Science.gov

Sample records for psychopharmacological neuroimaging study

  1. Integrating Genetic, Psychopharmacological and Neuroimaging Studies: A Converging Methods Approach to Understanding the Neurobiology of ADHD

    ERIC Educational Resources Information Center

    Durston, Sarah; Konrad, Kerstin

    2007-01-01

    This paper aims to illustrate how combining multiple approaches can inform us about the neurobiology of ADHD. Converging evidence from genetic, psychopharmacological and functional neuroimaging studies has implicated dopaminergic fronto-striatal circuitry in ADHD. However, while the observation of converging evidence from multiple vantage points…

  2. Neuroimaging and Psychopharmacology

    ERIC Educational Resources Information Center

    Semrud-Clikeman, Margaret; Pliszka, Steve R.

    2005-01-01

    This review presents the most recent research concerning neuroimaging in developmental disabilities. Changes in structure and activation have been found in children with ADHD and learning disabilities, following intervention. For the children with learning disabilities changes in activation have been found following intensive behavioral and…

  3. Psychopharmacological Studies in Mice.

    PubMed

    Matsuda, Toshio

    2016-01-01

    Since 1998, when the laboratory of Medicinal Pharmacology was established in the Graduate School of Pharmaceutical Sciences, Osaka University, I have been interested in psychopharmacological research topics. During this period, we identified a number of novel regulatory mechanisms that control the prefrontal dopamine system through functional interaction between serotonin1A and dopamine D2 receptors or between serotonin1A and σ1 receptors. Our findings suggest that strategies that enhance the prefrontal dopamine system may have therapeutic potential in the treatment of psychiatric disorders. We also found that environmental factors during development strongly impact the psychological state in adulthood. Furthermore, we clarified the pharmacological profiles of the acetylcholinesterase inhibitors donepezil, galantamine, and rivastigmine, providing novel insights into their mechanisms of action. Finally, we developed the female encounter test, a novel method for evaluating motivation in mice. This simple method should help advance future psychopharmacological research. In this review, we summarize the major findings obtained from our recent studies in mice.

  4. Psychopharmacological Studies in Mice.

    PubMed

    Matsuda, Toshio

    2016-01-01

    Since 1998, when the laboratory of Medicinal Pharmacology was established in the Graduate School of Pharmaceutical Sciences, Osaka University, I have been interested in psychopharmacological research topics. During this period, we identified a number of novel regulatory mechanisms that control the prefrontal dopamine system through functional interaction between serotonin1A and dopamine D2 receptors or between serotonin1A and σ1 receptors. Our findings suggest that strategies that enhance the prefrontal dopamine system may have therapeutic potential in the treatment of psychiatric disorders. We also found that environmental factors during development strongly impact the psychological state in adulthood. Furthermore, we clarified the pharmacological profiles of the acetylcholinesterase inhibitors donepezil, galantamine, and rivastigmine, providing novel insights into their mechanisms of action. Finally, we developed the female encounter test, a novel method for evaluating motivation in mice. This simple method should help advance future psychopharmacological research. In this review, we summarize the major findings obtained from our recent studies in mice. PMID:27150930

  5. Getting the timing right: experimental protocols for investigating time with functional neuroimaging and psychopharmacology.

    PubMed

    Coull, Jennifer T

    2014-01-01

    Functional Magnetic Resonance Imaging (fMRI) is an effective tool for identifying brain areas and networks implicated in human timing. But fMRI is not just a phrenological tool: by careful design, fMRI can be used to disentangle discrete components of a timing task and control for the underlying cognitive processes (e.g. sustained attention and WM updating) that are critical for estimating stimulus duration in the range of hundreds of milliseconds to seconds. Moreover, the use of parametric designs and correlational analyses allows us to better understand not just where, but also how, the brain processes temporal information. In addition, by combining fMRI with psychopharmacological manipulation, we can begin to uncover the complex relationship between cognition, neurochemistry and anatomy in the healthy human brain. This chapter provides an overview of some of the key findings in the functional imaging literature of both duration estimation and temporal prediction, and outlines techniques that can be used to allow timing-related activations to be interpreted more unambiguously. In our own studies, we have found that estimating event duration, whether that estimate is provided by a motor response or a perceptual discrimination, typically recruits basal ganglia, SMA and right inferior frontal cortex, and can be modulated by dopaminergic activity in these areas. By contrast, orienting attention to predictable moments in time in order to optimize behaviour, whether that is to speed motor responding or improve perceptual accuracy, recruits left inferior parietal cortex.

  6. Cause versus association in observational studies in psychopharmacology.

    PubMed

    Andrade, Chittaranjan

    2014-08-01

    Hypotheses may be generated (and conclusions drawn) from observational studies in areas where information from randomized controlled trials (RCTs) is unavailable. However, observational studies can only establish that significant associations exist between predictor and outcome variables. Observational studies cannot establish that the associations identified represent cause-and-effect relationships. This article discusses examples of associations that were identified in observational studies and that were subsequently refuted in RCTs. Examples are also provided of associations that have yet to be confirmed or refuted but that are nevertheless influential in psychopharmacologic practice. Explanations are offered about how confounding might explain significant relationships between variables that are not related by cause and effect. As a conclusion of this exercise, clinicians are cautioned against placing too much reliance on the findings of observational research.

  7. [Network analyses in neuroimaging studies].

    PubMed

    Hirano, Shigeki; Yamada, Makiko

    2013-06-01

    Neurons are anatomically and physiologically connected to each other, and these connections are involved in various neuronal functions. Multiple important neural networks involved in neurodegenerative diseases can be detected using network analyses in functional neuroimaging. First, the basic methods and theories of voxel-based network analyses, such as principal component analysis, independent component analysis, and seed-based analysis, are described. Disease- and symptom-specific brain networks have been identified using glucose metabolism images in patients with Parkinson's disease. These networks enable us to objectively evaluate individual patients and serve as diagnostic tools as well as biomarkers for therapeutic interventions. Many functional MRI studies have shown that "hub" brain regions, such as the posterior cingulate cortex and medial prefrontal cortex, are deactivated by externally driven cognitive tasks; such brain regions form the "default mode network." Recent studies have shown that this default mode network is disrupted from the preclinical phase of Alzheimer's disease and is associated with amyloid deposition in the brain. Some recent studies have shown that the default mode network is also impaired in Parkinson's disease, whereas other studies have shown inconsistent results. These incongruent results could be due to the heterogeneous pharmacological status, differences in mesocortical dopaminergic impairment status, and concomitant amyloid deposition. Future neuroimaging network analysis studies will reveal novel and interesting findings that will uncover the pathomechanisms of neurological and psychiatric disorders. PMID:23735528

  8. Integrating psychosocial concepts into psychopharmacology training: a survey study of program directors and chief residents.

    PubMed

    Mallo, C Jason; Mintz, David L; Lewis, Katie C

    2014-06-01

    A growing body of evidence suggests that psychiatric medication outcomes are shaped significantly by psychological and social factors surrounding the prescribing process. Little, however, is known about the extent to which psychiatry programs integrate this evidence base into residency training or the methods by which this is accomplished. Psychiatry residency program directors and chief residents participated in an exploratory online survey to establish how psychosocial factors known to impact medication outcomes are integrated into psychopharmacology education. While participants highly valued the importance of psychosocial factors in the prescribing process, there was limited emphasis of these factors in psychopharmacology training. Additionally, some teaching methods that could advance understanding of complex interactions in the psychopharmacology relationship were found to be underutilized. Given that medication outcomes are significantly influenced by psychosocial factors, psychiatric educators have a responsibility to teach residents about the evidence base available. Residents exposed to this evidence base will be better equipped to manage the complexities of the psychopharmacology role. The results of this study offer clues as to how psychosocial factors may be more fully integrated into residency psychopharmacology training.

  9. Methodological Approaches in Developmental Neuroimaging Studies

    PubMed Central

    Luna, Beatriz; Velanova, Katerina; Geier, Charles F.

    2010-01-01

    Pediatric neuroimaging is increasingly providing insights into the neural basis of cognitive development. Indeed, we have now arrived at a stage where we can begin to identify optimal methodological and statistical approaches to the acquisition and analysis of developmental imaging data. In this article, we describe a number of these approaches and how their selection impacts the ability to examine and interpret developmental effects. We describe preferred approaches to task selection, definition of age groups, selection of fMRI designs, definition of regions of interest (ROI), optimal baseline measures, and treatment of timecourse data. Consideration of these aspects of developmental neuroimaging reveals that unlike single-group neuroimaging studies, developmental studies pose unique challenges that impact study planning, task design, data analysis, and the interpretation of findings. PMID:20496377

  10. Neuroimaging Studies of Language Production and Comprehension

    PubMed Central

    Gernsbacher, Morton Ann; Kaschak, Michael P.

    2014-01-01

    The 1990s were dubbed the “Decade of the Brain.” During this time there was a marked increase in the amount of neuroimaging work observing how the brain accomplishes many tasks, including the processing of language. In this chapter we review the past 15 years of neuroimaging research on language production and comprehension. The findings of these studies indicate that the processing involved in language use occurs in diffuse brain regions. These regions include Broca’s and Wernicke’s areas, primary auditory and visual cortex, and frontal regions in the left hemisphere, as well as in the right hemisphere homologues to these regions. We conclude the chapter by discussing the future of neuroimaging research into language production and comprehension. PMID:12359916

  11. Neuroimaging studies of social cognition in schizophrenia.

    PubMed

    Fujiwara, Hironobu; Yassin, Walid; Murai, Toshiya

    2015-05-01

    Impaired social cognition is considered a core contributor to unfavorable psychosocial functioning in schizophrenia. Rather than being a unitary process, social cognition is a collection of multifaceted processes that recruit multiple brain structures, thus structural and functional neuroimaging techniques are ideal methodologies for revealing the underlying pathophysiology of impaired social cognition. Many neuroimaging studies have suggested that in addition to white-matter deficits, schizophrenia is associated with decreased gray-matter volume in multiple brain areas, especially fronto-temporal and limbic regions. However, few schizophrenia studies have examined associations between brain abnormalities and social cognitive disabilities. During the last decade, we have investigated structural brain abnormalities in schizophrenia using high-resolution magnetic resonance imaging, and our findings have been confirmed by us and others. By assessing different types of social cognitive abilities, structural abnormalities in multiple brain regions have been found to be associated with disabilities in social cognition, such as recognition of facial emotion, theory of mind, and empathy. These structural deficits have also been associated with alexithymia and quality of life in ways that are closely related to the social cognitive disabilities found in schizophrenia. Here, we overview a series of neuroimaging studies from our laboratory that exemplify current research into this topic, and discuss how it can be further tackled using recent advances in neuroimaging technology. PMID:25418865

  12. Neuroimaging studies of social cognition in schizophrenia.

    PubMed

    Fujiwara, Hironobu; Yassin, Walid; Murai, Toshiya

    2015-05-01

    Impaired social cognition is considered a core contributor to unfavorable psychosocial functioning in schizophrenia. Rather than being a unitary process, social cognition is a collection of multifaceted processes that recruit multiple brain structures, thus structural and functional neuroimaging techniques are ideal methodologies for revealing the underlying pathophysiology of impaired social cognition. Many neuroimaging studies have suggested that in addition to white-matter deficits, schizophrenia is associated with decreased gray-matter volume in multiple brain areas, especially fronto-temporal and limbic regions. However, few schizophrenia studies have examined associations between brain abnormalities and social cognitive disabilities. During the last decade, we have investigated structural brain abnormalities in schizophrenia using high-resolution magnetic resonance imaging, and our findings have been confirmed by us and others. By assessing different types of social cognitive abilities, structural abnormalities in multiple brain regions have been found to be associated with disabilities in social cognition, such as recognition of facial emotion, theory of mind, and empathy. These structural deficits have also been associated with alexithymia and quality of life in ways that are closely related to the social cognitive disabilities found in schizophrenia. Here, we overview a series of neuroimaging studies from our laboratory that exemplify current research into this topic, and discuss how it can be further tackled using recent advances in neuroimaging technology.

  13. Philosophy of clinical psychopharmacology.

    PubMed

    Aragona, Massimiliano

    2013-03-01

    The renewal of the philosophical debate in psychiatry is one exciting news of recent years. However, its use in psychopharmacology may be problematic, ranging from self-confinement into the realm of values (which leaves the evidence-based domain unchallenged) to complete rejection of scientific evidence. In this paper philosophy is conceived as a conceptual audit of clinical psychopharmacology. Its function is to criticise the epistemological and methodological problems of current neopositivist, ingenuously realist and evidence-servant psychiatry from within the scientific stance and with the aim of aiding psychopharmacologists in practicing a more self-aware, critical and possibly useful clinical practice. Three examples are discussed to suggest that psychopharmacological practice needs conceptual clarification. At the diagnostic level it is shown that the crisis of the current diagnostic system and the problem of comorbidity strongly influence psychopharmacological results, new conceptualizations more respondent to the psychopharmacological requirements being needed. Heterogeneity of research samples, lack of specificity of psychotropic drugs, difficult generalizability of results, need of a phenomenological study of drug-induced psychopathological changes are discussed herein. At the methodological level the merits and limits of evidence-based practice are considered, arguing that clinicians should know the best available evidence but that guidelines should not be constrictive (due to several methodological biases and rhetorical tricks of which the clinician should be aware, sometimes respondent to extra-scientific, economical requests). At the epistemological level it is shown that the clinical stance is shaped by implicit philosophical beliefs about the mind/body problem (reductionism, dualism, interactionism, pragmatism), and that philosophy can aid physicians to be more aware of their beliefs in order to choose the most useful view and to practice coherently

  14. Experience sampling and ecological momentary assessment studies in psychopharmacology: A systematic review.

    PubMed

    Bos, Fionneke M; Schoevers, Robert A; aan het Rot, Marije

    2015-11-01

    Experience sampling methods (ESM) and ecological momentary assessment (EMA) offer insight into daily life experiences, including symptoms of mental disorders. The application of ESM/EMA in psychopharmacology can be a valuable addition to more traditional measures such as retrospective self-report questionnaires because they may help reveal the impact of psychotropic medication on patients' actual experiences. In this paper we systematically review the existing literature on the use of ESM/EMA in psychopharmacology research. To this end, we searched the PsycInfo and Medline databases for all available ESM/EMA studies on the use of psychotropic medication in patients with DSM-III-R and DSM-IV disorders. Dissertations were excluded. We included 18 studies that applied ESM/EMA to study the effects of medication on patients with major depressive disorder, substance use disorder, attention-deficit hyperactivity disorder, psychotic disorder, and anxiety disorder. We found that ESM/EMA may allow researchers and clinicians to track patients during different phases of treatment: before treatment to predict outcome, during treatment to examine the effects of treatment on symptoms and different aspects of daily life experience, and after treatment to detect vulnerability for relapse. Moreover, ESM/EMA can potentially help determine how long and in what contexts medications are effective. Thus, ESM/EMA may benefit both researchers and clinicians and might prove to be an effective tool for improving the treatment of psychiatric patients.

  15. [The new versus the old antidepressant drugs: a comparative study of their psychopharmacological profiles (author's transl)].

    PubMed

    Bourin, M; Puech, A J; Chermat, R; Doare, L; Poncelet, M; Simon, P

    1981-01-01

    We studied 13 known or potential antidepressants, choosen in different pharmacological classes: desipramine, imipramine, nialamide, dexamphetamine, AHR 1118, amineptine, iprindole, mianserine, nomifensine, salbutamol, TRH viloxazine, zimelidine. Each of these compounds was studied on 8 psychopharmacological tests: motor activity, reserpine induced hypothermia, reserpine induced ptosis, oxotremorine induced hypothermia, oxotremorine induced tremors, high doses apomorphine induced hypothermia, potentiation of toxic effects of yohimbine, behavioural despair. Clinical active compounds are efficient on yohimbine test and at least on one model of hypothermia; with a few exceptions, easy to explain, substances with a clearly demonstrated antidepressant activity in human have some common effects; these common effects can be used to predict, from animal experiments, an antidepressant effect in man.

  16. Childhood-Onset Schizophrenia: Insights from Neuroimaging Studies

    ERIC Educational Resources Information Center

    Gogtay, Nitin; Rapoport, Judith L.

    2008-01-01

    The use of longitudinal neuroimaging to study the developmental perspectives of brain pathology in children with childhood-onset schizophrenia (COS) is described. Structural neuroimaging is capable of providing evidence of neurobiological specificity of COS to distinguish it from other brain abnormalities seen in neuropsychiatric illnesses like…

  17. Retrospective study on structural neuroimaging in first-episode psychosis

    PubMed Central

    Silva-dos-Santos, Amilcar; Talina, Miguel Cotrim

    2016-01-01

    Background. No consensus between guidelines exists regarding neuroimaging in first-episode psychosis. The purpose of this study is to assess anomalies found in structural neuroimaging exams (brain computed tomography (CT) and magnetic resonance imaging (MRI)) in the initial medical work-up of patients presenting first-episode psychosis. Methods. The study subjects were 32 patients aged 18–48 years (mean age: 29.6 years), consecutively admitted with first-episode psychosis diagnosis. Socio-demographic and clinical data and neuroimaging exams (CT and MRI) were retrospectively studied. Diagnostic assessments were made using the Operational Criteria Checklist +. Neuroimaging images (CT and MRI) and respective reports were analysed by an experienced consultant psychiatrist. Results. None of the patients had abnormalities in neuroimaging exams responsible for psychotic symptoms. Thirty-seven percent of patients had incidental brain findings not causally related to the psychosis (brain atrophy, arachnoid cyst, asymmetric lateral ventricles, dilated lateral ventricles, plagiocephaly and falx cerebri calcification). No further medical referral was needed for any of these patients. No significant differences regarding gender, age, diagnosis, duration of untreated psychosis, in-stay and cannabis use were found between patients who had neuroimaging abnormalities versus those without. Discussion. This study suggests that structural neuroimaging exams reveal scarce abnormalities in young patients with first-episode psychosis. Structural neuroimaging is especially useful in first-episode psychosis patients with neurological symptoms, atypical clinical picture and old age. PMID:27257547

  18. Retrospective study on structural neuroimaging in first-episode psychosis.

    PubMed

    Coentre, Ricardo; Silva-Dos-Santos, Amilcar; Talina, Miguel Cotrim

    2016-01-01

    Background. No consensus between guidelines exists regarding neuroimaging in first-episode psychosis. The purpose of this study is to assess anomalies found in structural neuroimaging exams (brain computed tomography (CT) and magnetic resonance imaging (MRI)) in the initial medical work-up of patients presenting first-episode psychosis. Methods. The study subjects were 32 patients aged 18-48 years (mean age: 29.6 years), consecutively admitted with first-episode psychosis diagnosis. Socio-demographic and clinical data and neuroimaging exams (CT and MRI) were retrospectively studied. Diagnostic assessments were made using the Operational Criteria Checklist +. Neuroimaging images (CT and MRI) and respective reports were analysed by an experienced consultant psychiatrist. Results. None of the patients had abnormalities in neuroimaging exams responsible for psychotic symptoms. Thirty-seven percent of patients had incidental brain findings not causally related to the psychosis (brain atrophy, arachnoid cyst, asymmetric lateral ventricles, dilated lateral ventricles, plagiocephaly and falx cerebri calcification). No further medical referral was needed for any of these patients. No significant differences regarding gender, age, diagnosis, duration of untreated psychosis, in-stay and cannabis use were found between patients who had neuroimaging abnormalities versus those without. Discussion. This study suggests that structural neuroimaging exams reveal scarce abnormalities in young patients with first-episode psychosis. Structural neuroimaging is especially useful in first-episode psychosis patients with neurological symptoms, atypical clinical picture and old age. PMID:27257547

  19. Neuroimaging studies in people with gender incongruence.

    PubMed

    Kreukels, Baudewijntje P C; Guillamon, Antonio

    2016-01-01

    The current review gives an overview of brain studies in transgender people. First, we describe studies into the aetiology of feelings of gender incongruence, primarily addressing the sexual differentiation hypothesis: does the brain of transgender individuals resemble that of their natal sex, or that of their experienced gender? Findings from neuroimaging studies focusing on brain structure suggest that the brain phenotypes of trans women (MtF) and trans men (FtM) differ in various ways from control men and women with feminine, masculine, demasculinized and defeminized features. The brain phenotypes of people with feelings of gender incongruence may help us to figure out whether sex differentiation of the brain is atypical in these individuals, and shed light on gender identity development. Task-related imaging studies may show whether brain activation and task performance in transgender people is sex-atypical. Second, we review studies that evaluate the effects of cross-sex hormone treatment on the brain. This type of research provides knowledge on how changes in sex hormone levels may affect brain structure and function. PMID:26766406

  20. Neuroimaging studies in people with gender incongruence.

    PubMed

    Kreukels, Baudewijntje P C; Guillamon, Antonio

    2016-01-01

    The current review gives an overview of brain studies in transgender people. First, we describe studies into the aetiology of feelings of gender incongruence, primarily addressing the sexual differentiation hypothesis: does the brain of transgender individuals resemble that of their natal sex, or that of their experienced gender? Findings from neuroimaging studies focusing on brain structure suggest that the brain phenotypes of trans women (MtF) and trans men (FtM) differ in various ways from control men and women with feminine, masculine, demasculinized and defeminized features. The brain phenotypes of people with feelings of gender incongruence may help us to figure out whether sex differentiation of the brain is atypical in these individuals, and shed light on gender identity development. Task-related imaging studies may show whether brain activation and task performance in transgender people is sex-atypical. Second, we review studies that evaluate the effects of cross-sex hormone treatment on the brain. This type of research provides knowledge on how changes in sex hormone levels may affect brain structure and function.

  1. Functional Neuroimaging Studies of Written Sentence Comprehension

    ERIC Educational Resources Information Center

    Caplan, David

    2004-01-01

    Sentences convey relationships between the meanings of words, such as who is accomplishing an action or receiving it. Functional neuroimaging based on positron-emission tomography and functional magnetic resonance imaging has been used to identify areas of the brain involved in structuring sentences and determining aspects of meaning associated…

  2. Competent Psychopharmacology

    PubMed Central

    Gardner, David M

    2014-01-01

    There is little doubt that undergraduate and post-graduate training of physicians, pharmacists, and nurses is insufficient to prepare them to use psychotropics safely and effectively, especially in the context of their expanded off-label uses. Therefore, the development of competencies in psychotropic prescribing needs to be approached as a long-term, practice-based learning commitment. Proposed are the abilities and knowledge components necessary for safe and effective use of psychotropics. Typical challenges in prescribing for chronic and recurrent illnesses include highly variable responses and tolerability, drug interactions, and adverse effects that can be serious, irreversible, and even fatal. Prescribing psychotropics is further complicated by negative public and professional reports and growing patient concerns about the quality of care, and questions about the efficacy, safety, and addictive risks of psychotropics. Increased efforts are needed to enhance clinical training and knowledge in psychopharmacology among trainees and practising clinicians, with more comprehensive and sustained attention to the assessment of individual patients, and greater reliance on patient education and collaboration. Improved competence in psychotropic prescribing should lead to more informed, thoughtful, and better-targeted applications as one component of more comprehensive clinical care. PMID:25161064

  3. Competent psychopharmacology.

    PubMed

    Gardner, David M

    2014-08-01

    There is little doubt that undergraduate and post-graduate training of physicians, pharmacists, and nurses is insufficient to prepare them to use psychotropics safely and effectively, especially in the context of their expanded off-label uses. Therefore, the development of competencies in psychotropic prescribing needs to be approached as a long-term, practice-based learning commitment. Proposed are the abilities and knowledge components necessary for safe and effective use of psychotropics. Typical challenges in prescribing for chronic and recurrent illnesses include highly variable responses and tolerability, drug interactions, and adverse effects that can be serious, irreversible, and even fatal. Prescribing psychotropics is further complicated by negative public and professional reports and growing patient concerns about the quality of care, and questions about the efficacy, safety, and addictive risks of psychotropics. Increased efforts are needed to enhance clinical training and knowledge in psychopharmacology among trainees and practising clinicians, with more comprehensive and sustained attention to the assessment of individual patients, and greater reliance on patient education and collaboration. Improved competence in psychotropic prescribing should lead to more informed, thoughtful, and better-targeted applications as one component of more comprehensive clinical care.

