 protein comigrates with the PSII core monomer and the CP43-less PSII monomer (a marker for ongoing PSII repair and reassembly). PSII repair and reassembly involve the breakage and formation of disulfide bonds among PSII proteins. Interestingly, the recombinant LQY1 protein demonstrates a protein disulfide isomerase activity. LQY1 is more abundant in stroma-exposed thylakoids, where key steps of PSII repair and reassembly take place. The absence of the LQY1 protein accelerates turnover and synthesis of PSII reaction center protein D1. These results suggest that the LQY1 protein may be involved in maintaining PSII activity under high light by regulating repair and reassembly of PSII complexes. PMID:21586683
Revisiting the Supramolecular Organization of Photosystem II in Chlamydomonas reinhardtii*
Tokutsu, Ryutaro; Kato, Nobuyasu; Bui, Khanh Huy; Ishikawa, Takashi; Minagawa, Jun
2012-01-01
Photosystem II (PSII) is a multiprotein complex that splits water and initiates electron transfer in photosynthesis. The central part of PSII, the PSII core, is surrounded by light-harvesting complex II proteins (LHCIIs). In higher plants, two or three LHCII trimers are seen on each side of the PSII core whereas only one is seen in the corresponding positions in Chlamydomonas reinhardtii, probably due to the absence of CP24, a minor monomeric LHCII. Here, we re-examined the supramolecular organization of the C. reinhardtii PSII-LHCII supercomplex by determining the effect of different solubilizing detergents. When we solubilized the thylakoid membranes with n-dodecyl-β-d-maltoside (β-DM) or n-dodecyl-α-d-maltoside (α-DM) and subjected them to gel filtration, we observed a clear difference in molecular mass. The α-DM-solubilized PSII-LHCII supercomplex bound twice more LHCII than the β-DM-solubilized supercomplex and retained higher oxygen-evolving activity. Single-particle image analysis from electron micrographs of the α-DM-solubilized and negatively stained supercomplex revealed that the PSII-LHCII supercomplex had a novel supramolecular organization, with three LHCII trimers attached to each side of the core. PMID:22801422
Pick, Uri; Gounaris, Kleoniki; Barber, James
1987-01-01
A photosystem two (PSII) core complex consisting of five major polypeptides (47, 40, 32, 30, and 10 kilodaltons) and a light harvesting chlorophyll a/b complex (LHC-2) have been isolated from the halotolerant alga Dunaliella salina. The chlorophyll and polypeptide composition of both complexes were compared in illuminated and dark-adapted cultures. Dark adaptation is accompanied by a decrease in the chlorophyll a to chlorophyll b (Chl a/Chl b) ratio of intact thylakoids without any change in total chlorophyll. These changes occur with a half-time of 3 hours and are reversed upon reillumination. Analyses of PSII enriched membrane fragments suggest that the decrease in the Chl a/Chl b is due partly to an increase in the Chl b content of LHC-2 and partly to changes in the relative levels of the two complexes. Apparently during dark adaptation there is: (a) a net synthesis of chlorophyll b, (b) removal of PSII core complexes resulting in a 2-fold drop in the PSII cores to LHC-2 chlorophyll ratio. These changes should dramatically increase the light harvesting capacity of the remaining PSII reaction centers. Presumably this adjustment of antenna size and composition is a physiological mechanism necessary for responding to shade conditions. Also detected, using 32P, are light-induced phosphorylation of the LHC-2 (consistent with the ability to undergo State transitions) and of the 40 and 30 kilodalton subunits of the PSII core complex. These observations indicate that additional mechanisms may also exist to help optimize the interception of quanta during rapid changes in illumination conditions. Images Fig. 4 PMID:16665656
Darr, Sylvia C.; Arntzen, Charles J.
1986-01-01
Conditions were developed to isolate the light-harvesting chlorophyll-protein complex serving photosystem II (LHC-II) using a dialyzable detergent, octylpolyoxyethylene. This LHC-II was successfully reconstituted into partially developed chloroplast thylakoids of Hordeum vulgare var Morex (barley) seedlings which were deficient in LHC-II. Functional association of LHC-II with the photosystem II (PSII) core complex was measured by two independent functional assays of PSII sensitization by LHC-II. A 3-fold excess of reconstituted LHC-II was required to equal the activity of LHC developing in vivo. We suggest that a linker component may be absent in the partially developed membranes which is required for specific association of the PSII core complex and LHC-II. Images Fig. 1 PMID:16664744
Busheva, Mira; Tzonova, Iren; Stoitchkova, Katerina; Andreeva, Atanaska
2012-12-05
The sensitivity of the green plants' photosystem II (PSII) to high temperatures is investigated in PSII enriched membranes and in membranes, from which the oxygen evolving complex is removed. Using steady-state 77 K fluorescence and resonance Raman spectroscopy we analyze the interdependency between the temperature-driven changes in structure and energy distribution in the PSII supercomplex. The results show that the heat treatment induces different reduction of the 77 K fluorescence emission in both types of investigated membranes: (i) an additional considerable decrease of the overall fluorescence emission in Tris-washed membranes as compared to the native membranes; (ii) a transition point at 42°C(,) observed only in native membranes; (iii) a sharp reduction of the PSII core fluorescence in Tris-washed membranes at temperatures higher than 50°C; (iv) a 3 nm red-shift of F700 band's maximum in Tris-washed membranes already at 20°C and its further shift by 1 nm at temperature increase. Both treatments intensified their action by increasing the aggregation and dissociation of the peripheral light harvesting complexes. The oxygen-evolving complex, in addition to its main function to produce O(2), increases the thermal stability of PSII core by strengthening the connection between the core and the peripheral antenna proteins and by keeping their structural integrity. Copyright © 2012 Elsevier B.V. All rights reserved.
Zabelin, Alexey A; Neverov, Konstantin V; Krasnovsky, Alexander A; Shkuropatova, Valentina A; Shuvalov, Vladimir A; Shkuropatov, Anatoly Ya
2016-06-01
Phosphorescence measurements at 77 K and light-induced FTIR difference spectroscopy at 95 K were applied to study of the triplet state of chlorophyll a ((3)Chl) in photosystem II (PSII) core complexes isolated from spinach. Using both methods, (3)Chl was observed in the core preparations with doubly reduced primary quinone acceptor QA. The spectral parameters of Chl phosphorescence resemble those in the isolated PSII reaction centers (RCs). The main spectral maximum and the lifetime of the phosphorescence corresponded to 955±1 nm and of 1.65±0.05 ms respectively; in the excitation spectrum, the absorption maxima of all core complex pigments (Chl, pheophytin a (Pheo), and β-carotene) were observed. The differential signal at 1667(-)/1628(+)cm(-1) reflecting a downshift of the stretching frequency of the 13(1)-keto C=O group of Chl was found to dominate in the triplet-minus-singlet FTIR difference spectrum of core complexes. Based on FTIR results and literature data, it is proposed that (3)Chl is mostly localized on the accessory chlorophyll that is in triplet equilibrium with P680. Analysis of the data suggests that the Chl triplet state responsible for the phosphorescence and the FTIR difference spectrum is mainly generated due to charge recombination in the reaction center radical pair P680(+)PheoD1(-), and the energy and temporal parameters of this triplet state as well as the molecular environment and interactions of the triplet-bearing Chl molecule are similar in the PSII core complexes and isolated PSII RCs. Copyright © 2016 Elsevier B.V. All rights reserved.
Suorsa, Marjaana; Rantala, Marjaana; Aro, Eva-Mari
2015-01-01
Photosystem II (PSII) core and light-harvesting complex II (LHCII) proteins in plant chloroplasts undergo reversible phosphorylation upon changes in light intensity (being under control of redox-regulated STN7 and STN8 kinases and TAP38/PPH1 and PSII core phosphatases). Shift of plants from growth light to high light results in an increase of PSII core phosphorylation, whereas LHCII phosphorylation concomitantly decreases. Exactly the opposite takes place when plants are shifted to lower light intensity. Despite distinct changes occurring in thylakoid protein phosphorylation upon light intensity changes, the excitation balance between PSII and photosystem I remains unchanged. This differs drastically from the canonical-state transition model induced by artificial states 1 and 2 lights that concomitantly either dephosphorylate or phosphorylate, respectively, both the PSII core and LHCII phosphoproteins. Analysis of the kinase and phosphatase mutants revealed that TAP38/PPH1 phosphatase is crucial in preventing state transition upon increase in light intensity. Indeed, tap38/pph1 mutant revealed strong concomitant phosphorylation of both the PSII core and LHCII proteins upon transfer to high light, thus resembling the wild type under state 2 light. Coordinated function of thylakoid protein kinases and phosphatases is shown to secure balanced excitation energy for both photosystems by preventing state transitions upon changes in light intensity. Moreover, PROTON GRADIENT REGULATION5 (PGR5) is required for proper regulation of thylakoid protein kinases and phosphatases, and the pgr5 mutant mimics phenotypes of tap38/pph1. This shows that there is a close cooperation between the redox- and proton gradient-dependent regulatory mechanisms for proper function of the photosynthetic machinery. PMID:25902812
Wang, Peng; Liu, Jun; Liu, Bing; Feng, Dongru; Da, Qingen; Wang, Peng; Shu, Shengying; Su, Jianbin; Zhang, Yang; Wang, Jinfa; Wang, Hong-Bin
2013-01-01
Chloroplastic m-type thioredoxins (TRX m) are essential redox regulators in the light regulation of photosynthetic metabolism. However, recent genetic studies have revealed novel functions for TRX m in meristem development, chloroplast morphology, cyclic electron flow, and tetrapyrrole synthesis. The focus of this study is on the putative role of TRX m1, TRX m2, and TRX m4 in the biogenesis of the photosynthetic apparatus in Arabidopsis (Arabidopsis thaliana). To that end, we investigated the impact of single, double, and triple TRX m deficiency on chloroplast development and the accumulation of thylakoid protein complexes. Intriguingly, only inactivation of three TRX m genes led to pale-green leaves and specifically reduced stability of the photosystem II (PSII) complex, implying functional redundancy between three TRX m isoforms. In addition, plants silenced for three TRX m genes displayed elevated levels of reactive oxygen species, which in turn interrupted the transcription of photosynthesis-related nuclear genes but not the expression of chloroplast-encoded PSII core proteins. To dissect the function of TRX m in PSII biogenesis, we showed that TRX m1, TRX m2, and TRX m4 interact physically with minor PSII assembly intermediates as well as with PSII core subunits D1, D2, and CP47. Furthermore, silencing three TRX m genes disrupted the redox status of intermolecular disulfide bonds in PSII core proteins, most notably resulting in elevated accumulation of oxidized CP47 oligomers. Taken together, our results suggest an important role for TRX m1, TRX m2, and TRX m4 proteins in the biogenesis of PSII, and they appear to assist the assembly of CP47 into PSII. PMID:24151299
Fluorescence kinetics of PSII crystals containing Ca(2+) or Sr(2+) in the oxygen evolving complex.
van Oort, Bart; Kargul, Joanna; Maghlaoui, Karim; Barber, James; van Amerongen, Herbert
2014-02-01
Photosystem II (PSII) is the pigment-protein complex which converts sunlight energy into chemical energy by catalysing the process of light-driven oxidation of water into reducing equivalents in the form of protons and electrons. Three-dimensional structures from x-ray crystallography have been used extensively to model these processes. However, the crystal structures are not necessarily identical to those of the solubilised complexes. Here we compared picosecond fluorescence of solubilised and crystallised PSII core particles isolated from the thermophilic cyanobacterium Thermosynechococcus elongatus. The fluorescence of the crystals is sensitive to the presence of artificial electron acceptors (K3Fe(CN)3) and electron transport inhibitors (DCMU). In PSII with reaction centres in the open state, the picosecond fluorescence of PSII crystals and solubilised PSII is indistinguishable. Additionally we compared picosecond fluorescence of native PSII with PSII in which Ca(2) in the oxygen evolving complex (OEC) is biosynthetically replaced by Sr(2+). With the Sr(2+) replaced OEC the average fluorescence decay slows down slightly (81ps to 85ps), and reaction centres are less readily closed, indicating that both energy transfer/trapping and electron transfer are affected by the replacement. Copyright © 2013. Published by Elsevier B.V.
Nagao, Ryo; Suzuki, Takehiro; Okumura, Akinori; Kihira, Tomohiro; Toda, Ayaka; Dohmae, Naoshi; Nakazato, Katsuyoshi; Tomo, Tatsuya
2017-09-01
Psb31, a novel extrinsic protein found in diatom photosystem II (PSII), directly binds to PSII core subunits, independent of the other extrinsic proteins, and functions to maintain optimum oxygen evolution. However, how Psb31 electrostatically interacts with PSII intrinsic proteins remains to be clarified. In this study, we examined electrostatic interaction of Psb31 with PSII complexes isolated from the diatom Chaetoceros gracilis. Positive or negative charges of isolated Psb31 proteins were modified with N-succinimidyl propionate (NSP) or glycine methyl ester (GME), respectively, resulting in formation of uncharged groups. NSP-modified Psb31 did not bind to PSII with a concomitant increase in NSP concentration, whereas GME-modified Psb31 clearly bound to PSII with retention of oxygen-evolving activity, indicating that positive charges of Lys residues and the N-terminus on the surface of Psb31 are involved in electrostatic interactions with PSII intrinsic proteins. Mass spectrometry analysis of NSP-modified Psb31 and sequence comparisons of Psb31 from C. gracilis with other chromophyte algae led to identification of three Lys residues as possible binding sites to PSII. Based on these findings, together with our previous cross-linking study in diatom PSII and a red algal PSII structure, we discuss binding properties of Psb31 with PSII core proteins. Copyright © 2017 Elsevier B.V. All rights reserved.
Takahashi, Kaori; Funk, Christiane; Nomura, Yuko
2018-01-01
The cellular functions of two Arabidopsis (Arabidopsis thaliana) one-helix proteins, OHP1 and OHP2 (also named LIGHT-HARVESTING-LIKE2 [LIL2] and LIL6, respectively, because they have sequence similarity to light-harvesting chlorophyll a/b-binding proteins), remain unclear. Tagged null mutants of OHP1 and OHP2 (ohp1 and ohp2) showed stunted growth with pale-green leaves on agar plates, and these mutants were unable to grow on soil. Leaf chlorophyll fluorescence and the composition of thylakoid membrane proteins revealed that ohp1 deletion substantially affected photosystem II (PSII) core protein function and led to reduced levels of photosystem I core proteins; however, it did not affect LHC accumulation. Transgenic ohp1 plants rescued with OHP1-HA or OHP1-Myc proteins developed a normal phenotype. Using these tagged OHP1 proteins in transgenic plants, we localized OHP1 to thylakoid membranes, where it formed protein complexes with both OHP2 and High Chlorophyll Fluorescence244 (HCF244). We also found PSII core proteins D1/D2, HCF136, and HCF173 and a few other plant-specific proteins associated with the OHP1/OHP2-HCF244 complex, suggesting that these complexes are early intermediates in PSII assembly. OHP1 interacted directly with HCF244 in the complex. Therefore, OHP1 and HCF244 play important roles in the stable accumulation of PSII. PMID:29438089
Nematov, Sherzod; Casazza, Anna Paola; Remelli, William; Khuvondikov, Vakhobjon; Santabarbara, Stefano
2017-07-01
The spectral dependence of the irreversible non-photochemical fluorescence quenching associated with photoinhibition in vitro has been comparatively investigated in thylakoid membranes, PSII enriched particles and PSII core complexes isolated from spinach. The analysis of the fluorescence emission spectra of dark-adapted and quenched samples as a function of the detection temperature in the 280-80K interval, indicates that Chlorophyll spectral forms having maximal emission in the 700-702nm and 705-710nm ranges gain relative intensity in concomitance with the establishment of irreversible light-induced quenching, acting thereby as spectroscopic markers. The relative enhancement of the 700-702nm and 705-710nm forms emission could be due either to an increase of their stoichiometric abundance or to their intrinsically low fluorescence quantum yields. These two factors, that can also coexist, need to be promoted by light-induced alterations in chromophore-protein as well as chromophore-chromophore interactions. The bands centred at about 701 and 706nm are also observed in the PSII core complex, suggesting their, at least partial, localisation in proximity to the reaction centre, and the occurrence of light-induced conformational changes in the core subunits. Copyright © 2017 Elsevier B.V. All rights reserved.
Lead induced changes in phosphorylation of PSII proteins in low light grown pea plants.
Wioleta, Wasilewska; Anna, Drożak; Ilona, Bacławska; Kamila, Kąkol; Elżbieta, Romanowska
2015-02-01
Light-intensity and redox-state induced thylakoid proteins phosphorylation involved in structural changes and in regulation of protein turnover. The presence of heavy metal ions triggers a wide range of cellular responses including changes in plant growth and photosynthesis. Plants have evolved a number of mechanisms to protect photosynthetic apparatus. We have characterized the effect of lead on PSII protein phosphorylation in pea (Pisum sativum L.) plants grown in low light conditions. Pb ions affected only slightly photochemical efficiency of PSII and had no effect on organization of thylakoid complexes. Lead activated strongly phosphorylation of PSII core D1 protein and dephosphorylation of this protein did not proceed in far red light. D1 protein was also not degraded in this conditions. However, phosphorylation of LHCII proteins was not affected by lead. These results indicate that Pb(2+) stimulate the phosphorylation of PSII core proteins and by disturbing the disassembly of supercomplexes play a role in PSII repair mechanism. LHCII phosphorylation could control the distribution of energy between the photosystems in low light conditions. This demonstrates that plants may respond to heavy metals by induction different pathways responsible for protein protection under stress conditions.
Pitari, Fabio; Bovi, Daniele; Narzi, Daniele; Guidoni, Leonardo
2015-09-29
The Mn4CaO5 cluster in the oxygen-evolving complex is the catalytic core of the Photosystem II (PSII) enzyme, responsible for the water splitting reaction in oxygenic photosynthesis. The role of the redox-inactive ion in the cluster has not yet been fully clarified, although several experimental data are available on Ca2+-depleted and Ca2+-substituted PSII complexes, indicating Sr2+-substituted PSII as the only modification that preserves oxygen evolution. In this work, we investigated the structural and electronic properties of the PSII catalytic core with Ca2+ replaced with Sr2+ and Cd2+ in the S2 state of the Kok−Joliot cycle by means of density functional theory and ab initio molecular dynamics based on a quantum mechanics/ molecular mechanics approach. Our calculations do not reveal significant differences between the substituted and wild-type systems in terms of geometries, thermodynamics, and kinetics of two previously identified intermediate states along the S2 to S3 transition, namely, the open cubane S2 A and closed cubane S2 B conformers. Conversely, our calculations show different pKa values for the water molecule bound to the three investigated heterocations. Specifically, for Cd-substituted PSII, the pKa value is 5.3 units smaller than the respective value in wild type Ca-PSII. On the basis of our results, we conclude that, assuming all the cations sharing the same binding site, the induced difference in the acidity of the binding pocket might influence the hydrogen bonding network and the redox levels to prevent the further evolution of the cycle toward the S3 state.
Photosystem II Water Oxidation: Mechanism, Efficiency and Flux in Diverse Oxygenic Phototrophs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dismukes, Gerard Charles; Ananyev, Gennady; Gates, Colin
In one year, we pursued four aims: 1) extend the VZAD model to allow analysis of PSII chlorophyll fluorescence emission as modulated by interaction with the WOC (partial success); 2) compare the solar energy conversion efficiencies of PSII-WOCs from intact cells, isolated thylakoid membranes and PSII core complexes and crystals from cyanobacterium Thermosynechococcus elongatus (collaboration with Lawrence Berkeley National Laboratory; some success after changing collaborator); 3) determine whether PSIIs can store light energy by pumping protons across the thylakoid membrane (PSII-cyclic electron flow) and how it is regulated within the green alga Chlorella ohadii (collaboration with the Hebrew University ofmore » Jerusalem; some success); and 4) genetically replace the native PSII-D1 protein subunit from a higher plant with two cyanobacterial D1 isoforms to test whether their functional advantages in growth and photoprotection can be transferred (collaboration with Rutgers University; success).« less
Lee, A I; Thornber, J P
1995-01-01
The carotenoid zeaxanthin has been implicated in a nonradiative dissipation of excess excitation energy. To determine its site of action, we have examined the location of zeaxanthin within the thylakoid membrane components. Five pigment-protein complexes were isolated with little loss of pigments: photosystem I (PSI); core complex (CC) I, the core of PSI; CC II, the core of photosystem II (PSII); light-harvesting complex (LHC) IIb, a trimer of the major light-harvesting protein of PSII; and LHC IIa, c, and d, a complex of the monomeric minor light-harvesting proteins of PSII. Zeaxanthin was found predominantly in the LHC complexes. Lesser amounts were present in the CCs possibly because these contained some extraneous LHC polypeptides. The LHC IIb trimer and the monomeric LHC II a, c, and d pigment-proteins from dark-adapted plants each contained, in addition to lutein and neoxanthin, one violaxanthin molecule but little antheraxanthin and no zeaxanthin. Following illumination, each complex had a reduced violaxanthin content, but now more antheraxanthin and zeaxanthin were present. PSI had little or no neoxanthin. The pigment content of LHC I was deduced by subtracting the pigment content of CC I from that of PSI. Our best estimate for the carotenoid content of a LHC IIb trimer from dark-adapted plants is one violaxanthin, two neoxanthins, six luteins, and 0.03 mol of antheraxanthin per mol trimer. The xanthophyll cycle occurs mainly or exclusively within the light-harvesting antennae of both photosystems. PMID:7724673
Kirchhoff, H; Horstmann, S; Weis, E
2000-07-20
We investigate the role of plastoquinone (PQ) diffusion in the control of the photosynthetic electron transport. A control analysis reveals an unexpected flux control of the whole chain electron transport by photosystem (PS) II. The contribution of PSII to the flux control of whole chain electron transport was high in stacked thylakoids (control coefficient, CJ(PSII) =0.85), but decreased after destacking (CJ(PSII)=0.25). From an 'electron storage' experiment, we conclude that in stacked thylakoids only about 50 to 60% of photoreducable PQ is involved in the light-saturated linear electron transport. No redox equilibration throughout the membrane between fixed redox groups at PSII and cytochrome (cyt) bf complexes, and the diffusable carrier PQ is achieved. The data support the PQ diffusion microdomain concept by Lavergne et al. [J. Lavergne, J.-P. Bouchaud, P. Joliot, Biochim. Biophys. Acta 1101 (1992) 13-22], but we come to different conclusions about size, structure and size distribution of domains. From an analysis of cyt b6 reduction, as a function of PSII inhibition, we conclude that in stacked thylakoids about 70% of PSII is located in small domains, where only 1 to 2 PSII share a local pool of a few PQ molecules. Thirty percent of PSII is located in larger domains. No small domains were found in destacked thylakoids. We present a structural model assuming a hierarchy of specific, strong and weak interactions between PSII core, light harvesting complexes (LHC) II and cyt bf. Peripheral LHCII's may serve to connect PSII-LHCII supercomplexes to a flexible protein network, by which small closed lipid diffusion compartments are formed. Within each domain, PQ moves rapidly and shuttles electrons between PSII and cyt bf complexes in the close vicinity. At the same time, long range diffusion is slow. We conclude, that in high light, cyt bfcomplexes located in distant stromal lamellae (20 to 30%) are not involved in the linear electron transport.
Giardi, M. T.; Kucera, T.; Briantais, J. M.; Hodges, M.
1995-01-01
In the present work we study the regulation of the distribution of the phosphorylated photosystem II (PSII) core populations present in grana regions of the thylakoids from several plant species. The heterogeneous nature of PSII core phosphorylation has previously been reported (M.T. Giardi, F. Rigoni, R. Barbato [1992] Plant Physiol 100: 1948-1954; M.T. Giardi [1993] Planta 190: 107-113). The pattern of four phosphorylated PSII core populations in the grana regions appears to be ubiquitous in higher plants. In the dark, at least two phosphorylated PSII core populations are always detected. A mutant of wheat (Triticum durum) that shows monophasic room-temperature photoreduction of the primary quinone electron acceptor of PSII as measured by chlorophyll fluorescence increase in the presence and absence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea and by fluorescence upon flash illumination in intact leaves also lacks the usual distribution of phosphorylated PSII core populations. In this mutant, the whole PSII core population pattern is changed, probably due to altered threonine kinase activity, which leads to the absence of light-induced phosphorylation of CP43 and D2 proteins. The results, correlated to previous experiments in vivo, support the idea that the functional heterogeneity observed by fluorescence is correlated in part to the PSII protein phosphorylation in the grana. PMID:12228652
Pagliano, Cristina; Nield, Jon; Marsano, Francesco; Pape, Tillmann; Barera, Simone; Saracco, Guido; Barber, James
2014-09-01
In higher plants a variable number of peripheral LHCII trimers can strongly (S), moderately (M) or loosely (L) associate with the dimeric PSII core (C2) complex via monomeric Lhcb proteins to form PSII-LHCII supercomplexes with different structural organizations. By solubilizing isolated stacked pea thylakoid membranes either with the α or β isomeric forms of the detergent n-dodecyl-D-maltoside, followed by sucrose density ultracentrifugation, we previously showed that PSII-LHCII supercomplexes of types C2S2M2 and C2S2, respectively, can be isolated [S. Barera et al., Phil. Trans. R Soc. B 67 (2012) 3389-3399]. Here we analysed their protein composition by applying extensive bottom-up and top-down mass spectrometry on the two forms of the isolated supercomplexes. In this way, we revealed the presence of the antenna proteins Lhcb3 and Lhcb6 and of the extrinsic polypeptides PsbP, PsbQ and PsbR exclusively in the C2S2M2 supercomplex. Other proteins of the PSII core complex, common to the C2S2M2 and C2S2 supercomplexes, including the low molecular mass subunits, were also detected and characterized. To complement the proteomic study with structural information, we performed negative stain transmission electron microscopy and single particle analysis on the PSII-LHCII supercomplexes isolated from pea thylakoid membranes solubilized with n-dodecyl-α-D-maltoside. We observed the C2S2M2 supercomplex in its intact form as the largest PSII complex in our preparations. Its dataset was further analysed in silico, together with that of the second largest identified sub-population, corresponding to its C2S2 subcomplex. In this way, we calculated 3D electron density maps for the C2S2M2 and C2S2 supercomplexes, approaching respectively 30 and 28Å resolution, extended by molecular modelling towards the atomic level. This article is part of a special issue entitled: photosynthesis research for sustainability: keys to produce clean energy. Copyright © 2013. Published by Elsevier B.V.
Albanese, Pascal; Nield, Jon; Tabares, Jose Alejandro Muñoz; Chiodoni, Angelica; Manfredi, Marcello; Gosetti, Fabio; Marengo, Emilio; Saracco, Guido; Barber, James; Pagliano, Cristina
2016-12-01
In higher plants, photosystem II (PSII) is a multi-subunit pigment-protein complex embedded in the thylakoid membranes of chloroplasts, where it is present mostly in dimeric form within the grana. Its light-harvesting antenna system, LHCII, is composed of trimeric and monomeric complexes, which can associate in variable number with the dimeric PSII core complex in order to form different types of PSII-LHCII supercomplexes. Moreover, PSII-LHCII supercomplexes can laterally associate within the thylakoid membrane plane, thus forming higher molecular mass complexes, termed PSII-LHCII megacomplexes (Boekema et al. 1999a, in Biochemistry 38:2233-2239; Boekema et al. 1999b, in Eur J Biochem 266:444-452). In this study, pure PSII-LHCII megacomplexes were directly isolated from stacked pea thylakoid membranes by a rapid single-step solubilization, using the detergent n-dodecyl-α-D-maltoside, followed by sucrose gradient ultracentrifugation. The megacomplexes were subjected to biochemical and structural analyses. Transmission electron microscopy on negatively stained samples, followed by single-particle analyses, revealed a novel form of PSII-LHCII megacomplexes, as compared to previous studies (Boekema et al.1999a, in Biochemistry 38:2233-2239; Boekema et al. 1999b, in Eur J Biochem 266:444-452), consisting of two PSII-LHCII supercomplexes sitting side-by-side in the membrane plane, sandwiched together with a second copy. This second copy of the megacomplex is most likely derived from the opposite membrane of a granal stack. Two predominant forms of intact sandwiched megacomplexes were observed and termed, according to (Dekker and Boekema 2005 Biochim Biophys Acta 1706:12-39), as (C 2 S 2 ) 4 and (C 2 S 2 + C 2 S 2 M 2 ) 2 megacomplexes. By applying a gel-based proteomic approach, the protein composition of the isolated megacomplexes was fully characterized. In summary, the new structural forms of isolated megacomplexes and the related modeling performed provide novel insights into how PSII-LHCII supercomplexes may bind to each other, not only in the membrane plane, but also between granal stacks within the chloroplast.
1989-01-01
We studied the assembly of photosystem II (PSII) in several mutants from Chlamydomonas reinhardtii which were unable to synthesize either one PSII core subunit (P6 [43 kD], D1, or D2) or one oxygen-evolving enhancer (OEE1 or OEE2) subunit. Synthesis of the PSII subunits was analyzed on electrophoretograms of cells pulse labeled with [14C]acetate. Their accumulation in thylakoid membranes was studied on immunoblots, their chlorophyll-binding ability on nondenaturating gels, their assembly by detergent fractionation, their stability by pulse- chase experiments and determination of in vitro protease sensitivity, and their localization by immunocytochemistry. In Chlamydomonas, the PSII core subunits P5 (47 kD), D1, and D2 are synthesized in a concerted manner while P6 synthesis is independent. P5 and P6 accumulate independently of each other in the stacked membranes. They bind chlorophyll soon after, or concomitantly with, their synthesis and independently of the presence of the other PSII subunits. Resistance to degradation increases step by step: beginning with assembly of P5, D1, and D2, then with binding of P6, and, finally, with binding of the OEE subunits on two independent high affinity sites (one for OEE1 and another for OEE2 to which OEE3 binds). In the absence of PSII cores, the OEE subunits accumulate independently in the thylakoid lumen and bind loosely to the membranes; OEE1 was found on stacked membranes, but OEE2 was found on either stacked or unstacked membranes depending on whether or not P6 was synthesized. PMID:2670960
de Vitry, C; Olive, J; Drapier, D; Recouvreur, M; Wollman, F A
1989-09-01
We studied the assembly of photosystem II (PSII) in several mutants from Chlamydomonas reinhardtii which were unable to synthesize either one PSII core subunit (P6 [43 kD], D1, or D2) or one oxygen-evolving enhancer (OEE1 or OEE2) subunit. Synthesis of the PSII subunits was analyzed on electrophoretograms of cells pulse labeled with [14C]acetate. Their accumulation in thylakoid membranes was studied on immunoblots, their chlorophyll-binding ability on nondenaturating gels, their assembly by detergent fractionation, their stability by pulse-chase experiments and determination of in vitro protease sensitivity, and their localization by immunocytochemistry. In Chlamydomonas, the PSII core subunits P5 (47 kD), D1, and D2 are synthesized in a concerted manner while P6 synthesis is independent. P5 and P6 accumulate independently of each other in the stacked membranes. They bind chlorophyll soon after, or concomitantly with, their synthesis and independently of the presence of the other PSII subunits. Resistance to degradation increases step by step: beginning with assembly of P5, D1, and D2, then with binding of P6, and, finally, with binding of the OEE subunits on two independent high affinity sites (one for OEE1 and another for OEE2 to which OEE3 binds). In the absence of PSII cores, the OEE subunits accumulate independently in the thylakoid lumen and bind loosely to the membranes; OEE1 was found on stacked membranes, but OEE2 was found on either stacked or unstacked membranes depending on whether or not P6 was synthesized.
Zobnina, Veranika; Lambreva, Maya D; Rea, Giuseppina; Campi, Gaetano; Antonacci, Amina; Scognamiglio, Viviana; Giardi, Maria Teresa; Polticelli, Fabio
2017-01-01
In the photosystem II (PSII) of oxygenic photosynthetic organisms, the reaction center (RC) core mediates the light-induced electron transfer leading to water splitting and production of reduced plastoquinone molecules. The reduction of plastoquinone to plastoquinol lowers PSII affinity for the latter and leads to its release. However, little is known about the role of protein dynamics in this process. Here, molecular dynamics simulations of the complete PSII complex embedded in a lipid bilayer have been used to investigate the plastoquinol release mechanism. A distinct dynamic behavior of PSII in the presence of plastoquinol is observed which, coupled to changes in charge distribution and electrostatic interactions, causes disruption of the interactions seen in the PSII-plastoquinone complex and leads to the "squeezing out" of plastoquinol from the binding pocket. Displacement of plastoquinol closes the second water channel, recently described in a 2.9 Å resolution PSII structure (Guskov et al. in Nat Struct Mol Biol 16:334-342, 2009), allowing to rule out the proposed "alternating" mechanism of plastoquinol-plastoquinone exchange, while giving support to the "single-channel" one. The performed simulations indicated a pivotal role of D 1 -Ser264 in modulating the dynamics of the plastoquinone binding pocket and plastoquinol-plastoquinone exchange via its interaction with D 1 -His252 residue. The effects of the disruption of this hydrogen bond network on the PSII redox reactions were experimentally assessed in the D 1 site-directed mutant Ser264Lys.
Vermaas, Wim F. J.; Williams, John G. K.; Rutherford, A. William; Mathis, Paul; Arntzen, Charles J.
1986-01-01
CP-47 is absent in a genetically engineered mutant of cyanobacterium Synechocystis 6803, in which the psbB gene [encoding the chlorophyll-binding photosystem II (PSII) protein CP-47] was interrupted. Another chlorophyll-binding PSII protein, CP-43, is present in the mutant, and functionally inactive PSII-enriched particles can be isolated from mutant thylakoids. We interpret these data as indicating that the PSII core complex of the mutant still assembles in the absence of CP-47. The mutant lacks a 77 K fluorescence emission maximum at 695 nm, suggesting that the PSII reaction center is not functional. The absence of primary photochemistry was indicated by EPR and optical measurements: no chlorophyll triplet originating from charge recombination between P680+ and Pheo- was observed in the mutant, and there were no flash-induced absorption changes at 820 nm attributable to chlorophyll P680 oxidation. These observations lead us to conclude that CP-47 plays an essential role in the activity of the PSII reaction center. Images PMID:16593788
Daskalakis, Vangelis
2018-05-07
The assembly and disassembly of protein complexes within cells are crucial life-sustaining processes. In photosystem II (PSII) of higher plants, there is a delicate yet obscure balance between light harvesting and photo-protection under fluctuating light conditions, that involves protein-protein complexes. Recent breakthroughs in molecular dynamics (MD) simulations are combined with new approaches herein to provide structural and energetic insight into such a complex between the CP29 minor antenna and the PSII subunit S (PsbS). The microscopic model involves extensive sampling of bound and dissociated states at atomic resolution in the presence of photo-protective zeaxanthin (Zea), and reveals well defined protein-protein cross-sections. The complex is placed within PSII, and macroscopic connections are emerging (PsbS-CP29-CP24-CP47) along the energy transfer pathways from the antenna to the PSII core. These connections explain macroscopic observations in the literature, while the previously obscured atomic scale details are now revealed. The implications of these findings are discussed in the context of the Non-Photochemical Quenching (NPQ) of chlorophyll fluorescence, the down-regulatory mechanism of photosynthesis, that enables the protection of PSII against excess excitation load. Zea is found at the PsbS-CP29 cross-section and a pH-dependent equilibrium between PsbS dimer/monomers and the PsbS-CP29 dissociation/association is identified as the target for engineering tolerant plants with increased crop and biomass yields. Finally, the new MD based approaches can be used to probe protein-protein interactions in general, and the PSII structure provided can initiate large scale molecular simulations of the photosynthetic apparatus, under NPQ conditions.
Pineau, Bernard; Girard-Bascou, Jacqueline; Eberhard, Stephan; Choquet, Yves; Trémolières, Antoine; Gérard-Hirne, Catherine; Bennardo-Connan, Annick; Decottignies, Paulette; Gillet, Sylvie; Wollman, Francis-André
2004-01-01
Two mutants of Chlamydomonas reinhardtii, mf1 and mf2, characterized by a marked reduction in their phosphatidylglycerol content together with a complete loss in its Delta3-trans hexadecenoic acid-containing form, also lost photosystem II (PSII) activity. Genetic analysis of crosses between mf2 and wild-type strains shows a strict cosegregation of the PSII and lipid deficiencies, while phenotypic analysis of phototrophic revertant strains suggests that one single nuclear mutation is responsible for the pleiotropic phenotype of the mutants. The nearly complete absence of PSII core is due to a severely decreased synthesis of two subunits, D1 and apoCP47, which is not due to a decrease in translation initiation. Trace amounts of PSII cores that were detected in the mutants did not associate with the light-harvesting chlorophyll a/b-binding protein antenna (LHCII). We discuss the possible role of phosphatidylglycerol in the coupled process of cotranslational insertion and assembly of PSII core subunits.
Gazquez, Ayelén; Vilas, Juan Manuel; Colman Lerner, Jorge Esteban; Maiale, Santiago Javier; Calzadilla, Pablo Ignacio; Menéndez, Ana Bernardina; Rodríguez, Andrés Alberto
2018-06-01
The purpose of this research was to identify differences between two contrasting rice cultivars in their response to suboptimal low temperatures stress. A transcriptomic analysis of the seedlings was performed and results were complemented with biochemical and physiological analyses. The microarray analysis showed downregulation of many genes related with PSII and particularly with the oxygen evolving complex in the sensitive cultivar IR50. Complementary studies indicated that the PSII performance, the degree of oxygen evolving complex coupling with the PSII core and net photosynthetic rate diminished in this cultivar in response to the stress. However, the tolerant cultivar Koshihikari was able to maintain its energy equilibrium by sustaining the photosynthetic capacity. The increase of oleic acid in Koshihikari could be related with membrane remodelling of the chloroplasts and hence contribute to tolerance. Overall, these results work as a ground for future analyses that look forward to characterize possible mechanisms to tolerate this stress. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Hey, Daniel; Grimm, Bernhard
2018-06-21
The members of the light-harvesting-complex protein (LHCP) family, which include the one-helix proteins (OHPs), are characterized by one to four membrane-spanning helices. These pro-teins function in light absorption and energy dissipation, sensing light intensity, and triggering photomorphogenesis or binding of chlorophyll and intermediates of chlorophyll biosynthesis. Arabidopsis thaliana contains two OHPs, while four homologs (named high-light-induced pro-teins, Hlips) exist in Synechocystis PCC6803. Various functions have been assigned to Hlips, ranging from photoprotection and assembly of photosystem (PS) I and PSII to regulation of the early steps of chlorophyll biosynthesis, but little is known about the function of the two plant OHPs. Here, we show that the two Arabidopsis OHPs form heterodimers and that the stromal part of OHP2 interacts with the plastid-localized PSII assembly factor HIGH CHLOROPHYLL FLUORESCENCE 244 (HCF244). Moreover, concurrent accumulation of the two OHPs and HCF244 is critical for the stability of all three proteins. In particular, the absence of OHP2 leads to the complete loss of OHP1 and HCF244. We used a virus-induced gene silencing approach to minimize the expression of OHP1 or OHP2 in adult Arabidopsis plants and revealed that OHP2 is essential for the accumulation of the PSII core subunits, while the other photosynthetic com-plexes and the major LHCPs remained unaffected. We examined the potential functions of the OHP1-OHP2-HCF244 complex in the assembly and/or repair of PSII and propose a role for this heterotrimeric complex in thylakoid membrane biogenesis. {copyright, serif} 2018 American Society of Plant Biologists. All rights reserved.
Pakrasi, H B; De Ciechi, P; Whitmarsh, J
1991-01-01
Cytochrome (cyt) b559, an integral membrane protein, is an essential component of the photosystem II (PSII) complex in the thylakoid membranes of oxygenic photosynthetic organisms. Cyt b559 has two subunits, alpha and beta, each with one predicted membrane spanning alpha-helical domain. The heme cofactor of this cytochrome is coordinated between two histidine residues. Each of the two subunit polypeptides of cyt b559 has one His residue. To investigate the influence of these His residues on the structure of cyt b559 and the PSII complex, we used a site directed mutagenesis approach to replace each His residue with a Leu residue. Introduction of these missense mutations in the transformable unicellular cyanobacterium, Synechocystis 6803, resulted in complete loss of PSII activity. Northern blot analysis showed that these mutations did not affect the stability of the polycistronic mRNA that encompasses both the psbE and the psbF genes, encoding the alpha and the beta subunits, respectively. Moreover, both of the single His mutants showed the presence of the alpha subunit which was 1.5 kd smaller than the same polypeptide in wild type cells. A secondary effect of such a structural change was that D1 and D2, two proteins that form the catalytic core (reaction center) of PSII, were also destabilized. Our results demonstrate that proper axial coordination of the heme cofactor in cyt b559 is important for the structural integrity of the reaction center of PSII. Images PMID:1904816
Serial time-resolved crystallography of photosystem II using a femtosecond X-ray laser
Kupitz, Christopher; Basu, Shibom; Grotjohann, Ingo; Fromme, Raimund; Zatsepin, Nadia A.; Rendek, Kimberly N.; Hunter, Mark S.; Shoeman, Robert L.; White, Thomas A.; Wang, Dingjie; James, Daniel; Yang, Jay-How; Cobb, Danielle E.; Reeder, Brenda; Sierra, Raymond G.; Liu, Haiguang; Barty, Anton; Aquila, Andrew L.; Deponte, Daniel; Kirian, Richard A.; Bari, Sadia; Bergkamp, Jesse J.; Beyerlein, Kenneth R.; Bogan, Michael J.; Caleman, Carl; Chao, Tzu-Chiao; Conrad, Chelsie E.; Davis, Katherine M.; Fleckenstein, Holger; Galli, Lorenzo; Hau-Riege, Stefan P.; Kassemeyer, Stephan; Laksmono, Hartawan; Liang, Mengning; Lomb, Lukas; Marchesini, Stefano; Martin, Andrew V.; Messerschmidt, Marc; Milathianaki, Despina; Nass, Karol; Ros, Alexandra; Roy-Chowdhury, Shatabdi; Schmidt, Kevin; Seibert, Marvin; Steinbrener, Jan; Stellato, Francesco; Yan, Lifen; Yoon, Chunhong; Moore, Thomas A.; Moore, Ana L.; Pushkar, Yulia; Williams, Garth J.; Boutet, Sébastien; Doak, R. Bruce; Weierstall, Uwe; Frank, Matthias; Chapman, Henry N.; Spence, John C. H.; Fromme, Petra
2015-01-01
Photosynthesis, a process catalysed by plants, algae and cyanobacteria converts sunlight to energy thus sustaining all higher life on Earth. Two large membrane protein complexes, photosystem I and II (PSI and PSII), act in series to catalyse the light-driven reactions in photosynthesis. PSII catalyses the light-driven water splitting process, which maintains the Earth’s oxygenic atmosphere1. In this process, the oxygen-evolving complex (OEC) of PSII cycles through five states, S0 to S4, in which four electrons are sequentially extracted from the OEC in four light-driven charge-separation events. Here we describe time resolved experiments on PSII nano/microcrystals from Thermosynechococcus elongatus performed with the recently developed2 technique of serial femtosecond crystallography. Structures have been determined from PSII in the dark S1 state and after double laser excitation (putative S3 state) at 5 and 5.5 Å resolution, respectively. The results provide evidence that PSII undergoes significant conformational changes at the electron acceptor side and at the Mn4CaO5 core of the OEC. These include an elongation of the metal cluster, accompanied by changes in the protein environment, which could allow for binding of the second substrate water molecule between the more distant protruding Mn (referred to as the ‘dangler’ Mn) and the Mn3CaOx cubane in the S2 to S3 transition, as predicted by spectroscopic and computational studies3,4. This work shows the great potential for time-resolved serial femtosecond crystallography for investigation of catalytic processes in biomolecules. PMID:25043005
Khorobrykh, A A; Yanykin, D V; Klimov, V V
2016-10-01
It has been shown earlier (Khorobrykh and Klimov, 2015) that molecular oxygen is directly involved in the general mechanism of the donor side photoinhibition of photosystem II (PSII) membranes. In the present work the effect of oxygen on photoassembly ("photoactivation") of the functionally active inorganic core of the water-oxidizing complex (WOC) in Mn-depleted PSII preparations (apo-WOC-PSII) in the presence of exogenous Mn(2+), Ca(2+) as well as ferricyanide was investigated. It was revealed that the efficiency of the photoassembly of the WOC was considerably increased upon removal of oxygen from the medium during photoactivation procedure using the enzymatic oxygen trap or argon flow. The lowering of O2 concentration from 250μM to 75μM, 10μM and near 0μM results in 29%, 71% and 92%, respectively, stimulation of the rate of O2 evolution measured after the photoactivation. The increase in the intensity of light used during the photoactivation was accompanied by a decrease of both the efficiency of photoassembly of the WOC and the stimulation effect of removal of O2 (that may be due to the enhancement of the processes leading to the photodamage to PSII). It is concluded that the enhancement in photoactivation of oxygen-evolving activity of apo-WOC-PSII induced by oxygen removal from the medium is due to the suppression of the donor side photoinhibition of PSII in which molecular oxygen can be involved. Copyright © 2016 Elsevier B.V. All rights reserved.
Rintamäki, E; Salonen, M; Suoranta, U M; Carlberg, I; Andersson, B; Aro, E M
1997-11-28
An immunological approach using a polyclonal phosphothreonine antibody is introduced for the analysis of thylakoid protein phosphorylation in vivo. Virtually the same photosystem II (PSII) core phosphoproteins (D1, D2, CP43, and the psbH gene product) and the light-harvesting chlorophyll a/b complex II (LHCII) phosphopolypeptides (LHCB1 and LHCB2), as earlier identified by radiolabeling experiments, were recognized in both pumpkin and spinach leaves. Notably, the PSII core proteins and LHCII polypeptides were found to have a different phosphorylation pattern in vivo with respect to increasing irradiance. Phosphorylation of the PSII core proteins in leaf discs attained the saturation level at the growth light intensity, and this level was also maintained at high irradiances. Maximal phosphorylation of LHCII polypeptides only occurred at low light intensities, far below the growth irradiance, and then drastically decreased at higher irradiances. These observations are at variance with traditional studies in vitro, where LHCII shows a light-dependent increase in phosphorylation, which is maintained even at high irradiances. Only a slow restoration of the phosphorylation capacity for LHCII polypeptides at the low light conditions occurred in vivo after the high light-induced inactivation. Furthermore, if thylakoid membranes were isolated from the high light-inactivated leaves, no restoration of LHCII phosphorylation took place in vitro. However, both the high light-induced inactivation and low light-induced restoration of LHCII phosphorylation seen in vivo could be mimicked in isolated thylakoid membranes by incubating with reduced and oxidized dithiothreitol, respectively. We propose that stromal components are involved in the regulation of LHCII phosphorylation in vivo, and inhibition of LHCII phosphorylation under increasing irradiance results from reduction of the thiol groups in the LHCII kinase.
McKew, Boyd A; Davey, Phillip; Finch, Stewart J; Hopkins, Jason; Lefebvre, Stephane C; Metodiev, Metodi V; Oxborough, Kevin; Raines, Christine A; Lawson, Tracy; Geider, Richard J
2013-10-01
Mechanistic understanding of the costs and benefits of photoacclimation requires knowledge of how photophysiology is affected by changes in the molecular structure of the chloroplast. We tested the hypothesis that changes in the light dependencies of photosynthesis, nonphotochemical quenching and PSII photoinactivation arises from changes in the abundances of chloroplast proteins in Emiliania huxleyi strain CCMP 1516 grown at 30 (Low Light; LL) and 1000 (High Light; HL) μmol photons m(-2) s(-1) photon flux densities. Carbon-specific light-saturated gross photosynthesis rates were not significantly different between cells acclimated to LL and HL. Acclimation to LL benefited cells by increasing biomass-specific light absorption and gross photosynthesis rates under low light, whereas acclimation to HL benefited cells by reducing the rate of photoinactivation of PSII under high light. Differences in the relative abundances of proteins assigned to light-harvesting (Lhcf), photoprotection (LI818-like), and the photosystem II (PSII) core complex accompanied differences in photophysiology: specifically, Lhcf:PSII was greater under LL, whereas LI818:PSII was greater in HL. Thus, photoacclimation in E. huxleyi involved a trade-off amongst the characteristics of light absorption and photoprotection, which could be attributed to changes in the abundance and composition of proteins in the light-harvesting antenna of PSII. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weisz, Daniel A.; Gross, Michael L.; Pakrasi, Himadri B.
Photosystem II (PSII) is a photosynthetic membrane-protein complex that undergoes an intricate, tightly regulated cycle of assembly, damage, and repair. The available crystal structures of cyanobacterial PSII are an essential foundation for understanding PSII function, but nonetheless provide a snapshot only of the active complex. To study aspects of the entire PSII life-cycle, mass spectrometry (MS) has emerged as a powerful tool that can be used in conjunction with biochemical techniques. In this article, we present the MS-based approaches that are used to study PSII composition, dynamics, and structure, and review the information about the PSII life-cycle that has beenmore » gained by these methods. This information includes the composition of PSII subcomplexes, discovery of accessory PSII proteins, identification of post-translational modifications and quantification of their changes under various conditions, determination of the binding site of proteins not observed in PSII crystal structures, conformational changes that underlie PSII functions, and identification of water and oxygen channels within PSII. Lastly, we conclude with an outlook for the opportunity of future MS contributions to PSII research.« less
Computational Insights into the O2-evolving complex of photosystem II
Sproviero, Eduardo M.; McEvoy, James P.; Gascón, José A.; Brudvig, Gary W.; Batista, Victor S.
2009-01-01
Mechanistic investigations of the water-splitting reaction of the oxygen-evolving complex (OEC) of photosystem II (PSII) are fundamentally informed by structural studies. Many physical techniques have provided important insights into the OEC structure and function, including X-ray diffraction (XRD) and extended X-ray absorption fine structure (EXAFS) spectroscopy as well as mass spectrometry (MS), electron paramagnetic resonance (EPR) spectroscopy and Fourier transform infrared spectroscopy applied in conjunction with mutagenesis studies. However, experimental studies have yet to yield consensus as to the exact configuration of the catalytic metal cluster and its ligation scheme. Computational modeling studies, including density functional (DFT) theory combined with quantum mechanics/molecular mechanics (QM/MM) hybrid methods for explicitly including the influence of the surrounding protein, have proposed chemically satisfactory models of the fully ligated OEC within PSII that are maximally consistent with experimental results. The inorganic core of these models is similar to the crystallographic model upon which they were based but comprises important modifications due to structural refinement, hydration and proteinaceous ligation which improve agreement with a wide range of experimental data. The computational models are useful for rationalizing spectroscopic and crystallographic results and for building a complete structure-based mechanism of water-splitting in PSII as described by the intermediate oxidation states of the OEC. This review summarizes these recent advances in QM/MM modeling of PSII within the context of recent experimental studies. PMID:18483777
Arrangement of photosystem II and ATP synthase in chloroplast membranes of spinach and pea.
Daum, Bertram; Nicastro, Daniela; Austin, Jotham; McIntosh, J Richard; Kühlbrandt, Werner
2010-04-01
We used cryoelectron tomography to reveal the arrangements of photosystem II (PSII) and ATP synthase in vitreous sections of intact chloroplasts and plunge-frozen suspensions of isolated thylakoid membranes. We found that stroma and grana thylakoids are connected at the grana margins by staggered lamellar membrane protrusions. The stacking repeat of grana membranes in frozen-hydrated chloroplasts is 15.7 nm, with a 4.5-nm lumenal space and a 3.2-nm distance between the flat stromal surfaces. The chloroplast ATP synthase is confined to minimally curved regions at the grana end membranes and stroma lamellae, where it covers 20% of the surface area. In total, 85% of the ATP synthases are monomers and the remainder form random assemblies of two or more copies. Supercomplexes of PSII and light-harvesting complex II (LHCII) occasionally form ordered arrays in appressed grana thylakoids, whereas this order is lost in destacked membranes. In the ordered arrays, each membrane on either side of the stromal gap contains a two-dimensional crystal of supercomplexes, with the two lattices arranged such that PSII cores, LHCII trimers, and minor LHCs each face a complex of the same kind in the opposite membrane. Grana formation is likely to result from electrostatic interactions between these complexes across the stromal gap.
The use of advanced mass spectrometry to dissect the life-cycle of photosystem II
Weisz, Daniel A.; Gross, Michael L.; Pakrasi, Himadri B.
2016-05-10
Photosystem II (PSII) is a photosynthetic membrane-protein complex that undergoes an intricate, tightly regulated cycle of assembly, damage, and repair. The available crystal structures of cyanobacterial PSII are an essential foundation for understanding PSII function, but nonetheless provide a snapshot only of the active complex. To study aspects of the entire PSII life-cycle, mass spectrometry (MS) has emerged as a powerful tool that can be used in conjunction with biochemical techniques. In this article, we present the MS-based approaches that are used to study PSII composition, dynamics, and structure, and review the information about the PSII life-cycle that has beenmore » gained by these methods. This information includes the composition of PSII subcomplexes, discovery of accessory PSII proteins, identification of post-translational modifications and quantification of their changes under various conditions, determination of the binding site of proteins not observed in PSII crystal structures, conformational changes that underlie PSII functions, and identification of water and oxygen channels within PSII. Lastly, we conclude with an outlook for the opportunity of future MS contributions to PSII research.« less
Noji, Tomoyasu; Kawakami, Keisuke; Shen, Jian-Ren; Dewa, Takehisa; Nango, Mamoru; Kamiya, Nobuo; Itoh, Shigeru; Jin, Tetsuro
2016-08-09
The development of artificial photosynthesis has focused on the efficient coupling of reaction at photoanode and cathode, wherein the production of hydrogen (or energy carriers) is coupled to the electrons derived from water-splitting reactions. The natural photosystem II (PSII) complex splits water efficiently using light energy. The PSII complex is a large pigment-protein complex (20 nm in diameter) containing a manganese cluster. A new photoanodic device was constructed incorporating stable PSII purified from a cyanobacterium Thermosynechococcus vulcanus through immobilization within 20 or 50 nm nanopores contained in porous glass plates (PGPs). PSII in the nanopores retained its native structure and high photoinduced water splitting activity. The photocatalytic rate (turnover frequency) of PSII in PGP was enhanced 11-fold compared to that in solution, yielding a rate of 50-300 mol e(-)/(mol PSII·s) with 2,6-dichloroindophenol (DCIP) as an electron acceptor. The PGP system realized high local concentrations of PSII and DCIP to enhance the collisional reactions in nanotubes with low disturbance of light penetration. The system allows direct visualization/determination of the reaction inside the nanotubes, which contributes to optimize the local reaction condition. The PSII/PGP device will substantively contribute to the construction of artificial photosynthesis using water as the ultimate electron source.
Isolation of Plant Photosystem II Complexes by Fractional Solubilization
Haniewicz, Patrycja; Floris, Davide; Farci, Domenica; Kirkpatrick, Joanna; Loi, Maria C.; Büchel, Claudia; Bochtler, Matthias; Piano, Dario
2015-01-01
Photosystem II (PSII) occurs in different forms and supercomplexes in thylakoid membranes. Using a transplastomic strain of Nicotiana tabacum histidine tagged on the subunit PsbE, we have previously shown that a mild extraction protocol with β-dodecylmaltoside enriches PSII characteristic of lamellae and grana margins. Here, we characterize residual granal PSII that is not extracted by this first solubilization step. Using affinity purification, we demonstrate that this PSII fraction consists of PSII-LHCII mega- and supercomplexes, PSII dimers, and PSII monomers, which were separated by gel filtration and functionally characterized. Our findings represent an alternative demonstration of different PSII populations in thylakoid membranes, and they make it possible to prepare PSII-LHCII supercomplexes in high yield. PMID:26697050
Sproviero, Eduardo M; Gascón, José A; McEvoy, James P; Brudvig, Gary W; Batista, Victor S
2007-04-01
The annual production of 260 Gtonnes of oxygen, during the process of photosynthesis, sustains life on earth. Oxygen is produced in the thylakoid membranes of green-plant chloroplasts and the internal membranes of cyanobacteria by photocatalytic water oxidation at the oxygen-evolving complex (OEC) of photosystem II (PSII). Recent breakthroughs in X-ray crystallography and advances in quantum mechanics/molecular mechanics (QM/MM) hybrid methods have enabled the construction of chemically sensible models of the OEC of PSII. The resulting computational structural models suggest the complete ligation of the catalytic center by amino acid residues, water, hydroxide and chloride, as determined from the intrinsic electronic properties of the oxomanganese core and the perturbational influence of the surrounding protein environment. These structures are found to be consistent with available mechanistic data, and are also compatible with X-ray diffraction models and extended X-ray absorption fine structure measurements. It is therefore conjectured that these OEC models are particularly relevant for the elucidation of the catalytic mechanism of water oxidation.
Tikhonov, Alexander N; Vershubskii, Alexey V
2017-09-01
In chloroplasts, photosynthetic electron transport complexes interact with each other via the mobile electron carriers (plastoquinone and plastocyanin) which are in surplus amounts with respect to photosystem I and photosystem II (PSI and PSII), and the cytochrome b 6 f complex. In this work, we analyze experimental data on the light-induced redox transients of photoreaction center P 700 in chloroplasts within the framework of our mathematical model. This analysis suggests that during the action of a strong actinic light, even significant attenuation of PSII [for instance, in the result of inhibition of a part of PSII complexes by DCMU or due to non-photochemical quenching (NPQ)] will not cause drastic shortage of electron flow through PSI. This can be explained by "electronic" and/or "excitonic" connectivity between different PSII units. At strong AL, the overall flux of electrons between PSII and PSI will maintain at a high level even with the attenuation of PSII activity, provided the rate-limiting step of electron transfer is beyond the stage of PQH 2 formation. Results of our study are briefly discussed in the context of NPQ-dependent mechanism of chloroplast protection against light stress.
Fe deficiency induced changes in rice (Oryza sativa L.) thylakoids.
Wang, Yuwen; Xu, Chao; Li, Kang; Cai, Xiaojie; Wu, Min; Chen, Guoxiang
2017-01-01
Iron deficiency is an important abiotic stress that limits productivity of crops all over the world. We selected a hybrid rice (Oryza sativa L.), LYPJ, which is super high-yield and widely cultured in China, to investigate changes in the components and structure of thylakoid membranes and photosynthetic performance in response to iron deficiency. Our results demonstrated that photosystem I (PSI) is the primary target for iron deficiency, while the changes in photosystem II (PSII) are important for rebuilding a balance in disrupted energy utilization and dissipation caused by differential degradation of photosynthetic components. The result of immunoblot analysis suggested that the core subunit PsaA declined drastically, while PsbA remained relatively stable. Furthermore, several organizational changes of the photosynthetic apparatus were found by BN-PAGE, including a marked decrease in the PSI core complexes, the Cytb 6 /f complex, and the trimeric form of the LHCII antenna, consistent with the observed unstacking grana. The fluorescence induction analysis indicated a descending PSII activity with energy dissipation enhanced markedly. In addition, we proposed that the crippled CO 2 assimilation could be compensated by the enhanced of phosphoenolpyruvate carboxylase (PEPC), which is suggested by the decreased ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) and photosynthetic efficiency.
Krupnik, Tomasz; Kotabová, Eva; van Bezouwen, Laura S.; Mazur, Radosław; Garstka, Maciej; Nixon, Peter J.; Barber, James; Kaňa, Radek; Boekema, Egbert J.; Kargul, Joanna
2013-01-01
Members of the rhodophytan order Cyanidiales are unique among phototrophs in their ability to live in extremely low pH levels and moderately high temperatures. The photosynthetic apparatus of the red alga Cyanidioschyzon merolae represents an intermediate type between cyanobacteria and higher plants, suggesting that this alga may provide the evolutionary link between prokaryotic and eukaryotic phototrophs. Although we now have a detailed structural model of photosystem II (PSII) from cyanobacteria at an atomic resolution, no corresponding structure of the eukaryotic PSII complex has been published to date. Here we report the isolation and characterization of a highly active and robust dimeric PSII complex from C. merolae. We show that this complex is highly stable across a range of extreme light, temperature, and pH conditions. By measuring fluorescence quenching properties of the isolated C. merolae PSII complex, we provide the first direct evidence of pH-dependent non-photochemical quenching in the red algal PSII reaction center. This type of quenching, together with high zeaxanthin content, appears to underlie photoprotection mechanisms that are efficiently employed by this robust natural water-splitting complex under excess irradiance. In order to provide structural details of this eukaryotic form of PSII, we have employed electron microscopy and single particle analyses to obtain a 17 Å map of the C. merolae PSII dimer in which we locate the position of the protein mass corresponding to the additional extrinsic protein stabilizing the oxygen-evolving complex, PsbQ′. We conclude that this lumenal subunit is present in the vicinity of the CP43 protein, close to the membrane plane. PMID:23775073
Photosystem II Component Lifetimes in the Cyanobacterium Synechocystis sp. Strain PCC 6803
Yao, Danny C. I.; Brune, Daniel C.; Vavilin, Dmitri; Vermaas, Wim F. J.
2012-01-01
To gain insight in the lifetimes of photosystem II (PSII) chlorophyll and proteins, a combined stable isotope labeling (15N)/mass spectrometry method was used to follow both old and new pigments and proteins. Photosystem I-less Synechocystis cells were grown to exponential or post-exponential phase and then diluted in BG-11 medium with [15N]ammonium and [15N]nitrate. PSII was isolated, and the masses of PSII protein fragments and chlorophyll were determined. Lifetimes of PSII components ranged from 1.5 to 40 h, implying that at least some of the proteins and chlorophyll turned over independently from each other. Also, a significant amount of nascent PSII components accumulated in thylakoids when cells were in post-exponential growth phase. In a mutant lacking small Cab-like proteins (SCPs), most PSII protein lifetimes were unaffected, but the lifetime of chlorophyll and the amount of nascent PSII components that accumulated were decreased. In the absence of SCPs, one of the PSII biosynthesis intermediates, the monomeric PSII complex without CP43, was missing. Therefore, SCPs may stabilize nascent PSII protein complexes. Moreover, upon SCP deletion, the rate of chlorophyll synthesis and the accumulation of early tetrapyrrole precursors were drastically reduced. When [14N]aminolevulinic acid (ALA) was supplemented to 15N-BG-11 cultures, the mutant lacking SCPs incorporated much more exogenous ALA into chlorophyll than the control demonstrating that ALA biosynthesis was impaired in the absence of SCPs. This illustrates the major effects that nonstoichiometric PSII components such as SCPs have on intermediates and assembly but not on the lifetime of PSII proteins. PMID:22090028
Metal Binding in Photosystem II Super- and Subcomplexes from Barley Thylakoids1
Persson, Daniel Pergament; Powikrowska, Marta
2015-01-01
Metals exert important functions in the chloroplast of plants, where they act as cofactors and catalysts in the photosynthetic electron transport chain. In particular, manganese (Mn) has a key function because of its indispensable role in the water-splitting reaction of photosystem II (PSII). More and better knowledge is required on how the various complexes of PSII are affected in response to, for example, nutritional disorders and other environmental stress conditions. We here present, to our knowledge, a new method that allows the analysis of metal binding in intact photosynthetic complexes of barley (Hordeum vulgare) thylakoids. The method is based on size exclusion chromatography coupled to inductively coupled plasma triple-quadrupole mass spectrometry. Proper fractionation of PSII super- and subcomplexes was achieved by critical selection of elution buffers, detergents for protein solubilization, and stabilizers to maintain complex integrity. The applicability of the method was shown by quantification of Mn binding in PSII from thylakoids of two barley genotypes with contrasting Mn efficiency exposed to increasing levels of Mn deficiency. The amount of PSII supercomplexes was drastically reduced in response to Mn deficiency. The Mn efficient genotype bound significantly more Mn per unit of PSII under control and mild Mn deficiency conditions than the inefficient genotype, despite having lower or similar total leaf Mn concentrations. It is concluded that the new method facilitates studies of the internal use of Mn and other biometals in various PSII complexes as well as their relative dynamics according to changes in environmental conditions. PMID:26084923
NASA Astrophysics Data System (ADS)
Guha, A.; Warren, J.; Cummings, C.; Han, J.
2017-12-01
Thermal stress can induce irreversible photodamage with longer consequences for plant metabolism. We focused on photosystem II (PSII) behaviour to understand how this complex responds in different co-occuring temperate trees exposed to short-term extreme heat waves. The study was designed for understanding complex heat tolerance mechanisms in trees. During manipulative heat-wave experiments, we monitored instantaneous PSII performance and tracked both transient and chronic PSII damages using chlorophyll a fluorescence characteristics. Fluorescence signals were used to simulate PSII bioenergetic processes. The light (Fv'/Fm') and dark-adapted (Fv/Fm) fluorescence traits including fast induction kinetics (OJIP), electron transport rate, PSII operating efficiency and quenching capacities were significantly affected by the heat treatments. Loss in PSII efficiency was more apparent in species like black cottonwood, yellow poplar, walnuts and conifers, whereas oaks maintained relatively better PSII functions. The post-heat recovery of Fv/Fm varied across the studied species showing differential carry over effects. PSII down-regulation was one of dominant factors for the loss in operational photosynthesis during extreme heat wave events. Both light and dark-adapted fluorescence characteristics showed loss in photo-regulatory functions and photodamage. Some resilient species showed rapid recovery from transient PSII damage, whereas fingerprints of chronic PSII damage were observed in susceptibles. Thresholds for Fv/Fm and non-photochemical quenching were identified for the studied species. PSII malfunctioning was largely associated with the observed photosynthetic down-regulation during heat wave treatments, however, its physiological recovery should be a key factor to determine species resilience to short-term extreme heat wave events.
Personat, José-María; Tejedor-Cano, Javier; Lindahl, Marika; Diaz-Espejo, Antonio; Jordano, Juan
2012-01-01
A genetic program that in sunflower seeds is activated by Heat Shock transcription Factor A9 (HaHSFA9) has been analyzed in transgenic tobacco seedlings. The ectopic overexpression of the HSFA9 program protected photosynthetic membranes, which resisted extreme dehydration and oxidative stress conditions. In contrast, heat acclimation of seedlings induced thermotolerance but not resistance to the harsh stress conditions employed. The HSFA9 program was found to include the expression of plastidial small Heat Shock Proteins that accumulate only at lower abundance in heat-stressed vegetative organs. Photosystem II (PSII) maximum quantum yield was higher for transgenic seedlings than for non-transgenic seedlings, after either stress treatment. Furthermore, protection of both PSII and Photosystem I (PSI) membrane protein complexes was observed in the transgenic seedlings, leading to their survival after the stress treatments. It was also shown that the plastidial D1 protein, a labile component of the PSII reaction center, and the PSI core protein PsaB were shielded from oxidative damage and degradation. We infer that natural expression of the HSFA9 program during embryogenesis may protect seed pro-plastids from developmental desiccation. PMID:23227265
Charuvi, Dana; Nevo, Reinat; Shimoni, Eyal; Naveh, Leah; Zia, Ahmad; Adam, Zach; Farrant, Jill M.; Kirchhoff, Helmut; Reich, Ziv
2015-01-01
During desiccation, homoiochlorophyllous resurrection plants retain most of their photosynthetic apparatus, allowing them to resume photosynthetic activity quickly upon water availability. These plants rely on various mechanisms to prevent the formation of reactive oxygen species and/or protect their tissues from the damage they inflict. In this work, we addressed the issue of how homoiochlorophyllous resurrection plants deal with the problem of excessive excitation/electron pressures during dehydration using Craterostigma pumilum as a model plant. To investigate the alterations in the supramolecular organization of photosynthetic protein complexes, we examined cryoimmobilized, freeze-fractured leaf tissues using (cryo)scanning electron microscopy. These examinations revealed rearrangements of photosystem II (PSII) complexes, including a lowered density during moderate dehydration, consistent with a lower level of PSII proteins, as shown by biochemical analyses. The latter also showed a considerable decrease in the level of cytochrome f early during dehydration, suggesting that initial regulation of the inhibition of electron transport is achieved via the cytochrome b6f complex. Upon further dehydration, PSII complexes are observed to arrange into rows and semicrystalline arrays, which correlates with the significant accumulation of sucrose and the appearance of inverted hexagonal lipid phases within the membranes. As opposed to PSII and cytochrome f, the light-harvesting antenna complexes of PSII remain stable throughout the course of dehydration. Altogether, these results, along with photosynthetic activity measurements, suggest that the protection of retained photosynthetic components is achieved, at least in part, via the structural rearrangements of PSII and (likely) light-harvesting antenna complexes into a photochemically quenched state. PMID:25713340
Atomic force microscopy studies of native photosynthetic membranes.
Sturgis, James N; Tucker, Jaimey D; Olsen, John D; Hunter, C Neil; Niederman, Robert A
2009-05-05
In addition to providing the earliest surface images of a native photosynthetic membrane at submolecular resolution, examination of the intracytoplasmic membrane (ICM) of purple bacteria by atomic force microscopy (AFM) has revealed a wide diversity of species-dependent arrangements of closely packed light-harvesting (LH) antennae, capable of fulfilling the basic requirements for efficient collection, transmission, and trapping of radiant energy. A highly organized architecture was observed with fused preparations of the pseudocrystalline ICM of Blastochloris viridis, consiting of hexagonally packed monomeric reaction center light-harvesting 1 (RC-LH1) core complexes. Among strains which also form a peripheral LH2 antenna, images of ICM patches from Rhodobacter sphaeroides exhibited well-ordered, interconnected networks of dimeric RC-LH1 core complexes intercalated by rows of LH2, coexisting with LH2-only domains. Other peripheral antenna-containing species, notably Rhodospirillum photometricum and Rhodopseudomonas palustris, showed a less regular organization, with mixed regions of LH2 and RC-LH1 cores, intermingled with large, paracrystalline domains. The ATP synthase and cytochrome bc(1) complex were not observed in any of these topographs and are thought to be localized in the adjacent cytoplasmic membrane or in inaccessible ICM regions separated from the flat regions imaged by AFM. The AFM images have served as a basis for atomic-resolution modeling of the ICM vesicle surface, as well as forces driving segregation of photosynthetic complexes into distinct domains. Docking of atomic-resolution molecular structures into AFM topographs of Rsp. photometricum membranes generated precise in situ structural models of the core complex surrounded by LH2 rings and a region of tightly packed LH2 complexes. A similar approach has generated a model of the highly curved LH2-only membranes of Rba. sphaeroides which predicts that sufficient space exists between LH2 complexes for quinones to diffuse freely. Measurement of the intercomplex distances between adjacent LH2 rings of Phaeospirillum molischianum has permitted the first calculation of the separation of bacteriochlorophyll a molecules in the native ICM. A recent AFM analysis of the organization of green plant photosystem II (PSII) in grana thylakoids revealed the protruding oxygen-evolving complex, crowded together in parallel alignment at three distinct levels of stacked membranes over the lumenal surface. The results also confirmed that PSII-LHCII supercomplexes are displaced relative to one another in opposing grana membranes.
Molecular dynamics studies of pathways of water movement in cyanobacterial photosystem II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gabdulkhakov, A. G., E-mail: azat@vega.protres.ru; Kljashtorny, V. G.; Dontsova, M. V.
2015-01-15
Photosystem II (PSII) catalyzes the light-induced generation of oxygen from water. The oxygen-evolving complex is buried deep in the protein on the lumenal side of PSII, and water molecules need to pass through protein subunits to reach the active site—the manganese cluster. Previous studies on the elucidation of water channels in PSII were based on an analysis of the cavities in the static PSII structure determined by X-ray diffraction. In the present study, we perform molecular dynamics simulations of the water movement in the transport system of PSII.
Crepin, Aurelie; Santabarbara, Stefano; Caffarri, Stefano
2016-01-01
Photosystem II (PSII) is a large membrane supercomplex involved in the first step of oxygenic photosynthesis. It is organized as a dimer, with each monomer consisting of more than 20 subunits as well as several cofactors, including chlorophyll and carotenoid pigments, lipids, and ions. The isolation of stable and homogeneous PSII supercomplexes from plants has been a hindrance for their deep structural and functional characterization. In recent years, purification of complexes with different antenna sizes was achieved with mild detergent solubilization of photosynthetic membranes and fractionation on a sucrose gradient, but these preparations were only stable in the cold for a few hours. In this work, we present an improved protocol to obtain plant PSII supercomplexes that are stable for several hours/days at a wide range of temperatures and can be concentrated without degradation. Biochemical and spectroscopic properties of the purified PSII are presented, as well as a study of the complex solubility in the presence of salts. We also tested the impact of a large panel of detergents on PSII stability and found that very few are able to maintain the integrity of PSII. Such new PSII preparation opens the possibility of performing experiments that require room temperature conditions and/or high protein concentrations, and thus it will allow more detailed investigations into the structure and molecular mechanisms that underlie plant PSII function. PMID:27432883
Exchange pathways of plastoquinone and plastoquinol in the photosystem II complex
Van Eerden, Floris J.; Melo, Manuel N.; Frederix, Pim W. J. M.; Periole, Xavier; Marrink, Siewert J.
2017-01-01
Plastoquinone (PLQ) acts as an electron carrier between photosystem II (PSII) and the cytochrome b6f complex. To understand how PLQ enters and leaves PSII, here we show results of coarse grained molecular dynamics simulations of PSII embedded in the thylakoid membrane, covering a total simulation time of more than 0.5 ms. The long time scale allows the observation of many spontaneous entries of PLQ into PSII, and the unbinding of plastoquinol (PLQol) from the complex. In addition to the two known channels, we observe a third channel for PLQ/PLQol diffusion between the thylakoid membrane and the PLQ binding sites. Our simulations point to a promiscuous diffusion mechanism in which all three channels function as entry and exit channels. The exchange cavity serves as a PLQ reservoir. Our simulations provide a direct view on the exchange of electron carriers, a key step of the photosynthesis machinery. PMID:28489071
Nordhues, André; Schöttler, Mark Aurel; Unger, Ann-Katrin; Geimer, Stefan; Schönfelder, Stephanie; Schmollinger, Stefan; Rütgers, Mark; Finazzi, Giovanni; Soppa, Barbara; Sommer, Frederik; Mühlhaus, Timo; Roach, Thomas; Krieger-Liszkay, Anja; Lokstein, Heiko; Crespo, José Luis; Schroda, Michael
2012-01-01
The vesicle-inducing protein in plastids (VIPP1) was suggested to play a role in thylakoid membrane formation via membrane vesicles. As this functional assignment is under debate, we investigated the function of VIPP1 in Chlamydomonas reinhardtii. Using immunofluorescence, we localized VIPP1 to distinct spots within the chloroplast. In VIPP1-RNA interference/artificial microRNA cells, we consistently observed aberrant, prolamellar body-like structures at the origin of multiple thylakoid membrane layers, which appear to coincide with the immunofluorescent VIPP1 spots and suggest a defect in thylakoid membrane biogenesis. Accordingly, using quantitative shotgun proteomics, we found that unstressed vipp1 mutant cells accumulate 14 to 20% less photosystems, cytochrome b6f complex, and ATP synthase but 30% more light-harvesting complex II than control cells, while complex assembly, thylakoid membrane ultrastructure, and bulk lipid composition appeared unaltered. Photosystems in vipp1 mutants are sensitive to high light, which coincides with a lowered midpoint potential of the QA/QA− redox couple and increased thermosensitivity of photosystem II (PSII), suggesting structural defects in PSII. Moreover, swollen thylakoids, despite reduced membrane energization, in vipp1 mutants grown on ammonium suggest defects in the supermolecular organization of thylakoid membrane complexes. Overall, our data suggest a role of VIPP1 in the biogenesis/assembly of thylakoid membrane core complexes, most likely by supplying structural lipids. PMID:22307852
Cation Effects on the Electron-Acceptor Side of Photosystem II.
Khan, Sahr; Sun, Jennifer S; Brudvig, Gary W
2015-06-18
The normal pathway of electron transfer on the electron-acceptor side of photosystem II (PSII) involves electron transfer from quinone A, QA, to quinone B, QB. It is possible to redirect electrons from QA(-) to water-soluble Co(III) complexes, which opens a new avenue for harvesting electrons from water oxidation by immobilization of PSII on electrode surfaces. Herein, the kinetics of electron transfer from QA(-) to [Co(III)(terpy)2](3+) (terpy = 2,2';6',2″-terpyridine) are investigated with a spectrophotometric assay revealing that the reaction follows Michaelis-Menten saturation kinetics, is inhibited by cations, and is not affected by variation of the QA reduction potential. A negatively charged site on the stromal surface of the PSII protein complex, composed of glutamic acid residues near QA, is hypothesized to bind cations, especially divalent cations. The cations are proposed to tune the redox properties of QA through electrostatic interactions. These observations may thus explain the molecular basis of the effect of divalent cations like Ca(2+), Sr(2+), Mg(2+), and Zn(2+) on the redox properties of the quinones in PSII, which has previously been attributed to long-range conformational changes propagated from divalent cations binding to the Ca(II)-binding site in the oxygen-evolving complex on the lumenal side of the PSII complex.
Bertolo, Lisa; Boncheff, Alexander G; Ma, Zuchao; Chen, Yu-Han; Wakeford, Terra; Friendship, Robert M; Rosseau, Joyce; Weese, J Scott; Chu, Michele; Mallozzi, Michael; Vedantam, Gayatri; Monteiro, Mario A
2012-06-01
Clostridium difficile is responsible for severe diarrhea in humans that may cause death. Spores are the infectious form of C. difficile, which germinate into toxin-producing vegetative cells in response to bile acids. Recently, we discovered that C. difficile cells possess three complex polysaccharides (PSs), named PSI, PSII, and PSIII, in which PSI was only associated with a hypervirulent ribotype 027 strain, PSII was hypothesized to be a common antigen, and PSIII was a water-insoluble polymer. Here, we show that (i) C. difficile spores contain, at least in part, a D-glucan, (ii) PSI is not a ribotype 027-unique antigen, (iii) common antigen PSII may in part be present as a low molecular weight lipoteichoic acid, (iv) selective hydrolysis of PSII yields single PSII repeat units, (v) the glycosyl diester-phosphate linkage affords high flexibility to PSII, and (vi) that PSII is immunogenic in sows. Also, with the intent of creating a dual anti-diarrheal vaccine against C. difficile and enterotoxin Escherichia coli (ETEC) infections in humans, we describe the conjugation of PSII to the ETEC-associated LTB enterotoxin. Copyright © 2012 Elsevier Ltd. All rights reserved.
Photoprotection in plants: a new light on photosystem II damage.
Takahashi, Shunichi; Badger, Murray R
2011-01-01
Sunlight damages photosynthetic machinery, primarily photosystem II (PSII), and causes photoinhibition that can limit plant photosynthetic activity, growth and productivity. The extent of photoinhibition is associated with a balance between the rate of photodamage and its repair. Recent studies have shown that light absorption by the manganese cluster in the oxygen-evolving complex of PSII causes primary photodamage, whereas excess light absorbed by light-harvesting complexes acts to cause inhibition of the PSII repair process chiefly through the generation of reactive oxygen species. As we review here, PSII photodamage and the inhibition of repair are therefore alleviated by photoprotection mechanisms associated with avoiding light absorption by the manganese cluster and successfully consuming or dissipating the light energy absorbed by photosynthetic pigments, respectively. Copyright © 2010 Elsevier Ltd. All rights reserved.
Wang, Chao; Xu, Weitao; Jin, Honglei; Zhang, Taijie; Lai, Jianbin; Zhou, Xuan; Zhang, Shengchun; Liu, Shengjie; Duan, Xuewu; Wang, Hongbin; Peng, Changlian; Yang, Chengwei
2016-08-01
Calcium is important for chloroplast, not only in its photosynthetic but also nonphotosynthetic functions. Multiple Ca(2+)/H(+) transporters and channels have been described and studied in the plasma membrane and organelle membranes of plant cells; however, the molecular identity and physiological roles of chloroplast Ca(2+)/H(+) antiporters have remained unknown. Here we report the identification and characterization of a member of the UPF0016 family, CCHA1 (a chloroplast-localized potential Ca(2+)/H(+) antiporter), in Arabidopsis thaliana. We observed that the ccha1 mutant plants developed pale green leaves and showed severely stunted growth along with impaired photosystem II (PSII) function. CCHA1 localizes to the chloroplasts, and the levels of the PSII core subunits and the oxygen-evolving complex were significantly decreased in the ccha1 mutants compared with the wild type. In high Ca(2+) concentrations, Arabidopsis CCHA1 partially rescued the growth defect of yeast gdt1Δ null mutant, which is defective in a Ca(2+)/H(+) antiporter. The ccha1 mutant plants also showed significant sensitivity to high concentrations of CaCl2 and MnCl2, as well as variation in pH. Taken these results together, we propose that CCHA1 might encode a putative chloroplast-localized Ca(2+)/H(+) antiporter with critical functions in the regulation of PSII and in chloroplast Ca(2+) and pH homeostasis in Arabidopsis. Copyright © 2016 The Author. Published by Elsevier Inc. All rights reserved.
Ibrahim, Mohamed; Chatterjee, Ruchira; Hellmich, Julia; ...
2015-07-01
In photosynthesis, photosystem II (PSII) is the multi-subunit membrane protein complex that catalyzes photo-oxidation of water into dioxygen through the oxygen evolving complex (OEC). To understand the water oxidation reaction, it is important to get structural information about the transient and intermediate states of the OEC in the dimeric PSII core complex (dPSIIcc). In recent times, femtosecond X-ray pulses from the free electron laser (XFEL) are being used to obtain X-ray diffraction (XRD) data of dPSIIcc microcrystals at room temperature that are free of radiation damage. In our experiments at the XFEL, we used an electrospun liquid microjet setup thatmore » requires microcrystals less than 40 μm in size. In this study, we explored various microseeding techniques to get a high yield of monodisperse uniform-sized microcrystals. Monodisperse microcrystals of dPSIIcc of uniform size were a key to improve the stability of the jet and the quality of XRD data obtained at the XFEL. This was evident by an improvement of the quality of the datasets obtained, from 6.5 Å, using crystals grown without the micro seeding approach, to 4.5 Å using crystals generated with the new method.« less
Semin, B К; Davletshina, L N; Seibert, M; Rubin, A B
2018-01-01
Extraction of Mn cations from the oxygen-evolving complex (OEC) of Ca-depleted PSII membranes (PSII[-Ca,4Mn]) by reductants like hydroquinone (H 2 Q) occurs with lower efficiency at acidic pH (2Mn/reaction center [RC] are extracted at pH5.7) than at neutral pH (3Mn/RC are extracted at pH6.5) [Semin et al. Photosynth. Res. 125 (2015) 95]. Fe(II) also extracts Mn cations from PSII(-Ca,4Mn), but only 2Mn/RC at pH6.5, forming a heteronuclear 2Mn/2Fe cluster [Semin and Seibert, J. Bioenerg. Biomembr. 48 (2016) 227]. Here we investigated the efficiency of Mn extraction by Fe(II) at acidic pH and found that Fe(II) cations can extract only 1Mn/RC from PSII(-Ca,4Mn) membranes at pH 5.7, forming a 3Mn/1Fe cluster. Also we found that the presence of Fe cations in a heteronuclear cluster (2Mn/2Fe) increases the resistance of the remaining Mn cations to H 2 Q action, since H 2 Q can extract Mn cations from homonuclear Mn clusters of PSII(-Ca,4Mn) and PSII(-Ca,2Mn) membranes but not from the heteronuclear cluster in PSII(-Ca,2Mn,2Fe) membranes. H 2 Q also cannot extract Mn from PSII membranes obtained by incubation of PSII(-Ca,4Mn) membranes with Fe(II) cations at pH5.7, which suggests the formation of a heteronuclear 3Mn/1Fe cluster in the OEC. Functional activity of PSII with a 3Mn/1Fe cluster was investigated. PSII preparations with a 3Mn/1Fe cluster in the OEC are able to photoreduce the exogenous electron acceptor 2,6-dichlorophenolindophenol, possibly due to incomplete oxidation of water molecules as is the case with PSII(-Ca,2Mn,2Fe) samples. However, in the contrast to PSII(-Ca,2Mn,2Fe) samples PSII(-Ca,3Mn,1Fe) membranes can evolve O 2 at a low rate in the presence of exogenous Ca 2+ (at about 27% of the rate of O 2 evolution in native PSII membranes). The explanation for this phenomenon (either water splitting and production of molecular O 2 by the 3Mn/1Fe cluster or apparent O 2 evolution due to minor contamination of PSII(3Mn,1Fe) samples with PSII(-Ca,4Mn) membranes) is discussed. Copyright © 2017 Elsevier B.V. All rights reserved.
Substituting Fe for two of the four Mn ions in photosystem II-effects on water-oxidation.
Semin, Boris K; Seibert, Michael
2016-06-01
We have investigated the interaction of Fe(II) cations with Ca-depleted PSII membranes (PSII[-Ca,4Mn]) in the dark and found that Fe(II) incubation removes 2 of 4 Mn ions from the tetranuclear Mn cluster of the photosynthetic O2-evolving complex (OEC). The reduction of Mn ions in PSII(-Ca,4Mn) by Fe(II) and the concomitant release of two Mn(II) cations is accompanied by the binding of newly generated Fe(III) in at least one vacated Mn site. Flash-induced chlorophyll (Chl) fluorescence yield measurements of this new 2Mn/nFe cluster (PSII[-Ca,2Mn,nFe]) show that charge recombination in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) occurs between Qa (-) and the remaining Mn/Fe cluster (but not YZ (●)) in the OEC, and extraction of 2 Mn occurs uniformly in all PSII complexes. No O2 evolution is observed, but the heteronuclear metal cluster in PSII(-Ca,2Mn,nFe) samples is still able to supply electrons for reduction of the exogenous electron acceptor, 2,6-dichlorophrenolindophenol, by photooxidizing water and producing H2O2 in the absence of an exogenous donor as seen previously with PSII(-Ca,4Mn). Selective extraction of Mn or Fe cations from the 2Mn/nFe heteronuclear cluster demonstrates that the high-affinity Mn-binding site is occupied by one of the iron cations. It is notable that partial water-oxidation function still occurs when only two Mn cations are present in the PSII OEC.
Dau, Holger; Zaharieva, Ivelina
2009-12-21
Photosynthesis in plants and cyanobacteria involves two protein-cofactor complexes which are denoted as photosystems (PS), PSII and PSI. These solar-energy converters have powered life on earth for approximately 3 billion years. They facilitate light-driven carbohydrate formation from H(2)O and CO(2), by oxidizing the former and reducing the latter. PSII splits water in a process driven by light. Because all attractive technologies for fuel production driven by solar energy involve water oxidation, recent interest in this process carried out by PSII has increased. In this Account, we describe and apply a rationale for estimating the solar-energy conversion efficiency (eta(SOLAR)) of PSII: the fraction of the incident solar energy absorbed by the antenna pigments and eventually stored in form of chemical products. For PSII at high concentrations, approximately 34% of the incident solar energy is used for creation of the photochemistry-driving excited state, P680*, with an excited-state energy of 1.83 eV. Subsequent electron transfer results in the reduction of a bound quinone (Q(A)) and oxidation of the Tyr(Z) within 1 micros. This radical-pair state is stable against recombination losses for approximately 1 ms. At this level, the maximal eta(SOLAR) is 23%. After the essentially irreversible steps of quinone reduction and water oxidation (the final steps catalyzed by the PSII complex), a maximum of 50% of the excited-state energy is stored in chemical form; eta(SOLAR) can be as high as 16%. Extending our considerations to a photosynthetic organism optimized to use PSII and PSI to drive H(2) production, the theoretical maximum of the solar-energy conversion efficiency would be as high as 10.5%, if all electrons and protons derived from water oxidation were used for H(2) formation. The above performance figures are impressive, but they represent theoretical maxima and do not account for processes in an intact organism that lower these yields, such as light saturation, photoinhibitory, protective, and repair processes. The overpotential for catalysis of water oxidation at the Mn(4)Ca complex of PSII may be as low as 0.3 V. To address the specific energetics of water oxidation at the Mn complex of PSII, we propose a new conceptual framework that will facilitate quantitative considerations on the basis of oxidation potentials and pK values. In conclusion, photosynthetic water oxidation works at high efficiency and thus can serve as both an inspiring model and a benchmark in the development of future technologies for production of solar fuels.
Formation of singlet oxygen by decomposition of protein hydroperoxide in photosystem II.
Pathak, Vinay; Prasad, Ankush; Pospíšil, Pavel
2017-01-01
Singlet oxygen (1O2) is formed by triplet-triplet energy transfer from triplet chlorophyll to O2 via Type II photosensitization reaction in photosystem II (PSII). Formation of triplet chlorophyll is associated with the change in spin state of the excited electron and recombination of triplet radical pair in the PSII antenna complex and reaction center, respectively. Here, we have provided evidence for the formation of 1O2 by decomposition of protein hydroperoxide in PSII membranes deprived of Mn4O5Ca complex. Protein hydroperoxide is formed by protein oxidation initiated by highly oxidizing chlorophyll cation radical and hydroxyl radical formed by Type I photosensitization reaction. Under highly oxidizing conditions, protein hydroperoxide is oxidized to protein peroxyl radical which either cyclizes to dioxetane or recombines with another protein peroxyl radical to tetroxide. These highly unstable intermediates decompose to triplet carbonyls which transfer energy to O2 forming 1O2. Data presented in this study show for the first time that 1O2 is formed by decomposition of protein hydroperoxide in PSII membranes deprived of Mn4O5Ca complex.
Formation of singlet oxygen by decomposition of protein hydroperoxide in photosystem II
Pathak, Vinay; Prasad, Ankush
2017-01-01
Singlet oxygen (1O2) is formed by triplet-triplet energy transfer from triplet chlorophyll to O2 via Type II photosensitization reaction in photosystem II (PSII). Formation of triplet chlorophyll is associated with the change in spin state of the excited electron and recombination of triplet radical pair in the PSII antenna complex and reaction center, respectively. Here, we have provided evidence for the formation of 1O2 by decomposition of protein hydroperoxide in PSII membranes deprived of Mn4O5Ca complex. Protein hydroperoxide is formed by protein oxidation initiated by highly oxidizing chlorophyll cation radical and hydroxyl radical formed by Type I photosensitization reaction. Under highly oxidizing conditions, protein hydroperoxide is oxidized to protein peroxyl radical which either cyclizes to dioxetane or recombines with another protein peroxyl radical to tetroxide. These highly unstable intermediates decompose to triplet carbonyls which transfer energy to O2 forming 1O2. Data presented in this study show for the first time that 1O2 is formed by decomposition of protein hydroperoxide in PSII membranes deprived of Mn4O5Ca complex. PMID:28732060
Pagliano, Cristina; La Rocca, Nicoletta; Andreucci, Flora; Deák, Zsuzsanna; Vass, Imre; Rascio, Nicoletta; Barbato, Roberto
2009-01-01
Background and Aims Photosystem II of oxygenic organisms is a multi-subunit protein complex made up of at least 20 subunits and requires Ca2+ and Cl− as essential co-factors. While most subunits form the catalytic core responsible for water oxidation, PsbO, PsbP and PsbQ form an extrinsic domain exposed to the luminal side of the membrane. In vitro studies have shown that these subunits have a role in modulating the function of Cl− and Ca2+, but their role(s) in vivo remains to be elucidated, as the relationships between ion concentrations and extrinsic polypeptides are not clear. With the aim of understanding these relationships, the photosynthetic apparatus of the extreme halophyte Salicornia veneta has been compared with that of spinach. Compared to glycophytes, halophytes have a different ionic composition, which could be expected to modulate the role of extrinsic polypeptides. Methods Structure and function of in vivo and in vitro PSII in S. veneta were investigated and compared to spinach. Light and electron microscopy, oxygen evolution, gel electrophoresis, immunoblotting, DNA sequencing, RT–PCR and time-resolved chlorophyll fluorescence were used. Key Results Thylakoids of S. veneta did not contain PsbQ protein and its mRNA was absent. When compared to spinach, PsbP was partly depleted (30 %), as was its mRNA. All other thylakoid subunits were present in similar amounts in both species. PSII electron transfer was not affected. Fluorescence was strongly quenched upon irradiation of plants with high light, and relaxed only after prolonged dark incubation. Quenching of fluorescence was not linked to degradation of D1 protein. Conclusions In S. veneta the PsbQ protein is not necessary for photosynthesis in vivo. As the amount of PsbP is sub-stoichiometric with other PSII subunits, this protein too is largely dispensable from a catalytic standpoint. One possibility is that PsbP acts as an assembly factor for PSII. PMID:19033288
Semin, B. K.; Davletshina, L. N.; Seibert, M.; ...