  4. Psychopharmacology in pediatric critical care.

    PubMed

    Stoddard, Frederick J; Usher, Craigan T; Abrams, Annah N

    2006-07-01

    Psychopharmacologic treatment in pediatric critical care requires a careful child or adolescent psychiatric evaluation, including a thorough review of the history of present illness or injury, any current or pre-existing psychiatric disorder, past history, and laboratory studies. Although there is limited evidence to guide psychopharmacologic practice in this setting, psychopharmacologic treatment is increasing in critical care, with known indications for treatment, benefits, and risks; initial dosing guidelines; and best practices. Treatment is guided by the knowledge bases in pediatric physiology, psycho-pharmacology, and treatment of critically ill adults. Pharmacologic considerations include pharmacokinetic and pharmcodynamic aspects of specific drugs and drug classes, in particular elimination half-life, developmental considerations, drug interactions, and adverse effects. Evaluation and management of pain is a key initial step, as pain may mimic psychiatric symptoms and its effective treatment can ameliorate them. Patient comfort and safety are primary objectives for children who are acutely ill and who will survive and for those who will not. Judicious use of psychopharmacolgic agents in pediatric critical care using the limited but growing evidence base and a clinical best practices collaborative approach can reduce anxiety,sadness, disorientation, and agitation; improve analgesia; and save lives of children who are suicidal or delirious. In addition to pain, other disorders or indications for psychopharmacologic treatment are affective disorders;PTSD; post-suicide attempt patients; disruptive behavior disorders (especially ADHD); and adjustment, developmental, and substance use disorders. Treating children who are critically ill with psychotropic drugs is an integral component of comprehensive pediatric critical care in relieving pain and delirium; reducing inattention or agitation or aggressive behavior;relieving acute stress, anxiety, or depression; and

  5. Psychopharmacology Curriculum Field Test

    ERIC Educational Resources Information Center

    Zisook, Sidney; Balon, Richard; Benjamin, Sheldon; Beresin, Eugene; Goldberg, David A.; Jibson, Michael D.; Thrall, Grace

    2009-01-01

    Objective: As part of an effort to improve psychopharmacology training in psychiatric residency programs, a committee of residency training directors and associate directors adapted an introductory schizophrenia presentation from the American Society of Clinical Psychopharmacology's Model Psychopharmacology Curriculum to develop a multimodal,…

  6. Deep learning for neuroimaging: a validation study

    PubMed Central

    Plis, Sergey M.; Hjelm, Devon R.; Salakhutdinov, Ruslan; Allen, Elena A.; Bockholt, Henry J.; Long, Jeffrey D.; Johnson, Hans J.; Paulsen, Jane S.; Turner, Jessica A.; Calhoun, Vince D.

    2014-01-01

    Deep learning methods have recently made notable advances in the tasks of classification and representation learning. These tasks are important for brain imaging and neuroscience discovery, making the methods attractive for porting to a neuroimager's toolbox. Success of these methods is, in part, explained by the flexibility of deep learning models. However, this flexibility makes the process of porting to new areas a difficult parameter optimization problem. In this work we demonstrate our results (and feasible parameter ranges) in application of deep learning methods to structural and functional brain imaging data. These methods include deep belief networks and their building block the restricted Boltzmann machine. We also describe a novel constraint-based approach to visualizing high dimensional data. We use it to analyze the effect of parameter choices on data transformations. Our results show that deep learning methods are able to learn physiologically important representations and detect latent relations in neuroimaging data. PMID:25191215

  7. The psychobiology and psychopharmacology of PTSD.

    PubMed

    Van Der Kolk, Bessel A.

    2001-01-01

    This paper reviews the currently available knowledge about the psychobiology and psychopharmacology of post-traumatic stress disorder (PTSD). It also reviews the various studies that have elucidated changes in brain function and structure in PTSD populations, including position emission tomography (PET), single photon emission computed tomography (SPECT), and event-related potential (ERP) studies. It then reviews the literature on catecholamine and hypothalamic-pituitary-adrenal (HPA) axis abnormalities in PTSD, and finally reviews the literature available on the psychopharmacology of PTSD. It discusses how the pathophysiology of PTSD determines the nature of psychopharmacological interventions. Psychopharmacological interventions in PTSD are largely limited to good studies on the effects of the selective serotonin reuptake inhibitors (SSRIs). In order to effectively intervene in PTSD, studies of other psychopharmacological agents are necessary, specifically of agents which affect limbic activation, decreased frontal lobe functioning, altered HPA activity, and other biological features of PTSD. Copyright 2001 John Wiley & Sons, Ltd.

  8. Functional neuroimaging studies of the effects of psychotherapy.

    PubMed

    Beauregard, Mario

    2014-03-01

    It has been long established that psychological interventions can markedly alter patients' thinking patterns, beliefs, attitudes, emotional states, and behaviors. Little was known about the neural mechanisms mediating such alterations before the advent of functional neuroimaging techniques. Since the turn of the new millenium, several functional neuroimaging studies have been conducted to tackle this important issue. Some of these studies have explored the neural impact of various forms of psychotherapy in individuals with major depressive disorder. Other neuroimaging studies have investigated the effects of psychological interventions for anxiety disorders. I review these studies in the present article, and discuss the putative neural mechanisms of change in psychotherapy. The findings of these studies suggest that mental and behavioral changes occurring during psychotherapeutic interventions can lead to a normalization of functional brain activity at a global level.

  9. The use of magnetoencephalography in the study of psychopharmacology (pharmaco-MEG).

    PubMed

    Muthukumaraswamy, Suresh D

    2014-09-01

    Magnetoencephalography (MEG) is a neuroimaging technique that allows direct measurement of the magnetic fields generated by synchronised ionic neural currents in the brain with moderately good spatial resolution and high temporal resolution. Because chemical neuromodulation can cause changes in neuronal processing on the millisecond time-scale, the combination of MEG with pharmacological interventions (pharmaco-MEG) is a powerful tool for measuring the effects of experimental modulations of neurotransmission in the living human brain. Importantly, pharmaco-MEG can be used in both healthy humans to understand normal brain function and in patients to understand brain pathologies and drug-treatment effects. In this paper, the physiological and technical basis of pharmaco-MEG is introduced and contrasted with other pharmacological neuroimaging techniques. Ongoing developments in MEG analysis techniques such as source-localisation, functional and effective connectivity analyses, which have allowed for more powerful inferences to be made with recent pharmaco-MEG data, are described. Studies which have utilised pharmaco-MEG across a range of neurotransmitter systems (GABA, glutamate, acetylcholine, dopamine and serotonin) are reviewed.

  10. Pain perception and hypnosis: findings from recent functional neuroimaging studies.

    PubMed

    Del Casale, Antonio; Ferracuti, Stefano; Rapinesi, Chiara; Serata, Daniele; Caltagirone, Saverio Simone; Savoja, Valeria; Piacentino, Daria; Callovini, Gemma; Manfredi, Giovanni; Sani, Gabriele; Kotzalidis, Georgios D; Girardi, Paolo

    2015-01-01

    Hypnosis modulates pain perception and tolerance by affecting cortical and subcortical activity in brain regions involved in these processes. By reviewing functional neuroimaging studies focusing on pain perception under hypnosis, the authors aimed to identify brain activation-deactivation patterns occurring in hypnosis-modulated pain conditions. Different changes in brain functionality occurred throughout all components of the pain network and other brain areas. The anterior cingulate cortex appears to be central in modulating pain circuitry activity under hypnosis. Most studies also showed that the neural functions of the prefrontal, insular, and somatosensory cortices are consistently modified during hypnosis-modulated pain conditions. Functional neuroimaging studies support the clinical use of hypnosis in the management of pain conditions. PMID:25719519

  11. Psychopharmacology and memory

    PubMed Central

    Glannon, W

    2006-01-01

    Psychotropic and other drugs can alter brain mechanisms regulating the formation, storage, and retrieval of different types of memory. These include “off label” uses of existing drugs and new drugs designed specifically to target the neural bases of memory. This paper discusses the use of beta‐adrenergic antagonists to prevent or erase non‐conscious pathological emotional memories in the amygdala. It also discusses the use of novel psychopharmacological agents to enhance long term semantic and short term working memory by altering storage and retrieval mechanisms in the hippocampus and prefrontal cortex. Although intervention in the brain to alter memory as therapy or enhancement holds considerable promise, the long term effects of experimental drugs on the brain and memory are not known. More studies are needed to adequately assess the potential benefits and risks of these interventions. PMID:16446410

  12. Robust regression for large-scale neuroimaging studies.

    PubMed

    Fritsch, Virgile; Da Mota, Benoit; Loth, Eva; Varoquaux, Gaël; Banaschewski, Tobias; Barker, Gareth J; Bokde, Arun L W; Brühl, Rüdiger; Butzek, Brigitte; Conrod, Patricia; Flor, Herta; Garavan, Hugh; Lemaitre, Hervé; Mann, Karl; Nees, Frauke; Paus, Tomas; Schad, Daniel J; Schümann, Gunter; Frouin, Vincent; Poline, Jean-Baptiste; Thirion, Bertrand

    2015-05-01

    Multi-subject datasets used in neuroimaging group studies have a complex structure, as they exhibit non-stationary statistical properties across regions and display various artifacts. While studies with small sample sizes can rarely be shown to deviate from standard hypotheses (such as the normality of the residuals) due to the poor sensitivity of normality tests with low degrees of freedom, large-scale studies (e.g. >100 subjects) exhibit more obvious deviations from these hypotheses and call for more refined models for statistical inference. Here, we demonstrate the benefits of robust regression as a tool for analyzing large neuroimaging cohorts. First, we use an analytic test based on robust parameter estimates; based on simulations, this procedure is shown to provide an accurate statistical control without resorting to permutations. Second, we show that robust regression yields more detections than standard algorithms using as an example an imaging genetics study with 392 subjects. Third, we show that robust regression can avoid false positives in a large-scale analysis of brain-behavior relationships with over 1500 subjects. Finally we embed robust regression in the Randomized Parcellation Based Inference (RPBI) method and demonstrate that this combination further improves the sensitivity of tests carried out across the whole brain. Altogether, our results show that robust procedures provide important advantages in large-scale neuroimaging group studies. PMID:25731989

  13. Robust regression for large-scale neuroimaging studies.

    PubMed

    Fritsch, Virgile; Da Mota, Benoit; Loth, Eva; Varoquaux, Gaël; Banaschewski, Tobias; Barker, Gareth J; Bokde, Arun L W; Brühl, Rüdiger; Butzek, Brigitte; Conrod, Patricia; Flor, Herta; Garavan, Hugh; Lemaitre, Hervé; Mann, Karl; Nees, Frauke; Paus, Tomas; Schad, Daniel J; Schümann, Gunter; Frouin, Vincent; Poline, Jean-Baptiste; Thirion, Bertrand

    2015-05-01

    Multi-subject datasets used in neuroimaging group studies have a complex structure, as they exhibit non-stationary statistical properties across regions and display various artifacts. While studies with small sample sizes can rarely be shown to deviate from standard hypotheses (such as the normality of the residuals) due to the poor sensitivity of normality tests with low degrees of freedom, large-scale studies (e.g. >100 subjects) exhibit more obvious deviations from these hypotheses and call for more refined models for statistical inference. Here, we demonstrate the benefits of robust regression as a tool for analyzing large neuroimaging cohorts. First, we use an analytic test based on robust parameter estimates; based on simulations, this procedure is shown to provide an accurate statistical control without resorting to permutations. Second, we show that robust regression yields more detections than standard algorithms using as an example an imaging genetics study with 392 subjects. Third, we show that robust regression can avoid false positives in a large-scale analysis of brain-behavior relationships with over 1500 subjects. Finally we embed robust regression in the Randomized Parcellation Based Inference (RPBI) method and demonstrate that this combination further improves the sensitivity of tests carried out across the whole brain. Altogether, our results show that robust procedures provide important advantages in large-scale neuroimaging group studies.

  14. Meditation states and traits: EEG, ERP, and neuroimaging studies.

    PubMed

    Cahn, B Rael; Polich, John

    2006-03-01

    Neuroelectric and imaging studies of meditation are reviewed. Electroencephalographic measures indicate an overall slowing subsequent to meditation, with theta and alpha activation related to proficiency of practice. Sensory evoked potential assessment of concentrative meditation yields amplitude and latency changes for some components and practices. Cognitive event-related potential evaluation of meditation implies that practice changes attentional allocation. Neuroimaging studies indicate increased regional cerebral blood flow measures during meditation. Taken together, meditation appears to reflect changes in anterior cingulate cortex and dorsolateral prefrontal areas. Neurophysiological meditative state and trait effects are variable but are beginning to demonstrate consistent outcomes for research and clinical applications. Psychological and clinical effects of meditation are summarized, integrated, and discussed with respect to neuroimaging data.

  15. Research Updates in Neuroimaging Studies of Children Who Stutter

    PubMed Central

    Chang, Soo-Eun

    2016-01-01

    In the past two decades, neuroimaging investigations of stuttering have led to important discoveries of structural and functional brain differences in people who stutter, providing significant clues to the neurological basis of stuttering. One major limitation, however, has been that most studies so far have only examined adults who stutter, whose brain and behavior likely would have adopted compensatory reactions to their stuttering; these confounding factors have made interpretations of the findings difficult. Developmental stuttering is a neurodevelopmental condition, and like many other neurodevelopmental disorders, stuttering is associated with an early childhood onset of symptoms and greater incidence in males relative to females. More recent studies have begun to examine children who stutter using various neuroimaging techniques that allow examination of functional neuroanatomy and interaction of major brain areas that differentiate children who stutter compared with age-matched controls. In this article, I review these more recent neuroimaging investigations of children who stutter, in the context of what we know about typical brain development, neuroplasticity, and sex differences relevant to speech and language development. Although the picture is still far from complete, these studies have potential to provide information that can be used as early objective markers, or prognostic indicators, for persistent stuttering in the future. Furthermore, these studies are the first steps in finding potential neural targets for novel therapies that may involve modulating neuroplastic growth conducive to developing and maintaining fluent speech, which can be applied to treatment of young children who stutter. PMID:24875668

  16. Advances from neuroimaging studies in eating disorders

    PubMed Central

    Frank, Guido K.W.

    2016-01-01

    Over the past decade brain imaging has helped better define eating disorder related brain circuitry. Brain research on gray and white matter volumes had been inconsistent, possibly due to the effects of acute starvation, exercise, medication and comorbidity, but newer studies controlled for such effects. Those studies suggest larger left medial orbitofrontal gyrus rectus volume in ill adult and adolescent anorexia nervosa after recovery from anorexia nervosa, and in adult bulimia nervosa. The orbitofrontal cortex is important in terminating food intake and altered function could contribute to self-starvation. The right insula, which processes taste but also interoception, was enlarged in ill adult and adolescent anorexia nervosa, as well as adults recovered from the illness. The fixed perception of being fat in anorexia nervosa could be related to altered insula function. A few studies investigated WM integrity, with the most consistent finding of reduced fornix integrity in anorexia and bulimia nervosa, a limbic pathway important in emotion but also food intake regulation. Functional brain imaging using basic sweet taste stimuli in eating disorders during the ill state or after recovery implicated repeatedly reward pathways, including insula and striatum. Brain imaging that targeted dopamine related brain activity using taste-reward conditioning tasks suggested that this circuitry is hypersensitive in anorexia nervosa, but hypo-responsive in bulimia nervosa and obesity. Those results are in line with basic research and suggest adaptive reward system changes in the human brain in response to extremes of food intake, changes that could interfere with normalization of eating behavior. PMID:25902917

  17. On study design in neuroimaging heritability analyses

    NASA Astrophysics Data System (ADS)

    Koran, Mary Ellen; Li, Bo; Jahanshad, Neda; Thornton-Wells, Tricia A.; Glahn, David C.; Thompson, Paul M.; Blangero, John; Nichols, Thomas E.; Kochunov, Peter; Landman, Bennett A.

    2014-03-01

    Imaging genetics is an emerging methodology that combines genetic information with imaging-derived metrics to understand how genetic factors impact observable structural, functional, and quantitative phenotypes. Many of the most well-known genetic studies are based on Genome-Wide Association Studies (GWAS), which use large populations of related or unrelated individuals to associate traits and disorders with individual genetic factors. Merging imaging and genetics may potentially lead to improved power of association in GWAS because imaging traits may be more sensitive phenotypes, being closer to underlying genetic mechanisms, and their quantitative nature inherently increases power. We are developing SOLAR-ECLIPSE (SE) imaging genetics software which is capable of performing genetic analyses with both large-scale quantitative trait data and family structures of variable complexity. This program can estimate the contribution of genetic commonality among related subjects to a given phenotype, and essentially answer the question of whether or not the phenotype is heritable. This central factor of interest, heritability, offers bounds on the direct genetic influence over observed phenotypes. In order for a trait to be a good phenotype for GWAS, it must be heritable: at least some proportion of its variance must be due to genetic influences. A variety of family structures are commonly used for estimating heritability, yet the variability and biases for each as a function of the sample size are unknown. Herein, we investigate the ability of SOLAR to accurately estimate heritability models based on imaging data simulated using Monte Carlo methods implemented in R. We characterize the bias and the variability of heritability estimates from SOLAR as a function of sample size and pedigree structure (including twins, nuclear families, and nuclear families with grandparents).

  18. Current themes in neuroimaging studies of reading.

    PubMed

    Price, Cathy J

    2013-05-01

    This editorial provides a summary of the highlights from 11 new papers that have been published in a special issue of Brain and Language on the neurobiology of reading. The topics investigate reading mechanisms in both adults and children. Several of the findings illustrate how responses in the left ventral occipito-temporal cortex, and other reading areas, change with learning, expertise and the task: In the early stages of reading acquisition, learning/expertise increases activation in reading areas as well as in an attentionally-controlled, learning circuit. In later stages, expertise and efficiency decrease activation within the reading network and increase anatomical connectivity. Special interest is given to a white matter tract (the vertical occipital fasciculus) that projects dorsally from the left occipito-temporal cortex to the posterior parietal lobe. This observation fits with a magnetoencephalography study showing how activity in the angular gyrus is influenced by early occipito-temporal activity; with angular gyrus activity contributing to inferior frontal activity. Overall, the papers within the special issue illustrate the wide range of different techniques that can be used to reveal the functional anatomy of reading and the time course of activity within the different reading pathways.

  19. NPAS3 variants in schizophrenia: a neuroimaging study

    PubMed Central

    2014-01-01

    Background This research is a one-site neuroimaging component of a two-site genetic study involving patients with schizophrenia at early and later stages of illness. Studies support a role for the neuronal Per-Arnt-Sim 3 (NPAS3) gene in processes that are essential for normal brain development. Specific NPAS3 variants have been observed at an increased frequency in schizophrenia. In humans, NPAS3 protein was detected in the hippocampus from the first trimester of gestation. In addition, NPAS3 protein levels were reduced in the dorsolateral prefrontal cortex of some patients with schizophrenia. Npas3 knockout mice display behavioural, neuroanatomical and structural changes with associated severe reductions in neural precursor cell proliferation in the hippocampal dentate gyrus. This study will evaluate the hypothesis that the severe reductions in neural precursor cell proliferation in the dentate gyrus will be present to some degree in patients carrying schizophrenia-associated NPAS3 variants and less so in other patients. Methods/Design Patients enrolled in the larger genetic study (n = 150) will be invited to participate in this neuroimaging arm. The genetic data will be used to ensure a sample size of 45 participants in each genetic subgroup of patients (with and without NPAS3 variants). In addition, we will recruit 60 healthy controls for acquisition of normative data. The following neuroimaging measures will be acquired from the medial temporal region: a) an index of the microcellular environment; b) a macro-structural volumetric measure of the hippocampus; and c) concentration levels of N-acetylaspartate, a marker of neuronal health. Discussion This study will help to establish the contribution of the NPAS3 gene and its variants to brain tissue abnormalities in schizophrenia. Given the genetic and phenotypic heterogeneity of the disorder and the large variation in outcomes, the identification of biological subgroups may in future support tailoring of treatment

  20. A Counselor's Guide to Psychopharmacology.

    ERIC Educational Resources Information Center

    Ponterotto, Joseph G.

    1985-01-01

    Presents basic information on psychopharmacology and discusses the major antipsychotic, antidepressant, anti-anxiety, and lithium salt medications used with adults. The importance and implications of psychopharmacology for the counseling profession are highlighted. (Author)

  1. Teaching Psychopharmacology: Two Trainees' Perspectives

    ERIC Educational Resources Information Center

    Georgiopoulos, Anna M.; Huffman, Jeff C.

    2005-01-01

    Objective: To describe our experience of learning clinical psychopharmacology during residency, in order to assist educators planning psychopharmacology curricula. Methods: We describe how psychopharmacology teaching was structured in our program, dividing our experience into two phases, early residency (PGY-I and PGY-II) and late residency…

  2. Behavioral, computational, and neuroimaging studies of acquired apraxia of speech.

    PubMed

    Ballard, Kirrie J; Tourville, Jason A; Robin, Donald A

    2014-01-01

    A critical examination of speech motor control depends on an in-depth understanding of network connectivity associated with Brodmann areas 44 and 45 and surrounding cortices. Damage to these areas has been associated with two conditions-the speech motor programming disorder apraxia of speech (AOS) and the linguistic/grammatical disorder of Broca's aphasia. Here we focus on AOS, which is most commonly associated with damage to posterior Broca's area (BA) and adjacent cortex. We provide an overview of our own studies into the nature of AOS, including behavioral and neuroimaging methods, to explore components of the speech motor network that are associated with normal and disordered speech motor programming in AOS. Behavioral, neuroimaging, and computational modeling studies are indicating that AOS is associated with impairment in learning feedforward models and/or implementing feedback mechanisms and with the functional contribution of BA6. While functional connectivity methods are not yet routinely applied to the study of AOS, we highlight the need for focusing on the functional impact of localized lesions throughout the speech network, as well as larger scale comparative studies to distinguish the unique behavioral and neurological signature of AOS. By coupling these methods with neural network models, we have a powerful set of tools to improve our understanding of the neural mechanisms that underlie AOS, and speech production generally. PMID:25404911

  3. Behavioral, computational, and neuroimaging studies of acquired apraxia of speech

    PubMed Central

    Ballard, Kirrie J.; Tourville, Jason A.; Robin, Donald A.

    2014-01-01

    A critical examination of speech motor control depends on an in-depth understanding of network connectivity associated with Brodmann areas 44 and 45 and surrounding cortices. Damage to these areas has been associated with two conditions—the speech motor programming disorder apraxia of speech (AOS) and the linguistic/grammatical disorder of Broca’s aphasia. Here we focus on AOS, which is most commonly associated with damage to posterior Broca’s area (BA) and adjacent cortex. We provide an overview of our own studies into the nature of AOS, including behavioral and neuroimaging methods, to explore components of the speech motor network that are associated with normal and disordered speech motor programming in AOS. Behavioral, neuroimaging, and computational modeling studies are indicating that AOS is associated with impairment in learning feedforward models and/or implementing feedback mechanisms and with the functional contribution of BA6. While functional connectivity methods are not yet routinely applied to the study of AOS, we highlight the need for focusing on the functional impact of localized lesions throughout the speech network, as well as larger scale comparative studies to distinguish the unique behavioral and neurological signature of AOS. By coupling these methods with neural network models, we have a powerful set of tools to improve our understanding of the neural mechanisms that underlie AOS, and speech production generally. PMID:25404911

  4. Neuroimaging studies of alexithymia: physical, affective, and social perspectives

    PubMed Central

    2013-01-01

    Alexithymia refers to difficulty in identifying and expressing one’s emotions, and it is related to disturbed emotional regulation. It was originally proposed as a personality trait that plays a central role in psychosomatic diseases. This review of neuroimaging studies on alexithymia suggests that alexithymia is associated with reduced neural responses to emotional stimuli from the external environment, as well as with reduced activity during imagery, in the limbic and paralimbic areas (i.e., amygdala, insula, anterior/posterior cingulate cortex). In contrast, alexithymia is also known to be associated with enhanced neural activity in somatosensory and sensorimotor regions, including the insula. Moreover, neural activity in the medial, prefrontal, and insula cortex was lowered when people with alexithymia were involved in social tasks. Because most neuroimaging studies have been based on sampling by self-reported questionnaires, the contrasted features of neural activities in response to internal and external emotional stimuli need to be elucidated. The social and emotional responses of people with alexithymia are discussed and recommendations for future research are presented. PMID:23537323

  5. Insulin action in the human brain: evidence from neuroimaging studies.

    PubMed

    Kullmann, S; Heni, M; Fritsche, A; Preissl, H

    2015-06-01

    Thus far, little is known about the action of insulin in the human brain. Nonetheless, recent advances in modern neuroimaging techniques, such as functional magnetic resonance imaging (fMRI) or magnetoencephalography (MEG), have made it possible to investigate the action of insulin in the brain in humans, providing new insights into the pathogenesis of brain insulin resistance and obesity. Using MEG, the clinical relevance of the action of insulin in the brain was first identified, linking cerebral insulin resistance with peripheral insulin resistance, genetic predisposition and weight loss success in obese adults. Although MEG is a suitable tool for measuring brain activity mainly in cortical areas, fMRI provides high spatial resolution for cortical as well as subcortical regions. Thus, the action of insulin can be detected within all eating behaviour relevant regions, which include regions deeply located within the brain, such as the hypothalamus, midbrain and brainstem, as well as regions within the striatum. In this review, we outline recent advances in the field of neuroimaging aiming to investigate the action of insulin in the human brain using different routes of insulin administration. fMRI studies have shown a significant insulin-induced attenuation predominantly in the occipital and prefrontal cortical regions and the hypothalamus, successfully localising insulin-sensitive brain regions in healthy, mostly normal-weight individuals. However, further studies are needed to localise brain areas affected by insulin resistance in obese individuals, which is an important prerequisite for selectively targeting brain insulin resistance in obesity.