2017-11-11
Extraction of Mn cations from the oxygen-evolving complex (OEC) of Ca-depleted PSII membranes (PSII[-Ca,4Mn]) by reductants like hydroquinone (H 2Q) occurs with lower efficiency at acidic pH (2Mn/reaction center [RC] are extracted at pH 5.7) than at neutral pH (3Mn/RC are extracted at pH 6.5) [Semin et al. Photosynth. Res. 125 (2015) 95]. Fe(II) also extracts Mn cations from PSII(-Ca,4Mn), but only 2Mn/RC at pH 6.5, forming a heteronuclear 2Mn/2Fe cluster [Semin and Seibert, J. Bioenerg. Biomembr. 48 (2016) 227]. Here we investigated the efficiency of Mn extraction by Fe(II) at acidic pH and found that Fe(II) cations can extractmore » only 1Mn/RC from PSII(-Ca,4Mn) membranes at pH 5.7, forming a 3Mn/1Fe cluster.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Semin, B. K.; Davletshina, L. N.; Seibert, M.
Extraction of Mn cations from the oxygen-evolving complex (OEC) of Ca-depleted PSII membranes (PSII[-Ca,4Mn]) by reductants like hydroquinone (H 2Q) occurs with lower efficiency at acidic pH (2Mn/reaction center [RC] are extracted at pH 5.7) than at neutral pH (3Mn/RC are extracted at pH 6.5) [Semin et al. Photosynth. Res. 125 (2015) 95]. Fe(II) also extracts Mn cations from PSII(-Ca,4Mn), but only 2Mn/RC at pH 6.5, forming a heteronuclear 2Mn/2Fe cluster [Semin and Seibert, J. Bioenerg. Biomembr. 48 (2016) 227]. Here we investigated the efficiency of Mn extraction by Fe(II) at acidic pH and found that Fe(II) cations can extractmore » only 1Mn/RC from PSII(-Ca,4Mn) membranes at pH 5.7, forming a 3Mn/1Fe cluster.« less
Cox, Nicholas; Pantazis, Dimitrios A; Neese, Frank; Lubitz, Wolfgang
2013-07-16
Photosystem II (PSII), a multisubunit pigment-protein supercomplex found in cyanobacteria, algae, and plants, catalyzes a unique reaction in nature: the light-driven oxidation of water. Remarkable recent advances in the structural analysis of PSII now give a detailed picture of the static supercomplex on the molecular level. These data provide a solid foundation for future functional studies, in particular the mechanism of water oxidation and oxygen release. The catalytic core of the PSII is a tetramanganese-calcium cluster (Mn₄O₅Ca), commonly referred to as the oxygen-evolving complex (OEC). The function of the OEC rests on its ability to cycle through five metastable states (Si, i = 0-4), transiently storing four oxidizing equivalents, and in so doing, facilitates the four electron water splitting reaction. While the latest crystallographic model of PSII gives an atomic picture of the OEC, the exact connectivity within the inorganic core and the S-state(s) that the X-ray model represents remain uncertain. In this Account, we describe our joint experimental and theoretical efforts to eliminate these ambiguities by combining the X-ray data with spectroscopic constraints and introducing computational modeling. We are developing quantum chemical methods to predict electron paramagnetic resonance (EPR) parameters for transition metal clusters, especially focusing on spin-projection approaches combined with density functional theory (DFT) calculations. We aim to resolve the geometric and electronic structures of all S-states, correlating their structural features with spectroscopic observations to elucidate reactivity. The sequence of manganese oxidations and concomitant charge compensation events via proton transfer allow us to rationalize the multielectron S-state cycle. EPR spectroscopy combined with theoretical calculations provides a unique window into the tetramangenese complex, in particular its protonation states and metal ligand sphere evolution, far beyond the scope of static techniques such as X-ray crystallography. This approach has led, for example, to a detailed understanding of the EPR signals in the S₂-state of the OEC in terms of two interconvertible, isoenergetic structures. These two structures differ in their valence distribution and spin multiplicity, which has important consequences for substrate binding and may explain its low barrier exchange with solvent water. New experimental techniques and innovative sample preparations are beginning to unravel the complex sequence of substrate uptake/inclusion, which is coupled to proton release. The introduction of specific site perturbations, such as replacing Ca²⁺ with Sr²⁺, provides discrete information about the ligand environment of the individual Mn ions. In this way, we have identified a potential open coordination site for one Mn center, which may serve as a substrate binding site in the higher S-states, such as S₃ and S₄. In addition, we can now monitor the binding of the substrate water in the lower S-states (S₁ and S₂) using new EPR-detected NMR spectroscopies. These studies provided the first evidence that one of the substrates is subsumed into the complex itself and forms an oxo-bridge between two Mn ions. This result places important new restrictions on the mechanism of O-O bond formation. These new insights from nature's water splitting catalyst provide important criteria for the rational design of bioinspired synthetic catalysts.
Action spectra of photosystems II and I and quantum yield of photosynthesis in leaves in State 1.
Laisk, Agu; Oja, Vello; Eichelmann, Hillar; Dall'Osto, Luca
2014-02-01
The spectral global quantum yield (YII, electrons/photons absorbed) of photosystem II (PSII) was measured in sunflower leaves in State 1 using monochromatic light. The global quantum yield of PSI (YI) was measured using low-intensity monochromatic light flashes and the associated transmittance change at 810nm. The 810-nm signal change was calibrated based on the number of electrons generated by PSII during the flash (4·O2 evolution) which arrived at the PSI donor side after a delay of 2ms. The intrinsic quantum yield of PSI (yI, electrons per photon absorbed by PSI) was measured at 712nm, where photon absorption by PSII was small. The results were used to resolve the individual spectra of the excitation partitioning coefficients between PSI (aI) and PSII (aII) in leaves. For comparison, pigment-protein complexes for PSII and PSI were isolated, separated by sucrose density ultracentrifugation, and their optical density was measured. A good correlation was obtained for the spectral excitation partitioning coefficients measured by these different methods. The intrinsic yield of PSI was high (yI=0.88), but it absorbed only about 1/3 of quanta; consequently, about 2/3 of quanta were absorbed by PSII, but processed with the low intrinsic yield yII=0.63. In PSII, the quantum yield of charge separation was 0.89 as detected by variable fluorescence Fv/Fm, but 29% of separated charges recombined (Laisk A, Eichelmann H and Oja V, Photosynth. Res. 113, 145-155). At wavelengths less than 580nm about 30% of excitation is absorbed by pigments poorly connected to either photosystem, most likely carotenoids bound in pigment-protein complexes. Copyright © 2013 Elsevier B.V. All rights reserved.
Shevela, Dmitriy; Su, Ji-Hu; Klimov, Vyacheslav; Messinger, Johannes
2008-06-01
Since the end of the 1950s hydrogencarbonate ('bicarbonate') is discussed as a possible cofactor of photosynthetic water-splitting, and in a recent X-ray crystallography model of photosystem II (PSII) it was displayed as a ligand of the Mn(4)O(x)Ca cluster. Employing membrane-inlet mass spectrometry (MIMS) and isotope labelling we confirm the release of less than one (~0.3) HCO(3)(-) per PSII upon addition of formate. The same amount of HCO(3)(-) release is observed upon formate addition to Mn-depleted PSII samples. This suggests that formate does not replace HCO(3)(-) from the donor side, but only from the non-heme iron at the acceptor side of PSII. The absence of a firmly bound HCO(3)(-) is corroborated by showing that a reductive destruction of the Mn(4)O(x)Ca cluster inside the MIMS cell by NH(2)OH addition does not lead to any CO(2)/HCO(3)(-) release. We note that even after an essentially complete HCO(3)(-)/CO(2) removal from the sample medium by extensive degassing in the MIMS cell the PSII samples retain > or =75% of their initial flash-induced O(2)-evolving capacity. We therefore conclude that HCO(3)(-) has only 'indirect' effects on water-splitting in PSII, possibly by being part of a proton relay network and/or by participating in assembly and stabilization of the water-oxidizing complex.
Ferroni, Lorenzo; Suorsa, Marjaana; Aro, Eva-Mari; Baldisserotto, Costanza; Pancaldi, Simonetta
2016-07-01
Vascular plants have evolved a long-term light acclimation strategy primarily relying on the regulation of the relative amounts of light-harvesting complex II (LHCII) and of the two photosystems, photosystem I (PSI) and photosystem II (PSII). We investigated whether such a model is also valid in Selaginella martensii, a species belonging to the early diverging group of lycophytes. Selaginella martensii plants were acclimated to three natural light regimes (extremely low light (L), medium light (M) and full sunlight (H)) and thylakoid organization was characterized combining ultrastructural, biochemical and functional methods. From L to H plants, thylakoid architecture was rearranged from (pseudo)lamellar to predominantly granal, the PSII : PSI ratio changed in favour of PSI, and the photochemical capacity increased. However, regulation of light harvesting did not occur through variations in the amount of free LHCII, but rather resulted from the flexibility of the association of free LHCII with PSII and PSI. In lycophytes, the free interspersed LHCII serves a fixed proportion of reaction centres, either PSII or PSI, and the regulation of PSI-LHCII(-PSII) megacomplexes is an integral part of long-term acclimation. Free LHCII ensures photoprotection of PSII, allows regulated use of PSI as an energy quencher, and can also quench endangered PSI. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
The role of metals in production and scavenging of reactive oxygen species in photosystem II.
Pospíšil, Pavel
2014-07-01
Metal ions play a crucial role in enzymatic reactions in all photosynthetic organisms such as cyanobacteria, algae and plants. It well known that metal ions maintain the binding of substrate in the active site of the metalloenzymes and control the redox activity of the metalloenzyme in the enzymatic reaction. A large pigment-protein complex, PSII, known to serve as a water-plastoquinone oxidoreductase, contains three metal centers comprising non-heme iron, heme iron of Cyt b559 and the water-splitting manganese complex. Metal ions bound to PSII proteins maintain the electron transport from water to plastoquinone and regulate the pro-oxidant and antioxidant activity in PSII. In this review, attention is focused on the role of PSII metal centers in (i) the formation of superoxide anion and hydroxyl radicals by sequential one-electron reduction of molecular oxygen and the formation of hydrogen peroxide by incomplete two-electron oxidation of water; and (ii) the elimination of superoxide anion radical by one-electron oxidation and reduction (superoxide dismutase activity) and of hydrogen peroxide by two-electron oxidation and reduction (catalase activity). The balance between the formation and elimination of reactive oxygen species by PSII metal centers is discussed as an important aspect in the prevention of photo-oxidative damage of PSII proteins and lipids. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Rumak, Izabela; Mazur, Radosław; Gieczewska, Katarzyna; Kozioł-Lipińska, Joanna; Kierdaszuk, Borys; Michalski, Wojtek P; Shiell, Brian J; Venema, Jan Henk; Vredenberg, Wim J; Mostowska, Agnieszka; Garstka, Maciej
2012-05-25
The thylakoid system in plant chloroplasts is organized into two distinct domains: grana arranged in stacks of appressed membranes and non-appressed membranes consisting of stroma thylakoids and margins of granal stacks. It is argued that the reason for the development of appressed membranes in plants is that their photosynthetic apparatus need to cope with and survive ever-changing environmental conditions. It is not known however, why different plant species have different arrangements of grana within their chloroplasts. It is important to elucidate whether a different arrangement and distribution of appressed and non-appressed thylakoids in chloroplasts are linked with different qualitative and/or quantitative organization of chlorophyll-protein (CP) complexes in the thylakoid membranes and whether this arrangement influences the photosynthetic efficiency. Our results from TEM and in situ CLSM strongly indicate the existence of different arrangements of pea and bean thylakoid membranes. In pea, larger appressed thylakoids are regularly arranged within chloroplasts as uniformly distributed red fluorescent bodies, while irregular appressed thylakoid membranes within bean chloroplasts correspond to smaller and less distinguished fluorescent areas in CLSM images. 3D models of pea chloroplasts show a distinct spatial separation of stacked thylakoids from stromal spaces whereas spatial division of stroma and thylakoid areas in bean chloroplasts are more complex. Structural differences influenced the PSII photochemistry, however without significant changes in photosynthetic efficiency. Qualitative and quantitative analysis of chlorophyll-protein complexes as well as spectroscopic investigations indicated a similar proportion between PSI and PSII core complexes in pea and bean thylakoids, but higher abundance of LHCII antenna in pea ones. Furthermore, distinct differences in size and arrangements of LHCII-PSII and LHCI-PSI supercomplexes between species are suggested. Based on proteomic and spectroscopic investigations we postulate that the differences in the chloroplast structure between the analyzed species are a consequence of quantitative proportions between the individual CP complexes and its arrangement inside membranes. Such a structure of membranes induced the formation of large stacked domains in pea, or smaller heterogeneous regions in bean thylakoids. Presented 3D models of chloroplasts showed that stacked areas are noticeably irregular with variable thickness, merging with each other and not always parallel to each other.
2012-01-01
Background The thylakoid system in plant chloroplasts is organized into two distinct domains: grana arranged in stacks of appressed membranes and non-appressed membranes consisting of stroma thylakoids and margins of granal stacks. It is argued that the reason for the development of appressed membranes in plants is that their photosynthetic apparatus need to cope with and survive ever-changing environmental conditions. It is not known however, why different plant species have different arrangements of grana within their chloroplasts. It is important to elucidate whether a different arrangement and distribution of appressed and non-appressed thylakoids in chloroplasts are linked with different qualitative and/or quantitative organization of chlorophyll-protein (CP) complexes in the thylakoid membranes and whether this arrangement influences the photosynthetic efficiency. Results Our results from TEM and in situ CLSM strongly indicate the existence of different arrangements of pea and bean thylakoid membranes. In pea, larger appressed thylakoids are regularly arranged within chloroplasts as uniformly distributed red fluorescent bodies, while irregular appressed thylakoid membranes within bean chloroplasts correspond to smaller and less distinguished fluorescent areas in CLSM images. 3D models of pea chloroplasts show a distinct spatial separation of stacked thylakoids from stromal spaces whereas spatial division of stroma and thylakoid areas in bean chloroplasts are more complex. Structural differences influenced the PSII photochemistry, however without significant changes in photosynthetic efficiency. Qualitative and quantitative analysis of chlorophyll-protein complexes as well as spectroscopic investigations indicated a similar proportion between PSI and PSII core complexes in pea and bean thylakoids, but higher abundance of LHCII antenna in pea ones. Furthermore, distinct differences in size and arrangements of LHCII-PSII and LHCI-PSI supercomplexes between species are suggested. Conclusions Based on proteomic and spectroscopic investigations we postulate that the differences in the chloroplast structure between the analyzed species are a consequence of quantitative proportions between the individual CP complexes and its arrangement inside membranes. Such a structure of membranes induced the formation of large stacked domains in pea, or smaller heterogeneous regions in bean thylakoids. Presented 3D models of chloroplasts showed that stacked areas are noticeably irregular with variable thickness, merging with each other and not always parallel to each other. PMID:22631450
Grewe, Sabrina; Ballottari, Matteo; Alcocer, Marcelo; D’Andrea, Cosimo; Blifernez-Klassen, Olga; Hankamer, Ben; Mussgnug, Jan H.; Bassi, Roberto; Kruse, Olaf
2014-01-01
Photosynthetic organisms developed multiple strategies for balancing light-harvesting versus intracellular energy utilization to survive ever-changing environmental conditions. The light-harvesting complex (LHC) protein family is of paramount importance for this function and can form light-harvesting pigment protein complexes. In this work, we describe detailed analyses of the photosystem II (PSII) LHC protein LHCBM9 of the microalga Chlamydomonas reinhardtii in terms of expression kinetics, localization, and function. In contrast to most LHC members described before, LHCBM9 expression was determined to be very low during standard cell cultivation but strongly increased as a response to specific stress conditions, e.g., when nutrient availability was limited. LHCBM9 was localized as part of PSII supercomplexes but was not found in association with photosystem I complexes. Knockdown cell lines with 50 to 70% reduced amounts of LHCBM9 showed reduced photosynthetic activity upon illumination and severe perturbation of hydrogen production activity. Functional analysis, performed on isolated PSII supercomplexes and recombinant LHCBM9 proteins, demonstrated that presence of LHCBM9 resulted in faster chlorophyll fluorescence decay and reduced production of singlet oxygen, indicating upgraded photoprotection. We conclude that LHCBM9 has a special role within the family of LHCII proteins and serves an important protective function during stress conditions by promoting efficient light energy dissipation and stabilizing PSII supercomplexes. PMID:24706511
Moise, Nicolae; Moya, Ismaël
2004-06-28
We report the first direct decomposition of the fluorescence lifetime heterogeneity during multiphasic fluorescence induction in dark-adapted leaves by multi-frequency phase and modulation fluorometry (PMF). A very fast component, assigned to photosystem I (PSI), was found to be constant in lifetime and yield, whereas the two slow components, which are strongly affected by the closure of the reaction centers by light, were assigned to PSII. Based on a modified "reversible radical pair" kinetic model with three compartments, we showed that a loosely connected pigment complex, which is assumed to be the CP47 complex, plays a specific role with respect to the structure and function of the PSII: (i) it explains the heterogeneity of PSII fluorescence lifetime as a compartmentation of excitation energy in the antenna, (ii) it is the site of a conformational change in the first second of illumination, and (iii) it is involved in the mechanisms of nonphotochemical quenching (NPQ). On the basis of the multi-frequency PMF analysis, we reconciled two apparently antagonistic aspects of chlorophyll a fluorescence in vivo: it is heterogeneous with respect to the kinetic structure (several lifetime components) and homogeneous with respect to average quantities (quasi-linear mean tau-Phi relationship).
Bicarbonate requirement for the water-oxidizing complex of photosystem II.
Klimov, V V; Baranov, S V
2001-01-05
It is well established that bicarbonate stimulates electron transfer between the primary and secondary electron acceptors, Q(A) and Q(B), in formate-inhibited photosystem II; the non-heme Fe between Q(A) and Q(B) plays an essential role in the bicarbonate binding. Strong evidence of a bicarbonate requirement for the water-oxidizing complex (WOC), both O2 evolving and assembling from apo-WOC and Mn2+, of photosystem II (PSII) preparations has been presented in a number of publications during the last 5 years. The following explanations for the involvement of bicarbonate in the events on the donor side of PSII are considered: (1) bicarbonate serves as an electron donor (alternative to water or as a way of involvement of water molecules in the oxidative reactions) to the Mn-containing O2 center; (2) bicarbonate facilitates reassembly of the WOC from apo-WOC and Mn2+ due to formation of the complexes MnHCO3+ and Mn(HCO3)2 leading to an easier oxidation of Mn2+ with PSII; (3) bicarbonate is an integral component of the WOC essential for its function and stability; it may be considered a direct ligand to the Mn cluster; (4) the WOC is stabilized by bicarbonate through its binding to other components of PSII.
Direct interaction of the major light-harvesting complex II and PsbS in nonphotochemical quenching
Wilk, Laura; Grunwald, Matthias; Liao, Pen-Nan; Walla, Peter Jomo; Kühlbrandt, Werner
2013-01-01
The photosystem II (PSII) subunit S (PsbS) plays a key role in nonphotochemical quenching, a photoprotective mechanism for dissipation of excess excitation energy in plants. The precise function of PsbS in nonphotochemical quenching is unknown. By reconstituting PsbS together with the major light-harvesting complex of PSII (LHC-II) and the xanthophyll zeaxanthin (Zea) into proteoliposomes, we have tested the individual contributions of PSII complexes and Zea to chlorophyll (Chl) fluorescence quenching in a membrane environment. We demonstrate that PsbS is stable in the absence of pigments in vitro. Significant Chl fluorescence quenching of reconstituted LHC-II was observed in the presence of PsbS and Zea, although neither Zea nor PsbS alone was sufficient to induce the same quenching. Coreconstitution with PsbS resulted in the formation of LHC-II/PsbS heterodimers, indicating their direct interaction in the lipid bilayer. Two-photon excitation measurements on liposomes containing LHC-II, PsbS, and Zea showed an increase of electronic interactions between carotenoid S1 and Chl states, , that correlated directly with Chl fluorescence quenching. These findings are in agreement with a carotenoid-dependent Chl fluorescence quenching by direct interactions of LHCs of PSII with PsbS monomers. PMID:23509270
Zhang, Liang; Hu, Tao; Amombo, Erick; Wang, Guangyang; Xie, Yan; Fu, Jinmin
2017-01-01
Tall fescue ( Festuca arundinacea Schreb) is a typical cool-season grass that is widely used in turf and pasture. However, high temperature as an abiotic stress seriously affects its utilization. The objective of this study was to explore the effect of spermidine (Spd) on heat stress response of tall fescue. The samples were exposed to 22°C (normal condition) or 44°C (heat stress) for 4 h. The results showed that exogenous Spd partially improved the quality of tall fescue leaves under normal temperature conditions. Nevertheless, after heat stress treatment, exogenous Spd significantly decreased the electrolyte leakage of tall fescue leaves. Spd also profoundly reduced the H 2 O 2 and O 2 ⋅- content and increased antioxidant enzymes activities. In addition, PAs can also regulate antioxidant enzymes activities including SOD, POD, and APX which could help to scavenge ROS. Moreover, application of Spd could also remarkably increase the chlorophyll content and had a positive effect on the chlorophyll α fluorescence transients under high temperature. The Spd reagent enhanced the performance of photosystem II (PSII) as observed by the JIP-test. Under heat stress, the Spd profoundly improved the partial potentials at the steps of energy bifurcations (PI ABS and PI total ) and the quantum yields and efficiencies (φP 0 , δR 0 , φR 0 , and γRC). Exogenous Spd could also reduce the specific energy fluxes per Q A - reducing PSII reaction center (RC) (TP 0 /RC and ET 0 /RC). Additionally, exogenous Spd improved the expression level of psbA and psbB , which encoded the proteins of PSII core reaction center complex. We infer that PAs can stabilize the structure of nucleic acids and protect RNA from the degradation of ribonuclease. In brief, our study indicates that exogenous Spd enhances the heat tolerance of tall fescue by maintaining cell membrane stability, increasing antioxidant enzymes activities, improving PSII, and relevant gene expression.
Vassiliev, Serguei; Zaraiskaya, Tatiana; Bruce, Doug
2013-10-01
Photosystem II (PSII) catalyzes the oxidation of water in the conversion of light energy into chemical energy in photosynthesis. Water delivery and oxygen removal from the oxygen evolving complex (OEC), buried deep within PSII, are critical requirements to facilitate the reaction and minimize reactive oxygen damage. It has often been assumed that water and oxygen travel through separate channels within PSII, as demonstrated in cytochrome c oxidase. This study describes all-atom molecular dynamics simulations of PSII designed to investigate channels by fully characterizing the distribution and permeation of both water and oxygen. Interestingly, most channels found in PSII were permeable to both oxygen and water, however individual channels exhibited different energetic barriers for the two solutes. Several routes for oxygen diffusion within PSII with low energy permeation barriers were found, ensuring its fast removal from the OEC. In contrast, all routes for water showed significant energy barriers, corresponding to a much slower permeation rate for water through PSII. Two major factors were responsible for this selectivity: (1) hydrogen bonds between water and channel amino acids, and (2) steric restraints. Our results reveal the presence of a shared network of channels in PSII optimized to both facilitate the quick removal of oxygen and effectively restrict the water supply to the OEC to help stabilize and protect it from small water soluble inhibitors. Copyright © 2013 Elsevier B.V. All rights reserved.
Isolation of monomeric photosystem II that retains the subunit PsbS.
Haniewicz, Patrycja; De Sanctis, Daniele; Büchel, Claudia; Schröder, Wolfgang P; Loi, Maria Cecilia; Kieselbach, Thomas; Bochtler, Matthias; Piano, Dario
2013-12-01
Photosystem II has been purified from a transplastomic strain of Nicotiana tabacum according to two different protocols. Using the procedure described in Piano et al. (Photosynth Res 106:221-226, 2010) it was possible to isolate highly active PSII composed of monomers and dimers but depleted in their PsbS protein content. A "milder" procedure than the protocol reported by Fey et al. (Biochim Biophys Acta 1777:1501-1509, 2008) led to almost exclusively monomeric PSII complexes which in part still bind the PsbS protein. This finding might support a role for PSII monomers in higher plants.
Tardy, F; Havaux, M
1996-06-01
The abscisic-acid-deficient aba-1 mutant of Arabidopsis thaliana is unable to epoxidize zeaxanthin. As a consequence, it contains large amounts of this carotenoid and lacks epoxy-xanthophylls. HPLC analysis of pigment contents in leaves, isolated thylakoids and preparations of the major light-harvesting complex of photosystem II (PSII) (LHC-II) indicated that zeaxanthin replaced neoxanthin, violaxanthin and antheraxanthin in the light-harvesting system of PSII in aba-1. Non-denaturing electrophoretic fractionation of solubilized thylakoids showed that the xanthophyll imbalance in aba-1 was associated with a pronounced decrease in trimeric LHC-II in favour of monomeric complexes, with a substantial increase in free pigments (mainly zeaxanthin and chlorophyll b), suggesting a decreased stability of LHC-II. The reduced thermostability of PSII in aba-1 was also deduced from in vivo chlorophyll fluorescence measurements. Wild-type and aba-1 leaves could not be distinguished on the basis of their photosynthetic performance: no significant difference was observed between the two types of leaves for light-limited and light-saturated photosynthetic oxygen evolution, PSII photochemistry and PSII to PSI electron flow. When dark-adapted leaves (grown in white light of 80 mumol m-2s-1) were suddenly exposed to red light of 150 mumol m-2s-1, there was a strong nonphotochemical quenching of chlorophyll fluorescence, the amplitude of which was virtually identical (at steady state) in aba-1 and wild-type leaves, despite the fact that the xanthophyll cycle pigment pool was completely in the form of zeaxanthin in aba-1 and almost exclusively in the form of violaxanthin in the wild type. A high concentration of zeaxanthin in aba-1 thylakoids did not, in itself, provide any particular protection against the photoinhibition of PSII. Taken together, the presented results indicate the following: (1) zeaxanthin can replace epoxy-xanthophylls in LHC-II without significantly affecting the photochemical efficiency of PSII; (2) zeaxanthin does not play any specific role in direct (thermal) energy dissipation in PSII; (3) the photoprotective action of the xanthophyll cycle (rapid photoconversion of violaxanthin to zeaxanthin) is not based on the mere substitution of violaxanthin by zeaxanthin in the chlorophyll antennae.
Imaging the Photosystem I/Photosystem II chlorophyll ratio inside the leaf.
Wientjes, Emilie; Philippi, John; Borst, Jan Willem; van Amerongen, Herbert
2017-03-01
Oxygenic photosynthesis is driven by photosystems I (PSI) and II (PSII). In plants the number of chlorophylls of PSI versus PSII is adjusted to the light irradiance spectrum. On a timescale of days, this is regulated at the level of protein concentration. Instead, on a timescale of minutes, it is regulated by the dynamic association of light-harvesting complex II with either PSI or PSII. Thus far very diverse values have been reported for the PSI/PSII chlorophyll ratio, ranging from 0.54 to 1.4. The methods used require the isolation of chloroplasts and are time consuming. We present a fluorescence lifetime imaging approach that quantifies the PSI/PSII Chl ratio of chloroplasts directly in their natural leaf environment. In wild type Arabidopsis thaliana plants, grown under white light, the PSI/PSII chlorophyll ratio appeared to be 0.99±0.09 at the adaxial side and 0.83±0.05 at the abaxial side of the leaf. When these plants were acclimated to far red light for several days the PSI/PSII chlorophyll ratio decreased by more than a factor of 3 to compensate for the ineffective far red light absorption of PSII. This shows how plants optimize their light-harvesting capacity to the specific light conditions they encounter. Zooming in on single chloroplasts inside the leaf allowed to study the grana/stroma membrane network and their PSI/PSII chlorophyll ratios. The developed method will be useful to study dynamic processes in chloroplasts in intact leaves which involve changes in the grana and the stroma membranes such as state transitions. Copyright © 2017 Elsevier B.V. All rights reserved.
Distinctive Photosystem II Photoinactivation and Protein Dynamics in Marine Diatoms1[W
Wu, Hongyan; Cockshutt, Amanda M.; McCarthy, Avery; Campbell, Douglas A.
2011-01-01
Diatoms host chlorophyll a/c chloroplasts distinct from green chloroplasts. Diatoms now dominate the eukaryotic oceanic phytoplankton, in part through their exploitation of environments with variable light. We grew marine diatoms across a range of temperatures and then analyzed their PSII function and subunit turnover during an increase in light to mimic an upward mixing event. The small diatom Thalassiosira pseudonana initially responds to increased photoinactivation under blue or white light with rapid acceleration of the photosystem II (PSII) repair cycle. Increased red light provoked only modest PSII photoinactivation but triggered a rapid clearance of a subpool of PsbA. Furthermore, PsbD and PsbB content was greater than PsbA content, indicating a large pool of partly assembled PSII repair cycle intermediates lacking PsbA. The initial replacement rates for PsbD (D2) were, surprisingly, comparable to or higher than those for PsbA (D1), and even the supposedly stable PsbB (CP47) dropped rapidly upon the light shift, showing a novel aspect of rapid protein subunit turnover in the PSII repair cycle in small diatoms. Under sustained high light, T. pseudonana induces sustained nonphotochemical quenching, which correlates with stabilization of PSII function and the PsbA pool. The larger diatom Coscinodiscus radiatus showed generally similar responses but had a smaller allocation of PSII complexes relative to total protein content, with nearly equal stiochiometries of PsbA and PsbD subunits. Fast turnover of multiple PSII subunits, pools of PSII repair cycle intermediates, and photoprotective induction of nonphotochemical quenching are important interacting factors, particularly for small diatoms, to withstand and exploit high, fluctuating light. PMID:21617029
Kim, Eun-Ha; Razeghifard, Reza; Anderson, Jan M; Chow, Wah Soon
2007-01-01
Phosphatidylglycerol (PG), containing the unique fatty acid Delta3, trans-16:1-hexadecenoic acid, is a minor but ubiquitous lipid component of thylakoid membranes of chloroplasts and cyanobacteria. We investigated its role in electron transfers and structural organization of Photosystem II (PSII) by treating Arabidopsis thaliana thylakoids with phospholipase A(2) to decrease the PG content. Phospholipase A(2) treatment of thylakoids (a) inhibited electron transfer from the primary quinone acceptor Q(A) to the secondary quinone acceptor Q(B), (b) retarded electron transfer from the manganese cluster to the redox-active tyrosine Z, (c) decreased the extent of flash-induced oxidation of tyrosine Z and dark-stable tyrosine D in parallel, and (d) inhibited PSII reaction centres such that electron flow to silicomolybdate in continuous light was inhibited. In addition, phospholipase A(2) treatment of thylakoids caused the partial dissociation of (a) PSII supercomplexes into PSII dimers that do not have the complete light-harvesting complex of PSII (LHCII); (b) PSII dimers into monomers; and (c) trimers of LHCII into monomers. Thus, removal of PG by phospholipase A(2) brings about profound structural changes in PSII, leading to inhibition/retardation of electron transfer on the donor side, in the reaction centre, and on the acceptor side. Our results broaden the simple view of the predominant effect being on the Q(B)-binding site.
Iermak, Ievgeniia; Vink, Jochem; Bader, Arjen N; Wientjes, Emilie; van Amerongen, Herbert
2016-09-01
Two-photon fluorescence lifetime imaging microscopy (FLIM) was used to analyse the distribution and properties of Photosystem I (PSI) and Photosystem II (PSII) in palisade and spongy chloroplasts of leaves from the C3 plant Arabidopsis thaliana and the C4 plant Miscanthus x giganteus. This was achieved by separating the time-resolved fluorescence of PSI and PSII in the leaf. It is found that the PSII antenna size is larger on the abaxial side of A. thaliana leaves, presumably because chloroplasts in the spongy mesophyll are "shaded" by the palisade cells. The number of chlorophylls in PSI on the adaxial side of the A. thaliana leaf is slightly higher. The C4 plant M. x giganteus contains both mesophyll and bundle sheath cells, which have a different PSI/PSII ratio. It is shown that the time-resolved fluorescence of bundle sheath and mesophyll cells can be analysed separately. The relative number of chlorophylls, which belong to PSI (as compared to PSII) in the bundle sheath cells is at least 2.5 times higher than in mesophyll cells. FLIM is thus demonstrated to be a useful technique to study the PSI/PSII ratio and PSII antenna size in well-defined regions of plant leaves without having to isolate pigment-protein complexes. Copyright © 2016 Elsevier B.V. All rights reserved.
Nagy, Valéria; Vidal-Meireles, André; Podmaniczki, Anna; Szentmihályi, Klára; Rákhely, Gábor; Zsigmond, Laura; Kovács, László; Tóth, Szilvia Z
2018-05-01
Sulphur limitation may restrain cell growth and viability. In the green alga Chlamydomonas reinhardtii, sulphur limitation may induce H 2 production lasting for several days, which can be exploited as a renewable energy source. Sulphur limitation causes a large number of physiological changes, including the inactivation of photosystem II (PSII), leading to the establishment of hypoxia, essential for the increase in hydrogenase expression and activity. The inactivation of PSII has long been assumed to be caused by the sulphur-limited turnover of its reaction center protein PsbA. Here we reinvestigated this issue in detail and show that: (i) upon transferring Chlamydomonas cells to sulphur-free media, the cellular sulphur content decreases only by about 25%; (ii) as demonstrated by lincomycin treatments, PsbA has a significant turnover, and other photosynthetic subunits, namely RbcL and CP43, are degraded more rapidly than PsbA. On the other hand, sulphur limitation imposes oxidative stress early on, most probably involving the formation of singlet oxygen in PSII, which leads to an increase in the expression of GDP-L-galactose phosphorylase, playing an essential role in ascorbate biosynthesis. When accumulated to the millimolar concentration range, ascorbate may inactivate the oxygen-evolving complex and provide electrons to PSII, albeit at a low rate. In the absence of a functional donor side and sufficient electron transport, PSII reaction centers are inactivated and degraded. We therefore demonstrate that the inactivation of PSII is a complex and multistep process, which may serve to mitigate the damaging effects of sulphur limitation. © 2018 The Authors The Plant Journal © 2018 John Wiley & Sons Ltd.
Calcium Ligation in Photosystem II under Inhibiting Conditions
Barry, Bridgette A.; Hicks, Charles; De Riso, Antonio; Jenson, David L.
2005-01-01
In oxygenic photosynthesis, PSII carries out the oxidation of water and reduction of plastoquinone. The product of water oxidation is molecular oxygen. The water splitting complex is located on the lumenal side of the PSII reaction center and contains manganese, calcium, and chloride. Four sequential photooxidation reactions are required to generate oxygen from water; the five sequentially oxidized forms of the water splitting complex are known as the Sn states, where n refers to the number of oxidizing equivalents stored. Calcium plays a role in water oxidation; removal of calcium is associated with an inhibition of the S state cycle. Although calcium can be replaced by other cations in vitro, only strontium maintains activity, and the steady-state rate of oxygen evolution is decreased in strontium-reconstituted PSII. In this article, we study the role of calcium in PSII that is limited in water content. We report that strontium substitution or 18OH2 exchange causes conformational changes in the calcium ligation shell. The conformational change is detected because of a perturbation to calcium ligation during the S1 to S2 and S2 to S3 transition under water-limited conditions. PMID:15985425
Chapter 3: Isolation of Photosystem II Reaction Center Complexes from Plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seibert, M.; Picorel, R.
2011-01-01
Methods to isolate and purify 6- and 5-Chl D1/D2/Cyt b559 photosystem II (PSII) reaction center (RC) complexes from plants are presented, and the advantages and disadvantages of each procedure are discussed. One of the simpler 6-Chl procedures and a procedure for isolating 5-Chl complexes are described in detail. Furthermore, a rapid procedure that produces relatively large amounts of less pure 6-Chl material (i.e., more nonpigmented protein) is also described. Criteria to assess the purity of PSII RC preparations are presented, and problems associated with each of the isolation procedures are discussed.
Water oxidation chemistry of photosystem II.
Brudvig, Gary W
2008-03-27
Photosystem II (PSII) uses light energy to split water into protons, electrons and O2. In this reaction, nature has solved the difficult chemical problem of efficient four-electron oxidation of water to yield O2 without significant amounts of reactive intermediate species such as superoxide, hydrogen peroxide and hydroxyl radicals. In order to use nature's solution for the design of artificial catalysts that split water, it is important to understand the mechanism of the reaction. The recently published X-ray crystal structures of cyanobacterial PSII complexes provide information on the structure of the Mn and Ca ions, the redox-active tyrosine called YZ and the surrounding amino acids that comprise the O2-evolving complex (OEC). The emerging structure of the OEC provides constraints on the different hypothesized mechanisms for O2 evolution. The water oxidation mechanism of PSII is discussed in the light of biophysical and computational studies, inorganic chemistry and X-ray crystallographic information.
The Cytochrome b 6 f Complex: Biophysical Aspects of Its Functioning in Chloroplasts.
Tikhonov, Alexander N
2018-01-01
This chapter presents an overview of structural properties of the cytochrome (Cyt) b 6 f complex and its functioning in chloroplasts. The Cyt b 6 f complex stands at the crossroad of photosynthetic electron transport pathways, providing connectivity between Photosystem (PSI) and Photosysten II (PSII) and pumping protons across the membrane into the thylakoid lumen. After a brief review of the chloroplast electron transport chain, the consideration is focused on the structural organization of the Cyt b 6 f complex and its interaction with plastoquinol (PQH 2 , reduced form of plastoquinone), a mediator of electron transfer from PSII to the Cyt b 6 f complex. The processes of PQH 2 oxidation by the Cyt b 6 f complex have been considered within the framework of the Mitchell's Q-cycle. The overall rate of the intersystem electron transport is determined by PQH 2 turnover at the quinone-binding site Q o of the Cyt b 6 f complex. The rate of PQH 2 oxidation is controlled by the intrathylakoid pH in , which value determines the protonation/deprotonation events in the Q o -center. Two other regulatory mechanisms associated with the Cyt b 6 f complex are briefly overviewed: (i) redistribution of electron fluxes between alternative (linear and cyclic) pathways, and (ii) "state transitions" related to redistribution of solar energy between PSI and PSII.
Shimada, Hiroshi; Ohno, Ryoichi; Shibata, Masaru; Ikegami, Isamu; Onai, Kiyoshi; Ohto, Masa-aki; Takamiya, Ken-ichiro
2005-02-01
Phylloquinone, a substituted 1,4-naphthoquinone with an 18-carbon-saturated phytyl tail, functions as a bound one-electron carrier cofactor at the A1 site of photosystem I (PSI). A Feldmann tag line mutant, no. 2755 (designated as abc4 hereafter), showed pale-green young leaves and white old leaves. The mutated nuclear gene encoded 1,4-dihydroxy-2-naphtoic acid phytyltransferase, an enzyme of phylloquinone biosynthesis, and high-performance liquid chromatography analysis revealed that the abc4 mutant contained no phylloquinone, and only about 3% plastoquinone. Photooxidation of P700 of PSI in the abc4 mutant was not observed, and reduced-versus-oxidized difference spectroscopy indicated that the abc4 mutant had no P700. The maximum quantum yield of photosystem II (PSII) in the abc4 mutant was much decreased, and the electron transfer from PSII to PSI in the abc4 mutant did not occur. For the pale-green leaves of the abc4 mutant plant, the ultrastructure of the chloroplasts was almost the same as that of the wild-type plant. However, the chloroplasts in the albino leaves of the mutant were smaller and had a lot of grana thylakoids and few stroma thylakoids. The amounts of PSI and PSII core subunits in the abc4 mutant were significantly decreased compared with those in the wild type. These results suggested that a deficiency of phylloquinone in PSI caused the abolishment of PSI and a partial defect of PSII due to a significant decrease of plastoquinone, but did not influence the ultrastructure of the chloroplasts in young leaves.
2017-01-01
Despite our increasingly sophisticated understanding of mechanisms ensuring efficient photosynthesis under laboratory-controlled light conditions, less is known about the regulation of photosynthesis under fluctuating light. This is important because—in nature—photosynthetic organisms experience rapid and extreme changes in sunlight, potentially causing deleterious effects on photosynthetic efficiency and productivity. Here we report that the chloroplast thylakoid lumenal protein MAINTENANCE OF PHOTOSYSTEM II UNDER HIGH LIGHT 2 (MPH2; encoded by At4g02530) is required for growth acclimation of Arabidopsis thaliana plants under controlled photoinhibitory light and fluctuating light environments. Evidence is presented that mph2 mutant light stress susceptibility results from a defect in photosystem II (PSII) repair, and our results are consistent with the hypothesis that MPH2 is involved in disassembling monomeric complexes during regeneration of dimeric functional PSII supercomplexes. Moreover, mph2—and previously characterized PSII repair-defective mutants—exhibited reduced growth under fluctuating light conditions, while PSII photoprotection-impaired mutants did not. These findings suggest that repair is not only required for PSII maintenance under static high-irradiance light conditions but is also a regulatory mechanism facilitating photosynthetic adaptation under fluctuating light environments. This work has implications for improvement of agricultural plant productivity through engineering PSII repair. PMID:28874535
Liu, Jun; Last, Robert L
2017-09-19
Despite our increasingly sophisticated understanding of mechanisms ensuring efficient photosynthesis under laboratory-controlled light conditions, less is known about the regulation of photosynthesis under fluctuating light. This is important because-in nature-photosynthetic organisms experience rapid and extreme changes in sunlight, potentially causing deleterious effects on photosynthetic efficiency and productivity. Here we report that the chloroplast thylakoid lumenal protein MAINTENANCE OF PHOTOSYSTEM II UNDER HIGH LIGHT 2 (MPH2; encoded by At4g02530 ) is required for growth acclimation of Arabidopsis thaliana plants under controlled photoinhibitory light and fluctuating light environments. Evidence is presented that mph2 mutant light stress susceptibility results from a defect in photosystem II (PSII) repair, and our results are consistent with the hypothesis that MPH2 is involved in disassembling monomeric complexes during regeneration of dimeric functional PSII supercomplexes. Moreover, mph2 -and previously characterized PSII repair-defective mutants-exhibited reduced growth under fluctuating light conditions, while PSII photoprotection-impaired mutants did not. These findings suggest that repair is not only required for PSII maintenance under static high-irradiance light conditions but is also a regulatory mechanism facilitating photosynthetic adaptation under fluctuating light environments. This work has implications for improvement of agricultural plant productivity through engineering PSII repair.
Galka, Pierre; Santabarbara, Stefano; Khuong, Thi Thu Huong; Degand, Hervé; Morsomme, Pierre; Jennings, Robert C.; Boekema, Egbert J.; Caffarri, Stefano
2012-01-01
State transitions are an important photosynthetic short-term response that allows energy distribution balancing between photosystems I (PSI) and II (PSII). In plants when PSII is preferentially excited compared with PSI (State II), part of the major light-harvesting complex LHCII migrates to PSI to form a PSI-LHCII supercomplex. So far, little is known about this complex, mainly due to purification problems. Here, a stable PSI-LHCII supercomplex is purified from Arabidopsis thaliana and maize (Zea mays) plants. It is demonstrated that LHCIIs loosely bound to PSII in State I are the trimers mainly involved in state transitions and become strongly bound to PSI in State II. Specific Lhcb1-3 isoforms are differently represented in the mobile LHCII compared with S and M trimers. Fluorescence analyses indicate that excitation energy migration from mobile LHCII to PSI is rapid and efficient, and the quantum yield of photochemical conversion of PSI-LHCII is substantially unaffected with respect to PSI, despite a sizable increase of the antenna size. An updated PSI-LHCII structural model suggests that the low-energy chlorophylls 611 and 612 in LHCII interact with the chlorophyll 11145 at the interface of PSI. In contrast with the common opinion, we suggest that the mobile pool of LHCII may be considered an intimate part of the PSI antenna system that is displaced to PSII in State I. PMID:22822202
Popova, Antoaneta V; Dobrev, Konstantin; Velitchkova, Maya; Ivanov, Alexander G
2018-05-03
The high-light-induced alterations in photosynthetic performance of photosystem II (PSII) and photosystem I (PSI) as well as effectiveness of dissipation of excessive absorbed light during illumination for different periods of time at room (22 °C) and low (8-10 °C) temperature of leaves of Arabidopsis thaliana, wt and lut2, were followed with the aim of unraveling the role of lutein in the process of photoinhibition. Photosynthetic parameters of PSII and PSI were determined on whole leaves by PAM fluorometer and oxygen evolving activity-by a Clark-type electrode. In thylakoid membranes, isolated from non-illuminated and illuminated for 4.5 h leaves of wt and lut2 the photochemical activity of PSII and PSI and energy interaction between the main pigment-protein complexes was determined. Results indicate that in non-illuminated leaves of lut2 the maximum rate of oxygen evolution and energy utilization in PSII is lower, excitation pressure of PSII is higher and cyclic electron transport around PSI is faster than in wt leaves. Under high-light illumination, lut2 leaves are more sensitive in respect to PSII performance and the extent of increase of excitation pressure of PSII, Φ NO , and cyclic electron transport around PSI are higher than in wt leaves, especially when illumination is performed at low temperature. Significant part of the excessive light energy is dissipated via mechanism, not dependent on ∆pH and to functioning of xanthophyll cycle in LHCII, operating more intensively in lut2 leaves.
Location and magnetic relaxation properties of the stable tyrosine radical in photosystem II.
Innes, J B; Brudvig, G W
1989-02-07
Dipolar interactions with neighboring metal ions can cause enhanced spin-lattice relaxation of free radicals. We have applied the theory of dipolar relaxation enhancement and shown that the dependence of the enhanced relaxation on the protein structure surrounding the free radical can be used to obtain distances from the free radical to the protein surface. To test the theoretical predictions, we have examined the effect of added Dy3+ complexes on the microwave power saturation of free radicals in two protein complexes of known structure: myoglobin nitroxide and the reaction center from Rhodobacter sphaeroides. Three cases have been considered: (1) metal ions bound to a specific site, (2) metal ions bound randomly over the protein surface, and (3) metal ions distributed randomly in solution. Only case 3, which assumes no specific binding, gave good agreement between the distances obtained by using the two model systems. The effect of added Dy3+ complexes on the microwave power saturation of signal IIslow from photosystem II (PSII) was used to determine the location of the stable tyrosine radical giving rise to signal IIslow. Assuming that the surface of a membrane-bound protein can be approximated as planar, we have obtained distances from the tyrosine radical to the membrane surface in thylakoids, in PSII membranes, and in Tris-washed PSII membranes. The distances we have determined are in good agreement with those predicted on the basis of a structural homology between the D1 and D2 subunits of PSII and the structurally characterized L and M subunits of the reaction center from purple non-sulfur bacteria. We have also examined the temperature dependence of the microwave power at half-saturation (P1/2) of signal IIslow from 4 to 200 K in dark-adapted PSII membranes. Above 70 K, the P1/2 increases as T2.5, which is consistent with a Raman relaxation mechanism.(ABSTRACT TRUNCATED AT 250 WORDS)
Barter, Laura M. C.; Durrant, James R.; Klug, David R.
2003-01-01
Light-induced charge separation is the primary photochemical event of photosynthesis. Efficient charge separation in photosynthetic reaction centers requires the balancing of electron and excitation energy transfer processes, and in Photosystem II (PSII), these processes are particularly closely entangled. Calculations that treat the cofactors of the PSII reaction center as a supermolecular complex allow energy and electron transfer reactions to be described in a unified way. This calculational approach is shown to be in good agreement with experimentally observed energy and electron transfer dynamics. This supermolecular view also correctly predicts the effect of changing the redox potentials of cofactors by site-directed mutagenesis, thus providing a unified and quantitative structure–function relationship for the PSII reaction center. PMID:12538865
The cytochrome b6f complex at the crossroad of photosynthetic electron transport pathways.
Tikhonov, Alexander N
2014-08-01
Regulation of photosynthetic electron transport at the level of the cytochrome b6f complex provides efficient performance of the chloroplast electron transport chain (ETC). In this review, after brief overview of the structural organization of the chloroplast ETC, the consideration of the problem of electron transport control is focused on the plastoquinone (PQ) turnover and its interaction with the b6f complex. The data available show that the rates of plastoquinol (PQH2) formation in PSII and its diffusion to the b6f complex do not limit the overall rate of electron transfer between photosystem II (PSII) and photosystem I (PSI). Analysis of experimental and theoretical data demonstrates that the rate-limiting step in the intersystem chain of electron transport is determined by PQH2 oxidation at the Qo-site of the b6f complex, which is accompanied by the proton release into the thylakoid lumen. The acidification of the lumen causes deceleration of PQH2 oxidation, thus impeding the intersystem electron transport. Two other mechanisms of regulation of the intersystem electron transport have been considered: (i) "state transitions" associated with the light-induced redistribution of solar energy between PSI and PSII, and (ii) redistribution of electron fluxes between alternative pathways (noncyclic electron transport and cyclic electron flow around PSI). Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Barber, James
2017-01-01
The biological energy cycle of our planet is driven by photosynthesis whereby sunlight is absorbed by chlorophyll and other accessory pigments. The excitation energy is then efficiently transferred to a reaction centre where charge separation occurs in a few picoseconds. In the case of photosystem II (PSII), the energy of the charge transfer state is used to split water into oxygen and reducing equivalents. This is accomplished by the relatively low energy content of four photons of visible light. PSII is a large multi-subunit membrane protein complex embedded in the lipid environment of the thylakoid membranes of plants, algae and cyanobacteria. Four high energy electrons, together with four protons (4H+), are used to reduce plastoquinone (PQ), the terminal electron acceptor of PSII, to plastoquinol (PQH2). PQH2 passes its reducing equivalents to an electron transfer chain which feeds into photosystem I (PSI) where they gain additional reducing potential from a second light reaction which is necessary to drive CO2 reduction. The catalytic centre of PSII consists of a cluster of four Mn ions and a Ca2+ linked by oxo bonds. In addition, there are seven amino acid ligands. In this Article, I discuss the structure of this metal cluster, its stability and the probability that an acid-base (nucleophilic-electrophilic) mechanism catalyses the water splitting reaction on the surface of the metal-cluster. Evidence for this mechanism is presented from studies on water splitting catalysts consisting of organo-complexes of ruthenium and manganese and also by comparison with the enzymology of carbon monoxide dehydrogenase (CODH). Finally the relevance of our understanding of PSII is discussed in terms of artificial photosynthesis with emphasis on inorganic water splitting catalysts as oxygen generating photoelectrodes.
Koeda, Shuhei; Umezaki, Katsunari; Noji, Tomoyasu; Ikeda, Atsushi; Kawakami, Keisuke; Kondo, Masaharu; Yamamoto, Yasushi; Shen, Jian-Ren; Taga, Keijiro; Dewa, Takehisa; Ito, Shigeru; Nango, Mamoru; Tanaka, Toshiki; Mizuno, Toshihisa
2013-09-17
We designed novel peptide gemini surfactants (PG-surfactants), DKDKC12K and DKDKC12D, which can solubilize Photosystem I (PSI) of Thermosynecoccus elongatus and Photosystem II (PSII) of Thermosynecoccus vulcanus in an aqueous buffer solution. To assess the detailed effects of PG-surfactants on the original supramolecular membrane protein complexes and functions of PSI and PSII, we applied the surfactant exchange method to the isolated PSI and PSII. Spectroscopic properties, light-induced electron transfer activity, and dynamic light scattering measurements showed that PSI and PSII could be solubilized not only with retention of the original supramolecular protein complexes and functions but also without forming aggregates. Furthermore, measurement of the lifetime of light-induced charge-separation state in PSI revealed that both surfactants, especially DKDKC12D, displayed slight improvement against thermal denaturation below 60 °C compared with that using β-DDM. This degree of improvement in thermal resistance still seems low, implying that the peptide moieties did not interact directly with membrane protein surfaces. By conjugating an electron mediator such as methyl viologen (MV(2+)) to DKDKC12K (denoted MV-DKDKC12K), we obtained derivatives that can trap the generated reductive electrons from the light-irradiated PSI. After immobilization onto an indium tin oxide electrode, a cathodic photocurrent from the electrode to the PSI/MV-DKDKC12K conjugate was observed in response to the interval of light irradiation. These findings indicate that the PG-surfactants DKDKC12K and DKDKC12D provide not only a new class of solubilization surfactants but also insights into designing other derivatives that confer new functions on PSI and PSII.
Light-adaptation of photosystem II is mediated by the plastoquinone pool.
Ahrling, Karin A; Peterson, Sindra
2003-07-01
During the first few enzymatic turnovers after dark-adaptation of photosystem II (PSII), the relaxation rate of the EPR signals from the Mn cluster and Y(D)(*) are significantly enhanced. This light-adaptation process has been suggested to involve the appearance of a new paramagnet on the PSII donor side [Peterson, S., Ahrling, K., Högblom, J., and Styring, S. (2003) Biochemistry 42, 2748-2758]. In the present study, a correlation is established between the observed relaxation enhancement and the redox state of the quinone pool. It is shown that the addition of quinol to dark-adapted PSII membrane fragments induces relaxation enhancement already after a single oxidation of the Mn, comparable to that observed after five oxidations in samples with quinones (PPBQ or DQ) added. The saturation behavior of Y(D)(*) revealed that with quinol added in the dark, a single flash was necessary for the relaxation enhancement to occur. The quinol-induced relaxation enhancement of PSII was also activated by illumination at 200 K. Whole thylakoids, with no artificial electron acceptor present but with an intact plastoquinone pool, displayed the same relaxation enhancement on the fifth flash as membrane fragments with exogenous quinones present. We conclude that (i) reduction of the quinone pool induces the relaxation enhancement of the PSII donor-side paramagnets, (ii) light is required for the quinol to effect the relaxation enhancement, and (iii) light-adaptation occurs in the intact thylakoid system, when the endogenous plastoquinone pool is gradually reduced by PSII turnover. It seems clear that a species on the PSII donor side is reduced by the quinol, to become a potent paramagnetic relaxer. On the basis of XANES reports, we suggest that this species may be the Mn ions not involved in the cyclic redox changes of the oxygen-evolving complex.
Hill, Ross; PeterJ, Ralph
2006-01-01
Increased ocean temperatures are thought to be triggering mass coral bleaching events around the world. The intracellular symbiotic zooxanthellae (genus Symbiodinium) are expelled from the coral host, which is believed to be a response to photosynthetic damage within these symbionts. Several sites of impact have been proposed, and here we probe the functional heterogeneity of Photosystem II (PSII) in three coral species exposed to bleaching conditions. As length of exposure to bleaching conditions (32 degrees C and 350 micromol photons m(-2) s(-1)) increased, the QA- reoxidation kinetics showed a rise in the proportion of inactive PSII centers (PSIIx), where QB was unable to accept electrons. PSIIx contributed up to 20% of the total PSII centers in Pocillopora damicornis, 35% in Acropora nobilis and 14% in Cyphastrea serailia. Changes in Fv/Fm and amplitude of the J step along fast induction curves were found to be highly dependent upon the proportion of PSIIx centers within the total pool of PSII reaction centers. Determination of PSII antenna size revealed that under control conditions in the three coral species up to 60% of PSII centers were lacking peripheral light-harvesting complexes (PSIIbeta). In P. damicornis, the proportion of PSIIbeta increased under bleaching conditions and this could be a photoprotective mechanism in response to excess light. The rapid increases in PSIIx and PSIIbeta observed in these corals under bleaching conditions indicates these physiological processes are involved in the initial photochemical damage to zooxanthellae.
Onoa, Bibiana; Schneider, Anna R.; Brooks, Matthew D.; Grob, Patricia; Nogales, Eva; Geissler, Phillip L.; Niyogi, Krishna K.; Bustamante, Carlos
2014-01-01
Photoautotrophic organisms efficiently regulate absorption of light energy to sustain photochemistry while promoting photoprotection. Photoprotection is achieved in part by triggering a series of dissipative processes termed non-photochemical quenching (NPQ), which depend on the re-organization of photosystem (PS) II supercomplexes in thylakoid membranes. Using atomic force microscopy, we characterized the structural attributes of grana thylakoids from Arabidopsis thaliana to correlate differences in PSII organization with the role of SOQ1, a recently discovered thylakoid protein that prevents formation of a slowly reversible NPQ state. We developed a statistical image analysis suite to discriminate disordered from crystalline particles and classify crystalline arrays according to their unit cell properties. Through detailed analysis of the local organization of PSII supercomplexes in ordered and disordered phases, we found evidence that interactions among light-harvesting antenna complexes are weakened in the absence of SOQ1, inducing protein rearrangements that favor larger separations between PSII complexes in the majority (disordered) phase and reshaping the PSII crystallization landscape. The features we observe are distinct from known protein rearrangements associated with NPQ, providing further support for a role of SOQ1 in a novel NPQ pathway. The particle clustering and unit cell methodology developed here is generalizable to multiple types of microscopy and will enable unbiased analysis and comparison of large data sets. PMID:25007326
Onoa, Bibiana; Schneider, Anna R.; Brooks, Matthew D.; ...
2014-07-09
Photoautotrophic organisms efficiently regulate absorption of light energy to sustain photochemistry while promoting photoprotection. Photoprotection is achieved in part by triggering a series of dissipative processes termed non-photochemical quenching (NPQ), which depend on the re-organization of photosystem (PS) II supercomplexes in thylakoid membranes. Using atomic force microscopy, we characterized the structural attributes of grana thylakoids from Arabidopsis thaliana to correlate differences in PSII organization with the role of SOQ1, a recently discovered thylakoid protein that prevents formation of a slowly reversible NPQ state. We developed a statistical image analysis suite to discriminate disordered from crystalline particles and classify crystalline arraysmore » according to their unit cell properties. Through detailed analysis of the local organization of PSII supercomplexes in ordered and disordered phases, we found evidence that interactions among light-harvesting antenna complexes are weakened in the absence of SOQ1, inducing protein rearrangements that favor larger separations between PSII complexes in the majority (disordered) phase and reshaping the PSII crystallization landscape. The features we observe are distinct from known protein rearrangements associated with NPQ, providing further support for a role of SOQ1 in a novel NPQ pathway. The particle clustering and unit cell methodology developed here is generalizable to multiple types of microscopy and will enable unbiased analysis and comparison of large data sets.« less
2012-01-01
Background Xanthophylls are oxygenated carotenoids playing an essential role as structural components of the photosynthetic apparatus. Xanthophylls contribute to the assembly and stability of light-harvesting complex, to light absorbance and to photoprotection. The first step in xanthophyll biosynthesis from α- and β-carotene is the hydroxylation of ε- and β-rings, performed by both non-heme iron oxygenases (CHY1, CHY2) and P450 cytochromes (LUT1/CYP97C1, LUT5/CYP97A3). The Arabidopsis triple chy1chy2lut5 mutant is almost completely depleted in β-xanthophylls. Results Here we report on the quadruple chy1chy2lut2lut5 mutant, additionally carrying the lut2 mutation (affecting lycopene ε-cyclase). This genotype lacks lutein and yet it shows a compensatory increase in β-xanthophylls with respect to chy1chy2lut5 mutant. Mutant plants show an even stronger photosensitivity than chy1chy2lut5, a complete lack of qE, the rapidly reversible component of non-photochemical quenching, and a peculiar organization of the pigment binding complexes into thylakoids. Biochemical analysis reveals that the chy1chy2lut2lut5 mutant is depleted in Lhcb subunits and is specifically affected in Photosystem I function, showing a deficiency in PSI-LHCI supercomplexes. Moreover, by analyzing a series of single, double, triple and quadruple Arabidopsis mutants in xanthophyll biosynthesis, we show a hitherto undescribed correlation between xanthophyll levels and the PSI-PSII ratio. The decrease in the xanthophyll/carotenoid ratio causes a proportional decrease in the LHCII and PSI core levels with respect to PSII. Conclusions The physiological and biochemical phenotype of the chy1chy2lut2lut5 mutant shows that (i) LUT1/CYP97C1 protein reveals a major β-carotene hydroxylase activity in vivo when depleted in its preferred substrate α-carotene; (ii) xanthophylls are needed for normal level of Photosystem I and LHCII accumulation. PMID:22513258
Artificial synthetic Mn(IV)Ca-oxido complexes mimic the oxygen-evolving complex in photosystem II.
Chen, Changhui; Zhang, Chunxi; Dong, Hongxing; Zhao, Jingquan
2015-03-14
A novel family of heteronuclear Mn(IV)Ca-oxido complexes containing Mn(IV)Ca-oxido cuboidal moieties and reactive water molecules on Ca(2+) have been synthesized and characterized to mimic the oxygen-evolving complex (OEC) of photosystem II (PSII) in nature.
Ruffle, Stuart V.; Wang, Jun; Johnston, Heather G.; Gustafson, Terry L.; Hutchison, Ronald S.; Minagawa, Jun; Crofts, Anthony; Sayre, Richard T.
2001-01-01
In addition to the four chlorophylls (Chls) involved in primary charge separation, the photosystem II (PSII) reaction center polypeptides, D1 and D2, coordinate a pair of symmetry-related, peripheral accessory Chls. These Chls are axially coordinated by the D1-H118 and D2-H117 residues and are in close association with the proximal Chl antennae proteins, CP43 and CP47. To gain insight into the function(s) of each of the peripheral Chls, we generated site-specific mutations of the amino acid residues that coordinate these Chls and characterized their energy and electron transfer properties. Our results demonstrate that D1-H118 and D2-H117 mutants differ with respect to: (a) their relative numbers of functional PSII complexes, (b) their relative ability to stabilize charge-separated states, (c) light-harvesting efficiency, and (d) their sensitivity to photo-inhibition. The D2-H117N and D2-H117Q mutants had reduced levels of functional PSII complexes and oxygen evolution capacity as well as reduced light-harvesting efficiencies relative to wild-type cells. In contrast, the D1-H118Q mutant was capable of near wild-type rates of oxygen evolution at saturating light intensities. The D1-H118Q mutant also was substantially more resistant to photo-inhibition than wild type. This reduced sensitivity to photo-inhibition is presumably associated with a reduced light-harvesting efficiency in this mutant. Finally, it is noted that the PSII peripheral accessory Chls have similarities to a to a pair of Chls also present in the PSI reaction center complex. PMID:11598237
Lambreva, Maya D.; Antonacci, Amina; Pastorelli, Sandro; Bertalan, Ivo; Johanningmeier, Udo; Mattoo, Autar K.
2013-01-01
Space missions have enabled testing how microorganisms, animals and plants respond to extra-terrestrial, complex and hazardous environment in space. Photosynthetic organisms are thought to be relatively more prone to microgravity, weak magnetic field and cosmic radiation because oxygenic photosynthesis is intimately associated with capture and conversion of light energy into chemical energy, a process that has adapted to relatively less complex and contained environment on Earth. To study the direct effect of the space environment on the fundamental process of photosynthesis, we sent into low Earth orbit space engineered and mutated strains of the unicellular green alga, Chlamydomonas reinhardtii, which has been widely used as a model of photosynthetic organisms. The algal mutants contained specific amino acid substitutions in the functionally important regions of the pivotal Photosystem II (PSII) reaction centre D1 protein near the QB binding pocket and in the environment surrounding Tyr-161 (YZ) electron acceptor of the oxygen-evolving complex. Using real-time measurements of PSII photochemistry, here we show that during the space flight while the control strain and two D1 mutants (A250L and V160A) were inefficient in carrying out PSII activity, two other D1 mutants, I163N and A251C, performed efficient photosynthesis, and actively re-grew upon return to Earth. Mimicking the neutron irradiation component of cosmic rays on Earth yielded similar results. Experiments with I163N and A251C D1 mutants performed on ground showed that they are better able to modulate PSII excitation pressure and have higher capacity to reoxidize the QA − state of the primary electron acceptor. These results highlight the contribution of D1 conformation in relation to photosynthesis and oxygen production in space. PMID:23691201
Coe, Jesse; Kupitz, Christopher; Basu, Shibom; Conrad, Chelsie E.; Roy-Chowdhury, Shatabdi; Fromme, Raimund; Fromme, Petra
2015-01-01
Photosystem II (PSII) is a membrane protein supercomplex that executes the initial reaction of photosynthesis in higher plants, algae, and cyanobacteria. It captures the light from the sun to catalyze a transmembrane charge separation. In a series of four charge separation events, utilizing the energy from four photons, PSII oxidizes two water molecules to obtain dioxygen, four protons, and four electrons. The light reactions of photosystems I and II (PSI and PSII) result in the formation of an electrochemical transmembrane proton gradient that is used for the production of ATP. Electrons that are subsequently transferred from PSI via the soluble protein ferredoxin to ferredoxin-NADP+ reductase that reduces NADP+ to NADPH. The products of photosynthesis and the elemental oxygen evolved sustain all higher life on Earth. All oxygen in the atmosphere is produced by the oxygen-evolving complex in PSII, a process that changed our planet from an anoxygenic to an oxygenic atmosphere 2.5 billion years ago. In this chapter, we provide recent insight into the mechanisms of this process and methods used in probing this question. PMID:25950978
Phuthong, Witchukorn; Huang, Zubin; Wittkopp, Tyler M.; ...
2015-07-28
To investigate the dynamics of photosynthetic pigment-protein complexes in vascular plants at high resolution in an aqueous environment, membrane-protruding oxygen-evolving complexes (OECs) associated with photosystem II (PSII) on spinach ( Spinacia oleracea) grana membranes were examined using contact mode atomic force microscopy. This study represents, to our knowledge, the first use of atomic force microscopy to distinguish the putative large extrinsic loop of Photosystem II CP47 reaction center protein (CP47) from the putative oxygen-evolving enhancer proteins 1, 2, and 3 (PsbO, PsbP, and PsbQ) and large extrinsic loop of Photosystem II CP43 reaction center protein (CP43) in the PSII-OEC extrinsicmore » domains of grana membranes under conditions resulting in the disordered arrangement of PSII-OEC particles. Moreover, we observed uncharacterized membrane particles that, based on their physical characteristics and electrophoretic analysis of the polypeptides associated with the grana samples, are hypothesized to be a domain of photosystem I that protrudes from the stromal face of single thylakoid bilayers. Furthermore, our results are interpreted in the context of the results of others that were obtained using cryo-electron microscopy (and single particle analysis), negative staining and freeze-fracture electron microscopy, as well as previous atomic force microscopy studies.« less
Barera, Simone; Pagliano, Cristina; Pape, Tillmann; Saracco, Guido; Barber, James
2012-12-19
It was the work of Jan Anderson, together with Keith Boardman, that showed it was possible to physically separate photosystem I (PSI) from photosystem II (PSII), and it was Jan Anderson who realized the importance of this work in terms of the fluid-mosaic model as applied to the thylakoid membrane. Since then, there has been a steady progress in the development of biochemical procedures to isolate PSII and PSI both for physical and structural studies. Dodecylmaltoside (DM) has emerged as an effective mild detergent for this purpose. DM is a glucoside-based surfactant with a bulky hydrophilic head group composed of two sugar rings and a non-charged alkyl glycoside chain. Two isomers of this molecule exist, differing only in the configuration of the alkyl chain around the anomeric centre of the carbohydrate head group, axial in α-DM and equatorial in β-DM. We have compared the use of α-DM and β-DM for the isolation of supramolecular complexes of PSII by a single-step solubilization of stacked thylakoid membranes isolated from peas. As a result, we have optimized conditions to obtain homogeneous preparations of the C(2)S(2)M(2) and C(2)S(2) supercomplexes following the nomenclature of Dekker & Boekema (2005 Biochim. Biophys. Acta 1706, 12-39). These PSII-LHCII supercomplexes were subjected to biochemical and structural analyses.
Effect of temperature on photosynthesis and growth in marine Synechococcus spp.
Mackey, Katherine R M; Paytan, Adina; Caldeira, Ken; Grossman, Arthur R; Moran, Dawn; McIlvin, Matthew; Saito, Mak A
2013-10-01
In this study, we develop a mechanistic understanding of how temperature affects growth and photosynthesis in 10 geographically and physiologically diverse strains of Synechococcus spp. We found that Synechococcus spp. are able to regulate photochemistry over a range of temperatures by using state transitions and altering the abundance of photosynthetic proteins. These strategies minimize photosystem II (PSII) photodamage by keeping the photosynthetic electron transport chain (ETC), and hence PSII reaction centers, more oxidized. At temperatures that approach the optimal growth temperature of each strain when cellular demand for reduced nicotinamide adenine dinucleotide phosphate (NADPH) is greatest, the phycobilisome (PBS) antenna associates with PSII, increasing the flux of electrons into the ETC. By contrast, under low temperature, when slow growth lowers the demand for NADPH and linear ETC declines, the PBS associates with photosystem I. This favors oxidation of PSII and potential increase in cyclic electron flow. For Synechococcus sp. WH8102, growth at higher temperatures led to an increase in the abundance of PBS pigment proteins, as well as higher abundance of subunits of the PSII, photosystem I, and cytochrome b6f complexes. This would allow cells to increase photosynthetic electron flux to meet the metabolic requirement for NADPH during rapid growth. These PBS-based temperature acclimation strategies may underlie the larger geographic range of this group relative to Prochlorococcus spp., which lack a PBS.
Hydroxyl radical generation by photosystem II.
Pospísil, Pavel; Arató, András; Krieger-Liszkay, Anja; Rutherford, A William
2004-06-01
The photogeneration of hydroxyl radicals (OH(*)) in photosystem II (PSII) membranes was studied using EPR spin-trapping spectroscopy. Two kinetically distinguishable phases in the formation of the spin trap-hydroxyl (POBN-OH) adduct EPR signal were observed: the first phase (t(1/2) = 7.5 min) and the second phase (t(1/2) = 30 min). The generation of OH(*) was found to be suppressed in the absence of the Mn-complex, but it was restored after readdition of an artificial electron donor (DPC). Hydroxyl radical generation was also lost in the absence of oxygen, whereas it was stimulated when the oxygen concentration was increased. The production of OH(*) during the first kinetic phase was sensitive to the presence of SOD, whereas catalase and EDTA diminished the production of OH(*) during the second kinetic phase. The POBN-OH adduct EPR signal during the first phase exhibits a similar pH-dependence as the ability to oxidize the non-heme iron, as monitored by the Fe(3+) (g = 8) EPR signal: both EPR signals gradually decreased as the pH value was lowered below pH 6.5 and were absent at pH 5. Sodium formate decreases the production of OH(*) in intact and Mn-deleted PSII membranes. Upon illumination of PSII membranes, both superoxide, as measured by EPR signal from the spin trap-superoxide (EMPO-OOH) adduct, and H(2)O(2), measured colormetrically, were generated. These results indicated that OH(*) is produced on the electron acceptor side of PSII by two different routes, (1) O(2)(*)(-), which is generated by oxygen reduction on the acceptor side of PSII, interacts with a PSII metal center, probably the non-heme iron, to form an iron-peroxide species that is further reduced to OH(*) by an electron from PSII, presumably via Q(A)(-), and (2) O(2)(*)(-) dismutates to form free H(2)O(2) that is then reduced to OH(*) via the Fenton reaction in the presence of metal ions, the most likely being Mn(2+) and Fe(2+) released from photodamaged PSII. The two different routes of OH(*) generation are discussed in the context of photoinhibition.
Nozawa, Yosuke; Noguchi, Takumi
2018-05-15
Photosystem II (PSII) is a protein complex that performs water oxidation using light energy during photosynthesis. In PSII, electrons abstracted from water are eventually transferred to the secondary quinone electron acceptor, Q B , and upon double reduction, Q B is converted to quinol by binding two protons. Thus, excess electron transfer in PSII increases the pH of the stroma. In this study, to investigate the pH-dependent regulation of the electron flow in PSII, we have estimated the relaxation rate of the Q B - radical anion in the pH region between 5 and 8 by direct monitoring of its population using light-induced Fourier transform infrared difference spectroscopy. The decay of Q B - by charge recombination with the S 2 state of the water oxidation center in PSII membranes was shown to be accelerated at higher pH, whereas that of Q A - examined in the presence of a herbicide was virtually unaffected at pH ≤7.5 and slightly slowed at pH 8. These observations were consistent with the previous studies that included rather indirect monitoring of the Q B - and Q A - decays using fluorescence detection. The accelerated relaxation of Q B - was explained by the shift of a redox equilibrium between Q A - and Q B - to the Q A - side due to the decrease in the redox potential of Q B at higher pH, which is induced by deprotonation of a single amino acid residue near Q B . It is proposed that this pH-dependent Q B - relaxation is one of the mechanisms of electron flow regulation in PSII for its photoprotection.
Photosystem II Functionality in Barley Responds Dynamically to Changes in Leaf Manganese Status
Schmidt, Sidsel B.; Powikrowska, Marta; Krogholm, Ken S.; Naumann-Busch, Bianca; Schjoerring, Jan K.; Husted, Søren; Jensen, Poul E.; Pedas, Pai R.
2016-01-01
A catalytic manganese (Mn) cluster is required for the oxidation of water in the oxygen-evolving complex (OEC) of photosystem II (PSII) in plants. Despite this essential role of Mn in generating the electrons driving photosynthesis, limited information is available on how Mn deficiency affects PSII functionality. We have here used parameters derived from measurements of fluorescence induction kinetics (OJIP transients), non-photochemical quenching (NPQ) and PSII subunit composition to investigate how latent Mn deficiency changes the photochemistry in two barley genotypes differing in Mn efficiency. Mn deficiency caused dramatic reductions in the quantum yield of PSII and led to the appearance of two new inflection points, the K step and the D dip, in the OJIP fluorescence transients, indicating severe damage to the OEC. In addition, Mn deficiency decreased the ability to induce NPQ in the light, rendering the plants incapable of dissipating excess energy in a controlled way. Thus, the Mn deficient plants became severely affected in their ability to recover from high light-induced photoinhibition, especially under strong Mn deficiency. Interestingly, the Mn-efficient genotype was able to maintain a higher NPQ than the Mn-inefficient genotype when exposed to mild Mn deficiency. However, during severe Mn deficiency, there were no differences between the two genotypes, suggesting a general loss of the ability to disassemble and repair PSII. The pronounced defects of PSII activity were supported by a dramatic decrease in the abundance of the OEC protein subunits, PsbP and PsbQ in response to Mn deficiency for both genotypes. We conclude that regulation of photosynthetic performance by means of maintaining and inducing NPQ mechanisms contribute to genotypic differences in the Mn efficiency of barley genotypes growing under conditions with mild Mn deficiency. PMID:27933084
Ragni, Maria; Airs, Ruth L; Leonardos, Nikos; Geider, Richard J
2008-06-01
The response of the coccolithophorid Emiliania huxleyi (Lohmann) W. H. Hay et H. Mohler to acute exposure to high photon flux densities (PFD) was examined in terms of PSII photoinhibition, photoprotection, and photorepair. The time and light dependencies of these processes were characterized as a function of the photoacclimation state of the alga. Low-light (LL) acclimated cells displayed a higher degree of photoinhibition, measured as decline in Fv /Fm , than high-light (HL) acclimated cells. However, HL cultures were more susceptible to photodamage but also more capable of compensating for it by performing a faster repair cycle. The relation between gross photoinhibition (observed in the presence of an inhibitor of repair) and PFD to which the algae were exposed deviated from linearity at high PFD, which calls into question the universality of current concepts of photoinhibition in mechanistic models. The light dependence of the de-epoxidation state (DPS) of the xanthophyll cycle (XC) pigments on the timescale of hours was the same in cells acclimated to LL and HL. However, HL cells were more efficient in realizing nonphotochemical quenching (NPQ) on short timescales, most likely due to a larger XC pool. LL cells displayed an increase in the PSII effective cross-section (σPSII ) as a result of photoinhibition, which was observed also in HL cells when net photoinhibition was induced by blocking the D1 repair cycle. The link between σPSII and photoinhibition suggests that the population of PSII reaction centers (RCIIs) of E. huxleyi shares a common antenna, according to a "lake" organization of the light-harvesting complex. © 2008 Phycological Society of America.
Ananyev, Gennady; Gates, Colin; Kaplan, Aaron; Dismukes, G Charles
2017-11-01
The desert microalga Chlorella ohadii was reported to grow at extreme light intensities with minimal photoinhibition, tolerate frequent de/re-hydrations, yet minimally employs antenna-based non-photochemical quenching for photoprotection. Here we investigate the molecular mechanisms by measuring Photosystem II charge separation yield (chlorophyll variable fluorescence, Fv/Fm) and flash-induced O 2 yield to measure the contributions from both linear (PSII-LEF) and cyclic (PSII-CEF) electron flow within PSII. Cells grow increasingly faster at higher light intensities (μE/m 2 /s) from low (20) to high (200) to extreme (2000) by escalating photoprotection via shifting from PSII-LEF to PSII-CEF. This shifts PSII charge separation from plastoquinone reduction (PSII-LEF) to plastoquinol oxidation (PSII-CEF), here postulated to enable proton gradient and ATP generation that powers photoprotection. Low light-grown cells have unusually small antennae (332 Chl/PSII), use mainly PSII-LEF (95%) and convert 40% of PSII charge separations into O 2 (a high O 2 quantum yield of 0.06mol/mol PSII/flash). High light-grown cells have smaller antenna and lower PSII-LEF (63%). Extreme light-grown cells have only 42 Chl/PSII (no LHCII antenna), minimal PSII-LEF (10%), and grow faster than any known phototroph (doubling time 1.3h). Adding a synthetic quinone in excess to supplement the PQ pool fully uncouples PSII-CEF from its natural regulation and produces maximum PSII-LEF. Upon dark adaptation PSII-LEF rapidly reverts to PSII-CEF, a transient protection mechanism to conserve water and minimize the cost of antenna biosynthesis. The capacity of the electron acceptor pool (plastoquinone pool), and the characteristic times for exchange of (PQH 2 ) B with PQ pool and reoxidation of (PQH 2 ) pool were determined. Copyright © 2017. Published by Elsevier B.V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phuthong, Witchukorn; Huang, Zubin; Wittkopp, Tyler M.
To investigate the dynamics of photosynthetic pigment-protein complexes in vascular plants at high resolution in an aqueous environment, membrane-protruding oxygen-evolving complexes (OECs) associated with photosystem II (PSII) on spinach ( Spinacia oleracea) grana membranes were examined using contact mode atomic force microscopy. This study represents, to our knowledge, the first use of atomic force microscopy to distinguish the putative large extrinsic loop of Photosystem II CP47 reaction center protein (CP47) from the putative oxygen-evolving enhancer proteins 1, 2, and 3 (PsbO, PsbP, and PsbQ) and large extrinsic loop of Photosystem II CP43 reaction center protein (CP43) in the PSII-OEC extrinsicmore » domains of grana membranes under conditions resulting in the disordered arrangement of PSII-OEC particles. Moreover, we observed uncharacterized membrane particles that, based on their physical characteristics and electrophoretic analysis of the polypeptides associated with the grana samples, are hypothesized to be a domain of photosystem I that protrudes from the stromal face of single thylakoid bilayers. Furthermore, our results are interpreted in the context of the results of others that were obtained using cryo-electron microscopy (and single particle analysis), negative staining and freeze-fracture electron microscopy, as well as previous atomic force microscopy studies.« less
Plöscher, Matthias; Granvogl, Bernhard; Zoryan, Mikael; Reisinger, Veronika; Eichacker, Lutz Andreas
2009-02-01
In Photosystem II (PSII), a high number of plastid encoded and membrane integral low molecular weight proteins smaller than 10 kDa, the proteins PsbE, F, H, I, J, K, L, M, N, Tc, Z and the nuclear encoded PsbW, X, Y1, Y2 proteins have been described. Here we show that all low molecular weight proteins of PSII already accumulate in the etioplast membrane fraction in darkness, whereas PsaI and PsaJ of photosystem I (PSI) represent the only low molecular weight proteins that do not accumulate in darkness. We found by BN-PAGE separation of membrane protein complexes and selective MS that the accumulation of one-helix proteins from PSII is light independent and occurs in etioplasts. In contrast, in chloroplasts isolated from light-grown plants, low molecular weight proteins were found to specifically accumulate in PSI and II complexes. Our results demonstrate how plants grown in darkness prepare for the induction of chlorophyll dependent photosystem assembly upon light perception. We anticipate that our investigation will provide the essential means for the analysis of protein assembly in any membrane utilizing low molecular weight protein subunits.
Dumas, Louis; Chazaux, Marie; Peltier, Gilles; Johnson, Xenie; Alric, Jean
2016-09-01
Both the structure and the protein composition of thylakoid membranes have an impact on light harvesting and electron transfer in the photosynthetic chain. Thylakoid membranes form stacks and lamellae where photosystem II and photosystem I localize, respectively. Light-harvesting complexes II can be associated to either PSII or PSI depending on the redox state of the plastoquinone pool, and their distribution is governed by state transitions. Upon state transitions, the thylakoid ultrastructure and lateral distribution of proteins along the membrane are subject to significant rearrangements. In addition, quinone diffusion is limited to membrane microdomains and the cytochrome b 6 f complex localizes either to PSII-containing grana stacks or PSI-containing stroma lamellae. Here, we discuss possible similarities or differences between green algae and C3 plants on the functional consequences of such heterogeneities in the photosynthetic electron transport chain and propose a model in which quinones, accepting electrons either from PSII (linear flow) or NDH/PGR pathways (cyclic flow), represent a crucial control point. Our aim is to give an integrated description of these processes and discuss their potential roles in the balance between linear and cyclic electron flows.
Analysis of photosystem II biogenesis in cyanobacteria.
Heinz, Steffen; Liauw, Pasqual; Nickelsen, Jörg; Nowaczyk, Marc
2016-03-01
Photosystem II (PSII), a large multisubunit membrane protein complex found in the thylakoid membranes of cyanobacteria, algae and plants, catalyzes light-driven oxygen evolution from water and reduction of plastoquinone. Biogenesis of PSII requires coordinated assembly of at least 20 protein subunits, as well as incorporation of various organic and inorganic cofactors. The stepwise assembly process is facilitated by numerous protein factors that have been identified in recent years. Further analysis of this process requires the development or refinement of specific methods for the identification of novel assembly factors and, in particular, elucidation of the unique role of each. Here we summarize current knowledge of PSII biogenesis in cyanobacteria, focusing primarily on the impact of methodological advances and innovations. This article is part of a Special Issue entitled Organization and dynamics of bioenergetic systems in bacteria, edited by Conrad Mullineaux. Copyright © 2015 Elsevier B.V. All rights reserved.
Adaptation of light-harvesting functions of unicellular green algae to different light qualities.
Ueno, Yoshifumi; Aikawa, Shimpei; Kondo, Akihiko; Akimoto, Seiji
2018-05-28
Oxygenic photosynthetic organisms perform photosynthesis efficiently by distributing captured light energy to photosystems (PSs) at an appropriate balance. Maintaining photosynthetic efficiency under changing light conditions requires modification of light-harvesting and energy-transfer processes. In the current study, we examined how green algae regulate their light-harvesting functions in response to different light qualities. We measured low-temperature time-resolved fluorescence spectra of unicellular green algae Chlamydomonas reinhardtii and Chlorella variabilis cells grown under different light qualities. By observing the delayed fluorescence spectra, we demonstrated that both types of green algae primarily modified the associations between light-harvesting chlorophyll protein complexes (LHCs) and PSs (PSII and PSI). Under blue light, Chlamydomonas transferred more energy from LHC to chlorophyll (Chl) located far from the PSII reaction center, while energy was transferred from LHC to PSI via different energy-transfer pathways in Chlorella. Under green light, both green algae exhibited enhanced energy transfer from LHCs to both PSs. Red light induced fluorescence quenching within PSs in Chlamydomonas and LHCs in Chlorella. In Chlorella, energy transfer from PSII to PSI appears to play an important role in balancing excitation between PSII and PSI.
Krivanek, Roland; Dau, Holger; Haumann, Michael
2008-01-01
The energetics of the individual reaction steps in the catalytic cycle of photosynthetic water oxidation at the Mn4Ca complex of photosystem II (PSII) are of prime interest. We studied the electron transfer reactions in oxygen-evolving PSII membrane particles from spinach by a photothermal beam deflection technique, allowing for time-resolved calorimetry in the micro- to millisecond domain. For an ideal quantum yield of 100%, the enthalpy change, ΔH, coupled to the formation of the radical pair YZ⋅+QA− (where YZ is Tyr-161 of the D1 subunit of PSII) is estimated as −820 ± 250 meV. For a lower quantum yield of 70%, the enthalpy change is estimated to be −400 ± 250 meV. The observed nonthermal signal possibly is due to a contraction of the PSII protein volume (apparent ΔV of about −13 Å3). For the first time, the enthalpy change of the O2-evolving transition of the S-state cycle was monitored directly. Surprisingly, the reaction is only slightly exergonic. A value of ΔH(S3 ⇒ S0) of −210 meV is estimated, but also an enthalpy change of zero is within the error range. A prominent nonthermal photothermal beam deflection signal (apparent ΔV of about +42 Å3) may reflect O2 and proton release from the manganese complex, but also reorganization of the protein matrix. PMID:17993488
Dixit, R; Trivedi, P K; Nath, P; Sane, P V
1999-09-01
Chloroplast genes are typically organized into polycistronic transcription units that give rise to complex sets of mono- and oligo-cistronic overlapping RNAs through a series of processing steps. The psbB operon contains genes for the PSII (psbB, psbT, psbH) and cytochrome b(6)f (petB and petD) complexes which are needed in different amounts during chloroplast biogenesis. The functional significance of gene organization in this polycistronic unit, containing information for two different complexes, is not known and is of interest. To determine the organization and expression of these complexes, studies have been carried out on crop plants by different groups, but not much information is known about trees. We present the nucleotide sequences of PSII genes and RNA profiles of the genes located in the psbB operon from Populus deltoides, a tree species. Although the gene organization of this operon in P. deltoides is similar to that in other species, a few variations have been observed in the processing scheme.
Xu, Feng; Fan, Yong; Miao, Fuhong; Hu, Guang-Rong; Sun, Juan; Yang, Guofeng; Li, Fu-Li
2018-01-01
Mychonastes afer HSO-3-1 is a potential producer of nervonic acid, which could be accumulated to 2-3% of dry cell weight. Improving the productivity of nervonic acid is critical to promote the commercialization of this product. In this study, 1-naphthylacetic acid (NAA) and tea polyphenol (TP) were selected as bioactive additives to stimulate the growth of M. afer . Supplementing NAA in the early growth stage and TP in the middle and late growth stage led to improved lipid accumulation in M. afer . The cultures supplemented with TP at the late growth stage maintained higher photosynthetic efficiency than the control groups without TP. Furthermore, the intracellular reactive oxygen species (ROS) accumulations in M. afer supplemented with 500 mg/L of TP was 63% lower than the control group. A linear relationship ( R 2 = 0.899) between the values of Fv/Fm and ROS accumulation was established. We hypothesize supplement of bioactive additives at different growth stage could promote the cell growth rate and nervonic acid productivity of M. afer by retrieving intracellular ROS level. Further analysis of photosynthetic system II (PSII) protein in M. afer cultured in presence of NAA and TP indicated the levels of D1 and D2 proteins, the core skeleton proteins of PSII, showed 33.3 and 25.6% higher than the control group. CP43 protein, a critical module in PSII repair cycle, decreased significantly. These implied that TP possesses the function of slowing down the damage of PSII by scavenging excess intracellular ROS.
Garstka, Maciej; Venema, Jan Henk; Rumak, Izabela; Gieczewska, Katarzyna; Rosiak, Malgorzata; Koziol-Lipinska, Joanna; Kierdaszuk, Borys; Vredenberg, Wim J; Mostowska, Agnieszka
2007-10-01
The effect of dark-chilling and subsequent photoactivation on chloroplast structure and arrangements of chlorophyll-protein complexes in thylakoid membranes was studied in chilling-tolerant (CT) pea and in chilling-sensitive (CS) tomato. Dark-chilling did not influence chlorophyll content and Chl a/b ratio in thylakoids of both species. A decline of Chl a fluorescence intensity and an increase of the ratio of fluorescence intensities of PSI and PSII at 120 K was observed after dark-chilling in thylakoids isolated from tomato, but not from pea leaves. Chilling of pea leaves induced an increase of the relative contribution of LHCII and PSII fluorescence. A substantial decrease of the LHCII/PSII fluorescence accompanied by an increase of that from LHCI/PSI was observed in thylakoids from chilled tomato leaves; both were attenuated by photoactivation. Chlorophyll fluorescence of bright grana discs in chloroplasts from dark-chilled leaves, detected by confocal laser scanning microscopy, was more condensed in pea but significantly dispersed in tomato, compared with control samples. The chloroplast images from transmission-electron microscopy revealed that dark-chilling induced an increase of the degree of grana stacking only in pea chloroplasts. Analyses of O-J-D-I-P fluorescence induction curves in leaves of CS tomato before and after recovery from chilling indicate changes in electron transport rates at acceptor- and donor side of PS II and an increase in antenna size. In CT pea leaves these effects were absent, except for a small but irreversible effect on PSII activity and antenna size. Thus, the differences in chloroplast structure between CS and CT plants, induced by dark-chilling are a consequence of different thylakoid supercomplexes rearrangements.
Kern, Jan; Hattne, Johan; Tran, Rosalie; Alonso-Mori, Roberto; Laksmono, Hartawan; Gul, Sheraz; Sierra, Raymond G.; Rehanek, Jens; Erko, Alexei; Mitzner, Rolf; Wernet, Phillip; Bergmann, Uwe; Sauter, Nicholas K.; Yachandra, Vittal; Yano, Junko
2014-01-01
X-ray free-electron lasers (XFELs) open up new possibilities for X-ray crystallographic and spectroscopic studies of radiation-sensitive biological samples under close to physiological conditions. To facilitate these new X-ray sources, tailored experimental methods and data-processing protocols have to be developed. The highly radiation-sensitive photosystem II (PSII) protein complex is a prime target for XFEL experiments aiming to study the mechanism of light-induced water oxidation taking place at a Mn cluster in this complex. We developed a set of tools for the study of PSII at XFELs, including a new liquid jet based on electrofocusing, an energy dispersive von Hamos X-ray emission spectrometer for the hard X-ray range and a high-throughput soft X-ray spectrometer based on a reflection zone plate. While our immediate focus is on PSII, the methods we describe here are applicable to a wide range of metalloenzymes. These experimental developments were complemented by a new software suite, cctbx.xfel. This software suite allows for near-real-time monitoring of the experimental parameters and detector signals and the detailed analysis of the diffraction and spectroscopy data collected by us at the Linac Coherent Light Source, taking into account the specific characteristics of data measured at an XFEL. PMID:24914169
Acute and additive toxicity of ten photosystem-II herbicides to seagrass
NASA Astrophysics Data System (ADS)
Wilkinson, Adam D.; Collier, Catherine J.; Flores, Florita; Negri, Andrew P.
2015-11-01
Photosystem II herbicides are transported to inshore marine waters, including those of the Great Barrier Reef, and are usually detected in complex mixtures. These herbicides inhibit photosynthesis, which can deplete energy reserves and reduce growth in seagrass, but the toxicity of some of these herbicides to seagrass is unknown and combined effects of multiple herbicides on seagrass has not been tested. Here we assessed the acute phytotoxicity of 10 PSII herbicides to the seagrass Halophila ovalis over 24 and/or 48 h. Individual herbicides exhibited a broad range of toxicities with inhibition of photosynthetic activity (ΔF/Fm‧) by 50% at concentrations ranging from 3.5 μg l-1 (ametryn) to 132 μg l-1 (fluometuron). We assessed potential additivity using the Concentration Addition model of joint action for binary mixtures of diuron and atrazine as well as complex mixtures of all 10 herbicides. The effects of both mixture types were largely additive, validating the application of additive effects models for calculating the risk posed by multiple PSII herbicides to seagrasses. This study extends seagrass ecotoxicological data to ametryn, metribuzin, bromacil, prometryn and fluometuron and demonstrates that low concentrations of PSII herbicide mixtures have the potential to impact ecologically relevant endpoints in seagrass, including ΔF/Fm‧.
Acute and additive toxicity of ten photosystem-II herbicides to seagrass
Wilkinson, Adam D.; Collier, Catherine J.; Flores, Florita; Negri, Andrew P.
2015-01-01
Photosystem II herbicides are transported to inshore marine waters, including those of the Great Barrier Reef, and are usually detected in complex mixtures. These herbicides inhibit photosynthesis, which can deplete energy reserves and reduce growth in seagrass, but the toxicity of some of these herbicides to seagrass is unknown and combined effects of multiple herbicides on seagrass has not been tested. Here we assessed the acute phytotoxicity of 10 PSII herbicides to the seagrass Halophila ovalis over 24 and/or 48 h. Individual herbicides exhibited a broad range of toxicities with inhibition of photosynthetic activity (∆F/Fm′) by 50% at concentrations ranging from 3.5 μg l−1 (ametryn) to 132 μg l−1 (fluometuron). We assessed potential additivity using the Concentration Addition model of joint action for binary mixtures of diuron and atrazine as well as complex mixtures of all 10 herbicides. The effects of both mixture types were largely additive, validating the application of additive effects models for calculating the risk posed by multiple PSII herbicides to seagrasses. This study extends seagrass ecotoxicological data to ametryn, metribuzin, bromacil, prometryn and fluometuron and demonstrates that low concentrations of PSII herbicide mixtures have the potential to impact ecologically relevant endpoints in seagrass, including ∆F/Fm′. PMID:26616444
Acute and additive toxicity of ten photosystem-II herbicides to seagrass.
Wilkinson, Adam D; Collier, Catherine J; Flores, Florita; Negri, Andrew P
2015-11-30
Photosystem II herbicides are transported to inshore marine waters, including those of the Great Barrier Reef, and are usually detected in complex mixtures. These herbicides inhibit photosynthesis, which can deplete energy reserves and reduce growth in seagrass, but the toxicity of some of these herbicides to seagrass is unknown and combined effects of multiple herbicides on seagrass has not been tested. Here we assessed the acute phytotoxicity of 10 PSII herbicides to the seagrass Halophila ovalis over 24 and/or 48 h. Individual herbicides exhibited a broad range of toxicities with inhibition of photosynthetic activity (∆F/F(m)') by 50% at concentrations ranging from 3.5 μg l(-1) (ametryn) to 132 μg l(-1) (fluometuron). We assessed potential additivity using the Concentration Addition model of joint action for binary mixtures of diuron and atrazine as well as complex mixtures of all 10 herbicides. The effects of both mixture types were largely additive, validating the application of additive effects models for calculating the risk posed by multiple PSII herbicides to seagrasses. This study extends seagrass ecotoxicological data to ametryn, metribuzin, bromacil, prometryn and fluometuron and demonstrates that low concentrations of PSII herbicide mixtures have the potential to impact ecologically relevant endpoints in seagrass, including ∆F/F(m)'.
Multiscale model of light harvesting by photosystem II in plants
Amarnath, Kapil; Bennett, Doran I. G.; Schneider, Anna R.; ...
2016-01-19
The first step of photosynthesis in plants is the absorption of sunlight by pigments in the antenna complexes of photosystem II (PSII), followed by transfer of the nascent excitation energy to the reaction centers, where long-term storage as chemical energy is initiated. Quantum mechanical mechanisms must be invoked to explain the transport of excitation within individual antenna. However, it is unclear how these mechanisms influence transfer across assemblies of antenna and thus the photochemical yield at reaction centers in the functional thylakoid membrane. In this paper, we model light harvesting at the several-hundred-nanometer scale of the PSII membrane, while preservingmore » the dominant quantum effects previously observed in individual complexes. We show that excitation moves diffusively through the antenna with a diffusion length of 50 nm until it reaches a reaction center, where charge separation serves as an energetic trap. The diffusion length is a single parameter that incorporates the enhancing effect of excited state delocalization on individual rates of energy transfer as well as the complex kinetics that arise due to energy transfer and loss by decay to the ground state. The diffusion length determines PSII’s high quantum efficiency in ideal conditions, as well as how it is altered by the membrane morphology and the closure of reaction centers. Finally, we anticipate that the model will be useful in resolving the nonphotochemical quenching mechanisms that PSII employs in conditions of high light stress.« less
A chloroplast membrane protein LTO1/AtVKOR involving in redox regulation and ROS homeostasis.
Lu, Ying; Wang, Hua-Rong; Li, Han; Cui, Hao-Ran; Feng, Yue-Guang; Wang, Xiao-Yun
2013-09-01
The role of LTO1/ At VKOR-DsbA in ROS homeostasis and in redox regulation of cysteine-containing proteins in chloroplast was studied in lto1 - 2 mutant, and a potential target of LTO1 was captured. A chloroplast membrane protein LTO1/AtVKOR-DsbA encoded by the gene At4g35760 was recently found to be an oxidoreductase and involved in assembly of PSII. Here, the growth of a mutant lto1-2 line of Arabidopsis was found to be severely stunted and transgenic complementation ultimately demonstrated the phenotype changes were due to this gene. A proteomic experiment identified 23 proteins presenting a differential abundance in lto1-2 compared with wild-type plants, including components in PSII and proteins scavenging active oxygen. Three scavengers of active oxygen, L-ascorbate peroxidase 1, peroxisomal catalase 2, dehydroascorbate reductase 1, are reduced in lto1-2 plants, corresponding to high levels of accumulation of reactive oxygen species (ROS). The photosynthetic activities of PSII and the quantity of core protein D1 decreased significantly in lto1-2. Further investigation showed the synthesis of D1 was not affected in mutants both at transcription and translation levels. The soluble DsbA-like domain of LTO1 was found to have reduction, oxidation and isomerization activities, and could promote the formation of disulfide bonds in a lumenal protein, FKBP13. A potential target of LTO1 was captured which was involving in chlorophyll degradation and photooxidative stress response. Experimental results imply that LTO1 plays important roles in redox regulation, ROS homeostasis and maintenance of PSII.
Liu, Guo-Tian; Xu, Hong-Guo; Wang, Li-Jun; Li, Shao-Hua
2013-01-01
Background The decline of photosynthesis in plants under low sink demand is well known. Previous studies focused on the relationship between stomatal conductance (g s) and net photosynthetic rate (P n). These studies investigated the effect of changes in Photosystem II (PSII) function on the P n decline under low sink demand. However, little is known about its effects on different limiting steps of electron transport chain in PSII under this condition. Methodology/Principal Finding Two-month-old bean plants were processed by removing pods and flowers (low sink demand). On the 1st day after low sink demand treatment, a decline of P n was accompanied by a decrease in g s and internal-to-ambient CO2 concentration ratio (C i/C a). From the 3rd to 9th day, P n and g s declined continuously while C i/C a ratio remained stable in the treatment. Moreover, these values were lower than that of control. Wk (a parameter reflecting the damage to oxygen evolving complex of the donor side of PSII) values in the treatment were significantly higher than their corresponding control values. However, RCQA (a parameter reflecting the number of active RCs per excited cross-section of PSII) values in the treatment were significantly lower than control from the 5th day. From the 11th to 21st day, P n and g s of the treatment continued to decline and were lower than control. This was accompanied by a decrease of RCQA, and an increase of Wk. Furthermore, the quantum yield parameters φ Po, φ Eo and ψ Eo in the treatment were lower than in control; however, C i/C a values in the treatment gradually increased and were significantly higher than control on the 21st day. Conclusions Stomatal limitation during the early stage, whereas a combination of stomatal and non-stomatal limitation during the middle stage might be responsible for the reduction of P n under low sink demand. Non-stomatal limitation during the late stages after the removal of the sink of roots and pods may also cause P n reduction. The non-stomatal limitation was associated with the inhibition of PSII electron transport chain. Our data suggests that the donor side of PSII was the most sensitive to low sink demand followed by the reaction center of PSII. The acceptor side of PSII may be the least sensitive. PMID:24324626
Koua, Faisal Hammad Mekky; Umena, Yasufumi; Kawakami, Keisuke; Shen, Jian-Ren
2013-03-05
Oxygen-evolving complex of photosystem II (PSII) is a tetra-manganese calcium penta-oxygenic cluster (Mn4CaO5) catalyzing light-induced water oxidation through several intermediate states (S-states) by a mechanism that is not fully understood. To elucidate the roles of Ca(2+) in this cluster and the possible location of water substrates in this process, we crystallized Sr(2+)-substituted PSII from Thermosynechococcus vulcanus, analyzed its crystal structure at a resolution of 2.1 Å, and compared it with the 1.9 Å structure of native PSII. Our analysis showed that the position of Sr was moved toward the outside of the cubane structure of the Mn4CaO5-cluster relative to that of Ca(2+), resulting in a general elongation of the bond distances between Sr and its surrounding atoms compared with the corresponding distances in the Ca-containing cluster. In particular, we identified an apparent elongation in the bond distance between Sr and one of the two terminal water ligands of Ca(2+), W3, whereas that of the Sr-W4 distance was not much changed. This result may contribute to the decrease of oxygen evolution upon Sr(2+)-substitution, and suggests a weak binding and rather mobile nature of this particular water molecule (W3), which in turn implies the possible involvement of this water molecule as a substrate in the O-O bond formation. In addition, the PsbY subunit, which was absent in the 1.9 Å structure of native PSII, was found in the Sr-PSII structure.
NASA Astrophysics Data System (ADS)
Brown, C. M.; Bailleul, B.; Melanson, J. R.; Campbell, D. A.; Cockshutt, A. M.; Cardol, P.
2016-02-01
Abundance and stoichiometry data for the photosystems, the intersystem electron transport complexes and the Calvin cycle enzymes are rich in information about light and nutrient acclimation. Quantifying these complexes is essential for understanding limitations on and capacities for photosynthesis. Targeted quantitative immunodetections of conserved subunits (eg. PsbA for PSII; PsaC for PSI) are becoming an established method for absolute measurement of these complexes. An advantage of protein measurements is that they can be done with non-living flash-frozen samples and processed post-field. A pitfall of physical versus functional measures is that in some scenarios, such as during photoinhibition of photosystem II (PSII), physical and functional measures give different values, but such disparities are often meaningful, informing targeted studies of regulation, repair and enzyme kinetics. Electrochromic Shift (ECS) is an alternative, fast and noninvasive method which can be exploited to determine functional PSI:PSII ratios in living cells. The basis for ECS is that pigments in the photosynthetic membrane exhibit a shift in their absorption spectra when the electric component of the proton motive force is generated across the membrane in the light. Cross-validation of methods by independent measures builds confidence in results from both approaches and can be useful for ground truthing of underway or high-throughput optical measurements or functional measurements from bioassays. We present comparative data from immunoquantitation and ECS for an array of diatom taxa. The physical data fall within established ranges. The basis for similarities and disparities in the photosystem stoichiometries between the methods are discussed.
Tschiersch, Henning; Junker, Astrid; Meyer, Rhonda C; Altmann, Thomas
2017-01-01
Automated plant phenotyping has been established as a powerful new tool in studying plant growth, development and response to various types of biotic or abiotic stressors. Respective facilities mainly apply non-invasive imaging based methods, which enable the continuous quantification of the dynamics of plant growth and physiology during developmental progression. However, especially for plants of larger size, integrative, automated and high throughput measurements of complex physiological parameters such as photosystem II efficiency determined through kinetic chlorophyll fluorescence analysis remain a challenge. We present the technical installations and the establishment of experimental procedures that allow the integrated high throughput imaging of all commonly determined PSII parameters for small and large plants using kinetic chlorophyll fluorescence imaging systems (FluorCam, PSI) integrated into automated phenotyping facilities (Scanalyzer, LemnaTec). Besides determination of the maximum PSII efficiency, we focused on implementation of high throughput amenable protocols recording PSII operating efficiency (Φ PSII ). Using the presented setup, this parameter is shown to be reproducibly measured in differently sized plants despite the corresponding variation in distance between plants and light source that caused small differences in incident light intensity. Values of Φ PSII obtained with the automated chlorophyll fluorescence imaging setup correlated very well with conventionally determined data using a spot-measuring chlorophyll fluorometer. The established high throughput operating protocols enable the screening of up to 1080 small and 184 large plants per hour, respectively. The application of the implemented high throughput protocols is demonstrated in screening experiments performed with large Arabidopsis and maize populations assessing natural variation in PSII efficiency. The incorporation of imaging systems suitable for kinetic chlorophyll fluorescence analysis leads to a substantial extension of the feature spectrum to be assessed in the presented high throughput automated plant phenotyping platforms, thus enabling the simultaneous assessment of plant architectural and biomass-related traits and their relations to physiological features such as PSII operating efficiency. The implemented high throughput protocols are applicable to a broad spectrum of model and crop plants of different sizes (up to 1.80 m height) and architectures. The deeper understanding of the relation of plant architecture, biomass formation and photosynthetic efficiency has a great potential with respect to crop and yield improvement strategies.
Shoji, Mitsuo; Isobe, Hiroshi; Tanaka, Ayako; Fukushima, Yoshimasa; Kawakami, Keisuke; Umena, Yasufumi; Kamiya, Nobuo; Nakajima, Takahito
2017-01-01
Abstract Tanaka et al. (J. Am. Chem. Soc., 2017, 139, 1718) recently reported the three‐dimensional (3D) structure of the oxygen evolving complex (OEC) of photosystem II (PSII) by X‐ray diffraction (XRD) using extremely low X‐ray doses of 0.03 and 0.12 MGy. They observed two different 3D structures of the CaMn4O5 cluster with different hydrogen‐bonding interactions in the S1 state of OEC keeping the surrounding polypeptide frameworks of PSII the same. Our Jahn–Teller (JT) deformation formula based on large‐scale quantum mechanics/molecular mechanics (QM/MM) was applied for these low‐dose XRD structures, elucidating important roles of JT effects of the MnIII ion for subtle geometric distortions of the CaMn4O5 cluster in OEC of PSII. The JT deformation formula revealed the similarity between the low‐dose XRD and damage‐free serial femtosecond X‐ray diffraction (SFX) structures of the CaMn4O5 cluster in the dark stable state. The extremely low‐dose XRD structures were not damaged by X‐ray irradiation. Implications of the present results are discussed in relation to recent SFX results and a blue print for the design of artificial photocatalysts for water oxidation. PMID:29577075
Stull, Jamie A; Stich, Troy A; Service, Rachel J; Debus, Richard J; Mandal, Sanjay K; Armstrong, William H; Britt, R David
2010-01-20
Antiferromagnetically coupled Mn(III)Mn(IV) dimers have been commonly used to study biological systems that exhibit complex exchange interactions. Such is the case for the oxygen evolving complex (OEC) in photosystem II (PSII), where we have studied whether the C-terminal carboxylate of D1-Ala344 is directly bound to the Mn cluster. To probe these protein-derived carboxylate hyperfine interactions, which give direct bonding information, Q-band (34 GHz) Mims ENDOR was performed on a Mn(III)Mn(IV) dimer ([Mn(III)Mn(IV)(mu-O)(2)mu-OAc(TACN)(2)](BPh(4))(2)) (1) that was labeled with (13)C (I = (1)/(2)) at the carboxylate position of the acetate bridge. A(dip) is computed based on atomic coordinates from available X-ray crystal structures to be [-2.4, -0.8, 3.2] MHz. The value for A(iso) was determined based on simulation of the experimental ENDOR data, for complex 1 A(iso) = -1 MHz. Similar studies were then performed on PSII from Synechocystis sp. PCC 6803, in which all alanine-derived C=O groups are labeled with (13)C including the C-terminal alpha-COO(-) group of D1 (Ala344), as well as PSII proteins uniformly labeled with (13)C. Using recent X-ray crystallography data from T. elongatus the values for A(dip) were calculated and simulations of the experimental data led to A(iso) values of 1.2, 1, and 2 MHz, respectively. We infer from complex 1 that an A(iso) significantly larger than 1.2 MHz for a Mn-coordinating carboxylate moiety is unlikely. Therefore, we support the closer arrangement of Ala344 suggested by the Loll and Guskov structures and conclude that the C-terminal carboxylate of D1 polypeptide is directly bound to the Mn cluster.
Studying the Effect of Light Quality on the Size of the Photosystem II Light Harvesting Complex
ERIC Educational Resources Information Center
Muhoz, Romualdo; Quiles, Maria J.
2003-01-01
In this article the effect of light quality on the size of the photosystem II (PSII) light harvesting complex (LHCII) is studied by measuring the chlorophyll fluorescence emitted by leaf sections of oat ("Avena sativa," var. Prevision) plants previously treated with either white light or with light filtered through blue, green, red or farred…
Catalytic Oxygen Evolution by a Bioinorganic Model of the Photosystem II Oxygen-Evolving Complex
ERIC Educational Resources Information Center
Howard, Derrick L.; Tinoco, Arthur D.; Brudvig, Gary W.; Vrettos, John S.; Allen, Bertha Connie
2005-01-01
Bioinorganic models of the manganese Mn4 cluster are important not only as aids in understanding the structure and function of the oxygen-evolving complex (OEC), but also in developing artificial water-oxidation catalysts. The mechanism of water oxidation by photosystem II (PSII) is thought to involve the formation of a high-valent terminal Mn-oxo…
NASA Astrophysics Data System (ADS)
Yamaguchi, Kizashi; Shoji, Mitsuo; Isobe, Hiroshi; Yamanaka, Shusuke; Kawakami, Takashi; Yamada, Satoru; Katouda, Michio; Nakajima, Takahito
2018-03-01
Possible mechanisms for water cleavage in oxygen evolving complex (OEC) of photosystem II (PSII) have been investigated based on broken-symmetry (BS) hybrid DFT (HDFT)/def2 TZVP calculations in combination with available XRD, XFEL, EXAFS, XES and EPR results. The BS HDFT and the experimental results have provided basic concepts for understanding of chemical bonds of the CaMn4O5 cluster in the catalytic site of OEC of PSII for elucidation of the mechanism of photosynthetic water cleavage. Scope and applicability of the hybrid DFT (HDFT) methods have been examined in relation to relative stabilities of possible nine intermediates such as Mn-hydroxide, Mn-oxo, Mn-peroxo, Mn-superoxo, etc., in order to understand the O-O (O-OH) bond formation in the S3 and/or S4 states of OEC of PSII. The relative stabilities among these intermediates are variable, depending on the weight of the Hartree-Fock exchange term of HDFT. The Mn-hydroxide, Mn-oxo and Mn-superoxo intermediates are found to be preferable in the weak, intermediate and strong electron correlation regimes, respectively. Recent different serial femtosecond X-ray (SFX) results in the S3 state are investigated based on the proposed basic concepts under the assumption of different water-insertion steps for water cleavage in the Kok cycle. The observation of water insertion in the S3 state is compatible with previous large-scale QM/MM results and previous theoretical proposal for the chemical equilibrium mechanism in the S3 state . On the other hand, the no detection of water insertion in the S3 state based on other SFX results is consistent with previous proposal of the O-OH (or O-O) bond formation in the S4 state . Radical coupling and non-adiabatic one-electron transfer (NA-OET) mechanisms for the OO-bond formation are examined using the energy diagrams by QM calculations and by QM(UB3LYP)/MM calculations . Possible reaction pathways for the O-O and O-OH bond formations are also investigated based on two water-inlet pathways for oxygen evolution in OEC of PSII. Future perspectives are discussed in relation to post HDFT calculations of the energy diagrams for elucidation of the mechanism of water oxidation in OEC of PSII.
The Effects of Cold Stress on Photosynthesis in Hibiscus Plants
Paredes, Miriam; Quiles, María José
2015-01-01
The present work studies the effects of cold on photosynthesis, as well as the involvement in the chilling stress of chlororespiratory enzymes and ferredoxin-mediated cyclic electron flow, in illuminated plants of Hibiscus rosa-sinensis. Plants were sensitive to cold stress, as indicated by a reduction in the photochemistry efficiency of PSII and in the capacity for electron transport. However, the susceptibility of leaves to cold may be modified by root temperature. When the stem, but not roots, was chilled, the quantum yield of PSII and the relative electron transport rates were much lower than when the whole plant, root and stem, was chilled at 10°C. Additionally, when the whole plant was cooled, both the activity of electron donation by NADPH and ferredoxin to plastoquinone and the amount of PGR5 polypeptide, an essential component of the cyclic electron flow around PSI, increased, suggesting that in these conditions cyclic electron flow helps protect photosystems. However, when the stem, but not the root, was cooled cyclic electron flow did not increase and PSII was damaged as a result of insufficient dissipation of the excess light energy. In contrast, the chlororespiratory enzymes (NDH complex and PTOX) remained similar to control when the whole plant was cooled, but increased when only the stem was cooled, suggesting the involvement of chlororespiration in the response to chilling stress when other pathways, such as cyclic electron flow around PSI, are insufficient to protect PSII. PMID:26360248
Sugiura, Kana; Itoh, Shigeru
2012-08-01
The fluorescence spectrum at 298 and 40 K and the absorption spectrum at 298 K of each cell of the filamentous cyanobacterium Nostoc sp. was measured by single-cell confocal laser spectroscopy to study the differentiation of cell pigments. The fluorescence spectra of vegetative (veg) and heterocyst (het) cells of Nostoc formed separate groups with low and high PSII to PSI ratios, respectively. The fluorescence spectra of het cells at 40 K still contained typical PSII bands. The PSII/PSI ratio estimated for the veg cells varied between 0.4 and 1.2, while that of het cells varied between 0 and 0.22 even in the same culture. The PSII/PSI ratios of veg cells resembled each other more closely in the same filament. 'pro-het' cells, which started to differentiate into het cells, were identified from the small but specific difference in the PSII/PSI ratio. The allophycocyanin (APC)/PSII ratio was almost constant in both veg and het cells, indicating their tight couplings. Phycocyanin (PC) showed higher fluorescence in most het cells, suggesting the uncoupling from PSII. Veg cells seem to vary their PSI contents to give different PSII/PSI ratios even in the same culture, and to suppress the synthesis of PSII, APC and PC to differentiate into het cells. APC and PC are gradually liberated from membranes in het cells with the uncoupling from PSII. Single-cell spectrometry will be useful to study the differentiation of intrinsic pigments of cells and chloroplasts, and to select microbes from natural environments.
Manbeck, Gerald F.; Fujita, Etsuko; Concepcion, Javier J.
2016-08-18
Proton-coupled electron-transfer (PCET) reactions were studied in acetonitrile for a Photosystem II (PSII) inspired [Ru(bpy) 2(phen-imidazole-Ph(OH)( tBu) 2)] 2+, in which Ru(III) generated by a flash-quench sequence oxidizes the appended phenol and the proton is transferred to the hydrogen bonded imidazole base. In contrast to related systems, the donor and acceptor are strongly coupled, as indicated by the shift in the Ru III/IIcouple upon phenol oxidation, and intramolecular oxidation of the phenol by Ru(III) is energetically favorable by both stepwise or concerted pathways. The phenol oxidation occurs via a stepwise ET-PT mechanism with k ET = 2.7 × 10 7more » s ₋1 and a kinetic isotope effect (KIE) of 0.99 ± 0.03. The electron transfer reaction was characterized as adiabatic with λ DA = 1.16 eV and 280 < H DA < 540 cm ₋1 consistent with strong electronic coupling and slow solvent dynamics. Reduction of the phenoxyl radical by the quencher radical was examined as the analogue of the redox reaction between the PSII tyrosyl radical and the oxygen evolving complex (OEC). In our PSII-inspired complex, the recombination reaction activation energy is < 2 kcal mol ₋1. In conclusion, the reaction is nonadiabatic (V PCET ~ 22 cm ₋1 (H) and 49 cm ₋1 (D)), concerted, and exhibits an unexpected inverse KIE of 0.55 that is attributed to greater overlap of the reactant vibronic ground state with the OD vibronic states of the proton acceptor due to the smaller quantum spacing of the deuterium vibrational levels.« less
Markou, Giorgos; Muylaert, Koenraad
2016-09-01
Herein the effect of increasing light intensity on the degree of ammonia toxicity and its impact on the photosynthetic performance of Arthrospira and Chlorella was investigated using Chl fluorescence as a technique to characterize their photosystem II (PSII) activity. The results revealed that the increase of light intensity amplifies the ammonia toxicity on PSII. Chl fluorescence transients shown that at a given free ammonia (FA) concentration (100mg-N/L), the photochemistry potential decreased by increasing light intensity. The inhibition of the PSII was not reversible either by re-incubating the cells under dark or under decreased FA concentration. Moreover, the decrease of photochemical and non-photochemical quenching (NPQ) of fluorescence suggest that ammonia toxicity decreases the open available PSII centers, as well the inability of PSII to transfer the generated electrons beyond QA. The collapse of NPQ suggests that ammonia toxicity inhibits the photoprotection mechanism(s) and hence renders PSII more sensitive to photoinhibition. Copyright © 2016 Elsevier Ltd. All rights reserved.
Regulation of photosystem I light harvesting by zeaxanthin
Ballottari, Matteo; Alcocer, Marcelo J. P.; D’Andrea, Cosimo; Viola, Daniele; Ahn, Tae Kyu; Petrozza, Annamaria; Polli, Dario; Fleming, Graham R.; Cerullo, Giulio; Bassi, Roberto
2014-01-01
In oxygenic photosynthetic eukaryotes, the hydroxylated carotenoid zeaxanthin is produced from preexisting violaxanthin upon exposure to excess light conditions. Zeaxanthin binding to components of the photosystem II (PSII) antenna system has been investigated thoroughly and shown to help in the dissipation of excess chlorophyll-excited states and scavenging of oxygen radicals. However, the functional consequences of the accumulation of the light-harvesting complex I (LHCI) proteins in the photosystem I (PSI) antenna have remained unclarified so far. In this work we investigated the effect of zeaxanthin binding on photoprotection of PSI–LHCI by comparing preparations isolated from wild-type Arabidopsis thaliana (i.e., with violaxanthin) and those isolated from the A. thaliana nonphotochemical quenching 2 mutant, in which violaxanthin is replaced by zeaxanthin. Time-resolved fluorescence measurements showed that zeaxanthin binding leads to a previously unrecognized quenching effect on PSI–LHCI fluorescence. The efficiency of energy transfer from the LHCI moiety of the complex to the PSI reaction center was down-regulated, and an enhanced PSI resistance to photoinhibition was observed both in vitro and in vivo. Thus, zeaxanthin was shown to be effective in inducing dissipative states in PSI, similar to its well-known effect on PSII. We propose that, upon acclimation to high light, PSI–LHCI changes its light-harvesting efficiency by a zeaxanthin-dependent quenching of the absorbed excitation energy, whereas in PSII the stoichiometry of LHC antenna proteins per reaction center is reduced directly. PMID:24872450
Regulation of photosystem I light harvesting by zeaxanthin
Ballottari, Matteo; Alcocer, Marcelo J. P.; D'Andrea, Cosimo; ...
2014-05-28
In oxygenic photosynthetic eukaryotes, the hydroxylated carotenoid zeaxanthin is produced from preexisting violaxanthin upon exposure to excess light conditions. Zeaxanthin binding to components of the photosystem II (PSII) antenna system has been investigated thoroughly and shown to help in the dissipation of excess chlorophyll-excited states and scavenging of oxygen radicals. However, the functional consequences of the accumulation of the light-harvesting complex I (LHCI) proteins in the photosystem I (PSI) antenna have remained unclarified so far. In this paper we investigated the effect of zeaxanthin binding on photoprotection of PSI–LHCI by comparing preparations isolated from wild-type Arabidopsis thaliana (i.e., with violaxanthin)more » and those isolated from the A. thaliana nonphotochemical quenching 2 mutant, in which violaxanthin is replaced by zeaxanthin. Time-resolved fluorescence measurements showed that zeaxanthin binding leads to a previously unrecognized quenching effect on PSI–LHCI fluorescence. The efficiency of energy transfer from the LHCI moiety of the complex to the PSI reaction center was down-regulated, and an enhanced PSI resistance to photoinhibition was observed both in vitro and in vivo. Thus, zeaxanthin was shown to be effective in inducing dissipative states in PSI, similar to its well-known effect on PSII. Finally, we propose that, upon acclimation to high light, PSI–LHCI changes its light-harvesting efficiency by a zeaxanthin-dependent quenching of the absorbed excitation energy, whereas in PSII the stoichiometry of LHC antenna proteins per reaction center is reduced directly.« less
Amine binding and oxidation at the catalytic site for photosynthetic water oxidation
Ouellette, Anthony J. A.; Anderson, Lorraine B.; Barry, Bridgette A.
1998-01-01
Photosynthetic water oxidation occurs at the Mn-containing catalytic site of photosystem II (PSII). By the use of 14C-labeled amines and SDS-denaturing PAGE, covalent adducts derived from primary amines and the PSII subunits, CP47, D2/D1, and the Mn-stabilizing protein, can be observed. When PSII contains the 18- and 24-kDa extrinsic proteins, which restrict access to the active site, no 14C labeling is obtained. NaCl, but not Na2SO4, competes with 14C labeling in Mn-containing PSII preparations, and the concentration dependence of this competition parallels the activation of oxygen evolution. Formation of 14C-labeled adducts is observed in the presence or in the absence of a functional manganese cluster. However, no significant Cl− effect on 14C labeling is observed in the absence of the Mn cluster. Isolation and quantitation of the 14C-labeled aldehyde product, produced from [14C]benzylamine, gives yields of 1.8 ± 0.3 mol/mol PSII and 2.9 ± 0.2 mol/mol in Mn-containing and Mn-depleted PSII, respectively. The corresponding specific activities are 0.40 ± 0.07 μmol(μmol PSII-hr)−1 and 0.64 ± 0.04 μmol(μmol PSII-hr)−1. Cl− suppresses the production of [14C]benzaldehyde in Mn-containing PSII, but does not suppress the production in Mn-depleted preparations. Control experiments show that these oxidation reactions do not involve the redox-active tyrosines, D and Z. Our results suggest the presence of one or more activated carbonyl groups in protein subunits that form the active site of PSII. PMID:9482863
Zhang, Miao; Bommer, Martin; Chatterjee, Ruchira; ...
2017-07-18
In plants, algae and cyanobacteria, Photosystem II (PSII) catalyzes the light-driven splitting of water at a protein-bound Mn 4CaO 5-cluster, the water-oxidizing complex (WOC). In the photosynthetic organisms, the light-driven formation of the WOC from dissolved metal ions is a key process because it is essential in both initial activation and continuous repair of PSII. Structural information is required for understanding of this chaperone-free metal-cluster assembly. For the first time, we obtained a structure of PSII from Thermosynechococcus elongatus without the Mn 4CaO 5-cluster. Surprisingly, cluster-removal leaves the positions of all coordinating amino acid residues and most nearby water moleculesmore » largely unaffected, resulting in a pre-organized ligand shell for kinetically competent and error-free photo-assembly of the Mn 4CaO 5-cluster. First experiments initiating (i) partial disassembly and (ii) partial re-assembly after complete depletion of the Mn4CaO5-cluster agree with a specific bi-manganese cluster, likely a di-µ-oxo bridged pair of Mn(III) ions, as an assembly intermediate.« less
Zhang, Miao; Bommer, Martin; Chatterjee, Ruchira; Hussein, Rana; Yano, Junko; Dau, Holger; Kern, Jan; Dobbek, Holger; Zouni, Athina
2017-07-18
In plants, algae and cyanobacteria, Photosystem II (PSII) catalyzes the light-driven splitting of water at a protein-bound Mn 4 CaO 5 -cluster, the water-oxidizing complex (WOC). In the photosynthetic organisms, the light-driven formation of the WOC from dissolved metal ions is a key process because it is essential in both initial activation and continuous repair of PSII. Structural information is required for understanding of this chaperone-free metal-cluster assembly. For the first time, we obtained a structure of PSII from Thermosynechococcus elongatus without the Mn 4 CaO 5 -cluster. Surprisingly, cluster-removal leaves the positions of all coordinating amino acid residues and most nearby water molecules largely unaffected, resulting in a pre-organized ligand shell for kinetically competent and error-free photo-assembly of the Mn 4 CaO 5 -cluster. First experiments initiating (i) partial disassembly and (ii) partial re-assembly after complete depletion of the Mn 4 CaO 5 -cluster agree with a specific bi-manganese cluster, likely a di-µ-oxo bridged pair of Mn(III) ions, as an assembly intermediate.
Najafpour, Mohammad Mahdi; Rahimi, Fahimeh; Aro, Eva-Mari; Lee, Choon-Hwan; Allakhverdiev, Suleyman I.
2012-01-01
There has been a tremendous surge in research on the synthesis of various metal compounds aimed at simulating the water-oxidizing complex (WOC) of photosystem II (PSII). This is crucial because the water oxidation half reaction is overwhelmingly rate-limiting and needs high over-voltage (approx. 1 V), which results in low conversion efficiencies when working at current densities required for hydrogen production via water splitting. Particular attention has been given to the manganese compounds not only because manganese has been used by nature to oxidize water but also because manganese is cheap and environmentally friendly. The manganese–calcium cluster in PSII has a dimension of about approximately 0.5 nm. Thus, nano-sized manganese compounds might be good structural and functional models for the cluster. As in the nanometre-size of the synthetic models, most of the active sites are at the surface, these compounds could be more efficient catalysts than micrometre (or bigger) particles. In this paper, we focus on nano-sized manganese oxides as functional and structural models of the WOC of PSII for hydrogen production via water splitting and review nano-sized manganese oxides used in water oxidation by some research groups. PMID:22809849
Gao, Yazhi; Liu, Wei; Wang, Xiaoxiong; Yang, Lihua; Han, Su; Chen, Shiguo; Strasser, Reto Jörg; Valverde, Bernal E; Qiang, Sheng
2018-07-01
The effects of four phytotoxins usnic acid (UA), salicylic acid (SA), cinnamic acid (CA) and benzoic acid (BA) on photosynthesis of Chlamydomonas reinhardtii were studied in vivo to identify and localise their initial action sites on two photosystems. Our experimental evidence shows that the four phytotoxins have multiple targets in chloroplasts, which mainly lie in photosystem II (PSII), not photosystem I (PSI). They share an original action site by blocking electron transport beyond Q A (primary plastoquinone acceptor) at PSII acceptor side since a fast increase of the J-step level is the greatest change in chlorophyll a fluorescence induction kinetics OJIP in C. reinhardtii cells treated with the phytotoxins. UA decreases photosynthetic activity by reducing O 2 evolution rate, interrupting PSII electron transport at both the donor and acceptor sides, inactivating the PSII reaction centers (RCs), reducing the content of chlorophylls and carotenoids, destroying the conformation of antenna pigment assemblies, and casuing the degradation of D1/D2 proteins. SA damage to photosynthetic machinery is mainly attributed to inhibition of PSII electron transport beyond Q A at the acceptor side, inactivation of the PSII RCs, reduction of chlorophyll content, digestion of thylakoid ploypeptides and destabilization of thylakoid membranes. Both CA and BA affect the photosynthetic process by decreasing PSII electron transport efficiency at the acceptor side and the amount of active PSII RCs. Besides, the initial cause of BA-inhibiting photosynthesis is also assocaited with the O 2 evolution rate and the disconnection of some antenna molecules from PSII RCs. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
McCarthy, Avery; Rogers, Susan P; Duffy, Stephen J; Campbell, Douglas A
2012-06-01
Increasing anthropogenic carbon dioxide is causing changes to ocean chemistry, which will continue in a predictable manner. Dissolution of additional atmospheric carbon dioxide leads to increased concentrations of dissolved carbon dioxide and bicarbonate and decreased pH in ocean water. The concomitant effects on phytoplankton ecophysiology, leading potentially to changes in community structure, are now a focus of concern. Therefore, we grew the coccolithophore Emiliania huxleyi (Lohmann) W. W. Hay et H. Mohler and the diatom strains Thalassiosira pseudonana (Hust.) Hasle et Heimdal CCMP 1014 and T. pseudonana CCMP 1335 under low light in turbidostat photobioreactors bubbled with air containing 390 ppmv or 750 ppmv CO2 . Increased pCO2 led to increased growth rates in all three strains. In addition, protein levels of RUBISCO increased in the coastal strains of both species, showing a larger capacity for CO2 assimilation at 750 ppmv CO2 . With increased pCO2 , both T. pseudonana strains displayed an increased susceptibility to PSII photoinactivation and, to compensate, an augmented capacity for PSII repair. Consequently, the cost of maintaining PSII function for the diatoms increased at increased pCO2 . In E. huxleyi, PSII photoinactivation and the counter-acting repair, while both intrinsically larger than in T. pseudonana, did not change between the current and high-pCO2 treatments. The content of the photosynthetic electron transport intermediary cytochrome b6/f complex increased significantly in the diatoms under elevated pCO2 , suggesting changes in electron transport function. © 2012 Phycological Society of America.
Shutova, Tatiana; Klimov, Vyacheslav V; Andersson, Bertil; Samuelsson, Göran
2007-06-01
The hypothesis presented here for proton transfer away from the water oxidation complex of Photosystem II (PSII) is supported by biochemical experiments on the isolated PsbO protein in solution, theoretical analyses of better understood proton transfer systems like bacteriorhodopsin and cytochrome oxidase, and the recently published 3D structure of PS II (Pdb entry 1S5L). We propose that a cluster of conserved glutamic and aspartic acid residues in the PsbO protein acts as a buffering network providing efficient acceptors of protons derived from substrate water molecules. The charge delocalization of the cluster ensures readiness to promptly accept the protons liberated from substrate water. Therefore protons generated at the catalytic centre of PSII need not be released into the thylakoid lumen as generally thought. The cluster is the beginning of a localized, fast proton transfer conduit on the lumenal side of the thylakoid membrane. Proton-dependent conformational changes of PsbO may play a role in the regulation of both supply of substrate water to the water oxidizing complex and the resultant proton transfer.
Carotenoids, versatile components of oxygenic photosynthesis.
Domonkos, Ildikó; Kis, Mihály; Gombos, Zoltán; Ughy, Bettina
2013-10-01
Carotenoids (CARs) are a group of pigments that perform several important physiological functions in all kingdoms of living organisms. CARs serve as protective agents, which are essential structural components of photosynthetic complexes and membranes, and they play an important role in the light harvesting mechanism of photosynthesizing plants and cyanobacteria. The protection against reactive oxygen species, realized by quenching of singlet oxygen and the excited states of photosensitizing molecules, as well as by the scavenging of free radicals, is one of the main biological functions of CARs. X-ray crystallographic localization of CARs revealed that they are present at functionally and structurally important sites of both the PSI and PSII reaction centers. Characterization of a CAR-less cyanobacterial mutant revealed that while the absence of CARs prevents the formation of PSII complexes, it does not abolish the assembly and function of PSI. CAR molecules assist in the formation of protein subunits of the photosynthetic complexes by gluing together their protein components. In addition to their aforementioned indispensable functions, CARs have a substantial role in the formation and maintenance of proper cellular architecture, and potentially also in the protection of the translational machinery under stress conditions. Copyright © 2013 Elsevier Ltd. All rights reserved.
Development of the photosynthetic apparatus of Cunninghamia lanceolata in light and darkness.
Xue, Xian; Wang, Qi; Qu, Yanli; Wu, Hongyang; Dong, Fengqin; Cao, Haoyan; Wang, Hou-Ling; Xiao, Jianwei; Shen, Yingbai; Wan, Yinglang
2017-01-01
Here, we compared the development of dark- and light-grown Chinese fir (Cunninghamia lanceolata) cotyledons, which synthesize chlorophyll in the dark, representing a different phenomenon from angiosperm model plants. We determined that the grana lamellar membranes were well developed in both chloroplasts and etiochloroplasts. The accumulation of thylakoid membrane protein complexes was similar between chloroplasts and etiochloroplasts. Measurement of chlorophyll fluorescence parameters indicated that photosystem II (PSII) had low photosynthetic activities, whereas the photosystem I (PSI)-driven cyclic electron flow (CEF) rate exceeded the rate of PSII-mediated photon harvesting in etiochloroplasts. Analysis of the protein contents in etiochloroplasts indicated that the light-harvesting complex II remained mostly in its monomeric conformation. The ferredoxin NADP + oxidoreductase and NADH dehydrogenase-like complexes were relatively abundantly expressed in etiochloroplasts for Chinese fir. Our transcriptome analysis contributes a global expression database for Chinese fir cotyledons, providing background information on the regulatory mechanisms of different genes involved in the development of dark- and light-grown cotyledons. In conclusion, we provide a novel description of the early developmental status of the light-dependent and light-independent photosynthetic apparatuses in gymnosperms. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
Giovagnetti, Vasco; Ruban, Alexander V
2015-11-01
Higher plants possess a set of interconnected processes to regulate light harvesting. Non-photochemical quenching of chlorophyll a fluorescence (NPQ) is the fastest process activated to protect the photosystem (PS) II from the absorption of excess light energy. However, damage of PSII reaction centers (RCIIs) is often inevitable, a phenomenon known as photoinhibition. Both NPQ and photoinhibition undermine PSII quantum yield (ΦPSII). Recently, we devised a fluorescence-based methodology that uses the coefficient of photochemical quenching measured in the dark following illumination (qPd) to assess the intactness of RCIIs. This procedure enables to express ΦPSII as a function (ƒ) of NPQ and qPd, ΦPSII=ƒ(NPQ,qPd), thus allowing to efficiently discern between the effects of protective NPQ and photoinhibition upon the efficiency of electron transport. In this study, we addressed the relationship between qPd and ΦPSII measured by photosynthetic oxygen evolution in intact leaves of Arabidopsis. We found a linear correlation between qPd and ΦPSII of oxygen evolution (as well as Fv/Fm). This relates to the fact that qPd reflects the onset of photoinhibition. These results further demonstrate the validity of the qPd parameter and underlying theory in quantitatively assessing PSII efficiency solely by using this effective and simple fluorescence technique. Copyright © 2015 Elsevier B.V. All rights reserved.
Snider, John L; Oosterhuis, Derrick M; Collins, Guy D; Pilon, Cristiane; Fitzsimons, Toby R
2013-03-15
Previous investigations have demonstrated that photosystem II (PSII) thermostability acclimates to prior exposure to heat and drought, but contrasting results have been reported for cotton (Gossypium hirsutum). We hypothesized that PSII thermotolerance in G. hirsutum would acclimate to environmental conditions during the growing season and that there would be differences in PSII thermotolerance between commercially-available U.S. cultivars. To this end, three cotton cultivars were grown under dryland conditions in Tifton Georgia, and two under irrigated conditions in Marianna Arkansas. At Tifton, measurements included PSII thermotolerance (T15, the temperature causing a 15% decline in maximum quantum yield), leaf temperatures, air temperatures, midday (1200 to 1400h) leaf water potentials (ΨMD), leaf-air vapor pressure deficit (VPD), actual quantum yield (ΦPSII) and electron transport rate through PSII (ETR) on three sample dates. At Marianna, T15 was measured on two sample dates. Optimal air and leaf temperatures were observed on all sample dates in Tifton, but PSII thermotolerance increased with water deficit conditions (ΨMD=-3.1MPa), and ETR was either unaffected or increased under water-stress. Additionally, T15 for PHY 499 was ∼5°C higher than for the other cultivars examined (DP 0912 and DP 1050). The Marianna site experienced more extreme high temperature conditions (20-30 days Tmax≥35°C), and showed an increase in T15 with higher average Tmax. When average T15 values for each location and sample date were plotted versus average daily Tmax, strong, positive relationships (r(2) from .954 to .714) were observed between Tmax and T15. For all locations T15 was substantially higher than actual field temperature conditions. We conclude that PSII thermostability in G. hirsutum acclimates to pre-existing environmental conditions; PSII is extremely tolerant to high temperature and water-deficit stress; and differences in PSII thermotolerance exist between commercially-available cultivars. Copyright © 2012 Elsevier GmbH. All rights reserved.
Phytotoxicity of Four Photosystem II Herbicides to Tropical Seagrasses
Flores, Florita; Collier, Catherine J.; Mercurio, Philip; Negri, Andrew P.
2013-01-01
Coastal waters of the Great Barrier Reef (GBR) are contaminated with agricultural pesticides, including the photosystem II (PSII) herbicides which are the most frequently detected at the highest concentrations. Designed to control weeds, these herbicides are equally potent towards non-target marine species, and the close proximity of seagrass meadows to flood plumes has raised concerns that seagrasses may be the species most threatened by herbicides from runoff. While previous work has identified effects of PSII herbicides on the photophysiology, growth and mortality in seagrass, there is little comparative quantitative toxicity data for seagrass. Here we applied standard ecotoxicology protocols to quantify the concentrations of four priority PSII herbicides that inhibit photochemistry by 10, 20 and 50% (IC10, IC20 and IC50) over 72 h in two common seagrass species from the GBR lagoon. The photosystems of seagrasses Zostera muelleri and Halodule uninervis were shown to be generally more sensitive to the PSII herbicides Diuron, Atrazine, Hexazinone and Tebuthiuron than corals and tropical microalgae. The herbicides caused rapid inhibition of effective quantum yield (∆F/F m ′), indicating reduced photosynthesis and maximum effective yields (Fv/Fm) corresponding to chronic damage to PSII. The PSII herbicide concentrations which affected photosynthesis have been exceeded in the GBR lagoon and all of the herbicides inhibited photosynthesis at concentrations lower than current marine park guidelines. There is a strong likelihood that the impacts of light limitation from flood plumes and reduced photosynthesis from PSII herbicides exported in the same waters would combine to affect seagrass productivity. Given that PSII herbicides have been demonstrated to affect seagrass at environmental concentrations, we suggest that revision of environmental guidelines and further efforts to reduce PSII herbicide concentrations in floodwaters may both help protect seagrass meadows of the GBR from further decline. PMID:24098726
Phytotoxicity of four photosystem II herbicides to tropical seagrasses.
Flores, Florita; Collier, Catherine J; Mercurio, Philip; Negri, Andrew P
2013-01-01
Coastal waters of the Great Barrier Reef (GBR) are contaminated with agricultural pesticides, including the photosystem II (PSII) herbicides which are the most frequently detected at the highest concentrations. Designed to control weeds, these herbicides are equally potent towards non-target marine species, and the close proximity of seagrass meadows to flood plumes has raised concerns that seagrasses may be the species most threatened by herbicides from runoff. While previous work has identified effects of PSII herbicides on the photophysiology, growth and mortality in seagrass, there is little comparative quantitative toxicity data for seagrass. Here we applied standard ecotoxicology protocols to quantify the concentrations of four priority PSII herbicides that inhibit photochemistry by 10, 20 and 50% (IC10, IC20 and IC50) over 72 h in two common seagrass species from the GBR lagoon. The photosystems of seagrasses Zosteramuelleri and Haloduleuninervis were shown to be generally more sensitive to the PSII herbicides Diuron, Atrazine, Hexazinone and Tebuthiuron than corals and tropical microalgae. The herbicides caused rapid inhibition of effective quantum yield (∆F/F m '), indicating reduced photosynthesis and maximum effective yields (Fv/Fm ) corresponding to chronic damage to PSII. The PSII herbicide concentrations which affected photosynthesis have been exceeded in the GBR lagoon and all of the herbicides inhibited photosynthesis at concentrations lower than current marine park guidelines. There is a strong likelihood that the impacts of light limitation from flood plumes and reduced photosynthesis from PSII herbicides exported in the same waters would combine to affect seagrass productivity. Given that PSII herbicides have been demonstrated to affect seagrass at environmental concentrations, we suggest that revision of environmental guidelines and further efforts to reduce PSII herbicide concentrations in floodwaters may both help protect seagrass meadows of the GBR from further decline.
Competing charge transfer pathways at the photosystem II-electrode interface
Zhang, Jenny Z.; Sokol, Katarzyna P.; Paul, Nicholas; Romero, Elisabet; van Grondelle, Rienk; Reisner, Erwin
2016-01-01
The integration of the water-oxidation enzyme, photosystem II (PSII), into electrodes allows the electrons extracted from water-oxidation to be harnessed for enzyme characterization and driving novel endergonic reactions. However, PSII continues to underperform in integrated photoelectrochemical systems despite extensive optimization efforts. Here, we performed protein-film photoelectrochemistry on spinach and Thermosynechococcus elongatus PSII, and identified a competing charge transfer pathway at the enzyme-electrode interface that short-circuits the known water-oxidation pathway: photo-induced O2 reduction occurring at the chlorophyll pigments. This undesirable pathway is promoted by the embedment of PSII in an electron-conducting matrix, a common strategy of enzyme immobilization. Anaerobicity helps to recover the PSII photoresponses, and unmasked the onset potentials relating to the QA/QB charge transfer process. These findings have imparted a fuller understanding of the charge transfer pathways within PSII and at photosystem-electrode interfaces, which will lead to more rational design of pigment-containing photoelectrodes in general. PMID:27723748
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ogilvie, Jennifer P.
Photosystem II (PSII) is the only known natural enzyme that uses solar energy to split water, making the elucidation of its design principles critical for our fundamental understanding of photosynthesis and for our ability to mimic PSII’s remarkable properties. This report discusses progress towards addressing key open questions about the PSII RC. It describes new spectroscopic methods that were developed to answer these questions, and summarizes the outcomes of applying these methods to study the PSII RC. Using 2D electronic spectroscopy and 2D electronic Stark spectroscopy, models for the PSII RC were tested and refined. Work is ongoing to usemore » the collected data to elucidate the charge separation mechanism in the PSII RC. Coherent dynamics were also observed in the PSII RC for the first time. Through extensive characterization and modeling we have assigned these coherences as vibronic in nature, and believe that they reflect resonances between key vibrational pigment modes and electronic energy gaps that may facilitate charge separation. Work is ongoing to definitively test the functional relevance of electronic-vibrational resonances.« less
Light-induced structural changes and the site of O=O bond formation in PSII caught by XFEL.
Suga, Michihiro; Akita, Fusamichi; Sugahara, Michihiro; Kubo, Minoru; Nakajima, Yoshiki; Nakane, Takanori; Yamashita, Keitaro; Umena, Yasufumi; Nakabayashi, Makoto; Yamane, Takahiro; Nakano, Takamitsu; Suzuki, Mamoru; Masuda, Tetsuya; Inoue, Shigeyuki; Kimura, Tetsunari; Nomura, Takashi; Yonekura, Shinichiro; Yu, Long-Jiang; Sakamoto, Tomohiro; Motomura, Taiki; Chen, Jing-Hua; Kato, Yuki; Noguchi, Takumi; Tono, Kensuke; Joti, Yasumasa; Kameshima, Takashi; Hatsui, Takaki; Nango, Eriko; Tanaka, Rie; Naitow, Hisashi; Matsuura, Yoshinori; Yamashita, Ayumi; Yamamoto, Masaki; Nureki, Osamu; Yabashi, Makina; Ishikawa, Tetsuya; Iwata, So; Shen, Jian-Ren
2017-03-02
Photosystem II (PSII) is a huge membrane-protein complex consisting of 20 different subunits with a total molecular mass of 350 kDa for a monomer. It catalyses light-driven water oxidation at its catalytic centre, the oxygen-evolving complex (OEC). The structure of PSII has been analysed at 1.9 Å resolution by synchrotron radiation X-rays, which revealed that the OEC is a Mn 4 CaO 5 cluster organized in an asymmetric, 'distorted-chair' form. This structure was further analysed with femtosecond X-ray free electron lasers (XFEL), providing the 'radiation damage-free' structure. The mechanism of O=O bond formation, however, remains obscure owing to the lack of intermediate-state structures. Here we describe the structural changes in PSII induced by two-flash illumination at room temperature at a resolution of 2.35 Å using time-resolved serial femtosecond crystallography with an XFEL provided by the SPring-8 ångström compact free-electron laser. An isomorphous difference Fourier map between the two-flash and dark-adapted states revealed two areas of apparent changes: around the Q B /non-haem iron and the Mn 4 CaO 5 cluster. The changes around the Q B /non-haem iron region reflected the electron and proton transfers induced by the two-flash illumination. In the region around the OEC, a water molecule located 3.5 Å from the Mn 4 CaO 5 cluster disappeared from the map upon two-flash illumination. This reduced the distance between another water molecule and the oxygen atom O4, suggesting that proton transfer also occurred. Importantly, the two-flash-minus-dark isomorphous difference Fourier map showed an apparent positive peak around O5, a unique μ 4 -oxo-bridge located in the quasi-centre of Mn1 and Mn4 (refs 4,5). This suggests the insertion of a new oxygen atom (O6) close to O5, providing an O=O distance of 1.5 Å between these two oxygen atoms. This provides a mechanism for the O=O bond formation consistent with that proposed previously.
Native structure of photosystem II at 1.95 Å resolution viewed by femtosecond X-ray pulses.
Suga, Michihiro; Akita, Fusamichi; Hirata, Kunio; Ueno, Go; Murakami, Hironori; Nakajima, Yoshiki; Shimizu, Tetsuya; Yamashita, Keitaro; Yamamoto, Masaki; Ago, Hideo; Shen, Jian-Ren
2015-01-01
Photosynthesis converts light energy into biologically useful chemical energy vital to life on Earth. The initial reaction of photosynthesis takes place in photosystem II (PSII), a 700-kilodalton homodimeric membrane protein complex that catalyses photo-oxidation of water into dioxygen through an S-state cycle of the oxygen evolving complex (OEC). The structure of PSII has been solved by X-ray diffraction (XRD) at 1.9 ångström resolution, which revealed that the OEC is a Mn4CaO5-cluster coordinated by a well defined protein environment. However, extended X-ray absorption fine structure (EXAFS) studies showed that the manganese cations in the OEC are easily reduced by X-ray irradiation, and slight differences were found in the Mn-Mn distances determined by XRD, EXAFS and theoretical studies. Here we report a 'radiation-damage-free' structure of PSII from Thermosynechococcus vulcanus in the S1 state at a resolution of 1.95 ångströms using femtosecond X-ray pulses of the SPring-8 ångström compact free-electron laser (SACLA) and hundreds of large, highly isomorphous PSII crystals. Compared with the structure from XRD, the OEC in the X-ray free electron laser structure has Mn-Mn distances that are shorter by 0.1-0.2 ångströms. The valences of each manganese atom were tentatively assigned as Mn1D(III), Mn2C(IV), Mn3B(IV) and Mn4A(III), based on the average Mn-ligand distances and analysis of the Jahn-Teller axis on Mn(III). One of the oxo-bridged oxygens, O5, has significantly longer distances to Mn than do the other oxo-oxygen atoms, suggesting that O5 is a hydroxide ion instead of a normal oxygen dianion and therefore may serve as one of the substrate oxygen atoms. These findings provide a structural basis for the mechanism of oxygen evolution, and we expect that this structure will provide a blueprint for the design of artificial catalysts for water oxidation.
Iida, Satoko; Kobiyama, Atsushi; Ogata, Takehiko; Murakami, Akio
2008-01-01
Plastid encoded genes of the dinoflagellates are rapidly evolving and most divergent. The importance of unusually accumulated mutations on structure of PSII core protein and photosynthetic function was examined in the dinoflagellates, Symbiodinium sp. and Alexandrium tamarense. Full-length cDNA sequences of psbA (D1 protein) and psbD (D2 protein) were obtained and compared with the other oxygen-evolving photoautotrophs. Twenty-three amino acid positions (7%) for the D1 protein and 34 positions (10%) for the D2 were mutated in the dinoflagellates, although amino acid residues at these positions were conserved in cyanobacteria, the other algae, and plant. Many mutations were likely to distribute in the N-terminus and the D-E interhelical loop of the D1 protein and helix B of D2 protein, while the remaining regions were well conserved. The different structural properties in these mutated regions were supported by hydropathy profiles. The chlorophyll fluorescence kinetics of the dinoflagellates was compared with Synechocystis sp. PCC6803 in relation to the altered protein structure.
Pakrasi, H B; Williams, J G; Arntzen, C J
1988-01-01
The genes encoding the two subunits (alpha and beta) of the cytochrome b559 (cyt b559) protein, psbE and psbF, were cloned from the unicellular, transformable cyanobacterium, Synechocystis 6803. Cyt b559, an intrinsic membrane protein, is a component of photosystem II, a membrane-protein complex that catalyzes photosynthetic oxygen evolution. However, the role of cyt b559 in photosynthetic electron transport is yet to be determined. A high degree of homology was found between the cyanobacterial and green plant chloroplastidic psbE and psbE genes and in the amino acid sequences of their corresponding protein products. Cartridge mutagenesis techniques were used to generate a deletion mutant of Synechocystis 6803 in which the psbE and psbF genes were replaced by a kanamycin-resistance gene cartridge. Physiological analyses indicated that the PSII complexes of the mutant were inactivated. We conclude that cyt b559 is an essential component of PSII. Images PMID:3130246
Barry, Bridgette A; Cooper, Ian B; De Riso, Antonio; Brewer, Scott H; Vu, Dung M; Dyer, R Brian
2006-05-09
Photosynthetic oxygen production by photosystem II (PSII) is responsible for the maintenance of aerobic life on earth. The production of oxygen occurs at the PSII oxygen-evolving complex (OEC), which contains a tetranuclear manganese (Mn) cluster. Photo-induced electron transfer events in the reaction center lead to the accumulation of oxidizing equivalents on the OEC. Four sequential photooxidation reactions are required for oxygen production. The oxidizing complex cycles among five oxidation states, called the S(n) states, where n refers to the number of oxidizing equivalents stored. Oxygen release occurs during the S(3)-to-S(0) transition from an unstable intermediate, known as the S(4) state. In this report, we present data providing evidence for the production of an intermediate during each S state transition. These protein-derived intermediates are produced on the microsecond to millisecond time scale and are detected by time-resolved vibrational spectroscopy on the microsecond time scale. Our results suggest that a protein-derived conformational change or proton transfer reaction precedes Mn redox reactions during the S(2)-to-S(3) and S(3)-to-S(0) transitions.
Li, Yu-Ting; Liang, Ying; Li, Yue-Nan; Che, Xing-Kai; Zhao, Shi-Jie; Zhang, Zi-Shan; Gao, Hui-Yuan
2018-03-09
Bisphenol A (BPA), a widely distributed pollutant, suppresses photosynthesis in leaves. In previous studies on higher plants, the plants were treated by BPA through irrigation to root. This method cannot distinguish whether the BPA directly suppresses photosynthesis in leaves, or indirectly influences photosynthesis through affecting the function of root. Here, only the leaves but not the roots of cucumber were infiltrated with BPA solution. The photosystem II and I (PSII, PSI) were insensitive to BPA under darkness. BPA aggravated the PSII but not the PSI photoinhibition under light. BPA also inhibited CO 2 assimilation, and the effect of BPA on PSII photoinhibition disappeared when the CO 2 assimilation was blocked. The H 2 O 2 accumulated in BPA-treated leaves under light. And the BPA-caused PSII photoinhibition was prevented under low (2%) O 2 . We also proved that the BPA-caused PSII photoinhibition depend on the turnover of D1 protein. In conclusion, this study proved that BPA could directly suppress photosynthesis in leaves, however, BPA does not damage PSII directly, but inhibits CO 2 assimilation and over-reduces the electron transport chain under light, which increases the production of reactive oxygen species (H 2 O 2 ), the over-accumulated ROS inhibits the turnover of D1 protein and consequently aggravates PSII photoinhibition.
Offenbacher, Adam R; Polander, Brandon C; Barry, Bridgette A
2013-10-04
Photosystem II (PSII) is a membrane-bound enzyme that utilizes solar energy to catalyze the photooxidation of water. Molecular oxygen is evolved after four sequential light-driven oxidation reactions at the Mn4CaO5 oxygen-evolving complex, producing five sequentially oxidized states, Sn. PSII is composed of 17 membrane-spanning subunits and three extrinsic subunits, PsbP, PsbQ, and PsbO. PsbO is intrinsically disordered and plays a role in facilitation of the water oxidizing cycle. Native PsbO can be removed and substituted with recombinant PsbO, thereby restoring steady-state activity. In this report, we used reaction-induced Fourier transform infrared spectroscopy to obtain information concerning the role of PsbP, PsbQ, and PsbO during the S state cycle. Light-minus-dark difference spectra were acquired, monitoring structural changes associated with each accessible flash-induced S state transition in a highly purified plant PSII preparation (Triton X-100, octylthioglucoside). A comparison of S2 minus S1 spectra revealed that removal of PsbP and PsbQ had no significant effect on the data, whereas amide frequency and intensity changes were associated with PsbO removal. These data suggest that PsbO acts as an organizational template for the PSII reaction center. To identify any coupled conformational changes arising directly from PsbO, global (13)C-PsbO isotope editing was employed. The reaction-induced Fourier transform infrared spectra of accessible S states provide evidence that PsbO spectral contributions are temperature (263 and 277 K) and S state dependent. These experiments show that PsbO undergoes catalytically relevant structural dynamics, which are coupled over long distance to hydrogen-bonding changes at the Mn4CaO5 cluster.
Wang, Qing Jun; Singh, Abhay; Li, Hong; Nedbal, Ladislav; Sherman, Louis A; Govindjee; Whitmarsh, John
2012-05-01
Oxygenic photosynthesis in cyanobacteria, algae, and plants requires photosystem II (PSII) to extract electrons from H(2)O and depends on photosystem I (PSI) to reduce NADP(+). Here we demonstrate that mixotrophically-grown mutants of the cyanobacterium Synechocystis sp. PCC 6803 that lack PSI (ΔPSI) are capable of net light-induced O(2) evolution in vivo. The net light-induced O(2) evolution requires glucose and can be sustained for more than 30 min. Utilizing electron transport inhibitors and chlorophyll a fluorescence measurements, we show that in these mutants PSII is the source of the light-induced O(2) evolution, and that the plastoquinone pool is reduced by PSII and subsequently oxidized by an unidentified electron acceptor that does not involve the plastoquinol oxidase site of the cytochrome b(6)f complex. Moreover, both O(2) evolution and chlorophyll a fluorescence kinetics of the ΔPSI mutants are highly sensitive to KCN, indicating the involvement of a KCN-sensitive enzyme(s). Experiments using (14)C-labeled bicarbonate show that the ΔPSI mutants assimilate more CO(2) in the light compared to the dark. However, the rate of the light-minus-dark CO(2) assimilation accounts for just over half of the net light-induced O(2) evolution rate, indicating the involvement of unidentified terminal electron acceptors. Based on these results we suggest that O(2) evolution in ΔPSI cells can be sustained by an alternative electron transport pathway that results in CO(2) assimilation and that includes PSII, the platoquinone pool, and a KCN-sensitive enzyme. Copyright © 2012 Elsevier B.V. All rights reserved.
Sjöholm, Johannes; Ho, Felix; Ahmadova, Nigar; Brinkert, Katharina; Hammarström, Leif; Mamedov, Fikret; Styring, Stenbjörn
2017-02-01
The tyrosine residue D2-Tyr160 (Tyr D ) in photosystem II (PSII) can be oxidized through charge equilibrium with the oxygen evolving complex in PSII. The kinetics of the electron transfer from Tyr D has been followed using time-resolved EPR spectroscopy after triggering the oxidation of pre-reduced Tyr D by a short laser flash. After its oxidation Tyr D is observed as a neutral radical (Tyr D • ) indicating that the oxidation is coupled to a deprotonation event. The redox state of Tyr D was reported to be determined by the two water positions identified in the crystal structure of PSII [Saito et al. (2013) Proc. Natl. Acad. Sci. USA 110, 7690]. To assess the mechanism of the proton coupled electron transfer of Tyr D the oxidation kinetics has been followed in the presence of deuterated buffers, thereby resolving the kinetic isotope effect (KIE) of Tyr D oxidation at different H/D concentrations. Two kinetic phases of Tyr D oxidation - the fast phase (msec-sec time range) and the slow phase (tens of seconds time range) were resolved as was previously reported [Vass and Styring (1991) Biochemistry 30, 830]. In the presence of deuterated buffers the kinetics was significantly slower compared to normal buffers. Furthermore, although the kinetics were faster at both high pH and pD values the observed KIE was found to be similar (~2.4) over the whole pL range investigated. We assign the fast and slow oxidation phases to two populations of PSII centers with different water positions, proximal and distal respectively, and discuss possible deprotonation events in the vicinity of Tyr D . Copyright © 2016 Elsevier B.V. All rights reserved.
Stepien, Piotr; Johnson, Giles N
2009-02-01
The effects of short-term salt stress on gas exchange and the regulation of photosynthetic electron transport were examined in Arabidopsis (Arabidopsis thaliana) and its salt-tolerant close relative Thellungiella (Thellungiella halophila). Plants cultivated on soil were challenged for 2 weeks with NaCl. Arabidopsis showed a much higher sensitivity to salt than Thellungiella; while Arabidopsis plants were unable to survive exposure to greater than 150 mM salt, Thellugiella could tolerate concentrations as high as 500 mM with only minimal effects on gas exchange. Exposure of Arabidopsis to sublethal salt concentrations resulted in stomatal closure and inhibition of CO2 fixation. This lead to an inhibition of electron transport though photosystem II (PSII), an increase in cyclic electron flow involving only PSI, and increased nonphotochemical quenching of chlorophyll fluorescence. In contrast, in Thellungiella, although gas exchange was marginally inhibited by high salt and PSI was unaffected, there was a large increase in electron flow involving PSII. This additional electron transport activity is oxygen dependent and sensitive to the alternative oxidase inhibitor n-propyl gallate. PSII electron transport in Thellungiella showed a reduced sensitivity to 2'-iodo-6-isopropyl-3-methyl-2',4,4'-trinitrodiphenylether, an inhibitor of the cytochrome b6f complex. At the same time, we observed a substantial up-regulation of a protein reacting with antibodies raised against the plastid terminal oxidase. No such up-regulation was seen in Arabidopsis. We conclude that in salt-stressed Thellungiella, plastid terminal oxidase acts as an alternative electron sink, accounting for up to 30% of total PSII electron flow.
Karamoko, Mohamed; Cline, Sara; Redding, Kevin; Ruiz, Natividad; Hamel, Patrice P.
2011-01-01
Here, we identify Arabidopsis thaliana Lumen Thiol Oxidoreductase1 (LTO1) as a disulfide bond–forming enzyme in the thylakoid lumen. Using topological reporters in bacteria, we deduced a lumenal location for the redox active domains of the protein. LTO1 can partially substitute for the proteins catalyzing disulfide bond formation in the bacterial periplasm, which is topologically equivalent to the plastid lumen. An insertional mutation within the LTO1 promoter is associated with a severe photoautotrophic growth defect. Measurements of the photosynthetic activity indicate that the lto1 mutant displays a limitation in the electron flow from photosystem II (PSII). In accordance with these measurements, we noted a severe depletion of the structural subunits of PSII but no change in the accumulation of the cytochrome b6f complex or photosystem I. In a yeast two-hybrid assay, the thioredoxin-like domain of LTO1 interacts with PsbO, a lumenal PSII subunit known to be disulfide bonded, and a recombinant form of the molecule can introduce a disulfide bond in PsbO in vitro. The documentation of a sulfhydryl-oxidizing activity in the thylakoid lumen further underscores the importance of catalyzed thiol-disulfide chemistry for the biogenesis of the thylakoid compartment. PMID:22209765
Zhang, Miao; Bommer, Martin; Chatterjee, Ruchira; Hussein, Rana; Yano, Junko; Dau, Holger; Kern, Jan; Dobbek, Holger; Zouni, Athina
2017-01-01
In plants, algae and cyanobacteria, Photosystem II (PSII) catalyzes the light-driven splitting of water at a protein-bound Mn4CaO5-cluster, the water-oxidizing complex (WOC). In the photosynthetic organisms, the light-driven formation of the WOC from dissolved metal ions is a key process because it is essential in both initial activation and continuous repair of PSII. Structural information is required for understanding of this chaperone-free metal-cluster assembly. For the first time, we obtained a structure of PSII from Thermosynechococcus elongatus without the Mn4CaO5-cluster. Surprisingly, cluster-removal leaves the positions of all coordinating amino acid residues and most nearby water molecules largely unaffected, resulting in a pre-organized ligand shell for kinetically competent and error-free photo-assembly of the Mn4CaO5-cluster. First experiments initiating (i) partial disassembly and (ii) partial re-assembly after complete depletion of the Mn4CaO5-cluster agree with a specific bi-manganese cluster, likely a di-µ-oxo bridged pair of Mn(III) ions, as an assembly intermediate. DOI: http://dx.doi.org/10.7554/eLife.26933.001 PMID:28718766
USDA-ARS?s Scientific Manuscript database
Plant pathogens, and photosynthesis inhibiting herbicides, can both damage photosystem II (PSII), causing it to be highly sensitive to damage by light energy, and to release high levels of reactive oxygen species (ROS). This photoinhibition of PSII could possibly be the source of the strong oxidativ...
Structural Coupling of Extrinsic Proteins with the Oxygen-Evolving Center in Photosystem II
Ifuku, Kentaro; Noguchi, Takumi
2016-01-01
Photosystem II (PSII), which catalyzes photosynthetic water oxidation, is composed of more than 20 subunits, including membrane-intrinsic and -extrinsic proteins. The PSII extrinsic proteins shield the catalytic Mn4CaO5 cluster from the outside bulk solution and enhance binding of inorganic cofactors, such as Ca2+ and Cl-, in the oxygen-evolving center (OEC) of PSII. Among PSII extrinsic proteins, PsbO is commonly found in all oxygenic organisms, while PsbP and PsbQ are specific to higher plants and green algae, and PsbU, PsbV, CyanoQ, and CyanoP exist in cyanobacteria. In addition, red algae and diatoms have unique PSII extrinsic proteins, such as PsbQ′ and Psb31, suggesting functional divergence during evolution. Recent studies with reconstitution experiments combined with Fourier transform infrared spectroscopy have revealed how the individual PSII extrinsic proteins affect the structure and function of the OEC in different organisms. In this review, we summarize our recent results and discuss changes that have occurred in the structural coupling of extrinsic proteins with the OEC during evolutionary history. PMID:26904056
Kennedy, Karen; Schroeder, Thomas; Shaw, Melanie; Haynes, David; Lewis, Stephen; Bentley, Christie; Paxman, Chris; Carter, Steve; Brando, Vittorio E; Bartkow, Michael; Hearn, Laurence; Mueller, Jochen F
2012-01-01
Photosystem II (PSII) herbicides are used in large quantities on agricultural lands adjoining the Great Barrier Reef (GBR). Routine monitoring at 14 sites in inshore waters of the GBR using passive sampling techniques detected diuron (32-94% of sampling periods) at maximum concentrations of 1.7-430ng L(-1) in the relatively pristine Cape York Region to the Mackay Whitsunday Region, respectively. A PSII herbicide equivalent (PSII-HEq) index developed as an indicator for reporting was dominated by diuron (average contribution 89%) and typically increased during the wet season. The maximum PSII-HEq indicates the potential for photosynthetic inhibition of diatoms, seagrass and coral-symbionts. PSII herbicides were significantly positively correlated with remotely sensed coloured dissolved organic matter, a proxy for freshwater extent. Combining these methods provides for the first time the potential to cost-effectively monitor improvements in water quality entering the GBR with respect to exposure to PSII herbicides. Copyright © 2011 Elsevier Ltd. All rights reserved.
Structure and dynamics of thylakoids in land plants.
Pribil, Mathias; Labs, Mathias; Leister, Dario
2014-05-01
Thylakoids of land plants have a bipartite structure, consisting of cylindrical grana stacks, made of membranous discs piled one on top of the other, and stroma lamellae which are helically wound around the cylinders. Protein complexes predominantly located in the stroma lamellae and grana end membranes are either bulky [photosystem I (PSI) and the chloroplast ATP synthase (cpATPase)] or are involved in cyclic electron flow [the NAD(P)H dehydrogenase (NDH) and PGRL1-PGR5 heterodimers], whereas photosystem II (PSII) and its light-harvesting complex (LHCII) are found in the appressed membranes of the granum. Stacking of grana is thought to be due to adhesion between Lhcb proteins (LHCII or CP26) located in opposed thylakoid membranes. The grana margins contain oligomers of CURT1 proteins, which appear to control the size and number of grana discs in a dosage- and phosphorylation-dependent manner. Depending on light conditions, thylakoid membranes undergo dynamic structural changes that involve alterations in granum diameter and height, vertical unstacking of grana, and swelling of the thylakoid lumen. This plasticity is realized predominantly by reorganization of the supramolecular structure of protein complexes within grana stacks and by changes in multiprotein complex composition between appressed and non-appressed membrane domains. Reversible phosphorylation of LHC proteins (LHCPs) and PSII components appears to initiate most of the underlying regulatory mechanisms. An update on the roles of lipids, proteins, and protein complexes, as well as possible trafficking mechanisms, during thylakoid biogenesis and the de-etiolation process complements this review.
Contribution of the Alternative Respiratory Pathway to PSII Photoprotection in C3 and C4 Plants.
Zhang, Zi-Shan; Liu, Mei-Jun; Scheibe, Renate; Selinski, Jennifer; Zhang, Li-Tao; Yang, Cheng; Meng, Xiang-Long; Gao, Hui-Yuan
2017-01-09
The mechanism by which the mitochondrial alternative oxidase (AOX) pathway contributes to photosystem II (PSII) photoprotection is in dispute. It was generally thought that the AOX pathway protects photosystems by dissipating excess reducing equivalents exported from chloroplasts through the malate/oxaloacetate (Mal/OAA) shuttle and thus preventing the over-reduction of chloroplasts. In this study, using the aox1a Arabidopsis mutant and nine other C3 and C4 plant species, we revealed an additional action model of the AOX pathway in PSII photoprotection. Although the AOX pathway contributes to PSII photoprotection in C3 leaves treated with high light, this contribution was observed to disappear when photorespiration was suppressed. Disruption or inhibition of the AOX pathway significantly decreased the photorespiration in C3 leaves. Moreover, the AOX pathway did not respond to high light and contributed little to PSII photoprotection in C4 leaves possessing a highly active Mal/OAA shuttle but with little photorespiration. These results demonstrate that the AOX pathway contributes to PSII photoprotection in C3 plants by maintaining photorespiration to detoxify glycolate and via the indirect export of excess reducing equivalents from chloroplasts by the Mal/OAA shuttle. This new action model explains why the AOX pathway does not contribute to PSII photoprotection in C4 plants. Copyright © 2017 The Author. Published by Elsevier Inc. All rights reserved.
Chlorophyll b degradation by chlorophyll b reductase under high-light conditions.
Sato, Rei; Ito, Hisashi; Tanaka, Ayumi
2015-12-01
The light-harvesting chlorophyll a/b binding protein complex of photosystem II (LHCII) is the main antenna complex of photosystem II (PSII). Plants change their LHCII content depending on the light environment. Under high-light conditions, the content of LHCII should decrease because over-excitation damages the photosystem. Chlorophyll b is indispensable for accumulating LHCII, and chlorophyll b degradation induces LHCII degradation. Chlorophyll b degradation is initiated by chlorophyll b reductase (CBR). In land plants, NON-YELLOW COLORING 1 (NYC1) and NYC1-Like (NOL) are isozymes of CBR. We analyzed these mutants to determine their functions under high-light conditions. During high-light treatment, the chlorophyll a/b ratio was stable in the wild-type (WT) and nol plants, and the LHCII content decreased in WT plants. The chlorophyll a/b ratio decreased in the nyc1 and nyc1/nol plants, and a substantial degree of LHCII was retained in nyc1/nol plants after the high-light treatment. These results demonstrate that NYC1 degrades the chlorophyll b on LHCII under high-light conditions, thus decreasing the LHCII content. After the high-light treatment, the maximum quantum efficiency of the PSII photochemistry was lower in nyc1 and nyc1/nol plants than in WT and nol plants. A larger light-harvesting system would damage PSII in nyc1 and nyc1/nol plants. The fluorescence spectroscopy of the leaves indicated that photosystem I was also damaged by the excess LHCII in nyc1/nol plants. These observations suggest that chlorophyll b degradation by NYC1 is the initial reaction for the optimization of the light-harvesting capacity under high-light conditions.
Volgusheva, Alena; Styring, Stenbjörn; Mamedov, Fikret
2013-01-01
Photobiological H2 production is an attractive option for renewable solar fuels. Sulfur-deprived cells of Chlamydomonas reinhardtii have been shown to produce hydrogen with the highest efficiency among photobiological systems. We have investigated the photosynthetic reactions during sulfur deprivation and H2 production in the wild-type and state transition mutant 6 (Stm6) mutant of Chlamydomonas reinhardtii. The incubation period (130 h) was dissected into different phases, and changes in the amount and functional status of photosystem II (PSII) were investigated in vivo by electron paramagnetic resonance spectroscopy and variable fluorescence measurements. In the wild type it was found that the amount of PSII is decreased to 25% of the original level; the electron transport from PSII was completely blocked during the anaerobic phase preceding H2 formation. This block was released during the H2 production phase, indicating that the hydrogenase withdraws electrons from the plastoquinone pool. This partly removes the block in PSII electron transport, thereby permitting electron flow from water oxidation to hydrogenase. In the Stm6 mutant, which has higher respiration and H2 evolution than the wild type, PSII was analogously but much less affected. The addition of the PSII inhibitor 3-(3,4-dichlorophenyl)-1,1-dimethylurea revealed that ∼80% of the H2 production was inhibited in both strains. We conclude that (i) at least in the earlier stages, most of the electrons delivered to the hydrogenase originate from water oxidation by PSII, (ii) a faster onset of anaerobiosis preserves PSII from irreversible photoinhibition, and (iii) mutants with enhanced respiratory activity should be considered for better photobiological H2 production. PMID:23589846
Harbinson, Jeremy
2015-01-01
Plants are known to be able to acclimate their photosynthesis to the level of irradiance. Here, we present the analysis of natural genetic variation for photosynthetic light use efficiency (ΦPSII) in response to five light environments among 12 genetically diverse Arabidopsis (Arabidopsis thaliana) accessions. We measured the acclimation of ΦPSII to constant growth irradiances of four different levels (100, 200, 400, and 600 µmol m−2 s−1) by imaging chlorophyll fluorescence after 24 d of growth and compared these results with acclimation of ΦPSII to a step-wise change in irradiance where the growth irradiance was increased from 100 to 600 µmol m−2 s−1 after 24 d of growth. Genotypic variation for ΦPSII is shown by calculating heritability for the short-term ΦPSII response to different irradiance levels as well as for the relation of ΦPSII measured at light saturation (a measure of photosynthetic capacity) to growth irradiance level and for the kinetics of the response to a step-wise increase in irradiance from 100 to 600 µmol m−2 s−1. A genome-wide association study for ΦPSII measured 1 h after a step-wise increase in irradiance identified several new candidate genes controlling this trait. In conclusion, the different photosynthetic responses to a changing light environment displayed by different Arabidopsis accessions are due to genetic differences, and we have identified candidate genes for the photosynthetic response to an irradiance change. The genetic variation for photosynthetic acclimation to irradiance found in this study will allow future identification and analysis of the causal genes for the regulation of ΦPSII in plants. PMID:25670817
Yan, Kun; Zhao, Shijie; Cui, Mingxing; Han, Guangxuan; Wen, Pei
2018-04-01
Jerusalem artichoke (Helianthus tuberosus L.) is an important energy crop for utilizing coastal marginal land. This study was to investigate waterlogging tolerance of Jerusalem artichoke through photosynthetic diagnose with emphasis on photosystem II (PSII) and photosystem I (PSI) performance. Potted plants were subjected to severe (liquid level 5 cm above vermiculite surface) and moderate (liquid level 5 cm below vermiculite surface) waterlogging for 9 days. Large decreased photosynthetic rate suggested photosynthesis vulnerability upon waterlogging. After 7 days of severe waterlogging, PSII and PSI photoinhibition arose, indicated by significant decrease in the maximal photochemical efficiency of PSII (Fv/Fm) and PSI (△MR/MR 0 ), and PSI seemed more vulnerable because of greater decrease in △MR/MR 0 than Fv/Fm. In line with decreased △MR/MR 0 and unchanged Fv/Fm after 9 days of moderate waterlogging, the amount of PSI reaction center protein rather than PSII reaction center protein was lowered, confirming greater PSI vulnerability. According to positive correlation between △MR/MR 0 and efficiency that an electron moves beyond primary quinone and negative correlation between △MR/MR 0 and PSII excitation pressure, PSI inactivation elevated PSII excitation pressure by depressing electron transport at PSII acceptor side. Thus, PSI vulnerability induced PSII photoinhibition and endangered the stability of whole photosynthetic apparatus under waterlogging. In agreement with photosystems photoinhibition, elevated H 2 O 2 concentration and lipid peroxidation in the leaves corroborated waterlogging-induced oxidative stress. In conclusion, Jerusalem artichoke is a waterlogging sensitive species in terms of photosynthesis and PSI vulnerability. Consistently, tuber yield was tremendously reduced by waterlogging, confirming waterlogging sensitivity of Jerusalem artichoke. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Yadav, Deepak Kumar; Pospíšil, Pavel
2012-01-01
When photosystem II (PSII) is exposed to excess light, singlet oxygen (1O2) formed by the interaction of molecular oxygen with triplet chlorophyll. Triplet chlorophyll is formed by the charge recombination of triplet radical pair 3[P680•+Pheo•−] in the acceptor-side photoinhibition of PSII. Here, we provide evidence on the formation of 1O2 in the donor side photoinhibition of PSII. Light-induced 1O2 production in Tris-treated PSII membranes was studied by electron paramagnetic resonance (EPR) spin-trapping spectroscopy, as monitored by TEMPONE EPR signal. Light-induced formation of carbon-centered radicals (R•) was observed by POBN-R adduct EPR signal. Increased oxidation of organic molecules at high pH enhanced the formation of TEMPONE and POBN-R adduct EPR signals in Tris-treated PSII membranes. Interestingly, the scavenging of R• by propyl gallate significantly suppressed 1O2. Based on our results, it is concluded that 1O2 formation correlates with R• formation on the donor side of PSII due to oxidation of organic molecules (lipids and proteins) by long-lived P680•+/TyrZ•. It is proposed here that the Russell mechanism for the recombination of two peroxyl radicals formed by the interaction of R• with molecular oxygen is a plausible mechanism for 1O2 formation in the donor side photoinhibition of PSII. PMID:23049883
Jin, Peng; Gao, Guang; Liu, Xin; Li, Futian; Tong, Shanying; Ding, Jiancheng; Zhong, Zhihai; Liu, Nana; Gao, Kunshan
2016-01-01
The growth of phytoplankton and thus marine primary productivity depend on photophysiological performance of phytoplankton cells that respond to changing environmental conditions. The South China Sea (SCS) is the largest marginal sea of the western Pacific and plays important roles in modulating regional climate and carbon budget. However, little has been documented on photophysiological characteristics of phytoplankton in the SCS. For the first time, we investigated photophysiological characteristics of phytoplankton assemblages in the northern South China Sea (NSCS) using a real-time in-situ active chlorophyll a fluorometry, covering 4.0 × 105 km2. The functional absorption cross section of photosystem II (PSII) in darkness (σPSII) or under ambient light (σPSII') (A2 quanta-1) increased from the surface to deeper waters at all the stations during the survey period (29 July to 23 August 2012). While the maximum (Fv/Fm, measured in darkness) or effective (Fq'/Fm', measured under ambient light) photochemical efficiency of PSII appeared to increase with increasing depth at most stations, it showed inverse relationship with depth in river plume areas. The functional absorption cross section of PSII changes could be attributed to light-adapted genotypic feature due to niche-partition and the alteration of photochemical efficiency of PSII could be attributed to photo-acclimation. The chlorophyll a fluorometry can be taken as an analog to estimate primary productivity, since areas of higher photochemical efficiency of PSII coincided with those of higher primary productivity reported previously in the NSCS.
Eppel, Amir; Shaked, Ruth; Eshel, Gil; Barak, Simon; Rachmilevitch, Shimon
2014-08-01
Non-photochemical quenching (NPQ) plays a major role in photoprotection. Anastatica hierochuntica is an annual desert plant found in hot deserts. We compared A. hierochuntica to three other different species: Arabidopsis thaliana, Eutrema salsugineum and Helianthus annuus, which have different NPQ and photosynthetic capacities. Anastatica hierochuntica plants had very different induction kinetics of NPQ and, to a lesser extent, of photosystem II electron transport rate (PSII ETR), in comparison to all other plants species in the experiments. The major components of the unusual photosynthetic and photoprotective response in A. hierochuntica were: (1) Low NPQ at the beginning of the light period, at various light intensities and CO2 concentrations. The described low NPQ cannot be explained by low leaf absorbance or by low energy distribution to PSII, but was related to the de-epoxidation state of xanthophylls. (2) Relatively high PSII ETR at various CO2 concentrations in correlation with low NPQ. PSII ETR responded positively to the increase of CO2 concentrations. At low CO2 concentrations PSII ETR was mostly O2 dependent. At moderate and high CO2 concentrations the high PSII ETR in A. hierochuntica was accompanied by relatively high CO2 assimilation rates. We suggest that A. hierochuntica have an uncommon NPQ and PSII ETR response. These responses in A. hierochuntica might represent an adaptation to the short growing season of an annual desert plant. © 2013 Scandinavian Plant Physiology Society.
Huang, Wei; Yang, Ying-Jie; Hu, Hong; Zhang, Shi-Bao
2016-12-01
Low temperature associated with high light can induce photoinhibition of photosystem I (PSI) and photosystem II (PSII). However, the photosynthetic electron flow and specific photoprotective responses in alpine evergreen broad-leaf plants in winter is unclear. We analyzed seasonal changes in PSI and PSII activities, and energy quenching in PSI and PSII in three alpine broad-leaf tree species, Quercus guyavifolia (Fagaceae), Rhododendron decorum (Ericaceae), Euonymus tingens (Celastraceae). In winter, PSII activity remained stable in Q. guyavifolia but decreased significantly in R. decorum and E. tingens. Q. guyavifolia showed much higher capacities of cyclic electron flow (CEF), water-water cycle (WWC), non-photochemical quenching (NPQ) than R. decorum and E. tingens in winter. These results indicated that in alpine evergreen broad-leaf tree species the PSII activity in winter was closely related to these photoprotective mechanisms. Interestingly, unlike PSII, PSI activity was maintained stable in winter in the three species. Meanwhile, photosynthetic electron flow from PSII to PSI (ETRII) was much higher in Q. guyavifolia, suggesting that the mechanisms protecting PSI activity against photoinhibition in winter differed among the three species. A high level of CEF contributed the stability of PSI activity in Q. guyavifolia. By comparison, R. decorum and E. tingens prevented PSI photoinhibition through depression of electron transport to PSI. Taking together, CEF, WWC and NPQ played important roles in coping with excess light energy in winter for alpine evergreen broad-leaf tree species. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Tingting; Kirchhoff, Helmut; Gargouri, Mahmoud
Mixotrophic growth of microalgae offers great potential as an efficient strategy for biofuel production. In this study, photosynthetic regulation of mixotrophically cultured Chlorella sorokiniana cells was systematically evaluated. Mixotrophic cells in the exponential growth phase showed the highest photosynthetic activity, where maximum photosynthetic O 2 evolution was approximately 3- and 4-fold higher than cells in the same phase grown photoautotrophically in 1% CO 2 (in air) and air, respectively. Additionally, characteristic chlorophyll fluorescence parameters demonstrated that no limitation in electron transport downstream of PSII was detected in mixotrophic cells. Up-regulation of photosynthetic activity was associated with high total ribulose-1, 5-bisphosphatemore » carboxylase/oxygenase (Rubisco) carboxylase activity and expression level of phosphoribulokinase (PRK). After 3 days, photosynthetic O 2 evolution of mixotrophic cells that went to the stationary phase, was strongly reduced, with reduced photochemical efficiency and reorganization of the PSII complex. Simultaneously, enzymatic activity for Rubisco carboxylase and mRNA levels of Rubisco and PRK diminished. Importantly, there was almost no non-photochemical quenching for mixotrophic cells, whether grown in log or stationary phase. A decline in the quantum efficiency of PSII and an oxidized plastoquinone pool (PQ pool) was observed under N-depleted conditions during mixotrophic growth. Finally, these results demonstrate that photosynthesis is regulated differently in mixotrophically cultured C. sorokiniana cells than in cells grown under photoautotrophic conditions, with a particularly strong impact by nitrogen levels in the cells.« less
Mathur, Sonal; Sharma, Mahaveer P; Jajoo, Anjana
2018-03-01
In this study, pot experiments were performed to investigate the effects of high temperature stress (44 °C) in maize plants colonized with and without arbuscular mycorrhizal fungi (AMF). Various parameters characterizing photosynthetic activity were measured in order to estimate the photosynthetic efficiency in maize plants. It was observed that density of active reaction centers of PSII, quantum efficiency of photosystem II (PSII), linear electron transport, excitation energy trapping, performance index, net photosynthesis rate increased in AMF (+) plants at 44 °C ± 0.2 °C. Efficiency of primary photochemical reaction (represented as F v /F o ) increased in AMF (+) plants as compared to AMF (-) plants. AMF seems to have protected water splitting complex followed by enhanced primary photochemistry of PSII under high temperature. Basic morphological parameters like leaf width, plant height and cob number increased in AMF (+) plants as compared to AMF (-) plants. AMF (+) plants grew faster than AMF (-) plants due to larger root systems. Chl content increased in AMF (+) plants as compared to AMF (-) maize plants. AMF hyphae likely increased Mg uptake which in turn increased the total chlorophyll content in AMF (+) maize plants. This subsequently led to a higher production in photosynthate and biomass. Thus AMF (+) plants have shown better photosynthesis performance as compared to AMF (-) maize plants under high temperature stress. Copyright © 2018 Elsevier B.V. All rights reserved.
Kalachanis, Dimitrios; Manetas, Yiannis
2010-07-01
Limited evidence up to now indicates low linear photosynthetic electron flow and CO(2) assimilation rates in non-foliar chloroplasts. In this investigation, we used chlorophyll fluorescence techniques to locate possible limiting steps in photosystem function in exposed, non-stressed green fruits (both pericarps and seeds) of three species, while corresponding leaves served as controls. Compared with leaves, fruit photosynthesis was characterized by less photon trapping and less quantum yields of electron flow, while the non-photochemical quenching was higher and potentially linked to enhanced carotenoid/chlorophyll ratios. Analysis of fast chlorophyll fluorescence rise curves revealed possible limitations both in the donor (oxygen evolving complex) and the acceptor (Q(A)(-)--> intermediate carriers) sides of photosystem II (PSII) indicating innately low PSII photochemical activity. On the other hand, PSI was characterized by faster reduction of its final electron acceptors and their small pool sizes. We argue that the fast reductive saturation of final PSI electron acceptors may divert electrons back to intermediate carriers facilitating a cyclic flow around PSI, while the partial inactivation of linear flow precludes strong reduction of plastoquinone. As such, the photosynthetic attributes of fruit chloroplasts may act to replenish the ATP lost because of hypoxia usually encountered in sink organs with high diffusive resistance to gas exchange.
Nagy, Valéria; Vidal-Meireles, André; Tengölics, Roland; Rákhely, Gábor; Garab, Győző; Kovács, László; Tóth, Szilvia Z
2016-07-01
In nature, H2 production in Chlamydomonas reinhardtii serves as a safety valve during the induction of photosynthesis in anoxia, and it prevents the over-reduction of the photosynthetic electron transport chain. Sulphur deprivation of C. reinhardtii also triggers a complex metabolic response resulting in the induction of various stress-related genes, down-regulation of photosynthesis, the establishment of anaerobiosis and expression of active hydrogenase. Photosystem II (PSII) plays dual role in H2 production because it supplies electrons but the evolved O2 inhibits the hydrogenase. Here, we show that upon sulphur deprivation, the ascorbate content in C. reinhardtii increases about 50-fold, reaching the mM range; at this concentration, ascorbate inactivates the Mn-cluster of PSII, and afterwards, it can donate electrons to tyrozin Z(+) at a slow rate. This stage is followed by donor-side-induced photoinhibition, leading to the loss of charge separation activity in PSII and reaction centre degradation. The time point at which maximum ascorbate concentration is reached in the cell is critical for the establishment of anaerobiosis and initiation of H2 production. We also show that ascorbate influenced H2 evolution via altering the photosynthetic electron transport rather than hydrogenase activity and starch degradation. © 2015 John Wiley & Sons Ltd.