  6. Neuroimaging studies in schizophrenia: an overview of research from Asia.

    PubMed

    Narayanaswamy, Janardhanan C; Venkatasubramanian, Ganesan; Gangadhar, Bangalore N

    2012-10-01

    Neuroimaging studies in schizophrenia help clarify the neural substrates underlying the pathogenesis of this neuropsychiatric disorder. Contemporary brain imaging in schizophrenia is predominated by magnetic resonance imaging (MRI)-based research approaches. This review focuses on the various imaging studies from India and their relevance to the understanding of brain abnormalities in schizophrenia. The existing studies are predominantly comprised of structural MRI reports involving region-of-interest and voxel-based morphometry approaches, magnetic resonance spectroscopy and single-photon emission computed tomography/positron emission tomography (SPECT/PET) studies. Most of these studies are significant in that they have evaluated antipsychotic-naïve schizophrenia patients--a relatively difficult population to obtain in contemporary research. Findings of these studies offer robust support to the existence of significant brain abnormalities at very early stages of the disorder. In addition, theoretically relevant relationships between these brain abnormalities and developmental aberrations suggest possible neurodevelopmental basis for these brain deficits. PMID:23057977

  7. Neuroimaging studies of striatum in cognition part II: Parkinson's disease

    PubMed Central

    Hanganu, Alexandru; Provost, Jean-Sebastien; Monchi, Oury

    2015-01-01

    In recent years a gradual shift in the definition of Parkinson's disease (PD) has been established, from a classical akinetic-rigid movement disorder to a multi-system neurodegenerative disease. While the pathophysiology of PD is complex and goes much beyond the nigro-striatal degeneration, the striatum has been shown to be responsible for many cognitive functions. Patients with PD develop impairments in multiple cognitive domains and the PD model is probably the most extensively studied regarding striatum dysfunction and its influence on cognition. Up to 40% of PD patients present cognitive impairment even in the early stages of disease development. Thus, understanding the key patterns of striatum and connecting regions' influence on cognition will help develop more specific approaches to alleviate cognitive impairment and slow down its decline. This review focuses on the contribution of neuroimaging studies in understanding how striatum impairment affects cognition in PD. PMID:26500512

  8. Functional neuroimaging studies of reading and reading disability (developmental dyslexia).

    PubMed

    Pugh, K R; Mencl, W E; Jenner, A R; Katz, L; Frost, S J; Lee, J R; Shaywitz, S E; Shaywitz, B A

    2000-01-01

    Converging evidence from a number of neuroimaging studies, including our own, suggest that fluent word identification in reading is related to the functional integrity of two consolidated left hemisphere (LH) posterior systems: a dorsal (temporo-parietal) circuit and a ventral (occipito-temporal) circuit. This posterior system is functionally disrupted in developmental dyslexia. Reading disabled readers, relative to nonimpaired readers, demonstrate heightened reliance on both inferior frontal and right hemisphere posterior regions, presumably in compensation for the LH posterior difficulties. We propose a neurobiological account suggesting that for normally developing readers the dorsal circuit predominates at first, and is associated with analytic processing necessary for learning to integrate orthographic features with phonological and lexical-semantic features of printed words. The ventral circuit constitutes a fast, late-developing, word identification system which underlies fluent word recognition in skilled readers.

  9. Neuroimaging Studies of Speech: An Overview of Techniques and Methodological Approaches.

    ERIC Educational Resources Information Center

    Fiez, Julie A.

    2001-01-01

    Discussion of how functional neuroimaging has been applied to the study of speech production first reviews neuroimaging methods and limitations, then describes two approaches to study of the relevant speech areas: comparison across different language production tasks and comparison of effects of different stimuli within a single task. Examples…

  10. The Status of the Quality Control in Acupuncture-Neuroimaging Studies

    PubMed Central

    Qiu, Ke; Jing, Miaomiao; Liu, Xiaoyan; Gao, Feifei; Liang, Fanrong; Zeng, Fang

    2016-01-01

    Using neuroimaging techniques to explore the central mechanism of acupuncture gains increasing attention, but the quality control of acupuncture-neuroimaging study remains to be improved. We searched the PubMed Database during 1995 to 2014. The original English articles with neuroimaging scan performed on human beings were included. The data involved quality control including the author, sample size, characteristics of the participant, neuroimaging technology, and acupuncture intervention were extracted and analyzed. The rigorous inclusion and exclusion criteria are important guaranty for the participants' homogeneity. The standard operation process of acupuncture and the stricter requirement for acupuncturist play significant role in quality control. More attention should be paid to the quality control in future studies to improve the reproducibility and reliability of the acupuncture-neuroimaging studies. PMID:27242911

  11. The Status of the Quality Control in Acupuncture-Neuroimaging Studies.

    PubMed

    Qiu, Ke; Jing, Miaomiao; Sun, Ruirui; Yang, Jie; Liu, Xiaoyan; He, Zhaoxuan; Yin, Shuai; Lan, Ying; Cheng, Shirui; Gao, Feifei; Liang, Fanrong; Zeng, Fang

    2016-01-01

    Using neuroimaging techniques to explore the central mechanism of acupuncture gains increasing attention, but the quality control of acupuncture-neuroimaging study remains to be improved. We searched the PubMed Database during 1995 to 2014. The original English articles with neuroimaging scan performed on human beings were included. The data involved quality control including the author, sample size, characteristics of the participant, neuroimaging technology, and acupuncture intervention were extracted and analyzed. The rigorous inclusion and exclusion criteria are important guaranty for the participants' homogeneity. The standard operation process of acupuncture and the stricter requirement for acupuncturist play significant role in quality control. More attention should be paid to the quality control in future studies to improve the reproducibility and reliability of the acupuncture-neuroimaging studies. PMID:27242911

  12. Age of onset of schizophrenia: perspectives from structural neuroimaging studies.

    PubMed

    Gogtay, Nitin; Vyas, Nora S; Testa, Renee; Wood, Stephen J; Pantelis, Christos

    2011-05-01

    Many of the major neuropsychiatric illnesses, including schizophrenia, have a typical age of onset in late adolescence. Late adolescence may reflect a critical period in brain development making it particularly vulnerable for the onset of psychopathology. Neuroimaging studies that focus on this age range may provide unique insights into the onset and course of psychosis. In this review, we examine the evidence from 2 unique longitudinal cohorts that span the ages from early childhood through young adulthood; a study of childhood-onset schizophrenia where patients and siblings are followed from ages 6 through to their early twenties, and an ultra-high risk study where subjects (mean age of 19 years) are studied before and after the onset of psychosis. From the available evidence, we make an argument that subtle, regionally specific, and genetically influenced alterations during developmental age windows influence the course of psychosis and the resultant brain phenotype. The importance of examining trajectories of development and the need for future combined approaches, using multimodal imaging together with molecular studies is discussed. PMID:21505117

  13. Age of Onset of Schizophrenia: Perspectives From Structural Neuroimaging Studies

    PubMed Central

    Gogtay, Nitin; Vyas, Nora S.; Testa, Renee; Wood, Stephen J.; Pantelis, Christos

    2011-01-01

    Many of the major neuropsychiatric illnesses, including schizophrenia, have a typical age of onset in late adolescence. Late adolescence may reflect a critical period in brain development making it particularly vulnerable for the onset of psychopathology. Neuroimaging studies that focus on this age range may provide unique insights into the onset and course of psychosis. In this review, we examine the evidence from 2 unique longitudinal cohorts that span the ages from early childhood through young adulthood; a study of childhood-onset schizophrenia where patients and siblings are followed from ages 6 through to their early twenties, and an ultra-high risk study where subjects (mean age of 19 years) are studied before and after the onset of psychosis. From the available evidence, we make an argument that subtle, regionally specific, and genetically influenced alterations during developmental age windows influence the course of psychosis and the resultant brain phenotype. The importance of examining trajectories of development and the need for future combined approaches, using multimodal imaging together with molecular studies is discussed. PMID:21505117

  14. Individual differences and evidence-based psychopharmacology.

    PubMed

    Belmaker, Rh; Bersudsky, Yuly; Agam, Galila

    2012-09-27

    Individual differences in response to pharmacologic treatment limits the usefulness of mean data obtained from randomized controlled trials. These individual differences exist even in genetically uniform inbred mouse strains. While stratification can be of value in large studies, the individual patient history is the most effective currently available guide for personalized medicine in psychopharmacology.

  15. A Pharmacovigilance Study in First Episode of Psychosis: Psychopharmacological Interventions and Safety Profiles in the PEPs Project

    PubMed Central

    Bioque, Miquel; Llerena, Adrián; Cabrera, Bibiana; Mezquida, Gisela; Lobo, Antonio; González-Pinto, Ana; Díaz-Caneja, Covadonga M.; Corripio, Iluminada; Aguilar, Eduardo J.; Bulbena, Antoni; Castro-Fornieles, Josefina; Vieta, Eduard; Lafuente, Amàlia; Mas, Sergi; Parellada, Mara; Saiz-Ruiz, Jerónimo; Cuesta, Manuel J.

    2016-01-01

    Background: The characterization of the first episode of psychosis and how it should be treated are principal issues in actual research. Realistic, naturalistic studies are necessary to represent the entire population of first episode of psychosis attended in daily practice. Methods: Sixteen participating centers from the PEPs project recruited 335 first episode of psychosis patients, aged 7 to 35 years. This article describes and discusses the psychopharmacological interventions and safety profiles at baseline and during a 60-day pharmacovigilance period. Results: The majority of first episode of psychosis patients received a second-generation antipsychotic (96.3%), orally (95%), and in adjusted doses according to the product specifications (87.2%). A total of 24% were receiving an antipsychotic polytherapy pattern at baseline, frequently associated with lower or higher doses of antipsychotics than the recommended ones. Eight patients were taking clozapine, all in monotherapy. Males received higher doses of antipsychotic (P=.043). A total of 5.2% of the patients were being treated with long-acting injectable antipsychotics; 12.2% of the patients received anticholinergic drugs, 12.2% antidepressants, and 13.7% mood stabilizers, while almost 40% received benzodiazepines; and 35.52% reported at least one adverse drug reaction during the pharmacovigilance period, more frequently associated with higher antipsychotic doses and antipsychotic polytherapy (85.2% vs 45.5%, P<.001). Conclusions: These data indicate that the overall pharmacologic prescription for treating a first episode of psychosis in Spain follows the clinical practice guideline recommendations, and, together with security issues, support future research of determinate pharmacological strategies for the treatment of early phases of psychosis, such as the role of clozapine, long-acting injectable antipsychotics, antipsychotic combination, and the use of benzodiazepines. PMID:26506856

  16. Who Is Teaching Psychopharmacology? Who Should Be Teaching Psychopharmacology?

    ERIC Educational Resources Information Center

    Dubovsky, Steven L.

    2005-01-01

    Objective: To review the current status of psychopharmacology education for medical students, residents, and practitioners in psychiatry and other specialties. Methods: A search of the MEDLINE and PsychInfo data bases was conducted using four keywords: pharmacology, psychopharmacology, teaching, and student. Additional references were obtained…

  17. [The neurobiological dimension of meditation--results from neuroimaging studies].

    PubMed

    Neumann, Norbert-Ullrich; Frasch, Karel

    2006-12-01

    Meditation in general can be understood as a state of complete and unintentional silent and motionless concentration on an activity, an item or an idea. Subjectively, meditative experience is said to be fundamentally different from "normal" mental states and is characterized by terms like timelessness, boundlessness and lack of self-experience. In recent years, several fMRI- and PET-studies about meditation which are presented in this paper have been published. Due to different methods, especially different meditation types, the results are hardly comparable. Nevertheless, the data suggest the hypothesis of a "special" neural activity during meditative states being different from that during calm alertness. Main findings were increased activation in frontal, prefrontal and cingulate areas which may represent the mental state of altered self-experience. In the present studies, a considerable lack of scientific standards has to be stated making it of just casuistic value. Today's improved neurobiological examination methods - especially neuroimaging techniques - may contribute to enlighten the phenomenon of qualitatively different states of consciousness.

  18. Neuroimaging studies on recognition of personally familiar people.

    PubMed

    Sugiura, Motoaki

    2014-01-01

    From an evolutionary viewpoint, readiness to engage in appropriate behavior toward a recognized person seems to be inherent in the human brain. In support of this hypothesis, functional neuroimaging studies have demonstrated activation in regions relevant to relationship-appropriate behavior during the recognition of personally familiar (PF) people. Recognition of friends and colleagues activates regions involved in real-time communication, including the regions for inference about the other's mental state, autobiographical memory retrieval, and self-referential processes. Recognition of people related by romantic love, maternal love, and lost love induces activation in regions involved in motivational, reward, and affective processes, reflecting behavioral readiness for mating, caretaking, and yearning, respectively. The involvement of motor-associated cortices during recognition of a personal enemy may reflect readiness for attack or defense. Self-recognition in a body-related modality uniquely activates sensory and motor association cortices reflecting the sensorimotor origin of the bodily self-concept, with social cognitive processes being suppressed or context dependent. Issues and future directions are also discussed. PMID:24389212

  19. DeID - a data sharing tool for neuroimaging studies.

    PubMed

    Song, Xuebo; Wang, James; Wang, Anlin; Meng, Qingping; Prescott, Christian; Tsu, Loretta; Eckert, Mark A

    2015-01-01

    Funding institutions and researchers increasingly expect that data will be shared to increase scientific integrity and provide other scientists with the opportunity to use the data with novel methods that may advance understanding in a particular field of study. In practice, sharing human subject data can be complicated because data must be de-identified prior to sharing. Moreover, integrating varied data types collected in a study can be challenging and time consuming. For example, sharing data from structural imaging studies of a complex disorder requires the integration of imaging, demographic and/or behavioral data in a way that no subject identifiers are included in the de-identified dataset and with new subject labels or identification values that cannot be tracked back to the original ones. We have developed a Java program that users can use to remove identifying information in neuroimaging datasets, while still maintaining the association among different data types from the same subject for further studies. This software provides a series of user interaction wizards to allow users to select data variables to be de-identified, implements functions for auditing and validation of de-identified data, and enables the user to share the de-identified data in a single compressed package through various communication protocols, such as FTPS and SFTP. DeID runs with Windows, Linux, and Mac operating systems and its open architecture allows it to be easily adapted to support a broader array of data types, with the goal of facilitating data sharing. DeID can be obtained at http://www.nitrc.org/projects/deid. PMID:26441500

  20. [Functional Neuroimaging Pilot Study of Borderline Personality Disorder in Adolescents].

    PubMed

    LeBoeuf, Amélie; Guilé, Jean-Marc; Labelle, Réal; Luck, David

    2016-01-01

    Borderline personality disorder (BPD) is being increasingly recognized by clinicians working with adolescents, and the reliability and validity of the diagnosis have been established in the adolescent population. Adolescence is known to be a period of high risk for BPD development as most patients identify the onset of their symptoms to be in the adolescent period. As with other mental health disorders, personality disorder, are thought to result from the interaction between biological and environmental factors. Functional neuroimaging studies are reporting an increasing amount of data on abnormal neuronal functions in BPD adult patients. However, no functional neuroimaging studies have been conducted in adolescents with BPD.Objectives This pilot project aims to evaluate the feasibility of a functional magnetic resonance imaging (fMRI) study coupled with clinical and psychological measures in adolescent girls with a diagnosis of BPD. It also aims to identify neuronal regions of interest (ROI) for the study of BPD in adolescent girls.Method Six female adolescents meeting DSM-IV criteria for BPD and 6 female adolescents without psychiatric disorder were recruited. Both groups were evaluated for BPD symptoms, depressive symptoms, impulsivity, affective lability, and other potential psychiatric comorbidities. We used fMRI to compare patterns of regional brain activation between these two groups as they viewed 20 positive, 20 negative and 20 neutral emotion-inducing pictures, which were presented in random order.Results Participants were recruited over a period of 22 months. The protocol was well tolerated by participants. Mean age of the BPD group and control group was 15.8 ± 0.9 years-old and 15.5 ± 1.2 years-old respectively. Psychiatric comorbidity and use of medication was common among participants in the BPD group. This group showed higher impulsivity and affective lability scores. For the fMRI task, BPD patients demonstrated greater differences in activation

  1. [Interactions of 5 benzamides with ethanol on various psychopharmacology tests].

    PubMed

    Bourin, M; Colombel, M C; Larousse, C

    1985-03-01

    Benzamides interactions with ethanol was studied through five psychopharmacological tests. Ethanol given at 2 or 3 g/kg does not induce potentiation of benzamides effects on: motility, relaxation, dopaminergic effects induced by apomorphine (1 and 16 mg/kg).

  2. Boosting bioluminescence neuroimaging: an optimized protocol for brain studies.

    PubMed

    Aswendt, Markus; Adamczak, Joanna; Couillard-Despres, Sebastien; Hoehn, Mathias

    2013-01-01

    Bioluminescence imaging is widely used for optical cell tracking approaches. However, reliable and quantitative bioluminescence of transplanted cells in the brain is highly challenging. In this study we established a new bioluminescence imaging protocol dedicated for neuroimaging, which increases sensitivity especially for noninvasive tracking of brain cell grafts. Different D-Luciferin concentrations (15, 150, 300 and 750 mg/kg), injection routes (i.v., i.p., s.c.), types of anesthesia (Isoflurane, Ketamine/Xylazine, Pentobarbital) and timing of injection were compared using DCX-Luc transgenic mice for brain specific bioluminescence. Luciferase kinetics was quantitatively evaluated for maximal photon emission, total photon emission and time-to-peak. Photon emission followed a D-Luciferin dose-dependent relation without saturation, but with delay in time-to-peak increasing for increasing concentrations. The comparison of intravenous, subcutaneous and intraperitoneal substrate injection reflects expected pharmacokinetics with fastest and highest photon emission for intravenous administration. Ketamine/Xylazine and Pentobarbital anesthesia showed no significant beneficial effect on maximal photon emission. However, a strong difference in outcome was observed by injecting the substrate pre Isoflurane anesthesia. This protocol optimization for brain specific bioluminescence imaging comprises injection of 300 mg/kg D-Luciferin pre Isoflurane anesthesia as an efficient and stable method with a signal gain of approx. 200% (compared to 150 mg/kg post Isoflurane). Gain in sensitivity by the novel imaging protocol was quantitatively assessed by signal-to-noise calculations of luciferase-expressing neural stem cells grafted into mouse brains (transplantation of 3,000-300,000 cells). The optimized imaging protocol lowered the detection limit from 6,000 to 3,000 cells by a gain in signal-to-noise ratio.

  3. [Research in Psychopharmacology].

    PubMed

    Ferrero, Alejandro

    2015-01-01

    Research in psychopharmacology began around 1950 with the description of antipsychotic effect of chlorpromazine followed shortly later with the mechanism of action of antidepressants. In these initial phases, pharmacy industry was open to knowledge and made efforts tending to the development to new drugs that showed efficacy and good safety profiles. In parallel development of theories attempting to find the etiology of psychiatric disorders acquired impulse. This review summarizes the new drugs for the treatment of psychiatric disorders currently under development and also presents a short list of the main biomarkers proposed for the diagnosis or the comprehension of the etiopathogeny in Psychiatry. Several questions arose when brain structures, biochemical pathways, proteins and genes began to be identified in the search for a better comprehension of etiopathogeny of mental disorders. Pharmaceutical industry virtually moved away from this field of research. Epistemological and methodological obstacles in psychopharmacological investigation together with the lack of priority given by industry to this field allow us to predict few advances for the treatment in Psychiatry in the short term.

  4. Psychopharmacology in adolescent medicine.

    PubMed

    Scharf, Michael A; Williams, Thomas P

    2006-02-01

    Psychopharmacology is a challenge for health care providers treating adolescents. A detailed and accurate assessment, including developmental issues relevant to adolescence in general and to the individual adolescent, guides clinicians in formulating thoughtful and effective treatment plans to meet the needs of each patient. Parents play an important role in providing family history regarding psychiatric diagnoses and the response to various drugs, in making decisions to initiate medication and to change a medication regimen, and in monitoring an adolescent's adherence to a prescribed regimen. The role of parents is especially important for younger patients. Following the biopsychosocial model, rarely should psychopharmacologic agents be used as the sole means to treat a psychiatric condition in adolescents. Pharmacologic agents described in this article are tools that have their effect in the biological domain of central neurotransmitters, but psychosocial interventions addressing the emotional and behavioral issues that are the indications for such medication are generally also required. The development of newer medications holds promise for more effective treatment of target symptoms with minimal side effects. PMID:16473299

  5. Multi-Parametric Neuroimaging Reproducibility: A 3T Resource Study

    PubMed Central

    Landman, Bennett A.; Huang, Alan J.; Gifford, Aliya; Vikram, Deepti S.; Lim, Issel Anne L.; Farrell, Jonathan A.D.; Bogovic, John A.; Hua, Jun; Chen, Min; Jarso, Samson; Smith, Seth A.; Joel, Suresh; Mori, Susumu; Pekar, James J.; Barker, Peter B.; Prince, Jerry L.; van Zijl, Peter C.M.