Switchable photosystem-II designer algae for photobiological hydrogen production
Lee, James Weifu
2010-01-05
A switchable photosystem-II designer algae for photobiological hydrogen production. The designer transgenic algae includes at least two transgenes for enhanced photobiological H.sub.2 production wherein a first transgene serves as a genetic switch that can controls photosystem II (PSII) oxygen evolution and a second transgene encodes for creation of free proton channels in the algal photosynthetic membrane. In one embodiment, the algae includes a DNA construct having polymerase chain reaction forward primer (302), a inducible promoter (304), a PSII-iRNA sequence (306), a terminator (308), and a PCR reverse primer (310). In other embodiments, the PSII-iRNA sequence (306) is replaced with a CF.sub.1-iRNA sequence (312), a streptomycin-production gene (314), a targeting sequence (316) followed by a proton-channel producing gene (318), or a PSII-producing gene (320). In one embodiment, a photo-bioreactor and gas-product separation and utilization system produce photobiological H.sub.2 from the switchable PSII designer alga.
Ido, Kunio; Kakiuchi, Shusuke; Uno, Chihiro; Nishimura, Taishi; Fukao, Yoichiro; Noguchi, Takumi; Sato, Fumihiko; Ifuku, Kentaro
2012-07-27
The PsbP protein regulates the binding properties of Ca(2+) and Cl(-), and stabilizes the Mn cluster of photosystem II (PSII); however, the binding site and topology in PSII have yet to be clarified. Here we report that the structure around His-144 and Asp-165 in PsbP, which is suggested to be a metal binding site, has a crucial role for the functional interaction between PsbP and PSII. The mutated PsbP-H144A protein exhibits reduced ability to retain Cl(-) anions in PSII, whereas the D165V mutation does not affect PsbP function. Interestingly, H144A/D165V double mutation suppresses the effect of H144A mutation, suggesting that these residues have a role other than metal binding. FTIR difference spectroscopy suggests that H144A/D165V restores proper interaction with PSII and induces the conformational change around the Mn cluster during the S(1)/S(2) transition. Cross-linking experiments show that the H144A mutation affects the direct interaction between PsbP and the Cyt b(559) α subunit of PSII (the PsbE protein). However, this interaction is restored in the H144A/D165V mutant. In the PsbP structure, His-144 and Asp-165 form a salt bridge. H144A mutation is likely to disrupt this bridge and liberate Asp-165, inhibiting the proper PsbP-PSII interaction. Finally, mass spectrometric analysis has identified the cross-linked sites of PsbP and PsbE as Ala-1 and Glu-57, respectively. Therefore His-144, in the C-terminal domain of PsbP, plays a crucial role in maintaining proper N terminus interaction. These data provide important information about the binding characteristics of PsbP in green plant PSII.
Sheptovitsky, Y G; Brudvig, G W
1996-12-17
Photosystem II (PSII) membranes exhibit catalase and polyphenol oxidase (PPO) activities. Mild heat treatment of PSII membranes for 90 min at 30 degrees C releases most of these enzyme activities into the supernatant, accompanied by a 7-fold activation of PPO. In contrast, mild heat treatment of thylakoid membranes does not release significant amounts of either activity, indicating that both enzymes are bound to the luminal surface of the thylakoid membrane. The heat-released PSII membrane-associated catalase and PPO have been purified and characterized. Catalase activity was correlated with a 63 kDa polypeptide which was purified by batch adsorption to anion-exchange beads followed by gel filtration. The PSII membrane-associated catalase is unstable in solution, probably due to irreversible aggregation. The enzyme was characterized in terms of molecular and subunit size, amino-acid composition, UV-visible absorption, heme content, pH optimum, inhibitor sensitivity, and K(m) value for H2O2. Its properties indicate that the PSII membrane-associated catalase is a luminal thylakoid membrane-bound heme enzyme that has not been identified previously. The residual catalase activity of PSII membranes after mild heat treatment is irreversibly inhibited with 3-amino-1,2,4-triazole, a specific inhibitor of heme catalases, without inhibition of O2-evolution activity. This result indicates that little, if any, of the catalase activity from PSII membranes in the dark is catalyzed by the O2-evolving center of PSII. PPO activity was correlated with a 48 kDa polypeptide. However, the 48 kDa polypeptide and another heat-released polypeptide of 72 kDa have the same N-terminal sequence, which is also identical to that of a known 64 kDa protein [Hind, G., Marshak, D. R., & Coughlan, S. J. (1995) Biochemistry 34, 8157-8164]. During heat treatment of PSII membranes and further manipulations it was found that the 72 kDa polypeptide was largely converted into the 48 kDa polypeptide. Thus, the 72 kDa polypeptide appears to be a latent precursor of the active 48 kDa PPO. The PSII membrane-associated PPO was purified by anion-exchange chromatography and was characterized in terms of substrate specificity, pH optimum, inhibitor sensitivity and native molecular weight. The heat-released PPO appears to be identical to the enzyme previously isolated from spinach thylakoid membranes [Golbeck, J. H., & Cammarata, K. V. (1981) Plant Physiol. 67, 977-984].
Bartsevich, V V; Pakrasi, H B
1995-01-01
During photosynthesis, the photosystem II (PSII) pigment-protein complex catalyzes oxygen evolution, a reaction in which a four-manganese ensemble plays a crucial role. Using a newly developed selection scheme, we have isolated BP13, a random photosynthesis-deficient mutant strain of the cyanobacterium, Synechocystis 6803. This mutant grew slowly under photoautotrophic conditions, and had a low oxygen evolution activity. Biochemical analysis revealed that the lesion in this mutant strain had specifically affected the Mn ensemble in PSII. Interestingly, incubation of BP13 cells with micromolar levels of added Mn induced rapid recovery of oxygen evolution activity. The mutant could be complemented with a fragment of wild-type chromosomal DNA containing three closely linked genes, mntA, mntB and mntC. These gene products showed significant sequence similarities with polypeptide components of bacterial permeases that are members of the 'ABC (ATP binding cassette) superfamily' of transporter proteins. We determined that in the BP13 strain, a single nucleotide change had resulted in the replacement of an alanine by an aspartic acid residue in MntA, a soluble protein containing ATP binding motifs. These results suggest that the mntCAB gene cluster encodes polypeptide components of a Mn transporter, the first such protein complex identified in any organism. PMID:7743991
Amann, Katrin; Lezhneva, Lina; Wanner, Gerd; Herrmann, Reinhold G.; Meurer, Jörg
2004-01-01
To investigate the nuclear-controlled mechanisms of [4Fe-4S] cluster assembly in chloroplasts, we selected Arabidopsis thaliana mutants with a decreased content of photosystem I (PSI) containing three [4Fe-4S] clusters. One identified gene, ACCUMULATION OF PHOTOSYSTEM ONE1 (APO1), belongs to a previously unknown gene family with four defined groups (APO1 to APO4) only found in nuclear genomes of vascular plants. All homologs contain two related motifs of ∼100 amino acid residues that could potentially provide ligands for [4Fe-4S] clusters. APO1 is essentially required for photoautotrophic growth, and levels of PSI core subunits are below the limit of detection in the apo1 mutant. Unlike other Arabidopsis PSI mutants, apo1 fails to accumulate significant amounts of the outer antenna subunits of PSI and PSII and to form grana stacks. In particular, APO1 is essentially required for stable accumulation of other plastid-encoded and nuclear-encoded [4Fe-4S] cluster complexes within the chloroplast, whereas [2Fe-2S] cluster–containing complexes appear to be unaffected. In vivo labeling experiments and analyses of polysome association suggest that translational elongation of the PSI transcripts psaA and psaB is specifically arrested in the mutant. Taken together, our findings suggest that APO1 is involved in the stable assembly of several [4Fe-4S] cluster–containing complexes of chloroplasts and interferes with translational events probably in association with plastid nucleoids. PMID:15494558
Offenbacher, Adam R.; Polander, Brandon C.; Barry, Bridgette A.
2013-01-01
Photosystem II (PSII) is a membrane-bound enzyme that utilizes solar energy to catalyze the photooxidation of water. Molecular oxygen is evolved after four sequential light-driven oxidation reactions at the Mn4CaO5 oxygen-evolving complex, producing five sequentially oxidized states, Sn. PSII is composed of 17 membrane-spanning subunits and three extrinsic subunits, PsbP, PsbQ, and PsbO. PsbO is intrinsically disordered and plays a role in facilitation of the water oxidizing cycle. Native PsbO can be removed and substituted with recombinant PsbO, thereby restoring steady-state activity. In this report, we used reaction-induced Fourier transform infrared spectroscopy to obtain information concerning the role of PsbP, PsbQ, and PsbO during the S state cycle. Light-minus-dark difference spectra were acquired, monitoring structural changes associated with each accessible flash-induced S state transition in a highly purified plant PSII preparation (Triton X-100, octylthioglucoside). A comparison of S2 minus S1 spectra revealed that removal of PsbP and PsbQ had no significant effect on the data, whereas amide frequency and intensity changes were associated with PsbO removal. These data suggest that PsbO acts as an organizational template for the PSII reaction center. To identify any coupled conformational changes arising directly from PsbO, global 13C-PsbO isotope editing was employed. The reaction-induced Fourier transform infrared spectra of accessible S states provide evidence that PsbO spectral contributions are temperature (263 and 277 K) and S state dependent. These experiments show that PsbO undergoes catalytically relevant structural dynamics, which are coupled over long distance to hydrogen-bonding changes at the Mn4CaO5 cluster. PMID:23940038
Far-red light is needed for efficient photochemistry and photosynthesis.
Zhen, Shuyang; van Iersel, Marc W
2017-02-01
The efficiency of monochromatic light to drive photosynthesis drops rapidly at wavelengths longer than 685nm. The photosynthetic efficiency of these longer wavelengths can be improved by adding shorter wavelength light, a phenomenon known as the Emerson enhancement effect. The reverse effect, the enhancement of photosynthesis under shorter wavelength light by longer wavelengths, however, has not been well studied and is often thought to be insignificant. We quantified the effect of adding far-red light (peak at 735nm) to red/blue or warm-white light on the photosynthetic efficiency of lettuce (Lactuca sativa). Adding far-red light immediately increased quantum yield of photosystem II (Φ PSII ) of lettuce by an average of 6.5 and 3.6% under red/blue and warm-white light, respectively. Similar or greater increases in Φ PSII were observed after 20min of exposure to far-red light. This longer-term effect of far-red light on Φ PSII was accompanied by a reduction in non-photochemical quenching of fluorescence (NPQ), indicating that far-red light reduced the dissipation of absorbed light as heat. The increase in Φ PSII and complementary decrease in NPQ is presumably due to preferential excitation of photosystem I (PSI) by far-red light, which leads to faster re-oxidization of the plastoquinone pool. This facilitates reopening of PSII reaction centers, enabling them to use absorbed photons more efficiently. The increase in Φ PSII by far-red light was associated with an increase in net photosynthesis (P n ). The stimulatory effect of far-red light increased asymptotically with increasing amounts of far-red. Overall, our results show that far-red light can increase the photosynthetic efficiency of shorter wavelength light that over-excites PSII. Copyright © 2016 Elsevier GmbH. All rights reserved.
Krause, G. Heinrich; Schmude, Claudia; Garden, Hermann; Koroleva, Olga Y.; Winter, Klaus
1999-01-01
The effects of solar ultraviolet (UV)-B and UV-A radiation on the potential efficiency of photosystem II (PSII) in leaves of tropical plants were investigated in Panama (9°N). Shade-grown tree seedlings or detached sun leaves from the outer crown of mature trees were exposed for short periods (up to 75 min) to direct sunlight filtered through plastic or glass filters that absorbed either UV-B or UV-A+B radiation, or transmitted the complete solar spectrum. Persistent changes in potential PSII efficiency were monitored by means of the dark-adapted ratio of variable to maximum chlorophyll a fluorescence. In leaves of shade-grown tree seedlings, exposure to the complete solar spectrum resulted in a strong decrease in potential PSII efficiency, probably involving protein damage. A substantially smaller decline in the dark-adapted ratio of variable to maximum chlorophyll a fluorescence was observed when UV-B irradiation was excluded. The loss in PSII efficiency was further reduced by excluding both UV-B and UV-A light. The photoinactivation of PSII was reversible under shade conditions, but restoration of nearly full activity required at least 10 d. Repeated exposure to direct sunlight induced an increase in the pool size of xanthophyll cycle pigments and in the content of UV-absorbing vacuolar compounds. In sun leaves of mature trees, which contained high levels of UV-absorbing compounds, effects of UV-B on PSII efficiency were observed in several cases and varied with developmental age and acclimation state of the leaves. The results show that natural UV-B and UV-A radiation in the tropics may significantly contribute to photoinhibition of PSII during sun exposure in situ, particularly in shade leaves exposed to full sunlight. PMID:10594122
Moise, Nicolae; Moya, Ismaël
2004-06-28
The relationship between the fluorescence lifetime (tau) and yield (Phi) obtained in phase and modulation fluorometry at 54 MHz during the chlorophyll fluorescence induction in dark-adapted leaves under low actinic light has been investigated. Three typical phases have been identified: (i) linear during the OI photochemical rise, (ii) convex curvature during the subsequent IP thermal rise, and (iii) linear during the PS slow decay. A similar relationship has been obtained in the fluorescence induction for the fluorescence yield measured at 685 nm plotted versus the fluorescence yield measured at 735 nm. A spectrally resolved analysis shows that the curvature of the tau-Phi relationship is not due to chlorophyll fluorescence reabsorption effects. Several other hypotheses are discussed and we conclude that the curvature of the tau-Phi relationship is due to a variable and transitory nonphotochemical quenching. We tentatively propose that this quenching results from a conformational change of a pigment-protein complex of Photosystem II core antenna during the IP phase and could explain both spectral and temporal transitory changes of the fluorescence. A variable blue shift of the 685 nm peak of the fluorescence spectrum during the IP phase has been observed, supporting this hypothesis.
Assessment of photosynthesis regulation in mixotrophically cultured microalga Chlorella sorokiniana
Li, Tingting; Kirchhoff, Helmut; Gargouri, Mahmoud; ...
2016-07-19
Mixotrophic growth of microalgae offers great potential as an efficient strategy for biofuel production. In this study, photosynthetic regulation of mixotrophically cultured Chlorella sorokiniana cells was systematically evaluated. Mixotrophic cells in the exponential growth phase showed the highest photosynthetic activity, where maximum photosynthetic O 2 evolution was approximately 3- and 4-fold higher than cells in the same phase grown photoautotrophically in 1% CO 2 (in air) and air, respectively. Additionally, characteristic chlorophyll fluorescence parameters demonstrated that no limitation in electron transport downstream of PSII was detected in mixotrophic cells. Up-regulation of photosynthetic activity was associated with high total ribulose-1, 5-bisphosphatemore » carboxylase/oxygenase (Rubisco) carboxylase activity and expression level of phosphoribulokinase (PRK). After 3 days, photosynthetic O 2 evolution of mixotrophic cells that went to the stationary phase, was strongly reduced, with reduced photochemical efficiency and reorganization of the PSII complex. Simultaneously, enzymatic activity for Rubisco carboxylase and mRNA levels of Rubisco and PRK diminished. Importantly, there was almost no non-photochemical quenching for mixotrophic cells, whether grown in log or stationary phase. A decline in the quantum efficiency of PSII and an oxidized plastoquinone pool (PQ pool) was observed under N-depleted conditions during mixotrophic growth. Finally, these results demonstrate that photosynthesis is regulated differently in mixotrophically cultured C. sorokiniana cells than in cells grown under photoautotrophic conditions, with a particularly strong impact by nitrogen levels in the cells.« less
Lambreva, Maya D.; Giardi, Maria Teresa; Rambaldi, Irene; Antonacci, Amina; Pastorelli, Sandro; Bertalan, Ivo; Husu, Ivan; Johanningmeier, Udo; Rea, Giuseppina
2013-01-01
This study was prompted by increasing concerns about ecological damage and human health threats derived by persistent contamination of water and soil with herbicides, and emerging of bio-sensing technology as powerful, fast and efficient tool for the identification of such hazards. This work is aimed at overcoming principal limitations negatively affecting the whole-cell-based biosensors performance due to inadequate stability and sensitivity of the bio-recognition element. The novel bio-sensing elements for the detection of herbicides were generated exploiting the power of molecular engineering in order to improve the performance of photosynthetic complexes. The new phenotypes were produced by an in vitro directed evolution strategy targeted at the photosystem II (PSII) D1 protein of Chlamydomonas reinhardtii, using exposures to radical-generating ionizing radiation as selection pressure. These tools proved successful to identify D1 mutations conferring enhanced stability, tolerance to free-radical-associated stress and competence for herbicide perception. Long-term stability tests of PSII performance revealed the mutants capability to deal with oxidative stress-related conditions. Furthermore, dose-response experiments indicated the strains having increased sensitivity or resistance to triazine and urea type herbicides with I50 values ranging from 6×10−8 M to 2×10−6 M. Besides stressing the relevance of several amino acids for PSII photochemistry and herbicide sensing, the possibility to improve the specificity of whole-cell-based biosensors, via coupling herbicide-sensitive with herbicide-resistant strains, was verified. PMID:23613953
Dall'Osto, Luca; Cazzaniga, Stefano; North, Helen; Marion-Poll, Annie; Bassi, Roberto
2007-03-01
The aba4-1 mutant completely lacks neoxanthin but retains all other xanthophyll species. The missing neoxanthin in light-harvesting complex (Lhc) proteins is compensated for by higher levels of violaxanthin, albeit with lower capacity for photoprotection compared with proteins with wild-type levels of neoxanthin. Detached leaves of aba4-1 were more sensitive to oxidative stress than the wild type when exposed to high light and incubated in a solution of photosensitizer agents. Both treatments caused more rapid pigment bleaching and lipid oxidation in aba4-1 than wild-type plants, suggesting that neoxanthin acts as an antioxidant within the photosystem II (PSII) supercomplex in thylakoids. While neoxanthin-depleted Lhc proteins and leaves had similar sensitivity as the wild type to hydrogen peroxide and singlet oxygen, they were more sensitive to superoxide anions. aba4-1 intact plants were not more sensitive than the wild type to high-light stress, indicating the existence of compensatory mechanisms of photoprotection involving the accumulation of zeaxanthin. However, the aba4-1 npq1 double mutant, lacking zeaxanthin and neoxanthin, underwent stronger PSII photoinhibition and more extensive oxidation of pigments than the npq1 mutant, which still contains neoxanthin. We conclude that neoxanthin preserves PSII from photoinactivation and protects membrane lipids from photooxidation by reactive oxygen species. Neoxanthin appears particularly active against superoxide anions produced by the Mehler's reaction, whose rate is known to be enhanced in abiotic stress conditions.
Dall'Osto, Luca; Cazzaniga, Stefano; North, Helen; Marion-Poll, Annie; Bassi, Roberto
2007-01-01
The aba4-1 mutant completely lacks neoxanthin but retains all other xanthophyll species. The missing neoxanthin in light-harvesting complex (Lhc) proteins is compensated for by higher levels of violaxanthin, albeit with lower capacity for photoprotection compared with proteins with wild-type levels of neoxanthin. Detached leaves of aba4-1 were more sensitive to oxidative stress than the wild type when exposed to high light and incubated in a solution of photosensitizer agents. Both treatments caused more rapid pigment bleaching and lipid oxidation in aba4-1 than wild-type plants, suggesting that neoxanthin acts as an antioxidant within the photosystem II (PSII) supercomplex in thylakoids. While neoxanthin-depleted Lhc proteins and leaves had similar sensitivity as the wild type to hydrogen peroxide and singlet oxygen, they were more sensitive to superoxide anions. aba4-1 intact plants were not more sensitive than the wild type to high-light stress, indicating the existence of compensatory mechanisms of photoprotection involving the accumulation of zeaxanthin. However, the aba4-1 npq1 double mutant, lacking zeaxanthin and neoxanthin, underwent stronger PSII photoinhibition and more extensive oxidation of pigments than the npq1 mutant, which still contains neoxanthin. We conclude that neoxanthin preserves PSII from photoinactivation and protects membrane lipids from photooxidation by reactive oxygen species. Neoxanthin appears particularly active against superoxide anions produced by the Mehler's reaction, whose rate is known to be enhanced in abiotic stress conditions. PMID:17351115
Dobrikova, Anelia G; Apostolova, Emilia L
2015-07-20
The effect of the exogenously added quercetin against the UV-B inhibition of the photosystem II (PSII) functions in isolated pea thylakoid membranes suspended at different pH of the medium (6.5, 7.6 and 8.4) was investigated. The data revealed that the interaction of this flavonoid with the membranes depends on the pH and influences the initial S0-S1 state distribution of PSII in the dark, the energy transfer between pigment-protein complexes of the photosynthetic apparatus and the membrane fluidity. Quercetin also displays a different UV-protective effect depending on its location in the membranes, as the effect is more pronounced at pH 8.4 when it is located at the membrane surface. The results suggest that quercetin induces structural changes in thylakoid membranes, one of the possible reasons for its protection of the photosynthetic apparatus. Copyright © 2015 Elsevier GmbH. All rights reserved.
Construction of a psb C deletion strain in Synechocystis 6803.
Goldfarb, N; Knoepfle, N; Putnam-Evans, C
1997-01-01
Synechocystis 6803 is a cyanobacterium that carries out-oxygenic photosynthesis. We are interested in the introduction of mutations in the large extrinsic loop region of the CP43 protein of Photosystem II (PSII). CP43 appears to be required for the stable assembly of the PSII complex and also appears to play a role in photosynthetic oxygen evolution. Deletion of short segments of the large extrinsic loop results in mutants incapable of evolving oxygen. Alterations in psbC, the gene encoding CP43, are introduced into Synechocystis 6803 by transformation and homologous recombination. Specifically, plasmid constructs bearing the site-directed mutations are introduced into a deletion strain where the portion of the gene encoding the area of mutation has been deleted and replaced by a gene conferring antibiotic resistance. We have constructed a deletion strain of Synechocystis appropriate for the introduction of mutations in the large extrinsic loop of CP43 and have used it successfully to produce site-directed mutants.
NASA Technical Reports Server (NTRS)
Jiao, Shunxing; Hilaire, Emmanuel; Paulsen, Avelina Q.; Guikema, James A.
2004-01-01
The photosynthetic apparatus contains several protein complexes, many of which are regulated by environmental conditions. In this study, the influences of microgravity on PSI and PSII in Brassica rapa plants grown aboard the space shuttle were examined. We found that Brassica plants grown in space had a normal level of growth relative to controls under similar conditions on Earth. Upon return to Earth, cotyledons were harvested and thylakoid membranes were isolated. Analysis of chlorophyll contents showed that the Chl a/b ratio (3.5) in flight cotyledons was much higher than a ratio of 2.42 in the ground controls. The flight samples also had a reduction of PSI complexes and a corresponding 30% decrease of PSI photochemical activity. Immunoblotting showed that the reaction centre polypeptides of PSI were more apparently decreased (e.g. by 24-33% for PsaA and PsaB, and 57% for PsaC) than the light-harvesting complexes. In comparison, the accumulation of PSII complex was less affected in microgravity, thus only a slight reduction in D1, D2 and LHCII was observed in protein blots. However, there was a 32% decrease of OEC1 in the flight samples, indicating a defective OEC subcomplex. In addition, an average 54% increase of the 54 kDa CF1-beta isoform was found in the flight samples, suggesting that space-grown plants suffered from certain stresses, consistent with implications of the increased Chl a/b ratio. Taken together, the results demonstrated that Brassica plants can adapt to spaceflight microgravity, but with significant alterations in chloroplast structures and photosynthetic complexes, and especially reduction of PSI and its activity.
Damage to photosystem II in symbiotic dinoflagellates: a determinant of coral bleaching.
Warner, M E; Fitt, W K; Schmidt, G W
1999-07-06
Coral bleaching has been defined as a general phenomenon, whereby reef corals turn visibly pale because of the loss of their symbiotic dinoflagellates and/or algal pigments during periods of exposure to elevated seawater temperatures. During the summer of 1997, seawater temperatures in the Florida Keys remained at or above 30 degrees C for more than 6 weeks, and extensive coral bleaching was observed. Bleached colonies of the dominant Caribbean reef-building species, Montastrea faveolata and Montastrea franksi, were sampled over a depth gradient from 1 to 17 m during this period of elevated temperature and contained lower densities of symbiotic dinoflagellates in deeper corals than seen in previous "nonbleaching" years. Fluorescence analysis by pulse-amplitude modulation fluorometry revealed severe damage to photosystem II (PSII) in remaining symbionts within the corals, with greater damage indicated at deeper depths. Dinoflagellates with the greatest loss in PSII activity also showed a significant decline in the D1 reaction center protein of PSII, as measured by immunoblot analysis. Laboratory experiments on the temperature-sensitive species Montastrea annularis, as well as temperature-sensitive and temperature-tolerant cultured symbiotic dinoflagellates, confirmed the temperature-dependent loss of PSII activity and concomitant decrease in D1 reaction center protein seen in symbionts collected from corals naturally bleached on the reef. In addition, variation in PSII repair was detected, indicating that perturbation of PSII protein turnover rates during photoinhibition at elevated temperatures underlies the physiological collapse of symbionts in corals susceptible to heat-induced bleaching.
Huang, Wei; Yang, Ying-Jie; Zhang, Shi-Bao
2017-02-01
Cyclic electron flow (CEF) around photosystem I (PSI) is essential for photosynthesis in mature leaves. However, the physiological roles of CEF in immature leaves are little known. Here, we measured the PSI and PSII activities, light response changes in PSI and PSII energy quenching for immature and mature leaves of Erythrophleum guineense grown under full sunlight. Comparing with the maximum quantum yield of PSII (F v /F m ), the immature leaves had much lower values of the maximum photo-oxidizable P700 (P m ) than the mature leaves, suggesting the unsynchronized development of PSI and PSII activities. Furthermore, the immature leaves displayed significantly lower capacities for the photosynthetic electron flow through PSII (ETRII) and CEF. However, when exposed to high light, the immature leaves displayed higher levels of non-photochemical quenching (NPQ) and P700 oxidation ration [Y(ND)] than mature leaves. Under high light, the similar NPQ values were accompanied with much lower CEF activity in the immature leaves. These results suggest that, in immature leaves, CEF primarily contributes to photoprotection for PSI and PSII via acidification of thylakoid lumen. By comparison, in mature leaves, a large fraction of CEF-dependent generation of ΔpH contributes to ATP synthesis and a relative small proportion favors photoprotection via lumen acidification. These findings highlight the specific roles of CEF in photosynthetic regulation in immature and mature leaves. Copyright © 2016 Elsevier GmbH. All rights reserved.
Lavaud, Johann; Rousseau, Bernard; van Gorkom, Hans J.; Etienne, Anne-Lise
2002-01-01
The pool size of the xanthophyll cycle pigment diadinoxanthin (DD) in the diatom Phaeodactylum tricornutum depends on illumination conditions during culture. Intermittent light caused a doubling of the DD pool without significant change in other pigment contents and photosynthetic parameters, including the photosystem II (PSII) antenna size. On exposure to high-light intensity, extensive de-epoxidation of DD to diatoxanthin (DT) rapidly caused a very strong quenching of the maximum chlorophyll fluorescence yield (Fm, PSII reaction centers closed), which was fully reversed in the dark. The non-photochemical quenching of the minimum fluorescence yield (Fo, PSII centers open) decreased the quantum efficiency of PSII proportionally. For both Fm and Fo, the non-photochemical quenching expressed as F/F′ − 1 (with F′ the quenched level) was proportional to the DT concentration. However, the quenching of Fo relative to that of Fm was much stronger than random quenching in a homogeneous antenna could explain, showing that the rate of photochemical excitation trapping was limited by energy transfer to the reaction center rather than by charge separation. The cells can increase not only the amount of DT they can produce, but also its efficiency in competing with the PSII reaction center for excitation. The combined effect allowed intermittent light grown cells to down-regulate PSII by 90% and virtually eliminated photoinhibition by saturating light. The unusually rapid and effective photoprotection by the xanthophyll cycle in diatoms may help to explain their dominance in turbulent waters. PMID:12114593
Ware, Maxwell A.; Belgio, Erica; Ruban, Alexander V.
2015-01-01
The efficiency of protective energy dissipation by non-photochemical quenching (NPQ) in photosystem II (PSII) has been recently quantified by a new non-invasive photochemical quenching parameter, qPd. PSII yield (ФPSII) was expressed in terms of NPQ, and the extent of damage to the reaction centres (RCIIs) was calculated via qPd as: ФPSII=qPd×(F v/F m)/{1+[1–(F v/F m)]×NPQ}. Here this approach was used to determine the amount of NPQ required to protect all PSII reaction centres (pNPQ) under a gradually increasing light intensity, in the zeaxanthin-deficient (npq1) Arabidopsis mutant, compared with PsbS protein-deficient (npq4) and wild-type plants. The relationship between maximum pNPQ and tolerated light intensity for all plant genotypes followed similar trends. These results suggest that under a gradually increasing light intensity, where pNPQ is allowed to develop, it is only the amplitude of pNPQ which is the determining factor for protection. However, the use of a sudden constant high light exposure routine revealed that the presence of PsbS, not zeaxanthin, offered better protection for PSII. This was attributed to a slower development of pNPQ in plants lacking PsbS in comparison with plants that lacked zeaxanthin. This research adds further support to the value of pNPQ and qPd as effective parameters for assessing NPQ effectiveness in different types of plants. PMID:25429003
Benkov, Michael A; Yatsenko, Anton M; Tikhonov, Alexander N
2018-06-20
In this work, we have compared photosynthetic characteristics of photosystem II (PSII) in Tradescantia leaves of two contrasting ecotypes grown under the low light (LL) and high light (HL) regimes during their entire growth period. Plants of the same genus, T. fluminensis (shade-tolerant) and T. sillamontana (sun-resistant), were cultivated at 50-125 µmol photons m -2 s -1 (LL) or at 875-1000 µmol photons m -2 s -1 (HL). Analyses of intrinsic PSII efficiency was based on measurements of fast chlorophyll (Chl) a fluorescence kinetics (the OJIP test). The fluorescence parameters F v /F m (variable fluorescence) and F 0 (the initial level of fluorescence) in dark-adapted leaves were used to quantify the photochemical properties of PSII. Plants of different ecotypes showed different sustainability with respect to changes in the environmental light intensity and temperature treatment. The sun-resistant species T. sillamontana revealed the tolerance to variations in irradiation intensity, demonstrating constancy of maximum quantum efficiency of PSII upon variations of the growth light. In contrast to T. sillamontana, facultative shade species T. fluminensis demonstrated variability of PSII photochemical activity, depending on the growth light intensity. The susceptibility of T. fluminensis to solar stress was documented by a decrease in F v /F m and a rise of F 0 during the long-term exposition of T. fluminensis to HL, indicating the loss of photochemical activity of PSII. The short-term (10 min) heat treatment of leaf cuttings caused inactivation of PSII. The temperature-dependent heating effects were different in T. fluminensis and T. sillamontana. Sun-resistant plants T. sillamontana acclimated to LL and HL displayed the same plots of F v /F m versus the treatment temperature (t), demonstrating a decrease in F v /F m at t ≥ 45 °C. The leaves of shadow-tolerant species T. fluminensis grown under the LL and HL conditions revealed different sensitivities to heat treatment. Plants grown under the solar stress conditions (HL) demonstrated a gradual decline of F v /F m at lower heating temperatures (t ≥ 25 °C), indicating the "fragility" of their PSII as compared to T. fluminensis grown at LL. Different responses of sun and shadow species of Tradescantia to growth light and heat treatment are discussed in the context of their biochemical and ecophysiological properties.
In vivo system for analyzing the function of the PsbP protein using Chlamydomonas reinhardtii.
Nishimura, Taishi; Sato, Fumihiko; Ifuku, Kentaro
2017-09-01
The PsbP protein is an extrinsic subunit of photosystem II (PSII) specifically developed in green-plant species including land plants and green algae. The protein-protein interactions involving PsbP and its effect on oxygen evolution have been investigated in vitro using isolated PSII membranes. However, the importance of those interactions needs to be examined at the cellular level. To this end, we developed a system expressing exogenous PsbP in the background of the Chlamydomonas BF25 mutant lacking native PsbP. Expression of His-tagged PsbP successfully restored the oxygen-evolving activity and photoautotrophic growth of the mutant, while PsbP-∆15 lacking the N-terminal 15 residues, which are crucial for the oxygen-evolving activity of spinach PSII in vitro, only partially did. This demonstrated the importance of N-terminal sequence of PsbP for the photosynthetic activity in vivo. Furthermore, the PSII-LHCII supercomplex can be specifically purified from the Chlamydomonas cells having His-tagged PsbP using a metal affinity chromatography. This study provides a platform not only for the functional analysis of PsbP in vivo but also for structural analysis of the PSII-LHCII supercomplex from green algae.
Photosystem II Photoinactivation, Repair, and Protection in Marine Centric Diatoms1[OA
Wu, Hongyan; Roy, Suzanne; Alami, Meriem; Green, Beverley R.; Campbell, Douglas A.
2012-01-01
Revised Version Diatoms are important contributors to aquatic primary production, and can dominate phytoplankton communities under variable light regimes. We grew two marine diatoms, the small Thalassiosira pseudonana and the large Coscinodiscus radiatus, across a range of temperatures and treated them with a light challenge to understand their exploitation of variable light environments. In the smaller T. pseudonana, photosystem II (PSII) photoinactivation outran the clearance of PSII protein subunits, particularly in cells grown at sub- or supraoptimal temperatures. In turn the absorption cross section serving PSII photochemistry was down-regulated in T. pseudonana through induction of a sustained phase of nonphotochemical quenching that relaxed only slowly over 30 min of subsequent low-light incubation. In contrast, in the larger diatom C. radiatus, PSII subunit turnover was sufficient to counteract a lower intrinsic susceptibility to photoinactivation, and C. radiatus thus did not need to induce sustained nonphotochemical quenching under the high-light treatment. T. pseudonana thus incurs an opportunity cost of sustained photosynthetic down-regulation after the end of an upward light shift, whereas the larger C. radiatus can maintain a balanced PSII repair cycle under comparable conditions. PMID:22829321
Effects of formate binding on the quinone-iron electron acceptor complex of photosystem II.
Sedoud, Arezki; Kastner, Lisa; Cox, Nicholas; El-Alaoui, Sabah; Kirilovsky, Diana; Rutherford, A William
2011-02-01
EPR was used to study the influence of formate on the electron acceptor side of photosystem II (PSII) from Thermosynechococcus elongatus. Two new EPR signals were found and characterized. The first is assigned to the semiquinone form of Q(B) interacting magnetically with a high spin, non-heme-iron (Fe²(+), S=2) when the native bicarbonate/carbonate ligand is replaced by formate. This assignment is based on several experimental observations, the most important of which were: (i) its presence in the dark in a significant fraction of centers, and (ii) the period-of-two variations in the concentration expected for Q(B)(•-) when PSII underwent a series of single-electron turnovers. This signal is similar but not identical to the well-know formate-modified EPR signal observed for the Q(A)(•-)Fe²(+) complex (W.F.J. Vermaas and A.W. Rutherford, FEBS Lett. 175 (1984) 243-248). The formate-modified signals from Q(A)(•-)Fe²(+) and Q(B)(•-)Fe²(+) are also similar to native semiquinone-iron signals (Q(A)(•-)Fe²(+)/Q(B)(•-)Fe²(+)) seen in purple bacterial reaction centers where a glutamate provides the carboxylate ligand to the iron. The second new signal was formed when Q(A)(•-) was generated in formate-inhibited PSII when the secondary acceptor was reduced by two electrons. While the signal is reminiscent of the formate-modified semiquinone-iron signals, it is broader and its main turning point has a major sub-peak at higher field. This new signal is attributed to the Q(A)(•-)Fe²(+) with formate bound but which is perturbed when Q(B) is fully reduced, most likely as Q(B)H₂ (or possibly Q(B)H(•-) or Q(B)(²•-)). Flash experiments on formate-inhibited PSII monitoring these new EPR signals indicate that the outcome of charge separation on the first two flashes is not greatly modified by formate. However on the third flash and subsequent flashes, the modified Q(A)(•-)Fe²(+)Q(B)H₂ signal is trapped in the EPR experiment and there is a marked decrease in the quantum yield of formation of stable charge pairs. The main effect of formate then appears to be on Q(B)H₂ exchange and this agrees with earlier studies using different methods. Copyright © 2010 Elsevier B.V. All rights reserved.
2010-01-01
Background Red algae are primitive photosynthetic eukaryotes, whose spores are ideal subjects for studies of photosynthesis and development. Although the development of red alga spores has received considerable research attention, few studies have focused on the detailed morphological and photosynthetic changes that occur during the early development of tetraspores of Gracilaria vermiculophylla (Ohmi) Papenfuss (Gracilariales, Rhodophyta). Herein, we documented these changes in this species of red algae. Results In the tetraspores, we observed two types of division, cruciate and zonate, and both could develop into multicellular bodies (disks). During the first 84 hours, tetraspores divided several times, but the diameter of the disks changed very little; thereafter, the diameter increased significantly. Scanning electron microscopy observations and analysis of histological sections revealed that the natural shape of the disk remains tapered over time, and the erect frond grows from the central protrusion of the disk. Cultivation of tissue from excised disks demonstrated that the central protrusion of the disk is essential for initiation of the erect frond. Photosynthetic (i.e., PSII) activities were measured using chlorophyll fluorescence analysis. The results indicated that freshly released tetraspores retained limited PSII photosynthetic capabilities; when the tetraspores attached to a substrate, those capabilities increased significantly. In the disk, the PSII activity of both marginal and central cells was similar, although some degree of morphological polarity was present; the PSII photosynthetic capabilities in young germling exhibited an apico-basal gradient. Conclusions Attachment of tetraspores to a substrate significantly enhanced their PSII photosynthetic capabilities, and triggered further development. The central protrusion of the disk is the growth point, may have transfer of nutritive material with the marginal cells. Within the young germling, the hetero-distribution of PSII photosynthetic capabilities might be due to the differences in cell functions. PMID:20426804
Khanal, Nityananda; Bray, Geoffrey E.; Grisnich, Anna; Moffatt, Barbara A.; Gray, Gordon R.
2017-01-01
Photosynthetic organisms are able to sense energy imbalances brought about by the overexcitation of photosystem II (PSII) through the redox state of the photosynthetic electron transport chain, estimated as the chlorophyll fluorescence parameter 1-qL, also known as PSII excitation pressure. Plants employ a wide array of photoprotective processes that modulate photosynthesis to correct these energy imbalances. Low temperature and light are well established in their ability to modulate PSII excitation pressure. The acquisition of freezing tolerance requires growth and development a low temperature (cold acclimation) which predisposes the plant to photoinhibition. Thus, photosynthetic acclimation is essential for proper energy balancing during the cold acclimation process. Eutrema salsugineum (Thellungiella salsuginea) is an extremophile, a close relative of Arabidopsis thaliana, but possessing much higher constitutive levels of tolerance to abiotic stress. This comparative study aimed to characterize the photosynthetic properties of Arabidopsis (Columbia accession) and two accessions of Eutrema (Yukon and Shandong) isolated from contrasting geographical locations at cold acclimating and non-acclimating conditions. In addition, three different growth regimes were utilized that varied in temperature, photoperiod and irradiance which resulted in different levels of PSII excitation pressure. This study has shown that these accessions interact differentially to instantaneous (measuring) and long-term (acclimation) changes in PSII excitation pressure with regard to their photosynthetic behaviour. Eutrema accessions contained a higher amount of photosynthetic pigments, showed higher oxidation of P700 and possessed more resilient photoprotective mechanisms than that of Arabidopsis, perhaps through the prevention of PSI acceptor-limitation. Upon comparison of the two Eutrema accessions, Shandong demonstrated the greatest PSII operating efficiency (ΦPSII) and P700 oxidizing capacity, while Yukon showed greater growth plasticity to irradiance. Both of these Eutrema accessions are able to photosynthetically acclimate but do so by different mechanisms. The Shandong accessions demonstrate a stable response, favouring energy partitioning to photochemistry while the Yukon accession shows a more rapid response with partitioning to other (non-photochemical) strategies. PMID:28792470
Tyystjärvi, Esa; Rantamäki, Susanne; Tyystjärvi, Joonas
2009-01-01
Energy transfer between photosystem II (PSII) centers is known from previous fluorescence studies. We have studied the theoretical consequences of energetic connectivity of PSII centers on photosynthetic thermoluminescence (TL) and predict that connectivity affects the TL Q band. First, connectivity is expected to make the Q band wider and more symmetric than an ideal first-order TL band. Second, the presence of closed PSII centers in an energetically connected group of PSII centers is expected to lower the probability that an exciton originating in a recombination reaction becomes retrapped. The latter effect would shift the Q band toward lower temperature, and the shift would be greater the higher the percentage of closed PSII centers at the beginning of the measurement. These effects can be generalized as second-order effects, as they make the Q band resemble the second-order TL bands obtained from semiconducting solids. We applied the connected-units model of chlorophyll fluorescence to derive equations for quantifying the second-order effects in TL. To test the effect of the initial proportion of closed reaction centers, we measured the Q band with different intensities of the excitation flash and found that the peak position changed by 2.5°C toward higher temperature when the flash intensity was lowered from saturating to 0.39% of saturating. The result shows that energy transfer between reaction centers of PSII forms the physical basis of retrapping in photosynthetic TL. The second-order effects partially explain the deviation of the form of the Q band from ideal first-order TL. PMID:19413979
Miyata, Kazunori; Ikeda, Hiroshi; Nakaji, Masayoshi; Kanel, Dhana Raj; Terashima, Ichiro
2015-09-01
The extent of photoinhibition of PSII is determined by a balance between the rate of photodamage to PSII and that of repair of the damaged PSII. It has already been indicated that the rate constants of photodamage (kpi) and repair (krec) of the leaves differ depending on their growth light environment. However, there are no studies using plants in the field. We examined these rate constants and fluorescence parameters of several field-grown plants to determine inter-relationships between these values and the growth environment. The kpi values were strongly related to the excess energy, EY, of the puddle model and non-regulated energy dissipation, Y(NO), of the lake model, both multiplied by the photosynthetically active photon flux density (PPFD) level during the photoinhibitory treatment. In contrast, the krec values corrected against in situ air temperature were very strongly related to the daily PPFD level. The plants from the fields showed higher NPQ than the chamber-grown plants, probably because these field plants acclimated to stronger lightflecks than the averaged growth PPFD. Comparing chamber-grown plants and the field plants, we showed that kpi is determined by the incident light level and the photosynthetic capacities such as in situ rate of PSII electron transport and non-photochemical quenching (NPQ) [e.g. Y(NO)×PPFD] and that krec is mostly determined by the growth light and temperature levels. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Ware, Maxwell A; Belgio, Erica; Ruban, Alexander V
2015-03-01
The efficiency of protective energy dissipation by non-photochemical quenching (NPQ) in photosystem II (PSII) has been recently quantified by a new non-invasive photochemical quenching parameter, qPd. PSII yield (ФPSII) was expressed in terms of NPQ, and the extent of damage to the reaction centres (RCIIs) was calculated via qPd as: ФPSII=qPd×(F v/F m)/{1+[1-(F v/F m)]×NPQ}. Here this approach was used to determine the amount of NPQ required to protect all PSII reaction centres (pNPQ) under a gradually increasing light intensity, in the zeaxanthin-deficient (npq1) Arabidopsis mutant, compared with PsbS protein-deficient (npq4) and wild-type plants. The relationship between maximum pNPQ and tolerated light intensity for all plant genotypes followed similar trends. These results suggest that under a gradually increasing light intensity, where pNPQ is allowed to develop, it is only the amplitude of pNPQ which is the determining factor for protection. However, the use of a sudden constant high light exposure routine revealed that the presence of PsbS, not zeaxanthin, offered better protection for PSII. This was attributed to a slower development of pNPQ in plants lacking PsbS in comparison with plants that lacked zeaxanthin. This research adds further support to the value of pNPQ and qPd as effective parameters for assessing NPQ effectiveness in different types of plants. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.
2011-08-01
light- harvesting antennae, the photochemistry in Photosystem II (PSII), and the photosynthetic electron transport to carbon fixation. Because these...energy transfer within the photosynthetic light- harvesting antennae is compromised under the heavy metal stress, leading to decline in the energy...photosynthetic reactions stimulates accumulation of triplet states in light- harvesting complexes that will be evident from the triplet quenching of
Krumova, S.B.; Laptenok, S.P.; Borst, J.W.; Ughy, B.; Gombos, Z.; Ajlani, G.; van Amerongen, H.
2010-01-01
Picosecond fluorescence kinetics of wild-type (WT) and mutant cells of Synechocystis sp. PCC 6803, were studied at the ensemble level with a streak-camera and at the cell level using fluorescence-lifetime-imaging microscopy (FLIM). The FLIM measurements are in good agreement with the ensemble measurements, but they (can) unveil variations between and within cells. The BE mutant cells, devoid of photosystem II (PSII) and of the light-harvesting phycobilisomes, allowed the study of photosystem I (PSI) in vivo for the first time, and the observed 6-ps equilibration process and 25-ps trapping process are the same as found previously for isolated PSI. No major differences are detected between different cells. The PAL mutant cells, devoid of phycobilisomes, show four lifetimes: ∼20 ps (PSI and PSII), ∼80 ps, ∼440 ps, and 2.8 ns (all due to PSII), but not all cells are identical and variations in the kinetics are traced back to differences in the PSI/PSII ratio. Finally, FLIM measurements on WT cells reveal that in some cells or parts of cells, phycobilisomes are disconnected from PSI/PSII. It is argued that the FLIM setup used can become instrumental in unraveling photosynthetic regulation mechanisms in the future. PMID:20858447
Rajendran, Dhinesh Kumar; Park, Eunsoo; Nagendran, Rajalingam; Hung, Nguyen Bao; Cho, Byoung-Kwan; Kim, Kyung-Hwan; Lee, Yong Hoon
2016-08-01
Pathogen infection in plants induces complex responses ranging from gene expression to metabolic processes in infected plants. In spite of many studies on biotic stress-related changes in host plants, little is known about the metabolic and phenotypic responses of the host plants to Pseudomonas cichorii infection based on image-based analysis. To investigate alterations in tomato plants according to disease severity, we inoculated plants with different cell densities of P. cichorii using dipping and syringe infiltration methods. High-dose inocula (≥ 10(6) cfu/ml) induced evident necrotic lesions within one day that corresponded to bacterial growth in the infected tissues. Among the chlorophyll fluorescence parameters analyzed, changes in quantum yield of PSII (ΦPSII) and non-photochemical quenching (NPQ) preceded the appearance of visible symptoms, but maximum quantum efficiency of PSII (Fv/Fm) was altered well after symptom development. Visible/near infrared and chlorophyll fluorescence hyperspectral images detected changes before symptom appearance at low-density inoculation. The results of this study indicate that the P. cichorii infection severity can be detected by chlorophyll fluorescence assay and hyperspectral images prior to the onset of visible symptoms, indicating the feasibility of early detection of diseases. However, to detect disease development by hyperspectral imaging, more detailed protocols and analyses are necessary. Taken together, change in chlorophyll fluorescence is a good parameter for early detection of P. cichorii infection in tomato plants. In addition, image-based visualization of infection severity before visual damage appearance will contribute to effective management of plant diseases.
Johnson, Matthew P.; Ruban, Alexander V.
2009-01-01
Non-photochemical quenching (NPQ), a mechanism of energy dissipation in higher plants protects photosystem II (PSII) reaction centers from damage by excess light. NPQ involves a reduction in the chlorophyll excited state lifetime in the PSII harvesting antenna (LHCII) by a quencher. Yet, little is known about the effect of the quencher on chlorophyll excited state energy and dynamics. Application of picosecond time-resolved fluorescence spectroscopy demonstrated that NPQ involves a red-shift (60 ± 5 cm−1) and slight enhancement of the vibronic satellite of the main PSII lifetime component present in intact chloroplasts. Whereas this fluorescence red-shift was enhanced by the presence of zeaxanthin, it was not dependent upon it. The red-shifted fluorescence of intact chloroplasts in the NPQ state was accompanied by red-shifted chlorophyll a absorption. Nearly identical absorption and fluorescence changes were observed in isolated LHCII complexes quenched in a low detergent media, suggesting that the mechanism of quenching is the same in both systems. In both cases, the extent of the fluorescence red-shift was shown to correlate with the lifetime of a component. The alteration in the energy of the emitting chlorophyll(s) in intact chloroplasts and isolated LHCII was also accompanied by changes in lutein 1 observed in their 77K fluorescence excitation spectra. We suggest that the characteristic red-shifted fluorescence emission reflects an altered environment of the emitting chlorophyll(s) in LHCII brought about by their closer interaction with lutein 1 in the quenching locus. PMID:19567871
Johnson, Matthew P; Ruban, Alexander V
2009-08-28
Non-photochemical quenching (NPQ), a mechanism of energy dissipation in higher plants protects photosystem II (PSII) reaction centers from damage by excess light. NPQ involves a reduction in the chlorophyll excited state lifetime in the PSII harvesting antenna (LHCII) by a quencher. Yet, little is known about the effect of the quencher on chlorophyll excited state energy and dynamics. Application of picosecond time-resolved fluorescence spectroscopy demonstrated that NPQ involves a red-shift (60 +/- 5 cm(-1)) and slight enhancement of the vibronic satellite of the main PSII lifetime component present in intact chloroplasts. Whereas this fluorescence red-shift was enhanced by the presence of zeaxanthin, it was not dependent upon it. The red-shifted fluorescence of intact chloroplasts in the NPQ state was accompanied by red-shifted chlorophyll a absorption. Nearly identical absorption and fluorescence changes were observed in isolated LHCII complexes quenched in a low detergent media, suggesting that the mechanism of quenching is the same in both systems. In both cases, the extent of the fluorescence red-shift was shown to correlate with the lifetime of a component. The alteration in the energy of the emitting chlorophyll(s) in intact chloroplasts and isolated LHCII was also accompanied by changes in lutein 1 observed in their 77K fluorescence excitation spectra. We suggest that the characteristic red-shifted fluorescence emission reflects an altered environment of the emitting chlorophyll(s) in LHCII brought about by their closer interaction with lutein 1 in the quenching locus.
Lethal and sub-lethal chronic effects of the herbicide diuron on seagrass.
Negri, Andrew P; Flores, Florita; Mercurio, Phil; Mueller, Jochen F; Collier, Catherine J
2015-08-01
Photosystem II herbicides from agricultural sources have been detected throughout nearshore tropical habitats including seagrass meadows. While PSII herbicides have been shown to inhibit growth in microalgae at low concentrations, the potential impacts of chronic low concentration exposures to seagrass health and growth have not been investigated. Here we exposed two tropical seagrass species Halodule uninervis and Zostera muelleri to elevated diuron concentrations (from 0.3 to 7.2μgl(-1)) over a 79-day period followed by a 2-week recovery period in uncontaminated seawater. PAM fluorometry demonstrated rapid effect of diuron on photosystem II (PSII) in both seagrass species at 0.3μgl(-1). This effect included significant inhibition of photosynthetic efficiency (ΔF/Fm') and inactivation of PSII (Fv/Fm) over the 11 week exposure period. Significant mortality and reductions in growth was only observed at the highest exposure concentration of 7.2μgl(-1) diuron. However, biochemical indicators demonstrated that the health of seagrass after this prolonged exposure was significantly compromised at lower concentrations. For example, the drop in C:N ratios (0.6μgl(-1)) and reduced δ(13)C (1.7μgl(-1)) in seagrass leaves indicated reduced C-assimilation from photosynthesis. Critically, the energetic reserves of the plants (as measured by starch content in the root-rhizome complex) were approximately halved following diuron exposure at and above 1.7μgl(-1). During the 2-week recovery period, the photosynthetic capacity of the seagrass improved with only plants from the highest diuron treatment still exhibiting chronic damage to PSII. This study shows that, although seagrass may survive prolonged herbicide exposures, concentrations ≥0.6μgl(-1) diuron equivalents cause measureable impacts on energetic status that may leave the plants vulnerable to other simultaneous stressors. For example, tropical seagrasses have been heavily impacted by reduced light from coastal flood plumes and the effects on plant energetics from light limitation and diuron exposure (highest in flood plumes) are very similar, potentially leading to cumulative negative effects. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.
Ignatova, Lyudmila K; Rudenko, Natalia N; Mudrik, Vilen A; Fedorchuk, Tat'yana P; Ivanov, Boris N
2011-12-01
The procedure of isolating the thylakoids and the thylakoid membrane fragments enriched with either photosystem I or photosystem II (PSI- and PSII-membranes) from Arabidopsis thaliana leaves was developed. It differed from the one used with pea and spinach in durations of detergent treatment and centrifugation, and in concentrations of detergent and Mg(2+) in the media. Both the thylakoid and the fragments preserved carbonic anhydrase (CA) activities. Using nondenaturing electrophoresis followed by detection of CA activity in the gel stained with bromo thymol blue, one low molecular mass carrier of CA activity was found in the PSI-membranes, and two carriers, a low molecular mass one and a high molecular mass one, were found in the PSII-membranes. The proteins in the PSII-membranes differed in their sensitivity to acetazolamide (AA), a specific CA inhibitor. AA at 5 × 10(-7) M inhibited the CA activity of the high molecular mass protein but stimulated the activity of the low molecular mass carrier in the PSII-membranes. At the same concentration, AA moderately inhibited, by 30%, the CA activity of PSI-membranes. CA activity of the PSII-membranes was almost completely suppressed by the lipophilic CA inhibitor, ethoxyzolamide at 10(-9) M, whereas CA activity of the PSI-membranes was inhibited by this inhibitor even at 5 × 10(-7) M just the same as for AA. The observed distribution of CA activity in the thylakoid membranes from A. thaliana was close to the one found in the membranes of pea, evidencing the general pattern of CA activity in the thylakoid membranes of C3-plants. © Springer Science+Business Media B.V. 2011
Fujii, Ritsuko; Yamano, Nami; Hashimoto, Hideki; Misawa, Norihiko; Ifuku, Kentaro
2016-07-01
Transplastomic (chloroplast genome-modified; CGM) lettuce that dominantly accumulates astaxanthin grows similarly to a non-transgenic control with almost no accumulation of naturally occurring photosynthetic carotenoids. In this study, we evaluated the activity and assembly of PSII in CGM lettuce. The maximum quantum yield of PSII in CGM lettuce was <0.6; however, the quantum yield of PSII was comparable with that in control leaves under higher light intensity. CGM lettuce showed a lower ability to induce non-photochemical quenching (NPQ) than the control under various light intensities. The fraction of slowly recovering NPQ in CGM lettuce, which is considered to be photoinhibitory quenching (qI), was less than half that of the control. In fact, 1 O 2 generation was lower in CGM than in control leaves under high light intensity. CGM lettuce contained less PSII, accumulated mostly as a monomer in thylakoid membranes. The PSII monomers purified from the CGM thylakoids bound echinenone and canthaxanthin in addition to β-carotene, suggesting that a shortage of β-carotene and/or the binding of carbonyl carotenoids would interfere with the photophysical function as well as normal assembly of PSII. In contrast, high accumulation of astaxanthin and other carbonyl carotenoids was found within the thylakoid membranes. This finding would be associated with the suppression of photo-oxidative stress in the thylakoid membranes. Our observation suggests the importance of a specific balance between photoprotection and photoinhibition that can support normal photosynthesis in CGM lettuce producing astaxanthin. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Ruban, Alexander V.; Belgio, Erica
2014-01-01
The principle of quantifying the efficiency of protection of photosystem II (PSII) reaction centres against photoinhibition by non-photochemical energy dissipation (NPQ) has been recently introduced by Ruban & Murchie (2012 Biochim. Biophys. Acta 1817, 977–982 (doi:10.1016/j.bbabio.2012.03.026)). This is based upon the assessment of two key parameters: (i) the relationship between the PSII yield and NPQ, and (ii) the fraction of intact PSII reaction centres in the dark after illumination. In this paper, we have quantified the relationship between the amplitude of NPQ and the light intensity at which all PSII reaction centres remain intact for plants with different levels of PsbS protein, known to play a key role in the process. It was found that the same, nearly linear, relationship exists between the levels of the protective NPQ component (pNPQ) and the tolerated light intensity in all types of studied plants. This approach allowed for the quantification of the maximum tolerated light intensity, the light intensity at which all plant leaves become photoinhibited, the fraction of (most likely) unnecessary or ‘wasteful’ NPQ, and the fraction of photoinhibited PSII reaction centres under conditions of prolonged illumination by full sunlight. It was concluded that the governing factors in the photoprotection of PSII are the level and rate of protective pNPQ formation, which are often in discord with the amplitude of the conventional measure of photoprotection, the quickly reversible NPQ component, qE. Hence, we recommend pNPQ as a more informative and less ambiguous parameter than qE, as it reflects the effectiveness and limitations of the major photoprotective process of the photosynthetic membrane. PMID:24591709
Ruban, Alexander V; Murchie, Erik H
2012-07-01
The photoprotective nature of non-photochemical quenching (NPQ) has not been effectively quantified and the major reason is the inability to quantitatively separate NPQ that acts directly to prevent photoinhibition of photosystem II (PSII). Here we describe a technique in which we use the values of the PSII yield and qP measured in the dark following illumination. We expressed the quantum yield of PSII (Φ(PSII)) via NPQ as: Φ(PSII)=qP×(Fv/Fo)/(1+Fv/Fo+NPQ). We then tested this theoretical relationship using Arabidopsis thaliana plants that had been exposed to gradually increasing irradiance. The values of qP in the dark immediately after the illumination period (here denoted qPd) were determined using a previously described technique for Fo' calculation: Fo'(calc.)=1/(1/Fo-1/Fm-1/Fm'). We found that in every case the actual Φ(PSII) deviated from theoretical values at the same point that qPd deviated from a value of 1.0. In an increasing series of irradiance levels, WT leaves tolerated 1000μmolm(-2)s(-1) of light before qP(d) declined. Leaves treated with the uncoupler nigericin, leaves of the mutant lacking PsbS protein and leaves overexpressing PsbS showed a qP(d) reduction at 100, 600 and 2000μmolm(-2)s(-1) respectively, each at an increasing value of NPQ. Therefore we suggest that this simple and timely technique will be instrumental for identifying photoprotective NPQ (pNPQ) and that it is more appropriate than the qE component. Its applications should be broad: for example it will be useful in physiology-based studies to define the optimal level of nonphotochemical quenching for plant protection and productivity. Copyright © 2012 Elsevier B.V. All rights reserved.
Wang, Jimin; Askerka, Mikhail; Brudvig, Gary W.; ...
2017-01-12
Understanding structure–function relations in photosystem II (PSII) is important for the development of biomimetic photocatalytic systems. X-ray crystallography, computational modeling, and spectroscopy have played central roles in elucidating the structure and function of PSII. Recent breakthroughs in femtosecond X-ray crystallography offer the possibility of collecting diffraction data from the X-ray free electron laser (XFEL) before radiation damage of the sample, thereby overcoming the main challenge of conventional X-ray diffraction methods. However, the interpretation of XFEL data from PSII intermediates is challenging because of the issues regarding data-processing, uncertainty on the precise positions of light oxygen atoms next to heavy metalmore » centers, and different kinetics of the S-state transition in microcrystals compared to solution. Lastly, we summarize recent advances and outstanding challenges in PSII structure–function determination with emphasis on the implementation of quantum mechanics/molecular mechanics techniques combined with isomorphous difference Fourier maps, direct methods, and high-resolution spectroscopy.« less
Wang, Jimin; Askerka, Mikhail; Brudvig, Gary W; Batista, Victor S
2017-02-10
Understanding structure-function relations in photosystem II (PSII) is important for the development of biomimetic photocatalytic systems. X-ray crystallography, computational modeling, and spectroscopy have played central roles in elucidating the structure and function of PSII. Recent breakthroughs in femtosecond X-ray crystallography offer the possibility of collecting diffraction data from the X-ray free electron laser (XFEL) before radiation damage of the sample, thereby overcoming the main challenge of conventional X-ray diffraction methods. However, the interpretation of XFEL data from PSII intermediates is challenging because of the issues regarding data-processing, uncertainty on the precise positions of light oxygen atoms next to heavy metal centers, and different kinetics of the S-state transition in microcrystals compared to solution. Here, we summarize recent advances and outstanding challenges in PSII structure-function determination with emphasis on the implementation of quantum mechanics/molecular mechanics techniques combined with isomorphous difference Fourier maps, direct methods, and high-resolution spectroscopy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jimin; Askerka, Mikhail; Brudvig, Gary W.
Understanding structure–function relations in photosystem II (PSII) is important for the development of biomimetic photocatalytic systems. X-ray crystallography, computational modeling, and spectroscopy have played central roles in elucidating the structure and function of PSII. Recent breakthroughs in femtosecond X-ray crystallography offer the possibility of collecting diffraction data from the X-ray free electron laser (XFEL) before radiation damage of the sample, thereby overcoming the main challenge of conventional X-ray diffraction methods. However, the interpretation of XFEL data from PSII intermediates is challenging because of the issues regarding data-processing, uncertainty on the precise positions of light oxygen atoms next to heavy metalmore » centers, and different kinetics of the S-state transition in microcrystals compared to solution. Lastly, we summarize recent advances and outstanding challenges in PSII structure–function determination with emphasis on the implementation of quantum mechanics/molecular mechanics techniques combined with isomorphous difference Fourier maps, direct methods, and high-resolution spectroscopy.« less
Devadasu, Elsin Raju; Madireddi, Sai Kiran; Nama, Srilatha; Subramanyam, Rajagopal
2016-12-01
A trace element, iron (Fe) plays a pivotal role in photosynthesis process which in turn mediates the plant growth and productivity. Here, we have focused majorly on the photochemistry of photosystem (PS) II, abundance of proteins, and organization of supercomplexes of thylakoids from Fe-depleted cells in Chlamydomonas reinhardtii. Confocal pictures show that the cell's size has been reduced and formed rosette-shaped palmelloids; however, there is no cell death. Further, the PSII photochemistry was reduced remarkably. Further, the photosynthetic efficiency analyzer data revealed that both donor and acceptor side of PSII were equally damaged. Additionally, the room-temperature emission spectra showed the fluorescence emission maxima increased due to impaired energy transfer from PSII to PSI. Furthermore, the protein data reveal that most of the proteins of reaction center and light-harvesting antenna were reduced in Fe-depleted cells. Additionally, the supercomplexes of PSI and PSII were destabilized from thylakoids under Fe-deficient condition showing that Fe is an important element in photosynthesis mechanism.
Joly, David; Carpentier, Robert
2007-07-27
Quantitative analysis of the fluorescence induction (FI) rise was used in this study to elucidate the complex effects of N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD) on thylakoids. Reduced TMPD molecules, responsible for the ADRY agent effect, caused an increase in the amplitude of the O-J rise. Also, only oxidized TMPD molecules were shown to have the ability to bind the Q(B) pocket of photosystem II (PSII). On the other hand, the I-P rise was slowed in proportion with the oxidized TMPD concentration, inducing the clear appearance of the I-peak. While this property was previously thought to be unique to TMPD, this study shows that some artificial electron acceptors of PSII, silicomolybdate, 2,5-dichloro-p-benzoquinone, and phenyl-p-benzoquinone, have a similar effect. These results demonstrated a major role of the oxido-reduction kinetics of the PQ-pool in the resolution of J-I and I-P phases in the FI of isolated thylakoids.
Rodríguez-Herva, José J; González-Melendi, Pablo; Cuartas-Lanza, Raquel; Antúnez-Lamas, María; Río-Alvarez, Isabel; Li, Ziduo; López-Torrejón, Gema; Díaz, Isabel; Del Pozo, Juan C; Chakravarthy, Suma; Collmer, Alan; Rodríguez-Palenzuela, Pablo; López-Solanilla, Emilia
2012-05-01
The bacterial pathogen Pseudomonas syringae pv tomato DC3000 suppresses plant innate immunity with effector proteins injected by a type III secretion system (T3SS). The cysteine protease effector HopN1, which reduces the ability of DC3000 to elicit programmed cell death in non-host tobacco, was found to also suppress the production of defence-associated reactive oxygen species (ROS) and callose when delivered by Pseudomonas fluorescens heterologously expressing a P. syringae T3SS. Purified His(6) -tagged HopN1 was used to identify tomato PsbQ, a member of the oxygen evolving complex of photosystem II (PSII), as an interacting protein. HopN1 localized to chloroplasts and both degraded PsbQ and inhibited PSII activity in chloroplast preparations, whereas a HopN1(D299A) non-catalytic mutant lost these abilities. Gene silencing of NtPsbQ in tobacco compromised ROS production and programmed cell death by DC3000. Our data reveal PsbQ as a contributor to plant immunity responses and a target for pathogen suppression. © 2012 Blackwell Publishing Ltd.
Shevela, Dmitriy; Koroidov, Sergey; Najafpour, M Mahdi; Messinger, Johannes; Kurz, Philipp
2011-05-02
Oxygen evolution catalysed by calcium manganese and manganese-only oxides was studied in (18)O-enriched water. Using membrane-inlet mass spectrometry, we monitored the formation of the different O(2) isotopologues (16)O(2), (16)O(18)O and (18)O(2) in such reactions simultaneously with good time resolution. From the analysis of the data, we conclude that entirely different pathways of dioxygen formation catalysis exist for reactions involving hydrogen peroxide (H(2)O(2)), hydrogen persulfate (HSO(5)(-)) or single-electron oxidants such as Ce(IV) and [Ru(III) (bipy)(3)](3+) . Like the studied oxide catalysts, the active sites of manganese catalase and the oxygen-evolving complex (OEC) of photosystem II (PSII) consist of μ-oxido manganese or μ-oxido calcium manganese sites. The studied processes show very similar (18)O-labelling behaviour to the natural enzymes and are therefore interesting model systems for in vivo oxygen formation by manganese metalloenzymes such as PSII. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hussain, M. Iftikhar; Reigosa, Manuel J.
2011-01-01
In this study, the effect of two allelochemicals, benzoxazolin-2(3H)-one (BOA) and cinnamic acid (CA), on different physiological and morphological characteristics of 1-month-old C3 plant species (Dactylis glomerata, Lolium perenne, and Rumex acetosa) was analysed. BOA inhibited the shoot length of D. glomerata, L. perenne, and R. acetosa by 49%, 19%, and 19% of the control. The root length of D. glomerata, L. perenne, and R. acetosa growing in the presence of 1.5 mM BOA and CA was decreased compared with the control. Both allelochemicals (BOA, CA) inhibited leaf osmotic potential (LOP) in L. perenne and D. glomerata. In L. perenne, Fv/Fm decreased after treatment with BOA (1.5 mM) while CA (1.5 mM) also significantly reduced Fv/Fm in L. perenne. Both allelochemicals decreased ΦPSII in D. glomerata and L. perenne within 24 h of treatment, while in R. acetosa, ΦPSII levels decreased by 72 h following treatment with BOA and CA. There was a decrease in qP and NPQ on the first, fourth, fifth, and sixth days after treatment with BOA in D. glomerata, while both allelochemicals reduced the qP level in R. acetosa. There was a gradual decrease in the fraction of light absorbed by PSII allocated to PSII photochemistry (P) in R. acetosa treated with BOA and CA. The P values in D. glomerata were reduced by both allelochemicals and the portion of absorbed photon energy that was thermally dissipated (D) in D. glomerata and L. perenne was decreased by BOA and CA. Photon energy absorbed by PSII antennae and trapped by ‘closed’ PSII reaction centres (E) was decreased after CA exposure in D. glomerata. BOA and CA (1.5 mM concentration) decreased the leaf protein contents in all three perennial species. This study provides new understanding of the physiological and biochemical mechanisms of action of BOA and CA in one perennial dicotyledon and two perennial grasses. The acquisition of such knowledge may ultimately provide a rational and scientific basis for the design of safe and effective herbicides. PMID:21659663
Peterson, Richard B; Oja, Vello; Eichelmann, Hillar; Bichele, Irina; Dall'Osto, Luca; Laisk, Agu
2014-10-01
This work addresses the question of occurrence and function of photosystem II (PSII) in bundle sheath (BS) cells of leaves possessing NADP-malic enzyme-type C4 photosynthesis (Zea mays). Although no requirement for PSII activity in the BS has been established, several component proteins of PSII have been detected in BS cells of developing maize leaves exhibiting O2-insensitive photosynthesis. We used the basal fluorescence emissions of PSI (F 0I) and PSII (F 0II) as quantitative indicators of the respective relative photosystem densities. Chl fluorescence induction was measured simultaneously at 680 and 750 nm. In mature leaves, the F m(680)/F 0(680) ratio was 10.5 but less in immature leaves. We propose that the lower ratio was caused by the presence of a distinct non-variable component, F c, emitting at 680 and 750 nm. After F c was subtracted, the fluorescence of PSI (F 0I) was detected as a non-variable component at 750 nm and was undetectably low at 680 nm. Contents of Chls a and b were measured in addition to Chl fluorescence. The Chl b/(a + b) was relatively stable in developing sunflower leaves (0.25-0.26), but in maize it increased from 0.09 to 0.21 with leaf tissue age. In sunflower, the F 0I/(F 0I + F 0II) was 0.39 ± 0.01 independent of leaf age, but in maize, this parameter was 0.65 in young tissue of very low Chl content (20-50 mg m(-2)) falling to a stable level of 0.53 ± 0.01 at Chl contents >100 mg m(-2). The values of F 0I/(F 0I + F 0II) showed that in sunflower, excitation was partitioned between PSII and PSI in a ratio of 2:1, but the same ratio was 1:1 in the C4 plant. The latter is consistent with a PSII:PSI ratio of 2:1 in maize mesophyll cells and PSI only in BS cells (2:1:1 distribution). We suggest, moreover, that redox mediation of Chl synthesis, rather than protein accumulation, regulates photosystem assembly to ensure optimum excitation balance between functional PSII and PSI. Indeed, the apparent necessity for two Chls (a and b) may reside in their targeted functions in influencing accumulation of PSI and PSII, respectively, as opposed to their spectral differences.
Tóth, Szilvia Z; Schansker, Gert; Kissimon, Judit; Kovács, László; Garab, Gyozo; Strasser, Reto J
2005-02-01
Leaves of 7-day-old barley seedlings were subjected to heat pulses at 50 degrees C for 20 or 40s to inhibit partially or fully the oxygen evolution without inducing visible symptoms. By means of biophysical techniques, we investigated the time course and mechanism of photosystem II (PSII) recovery. After the heat treatment, the samples were characterized by typical heat stress symptoms: loss of oxygen evolution activity, strong decrease of Fv/Fm, induction of the K-step in the fluorescence induction transient, emergence of the AT-thermoluminescence-band and a dramatic increase in membrane permeability. In the first 4h in the light following the heat pulse, the AT-band and the K-step disappeared in parallel, indicating the loss of this restricted activity of PSII. This phase was followed by a recovery period, during which PSII-activity was gradually restored in the light. In darkness, no recovery, except for the membrane permeability, was observed. A model is presented that accounts for (i) the damage induced by the heat pulse on the membrane architecture and on the PSII donor side, (ii) the light-dependent removal of the impaired reaction centers from the disorganized membrane, and (iii) the subsequent light-independent restoration of the membrane permeability and the de novo synthesis of the PSII reaction centers in the light.
NASA Astrophysics Data System (ADS)
Chen, Zhangfan; Wang, Guangce; Niu, Jianfeng
2012-01-01
Cells of Haematococcus pluvialis Flot. et Will were collected in four different growth phases. We quantified the initial and total enzyme activity of ribulose-1,5-bisphosphate carboxylase (Rubisco) in crude extracts, and the relative expression of large-subunit ribulose-1,5-bisphosphate caboxylase / oxygenase ( rbcL) mRNA. We measured the ratio of photosynthetic rate to respiration rate (P/R), maximal effective quantum yield of photosystem II ( F v/ F m), electron transport rate (ETR), actual photochemical efficiency of PSII in the light (PSII), and non-photochemical quenching (NPQ). Green vegetative cells were found to be in the most active state, with a relatively higher P/R ratio. These cells also displayed the lowest NPQ and the highest F v/ F m, ETR, and PSII, indicating the most effective PSII. However, both Rubisco activity and rbcL mRNA expression were the lowest measured. In orange resting cysts with relatively lower P/R and NPQ, Rubisco activity and rbcL expression reached a peak, while F v/ F m, ETR, and ΦPSII were the lowest measured. Taking into account the methods of astaxanthin induction used in industry, we suggest that Rubisco may participate in astaxanthin accumulation in H. pluvialis. A continuous and sufficient supply of a carbon source such as CO2 may therefore aid the large scale production of astaxanthin.
Nakamori, Harutaka; Yatabe, Takeshi; Yoon, Ki-Seok; Ogo, Seiji
2014-08-01
A new cyanobacterium of strain O-77 was isolated from a hot spring at Aso-Kuju National Park, Kumamoto, Japan. According to the phylogenetic analysis determined by 16S rRNA gene sequence, the strain O-77 belongs to the genus Leptolyngbya, classifying into filamentous non-heterocystous cyanobacteria. The strain O-77 showed the thermophilic behavior with optimal growth temperature of 55°C. Moreover, we have purified and characterized the oxygen-evolving photosystem II (PSII) from the strain O-77. The O2-evolving activity of the purified PSII from strain O-77 (PSIIO77) was 1275 ± 255 μmol O2 (mg Chl a)(-1) h(-1). Based on the results of MALDI-TOF mass spectrometry and urea-SDS-PAGE analysis, the purified PSIIO77 was composite of the typical PSII components of CP47, CP43, PsbO, D2, D1, PsbV, PsbQ, PsbU, and several low molecular mass subunits. Visible absorption and 77 K fluorescence spectra of the purified PSIIO77 were almost identical to those of other purified PSIIs from cyanobacteria. This report provides the successful example for the purification and characterization of an active PSII from thermophilic, filamentous non-heterocystous cyanobacteria. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Herlory, Olivier; Bonzom, Jean-Marc; Gilbin, Rodolphe
2013-09-15
Although ecotoxicological studies tend to address the toxicity thresholds of uranium in freshwaters, there is a lack of information on the effects of the metal on physiological processes, particularly in aquatic plants. Knowing that uranium alters photosynthesis via impairment of the water photo-oxidation process, we determined whether pulse amplitude modulated (PAM) fluorometry was a relevant tool for assessing the impact of uranium on the green alga Chlamydomonas reinhardtii and investigated how and to what extent uranium hampered photosynthetic performance. Photosynthetic activity and quenching were assessed from fluorescence induction curves generated by PAM fluorometry, after 1 and 5h of uranium exposure in controlled conditions. The oxygen-evolving complex (OEC) of PSII was identified as the primary action site of uranium, through alteration of the water photo-oxidation process as revealed by F0/Fv. Limiting re-oxidation of the plastoquinone pool, uranium impaired the electron flux between the photosystems until almost complete inhibition of the PSII quantum efficiency ( [Formula: see text] , EC50=303 ± 64 μg UL(-1) after 5h of exposure) was observed. Non-photochemical quenching (qN) was identified as the most sensitive fluorescence parameter (EC50=142 ± 98 μg UL(-1) after 5h of exposure), indicating that light energy not used in photochemistry was dissipated in non-radiative processes. It was shown that parameters which stemmed from fluorescence induction kinetics are valuable indicators for evaluating the impact of uranium on PSII in green algae. PAM fluorometry provided a rapid and reasonably sensitive method for assessing stress response to uranium in microalgae. Copyright © 2013 Elsevier B.V. All rights reserved.
Mella-Flores, Daniella; Six, Christophe; Ratin, Morgane; Partensky, Frédéric; Boutte, Christophe; Le Corguillé, Gildas; Marie, Dominique; Blot, Nicolas; Gourvil, Priscillia; Kolowrat, Christian; Garczarek, Laurence
2012-01-01
Prochlorococcus and Synechococcus, which numerically dominate vast oceanic areas, are the two most abundant oxygenic phototrophs on Earth. Although they require solar energy for photosynthesis, excess light and associated high UV radiations can induce high levels of oxidative stress that may have deleterious effects on their growth and productivity. Here, we compared the photophysiologies of the model strains Prochlorococcus marinus PCC 9511 and Synechococcus sp. WH7803 grown under a bell-shaped light/dark cycle of high visible light supplemented or not with UV. Prochlorococcus exhibited a higher sensitivity to photoinactivation than Synechococcus under both conditions, as shown by a larger drop of photosystem II (PSII) quantum yield at noon and different diel patterns of the D1 protein pool. In the presence of UV, the PSII repair rate was significantly depressed at noon in Prochlorococcus compared to Synechococcus. Additionally, Prochlorococcus was more sensitive than Synechococcus to oxidative stress, as shown by the different degrees of PSII photoinactivation after addition of hydrogen peroxide. A transcriptional analysis also revealed dramatic discrepancies between the two organisms in the diel expression patterns of several genes involved notably in the biosynthesis and/or repair of photosystems, light-harvesting complexes, CO2 fixation as well as protection mechanisms against light, UV, and oxidative stress, which likely translate profound differences in their light-controlled regulation. Altogether our results suggest that while Synechococcus has developed efficient ways to cope with light and UV stress, Prochlorococcus cells seemingly survive stressful hours of the day by launching a minimal set of protection mechanisms and by temporarily bringing down several key metabolic processes. This study provides unprecedented insights into understanding the distinct depth distributions and dynamics of these two picocyanobacteria in the field. PMID:23024637
Basahi, J M; Ismail, I M; Haiba, N S; Hassan, I A; Lorenzini, G
2016-06-01
The antiozonant chemical, ethylenediurea (N-[2-(2-oxo-1-imidazolidinyl)ethyl]-N'-phenylurea, abbreviated as EDU), was applied as stem injections or soil drenches to 5-year-old containerized plants of olive (Olea europaea L. cultivar Kalamata) in growth chambers in order to assess its ameliorative effects against realistic ozone (O3) stress. Visible injury symptoms were reduced greatly in individuals treated with EDU, with injection applications having greater protection than soil drenches. EDU application caused increases in the measured ecophysiological parameters compared to untreated individuals. In particular, the stem injection protected plants against photosynthetic impairment (unchanged net photosynthetic rates and intercellular CO2 concentration, in comparison to plants grown in filtered air). EDU application increased the protection of PSII from ambient O3 oxidative stress, although it did not retain the proportion of redox state of QA, pigment composition of photosynthetic apparatus and size of light-harvesting complex of PSII. However, the stem injection of plants with EDU induced lower non-photochemical quenching (NPQ) values in comparison to ambient air (-2 %), indicating a better photoprotection of PSII in comparison to soil drench application. EDU application caused increases in the morphological and biometric parameters compared to individuals exposed to ambient air. To the best of our knowledge, this is the first study highlighting the protection of Kalamata olive trees due to EDU in terms of growth, yield, visible injury, and photosynthetic performance. Furthermore, this study proved that EDU could be a low-cost and a low-technology efficient tool for assessing O3 effects on plant performances in the field in Saudi Arabia.
Santabarbara, Stefano; Tibiletti, Tania; Remelli, William; Caffarri, Stefano
2017-03-29
State transitions are a phenomenon that maintains the excitation balance between photosystem II (PSII) and photosystem I (PSI-LHCI) by controlling their relative absorption cross-sections. Under light conditions exciting PSII preferentially, a trimeric LHCII antenna moves from PSII to PSI-LHCI to form the PSI-LHCI-LHCII supercomplex. In this work, the excited state dynamics in the PSI-LHCI and PSI-LHCI-LHCII supercomplexes isolated from Arabidopsis have been investigated by picosecond time-resolved fluorescence spectroscopy. The excited state decays were analysed using two approaches based on either (i) a sum of discrete exponentials or (ii) a continuous distribution of lifetimes. The results indicate that the energy transfer from LHCII to the bulk of the PSI antenna occurs with an average macroscopic transfer rate in the 35-65 ns -1 interval. Yet, the most satisfactory description of the data is obtained when considering a heterogeneous population containing two PSI-LHCI-LHCII supercomplexes characterised by a transfer time of ∼15 and ∼60 ns -1 , likely due to the differences in the strength and orientation of LHCII harboured to PSI. Both these values are of the same order of magnitude of those estimated for the average energy transfer rates from the low energy spectral forms of LHCI to the bulk of the PSI antenna (15-40 ns -1 ), but they are slower than the transfer from the bulk antenna of PSI to the reaction centre (>150 ns -1 ), implying a relatively small kinetics bottleneck for the energy transfer from LHCII. Nevertheless, the kinetic limitation imposed by excited state diffusion has a negligible impact on the photochemical quantum efficiency of the supercomplex, which remains about 98% in the case of PSI-LHCI.
Mella-Flores, Daniella; Six, Christophe; Ratin, Morgane; Partensky, Frédéric; Boutte, Christophe; Le Corguillé, Gildas; Marie, Dominique; Blot, Nicolas; Gourvil, Priscillia; Kolowrat, Christian; Garczarek, Laurence
2012-01-01
Prochlorococcus and Synechococcus, which numerically dominate vast oceanic areas, are the two most abundant oxygenic phototrophs on Earth. Although they require solar energy for photosynthesis, excess light and associated high UV radiations can induce high levels of oxidative stress that may have deleterious effects on their growth and productivity. Here, we compared the photophysiologies of the model strains Prochlorococcus marinus PCC 9511 and Synechococcus sp. WH7803 grown under a bell-shaped light/dark cycle of high visible light supplemented or not with UV. Prochlorococcus exhibited a higher sensitivity to photoinactivation than Synechococcus under both conditions, as shown by a larger drop of photosystem II (PSII) quantum yield at noon and different diel patterns of the D1 protein pool. In the presence of UV, the PSII repair rate was significantly depressed at noon in Prochlorococcus compared to Synechococcus. Additionally, Prochlorococcus was more sensitive than Synechococcus to oxidative stress, as shown by the different degrees of PSII photoinactivation after addition of hydrogen peroxide. A transcriptional analysis also revealed dramatic discrepancies between the two organisms in the diel expression patterns of several genes involved notably in the biosynthesis and/or repair of photosystems, light-harvesting complexes, CO(2) fixation as well as protection mechanisms against light, UV, and oxidative stress, which likely translate profound differences in their light-controlled regulation. Altogether our results suggest that while Synechococcus has developed efficient ways to cope with light and UV stress, Prochlorococcus cells seemingly survive stressful hours of the day by launching a minimal set of protection mechanisms and by temporarily bringing down several key metabolic processes. This study provides unprecedented insights into understanding the distinct depth distributions and dynamics of these two picocyanobacteria in the field.
Küpper, Hendrik; Götz, Birgit; Mijovilovich, Ana; Küpper, Frithjof C; Meyer-Klaucke, Wolfram
2009-10-01
The amphibious water plant Crassula helmsii is an invasive copper (Cu)-tolerant neophyte in Europe. It now turned out to accumulate Cu up to more than 9,000 ppm in its shoots at 10 microm (=0.6 ppm) Cu(2+) in the nutrient solution, indicating that it is a Cu hyperaccumulator. We investigated uptake, binding environment, and toxicity of Cu in this plant under emerged and submerged conditions. Extended x-ray absorption fine structure measurements on frozen-hydrated samples revealed that Cu was bound almost exclusively by oxygen ligands, likely organic acids, and not any sulfur ligands. Despite significant differences in photosynthesis biochemistry and biophysics between emerged and submerged plants, no differences in Cu ligands were found. While measurements of tissue pH confirmed the diurnal acid cycle typical for Crassulacean acid metabolism, Delta(13)C measurements showed values typical for regular C3 photosynthesis. Cu-induced inhibition of photosynthesis mainly affected the photosystem II (PSII) reaction center, but with some unusual features. Most obviously, the degree of light saturation of electron transport increased during Cu stress, while maximal dark-adapted PSII quantum yield did not change and light-adapted quantum yield of PSII photochemistry decreased particularly in the first 50 s after onset of actinic irradiance. This combination of changes, which were strongest in submerged cultures, shows a decreasing number of functional reaction centers relative to the antenna in a system with high antenna connectivity. Nonphotochemical quenching, in contrast, was modified by Cu mainly in emerged cultures. Pigment concentrations in stressed plants strongly decreased, but no changes in their ratios occurred, indicating that cells either survived intact or died and bleached quickly.
Cytochemical and Cytofluorometric Evidence for Guard Cell Photosystems 1
Vaughn, Kevin C.; Outlaw, William H.
1983-01-01
Evidence for photosynthetic linear electron transport in guard cells was obtained with two sensitive methods of high spacial resolution. Light-dependent diaminobenzidine oxidation (an indicator of PSI) and DCMU-sensitive, light-dependent thiocarbamyl nitroblue tetrazolium reduction (an indicator of PSII) were observed in guard cell plastids of Hordeum vulgare L. cv Himalaya using electron microscopic cytochemical procedures. DCMU-sensitive Chl a fluorescence induction (an indicator of PSII) was detected in individual guard cell pairs of Vicia faba L. cv Longpod using an ultramicrofluorometer. At least for these species, we conclude these results are proof for the presence of PSII in guard cell chloroplasts, which until now has been somewhat controversial. Images Fig. 2 Fig. 1 PMID:16662840
Zhang, Huajun; Lv, Jinglin; Peng, Yun; Zhang, Su; An, Xinli; Xu, Hong; Zhang, Jun; Tian, Yun; Zheng, Wei; Zheng, Tianling
2014-09-01
Harmful algal blooms occur throughout the world, destroying aquatic ecosystems and threatening human health. The culture supernatant of the marine algicidal bacteria DHQ25 was able to lysis dinoflagellate Alexandrium tamarense. Loss of photosynthetic pigments, accompanied by a decline in Photosystem II (PSII) photochemical efficiency (Fv/Fm), in A. tamarense was detected under bacterial supernatant stress. Transmission electron microscope analysis showed obvious morphological modifications of chloroplast dismantling as a part of the algicidal process. The PSII electron transport chain was seriously blocked, with its reaction center damaged. This damage was detected in a relative transcriptional level of psbA and psbD genes, which encode the D1 and D2 proteins in the PSII reaction center. And the block in the electron transport chain of PSII might generate excessive reactive oxygen species (ROS) which could destroy the membrane system and pigment synthesis and activated enzymic antioxidant systems including superoxide dismutase (SOD) and catalase (CAT). This study indicated that marine bacteria with indirect algicidal activity played an important role in the changes of photosynthetic process in a harmful algal bloom species.
Cabrerizo, Marco J; Carrillo, Presentación; Villafañe, Virginia E; Helbling, E Walter
2017-04-01
Global change is associated to the increase in temperature (T), nutrient inputs (Nut) and solar radiation in the water column. To address their joint impact on the net community production [NCP], respiration [CR] and PSII performance (Φ PSII ) of coastal phytoplankton communities from the South Atlantic Ocean over a seasonal succession, we performed a factorial design. For this, we used a 2 × 2 × 2 matrix set-up, with and without UVR, ambient and enriched nutrients, and in situ T and in situ T + 3 °C. The future scenario of global change exerted a dual impact, from an enhancement of NCP and Φ PSII during the pre-bloom to an inhibition of both processes towards the bloom period, when the in situ T and irradiances were lower and the community was dominated by diatoms. The increased inhibition of NCP and Φ PSII during the most productive stage of the annual succession could produce significant alterations of the CO 2 -sink capacity of coastal areas in the future. Copyright © 2017 Elsevier Ltd. All rights reserved.
Dewez, David; Didur, Olivier; Vincent-Héroux, Jonathan; Popovic, Radovan
2008-01-01
Photosynthetic-fluorescence parameters were investigated to be used as valid biomarkers of toxicity when alga Scenedesmus obliquus was exposed to isoproturon [3-(4-isopropylphenyl)-1,1-dimethylurea] effect. Chlorophyll fluorescence induction of algal cells treated with isoproturon showed inactivation of photosystem II (PSII) reaction centers and strong inhibition of PSII electron transport. A linear correlation was found (R2>or=0.861) between the change of cells density affected by isoproturon and the change of effective PSII quantum yield (PhiM'), photochemical quenching (qP) and relative photochemical quenching (qP(rel)) values. The cells density was also linearly dependent (R2=0.838) on the relative unquenched fluorescence parameter (UQF(rel)). Non-linear correlation was found (R2=0.937) only between cells density and the energy transfer efficiency from absorbed light to PSII reaction center (ABS/RC). The order of sensitivity determined by the EC-50% was: UQF(rel)>PhiM'>qP>qP(rel)>ABS/RC. Correlations between cells density and those photosynthetic-fluorescence parameters provide supporting evidence to use them as biomarkers of toxicity for environmental pollutants.
Elevated atmospheric CO₂ mitigated photoinhibition in a tropical tree species, Gmelina arborea.
Rasineni, Girish Kumar; Guha, Anirban; Reddy, Attipalli Ramachandra
2011-05-03
Effects of elevated CO₂ on photosynthetic CO₂ assimilation, PSII photochemistry and photoinhibition were investigated in the leaves of a fast growing tropical tree species, Gmelina arborea (Verbenaceae) during summer days of peak growth season under natural light. Elevated CO₂ had a significant effect on CO₂ assimilation rates and maximal efficiency of PSII photochemistry. Chlorophyll a fluorescence induction kinetics were measured to determine the influence of elevated CO₂ on PSII efficiency. During midday, elevated CO₂-grown Gmelina showed significantly higher net photosynthesis (p<0.001) and greater F(V)/F(M) (p<0.001) than those grown under ambient CO₂. The impact of elevated CO₂ on photosynthetic rates and Chl a fluorescence were more pronounced during midday depression where the impact of high irradiance decreased in plants grown under elevated CO₂ compared to ambient CO₂-grown plants. Our results clearly demonstrate that decreased susceptibility to photoinhibition in elevated CO₂ grown plants was associated with increased accumulation of active PSII reaction centers and efficient photochemical quenching. We conclude that elevated CO₂ treatment resulted in easy diminution of midday photosynthetic depression. Copyright © 2011 Elsevier B.V. All rights reserved.
Huang, Wei; Yang, Ying-Jie; Hu, Hong; Cao, Kun-Fang; Zhang, Shi-Bao
2016-01-01
The photosystem II (PSII) activity of C3 plants is usually inhibited at noon associated with high light but can be repaired fast in the afternoon. However, the diurnal variation of photosystem I (PSI) activity is unknown. Although, cyclic electron flow (CEF) has been documented as an important mechanism for photosynthesis, the diurnal variation of CEF in sun leaves is little known. We determined the diurnal changes in PSI and PSII activities, light energy dissipation in PSII and the P700 redox state in two tropical tree species Erythrophleum guineense and Khaya ivorensis grown in an open field. The PSI activity (as indicated by the maximum quantity of photo-oxidizable P700) was maintained stable during the daytime. CEF was strongly activated under high light at noon, accompanying with high levels of non-photochemical quenching (NPQ) and PSI oxidation ratio. In the afternoon, CEF was maintained at a relatively high level under low light, which was accompanied with low levels of NPQ and P700 oxidation ratio. These results indicated that CEF was flexibly modulated during daytime under fluctuating light conditions. Under high light at noon, CEF-dependent generation of proton gradient across the thylakoid membranes (ΔpH) mainly contributed to photoprotection for PSI and PSII. By comparison, at low light in the afternoon, the CEF-dependent formation of ΔpH may be important for PSII repair via an additional ATP synthesis. PMID:27486473
Mathur, Sonal; Allakhverdiev, Suleyman I; Jajoo, Anjana
2011-01-01
This study demonstrates the effect of high temperature stress on the heterogeneous behavior of PSII in Wheat (Triticum aestivum) leaves. Photosystem II in green plant chloroplasts displays heterogeneity both in the composition of its light harvesting antenna i.e. on the basis of antenna size (α, β and γ centers) and in the ability to reduce the plastoquinone pool i.e. the reducing side of the reaction centers (Q(B)-reducing centers and Q(B)-non-reducing centers). Detached wheat leaves were subjected to high temperature stress of 35°C, 40°C and 45°C. The chlorophyll a (Chl a) fluorescence transient were recorded in vivo with high time resolution and analyzed according to JIP test which can quantify PS II behavior using Plant efficiency analyzer (PEA). Other than PEA, Biolyzer HP-3 software was used to evaluate different types of heterogeneity in wheat leaves. The results revealed that at high temperature, there was a change in the relative amounts of PSII α, β and γ centers. As judged from the complementary area growth curve, it seemed that with increasing temperature the PSII(β) and PSII(γ) centers increased at the expense of PSII(α) centers. The reducing side heterogeneity was also affected as shown by an increase in the number of Q(B)-non-reducing centers at high temperatures. The reversibility of high temperature induced damage on PSII heterogeneity was also studied. Antenna size heterogeneity was recovered fully up to 40°C while reducing side heterogeneity showed partial recovery at 40°C. An irreversible damage to both the types of heterogeneity was observed at 45°C. The work is a significant contribution to understand the basic mechanism involved in the adaptation of crop plants to stress conditions. Copyright © 2010 Elsevier B.V. All rights reserved.