    2010-01-01

    Modern MRI image processing methods have yielded quantitative, morphometric, functional, and structural assessments of the human brain. These analyses typically exploit carefully optimized protocols for specific imaging targets. Algorithm investigators have several excellent public data resources to use to test, develop, and optimize their methods. Recently, there has been an increasing focus on combining MRI protocols in multi-parametric studies. Notably, these have included innovative approaches for fusing connectivity inferences with functional and/or anatomical characterizations. Yet, validation of the reproducibility of these interesting and novel methods has been severely hampered by the limited availability of appropriate multi-parametric data. We present an imaging protocol optimized to include state-of-the-art assessment of brain function, structure, micro-architecture, and quantitative parameters within a clinically feasible 60 minute protocol on a 3T MRI scanner. We present scan-rescan reproducibility of these imaging contrasts based on 21 healthy volunteers (11 M/10 F, 22–61 y/o). The cortical gray matter, cortical white matter, ventricular cerebrospinal fluid, thalamus, putamen, caudate, cerebellar gray matter, cerebellar white matter, and brainstem were identified with mean volume-wise reproducibility of 3.5%. We tabulate the mean intensity, variability and reproducibility of each contrast in a region of interest approach, which is essential for prospective study planning and retrospective power analysis considerations. Anatomy was highly consistent on structural acquisition (~1–5% variability), while variation on diffusion and several other quantitative scans was higher (~<10%). Some sequences are particularly variable in specific structures (ASL exhibited variation of 28% in the cerebral white matter) or in thin structures (quantitative T2 varied by up to 73% in the caudate) due, in large part, to variability in automated ROI placement. The

  6. Vulnerability of Welders to Manganese Exposure – A Neuroimaging Study

    PubMed Central

    Zaiyang, Long; Yue-Ming, Jiang; Xiang-Rong, Li; William, Fadel; Jun, Xu; Chien-Lin, Yeh; Li-Ling, Long; Hai-Lan, Luo; Jaroslaw, Harezlak; James B, Murdoch; Wei, Zheng; Ulrike, Dydak

    2014-01-01

    Increased manganese (Mn) exposure is known to cause cognitive, psychiatric and motor deficits. Mn exposure occurs in different occupational settings, where the airborne Mn level and the size of respirable particulates may vary considerably. Recently the importance of the role of the cerebral cortex in Mn toxicity has been highlighted, especially in Mn-induced neuropsychological effects. In this study we used magnetic resonance imaging (MRI) to evaluate brain Mn accumulation using T1 signal intensity indices and to examine changes in brain iron content using T2* contrast, as well as magnetic resonance spectroscopy (MRS) to measure exposure-induced metabolite changes non-invasively in cortical and deep brain regions in Mn-exposed welders, Mn-exposed smelter workers and control factory workers with no measurable exposure to Mn. MRS data as well as T1 signal intensity indices and T2* values were acquired from the frontal cortex, posterior cingulate cortex, hippocampus, and thalamus. Smelters were exposed to higher air Mn levels and had a longer duration of exposure, which was reflected in higher Mn levels in erythrocytes and urine than in welders. Nonetheless, welders had more significant metabolic differences compared to controls than did the smelter workers, especially in the frontal cortex. T1 hyperintensities in the globus pallidus were observed in both Mn-exposed groups, but only welders showed significantly higher thalamic and hippocampal T1 hyperintensities, as well as significantly reduced T2* values in the frontal cortex. Our results indicate that (1) the cerebral cortex, in particular the frontal cortex, is clearly involved in Mn neurotoxic effects and (2) in spite of the lower air Mn levels and shorter duration of exposure, welders exhibit more extensive neuroimaging changes compared to controls than smelters, including measurable deposition of Mn in more brain areas. These results indicate that the type of exposure (particulate sizes, dust versus fume) and

  7. Vulnerability of welders to manganese exposure--a neuroimaging study.

    PubMed

    Long, Zaiyang; Jiang, Yue-Ming; Li, Xiang-Rong; Fadel, William; Xu, Jun; Yeh, Chien-Lin; Long, Li-Ling; Luo, Hai-Lan; Harezlak, Jaroslaw; Murdoch, James B; Zheng, Wei; Dydak, Ulrike

    2014-12-01

    Increased manganese (Mn) exposure is known to cause cognitive, psychiatric and motor deficits. Mn exposure occurs in different occupational settings, where the airborne Mn level and the size of respirable particulates may vary considerably. Recently the importance of the role of the cerebral cortex in Mn toxicity has been highlighted, especially in Mn-induced neuropsychological effects. In this study we used magnetic resonance imaging (MRI) to evaluate brain Mn accumulation using T1 signal intensity indices and to examine changes in brain iron content using T2* contrast, as well as magnetic resonance spectroscopy (MRS) to measure exposure-induced metabolite changes non-invasively in cortical and deep brain regions in Mn-exposed welders, Mn-exposed smelter workers and control factory workers with no measurable exposure to Mn. MRS data as well as T1 signal intensity indices and T2* values were acquired from the frontal cortex, posterior cingulate cortex, hippocampus, and thalamus. Smelters were exposed to higher air Mn levels and had a longer duration of exposure, which was reflected in higher Mn levels in erythrocytes and urine than in welders. Nonetheless, welders had more significant metabolic differences compared to controls than did the smelter workers, especially in the frontal cortex. T1 hyperintensities in the globus pallidus were observed in both Mn-exposed groups, but only welders showed significantly higher thalamic and hippocampal T1 hyperintensities, as well as significantly reduced T2* values in the frontal cortex. Our results indicate that (1) the cerebral cortex, in particular the frontal cortex, is clearly involved in Mn neurotoxic effects and (2) in spite of the lower air Mn levels and shorter duration of exposure, welders exhibit more extensive neuroimaging changes compared to controls than smelters, including measurable deposition of Mn in more brain areas. These results indicate that the type of exposure (particulate sizes, dust versus fume) and

  8. Motivational Interviewing and Adolescent Psychopharmacology

    ERIC Educational Resources Information Center

    Dilallo, John J.; Weiss, Gony

    2009-01-01

    The use of motivational interviewing strategies in the practice of adolescent psychopharmacology is described. Motivational interviewing is an efficient and collaborative style of clinical interaction and this helps adolescent patients to integrate their psychiatric difficulties into a more resilient identity.

  9. Psychopharmacology in cancer.

    PubMed

    Thekdi, Seema M; Trinidad, Antolin; Roth, Andrew

    2015-01-01

    Depression, anxiety, delirium, and other psychiatric symptoms are highly prevalent in the cancer setting, and pharmacological intervention is an important component in the overall psychosocial care of the patient. Psychopharmacology is also used as a primary or adjuvant treatment for the management of cancer-related symptoms stemming from the disease itself and/or its treatment, including sleep disturbance, loss of appetite, neuropathic pain, nausea, fatigue, and hot flashes. Psychiatrists, oncologists, and palliative care physicians working as members of a multidisciplinary team have the opportunity to target multiple symptoms that negatively affect a patient's quality of life with the strategic use of psychotropic medications when deemed appropriate. This article aims to review the indications for use of antidepressants, psychostimulants, anxiolytics, antipsychotics, and mood stabilizers in oncology. An updated review of the relevant literature is discussed and referenced in each section.

  10. Heritability and Genetic Association Analysis of Neuroimaging Measures in the Diabetes Heart Study

    PubMed Central

    Raffield, Laura M; Cox, Amanda J; Hugenschmidt, Christina E; Freedman, Barry I; Langefeld, Carl D; Williamson, Jeff D; Hsu, Fang-Chi; Maldjian, Joseph A; Bowden, Donald W

    2014-01-01

    Patients with type 2 diabetes are at increased risk of age-related cognitive decline and dementia. Neuroimaging measures such as white matter lesion volume, brain volume, and fractional anisotropy may reflect the pathogenesis of these cognitive declines, and genetic factors may contribute to variability in these measures. This study examined multiple neuroimaging measures in 465 participants from 238 families with extensive genotype data in the type 2 diabetes enriched Diabetes Heart Study-Mind cohort. Heritability of these phenotypes and their association with candidate single nucleotide polymorphisms (SNPs) and SNP data from genome-and exome-wide arrays was explored. All neuroimaging measures analysed were significantly heritable (ĥ2 =0.55–0.99 in unadjusted models). Seventeen candidate SNPs (from 16 genes/regions) associated with neuroimaging phenotypes in prior studies showed no significant evidence of association. A missense variant (rs150706952, A432V) in PLEKHG4B from the exome-wide array was significantly associated with white matter mean diffusivity (p=3.66×10−7) and gray matter mean diffusivity (p=2.14×10−7). This analysis suggests genetic factors contribute to variation in neuroimaging measures in a population enriched for metabolic disease and other associated comorbidities. PMID:25523635

  11. Relationships between cognitive performance, neuroimaging, and vascular disease: the DHS-Mind Study

    PubMed Central

    Hsu, Fang-Chi; Raffield, Laura M.; Hugenschmidt, Christina E.; Cox, Amanda; Xu, Jianzhao; Carr, J. Jeffery; Freedman, Barry I.; Maldjian, Joseph A.; Williamson, Jeff D.; Bowden, Donald W.

    2015-01-01

    Background Type 2 diabetes mellitus increases risk for cognitive decline and dementia; elevated burdens of vascular disease are hypothesized to contribute to this risk. These relationships were examined in the Diabetes Heart Study-Mind using a battery of cognitive tests, neuroimaging measures, and subclinical cardiovascular disease (CVD) burden assessed by coronary artery calcified plaque (CAC). We hypothesized that CAC would attenuate the association between neuroimaging measures and cognition performance. Methods Associations were examined using marginal models in this family-based cohort of 572 European Americans from 263 families. All models were adjusted for age, gender, education, type 2 diabetes, and hypertension, with some neuroimaging measures additionally adjusted for intracranial volume. Results Higher total brain volume (TBV) was associated with better performance on the Digit Symbol Substitution Task (DSST) and Semantic Fluency (both p≤7.0 x 10−4). Higher gray matter volume (GMV) was associated with better performance on the Modified Mini-Mental State Examination and Semantic Fluency (both p≤9.0 x 10−4). Adjusting for CAC caused minimal changes to the results. Conclusions Relationships exist between neuroimaging measures and cognitive performance in a type 2 diabetes-enriched European American cohort. Associations were minimally attenuated after adjusting for subclinical CVD. Additional work is needed to understand how subclinical CVD burden interacts with other factors and impacts relationships between neuroimaging and cognitive testing measures. PMID:26185004

  12. A pilot study of actigraphy as an objective measure of SSRI activation symptoms; results from a randomized placebo controlled psychopharmacological treatment study

    PubMed Central

    Bussing, Regina; Reid, Adam M.; McNamara, Joseph P.H.; Meyer, Johanna M.; Guzick, Andrew G.; Mason, Dana M.; Storch, Eric A.; Murphy, Tanya K.

    2015-01-01

    Selective serotonin reuptake inhibitors (SSRIs) are an efficacious and effective treatment for pediatric obsessive-compulsive disorder (OCD) but have received scrutiny due to a potential side effect constellation called activation syndrome. While recent research introduced a subjective measure of activation syndrome, objective measures have not been tested. This pilot study, using data from a larger randomized-controlled trial, investigated the potential of actigraphy to provide an objective measure of activation symptoms in 44 youths with OCD beginning an SSRI medication regimen. Data were collected over the first four weeks of a multisite, parallel, double-blind, randomized, placebo controlled psychopharmacological treatment study and statistical modeling was utilized to test how activation syndrome severity predicts daily and nightly activity levels. Results indicated that youths with higher activation symptoms had lower daytime activity levels when treatment averages were analyzed; in contrast youths who experienced onset of activation symptoms one week were more likely to have higher daytime and night-time activity ratings that week. Results support actigraphy as a potential objective measure of activation symptoms. Subsequent studies are needed to confirm these findings and test clinical applications for use by clinicians to monitor activation syndrome during SSRI treatment. National Institutes of Health (5UO1 MH078594-01); NCT00382291. PMID:25535011

  13. Neuroimaging studies of aggressive and violent behavior: current findings and implications for criminology and criminal justice.

    PubMed

    Bufkin, Jana L; Luttrell, Vickie R

    2005-04-01

    With the availability of new functional and structural neuroimaging techniques, researchers have begun to localize brain areas that may be dysfunctional in offenders who are aggressive and violent. Our review of 17 neuroimaging studies reveals that the areas associated with aggressive and/or violent behavioral histories, particularly impulsive acts, are located in the prefrontal cortex and the medial temporal regions. These findings are explained in the context of negative emotion regulation, and suggestions are provided concerning how such findings may affect future theoretical frameworks in criminology, crime prevention efforts, and the functioning of the criminal justice system.

  14. Psychopharmacology in Primary Care Settings.

    PubMed

    Benich, Joseph J; Bragg, Scott W; Freedy, John R

    2016-06-01

    Psychopharmacology requires clinicians to stay current on the latest guidelines and to use dynamic treatment strategies. Psychiatric conditions are prevalent in the primary care population. Choice of treatment with psychopharmacology should be based on controlling the patient's predominant symptoms while taking into consideration patient age, treatment compliance, patient past response to treatments, dosing frequency, patient preference, medication side effects, potential medication interactions, drug precautions/warnings, and cost. Response to therapy, as well as side effects, needs to be evaluated at regular intervals. The goal is to minimize symptoms and return patients to their maximal level of functioning.

  15. Psychiatric pharmacogenomics in pediatric psychopharmacology.

    PubMed

    Wall, Christopher A; Croarkin, Paul E; Swintak, Cosima; Koplin, Brett A

    2012-10-01

    This article provides an overview of where psychiatric pharmacogenomic testing stands as an emerging clinical tool in modern psychotropic prescribing practice, specifically in the pediatric population. This practical discussion is organized around the state of psychiatric pharmacogenomics research when choosing psychopharmacologic interventions in the most commonly encountered mental illnesses in youth. As with the rest of the topics on psychopharmacology for children and adolescents in this publication, a clinical vignette is presented, this one highlighting a clinical case of a 16 year old genotyped during hospitalization for recalcitrant depression.

  16. Clinical neuroimaging

    SciTech Connect

    Theodore, W.H.

    1988-01-01

    This book contains chapters on neuroimaging. Included are the following chapters: diagnostic neuroimaging in stroke, position emission tomography in cerebrovascular disease: clinical applications, and neuroradiologic work-up of brain tumors.

  17. Unmet needs in paediatric psychopharmacology: Present scenario and future perspectives.

    PubMed

    Persico, Antonio M; Arango, Celso; Buitelaar, Jan K; Correll, Christoph U; Glennon, Jeffrey C; Hoekstra, Pieter J; Moreno, Carmen; Vitiello, Benedetto; Vorstman, Jacob; Zuddas, Alessandro

    2015-10-01

    Paediatric psychopharmacology holds great promise in two equally important areas of enormous biomedical and social impact, namely the treatment of behavioural abnormalities in children and adolescents, and the prevention of psychiatric disorders with adolescent- or adult-onset. Yet, in striking contrast, pharmacological treatment options presently available in child and adolescent psychiatry are dramatically limited. The most important currently unmet needs in paediatric psychopharmacology are: the frequent off-label prescription of medications to children and adolescents based exclusively on data from randomized controlled studies involving adult patients; the frequent lack of age-specific dose, long-term efficacy and tolerability/safety data; the lack of effective medications for many paediatric psychiatric disorders, most critically autism spectrum disorder; the scarcity and limitations of randomized placebo-controlled trials in paediatric psychopharmacology; the unexplored potential for the prevention of psychiatric disorders with adolescent- and adult-onset; the current lack of biomarkers to predict treatment response and severe adverse effects; the need for better preclinical data to foster the successful development of novel drug therapies; and the effective dissemination of evidence-based treatments to the general public, to better inform patients and families of the benefits and risks of pharmacological interventions during development. Priorities and strategies are proposed to overcome some of these limitations, including the European Child and Adolescent Clinical Psychopharmacology Network, as an overarching Pan-European infrastructure aimed at reliably carrying out much needed psychopharmacological trials in children and adolescents, in order to fill the identified gaps and improve overall outcomes.

  18. Neuroimaging Study Designs, Computational Analyses and Data Provenance Using the LONI Pipeline

    PubMed Central

    Dinov, Ivo; Lozev, Kamen; Petrosyan, Petros; Liu, Zhizhong; Eggert, Paul; Pierce, Jonathan; Zamanyan, Alen; Chakrapani, Shruthi; Van Horn, John; Parker, D. Stott; Magsipoc, Rico; Leung, Kelvin; Gutman, Boris; Woods, Roger; Toga, Arthur

    2010-01-01

    Modern computational neuroscience employs diverse software tools and multidisciplinary expertise to analyze heterogeneous brain data. The classical problems of gathering meaningful data, fitting specific models, and discovering appropriate analysis and visualization tools give way to a new class of computational challenges—management of large and incongruous data, integration and interoperability of computational resources, and data provenance. We designed, implemented and validated a new paradigm for addressing these challenges in the neuroimaging field. Our solution is based on the LONI Pipeline environment [3], [4], a graphical workflow environment for constructing and executing complex data processing protocols. We developed study-design, database and visual language programming functionalities within the LONI Pipeline that enable the construction of complete, elaborate and robust graphical workflows for analyzing neuroimaging and other data. These workflows facilitate open sharing and communication of data and metadata, concrete processing protocols, result validation, and study replication among different investigators and research groups. The LONI Pipeline features include distributed grid-enabled infrastructure, virtualized execution environment, efficient integration, data provenance, validation and distribution of new computational tools, automated data format conversion, and an intuitive graphical user interface. We demonstrate the new LONI Pipeline features using large scale neuroimaging studies based on data from the International Consortium for Brain Mapping [5] and the Alzheimer's Disease Neuroimaging Initiative [6]. User guides, forums, instructions and downloads of the LONI Pipeline environment are available at http://pipeline.loni.ucla.edu. PMID:20927408

  19. Predictors of diagnostic neuroimaging delays among adults presenting with symptoms suggestive of acute stroke in Ontario: a prospective cohort study

    PubMed Central

    Burton, Kirsteen R.; Kapral, Moira K.; Li, Shudong; Fang, Jiming; Moody, Alan R.; Krahn, Murray; Laupacis, Andreas

    2016-01-01

    Background: Many studies have examined the timeliness of thrombolysis for acute ischemic stroke, but less is known about door-to-imaging time. We conducted a prospective cohort study to assess the timing of neuroimaging among patients with suspected acute stroke in the province of Ontario, Canada, and to examine factors associated with delays in neuroimaging. Methods: We included all patients 18 years and older with suspected acute stroke seen at hospitals with neuroimaging capacity within the Ontario Stroke Registry between Apr. 1, 2010, and Mar. 31, 2011. We used a hierarchical, multivariable Cox proportional hazards model to evaluate the association between patient and hospital factors and the likelihood of receiving timely neuroimaging (≤ 25 min) after arrival in the emergency department. Results: A total of 13 250 patients presented to an emergency department with stroke-like symptoms during the study period. Of the 3984 who arrived within 4 hours after symptom onset, 1087 (27.3%) had timely neuroimaging. The factors independently associated with an increased likelihood of timely neuroimaging were less time from symptom onset to presentation, more severe stroke, male sex, no history of stroke or transient ischemic attack, arrival to hospital from a setting other than home and presentation to a designated stroke centre or an urban hospital. Interpretation: A minority of patients with stroke-like symptoms who presented within the 4-hour thrombolytic treatment window received timely neuroimaging. Neuroimaging delays were influenced by various patient and hospital factors, some of which are modifiable. PMID:27398382

  20. Alternate Methods of Teaching Psychopharmacology

    ERIC Educational Resources Information Center

    Zisook, Sidney; Benjamin, Sheldon; Balon, Richard; Glick, Ira; Louie, Alan; Moutier, Christine; Moyer, Trenton; Santos, Cynthia; Servis, Mark

    2005-01-01

    Objective: This article reviews methods used to teach psychopharmacology to psychiatry residents that utilize principles of adult learning, enlist active participation of residents, and provide faculty with skills to seek, analyze, and use new information over the course of their careers. Methods: The pros and cons of five "nonlecture" methods of…

  1. A Brief Update in Psychopharmacology

    PubMed Central

    Rapp, Morton S.

    1979-01-01

    Recent developments in psychopharmacology have changed the thinking on prescription of several psychoactive drugs. Also, several known facts about administration of these drugs have been underemphasized. The current knowledge about each class of psychoactive drug is briefly reviewed in this article. PMID:21297695

  2. Neuroimaging in clinical studies of craving: importance of reward and control networks.

    PubMed

    Thayer, Rachel E; Hutchison, Kent E

    2013-06-01

    Research on neurobiological mechanisms, especially the function of networks that underlie reward and cognitive control, may offer an opportunity to explore how existing treatments work and provide means for developing new treatments for substance use disorders. In this respect, the special issue of Psychology of Addictive Behaviors highlights efforts to integrate translational neuroimaging with clinical research by actively linking neuroimaging measures with psychosocial treatment mechanisms. Based on several of the articles in this special issue, mindfulness-based approaches appear poised to make rapid progress in terms of integrating neuroimaging with research on mechanisms that mediate treatment success. This commentary briefly discusses research on incentive salience and cognitive control networks in the context of addiction, followed by a discussion of specific studies within this special issue that address the integration of neuroimaging assessments in the context of mindfulness approaches. Future work may be able to leverage measures of changes in networks and regions that underlie reward processing and cognitive control to better understand how treatments work, especially for mindfulness-based approaches. PMID:23815450

  3. Gene, brain, and behavior relationships in fragile X syndrome: evidence from neuroimaging studies.

    PubMed

    Lightbody, Amy A; Reiss, Allan L

    2009-01-01

    Fragile X syndrome (FraX) remains the most common inherited cause of intellectual disability and provides a valuable model for studying gene-brain-behavior relationships. Over the past 15 years, structural and functional magnetic resonance imaging studies have emerged with the goal of better understanding the neural pathways contributing to the cognitive and behavioral outcomes seen in individuals with FraX. Specifically, structural MRI studies have established and begun to refine the specific topography of neuroanatomical variation associated with FraX. In addition, functional neuroimaging studies have begun to elucidate the neural underpinnings of many of the unique characteristics of FraX including difficulties with eye gaze, executive functioning, and behavioral inhibition. This review highlights studies with a focus on the relevant gene-brain-behavior connections observed in FraX. The relationship of brain regions and activation patterns to FMRP are discussed as well as the clinical cognitive and behavioral correlates of these neuroimaging findings.

  4. Challenges and Promises of Pediatric Psychopharmacology.

    PubMed

    Giles, Lisa L; Martini, D Richard

    2016-08-01

    Most prescriptions for psychotropic medications are written by primary care physicians, yet pediatricians, many of whom are teaching residents and medical students about pediatric psychopharmacology, often feel inadequately trained to treat mental health concerns. Over the past several decades, the number, size, and quality of psychopharmacologic studies in youth has greatly increased. Here we review the current evidence for efficacy and safety of each of the major pharmacologic drug classes in youth (psychostimulants, antidepressants, mood stabilizers, and antipsychotics). Psychostimulants have a robust body of literature supporting their evidence as first-line treatment for attention-deficit/hyperactivity disorder. Selective serotonin reuptake inhibitors (SSRIs) have documented efficacy for pediatric depression and multiple different anxiety disorders with childhood onset. Combining cognitive-behavioral therapy with SSRI treatment enhances treatment benefit and minimizes adverse events of medication. Mood stabilizers, including lithium and anticonvulsant medications, have a less robust strength of evidence and come with more problematic side effects. However, they are increasingly prescribed to youth, often to treat irritability, mood lability, and aggression, along with treatment of bipolar disorder. Antipsychotics have long been a mainstay of treatment for childhood-onset schizophrenia, and in recent years, the evidence base for providing antipsychotics to youth with bipolar mania and autistic disorder has grown. Most concerning with antipsychotics are the metabolic side effects, which appear even more problematic in youth than adults. By better understanding the evidence-based psychopharmacologic interventions, academic pediatricians will be able to treat patients and prepare future pediatrician to address the growing mental health care needs of youth.

  5. Heterogeneity within Autism Spectrum Disorders: What have We Learned from Neuroimaging Studies?

    PubMed Central

    Lenroot, Rhoshel K.; Yeung, Pui Ka

    2013-01-01

    Autism spectrum disorders (ASD) display significant heterogeneity. Although most neuroimaging studies in ASD have been designed to identify commonalities among affected individuals, rather than differences, some studies have explored variation within ASD. There have been two general types of approaches used for this in the neuroimaging literature to date: comparison of subgroups within ASD, and analyses using dimensional measures to link clinical variation to brain differences. This review focuses on structural and functional magnetic resonance imaging studies that have used these approaches to begin to explore heterogeneity between individuals with ASD. Although this type of data is yet sparse, recognition is growing of the limitations of behaviorally defined categorical diagnoses for understanding neurobiology. Study designs that are more informative regarding the sources of heterogeneity in ASD have the potential to improve our understanding of the neurobiological processes underlying ASD. PMID:24198778

  6. The Brain Network for Deductive Reasoning: A Quantitative Meta-analysis of 28 Neuroimaging Studies

    PubMed Central

    Prado, Jérôme; Chadha, Angad; Booth, James R.

    2011-01-01

    Over the course of the past decade, contradictory claims have been made regarding the neural bases of deductive reasoning. Researchers have been puzzled by apparent inconsistencies in the literature. Some have even questioned the effectiveness of the methodology used to study the neural bases of deductive reasoning. However, the idea that neuroimaging findings are inconsistent is not based on any quantitative evidence. Here, we report the results of a quantitative meta-analysis of 28 neuroimaging studies of deductive reasoning published between 1997 and 2010, combining 382 participants. Consistent areas of activations across studies were identified using the multilevel kernel density analysis method. We found that results from neuroimaging studies are more consistent than what has been previously assumed. Overall, studies consistently report activations in specific regions of a left fronto-parietal system, as well as in the left Basal Ganglia. This brain system can be decomposed into three subsystems that are specific to particular types of deductive arguments: relational, categorical, and propositional. These dissociations explain inconstancies in the literature. However, they are incompatible with the notion that deductive reasoning is supported by a single cognitive system relying either on visuospatial or rule-based mechanisms. Our findings provide critical insight into the cognitive organization of deductive reasoning and need to be accounted for by cognitive theories. PMID:21568632

  7. Oxytocin and Social Adaptation: Insights from Neuroimaging Studies of Healthy and Clinical Populations.

    PubMed

    Ma, Yina; Shamay-Tsoory, Simone; Han, Shihui; Zink, Caroline F

    2016-02-01

    Adaptation to the social environment is critical for human survival. The neuropeptide oxytocin (OT), implicated in social cognition and emotions pivotal to sociality and well-being, is a promising pharmacological target for social and emotional dysfunction. We suggest here that the multifaceted role of OT in socio-affective processes improves the capability for social adaptation. We review OT effects on socio-affective processes, with a focus on OT-neuroimaging studies, to elucidate neuropsychological mechanisms through which OT promotes social adaptation. We also review OT-neuroimaging studies of individuals with social deficits and suggest that OT ameliorates impaired social adaptation by normalizing hyper- or hypo-brain activity. The social adaption model (SAM) provides an integrative understanding of discrepant OT effects and the modulations of OT action by personal milieu and context.

  8. Oxytocin and Social Adaptation: Insights from Neuroimaging Studies of Healthy and Clinical Populations.

    PubMed

    Ma, Yina; Shamay-Tsoory, Simone; Han, Shihui; Zink, Caroline F

    2016-02-01

    Adaptation to the social environment is critical for human survival. The neuropeptide oxytocin (OT), implicated in social cognition and emotions pivotal to sociality and well-being, is a promising pharmacological target for social and emotional dysfunction. We suggest here that the multifaceted role of OT in socio-affective processes improves the capability for social adaptation. We review OT effects on socio-affective processes, with a focus on OT-neuroimaging studies, to elucidate neuropsychological mechanisms through which OT promotes social adaptation. We also review OT-neuroimaging studies of individuals with social deficits and suggest that OT ameliorates impaired social adaptation by normalizing hyper- or hypo-brain activity. The social adaption model (SAM) provides an integrative understanding of discrepant OT effects and the modulations of OT action by personal milieu and context. PMID:26616296

  9. Detecting neuroimaging biomarkers for schizophrenia: a meta-analysis of multivariate pattern recognition studies.

    PubMed

    Kambeitz, Joseph; Kambeitz-Ilankovic, Lana; Leucht, Stefan; Wood, Stephen; Davatzikos, Christos; Malchow, Berend; Falkai, Peter; Koutsouleris, Nikolaos

    2015-06-01

    Multivariate pattern recognition approaches have recently facilitated the search for reliable neuroimaging-based biomarkers in psychiatric disorders such as schizophrenia. By taking into account the multivariate nature of brain functional and structural changes as well as their distributed localization across the whole brain, they overcome drawbacks of traditional univariate approaches. To evaluate the overall reliability of neuroimaging-based biomarkers, we conducted a comprehensive literature search to identify all studies that used multivariate pattern recognition to identify patterns of brain alterations that differentiate patients with schizophrenia from healthy controls. A bivariate random-effects meta-analytic model was implemented to investigate the sensitivity and specificity across studies as well as to assess the robustness to potentially confounding variables. In the total sample of n=38 studies (1602 patients and 1637 healthy controls), patients were differentiated from controls with a sensitivity of 80.3% (95% CI: 76.7-83.5%) and a specificity of 80.3% (95% CI: 76.9-83.3%). Analysis of neuroimaging modality indicated higher sensitivity (84.46%, 95% CI: 79.9-88.2%) and similar specificity (76.9%, 95% CI: 71.3-81.6%) of rsfMRI studies as compared with structural MRI studies (sensitivity: 76.4%, 95% CI: 71.9-80.4%, specificity of 79.0%, 95% CI: 74.6-82.8%). Moderator analysis identified significant effects of age (p=0.029), imaging modality (p=0.019), and disease stage (p=0.025) on sensitivity as well as of positive-to-negative symptom ratio (p=0.022) and antipsychotic medication (p=0.016) on specificity. Our results underline the utility of multivariate pattern recognition approaches for the identification of reliable neuroimaging-based biomarkers. Despite the clinical heterogeneity of the schizophrenia phenotype, brain functional and structural alterations differentiate schizophrenic patients from healthy controls with 80% sensitivity and specificity

  10. How Acute Total Sleep Loss Affects the Attending Brain: A Meta-Analysis of Neuroimaging Studies

    PubMed Central

    Ma, Ning; Dinges, David F.; Basner, Mathias; Rao, Hengyi

    2015-01-01

    Study Objectives: Attention is a cognitive domain that can be severely affected by sleep deprivation. Previous neuroimaging studies have used different attention paradigms and reported both increased and reduced brain activation after sleep deprivation. However, due to large variability in sleep deprivation protocols, task paradigms, experimental designs, characteristics of subject populations, and imaging techniques, there is no consensus regarding the effects of sleep loss on the attending brain. The aim of this meta-analysis was to identify brain activations that are commonly altered by acute total sleep deprivation across different attention tasks. Design: Coordinate-based meta-analysis of neuroimaging studies of performance on attention tasks during experimental sleep deprivation. Methods: The current version of the activation likelihood estimation (ALE) approach was used for meta-analysis. The authors searched published articles and identified 11 sleep deprivation neuroimaging studies using different attention tasks with a total of 185 participants, equaling 81 foci for ALE analysis. Results: The meta-analysis revealed significantly reduced brain activation in multiple regions following sleep deprivation compared to rested wakefulness, including bilateral intraparietal sulcus, bilateral insula, right prefrontal cortex, medial frontal cortex, and right parahippocampal gyrus. Increased activation was found only in bilateral thalamus after sleep deprivation compared to rested wakefulness. Conclusion: Acute total sleep deprivation decreases brain activation in the fronto-parietal attention network (prefrontal cortex and intraparietal sulcus) and in the salience network (insula and medial frontal cortex). Increased thalamic activation after sleep deprivation may reflect a complex interaction between the de-arousing effects of sleep loss and the arousing effects of task performance on thalamic activity. Citation: Ma N, Dinges DF, Basner M, Rao H. How acute total

  11. Neuroimaging of Cognitive Dysfunction and Depression in Aging Retired NFL Players: A cross-sectional study

    PubMed Central

    Hart, John; Kraut, Michael A.; Womack, Kyle B.; Strain, Jeremy; Didehbani, Nyaz; Bartz, Elizabeth; Conover, Heather; Mansinghani, Sethesh; Lu, Hanzhang; Cullum, C. Munro

    2013-01-01

    Objective To assess for the presence of cognitive impairment and depression in aging former NFL players, and identify neuroimaging correlates of these dysfunctions. Design Comparison of aging NFL players with cognitive impairment and depression to those without these dysfunctions and with matched healthy controls Setting Research center in the North Texas region of the United States. Patients We performed a cross-sectional study of retired professional football players with and without a history of concussion recruited from the North Texas region, along with age-, education-, and IQ-matched controls. We studied thirty-four retired NFL players (mean age 62) neurologically and neuropsychologically. A subset of 26 also underwent detailed neuroimaging; imaging data in this subset were compared to imaging data acquired in 26 healthy matched controls. Main Outcome Measures Neuropsychological measures, clinical diagnoses of depression, neuroimaging measures of white matter pathology, and a measure of cerebral blood flow (CBF). Results Of the 34 participants, 20 were cognitively normal, 4 were diagnosed with a fixed cognitive deficit, 8 with Mild Cognitive Impairment, and 2 with dementia; 8 were diagnosed with depression. Of the subgroup in which neuroimaging data were acquired, cognitively impaired (CI) participants showed greatest deficits on tests of naming, word finding, and visual/verbal episodic memory. We found significant differences in white matter abnormalities in CI players and depressed players compared to their respective controls. Regional blood flow differences in the CI group (left temporal pole, inferior parietal lobule, superior temporal gyrus) corresponded to regions associated with impaired neurocognitive performance (problems with memory, naming and word finding). Conclusions Cognitive deficits and depression appear to be more common in aging NFL players compared to controls. These deficits are correlated with white matter abnormalities and changes in

  12. Psychopharmacology and Mental Retardation: A 10 Year Review (1990- 1999).

    ERIC Educational Resources Information Center

    Matson, Johnny L.; Bamburg, Jay W.; Mayville, Erik A.; Pinkston, Jim; Bielecki, Joanne; Kuhn, David; Smalls, Yemonja; Logan, James R.

    2000-01-01

    Review of the literature on psychopharmacology and mental retardation from 1990-1999 found most studies had major methodological flaws. Also, most drug administrations were not based in science, were not evaluated appropriately, and generally did not follow best practices for treatment of persons with mental retardation. A table lists the studies…

  13. Psychopharmacology of Autism Spectrum Disorders: A Selective Review

    ERIC Educational Resources Information Center

    Mohiuddin, Sarah; Ghaziuddin, Mohammad

    2013-01-01

    While there is no cure for autism spectrum disorder, psychopharmacologic agents are often used with behavioral and educational approaches to treat its comorbid symptoms of hyperactivity, irritability, and aggression. Studies suggest that at least 50% of persons with autism spectrum disorder receive psychotropic medications during their life span.…

  14. Biochemical and neuroimaging studies in subjective cognitive decline: progress and perspectives.

    PubMed

    Sun, Yu; Yang, Fu-Chi; Lin, Ching-Po; Han, Ying

    2015-10-01

    Neurodegeneration due to Alzheimer's disease (AD) can progress over decades before dementia becomes apparent. Indeed, patients with mild cognitive impairment (MCI) already demonstrate significant lesion loads. In most cases, MCI is preceded by subjective cognitive decline (SCD), which is applied to individuals who have self-reported memory-related complaints and has been associated with a higher risk of future cognitive decline and conversion to dementia. Based on the schema of a well-received model of biomarker dynamics in AD pathogenesis, it has been postulated that SCD symptoms may result from compensatory changes in response to β-amyloid accumulation and neurodegeneration. Although SCD is considered a prodromal stage of MCI, it is also a common manifestation in old age, independent of AD, and the predictive value of SCD for AD pathology remains controversial. Here, we provide a review focused on the contributions of cross-sectional and longitudinal analogical studies of biomarkers and neuroimaging evidence in disentangling under what conditions SCD may be attributable to AD pathology. In conclusion, there is promising evidence indicating that clinicians should be able to differentiate pre-AD SCD based on the presence of pathophysiological biomarkers in cerebrospinal fluid (CSF) and neuroimaging. However, this neuroimaging approach is still at an immature stage without an established rubric of standards. A substantial amount of work remains in terms of replicating recent findings and validating the clinical utility of identifying SCD.

  15. Meditation States and Traits: EEG, ERP, and Neuroimaging Studies

    ERIC Educational Resources Information Center

    Cahn, B. Rael; Polich, John

    2006-01-01

    Neuroelectric and imaging studies of meditation are reviewed. Electroencephalographic measures indicate an overall slowing subsequent to meditation, with theta and alpha activation related to proficiency of practice. Sensory evoked potential assessment of concentrative meditation yields amplitude and latency changes for some components and…

  16. Typical and atypical brain development: a review of neuroimaging studies

    PubMed Central

    Dennis, Emily L.; Thompson, Paul M.

    2013-01-01

    In the course of development, the brain undergoes a remarkable process of restructuring as it adapts to the environment and becomes more efficient in processing information. A variety of brain imaging methods can be used to probe how anatomy, connectivity, and function change in the developing brain. Here we review recent discoveries regarding these brain changes in both typically developing individuals and individuals with neurodevelopmental disorders. We begin with typical development, summarizing research on changes in regional brain volume and tissue density, cortical thickness, white matter integrity, and functional connectivity. Space limits preclude the coverage of all neurodevelopmental disorders; instead, we cover a representative selection of studies examining neural correlates of autism, attention deficit/hyperactivity disorder, Fragile X, 22q11.2 deletion syndrome, Williams syndrome, Down syndrome, and Turner syndrome. Where possible, we focus on studies that identify an age by diagnosis interaction, suggesting an altered developmental trajectory. The studies we review generally cover the developmental period from infancy to early adulthood. Great progress has been made over the last 20 years in mapping how the brain matures with MR technology. With ever-improving technology, we expect this progress to accelerate, offering a deeper understanding of brain development, and more effective interventions for neurodevelopmental disorders. PMID:24174907

  17. Typical and atypical brain development: a review of neuroimaging studies.

    PubMed

    Dennis, Emily L; Thompson, Paul M

    2013-09-01

    In the course of development, the brain undergoes a remarkable process of restructuring as it adapts to the environment and becomes more efficient in processing information. A variety of brain imaging methods can be used to probe how anatomy, connectivity, and function change in the developing brain. Here we review recent discoveries regarding these brain changes in both typically developing individuals and individuals with neurodevelopmental disorders. We begin with typical development, summarizing research on changes in regional brain volume and tissue density, cortical thickness, white matter integrity, and functional connectivity. Space limits preclude the coverage of all neurodevelopmental disorders; instead, we cover a representative selection of studies examining neural correlates of autism, attention deficit/hyperactivity disorder, Fragile X, 22q11.2 deletion syndrome, Williams syndrome, Down syndrome, and Turner syndrome. Where possible, we focus on studies that identify an age by diagnosis interaction, suggesting an altered developmental trajectory. The studies we review generally cover the developmental period from infancy to early adulthood. Great progress has been made over the last 20 years in mapping how the brain matures with MR technology. With ever-improving technology, we expect this progress to accelerate, offering a deeper understanding of brain development, and more effective interventions for neurodevelopmental disorders.

  18. Strategies for longitudinal neuroimaging studies of overt language production.

    PubMed

    Meltzer, Jed A; Postman-Caucheteux, Whitney A; McArdle, Joseph J; Braun, Allen R

    2009-08-15

    Longitudinal fMRI studies of language production are of interest for evaluating recovery from post-stroke aphasia, but numerous methodological issues remain unresolved, particularly regarding strategies for evaluating single subjects at multiple timepoints. To address these issues, we studied overt picture naming in eleven healthy subjects, scanned four times each at one-month intervals. To evaluate the natural variability present across repeated sessions, repeated scans were directly contrasted in a unified statistical framework on a per-voxel basis. The effect of stimulus familiarity was evaluated using explicitly overtrained pictures, novel pictures, and untrained pictures that were repeated across sessions. For untrained pictures, we found that activation declined across multiple sessions, equally for both novel and repeated stimuli. Thus, no repetition priming for individual stimuli at one-month intervals was found, but rather a general effect of task habituation was present. Using a set of overtrained pictures identical in each session, no decline was found, but activation was minimized and produced less consistent patterns across participants, as measured by intra-class correlation coefficients. Subtraction of a baseline task, in which subjects produced a stereotyped utterance to scrambled pictures, resulted in specific activations in the left inferior frontal gyrus and other language areas for untrained items, while overlearned stimuli relative to pseudo pictures activated only the fusiform gyrus and supplementary motor area. These findings indicate that longitudinal fMRI is an effective means of detecting changes in neural activation magnitude over time, as long as the effect of task habituation is taken into account.

  19. Practical Clinical Trials in Psychopharmacology: a Systematic Review

    PubMed Central

    Vitiello, Benedetto

    2015-01-01

    Practical clinical trials (PCT) are randomized experiments under typical practice conditions with the aim of testing the “real life” benefits and risks of therapeutic interventions. Influential PCTs have been conducted in cardiology, oncology, and internal medicine. Psychotropic medications are widely and increasingly used in medical practice. This review examines recent progress in conducting PCTs in psychopharmacology. The January 2000 – October 2014 MEDLINE, Scopus, and ClinicalTrials.gov databases were searched for peer-reviewed publications of PCTs with at least 100 subjects per treatment arm. Most PCTs in psychiatry evaluated mental health services or psychosocial interventions rather than specific pharmacotherapies. Of 157 PCTs in psychiatry, 30 (19%) were in psychopharmacology, with a median of 2 publications per year and no increase over the period of observation. Sample size ranged from 200 to 18,154; only 11 studies randomized 500 patients or more. Psychopharmacology PCTs were equally likely to be funded by industry as by public agencies. There were 10 PCTs of antidepressants, for a total of 4,206 patients (in comparison with at least 46 PCT of antihypertensive medications, for a total of 208,014 patients). Some psychopharmacology PCTs used suicidal behavior, treatment discontinuation, or mortality as primary outcome, and produced effectiveness and safety data that have influenced both practice guidelines and regulatory decisions. PCTs can constitute an important source of information for clinicians, patients, regulators, and policy makers, but have been relatively underutilized in psychopharmacology. Electronic medical records and integrated practice research networks offer promising platforms for a more efficient conduct of PCTs. PMID:25679131

  20. Practical clinical trials in psychopharmacology: a systematic review.

    PubMed

    Vitiello, Benedetto

    2015-04-01

    Practical clinical trials (PCTs) are randomized experiments under typical practice conditions with the aim of testing the "real-life" benefits and risks of therapeutic interventions. Influential PCTs have been conducted in cardiology, oncology, and internal medicine. Psychotropic medications are widely and increasingly used in medical practice. This review examines recent progress in conducting PCTs in psychopharmacology. The January 2000 to October 2014 MEDLINE, Scopus, and ClinicalTrials.gov databases were searched for peer-reviewed publications of PCTs with at least 100 subjects per treatment arm. Most PCTs in psychiatry evaluated mental health services or psychosocial interventions rather than specific pharmacotherapies. Of 157 PCTs in psychiatry, 30 (19%) were in psychopharmacology, with a median of 2 publications per year and no increase during the period of observation. Sample size ranged from 200 to 18,154; only 11 studies randomized 500 patients or more. Psychopharmacology PCTs were equally likely to be funded by industry as by public agencies. There were 10 PCTs of antidepressants, for a total of 4206 patients (in comparison with at least 46 PCTs of antihypertensive medications, for a total of 208,014 patients). Some psychopharmacology PCTs used suicidal behavior, treatment discontinuation, or mortality as primary outcome and produced effectiveness and safety data that have influenced both practice guidelines and regulatory decisions. Practical clinical trials can constitute an important source of information for clinicians, patients, regulators, and policy makers but have been relatively underused in psychopharmacology. Electronic medical records and integrated practice research networks offer promising platforms for a more efficient conduct of PCTs.

  1. Emotionally Neutral Stimuli Are Not Neutral in Schizophrenia: A Mini Review of Functional Neuroimaging Studies

    PubMed Central

    Potvin, Stéphane; Tikàsz, Andràs; Mendrek, Adrianna

    2016-01-01

    Reliable evidence shows that schizophrenia patients tend to experience negative emotions when presented with emotionally neutral stimuli. Similarly, several functional neuroimaging studies show that schizophrenia patients have increased activations in response to neutral material. However, results are heterogeneous. Here, we review the functional neuroimaging studies that have addressed this research question. Based on the 36 functional neuroimaging studies that we retrieved, it seems that the increased brain reactivity to neutral stimuli is fairly common in schizophrenia, but that the regions involved vary considerably, apart from the amygdala. Prefrontal and cingulate sub-regions and the hippocampus may also be involved. By contrasts, results in individuals at risk for psychosis are less consistent. In schizophrenia patients, results are less consistent in the case of studies using non-facial stimuli, explicit processing paradigms, and/or event-related designs. This means that human faces may convey subtle information (e.g., trustworthiness) other than basic emotional expressions. It also means that the aberrant brain reactivity to neutral stimuli is less likely to occur when experimental paradigms are too cognitively demanding as well as in studies lacking statistical power. The main hypothesis proposed to account for this increased brain reactivity to neutral stimuli is the aberrant salience hypothesis of psychosis. Other investigators propose that the aberrant brain reactivity to neutral stimuli in schizophrenia results from abnormal associative learning, untrustworthiness judgments, priming effects, and/or reduced habituation to neutral stimuli. In the future, the effects of antipsychotics on this aberrant brain reactivity will need to be determined, as well as the potential implication of sex/gender. PMID:27445871

  2. Emotionally Neutral Stimuli Are Not Neutral in Schizophrenia: A Mini Review of Functional Neuroimaging Studies.

    PubMed

    Potvin, Stéphane; Tikàsz, Andràs; Mendrek, Adrianna

    2016-01-01

    Reliable evidence shows that schizophrenia patients tend to experience negative emotions when presented with emotionally neutral stimuli. Similarly, several functional neuroimaging studies show that schizophrenia patients have increased activations in response to neutral material. However, results are heterogeneous. Here, we review the functional neuroimaging studies that have addressed this research question. Based on the 36 functional neuroimaging studies that we retrieved, it seems that the increased brain reactivity to neutral stimuli is fairly common in schizophrenia, but that the regions involved vary considerably, apart from the amygdala. Prefrontal and cingulate sub-regions and the hippocampus may also be involved. By contrasts, results in individuals at risk for psychosis are less consistent. In schizophrenia patients, results are less consistent in the case of studies using non-facial stimuli, explicit processing paradigms, and/or event-related designs. This means that human faces may convey subtle information (e.g., trustworthiness) other than basic emotional expressions. It also means that the aberrant brain reactivity to neutral stimuli is less likely to occur when experimental paradigms are too cognitively demanding as well as in studies lacking statistical power. The main hypothesis proposed to account for this increased brain reactivity to neutral stimuli is the aberrant salience hypothesis of psychosis. Other investigators propose that the aberrant brain reactivity to neutral stimuli in schizophrenia results from abnormal associative learning, untrustworthiness judgments, priming effects, and/or reduced habituation to neutral stimuli. In the future, the effects of antipsychotics on this aberrant brain reactivity will need to be determined, as well as the potential implication of sex/gender. PMID:27445871

  3. [Psychopharmacologic properties of Lippia multiflora].

    PubMed

    Abena, A A; Ngondzo-Kombeti, G R; Bioka, D

    1998-01-01

    Lippia multiflora (L.m.) is a verbenacea used in Congo as conventional tea decoction. No traditional indication is known in this country. Nevertheless, in Ghana the plant is used for the treatment of arterial hypertension. The aim of this study is to investigate the psychotropic activity of the aqueous extract of L.m. using the classical tests of experimental psychopharmacology. The extract of L.m. is constituted by lyophilisated powder obtained from an infusion of dried leaves. Different doses are prepared: 200, 400, 600, 800, 1,000 and 1,200 mg/kg dissolved in 1 ml of NaCl 0.9%. L.m. is administered by intraperitoneal or oral route. The wistar rats of both sexes, weighing between 150-200 g, are used. Animal's behaviour is observed macroscopically. The spontaneous motor activity is appreciated by using the number of squares crossed by animal with the four paws in ten minutes (Martin and al. method slightly modified). The rectal temperature is measured. The effect of L.m. on stereotypies induced by apomorphin and anesthesia induced by phenobarbital are studied. The traction test is used to investigate the muscle relaxant effect of L.m. and analgesic activity is evaluated by using acetic acid and hot plate methods by comparison with diazepam 2 and 4 mg/kg. Fischer-t test is used for the statistical analysis of results. L.m. is well tolerated by rats. No mortality is observed with the doses used. So the doses of 200, 400 and 600 mg/kg were selected for experiments. At theses doses L.m. caused: a precocious ataxia, a sedation, a ptosis and a yellow coloration of urines, these effects are dose dependent; a significant reduction of spontaneous motor activity: control 61.60 +/- 6.48, L.m. 200: 16.40 +/- 5.68 (P < 0.01), L.m. 400: 12.20 +/- 2.01 and L.m. 600: 9.60 +/- 1.90 (P < 0.01); no modification of rectal temperature and apomorphin stereotypies; a reduction of sleep latence: control 22.40 +/- 1.89 min, L.m. 200: 17.20 +/- 2.74 min (P < 0.01), L.m. 400: 13.80 +/- 1

  4. [Neuroimaging of frontotemporal dementia].

    PubMed

    Blesa, R

    2000-01-01

    With the development of neuroimaging, frontal lobe atrophy has been demonstrated with increased frequency, first with structural studies (computed tomography and magnetic resonance imaging), then with functional images (Single photon emission computed tomography and Positron emission tomography).