Miyake, C; Yokota, A
2000-03-01
A study was performed to determine how the electron fluxes for the photosynthetic carbon reduction (PCR) and the photorespiratory carbon oxidation (PCO) cycles affect the photoreduction of O2 at PSI, which is the limiting step in the water-water cycle. Simultaneous measurements were made of CO2-gas exchange, transpiration and quantum yield of PSII [phi(PSII)] using leaves of watermelon (Citrullus lanatus). The total electron flux in PSII[Je(PSII)], as estimated from phi(PSII), was always larger than the total electron flux required for the PCR and PCO cycles at various partial pressures of CO2 and O2 and 1,100 micromol photons m(-2)s(-1). This observation suggested the existence of an alternative electron flux (Ja). Ja was divided into O2-dependent [Ja(O2-depend)] and O2-independent [Ja(O2-independ)] components. The magnitude of half Ja(O2-depend), 7.5 to 9.5 micromol e- m(-2)s(-1), and its apparent Km for O2, about 8.0 kPa, could be accounted for by the photoreduction of O2 at PSI either mediated by ferredoxin or catalyzed by monodehydroascorbate reductase. The results indicated that Ja(O2-depend) was driven by the water-water cycle. A decrease in the intercellular partial pressure of CO2 from 23 to 5.0 Pa at 21 kPa O2 enhanced Ja(O2-depend) by a factor of 1.3. Saturation of the activities of both the PCR and PCO cycles by increasing the photon flux density induced Ja. These results indicate the electron flux in PSII that exceeds the flux required for the PCR and PCO cycles induces the photoreduction of O2 in the water-water cycle.
Zhao, Xinyu; Tang, Xuexi; Zhang, Huanxin; Qu, Tongfei; Wang, Ying
2016-10-01
For 8 consecutive years, a green tide has originated in the southern Yellow Sea and spread to the Qingdao offshore area. The causative species, Ulva prolifera, always forms a very thick thallus mat that is capable of drifting long distances over long periods. During this process, although the thalli face disturbance by complex environmental factors, they maintain high biomass and proliferation. We hypothesized that some form of photosynthetic adaptation strategy must exist to protect the thalli. Therefore, we studied the different photosynthetic response characteristics of the surface and lower layers of the floating thallus mats, and investigated the physiological and molecular-level adaptation mechanisms. The results showed that: (1) U. prolifera has strong photosynthetic capability that ensures it can gain sufficient energy to increase its biomass and adapt to long-distance migration. (2) Surface layer thalli adapt to the complex environment by dissipating excess energy via photosynthetic quantum control (energy quenching and energy redistribution between PSII/PSI) to avoid irreversible damage to the photosynthetic system. (3) Lower layer thalli increase their contents of Chlorophyll a (Chl a) and Chlorophyll b (Chl b) and decrease their Chl a/Chl b ratio to improve their ability to use light energy. (4) U. prolifera has strong photosynthetic plasticity and can adapt to frequent exchange between the surface and lower layer environments because of wave disturbance. Pigment component changes, energy quenching, and energy redistribution between PSII/PSI contribute to this photosynthetic plasticity. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Where Water Is Oxidized to Dioxygen: Structure of the Photosynthetic Mn4Ca Cluster
Yano, Junko; Kern, Jan; Sauer, Kenneth; Latimer, Matthew J.; Pushkar, Yulia; Biesiadka, Jacek; Loll, Bernhard; Saenger, Wolfram; Messinger, Johannes; Zouni, Athina; Yachandra, Vittal K.
2014-01-01
The oxidation of water to dioxygen is catalyzed within photosystem II (PSII) by a Mn4Ca cluster, the structure of which remains elusive. Polarized extended x-ray absorption fine structure (EXAFS) measurements on PSII single crystals constrain the Mn4Ca cluster geometry to a set of three similar high-resolution structures. Combining polarized EXAFS and x-ray diffraction data, the cluster was placed within PSII, taking into account the overall trend of the electron density of the metal site and the putative ligands. The structure of the cluster from the present study is unlike either the 3.0 or 3.5 angstrom–resolution x-ray structures or other previously proposed models. PMID:17082458
On improving the performance of nonphotochemical quenching in CP29 light-harvesting antenna complex
NASA Astrophysics Data System (ADS)
Berman, Gennady P.; Nesterov, Alexander I.; Sayre, Richard T.; Still, Susanne
2016-03-01
We model and simulate the performance of charge-transfer in nonphotochemical quenching (NPQ) in the CP29 light-harvesting antenna-complex associated with photosystem II (PSII). The model consists of five discrete excitonic energy states and two sinks, responsible for the potentially damaging processes and charge-transfer channels, respectively. We demonstrate that by varying (i) the parameters of the chlorophyll-based dimer, (ii) the resonant properties of the protein-solvent environment interaction, and (iii) the energy transfer rates to the sinks, one can significantly improve the performance of the NPQ. Our analysis suggests strategies for improving the performance of the NPQ in response to environmental changes, and may stimulate experimental verification.
Białasek, Maciej; Górecka, Magdalena; Mittler, Ron
2017-01-01
In contrast to the function of reactive oxygen species, calcium, hormones and small RNAs in systemic signaling, systemic electrical signaling in plants is poorly studied and understood. Pulse amplitude-modulated Chl fluorescence imaging and surface electrical potential measurements accompanied by pharmacological treatments were employed to study stimuli-induced electrical signals in leaves from a broad range of plant species and in Arabidopsis thaliana mutants. Here we report that rapid electrical signals in response to a local heat stimulus regulate systemic changes in non-photochemical quenching (NPQ) and PSII quantum efficiency. Both stimuli-induced systemic changes in NPQ and photosynthetic capacity as well as electrical signaling depended on calcium channel activity. Use of an Arabidopsis respiratory burst oxidase homolog D (RBOHD) mutant (rbohD) as well as an RBOH inhibitor further suggested a cross-talk between ROS and electrical signaling. Our results suggest that higher plants evolved a complex rapid long-distance calcium-dependent electrical systemic signaling in response to local stimuli that regulates and optimizes the balance between PSII quantum efficiency and excess energy dissipation in the form of heat by means of NPQ. PMID:28184891
Photoinduced changes in photosystem II pigments
NASA Astrophysics Data System (ADS)
Andreeva, Atanaska S.; Busheva, Mira C.; Stoitchkova, Katerina V.; Tzonova, Iren K.
2010-11-01
The photosynthetic apparatus in higher plants performs two seemingly opposing tasks: efficient harvest of sunlight, but also rapid and harmless dissipation of excess light energy as heat to avoid deleterious photodamage. In order to study this process in pigment-protein supercomplexes of photosystem II (PSII), 77 K fluorescence and room temperature resonance Raman (RR) spectroscopy were applied to investigate the changes in structure and spectral properties of the pigments in spinach PSII membranes. The high-light treatment results in a strong quenching of the fluorescence (being largest when the excitation is absorbed by carotenoids) and a red-shift of the main maximum. Decomposition of the fluorescence spectra into four bands revealed intensive quenching of F685 and F695 bands, possible bleaching of chlorophyll a, enhanced extent of light harvesting complexes (LHCII) aggregation and increased energy transfer to aggregated LHCII. The analysis of RR spectra revealed the predominant contribution of ß-carotene (ß-Car) upon 457.8 and 488 nm excitations and lutein (Lut) at 514.5 nm. During prolonged exposure to strong light no significant bleaching of ß-Car and weak photobleaching of Lut is observed. The results will contribute to the efforts to produce more efficient and robust solar cells when exposed to fluctuations in light intensity.
Loik, Michael E
2008-09-01
Cactus spines reduce herbivory, direct water toward roots and reduce the impacts of high- and low-temperature extremes. Yet, shading of stems by spines reduces incident photosynthetic photon flux density (PFD), photosynthesis and growth. This study compared spinescence, PFD interception, stem temperature, Photosystem II (PSII) photochemistry and xanthophyll pigment composition for three species of cacti from the Mojave Desert, CA. The species vary in spinescence: Opuntia basilaris, which has no central or radial spines; Opuntia erinacea, which is densely covered with spines; and Opuntia phaeacantha, which has an intermediate coverage of spines. The role of spines was tested by removing spines from stems of O. erinacea. PFD interception was similar for both O. basilaris and O. phaeacantha, and about three times that for densely spined O. erinacea; removal of spines increased incident PFD three-fold. There were no effects of spines on stem temperatures. Steady-state light-response curves of chlorophyll a fluorescence from PSII indicated that PhiPSII, photochemical quenching (qP) and electron flux within PSII were lower, and non-photochemical quenching was higher, for O. erinacea in comparison to the other two species with less spines. After 2 months, qP was higher and electron flux lower, and xanthophyll pigment pool size was higher, for stems from which spines had been removed compared with intact stems. These three species allocate different amounts of biomass to spines, resulting in species-specific PFD interception, PSII photochemistry and xanthophyll pigment pool size, which may help maintain rates of photosynthesis during the hot, dry Mojave Desert summer.
Harel, Yariv; Ohad, Itzhak; Kaplan, Aaron
2004-10-01
Filamentous cyanobacteria are the main primary producers in biological desert sand crusts. The cells are exposed to extreme environmental conditions including temperature, light, and diurnal desiccation/rehydration cycles. We have studied the kinetics of activation of photosynthesis during rehydration of the cyanobacteria, primarily Microcoleus sp., within crust samples collected in the Negev desert, Israel. We also investigated their susceptibility to photoinhibition. Activation of the photosynthetic apparatus, measured by fluorescence kinetics, thermoluminescence, and low temperature fluorescence emission spectra, did not require de novo protein synthesis. Over 50% of the photosystem II (PSII) activity, assembled phycobilisomes, and photosystem I (PSI) antennae were detected within less than 5 min of rehydration. Energy transfer to PSII and PSI by the respective antennae was fully established within 10 to 20 min of rehydration. The activation of a fraction of PSII population (about 20%-30%) was light and temperature-dependent but did not require electron flow to plastoquinone [was not inhibited by 3-(3,4-dichlorophenyl)-1,1-dimethylurea]. The cyanobacteria within the crusts are remarkably resistant to photoinhibition even in the absence of protein synthesis. The rate of PSII repair increased with light intensity and with time of exposure. Consequently, the extent of photoinhibition in high-light-exposed crusts reached a constant, relatively low, level. This is in contrast to model organisms such as Synechocystis sp. strain PCC 6803 where PSII activity declined continuously over the entire exposure to high illumination. Ability of the crust's organisms to rapidly activate photosynthesis upon rehydration and withstand photoinhibition under high light intensity may partly explain their ability to survive in this ecosystem.
Makino, Amane; Miyake, Chikahiro; Yokota, Akiho
2002-09-01
Changes in chlorophyll fluorescence, P700(+)-absorbance and gas exchange during the induction phase and steady state of photosynthesis were simultaneously examined in rice (Oryza sativa L.), including the rbcS antisense plants. The quantum yield of photosystem II (PhiPSII) increased more rapidly than CO(2) assimilation in 20% O(2). This rapid increase in PhiPSII resulted from the electron flux through the water-water cycle (WWC) because of its dependency on O(2). The electron flux of WWC reached a maximum just after illumination, and rapidly generated non-photochemical quenching (NPQ). With increasing CO(2) assimilation, the electron flux of WWC and NPQ decreased. In 2% O(2), WWC scarcely operated and PhiPSI was always higher than PhiPSII. This suggested that cyclic electron flow around PSI resulted in the formation of NPQ, which remained at higher levels in 2% O(2). The electron flux of WWC in the rbcS antisense plants was lower, but these plants always showed a higher NPQ. This was also caused by the operation of the cyclic electron flow around PSI because of a higher ratio of PhiPSI/PhiPSII, irrespective of O(2) concentration. The results indicate that WWC functions as a starter of photosynthesis by generating DeltapH across thylakoid membranes for NPQ formation, supplying ATP for carbon assimilation. However, WWC does not act to maintain a high NPQ, and PhiPSII is down-regulated by DeltapH generated via the cyclic electron flow around PSI.
RfpA, RfpB, and RfpC are the master control elements of far-red light photoacclimation (FaRLiP)
Zhao, Chi; Gan, Fei; Shen, Gaozhong; ...
2015-11-25
Terrestrial cyanobacteria often occur in niches tha tare strongly enriched in far-redlight (FRL; λ > 700nm). Some cyanobacteria exhibit a complex and extensive photoacclimation response, known as FRLphotoacclimation(FaRLiP).During the FaRLiP response, specialized paralogous proteins replace 17 core subunits of the three major photosynthetic complexes: Photosystem (PS)I, PSII,and the phycobilisome. Additionally, the cells synthesize both chlorophyll (Chl) f and Chl d.Using biparental mating from Escherichia coli, we constructed null mutants of three genes, rfpA, rfpB,and rfpC, in the cyanobacteria Chlorogloeopsis fritschii PCC 9212 and Chroococcidiopsis thermalis PCC 7203.The resulting mutants were no longer able to modify their photosynthetic apparatus to absorbmore » FRL, were no longer able to synthesize Chl f, in appropriately synthesized Chl d in white light,and were unable to transcribe genes of the FaRLiP gene cluster. We conclude that RfpA, RfpB, and RfpC constitute a FRL-activated signal transduction cascade that is the master control switch for the FaRLiP response. FRL is proposed to activate (or inactivate) the histidine kinase activity of RfpA, which leads to formation of the active state of RfpB, the key response regulator and transcription activator. RfpC may act as a phosphate shuttle between RfpA and RfpB. Our results show that reverse genetics via conjugation will be a powerful approach in detailed studies of the FaRLiP response.« less
RfpA, RfpB, and RfpC are the master control elements of far-red light photoacclimation (FaRLiP)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Chi; Gan, Fei; Shen, Gaozhong
Terrestrial cyanobacteria often occur in niches tha tare strongly enriched in far-redlight (FRL; λ > 700nm). Some cyanobacteria exhibit a complex and extensive photoacclimation response, known as FRLphotoacclimation(FaRLiP).During the FaRLiP response, specialized paralogous proteins replace 17 core subunits of the three major photosynthetic complexes: Photosystem (PS)I, PSII,and the phycobilisome. Additionally, the cells synthesize both chlorophyll (Chl) f and Chl d.Using biparental mating from Escherichia coli, we constructed null mutants of three genes, rfpA, rfpB,and rfpC, in the cyanobacteria Chlorogloeopsis fritschii PCC 9212 and Chroococcidiopsis thermalis PCC 7203.The resulting mutants were no longer able to modify their photosynthetic apparatus to absorbmore » FRL, were no longer able to synthesize Chl f, in appropriately synthesized Chl d in white light,and were unable to transcribe genes of the FaRLiP gene cluster. We conclude that RfpA, RfpB, and RfpC constitute a FRL-activated signal transduction cascade that is the master control switch for the FaRLiP response. FRL is proposed to activate (or inactivate) the histidine kinase activity of RfpA, which leads to formation of the active state of RfpB, the key response regulator and transcription activator. RfpC may act as a phosphate shuttle between RfpA and RfpB. Our results show that reverse genetics via conjugation will be a powerful approach in detailed studies of the FaRLiP response.« less
Talla, Sai Krishna; Panigrahy, Madhusmita; Kappara, Saivishnupriya; Nirosha, P; Neelamraju, Sarla; Ramanan, Rajeshwari
2016-03-01
The phytohormone cytokinin (CK) is known to delay senescence in plants. We studied the effect of a CK analog, 6-benzyl adenine (BA), on rice leaves to understand the possible mechanism by which CK delays senescence in a drought- and heat-tolerant rice cultivar Nagina22 (N22) using dark-induced senescence (DIS) as a surrogate for natural senescence of leaves. Leaves of N22-H-dgl162, a stay-green mutant of N22, and BA-treated N22 showed retention of chlorophyll (Chl) pigments, maintenance of the Chl a/b ratio, and delay in reduction of both photochemical efficiency and rate of oxygen evolution during DIS. HPLC analysis showed accumulation of 7-hydroxymethyl chlorophyll (HmChl) during DIS, and the kinetics of its accumulation correlated with progression of senescence. Transcriptome analysis revealed that several plastid-localized genes, specifically those associated with photosystem II (PSII), showed higher transcript levels in BA-treated N22 and the stay-green mutant leaves compared with naturally senescing N22 leaves. Real-time PCR analyses showed that genes coding for enzymes associated with Chl a/b interconversion and proteins associated with light-harvesting complexes maintained higher transcript levels up to 72h of DIS following BA treatment. The pigment-protein complexes analyzed by green gel remained intact in both N22-H-dgl162 and BA-treated N22 leaves even after 96h of DIS. Thus, CK delays senescence by accumulation of HmChl and up-regulating genes in the Chl cycle, thereby maintaining the Chl a/b ratio. Also, CK treatment retains higher transcript levels of PSII-related genes, resulting in the stability of photosynthetic pigment complexes and functional stay-greenness in rice. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Georgieva, Katya; Röding, Anja; Büchel, Claudia
2009-09-15
The changes in some proteins involved in the light reactions of photosynthesis of the resurrection plant Haberlea rhodopensis were examined in connection with desiccation. Fully hydrated (control) and completely desiccated plants (relative water content (RWC) 6.5%) were used for thylakoid preparations. The chlorophyll (Chl) a to Chl b ratios of thylakoids isolated from control and desiccated leaves were very similar, which was also confirmed by measuring their absorption spectra. HPLC analysis revealed that beta-carotene content was only slightly enhanced in desiccated leaves compared with the control, but the zeaxanthin level was strongly increased. Desiccation of H. rhodopensis to an air-dried state at very low light irradiance led to a little decrease in the level of D1, D2, PsbS and PsaA/B proteins in thylakoids, but a relative increase in LHC polypeptides. To further elucidate whether the composition of the protein complexes of the thylakoid membranes had changed, we performed a separation of solubilized thylakoids on sucrose density gradients. In contrast to spinach, Haberlea thylakoids appeared to be much more resistant to the same solubilization procedure, i.e. complexes were not separated completely and complexes of higher density were found. However, the fractions analyzed provided clear evidence for a move of part of the antenna complexes from PSII to PSI when plants became desiccated. This move was also confirmed by low temperature emission spectra of thylakoids. Overall, the photosynthetic proteins remained comparatively stable in dried Haberlea leaves when plants were desiccated under conditions similar to their natural habitat. Low light during desiccation was enough to induce a rise in the xanthophyll zeaxanthin and beta-carotene. Together with the extensive leaf shrinkage and some leaf folding, increased zeaxanthin content and the observed shift in antenna proteins from PSII to PSI during desiccation of Haberlea contributed to the integrity of the photosynthetic apparatus, which is important for rapid recovery after rehydration.
Nocera, Daniel G
2012-05-15
To convert the energy of sunlight into chemical energy, the leaf splits water via the photosynthetic process to produce molecular oxygen and hydrogen, which is in a form of separated protons and electrons. The primary steps of natural photosynthesis involve the absorption of sunlight and its conversion into spatially separated electron-hole pairs. The holes of this wireless current are captured by the oxygen evolving complex (OEC) of photosystem II (PSII) to oxidize water to oxygen. The electrons and protons produced as a byproduct of the OEC reaction are captured by ferrodoxin of photosystem I. With the aid of ferrodoxin-NADP(+) reductase, they are used to produce hydrogen in the form of NADPH. For a synthetic material to realize the solar energy conversion function of the leaf, the light-absorbing material must capture a solar photon to generate a wireless current that is harnessed by catalysts, which drive the four electron/hole fuel-forming water-splitting reaction under benign conditions and under 1 sun (100 mW/cm(2)) illumination. This Account describes the construction of an artificial leaf comprising earth-abundant elements by interfacing a triple junction, amorphous silicon photovoltaic with hydrogen- and oxygen-evolving catalysts made from a ternary alloy (NiMoZn) and a cobalt-phosphate cluster (Co-OEC), respectively. The latter captures the structural and functional attributes of the PSII-OEC. Similar to the PSII-OEC, the Co-OEC self-assembles upon oxidation of an earth-abundant metal ion from 2+ to 3+, may operate in natural water at room temperature, and is self-healing. The Co-OEC also activates H(2)O by a proton-coupled electron transfer mechanism in which the Co-OEC is increased by four hole equivalents akin to the S-state pumping of the Kok cycle of PSII. X-ray absorption spectroscopy studies have established that the Co-OEC is a structural relative of Mn(3)CaO(4)-Mn cubane of the PSII-OEC, where Co replaces Mn and the cubane is extended in a corner-sharing, head-to-tail dimer. The ability to perform the oxygen-evolving reaction in water at neutral or near-neutral conditions has several consequences for the construction of the artificial leaf. The NiMoZn alloy may be used in place of Pt to generate hydrogen. To stabilize silicon in water, its surface is coated with a conducting metal oxide onto which the Co-OEC may be deposited. The net result is that immersing a triple-junction Si wafer coated with NiMoZn and Co-OEC in water and holding it up to sunlight can effect direct solar energy conversion via water splitting. By constructing a simple, stand-alone device composed of earth-abundant materials, the artificial leaf provides a means for an inexpensive and highly distributed solar-to-fuels system that employs low-cost systems engineering and manufacturing. Through this type of system, solar energy can become a viable energy supply to those in the non-legacy world.
Oja, Vello; Eichelmann, Hillar; Laisk, Agu
2011-12-01
Oxygen evolution per single-turnover flash (STF) or multiple-turnover pulse (MTP) was measured with a zirconium O(2) analyzer from sunflower leaves at 22 °C. STF were generated by Xe arc lamp, MTP by red LED light of up to 18000 μmol quanta m(-2) s(-1). Ambient O(2) concentration was 10-30 ppm, STF and MTP were superimposed on far-red background light in order to oxidize plastoquinone (PQ) and randomize S-states. Electron (e(-)) flow was calculated as 4 times O(2) evolution. Q (A) → Q (B) electron transport was investigated firing double STF with a delay of 0 to 2 ms between the two. Total O(2) evolution per two flashes equaled to that from a single flash when the delay was zero and doubled when the delay exceeded 2 ms. This trend was fitted with two exponentials with time constants of 0.25 and 0.95 ms, equal amplitudes. Illumination with MTP of increasing length resulted in increasing O(2) evolution per pulse, which was differentiated with an aim to find the time course of O(2) evolution with sub-millisecond resolution. At the highest pulse intensity of 2.9 photons ms(-1) per PSII, 3 e(-) initially accumulated inside PSII and the catalytic rate of PQ reduction was determined from the throughput rate of the fourth and fifth e(-). A light response curve for the reduction of completely oxidized PQ was a rectangular hyperbola with the initial slope of 1.2 PSII quanta per e(-) and V (m) of 0.6 e(-) ms(-1) per PSII. When PQ was gradually reduced during longer MTP, V (m) decreased proportionally with the fraction of oxidized PQ. It is suggested that the linear kinetics with respect to PQ are apparent, caused by strong product inhibition due to about equal binding constants of PQ and PQH(2) to the Q (B) site. The strong product inhibition is an appropriate mechanism for down-regulation of PSII electron transport in accordance with rate of PQH(2) oxidation by cytochrome b(6)f. © Springer Science+Business Media B.V. 2011
Debus, Richard J; Aznar, Constantino; Campbell, Kristy A; Gregor, Wolfgang; Diner, Bruce A; Britt, R David
2003-09-16
Aspartate 170 of the D1 polypeptide provides part of the high-affinity binding site for the first Mn(II) ion that is photooxidized during the light-driven assembly of the (Mn)(4) cluster in photosystem II [Campbell, K. A., Force, D. A., Nixon, P. J., Dole, F., Diner, B. A., and Britt, R. D. (2000) J. Am. Chem. Soc. 122, 3754-3761]. However, despite a wealth of data on D1-Asp170 mutants accumulated over the past decade, there is no consensus about whether this residue ligates the assembled (Mn)(4) cluster. To address this issue, we have conducted an EPR and ESEEM (electron spin-echo envelope modulation) study of D1-D170H PSII particles purified from the cyanobacterium Synechocystis sp. PCC 6803. The line shapes of the S(1) and S(2) state multiline EPR signals of D1-D170H PSII particles are unchanged from those of wild-type PSII particles, and the signal amplitudes correlate approximately with the lower O(2) evolving activity of the mutant PSII particles (40-60% compared to that of the wild type). These data provide further evidence that the assembled (Mn)(4) clusters in D1-D170H cells function normally, even though the assembly of the (Mn)(4) cluster is inefficient in this mutant. In the two-pulse frequency domain ESEEM spectrum of the 9.2 GHz S(2) state multiline EPR signal of D1-D170H PSII particles, the histidyl nitrogen modulation observed at 4-5 MHz is unchanged from that of wild-type PSII particles and no significant new modulation is observed. Three scenarios are presented to explain this result. (1) D1-Asp170 ligates the assembled (Mn)(4) cluster, but the hyperfine couplings to the ligating histidyl nitrogen of D1-His170 are too large or anisotropic to be detected by ESEEM analyses conducted at 9.2 GHz. (2) D1-Asp170 ligates the assembled (Mn)(4) cluster, but D1-His170 does not. (3) D1-Asp170 does not ligate the assembled (Mn)(4) cluster.
Luo, Hai-Bo; Ma, Ling; Xi, Hui-Feng; Duan, Wei; Li, Shao-Hua; Loescher, Wayne; Wang, Jun-Fang; Wang, Li-Jun
2011-01-01
The electron transport chain, Rubisco and stomatal conductance are important in photosynthesis. Little is known about their combined responses to heat treatment at different temperatures and following recovery in grapevines (Vitis spp.) which are often grown in climates with high temperatures. The electron transport function of photosystem II, the activation state of Rubisco and the influence of stomatal behavior were investigated in grapevine leaves during heat treatments and following recovery. High temperature treatments included 35, 40 and 45°C, with 25°C as the control and recovery temperature. Heat treatment at 35°C did not significantly (P>0.05) inhibit net photosynthetic rate (P(n)). However, with treatments at 40 and 45°C, P(n) was decreased, accompanied by an increase in substomatal CO(2) concentration (C(i)), decreases in stomatal conductance (g(s)) and the activation state of Rubisco, and inhibition of the donor side and the reaction center of PSII. The acceptor side of PSII was inhibited at 45°C but not at 40°C. When grape leaves recovered following heat treatment, P(n), g(s) and the activation state of Rubisco also increased, and the donor side and the reaction center of PSII recovered. The increase in P(n) during the recovery period following the second 45°C stress was slower than that following the 40°C stress, and these increases corresponded to the donor side of PSII and the activation state of Rubisco. Heat treatment at 35°C did not significantly (P>0.05) influence photosynthesis. The decrease of P(n) in grape leaves exposed to more severe heat stress (40 or 45°C) was mainly attributed to three factors: the activation state of Rubisco, the donor side and the reaction center of PSII. However, the increase of P(n) in grape leaves following heat stress was also associated with a stomatal response. The acceptor side of PSII in grape leaves was responsive but less sensitive to heat stress.
Wang, Fubiao; Liu, Jianchao; Chen, Minxue; Zhou, Lujian; Li, Zhaowei; Zhao, Qian; Pan, Gang; Zaidi, Syed-Hassan-Raza; Cheng, Fangmin
2016-01-01
D1 protein in the PSII reaction center is the major target of photodamage, and it exhibits the highest turnover rate among all the thylakoid proteins. In this paper, rice psf (premature senescence of flag leaves) mutant and its wild type were used to investigate the genotype-dependent alteration in PSII photo-damage and D1 protein turnover during leaf senescence and its relation to ABA accumulation in senescent leaves. The symptom and extent of leaf senescence of the psf mutant appeared to be sunlight-dependent under natural field condition. The psf also displayed significantly higher levels of ABA accumulation in senescent leaves than the wild type. However, the premature senescence lesion of psf leaves could be alleviated by shaded treatment, concomitantly with the strikingly suppressed ABA level in the shaded areas of flag leaves. The change in ABA concentration contributed to the regulation of shade-delayed leaf senescence. The participation of ABA in the timing of senescence initiation and in the subsequent rate of leaf senescence was closely associated with PSII photodamage and D1 protein turnover during leaf senescence, in which the transcriptional expression of several key genes (psbA, psbB, psbC and OsFtsH2) involved in D1 protein biosynthesis and PSII repair cycle was seriously suppressed by the significantly increased ABA level. This response resulted in the low rate of D1 protein synthesis and impaired repair recovery in the presence of ABA. The psf showed evidently decreased D1 protein amount in the senescent leaves. Both the inhibition of de novo synthesized D1 protein and the slow rate of proteolytic removal for the photodamaged D1 protein was among the most crucial steps for the linkage between light-dependent leaf senescence and the varying ABA concentration in psf mutant leaves. OsFtsH2 transcriptional expression possibly played an important role in the regulation of D1 protein turnover and PSII repair cycle in relation to ABA mediated leaf senescence. PMID:27532299
Allen, Andrew E.; Foster, Leonard J.; Green, Beverley R.; Maldonado, Maria T.
2017-01-01
There is an intricate interaction between iron (Fe) and copper (Cu) physiology in diatoms. However, strategies to cope with low Cu are largely unknown. This study unveils the comprehensive restructuring of the photosynthetic apparatus in the diatom Thalassiosira oceanica (CCMP1003) in response to low Cu, at the physiological and proteomic level. The restructuring results in a shift from light harvesting for photochemistry—and ultimately for carbon fixation—to photoprotection, reducing carbon fixation and oxygen evolution. The observed decreases in the physiological parameters Fv/Fm, carbon fixation, and oxygen evolution, concomitant with increases in the antennae absorption cross section (σPSII), non-photochemical quenching (NPQ) and the conversion factor (φe:C/ηPSII) are in agreement with well documented cellular responses to low Fe. However, the underlying proteomic changes due to low Cu are very different from those elicited by low Fe. Low Cu induces a significant four-fold reduction in the Cu-containing photosynthetic electron carrier plastocyanin. The decrease in plastocyanin causes a bottleneck within the photosynthetic electron transport chain (ETC), ultimately leading to substantial stoichiometric changes. Namely, 2-fold reduction in both cytochrome b6f complex (cytb6f) and photosystem II (PSII), no change in the Fe-rich PSI and a 40- and 2-fold increase in proteins potentially involved in detoxification of reactive oxygen species (ferredoxin and ferredoxin:NADP+ reductase, respectively). Furthermore, we identify 48 light harvesting complex (LHC) proteins in the publicly available genome of T. oceanica and provide proteomic evidence for 33 of these. The change in the LHC composition within the antennae in response to low Cu underlines the shift from photochemistry to photoprotection in T. oceanica (CCMP1003). Interestingly, we also reveal very significant intra-specific strain differences. Another strain of T. oceanica (CCMP 1005) requires significantly higher Cu concentrations to sustain both its maximal and minimal growth rate compared to CCMP 1003. Under low Cu, CCMP 1005 decreases its growth rate, cell size, Chla and total protein per cell. We argue that the reduction in protein per cell is the main strategy to decrease its cellular Cu requirement, as none of the other parameters tested are affected. Differences between the two strains, as well as differences between the well documented responses to low Fe and those presented here in response to low Cu are discussed. PMID:28837661
A Miniature Bioassay for Testing the Acute Phytotoxicity of Photosystem II Herbicides on Seagrass
Wilkinson, Adam D.; Collier, Catherine J.; Flores, Florita; Mercurio, Phil; O’Brien, Jake; Ralph, Peter J.; Negri, Andrew P.
2015-01-01
Photosystem II (PSII) herbicides have been detected in nearshore tropical waters such as those of the Great Barrier Reef and may add to the pressure posed by runoff containing sediments and nutrients to threatened seagrass habitats. There is a growing number of studies into the potential effects of herbicides on seagrass, generally using large experimental setups with potted plants. Here we describe the successful development of an acute 12-well plate phytotoxicity assay for the PSII herbicide Diuron using isolated Halophila ovalis leaves. Fluorescence images demonstrated Diuron affected the entire leaf surface evenly and responses were not influenced by isolating leaves from the plant. The optimum exposure duration was 24 h, by which time the inhibition of effective quantum yield of PSII (∆F/Fm’) was highest and no deterioration of photosystems was evident in control leaves. The inhibition of ∆F/Fm’ by Diuron in isolated H. ovalis leaves was identical to both potted and hydroponically grown plants (with leaves remaining attached to rhizomes), indicating similar reductions in photosynthetic activity in these acute well-plate assays. The sensitivity of the assay was not influenced by irradiance (range tested 40 to 400 μmol photons m-2 s-1). High irradiance, however, caused photo-oxidative stress in H. ovalis and this generally impacted in an additive or sub-additive way with Diuron to damage PSII. The bioassay using isolated leaves is more rapid, uses far less biological material and does not rely on specialised aquarium facilities in comparison with assays using potted plants. The development and validation of this sensitive bioassay will be useful to reliably screen and monitor the phytotoxicity of existing and emerging PSII herbicides and contribute to risk assessments and water quality guideline development in the future. PMID:25674791
Hazrati, Saeid; Tahmasebi-Sarvestani, Zeinolabedin; Modarres-Sanavy, Seyed Ali Mohammad; Mokhtassi-Bidgoli, Ali; Nicola, Silvana
2016-09-01
Aloe vera L. is one of the most important medicinal plants in the world. In order to determine the effects of light intensity and water deficit stress on chlorophyll (Chl) fluorescence and pigments of A. vera, a split-plot in time experiment was laid out in a randomized complete block design with four replications in a research greenhouse. The factorial combination of three light intensities (50, 75 and 100% of sunlight) and four irrigation regimes (irrigation after depleting 20, 40, 60 and 80% of soil water content) were considered as main factors. Sampling time was considered as sub factor. The first, second and third samplings were performed 90, 180 and 270 days after imposing the treatments, respectively. The results demonstrated that the highest light intensity and the severe water stress decreased maximum fluorescence (Fm), variable fluorescence (Fv)/Fm, quantum yield of PSII photochemistry (ФPSII), Chl and photochemical quenching (qP) but increased non-photochemical quenching (NPQ), minimum fluorescence (F0) and Anthocyanin (Anth). Additionally, the highest Fm, Fv/Fm, ФPSII and qP and the lowest NPQ and F0 were observed when 50% of sunlight was blocked and irrigation was done after 40% soil water depletion. Irradiance of full sunlight and water deficit stress let to the photoinhibition of photosynthesis, as indicated by a reduced quantum yield of PSII, ФPSII, and qP, as well as higher NPQ. Thus, chlorophyll florescence measurements provide valuable physiological data. Close to half of total solar radiation and irrigation after depleting 40% of soil water content were selected as the most efficient treatments. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Chen, Wenrong; Yang, Xiaoe; He, Zhenli; Feng, Ying; Hu, Fenghong
2008-01-01
The relationship of zinc (Zn) efficiency in rice to differential tolerance of photosynthetic capacity and chloroplast function to low Zn stress was studied using Zn-efficient (IR8192) and Zn-inefficient (Erjiufeng) rice genotypes (Oryza sativa L.). Zinc deficiency caused extensive declines in leaf chlorophyll (Chl) content, ratios of chl a:b, Pn, Fv/Fm and Fv/Fo, indicating that the intrinsic quantum efficiency of the photosystem II (PSII) units was damaged. A greater decline was observed in the inefficient genotype (Erjiufeng) than the efficient genotype (IR8192). The 77 K chl fluorescence emission spectrum revealed that Zn deficiency blocked energy spillover from PSII to PSI and more excitation energy was distributed to PSII in IR8192 than Erjiufeng. The spectrum of Zn-deficient Erjiufeng was completely disordered, implying that the photosynthetic centers were seriously damaged. Electron microscopy showed that Zn deficiency caused a severe damage to the fine structure of chloroplasts, but IR8192 had a better preserved chloroplast ultrastructure as compared with Erjiufeng. These differences may result from the higher levels of the antioxidant enzyme activities and lower oxidant stress level in IR8192. These results indicate that Zn deficiency decreases leaf photosynthetic capacity primarily by reducing the number of PSII units per unit leaf area, and also reducing the photochemical capacity of the remaining PSII units. Therefore, the maintenance of more efficient photochemical capacity under low Zn stress is a key factor for the high Zn efficiency in rice, which may result from less antioxidant damage caused by low Zn to the chloroplast ultrastructure.
On improving the performance of nonphotochemical quenching in CP29 light-harvesting antenna complex
Berman, Gennady Petrovich; Nesterov, Alexander I.; Sayre, Richard Thomas; ...
2016-02-02
In this study, we model and simulate the performance of charge-transfer in nonphotochemical quenching (NPQ) in the CP29 light-harvesting antenna-complex associated with photosystem II (PSII). The model consists of five discrete excitonic energy states and two sinks, responsible for the potentially damaging processes and charge-transfer channels, respectively. We demonstrate that by varying (i) the parameters of the chlorophyll-based dimer, (ii) the resonant properties of the protein-solvent environment interaction, and (iii) the energy transfer rates to the sinks, one can significantly improve the performance of the NPQ. In conclusion, our analysis suggests strategies for improving the performance of the NPQ inmore » response to environmental changes, and may stimulate experimental verification.« less
Geoffroy, L; Dewez, D; Vernet, G; Popovic, R
2003-11-01
The effect of oxyfluorfen was investigated when alga Scenedesmus obliquus has been exposed to different concentrations (7.5, 15, and 22.5 microg x L(-1)) at 12, 24, and 48 hours of exposure. Toxicity test was done by using 13 biomarkers concerning growth rate, chlorophyll content and indicators of photosynthetic and antioxidant enzyme activities. The change of the 13 parameters showed a great variation of sensitivity indicating differences in parameters' suitability to be used as biomarkers when alga culture was exposed to oxyfluorfen toxicity. The order of sensitivity between those biomarkers was: Antenna size (ABS/RC) > Chlorophyll content > Catalase (CAT) > Operational PSII quantum yield (phiS(PSII)) > Glutathione S-transferase (GST) > Functional plastoquinone pool (Q(PQ)) > Glutathione reductase (GR) > Growth rate > Nonphotochemical quenching (QN) > Proton gradient quenching (Q(Emax)) > Ascorbate peroxidase (APX) > Photochemical quenching (Q(p)) > Maximum PSII quantum yield (Phi(PSII)). The effect of oxyfluorfen on the changes of those parameters was interpreted as a result of herbicide mode of action at molecular level of alga cellular system. This study indicated for some photosynthetic and enzymatic biomarkers to be useful indicators of toxicity effect induced in non-target alga species. Determination of biomarkers' sensitivity order may facilitate their selection to be used in environmental risk assessment of polluted water.
Balan, Ranjini; Suraishkumar, G K
2014-01-01
A challenge in algae-based bio-oil production is to simultaneously enhance specific growth rates and specific lipid content. We have demonstrated simultaneous increases in both the above in Chlorella vulgaris through reactive species (RS) induced under ultraviolet (UV) A and UVB light treatments. We postulated that the changes in photosystem (PS) stoichiometry and antenna size were responsible for the increases in specific growth rate. UVB treatment excited PSII, which resulted in a twofold to sevenfold increase in PSII/PSI ratio compared to control. An excited PSII caused a 2.7-fold increase in the specific levels of superoxide and a twofold increase in the specific levels of hydroxyl radicals. We have established that the increased specific intracellular RS (si-RS) levels increased the PSII antenna size by a significant 10-fold as compared to control. In addition, the 8.2-fold increase in specific lipid content was directly related to the si-RS levels. We have also demonstrated that the RS induced under UVA treatment led to a 3.2-fold increase in the saturated to unsaturated fatty acid ratio. Based on the findings, we have proposed and demonstrated a UV-based strategy, which achieved an 8.8-fold increase in volumetric lipid productivity. © 2013 American Institute of Chemical Engineers.
Duan, Ying; Zhang, Mengxia; Gao, Jin; Li, Pengmin; Goltsev, Vasilij; Ma, Fengwang
2015-11-01
During the seasonal shift from June to August, air temperatures increase. To explore how apple trees improve their thermotolerance during this shift, we examined the photochemical reaction capacity of apple tree leaves by simultaneous measurement of prompt chlorophyll fluorescence, delayed chlorophyll fluorescence, and modulated 820 nm reflection at varying temperatures. It was found that the reaction centers and antennae of photosystem II (PSII) and photosystem I (PSI), the donor side of PSII, the electron transfer capacity from QA to QB, and the reoxidation capacity of plastoquinol were all sensitive to heat stress, particularly in June. As the season shifted, apple tree leaves improved in thermotolerance. Interestingly, the acclimation to seasonal shift enhanced the thermotolerance of PSII and PSI reaction centers more than that of their antennae, and the activity of PSII more than that of PSI. This may be a strategy for plant adaptation to changes in environmental temperatures. In addition, results from prompt and delayed fluorescence, as well as modulated 820 nm reflection corroborate each other. We suggest that the simultaneous measurement of the three independent signals may provide more information on thermal acclimation mechanisms of photochemical reactions in plant leaves. Copyright © 2015 Elsevier B.V. All rights reserved.
Ryu, DongHyun; Kim, Yong Jae; Kim, Seon Il; Hong, Hyeonaug; Ahn, Hyun S.
2018-01-01
Photosynthesis converts solar energy to electricity in a highly efficient manner. Since only water is needed as fuel for energy conversion, this highly efficient energy conversion process has been rigorously investigated. In particular, photosynthetic apparatus, such as photosystem II (PSII), photosystem I (PSI), or thylakoids, have been isolated from various plants to construct bio-hybrid anodes. Although PSII or PSI decorated anodes have shown potentials, there still remain challenges, such as poor stability of PSII-based systems or need for electron donors other than water molecules of PSI-based systems. Thylakoid membranes are relatively stable after isolation and they contain all the necessary photosynthetic apparatus including the PSII and PSI. To increase electrical connections between thylakoids and anodes, nanomaterials such as carbon nanotubes, nanowires, nanoparticles, or graphene have been employed. However, since they rely on the secondary electrical connections between thylakoids and anodes; it is desired to achieve larger direct contacts between them. Here, we aimed to develop micro-pillar (MP) array anodes to maximize direct contact with thylakoids. The thylakoid morphology was analyzed and the MP array was designed to maximize direct contact with thylakoids. The performance of MP anodes and a photosynthetic fuel cell based on MP electrodes was demonstrated and analyzed. PMID:29587387
Laviale, Martin; Morin, Soizic; Créach, Anne
2011-07-01
Aquatic organisms are exposed to fluctuating concentrations of herbicides which contaminate rivers following their use for agricultural or domestic purposes. The development of sensitive bioanalytical tests enabling us not only to detect the effects of those pollutants but to take into account this pattern of exposure should improve the ecological relevance of river toxicity assessment. In this respect, the use of chlorophyll fluorescence measurements is a convenient way to probe the effect of photosystem II (PSII) inhibitors on primary producers. This study was devoted to validate the combined use of two fluorescence parameters, the effective and the optimal quantum yields of PSII photochemistry (Φ(PSII) and F(v)/F(m)), as reliable biomarkers of initial isoproturon (IPU) or atrazine (ATZ) toxicity to natural periphyton in a pulse exposition scenario. Φ(PSII) and F(v)/F(m) were regularly estimated during a 7 h-exposure to each pollutant (0-100 μM) and also later after being transferred in herbicide-free water (up to 36 h). Our results showed that IPU was more toxic than ATZ, but with effects reversible within 12 h. Moreover, these two similarly acting herbicides (i.e. same target site) presented contrasted short term recovery patterns, regarding the previous exposure duration. Copyright © 2011 Elsevier Ltd. All rights reserved.
Xu, Weinan; Zhen, Ai; Zhang, Liang; Hu, Xiaohui
2016-01-01
Gamma-aminobutyric acid (GABA) is important in plant responses to environmental stresses. We wished to clarify the role of GABA in maintenance of photosynthesis in muskmelon seedlings (Cucumis melo L., cv. Yipintianxia) during saline-alkaline stress. To this end, we assessed the effect of GABA on the structure and function of the photosynthetic apparatus in muskmelon seedlings grown under saline-alkaline stress. These stresses in combination reduced net photosynthetic rate, gas-exchange, and inhibited photosystem II (PSII) electron transport as measured by the JIP-test. They also reduced the activity of chloroplast ATPases and disrupted the internal lamellar system of the thylakoids. Exogenous GABA alleviated the stress-induced reduction of net photosynthesis, the activity of chloroplast ATPases, and overcame some of the damaging effects of stress on the chloroplast structure. Based on interpretation of the JIP-test, we conclude that exogenous GABA alleviated stress-related damage on the acceptor side of PSII. It also restored energy distribution, the reaction center status, and enhanced the ability of PSII to repair reaction centers in stressed seedlings. GABA may play a crucial role in protecting the chloroplast structure and function of PSII against the deleterious effects of salinity-alkalinity stress. PMID:27764179
Dynamic interplay between photodamage and photoprotection in photosystem II.
Townsend, Alexandra J; Ware, Maxwell A; Ruban, Alexander V
2018-05-01
Photoinhibition is the light-induced reduction in photosynthetic efficiency and is usually associated with damage to the D1 photosystem II (PSII) reaction centre protein. This damage must either be repaired, through the PSII repair cycle, or prevented in the first place by nonphotochemical quenching (NPQ). Both NPQ and D1 repair contribute to light tolerance because they ensure the long-term maintenance of the highest quantum yield of PSII. However, the relative contribution of each of these processes is yet to be elucidated. The application of a pulse amplitude modulation fluorescence methodology, called protective NPQ, enabled us to evaluate of the protective effectiveness of the processes. Within this study, the contribution of NPQ and D1 repair to the photoprotective capacity of Arabidopsis thaliana was elucidated by using inhibitors and mutants known to affect each process. We conclude that NPQ contributes a greater amount to the maintenance of a high PSII yield than D1 repair under short periods of illumination. This research further supports the role of protective components of NPQ during light fluctuations and the value of protective NPQ and q Pd as unambiguous fluorescence parameters, as opposed to q I and F v /F m , for quantifying photoinactivation of reaction centre II and light tolerance of photosynthetic organisms. © 2017 John Wiley & Sons Ltd.
Ca K-Edge XAS as a Probe of Calcium Centers in Complex Systems
Martin-Diaconescu, Vlad; Gennari, Marcello; Gerey, Bertrand; ...
2014-12-10
Calcium K-edge pre-edges coupled with TD-DFT theoretical calculation of spectra provide a powerful approach for the characterization of complex calcium centers in inorganic and bioinorganic chemistry. Herein, Ca K-edge X-ray absorption spectroscopy (XAS) is developed as a means to characterize the local environment of calcium centers. The spectra for six, seven, and eight coordinate inorganic and molecular calcium complexes were analyzed and determined to be primarily influenced by the coordination environment and site symmetry at the calcium center. The experimental results are closely correlated to time-dependent density functional theory (TD-DFT) calculations of the XAS spectra. The applicability of this methodologymore » to complex systems was investigated using structural mimics of the oxygen-evolving complex (OEC) of PSII. It was found that Ca K-edge XAS is a sensitive probe for structural changes occurring in the cubane heterometallic cluster due to Mn oxidation. Future applications to the OEC are discussed.« less
Mono-manganese mechanism of the photosystem II water splitting reaction by a unique Mn4Ca cluster.
Kusunoki, Masami
2007-06-01
The molecular mechanism of the water oxidation reaction in photosystem II (PSII) of green plants remains a great mystery in life science. This reaction is known to take place in the oxygen evolving complex (OEC) incorporating four manganese, one calcium and one chloride cofactors, that is light-driven to cycle four intermediates, designated S(0) through S(4), to produce four protons, five electrons and lastly one molecular oxygen, for indispensable resources in biosphere. Recent advancements of X-ray crystallography models established the existence of a catalytic Mn(4)Ca cluster ligated by seven protein amino acids, but its functional structure is not yet resolved. The (18)O exchange rates of two substrate water molecules were recently measured for four S(i)-state samples (i=0-3) leading to (34)O(2) and (36)O(2) formations, revealing asymmetric substrate binding sites significantly depending on the S(i)-state. In this paper, we present a chemically complete model for the Mn(4)Ca cluster and its surrounding enzyme field, which we found out from some possible models by using the hybrid density functional theoretic geometry optimization method to confirm good agreements with the 3.0 A resolution PSII model [B. Loll, J. Kern, W. Saenger, A. Zouni , J. Biesiadka, Nature 438 (2005) 1040-1044] and the S-state dependence of (18)O exchange rates [W. Hillier and T. Wydrzynski, Phys. Chem. Chem. Phys. 6 (2004) 4882-4889]. Furthermore, we have verified that two substrate water molecules are bound to asymmetric cis-positions on the terminal Mn ion being triply bridged (mu-oxo, mu-carboxylato, and a hydrogen bond) to the Mn(3)CaO(3)(OH) core, by developing a generalized theory of (18)O exchange kinetics in OEC to obtain an experimental evidence for the cross exchange pathway from the slow to the fast exchange process. Some important experimental data will be discussed in terms of this model and its possible tautomers, to suggest that a cofactor, Cl(-) ion, may be bound to CP43-Arg357 nearby Ca(2+) ion and that D1-His337 may be used to trap a released proton only in the S(2)-state.
Bao, Han; Dilbeck, Preston L; Burnap, Robert L
2013-10-01
The ability of PSII to extract electrons from water, with molecular oxygen as a by-product, is a remarkable biochemical and evolutionary innovation. From an evolutionary perspective, the invention of PSII approximately 2.7 Ga led to the accelerated accumulation of biomass in the biosphere and the accumulation of oxygen in the atmosphere, a combination that allowed for the evolution of a much more complex and extensive biosphere than would otherwise have been possible. From the biochemical and enzymatic perspective, PSII is remarkable because of the thermodynamic and kinetic obstacles that needed to have been overcome to oxidize water as the ultimate photosynthetic electron donor. This article focuses on how proton release is an integral part of how these kinetic and thermodynamic obstacles have been overcome: the sequential removal of protons from the active site of H2O-oxidation facilitates the multistep oxidation of the substrate water at the Mn4CaOx, the catalytic heart of the H2O-oxidation reaction. As noted previously, the facilitated deprotonation of the Mn4CaOx cluster exerts a redox-leveling function preventing the accumulation of excess positive charge on the cluster, which might otherwise hinder the already energetically difficult oxidation of water. Using recent results, including the characteristics of site-directed mutants, the role of the second sphere of amino acid ligands and the associated network of water molecules surrounding the Mn4CaOx is discussed in relation to proton transport in other systems. In addition to the redox-leveling function, a trapping function is assigned to the proton release step occurring immediately prior to the dioxygen chemistry. This trapping appears to involve a yet-to-be clarified gating mechanism that facilitates to coordinated release of a proton from the neighborhood of the active site thereby insuring that the backward charge-recombination reaction does not out-compete the forward reaction of dioxygen chemistry during this final step of H2O-oxidation.
Molecular evolution of psbA gene in ferns: unraveling selective pressure and co-evolutionary pattern
2012-01-01
Background The photosynthetic oxygen-evolving photo system II (PS II) produces almost the entire oxygen in the atmosphere. This unique biochemical system comprises a functional core complex that is encoded by psbA and other genes. Unraveling the evolutionary dynamics of this gene is of particular interest owing to its direct role in oxygen production. psbA underwent gene duplication in leptosporangiates, in which both copies have been preserved since. Because gene duplication is often followed by the non-fictionalization of one of the copies and its subsequent erosion, preservation of both psbA copies pinpoint functional or regulatory specialization events. The aim of this study was to investigate the molecular evolution of psbA among fern lineages. Results We sequenced psbA , which encodes D1 protein in the core complex of PSII, in 20 species representing 8 orders of extant ferns; then we searched for selection and convolution signatures in psbA across the 11 fern orders. Collectively, our results indicate that: (1) selective constraints among D1 protein relaxed after the duplication in 4 leptosporangiate orders; (2) a handful positively selected codons were detected within species of single copy psbA, but none in duplicated ones; (3) a few sites among D1 protein were involved in co-evolution process which may intimate significant functional/structural communications between them. Conclusions The strong competition between ferns and angiosperms for light may have been the main cause for a continuous fixation of adaptive amino acid changes in psbA , in particular after its duplication. Alternatively, a single psbA copy may have undergone bursts of adaptive changes at the molecular level to overcome angiosperms competition. The strong signature of positive Darwinian selection in a major part of D1 protein is testament to this. At the same time, species own two psbA copies hardly have positive selection signals among the D1 protein coding sequences. In this study, eleven co-evolving sites have been detected via different molecules, which may be more important than others. PMID:22899792
Chlorophyll a with a farnesyl tail in thermophilic cyanobacteria.
Wiwczar, Jessica M; LaFountain, Amy M; Wang, Jimin; Frank, Harry A; Brudvig, Gary W
2017-11-01
Photosystem II (PSII) of oxygenic photosynthetic organisms normally contains exclusively chlorophyll a (Chl a) as its major light-harvesting pigment. Chl a canonically consists of the chlorin headgroup with a 20-carbon, 4-isoprene unit, phytyl tail. We have examined the 1.9 Å crystal structure of PSII from thermophilic cyanobacteria reported by Shen and coworkers in 2012 (PDB accession of 3ARC/3WU2). A newly refined electron density map from this structure, presented here, reveals that some assignments of the cofactors may be different from those modeled in the 3ARC/3WU2 structure, including a specific Chl a that appears to have a truncated tail by one isoprene unit. We provide experimental evidence using high-performance liquid chromatography and mass spectrometry for a small population of Chl a esterified to a 15-carbon farnesyl tail in PSII of thermophilic cyanobacteria.
Roach, Thomas; Na, Chae Sun
2017-01-01
Photosynthetic organisms have to tolerate rapid changes in light intensity, which is facilitated by non-photochemical quenching (NPQ) and involves modification of energy transfer from light-harvesting complexes (LHC) to the photosystem reaction centres. NPQ includes dissipating excess light energy to heat (qE) and the reversible coupling of LHCII to photosystems (state transitions/qT), which are considered separate NPQ mechanisms. In the model alga Chlamydomonas reinhardtii the LHCSR3 protein has a well characterised role in qE. Here, it is shown in the npq4 mutant, deficient in LHCSR3, that energy coupling to photosystem II (PSII) more akin to qT is also disrupted, but no major differences in LHC phosphorylation or LHC compositions were found in comparison to wild-type cells. The qT of wild-type cells possessed two kinetically distinguishable phases, with LHCSR3 participating in the more rapid (<2 min) phase. This LHCSR3-mediated qT was sensitive to physiological levels of H2O2, which accelerated qE induction, revealing a way that may help C. reinhardtii tolerate a sudden increase in light intensity. Overall, a clear mechanistic overlap between qE and qT is shown. PMID:28233792
Metatranscriptomics of N2-fixing cyanobacteria in the Amazon River plume
Hilton, Jason A; Satinsky, Brandon M; Doherty, Mary; Zielinski, Brian; Zehr, Jonathan P
2015-01-01
Biological N2 fixation is an important nitrogen source for surface ocean microbial communities. However, nearly all information on the diversity and gene expression of organisms responsible for oceanic N2 fixation in the environment has come from targeted approaches that assay only a small number of genes and organisms. Using genomes of diazotrophic cyanobacteria to extract reads from extensive meta-genomic and -transcriptomic libraries, we examined diazotroph diversity and gene expression from the Amazon River plume, an area characterized by salinity and nutrient gradients. Diazotroph genome and transcript sequences were most abundant in the transitional waters compared with lower salinity or oceanic water masses. We were able to distinguish two genetically divergent phylotypes within the Hemiaulus-associated Richelia sequences, which were the most abundant diazotroph sequences in the data set. Photosystem (PS)-II transcripts in Richelia populations were much less abundant than those in Trichodesmium, and transcripts from several Richelia PS-II genes were absent, indicating a prominent role for cyclic electron transport in Richelia. In addition, there were several abundant regulatory transcripts, including one that targets a gene involved in PS-I cyclic electron transport in Richelia. High sequence coverage of the Richelia transcripts, as well as those from Trichodesmium populations, allowed us to identify expressed regions of the genomes that had been overlooked by genome annotations. High-coverage genomic and transcription analysis enabled the characterization of distinct phylotypes within diazotrophic populations, revealed a distinction in a core process between dominant populations and provided evidence for a prominent role for noncoding RNAs in microbial communities. PMID:25514535
Huang, Chengjian; Wei, Gang; Jie, Yucheng; Wang, Longchang; Zhou, Hangfei; Ran, Chunyan; Huang, Zaocun; Jia, Huijuan; Anjum, Shakeel Ahmad
2014-03-01
Ramie (Boehmeria nivea L.) is one of the oldest and most important fiber crops in China due to the comfortable textile of its fine fiber. Increased ramie fiber demand brings ramie cultivation to salt-affected regions. The aim of this research was to determine morphological, physiological and biochemical responses of ramie by subjecting plants to varying concentrations of NaCl (0, 2, 4, 6 and 8 g NaCl/kg dry soil) at vigorous growth stage for 10 and 20 days. Results indicated that salinity stress substantially inhibited the growth of hybrid ramie plants and led to remarkable decline in fiber yield. However, when grown at 2 g NaCl/kg growth and fiber yield were similar to non-saline control. In addition, chlorophyll fluorescence and gas exchange parameters were correlated with growth and yield response. Salt treatments promoted a subsequent decrease in maximum quantum efficiency of PSII photochemistry (Fv/Fm), quantum efficiency of open PSII reaction centers (Fv'/Fm') and quantum yield of PSII (φPSII) while non-photochemical quenching (NPQ) changed conversely. Photochemical quenching (qP) and electron transport rate of PSII (ETR) increased at 2 and 4 g NaCl/kg then decreased at 6 and 8 g NaCl/kg. Substantial decline in the PSII activity at high salinity was associated with the loss of chlorophyll contents. Moreover, marked decrease in net photosynthetic rate (A), transpiration rate (E), stomatal conductance (gs) was also recorded. Nonetheless, intercellular CO2 (Ci) decreased at low salt stress, subsequently increased at high salt stress while water use efficiency (WUE) and instantaneous water use efficiency (WUEi) altered in opposite direction. Substantial decrease of photosynthesis at high salinity was due to non-stomatal factors. Furthermore, salinity stress led to decrease of proteins and accumulation of proline and malondialdehyde (MDA), as well as enhanced activities of superoxide dismutase (SOD, EC 1.15.1.1) and peroxidase (POD, EC 1.11.1.6), whereas, catalase (CAT, EC 1.11.1.7) enhanced at low salinity, decreased at high salinity. Nonetheless, these changes were closely related with the severity and duration of the salinity stress and their interaction. The results suggested a certain tolerance to salinity stress for hybrid ramie. This meets the essential condition for utilization in salinity-prone environments. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Contributions of visible and ultraviolet parts of sunlight to photoinhibition.
Hakala-Yatkin, Marja; Mäntysaari, Mika; Mattila, Heta; Tyystjärvi, Esa
2010-10-01
Photoinhibition is light-induced inactivation of PSII, and action spectrum measurements have shown that UV light causes photoinhibition much more efficiently than visible light. In the present study, we quantified the contribution of the UV part of sunlight in photoinhibition of PSII in leaves. Greenhouse-grown pumpkin leaves were pretreated with lincomycin to block the repair of photoinhibited PSII, and exposed to sunlight behind a UV-permeable or UV-blocking filter. Oxygen evolution and Chl fluorescence measurements showed that photoinhibition proceeds 35% more slowly under the UV-blocking than under the UV-permeable filter. Experiments with a filter that blocks UV-B but transmits UV-A and visible light revealed that UV-A light is almost fully responsible for the UV effect. The difference between leaves illuminated through a UV-blocking and UV-transparent filter disappeared when leaves of field-grown pumpkin plants were used. Thylakoids isolated from field-grown and greenhouse-grown plants were equally sensitive to UV light, and measurements of UV-induced fluorescence from leaves indicated that the protection of the field-grown plants was caused by substances that block the passage of UV light to the chloroplasts. Thus, the UV part of sunlight, especially the UV-A part, is potentially highly important in photoinhibition of PSII but the UV-screening compounds of plant leaves may offer almost complete protection against UV-induced photoinhibition.
Lu, C M; Chau, C W; Zhang, J H
2000-07-01
Measurement of chlorophyll fluorescence has been shown to be a rapid, non-invasive, and reliable method to assess photosynthetic performance in a changing environment. In this study, acute toxicity of excess Hg on the photosynthetic performance of the cyanobacterium S. platensis, was investigated by use of chlorophyll fluorescence analysis after cells were exposed to excess Hg (up to 20 microM) for 2 h. The results determined from the fast fluorescence kinetics showed that Hg induced a significant increase in the proportion of the Q(B)-non-reducing PSII reaction centers. The fluorescence parameters measured under the steady state of photosynthesis demonstrated that the increase of Hg concentration led to a decrease in the maximal efficiency of PSII photochemistry, the efficiency of excitation energy capture by the open PSII reaction centers, and the quantum yield of PSII electron transport. Mercury also resulted in a decrease in the coefficients of photochemical and non-photochemical quenching. Mercury may have an acute toxicity on cyanobacteria by inhibiting the quantum yield of photosynthesis sensitively and rapidly. Such changes occurred before any other visible damages that may be evaluated by other conventional measurements. Our results also demonstrated that chlorophyll fluorescence analysis can be used as a useful physiological tool to assess early stages of change in photosynthetic performance of algae in response to heavy metal pollution.
Cheng, Dan-Dan; Zhang, Zi-Shan; Sun, Xing-Bin; Zhao, Min; Sun, Guang-Yu; Chow, Wah Soon
2016-01-25
Pseudomonas syringae pv. tabaci (Pst), which is the pathogen responsible for tobacco wildfire disease, has received considerable attention in recent years. The objective of this study was to clarify the responses of photosystem I (PSI) and photosystem II (PSII) to Pst infection in tobacco leaves. The net photosynthetic rate (Pn) and carboxylation efficiency (CE) were inhibited by Pst infection. The normalized relative variable fluorescence at the K step (W k) and the relative variable fluorescence at the J step (V J) increased while the maximal quantum yield of PSII (F v/F m) and the density of Q A-reducing PSII reaction centers per cross section (RC/CSm) decreased, indicating that the reaction centers, and the donor and acceptor sides of PSII were all severely damaged after Pst infection. The PSI activity decreased as the infection progressed. Furthermore, we observed a considerable overall degradation of PsbO, D1, PsaA proteins and an over-accumulation of reactive oxygen species (ROS). Photoinhibition and photoinhibition-like damage were observed under light and dark conditions, respectively, after Pst infection of tobacco leaves. The damage was greater in the dark. ROS over-accumulation was not the primary cause of the photoinhibition and photoinhibition-like damage. The PsbO, D1 and PsaA proteins appear to be the targets during Pst infection under light and dark conditions.
Zharmukhamedov, S K; Allakhverdiev, S I; Smolova, T N; Klimov, V V
2013-12-05
Influence of bicarbonate on the efficiency of the electron donation from Mn(2+) to P₆₈₀(+) in isolated D1/D2/cytochrome b559 complex was investigated. All the experiments were carried out in a medium depleted of HCO₃(-)/CO₂. Kinetics of photoinduced absorbance changes (ΔA) at different wavelengths and decrease of chlorophyll fluorescence yield (-ΔF) related to photoaccumulation of reduced pheophytin, the intermediary electron acceptor of photosystem II (PSII), in the presence of Mn(2+) under anaerobic conditions were measured. Addition of bicarbonate (1 mM) increased the amplitude of these ΔA and -ΔF at least by a factor of 3. Measurements of the photoinduced ΔA, related to photooxidation of the primary electron donor of PSII, chlorophyll P₆₈₀, were done in the presence of silicomolybdate as electron acceptor. These results show that the addition of 0.05 mM Mn(2+) alone or jointly with 1 mM bicarbonate induces a 20% and 70%-decrease of the magnitude of the ΔA at 680 nm. The effect of Mn(2+) (in the presence and absence of bicarbonate) was completely eliminated by the addition of 12 mM EDTA. All these bicarbonate effects were not observed if MgCl₂ or formate were used instead of MnCl₂ and bicarbonate, respectively. In the absence of Mn(2+), bicarbonate induced none of the mentioned above effects (increase of photoaccumulation of reduced pheophytin and decrease of photooxidation of P680). The presented data suggest that bicarbonate stimulates the electron donation from Mn(2+) to D1/D2/cyt b559 reaction center evidently due to formation of easily oxidizable Mn-bicarbonate complexes. Copyright © 2013 Elsevier B.V. All rights reserved.
Küpper, Hendrik; Ferimazova, Naila; Šetlík, Ivan; Berman-Frank, Ilana
2004-01-01
We investigated interactions between photosynthesis and nitrogen fixation in the non-heterocystous marine cyanobacterium Trichodesmium IMS101 at the single-cell level by two-dimensional (imaging) microscopic measurements of chlorophyll fluorescence kinetics. Nitrogen fixation was closely associated with the appearance of cells with high basic fluorescence yield (F0), termed bright cells. In cultures aerated with normal air, both nitrogen fixation and bright cells appeared in the middle of the light phase. In cultures aerated with 5% oxygen, both processes occurred at a low level throughout most of the day. Under 50% oxygen, nitrogen fixation commenced at the beginning of the light phase but declined soon afterwards. Rapid reversible switches between fluorescence levels were observed, which indicated that the elevated F0 of the bright cells originates from reversible uncoupling of the photosystem II (PSII) antenna from the PSII reaction center. Two physiologically distinct types of bright cells were observed. Type I had about double F0 compared to the normal F0 in the dark phase and a PSII activity, measured as variable fluorescence (Fv = Fm − F0), similar to normal non-diazotrophic cells. Correlation of type I cells with nitrogen fixation, oxygen concentration, and light suggests that this physiological state is connected to an up-regulation of the Mehler reaction, resulting in oxygen consumption despite functional PSII. Type II cells had more than three times the normal F0 and hardly any PSII activity measurable by variable fluorescence. They did not occur under low-oxygen concentrations, but appeared under high-oxygen levels outside the diazotrophic period, suggesting that this state represents a reaction to oxidative stress not necessarily connected to nitrogen fixation. In addition to the two high-fluorescence states, cells were observed to reversibly enter a low-fluorescence state. This occurred mainly after a cell went through its bright phase and may represent a fluorescence-quenching recovery phase. PMID:15299119
Weston, David J; Bauerle, William L
2007-08-01
Effects of moderate heat on growth and photosynthesis were investigated in two clonal genotypes of Acer rubrum L., originally collected from the thermally contrasting habitats of Florida and Minnesota, USA, and known in the horticultural trade for sensitivity and insensitivity to heat, respectively. Under both common garden and warm greenhouse conditions (day/night temperature of 33/25 degrees C), the Florida genotype exhibited more growth than the Minnesota genotype. To determine the physiological parameters associated with this response, plants were acclimated to ambient (27/25 degrees C) or moderately elevated (33/25 degrees C) temperatures for 21 days before measurement of net photosynthesis at temperatures ranging from 25 to 48 degrees C. In vivo measurements of gas exchange and chlorophyll a fluorescence of ambient-acclimated plants revealed that, compared with the Minnesota genotype, the Florida genotype maintained a higher photosynthetic rate, higher stomatal conductance, more open PSII reaction centers, a greater PSII quantum yield and a lower quantum requirement for photosystem II (phi(PSII)) per mole of CO(2) fixed (phi(CO(2) )) throughout the measurement temperature range. When both genotypes were acclimated at 33/25 degrees C and measured at 33 degrees C, analysis of the response of net photosynthesis to calculated intercellular CO(2) concentration indicated that the maximal rate of Rubisco carboxylation (V(cmax)) decreased more in the Minnesota genotype than in the Florida genotype in response to elevated temperature. Additionally, phi(PSII)/phi(CO(2) ) at 33 degrees C was markedly higher for Minnesota plants under photorespiratory conditions, but similar to Florida plants under non-photorespiratory conditions. The results indicate that the higher net photosynthetic rate at 33/25 degrees C of the Florida genotype compared with the Minnesota genotype could be a result of several mechanisms, including the maintenance of a higher V(cmax )and a more efficient quantum requirement of PSII per mole of CO(2) fixed, which is likely the result of lower photorespiration.
Wang, Li-Jun; Fan, Ling; Loescher, Wayne; Duan, Wei; Liu, Guo-Jie; Cheng, Jian-Shan; Luo, Hai-Bo; Li, Shao-Hua
2010-02-23
Although the effect of salicylic acid (SA) on photosynthesis of plants including grapevines has been investigated, very little is yet known about the effects of SA on carbon assimilation and several components of PSII electron transport (donor side, reaction center and acceptor side). In this study, the impact of SA pretreatment on photosynthesis was evaluated in the leaves of young grapevines before heat stress (25 degrees C), during heat stress (43 degrees C for 5 h), and through the following recovery period (25 degrees C). Photosynthetic measures included gas exchange parameters, PSII electron transport, energy dissipation, and Rubisco activation state. The levels of heat shock proteins (HSPs) in the chloroplast were also investigated. SA did not significantly (P < 0.05) influence the net photosynthesis rate (Pn) of leaves before heat stress. But, SA did alleviate declines in Pn and Rubisco activation state, and did not alter negative changes in PSII parameters (donor side, acceptor side and reaction center QA) under heat stress. Following heat treatment, the recovery of Pn in SA-treated leaves was accelerated compared with the control (H2O-treated) leaves, and, donor and acceptor parameters of PSII in SA-treated leaves recovered to normal levels more rapidly than in the controls. Rubisco, however, was not significantly (P < 0.05) influenced by SA. Before heat stress, SA did not affect level of HSP 21, but the HSP21 immune signal increased in both SA-treated and control leaves during heat stress. During the recovery period, HSP21 levels remained high through the end of the experiment in the SA-treated leaves, but decreased in controls. SA pretreatment alleviated the heat stress induced decrease in Pn mainly through maintaining higher Rubisco activation state, and it accelerated the recovery of Pn mainly through effects on PSII function. These effects of SA may be related in part to enhanced levels of HSP21.
Wang, Peng; Grimm, Bernhard
2016-11-01
State transitions in photosynthesis provide for the dynamic allocation of a mobile fraction of light-harvesting complex II (LHCII) to photosystem II (PSII) in state I and to photosystem I (PSI) in state II. In the state I-to-state II transition, LHCII is phosphorylated by STN7 and associates with PSI to favor absorption cross-section of PSI. Here, we used Arabidopsis (Arabidopsis thaliana) mutants with defects in chlorophyll (Chl) b biosynthesis or in the chloroplast signal recognition particle (cpSRP) machinery to study the flexible formation of PS-LHC supercomplexes. Intriguingly, we found that impaired Chl b biosynthesis in chlorina1-2 (ch1-2) led to preferentially stabilized LHCI rather than LHCII, while the contents of both LHCI and LHCII were equally depressed in the cpSRP43-deficient mutant (chaos). In view of recent findings on the modified state transitions in LHCI-deficient mutants (Benson et al., 2015), the ch1-2 and chaos mutants were used to assess the influence of varying LHCI/LHCII antenna size on state transitions. Under state II conditions, LHCII-PSI supercomplexes were not formed in both ch1-2 and chaos plants. LHCII phosphorylation was drastically reduced in ch1-2, and the inactivation of STN7 correlates with the lack of state transitions. In contrast, phosphorylated LHCII in chaos was observed to be exclusively associated with PSII complexes, indicating a lack of mobile LHCII in chaos Thus, the comparative analysis of ch1-2 and chaos mutants provides new evidence for the flexible organization of LHCs and enhances our understanding of the reversible allocation of LHCII to the two photosystems. © 2016 American Society of Plant Biologists. All Rights Reserved.
Wang, Peng
2016-01-01
State transitions in photosynthesis provide for the dynamic allocation of a mobile fraction of light-harvesting complex II (LHCII) to photosystem II (PSII) in state I and to photosystem I (PSI) in state II. In the state I-to-state II transition, LHCII is phosphorylated by STN7 and associates with PSI to favor absorption cross-section of PSI. Here, we used Arabidopsis (Arabidopsis thaliana) mutants with defects in chlorophyll (Chl) b biosynthesis or in the chloroplast signal recognition particle (cpSRP) machinery to study the flexible formation of PS-LHC supercomplexes. Intriguingly, we found that impaired Chl b biosynthesis in chlorina1-2 (ch1-2) led to preferentially stabilized LHCI rather than LHCII, while the contents of both LHCI and LHCII were equally depressed in the cpSRP43-deficient mutant (chaos). In view of recent findings on the modified state transitions in LHCI-deficient mutants (Benson et al., 2015), the ch1-2 and chaos mutants were used to assess the influence of varying LHCI/LHCII antenna size on state transitions. Under state II conditions, LHCII-PSI supercomplexes were not formed in both ch1-2 and chaos plants. LHCII phosphorylation was drastically reduced in ch1-2, and the inactivation of STN7 correlates with the lack of state transitions. In contrast, phosphorylated LHCII in chaos was observed to be exclusively associated with PSII complexes, indicating a lack of mobile LHCII in chaos. Thus, the comparative analysis of ch1-2 and chaos mutants provides new evidence for the flexible organization of LHCs and enhances our understanding of the reversible allocation of LHCII to the two photosystems. PMID:27663408
Isobe, H; Shoji, M; Yamanaka, S; Mino, H; Umena, Y; Kawakami, K; Kamiya, N; Shen, J-R; Yamaguchi, K
2014-06-28
Full geometry optimizations followed by the vibrational analysis were performed for eight spin configurations of the CaMn4O4X(H2O)3Y (X = O, OH; Y = H2O, OH) cluster in the S1 and S3 states of the oxygen evolution complex (OEC) of photosystem II (PSII). The energy gaps among these configurations obtained by vertical, adiabatic and adiabatic plus zero-point-energy (ZPE) correction procedures have been used for computation of the effective exchange integrals (J) in the spin Hamiltonian model. The J values are calculated by the (1) analytical method and the (2) generalized approximate spin projection (AP) method that eliminates the spin contamination errors of UB3LYP solutions. Using J values derived from these methods, exact diagonalization of the spin Hamiltonian matrix was carried out, yielding excitation energies and spin densities of the ground and lower-excited states of the cluster. The obtained results for the right (R)- and left (L)-opened structures in the S1 and S3 states are found to be consistent with available optical and magnetic experimental results. Implications of the computational results are discussed in relation to (a) the necessity of the exact diagonalization for computations of reliable energy levels, (b) magneto-structural correlations in the CaMn4O5 cluster of the OEC of PSII, (c) structural symmetry breaking in the S1 and S3 states, and (d) the right- and left-handed scenarios for the O-O bond formation for water oxidation.
Schinzel, Sandra; Schraut, Johannes; Arbuznikov, Alexei V; Siegbahn, Per E M; Kaupp, Martin
2010-09-10
Metal and ligand hyperfine couplings of a previously suggested, energetically feasible Mn(4)Ca model cluster (SG2009(-1)) for the S(2) state of the oxygen-evolving complex (OEC) of photosystem II (PSII) have been studied by broken-symmetry density functional methods and compared with other suggested structural and spectroscopic models. This was carried out explicitly for different spin-coupling patterns of the S=1/2 ground state of the Mn(III)(Mn(IV))(3) cluster. By applying spin-projection techniques and a scaling of the manganese hyperfine couplings, computation of the hyperfine and nuclear quadrupole coupling parameters allows a direct evaluation of the proposed models in comparison with data obtained from the simulation of EPR, ENDOR, and ESEEM spectra. The computation of (55)Mn hyperfine couplings (HFCs) for SG2009(-1) gives excellent agreement with experiment. However, at the current level of spin projection, the (55)Mn HFCs do not appear sufficiently accurate to distinguish between different structural models. Yet, of all the models studied, SG2009(-1) is the only one with the Mn(III) site at the Mn(C) center, which is coordinated by histidine (D1-His332). The computed histidine (14)N HFC anisotropy for SG2009(-1) gives much better agreement with ESEEM data than the other models, in which Mn(C) is an Mn(IV) site, thus supporting the validity of the model. The (13)C HFCs of various carboxylates have been compared with (13)C ENDOR data for PSII preparations with (13)C-labelled alanine.
Multiple protocol fluorometer and method
Kolber, Zbigniew S.; Falkowski, Paul G.
2000-09-19
A multiple protocol fluorometer measures photosynthetic parameters of phytoplankton and higher plants using actively stimulated fluorescence protocols. The measured parameters include spectrally-resolved functional and optical absorption cross sections of PSII, extent of energy transfer between reaction centers of PSII, F.sub.0 (minimal), F.sub.m (maximal) and F.sub.v (variable) components of PSII fluorescence, photochemical and non-photochemical quenching, size of the plastoquinone (PQ) pool, and the kinetics of electron transport between Q.sub.a and PQ pool and between PQ pool and PSI. The multiple protocol fluorometer, in one embodiment, is equipped with an excitation source having a controlled spectral output range between 420 nm and 555 nm and capable of generating flashlets having a duration of 0.125-32 .mu.s, an interval between 0.5 .mu.s and 2 seconds, and peak optical power of up to 2 W/cm.sup.2. The excitation source is also capable of generating, simultaneous with the flashlets, a controlled continuous, background illumination.
The mechanisms of protection of antioxidants on Nostoc sphaeroides against UV-B radiation
NASA Astrophysics Data System (ADS)
Wang, G. H.
UV radiation is one of space harmful factor for earth organisms in space exploration In the present work we studied on the role of antioxidant system in Nostoc sphaeroides K u tz Cyanobacteria and the effects of exogenous antioxidant molecules on its photosynthetic rate under UV-B radiation It was found that UV-B radiation decreased the photosynthetic activity of cyanobacterium but promoted the activity of antioxidant system to protect photosystem II PSII and exogenous antioxidant sodium nitroprusside SNP N-acetylcysteine NAC had an obvious protection on PSII activity under UV-B radiation The activity of SOD Superoxide Dismutase EC 1 15 1 1 CAT Catalase EC 1 11 1 6 POD Peroxidase EC 1 11 1 7 and content of MDA and ASC were improved by 0 5mM and 1mM SNP but 0 1mM SNP decreased the activity of antioxide system Exogenous NAC addition decreased the activity of SOD POD CAT and the content MDA and ASC but exogenous NAC addition increased the content of GSH The results suggested that exogenous SNP and NAC may protect algae by different mechanisms in which SNP maybe play double roles as sources of reactive free radicals or ROS scavengers in formation of algae s protection of PSII under UV-B radiation while NAC does function as antioxidant reagent or precursor of glutathione which could protect PSII directly from UV-B radiation Keyword antioxidant system exogenous or endogenous antioxidant Nostoc sphaeroides photosynthesis UV-B radiation
NASA Astrophysics Data System (ADS)
Wang, Gaohong; Hu, Chunxiang; Li, Dunhai; Zhang, Delu; Li, Xiaoyan; Chen, Kun; Liu, Yongding
UV radiation is one of many harmful factors found in space that are detrimental to organisms on earth in space exploration. In the present work, we examined the role of antioxidant system in Nostoc sphaeroides Kütz (Cyanobacterium) and the effects of exogenously applied antioxidant molecules on its photosynthetic rate under UV-B radiation. It was found that UV-B radiation promoted the activity of antioxidant system to protect photosystem II (PSII) and exogenously applied antioxidant: sodium nitroprusside (SNP) and N-acetylcysteine (NAC) had an obvious protection on PSII activity under UV-B radiation. The activity of superoxide dismutase (SOD, EC 1.15.1.1), catalase (CAT, EC 1.11.1.6), peroxidase (POD, EC 1.11.1.7) and content of MDA (malondialdehyde) and ASC (ascorbate) were improved by 0.5 mM and 1 mM SNP, but 0.1 mM SNP decreased the activity of antioxidant system. Addition of exogenous NAC decreased the activity of SOD, POD, CAT and the content MDA and ASC. In contrast, exogenously applied NAC increased GSH content. The results suggest that exogenous SNP and NAC may protect algae by different mechanisms: SNP may play double roles as both sources of reactive free radicals as well as ROS scavengers in mediating the protective role of PSII on algae under UV-B radiation. On the other hand, NAC functions as an antioxidant or precursor of glutathione, which could protect PSII directly from UV-B radiation.
Jiao, Yang; Ouyang, Hui-Ling; Jiang, Yu-Jiao; Kong, Xiang-Zhen; He, Wei; Liu, Wen-Xiu; Yang, Bin; Xu, Fu-Liu
2015-01-01
The toxic effects of ethyl cinnamate on the photosynthetic and physiological characteristics of Chlorella vulgaris were studied based on chlorophyll fluorescence and flow cytometry analysis. Parameters, including biomass, F v/F m (maximal photochemical efficiency of PSII), ФPSII (actual photochemical efficiency of PSII in the light), FDA, and PI staining fluorescence, were measured. The results showed the following: (1) The inhibition on biomass increased as the exposure concentration increased. 1 mg/L ethyl cinnamate was sufficient to reduce the total biomass of C. vulgaris. The 48-h and 72-h EC50 values were 2.07 mg/L (1.94–2.20) and 1.89 mg/L (1.82–1.97). (2) After 24 h of exposure to 2–4 mg/L ethyl cinnamate, the photosynthesis of C. vulgaris almost ceased, manifesting in ФPSII being close to zero. After 72 h of exposure to 4 mg/L ethyl cinnamate, the F v/F m of C. vulgaris dropped to zero. (3) Ethyl cinnamate also affected the cellular physiology of C. vulgaris, but these effects resulted in the inhibition of cell yield rather than cell death. Exposure to ethyl cinnamate resulted in decreased esterase activities in C. vulgaris, increased average cell size, and altered intensities of chlorophyll a fluorescence. Overall, esterase activity was the most sensitive variable. PMID:26101784
Scoma, Alberto; Tóth, Szilvia Z
2017-01-01
Under low O 2 concentration (hypoxia) and low light, Chlamydomonas cells can produce H 2 gas in nutrient-replete conditions. This process is hindered by the presence of O 2 , which inactivates the [FeFe]-hydrogenase enzyme responsible for H 2 gas production shifting algal cultures back to normal growth. The main pathways accounting for H 2 production in hypoxia are not entirely understood, as much as culture conditions setting the optimal redox state in the chloroplast supporting long-lasting H 2 production. The reducing power for H 2 production can be provided by photosystem II (PSII) and photofermentative processes during which proteins are degraded via yet unknown pathways. In hetero- or mixotrophic conditions, acetate respiration was proposed to indirectly contribute to H 2 evolution, although this pathway has not been described in detail. Recently, Jurado-Oller et al. (Biotechnol Biofuels 8: 149, 7) proposed that acetate respiration may substantially support H 2 production in nutrient-replete hypoxic conditions. Addition of low amounts of O 2 enhanced acetate respiration rate, particularly in the light, resulting in improved H 2 production. The authors surmised that acetate oxidation through the glyoxylate pathway generates intermediates such as succinate and malate, which would be in turn oxidized in the chloroplast generating FADH 2 and NADH. The latter would enter a PSII-independent pathway at the level of the plastoquinone pool, consistent with the light dependence of H 2 production. The authors concluded that the water-splitting activity of PSII has a minor role in H 2 evolution in nutrient-replete, mixotrophic cultures under hypoxia. However, their results with the PSII inhibitor DCMU also reveal that O 2 or acetate additions promoted acetate respiration over the usually dominant PSII-dependent pathway. The more oxidized state experienced by these cultures in combination with the relatively short experimental time prevented acclimation to hypoxia, thus precluding the PSII-dependent pathway from contributing to H 2 production. In Chlamydomonas , continuous H 2 gas evolution is expected once low O 2 partial pressure and optimal reducing conditions are set. Under nutrient-replete conditions, the electrogenic processes involved in H 2 photoproduction may rely on various electron transport pathways. Understanding how physiological conditions select for specific metabolic routes is key to achieve economic viability of this renewable energy source.
Ware, Maxwell A; Giovagnetti, Vasco; Belgio, Erica; Ruban, Alexander V
2015-11-01
Plants with varying levels of PsbS protein were grown on lincomycin. Enhanced levels of non-photochemical fluorescence quenching (NPQ) in over-expressers of the protein have been observed. This was accompanied by increased amplitude of the irreversible NPQ component, qI, previously considered to reflect mainly photoinhibition of PSII reaction centres (RCII). However, since RCIIs were largely absent the observed qI is likely to originate from the LHCII antenna. In chloroplasts of over-expressers of PsbS grown on lincomycin an abnormally large NPQ (∼7) was characterised by a 0.34 ns average chlorophyll fluorescence lifetime. Yet the lifetime in the Fm state was similar to that of wild-type plants. 77K fluorescence emission spectra revealed a specific 700 nm peak typical of LHCII aggregates as well as quenching of the PSI fluorescence at 730 nm. The aggregated state manifested itself as a clear change in the distance between LHCII complexes detected by freeze-fracture electron microscopy. Grana thylakoids in the quenched state revealed 3 times more aggregated LHCII particles compared to the dark-adapted state. Overall, the results directly demonstrate the importance of LHCII aggregation in the NPQ mechanism and show that the PSII supercomplex structure plays no role in formation of the observed quenching. Copyright © 2015 Elsevier B.V. All rights reserved.
Fan, Xingli; Zhang, Zishan; Gao, Huiyuan; Yang, Cheng; Liu, Meijun; Li, Yuting; Li, Pengmin
2014-01-01
Submergence is a common type of environmental stress for plants. It hampers survival and decreases crop yield, mainly by inhibiting plant photosynthesis. The inhibition of photosynthesis and photochemical efficiency by submergence is primarily due to leaf senescence and excess excitation energy, caused by signals from hypoxic roots and inhibition of gas exchange, respectively. However, the influence of mere leaf-submergence on the photosynthetic apparatus is currently unknown. Therefore, we studied the photosynthetic apparatus in detached leaves from four plant species under dark-submergence treatment (DST), without influence from roots and light. Results showed that the donor and acceptor sides, the reaction center of photosystem II (PSII) and photosystem I (PSI) in leaves were significantly damaged after 36 h of DST. This is a photoinhibition-like phenomenon similar to the photoinhibition induced by high light, as further indicated by the degradation of PsaA and D1, the core proteins of PSI and PSII. In contrast to previous research, the chlorophyll content remained unchanged and the H2O2 concentration did not increase in the leaves, implying that the damage to the photosynthetic apparatus was not caused by senescence or over-accumulation of reactive oxygen species (ROS). DST-induced damage to the photosynthetic apparatus was aggravated by increasing treatment temperature. This type of damage also occurred in the anaerobic environment (N2) without water, and could be eliminated or restored by supplying air to the water during or after DST. Our results demonstrate that DST-induced damage was caused by the hypoxic environment. The mechanism by which DST induces the photoinhibition-like damage is discussed below.
Gao, Huiyuan; Yang, Cheng; Liu, Meijun; Li, Yuting; Li, Pengmin
2014-01-01
Submergence is a common type of environmental stress for plants. It hampers survival and decreases crop yield, mainly by inhibiting plant photosynthesis. The inhibition of photosynthesis and photochemical efficiency by submergence is primarily due to leaf senescence and excess excitation energy, caused by signals from hypoxic roots and inhibition of gas exchange, respectively. However, the influence of mere leaf-submergence on the photosynthetic apparatus is currently unknown. Therefore, we studied the photosynthetic apparatus in detached leaves from four plant species under dark-submergence treatment (DST), without influence from roots and light. Results showed that the donor and acceptor sides, the reaction center of photosystem II (PSII) and photosystem I (PSI) in leaves were significantly damaged after 36 h of DST. This is a photoinhibition-like phenomenon similar to the photoinhibition induced by high light, as further indicated by the degradation of PsaA and D1, the core proteins of PSI and PSII. In contrast to previous research, the chlorophyll content remained unchanged and the H2O2 concentration did not increase in the leaves, implying that the damage to the photosynthetic apparatus was not caused by senescence or over-accumulation of reactive oxygen species (ROS). DST-induced damage to the photosynthetic apparatus was aggravated by increasing treatment temperature. This type of damage also occurred in the anaerobic environment (N2) without water, and could be eliminated or restored by supplying air to the water during or after DST. Our results demonstrate that DST-induced damage was caused by the hypoxic environment. The mechanism by which DST induces the photoinhibition-like damage is discussed below. PMID:24586508
Buchta, Joachim; Grabolle, Markus; Dau, Holger
2007-06-01
The analysis of the time-resolved delayed fluorescence (DF) measurements represents an important tool to study quantitatively light-induced electron transfer as well as associated processes, e.g. proton movements, at the donor side of photosystem II (PSII). This method can provide, inter alia, insights in the functionally important inner-protein proton movements, which are hardly detectable by conventional spectroscopic approaches. The underlying rationale and experimental details of the method are described. The delayed emission of chlorophyll fluorescence of highly active PSII membrane particles was measured in the time domain from 10 mus to 60 ms after each flash of a train of nanosecond laser pulses. Focusing on the oxygen-formation step induced by the third flash, we find that the recently reported formation of an S4-intermediate prior to the onset of O-O bond formation [M. Haumann, P. Liebisch, C. Müller, M. Barra, M. Grabolle, H. Dau, Science 310, 1019-1021, 2006] is a multiphasic process, as anticipated for proton movements from the manganese complex of PSII to the aqueous bulk phase. The S4-formation involves three or more likely sequential steps; a tri-exponential fit yields time constants of 14, 65, and 200 mus (at 20 degrees C, pH 6.4). We determine that S4-formation is characterized by a sizable difference in Gibbs free energy of more than 90 meV (20 degrees C, pH 6.4). In the second part of the study, the temperature dependence (-2.7 to 27.5 degrees C) of the rate constant of dioxygen formation (600/s at 20 degrees C) was investigated by analysis of DF transients. If the activation energy is assumed to be temperature-independent, a value of 230 meV is determined. There are weak indications for a biphasicity in the Arrhenius plot, but clear-cut evidence for a temperature-dependent switch between two activation energies, which would point to the existence of two distinct rate-limiting steps, is not obtained.
Yang, Sha; Wang, Fang; Guo, Feng; Meng, Jing-Jing; Li, Xin-Guo; Wan, Shu-Bo
2015-05-01
In this study, we investigated the effects of exogenous calcium nitrate on photoinhibition and thylakoid protein level in peanut plants under heat (40°C) and high irradiance (HI) (1,200 µmol/m(2) per s) stress. Compared with control seedlings (cultivated in 0 mmol/L Ca(NO3 )2 medium), the maximal photochemical efficiency of photosystem II (PSII) in Ca(2+) -treated plants showed a slight decrease after 5 h stress, accompanied by lower degree of PSII closure (1-qP), higher non-photochemical quenching, and lower level of membrane damage. Ca(2+) inhibitors were used to analyze the varieties of antioxidant enzymes activity and PSII proteins. These results indicated that Ca(2+) could protect the subunits of PSII reaction centers from photoinhibition by reducing the generation of reactive oxygen species. In the presence of both ethyleneglycol-bis(2-aminoethylether)-tetraacetic acid and ascorbic acid (AsA), the net degradation of the damaged D1 protein was faster than that only treated with AsA. Our previous study showed that either the transcriptional or the translational level of calmodulin was obviously higher in Ca(2+) -treated plants. These results suggested that, under heat and HI stress, the Ca(2+) signal transduction pathway can alleviate the photoinhibition through regulating the protein repair process besides an enhanced capacity for scavenging reactive oxygen species. © 2014 The Authors. Journal of Integrative Plant Biology published by Wiley Publishing Asia Pty Ltd on behalf of Institute of Botany, The Chinese Academy of Sciences.
Hao, Xingyu; Li, Ping; Feng, Yongxiang; Han, Xue; Gao, Ji; Lin, Erda; Han, Yuanhuai
2013-01-01
Traditional Chinese medicine relies heavily on herbs, yet there is no information on how these herb plants would respond to climate change. In order to gain insight into such response, we studied the effect of elevated [CO2] on Isatis indigotica Fort, one of the most popular Chinese herb plants. The changes in leaf photosynthesis, chlorophyll fluorescence, leaf ultrastructure and biomass yield in response to elevated [CO2] (550±19 µmol mol(-1)) were determined at the Free-Air Carbon dioxide Enrichment (FACE) experimental facility in North China. Photosynthetic ability of I. indigotica was improved under elevated [CO2]. Elevated [CO2] increased net photosynthetic rate (P N), water use efficiency (WUE) and maximum rate of electron transport (J max) of upper most fully-expended leaves, but not stomatal conductance (gs), transpiration ratio (Tr) and maximum velocity of carboxylation (V c,max). Elevated [CO2] significantly increased leaf intrinsic efficiency of PSII (Fv'/Fm') and quantum yield of PSII(ΦPS II ), but decreased leaf non-photochemical quenching (NPQ), and did not affect leaf proportion of open PSII reaction centers (qP) and maximum quantum efficiency of PSII (Fv/Fm). The structural chloroplast membrane, grana layer and stroma thylakoid membranes were intact under elevated [CO2], though more starch grains were accumulated within the chloroplasts than that of under ambient [CO2]. While the yield of I. indigotica was higher due to the improved photosynthesis under elevated [CO2], the content of adenosine, one of the functional ingredients in indigowoad root was not affected.
Xia, Yilu; Liu, Dingdong; Dong, Ying; Chen, Jiazheng; Liu, Huijun
2018-03-01
The rapid increase in the production and practical application of ionic liquids (ILs) could pose potential threats to aquatic systems. In this study, we investigated the effects of four ILs with different cations and anions, including 1-hexyl-3-methylimidazolium nitrate ([HMIM]NO 3 ), 1-hexyl-3-methylimidazolium chloride ([HMIM]Cl), N-hexyl-3-metylpyridinium chloride ([HMPy]Cl), and N-hexyl-3-metylpyridinium bromide ([HMPy]Br), on photosystem and cellular structure of Scenedesmus obliquus. The results indicated that ILs are phytotoxic to S. obliquus. The contents of chlorophyll a, chlorophyll b and total chlorophyll decreased with increasing ILs concentrations. The chlorophyll fluorescence parameters of photosynthetic system II (PSII), including minimal fluorescence yield (F 0 ), potential efficiency of PSII (F v /F o ), maximum quantum efficiency of PSII photochemistry (F v /F m ), yield of photochemical quantum [Y(II)], and non-photochemical quenching coefficient without measuring F 0 ' (NPQ), were all affected. This indicates that ILs could damage PSII, inhibit the primary reaction of photosynthesis, interdict the process of electron-transfer and lead to loss of heat-dissipating ability. ILs also increased cell membrane permeability of S. obliquus, influenced the cellular ultrastructure, changed the morphology of algae cells and destroyed the cell wall, cell membrane and organelles. The results indicated that imidazolium ILs had greater effect than pyridinium ILs, NO 3 - -IL and Br - -IL had greater effect than Cl - -IL. To minimize threats to the environment, the structure of ILs should be taken into consideration. Copyright © 2017 Elsevier Ltd. All rights reserved.
Flores-Bavestrello, Alejandra; Król, Marianna; Ivanov, Alexander G; Hüner, Norman P A; García-Plazaola, José Ignacio; Corcuera, Luis J; Bravo, León A
2016-02-01
Hymenophyllaceae is a desiccation tolerant family of Pteridophytes which are poikilohydric epiphytes. Their fronds are composed by a single layer of cells and lack true mesophyll cells and stomata. Although they are associated with humid and shady environments, their vertical distribution varies along the trunk of the host plant with some species inhabiting the drier sides with a higher irradiance. The aim of this work was to compare the structure and function of the photosynthetic apparatus during desiccation and rehydration in two species, Hymenophyllum dentatum and Hymenoglossum cruentum, isolated from a contrasting vertical distribution along the trunk of their hosts. Both species were subjected to desiccation and rehydration kinetics to analyze frond phenotypic plasticity, as well as the structure, composition and function of the photosynthetic apparatus. Minimal differences in photosynthetic pigments were observed upon dehydration. Measurements of ϕPSII (effective quantum yield of PSII), ϕNPQ (quantum yield of the regulated energy dissipation of PSII), ϕNO (quantum yield of non-regulated energy dissipation of PSII), and TL (thermoluminescence) indicate that both species convert a functional photochemical apparatus into a structure which exhibits maximum quenching capacity in the dehydrated state with minimal changes in photosynthetic pigments and polypeptide compositions. This dehydration-induced conversion in the photosynthetic apparatus is completely reversible upon rehydration. We conclude that H. dentatum and H. cruentum are homoiochlorophyllous with respect to desiccation stress and exhibited no correlation between inherent desiccation tolerance and the vertical distribution along the host tree trunk. Copyright © 2015 Elsevier GmbH. All rights reserved.
Duan, Wei; Fan, Pei G; Wang, Li J; Li, Wei D; Yan, Shu T; Li, Shao H
2008-01-01
Diurnal variations in photosynthesis, chlorophyll fluorescence, xanthophyll cycle, antioxidant enzymes and antioxidant metabolism in leaves in response to low sink demand caused by fruit removal (-fruit) were studied in 'Zaojiubao' peach (Prunus persica (L.) Batch) trees during the final stage of rapid fruit growth. Compared with the retained fruit treatment (+fruit), the -fruit treatment resulted in a significantly lower photosynthetic rate, stomatal conductance and transpiration rate, but generally higher internal CO(2) concentration, leaf-to-air vapor pressure difference and leaf temperature. The low photosynthetic rate in the -fruit trees paralleled reductions in maximal efficiency of photosystem II (PSII) photochemistry and carboxylation efficiency. The midday depression in photosynthetic rate in response to low sink demand resulting from fruit removal was mainly caused by non-stomatal limitation. Fruit removal resulted in lower quantum efficiency of PSII as a result of both a decrease in the efficiency of excitation capture by open PSII reaction centers and an increase in closure of PSII reaction centers. Both xanthophyll-dependent thermal dissipation and the antioxidant system were up-regulated providing protection from photo-oxidative damage to leaves during low sink demand. Compared with the leaves of +fruit trees, leaves of -fruit trees had a larger xanthophyll cycle pool size and a higher de-epoxidation state, as well as significantly higher activities of antioxidant enzymes, including superoxide dismutase, ascorbate peroxidase, monodehydroascorbate reductase, dehydroascorbate reductase, glutathione reductase and a higher reduction state of ascorbate and glutathione. However, the -fruit treatment resulted in higher hydrogen peroxide and malondialdehyde concentrations compared with the +fruit treatment, indicating photo-oxidative damage.
Energetics of proton release on the first oxidation step in the water-oxidizing enzyme.
Saito, Keisuke; Rutherford, A William; Ishikita, Hiroshi
2015-10-07
In photosystem II (PSII), the Mn4CaO5 cluster catalyses the water splitting reaction. The crystal structure of PSII shows the presence of a hydrogen-bonded water molecule directly linked to O4. Here we show the detailed properties of the H-bonds associated with the Mn4CaO5 cluster using a quantum mechanical/molecular mechanical approach. When O4 is taken as a μ-hydroxo bridge acting as a hydrogen-bond donor to water539 (W539), the S0 redox state best describes the unusually short O4-OW539 distance (2.5 Å) seen in the crystal structure. We find that in S1, O4 easily releases the proton into a chain of eight strongly hydrogen-bonded water molecules. The corresponding hydrogen-bond network is absent for O5 in S1. The present study suggests that the O4-water chain could facilitate the initial deprotonation event in PSII. This unexpected insight is likely to be of real relevance to mechanistic models for water oxidation.
Athar, Habib-Ur-Rehman; Ambreen, Sarah; Javed, Muhammad; Hina, Mehwish; Rasul, Sumaira; Zafar, Zafar Ullah; Manzoor, Hamid; Ogbaga, Chukwuma C; Afzal, Muhammad; Al-Qurainy, Fahad; Ashraf, Muhammad
2016-09-01
Maize tolerance potential to oil pollution was assessed by growing Zea mays in soil contaminated with varying levels of crude oil (0, 2.5 and 5.0 % v/w basis). Crude oil contamination reduced soil microflora which may be beneficial to plant growth. It was observed that oil pollution caused a remarkable decrease in biomass, leaf water potential, turgor potential, photosynthetic pigments, quantum yield of photosystem II (PSII) (Fv/Fm), net CO2 assimilation rate, leaf nitrogen and total free amino acids. Gas exchange characteristics suggested that reduction in photosynthetic rate was mainly due to metabolic limitations. Fast chlorophyll a kinetic analysis suggested that crude oil damaged PSII donor and acceptor sides and downregulated electron transport as well as PSI end electron acceptors thereby resulting in lower PSII efficiency in converting harvested light energy into biochemical energy. However, maize plants tried to acclimate to moderate level of oil pollution by increasing root diameter and root length relative to its shoot biomass, to uptake more water and mineral nutrients.
Arroyo-Pérez, Erika; González-Salvatierra, Claudia; Matías-Palafox, María L.; Jiménez-Sierra, Cecilia
2017-01-01
Abstract We determined the seasonal ecophysiological performance under perennial plants and under high solar radiation for adult individuals from the ‘living rock’ cactus Ariocarpus kotschoubeyanus, which occurs equally under nurse plants and in open spaces. We evaluated the effective quantum yield of photosystem II (ΦPSII) and the dissipation of thermal energy [non-photochemical quenching (NPQ)] thorough the year. The maximum apparent electron transport rate (ETRmax) and the saturating photosynthetically active photon flux density for PSII (PFDsat) were also determined from rapid light curves. We found that although the ΦPSII was higher in shaded sites under potential nurse plants than in exposed sites, all values were close to the optimal value of 0.83. The high ΦPSII found for A. kotschoubeyanus plants suggests that they use a great proportion of the absorbed light for photosynthesis, under nurse plants as well as in open spaces. We also found higher NPQ values in exposed sites than in shaded ones but only in Autumn, thus reducing the risk of photoinhibition. In addition, the PFDsat was higher in exposed sites than in shaded ones in Spring, Summer and Autumn, but in Winter there were no differences between treatments. We also found high saturating light levels for ETR (PFDsat higher than 1378 μmol m−2 s−1) in all seasons but in winter for shaded and non-shaded plants. Our findings indicate that A. kotschoubeyanus plants use a great proportion of the light that they absorb for photosynthesis. This high tolerance to high-light conditions could explain why A. kotschoubeyanus do not show preferences for protected sites under nurse plants. PMID:28729902
Caverzan, Andréia; Bonifacio, Aurenivia; Carvalho, Fabricio E L; Andrade, Claudia M B; Passaia, Gisele; Schünemann, Mariana; Maraschin, Felipe Dos Santos; Martins, Marcio O; Teixeira, Felipe K; Rauber, Rafael; Margis, Rogério; Silveira, Joaquim Albenisio Gomes; Margis-Pinheiro, Márcia
2014-01-01
The inactivation of the chloroplast ascorbate peroxidases (chlAPXs) has been thought to limit the efficiency of the water-water cycle and photo-oxidative protection under stress conditions. In this study, we have generated double knockdown rice (Oryza sativa L.) plants in both OsAPX7 (sAPX) and OsAPX8 (tAPX) genes, which encode chloroplastic APXs (chlAPXs). By employing an integrated approach involving gene expression, proteomics, biochemical and physiological analyses of photosynthesis, we have assessed the role of chlAPXs in the regulation of the protection of the photosystem II (PSII) activity and CO2 assimilation in rice plants exposed to high light (HL) and methyl violagen (MV). The chlAPX knockdown plants were affected more severely than the non-transformed (NT) plants in the activity and structure of PSII and CO2 assimilation in the presence of MV. Although MV induced significant increases in pigment content in the knockdown plants, the increases were apparently not sufficient for protection. Treatment with HL also caused generalized damage in PSII in both types of plants. The knockdown and NT plants exhibited differences in photosynthetic parameters related to efficiency of utilization of light and CO2. The knockdown plants overexpressed other antioxidant enzymes in response to the stresses and increased the GPX activity in the chloroplast-enriched fraction. Our data suggest that a partial deficiency of chlAPX expression modulate the PSII activity and integrity, reflecting the overall photosynthesis when rice plants are subjected to acute oxidative stress. However, under normal growth conditions, the knockdown plants exhibit normal phenotype, biochemical and physiological performance. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Jia, Husen; Förster, Britta; Chow, Wah Soon; Pogson, Barry James; Osmond, C Barry
2013-02-01
This study resolved correlations between changes in xanthophyll pigments and photosynthetic properties in attached and detached shade-grown avocado (Persea americana) leaves upon sun exposure. Lutein epoxide (Lx) was deepoxidized to lutein (L), increasing the total pool by ΔL over 5 h, whereas violaxanthin (V) conversion to antheraxanthin (A) and zeaxanthin (Z) ceased after 1 h. During subsequent dark or shade recovery, de novo synthesis of L and Z continued, followed by epoxidation of A and Z but not of L. Light-saturated nonphotochemical quenching (NPQ) was strongly and linearly correlated with decreasing [Lx] and increasing [L] but showed a biphasic correlation with declining [V] and increasing [A+Z] separated when V deepoxidation ceased. When considering [ΔL+Z], the monophasic linear correlation was restored. Photochemical efficiency of photosystem II (PSII) and photosystem (PSI; deduced from the delivery of electrons to PSI in saturating single-turnover flashes) showed a strong correlation in their continuous decline in sunlight and an increase in NPQ capacity. This decrease was also reflected in the initial reduction of the slope of photosynthetic electron transport versus photon flux density. Generally longer, stronger sun exposures enhanced declines in both slope and maximum photosynthetic electron transport rates as well as photochemical efficiency of PSII and PSII/PSI more severely and prevented full recovery. Interestingly, increased NPQ capacity was accompanied by slower relaxation. This was more prominent in detached leaves with closed stomata, indicating that photorespiratory recycling of CO(2) provided little photoprotection to avocado shade leaves. Sun exposure of these shade leaves initiates a continuum of photoprotection, beyond full engagement of the Lx and V cycle in the antenna, but ultimately photoinactivated PSII reaction centers.
Greer, Dennis H
2015-12-01
The objective of this study was to follow changes in the temperature-dependent responses of photosynthesis and photosystem II performance in leaves of field-grown trees of Malus domestica (Borkh.) cv. 'Red Gala' before and after exposure to a long-term heat event occurring late in the growing season. Light-saturated photosynthesis was optimal at 25 °C before the heat event. The high temperatures caused a reduction in rates at low temperatures (15-20 °C) but increased rates at high temperatures (30-40 °C) and a shift in optimum to 30 °C. Rates at all temperatures increased after the heat event and the optimum shifted to 33 °C, indicative of some acclimation to the high temperatures occurring. Photosystem II attributes were all highly temperature-dependent. The operating quantum efficiency of PSII during the heat event declined, but mostly at high temperatures, partly because of decreased photochemical quenching but also from increased non-photochemical quenching. However, a further reduction in PSII operating efficiency occurred after the heat event subsided. Non-photochemical quenching had subsided, whereas photochemical quenching had increased in the post-heat event period and consistent with a greater fraction of open PSII reaction centres. What remained uncertain was why these effects on PSII performance appeared to have no effect on the process of light-saturated photosynthesis. However, the results provide an enhanced understanding of the impacts of sustained high temperatures on the photosynthetic process and its underlying reactions, notably photochemistry. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Degradation of Herbicides in the Tropical Marine Environment: Influence of Light and Sediment.
Mercurio, Philip; Mueller, Jochen F; Eaglesham, Geoff; O'Brien, Jake; Flores, Florita; Negri, Andrew P
2016-01-01
Widespread contamination of nearshore marine systems, including the Great Barrier Reef (GBR) lagoon, with agricultural herbicides has long been recognised. The fate of these contaminants in the marine environment is poorly understood but the detection of photosystem II (PSII) herbicides in the GBR year-round suggests very slow degradation rates. Here, we evaluated the persistence of a range of commonly detected herbicides in marine water under field-relevant concentrations and conditions. Twelve-month degradation experiments were conducted in large open tanks, under different light scenarios and in the presence and absence of natural sediments. All PSII herbicides were persistent under control conditions (dark, no sediments) with half-lives of 300 d for atrazine, 499 d diuron, 1994 d hexazinone, 1766 d tebuthiuron, while the non-PSII herbicides were less persistent at 147 d for metolachlor and 59 d for 2,4-D. The degradation of herbicides was 2-10 fold more rapid in the presence of a diurnal light cycle and coastal sediments; apart from 2,4-D which degraded more slowly in the presence of light. Despite the more rapid degradation observed for most herbicides in the presence of light and sediments, the half-lives remained > 100 d for the PS II herbicides. The effects of light and sediments on herbicide persistence were likely due to their influence on microbial community composition and its ability to utilise the herbicides as a carbon source. These results help explain the year-round presence of PSII herbicides in marine systems, including the GBR, but more research on the transport, degradation and toxicity on a wider range of pesticides and their transformation products is needed to improve their regulation in sensitive environments.
Corcuera, L; Morales, F; Abadía, A; Gil-Pelegrín, E
2005-05-01
Quercus ilex L. subsp. ballota (Desf.) Samp., a Mediterranean evergreen species growing in a continental Mediterranean climate, did not experience water stress and showed greater sensitivity to winter stress than to summer stress over a 12-month period. Net CO2 assimilation rates and photosystem II (PSII) efficiency decreased markedly during the cold months and recovered completely in spring. Lutein, neoxanthin and beta-carotene to chlorophyll (Chl) molar ratios all showed the same trend throughout the year, increasing from September to March. This increase was a result of increases in carotenoid concentrations, because Chl concentration per unit leaf area remained stable, and was higher at the end than at the beginning of the first growing season. Lutein-epoxide was a minor component of the total lutein pool. Thermal energy dissipation and non-photochemical quenching (NPQ) were associated with the de-epoxidated forms of the xanthophyll cycle pigments in the warm months. Photosynthetic rates decreased slightly at midday in summer. These changes were accompanied by decreases in maximum potential PSII efficiency (which recovered during the night), actual and intrinsic PSII efficiencies, photochemical quenching and increases in NPQ. Overall, our data indicate down-regulation of photosynthesis during the summer. The diurnal de-epoxidation of violaxanthin to antheraxanthin and zeaxanthin occurred throughout the year, except in January. Antioxidant enzymatic activity increased in the winter months, especially during the coldest months, highlighting its key role in photoprotection against photo-oxidation. Structural and functional modifications protected PSII from permanent damage and allowed 1-year-old leaves to photosynthesize at high rates when temperatures increased in spring.
Degradation of Herbicides in the Tropical Marine Environment: Influence of Light and Sediment
Mercurio, Philip; Mueller, Jochen F.; Eaglesham, Geoff; O'Brien, Jake; Flores, Florita; Negri, Andrew P.
2016-01-01
Widespread contamination of nearshore marine systems, including the Great Barrier Reef (GBR) lagoon, with agricultural herbicides has long been recognised. The fate of these contaminants in the marine environment is poorly understood but the detection of photosystem II (PSII) herbicides in the GBR year-round suggests very slow degradation rates. Here, we evaluated the persistence of a range of commonly detected herbicides in marine water under field-relevant concentrations and conditions. Twelve-month degradation experiments were conducted in large open tanks, under different light scenarios and in the presence and absence of natural sediments. All PSII herbicides were persistent under control conditions (dark, no sediments) with half-lives of 300 d for atrazine, 499 d diuron, 1994 d hexazinone, 1766 d tebuthiuron, while the non-PSII herbicides were less persistent at 147 d for metolachlor and 59 d for 2,4-D. The degradation of herbicides was 2–10 fold more rapid in the presence of a diurnal light cycle and coastal sediments; apart from 2,4-D which degraded more slowly in the presence of light. Despite the more rapid degradation observed for most herbicides in the presence of light and sediments, the half-lives remained > 100 d for the PS II herbicides. The effects of light and sediments on herbicide persistence were likely due to their influence on microbial community composition and its ability to utilise the herbicides as a carbon source. These results help explain the year-round presence of PSII herbicides in marine systems, including the GBR, but more research on the transport, degradation and toxicity on a wider range of pesticides and their transformation products is needed to improve their regulation in sensitive environments. PMID:27806103
Jia, Husen; Förster, Britta; Chow, Wah Soon; Pogson, Barry James; Osmond, C. Barry
2013-01-01
This study resolved correlations between changes in xanthophyll pigments and photosynthetic properties in attached and detached shade-grown avocado (Persea americana) leaves upon sun exposure. Lutein epoxide (Lx) was deepoxidized to lutein (L), increasing the total pool by ΔL over 5 h, whereas violaxanthin (V) conversion to antheraxanthin (A) and zeaxanthin (Z) ceased after 1 h. During subsequent dark or shade recovery, de novo synthesis of L and Z continued, followed by epoxidation of A and Z but not of L. Light-saturated nonphotochemical quenching (NPQ) was strongly and linearly correlated with decreasing [Lx] and increasing [∆L] but showed a biphasic correlation with declining [V] and increasing [A+Z] separated when V deepoxidation ceased. When considering [ΔL+∆Z], the monophasic linear correlation was restored. Photochemical efficiency of photosystem II (PSII) and photosystem (PSI; deduced from the delivery of electrons to PSI in saturating single-turnover flashes) showed a strong correlation in their continuous decline in sunlight and an increase in NPQ capacity. This decrease was also reflected in the initial reduction of the slope of photosynthetic electron transport versus photon flux density. Generally longer, stronger sun exposures enhanced declines in both slope and maximum photosynthetic electron transport rates as well as photochemical efficiency of PSII and PSII/PSI more severely and prevented full recovery. Interestingly, increased NPQ capacity was accompanied by slower relaxation. This was more prominent in detached leaves with closed stomata, indicating that photorespiratory recycling of CO2 provided little photoprotection to avocado shade leaves. Sun exposure of these shade leaves initiates a continuum of photoprotection, beyond full engagement of the Lx and V cycle in the antenna, but ultimately photoinactivated PSII reaction centers. PMID:23213134
Sjöholm, Johannes; Styring, Stenbjörn; Havelius, Kajsa G V; Ho, Felix M
2012-03-13
Cryogenic illumination of Photosystem II (PSII) can lead to the trapping of the metastable radical Y(Z)(•), the radical form of the redox-active tyrosine residue D1-Tyr161 (known as Y(Z)). Magnetic interaction between this radical and the CaMn(4) cluster of PSII gives rise to so-called split electron paramagnetic resonance (EPR) signals with characteristics that are dependent on the S state. We report here the observation and characterization of a split EPR signal that can be directly induced from PSII centers in the S(2) state through visible light illumination at 10 K. We further show that the induction of this split signal takes place via a Mn-centered mechanism, in the same way as when using near-infrared light illumination [Koulougliotis, D., et al. (2003) Biochemistry 42, 3045-3053]. On the basis of interpretations of these results, and in combination with literature data for other split signals induced under a variety of conditions (temperature and light quality), we propose a unified model for the mechanisms of split signal induction across the four S states (S(0), S(1), S(2), and S(3)). At the heart of this model is the stability or instability of the Y(Z)(•)(D1-His190)(+) pair that would be formed during cryogenic oxidation of Y(Z). Furthermore, the model is closely related to the sequence of transfers of protons and electrons from the CaMn(4) cluster during the S cycle and further demonstrates the utility of the split signals in probing the immediate environment of the oxygen-evolving center in PSII.
Ogawa, Takako; Sonoike, Kintake
2016-03-01
Estimation of photosynthesis by Chl fluorescence measurement of cyanobacteria is always problematic due to the interference from respiratory electron transfer and from phycocyanin fluorescence. The interference from respiratory electron transfer could be avoided by the use of DCMU or background illumination by blue light, which oxidizes the plastoquinone pool that tends to be reduced by respiration. On the other hand, the precise estimation of photosynthesis in cells with a different phycobilisome content by Chl fluorescence measurement is difficult. By subtracting the basal fluorescence due to the phycobilisome and PSI, it becomes possible to estimate the precise maximum quantum yield of PSII in cyanobacteria. Estimated basal fluorescence accounted for 60% of the minimum fluorescence, resulting in a large difference between the 'apparent' yield and 'true' yield under high phycocyanin conditions. The calculated value of the 'true' maximum quantum yield of PSII was around 0.8, which was similar to the value observed in land plants. The results suggest that the cause of the apparent low yield reported in cyanobacteria is mainly ascribed to the interference from phycocyanin fluorescence. We also found that the 'true' maximum quantum yield of PSII decreased under nitrogen-deficient conditions, suggesting the impairment of the PSII reaction center, while the 'apparent' maximum quantum yield showed a marginal change under the same conditions. Due to the high contribution of phycocyanin fluorescence in cyanobacteria, it is essential to eliminate the influence of the change in phycocyanin content on Chl fluorescence measurement and to evaluate the 'true' photosynthetic condition. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Shchupak, E. E.; Ivashin, N. V.
2014-02-01
Structural factors that provide localization of excited states and determine the properties of primary donor and acceptor of electron in the reaction center of photosystem II (PSII RC) are studied. The results of calculations using stationary and time-dependent density functional theory indicate an important role of protein environments of chlorophylls PA, PB, BA, and BB and pheophytins HA and HB in the area with a radius of no greater than ≤10 Å in the formation of excitonic states of PSII RC. When the neighboring elements are taken into account, the wavelength of long-wavelength Q y transition of chlorophyll molecules is varied by about 10 nm. The effect is less developed for pheophytin molecules (Δλ ≅ 2 nm). The following elements strongly affect energy of the transition: HisA198 and HisD197 amino-acid residues that serve as ligands of magnesium atoms affect PA and PB, respectively; MetA183 affects PA; MetA172 and MetD198 affect BA; water molecules that are located above the planes of the BA and BB macrocycles form H bonds with carbonyl groups; and phytol chains of PA and PB affect BA, BB, HA, and HB. The analysis of excitonic states, mutual positions of molecular orbitals of electron donors and acceptors, and matrix elements of electron transfer reaction shows that (i) charge separation between BA and HA and PB and BA is possible in the active A branch of cofactors of PSII RC and (ii) electron transfer is blocked at the BB - HB fragment in inactive B branch of PSII RC.
Porcel, Rosa; Redondo-Gómez, Susana; Mateos-Naranjo, Enrique; Aroca, Ricardo; Garcia, Rosalva; Ruiz-Lozano, Juan Manuel
2015-08-01
Rice is the most important food crop in the world and is a primary source of food for more than half of the world population. However, salinity is considered the most common abiotic stress reducing its productivity. Soil salinity inhibits photosynthetic processes, which can induce an over-reduction of the reaction centres in photosystem II (PSII), damaging the photosynthetic machinery. The arbuscular mycorrhizal (AM) symbiosis may improve host plant tolerance to salinity, but it is not clear how the AM symbiosis affects the plant photosynthetic capacity, particularly the efficiency of PSII. This study aimed at determining the influence of the AM symbiosis on the performance of PSII in rice plants subjected to salinity. Photosynthetic activity, plant gas-exchange parameters, accumulation of photosynthetic pigments and rubisco activity and gene expression were also measured in order to analyse comprehensively the response of the photosynthetic processes to AM symbiosis and salinity. Results showed that the AM symbiosis enhanced the actual quantum yield of PSII photochemistry and reduced the quantum yield of non-photochemical quenching in rice plants subjected to salinity. AM rice plants maintained higher net photosynthetic rate, stomatal conductance and transpiration rate than nonAM plants. Thus, we propose that AM rice plants had a higher photochemical efficiency for CO2 fixation and solar energy utilization and this increases plant salt tolerance by preventing the injury to the photosystems reaction centres and by allowing a better utilization of light energy in photochemical processes. All these processes translated into higher photosynthetic and rubisco activities in AM rice plants and improved plant biomass production under salinity. Copyright © 2015 Elsevier GmbH. All rights reserved.
Perkins, R; Williamson, C; Lavaud, J; Mouget, J-L; Campbell, D A
2018-04-16
Photoacclimation by strains of Haslea "blue" diatom species H. ostrearia and H. silbo sp. nov. ined. was investigated with rapid light curves and induction-recovery curves using fast repetition rate fluorescence. Cultures were grown to exponential phase under 50 µmol m -2 s -1 photosynthetic available radiation (PAR) and then exposed to non-sequential rapid light curves where, once electron transport rate (ETR) had reached saturation, light intensity was decreased and then further increased prior to returning to near growth light intensity. The non-sequential rapid light curve revealed that ETR was not proportional to the instantaneously applied light intensity, due to rapid photoacclimation. Changes in the effective absorption cross sections for open PSII reaction centres (σ PSII ') or reaction centre connectivity (ρ) did not account for the observed increases in ETR under extended high light. σ PSII ' in fact decreased as a function of a time-dependent induction of regulated excitation dissipation Y(NPQ), once cells were at or above a PAR coinciding with saturation of ETR. Instead, the observed increases in ETR under extended high light were explained by an increase in the rate of PSII reopening, i.e. Q A - oxidation. This acceleration of electron transport was strictly light dependent and relaxed within seconds after a return to low light or darkness. The time-dependent nature of ETR upregulation and regulated NPQ induction was verified using induction-recovery curves. Our findings show a time-dependent induction of excitation dissipation, in parallel with very rapid photoacclimation of electron transport, which combine to make ETR independent of short-term changes in PAR. This supports a selective advantage for these diatoms when exposed to fluctuating light in their environment.
24-epibrassinolide and 20-hydroxyecdysone affect photosynthesis differently in maize and spinach.
Rothová, Olga; Holá, Dana; Kočová, Marie; Tůmová, Lenka; Hnilička, František; Hniličková, Helena; Kamlar, Marek; Macek, Tomáš
2014-07-01
The aim of the work was to examine the effect of brassinosteroid (24-epibrassinolide; 24E) and ecdysteroid (20-hydroxyecdysone; 20E) on various parts of primary photosynthetic processes in maize and spinach. Additionally, the effect of steroids on gaseous exchange, pigment content and biomass accumulation was studied. The efficiency of the photosynthetic whole electron-transport chain responded negatively to the 24E or 20E treatment in both species, but there were interspecific differences regarding Photosystem (PS) II response. A positive effect on its oxygen-evolving complex and a slightly better energetical connectivity between PSII units were observed in maize whereas the opposite was true for spinach. The size of the pool of the PSI end electron acceptors was usually diminished due to 24E or 20E treatment. The treatment of plants with 24E or 20E applied individually positively influenced the content of photosynthetic pigments in maize (not in spinach). On the other hand, it did not affect gaseous exchange in maize but resulted in its reduction in spinach. Plants treated with combination of both steroids mostly did not significantly differ from the control plants. We have demonstrated for the first time that 20E applied in low (10nM) concentration can affect various parts of photosynthetic processes similarly to 24E and that brassinosteroids regulate not only PSII but also other parts of the photosynthetic electron transport chain - but not necessarily in the same way. Copyright © 2014 Elsevier Inc. All rights reserved.
Herschbach, Cornelia; Rizzini, Luca; Mult, Susanne; Hartmann, Tanja; Busch, Florian; Peuke, Andreas D; Kopriva, Stanislav; Ensminger, Ingo
2010-07-01
We compared three transgenic poplar lines over-expressing the bacterial gamma-glutamylcysteine synthetase (GSH1) targeted to plastids. Lines Lggs6 and Lggs12 have two copies, while line Lggs20 has three copies of the transgene. The three lines differ in their expression levels of the transgene and in the accumulation of gamma-glutamylcysteine (gamma-EC) and glutathione (GSH) in leaves, roots and phloem exudates. The lowest transgene expression level was observed in line Lggs6 which showed an increased growth, an enhanced rate of photosynthesis and a decreased excitation pressure (1-qP). The latter typically represents a lower reduction state of the plastoquinone pool, and thereby facilitates electron flow along the electron transport chain. Line Lggs12 showed the highest transgene expression level, highest gamma-EC accumulation in leaves and highest GSH enrichment in phloem exudates and roots. This line also exhibited a reduced growth, and after a prolonged growth of 4.5 months, symptoms of leaf injury. Decreased maximum quantum yield (F(v)/F(m)) indicated down-regulation of photosystem II reaction centre (PSII RC), which correlates with decreased PSII RC protein D1 (PsbA) and diminished light-harvesting complex (Lhcb1). Potential effects of changes in chloroplastic and cytosolic GSH contents on photosynthesis, growth and the whole-plant sulphur nutrition are discussed for each line.
Manganese and the limits of high potential phototrophy
NASA Astrophysics Data System (ADS)
Fischer, W. W.; Hemp, J.; Johnson, J. E.
2013-12-01
Photosynthetic reaction centers create high-energy electrons using light, harnessing the charge separation to simultaneously provide the cell with a strong oxidant and strong reductant. Many substrates can be used as electron donors for phototrophy, however there appears to be important energetic limits. In oxygenic photosynthesis photosystem II (PSII) provides a very strong oxidant that is capable of oxidizing water (ca. +830 mV) to molecular oxygen at the water-oxidizing complex, a redox-active tetra-manganese cluster. Anoxygenic photosystems however appear to only be able to oxidize lower potential electron donors (Fe2+, H2, S0, HS, S2O32-, NO2-, AsO33-).. Several transitional photosystems have been proposed as evolutionary intermediates between anoxygenic and oxygenic photosynthesis, with electron donors of higher redox potentials such as nitrite (ca. +431 mV) or Mn2+ (ca. +780 mV) bridging the redox gap to water. While a range of observations from the geological record support a Mn2+-based transitional photosystem (Johnson et al. 2013), this proposed photochemical scheme is distinct from that observed in anoxygenic photosynthetic organisms. Mechanistically all anoxygenic reaction centers receive their electrons indirectly via soluble electron carriers such as cytochrome c, high potential iron sulfur proteins or cupredoxins. Conversely Mn2+ oxidation is only known to occur today via direct oxidation, such as during photoassembly of the water-oxidizing complex of PSII, or by two distinct, non-energy-conserving mechanisms using molecular oxygen. No natural photosystem is known to solely perform Mn2+-oxidation. The highest redox-potential accessed by known anoxygenic phototrophs oxidizes nitrite (Schott et al. 2010), but it has been unclear until now whether the reaction center is specially adapted to produce high potential oxidants, similar to that of PSII to oxidize Mn2+ and water. To constrain this we sequenced the genome of the nitrite-oxidizing phototroph Thiocapsa sp. KS1. The data reveal that a type II reaction center that looks identical to other closely related strains that lack such a high potential metabolism. Unlike the direct Mn2+ oxidation, nitrite oxidation appears to require no special mutations, implying that nitrite oxidation occurs via cytochromes or cupredoxins, in family with other anoxygenic electron donations. These results define a broad limit for high potential electron donors for anoxygenic photosynthesis, and indicate that only Mn2+--oxidizing photosynthesis (prior to water oxidation by oxygenic phototrophs) likely requires a direct interaction with the reaction center. Johnson JE, Webb SM, Thomas K, Ono S, Kirschvink JL, Fischer WW (2013) Manganese-oxidizing photosynthesis before the rise of cyanobacteria, PNAS, Schott J, Griffin BM, Schink B (2010) Anaerobic phototrophic nitrite oxidation by Thiocapsa sp. strain KS1 and Rhodopseudomonas sp. strain LQ17, Microbiology, 156, 2428-2437.
PSB27: A thylakoid protein enabling Arabidopsis to adapt to changing light intensity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hou, Xin; Garcia, Veder J.; Buchanan, Bob B.
Project Title: Immunophilins in the assembly and maintenance of photosynthetic electron transport chain in Arabidopsis Applicant: The Regents of the University of California PI: Sheng Luan, University of California at Berkeley Photosynthetic light energy conversion entails coordinated function of complex molecular machines that capture and convert light energy into chemical forms through photosynthetic electron transport chain. Each molecular machine, such as photosystem II (PSII), may consist of dozens of protein subunits and small molecule cofactors. Despite advanced understanding of the structure and function of these complexes, little is known about “How individual proteins and cofactors assemble into a functional machinemore » and how do these molecular machines maintain their structure and function under a highly hazardous lumenal environment.” Our studies on immunophilins have unexpectedly contributed to the understanding of this question. Originally defined as cellular receptors for immunosuppressants, immunophilins have been discovered in a wide range of organisms from bacteria, fungi, plants, to animals. Immunophilins function in protein folding processes as chaperones and foldases. Arabidopsis genome encodes ca. 50 immunophilins. The most striking finding is that 16 immunophilin members are targeted to chloroplast thylakoid lumen, by far the largest group in the lumenal proteome. What is the function of immunophilins in the thylakoid lumen? Our studies have demonstrated critical roles for several immunophilins in the biogenesis and maintenance of photosynthetic complexes such as PSII. These studies have made a critical link between immunophilins and the assembly of photosynthetic machines and thus opened up a new area of research in photosynthesis. Our goal is to dissect the roles of immunophilins and their partners in the assembly and maintenance of the photosynthetic electron transport chain. The specific objectives for this funding period will be: 1. To dissect the mechanism of action for CYP38. Our studies suggest an “autoinhibitory” model for CYP38 action. We plan to test this model and determine the mechanistic details for CYP38 function by biochemical and genetic procedures. 2. To determine the mechanism of action of FKBP20-2/FKBP16-3. Studies on FBKP16-3 and FKBP20-2 suggest that they may work together as a redox-dependent duo in PSII assembly. We will test this hypothesis using biochemical and genetic tools. 3. To determine the function of lumenal FKBPs by multi-gene mutagenesis approach. Using new genetic knockout (KO) procedures especially CRISPR/CAS9 system, we plan to generate multi-gene KO models that will likely provide vital information on those FKBPs with functional redundancy. 4. Functional analysis of thylakoid lumen network. We will focus our effort on objectives 1-3. Objective 4 represents a long-term goal to establish a more comprehensive network of proteins in the thylakoid lumen and their function in the assembly and maintenance of photosynthetic complexes. I hypothesize that the 16 immunophilin-type chaperones and foldases in the thylakoid lumen constitute an “assembly line” for the various components in the photosynthetic electron transport chain. Understanding this assembly line will enable further engineering of more efficient photosynthetic machines to capture more light energy and enhance plant productivity. Furthermore, it is envisioned that such molecular “assembly line” may be rebuilt to produce artificial photosynthesis in vitro or in non-photosynthetic organisms. These are highly relevant to the mission of “Photosynthetic Systems” and “Physical Biosciences” programs to “enhance our understanding of energy capture, conversion, and/or storage.” During the funding period, we have performed a number of experiments under the proposed objectives and obtained several new results. We have found in Objective 1 that CYP38 is associated to the thylokoid membrane with a larger complex that might be PSII supercomplex. Under objective 2, we have found that FKBP16-2 interacted with PSB27 that was further pursuited and published a research article in PNAS (attached). Under Objective 3, we have identified several mutants of other FKBPs in the thyalkoid lumen that should be further studied if future funding is available. Under Objective 4, we have started to build a network of lumenal proteins that play a number of roles in photosynthesis. For example, the CYP37 and CYP28 are linked to chloroplast signaling to nucleus, critical for controlling plant response to high light and adaptation to climate change. Unfortunately these studies have been terminated due to funding shortage.« less
Repercussions of salinity changes and osmotic stress in marine phytoplankton species
NASA Astrophysics Data System (ADS)
D'ors, A.; Bartolomé, M. C.; Sánchez-Fortún, S.
2016-06-01
The short-term effect of low salinity was studied using laboratory protocols on some coastal phytoplankton species such as chlorophycea Tetraselmis suecica, among diatom the strain Nitzschia N1c1 and dinoflagellates Alexandrium minutum and Prorocentrum lima. All of cultures were exposed to low salinities, and cell growth rate, photosynthetic quantum yield (ΦPSII), and gross photosynthesis (Pg) were analyzed. Growth rate inhibition was similar in all species, and all of them also tolerate short-term exposures to salinities in the range 5-35. There were no significant differences between ΦPSII and Pg endpoints from Tetraselmis suecica and Nitzschia sp., while Alexandrium minutum and Prorocentrum lima displayed a higher affectation rate on Pg than on ΦPSII activity. The influence of low salinity was higher on respiration in T. suecica, while both dinoflagellates had higher net photosynthesis. Nitzschia sp. exhibited similar involvement of the two photosynthetic parameters. Therefore, although the four phytoplankton monocultures studied are able to survive in internal areas of estuaries under low salinity conditions, the photosynthetic activity is more affected than the growth rate in all phytoplankton communities studied except in chlorophycea T. suecica, which has increased tolerance for this salinity decrease.
Macías-Rubalcava, Martha Lydia; Ruiz-Velasco Sobrino, María Emma; Meléndez-González, Claudio; King-Díaz, Beatriz; Lotina-Hennsen, Blas
2014-09-05
In a search for natural herbicides, we investigated the action mechanism of the naphthoquinone spiroketals, isolated from the endophytic fungus Edenia gomezpompae: preussomerins EG1 (1) and EG4 (2), and palmarumycins CP17 (3), and CP2 (4) on the photosynthesis light reactions. The naphthoquinone spiroketals 1-4 inhibited the ATP synthesis in freshly lysed spinach thylakoids from water to MV, and they also inhibited the non-cyclic electron transport in the basal, phosphorylating and uncoupled conditions from water to MV. Therefore, they act as Hill reaction inhibitors. The results suggested that naphthoquinone spiroketals 1-4 have two interactions and inhibition site on the PSII electron transport chain. The first one involves the water splitting enzyme inhibition; and, the second on the acceptor site of PSII in a similar way that herbicide Diuron, studied by polaroghaphy and corroborated by fluorescence of the chlorophyll a of PSII. The culture medium and mycelium organic extracts from four morphological variants of E. gomezpompae were phytotoxic, and the culture medium extracts were more potent than mycelium extracts. They also act as Hill reaction inhibitors. Copyright © 2014 Elsevier B.V. All rights reserved.
Biomonitoring chromium III or VI soluble pollution by moss chlorophyll fluorescence.
Chen, Yang-Er; Mao, Hao-Tian; Ma, Jie; Wu, Nan; Zhang, Chao-Ming; Su, Yan-Qiu; Zhang, Zhong-Wei; Yuan, Ming; Zhang, Huai-Yu; Zeng, Xian-Yin; Yuan, Shu
2018-03-01
We systematically compared the impacts of four Cr salts (chromic chloride, chromic nitrate, potassium chromate and potassium bichromate) on physiological parameters and chlorophyll fluorescence in indigenous moss Taxiphyllum taxirameum. Among the four Cr salts, K 2 Cr 2 O 7 treatment resulted in the most significant decrease in photosynthetic efficiency and antioxidant enzymes, increase in reactive oxygen species (ROS), and obvious cell death. Different form the higher plants, although hexavalent Cr(VI) salt treatments resulted in higher accumulation levels of Cr and were more toxic than Cr(III) salts, Cr(III) also induced significant changes in moss physiological parameters and chlorophyll fluorescence. Our results showed that Cr(III) and Cr(VI) could be monitored distinguishably according to the non-photochemical quenching (NPQ) fluorescence of sporadic purple and sporadic lavender images respectively. Then, the valence states and concentrations of Cr contaminations could be evaluated according to the image of maximum efficiency of PSII photochemistry (Fv/Fm) and the quantum yield of PSII electron transport (ΦPSII). Therefore, this study provides new ideas of moss's sensibility to Cr(III) and a new method to monitor Chromium contaminations rapidly and non-invasively in water. Copyright © 2017 Elsevier Ltd. All rights reserved.
Goussi, Rahma; Manaa, Arafet; Derbali, Walid; Cantamessa, Simone; Abdelly, Chedly; Barbato, Roberto
2018-06-01
Salinity is one of the most important abiotic stress affecting plant growth and productivity worldwide. Photosynthesis, together with cell growth, is among the primary process affected by salinity. Here, we report the effects of salt stress on photosynthesis in the model halophyte Thellungiella salsuginea. Plants were grown in hydroponic system and then treated for 2 weeks with different NaCl concentrations (0, 100, 200 and 400 mM). Leaf analysis using both photonic and transmission electron microscopes showed some changes in mesophyll cell organization, including shape and dimension. Under high NaCl concentration (400 mM) a swelling of thylakoids and starch accumulation was also observed. The obtained results also showed a change in the photosynthetic efficiency of both photosystems (PSI and PSII), depending on both NaCl concentrations and duration of the stress treatment. Under moderate salinity (100 and 200 mM NaCl) no significant variation was observed in PSI and PSII yield parameters. Chlorophyll a fluorescence transient showed some variations in OJ, JI and IP phases under salt stress depending also on NaCl levels and the duration of stress. Under high salinity PSII donor side was affected as well as quantum yield of PSI which also showed a donor side limitation. A significant decrease on quantum yields Y(I) and Y(II) under high salt treatment (400 mM NaCl) for prolonged period of time (15 days) was observed. The decrease of these parameters was quantitatively compensated by a corresponding increase of energy thermal dissipation Y(NPQ) in photosystem II and a increase in the Y(ND) in PSI. Analysis of derived parameters from the OJIP transient curve revealed that ABS/RC decreased under NaCl treatment by reason of the increase in size of antenna of active reaction centers. An increase in the performance index PI (ABS) , a slight decrease in the rate of DI O /RC, TR O /RC and the level of electron transport per PSII RC (ET O /RC) were observed during the first days of salt stress treatment reflecting a high PSII efficiency. Copyright © 2018 Elsevier B.V. All rights reserved.
Tyutereva, Elena V; Evkaikina, Anastasiia I; Ivanova, Alexandra N; Voitsekhovskaja, Olga V
2017-09-01
The lateral mobility of integral components of thylakoid membranes, such as plastoquinone, xanthophylls, and pigment-protein complexes, is critical for the maintenance of efficient light harvesting, high rates of linear electron transport, and successful repair of damaged photosystem II (PSII). The packaging of the photosynthetic pigment-protein complexes in the membrane depends on their size and stereometric parameters which in turn depend on the composition of the complexes. Chlorophyll b (Chlb) is an important regulator of antenna size and composition. In this study, the lateral mobility (the mobile fraction size) of pigment-protein complexes and lipids in grana membranes was analyzed in chlorina mutants of Arabidopsis and barley lacking Chlb. In the Arabidopsis ch1-3 mutant, diffusion of membrane lipids decreased as compared to wild-type plants, but the diffusion of photosynthetic complexes was not affected. In the barley chlorina f2 3613 mutant, the diffusion of pigment-protein complexes significantly decreased, while the diffusion of lipids increased, as compared to wild-type plants. We propose that the size of the mobile fractions of pigment-protein complexes in grana membranes in vivo is higher than reported previously. The data are discussed in the context of the protein composition of antennae, characteristics of the plastoquinone pool, and production of reactive oxygen species in leaves of chlorina mutants.
Differences in photosynthetic responses of NADP-ME type C4 species to high light.
Romanowska, Elżbieta; Buczyńska, Alicja; Wasilewska, Wioleta; Krupnik, Tomasz; Drożak, Anna; Rogowski, Paweł; Parys, Eugeniusz; Zienkiewicz, Maksymilian
2017-03-01
Three species chosen as representatives of NADP-ME C4 subtype exhibit different sensitivity toward photoinhibition, and great photochemical differences were found to exist between the species. These characteristics might be due to the imbalance in the excitation energy between the photosystems present in M and BS cells, and also due to that between species caused by the penetration of light inside the leaves. Such regulation in the distribution of light intensity between M and BS cells shows that co-operation between both the metabolic systems determines effective photosynthesis and reduces the harmful effects of high light on the degradation of PSII through the production of reactive oxygen species (ROS). We have investigated several physiological parameters of NADP-ME-type C4 species (e.g., Zea mays, Echinochloa crus-galli, and Digitaria sanguinalis) grown under moderate light intensity (200 µmol photons m -2 s -1 ) and, subsequently, exposed to excess light intensity (HL, 1600 µmol photons m -2 s -1 ). Our main interest was to understand why these species, grown under identical conditions, differ in their responses toward high light, and what is the physiological significance of these differences. Among the investigated species, Echinochloa crus-galli is best adapted to HL treatment. High resistance of the photosynthetic apparatus of E. crus-galli to HL was accompanied by an elevated level of phosphorylation of PSII proteins, and higher values of photochemical quenching, ATP/ADP ratio, activity of PSI and PSII complexes, as well as integrity of the thylakoid membranes. It was also shown that the non-radiative dissipation of energy in the studied plants was not dependent on carotenoid contents and, thus, other photoprotective mechanisms might have been engaged under HL stress conditions. The activity of the enzymes superoxide dismutase and ascorbate peroxidase as well as the content of malondialdehyde and H 2 O 2 suggests that antioxidant defense is not responsible for the differences observed in the tolerance of NADP-ME species toward HL stress. We concluded that the chloroplasts of the examined NADP-ME species showed different sensitivity to short-term high light irradiance, suggesting a role of other factors excluding light factors, thus influencing the response of thylakoid proteins. We also observed that HL affects the mesophyll chloroplasts first hand and, subsequently, the bundle sheath chloroplasts.
NASA Astrophysics Data System (ADS)
Gelzinis, Andrius; Valkunas, Leonas; Fuller, Franklin D.; Ogilvie, Jennifer P.; Mukamel, Shaul; Abramavicius, Darius
2013-07-01
We propose an optimized tight-binding electron-hole model of the photosystem II (PSII) reaction center (RC). Our model incorporates two charge separation pathways and spatial correlations of both static disorder and fast fluctuations of energy levels. It captures the main experimental features observed in time-resolved two-dimensional (2D) optical spectra at 77 K: peak pattern, lineshapes and time traces. Analysis of 2D spectra kinetics reveals that specific regions of the 2D spectra of the PSII RC are sensitive to the charge transfer states. We find that the energy disorder of two peripheral chlorophylls is four times larger than the other RC pigments.
Daddy, where did (PS)I come from?
Baymann, F; Brugna, M; Mühlenhoff, U; Nitschke, W
2001-10-30
The reacton centre I (RCI)-type photosystems from plants, cyano-, helio- and green sulphur bacteria are compared and the essential properties of an archetypal RCI are deduced. Species containing RCI-type photosystems most probably cluster together on a common branch of the phylogenetic tree. The predicted branching order is green sulphur, helio- and cyanobacteria. Striking similarities between RCI- and RCII-type photosystems recently became apparent in the three-dimensional structures of photosystem I (PSI), PSII and RCII. The phylogenetic relationship between all presently known photosystems is analysed suggesting (a) RCI as the ancestral photosystem and (b) the descendence of PSII from RCI via gene duplication and gene splitting. An evolutionary model trying to rationalise available data is presented.
2008-07-03
complex is still unclear even in the crystal structure of RC-LH1 core complex from Rhodopseudomonas (Rps.) palustris [1]. In this study, we use a...complex of R. palustris . 16 The NIR absorption spectra of these core complexes on the electrode indicate that these complexes are stable when...as the LH or the core complex. For example, the core complex, isolated from the photosynthetic bacterium, Rps. palustris , was successfully
Masojídek, Jiří; Kopecký, Jiří; Giannelli, Luca; Torzillo, Giuseppe
2011-02-01
This work aims to: (1) correlate photochemical activity and productivity, (2) characterize the flow pattern of culture layers and (3) determine a range of biomass densities for high productivity of the freshwater microalga Chlorella spp., grown outdoors in thin-layer cascade units. Biomass density, irradiance inside culture, pigment content and productivity were measured in the microalgae cultures. Chlorophyll-fluorescence quenching was monitored in situ (using saturation-pulse method) to estimate photochemical activities. Photobiochemical activities and growth parameters were studied in cultures of biomass density between 1 and 47 g L(-1). Fluorescence measurements showed that diluted cultures (1-2 g DW L(-1)) experienced significant photostress due to inhibition of electron transport in the PSII complex. The highest photochemical activities were achieved in cultures of 6.5-12.5 g DW L(-1), which gave a maximum daylight productivity of up to 55 g dry biomass m(-2) day(-1). A midday depression of maximum PSII photochemical yield (F (v)/F (m)) of 20-30% compared with morning values in these cultures proved to be compatible with well-performing cultures. Lower or higher depression of F (v)/F (m) indicated low-light acclimated or photo-inhibited cultures, respectively. A hydrodynamic model of the culture demonstrated highly turbulent flow allowing rapid light/dark cycles (with frequency of 0.5 s(-1)) which possibly match the turnover of the photosynthetic apparatus. These results are important from a biotechnological point of view for optimisation of growth of outdoor microalgae mass cultures under various climatic conditions.
Chen, Zunwei; Song, Shufang; Wen, Yuezhong
2016-12-01
The priority pollutant chromium (Cr) was ubiquitous and great efforts have been made to reduce Cr (VI) into less-toxic Cr (III) by alga for the convenient availability and low expense. However, the functional role of organelle inside the algal cell in Cr (VI) reduction was poorly understood. In this study, organelles in green algae Chlorella vulgaris were extracted and further decorated for Cr (VI) reduction tests. Results showed that the chloroplast exhibited not only adsorption ability of total Cr (21.18% comparing to control) but also reduction potential of Cr (VI) (almost 70% comparing to control), whose most suitable working concentration was at 17μg/mL. Furtherly, the isolated thylakoid membrane (ITM) showed better Cr (VI) reduction potential with the presence of sodium alginate (SA), even though the Hill reaction activity (HRA) was inhibited. As for photosystem II (PSII), the addition of mesoporous silica SBA-15 enhanced the reduction ability through improving the light-harvesting complex (LHC) II efficiency and electron transport rate. On the whole, the reduction ability order of the three kinds of materials based on chloroplast in C. vulgaris was PSII@SBA-15>Chloroplast>ITM@SA. The attempt made in this study to reduce the Cr (VI) with C. vulgaris organelles might not only offer basement to detect the potential action mechanism of Cr (VI) reduction by C. vulgaris but also provide a new sight for the scavenge of heavy metal with biological materials. Copyright © 2016 Elsevier B.V. All rights reserved.
Wu, Feng; Yang, Zhenle; Kuang, Tingyun
2006-01-01
Phosphatidylglycerol (PG) is a ubiquitous phospholipid in thylakoid membranes of cyanobacteria and chloroplasts and plays an important role in the structure and function of photosynthetic membranes. The last step of the PG biosynthesis is dephosphorylation of phosphatidylglycerophosphate (PGP) catalyzed by PGP phosphatase. However, the gene-encoding PGP phosphatase has not been identified and cloned from cyanobacteria or higher plants. In this study, we constructed a PG-deficient mutant from cyanobacterium Anabaena sp. PCC7120 with a disrupted gene (alr1715, a gene for Alr1715 protein, GenBank accession no. BAB78081) encoding a putative PGP phosphatase. The obtained mutant showed an approximately 30% reduction in the cellular content of PG. Following the reduction in the PG content, the photoautotrophical growth of the mutant was restrained, and the cellular content of chlorophyll was decreased. The decreases in net photosynthetic and photosystem II (PSII) activities on a cell basis also occurred in this mutant. Simultaneously, the photochemical efficiency of PSII was considerably declined, and less excitation energy was transferred toward PSII. These findings demonstrate that the alr1715 gene of Anabaena sp. PCC7120 is involved in the biosynthesis of PG and essential for photosynthesis. PMID:16815953
Torres, Rocio; Diz, Virginia E; Lagorio, M Gabriela
2018-04-18
Effects of gold nanoparticles (average diameter: 10-14 nm) on leaves and chloroplasts have been studied. Gold nanoparticles (AuNPs) quenched significantly chlorophyll fluorescence when introduced both in intact leaves and isolated chloroplasts. Additionally, the fluorescence spectra corrected for light re-absorption processes showed a net decrease in the fluorescence ratio calculated as the quotient between the maximum fluorescence at 680 and 735 nm. This fact gave evidence for a reduction in the fluorescence emission of the PSII relative to that of the PSI. Strikingly, the photosynthetic parameters derived from the analysis of the slow phase of Kautsky's kinetics, the rate of oxygen evolution and the rate of photo-reduction of 2,6-dichlorophenolindophenol were increased in the presence of AuNPs indicating an apparent greater photosynthetic capacity. The observed results were consistent with an electron transfer process from the excited PSII, which was thermodynamically possible, and which competed with both the electron transport process that initiated photosynthesis and the deactivation of the excited PSII by fluorescence emission. Additionally, it is here explained, in terms of a completely rational kinetic scheme and their corresponding algebraic expressions, why the photosynthetic parameters and the variable and non-variable fluorescence of chlorophyll are modified in a photosynthetic tissue containing gold nanoparticles.
Zlobin, Ilya E; Ivanov, Yury V; Kartashov, Alexander V; Sarvin, Boris A; Stavrianidi, Andrey N; Kreslavski, Vladimir D; Kuznetsov, Vladimir V
2018-05-19
We investigated the influence of 40 days of drought on growth, storage processes and primary photosynthetic processes in 3-month-old Scots pine and Norway spruce seedlings growing in perlite culture. Water stress significantly affected seedling water status, whereas absolute dry biomass growth was not substantially influenced. Water stress induced an increase in non-structural carbohydrate content (sugars, sugar alcohols, starch) in the aboveground part of pine seedlings in contrast to spruce seedlings. Due to the relatively low content of sugars and sugar alcohols in seedling organs, their expected contribution to osmotic potential changes was quite low. In contrast to biomass accumulation and storage, photosynthetic primary processes were substantially influenced by water shortage. In spruce seedlings, PSII was more sensitive to water stress than PSI. In particular, electron transport in PSI was stable under water stress despite the substantial decrease of electron transport in PSII. The increase in thermal energy dissipation due to enhancement of non-photochemical quenching (NPQ) was evident in both species under water stress. Simultaneously, the yields of non-regulated energy dissipation in PSII were decreased in pine seedlings under drought. A relationship between growth, photosynthetic activities and storage processes is analysed under weak water deficit.
2016-01-01
We review the mechanism underlying nonphotochemical chlorophyll fluorescence quenching (NPQ) and its role in protecting plants against photoinhibition. This review includes an introduction to this phenomenon, a brief history of major milestones in our understanding of NPQ, definitions, and a discussion of quantitative measurements of NPQ. We discuss the current knowledge and unknown aspects in the NPQ scenario, including the following: ΔpH, the proton gradient (trigger); light-harvesting complex II (LHCII), PSII light harvesting antenna (site); and changes in the antenna induced by ΔpH (change), which lead to the creation of the quencher. We conclude that the minimum requirements for NPQ in vivo are ΔpH, LHCII complexes, and the PsbS protein. We highlight the most important unknown in the NPQ scenario, the mechanism by which PsbS acts upon the LHCII antenna. Finally, we describe a novel, emerging technology for assessing the photoprotective “power” of NPQ and the important findings obtained through this technology. PMID:26864015
Mazor, Yuval; Nataf, Daniel; Toporik, Hila; Nelson, Nathan
2014-01-01
Oxygenic photosynthesis supports virtually all life forms on earth. Light energy is converted by two photosystems—photosystem I (PSI) and photosystem II (PSII). Globally, nearly 50% of photosynthesis takes place in the Ocean, where single cell cyanobacteria and algae reside together with their viruses. An operon encoding PSI was identified in cyanobacterial marine viruses. We generated a PSI that mimics the salient features of the viral complex, named PSIPsaJF. PSIPsaJF is promiscuous for its electron donors and can accept electrons from respiratory cytochromes. We solved the structure of PSIPsaJF and a monomeric PSI, with subunit composition similar to the viral PSI, providing for the first time a detailed description of the reaction center and antenna system from mesophilic cyanobacteria, including red chlorophylls and cofactors of the electron transport chain. Our finding extends the understanding of PSI structure, function and evolution and suggests a unique function for the viral PSI. DOI: http://dx.doi.org/10.7554/eLife.01496.001 PMID:24473073
Mazor, Yuval; Nataf, Daniel; Toporik, Hila; Nelson, Nathan
2013-01-01
Oxygenic photosynthesis supports virtually all life forms on earth. Light energy is converted by two photosystems-photosystem I (PSI) and photosystem II (PSII). Globally, nearly 50% of photosynthesis takes place in the Ocean, where single cell cyanobacteria and algae reside together with their viruses. An operon encoding PSI was identified in cyanobacterial marine viruses. We generated a PSI that mimics the salient features of the viral complex, named PSI(PsaJF). PSI(PsaJF) is promiscuous for its electron donors and can accept electrons from respiratory cytochromes. We solved the structure of PSI(PsaJF) and a monomeric PSI, with subunit composition similar to the viral PSI, providing for the first time a detailed description of the reaction center and antenna system from mesophilic cyanobacteria, including red chlorophylls and cofactors of the electron transport chain. Our finding extends the understanding of PSI structure, function and evolution and suggests a unique function for the viral PSI. DOI: http://dx.doi.org/10.7554/eLife.01496.001.
Pagba, Cynthia V; McCaslin, Tyler G; Chi, San-Hui; Perry, Joseph W; Barry, Bridgette A
2016-02-25
Photosystem II (PSII) and ribonucleotide reductase employ oxidation and reduction of the tyrosine aromatic ring in radical transport pathways. Tyrosine-based reactions involve either proton-coupled electron transfer (PCET) or electron transfer (ET) alone, depending on the pH and the pKa of tyrosine's phenolic oxygen. In PSII, a subset of the PCET reactions are mediated by a tyrosine-histidine redox-driven proton relay, YD-His189. Peptide A is a PSII-inspired β-hairpin, which contains a single tyrosine (Y5) and histidine (H14). Previous electrochemical characterization indicated that Peptide A conducts a net PCET reaction between Y5 and H14, which have a cross-strand π-π interaction. The kinetic impact of H14 has not yet been explored. Here, we address this question through time-resolved absorption spectroscopy and 280-nm photolysis, which generates a neutral tyrosyl radical. The formation and decay of the neutral tyrosyl radical at 410 nm were monitored in Peptide A and its variant, Peptide C, in which H14 is replaced by cyclohexylalanine (Cha14). Significantly, both electron transfer (ET, pL 11, L = lyonium) and PCET (pL 9) were accelerated in Peptide A and C, compared to model tyrosinate or tyrosine at the same pL. Increased electronic coupling, mediated by the peptide backbone, can account for this rate acceleration. Deuterium exchange gave no significant solvent isotope effect in the peptides. At pL 9, but not at pL 11, the reaction rate decreased when H14 was mutated to Cha14. This decrease in rate is attributed to an increase in reorganization energy in the Cha14 mutant. The Y5-H14 mechanism in Peptide A is reminiscent of proton- and electron-transfer events involving YD-H189 in PSII. These results document a mechanism by which proton donors and acceptors can regulate the rate of PCET reactions.
Hu, Yuanyuan; Zhang, Yongling; Yu, Weiwu; Hänninen, Heikki; Song, Lili; Du, Xuhua; Zhang, Rui; Wu, Jiasheng
2018-01-01
Seed oil content is an important trait of nut seeds, and it is affected by the import of carbon from photosynthetic sources. Although green leaves are the main photosynthetic organs, seed sarcotesta photosynthesis also supplies assimilates to seed development. Understanding the relationship between seed photosynthesis and seed development has theoretical and practical significance in the cultivation of Torreya grandis cv. “Merrillii.” To assess the role of seed sarcotesta photosynthesis on the seed development, anatomical and physiological traits of sarcotesta were measured during two growing seasons in the field. Compared with the attached current-year leaves, the sarcotesta had higher gross photosynthetic rate at the first stage of seed development. At the late second stage of seed development, sarcotesta showed down-regulation of PSII activity, as indicated by significant decrease in the following chlorophyll fluorescence parameters: the maximum PSII efficiency (Fv/Fm), the PSII quantum yield (ΦPSII), and the photosynthetic quenching coefficient (qP). The ribulose 1, 5—bisphosphate carboxylase (Rubisco) activity, the total chlorophyll content (Chl(a+b)) and nitrogen content in the sarcotesta were also significantly decreased during that period. Treatment with DCMU [3-(3,4-dichlorophenyl)-1,1-dimethylurea] preventing seed photosynthesis decreased the seed dry weight and the oil content by 25.4 and 25.5%, respectively. We conclude that seed photosynthesis plays an important role in the dry matter accumulation at the first growth stage. Our results also suggest that down-regulation of seed photosynthesis is a plant response to re-balance the source-sink ratio at the second growth stage. These results suggest that seed photosynthesis is important for biomass accumulation and oil synthesis of the Torreya seeds. The results will facilitate achieving higher yields and oil contents in nut trees by selection for higher seed photosynthesis cultivars. PMID:29375592
Huang, Jine-Yung; Chiu, Yi-Fang; Ortega, José M; Wang, Hsing-Ting; Tseng, Tien-Sheng; Ke, Shyue-Chu; Roncel, Mercedes; Chu, Hsiu-An
2016-04-19
The characteristic features of two types of short-term light adaptations of the photosynthetic apparatus of the cyanobacterium Synechocystis sp. PCC 6803, state transition and blue-green light-induced fluorescence quenching, were compared in wild-type and cytochrome b559 and PsbJ mutant cells with mutations on and near the QC site in photosystem II (PSII). All mutant cells grew photoautotrophically and assembled stable PSII. Thermoluminescence emission experiments showed a decrease in the stability of the S3QB(-)/S2QB(-) charge pairs in the A16FJ, S28Aβ, and V32Fβ mutant cells. When dark-adapted wild-type and mutant cells were illuminated by medium-intensity blue light, the increase in the PSII fluorescence yield (indicating a transition to state 1) was more prominent in mutant than wild-type cells. Strong blue-light conditions induced a quenching of fluorescence corresponding to nonphotochemical fluorescence quenching (NPQ). The extension of NPQ decreased significantly in the mutants, and the kinetics appeared to be affected. When similar measures were repeated on an orange carotenoid protein (OCP)-deficient background, little or no quenching was observed, which confirms that the decrease in fluorescence under strong blue light corresponded to the OCP-dependent NPQ. Immunoblot results showed that the attenuated effect of blue light-induced NPQ in mutant cells was not due to a lack of OCP. Photosynthetic growth and biomass production were greater for A16FJ, S28Aβ, and V32Fβ mutant cells than for wild-type cells under normal growth conditions. Our results suggest that mutations of cytochrome b559 and PsbJ on and near the QC site of PSII may modulate the short-term light response in cyanobacteria.
Exogenous Calcium Enhances the Photosystem II Photochemistry Response in Salt Stressed Tall Fescue.
Wang, Guangyang; Bi, Aoyue; Amombo, Erick; Li, Huiying; Zhang, Liang; Cheng, Cheng; Hu, Tao; Fu, Jinmin
2017-01-01
Calcium enhances turfgrass response to salt stress. However, little is known about PSII photochemical changes when exogenous calcium was applied in salinity-stressed turfgrass. Here, we probe into the rearrangements of PSII electron transport and endogenous ion accumulation in tall fescue ( Festuca arundinacea Schreber) treated with exogenous calcium under salt stress. Three-month-old seedlings of genotype "TF133" were subjected to the control (CK), salinity (S), salinity + calcium nitrate (SC), and salinity + ethylene glycol tetraacetic acid (SE). Calcium nitrate and ethylene glycol tetraacetic acid was used as exogenous calcium donor and calcium chelating agent respectively. At the end of a 5-day duration treatment, samples in SC regime had better photochemistry performance on several parameters than salinity only. Such as the Area (equal to the plastoquinone pool size), N (number of [Formula: see text] redox turnovers until F m is reached), ψE 0 , or δRo (Efficiencdy/probability with which a PSII trapped electron is transferred from Q A to Q B or PSI acceptors), ABS/RC (Absorbed photon flux per RC). All the above suggested that calcium enhanced the electron transfer of PSII (especially beyond [Formula: see text]) and prevented reaction centers from inactivation in salt-stressed tall fescue. Furthermore, both grass shoot and root tissues generally accumulated more C, N, Ca 2+ , and K + in the SC regime than S regime. Interrelated analysis indicated that ψE 0 , δRo, ABS/RC, C, and N content in shoots was highly correlated to each other and significantly positively related to Ca 2+ and K + content in roots. Besides, high salt increased ATP6E and CAMK2 transcription level in shoot at 1 and 5 day, respectively while exogenous calcium relieved it. In root, CAMK2 level was reduced by Salinity at 5 day and exogenous calcium recovered it. These observations involved in electron transport capacity and ion accumulation assist in understanding better the protective role of exogenous calcium in tall fescue under salt stress.
Exogenous Calcium Enhances the Photosystem II Photochemistry Response in Salt Stressed Tall Fescue
Wang, Guangyang; Bi, Aoyue; Amombo, Erick; Li, Huiying; Zhang, Liang; Cheng, Cheng; Hu, Tao; Fu, Jinmin
2017-01-01
Calcium enhances turfgrass response to salt stress. However, little is known about PSII photochemical changes when exogenous calcium was applied in salinity-stressed turfgrass. Here, we probe into the rearrangements of PSII electron transport and endogenous ion accumulation in tall fescue (Festuca arundinacea Schreber) treated with exogenous calcium under salt stress. Three-month-old seedlings of genotype “TF133” were subjected to the control (CK), salinity (S), salinity + calcium nitrate (SC), and salinity + ethylene glycol tetraacetic acid (SE). Calcium nitrate and ethylene glycol tetraacetic acid was used as exogenous calcium donor and calcium chelating agent respectively. At the end of a 5-day duration treatment, samples in SC regime had better photochemistry performance on several parameters than salinity only. Such as the Area (equal to the plastoquinone pool size), N (number of QA- redox turnovers until Fm is reached), ψE0, or δRo (Efficiencdy/probability with which a PSII trapped electron is transferred from QA to QB or PSI acceptors), ABS/RC (Absorbed photon flux per RC). All the above suggested that calcium enhanced the electron transfer of PSII (especially beyond QA-) and prevented reaction centers from inactivation in salt-stressed tall fescue. Furthermore, both grass shoot and root tissues generally accumulated more C, N, Ca2+, and K+ in the SC regime than S regime. Interrelated analysis indicated that ψE0, δRo, ABS/RC, C, and N content in shoots was highly correlated to each other and significantly positively related to Ca2+ and K+ content in roots. Besides, high salt increased ATP6E and CAMK2 transcription level in shoot at 1 and 5 day, respectively while exogenous calcium relieved it. In root, CAMK2 level was reduced by Salinity at 5 day and exogenous calcium recovered it. These observations involved in electron transport capacity and ion accumulation assist in understanding better the protective role of exogenous calcium in tall fescue under salt stress. PMID:29250091
Parra, María José; Acuña, Karina I; Sierra-Almeida, Angela; Sanfuentes, Camila; Saldaña, Alfredo; Corcuera, Luis J; Bravo, León A
2015-01-01
Some epiphytic Hymenophyllaceae are restricted to lower parts of the host (< 60 cm; 10-100 μmol photons m(-2) s(-1)) in a secondary forest of Southern Chile; other species occupy the whole host height (≥ 10 m; max PPFD > 1000 μmol photons m(-2) s(-1)). Our aim was to study the photosynthetic light responses of two Hymenophyllaceae species in relation to their contrasting distribution. We determined light tolerance of Hymenoglossum cruentum and Hymenophyllum dentatum by measuring gas exchange, PSI and PSII light energy partitioning, NPQ components, and pigment contents. H. dentatum showed lower maximum photosynthesis rates (A max) than H. cruentum, but the former species kept its net rates (An) near Amax across a wide light range. In contrast, in the latter one, An declined at PPFDs > 60 μmol photons m(-2) s(-1). H. cruentum, the shadiest plant, showed higher chlorophyll contents than H. dentatum. Differences in energy partitioning at PSI and PSII were consistent with gas exchange results. H. dentatum exhibited a higher light compensation point of the partitioning of absorbed energy between photochemical Y(PSII) and non-photochemical Y(NPQ) processes. Hence, both species allocated energy mainly toward photochemistry instead of heat dissipation at their light saturation points. Above saturation, H. cruentum had higher heat dissipation than H. dentatum. PSI yield (YPSI) remained higher in H. dentatum than H. cruentum in a wider light range. In both species, the main cause of heat dissipation at PSI was a donor side limitation. An early dynamic photo-inhibition of PSII may have caused an over reduction of the Qa+ pool decreasing the efficiency of electron donation to PSI. In H. dentatum, a slight increase in heat dissipation due to acceptor side limitation of PSI was observed above 300 μmol photons m(-2)s(-1). Differences in photosynthetic responses to light suggest that light tolerance and species plasticity could explain their contrasting vertical distribution.
NASA Astrophysics Data System (ADS)
Williams, W.; Budel, B.; Reichenberger, H.; Rose, N.
2012-04-01
Cyanobacterial crusts are an important driver of ecosystem function throughout Queensland's dry savannah. Annually there is very little rainfall during the winter-dry season. In the summer-wet season build-up early storms precede its onset; days are low in humidity with high ambient (>40°C) and soil surface temperatures (60-74°C). In the wet season monsoon rains and tropical storms result in vast flooded plains and ephemeral wetlands, leaving the ground saturated for several weeks. At Boodjamulla National Park (NW Qld), cyanobacterial crusts were sampled during the dry season, after 125 days without rain. An Imaging PAM (Walz) was used to determine the resurrection and quantum yield of Photosystem II (PSII). The crusts were periodically watered for ten days and multiple PAM measurements were made on a daily basis. PSII in cyanobacteria showed no signs of resurrection; however new Nostoc colonies emerged on the eighth day. Microscopic examination revealed other cyanobacteria remained in a desiccated state and EPS seemed hydrophobic. In the following dry season, crust samples were preserved at 40°C at low humidity. During the wet season these samples were reintroduced into their natural environment of high humidity and subject to periodic rains. The resurrection of PSII commenced within two hours of the first rainfall and was fully functional within 24 hours at which time existing cyanobacterial cells rapidly re-hydrated and EPS exhibited hydrophilicity. These are the first field studies demonstrating the environmental conditions controlling the function of cyanobacterial EPS and the resurrection of PSII. Mass EPS production occurs several times throughout the wet season. Eventually, as the humidity drops, temperatures remain high and sunny conditions prevail the EPS hardens and dries forming thick hydrophobic polymeric surfaces. As temperatures rise and fall, crusts crack and curl, then start to disintegrate after the first rains of the wet season before new crusts start to grow.
Jung, Hyeson; Gulis, Galina; Gupta, Subhadra; Redding, Kevin; Gosztola, David J; Wiederrecht, Gary P; Stroscio, Michael A; Dutta, Mitra
2010-11-18
In the natural photosynthesis process, light harvesting complexes (LHCs) absorb light and pass excitation energy to photosystem I (PSI) and photosystem II (PSII). In this study, we have used nanocrystalline quantum dots (NQDs) as an artificial LHC by integrating them with PSI to extend their spectral range. We have performed photoluminescence (PL) and ultrafast time-resolved absorption measurements to investigate this process. Our PL experiments showed that emission from the NQDs is quenched, and the fluorescence from PSI is enhanced. Transient absorption and bleaching results can be explained by fluorescence resonance energy transfer (FRET) from the NQDs to the PSI. This nonradiative energy transfer occurs in ∼6 ps. Current-voltage (I-V) measurements on the composite NQD-PSI samples demonstrate a clear photoresponse.
Duan, Zhipeng; Tan, Xiao; Li, Niegui
2017-10-01
Ultrasound can inhibit cyanobacterial growth through rupturing cells, but this pathway frequently has the risk to release intercellular toxin (e.g., microcystin). Depressing photosynthesis without cell disruption may provide a new strategy to control cyanobacterial blooms using ultrasound, especially Microcystis blooms. In this work, Microcystis aeruginosa (toxic cyanobacteria) and Chlorella pyrenoidosa (typical green algae) were chosen as model microalgae to verify this hypothesis. Results showed that ultrasound has the ability to inhibit cyanobacterial photosynthesis significantly and selectively. Specifically, sonication damaged Q A , a tightly bound one-electron acceptor, and blocked electron flow at Q B , a two-electron acceptor, in the photosystem II (PSII) of M. aeruginosa when it was exposed for 60 s (35 kHz, 0.043 W/cm 3 ). Moreover, 44.8% of the reaction centers (RCs) in the PSII of M. aeruginosa were transferred into inactive ones (RC si s), and the cell concentration decreased by 32.5% after sonication for 300 s. By contrast, only 7.9% of RC si occurred in C. pyrenoidosa, and cell concentration and chlorophyll-a content reduced by 18.7% and 9.3%, respectively. Differences in both species (i.e., cell structures) might be responsible for the varying levels to sonication. This research suggests that cyanobacteria, especially Microcystis, could be controlled by ultrasound via damaging their PSIIs.
Zhang, Zi-Shan; Liu, Mei-Jun; Gao, Hui-Yuan; Jin, Li-Qiao; Li, Yu-Ting; Li, Qing-Ming; Ai, Xi-Zhen
2015-10-16
Although root-to-shoot communication has been intensively investigated in plants under drought, few studies have examined root-to-shoot communication under chilling. Here we explored whether root-to-shoot communication contributes to the chilling-light tolerance of cucumber shoots and clarified the key signal involves in this communication. After leaf discs chilling-light treatment, the photoinhibitions of Photosystem I (PSI) and Photosystem II (PSII) were similar in leaf discs of two cucumber varieties (JY-3 and JC-4). When the whole plants, including roots, were chilled under light, the photosynthetic performances in JC-4 leaves decreased more seriously than that in JY-3 leaves. However, when the water status of leaves was maintained by warming roots or floating the attached leaves on water, the PSII activity and amount of PSI in the leaves of the two varieties were similar after chilling-light treatment. In addition, the differences of PSII activities and amount of PSI between the two varieties under whole plant chilling-light treatment were independent of ABA pretreatment. Above results indicate that (1) the better water status in leaves under chilling contributes to the higher chilling tolerance of JY-3; (2) the water status, rather than an ABA signal, dominates root-to-shoot communication under chilling and the chilling tolerance of cucumber shoot.
NASA Astrophysics Data System (ADS)
Vítek, Petr; Novotná, Kateřina; Hodaňová, Petra; Rapantová, Barbora; Klem, Karel
2017-01-01
The effects of herbicides from three mode-of-action groups - inhibitors of protoporphyrinogen oxidase (carfentrazone-ethyl), inhibitors of carotenoid biosynthesis (mesotrione, clomazone, and diflufenican), and inhibitors of acetolactate synthase (amidosulfuron) - were studied in sunflower plants (Helianthus annuus). Raman spectroscopy, chlorophyll fluorescence (ChlF) imaging, and UV screening of ChlF were combined to evaluate changes in pigment composition, photosystem II (PSII) photochemistry, and non-photochemical quenching in plant leaves 6 d after herbicide application. The Raman signals of phenolic compounds, carotenoids, and chlorophyll were evaluated and differences in their intensity ratios were observed. Strongly augmented relative content of phenolic compounds was observed in the case of amidosulfuron-treated plants, with a simultaneous decrease in the chlorophyll/carotenoid intensity ratio. The results were confirmed by in vivo measurement of flavonols using UV screening of ChlF. Herbicides from the group of carotenoid biosynthesis inhibitors significantly decreased both the maximum quantum efficiency of PSII and non-photochemical quenching as determined by ChlF. Resonance Raman imaging (mapping) data with high resolution (150,000-200,000 spectra) are presented, showing the distribution of carotenoids in H. annuus leaves treated by two of the herbicides acting as inhibitors of carotenoid biosynthesis (clomazone or diflufenican). Clear signs were observed that the treatment induced carotenoid depletion within sunflower leaves. The depletion spatial pattern registered differed depending on the type of herbicide applied.
Tian, Yonglan; Ungerer, Petra; Zhang, Huayong; Ruban, Alexander V
2017-05-01
The impact of chronic photoinhibition of photosystem II (PSII) on the productivity of plants remains unknown. The present study investigated the influences of persistent decline in the PSII yield on morphology and productivity of Arabidopsis plants that were exposed to lincomycin at two different developmental stages (seedling and rosette stage). The results indicated that, although retarded, the lincomycin treated plants were able to accomplish the entire growth period with only 50% of the maximum quantum yield of primary photochemistry (Fv/Fm) of the control plants. The decline in quantum yield limited the electron transport rate (ETR). The impact of lincomycin on NPQ was not significant in seedlings, but was pronounced in mature plants. The treated plants produced an above ground biomass of 50% compared to control plants. Moreover, a linear relationship was found between the above ground biomass and total rosette leaf area, and the slope was decreased due to photoinhibition. The starch accumulation was highly inhibited by lincomycin treatment. Lincomycin induced a significant decrease in seed yield with plants treated from the rosette state showing higher yield than those treated from the seedling stage. Our data suggest that the sustained decline of PSII efficiency decreases plant productivity by constraining the ETR, leaf development and starch production. Copyright © 2017 Elsevier GmbH. All rights reserved.
Valle, Kristin Collier; Nymark, Marianne; Aamot, Inga; Hancke, Kasper; Winge, Per; Andresen, Kjersti; Johnsen, Geir; Brembu, Tore; Bones, Atle M
2014-01-01
Due to the selective attenuation of solar light and the absorption properties of seawater and seawater constituents, free-floating photosynthetic organisms have to cope with rapid and unpredictable changes in both intensity and spectral quality. We have studied the transcriptional, metabolic and photo-physiological responses to light of different spectral quality in the marine diatom Phaeodactylum tricornutum through time-series studies of cultures exposed to equal doses of photosynthetically usable radiation of blue, green and red light. The experiments showed that short-term differences in gene expression and profiles are mainly light quality-dependent. Transcription of photosynthesis-associated nuclear genes was activated mainly through a light quality-independent mechanism likely to rely on chloroplast-to-nucleus signaling. In contrast, genes encoding proteins important for photoprotection and PSII repair were highly dependent on a blue light receptor-mediated signal. Changes in energy transfer efficiency by light-harvesting pigments were spectrally dependent; furthermore, a declining trend in photosynthetic efficiency was observed in red light. The combined results suggest that diatoms possess a light quality-dependent ability to activate photoprotection and efficient repair of photodamaged PSII. In spite of approximately equal numbers of PSII-absorbed quanta in blue, green and red light, the spectral quality of light is important for diatom responses to ambient light conditions.
Pashkovskiy, P P; Soshinkova, T N; Korolkova, D V; Kartashov, A V; Zlobin, I E; Lyubimov, V Yu; Kreslavski, V D; Kuznetsov, Vl V
2018-05-01
The antioxidant balance, photochemical activity of photosystem II (PSII), and photosynthetic pigment content, as well as the expression of genes involved in the light signalling of callus lines of Eutrema salsugineum plants (earlier Thellungiella salsuginea) under different spectral light compositions were studied. Growth of callus in red light (RL, maximum 660 nm), in contrast to blue light (BL, maximum 450 nm), resulted in a lower H 2 O 2 content and thiobarbituric acid reactive substances (TBARS). The BL increased the activities of key antioxidant enzymes in comparison with the white light (WL) and RL and demonstrated the minimum level of PSII photochemical activity. The activities of catalase (CAT) and peroxidase (POD) had the highest values in BL, which, along with the increased H 2 O 2 and TBARS content, indicate a higher level of oxidative stress in the cells. The expression levels of the main chloroplast protein genes of PSII (PSBA and PSBD), the NADPH-dependent oxidase gene of the plasma membrane (RbohD), the protochlorophyllide oxidoreductase genes (POR B, C) involved in the biosynthesis of chlorophyll, and the key photoreceptor signalling genes (CIB1, CRY2, PhyB, PhyA, and PIF3) were determined. Possible mechanisms of light quality effects on the physiological parameters of callus cells are discussed.
Nakamura, Shin; Noguchi, Takumi
2016-10-11
During photosynthesis, the light-driven oxidation of water performed by photosystem II (PSII) provides electrons necessary to fix CO 2 , in turn supporting life on Earth by liberating molecular oxygen. Recent high-resolution X-ray images of PSII show that the water-oxidizing center (WOC) is composed of an Mn 4 CaO 5 cluster with six carboxylate, one imidazole, and four water ligands. FTIR difference spectroscopy has shown significant structural changes of the WOC during the S-state cycle of water oxidation, especially within carboxylate groups. However, the roles that these carboxylate groups play in water oxidation as well as how they should be properly assigned in spectra are unresolved. In this study, we performed a normal mode analysis of the WOC using the quantum mechanics/molecular mechanics (QM/MM) method to simulate FTIR difference spectra on the S 1 to S 2 transition in the carboxylate stretching region. By evaluating WOC models with different oxidation and protonation states, we determined that models of high-oxidation states, Mn(III) 2 Mn(IV) 2 , satisfactorily reproduced experimental spectra from intact and Ca-depleted PSII compared with low-oxidation models. It is further suggested that the carboxylate groups bridging Ca and Mn ions within this center tune the reactivity of water ligands bound to Ca by shifting charge via their π conjugation.
Eppel, Amir; Keren, Nir; Salomon, Eitan; Volis, Sergei; Rachmilevitch, Shimon
2013-03-01
The goal of the current research was to study the role of anthocyanin accumulation, O(2)-related photochemical processes and non-photochemical quenching (NPQ) in the response of desert and Mediterranean plants to drought and excessive light. Plants of Hordeum spontaneum were collected from Mediterranean and desert environments and were subjected to terminal drought for 25 days and then measured for PSII yield at 2 and 21% O(2), NPQ, net carbon assimilation, stomatal conductance, leaf relative water content (LRWC), anthocyanin concentration and leaf absorbance. Under terminal drought, LRWC, carbon assimilation and stomatal conductance decreased similarly and significantly in both the Mediterranean and the desert ecotypes. Anthocyanin accumulated more in the desert ecotype than in the Mediterranean ecotype. NPQ increased more in the Mediterranean ecotype as compared with the desert ecotype. PSII yield decreased significantly in the Mediterranean ecotype under drought and was much lower than in the desert ecotype under drought. The relatively high PSII yield under drought in the desert ecotype was O(2) dependent. The response of the H. spontaneum ecotype from a desert environment to drought stress was characterized by anthocyanin accumulation and induction of O(2) dependent photochemical activity, while the response of the Mediterranean ecotype was based on a higher induction of NPQ. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
The mechanisms by which phenanthrene affects the photosynthetic apparatus of cucumber leaves.
Jin, Liqiao; Che, Xingkai; Zhang, Zishan; Li, Yuting; Gao, Huiyuan; Zhao, Shijie
2017-02-01
Phenanthrene is a polycyclic aromatic hydrocarbon (PAH) that is widely distributed in the environment and seriously affects the growth and development of plants. To clarify the mechanisms of the direct effects of phenanthrene on the plant photosynthetic apparatus, we measured short-term phenanthrene-treated cucumber leaves. Phenanthrene inhibited Rubisco carboxylation activity, decreasing photosynthesis rates (Pn). And phenanthrene inhibited photosystem II (PSII) activity, thereby blocking photosynthetic electron transport. The inhibition of the light and dark reactions decreased the photosynthetic electron transport rate (ETR) and increased the excitation pressure (1-qP). Under high light, the maximum photochemical efficiency of photosystem II (F v /F m ) in phenanthrene-treated cucumber leaves decreased significantly, but photosystem I (PSI) activity (Δ I/I o ) did not. Phenanthrene also caused a J-point rise in the OJIP curve under high light, which indicated that the acceptor side of PSII Q A to Q B electron transfer was restricted. This was primarily due to the net degradation of D1 protein, which is caused by the accumulation of reactive oxygen species (ROS) in phenanthrene-treated cucumber leaves under high light. This study demonstrated that phenanthrene could directly inhibit photosynthetic electron transport and Rubisco carboxylation activity to decrease net Pn. Under high light, phenanthrene caused the accumulation of ROS, resulting in net increases in D1 protein degradation and consequently causing PSII photoinhibition. Copyright © 2016 Elsevier Ltd. All rights reserved.
Distribution drivers and physiological responses in geothermal bryophyte communities.
García, Estefanía Llaneza; Rosenstiel, Todd N; Graves, Camille; Shortlidge, Erin E; Eppley, Sarah M
2016-04-01
Our ability to explain community structure rests on our ability to define the importance of ecological niches, including realized ecological niches, in shaping communities, but few studies of plant distributions have combined predictive models with physiological measures. Using field surveys and statistical modeling, we predicted distribution drivers in geothermal bryophyte (moss) communities of Lassen Volcanic National Park (California, USA). In the laboratory, we used drying and rewetting experiments to test whether the strong species-specific effects of relative humidity on distributions predicted by the models were correlated with physiological characters. We found that the three most common bryophytes in geothermal communities were significantly affected by three distinct distribution drivers: temperature, light, and relative humidity. Aulacomnium palustre, whose distribution is significantly affected by relative humidity according to our model, and which occurs in high-humidity sites, showed extreme signs of stress after drying and never recovered optimal values of PSII efficiency after rewetting. Campylopus introflexus, whose distribution is not affected by humidity according to our model, was able to maintain optimal values of PSII efficiency for 48 hr at 50% water loss and recovered optimal values of PSII efficiency after rewetting. Our results suggest that species-specific environmental stressors tightly constrain the ecological niches of geothermal bryophytes. Tests of tolerance to drying in two bryophyte species corresponded with model predictions of the comparative importance of relative humidity as distribution drivers for these species. © 2016 Botanical Society of America.
Wang, Qinghai; Li, Cui; Zheng, Ruilun; Que, Xiaoe
2016-08-01
The potential of Acorus calamus to remove chlorpyrifos from water was assessed under laboratory conditions. Toxic effects of the insecticide in A. calamus were evaluated using pulse-amplitude modulated chlorophyll fluorescence techniques as well. At exposure concentrations above 8 mg L(-1), A. calamus showed obvious phytotoxic symptom with significant reduction in quantum efficiency of PSII (ΦPSII) and photochemical quenching coefficient (qP) in 20-day test; the inhibition of maximal quantum efficiency of PSII (Fv/Fm) was accompanied by a significant rise in initial chlorophyll fluorescence (Fo) within 15-day exposures. Fv/Fm and Fo recover to the normal level after 20-day exposure. The reduced removal rate to chlorpyrifos was observed with increase of initial chlorpyrifos concentrations. At application levels of 1, 2, and 4 mg L(-1), the disappearance rate of chlorpyrifos in the hydroponic system with plants was significantly greater than that without plants during the 20-day test periods. Chlorpyrifos was taken up from medium and transferred to above ground tissues by the plant and significant amounts of chlorpyrifos accumulated in plant tissues. The result indicated that A. calamus can promote the disappearance of chlorpyrifos from water and may be used for phytoremediation of water contaminated with a relatively low concentration of chlorpyrifos insecticide (<4 mg L(-1)).
Photosynthetic and cellular toxicity of cadmium in Chlorella vulgaris.
Ou-Yang, Hui-Ling; Kong, Xiang-Zhen; Lavoie, Michel; He, Wei; Qin, Ning; He, Qi-Shuang; Yang, Bin; Wang, Rong; Xu, Fu-Liu
2013-12-01
The toxic effects of cadmium (Cd) on the green alga Chlorella vulgaris were investigated by following the response to Cd of various toxicity endpoints (cell growth, cell size, photochemical efficiency of PSII in the light or Φ(PSII), maximal photochemical efficiency or Fv/Fm, chlorophyll a fluorescence, esterase activity, and cell viability). These toxicity endpoints were studied in laboratory batch cultures of C. vulgaris over a long-term 96-h exposure to different Cd concentrations using flow cytometry and pulse amplitude modulated fluorometry. The sequence of sensitivity of these toxicity endpoints was: cell yield > Φ(PSII) ≈ esterase activity > Fv/Fm > chlorophyll a fluorescence ≈ cell viability. It is shown that cell apoptosis or cell death only accounted for a minor part of the reduction in cell yield even at very high algistatic free Cd²⁺ concentrations, and other mechanisms such as blocked cell divisions are major contributors to cell yield inhibition. Furthermore, cadmium may affect both the electron donors and acceptors of the electron transport chain at high free Cd²⁺ concentration. Finally, the resistance of cells to cell death was size-dependent; medium-sized cells had the highest toxicity threshold. The present study brings new insights into the toxicity mechanisms of Cd in C. vulgaris and provides a detailed comparison of the sensitivity of various Cd toxicity endpoints. © 2013 SETAC.
Photosystems and global effects of oxygenic photosynthesis.
Nelson, Nathan
2011-08-01
Because life on earth is governed by the second law of thermodynamics, it is subject to increasing entropy. Oxygenic photosynthesis, the earth's major producer of both oxygen and organic matter, is a principal player in the development and maintenance of life, and thus results in increased order. The primary steps of oxygenic photosynthesis are driven by four multi-subunit membrane protein complexes: photosystem I, photosystem II, cytochrome b(6)f complex, and F-ATPase. Photosystem II generates the most positive redox potential found in nature and thus capable of extracting electrons from water. Photosystem I generates the most negative redox potential found in nature; thus, it largely determines the global amount of enthalpy in living systems. The recent structural determination of PSII and PSI complexes from cyanobacteria and plants sheds light on the evolutionary forces that shaped oxygenic photosynthesis. This newly available structural information complements knowledge gained from genomic and proteomic data, allowing for a more precise description of the scenario in which the evolution of life systems took place. This article is part of a Special Issue entitled: Regulation of Electron Transport in Chloroplasts. Copyright © 2010 Elsevier B.V. All rights reserved.