  5. Detecting Neuroimaging Biomarkers for Schizophrenia: A Meta-Analysis of Multivariate Pattern Recognition Studies

    PubMed Central

    Kambeitz, Joseph; Kambeitz-Ilankovic, Lana; Leucht, Stefan; Wood, Stephen; Davatzikos, Christos; Malchow, Berend; Falkai, Peter; Koutsouleris, Nikolaos

    2015-01-01

    Multivariate pattern recognition approaches have recently facilitated the search for reliable neuroimaging-based biomarkers in psychiatric disorders such as schizophrenia. By taking into account the multivariate nature of brain functional and structural changes as well as their distributed localization across the whole brain, they overcome drawbacks of traditional univariate approaches. To evaluate the overall reliability of neuroimaging-based biomarkers, we conducted a comprehensive literature search to identify all studies that used multivariate pattern recognition to identify patterns of brain alterations that differentiate patients with schizophrenia from healthy controls. A bivariate random-effects meta-analytic model was implemented to investigate the sensitivity and specificity across studies as well as to assess the robustness to potentially confounding variables. In the total sample of n=38 studies (1602 patients and 1637 healthy controls), patients were differentiated from controls with a sensitivity of 80.3% (95% CI: 76.7–83.5%) and a specificity of 80.3% (95% CI: 76.9–83.3%). Analysis of neuroimaging modality indicated higher sensitivity (84.46%, 95% CI: 79.9–88.2%) and similar specificity (76.9%, 95% CI: 71.3–81.6%) of rsfMRI studies as compared with structural MRI studies (sensitivity: 76.4%, 95% CI: 71.9–80.4%, specificity of 79.0%, 95% CI: 74.6–82.8%). Moderator analysis identified significant effects of age (p=0.029), imaging modality (p=0.019), and disease stage (p=0.025) on sensitivity as well as of positive-to-negative symptom ratio (p=0.022) and antipsychotic medication (p=0.016) on specificity. Our results underline the utility of multivariate pattern recognition approaches for the identification of reliable neuroimaging-based biomarkers. Despite the clinical heterogeneity of the schizophrenia phenotype, brain functional and structural alterations differentiate schizophrenic patients from healthy controls with 80% sensitivity and

  6. Haptic fMRI: combining functional neuroimaging with haptics for studying the brain's motor control representation.

    PubMed

    Menon, Samir; Brantner, Gerald; Aholt, Chris; Kay, Kendrick; Khatib, Oussama

    2013-01-01

    A challenging problem in motor control neuroimaging studies is the inability to perform complex human motor tasks given the Magnetic Resonance Imaging (MRI) scanner's disruptive magnetic fields and confined workspace. In this paper, we propose a novel experimental platform that combines Functional MRI (fMRI) neuroimaging, haptic virtual simulation environments, and an fMRI-compatible haptic device for real-time haptic interaction across the scanner workspace (above torso ∼ .65×.40×.20m(3)). We implement this Haptic fMRI platform with a novel haptic device, the Haptic fMRI Interface (HFI), and demonstrate its suitability for motor neuroimaging studies. HFI has three degrees-of-freedom (DOF), uses electromagnetic motors to enable high-fidelity haptic rendering (>350Hz), integrates radio frequency (RF) shields to prevent electromagnetic interference with fMRI (temporal SNR >100), and is kinematically designed to minimize currents induced by the MRI scanner's magnetic field during motor displacement (<2cm). HFI possesses uniform inertial and force transmission properties across the workspace, and has low friction (.05-.30N). HFI's RF noise levels, in addition, are within a 3 Tesla fMRI scanner's baseline noise variation (∼.85±.1%). Finally, HFI is haptically transparent and does not interfere with human motor tasks (tested for .4m reaches). By allowing fMRI experiments involving complex three-dimensional manipulation with haptic interaction, Haptic fMRI enables-for the first time-non-invasive neuroscience experiments involving interactive motor tasks, object manipulation, tactile perception, and visuo-motor integration.

  7. Haptic fMRI: combining functional neuroimaging with haptics for studying the brain's motor control representation.

    PubMed

    Menon, Samir; Brantner, Gerald; Aholt, Chris; Kay, Kendrick; Khatib, Oussama

    2013-01-01

    A challenging problem in motor control neuroimaging studies is the inability to perform complex human motor tasks given the Magnetic Resonance Imaging (MRI) scanner's disruptive magnetic fields and confined workspace. In this paper, we propose a novel experimental platform that combines Functional MRI (fMRI) neuroimaging, haptic virtual simulation environments, and an fMRI-compatible haptic device for real-time haptic interaction across the scanner workspace (above torso ∼ .65×.40×.20m(3)). We implement this Haptic fMRI platform with a novel haptic device, the Haptic fMRI Interface (HFI), and demonstrate its suitability for motor neuroimaging studies. HFI has three degrees-of-freedom (DOF), uses electromagnetic motors to enable high-fidelity haptic rendering (>350Hz), integrates radio frequency (RF) shields to prevent electromagnetic interference with fMRI (temporal SNR >100), and is kinematically designed to minimize currents induced by the MRI scanner's magnetic field during motor displacement (<2cm). HFI possesses uniform inertial and force transmission properties across the workspace, and has low friction (.05-.30N). HFI's RF noise levels, in addition, are within a 3 Tesla fMRI scanner's baseline noise variation (∼.85±.1%). Finally, HFI is haptically transparent and does not interfere with human motor tasks (tested for .4m reaches). By allowing fMRI experiments involving complex three-dimensional manipulation with haptic interaction, Haptic fMRI enables-for the first time-non-invasive neuroscience experiments involving interactive motor tasks, object manipulation, tactile perception, and visuo-motor integration. PMID:24110643

  8. Neuroimaging studies of bilingual expressive language representation in the brain: potential applications for magnetoencephalography (MEG)

    PubMed Central

    Pang, Elizabeth W.

    2016-01-01

    Bilingualism is the ability to use two or more languages with equal or near equal fluency. How the brain, often seamlessly, selects, controls, and switches between languages is an enigma. Neuroimaging studies offer the unique opportunity to probe the mechanisms underlying bilingual brain function. Non-invasive methods, in particular, functional MRI (fMRI) and event-related potentials (ERPs), have allowed examination in healthy control populations. Whole-head magnetoencephalography (MEG), a relatively new addition to the cadre of neuroimaging tools, offers a combination of the high spatial resolution of fMRI with the high temporal resolution of ERPs. Thus far, MEG has been applied to the study of bilingual receptive language, or bilingual language comprehension. MEG has not yet been applied to the study of bilingual language production as such studies have faced more challenges (see Salmelin, 2007 for a review), and these have only recently been addressed. We review the literature on MEG expressive language studies and point out a direction for the application of MEG to the study of bilingual language production. PMID:23124647

  9. Neuroimaging studies of bilingual expressive language representation in the brain: potential applications for magnetoencephalography.

    PubMed

    Pang, Elizabeth W

    2012-12-01

    Bilingualism is the ability to use two or more languages with equal or near equal fluency. How the brain, often seamlessly, selects, controls, and switches between languages is an enigma. Neuroimaging studies offer the unique opportunity to probe the mechanisms underlying bilingual brain function. Non-invasive methods, in particular, functional MRI (fMRI) and event-related potentials (ERPs), have allowed examination in healthy control populations. Whole-head magnetoencephalography (MEG), a relatively new addition to the cadre of neuroimaging tools, offers a combination of the high spatial resolution of fMRI with the high temporal resolution of ERPs. Thus far, MEG has been applied to the studies of bilingual receptive language, or bilingual language comprehension. MEG has not yet been applied to the study of bilingual language production as such studies have faced more challenges (see Salmelin, 2007 for a review), and these have only recently been addressed. Here, we review the literature on MEG expressive language studies and point out a direction for the application of MEG to the study of bilingual language production.

  10. Evolutionary theory, psychiatry, and psychopharmacology.

    PubMed

    Stein, Dan J

    2006-07-01

    Darwin's seminal publications in the nineteenth century laid the foundation for an evolutionary approach to psychology and psychiatry. Advances in 20th century evolutionary theory facilitated the development of evolutionary psychology and psychiatry as recognized areas of scientific investigation. In this century, advances in understanding the molecular basis of evolution, of the mind, and of psychopathology, offer the possibility of an integrated approach to understanding the proximal (psychobiological) and distal (evolutionary) mechanisms of interest to psychiatry and psychopharmacology. There is, for example, growing interest in the question of whether specific genetic variants mediate psychobiological processes that have evolutionary value in specific contexts, and of the implications of this for understanding the vulnerability to psychopathology and for considering the advantages and limitations of pharmacotherapy. The evolutionary value, and gene-environmental mediation, of early life programming is potentially a particularly rich area of investigation. Although evolutionary approaches to psychology and to medicine face important conceptual and methodological challenges, current work is increasingly sophisticated, and may prove to be an important foundational discipline for clinicians and researchers in psychiatry and psychopharmacology.

  11. Dimensional psychopharmacology in somatising patients.

    PubMed

    Biondi, Massimo; Pasquini, Massimo

    2015-01-01

    Despite the recent DSM-5 review of somatoform disorders, which are now called somatic symptom and related disorders, the categorical definitions of these syndromes have inherent limitations because their causal mechanism or presumed aetiologies are still unknown. These limitations may affect everyday clinical practice and decision-making abilities. As a result, physicians have limited information at their disposal to treat these patients. Furthermore, the clinical presentations of somatic disorders may vary a lot. The purpose of this chapter is to illustrate a psychopathological dimensional approach to the somatising patient. This approach is constantly unconsciously applied in clinical practice using continuous variables, such as rating scales. Moreover, treatment strategies might be improved by adding a dimensional approach, simply recognising the prominent components of the presenting psychopathology of a given patient and addressing them with drugs according to their different mechanisms, targeting circuits and neurotransmitters. Some authors have proposed a shift from the nosological to functional application of psychotropic drugs, in which functional psychopharmacology will be dysfunction oriented and therefore inevitably geared towards utilising drug combinations. Here, we present a summary of the advantages of functional/dimensional psychopharmacology for the treatment of somatic symptoms and related disorders.

  12. Contribution of Neuroimaging Studies to Understanding Development of Human Cognitive Brain Functions

    PubMed Central

    Morita, Tomoyo; Asada, Minoru; Naito, Eiichi

    2016-01-01

    Humans experience significant physical and mental changes from birth to adulthood, and a variety of perceptual, cognitive and motor functions mature over the course of approximately 20 years following birth. To deeply understand such developmental processes, merely studying behavioral changes is not sufficient; simultaneous investigation of the development of the brain may lead us to a more comprehensive understanding. Recent advances in noninvasive neuroimaging technologies largely contribute to this understanding. Here, it is very important to consider the development of the brain from the perspectives of “structure” and “function” because both structure and function of the human brain mature slowly. In this review, we first discuss the process of structural brain development, i.e., how the structure of the brain, which is crucial when discussing functional brain development, changes with age. Second, we introduce some representative studies and the latest studies related to the functional development of the brain, particularly for visual, facial recognition, and social cognition functions, all of which are important for humans. Finally, we summarize how brain science can contribute to developmental study and discuss the challenges that neuroimaging should address in the future. PMID:27695409

  13. Contribution of Neuroimaging Studies to Understanding Development of Human Cognitive Brain Functions

    PubMed Central

    Morita, Tomoyo; Asada, Minoru; Naito, Eiichi

    2016-01-01

    Humans experience significant physical and mental changes from birth to adulthood, and a variety of perceptual, cognitive and motor functions mature over the course of approximately 20 years following birth. To deeply understand such developmental processes, merely studying behavioral changes is not sufficient; simultaneous investigation of the development of the brain may lead us to a more comprehensive understanding. Recent advances in noninvasive neuroimaging technologies largely contribute to this understanding. Here, it is very important to consider the development of the brain from the perspectives of “structure” and “function” because both structure and function of the human brain mature slowly. In this review, we first discuss the process of structural brain development, i.e., how the structure of the brain, which is crucial when discussing functional brain development, changes with age. Second, we introduce some representative studies and the latest studies related to the functional development of the brain, particularly for visual, facial recognition, and social cognition functions, all of which are important for humans. Finally, we summarize how brain science can contribute to developmental study and discuss the challenges that neuroimaging should address in the future.

  14. Functional neuroimaging in psychiatry.

    PubMed Central

    Fu, C H; McGuire, P K

    1999-01-01

    Functional neuroimaging is one of the most powerful means available for investigating the pathophysiology of psychiatric disorders. In this review, we shall focus on the different ways that it can be employed to this end, describing the major findings in the field in the context of different methodological approaches. We will also discuss practical issues that are particular to studying psychiatric disorders and the potential contribution of functional neuroimaging to future psychiatric research. PMID:10466156

  15. Identifying Functional Co-activation Patterns in Neuroimaging Studies via Poisson Graphical Models

    PubMed Central

    Xue, Wenqiong; Kang, Jian; Bowman, F. DuBois; Wager, Tor D.; Guo, Jian

    2014-01-01

    Summary Studying the interactions between different brain regions is essential to achieve a more complete understanding of brain function. In this paper, we focus on identifying functional co-activation patterns and undirected functional networks in neuroimaging studies. We build a functional brain network, using a sparse covariance matrix, with elements representing associations between region-level peak activations. We adopt a penalized likelihood approach to impose sparsity on the covariance matrix based on an extended multivariate Poisson model. We obtain penalized maximum likelihood estimates via the expectation-maximization (EM) algorithm and optimize an associated tuning parameter by maximizing the predictive log-likelihood. Permutation tests on the brain co-activation patterns provide region pair and network-level inference. Simulations suggest that the proposed approach has minimal biases and provides a coverage rate close to 95% of covariance estimations. Conducting a meta-analysis of 162 functional neuroimaging studies on emotions, our model identifies a functional network that consists of connected regions within the basal ganglia, limbic system, and other emotion-related brain regions. We characterize this network through statistical inference on region-pair connections as well as by graph measures. PMID:25147001

  16. Neuroimaging of epilepsy.

    PubMed

    Cendes, Fernando; Theodore, William H; Brinkmann, Benjamin H; Sulc, Vlastimil; Cascino, Gregory D

    2016-01-01

    Imaging is pivotal in the evaluation and management of patients with seizure disorders. Elegant structural neuroimaging with magnetic resonance imaging (MRI) may assist in determining the etiology of focal epilepsy and demonstrating the anatomical changes associated with seizure activity. The high diagnostic yield of MRI to identify the common pathological findings in individuals with focal seizures including mesial temporal sclerosis, vascular anomalies, low-grade glial neoplasms and malformations of cortical development has been demonstrated. Positron emission tomography (PET) is the most commonly performed interictal functional neuroimaging technique that may reveal a focal hypometabolic region concordant with seizure onset. Single photon emission computed tomography (SPECT) studies may assist performance of ictal neuroimaging in patients with pharmacoresistant focal epilepsy being considered for neurosurgical treatment. This chapter highlights neuroimaging developments and innovations, and provides a comprehensive overview of the imaging strategies used to improve the care and management of people with epilepsy. PMID:27430454

  17. Psychopharmacology in the Schools

    ERIC Educational Resources Information Center

    Abrams, Laura; Flood, Jillian; Phelps, LeAdelle

    2006-01-01

    Psychotropic medications prescribed frequently to children and adolescents for the treatment of anxiety, depression, and attention deficit hyperactivity disorder are reviewed. Pediatric pharmacological options based on double-blind, randomized studies are examined. We advocate that psychotropic medications be used only in conjunction with…

  18. Communication and the primate brain: Insights from neuroimaging studies in humans, chimpanzees and macaques

    PubMed Central

    Wilson, Benjamin; Petkov, Christopher I.

    2012-01-01

    Considerable knowledge is available on the neural substrates for speech and language from brain imaging studies in humans, but until recently there was a lack of data for comparison from other animal species on the evolutionarily conserved brain regions that process species-specific communication signals. To obtain new insights into the relationship of the substrates for communication in primates, we compared the results from several neuroimaging studies in humans with those that have recently been obtained from macaque monkeys and chimpanzees. The recent work in humans challenges the longstanding notion of highly localized speech areas. As a result, the brain regions that have been identified in humans for speech and non-linguistic voice processing show a striking general correspondence to how the brains of other primates analyze species-specific vocalizations or information in the voice, such as voice identity. The comparative neuroimaging work has begun to clarify evolutionary relationships in brain function, supporting the notion that the brain regions that process communication signals in the human brain arose from a precursor network of regions that is present in nonhuman primates and used for processing species-specific vocalizations. We conclude by considering how the stage now seems to be set for comparative neurobiology to characterize the ancestral state of the network that evolved in humans to support language. PMID:21615285

  19. Cognitive reappraisal of emotion: a meta-analysis of human neuroimaging studies.

    PubMed

    Buhle, Jason T; Silvers, Jennifer A; Wager, Tor D; Lopez, Richard; Onyemekwu, Chukwudi; Kober, Hedy; Weber, Jochen; Ochsner, Kevin N

    2014-11-01

    In recent years, an explosion of neuroimaging studies has examined cognitive reappraisal, an emotion regulation strategy that involves changing the way one thinks about a stimulus in order to change its affective impact. Existing models broadly agree that reappraisal recruits frontal and parietal control regions to modulate emotional responding in the amygdala, but they offer competing visions of how this is accomplished. One view holds that control regions engage ventromedial prefrontal cortex (vmPFC), an area associated with fear extinction, that in turn modulates amygdala responses. An alternative view is that control regions modulate semantic representations in lateral temporal cortex that indirectly influence emotion-related responses in the amygdala. Furthermore, while previous work has emphasized the amygdala, whether reappraisal influences other regions implicated in emotional responding remains unknown. To resolve these questions, we performed a meta-analysis of 48 neuroimaging studies of reappraisal, most involving downregulation of negative affect. Reappraisal consistently 1) activated cognitive control regions and lateral temporal cortex, but not vmPFC, and 2) modulated the bilateral amygdala, but no other brain regions. This suggests that reappraisal involves the use of cognitive control to modulate semantic representations of an emotional stimulus, and these altered representations in turn attenuate activity in the amygdala.

  20. Genetic Influences on Brain Developmental Trajectories on Neuroimaging Studies: From Infancy to Young Adulthood

    PubMed Central

    Douet, Vanessa; Chang, Linda; Cloak, Christine; Ernst, Thomas

    2013-01-01

    Human brain development has been studied intensively with neuroimaging. However, little is known about how genes influence developmental brain trajectories, even though a significant number of genes (about 10,000, or approximately one-third) in the human genome are expressed primarily in the brain and during brain development. Interestingly, in addition to showing differential expression among tissues, many genes are differentially expressed across the ages (e.g., antagonistic pleiotropy). Age-specific gene expression plays an important role in several critical events in brain development, including neuronal cell migration, synaptogenesis and neurotransmitter receptor specificity, as well as in aging and neurodegenerative disorders (e.g., Alzheimer disease or amyotrophic lateral sclerosis). In addition, the majority of psychiatric and mental disorders are polygenic, and many have onsets during childhood and adolescence. In this review, we summarize the major findings from neuroimaging studies that link genetics with brain development, from infancy to young adulthood. Specifically, we focus on the heritability of brain structures across the ages, age-related genetic influences on brain development and sex-specific developmental trajectories. PMID:24077983

  1. Psychopharmacology of lycanthropy.

    PubMed Central

    Davis, W M; Wellwuff, H G; Garew, L; Kydd, O U

    1992-01-01

    OBJECTIVE: To develop pharmacotherapies for the orphan disease lycanthropy through the pursuit of the etiologic hypothesis of a genetically determined hypersecretion of endogenous lycanthropogens. DESIGN: Quadruple-blind, Rubik's Cube matrix analysis. SETTING: Community practice and malpractice. PARTICIPANTS: Subjects selected from inbred Ruficolla populations in Mississippi, Georgia, North Carolina and Minnesota. All who entered the study finished it. INTERVENTIONS: Chemical screening of blood samples over a hypothesized secretory cycle of lycanthropogen peaking on the day of maximum lunar illumination. Administration of synthetic lycanthropogens for behavioural testing. Experimental lycosomatization through the illumination method of Kirschbaum. OUTCOME MEASURES: None were post hoc, but some are still in hock. MAIN RESULTS: Two putative lycanthropogens were isolated from the blood samples. Structural elucidation and synthesis permitted animal and clinical trials; in each of these, behavioural dysfunction was observed. Antilycanthropogen strategies included application of the principle of caged compounds and generation of a therapeutic immunoglobulin. The effects of a newly developed antihirsutic agent seemed promising. An interaction of the lycanthropogen-secretion system and ethanol was noted, which may explain behavioural aspects of alcoholism. CONCLUSIONS: The incidence of lycomania in North America is underestimated. Soon-to-be-available pharmacotherapies should promote its early detection and treatment. Full control may depend upon advances in gene therapy. PMID:1555146

  2. A transformation similarity constraint for groupwise nonlinear registration in longitudinal neuroimaging studies

    NASA Astrophysics Data System (ADS)

    Fleishman, Greg M.; Gutman, Boris A.; Fletcher, P. Thomas; Thompson, Paul

    2015-03-01

    Patients with Alzheimer's disease and other brain disorders often show a similar spatial distribution of volume change throughout the brain over time, but this information is not yet used in registration algorithms to refine the quantification of change. Here, we develop a mathematical basis to incorporate that prior information into a longitudinal structural neuroimaging study. We modify the canonical minimization problem for non-linear registration to include a term that couples a collection of registrations together to enforce group similarity. More specifically, throughout the computation we maintain a group-level representation of the transformations and constrain updates to individual transformations to be similar to this representation. The derivations necessary to produce the Euler-Lagrange equations for the coupling term are presented and a gradient descent algorithm based on the formulation was implemented. We demonstrate using 57 longitudinal image pairs from the Alzheimer's Disease Neuroimaging Initiative (ADNI) that longitudinal registration with such a groupwise coupling prior is more robust to noise in estimating change, suggesting such change maps may have several important applications.

  3. Neuroimaging and neuromodulation approaches to study eating behavior and prevent and treat eating disorders and obesity.

    PubMed

    Val-Laillet, D; Aarts, E; Weber, B; Ferrari, M; Quaresima, V; Stoeckel, L E; Alonso-Alonso, M; Audette, M; Malbert, C H; Stice, E

    2015-01-01

    Functional, molecular and genetic neuroimaging has highlighted the existence of brain anomalies and neural vulnerability factors related to obesity and eating disorders such as binge eating or anorexia nervosa. In particular, decreased basal metabolism in the prefrontal cortex and striatum as well as dopaminergic alterations have been described in obese subjects, in parallel with increased activation of reward brain areas in response to palatable food cues. Elevated reward region responsivity may trigger food craving and predict future weight gain. This opens the way to prevention studies using functional and molecular neuroimaging to perform early diagnostics and to phenotype subjects at risk by exploring different neurobehavioral dimensions of the food choices and motivation processes. In the first part of this review, advantages and limitations of neuroimaging techniques, such as functional magnetic resonance imaging (fMRI), positron emission tomography (PET), single photon emission computed tomography (SPECT), pharmacogenetic fMRI and functional near-infrared spectroscopy (fNIRS) will be discussed in the context of recent work dealing with eating behavior, with a particular focus on obesity. In the second part of the review, non-invasive strategies to modulate food-related brain processes and functions will be presented. At the leading edge of non-invasive brain-based technologies is real-time fMRI (rtfMRI) neurofeedback, which is a powerful tool to better understand the complexity of human brain-behavior relationships. rtfMRI, alone or when combined with other techniques and tools such as EEG and cognitive therapy, could be used to alter neural plasticity and learned behavior to optimize and/or restore healthy cognition and eating behavior. Other promising non-invasive neuromodulation approaches being explored are repetitive transcranial magnetic stimulation (rTMS) and transcranial direct-current stimulation (tDCS). Converging evidence points at the value of

  4. Neuroimaging and neuromodulation approaches to study eating behavior and prevent and treat eating disorders and obesity

    PubMed Central

    Val-Laillet, D.; Aarts, E.; Weber, B.; Ferrari, M.; Quaresima, V.; Stoeckel, L.E.; Alonso-Alonso, M.; Audette, M.; Malbert, C.H.; Stice, E.

    2015-01-01

    Functional, molecular and genetic neuroimaging has highlighted the existence of brain anomalies and neural vulnerability factors related to obesity and eating disorders such as binge eating or anorexia nervosa. In particular, decreased basal metabolism in the prefrontal cortex and striatum as well as dopaminergic alterations have been described in obese subjects, in parallel with increased activation of reward brain areas in response to palatable food cues. Elevated reward region responsivity may trigger food craving and predict future weight gain. This opens the way to prevention studies using functional and molecular neuroimaging to perform early diagnostics and to phenotype subjects at risk by exploring different neurobehavioral dimensions of the food choices and motivation processes. In the first part of this review, advantages and limitations of neuroimaging techniques, such as functional magnetic resonance imaging (fMRI), positron emission tomography (PET), single photon emission computed tomography (SPECT), pharmacogenetic fMRI and functional near-infrared spectroscopy (fNIRS) will be discussed in the context of recent work dealing with eating behavior, with a particular focus on obesity. In the second part of the review, non-invasive strategies to modulate food-related brain processes and functions will be presented. At the leading edge of non-invasive brain-based technologies is real-time fMRI (rtfMRI) neurofeedback, which is a powerful tool to better understand the complexity of human brain–behavior relationships. rtfMRI, alone or when combined with other techniques and tools such as EEG and cognitive therapy, could be used to alter neural plasticity and learned behavior to optimize and/or restore healthy cognition and eating behavior. Other promising non-invasive neuromodulation approaches being explored are repetitive transcranial magnetic stimulation (rTMS) and transcranial direct-current stimulation (tDCS). Converging evidence points at the value of

  5. Neuroimaging and neuromodulation approaches to study eating behavior and prevent and treat eating disorders and obesity.