Ladygin, V G
2004-01-01
We studied fluorescent and absorption properties of the chloroplasts and pigment-protein complexes isolated by gel electrophoresis from the leaves of pea, the initial cultivar Torsdag and mutants chlorotica 2004 and 2014. Specific maxima of fluorescence and chlorophyll forms in individual complexes have been determined from the absorption and fluorescence spectra of the chloroplast chlorophyll and their secondary derivatives at 23 and -196 degrees C. Chlorotica 2004 mutant proved to have an increased intensity of a long-wave band at both 23 degrees C (745 nm) and -196 degrees C (728 nm) of the light-harvesting complex I. At the same time, this mutant featured a decreased accumulation of chlorophyll forms at 690, 697, and 708 nm forming the nearest-neighbor antenna of PSI reaction center. No spectral differences have been revealed between chlorotica 2014 mutant and the initial cultivar. Gel electrophoresis demonstrated synthesis of all chlorophyll-protein complexes in both mutants. At the same time, analysis of photochemical activity of PSI and PSII reaction centers and evaluation of the light-harvesting antenna as well as the number of reaction centers of the photosystems suggest that chlorotica 2004 mutant has 1.7 times less PSI reaction centers due to a mutation-disturbed chlorophyll a-protein complex of PSI. The primary effect of chlorotica 2014 mutation remains unclear. The proportional changes in the photosystem complexes in this mutant suggest that they are secondary and result from a 50% decrease in chlorophyll content.
Semin, Boris K; Davletshina, Lira N; Rubin, Andrei B
2015-08-01
Effects of pH, Ca(2+), and Cl(-) ions on the extraction of Mn cations from oxygen-evolving complex (OEC) in Ca-depleted photosystem II (PSII(-Ca)) by exogenous reductants hydroquinone (H2Q) and H2O2 were studied. Two of 4 Mn cations are released by H2Q and H2O2 at pHs 5.7, 6.5, and 7.5, and their extraction does not depend on the presence of Ca(2+) and Cl(-) ions. One of Mn cations ("resistant" Mn cation) cannot be extracted by H2Q and H2O2 at any pH. Extraction of 4th Mn ion ("flexible" Mn cation) is sensitive to pH, Ca(2+), and Cl(-). This Mn cation is released by reductants at pH 6.5 but not at pHs 5.7 and 7.5. A pH dependence curve of the oxygen-evolving activity in PSII(-Ca) membranes (in the presence of exogenous Ca(2+)) has a bell-shaped form with the maximum at pH 6.5. Thus, the increase in the resistance of flexible Mn cation in OEC to the action of reductants at acidic and alkaline pHs coincides with the decrease in oxygen evolution activity at these pHs. Exogenous Ca(2+) protects the extraction of flexible Mn cation at pH 6.5. High concentration of Cl(-) anions (100 mM) shifts the pH optimum of oxygen evolution to alkaline region (around pH 7.5), while the pH of flexible Mn extraction is also shifted to alkaline pH. This result suggests that flexible Mn cation plays a key role in the water-splitting reaction. The obtained results also demonstrate that only one Mn cation in Mn4 cluster is under strong control of calcium. The change in the flexible Mn cation resistance to exogenous reductants in the presence of Ca(2+) suggests that Ca(2+) can control the redox potential of this cation.
Kalaji, Hazem M; Oukarroum, Abdallah; Alexandrov, Vladimir; Kouzmanova, Margarita; Brestic, Marian; Zivcak, Marek; Samborska, Izabela A; Cetner, Magdalena D; Allakhverdiev, Suleyman I; Goltsev, Vasilij
2014-08-01
The impact of some macro (Ca, S, Mg, K, N, P) and micro (Fe) nutrients deficiency on the functioning of the photosynthetic machinery in tomato (Solanum lycopersicum L.) and maize (Zea mays L.) plants grown in hydroponic cultures were investigated. Plants grown on a complete nutrient solution (control) were compared with those grown in a medium, which lacked one of macro- or microelements. The physiological state of the photosynthetic machinery in vivo was analysed after 14-days of deficient condition by the parameters of JIP-test based on fast chlorophyll a fluorescence records. In most of the nutrient-deficient samples, the decrease of photochemical efficiency, increase in non-photochemical dissipation and decrease of the number of active photosystem II (PSII) reaction centres were observed. However, lack of individual nutrients also had nutrient-specific effects on the photochemical processes. In Mg and Ca-deficient plants, the most severe decrease in electron donation by oxygen evolving complex (OEC) was indicated. Sulphur deficiency caused limitation of electron transport beyond PSI, probably due to decrease in the PSI content or activity of PSI electron acceptors; in contrary, Ca deficiency had an opposite effect, where the PSII activity was affected much more than PSI. Despite the fact that clear differences in nutrient deficiency responses between tomato and maize plants were observed, our results indicate that some of presented fluorescence parameters could be used as fluorescence phenotype markers. The principal component analysis of selected JIP-test parameters was presented as a possible species-specific approach to identify/predict the nutrient deficiency using the fast chlorophyll fluorescence records. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Chlororespiration is involved in the adaptation of Brassica plants to heat and high light intensity.
Díaz, Milagros; de Haro, Virginia; Muñoz, Romualdo; Quiles, María José
2007-12-01
Two species of Brassica were used to study their acclimation to heat and high illumination during the first stages of development. One, Brassica fruticulosa, is a wild species from south-east Spain and is adapted to both heat and high light intensity in its natural habitat, while the other, Brassica oleracea, is an agricultural species that is widely cultivated throughout the world. Growing Brassica plants under high irradiance and moderate heat was seen to affect the growth parameters and the functioning of the photosynthetic apparatus. The photosystem II (PSII) quantum yields and the capacity of photosynthetic electron transport, which were lower in B. fruticulosa than in B. oleracea, decreased in B. oleracea plants when grown under stress conditions, indicating inhibition of PSII. However, in B. fruticulosa, the values of these parameters were similar to the values of control plants. Photosystem I (PSI) activity was higher in B. fruticulosa than in B. oleracea, and in both species this activity increased in plants exposed to heat and high illumination. Immunoblot analysis of thylakoid membranes using specific antibodies raised against the NDH-K subunit of the thylakoidal NADH dehydrogenase complex (NADH DH) and against plastid terminal oxidase (PTOX) revealed a higher amount of both proteins in B. fruticulosa than in B. oleracea. In addition, PTOX activity in plastoquinone oxidation, and NADH DH activity in thylakoid membranes were higher in the wild species (B. fruticulosa) than in the agricultural species (B. oleracea). The results indicate that tolerance to high illumination and heat of the photosynthetic activity was higher in the wild species than in the agricultural species, suggesting that plant adaptation to these stresses in natural conditions favours subsequent acclimation, and that the chlororespiration process is involved in adaptation to heat and high illumination in Brassica.
Hu, Yanbo; Bellaloui, Nacer; Sun, Guangyu; Tigabu, Mulualem; Wang, Jinghong
2014-06-15
Gaseous nitrogen dioxide (NO2) can disturb normal plant growth and trigger complex physiological responses. NO2-induced responses are influenced by biotic or abiotic factors. In this study, we investigated the effects of exogenous sodium sulfide (Na2S, 5mmolL(-1)) on epidermis and stomata related physico-chemical responses of hybrid poplar cuttings (Pouplus alba×P. berolinensis) to gaseous NO2 (4μl1(-1)) for three time periods (0, 14 and 48h). We also investigated hydrogen sulfide (H2S), nitrate-nitrogen and nitrate reductase activity (NR) in control and Na2S treated plants. Our results showed that NO2 exposure for 48h led to the decline of NR, maximal PSII quantum yield (Fv/Fm), net photosynthetic rate (Pn), and dark respiration rate (Rd). The maximum rate for the post-illumination carbon dioxide burst (PIB) occurred in 48-h exposed leaves 13-15s after darkening. Moreover, NO2 exposure resulted in a significant increase in nitrogen percentage (from 0 to 33%) and a decrease in the macro and micro-elements of leaf surface. Spraying Na2S aqueous solution on the leaf surfaces significantly increased the thicknesses of palisade/spongy tissue and H2S content. Na2S pretreatment alleviated NO2-caused toxic effects as indicated by increased NR and higher values of Pn, Fv/Fm, and actual photochemical efficiency in light (ФPSII) compared with the control. Na2S pretreatment had no significant impacts on PIB-based photorespiration or elements composition of a leaf surface. Copyright © 2013 Elsevier GmbH. All rights reserved.
Araniti, Fabrizio; Lupini, Antonio; Mauceri, Antonio; Zumbo, Antonino; Sunseri, Francesco; Abenavoli, Maria Rosa
2018-05-05
In this study, the effects (5 days) of the secondary metabolite trans-cinnamic acid on maize leaves (Zea mays L.), through a physiological and an untargeted metabolomic approach, were evaluated. A reduction in leaf growth and development accompanied by a decrease in protein content was observed in treated seedlings. Besides, trans-cinnamic acid stimulated the photosynthetic machinery with a significant increment in pigment content (chlorophyll a, b and carotenoids), a stimulation of the light adapted PSII efficiency (ɸ II ) as well as the chlorophyll a fluorescence (Y NO ), the apparent electron transport rate, and the regulated dissipation of the energy (Y NPQ ). By contrast, the dark adapted PSII parameter (Fv/Fm) was not affected suggesting that no physical damages to the antenna complex were caused by trans-cinnamic acid. These results suggested that maize seedlings were experiencing a stress but, at the same time, were able to cope with it. This hypothesis was confirmed by both the increment in benzoic and salicylic acids, important molecules involved in stress response, and the metabolomic results, which pointed out that the seedlings are directing their metabolism towards galactose production modulating its pathway, which is pivotal for the production of the antioxidant compound ascorbic acid (ASA). Indeed, in treated plants, a significant increment in total ASA content (28%) was observed. The results suggested that the main strategy adopted by plants to cope with trans-cinnamic-induced stress consisted in the modulation of their metabolism in order to increase the total ASA and carotenoids concentration, radical scavenging species. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Bulychev, Alexander A.; Foissner, Ilse
2017-01-01
ABSTRACT Proton flows across the plant cell membranes play a major role in electrogenesis and regulation of photosynthesis and ion balance. The profiles of external pH along the illuminated internodal cells of characean algae consist of alternating high- and low-pH zones that are spatially coordinated with the distribution of photosynthetic activity of chloroplasts underlying these zones. The results based on confocal laser scanning fluorescence microscopy, pH microsensors, and pulse-amplitude-modulated chlorophyll microfluorometry revealed that the coordination of H+ transport and photosynthesis is disrupted by the 2 different environmental cues (low light and wounding) and by a chemical, wortmannin interfering with the inositol phospholipid metabolism. On the one hand, the transition from moderate to low irradiance diminished the peaks in the profiles of photosystem II (PSII) quantum efficiency but did not remove the pH bands. On the other hand, the microwounding of the internode with a glass micropipette, impacting primarily the cell wall, resulted in a rapid local alkalinization of the external medium (by 2–2.5 pH units) near the cell surface, thus mimicking the appearance of natural pH bands. Despite their seeming similarity, the alkaline bands of intact cells were eliminated by wortmannin, whereas the wound-induced alkalinization was insensitive to this drug. Furthermore, the attenuation of natural pH bands in wortmannin-treated cells was accompanied by the enhancement in spatial heterogeneity of PSII efficiency and electron transport rates, which indicates the complexity of chloroplast–plasma membrane interactions. The results suggest that the light- and wound-induced alkaline areas on the cell surface are associated with different ion-transport systems. PMID:28805493
Cheng, Dan-Dan; Liu, Mei-Jun; Sun, Xing-Bin; Zhao, Min; Chow, Wah S.; Sun, Guang-Yu; Zhang, Zi-Shan; Hu, Yan-Bo
2016-01-01
Pseudomonas syringae pv. tabaci (Pst) is a hemibiotrophic bacterial pathogen responsible for tobacco wildfire disease. Although considerable research has been conducted on the tobacco plant’s tolerance to Pst, the role of light in the responses of the photosystems to Pst infection is poorly understood. This study aimed to elucidate the underlying mechanisms of the reduced photosystem damage in tobacco leaves due to Pst infection under light conditions. Compared to dark conditions, Pst infection under light conditions resulted in less chlorophyll degradation and a smaller decline in photosynthetic function. Although the maximal quantum yield of photosystem II (PSII) and the activity of the photosystem I (PSI) complex decreased as Pst infection progressed, damage to PSI and PSII after infection was reduced under light conditions compared to dark conditions. Pst was 17-fold more abundant in tobacco leaves under dark compared to light conditions at 3 days post inoculation (dpi). Additionally, H2O2 accumulated to a high level in tobacco leaves after Pst infection under light conditions; although to a lesser extent, H2O2 accumulation was also significant under dark conditions. Pretreatment with H2O2 alleviated chlorotic lesions and decreased Pst abundance in tobacco leaves at 3 dpi under dark conditions. MV pretreatment had the same effects under light conditions, whereas 3-(3,4-dichlorophenyl)-1,1-dimethylurea pretreatment aggravated chlorotic lesions and increased the Pst population. These results indicate that chlorotic symptoms and the size of the bacterial population are each negatively correlated with H2O2 accumulation. In other words, light appears to suppress the Pst population in tobacco leaves through the accumulation of H2O2 during infection. PMID:27148334
Vinyard, David J; Zachary, Chase E; Ananyev, Gennady; Dismukes, G Charles
2013-07-01
Forty-three years ago, Kok and coworkers introduced a phenomenological model describing period-four oscillations in O2 flash yields during photosynthetic water oxidation (WOC), which had been first reported by Joliot and coworkers. The original two-parameter Kok model was subsequently extended in its level of complexity to better simulate diverse data sets, including intact cells and isolated PSII-WOCs, but at the expense of introducing physically unrealistic assumptions necessary to enable numerical solutions. To date, analytical solutions have been found only for symmetric Kok models (inefficiencies are equally probable for all intermediates, called "S-states"). However, it is widely accepted that S-state reaction steps are not identical and some are not reversible (by thermodynamic restraints) thereby causing asymmetric cycles. We have developed a mathematically more rigorous foundation that eliminates unphysical assumptions known to be in conflict with experiments and adopts a new experimental constraint on solutions. This new algorithm termed STEAMM for S-state Transition Eigenvalues of Asymmetric Markov Models enables solutions to models having fewer adjustable parameters and uses automated fitting to experimental data sets, yielding higher accuracy and precision than the classic Kok or extended Kok models. This new tool provides a general mathematical framework for analyzing damped oscillations arising from any cycle period using any appropriate Markov model, regardless of symmetry. We illustrate applications of STEAMM that better describe the intrinsic inefficiencies for photon-to-charge conversion within PSII-WOCs that are responsible for damped period-four and period-two oscillations of flash O2 yields across diverse species, while using simpler Markov models free from unrealistic assumptions. Copyright © 2013 Elsevier B.V. All rights reserved.
Nguyen, Khoa; Bruce, Barry D
2014-09-01
Oxygenic photosynthesis is driven via sequential action of Photosystem II (PSII) and (PSI)reaction centers via the Z-scheme. Both of these pigment-membrane protein complexes are found in cyanobacteria, algae, and plants. Unlike PSII, PSI is remarkably stable and does not undergo limiting photo-damage. This stability, as well as other fundamental structural differences, makes PSI the most attractive reaction centers for applied photosynthetic applications. These applied applications exploit the efficient light harvesting and high quantum yield of PSI where the isolated PSI particles are redeployed providing electrons directly as a photocurrent or, via a coupled catalyst to yield H₂. Recent advances in molecular genetics, synthetic biology, and nanotechnology have merged to allow PSI to be integrated into a myriad of biohybrid devices. In photocurrent producing devices, PSI has been immobilized onto various electrode substrates with a continuously evolving toolkit of strategies and novel reagents. However, these innovative yet highly variable designs make it difficult to identify the rate-limiting steps and/or components that function as bottlenecks in PSI-biohybrid devices. In this study we aim to highlight these recent advances with a focus on identifying the similarities and differences in electrode surfaces, immobilization/orientation strategies, and artificial redox mediators. Collectively this work has been able to maintain an annual increase in photocurrent density (Acm⁻²) of ~10-fold over the past decade. The potential drawbacks and attractive features of some of these schemes are also discussed with their feasibility on a large-scale. As an environmentally benign and renewable resource, PSI may provide a new sustainable source of bioenergy. This article is part of a special issue entitled: photosynthesis research for sustainability: keys to produce clean energy. Copyright © 2013. Published by Elsevier B.V.
Characterizing core-periphery structure of complex network by h-core and fingerprint curve
NASA Astrophysics Data System (ADS)
Li, Simon S.; Ye, Adam Y.; Qi, Eric P.; Stanley, H. Eugene; Ye, Fred Y.
2018-02-01
It is proposed that the core-periphery structure of complex networks can be simulated by h-cores and fingerprint curves. While the features of core structure are characterized by h-core, the features of periphery structure are visualized by rose or spiral curve as the fingerprint curve linking to entire-network parameters. It is suggested that a complex network can be approached by h-core and rose curves as the first-order Fourier-approach, where the core-periphery structure is characterized by five parameters: network h-index, network radius, degree power, network density and average clustering coefficient. The simulation looks Fourier-like analysis.
Askerka, Mikhail; Brudvig, Gary W; Batista, Victor S
2017-01-17
Efficient photoelectrochemical water oxidation may open a way to produce energy from renewable solar power. In biology, generation of fuel due to water oxidation happens efficiently on an immense scale during the light reactions of photosynthesis. To oxidize water, photosynthetic organisms have evolved a highly conserved protein complex, Photosystem II. Within that complex, water oxidation happens at the CaMn 4 O 5 inorganic catalytic cluster, the so-called oxygen-evolving complex (OEC), which cycles through storage "S" states as it accumulates oxidizing equivalents and produces molecular oxygen. In recent years, there has been significant progress in understanding the OEC as it evolves through the catalytic cycle. Studies have combined conventional and femtosecond X-ray crystallography with extended X-ray absorption fine structure (EXAFS) and quantum mechanics/molecular mechanics (QM/MM) methods and have addressed changes in protonation states of μ-oxo bridges and the coordination of substrate water through the analysis of ammonia binding as a chemical analog of water. These advances are thought to be critical to understanding the catalytic cycle since protonation states regulate the relative stability of different redox states and the geometry of the OEC. Therefore, establishing the mechanism for substrate water binding and the nature of protonation/redox state transitions in the OEC is essential for understanding the catalytic cycle of O 2 evolution. The structure of the dark-stable S 1 state has been a target for X-ray crystallography for the past 15 years. However, traditional X-ray crystallography has been hampered by radiation-induced reduction of the OEC. Very recently, a revolutionary X-ray free electron laser (XFEL) technique was applied to PSII to reveal atomic positions at 1.95 Å without radiation damage, which brought us closer than ever to establishing the ultimate structure of the OEC in the S 1 state. However, the atom positions in this crystal structure are still not consistent with high-resolution EXAFS spectroscopy, partially due to the poorly resolved oxygen positions next to Mn centers and partial reduction due to extended dark adaptation of the sample. These inconsistencies led to the new models of the OEC with an alternative low oxidation state and raised questions on the protonation state of the cluster, especially the O5 μ-oxo bridge. This Account summarizes the most recent models of the OEC that emerged from QM/MM, EXAFS and femtosecond X-ray crystallography methods. When PSII in the S 1 state is exposed to light, the S 1 state is advanced to the higher oxidation states and eventually binds substrate water molecules. Identifying the substrate waters is of paramount importance for establishing the water-oxidation mechanism but is complicated by a large number of spectroscopically similar waters. Water analogues can, therefore, be helpful because they serve as spectroscopic markers that help to track the motion of the substrate waters. Due to a close structural and electronic similarity to water, ammonia has been of particular interest. We review three competing hypotheses on substrate water/ammonia binding and compile theoretical and experimental evidence to support them. Binding of ammonia as a sixth ligand to Mn4 during the S 1 → S 2 transition seems to satisfy most of the criteria, especially the most compelling recent EPR data on D1-D61A mutated PSII. Such a binding mode suggests delivery of water from the "narrow" channel through a "carousel" rearrangement of waters around Mn4 upon the S 2 → S 3 transition. An alternative hypothesis suggests water delivery through the "large" channel on the Ca side. However, both water delivery paths lead to a similar S 3 structure, seemingly reaching consensus on the nature of the last detectable S-state intermediate in the Kok cycle before O 2 evolution.
Askerka, Mikhail; Brudvig, Gary W.; Batista, Victor S.
2016-12-21
Efficient photoelectrochemical water oxidation may open a way to produce energy from renewable solar power. In biology, generation of fuel due to water oxidation happens efficiently on an immense scale during the light reactions of photosynthesis. To oxidize water, photosynthetic organisms have evolved a highly conserved protein complex, Photosystem II. Within that complex, water oxidation happens at the CaMn 4O 5 inorganic catalytic cluster, the so-called oxygen-evolving complex (OEC), which cycles through storage “S” states as it accumulates oxidizing equivalents and produces molecular oxygen. In recent years, there has been significant progress in understanding the OEC as it evolves throughmore » the catalytic cycle. Studies have combined conventional and femtosecond X-ray crystallography with extended X-ray absorption fine structure (EXAFS) and quantum mechanics/molecular mechanics (QM/ MM) methods and have addressed changes in protonation states of μ-oxo bridges and the coordination of substrate water through the analysis of ammonia binding as a chemical analog of water. These advances are thought to be critical to understanding the catalytic cycle since protonation states regulate the relative stability of different redox states and the geometry of the OEC. Therefore, establishing the mechanism for substrate water binding and the nature of protonation/redox state transitions in the OEC is essential for understanding the catalytic cycle of O 2 evolution. The structure of the dark-stable S1 state has been a target for X-ray crystallography for the past 15 years. However, traditional Xray crystallography has been hampered by radiation-induced reduction of the OEC. Very recently, a revolutionary X-ray free electron laser (XFEL) technique was applied to PSII to reveal atomic positions at 1.95 Å without radiation damage, which brought us closer than ever to establishing the ultimate structure of the OEC in the S 1 state. However, the atom positions in this crystal structure are still not consistent with high-resolution EXAFS spectroscopy, partially due to the poorly resolved oxygen positions next to Mn centers and partial reduction due to extended dark adaptation of the sample. These inconsistencies led to the new models of the OEC with an alternative low oxidation state and raised questions on the protonation state of the cluster, especially the O5 μ-oxo bridge. This Account summarizes the most recent models of the OEC that emerged from QM/MM, EXAFS and femtosecond X-ray crystallography methods. When PSII in the S 1 state is exposed to light, the S 1 state is advanced to the higher oxidation states and eventually binds substrate water molecules. Identifying the substrate waters is of paramount importance for establishing the water-oxidation mechanism but is complicated by a large number of spectroscopically similar waters. Water analogues can, therefore, be helpful because they serve as spectroscopic markers that help to track the motion of the substrate waters. Due to a close structural and electronic similarity to water, ammonia has been of particular interest. We review three competing hypotheses on substrate water/ammonia binding and compile theoretical and experimental evidence to support them. Binding of ammonia as a sixth ligand to Mn4 during the S 1 → S 2 transition seems to satisfy most of the criteria, especially the most compelling recent EPR data on D1-D61A mutated PSII. Such a binding mode suggests delivery of water from the “narrow” channel through a “carousel” rearrangement of waters around Mn4 upon the S 2 → S 3 transition. An alternative hypothesis suggests water delivery through the “large” channel on the Ca side. However, both water delivery paths lead to a similar S 3 structure, seemingly reaching consensus on the nature of the last detectable S-state intermediate in the Kok cycle before O 2 evolution.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Askerka, Mikhail; Brudvig, Gary W.; Batista, Victor S.
Efficient photoelectrochemical water oxidation may open a way to produce energy from renewable solar power. In biology, generation of fuel due to water oxidation happens efficiently on an immense scale during the light reactions of photosynthesis. To oxidize water, photosynthetic organisms have evolved a highly conserved protein complex, Photosystem II. Within that complex, water oxidation happens at the CaMn 4O 5 inorganic catalytic cluster, the so-called oxygen-evolving complex (OEC), which cycles through storage “S” states as it accumulates oxidizing equivalents and produces molecular oxygen. In recent years, there has been significant progress in understanding the OEC as it evolves throughmore » the catalytic cycle. Studies have combined conventional and femtosecond X-ray crystallography with extended X-ray absorption fine structure (EXAFS) and quantum mechanics/molecular mechanics (QM/ MM) methods and have addressed changes in protonation states of μ-oxo bridges and the coordination of substrate water through the analysis of ammonia binding as a chemical analog of water. These advances are thought to be critical to understanding the catalytic cycle since protonation states regulate the relative stability of different redox states and the geometry of the OEC. Therefore, establishing the mechanism for substrate water binding and the nature of protonation/redox state transitions in the OEC is essential for understanding the catalytic cycle of O 2 evolution. The structure of the dark-stable S1 state has been a target for X-ray crystallography for the past 15 years. However, traditional Xray crystallography has been hampered by radiation-induced reduction of the OEC. Very recently, a revolutionary X-ray free electron laser (XFEL) technique was applied to PSII to reveal atomic positions at 1.95 Å without radiation damage, which brought us closer than ever to establishing the ultimate structure of the OEC in the S 1 state. However, the atom positions in this crystal structure are still not consistent with high-resolution EXAFS spectroscopy, partially due to the poorly resolved oxygen positions next to Mn centers and partial reduction due to extended dark adaptation of the sample. These inconsistencies led to the new models of the OEC with an alternative low oxidation state and raised questions on the protonation state of the cluster, especially the O5 μ-oxo bridge. This Account summarizes the most recent models of the OEC that emerged from QM/MM, EXAFS and femtosecond X-ray crystallography methods. When PSII in the S 1 state is exposed to light, the S 1 state is advanced to the higher oxidation states and eventually binds substrate water molecules. Identifying the substrate waters is of paramount importance for establishing the water-oxidation mechanism but is complicated by a large number of spectroscopically similar waters. Water analogues can, therefore, be helpful because they serve as spectroscopic markers that help to track the motion of the substrate waters. Due to a close structural and electronic similarity to water, ammonia has been of particular interest. We review three competing hypotheses on substrate water/ammonia binding and compile theoretical and experimental evidence to support them. Binding of ammonia as a sixth ligand to Mn4 during the S 1 → S 2 transition seems to satisfy most of the criteria, especially the most compelling recent EPR data on D1-D61A mutated PSII. Such a binding mode suggests delivery of water from the “narrow” channel through a “carousel” rearrangement of waters around Mn4 upon the S 2 → S 3 transition. An alternative hypothesis suggests water delivery through the “large” channel on the Ca side. However, both water delivery paths lead to a similar S 3 structure, seemingly reaching consensus on the nature of the last detectable S-state intermediate in the Kok cycle before O 2 evolution.« less
Zhang, Yi; Ng, Huck-Hui; Erdjument-Bromage, Hediye; Tempst, Paul; Bird, Adrian; Reinberg, Danny
1999-01-01
ATP-dependent nucleosome remodeling and core histone acetylation and deacetylation represent mechanisms to alter nucleosome structure. NuRD is a multisubunit complex containing nucleosome remodeling and histone deacetylase activities. The histone deacetylases HDAC1 and HDAC2 and the histone binding proteins RbAp48 and RbAp46 form a core complex shared between NuRD and Sin3-histone deacetylase complexes. The histone deacetylase activity of the core complex is severely compromised. A novel polypeptide highly related to the metastasis-associated protein 1, MTA2, and the methyl-CpG-binding domain-containing protein, MBD3, were found to be subunits of the NuRD complex. MTA2 modulates the enzymatic activity of the histone deacetylase core complex. MBD3 mediates the association of MTA2 with the core histone deacetylase complex. MBD3 does not directly bind methylated DNA but is highly related to MBD2, a polypeptide that binds to methylated DNA and has been reported to possess demethylase activity. MBD2 interacts with the NuRD complex and directs the complex to methylated DNA. NuRD may provide a means of gene silencing by DNA methylation. PMID:10444591
Growth and Photosynthetic Responses to Salinity of the Salt-marsh Shrub Atriplex portulacoides
Redondo-Gómez, Susana; Mateos-Naranjo, Enrique; Davy, Anthony J.; Fernández-Muñoz, Francisco; Castellanos, Eloy M.; Luque, Teresa; Figueroa, M. Enrique
2007-01-01
Background and Aims Atriplex (Halimione) portulacoides is a halophytic, C3 shrub. It is virtually confined to coastal salt marshes, where it often dominates the vegetation. The aim of this study was to investigate its growth responses to salinity and the extent to which these could be explained by photosynthetic physiology. Methods The responses of young plants to salinity in the range 0–700 mol m−3 NaCl were investigated in a glasshouse experiment. The performance of plants was examined using classical growth analysis, measurements of gas exchange (infrared gas analysis), determination of chlorophyll fluorescence characteristics (modulated fluorimeter) and photosynthetic pigment concentrations; total ash, sodium, potassium and nitrogen concentrations, and relative water content were also determined. Key Results Plants accumulated Na+ approximately in proportion to external salinity. Salt stimulated growth up to an external concentration of 200 mol m−3 NaCl and some growth was maintained at higher salinities. The main determinant of growth response to salinity was unit leaf rate. This was itself reflected in rates of CO2 assimilation, which were not affected by 200 mol m−3 but were reduced at higher salinities. Reductions in net photosynthetic rate could be accounted for largely by lower stomatal conductance and intercellular CO2 concentration. Apart from possible effects of osmotic shock at the beginning of the experiment, salinity did not have any adverse effect on photosystem II (PSII). Neither the quantum efficiency of PSII (ΦPSII) nor the chlorophyll fluorescence ratio (Fv/Fm) were reduced by salinity, and lower mid-day values recovered by dawn. Mid-day Fv/Fm was in fact depressed more at low external sodium concentration, by the end of the experiment. Conclusions The growth responses of the hygro-halophyte A. portulacoides to salinity appear largely to depend on changes in its rate of photosynthetic gas exchange. Photosynthesis appears to be limited mainly through stomatal conductance and hence intercellular CO2 concentration, rather than by effects on PSII; moderate salinity might stimulate carboxylation capacity. This is in contrast to more extreme halophytes, for which an ability to maintain leaf area can partially offset declining rates of carbon assimilation at high salinity. PMID:17684026
NASA Astrophysics Data System (ADS)
Yu, Yong Qiang; Zhang, Quan Sheng; Tang, Yong Zheng; Li, Xue Meng; Liu, Hong Liang; Li, Li Xia
2013-07-01
In this study, a three-way factorial experimental design was used to investigate the diurnal changes of photosynthetic activity of the intertidal macroalga Sargassum thunbergii in response to temperature, tidal pattern and desiccation during a simulated diurnal light cycle. The maximum (Fv/Fm) and effective (ΦPSII) quantum yields of photosystem II (PSII) were estimated by chlorophyll fluorescence using a pulse amplitude modulated fluorometer. Results showed that this species exhibited sun-adapted characteristics, as evidenced by the daily variation of Fv/Fm and ΦPSII. Both yield values decreased with increasing irradiance towards noon and recovered rapidly in the afternoon suggesting a dynamic photoinhibition. The photosynthetic quantum yield of S. thunbergii thalli varied significantly with temperature, tidal pattern and desiccation. Thalli were more susceptible to light-induced damage at high temperature of 25 °C and showed complete recovery of photosynthetic activity only when exposed to 8 °C. In contrast with the mid-morning low tide period, although there was an initial increase in photosynthetic yield during emersion, thalli showed a greater degree of decline at the end of emersion and remained less able to recover when low tide occurred at mid-afternoon. Short-term air exposure of 2 h did not significantly influence the photosynthesis. However, when exposed to moderate conditions (4 h desiccation at 15 °C or 6 h desiccation at 8 °C), a significant inhibition of photosynthesis was followed by partial or complete recovery upon re-immersion in late afternoon. Only extreme conditions (4 h desiccation at 25 °C or 6 h desiccation at 15 °C or 25 °C) resulted in the complete inhibition, with little indication of recovery until the following morning, implying the occurrence of chronic PSII damage. Based on the magnitude of effect, desiccation was the predominant negative factor affecting the photosynthesis under the simulated daytime irradiance period. These results may explain the distribution pattern of this species in natural habitats, where it is generally restricted to tide pools in the intertidal zone of wave-swept rocky shores which could provide shelter from desiccation stress during low tide.
Nilo, Alberto; Morelli, Laura; Passalacqua, Irene; Brogioni, Barbara; Allan, Martin; Carboni, Filippo; Pezzicoli, Alfredo; Zerbini, Francesca; Maione, Domenico; Fabbrini, Monica; Romano, Maria Rosaria; Hu, Qi-Ying; Margarit, Immaculada; Berti, Francesco; Adamo, Roberto
2015-07-17
Gram-positive Streptococcus agalactiae or group B Streptococcus (GBS) is a leading cause of invasive infections in pregnant women, newborns, and elderly people. Vaccination of pregnant women represents the best strategy for prevention of neonatal disease, and GBS polysaccharide-based conjugate vaccines are currently under clinical testing. The potential of GBS pilus proteins selected by genome-based reverse vaccinology as protective antigens for anti-streptococcal vaccines has also been demonstrated. Dressing pilus proteins with surface glycan antigens could be an attractive approach to extend vaccine coverage. We have recently developed an efficient method for tyrosine-directed ligation of large glycans to proteins via copper-free azide-alkyne [3 + 2] cycloaddition. This method enables targeting of predetermined sites of the protein, ensuring that protein epitopes are preserved prior to glycan coupling and a higher consistency in glycoconjugate batches. Herein, we compared conjugates of the GBS type II polysaccharide (PSII) and the GBS80 pilus protein obtained by classic lysine random conjugation and by the recently developed tyrosine-directed ligation. PSII conjugated to CRM197, a carrier protein used for vaccines in the market, was used as a control. We found that the constructs made from PSII and GBS80 were able to elicit murine antibodies recognizing individually the glycan and protein epitopes on the bacterial surface. The generated antibodies were efficacious in mediating opsonophagocytic killing of strains expressing exclusively PSII or GBS80 proteins. The two glycoconjugates were also effective in protecting newborn mice against GBS infection following vaccination of the dams. Altogether, these results demonstrated that polysaccharide-conjugated GBS80 pilus protein functions as a carrier comparably to CRM197, while maintaining its properties of protective protein antigen. Glycoconjugation and reverse vaccinology can, therefore, be combined to design vaccines with broad coverage. This approach opens a path to a new generation of vaccines. Tyrosine-ligation allows creation of more homogeneous vaccines, correlation of the immune response to defined connectivity points, and fine-tuning of the conjugation site in glycan-protein conjugates.
Ahting, Uwe; Thun, Clemens; Hegerl, Reiner; Typke, Dieter; Nargang, Frank E.; Neupert, Walter; Nussberger, Stephan
1999-01-01
Translocation of nuclear-encoded preproteins across the outer membrane of mitochondria is mediated by the multicomponent transmembrane TOM complex. We have isolated the TOM core complex of Neurospora crassa by removing the receptors Tom70 and Tom20 from the isolated TOM holo complex by treatment with the detergent dodecyl maltoside. It consists of Tom40, Tom22, and the small Tom components, Tom6 and Tom7. This core complex was also purified directly from mitochondria after solubilization with dodecyl maltoside. The TOM core complex has the characteristics of the general insertion pore; it contains high-conductance channels and binds preprotein in a targeting sequence-dependent manner. It forms a double ring structure that, in contrast to the holo complex, lacks the third density seen in the latter particles. Three-dimensional reconstruction by electron tomography exhibits two open pores traversing the complex with a diameter of ∼2.1 nm and a height of ∼7 nm. Tom40 is the key structural element of the TOM core complex. PMID:10579717
Gim, Seo Yeong; Hong, Seungmi; Kim, Jisu; Kwon, YongJun; Kim, Mi-Ja; Kim, GeunHyung; Lee, JaeHwan
2017-11-15
In this study, collagen mesh structure was prepared by carrying α-tocopherol in the form of core/shell complex. Antioxidant properties of α-tocopherol loaded carriers were tested in moisture added bulk oils at 140°C. From one gram of collagen core/shell complex, 138mg α-tocopherol was released in medium chain triacylglycerol (MCT). α-Tocopherol was substantially protected against heat treatment when α-tocopherol was complexed in collagen core/shell. Oxidative stability in bulk oil was significantly enhanced by added collagen mesh structure or collagen core/shell complex with α-tocopherol compared to that in control bulk oils (p<0.05), although no significant difference was observed between oils containing collagen mesh structure and collagen core/shell with α-tocopherol (p>0.05). Results of DPPH loss in methanol demonstrated that collagen core/shell with α-tocopherol had significantly (p<0.05) higher antioxidant properties than collagen mesh structure up to a certain period. Therefore, collagen core/shell complex is a promising way to enhance the stability of α-tocopherol and oxidative stability in oil-rich foods prepared at high temperature. Copyright © 2017 Elsevier Ltd. All rights reserved.
Lee, Myungsun; Han, Gunsoo
2016-04-01
[Purpose] This study aimed to investigate the effect of peculiar complex core balance training on the isokinetic muscle function of the knee joint and lumbus to provide fundamental data for establishing a training program that focuses on improving the performance and prevention of injury by developing the core and low extremity muscles. [Subjects and Methods] The participants in this study included a total of ten high school athletes involved in a throwing event for over five years. The subjects were randomly divided into two groups: The experimental group (N=5) and the control group (N=5). The experimental group underwent peculiar complex core balance training. [Results] According to the analysis of covariance, there was a significant effect of peculiar complex core balance training. Therefore, the isokinetic muscle function of the knee joint and lumbus in the experimental group participating in peculiar complex core balance training was significantly increased compared to the control group. [Conclusion] It is concluded that peculiar complex core balance training had a positive effect on the isokinetic muscle function of the knee and lumbus in throwing event athletes.
Lunisolar tidal force and its relationship to chlorophyll fluorescence in Arabidopsis thaliana.
Fisahn, Joachim; Klingelé, Emile; Barlow, Peter
2015-01-01
The yield of chlorophyll fluorescence Ft was measured in leaves of Arabidopsis thaliana over periods of several days under conditions of continuous illumination (LL) without the application of saturating light pulses. After linearization of the time series of the chlorophyll fluorescence yield (ΔFt), oscillations became apparent with periodicities in the circatidal range. Alignments of these linearized time series ΔFt with the lunisolar tidal acceleration revealed high degrees of synchrony and phase congruence. Similar congruence with the lunisolar tide was obtained with the linearized quantum yield of PSII (ΔФII), recorded after application of saturating light pulses. These findings strongly suggest that there is an exogenous timekeeper which is a stimulus for the oscillations detected in both the linearized yield of chlorophyll fluorescence (ΔFt) and the linearized quantum yield of PSII (ΔФII).
Lunisolar tidal force and its relationship to chlorophyll fluorescence in Arabidopsis thaliana
Fisahn, Joachim; Klingelé, Emile; Barlow, Peter
2015-01-01
The yield of chlorophyll fluorescence Ft was measured in leaves of Arabidopsis thaliana over periods of several days under conditions of continuous illumination (LL) without the application of saturating light pulses. After linearization of the time series of the chlorophyll fluorescence yield (ΔFt), oscillations became apparent with periodicities in the circatidal range. Alignments of these linearized time series ΔFt with the lunisolar tidal acceleration revealed high degrees of synchrony and phase congruence. Similar congruence with the lunisolar tide was obtained with the linearized quantum yield of PSII (ΔФII), recorded after application of saturating light pulses. These findings strongly suggest that there is an exogenous timekeeper which is a stimulus for the oscillations detected in both the linearized yield of chlorophyll fluorescence (ΔFt) and the linearized quantum yield of PSII (ΔФII). PMID:26376108
Photosynthesis at the far-red region of the spectrum in Acaryochloris marina.
Badshah, Syed Lal; Mabkhot, Yahia; Al-Showiman, Salim S
2017-05-19
Acaryochloris marina is an oxygenic cyanobacterium that utilizes far-red light for photosynthesis. It has an expanded genome, which helps in its adaptability to the environment, where it can survive on low energy photons. Its major light absorbing pigment is chlorophyll d and it has α-carotene as a major carotenoid. Light harvesting antenna includes the external phycobilin binding proteins, which are hexameric rods made of phycocyanin and allophycocyanins, while the small integral membrane bound chlorophyll binding proteins are also present. There is specific chlorophyll a molecule in both the reaction center of Photosystem I (PSI) and PSII, but majority of the reaction center consists of chlorophyll d. The composition of the PSII reaction center is debatable especially the role and position of chlorophyll a in it. Here we discuss the photosystems of this bacterium and its related biology.
Antimycin A inhibits cytochrome b559-mediated cyclic electron flow within photosystem II.
Takagi, Daisuke; Ifuku, Kentaro; Nishimura, Taishi; Miyake, Chikahiro
2018-05-22
The light reactions of photosynthesis are known to comprise both linear and cyclic electron flow in order to convert light energy into chemical energy in the form of NADPH and ATP. Antimycin A (AA) has been proposed as an inhibitor of ferredoxin-dependent cyclic electron flow around photosystem I (CEF-PSI) in photosynthesis research. However, its precise inhibitory mechanism and target site had not been elucidated yet. Here we show that AA inhibits the cyclic (alternative) electron flow via cytochrome b 559 (Cyt b 559 ) within photosystem II (CEF-PSII). When AA was applied to thylakoid membranes isolated from spinach leaves, the high potential form of Cyt b 559 , which was reduced in the dark, was transformed into the lower potential forms and readily oxidized by molecular oxygen. In the absence of AA, the reduced Cyt b 559 was oxidized by P680 + upon light illumination and re-reduced in the dark, mainly by the electron from the Q B site on the acceptor side of PSII. In contrast, AA suppressed the oxidation of Cyt b 559 and induced its reduction under the illumination. This inhibition of Cyt b 559 oxidation by AA enhanced photoinhibition of PSII. Based on the above results, we propose caution regarding the use of AA for evaluating CEF-PSI per se and concurrently propose that AA provides for new insights into, and interpretations of, the physiological importance of Cyt b 559 , rather than that of CEF-PSI in photosynthetic organisms.
Giovagnetti, Vasco; Han, Guangye; Ware, Maxwell A; Ungerer, Petra; Qin, Xiaochun; Wang, Wen-Da; Kuang, Tingyun; Shen, Jian-Ren; Ruban, Alexander V
2018-06-01
The macroalga Bryopsis corticulans relies on a sustained protective NPQ and a peculiar body architecture to efficiently adapt to the extreme light changes of intertidal shores. During low tides, intertidal algae experience prolonged high light stress. Efficient dissipation of excess light energy, measured as non-photochemical quenching (NPQ) of chlorophyll fluorescence, is therefore required to avoid photodamage. Light-harvesting regulation was studied in the intertidal macroalga Bryopsis corticulans, during high light and air exposure. Photosynthetic capacity and NPQ kinetics were assessed in different filament layers of the algal tufts and in intact chloroplasts to unravel the nature of NPQ in this siphonous green alga. We found that the morphology and pigment composition of the B. corticulans body provides functional segregation between surface sunlit filaments (protective state) and those that are underneath and undergo severe light attenuation (light-harvesting state). In the surface filaments, very high and sustained NPQ gradually formed. NPQ induction was triggered by the formation of transthylakoid proton gradient and independent of the xanthophyll cycle. PsbS and LHCSR proteins seem not to be active in the NPQ mechanism activated by this alga. Our results show that B. corticulans endures excess light energy pressure through a sustained protective NPQ, not related to photodamage, as revealed by the unusually quick restoration of photosystem II (PSII) function in the dark. This might suggest either the occurrence of transient PSII photoinactivation or a fast rate of PSII repair cycle.
Landi, Marco; Remorini, Damiano; Pardossi, Alberto; Guidi, Lucia
2013-11-01
This study aimed to evaluate the behavior of zucchini (Cucurbita pepo L.) and cucumber (Cucumis sativus L.) under boron (B) excess. Plants were grown under greenhouse conditions in a sandy soil-peat mixture using a nutrient solution containing 0.2 (control), 10 and 20 mg L(-1) B. Visible symptoms were quantified and leaf B accumulation, gas exchanges, chlorophyll (Chl) a fluorescence, malondialdehyde by-products and antioxidants were investigated 20 days after the beginning of the treatments. Boron toxicity induced oxidative load and leaf necrotic burns coupled with the reduction of leaf growth and biomass accumulation in both species. Boron excess resulted in a decrease of Chl a/b ratio, potential (Fv/Fm) and actual (ΦPSII) PSII quantum efficiency, photosynthetic rate (Pn), stomatal conductance (gs), and transpiration (E) as well. A general stimulation of the antioxidant enzymes ascorbate peroxidase, catalase and superoxide dismutase was observed, and a significant increase in the oxidized form of ascorbate and glutathione was evidenced for treated plants of both species. A difference between the two species was observed: C. pepo appeared to be more sensitive to B stress being damaged at all B concentration. C. sativus grown at 10 mg L(-1) B in nutrient solution showed some down-regulated mechanisms, i.e. increase in Chl b content and a good photochemical PSII efficiency as well as a higher amount of constitutive antioxidant molecules, that, however, are not sufficient to contrast the negative effects of B.
Action Spectra for Nitrate and Nitrite Assimilation in Blue-Green Algae 1
Serrano, Aurelio; Losada, Manuel
1988-01-01
Action spectra for the assimilation of nitrate and nitrite have been obtained for several blue-green algae (cyanobacteria) with different accessory pigment composition. The action spectra for both nitrate and nitrite utilization by nitrate-grown Anacystis nidulans L-1402-1 cells exhibited a clear peak at about 620 nanometers, corresponding to photosystem II (PSII) C-phycocyanin absorption, the contribution of chlorophyll a (Chl a) being barely detectable. The action spectrum for nitrate reduction by a nitrite reductase mutant of A. nidulans R2 was very similar. All these action spectra resemble the fluorescence excitation spectrum of cell suspensions of the microalgae monitored at 685 nanometers—the fluorescence band of Chl a in PSII. In contrast, the action spectrum for nitrite utilization by nitrogen-starved A. nidulans cells, which are depleted of C-phycocyanin, showed a maximum near 680 nanometers, attributable to Chl a absorption. The action spectrum for nitrite utilization by Calothrix sp. PCC 7601 cells, which contain both C-phycoerythrin and C-phycocyanin as PSII accessory pigments, presented a plateau in the region from 550 to 630 nanometers. In this case, there was also a clear parallelism between the action spectrum and the fluorescence excitation spectrum, which showed two overlapped peaks with maxima at 562 and 633 nanometers. The correlation observed between the action spectra for both nitrate and nitrite assimilation and the light-harvesting pigment content of the blue-green algae studied strongly suggests that phycobiliproteins perform a direct and active role in these photosynthetic processes. PMID:16666041
Anti-cyanobacterial activity of Moringa oleifera seeds
Beekman, Wendy
2009-01-01
Filtrates from crushed Moringa oleifera seeds were tested for their effects on growth and Photosystem II efficiency of the common bloom-forming cyanobacterium Microcystis aeruginosa. M. aeruginosa populations exhibited good growth in controls and treatments with 4- and 8-mg crushed Moringa seeds per liter, having similar growth rates of 0.50 (±0.01) per day. In exposures of 20- to 160-mg crushed Moringa seeds L−1, growth rates were negative and on average −0.23 (±0.05) .day−1. Presumably, in the higher doses of 20- to 160-mg crushed seeds per liter, the cyanobacteria died, which was supported by a rapid drop in the Photosystem II efficiency (ΦPSII), while the ΦPSII was high and unaffected in 0, 4, and 8 mg L−1. High-density populations of M. aeruginosa (chlorophyll-a concentrations of ∼270 µg L−1) were reduced to very low levels within 2 weeks of exposure to ≥80-mg crushed seeds per liter. At the highest dosage of 160 mg L−1, the ΦPSII dropped to zero rapidly and remained nil during the course of the experiment (14 days). Hence, under laboratory conditions, a complete wipeout of the bloom could be achieved. This is the first study that yielded evidence for cyanobactericidal activity of filtrate from crushed Moringa seeds, suggesting that Moringa seed extracts might have a potential as an effect-oriented measure lessening cyanobacterial nuisance. PMID:20676212
González-Ballester, David; Jurado-Oller, Jose Luis; Galván, Aurora; Fernández, Emilio; Dubini, Alexandra
2017-01-01
A recent Commentary article entitled "On the pathways feeding the H 2 production process in nutrient-replete, hypoxic conditions" by Dr. Scoma and Dr. Tóth, Biotechnology for Biofuels (2017), opened a very interesting debate about the H 2 production photosynthetic-linked pathways occurring in Chlamydomonas cultures grown in acetate-containing media and incubated under hypoxia/anoxia conditions. This Commentary article mainly focused on the results of our previous article "Low oxygen levels contribute to improve photohydrogen production in mixotrophic non-stressed Chlamydomonas cultures," by Jurado-Oller et al., Biotechnology for Biofuels (7, 2015; 8:149). Here, we review some previous knowledge about the H 2 production pathways linked to photosynthesis in Chlamydomonas, especially focusing on the role of the PSII-dependent and -independent pathways in acetate-containing nutrient-replete cultures. The potential contributions of these pathways to H 2 production under anoxia/hypoxia are discussed. Despite the fact that the PSII inhibitor DCMU is broadly used to discern between the two different photosynthetic pathways operating under H 2 production conditions, its use may lead to distinctive conclusions depending on the growth conditions. The different potential sources of reductive power needed for the PSII-independent H 2 production in mixotrophic nutrient-replete cultures are a matter of debate and conclusive evidences are still missing.
Tree Species with Photosynthetic Stems Have Greater Nighttime Sap Flux.
Chen, Xia; Gao, Jianguo; Zhao, Ping; McCarthy, Heather R; Zhu, Liwei; Ni, Guangyan; Ouyang, Lei
2018-01-01
An increasing body of evidence has shown that nighttime sap flux occurs in most plants, but the physiological implications and regulatory mechanism are poorly known. The significance of corticular photosynthesis has received much attention during the last decade, however, the knowledge of the relationship between corticular photosynthesis and nocturnal stem sap flow is limited at present. In this study, we divided seven tree species into two groups according to different photosynthetic capabilities: trees of species with ( Castanopsis hystrix, Michelia macclurei, Eucalyptus citriodora , and Eucalyptus grandis × urophylla ) and without ( Castanopsis fissa, Schima superba , and Acacia auriculiformis ) photosynthetic stems, and the sap flux ( J s ) and chlorophyll fluorescence parameters for these species were measured. One-way ANOVA analysis showed that the F v / F m (Maximum photochemical quantum yield of PSII) and Φ PSII (effective photochemical quantum yield of PSII) values were lower in non-photosynthetic stem species compared to photosynthetic stem species. The linear regression analysis showed that J s,d (daytime sap flux) and J s,n (nighttime sap flux) of non-photosynthetic stem species was 87.7 and 60.9% of the stem photosynthetic species. Furthermore, for a given daytime transpiration water loss, total nighttime sap flux was higher in species with photosynthetic stems (Slope SMA = 2.680) than in non-photosynthetic stems species (Slope SMA = 1.943). These results mean that stem corticular photosynthesis has a possible effect on the nighttime water flow, highlighting the important eco-physiological relationship between nighttime sap flux and corticular photosynthesis.
Tree Species with Photosynthetic Stems Have Greater Nighttime Sap Flux
Chen, Xia; Gao, Jianguo; Zhao, Ping; McCarthy, Heather R.; Zhu, Liwei; Ni, Guangyan; Ouyang, Lei
2018-01-01
An increasing body of evidence has shown that nighttime sap flux occurs in most plants, but the physiological implications and regulatory mechanism are poorly known. The significance of corticular photosynthesis has received much attention during the last decade, however, the knowledge of the relationship between corticular photosynthesis and nocturnal stem sap flow is limited at present. In this study, we divided seven tree species into two groups according to different photosynthetic capabilities: trees of species with (Castanopsis hystrix, Michelia macclurei, Eucalyptus citriodora, and Eucalyptus grandis × urophylla) and without (Castanopsis fissa, Schima superba, and Acacia auriculiformis) photosynthetic stems, and the sap flux (Js) and chlorophyll fluorescence parameters for these species were measured. One-way ANOVA analysis showed that the Fv/Fm (Maximum photochemical quantum yield of PSII) and ΦPSII (effective photochemical quantum yield of PSII) values were lower in non-photosynthetic stem species compared to photosynthetic stem species. The linear regression analysis showed that Js,d (daytime sap flux) and Js,n (nighttime sap flux) of non-photosynthetic stem species was 87.7 and 60.9% of the stem photosynthetic species. Furthermore, for a given daytime transpiration water loss, total nighttime sap flux was higher in species with photosynthetic stems (SlopeSMA = 2.680) than in non-photosynthetic stems species (SlopeSMA = 1.943). These results mean that stem corticular photosynthesis has a possible effect on the nighttime water flow, highlighting the important eco-physiological relationship between nighttime sap flux and corticular photosynthesis. PMID:29416547
Noguchi, Takumi
2015-01-01
Photosynthetic water oxidation, which provides the electrons necessary for CO₂ reduction and releases O₂ and protons, is performed at the Mn₄CaO₅ cluster in photosystem II (PSII). In this review, studies that assessed the mechanism of water oxidation using infrared spectroscopy are summarized focusing on electron and proton transfer dynamics. Structural changes in proteins and water molecules between intermediates known as Si states (i=0-3) were detected using flash-induced Fourier transform infrared (FTIR) difference spectroscopy. Electron flow in PSII and proton release from substrate water were monitored using the infrared changes in ferricyanide as an exogenous electron acceptor and Mes buffer as a proton acceptor. Time-resolved infrared (TRIR) spectroscopy provided information on the dynamics of proton-coupled electron transfer during the S-state transitions. In particular, a drastic proton movement during the lag phase (~200μs) before electron transfer in the S3→S0 transition was detected directly by monitoring the infrared absorption of a polarizable proton in a hydrogen bond network. Furthermore, the proton release pathways in the PSII proteins were analyzed by FTIR difference measurements in combination with site-directed mutagenesis, isotopic substitutions, and quantum chemical calculations. Therefore, infrared spectroscopy is a powerful tool for understanding the molecular mechanism of photosynthetic water oxidation. This article is part of a Special Issue entitled: Vibrational spectroscopies and bioenergetic systems. Copyright © 2014 Elsevier B.V. All rights reserved.
An In Vivo Quantitative Comparison of Photoprotection in Arabidopsis Xanthophyll Mutants
Ware, Maxwell A.; Dall’Osto, Luca; Ruban, Alexander V.
2016-01-01
Contribution of different LHCII antenna carotenoids to protective NPQ (pNPQ) were tested using a range of xanthophyll biosynthesis mutants of Arabidopsis: plants were either devoid of lutein (lut2), violaxanthin (npq2), or synthesized a single xanthophyll species, namely violaxanthin (aba4npq1lut2), zeaxanthin (npq2lut2), or lutein (chy1chy2lut5). A novel pulse amplitude modulated (PAM) fluorescence analysis procedure, that used a gradually increasing actinic light intensity, allowed the efficiency of pNPQ to be tested using the photochemical quenching (qP) parameter measured in the dark (qPd). Furthermore, the yield of photosystem II (ΦPSII) was calculated, and the light intensity which induces photoinhibition in 50% of leaves for each mutant was ascertained. Photoprotective capacities of each xanthophyll were quantified, taking into account chlorophyll a/b ratios and excitation pressure. Here, light tolerance, pNPQ capacity, and ΦPSII were highest in wild type plants. Of the carotenoid mutants, lut2 (lutein-deficient) plants had the highest light tolerance, and the joint the highest ΦPSII with violaxanthin only plants. We conclude that all studied mutants possess pNPQ and a more complete composition of xanthophylls in their natural binding sites is the most important factor governing photoprotection, rather than any one specific xanthophyll suggesting a strong structural effect of the molecules upon the LHCII antenna organization and discuss the results significance for future crop development. PMID:27446097
An In Vivo Quantitative Comparison of Photoprotection in Arabidopsis Xanthophyll Mutants.
Ware, Maxwell A; Dall'Osto, Luca; Ruban, Alexander V
2016-01-01
Contribution of different LHCII antenna carotenoids to protective NPQ (pNPQ) were tested using a range of xanthophyll biosynthesis mutants of Arabidopsis: plants were either devoid of lutein (lut2), violaxanthin (npq2), or synthesized a single xanthophyll species, namely violaxanthin (aba4npq1lut2), zeaxanthin (npq2lut2), or lutein (chy1chy2lut5). A novel pulse amplitude modulated (PAM) fluorescence analysis procedure, that used a gradually increasing actinic light intensity, allowed the efficiency of pNPQ to be tested using the photochemical quenching (qP) parameter measured in the dark (qPd). Furthermore, the yield of photosystem II (ΦPSII) was calculated, and the light intensity which induces photoinhibition in 50% of leaves for each mutant was ascertained. Photoprotective capacities of each xanthophyll were quantified, taking into account chlorophyll a/b ratios and excitation pressure. Here, light tolerance, pNPQ capacity, and ΦPSII were highest in wild type plants. Of the carotenoid mutants, lut2 (lutein-deficient) plants had the highest light tolerance, and the joint the highest ΦPSII with violaxanthin only plants. We conclude that all studied mutants possess pNPQ and a more complete composition of xanthophylls in their natural binding sites is the most important factor governing photoprotection, rather than any one specific xanthophyll suggesting a strong structural effect of the molecules upon the LHCII antenna organization and discuss the results significance for future crop development.
Identifying Dynamic Protein Complexes Based on Gene Expression Profiles and PPI Networks
Li, Min; Chen, Weijie; Wang, Jianxin; Pan, Yi
2014-01-01
Identification of protein complexes from protein-protein interaction networks has become a key problem for understanding cellular life in postgenomic era. Many computational methods have been proposed for identifying protein complexes. Up to now, the existing computational methods are mostly applied on static PPI networks. However, proteins and their interactions are dynamic in reality. Identifying dynamic protein complexes is more meaningful and challenging. In this paper, a novel algorithm, named DPC, is proposed to identify dynamic protein complexes by integrating PPI data and gene expression profiles. According to Core-Attachment assumption, these proteins which are always active in the molecular cycle are regarded as core proteins. The protein-complex cores are identified from these always active proteins by detecting dense subgraphs. Final protein complexes are extended from the protein-complex cores by adding attachments based on a topological character of “closeness” and dynamic meaning. The protein complexes produced by our algorithm DPC contain two parts: static core expressed in all the molecular cycle and dynamic attachments short-lived. The proposed algorithm DPC was applied on the data of Saccharomyces cerevisiae and the experimental results show that DPC outperforms CMC, MCL, SPICi, HC-PIN, COACH, and Core-Attachment based on the validation of matching with known complexes and hF-measures. PMID:24963481
Fujii, Ritsuko; Shimonaka, Shozo; Uchida, Naoko; Gardiner, Alastair T; Cogdell, Richard J; Sugisaki, Mitsuru; Hashimoto, Hideki
2008-01-01
Typical purple bacterial photosynthetic units consist of supra-molecular arrays of peripheral (LH2) and core (LH1-RC) antenna complexes. Recent atomic force microscopy pictures of photosynthetic units in intact membranes have revealed that the architecture of these units is variable (Scheuring et al. (2005) Biochim Bhiophys Acta 1712:109-127). In this study, we describe methods for the construction of heterologous photosynthetic units in lipid-bilayers from mixtures of purified LH2 (from Rhodopseudomonas acidophila) and LH1-RC (from Rhodopseudomonas viridis) core complexes. The architecture of these reconstituted photosynthetic units can be varied by controlling ratio of added LH2 to core complexes. The arrangement of the complexes was visualized by electron-microscopy in combination with Fourier analysis. The regular trigonal array of the core complexes seen in the native photosynthetic membrane could be regenerated in the reconstituted membranes by temperature cycling. In the presence of added LH2 complexes, this trigonal symmetry was replaced with orthorhombic symmetry. The small lattice lengths for the latter suggest that the constituent unit of the orthorhombic lattice is the LH2. Fluorescence and fluorescence-excitation spectroscopy was applied to the set of the reconstituted membranes prepared with various proportions of LH2 to core complexes. Remarkably, even though the LH2 complexes contain bacteriochlorophyll a, and the core complexes contain bacteriochlorophyll b, it was possible to demonstrate energy transfer from LH2 to the core complexes. These experiments provide a first step along the path toward investigating how changing the architecture of purple bacterial photosynthetic units affects the overall efficiency of light-harvesting.
Lee, Myungsun; Han, Gunsoo
2016-01-01
[Purpose] This study aimed to investigate the effect of peculiar complex core balance training on the isokinetic muscle function of the knee joint and lumbus to provide fundamental data for establishing a training program that focuses on improving the performance and prevention of injury by developing the core and low extremity muscles. [Subjects and Methods] The participants in this study included a total of ten high school athletes involved in a throwing event for over five years. The subjects were randomly divided into two groups: The experimental group (N=5) and the control group (N=5). The experimental group underwent peculiar complex core balance training. [Results] According to the analysis of covariance, there was a significant effect of peculiar complex core balance training. Therefore, the isokinetic muscle function of the knee joint and lumbus in the experimental group participating in peculiar complex core balance training was significantly increased compared to the control group. [Conclusion] It is concluded that peculiar complex core balance training had a positive effect on the isokinetic muscle function of the knee and lumbus in throwing event athletes. PMID:27190470
Computer modeling of electron and proton transport in chloroplasts.
Tikhonov, Alexander N; Vershubskii, Alexey V
2014-07-01
Photosynthesis is one of the most important biological processes in biosphere, which provides production of organic substances from atmospheric CO2 and water at expense of solar energy. In this review, we contemplate computer models of oxygenic photosynthesis in the context of feedback regulation of photosynthetic electron transport in chloroplasts, the energy-transducing organelles of the plant cell. We start with a brief overview of electron and proton transport processes in chloroplasts coupled to ATP synthesis and consider basic regulatory mechanisms of oxygenic photosynthesis. General approaches to computer simulation of photosynthetic processes are considered, including the random walk models of plastoquinone diffusion in thylakoid membranes and deterministic approach to modeling electron transport in chloroplasts based on the mass action law. Then we focus on a kinetic model of oxygenic photosynthesis that includes key stages of the linear electron transport, alternative pathways of electron transfer around photosystem I (PSI), transmembrane proton transport and ATP synthesis in chloroplasts. This model includes different regulatory processes: pH-dependent control of the intersystem electron transport, down-regulation of photosystem II (PSII) activity (non-photochemical quenching), the light-induced activation of the Bassham-Benson-Calvin (BBC) cycle. The model correctly describes pH-dependent feedback control of electron transport in chloroplasts and adequately reproduces a variety of experimental data on induction events observed under different experimental conditions in intact chloroplasts (variations of CO2 and O2 concentrations in atmosphere), including a complex kinetics of P700 (primary electron donor in PSI) photooxidation, CO2 consumption in the BBC cycle, and photorespiration. Finally, we describe diffusion-controlled photosynthetic processes in chloroplasts within the framework of the model that takes into account complex architecture of chloroplasts and lateral heterogeneity of lamellar system of thylakoids. The lateral profiles of pH in the thylakoid lumen and in the narrow gap between grana thylakoids have been calculated under different metabolic conditions. Analyzing topological aspects of diffusion-controlled stages of electron and proton transport in chloroplasts, we conclude that along with the NPQ mechanism of attenuation of PSII activity and deceleration of PQH2 oxidation by the cytochrome b6f complex caused by the lumen acidification, the intersystem electron transport may be down-regulated due to the light-induced alkalization of the narrow partition between adjacent thylakoids of grana. The computer models of electron and proton transport described in this article may be integrated as appropriate modules into a comprehensive model of oxygenic photosynthesis. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
What is an Oceanic Core Complex?
NASA Astrophysics Data System (ADS)
Schroeder, T.; Cheadle, M. J.
2007-12-01
The Mid-Atlantic Ridge (MAR) 75km north and south of the 15-20 Fracture Zone (FZ) has produced upper oceanic lithosphere composed dominantly of mantle peridotite with gabbro intrusions. In the absence of diapirism, mantle peridotite can only be exposed on the seafloor by extensional faulting, thus the sea floor geology and bathymetry provide widespread evidence for extensive low-angle faulting. However, only 3% of the seafloor in this region has the domal morphology characteristic of features that have been termed oceanic core complexes; suggesting that other processes, in addition to low-angle faulting, are responsible for the generation of domal core complexes. Most low-angle faults near the 15-20 FZ form gently dipping (10-15°), 10-15km-wide dip slopes on the flanks of 2000m relief bathymetric ridges that are up to 15-40km long (parallel to the MAR). Core recovered from ODP Leg 209 drill holes in these ridges is dominantly peridotite with small (<50m thick) gabbro intrusions. The peridotite is cut by a very high density of brittle faults dipping at both steep and gentle angles. Several holes also contain long-lived shear zones/faults in their upper reaches in which strain was localized at granulite facies, indicated by mylonitic olivine and cpx, and remained active during cooling to sub-greenschist grade, indicated by cross-cutting of progressively lower-grade syn-deformation mineral assemblages. These observations suggest that seafloor spreading is largely accommodated here by slip on low-angle faults, and that these faults are correctly termed detachment faults. Holes drilled into a domal oceanic core complex north of the 15-20 FZ during Leg 209 (ODP Site 1275) recovered dominantly gabbro and not mantle peridotite. This hole is cut by significantly fewer brittle and ductile faults than the peridotite drilled at the non-core-complex detachment fault sites. The detachment fault in the upper reaches (50m) of Site 1275 was localized at temperatures near feldspar's ductile-to-brittle transition, indicated by cataclasis with minor crystal plastic flow in plagioclase, and a lack of pervasive pure-ductile deformation. Amphibole-plagioclase thermometry in the fault yields equilibrium temperatures from 600-650°C, compared to equilibrium temperatures of 750-850°C for the gabbro outside the fault. The presence of talc- chlorite schists and cataclasites cutting the higher-temperature deformation textures indicate fault activity down- temperature from amphibolite through greenschist facies. This core-complex-bounding fault contrasts with the fault that bounds the Atlantis Bank Core Complex on the Southwest Indian Ridge (SWIR). There, the fault is 100m thick and strain was initially localized at granulite grade (>800°C) (Mehl & Hirth, 2007); significantly hotter than the Site 1275 fault. Therefore, the formation of core-complex morphology does not seem to depend on the initial faulting conditions. Both oceanic core complexes that have been drilled besides Site 1275, Atlantis Massif at 30°N (IODP Hole 1309D) on the MAR and Atlantis Bank on the SWIR (ODP Hole 735B), are also comprised dominantly of gabbro. This suggests that magma supply may be an essential requirement for core complex formation and raises the question whether all domal oceanic core complexes are cored by gabbro? We also ask whether the term 'oceanic core complex' should be restricted to these domal features and not applied to detachment-bound, non- domal, peridotite-cored ridges; or if these should be considered two sub-classes of oceanic core complexes.
Molecular structure of the pyruvate dehydrogenase complex from Escherichia coli K-12.
Vogel, O; Hoehn, B; Henning, U
1972-06-01
The pyruvate dehydrogenase core complex from E. coli K-12, defined as the multienzyme complex that can be obtained with a unique polypeptide chain composition, has a molecular weight of 3.75 x 10(6). All results obtained agree with the following numerology. The core complex consists of 48 polypeptide chains. There are 16 chains (molecular weight = 100,000) of the pyruvate dehydrogenase component, 16 chains (molecular weight = 80,000) of the dihydrolipoamide dehydrogenase component, and 16 chains (molecular weight = 56,000) of the dihydrolipoamide dehydrogenase component. Usually, but not always, pyruvate dehydrogenase complex is produced in vivo containing at least 2-3 mol more of dimers of the pyruvate dehydrogenase component than the stoichiometric ratio with respect to the core complex. This "excess" component is bound differently than are the eight dimers in the core complex.
Drought induced changes of leaf-to-root relationships in two tomato genotypes.
Moles, Tommaso Michele; Mariotti, Lorenzo; De Pedro, Leandro Federico; Guglielminetti, Lorenzo; Picciarelli, Piero; Scartazza, Andrea
2018-07-01
Water deficit triggers a dynamic and integrated cross-talk between leaves and roots. Tolerant plants have developed several physiological and molecular mechanisms to establish new cell metabolism homeostasis, avoiding and/or escaping from permanent impairments triggered by drought. Two tomato genotypes (a Southern Italy landrace called Ciettaicale and the well-known commercial cultivar Moneymaker) were investigated at vegetative stage to assess leaf and root metabolic strategies under 20 days of water deficit. Physiological and metabolic changes, in terms of ABA, IAA, proline, soluble sugars and phenols contents, occurred in both tomato genotypes under water stress. Overall, our results pointed out the higher plasticity of Ciettaicale to manage plant water status under drought in order to preserve the source-sink relationships. This aim was achieved by maintaining a more efficient leaf photosystem II (PSII) photochemistry, as suggested by chlorophyll fluorescence parameters, associated with a major investment towards root growth and activity to improve water uptake. On the contrary, the higher accumulation of carbon compounds, resulting from reduced PSII photochemistry and enhanced starch reserve mobilization, in leaves and roots of Moneymaker under drought could play a key role in the osmotic adjustment, although causing a feedback disruption of the source-sink relations. This hypothesis was also supported by the different drought-induced redox unbalance, as suggested by H 2 O 2 and MDA contents. This could affect both PSII photochemistry and root activity, leading to a major involvement of NPQ and antioxidant system in response to drought in Moneymaker than Ciettaicale. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Hackett, Justin B; Lu, Yan
2017-05-04
In land plants, plastid and mitochondrial RNAs are subject to post-transcriptional C-to-U RNA editing. T-DNA insertions in the ORGANELLE RNA RECOGNITION MOTIF PROTEIN6 gene resulted in reduced photosystem II (PSII) activity and smaller plant and leaf sizes. Exon coverage analysis of the ORRM6 gene showed that orrm6-1 and orrm6-2 are loss-of-function mutants. Compared to other ORRM proteins, ORRM6 affects a relative small number of RNA editing sites. Sanger sequencing of reverse transcription-PCR products of plastid transcripts revealed 2 plastid RNA editing sites that are substantially affected in the orrm6 mutants: psbF-C77 and accD-C794. The psbF gene encodes the β subunit of cytochrome b 559 , an essential component of PSII. The accD gene encodes the β subunit of acetyl-CoA carboxylase, a protein required in plastid fatty acid biosynthesis. Whole-transcriptome RNA-seq demonstrated that editing at psbF-C77 is nearly absent and the editing extent at accD-C794 was significantly reduced. Gene set enrichment pathway analysis showed that expression of multiple gene sets involved in photosynthesis, especially photosynthetic electron transport, is significantly upregulated in both orrm6 mutants. The upregulation could be a mechanism to compensate for the reduced PSII electron transport rate in the orrm6 mutants. These results further demonstrated that Organelle RNA Recognition Motif protein ORRM6 is required in editing of specific RNAs in the Arabidopsis (Arabidopsis thaliana) plastid.
Krause, G Heinrich; Winter, Klaus; Matsubara, Shizue; Krause, Barbara; Jahns, Peter; Virgo, Aurelio; Aranda, Jorge; García, Milton
2012-09-01
High solar radiation in the tropics is known to cause transient reduction in photosystem II (PSII) efficiency and CO(2) assimilation in sun-exposed leaves, but little is known how these responses affect the actual growth performance of tropical plants. The present study addresses this question. Seedlings of five woody neotropical forest species were cultivated under full sunlight and shaded conditions. In full sunlight, strong photoinhibition of PSII at midday was documented for the late-successional tree species Ormosia macrocalyx and Tetragastris panamensis and the understory/forest gap species, Piper reticulatum. In leaves of O. macrocalyx, PSII inhibition was accompanied by substantial midday depression of net CO(2) assimilation. Leaves of all species had increased pools of violaxanthin-cycle pigments. Other features of photoacclimation, such as increased Chl a/b ratio and contents of lutein, β-carotene and tocopherol varied. High light caused strong increase of tocopherol in leaves of T. panamensis and another late-successional species, Virola surinamensis. O. macrocalyx had low contents of tocopherol and UV-absorbing substances. Under full sunlight, biomass accumulation was not reduced in seedlings of T. panamensis, P. reticulatum, and V. surinamensis, but O. macrocalyx exhibited substantial growth inhibition. In the highly shade-tolerant understory species Psychotria marginata, full sunlight caused strongly reduced growth of most individuals. However, some plants showed relatively high growth rates under full sun approaching those of seedlings at 40 % ambient irradiance. It is concluded that shade-tolerant tropical tree seedlings can achieve efficient photoacclimation and high growth rates in full sunlight.
Krueger, Thomas; Hawkins, Thomas D; Becker, Susanne; Pontasch, Stefanie; Dove, Sophie; Hoegh-Guldberg, Ove; Leggat, William; Fisher, Paul L; Davy, Simon K
2015-12-01
Mass coral bleaching due to thermal stress represents a major threat to the integrity and functioning of coral reefs. Thermal thresholds vary, however, between corals, partly as a result of the specific type of endosymbiotic dinoflagellate (Symbiodinium sp.) they harbour. The production of reactive oxygen species (ROS) in corals under thermal and light stress has been recognised as one mechanism that can lead to cellular damage and the loss of their symbiont population (Oxidative Theory of Coral Bleaching). Here, we compared the response of symbiont and host enzymatic antioxidants in the coral species Acropora millepora and Montipora digitata at 28°C and 33°C. A. millepora at 33°C showed a decrease in photochemical efficiency of photosystem II (PSII) and increase in maximum midday excitation pressure on PSII, with subsequent bleaching (declining photosynthetic pigment and symbiont density). M. digitata exhibited no bleaching response and photochemical changes in its symbionts were minor. The symbiont antioxidant enzymes superoxide dismutase, ascorbate peroxidase, and catalase peroxidase showed no significant upregulation to elevated temperatures in either coral, while only catalase was significantly elevated in both coral hosts at 33°C. Increased host catalase activity in the susceptible coral after 5days at 33°C was independent of antioxidant responses in the symbiont and preceded significant declines in PSII photochemical efficiencies. This finding suggests a potential decoupling of host redox mechanisms from symbiont photophysiology and raises questions about the importance of symbiont-derived ROS in initiating coral bleaching. Copyright © 2015 Elsevier Inc. All rights reserved.
Li, Lijie; Gu, Wanrong; Li, Jing; Li, Congfeng; Xie, Tenglong; Qu, Danyang; Meng, Yao; Li, Caifeng; Wei, Shi
2018-05-15
Drought stress (DS) is a major environmental factor limiting plant growth and crop productivity worldwide. It has been established that exogenous spermidine (Spd) stimulates plant tolerance to DS. The effects of exogenous Spd on plant growth, photosynthetic performance, and chloroplast ultrastructure as well as changes in endogenous polyamines (PAs) and phytohormones were investigate in DS-resistant (Xianyu 335) and DS-sensitive (Fenghe 1) maize seedlings under well-watered and DS treatments. Exogenous Spd alleviated the stress-induced reduction in growth, photosynthetic pigment content, photosynthesis rate (P n ) and photochemical quenching (q P ) parameters, including the maximum photochemistry efficiency of photosystem II (PSII) (F v /F m ), PSII operating efficiency (ФPSII), and qP coefficient. Exogenous Spd further enhanced stress-induced elevation in non-photochemical quenching (NPQ) and the de-epoxidation state of the xanthophyll cycle (DEPS). Microscopic analysis revealed that seedlings displayed a more ordered arrangement of chloroplast ultrastructure upon Spd application during DS. Exogenous Spd increased the endogenous PA concentrations in the stressed plants. Additionally, exogenous Spd increased indoleacetic acid (IAA), zeatin riboside (ZR) and gibberellin A 3 (GA 3 ) and decreased salicylic acid (SA) and jasmonate (JA) concentrations under DS. These results indicate that exogenous Spd can alleviate the growth inhibition and damage to the structure and function of the photosynthetic apparatus caused by DS and that this alleviation may be associated with changes in endogenous PAs and phytohormones. This study contributes to advances in the knowledge of Spd-induced drought tolerance. Copyright © 2018. Published by Elsevier Masson SAS.
Huang, Xingxue; Bie, Zhilong
2010-01-01
This study investigated the effects of cinnamic acid (CA) on ribulose-1,5-bisphosphate carboxylase (RuBPC) activity and the endogenous polyamine levels of cowpea leaves. The results show that 0.1 mM CA treatment decreased photosynthetic rate (P(n)) and RuBPC activity, but it did not affect the maximal photochemical efficiency of PSII (F(v)/F(m)), the actual photochemical efficiency of PSII (PhiPSII), intercellular CO(2) concentration (C(i)), and relative chlorophyll content. These suggest that the decrease in P(n) is at least partially attributed to a lowered RuBPC activity. In addition, 0.1 mM CA treatment increased the putrescine (Put) level, but decreased spermidine (Spd) and spermine (Spm) levels, thereby reducing the (Spd+Spm)/Put (PAs) ratio in the leaves. The exogenous application of 1 mM Spd markedly reversed these CA-induced effects for polyamine and partially restored the PAs ratio and RuBPC activity in leaves. Methylglyoxal-bis (guanylhydrazone) (MGBG), which is an inhibitor of S-adenosylmethionine decarboxylase (SAMDC), results in the inability of activated cells to synthesize Spd and exacerbates the negative effects induced by CA. The exogenous application of 1 mM D-arginine (D-Arg), which is an inhibitor of Put biosynthesis, decreased the levels of Put, but increased the PAs ratio and RuBPC activity in leaves. These results suggest that 0.1 mM CA inhibits RuBPC activity by decreasing the levels of endogenous free and perchloric acid soluble (PS) conjugated Spm, as well as the PAs ratio.
Short- and long-term physiological responses of grapevine leaves to UV-B radiation.
Martínez-Lüscher, J; Morales, F; Delrot, S; Sánchez-Díaz, M; Gomés, E; Aguirreolea, J; Pascual, I
2013-12-01
The present study aimed at evaluating the short- and long-term effects of UV-B radiation on leaves of grapevine Vitis vinifera (cv. Tempranillo). Grapevine fruit-bearing cuttings were exposed to two doses of supplemental biologically effective UV-B radiation (UV-BBE) under glasshouse-controlled conditions: 5.98 and 9.66kJm(-2)d(-1). The treatments were applied either for 20d (from mid-veraison to ripeness) or 75d (from fruit set to ripeness). A 0kJm(-2)d(-1) UV-B treatment was included as control. The main effects of UV-B were observed after the short-term exposure (20d) to 9.66kJm(-2)d(-1). Significant decreases in net photosynthesis, stomatal conductance, sub-stomatal CO2 concentration, the actual photosystem II (PSII) efficiency, total soluble proteins and de-epoxidation state of the VAZ cycle were observed, whereas the activities of several antioxidant enzymes increased significantly. UV-B did not markedly affect dark respiration, photorespiration, the maximum potential PSII efficiency (Fv/Fm), non-photochemical quenching (NPQ), as well as the intrinsic PSII efficiency. However, after 75d of exposure to 5.98and 9.66kJm(-2)d(-1) UV-B most photosynthetic and biochemical variables were unaffected and there were no sign of oxidative damage in leaves. The results suggest a high long-term acclimation capacity of grapevine to high UV-B levels, associated with a high accumulation of UV-B absorbing compounds in leaves, whereas plants seemed to be tolerant to moderate doses of UV-B. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Correia, Barbara; Pintó-Marijuan, Marta; Neves, Lucinda; Brossa, Ricard; Dias, Maria Celeste; Costa, Armando; Castro, Bruno B; Araújo, Clara; Santos, Conceição; Chaves, Maria Manuela; Pinto, Glória
2014-04-01
Eucalyptus plantations are among the most productive forest stands in Portugal and Spain, being mostly used for pulp production and, more recently, as an energy crop. However, the region's Mediterranean climate, with characteristic severe summer drought, negatively affects eucalypt growth and increases mortality. Although the physiological response to water shortage is well characterized for this species, evidence about the plants' recovery ability remains scarce. In order to assess the physiological and biochemical response of Eucalyptus globulus during the recovery phase, two genotypes (AL-18 and AL-10) were submitted to a 3-week water stress period at two different intensities (18 and 25% of field capacity), followed by 1 week of rewatering. Recovery was assessed 1 day and 1 week after rehydration. Drought reduced height, biomass, water potential, NPQ and gas exchange in both genotypes. Contrarily, the levels of pigments, chlorophyll fluorescence parameters (F(v) /F(m) and (φPSII)), MDA and ABA increased. During recovery, the physiological and biochemical profile of stressed plants showed a similar trend: they experienced reversion of altered traits (MDA, ABA, E, g(s), pigments), while other parameters did not recover ((φPSII), NPQ). Furthermore, an overcompensation of CO(2) assimilation was achieved 1 week after rehydration, which was accompanied by greater growth and re-establishment of oxidative balance. Both genotypes were tolerant to the tested conditions, although clonal differences were found. AL-10 was more productive and showed a more rapid and dynamic response to rehydration (namely in carotenoid content, (φPSII) and NPQ) compared to clone AL-18. © 2013 Scandinavian Plant Physiology Society.
Connecting Core Percolation and Controllability of Complex Networks
Jia, Tao; Pósfai, Márton
2014-01-01
Core percolation is a fundamental structural transition in complex networks related to a wide range of important problems. Recent advances have provided us an analytical framework of core percolation in uncorrelated random networks with arbitrary degree distributions. Here we apply the tools in analysis of network controllability. We confirm analytically that the emergence of the bifurcation in control coincides with the formation of the core and the structure of the core determines the control mode of the network. We also derive the analytical expression related to the controllability robustness by extending the deduction in core percolation. These findings help us better understand the interesting interplay between the structural and dynamical properties of complex networks. PMID:24946797
Zara, Vincenzo; Conte, Laura; Trumpower, Bernard L
2009-04-01
The assembly status of the cytochrome bc(1) complex has been analyzed in distinct yeast deletion strains in which genes for one or more of the bc(1) subunits were deleted. In all the yeast strains tested, a bc(1) sub-complex of approximately 500 kDa was found when the mitochondrial membranes were analyzed by blue native electrophoresis. The subsequent molecular characterization of this sub-complex, carried out in the second dimension by SDS/PAGE and immunodecoration, revealed the presence of the two catalytic subunits, cytochrome b and cytochrome c(1), associated with the noncatalytic subunits core protein 1, core protein 2, Qcr7p and Qcr8p. Together, these bc(1) subunits build up the core structure of the cytochrome bc(1) complex, which is then able to sequentially bind the remaining subunits, such as Qcr6p, Qcr9p, the Rieske iron-sulfur protein and Qcr10p. This bc(1) core structure may represent a true assembly intermediate during the maturation of the bc(1) complex; first, because of its wide distribution in distinct yeast deletion strains and, second, for its characteristics of stability, which resemble those of the intact homodimeric bc(1) complex. By contrast, the bc(1) core structure is unable to interact with the cytochrome c oxidase complex to form respiratory supercomplexes. The characterization of this novel core structure of the bc(1) complex provides a number of new elements clarifying the molecular events leading to the maturation of the yeast cytochrome bc(1) complex in the inner mitochondrial membrane.
Zara, Vincenzo; Conte, Laura; Trumpower, Bernard L.
2009-01-01
The assembly status of the cytochrome bc1 complex has been analyzed in distinct yeast deletion strains in which genes for one or more of the bc1 subunits had been deleted. In all the yeast strains tested a bc1 sub-complex of about 500 kDa was found when the mitochondrial membranes were analyzed by blue native electrophoresis. The subsequent molecular characterization of this sub-complex, carried out in the second dimension by SDS-PAGE and immunodecoration, revealed the presence of the two catalytic subunits cytochrome b and cytochrome c1, associated with the non catalytic subunits core protein 1, core protein 2, Qcr7p and Qcr8p. Altogether these bc1 subunits build up the core structure of the cytochrome bc1 complex which is then able to sequentially bind the remaining subunits, such as Qcr6p, Qcr9p, the Rieske iron-sulfur protein and Qcr10p. This bc1 core structure may represent a true assembly intermediate during the maturation of the bc1 complex, first because of its wide distribution in distinct yeast deletion strains and second for its characteristics of stability which resemble those of the intact homodimeric bc1 complex. Differently from this latter, however, the bc1 core structure is not able to interact with the cytochrome c oxidase complex to form respiratory supercomplexes. The characterization of this novel core structure of the bc1 complex provides a number of new elements for clarification of the molecular events leading to the maturation of the yeast cytochrome bc1 complex in the inner mitochondrial membrane. PMID:19236481
Feeding enhances photosynthetic efficiency in the carnivorous pitcher plant Nepenthes talangensis
Pavlovič, Andrej; Singerová, Lucia; Demko, Viktor; Hudák, Ján
2009-01-01
Background and Aims Cost–benefit models predict that carnivory can increase the rate of photosynthesis (AN) by leaves of carnivorous plants as a result of increased nitrogen absorption from prey. However, the cost of carnivory includes decreased AN and increased respiration rates (RD) of trapping organs. The principal aim of the present study was to assess the costs and benefits of carnivory in the pitcher plant Nepenthes talangensis, leaves of which are composed of a lamina and a pitcher trap, in response to feeding with beetle larvae. Methods Pitchers of Nepenthes grown at 200 µmol m−2 s−1 photosynthetically active radiation (PAR) were fed with insect larvae for 2 months, and the effects on the photosynthetic processes were then assessed by simultaneous measurements of gas exchange and chlorophyll fluorescence of laminae and pitchers, which were correlated with nitrogen, carbon and total chlorophyll concentrations. Key Results AN and maximum (Fv/Fm) and effective quantum yield of photosystem II (ΦPSII) were greater in the fed than unfed laminae but not in the fed compared with unfed pitchers. Respiration rate was not significantly affected in fed compared with unfed plants. The unfed plants had greater non-photochemical quenching (NPQ) of chlorophyll fluorescence. Higher NPQ in unfed lamina did not compensate for their lower ΦPSII, resulting in lower photochemical quenching (QP) and thus higher excitation pressure on PSII. Biomass and nitrogen and chlorophyll concentration also increased as a result of feeding. The cost of carnivory was shown by lower AN and ΦPSII in pitchers than in laminae, but RD depended on whether it was expressed on a dry weight or a surface area basis. Correlation between nitrogen and AN in the pitchers was not found. Cost–benefit analysis showed a large beneficial effect on photosynthesis from feeding as light intensity increased from 200 to 1000 µmol m−2 s−1 PAR after which it did not increase further. All fed plants began to flower. Conclusion Feeding pitchers with insect larvae increases AN of leaf laminae, due to higher nutrient acquisition, with strong correlation with nitrogen concentration, but AN of pitchers does not increase, despite increased nitrogen concentration in their tissue. Increased AN improves growth and reproduction and is likely to increase the competitive advantage of carnivorous over non-carnivorous plants in nutrient-poor habitats. PMID:19454591
Feeding enhances photosynthetic efficiency in the carnivorous pitcher plant Nepenthes talangensis.
Pavlovic, Andrej; Singerová, Lucia; Demko, Viktor; Hudák, Ján
2009-08-01
Cost-benefit models predict that carnivory can increase the rate of photosynthesis (A(N)) by leaves of carnivorous plants as a result of increased nitrogen absorption from prey. However, the cost of carnivory includes decreased A(N) and increased respiration rates (R(D)) of trapping organs. The principal aim of the present study was to assess the costs and benefits of carnivory in the pitcher plant Nepenthes talangensis, leaves of which are composed of a lamina and a pitcher trap, in response to feeding with beetle larvae. Pitchers of Nepenthes grown at 200 micromol m(-2) s(-1) photosynthetically active radiation (PAR) were fed with insect larvae for 2 months, and the effects on the photosynthetic processes were then assessed by simultaneous measurements of gas exchange and chlorophyll fluorescence of laminae and pitchers, which were correlated with nitrogen, carbon and total chlorophyll concentrations. A(N) and maximum (F(v)/F(m)) and effective quantum yield of photosystem II (Phi(PSII)) were greater in the fed than unfed laminae but not in the fed compared with unfed pitchers. Respiration rate was not significantly affected in fed compared with unfed plants. The unfed plants had greater non-photochemical quenching (NPQ) of chlorophyll fluorescence. Higher NPQ in unfed lamina did not compensate for their lower Phi(PSII), resulting in lower photochemical quenching (QP) and thus higher excitation pressure on PSII. Biomass and nitrogen and chlorophyll concentration also increased as a result of feeding. The cost of carnivory was shown by lower A(N) and Phi(PSII) in pitchers than in laminae, but R(D) depended on whether it was expressed on a dry weight or a surface area basis. Correlation between nitrogen and A(N) in the pitchers was not found. Cost-benefit analysis showed a large beneficial effect on photosynthesis from feeding as light intensity increased from 200 to 1000 micromol m(-2) s(-1) PAR after which it did not increase further. All fed plants began to flower. Feeding pitchers with insect larvae increases A(N) of leaf laminae, due to higher nutrient acquisition, with strong correlation with nitrogen concentration, but A(N) of pitchers does not increase, despite increased nitrogen concentration in their tissue. Increased A(N) improves growth and reproduction and is likely to increase the competitive advantage of carnivorous over non-carnivorous plants in nutrient-poor habitats.
Plant experiments with light-emitting diode module in Svet space greenhouse
NASA Astrophysics Data System (ADS)
Ilieva, Iliana; Ivanova, Tania; Naydenov, Yordan; Dandolov, Ivan; Stefanov, Detelin
2010-10-01
Light is necessary for photosynthesis and shoot orientation in the space plant growth facilities. Light modules (LM) must provide sufficient photosynthetic photon flux for optimal efficiency of photosynthetic processes and also meet the constraints for power, volume and mass. A new LM for Svet space greenhouse using Cree® XLamp® 7090 XR light-emitting diodes (LEDs) was developed. Monochromic LEDs emitting in the red, green, and blue regions of the spectrum were used. The LED-LM contains 36 LED spots - 30 LED spots with one red, green and blue LED and 6 LED spots with three red LEDs. Digital Multiplex Control Unit controls the LED spots and can set 231 levels of light intensity thus achieving Photosynthetic Photon Flux Density (PPFD) in the range 0-400 μmol m -2 s -1 and different percentages of the red, green and blue light, depending on the experimental objectives. Two one-month experiments with plants - lettuce and radicchio were carried out at 400 μmol m -2 s -1 PPFD (high light - HL) and 220 μmol m -2 s -1 PPFD (low light - LL) and 70% red, 20% green and 10% blue light composition. To evaluate the efficiency of photosynthesis, in vivo modulated chlorophyll fluorescence was measured by Pulse Amplitude Modulation (PAM) fluorometer on leaf discs and the following parameters: effective quantum yield of Photosystem II ( ΦPSII) and non-photochemical quenching (NPQ) were calculated. Both lettuce and radicchio plants grown at LL express higher photochemical activity of Photosystem II (PSII) than HL grown plants, evaluated by ΦPSII. Accelerated rise in NPQ in both LL grown plants was observed, while steady state NPQ values were higher in LL grown lettuce plants and did not differ in LL and HL grown radicchio plants. The extent of photoinhibition process in both plants was evaluated by changes in malonedialdehyde (MDA) concentration, peroxidase (POX) activity and hydrogen peroxide (H 2O 2) content. Accumulation of high levels of MDA and increased POX activity correlating with decreased H 2O 2 content were observed in both HL grown plants. These biochemical indicators revealed higher sensitivity to photodamage in HL grown lettuce and radicchio plants. LL conditions resulted in more effective functioning of PSII than HL when lettuce and radicchio plants were grown at 70% red, 20% green and 10% blue light composition.