    PubMed

    Val-Laillet, D; Aarts, E; Weber, B; Ferrari, M; Quaresima, V; Stoeckel, L E; Alonso-Alonso, M; Audette, M; Malbert, C H; Stice, E

    2015-01-01

    Functional, molecular and genetic neuroimaging has highlighted the existence of brain anomalies and neural vulnerability factors related to obesity and eating disorders such as binge eating or anorexia nervosa. In particular, decreased basal metabolism in the prefrontal cortex and striatum as well as dopaminergic alterations have been described in obese subjects, in parallel with increased activation of reward brain areas in response to palatable food cues. Elevated reward region responsivity may trigger food craving and predict future weight gain. This opens the way to prevention studies using functional and molecular neuroimaging to perform early diagnostics and to phenotype subjects at risk by exploring different neurobehavioral dimensions of the food choices and motivation processes. In the first part of this review, advantages and limitations of neuroimaging techniques, such as functional magnetic resonance imaging (fMRI), positron emission tomography (PET), single photon emission computed tomography (SPECT), pharmacogenetic fMRI and functional near-infrared spectroscopy (fNIRS) will be discussed in the context of recent work dealing with eating behavior, with a particular focus on obesity. In the second part of the review, non-invasive strategies to modulate food-related brain processes and functions will be presented. At the leading edge of non-invasive brain-based technologies is real-time fMRI (rtfMRI) neurofeedback, which is a powerful tool to better understand the complexity of human brain-behavior relationships. rtfMRI, alone or when combined with other techniques and tools such as EEG and cognitive therapy, could be used to alter neural plasticity and learned behavior to optimize and/or restore healthy cognition and eating behavior. Other promising non-invasive neuromodulation approaches being explored are repetitive transcranial magnetic stimulation (rTMS) and transcranial direct-current stimulation (tDCS). Converging evidence points at the value of

  6. Advocating neuroimaging studies of transmitter release in human physical exercise challenges studies.

    PubMed

    Boecker, Henning; Othman, Ahmed; Mueckter, Sarah; Scheef, Lukas; Pensel, Max; Daamen, Marcel; Jankowski, Jakob; Schild, Hh; Tölle, Tr; Schreckenberger, M

    2010-01-01

    This perspective attempts to outline the emerging role of positron emission tomography (PET) ligand activation studies in human exercise research. By focusing on the endorphinergic system and its acclaimed role for exercise-induced antinociception and mood enhancement, we like to emphasize the unique potential of ligand PET applied to human athletes for uncovering the neurochemistry of exercise-induced psychophysiological phenomena. Compared with conventional approaches, in particular quantification of plasma beta-endorphin levels under exercise challenges, which are reviewed in this article, studying opioidergic effects directly in the central nervous system (CNS) with PET and relating opioidergic binding changes to neuropsychological assessments, provides a more refined and promising experimental strategy. Although a vast literature dating back to the 1980s of the last century has been able to reproducibly demonstrate peripheral increases of beta-endorphin levels after various exercise challenges, so far, these studies have failed to establish robust links between peripheral beta-endorphin levels and centrally mediated behavioral effects, ie, modulation of mood and/or pain perception. As the quantitative relation between endorphins in the peripheral blood and the CNS remains unknown, the question arises, to what extent conventional blood-based methods can inform researchers about central neurotransmitter effects. As previous studies using receptor blocking approaches have also revealed equivocal results regarding exercise effects on pain and mood processing, it is expected that PET and other functional neuroimaging applications in athletes may in future help uncover some of the hitherto unknown links between neurotransmission and psychophysiological effects related to physical exercise. PMID:24198554

  7. Neural basis of attachment-caregiving systems interaction: insights from neuroimaging studies

    PubMed Central

    Lenzi, Delia; Trentini, Cristina; Tambelli, Renata; Pantano, Patrizia

    2015-01-01

    The attachment and the caregiving system are complementary systems which are active simultaneously in infant and mother interactions. This ensures the infant survival and optimal social, emotional, and cognitive development. In this brief review we first define the characteristics of these two behavioral systems and the theory that links them, according to what Bowlby called the “attachment-caregiving social bond” (Bowlby, 1969). We then follow with those neuroimaging studies that have focused on this particular issue, i.e., those which have studied the activation of the careging system in women (using infant stimuli) and have explored how the individual attachment model (through the Adult Attachment Interview) modulates its activity. Studies report altered activation in limbic and prefrontal areas and in basal ganglia and hypothalamus/pituitary regions. These altered activations are thought to be the neural substrate of the attachment-caregiving systems interaction. PMID:26379578

  8. Neural basis of attachment-caregiving systems interaction: insights from neuroimaging studies.

    PubMed

    Lenzi, Delia; Trentini, Cristina; Tambelli, Renata; Pantano, Patrizia

    2015-01-01

    The attachment and the caregiving system are complementary systems which are active simultaneously in infant and mother interactions. This ensures the infant survival and optimal social, emotional, and cognitive development. In this brief review we first define the characteristics of these two behavioral systems and the theory that links them, according to what Bowlby called the "attachment-caregiving social bond" (Bowlby, 1969). We then follow with those neuroimaging studies that have focused on this particular issue, i.e., those which have studied the activation of the careging system in women (using infant stimuli) and have explored how the individual attachment model (through the Adult Attachment Interview) modulates its activity. Studies report altered activation in limbic and prefrontal areas and in basal ganglia and hypothalamus/pituitary regions. These altered activations are thought to be the neural substrate of the attachment-caregiving systems interaction.

  9. Depression, anxiety, and apathy in Parkinson's disease: insights from neuroimaging studies.

    PubMed

    Wen, M-C; Chan, L L; Tan, L C S; Tan, E K

    2016-06-01

    Depression, anxiety and apathy are common mood disturbances in Parkinson's disease (PD) but their pathophysiology is unclear. Advanced neuroimaging has been increasingly used to unravel neural substrates linked to these disturbances. A systematic review is provided of neuroimaging findings in depression, anxiety and apathy in PD. A PubMed, MEDLINE and EMBASE search of peer-reviewed original research articles on these mood disturbances in PD identified 38 studies on depression, eight on anxiety and 14 on apathy in PD. Most of the imaging studies used either position emission tomography or single-photon emission computed tomography techniques. These studies generally suggest increased neural activity in the prefrontal regions and decreased functional connectivity between the prefrontal-limbic networks in depressed patients. Functional imaging studies revealed an inverse correlation between dopaminergic density in the caudate and putamen with the severity of anxiety in PD. There was no consistent correlation between dopaminergic density of thalamus and anxiety. Studies demonstrated both positive and inverse correlations between apathy and metabolism or activity in the striatum, amygdalar, prefrontal, temporal and parietal regions. The clinical variability of study subjects and differences in image pre-processing and analytical strategies may contribute to discrepant findings in these studies. Both nigrostriatal and extra-nigrostriatal pathways (in particular the frontal region and its connecting areas) are affected in mood disorders in PD. Identifying the relative contributions of these neural pathways in PD patients with overlapping motor and mood symptoms could provide new pathophysiological clues for the development of better therapeutic targets for affected patients. PMID:27141858

  10. How Human Electrophysiology Informs Psychopharmacology: from Bottom-up Driven Processing to Top-Down Control

    PubMed Central

    Kenemans, J Leon; Kähkönen, Seppo

    2011-01-01

    This review surveys human event-related brain potential (ERP) and event-related magnetic field (ERF) approaches to psychopharmacology and psychopathology, and the way in which they complement behavioral studies and other neuroimaging modalities. The major paradigms involving ERP/ERF are P50 suppression, loudness-dependent auditory evoked potential (LDAEP), mismatch negativity (MMN), P300, mental chronometry, inhibitory control, and conflict processing (eg, error-related negativity (ERN)). Together these paradigms cover a range of more bottom-up driven to more top-down controlled processes. A number of relationships between the major neurotransmitter systems and electrocortical mechanisms are highlighted. These include the role of dopamine in conflict processing, and perceptual processing vs motor preparation; the role of serotonin in P50 suppression, LDAEP, and MMN; glutamate/NMDA and MMN; and the role of acetylcholine in P300 generation and memory-related processes. A preliminary taxonomy for these relationships is provided, which should be helpful in attuning possible new treatments or new applications of existing treatments to various disorders. PMID:20927044

  11. Traditional Chinese Medicine and Western Psychopharmacology: Building Bridges

    PubMed Central

    Shorter, Edward; Segesser, Kathryn

    2013-01-01

    This paper demonstrates that in the treatment of psychiatric disorders, there are striking similarities between the mechanisms of psychoactive agents used in Traditional Chinese Medicine (TCM) and those of western psychopharmacology. While western researchers search for new treatments and novel mechanisms of action, investigators in Asia are analyzing traditional remedies in order to understand the mechanisms responsible for their effectiveness. A review of contemporary pharmacologic studies of agents used in TCM for psychiatric indications reveals that virtually all of the active principles of drug action established in 20th century psychopharmacology were encountered empirically in Chinese herbal medicine over the past 2000 years. Building bridges between these two traditions may thus be of benefit to both cultures. In addition to providing western patients with a wider selection of treatment options, the effort may help Asian clinicians and researchers avoid some of the errors that have troubled their western counterparts. PMID:23418138

  12. Traditional Chinese medicine and Western psychopharmacology: building bridges.

    PubMed

    Shorter, Edward; Segesser, Kathryn

    2013-12-01

    This paper demonstrates that in the treatment of psychiatric disorders, there are striking similarities between the mechanisms of psychoactive agents used in Traditional Chinese Medicine (TCM) and those of western psychopharmacology. While western researchers search for new treatments and novel mechanisms of action, investigators in Asia are analyzing traditional remedies in order to understand the mechanisms responsible for their effectiveness. A review of contemporary pharmacologic studies of agents used in TCM for psychiatric indications reveals that virtually all of the active principles of drug action established in 20th century psychopharmacology were encountered empirically in Chinese herbal medicine over the past 2000 years. Building bridges between these two traditions may thus be of benefit to both cultures. In addition to providing western patients with a wider selection of treatment options, the effort may help Asian clinicians and researchers avoid some of the errors that have troubled their western counterparts.

  13. Psychobiology and psychopharmacology: issues in clinical research training.

    PubMed

    Janowsky, D S; Glick, I D; Lash, L; Mitnick, L; Klein, D F; Goodwin, F K; Hanin, I; Nemeroff, C; Robins, L

    1986-02-01

    Although the scope of basic studies in psychopharmacology and psychobiology has been expanding steadily for about 30 years, relatively few clinical psychiatrists, psychologists, and psychopharmacologists now choose to become researchers or teachers in these disciplines. Such training is crucial to the future vitality of both academic and private-practice psychiatry, and in view of increasing constraints on training funds, student researchers may well be an endangered species. With these concerns in mind, at its 1984 meeting, the American College of Neuropsychopharmacology's Education and Training Committee organized a symposium of investigators, administrators, and former trainees to explore aspects of effective clinical research training in psychobiology and psychopharmacology. Aspects discussed included mentoring, settings and content of training, depth versus breadth of curriculum, and the effect of a critical mass of colleagues at various stages of professional development. Following a brief overview, selected panelists addressed the issues from their individual perspectives.

  14. The social evaluation of faces: a meta-analysis of functional neuroimaging studies.

    PubMed

    Mende-Siedlecki, Peter; Said, Christopher P; Todorov, Alexander

    2013-03-01

    Neuroscience research on the social evaluation of faces has accumulated over the last decade, yielding divergent results. We used a meta-analytic technique, multi-level kernel density analysis (MKDA), to analyze 29 neuroimaging studies on face evaluation. Across negative face evaluations, we observed the most consistent activations in bilateral amygdala. Across positive face evaluations, we observed the most consistent activations in medial prefrontal cortex, pregenual anterior cingulate cortex (pgACC), medial orbitofrontal cortex (mOFC), left caudate and nucleus accumbens (NAcc). Based on additional analyses comparing linear and non-linear responses, we propose a ventral/dorsal dissociation within the amygdala, wherein separate populations of neurons code for face valence and intensity, respectively. Finally, we argue that some of the differences between studies are attributable to differences in the typicality of face stimuli. Specifically, extremely attractive faces are more likely to elicit responses in NAcc/caudate and mOFC.

  15. The social evaluation of faces: a meta-analysis of functional neuroimaging studies

    PubMed Central

    Mende-Siedlecki, Peter; Said, Christopher P.

    2013-01-01

    Neuroscience research on the social evaluation of faces has accumulated over the last decade, yielding divergent results. We used a meta-analytic technique, multi-level kernel density analysis (MKDA), to analyze 29 neuroimaging studies on face evaluation. Across negative face evaluations, we observed the most consistent activations in bilateral amygdala. Across positive face evaluations, we observed the most consistent activations in medial prefrontal cortex, pregenual anterior cingulate cortex (pgACC), medial orbitofrontal cortex (mOFC), left caudate and nucleus accumbens (NAcc). Based on additional analyses comparing linear and non-linear responses, we propose a ventral/dorsal dissociation within the amygdala, wherein separate populations of neurons code for face valence and intensity, respectively. Finally, we argue that some of the differences between studies are attributable to differences in the typicality of face stimuli. Specifically, extremely attractive faces are more likely to elicit responses in NAcc/caudate and mOFC. PMID:22287188

  16. Timing deficits in attention-deficit/hyperactivity disorder (ADHD): evidence from neurocognitive and neuroimaging studies.

    PubMed

    Noreika, Valdas; Falter, Christine M; Rubia, Katya

    2013-01-01

    Relatively recently, neurocognitive and neuroimaging studies have indicated that individuals with attention-deficit/hyperactivity disorder (ADHD) may have deficits in a range of timing functions and their underlying neural networks. Despite this evidence, timing deficits in ADHD are still somewhat neglected in the literature and mostly omitted from reviews on ADHD. There is therefore a lack of integrative reviews on the up-to-date evidence on neurocognitive and neurofunctional deficits of timing in ADHD and their significance with respect to other behavioural and cognitive deficits. The present review provides a synthetic overview of the evidence for neurocognitive and neurofunctional deficits in ADHD in timing functions, and integrates this evidence with the cognitive neuroscience literature of the neural substrates of timing. The review demonstrates that ADHD patients are consistently impaired in three major timing domains, in motor timing, perceptual timing and temporal foresight, comprising several timeframes spanning milliseconds, seconds, minutes and longer intervals up to years. The most consistent impairments in ADHD are found in sensorimotor synchronisation, duration discrimination, reproduction and delay discounting. These neurocognitive findings of timing deficits in ADHD are furthermore supported by functional neuroimaging studies that show dysfunctions in the key inferior fronto-striato-cerebellar and fronto-parietal networks that mediate the timing functions. Although there is evidence that these timing functions are inter-correlated with other executive functions that are well established to be impaired in the disorder, in particular working memory, attention, and to a lesser degree inhibitory control, the key timing deficits appear to survive when these functions are controlled for, suggesting independent cognitive deficits in the temporal domain. There is furthermore strong evidence for an association between timing deficits and behavioural

  17. Internet and Gaming Addiction: A Systematic Literature Review of Neuroimaging Studies

    PubMed Central

    Kuss, Daria J.; Griffiths, Mark D.

    2012-01-01

    In the past decade, research has accumulated suggesting that excessive Internet use can lead to the development of a behavioral addiction. Internet addiction has been considered as a serious threat to mental health and the excessive use of the Internet has been linked to a variety of negative psychosocial consequences. The aim of this review is to identify all empirical studies to date that used neuroimaging techniques to shed light upon the emerging mental health problem of Internet and gaming addiction from a neuroscientific perspective. Neuroimaging studies offer an advantage over traditional survey and behavioral research because with this method, it is possible to distinguish particular brain areas that are involved in the development and maintenance of addiction. A systematic literature search was conducted, identifying 18 studies. These studies provide compelling evidence for the similarities between different types of addictions, notably substance-related addictions and Internet and gaming addiction, on a variety of levels. On the molecular level, Internet addiction is characterized by an overall reward deficiency that entails decreased dopaminergic activity. On the level of neural circuitry, Internet and gaming addiction led to neuroadaptation and structural changes that occur as a consequence of prolonged increased activity in brain areas associated with addiction. On a behavioral level, Internet and gaming addicts appear to be constricted with regards to their cognitive functioning in various domains. The paper shows that understanding the neuronal correlates associated with the development of Internet and gaming addiction will promote future research and will pave the way for the development of addiction treatment approaches. PMID:24961198

  18. Internet and gaming addiction: a systematic literature review of neuroimaging studies.

    PubMed

    Kuss, Daria J; Griffiths, Mark D

    2012-01-01

    In the past decade, research has accumulated suggesting that excessive Internet use can lead to the development of a behavioral addiction. Internet addiction has been considered as a serious threat to mental health and the excessive use of the Internet has been linked to a variety of negative psychosocial consequences. The aim of this review is to identify all empirical studies to date that used neuroimaging techniques to shed light upon the emerging mental health problem of Internet and gaming addiction from a neuroscientific perspective. Neuroimaging studies offer an advantage over traditional survey and behavioral research because with this method, it is possible to distinguish particular brain areas that are involved in the development and maintenance of addiction. A systematic literature search was conducted, identifying 18 studies. These studies provide compelling evidence for the similarities between different types of addictions, notably substance-related addictions and Internet and gaming addiction, on a variety of levels. On the molecular level, Internet addiction is characterized by an overall reward deficiency that entails decreased dopaminergic activity. On the level of neural circuitry, Internet and gaming addiction led to neuroadaptation and structural changes that occur as a consequence of prolonged increased activity in brain areas associated with addiction. On a behavioral level, Internet and gaming addicts appear to be constricted with regards to their cognitive functioning in various domains. The paper shows that understanding the neuronal correlates associated with the development of Internet and gaming addiction will promote future research and will pave the way for the development of addiction treatment approaches. PMID:24961198

  19. Systematic Redaction for Neuroimage Data

    PubMed Central

    Matlock, Matt; Schimke, Nakeisha; Kong, Liang; Macke, Stephen; Hale, John

    2013-01-01

    In neuroscience, collaboration and data sharing are undermined by concerns over the management of protected health information (PHI) and personal identifying information (PII) in neuroimage datasets. The HIPAA Privacy Rule mandates measures for the preservation of subject privacy in neuroimaging studies. Unfortunately for the researcher, the management of information privacy is a burdensome task. Wide scale data sharing of neuroimages is challenging for three primary reasons: (i) A dearth of tools to systematically expunge PHI/PII from neuroimage data sets, (ii) a facility for tracking patient identities in redacted datasets has not been produced, and (iii) a sanitization workflow remains conspicuously absent. This article describes the XNAT Redaction Toolkit—an integrated redaction workflow which extends a popular neuroimage data management toolkit to remove PHI/PII from neuroimages. Quickshear defacing is also presented as a complementary technique for deidentifying the image data itself. Together, these tools improve subject privacy through systematic removal of PII/PHI. PMID:24179597

  20. Perception of affective and linguistic prosody: an ALE meta-analysis of neuroimaging studies.

    PubMed

    Belyk, Michel; Brown, Steven

    2014-09-01

    Prosody refers to the melodic and rhythmic aspects of speech. Two forms of prosody are typically distinguished: 'affective prosody' refers to the expression of emotion in speech, whereas 'linguistic prosody' relates to the intonation of sentences, including the specification of focus within sentences and stress within polysyllabic words. While these two processes are united by their use of vocal pitch modulation, they are functionally distinct. In order to examine the localization and lateralization of speech prosody in the brain, we performed two voxel-based meta-analyses of neuroimaging studies of the perception of affective and linguistic prosody. There was substantial sharing of brain activations between analyses, particularly in right-hemisphere auditory areas. However, a major point of divergence was observed in the inferior frontal gyrus: affective prosody was more likely to activate Brodmann area 47, while linguistic prosody was more likely to activate the ventral part of area 44.

  1. Perception of affective and linguistic prosody: an ALE meta-analysis of neuroimaging studies

    PubMed Central

    Brown, Steven

    2014-01-01

    Prosody refers to the melodic and rhythmic aspects of speech. Two forms of prosody are typically distinguished: ‘affective prosody’ refers to the expression of emotion in speech, whereas ‘linguistic prosody’ relates to the intonation of sentences, including the specification of focus within sentences and stress within polysyllabic words. While these two processes are united by their use of vocal pitch modulation, they are functionally distinct. In order to examine the localization and lateralization of speech prosody in the brain, we performed two voxel-based meta-analyses of neuroimaging studies of the perception of affective and linguistic prosody. There was substantial sharing of brain activations between analyses, particularly in right-hemisphere auditory areas. However, a major point of divergence was observed in the inferior frontal gyrus: affective prosody was more likely to activate Brodmann area 47, while linguistic prosody was more likely to activate the ventral part of area 44. PMID:23934416

  2. A multimodal neuroimaging study of a case of crossed nonfluent/agrammatic primary progressive aphasia.

    PubMed

    Spinelli, Edoardo G; Caso, Francesca; Agosta, Federica; Gambina, Giuseppe; Magnani, Giuseppe; Canu, Elisa; Blasi, Valeria; Perani, Daniela; Comi, Giancarlo; Falini, Andrea; Gorno-Tempini, Maria Luisa; Filippi, Massimo

    2015-10-01

    Crossed aphasia has been reported mainly as post-stroke aphasia resulting from brain damage ipsilateral to the dominant right hand. Here, we described a case of a crossed nonfluent/agrammatic primary progressive aphasia (nfvPPA), who developed a corticobasal syndrome (CBS). We collected clinical, cognitive, and neuroimaging data for four consecutive years from a 55-year-old right-handed lady (JV) presenting with speech disturbances. 18-fluorodeoxyglucose positron emission tomography ((18)F-FDG PET) and DaT-scan with (123)I-Ioflupane were obtained. Functional MRI (fMRI) during a verb naming task was acquired to characterize patterns of language lateralization. Diffusion tensor MRI was used to evaluate white matter damage within the language network. At onset, JV presented with prominent speech output impairment and right frontal atrophy. After 3 years, language deficits worsened, with the occurrence of a mild agrammatism. The patient also developed a left-sided mild extrapyramidal bradykinetic-rigid syndrome. The clinical picture was suggestive of nfvPPA with mild left-sided extrapyramidal syndrome. At this time, voxel-wise SPM analyses of (18)F-FDG PET and structural MRI showed right greater than left frontal hypometabolism and damage, which included the Broca's area. DaT-scan showed a reduced uptake in the right striatum. FMRI during naming task demonstrated bilateral language activations, and tractography showed right superior longitudinal fasciculus (SLF) involvement. Over the following year, JV became mute and developed frank left-sided motor signs and symptoms, evolving into a CBS clinical picture. Brain atrophy worsened in frontal areas bilaterally, and extended to temporo-parietal regions, still with a right-sided asymmetry. Tractography showed an extension of damage to the left SLF and right inferior longitudinal fasciculus. We report a case of crossed nfvPPA followed longitudinally and studied with advanced neuroimaging techniques. The results highlight a

  3. Factors Affecting Medial Temporal Lobe Engagement for Past and Future Episodic Events: An ALE Meta-Analysis of Neuroimaging Studies

    ERIC Educational Resources Information Center

    Viard, Armelle; Desgranges, Beatrice; Eustache, Francis; Piolino, Pascale

    2012-01-01

    Remembering the past and envisioning the future are at the core of one's sense of identity. Neuroimaging studies investigating the neural substrates underlying past and future episodic events have been growing in number. However, the experimental paradigms used to select and elicit episodic events vary greatly, leading to disparate results,…

  4. Neuroimaging Studies of Normal Brain Development and Their Relevance for Understanding Childhood Neuropsychiatric Disorders

    ERIC Educational Resources Information Center

    Marsh, Rachel; Gerber, Andrew J.; Peterson, Bradley S.

    2008-01-01

    Neuroimaging findings which identify normal brain development trajectories are presented. Results show that early brain development begins with the neural tube formation and ends with myelintation. How disturbances in brain development patterns are related to childhood psychiatric disorders is examined.