Carbonate Complexation of Mn2+ in Aqueous Phase
Dasgupta, Jyotishman; Tyryshkin, Alexei M.; Kozlov, Yuri N.; Klimov, Vyacheslav V.; Dismukes, G. Charles
2008-01-01
The chemical speciation of Mn2+ within cells is critical for its transport, availability and redox properties. Herein we investigate the redox behavior and complexation equilibria of Mn2+ in aqueous solutions of bicarbonate by voltametry and electron paramagnetic resonance (EPR) spectroscopy, and discuss the implications for the uptake of Mn2+ by mangano-cluster enzymes like photosystem II (PSII). Both the electrochemical reduction of Mn2+ to Mn0 at an Hg electrode and EPR (in the absence of a polarizing electrode), revealed formation of 1:1 and 1:2 Mn-(bi)carbonate complexes as a function of Mn2+ and bicarbonate concentrations. Pulsed EPR spectroscopy, including ENDOR, ESEEM and 2D-HYSCORE, were used to probe the hyperfine couplings to 1H and 13C nuclei of the ligand(s) bound to Mn2+. For the 1:2 complex the complete 13C hyperfine tensor for one of the (bi)carbonate ligands was determined and it was established that this ligand coordinates to Mn2+ in bidentate mode with 13C-Mn distance of 2.85 ± 0.1 Å. The second (bi)carbonate ligand in the 1:2 complex coordinates possibly in monodentate mode, which is structurally less defined, and its 13C signal is broad and unobservable. 1H ENDOR reveals that 1-2 water ligands are lost upon binding of one bicarbonate ion in the 1:1 complex while 3-4 water ligands are lost upon forming the 1:2 complex. Thus, we deduce that the dominant species above 0.1 M bicarbonate concentration is the 1:2 complex, [Mn(CO3)(HCO3)(OH2)3]-. PMID:16526753
Activities for Challenging Gifted Learners by Increasing Complexity in the Common Core
ERIC Educational Resources Information Center
McKeone, Alyssa; Caruso, Lenora; Bettle, Kailyn; Chase, Ashley; Bryson, Bridget; Schneider, Jean S.; Rule, Audrey C.
2015-01-01
Gifted learners need opportunities for critical and creative thinking to stretch their minds and imaginations. Strategies for increasing complexity in the four core areas of language arts, mathematics, science, and social studies were addressed using the Common Core and Iowa Core Standards through several methods. Descriptive adjective object…
Ai, Li-Shuang; Lee, Yu-Wen; Chen, Steve S.-L.
2009-01-01
The molecular basis underlying hepatitis C virus (HCV) core protein maturation and morphogenesis remains elusive. We characterized the concerted events associated with core protein multimerization and interaction with membranes. Analyses of core proteins expressed from a subgenomic system showed that the signal sequence located between the core and envelope glycoprotein E1 is critical for core association with endoplasmic reticula (ER)/late endosomes and the core's envelopment by membranes, which was judged by the core's acquisition of resistance to proteinase K digestion. Despite exerting an inhibitory effect on the core's association with membranes, (Z-LL)2-ketone, a specific inhibitor of signal peptide peptidase (SPP), did not affect core multimeric complex formation, suggesting that oligomeric core complex formation proceeds prior to or upon core attachment to membranes. Protease-resistant core complexes that contained both innate and processed proteins were detected in the presence of (Z-LL)2-ketone, implying that core envelopment occurs after intramembrane cleavage. Mutations of the core that prevent signal peptide cleavage or coexpression with an SPP loss-of-function D219A mutant decreased the core's envelopment, demonstrating that SPP-mediated cleavage is required for core envelopment. Analyses of core mutants with a deletion in domain I revealed that this domain contains sequences crucial for core envelopment. The core proteins expressed by infectious JFH1 and Jc1 RNAs in Huh7 cells also assembled into a multimeric complex, associated with ER/late-endosomal membranes, and were enveloped by membranes. Treatment with (Z-LL)2-ketone or coexpression with D219A mutant SPP interfered with both core envelopment and infectious HCV production, indicating a critical role of core envelopment in HCV morphogenesis. The results provide mechanistic insights into the sequential and coordinated processes during the association of the HCV core protein with membranes in the early phase of virus maturation and morphogenesis. PMID:19605478
Molecular Structure of the Pyruvate Dehydrogenase Complex from Escherichia coli K-12
Vogel, Otto; Hoehn, Barbara; Henning, Ulf
1972-01-01
The pyruvate dehydrogenase core complex from E. coli K-12, defined as the multienzyme complex that can be obtained with a unique polypeptide chain composition, has a molecular weight of 3.75 × 106. All results obtained agree with the following numerology. The core complex consists of 48 polypeptide chains. There are 16 chains (molecular weight = 100,000) of the pyruvate dehydrogenase component, 16 chains (molecular weight = 80,000) of the dihydrolipoamide dehydrogenase component, and 16 chains (molecular weight = 56,000) of the dihydrolipoamide dehydrogenase component. Usually, but not always, pyruvate dehydrogenase complex is produced in vivo containing at least 2-3 mol more of dimers of the pyruvate dehydrogenase component than the stoichiometric ratio with respect to the core complex. This “excess” component is bound differently than are the eight dimers in the core complex. Images PMID:4556465
Kim, Jin Young; Song, Ji Yun; Karnam, Santi; Park, Jun Young; Lee, Jamie J H; Kim, Seonhee; Cho, Seo-Hee
2015-01-01
Crumbs polarity complex proteins are essential for cellular and tissue polarity, and for adhesion of epithelial cells. In epithelial tissues deletion of any of three core proteins disrupts localization of the other proteins, indicating structural and functional interdependence among core components. Despite previous studies of function and co-localization that illustrated the properties that these proteins share, it is not known whether an individual component of the complex plays a distinct role in a unique cellular and developmental context. In order to investigate this question, we primarily used confocal imaging to determine the expression and subcellular localization of the core Crumbs polarity complex proteins during ocular development. Here we show that in developing ocular tissues core Crumbs polarity complex proteins, Crb, Pals1 and Patj, generally appear in an overlapping pattern with some exceptions. All three core complex proteins localize to the apical junction of the retinal and lens epithelia. Pals1 is also localized in the Golgi of the retinal cells and Patj localizes to the nuclei of the apically located subset of progenitor cells. These findings suggest that core Crumbs polarity complex proteins exert common and independent functions depending on cellular context. Copyright © 2015 Elsevier B.V. All rights reserved.
Scheuring, Simon; Busselez, Johan; Lévy, Daniel
2005-01-14
We have studied photosynthetic membranes of wild type Rhodobacter blasticus, a closely related strain to the well studied Rhodobacter sphaeroides, using atomic force microscopy. High-resolution atomic force microscopy topographs of both cytoplasmic and periplasmic surfaces of LH2 and RC-LH1-PufX (RC, reaction center) complexes were acquired in situ. The LH2 is a nonameric ring inserted into the membrane with the 9-fold axis perpendicular to the plane. The core complex is an S-shaped dimer composed of two RCs, each encircled by 13 LH1 alpha/beta-heterodimers, and two PufXs. The LH1 assembly is an open ellipse with a topography-free gap of approximately 25 A. The two PufXs, one of each core, are located at the dimer center. Based on our data, we propose a model of the core complex, which provides explanation for the PufX-induced dimerization of the Rhodobacter core complex. The QB site is located facing a approximately 25-A wide gap within LH1, explaining the PufX-favored quinone passage in and out of the core complex.
Adams, Peter G; Mothersole, David J; Ng, Irene W; Olsen, John D; Hunter, C Neil
2011-09-01
In the model photosynthetic bacterium Rhodobacter sphaeroides domains of light-harvesting 2 (LH2) complexes surround and interconnect dimeric reaction centre-light-harvesting 1-PufX (RC-LH1-PufX) 'core' complexes, forming extensive networks for energy transfer and trapping. These complexes are housed in spherical intracytoplasmic membranes (ICMs), which are assembled in a stepwise process where biosynthesis of core complexes tends to dominate the early stages of membrane invagination. The kinetics of LH2 assembly were measured in PufX mutants that assemble monomeric core complexes, as a consequence of either a twelve-residue N-terminal truncation of PufX (PufXΔ12) or the complete removal of PufX (PufX(-)). Lower rates of LH2 assembly and retarded maturation of membrane invagination were observed for the larger and less curved ICM from the PufX(-) mutant, consistent with the proposition that local membrane curvature, initiated by arrays of bent RC-LH1-PufX dimers, creates a favourable environment for stable assembly of LH2 complexes. Transmission electron microscopy and high-resolution atomic force microscopy were used to examine ICM morphology and membrane protein organisation in these mutants. Some partitioning of core and LH2 complexes was observed in PufX(-) membranes, resulting in locally ordered clusters of monomeric RC-LH1 complexes. The distribution of core and LH2 complexes in the three types of membrane examined is consistent with previous models of membrane curvature and domain formation (Frese et al., 2008), which demonstrated that a combination of crowding and asymmetries in sizes and shapes of membrane protein complexes drives membrane organisation. 2011 Elsevier B.V. All rights reserved.
Evaluating the core microbiota in complex communities: A systematic investigation.
Astudillo-García, Carmen; Bell, James J; Webster, Nicole S; Glasl, Bettina; Jompa, Jamaluddin; Montoya, Jose M; Taylor, Michael W
2017-04-01
The study of complex microbial communities poses unique conceptual and analytical challenges, with microbial species potentially numbering in the thousands. With transient or allochthonous microorganisms often adding to this complexity, a 'core' microbiota approach, focusing only on the stable and permanent members of the community, is becoming increasingly popular. Given the various ways of defining a core microbiota, it is prudent to examine whether the definition of the core impacts upon the results obtained. Here we used complex marine sponge microbiotas and undertook a systematic evaluation of the degree to which different factors used to define the core influenced the conclusions. Significant differences in alpha- and beta-diversity were detected using some but not all core definitions. However, findings related to host specificity and environmental quality were largely insensitive to major changes in the core microbiota definition. Furthermore, none of the applied definitions altered our perception of the ecological networks summarising interactions among bacteria within the sponges. These results suggest that, while care should still be taken in interpretation, the core microbiota approach is surprisingly robust, at least for comparing microbiotas of closely related samples. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.
Deletion of a Stay-Green Gene Associates with Adaptive Selection in Brassica napus.
Qian, Lunwen; Voss-Fels, Kai; Cui, Yixin; Jan, Habib U; Samans, Birgit; Obermeier, Christian; Qian, Wei; Snowdon, Rod J
2016-12-05
Chlorophyll levels provide important information about plant growth and physiological plasticity in response to changing environments. The stay-green gene NON-YELLOWING 1 (NYE1) is believed to regulate chlorophyll degradation during senescence, concomitantly affecting the disassembly of the light-harvesting complex and hence indirectly influencing photosynthesis. We identified Brassica napus accessions carrying an NYE1 deletion associated with increased chlorophyll content, and with upregulated expression of light-harvesting complex and photosynthetic reaction center (PSI and PSII) genes. Comparative analysis of the seed oil content of accessions with related genetic backgrounds revealed that the B. napus NYE1 gene deletion (bnnye1) affected oil accumulation, and linkage disequilibrium signatures suggested that the locus has been subject to artificial selection by breeding in oilseed B. napus forms. Comparative analysis of haplotype diversity groups (haplogroups) between three different ecotypes of the allopolyploid B. napus and its A-subgenome diploid progenitor, Brassica rapa, indicated that introgression of the bnnye1 deletion from Asian B. rapa into winter-type B. napus may have simultaneously improved its adaptation to cooler environments experienced by autumn-sown rapeseed. Copyright © 2016 The Author. Published by Elsevier Inc. All rights reserved.
Pollari, Maija; Ruotsalainen, Virpi; Rantamäki, Susanne; Tyystjärvi, Esa; Tyystjärvi, Taina
2009-06-01
In cyanobacteria, gene expression is regulated mainly at the level of transcription initiation, which is mediated by the RNA polymerase holoenzyme. The RNA polymerase core is catalytically active, while the sigma factor recognizes promoter sequences. Group 2 sigma factors are similar to the principal sigma factor but are nonessential. Group 2 sigma factors SigB and SigD are structurally the most similar sigma factors in Synechocystis sp. strain PCC 6803. Under standard growth conditions, simultaneous inactivation of sigB and sigD genes did not affect the growth, but the photosynthesis and growth of the DeltasigBD strain were slower than in the control strain at double light intensity. Light-saturated electron transfer rates and the fluorescence and thermoluminescence measurements showed that photosynthetic light reactions are fully functional in the DeltasigBD strain, but absorption and 77 K emission spectra measurements suggest that the light-harvesting system of the DeltasigBD strain does not acclimate normally to higher light intensity. Furthermore, the DeltasigBD strain is more sensitive to photoinhibition under bright light because impaired upregulation of psbA genes leads to insufficient PSII repair.
Sano, Yohei; Weitz, Andrew C.; Ziller, Joseph W.; Hendrich, Michael P.; Borovik, A.S.
2013-01-01
Heterobimetallic cores are important unit within the active sites of metalloproteins, but are often difficult to duplicate in synthetic systems. We have developed a synthetic approach for the preparation of a complex with a MnII–(μ-OH)–FeIII core, in which the metal centers have different coordination environments. Structural and physical data support the assignment of this complex as a heterobimetallic system. Comparison with the analogous homobimetallic complexes, those containing MnII–(μ-OH)–MnIII and FeII–(μ-OH)–FeIII cores, further supports this assignment. PMID:23992041
Non-target-site resistance to ALS inhibitors in waterhemp (Amaranthus tuberculatus)
USDA-ARS?s Scientific Manuscript database
A waterhemp population (MCR) previously characterized as resistant to 4-hyroxyphenylpyruvate dioxygenase (HPPD) and photosystem II (PSII) inhibitors was found to have two different resistance responses to acetolactate synthase (ALS) inhibitors. Plants from the MCR population exhibiting high resistan...
Sproviero, Eduardo M; Gascón, José A; McEvoy, James P; Brudvig, Gary W; Batista, Victor S
2008-03-19
This paper investigates the mechanism of water splitting in photosystem II (PSII) as described by chemically sensible models of the oxygen-evolving complex (OEC) in the S0-S4 states. The reaction is the paradigm for engineering direct solar fuel production systems since it is driven by solar light and the catalyst involves inexpensive and abundant metals (calcium and manganese). Molecular models of the OEC Mn3CaO4Mn catalytic cluster are constructed by explicitly considering the perturbational influence of the surrounding protein environment according to state-of-the-art quantum mechanics/molecular mechanics (QM/MM) hybrid methods, in conjunction with the X-ray diffraction (XRD) structure of PSII from the cyanobacterium Thermosynechococcus elongatus. The resulting models are validated through direct comparisons with high-resolution extended X-ray absorption fine structure spectroscopic data. Structures of the S3, S4, and S0 states include an additional mu-oxo bridge between Mn(3) and Mn(4), not present in XRD structures, found to be essential for the deprotonation of substrate water molecules. The structures of reaction intermediates suggest a detailed mechanism of dioxygen evolution based on changes in oxidization and protonation states and structural rearrangements of the oxomanganese cluster and surrounding water molecules. The catalytic reaction is consistent with substrate water molecules coordinated as terminal ligands to Mn(4) and calcium and requires the formation of an oxyl radical by deprotonation of the substrate water molecule ligated to Mn(4) and the accumulation of four oxidizing equivalents. The oxyl radical is susceptible to nucleophilic attack by a substrate water molecule initially coordinated to calcium and activated by two basic species, including CP43-R357 and the mu-oxo bridge between Mn(3) and Mn(4). The reaction is concerted with water ligand exchange, swapping the activated water by a water molecule in the second coordination shell of calcium.
Papazi, Aikaterini; Korelidou, Anna; Andronis, Efthimios; Parasyri, Athina; Stamatis, Nikolaos; Kotzabasis, Kiriakos
2018-03-01
Simultaneous nitrogen depletion and 3,4-dichlorophenol addition induce a bioenergetic microalgal reprogramming, through strong Cyt b 6 f synthesis, that quench excess electrons from dichlorophenol's biodegradation to an overactivated photosynthetic electron flow and H 2 -productivity. Cellular energy management includes "rational" planning and operation of energy production and energy consumption units. Microalgae seem to have the ability to calculate their energy reserves and select the most profitable bioenergetic pathways. Under oxygenic mixotrophic conditions, microalgae invest the exogenously supplied carbon source (glucose) to biomass increase. If 3,4-dichlorophenol is added in the culture medium, then glucose is invested more to biodegradation rather than to growth. The biodegradation yield is enhanced in nitrogen-depleted conditions, because of an increase in the starch accumulation and a delay in the establishment of oxygen-depleted conditions in a closed system. In nitrogen-depleted conditions, starch cannot be invested in PSII-dependent and PSII-independent pathways for H 2 -production, mainly because of a strong decrease of the cytochrome b 6 f complex of the photosynthetic electron flow. For this reason, it seems more profitable for the microalga under these conditions to direct the metabolism to the synthesis of lipids as cellular energy reserves. Nitrogen-depleted conditions with exogenously supplied 3,4-dichlorophenol induce reprogramming of the microalgal bioenergetic strategy. Cytochrome b 6 f is strongly synthesized (mainly through catabolism of polyamines) to manage the electron bypass from the dichlorophenol biodegradation procedure to the photosynthetic electron flow (at the level of PQ pool) and consequently through cytochrome b 6 f and PSI to hydrogenase and H 2 -production. All the above showed that the selection of the appropriate cultivation conditions is the key for the manipulation of microalgal bioenergetic strategy that leads to different metabolic products and paves the way for a future microalgal "smart" biotechnology.
Belyaeva, N E; Bulychev, A A; Riznichenko, G Yu; Rubin, A B
2016-12-01
A new Thylakoid model is presented, which describes in detail the electron/proton transfer reactions between membrane protein complexes including photosystems II and I (PSII, PSI), cytochrome (Cyt) b 6 f, mobile plastoquinone PQ pool in the thylakoid membrane, plastocyanin in lumen and ferredoxin in stroma, reduction of NADP via FNR and cyclic electron transfer. The Thylakoid model parameters were fitted both to Chl fluorescence induction data (FI) and oxido-reductions of P700 (ΔA 810 ) measured from 20 μs up to 20 s in pea leaves. The two-wave kinetics of FI and ΔA 810 (O(JI)PSM and OABCDE) were described quantitatively, provided that the values of membrane electrochemical potential components ΔΨ(t), pH L (t)/pH S (t) are in physiologically relevant ranges. The time courses on the time scale from nanoseconds to tens of seconds of oxido-reduction changes of ET components as well as concentrations of proton/ions (K + , Cl - ) were calculated. We assume a low constant FNR activity over this period. Charge movements across the thylakoid membrane by passive leakage and active ATPase transport and proton buffer reactions are simulated. The dynamics of charge fluxes during photosynthetic induction under low light (PFD 200 μmol photons m -2 s -1 ) were analyzed. The initial wave of P700 oxidation within 20 ms during independent operation of PSI and PSII was followed after 50 ms by PSI donor-side reduction from reduced PQ pool via Cyt b 6 f site. The Cyt b 6 f reactions contribute to the stabilization of fluxes in the time range 1 s < t < 10 s. The detailed analysis of Chl a fluorescence at the PSM stage (t > 10 s) would need the investigation of FNR activation effect in order to explain the transitions between cyclic and linear electron transport.
Lu, Tao; Shi, Jie-wei; Sun, Zhou-ping; Qi, Ming-fang; Liu, Yu-feng; Li, Tian-lai
2017-01-01
Objective: To evaluate the possible photoprotection mechanisms of cyclic and linear electron flux (CEF and LEF) under specific high temperature and high light (HH) stress. Methods: Six-leaf-stage tomato seedlings (“Liaoyuanduoli”, n=160) were divided into four parts: Part 1, served as control under 25 °C, 500 μmol/(m2·s); Part 2, spayed with distilled water (H2O) under 35 °C, 1000 μmol/(m2·s) (HH); Part 3, spayed with 100 μmol/L diuron (DCMU, CEF inhibitor) under HH; Part 4, spayed with 60 μmol/L methyl viologen (MV, LEF inhibitor) under HH. Energy conversion, photosystem I (PSI), and PSII activity, and trans-thylakoid membrane proton motive force were monitored during the treatment of 5 d and of the recovering 10 d. Results: HH decreased photochemical reaction dissipation (P) and the maximal photochemical efficiency of PSII (F v/F m), and increased the excitation energy distribution coefficient of PSII (β); DCMU and MV aggravated the partition imbalance of the excitation energy (γ) and the photoinhibition degree. With prolonged DCMU treatment time, electron transport rate and quantum efficiency of PSI (ETRI and Y I) significantly decreased whereas acceptor and donor side limitation of PSI (Y NA and Y ND) increased. MV led to a significant decline and accession of yield of regulated and non-regulated energy Y NPQ and Y NO, respectively. Membrane integrity and ATPase activity were reduced by HH stress, and DCMU and MV enhanced inhibitory actions. Conclusions: The protective effects of CEF and LEF were mediated to a certain degree by meliorations in energy absorption and distribution as well as by maintenance of thylakoid membrane integrity and ATPase activity. PMID:28681588
Husted, Søren; Laursen, Kristian H.; Hebbern, Christopher A.; Schmidt, Sidsel B.; Pedas, Pai; Haldrup, Anna; Jensen, Poul E.
2009-01-01
Barley (Hordeum vulgare) genotypes display a marked difference in their ability to tolerate growth at low manganese (Mn) concentrations, a phenomenon designated as differential Mn efficiency. Induction of Mn deficiency in two genotypes differing in Mn efficiency led to a decline in the quantum yield efficiency for both, although faster in the Mn-inefficient genotype. Leaf tissue and thylakoid Mn concentrations were reduced under Mn deficiency, but no difference between genotypes was observed and no visual Mn deficiency symptoms were developed. Analysis of the fluorescence induction kinetics revealed that in addition to the usual O-J-I-P steps, clear K and D steps were developed in the Mn-inefficient genotype under Mn deficiency. These marked changes indicated damages to photosystem II (PSII). This was further substantiated by state transition measurements, indicating that the ability of plants to redistribute excitation energy was reduced. The percentage change in state transitions for control plants with normal Mn supply of both genotypes was 9% to 11%. However, in Mn-deficient leaves of the Mn-inefficient genotypes, state transitions were reduced to less than 1%, whereas no change was observed for the Mn-efficient genotypes. Immunoblotting and the chlorophyll a/b ratio confirmed that Mn deficiency in general resulted in a significant reduction in abundance of PSII reaction centers relative to the peripheral antenna. In addition, PSII appeared to be significantly more affected by Mn limitation than PSI. However, the striking genotypic differences observed in Mn-deficient plants, when analyzing state transitions and fluorescence induction kinetics, could not be correlated with specific changes in photosystem proteins. Thus, there is no simple linkage between protein expression and the differential reduction in state transition and fluorescence induction kinetics observed for the genotypes under Mn deficiency. PMID:19369593
Klatt, Judith M; de Beer, Dirk; Häusler, Stefan; Polerecky, Lubos
2016-01-01
We used microsensors to study the regulation of anoxygenic and oxygenic photosynthesis (AP and OP, respectively) by light and sulfide in a cyanobacterium dominating microbial mats from cold sulfidic springs. Both photosynthetic modes were performed simultaneously over all H 2 S concentrations (1-2200 μM) and irradiances (4-52 μmol photons m -2 s -1 ) tested. AP increased with H 2 S concentration while the sum of oxygenic and anoxygenic photosynthetic rates was constant at each light intensity. Thus, the total photosynthetically driven electron transport rate was solely controlled by the irradiance level. The partitioning between the rates of these two photosynthetic modes was regulated by both light and H 2 S concentration. The plastoquinone pool (PQ) receives electrons from sulfide:quinone:reductase (SQR) in AP and from photosystem II (PSII) in OP. It is thus the link in the electron transport chain where both pathways intersect, and the compound that controls their partitioning. We fitted our data with a model of the photosynthetic electron transport that includes the kinetics of plastoquinone reduction and oxidation. The model results confirmed that the observed partitioning between photosynthetic modes can be explained by a simple kinetic control based on the affinity of SQR and PSII toward PQ. The SQR enzyme and PSII have similar affinities toward PQ, which explains the concurrent OP and AP over an astonishingly wide range of H 2 S concentrations and irradiances. The elegant kinetic control of activity makes the cyanobacterium successful in the fluctuating spring environment. We discuss how these specific regulation mechanisms may have played a role in ancient H 2 S-rich oceans.
Ouzounis, Theoharis; Fretté, Xavier; Ottosen, Carl-Otto; Rosenqvist, Eva
2015-06-01
We examined the effect of light emitting diode (LED) lighting in greenhouse facilities on growth, chlorophyll fluorescence and pigmentation in Phalaenopsis 'Vivien' and 'Purple Star' under purpose-built LED arrays yielding c. 200 µmol m(-2) s(-1) at plant height for 14 h per day and 24/18°C day/night temperature, respectively, from January to April 2013. The light treatments were (1) 40% blue in 60% red (40% B/R), (2) 0% blue in 100% red (0% B/R) and (3) white LEDs with 32% blue in white (32% B/W, control), with background daylight under shade screens. The plants were harvested twice for leaf growth and pigmentation. There was no clear pattern in the spectral effect on growth since the order of leaf size differed between harvests in March and April. Fv /Fm was in the range of 0.52-0.72, but overall slightly higher in the control, which indicated a permanent downregulation of PSII in the colored treatments. The fluorescence quenching showed no acclimation to color in 'Purple Star', while 'Vivien' had lower ETR and higher NPQ in the 40% B/R, resembling low light acclimation. The pigmentation showed corresponding spectral response with increasing concentration of lutein while increasing the fraction of blue light, which increased the light absorption in the green/yellow part of the spectrum. The permanent downregulation of PSII moved a substantial part of the thermal dissipation from the light regulated NPQ to non-regulated energy losses estimated by ΦNPQ and ΦNO and the difference found in the balance between ΦPSII and ΦNPQ in 'Vivien' disappeared when ΦNO was included in the thermal dissipation. © 2014 Scandinavian Plant Physiology Society.
NASA Astrophysics Data System (ADS)
Schuback, N.; Flecken, M.; Maldonado, M. T.; Tortell, P. D.
2015-10-01
Active chlorophyll a fluorescence approaches, including fast repetition rate fluorometry (FRRF), have the potential to provide estimates of phytoplankton primary productivity at unprecedented spatial and temporal resolution. FRRF-derived productivity rates are based on estimates of charge separation at PSII (ETRRCII), which must be converted into ecologically relevant units of carbon fixation. Understanding sources of variability in the coupling of ETRRCII and carbon fixation provides physiological insight into phytoplankton photosynthesis, and is critical for the application of FRRF as a primary productivity measurement tool. In the present study, we simultaneously measured phytoplankton carbon fixation and ETRRCII in the iron-limited NE subarctic Pacific, over the course of a diurnal cycle. We show that rates of ETRRCII are closely tied to the diurnal cycle in light availability, whereas rates of carbon fixation appear to be influenced by endogenous changes in metabolic energy allocation under iron-limited conditions. Unsynchronized diurnal oscillations of the two rates led to 3.5 fold changes in the conversion factor coupling ETRRCII and carbon fixation (Φe:C / nPSII). Consequently, diurnal variability in phytoplankton carbon fixation cannot be adequately captured with FRRF approaches if a constant conversion factor is applied. Utilizing several auxiliary photophysiological measurements, we observed that a high conversion factor is associated with conditions of excess light, and correlates with the expression of non-photochemical quenching (NPQ) in the pigment antenna, as derived from FRRF measurements. The observed correlation between NPQ and the conversion factor Φe:C / nPSII has the potential to improve estimates of phytoplankton carbon fixation rates from FRRF measurements alone.
Li, Zhen; Wu, Na; Liu, Ting; Chen, Hui; Tang, Ming
2015-02-27
Drought is one of the most serious environmental limitations for poplar growth. Although the ways in which plants deal with water stress and the effects of arbuscular mycorrhizal (AM) formation have been well documented, little is known about how the male and female plants of Populus cathayana respond to drought and AM formation. We also aimed to investigate the potential role of AM fungi in maintaining gender balance. We tested the impact of drought and AM formation on water status and photosynthesis. The results suggested that both sexes showed similar responses to water stress: drought decreased the growth of stem length (GSL), growth of ground diameter (GGD), relative water content (RWC), increased the relative electrolyte leakage (REL), and limited the photosynthesis and chlorophyll fluorescence indexes. However, the responses of the two sexes to drought and AM formation differed to some extent. AM formation had positive effects on RWC, photosynthesis and the intrinsic water use efficiency (WUEi) but negative effects on the REL of males and females, especially under drought. AM formation enhanced the maximum quantum yield of photosystem II (PSII) (Fv/Fm), the actual quantum yield of PSII (ΦPSII), non-photochemical quenching (qN) and photochemical quenching (qP) under drought conditions, and had no significant effects under well-watered conditions except on the qP of males. Principal component analysis showed that males were significantly more drought tolerant than females, and AM formation enhanced drought tolerance, particularly among males, which suggested that AM fungi are beneficial for ecological stability and for P. cathayana survival under drought conditions. © 2015 Scandinavian Plant Physiology Society.
Suppression of Host Photosynthesis by the Parasitic Plant Rhinanthus minor
Cameron, Duncan D.; Geniez, Jean-Michelle; Seel, Wendy E.; Irving, Louis J.
2008-01-01
Background and Aims Parasitism is well understood to have wide-ranging deleterious effects on host performance in species thus far characterized. Photosynthetic performance reductions have been noted in the Striga–Zea mays association; however, no such information exists for facultative hemiparasitic plants and their hosts, nor are the effects of host species understood. Methods Chlorophyll fluorimetry was used to study the effects of parasitism by the hemiparasite Rhinanthus minor on the grass Phleum bertolinii and the forb Plantago lanceolata, and the effects of host species on the photosynthetic apparatus of R. minor. Key Results Parasitism by Rhinanthus led to a significant decrease in the host, and total (host + parasite) biomass in Phleum; however, in Plantago, no significant repression of growth was noted. Maximum quantum yield (Fv/Fm) was reduced in parasitized Plantago, relative to control plants, but not in Phleum. Fv/Fm was significantly lower in R. minor parasitizing Phleum than Plantago, suggesting Phleum to be a superior host to Plantago for R. minor. Steady-state quantum yield (ΦPSII) was significantly depressed in parasitized Phleum, but only at low irradiances in Plantago. ΦPSII was very low for R. minor grown on Plantago, but not Phleum. Conclusions Shown here is the first evidence of the suppression of host photosynthesis by a facultative hemiparasitic plant, which has significant effects on total biomass production. Host identity is a significant factor in parasite success, with the forb Plantago lanceolata exhibiting apparent chemical as well as previously identified physical defences to parasitism. It is proposed that the electron transport rate (as denoted by ΦPSII) represents the limiting factor for biomass accumulation in this system, and that Plantago is able to suppress the growth of Rhinanthus by suppressing the electron transport rate. PMID:18211886
Toxic pressure of herbicides on microalgae in Dutch estuarine and coastal waters
NASA Astrophysics Data System (ADS)
Booij, Petra; Sjollema, Sascha B.; van der Geest, Harm G.; Leonards, Pim E. G.; Lamoree, Marja H.; de Voogt, W. Pim; Admiraal, Wim; Laane, Remi W. P. M.; Vethaak, A. Dick
2015-08-01
For several decades now, there has been an increase in the sources and types of chemicals in estuarine and coastal waters as a consequence of anthropogenic activities. This has led to considerable concern about the effects of these chemicals on the marine food chain. The fact is that estuarine and coastal waters are the most productive ecosystems with high primary production by microalgae. The toxic pressure of specific phytotoxic chemicals now poses a major threat to these ecosystems. In a previous study, six herbicides (atrazine, diuron, irgarol, isoproturon, terbutryn and terbutylazine) were identified as the main contaminants affecting photosynthesis in marine microalgae. The purpose of this study is to investigate the toxic pressure of these herbicides in the Dutch estuarine and coastal waters in relation to the effective photosystem II efficiency (ΦPSII) in microalgae. Temporal and spatial variations in the concentrations of these herbicides were analyzed based on monitoring data. Additionally, a field study was carried out in which chemical analysis of water was performed and also a toxicity assessment using the Pulse Amplitude Modulation (PAM) fluorometry assay that measures ΦPSII. The toxic pressure on ΦPSII in microalgae has decreased with 55-82% from 2003 to 2012, with the Western Scheldt estuary showing the highest toxic pressure. By combining toxicity data from the PAM assay with chemical analysis of herbicide concentrations, we have identified diuron and terbutylazine as the main contributors to the toxic pressure on microalgae. Although direct effects are not expected, the toxic pressure is close to the 10% effect level in the PAM assay. A compliance check with the current environmental legislation of the European Union revealed that the quality standards are not sufficient to protect marine microalgae.
Funar-Timofei, Simona; Borota, Ana; Crisan, Luminita
2017-05-01
Cinnoline, pyridine, pyrimidine, and triazine herbicides were found be inhibitors of the D1 protein in photosystem II (D1 PSII) electron transport of plants. The photosystem II inhibitory activity of these herbicides, expressed by experimental [Formula: see text] values, was modeled by a docking and quantitative structure-activity relationships study. A conformer ensemble for each of the herbicide structure was generated using the MMFF94s force field. These conformers were further employed in a docking approach, which provided new information about the rational "active conformations" and various interaction patterns of the herbicide derivatives with D1 PSII. The most "active conformers" from the docking study were used to calculate structural descriptors, which were further related to the inhibitory experimental [Formula: see text] values by multiple linear regression (MLR). The dataset was divided into training and test sets according to the partition around medoids approach, taking 27% of the compounds from the entire series for the test set. Variable selection was performed using the genetic algorithm, and several criteria were checked for model performance. WHIM and GETAWAY geometrical descriptors (position of substituents and moieties in the molecular space) were found to contribute to the herbicidal activity. The derived MLR model is statistically significant, shows very good stability and was used to predict the herbicidal activity of new derivatives having cinnoline, indeno[1.2-c]cinnoline-ll-one, triazolo[1,5-a] pyridine, imidazo[1,2-a]pyridine, triazine and triazolo[1,5-a] pyrimidine scaffolds whose experimental inhibitory activity against D1 PSII had not been determined up to now.
Tubuxin, Bayaer; Rahimzadeh-Bajgiran, Parinaz; Ginnan, Yusaku; Hosoi, Fumiki; Omasa, Kenji
2015-01-01
This paper illustrates the possibility of measuring chlorophyll (Chl) content and Chl fluorescence parameters by the solar-induced Chl fluorescence (SIF) method using the Fraunhofer line depth (FLD) principle, and compares the results with the standard measurement methods. A high-spectral resolution HR2000+ and an ordinary USB4000 spectrometer were used to measure leaf reflectance under solar and artificial light, respectively, to estimate Chl fluorescence. Using leaves of Capsicum annuum cv. ‘Sven’ (paprika), the relationships between the Chl content and the steady-state Chl fluorescence near oxygen absorption bands of O2B (686nm) and O2A (760nm), measured under artificial and solar light at different growing stages of leaves, were evaluated. The Chl fluorescence yields of ΦF 686nm/ΦF 760nm ratios obtained from both methods correlated well with the Chl content (steady-state solar light: R2 = 0.73; artificial light: R2 = 0.94). The SIF method was less accurate for Chl content estimation when Chl content was high. The steady-state solar-induced Chl fluorescence yield ratio correlated very well with the artificial-light-induced one (R2 = 0.84). A new methodology is then presented to estimate photochemical yield of photosystem II (ΦPSII) from the SIF measurements, which was verified against the standard Chl fluorescence measurement method (pulse-amplitude modulated method). The high coefficient of determination (R2 = 0.74) between the ΦPSII of the two methods shows that photosynthesis process parameters can be successfully estimated using the presented methodology. PMID:26071530
Klatt, Judith M.; de Beer, Dirk; Häusler, Stefan; Polerecky, Lubos
2016-01-01
We used microsensors to study the regulation of anoxygenic and oxygenic photosynthesis (AP and OP, respectively) by light and sulfide in a cyanobacterium dominating microbial mats from cold sulfidic springs. Both photosynthetic modes were performed simultaneously over all H2S concentrations (1–2200 μM) and irradiances (4–52 μmol photons m-2 s-1) tested. AP increased with H2S concentration while the sum of oxygenic and anoxygenic photosynthetic rates was constant at each light intensity. Thus, the total photosynthetically driven electron transport rate was solely controlled by the irradiance level. The partitioning between the rates of these two photosynthetic modes was regulated by both light and H2S concentration. The plastoquinone pool (PQ) receives electrons from sulfide:quinone:reductase (SQR) in AP and from photosystem II (PSII) in OP. It is thus the link in the electron transport chain where both pathways intersect, and the compound that controls their partitioning. We fitted our data with a model of the photosynthetic electron transport that includes the kinetics of plastoquinone reduction and oxidation. The model results confirmed that the observed partitioning between photosynthetic modes can be explained by a simple kinetic control based on the affinity of SQR and PSII toward PQ. The SQR enzyme and PSII have similar affinities toward PQ, which explains the concurrent OP and AP over an astonishingly wide range of H2S concentrations and irradiances. The elegant kinetic control of activity makes the cyanobacterium successful in the fluctuating spring environment. We discuss how these specific regulation mechanisms may have played a role in ancient H2S-rich oceans. PMID:28018309
Campos, Huitziméngari; Trejo, Carlos; Peña-Valdivia, Cecilia B; García-Nava, Rodolfo; Conde-Martínez, F Víctor; Cruz-Ortega, Ma Del Rocío
2014-10-01
Agave salmiana Otto ex Salm-Dyck, a crassulacean acid metabolism plant that is adapted to water-limited environments, has great potential for bioenergy production. However, drought stress decreases the requirement for light energy, and if the amount of incident light exceeds energy consumption, the photosynthetic apparatus can be injured, thereby limiting plant growth. The objective of this study was to evaluate the effects of drought and re-watering on the photosynthetic efficiency of A. salmiana seedlings. The leaf relative water content and leaf water potential decreased to 39.6 % and -1.1 MPa, respectively, over 115 days of water withholding and recovered after re-watering. Drought caused a direct effect on photosystem II (PSII) photochemistry in light-acclimated leaves, as indicated by a decrease in the photosynthetic electron transport rate. Additionally, down-regulation of photochemical activity occurred mainly through the inactivation of PSII reaction centres and an increased thermal dissipation capacity of the leaves. Prompt fluorescence kinetics also showed a larger pool of terminal electron acceptors in photosystem I (PSI) as well as an increase in some JIP-test parameters compared to controls, reflecting an enhanced efficiency and specific fluxes for electron transport from the plastoquinone pool to the PSI terminal acceptors. All the above parameters showed similar levels after re-watering. These results suggest that the thermal dissipation of excess energy and the increased energy conservation from photons absorbed by PSII to the reduction of PSI end acceptors may be an important acclimation mechanism to protect the photosynthetic apparatus from over-excitation in Agave plants.
Spectro-microscopy of living plant cells.
Harter, Klaus; Meixner, Alfred J; Schleifenbaum, Frank
2012-01-01
Spectro-microscopy, a combination of fluorescence microscopy with spatially resolved spectroscopic techniques, provides new and exciting tools for functional cell biology in living organisms. This review focuses on recent developments in spectro-microscopic applications for the investigation of living plant cells in their native tissue context. The application of spectro-microscopic methods led to the recent discovery of a fast signal response pathway for the brassinosteroide receptor BRI1 in the plasma membrane of living plant cells. Moreover, the competence of different plant cell types to respond to environmental or endogenous stimuli was determined in vivo by correlation analysis of different optical and spectroscopic readouts such as fluorescence lifetime (FLT). Furthermore, a new spectro-microscopic technique, fluorescence intensity decay shape analysis microscopy (FIDSAM), has been developed. FIDSAM is capable of imaging low-expressed fluorophore-tagged proteins at high spatial resolution and precludes the misinterpretation of autofluorescence artifacts. In addition, FIDSAM provides a very effective and sensitive tool on the basis of Förster resonance energy transfer (FRET) for the qualitative and quantitative determination of protein-protein interaction. Finally, we report on the quantitative analysis of the photosystem I and II (PSI/PSII) ratio in the chloroplasts of living Arabidopsis plants at room temperature, using high-resolution, spatially resolved fluorescence spectroscopy. With this technique, it was not only possible to measure PSI/PSII ratios, but also to demonstrate the differential competence of wild-type and carbohydrate-deficient plants to adapt the PSI/PSII ratio to different light conditions. In summary, the information content of standard microscopic images is extended by several dimensions by the use of spectro-microscopic approaches. Therefore, novel cell physiological and molecular topics can be addressed and valuable insights into molecular and subcellular processes can be obtained in living plants.
Liu, Meijun; Zhang, Zishan; Gao, Huiyuan; Yang, Cheng; Fan, Xingli; Cheng, Dandan
2014-09-01
Although the effect of dehydration on photosynthetic apparatus has been widely studied, the respective effect of dehydration duration and dehydration degree was neglected. This study showed that, when leaves dehydrated in air, the PSII activities of leaves decreased with the decline of leaf relative water content (RWC). Unexpectedly, when leaves dehydrated to same RWC, the decreases in Fv/Fm, Ψo and RC/CSm were lower in leaves dehydrating at 43 °C than those at 25 °C. However, to reach the same RWC, leaves dehydrating at 43 °C experienced 1/6 of the dehydration duration for leaves dehydrating at 25 °C. To distinguish the respective effect of dehydration degree and dehydration duration on photosynthetic apparatus, we studied the PSII activities of leaves treated with different concentration of PEG solutions. Increasing dehydration degree aggravated the decline of Fv/Fm, Ψo and RC/CSm in leaves with the same dehydration duration, while prolonging the dehydration duration also exacerbated the decline of Fv/Fm, Ψo and RC/CSm in leaves with identical dehydration degree. With the same dehydration degree and duration, high temperature enhanced the decrease of Fv/Fm, Ψo and RC/CSm in the leaves. When leaves dehydrated in air, the effect of high temperature was underestimated due to reduction of dehydration duration. The results demonstrated that, dehydration degree and duration both play important roles in damage to photosynthetic apparatus. We suggest that, under combined stresses, the effects of dehydration degree and duration on plants should be considered comprehensively, otherwise, partial or incorrect results may be obtained. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
NASA Technical Reports Server (NTRS)
Mielke, Steven P.; Kiang, Nancy Y.; Blankenship, Robert E.; Mauzerall, David
2012-01-01
Acaryochloris marina is the only species known to utilize chlorophyll (Chl) d as a principal photopigment. The peak absorption wavelength of Chl d is redshifted approx. 40 nm in vivo relative to Chl a, enabling this cyanobacterium to perform oxygenic phototrophy in niche environments enhanced in far-red light. We present measurements of the in vivo energy-storage (E-S) efficiency of photosynthesis in A. marina, obtained using pulsed photoacoustics (PA) over a 90-nm range of excitation wavelengths in the red and far-red. Together with modeling results, these measurements provide the first direct observation of the trap energies of PSI and PSII, and also the photosystem-specific contributions to the total E-S efficiency. We find the maximum observed efficiency in A. marina (40+/-1% at 735 nm) is higher than in the Chl a cyanobacterium Synechococcus leopoliensis (35+/-1% at 690 nm). The efficiency at peak absorption wavelength is also higher in A. marina (36+/-1% at 710 nm vs. 31+/-1% at 670 nm). In both species, the trap efficiencies are approx. 40% (PSI) and approx. 30% (PSII). The PSI trap in A. marina is found to lie at 740+/-5 nm, in agreement with the value inferred from spectroscopic methods. The best fit of the model to the PA data identifies the PSII trap at 723+/-3 nm, supporting the view that the primary electron-donor is Chl d, probably at the accessory (ChlD1) site. A decrease in efficiency beyond the trap wavelength, consistent with uphill energy transfer, is clearly observed and fit by the model. These results demonstrate that the E-S efficiency in A. marina is not thermodynamically limited, suggesting that oxygenic photosynthesis is viable in even redder light environments.
Brelsford, Craig C; Morales, Luis O; Nezval, Jakub; Kotilainen, Titta K; Hartikainen, Saara M; Aphalo, Pedro J; Robson, T Matthew
2018-04-28
We studied how plants acclimated to growing conditions that included combinations of blue light and ultraviolet-A (UV-A) radiation, and whether their growing environment affected their photosynthetic capacity during and after a brief period of acute high light (as might happen during an under-canopy sunfleck). Arabidopsis thaliana Landsberg erecta wild-type were compared with mutants lacking functional blue-light-and-UV photoreceptors: phototropin 1PHOT1, cryptochromes (CRY1 and CRY2) and UV RESISTANT LOCUS 8 (uvr8). This was achieved using LED lamps in a controlled environment to create treatments with or without blue light, in a split-plot design with or without UV-A radiation. We compared the accumulation of phenolic compounds under growth conditions and after exposure to 30 minutes of high light at the end of the experiment (46 days), and likewise measured the operational efficiency of photosystem II (φPSII a proxy for photosynthetic performance) and dark-adapted maximum quantum yield (F v /F m to assess PSII damage). Our results indicate that cryptochromes are the main photoreceptors regulating phenolic-compound accumulation in response to blue light and UV-A radiation, and a lack of functional cryptochromes impairs photosynthetic performance under high light. Our findings also reveal a role for UVR8 in accumulating flavonoids in response to a low UV-A dose. Interestingly, phototropin 1 partially-mediated constitutive accumulation of phenolic compounds in the absence of blue light. Low irradiance blue light and UV-A did not improve φPSII and F v /F m upon our acute high light treatment, however CRYs played an important role in ameliorating high-light stress. This article is protected by copyright. All rights reserved.
Kawalec, Paweł P; Malinowski, Krzysztof P
2015-01-01
Systemic lupus erythematosus, systemic sclerosis and sarcoidosis are three different autoimmune systemic diseases that generate a significant burden to society due to treatment costs and also those caused by a work disability or absenteeism among patients. Relevant 2012 data referring to the three components of absenteeism produced by autoimmune systemic diseases, sick leave, short-term and long-term work disability, were obtained from the Social Insurance Institution in Poland (PSII). By applying the Human Capital Approach using gross domestic product per capita, gross value added per worker and gross income per worker in 2012, total indirect costs for the diseases were calculated. All costs were presented in euros and were valid for 2012. The PSII recorded 1600 patients with systemic lupus erythematosus, 500 patients with systemic sclerosis and 2700 patients with sarcoidosis in the 2012 - total indirect costs were as high as 7,260,595, 2,268,571 and 4,027,575 EUR, respectively. Costs were estimated using gross domestic product per capita; 17,485,412, 5,463,312 and 9,699,455 EUR, accordingly, calculated using gross value added per worker and 5,346,933, 1,670,648 and 2,966,034 EUR estimated using gross income per worker, respectively. Considering only data on absenteeism gathered by the PSII we can conclude that the three autoimmune systemic diseases bore great indirect costs. Their social burden for Poland could be even greater when considering presenteeism as well as other components of absenteeism such as loss of unpaid work, a gray economy or loss of leisure time.
The 24 hour recovery kinetics from n starvation in Phaeodactylum tricornutum and Emiliania huxleyi.
Zhao, Yan; Wang, You; Quigg, Antonietta
2015-08-01
The response of N (nitrate) starved cells of the diatom Phaeodactylum tricornutum and the coccolithophore Emiliania huxleyi to a pulse of new N were measured to investigate rapid cellular and photosynthetic recovery kinetics. The changes of multiple parameters were followed over 24 h. In P. tricornutum, the recovery of Fv /Fm (the maximum quantum yield of PS II) and σPSII (the functional absorption cross-section for PSII) started within the first hour, much earlier than other parameters. Cellular pigments did not recover during the 24 h but the chlorophyll (chl) a/carotenoid ratios increased to levels measured in the controls. Cell division was independent of the recovery of chl a. In E. huxleyi, the recovery of Fv /Fm and σPSII started after an hour, synchronous with the increase in cellular organic N and chl a with pigments fully recovered within 14 h. P. tricornutum prioritized the recovery of its photosynthetic functions and cell divisions while E. huxleyi did not follow this pattern. We hypothesize that the different recovery strategies between the two species allow P. tricornutum to be more competitive when N pulses are introduced into N-limited water while E. huxleyi is adapted to N scarce waters where such pulses are infrequent. These findings are consistent with successional patterns observed in coastal environments. This is one of only a few studies exploring recovery kinetics of cellular functions and photosynthesis after nitrogen stress in phytoplankton. Our results can be used to enhance ecological models linking phytoplankton traits to species diversity and community structure. © 2015 Phycological Society of America.
Shen, Xianjun; Yi, Li; Jiang, Xingpeng; He, Tingting; Yang, Jincai; Xie, Wei; Hu, Po; Hu, Xiaohua
2017-01-01
How to identify protein complex is an important and challenging task in proteomics. It would make great contribution to our knowledge of molecular mechanism in cell life activities. However, the inherent organization and dynamic characteristic of cell system have rarely been incorporated into the existing algorithms for detecting protein complexes because of the limitation of protein-protein interaction (PPI) data produced by high throughput techniques. The availability of time course gene expression profile enables us to uncover the dynamics of molecular networks and improve the detection of protein complexes. In order to achieve this goal, this paper proposes a novel algorithm DCA (Dynamic Core-Attachment). It detects protein-complex core comprising of continually expressed and highly connected proteins in dynamic PPI network, and then the protein complex is formed by including the attachments with high adhesion into the core. The integration of core-attachment feature into the dynamic PPI network is responsible for the superiority of our algorithm. DCA has been applied on two different yeast dynamic PPI networks and the experimental results show that it performs significantly better than the state-of-the-art techniques in terms of prediction accuracy, hF-measure and statistical significance in biology. In addition, the identified complexes with strong biological significance provide potential candidate complexes for biologists to validate.
Gleiter, H M; Haag, E; Shen, J R; Eaton-Rye, J J; Inoue, Y; Vermaas, W F; Renger, G
1994-10-11
Several autotrophic mutant strains of Synechocystis sp. PCC 6803 carrying short deletions or a single-site mutation within the large, lumen-exposed loop (loop E) of the chlorophyll a-binding photosystem II core protein, CP47, are analyzed for their functional properties by measuring the flash-induced pattern of thermoluminescence, oxygen yield, and fluorescence quantum yield. A physiological and biochemical characterization of these mutant strains has been given in two previous reports [Eaton-Rye, J.J., & Vermaas, W.F.J. (1991) Plant Mol. Biol. 17, 1165-1177; Haag, E., Eaton-Rye, J.J., Renger, G., & Vermaas, S. F.J. (1993) Biochemistry 32, 4444-4454]. The results of the present study show that deletion of charged and conserved amino acids in a region roughly located between residues 370 and 390 decreases the binding affinity of the extrinsic PS II-O protein to photosystem II. Marked differences with PSII-O deletion mutants are observed with respect to Ca2+ requirement and the flash-induced pattern of oxygen evolution. Under conditions where a sufficient light activation is provided, the psbB mutants assayed in this study reveal normal S-state parameters and lifetimes. The results bear two basic implications: (i) the manganese involved in water oxidation can still be bound in a functionally normal or only slightly distorted manner, and (ii) the binding of the extrinsic PS II-O protein to photosystem II is impaired in mutants carrying a deletion in the domain between residues 370 and 390, but the presence of the PS II-O protein is still of functional relevance for the PS II complex, e.g., for maintenance of a high-affinity binding site for Ca2+ and/or involvement during the process of photoactivation.
How exciton-vibrational coherences control charge separation in the photosystem II reaction center.
Novoderezhkin, Vladimir I; Romero, Elisabet; van Grondelle, Rienk
2015-12-14
In photosynthesis absorbed sun light produces collective excitations (excitons) that form a coherent superposition of electronic and vibrational states of the individual pigments. Two-dimensional (2D) electronic spectroscopy allows a visualization of how these coherences are involved in the primary processes of energy and charge transfer. Based on quantitative modeling we identify the exciton-vibrational coherences observed in 2D photon echo of the photosystem II reaction center (PSII-RC). We find that the vibrations resonant with the exciton splittings can modify the delocalization of the exciton states and produce additional states, thus promoting directed energy transfer and allowing a switch between the two charge separation pathways. We conclude that the coincidence of the frequencies of the most intense vibrations with the splittings within the manifold of exciton and charge-transfer states in the PSII-RC is not occurring by chance, but reflects a fundamental principle of how energy conversion in photosynthesis was optimized.
Knopf, Ronit Rimon; Adam, Zach
2018-03-27
Degradation of the D1 protein of photosystem II (PSII) reaction center is a pre-requisite for the repair cycle from photoinhibition. Two types of thylakoid proteases, FtsH and Deg, have been demonstrated to participate in this process. However, the location of the proteolytic sites of the lumenal Deg1 protease within its internal sphere raised the question whether the lumenal-exposed regions of D1 are indeed long enough to reach these sites. Implanting these regions into the stable GFP rendered it sensitive to the presence of Deg1 in vitro, demonstrating that the flexible regions of D1 that protrude into the lumen can penetrate through the three side-openings of Deg1 and reach its internal proteolytic sites. This mode of action, facilitating cooperation between proteases on both sides of the thylakoid membranes, should be applicable to the degradation of other integral thylakoid membrane proteins as well.
Limitations to photosynthesis by proton motive force-induced photosystem II photodamage
Davis, Geoffry A; Kanazawa, Atsuko; Schöttler, Mark Aurel; Kohzuma, Kaori; Froehlich, John E; Rutherford, A William; Satoh-Cruz, Mio; Minhas, Deepika; Tietz, Stefanie; Dhingra, Amit; Kramer, David M
2016-01-01
The thylakoid proton motive force (pmf) generated during photosynthesis is the essential driving force for ATP production; it is also a central regulator of light capture and electron transfer. We investigated the effects of elevated pmf on photosynthesis in a library of Arabidopsis thaliana mutants with altered rates of thylakoid lumen proton efflux, leading to a range of steady-state pmf extents. We observed the expected pmf-dependent alterations in photosynthetic regulation, but also strong effects on the rate of photosystem II (PSII) photodamage. Detailed analyses indicate this effect is related to an elevated electric field (Δψ) component of the pmf, rather than lumen acidification, which in vivo increased PSII charge recombination rates, producing singlet oxygen and subsequent photodamage. The effects are seen even in wild type plants, especially under fluctuating illumination, suggesting that Δψ-induced photodamage represents a previously unrecognized limiting factor for plant productivity under dynamic environmental conditions seen in the field. DOI: http://dx.doi.org/10.7554/eLife.16921.001 PMID:27697149
Limitations to photosynthesis by proton motive force-induced photosystem II photodamage
Davis, Geoffry A.; Kanazawa, Atsuko; Schöttler, Mark Aurel; ...
2016-10-04
The thylakoid proton motive force (pmf) generated during photosynthesis is the essential driving force for ATP production; it is also a central regulator of light capture and electron transfer. We investigated the effects of elevated pmf on photosynthesis in a library of Arabidopsis thaliana mutants with altered rates of thylakoid lumen proton efflux, leading to a range of steady-state pmf extents. We observed the expected pmf-dependent alterations in photosynthetic regulation, but also strong effects on the rate of photosystem II (PSII) photodamage. Detailed analyses indicate this effect is related to an elevated electric field (Δψ) component of the pmf, rathermore » than lumen acidification, which in vivo increased PSII charge recombination rates, producing singlet oxygen and subsequent photodamage. The effects are seen even in wild type plants, especially under fluctuating illumination, suggesting that Δψ-induced photodamage represents a previously unrecognized limiting factor for plant productivity under dynamic environmental conditions seen in the field.« less
Hatier, Jean-Hugues B; Clearwater, Michael J; Gould, Kevin S
2013-01-01
Black pigmented leaves are common among horticultural cultivars, yet are extremely rare across natural plant populations. We hypothesised that black pigmentation would disadvantage a plant by reducing photosynthesis and therefore shoot productivity, but that this trait might also confer protective benefits by shielding chloroplasts against photo-oxidative stress. CO2 assimilation, chlorophyll a fluorescence, shoot biomass, and pigment concentrations were compared for near isogenic green- and black-leafed Ophiopogonplaniscapus 'Nigrescens'. The black leaves had lower maximum CO2 assimilation rates, higher light saturation points and higher quantum efficiencies of photosystem II (PSII) than green leaves. Under saturating light, PSII photochemistry was inactivated less and recovered more completely in the black leaves. In full sunlight, green plants branched more abundantly and accumulated shoot biomass quicker than the black plants; in the shade, productivities of the two morphs were comparable. The data indicate a light-screening, photoprotective role of foliar anthocyanins. However, limitations to photosynthetic carbon assimilation are relatively small, insufficient to explain the natural scarcity of black-leafed plants.
The Conceptual Complexity of Vocabulary in Elementary-Grades Core Science Program Textbooks
ERIC Educational Resources Information Center
Fitzgerald, W. Jill; Elmore, Jeff; Kung, Melody; Stenner, A. Jackson
2017-01-01
The researchers explored the conceptual complexity of vocabulary in contemporary elementary-grades core science program textbooks to address two research questions: (1) Can a progression of concepts' complexity level be described across grades? (2) Was there gradual developmental growth of the most complex concepts' networks of associated concepts…
NASA Astrophysics Data System (ADS)
Macdonald, A. S.; Barr, S. M.; Miller, B. V.; Reynolds, P. H.; Rhodes, B. P.; Yokart, B.
2010-01-01
The western gneiss belt in northern Thailand is exposed within two overlapping Cenozoic structural domains: the extensional Doi Inthanon metamorphic core complex domain located west of the Chiang Mai basin, and the Mae Ping strike-slip fault domain located west of the Tak batholith. New P- T estimates and U-Pb and 40Ar/ 39Ar age determinations from the Doi Inthanon domain show that the gneiss there records a complex multi-stage history that can be represented by a clockwise P- T- t path. U-Pb zircon and titanite dating of mylonitic calc-silicate gneiss from the Mae Wang area of the complex indicates that the paragneissic sequence experienced high-grade, medium-pressure metamorphism (M1) in the Late Triassic - Early Jurassic (ca. 210 Ma), in good agreement with previously determined zircon ages from the underlying core orthogneiss exposed on Doi Inthanon. Late Cretaceous monazite ages of 84 and 72 Ma reported previously from the core orthogneiss are attributed to a thermal overprint (M2) to upper-amphibolite facies in the sillimanite field. U-Pb zircon and monazite dating of granitic mylonite from the Doi Suthep area of the complex provides an upper age limit of 40 Ma (Late Eocene) for the early stage(s) of development of the actual core complex, by initially ductile, low-angle extensional shearing under lower amphibolite-facies conditions (M3), accompanied by near-isothermal diapiric rise and decompression melting. 40Ar/ 39Ar laserprobe dating of muscovite from both Doi Suthep and Doi Inthanon provided Miocene ages of ca. 26-15 Ma, representing cooling through the ca. 350 °C isotherm and marking late-stage development of the core complex by detachment faulting of the cover rocks and isostatic uplift of the sheared core zone and mantling gneisses in the footwall. Similarities in the thermochronology of high-grade gneisses exposed in the core complex and shear zone domains in the western gneiss belt of northern Thailand (and also in northern Vietnam, Laos, Yunnan, and central Myanmar) suggest a complex regional response to indentation of Southeast Asia by India.
The EARP Complex and Its Interactor EIPR-1 Are Required for Cargo Sorting to Dense-Core Vesicles
Topalidou, Irini; Cattin-Ortolá, Jérôme; MacCoss, Michael J.
2016-01-01
The dense-core vesicle is a secretory organelle that mediates the regulated release of peptide hormones, growth factors, and biogenic amines. Dense-core vesicles originate from the trans-Golgi of neurons and neuroendocrine cells, but it is unclear how this specialized organelle is formed and acquires its specific cargos. To identify proteins that act in dense-core vesicle biogenesis, we performed a forward genetic screen in Caenorhabditis elegans for mutants defective in dense-core vesicle function. We previously reported the identification of two conserved proteins that interact with the small GTPase RAB-2 to control normal dense-core vesicle cargo-sorting. Here we identify several additional conserved factors important for dense-core vesicle cargo sorting: the WD40 domain protein EIPR-1 and the endosome-associated recycling protein (EARP) complex. By assaying behavior and the trafficking of dense-core vesicle cargos, we show that mutants that lack EIPR-1 or EARP have defects in dense-core vesicle cargo-sorting similar to those of mutants in the RAB-2 pathway. Genetic epistasis data indicate that RAB-2, EIPR-1 and EARP function in a common pathway. In addition, using a proteomic approach in rat insulinoma cells, we show that EIPR-1 physically interacts with the EARP complex. Our data suggest that EIPR-1 is a new interactor of the EARP complex and that dense-core vesicle cargo sorting depends on the EARP-dependent trafficking of cargo through an endosomal sorting compartment. PMID:27191843
NASA Astrophysics Data System (ADS)
Guha, Anirban; Han, Jimei; Cummings, Cadan; McLennan, David A.; Warren, Jeffrey M.
2018-06-01
Extreme summer heat waves are known to induce foliar and stem mortality in temperate forest ecosystems, yet our mechanistic knowledge of physiological thresholds for damage is lacking. Current spatiotemporal simulations of forest growth responses to climate change fail to explain the variability between co-occurring tree species to climate extremes, indicating a need for new model frameworks that include mechanistic understanding of trait-specific responses. In this context, using manipulative heat wave (hw) experiments we investigated ecophysiological responses and physiological recovery in four co-occurring temperate tree species of the southeastern United States including three deciduous angiosperms: southern red oak (Quercus falcata Michx.), shumard oak (Q. shumardii Buckl.) and, tulip-poplar (Liriodendron tulipifera L.) and one evergreen conifer: eastern white pine (Pinus strobus L.). The objectives were to investigate inter-specific differences in ecophysiological responses to hw events to understand mechanistic differences in resilience that may be useful for future model development. Two-year-old, well-irrigated potted saplings were exposed to progressively increasing extreme hw diurnal cycles followed by a recovery cycle, with peak midday air temperature increasing from 37 °C to a maximum of 51 °C on the third day of the hw. Plants were assessed for various photosynthetic and water use responses, chlorophyll fluorescence and photosystem-II (PSII) activity, leaf temperature and foliar pigments. Intense heat caused progressive down-regulation in net photosynthesis, but the stomata remained operational, which helped cool leaves through loss of latent heat. Even though whole plant transpiration increased for all species, the rate plateaued at higher hw events that allowed leaf temperature to exceed 45 °C, well beyond the optimal range. A significant increase in non-photochemical quenching over the hw cycles was evident in all species though indications of both transient and chronic PSII damage were evident in the most heat sensitive species, pine and tulip poplar. The oaks, especially Q. falcata, showed greater thermotolerance than other species with a higher threshold for photodamage to PSII, rapid overnight recovery of photoinhibition and minimal heat-induced canopy necrosis. We conclude that these co-occurring tree species exhibit large variability in thermotolerance and in their capability to repair both transient and chronic photodamage. Our results indicate that extreme heat induced damage to PSII within the leaf chloroplasts may be a mechanistic trait that can be used to project how different species respond to extreme weather events.
Moustakas, Michael; Malea, Paraskevi; Haritonidou, Katerina; Sperdouli, Ilektra
2017-07-01
Photosynthetic activity, oxidative stress, and Cu bioaccumulation in the seagrass Cymodocea nodosa were assessed 4, 12, 24, 48, and 72 h after exposure to two copper oxide nanoparticle (CuO NP) concentrations (5 and 10 mg L -1 ). CuO NPs were characterized by scanning electron microscopy (SEM) and dynamic light scattering measurements (DLS). Chlorophyll fluorescence analysis was applied to detect photosystem II (PSII) functionality, while the Cu accumulation kinetics into the leaf blades was fitted to the Michaelis-Menten equation. The uptake kinetics was rapid during the first 4 h of exposure and reached an equilibrium state after 10 h exposure to 10 mg L -1 and after 27 h to 5 mg L -1 CuO NPs. As a result, 4-h treatment with 5 mg L -1 CuO NPs, decreased the quantum yield of PS II photochemistry (Φ PSΙΙ ) with a parallel increase in the regulated non-photochemical energy loss in PSII (Φ NPQ ). However, the photoprotective dissipation of excess absorbed light energy as heat, through the process of non-photochemical quenching (NPQ), did not maintain the same fraction of open reaction centers (q p ) as in control plants. This reduced number of open reaction centers resulted in a significant increase of H 2 O 2 production in the leaf veins serving possibly as an antioxidant defense signal. Twenty-four-hour treatment had no significant effect on Φ PSΙΙ and q p compared to controls. However, 24 h exposure to 5 mg L -1 CuO NPs increased the quantum yield of non-regulated energy loss in PSII (Φ NO ), and thus the formation of singlet oxygen ( 1 O 2 ) via the triplet state of chlorophyll, possible because the uptake kinetics had not yet reached the equilibrium state as did 10 mg L -1 . Longer-duration treatment (48 and 72 h) had less effect on the allocation of absorbed light energy at PSII and the fraction of open reaction centers, compared to 4-h treatment, suggesting the function of a stress defense mechanism. The response of C. nodosa leaves to CuO NPs fits the "Threshold for Tolerance Model" with a threshold time (more than 4 h) required for induction of a stress defense mechanism, through H 2 O 2 production.
Native structure of a type IV secretion system core complex essential for Legionella pathogenesis.
Kubori, Tomoko; Koike, Masafumi; Bui, Xuan Thanh; Higaki, Saori; Aizawa, Shin-Ichi; Nagai, Hiroki
2014-08-12
Bacterial type IV secretion systems are evolutionarily related to conjugation systems and play a pivotal role in infection by delivering numerous virulence factors into host cells. Using transmission electron microscopy, we report the native molecular structure of the core complex of the Dot/Icm type IV secretion system encoded by Legionella pneumophila, an intracellular human pathogen. The biochemically isolated core complex, composed of at least five proteins--DotC, DotD, DotF, DotG, and DotH--has a ring-shaped structure. Intriguingly, morphologically distinct premature complexes are formed in the absence of DotG or DotF. Our data suggest that DotG forms a central channel spanning inner and outer membranes. DotF, a component dispensable for type IV secretion, plays a role in efficient embedment of DotG into the functional core complex. These results highlight a common scheme for the biogenesis of transport machinery.
ERIC Educational Resources Information Center
Williamson, Gary L.; Fitzgerald, Jill; Stenner, A. Jackson
2013-01-01
The Common Core State Standards (CCSS) set a controversial aspirational, quantitative trajectory for text complexity exposure for readers throughout the grades, aiming for all high school graduates to be able to independently read complex college and workplace texts. However, the trajectory standard is presented without reference to how the…
Integrally cored ceramic investment casting mold fabricated by ceramic stereolithography
NASA Astrophysics Data System (ADS)
Bae, Chang-Jun
Superalloy airfoils are produced by investment casting (IC), which uses ceramic cores and wax patterns with ceramic shell molds. Hollow cored superalloy airfoils in a gas turbine engine are an example of complex IC parts. The complex internal hollow cavities of the airfoil are designed to conduct cooling air through one or more passageways. These complex internal passageways have been fabricated by a lost wax process requiring several processing steps; core preparation, injection molding for wax pattern, and dipping process for ceramic shell molds. Several steps generate problems such as high cost and decreased accuracy of the ceramic mold. For example, costly tooling and production delay are required to produce mold dies for complex cores and wax patterns used in injection molding, resulting in a big obstacle for prototypes and smaller production runs. Rather than using separate cores, patterns, and shell molds, it would be advantageous to directly produce a mold that has the casting cavity and the ceramic core by one process. Ceramic stereolithography (CerSLA) can be used to directly fabricate the integrally cored ceramic casting mold (ICCM). CerSLA builds ceramic green objects from CAD files from many thin liquid layers of powder in monomer, which are solidified by polymerization with a UV laser, thereby "writing" the design for each slice. This dissertation addresses the integrally cored casting ceramic mold (ICCM), the ceramic core with a ceramic mold shell in a single patternless construction, fabricated by ceramic stereolithography (CerSLA). CerSLA is considered as an alternative method to replace lost wax processes, for small production runs or designs too complex for conventional cores and patterns. The main topic is the development of methods to successfully fabricate an ICCM by CerSLA from refractory silica, as well as related issues. The related issues are the segregation of coarse fused silica powders in a layer, the degree of segregation parameter to prevent segregation, and sintering and cristobalite transformation in fused silica compacts.
ERIC Educational Resources Information Center
Firooznia, Fardad
2009-01-01
Many instructors of biology have noted the usefulness of hands-on exercises that require building and using a model or role-playing in helping students to visualize and understand abstract concepts better. In the author's introductory courses, he has resorted to role-playing and biological "plays" to help students visualize more abstract subjects…
Spectral and kinetic effects accompanying the assembly of core complexes of Rhodobacter sphaeroides.
Freiberg, Arvi; Chenchiliyan, Manoop; Rätsep, Margus; Timpmann, Kõu
2016-11-01
In the present work, spectral and kinetic changes accompanying the assembly of the light-harvesting 1 (LH1) complex with the reaction center (RC) complex into monomeric RC-LH1 and dimeric RC-LH1-PufX core complexes of the photosynthetic purple bacterium Rhodobacter sphaeroides are systematically studied over the temperature range of 4.5-300K. The samples were interrogated with a combination of optical absorption, hole burning, fluorescence excitation, steady state and picosecond time resolved fluorescence spectroscopy. Fair additivity of the LH1 and RC absorption spectra suggests rather weak electronic coupling between them. A low-energy tail revealed at cryogenic temperatures in the absorption spectra of both monomeric and dimeric core complexes is proved to be due to the special pair of the RC. At selected excitation intensity and temperature, the fluorescence decay time of core complexes is shown to be a function of multiple factors, most importantly of the presence/absence of RCs, the supramolecular architecture (monomeric or dimeric) of the complexes, and whether the complexes were studied in a native membrane environment or in a detergent - purified state. Copyright © 2016 Elsevier B.V. All rights reserved.
Has First-Grade Core Reading Program Text Complexity Changed across Six Decades?
ERIC Educational Resources Information Center
Fitzgerald, Jill; Elmore, Jeff; Relyea, Jackie Eunjung; Hiebert, Elfrieda H.; Stenner, A. Jackson
2016-01-01
The purpose of the study was to address possible text complexity shifts across the past six decades for a continually best-selling first-grade core reading program. The anthologies of one publisher's seven first-grade core reading programs were examined using computer-based analytics, dating from 1962 to 2013. Variables were Overall Text…
Duan, Lele; Wang, Lei; Li, Fusheng; Li, Fei; Sun, Licheng
2015-07-21
The oxygen evolving complex (OEC) of the natural photosynthesis system II (PSII) oxidizes water to produce oxygen and reducing equivalents (protons and electrons). The oxygen released from PSII provides the oxygen source of our atmosphere; the reducing equivalents are used to reduce carbon dioxide to organic products, which support almost all organisms on the Earth planet. The first photosynthetic organisms able to split water were proposed to be cyanobacteria-like ones appearing ca. 2.5 billion years ago. Since then, nature has chosen a sustainable way by using solar energy to develop itself. Inspired by nature, human beings started to mimic the functions of the natural photosynthesis system and proposed the concept of artificial photosynthesis (AP) with the view to creating energy-sustainable societies and reducing the impact on the Earth environments. Water oxidation is a highly energy demanding reaction and essential to produce reducing equivalents for fuel production, and thereby effective water oxidation catalysts (WOCs) are required to catalyze water oxidation and reduce the energy loss. X-ray crystallographic studies on PSII have revealed that the OEC consists of a Mn4CaO5 cluster surrounded by oxygen rich ligands, such as oxyl, oxo, and carboxylate ligands. These negatively charged, oxygen rich ligands strongly stabilize the high valent states of the Mn cluster and play vital roles in effective water oxidation catalysis with low overpotential. This Account describes our endeavors to design effective Ru WOCs with low overpotential, large turnover number, and high turnover frequency by introducing negatively charged ligands, such as carboxylate. Negatively charged ligands stabilized the high valent states of Ru catalysts, as evidenced by the low oxidation potentials. Meanwhile, the oxygen production rates of our Ru catalysts were improved dramatically as well. Thanks to the strong electron donation ability of carboxylate containing ligands, a seven-coordinate Ru(IV) species was isolated as a reaction intermediate, shedding light on the reaction mechanisms of Ru-catalyzed water oxidation chemistry. Auxiliary ligands have dramatic effects on the water oxidation catalysis in terms of the reactivity and the reaction mechanism. For instance, Ru-bda (H2bda = 2,2'-bipyridine-6,6'-dicarboxylic acid) water oxidation catalysts catalyze Ce(IV)-driven water oxidation extremely fast via the radical coupling of two Ru(V)═O species, while Ru-pda (H2pda = 1,10-phenanthroline-2,9-dicarboxylic acid) water oxidation catalysts catalyze the same reaction slowly via water nucleophilic attack on a Ru(V)═O species. With a number of active Ru catalysts in hands, light driven water oxidation was accomplished using catalysts with low catalytic onset potentials. The structures of molecular catalysts could be readily tailored to introduce additional functional groups, which favors the fabrication of state-of-the-art Ru-based water oxidation devices, such as electrochemical water oxidation anodes and photo-electrochemical anodes. The development of efficient water oxidation catalysts has led to a step forward in the sustainable energy system.
Asada, Kozi
1999-06-01
Photoreduction of dioxygen in photosystem I (PSI) of chloroplasts generates superoxide radicals as the primary product. In intact chloroplasts, the superoxide and the hydrogen peroxide produced via the disproportionation of superoxide are so rapidly scavenged at the site of their generation that the active oxygens do not inactivate the PSI complex, the stromal enzymes, or the scavenging system itself. The overall reaction for scavenging of active oxygens is the photoreduction of dioxygen to water via superoxide and hydrogen peroxide in PSI by the electrons derived from water in PSII, and the water-water cycle is proposed for these sequences. An overview is given of the molecular mechanism of the water-water cycle and microcompartmentalization of the enzymes participating in it. Whenever the water-water cycle operates properly for scavenging of active oxygens in chloroplasts, it also effectively dissipates excess excitation energy under environmental stress. The dual functions of the water-water cycle for protection from photoinihibition are discussed.
Dankov, Kolyo G; Dobrikova, Anelia G; Ughy, Bettina; Bogos, Balázs; Gombos, Zoltan; Apostolova, Emilia L
2011-06-01
Pulse-amplitude-modulated (PAM) chlorophyll fluorescence and photosynthetic oxygen evolution were used to investigate the role of the different amount and organization of light-harvesting complexes of photosystem II (LHCII) in four pea species on the susceptibility of the photosynthetic apparatus to high-light treatment. In this work we analyzed the thylakoid membrane lipid composition of the studied pea plants. A relationship between the structural organization of LHCII proteins, the amount of the main lipid classes and the sensitivity of the photosynthetic apparatus to high-light treatment was found. The results reveal that the photosynthetic apparatus, enriched in oligomeric forms of LHCII concomitant with decreased amount of anionic lipids and increased content of the monogalactosyldiacylglycerol (MGDG), is less sensitive to high light. Our data also suggest that the degree of LHCII oligomerization, as well as the lipid composition do not influence the degree of recovery of the PSII photochemistry after excess light exposure. Copyright © 2011 Elsevier Masson SAS. All rights reserved.
Changes of Photosynthetic Behaviors in Kappaphycus alvarezii Infected by Epiphyte.
Pang, Tong; Liu, Jianguo; Liu, Qian; Lin, Wei
2011-01-01
Epiphytic filamentous algae (EFA) were noted as a serious problem to reduce the production and quality of K. alvarezii. The morphological studies revealed that the main epiphyte on K. alvarezii was Neosiphonia savatieri in China. Though the harmful effects of EFA on the production of K. alvarezii have been reported, the detailed mechanism of the N. savatieri in limiting the production of K. alvarezii has not been studied yet. The present paper studied the effects of N. savatieri infection on photosynthetic behaviors in K. alvarezii by detecting chlorophyll fluorescence transient in vivo. The results revealed that damage of oxygen-evolving complex (OEC), decrease of active reaction centers (RCs), and the plastoquinone (PQ) pool as well as significant reduction in the performance indexes (PI) of PSII were caused by the infection of N. savatieri. The influence of N. savatieri on photosynthetic activity of K. alvarezii should be one of the important reasons to reduce the production of K. alvarezii infected by N. savatieri.
Changes of Photosynthetic Behaviors in Kappaphycus alvarezii Infected by Epiphyte
Pang, Tong; Liu, Jianguo; Liu, Qian; Lin, Wei
2011-01-01
Epiphytic filamentous algae (EFA) were noted as a serious problem to reduce the production and quality of K. alvarezii. The morphological studies revealed that the main epiphyte on K. alvarezii was Neosiphonia savatieri in China. Though the harmful effects of EFA on the production of K. alvarezii have been reported, the detailed mechanism of the N. savatieri in limiting the production of K. alvarezii has not been studied yet. The present paper studied the effects of N. savatieri infection on photosynthetic behaviors in K. alvarezii by detecting chlorophyll fluorescence transient in vivo. The results revealed that damage of oxygen-evolving complex (OEC), decrease of active reaction centers (RCs), and the plastoquinone (PQ) pool as well as significant reduction in the performance indexes (PI) of PSII were caused by the infection of N. savatieri. The influence of N. savatieri on photosynthetic activity of K. alvarezii should be one of the important reasons to reduce the production of K. alvarezii infected by N. savatieri. PMID:21845201
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adams, Peter G.; Mothersole, David J.; Ng, Irene W.
2011-01-01
In the model photosynthetic bacterium Rhodobacter sphaeroides domains of light-harvesting 2 (LH2) complexes surround and interconnect dimeric reaction centre–light-harvesting 1–PufX (RC–LH1–PufX) ‘core’ complexes, forming extensive networks for energy transfer and trapping. These complexes are housed in spherical intracytoplasmic membranes (ICMs), which are assembled in a stepwise process where biosynthesis of core complexes tends to dominate the early stages of membrane invagination. The kinetics of LH2 assembly were measured in PufX mutants that assemble monomeric core complexes, as a consequence of either a twelve-residue N-terminal truncation of PufX (PufXΔ12) or the complete removal of PufX (PufX -). Lower rates of LH2more » assembly and retarded maturation of membrane invagination were observed for the larger and less curved ICM from the PufX - mutant, consistent with the proposition that local membrane curvature, initiated by arrays of bent RC–LH1–PufX dimers, creates a favourable environment for stable assembly of LH2 complexes. Transmission electron microscopy and high-resolution atomic force microscopy were used to examine ICM morphology and membrane protein organisation in these mutants. Some partitioning of core and LH2 complexes was observed in PufX - membranes, resulting in locally ordered clusters of monomeric RC–LH1 complexes. The distribution of core and LH2 complexes in the three types of membrane examined is consistent with previous models of membrane curvature and domain formation (Frese et al., 2008), which demonstrated that a combination of crowding and asymmetries in sizes and shapes of membrane protein complexes drives membrane organisation.« less
Interactions of Escherichia coli σ70 within the transcription elongation complex
Daube, Shirley S.; von Hippel, Peter H.
1999-01-01
A functional transcription elongation complex can be formed without passing through a promoter by adding a complementary RNA primer and core Escherichia coli RNA polymerase in trans to an RNA-primed synthetic bubble-duplex DNA framework. This framework consists of a double-stranded DNA sequence with an internal noncomplementary DNA “bubble” containing a hybridized RNA primer. On addition of core polymerase and the requisite NTPs, the RNA primer is extended in a process that manifests most of the properties of in vitro transcription elongation. This synthetic elongation complex can also be assembled by using holo rather than core RNA polymerase, and in this study we examine the interactions and fate of the σ70 specificity subunit of the holopolymerase in the assembly process. We show that the addition of holopolymerase to the bubble-duplex construct triggers the dissociation of the sigma factor from some complexes, whereas in others the RNA oligomer is released into solution instead. These results are consistent with an allosteric competition between σ70 and the nascent RNA strand within the elongation complex and suggest that both cannot be bound to the core polymerase simultaneously. However, the dissociation of σ70 from the complex can also be stimulated by binding of the holopolymerase to the DNA bubble duplex in the absence of a hybridized RNA primer, suggesting that the binding of the core polymerase to the bubble-duplex construct also triggers a conformational change that additionally weakens the sigma–core interaction. PMID:10411885
Küster, Anette; Pohl, Korinna; Altenburger, Rolf
2007-09-01
BACKGROUND, GOALS AND SCOPE: During the last years the miniaturization of toxicity test systems for rapid and parallel measurements of large quantities of samples has often been discussed. For unicellular algae as well as for aquatic macrophytes, fluorescence-based miniaturized test systems have been introduced to analyze photosystem II (PSII) inhibitors. Nevertheless, high-throughput screening should also guarantee the effect detection of a broad range of toxicants in order to ensure routinely applicable, high-throughput measuring device experiments which can cover a broad range of toxicants and modes of action others than PSII inhibition. Thus, the aim of this study was to establish a fast and reproducible measuring system for non-PSII inhibitors for aquatic macrophyte species to overcome major limitations for use. A newly developed imaging pulse-amplitude-modulated chlorophyll fluorometer (I-PAM) was applied as an effect detector in short-term bioassays with the aquatic macrophyte species Lemna minor. This multiwell-plate based measuring device enabled the incubation and measurement of up to 24 samples in parallel. The chemicals paraquat-dichloride, alizarine and triclosan were chosen as representatives for the toxicant groups of non-PSII herbicides, polycyclic aromatic hydrocarbons (PAHs) and pharmaceuticals and personal care products (PPCPs), which are often detected in the aquatic environment. The I-PAM was used (i) to establish and validate the sensitivity of the test system to the three non-PSII inhibitors, (ii) to compare the test systems with standardized and established biotests for aquatic macrophytes, and (iii) to define necessary time scales in aquatic macrophyte testing. For validation of the fluorescence-based assay, the standard growth test with L. minor (ISO/DIS 20079) was performed in parallel for each chemical. The results revealed that fluorescence-based measurements with the I-PAM allow rapid and parallel analysis of large amounts of aquatic macrophyte samples. The I-PAM enabled the recording of concentration-effect-curves with L. minor samples on a 24-well plate with single measurements. Fluorescence-based concentration-effect-curves could be detected for all three chemicals after only 1 h of incubation. After 4-5 h incubation time, the maximum inhibition of fluorescence showed an 80-100% effect for the chemicals tested. The EC50 after 24 h incubation were estimated to be 0.06 mg/L, 0.84 mg/L and 1.69 mg/L for paraquat-dichloride, alizarine and triclosan, respectively. The results obtained with the I-PAM after 24 h for the herbicide paraquat-dichloride and the polycyclic aromatic hydrocarbon alizarine were in good accordance with median effective concentrations (EC50s) obtained by the standardized growth test for L. minor after 7 d incubation (0.09 mg/L and 0.79 mg/L for paraquat-dichloride and alizarine, respectively). Those results were in accordance with literature findings for the two chemicals. In contrast, fluorescence-based EC50 of the antimicrobial agent triclosan proved to be two orders of magnitude greater when compared to the standard growth test with 7 d incubation time (0.026 mg/L) as well as with literature findings. Typically, aquatic macrophyte testing is very time consuming and relies on laborious experimental set-ups. The I-PAM measuring device enabled fast effect screening for the three chemicals tested. While established test systems for aquatic macrophytes need incubation times of > or = 7 d, the I-PAM can detect inhibitory effects much earlier (24 h), even if inhibition of chemicals is not specifically associated with PSII. Thus, the fluorescence-based bioassay with the I-PAM offers a promising approach for the miniaturization and high-throughput testing of chemicals with aquatic macrophytes. For the chemical triclosan, however, the short-term effect prediction with the I-PAM has been shown to be less sensitive than with long-term bioassays, which might be due to physicochemical substance properties such as lipophilicity. The results of this study show that the I-PAM represents a promising tool for decreasing the incubation times of aquatic macrophyte toxicity testing to about 24 h as a supplement to existing test batteries. The applicability of this I-PAM bioassay on emergent and submerged aquatic macrophyte species should be investigated in further studies. Regarding considerations that physicochemical properties of the tested substances might play an important role in microplate bioassays, the I-PAM bioassay should either be accompanied by evaluating physicochemical properties modeled from structural information prior to an experimental investigation, or by intensified chemical analyses to identify and determine nominal concentrations of the toxicants tested. The chemicals paraquat-dichloride, alizarine and triclosan were chosen as representatives for the toxicant groups of non-PSII herbicides, PAHs and PPCPs which are often detected in the aquatic environment. Nevertheless, in order to ensure a routinely applicable measuring device, experiments with a broader range of toxicants and samples of surface and/or waste waters are necessary.
Student Reading Growth Illuminates the Common Core Text-Complexity Standard: Raising Both Bars
ERIC Educational Resources Information Center
Williamson, Gary L.; Fitzgerald, Jill; Stenner, Jackson A.
2014-01-01
The Common Core State Standards (CCSS) establish a challenging text-complexity standard for all high school graduates to read at college and workplace text-complexity levels. We argue that implementation of the CCSS standard requires concurrent examination of historical student reading-growth trends. An example of a historical student average…
Structural and functional organization of the ESCRT-I trafficking complex
Kostelansky, Michael S.; Sun, Ji; Lee, Sangho; Kim, Jaewon; Ghirlando, Rodolfo; Hierro, Aitor; Emr, Scott D.; Hurley, James H.
2006-01-01
Summary The Endosomal Sorting Complex Required for Transport (ESCRT) complexes are central to receptor downregulation, lysosome biogenesis, and budding of HIV. The yeast ESCRT-I complex contains the Vps23, Vps28, and Vps37 proteins and its assembly is directed by the C-terminal steadiness box of Vps23, the N-terminal half of Vps28, and the C-terminal half of Vps37. The crystal structures of a Vps23:Vps28 core subcomplex and the Vps23:Vps28:Vps37 core were solved at 2.1 and 2.8 Å resolution. Each subunit contains a structurally similar pair of helices that form the core. The N-terminal domain of Vps28 has a hydrophobic binding site on its surface that is conformationally dynamic. The C-terminal domain of Vps28 binds the ESCRT-II complex. The structure shows how ESCRT-I is assembled by a compact core from which the Vps23 UEVdomain, the Vps28 C-domain, and other domains project to bind their partners. PMID:16615894
A core hSSB1–INTS complex participates in the DNA damage response
Zhang, Feng; Ma, Teng; Yu, Xiaochun
2013-01-01
Summary Human single-stranded DNA-binding protein 1 (hSSB1) plays an important role in the DNA damage response and the maintenance of genomic stability. It has been shown that the core hSSB1 complex contains hSSB1, INTS3 and C9orf80. Using protein affinity purification, we have identified integrator complex subunit 6 (INTS6) as a major subunit of the core hSSB1 complex. INTS6 forms a stable complex with INTS3 and hSSB1 both in vitro and in vivo. In this complex, INTS6 directly interacts with INTS3. In response to the DNA damage response, along with INTS3 and hSSB1, INTS6 relocates to the DNA damage sites. Moreover, the hSSB1–INTS complex regulates the accumulation of RAD51 and BRCA1 at DNA damage sites and the correlated homologous recombination. PMID:23986477
Atomic structure of the Y complex of the nuclear pore
Kelley, Kotaro; Knockenhauer, Kevin E.; Kabachinski, Greg; ...
2015-03-30
The nuclear pore complex (NPC) is the principal gateway for transport into and out of the nucleus. Selectivity is achieved through the hydrogel-like core of the NPC. The structural integrity of the NPC depends on ~15 architectural proteins, which are organized in distinct subcomplexes to form the >40-MDa ring-like structure. In this paper, we present the 4.1-Å crystal structure of a heterotetrameric core element ('hub') of the Y complex, the essential NPC building block, from Myceliophthora thermophila. Using the hub structure together with known Y-complex fragments, we built the entire ~0.5-MDa Y complex. Our data reveal that the conserved coremore » of the Y complex has six rather than seven members. Finally, evolutionarily distant Y-complex assemblies share a conserved core that is very similar in shape and dimension, thus suggesting that there are closely related architectural codes for constructing the NPC in all eukaryotes.« less
Biogenesis of the yeast cytochrome bc1 complex.
Zara, Vincenzo; Conte, Laura; Trumpower, Bernard L
2009-01-01
The mitochondrial respiratory chain is composed of four different protein complexes that cooperate in electron transfer and proton pumping across the inner mitochondrial membrane. The cytochrome bc1 complex, or complex III, is a component of the mitochondrial respiratory chain. This review will focus on the biogenesis of the bc1 complex in the mitochondria of the yeast Saccharomyces cerevisiae. In wild type yeast mitochondrial membranes the major part of the cytochrome bc1 complex was found in association with one or two copies of the cytochrome c oxidase complex. The analysis of several yeast mutant strains in which single genes or pairs of genes encoding bc1 subunits had been deleted revealed the presence of a common set of bc1 sub-complexes. These sub-complexes are represented by the central core of the bc1 complex, consisting of cytochrome b bound to subunit 7 and subunit 8, by the two core proteins associated with each other, by the Rieske protein associated with subunit 9, and by those deriving from the unexpected interaction of each of the two core proteins with cytochrome c1. Furthermore, a higher molecular mass sub-complex is that composed of cytochrome b, cytochrome c1, core protein 1 and 2, subunit 6, subunit 7 and subunit 8. The identification and characterization of all these sub-complexes may help in defining the steps and the molecular events leading to bc1 assembly in yeast mitochondria.
Barber, James
2016-01-01
About 3 billion years ago an enzyme emerged which would dramatically change the chemical composition of our planet and set in motion an unprecedented explosion in biological activity. This enzyme used solar energy to power the thermodynamically and chemically demanding reaction of water splitting. In so doing it provided biology with an unlimited supply of reducing equivalents needed to convert carbon dioxide into the organic molecules of life while at the same time produced oxygen to transform our planetary atmosphere from an anaerobic to an aerobic state. The enzyme which facilitates this reaction and therefore underpins virtually all life on our planet is known as Photosystem II (PSII). It is a pigment-binding, multisubunit protein complex embedded in the lipid environment of the thylakoid membranes of plants, algae and cyanobacteria. Today we have detailed understanding of the structure and functioning of this key and unique enzyme. The journey to this level of knowledge can be traced back to the discovery of oxygen itself in the 18th-century. Since then there has been a sequence of mile stone discoveries which makes a fascinating story, stretching over 200 years. But it is the last few years that have provided the level of detail necessary to reveal the chemistry of water oxidation and O-O bond formation. In particular, the crystal structure of the isolated PSII enzyme has been reported with ever increasing improvement in resolution. Thus the organisational and structural details of its many subunits and cofactors are now well understood. The water splitting site was revealed as a cluster of four Mn ions and a Ca ion surrounded by amino-acid side chains, of which seven provide direct ligands to the metals. The metal cluster is organised as a cubane structure composed of three Mn ions and a Ca2+ linked by oxo-bonds with the fourth Mn ion attached to the cubane. This structure has now been synthesised in a non-protein environment suggesting that it is a totally inorganic precursor for the evolution of the photosynthetic oxygen-evolving complex. In summary, the overall structure of the catalytic site has given a framework on which to build a mechanistic scheme for photosynthetic dioxygen generation and at the same time provide a blue-print and incentive to develop catalysts for artificial photo-electrochemical systems to split water and generate renewable solar fuels.
USDA-ARS?s Scientific Manuscript database
Postemergence (POST) application of 4-hydroxyphenyl pyruvate dioxygenase (HPPD) inhibitors in combination with a photosystem II (PSII) inhibitor, such as atrazine, is common practice in sweet corn production. Given the sensitivity of sweet corn to HPPD-inhibiting herbicides, the objective of this wo...
Tomar, Rupal Singh; Jajoo, Anjana
2014-11-01
The toxic effect of fluoranthene (FLT) on seed germination, growth of seedling and photosynthesis processes of wheat (Triticum aestivum) was investigated. Wheat seeds were exposed to 5 µM and 25 µM FLT concentrations for 25 days and it was observed that FLT had inhibiting effect on rate of seed germination. The germination rate of wheat seeds decreased by 11% at 25 µM FLT concentration. Root/shoot growth and biomass production declined significantly even at low concentrations of FLT. Chlorophyll a fluorescence and gas exchange parameters were measured after 25 days to evaluate the effects of FLT on Photosystem II (PSII) activity and CO2 assimilation rate. The process of CO2 assimilation decreased more effectively by FLT as compared to the yield of PSII. A negative correlation was found between plant net photosynthesis, stomatal conductance, carboxylation capacity and biomass production with FLT. It is concluded that inhibiting effects of FLT on photosynthesis are contributed more by inhibition in the process of CO2 fixation rather than inhibition of photochemical events. Copyright © 2014 Elsevier Inc. All rights reserved.