  5. Psychopharmacologic treatment of borderline personality disorder.

    PubMed

    Ripoll, Luis H

    2013-06-01

    The best available evidence for psychopharmacologic treatment of borderline personality disorder (BPD) is outlined here. BPD is defined by disturbances in identity and interpersonal functioning, and patients report potential medication treatment targets such as impulsivity, aggression, transient psychotic and dissociative symptoms, and refractory affective instability Few randomized controlled trials of psychopharmacological treatments for BPD have been published recently, although multiple reviews have converged on the effectiveness of specific anticonvulsants, atypical antipsychotic agents, and omega-3 fatty acid supplementation. Stronger evidence exists for medication providing significant improvements in impulsive aggression than in affective or other interpersonal symptoms. Future research strategies will focus on the potential role of neuropeptide agents and medications with greater specificity for 2A serotonin receptors, as well as optimizing concomitant implementation of evidence-based psychotherapy and psychopharmacology, in order to improve BPD patients' overall functioning. PMID:24174895

  6. Psychopharmacologic treatment of borderline personality disorder.

    PubMed

    Ripoll, Luis H

    2013-06-01

    The best available evidence for psychopharmacologic treatment of borderline personality disorder (BPD) is outlined here. BPD is defined by disturbances in identity and interpersonal functioning, and patients report potential medication treatment targets such as impulsivity, aggression, transient psychotic and dissociative symptoms, and refractory affective instability Few randomized controlled trials of psychopharmacological treatments for BPD have been published recently, although multiple reviews have converged on the effectiveness of specific anticonvulsants, atypical antipsychotic agents, and omega-3 fatty acid supplementation. Stronger evidence exists for medication providing significant improvements in impulsive aggression than in affective or other interpersonal symptoms. Future research strategies will focus on the potential role of neuropeptide agents and medications with greater specificity for 2A serotonin receptors, as well as optimizing concomitant implementation of evidence-based psychotherapy and psychopharmacology, in order to improve BPD patients' overall functioning.

  7. Psychopharmacologic treatment of borderline personality disorder

    PubMed Central

    Ripoll, Luis H.

    2013-01-01

    The best available evidence for psychopharmacologic treatment of borderline personality disorder (BPD) is outlined here. BPD is defined by disturbances in identity and interpersonal functioning, and patients report potential medication treatment targets such as impulsivity, aggression, transient psychotic and dissociative symptoms, and refractory affective instability Few randomized controlled trials of psychopharmacological treatments for BPD have been published recently, although multiple reviews have converged on the effectiveness of specific anticonvulsants, atypical antipsychotic agents, and omega-3 fatty acid supplementation. Stronger evidence exists for medication providing significant improvements in impulsive aggression than in affective or other interpersonal symptoms. Future research strategies will focus on the potential role of neuropeptide agents and medications with greater specificity for 2A serotonin receptors, as well as optimizing concomitant implementation of evidence-based psychotherapy and psychopharmacology, in order to improve BPD patients' overall functioning. PMID:24174895

  8. Cognitive control for language switching in bilinguals: A quantitative meta-analysis of functional neuroimaging studies.

    PubMed

    Luk, Gigi; Green, David W; Abutalebi, Jubin; Grady, Cheryl

    2011-11-17

    In a quantitative meta-analysis, using the activation likelihood estimation method, we examined the neural regions involved in bilingual cognitive control, particularly when engaging in switching between languages. The purpose of this study was to evaluate the bilingual cognitive control model based on a qualitative analysis [Abutalebi, J., & Green, D. W. (2008). Control mechanisms in bilingual language production: Neural evidence from language switching studies. Language and Cognitive Processes, 23, 557-582.]. After reviewing 128 peer-reviewed articles, ten neuroimaging studies met our inclusion criteria and in each study, bilinguals switched between languages in response to cues. We isolated regions involved in voluntary language switching, by including reported contrasts between the switching conditions and high level baseline conditions involving similar tasks but requiring the use of only one language. Eight brain regions showed significant and reliable activation: left inferior frontal gyrus, left middle temporal gyrus, left middle frontal gyrus, right precentral gyrus, right superior temporal gyrus, midline pre-SMA and bilateral caudate nuclei. This quantitative result is consistent with bilingual aphasia studies that report switching deficits associated with lesions to the caudate nuclei or prefrontal cortex. It also extends the previously reported qualitative model. We discuss the implications of the findings for accounts of bilingual cognitive control.

  9. Stuttering as a trait or state - an ALE meta-analysis of neuroimaging studies.

    PubMed

    Belyk, Michel; Kraft, Shelly Jo; Brown, Steven

    2015-01-01

    Stuttering is a speech disorder characterised by repetitions, prolongations and blocks that disrupt the forward movement of speech. An earlier meta-analysis of brain imaging studies of stuttering (Brown et al., 2005) revealed a general trend towards rightward lateralization of brain activations and hyperactivity in the larynx motor cortex bilaterally. The present study sought not only to update that meta-analysis with recent work but to introduce an important distinction not present in the first study, namely the difference between 'trait' and 'state' stuttering. The analysis of trait stuttering compares people who stutter (PWS) with people who do not stutter when behaviour is controlled for, i.e., when speech is fluent in both groups. In contrast, the analysis of state stuttering examines PWS during episodes of stuttered speech compared with episodes of fluent speech. Seventeen studies were analysed using activation likelihood estimation. Trait stuttering was characterised by the well-known rightward shift in lateralization for language and speech areas. State stuttering revealed a more diverse pattern. Abnormal activation of larynx and lip motor cortex was common to the two analyses. State stuttering was associated with overactivation in the right hemisphere larynx and lip motor cortex. Trait stuttering was associated with overactivation of lip motor cortex in the right hemisphere but underactivation of larynx motor cortex in the left hemisphere. These results support a large literature highlighting laryngeal and lip involvement in the symptomatology of stuttering, and disambiguate two possible sources of activation in neuroimaging studies of persistent developmental stuttering.

  10. Neuroimaging and Aggression.

    ERIC Educational Resources Information Center

    Mills, Shari; Raine, Adrian

    1994-01-01

    Brain imaging research allows direct assessment of structural and functional brain abnormalities, and thereby provides an improved methodology for studying neurobiological factors predisposing to violent and aggressive behavior. This paper reviews 20 brain imaging studies using four different types of neuroimaging techniques that were conducted in…

  11. Effects of sex chromosome aneuploidies on brain development: evidence from neuroimaging studies.

    PubMed

    Lenroot, Rhoshel K; Lee, Nancy Raitano; Giedd, Jay N

    2009-01-01

    Variation in the number of sex chromosomes is a relatively common genetic condition, affecting as many as 1/400 individuals. The sex chromosome aneuploidies (SCAs) are associated with characteristic behavioral and cognitive phenotypes, although the degree to which specific individuals are affected can fall within a wide range. Understanding the effects of different dosages of sex chromosome genes on brain development may help to understand the basis for functional differences in affected individuals. It may also be informative regarding how sex chromosomes contribute to typical sexual differentiation. Studies of 47,XXY males make up the bulk of the current literature of neuroimaging studies in individuals with supernumerary sex chromosomes, with a few small studies or case reports of the other SCAs. Findings in 47,XXY males typically include decreased gray and white matter volumes, with most pronounced effects in the frontal and temporal lobes. Functional studies have shown evidence of decreased lateralization. Although the hypogonadism typically found in 47,XXY males may contribute to the decreased brain volume, the observation that 47,XXX females also show decreased brain volume in the presence of normal pubertal maturation suggests a possible direct dosage effect of X chromosome genes. Additional X chromosomes, such as in 49,XXXXY males, are associated with more markedly decreased brain volume and increased incidence of white matter hyperintensities. The limited data regarding effects of having two Y chromosomes (47,XYY) do not find significant differences in brain volume, although there are some reports of increased head size.

  12. Neuroimaging Study of the Human Amygdala - Toward an Understanding of Emotional and Stress Responses -

    NASA Astrophysics Data System (ADS)

    Iidaka, Tetsuya

    The amygdala plays a critical role in the neural system involved in emotional responses and conditioned fear. The dysfunction of this system is thought to be a cause of several neuropsychiatric disorders. A neuroimaging study provides a unique opportunity for noninvasive investigation of the human amygdala. We studied the activity of this structure in normal subjects and patients with schizophrenia by using the face recognition task. Our results showed that the amygdala was activated by presentation of face stimuli, and negative face activated the amygdala to a greater extent than a neutral face. Under the happy face condition, the activation of the amygdala was higher in the schizophrenic patients than in control subjects. A single nucleotide polymorphism in the regulatory region of the serotonin type 3 receptor gene had modulatory effects on the amygdaloid activity. The emotion regulation had a significant impact on neural interaction between the amygdala and prefrontal cortices. Thus, studies on the human amygdala would greatly contribute to the elucidation of the neural system that determines emotional and stress responses. To clarify the relevance of the neural dysfunction and neuropsychiatric disorders, further studies using physiological, genetic, and hormonal approaches are essential.

  13. Mapping vulnerability to bipolar disorder: a systematic review and meta-analysis of neuroimaging studies

    PubMed Central

    Fusar-Poli, Paolo; Howes, Oliver; Bechdolf, Andreas; Borgwardt, Stefan

    2012-01-01

    Background Although early interventions in individuals with bipolar disorder may reduce the associated personal and economic burden, the neurobiologic markers of enhanced risk are unknown. Methods Neuroimaging studies involving individuals at enhanced genetic risk for bipolar disorder (HR) were included in a systematic review. We then performed a region of interest (ROI) analysis and a whole-brain meta-analysis combined with a formal effect-sizes meta-analysis in a subset of studies. Results There were 37 studies included in our systematic review. The overall sample for the systematic review included 1258 controls and 996 HR individuals. No significant differences were detected between HR individuals and controls in the selected ROIs: striatum, amygdala, hippocampus, pituitary and frontal lobe. The HR group showed increased grey matter volume compared with patients with established bipolar disorder. The HR individuals showed increased neural response in the left superior frontal gyrus, medial frontal gyrus and left insula compared with controls, independent from the functional magnetic resonance imaging task used. There were no publication biases. Sensitivity analysis confirmed the robustness of these results. Limitations As the included studies were cross-sectional, it remains to be determined whether the observed neurofunctional and structural alterations represent risk factors that can be clinically used in preventive interventions for prodromal bipolar disorder. Conclusion Accumulating structural and functional imaging evidence supports the existence of neurobiologic trait abnormalities in individuals at genetic risk for bipolar disorder at various scales of investigation. PMID:22297067

  14. Data sharing in neuroimaging research

    PubMed Central

    Poline, Jean-Baptiste; Breeze, Janis L.; Ghosh, Satrajit; Gorgolewski, Krzysztof; Halchenko, Yaroslav O.; Hanke, Michael; Haselgrove, Christian; Helmer, Karl G.; Keator, David B.; Marcus, Daniel S.; Poldrack, Russell A.; Schwartz, Yannick; Ashburner, John; Kennedy, David N.

    2012-01-01

    Significant resources around the world have been invested in neuroimaging studies of brain function and disease. Easier access to this large body of work should have profound impact on research in cognitive neuroscience and psychiatry, leading to advances in the diagnosis and treatment of psychiatric and neurological disease. A trend toward increased sharing of neuroimaging data has emerged in recent years. Nevertheless, a number of barriers continue to impede momentum. Many researchers and institutions remain uncertain about how to share data or lack the tools and expertise to participate in data sharing. The use of electronic data capture (EDC) methods for neuroimaging greatly simplifies the task of data collection and has the potential to help standardize many aspects of data sharing. We review here the motivations for sharing neuroimaging data, the current data sharing landscape, and the sociological or technical barriers that still need to be addressed. The INCF Task Force on Neuroimaging Datasharing, in conjunction with several collaborative groups around the world, has started work on several tools to ease and eventually automate the practice of data sharing. It is hoped that such tools will allow researchers to easily share raw, processed, and derived neuroimaging data, with appropriate metadata and provenance records, and will improve the reproducibility of neuroimaging studies. By providing seamless integration of data sharing and analysis tools within a commodity research environment, the Task Force seeks to identify and minimize barriers to data sharing in the field of neuroimaging. PMID:22493576

  15. Teaching the Teachers of Clinical Psychopharmacology.

    PubMed

    Salzman, Carl; Glick, Ira D

    2015-08-01

    This commentary focuses on psychopharmacology teachers and their teaching. The authors offer broadly based pedagogic suggestions on how to deliver evidence-based and neurobiologically informed prescribing information to clinicians at all levels of experience. They argue that teaching essential psychopharmacology knowledge and practice must be up-to-date, accurate, and consistent with the reality of an individual patient's life experience and beliefs. They stress that educators must teach that nonpsychopharmacological factors in a patient's life may be as relevant to the treatment setting as the actual pharmacological basis of psychotropic drug therapeutics.

  16. Meta-analysis of 41 Functional Neuroimaging Studies of Executive Function in Schizophrenia

    PubMed Central

    Minzenberg, Michael J.; Laird, Angela R.; Thelen, Sarah; Carter, Cameron S.; Glahn, David C.

    2010-01-01

    Context: Prefrontal cortical dysfunction is frequently reported in schizophrenia. It remains unclear whether this represents the coincidence of several prefrontal region- and process-specific impairments or a more unitary dysfunction in a superordinate cognitive control network. Whether these impairments are properly considered reflective of hypofrontality vs hyperfrontality remains unresolved. Objectives: To test whether common nodes of the cognitive control network exhibit altered activity across functional neuroimaging studies of executive cognition in schizophrenia and to evaluate the direction of these effects. Data Sources: PubMed database. Study Selection: Forty-one English-language, peer-reviewed articles published prior to February 2007 were included. All reports used functional neuroimaging during executive function performance by adult patients with schizophrenia and reported whole-brain analyses in standard stereotactic space. Tasks primarily included the delayed match-to-sample, N-back, AX-CPT, and Stroop tasks. Data Extraction: Activation likelihood estimation modeling reported activation maxima as the center of a 3-dimensional gaussian function in the meta-analysis, with statistical thresholding and correction for multiple comparisons. Data Synthesis: In within-group analyses, healthy controls and patients activated a similarly distributed cortical-subcortical network, prominently including the dorsolateral prefrontal cortex (PFC), ventrolateral PFC, anterior cingulate cortex (ACC), and thalamus. In between-group analyses, patients showed reduced activation in the left dorsolateral PFC, rostral/dorsal ACC, left thalamus (with significant co-occurrence of these areas), and inferior/ posterior cortical areas. Increased activation was observed in several midline cortical areas. Activation within groups varied modestly by task. Conclusions: Healthy adults and schizophrenic patients activate a qualitatively similar neural network during executive task

  17. Neural correlates of somatoform disorders from a meta-analytic perspective on neuroimaging studies.

    PubMed

    Boeckle, Markus; Schrimpf, Marlene; Liegl, Gregor; Pieh, Christoph

    2016-01-01

    Somatoform disorders (SD) are common medical disorders with prevalence rates between 3.5% and 18.4%, depending on country and medical setting. SD as outlined in the ICD-10 exhibits various biological, social, and psychological pathogenic factors. Little is known about the neural correlates of SD. The aims of this meta-analysis are to identify neuronal areas that are involved in SD and consistently differ between patients and healthy controls. We conducted a systematic literature research on neuroimaging studies of SD. Ten out of 686 studies fulfilled the inclusion criteria and were analyzed using activation likelihood estimation. Five neuronal areas differ between patients with SD and healthy controls namely the premotor and supplementary motor cortexes, the middle frontal gyrus, the anterior cingulate cortex, the insula, and the posterior cingulate cortex. These areas seem to have a particular importance for the occurrence of SD. Out of the ten studies two did not contribute to any of the clusters. Our results seem to largely overlap with the circuit network model of somatosensory amplification for SD. It is conceivable that functional disorders, independent of the clinical impression, show similar neurobiological processes. While overlaps do occur it is necessary to understand single functional somatic syndromes and their aetiology for future research, terminology, and treatment guidelines. PMID:27182487

  18. Neural correlates of somatoform disorders from a meta-analytic perspective on neuroimaging studies

    PubMed Central

    Boeckle, Markus; Schrimpf, Marlene; Liegl, Gregor; Pieh, Christoph

    2016-01-01

    Somatoform disorders (SD) are common medical disorders with prevalence rates between 3.5% and 18.4%, depending on country and medical setting. SD as outlined in the ICD-10 exhibits various biological, social, and psychological pathogenic factors. Little is known about the neural correlates of SD. The aims of this meta-analysis are to identify neuronal areas that are involved in SD and consistently differ between patients and healthy controls. We conducted a systematic literature research on neuroimaging studies of SD. Ten out of 686 studies fulfilled the inclusion criteria and were analyzed using activation likelihood estimation. Five neuronal areas differ between patients with SD and healthy controls namely the premotor and supplementary motor cortexes, the middle frontal gyrus, the anterior cingulate cortex, the insula, and the posterior cingulate cortex. These areas seem to have a particular importance for the occurrence of SD. Out of the ten studies two did not contribute to any of the clusters. Our results seem to largely overlap with the circuit network model of somatosensory amplification for SD. It is conceivable that functional disorders, independent of the clinical impression, show similar neurobiological processes. While overlaps do occur it is necessary to understand single functional somatic syndromes and their aetiology for future research, terminology, and treatment guidelines. PMID:27182487

  19. The neural mechanisms of hallucinations: A quantitative meta-analysis of neuroimaging studies.

    PubMed

    Zmigrod, Leor; Garrison, Jane R; Carr, Joseph; Simons, Jon S

    2016-10-01

    Activation likelihood estimation meta-analysis of functional neuroimaging data was used to investigate the neural mechanisms underlying auditory-verbal and visual hallucinations (AVHs and VHs). Consistent activation across studies during AVHs, but not VHs, in Wernicke's and Broca's areas is consistent with involvement of speech and language processes in the experience of hearing voices when none are present. Similarly, greater activity in auditory cortex during AVHs and in visual cortex during VHs supports models proposing over-stimulation of sensory cortices in the generation of these perceptual anomalies. Activation across studies in the medial temporal lobe highlights a role for memory intrusions in the provision of content for AVHs, whereas insula activation may relate to the involvement of awareness and self-representation. Finally, activation in the paracingulate region of medial prefrontal cortex during AVHs is consistent with models implicating reality monitoring impairment in the misattribution of self-generated information as externally perceived. In the light of the results, the need for unified theoretical frameworks that account for the full range of hallucinatory experiences is discussed. PMID:27473935

  20. The neural mechanisms of hallucinations: A quantitative meta-analysis of neuroimaging studies.

    PubMed

    Zmigrod, Leor; Garrison, Jane R; Carr, Joseph; Simons, Jon S

    2016-10-01

    Activation likelihood estimation meta-analysis of functional neuroimaging data was used to investigate the neural mechanisms underlying auditory-verbal and visual hallucinations (AVHs and VHs). Consistent activation across studies during AVHs, but not VHs, in Wernicke's and Broca's areas is consistent with involvement of speech and language processes in the experience of hearing voices when none are present. Similarly, greater activity in auditory cortex during AVHs and in visual cortex during VHs supports models proposing over-stimulation of sensory cortices in the generation of these perceptual anomalies. Activation across studies in the medial temporal lobe highlights a role for memory intrusions in the provision of content for AVHs, whereas insula activation may relate to the involvement of awareness and self-representation. Finally, activation in the paracingulate region of medial prefrontal cortex during AVHs is consistent with models implicating reality monitoring impairment in the misattribution of self-generated information as externally perceived. In the light of the results, the need for unified theoretical frameworks that account for the full range of hallucinatory experiences is discussed.

  1. Sex steroids and connectivity in the human brain: a review of neuroimaging studies.

    PubMed

    Peper, Jiska S; van den Heuvel, Martijn P; Mandl, René C W; Hulshoff Pol, Hilleke E; van Honk, Jack

    2011-09-01

    Our brain operates by the way of interconnected networks. Connections between brain regions have been extensively studied at a functional and structural level, and impaired connectivity has been postulated as an important pathophysiological mechanism underlying several neuropsychiatric disorders. Yet the neurobiological mechanisms contributing to the development of functional and structural brain connections remain to be poorly understood. Interestingly, animal research has convincingly shown that sex steroid hormones (estrogens, progesterone and testosterone) are critically involved in myelination, forming the basis of white matter connectivity in the central nervous system. To get insights, we reviewed studies into the relation between sex steroid hormones, white matter and functional connectivity in the human brain, measured with neuroimaging. Results suggest that sex hormones organize structural connections, and activate the brain areas they connect. These processes could underlie a better integration of structural and functional communication between brain regions with age. Specifically, ovarian hormones (estradiol and progesterone) may enhance both cortico-cortical and subcortico-cortical functional connectivity, whereas androgens (testosterone) may decrease subcortico-cortical functional connectivity but increase functional connectivity between subcortical brain areas. Therefore, when examining healthy brain development and aging or when investigating possible biological mechanisms of 'brain connectivity' diseases, the contribution of sex steroids should not be ignored.

  2. Functional and clinical insights from neuroimaging studies in childhood-onset schizophrenia.

    PubMed

    Ordóñez, Anna E; Sastry, Nevin V; Gogtay, Nitin

    2015-08-01

    Childhood-onset schizophrenia is a rare pediatric onset psychiatric disorder continuous with and typically more severe than its adult counterpart. Neuroimaging research conducted on this population has revealed similarly severe neural abnormalities. When taken as a whole, neuroimaging research in this population shows generally decreased cortical gray matter coupled with white matter connectivity abnormalities, suggesting an anatomical basis for deficits in executive function. Subcortical abnormalities are pronounced in limbic structures, where volumetric deficits are likely related to social skill deficits, and cerebellar deficits that have been correlated to cognitive abnormalities. Structures relevant to motor processing also show a significant alteration, with volumetric increase in basal ganglia structures likely due to antipsychotic administration. Neuroimaging of this disorder shows an important clinical image of exaggerated cortical loss, altered white matter connectivity, and differences in structural development of subcortical areas during the course of development and provides important background to the disease state. PMID:26234702

  3. Functional and clinical insights from neuroimaging studies in childhood-onset schizophrenia.

    PubMed

    Ordóñez, Anna E; Sastry, Nevin V; Gogtay, Nitin

    2015-08-01

    Childhood-onset schizophrenia is a rare pediatric onset psychiatric disorder continuous with and typically more severe than its adult counterpart. Neuroimaging research conducted on this population has revealed similarly severe neural abnormalities. When taken as a whole, neuroimaging research in this population shows generally decreased cortical gray matter coupled with white matter connectivity abnormalities, suggesting an anatomical basis for deficits in executive function. Subcortical abnormalities are pronounced in limbic structures, where volumetric deficits are likely related to social skill deficits, and cerebellar deficits that have been correlated to cognitive abnormalities. Structures relevant to motor processing also show a significant alteration, with volumetric increase in basal ganglia structures likely due to antipsychotic administration. Neuroimaging of this disorder shows an important clinical image of exaggerated cortical loss, altered white matter connectivity, and differences in structural development of subcortical areas during the course of development and provides important background to the disease state.

  4. Sex steroids and brain structure in pubertal boys and girls: a mini-review of neuroimaging studies.

    PubMed

    Peper, J S; Hulshoff Pol, H E; Crone, E A; van Honk, J

    2011-09-15

    Puberty is an important period during development hallmarked by increases in sex steroid levels. Human neuroimaging studies have consistently reported that in typically developing pubertal children, cortical and subcortical gray matter is decreasing, whereas white matter increases well into adulthood. From animal studies it has become clear that sex steroids are capable of influencing brain organization, both during the prenatal period as well as during other periods characterized by massive sex steroid changes such as puberty. Here we review structural neuroimaging studies and show that the changes in sex steroids availability during puberty and adolescence might trigger a period of structural reorganization of grey and white matter in the developing human brain. This article is part of a Special Issue entitled: Neuroactive Steroids: Focus on Human Brain.

  5. Teaching Critical Appraisal of Articles on Psychopharmacology

    ERIC Educational Resources Information Center

    Mohr, Pavel; Hoschl, Cyril; Volavka, Jan

    2012-01-01

    Objective: Psychiatrists and other physicians sometimes read publications superficially, relying excessively on abstracts. The authors addressed this problem by teaching critical appraisal of individual articles. Method: The authors developed a 23-item appraisal instrument to assess articles in the area of psychopharmacology. The results were…

  6. [Psychopharmacological treatments in childhood and adolescence].

    PubMed

    Libal, Gerhard; Schmeck, Klaus

    2009-06-01

    Compared to adults, the use of psychopharmacological substances in childhood and adolescence is significantly more controversial. Often sensation-seeking media reports on the negative effects of psychopharmacological treatments of children and adolescents intensify this controversy on a regular basis. In addition, even pharmacologically trained experts--though frequently without expertise in Child and Adolescent Psychiatry--question the seriousness and thus the demands for treatment of psychiatric disorders in childhood and adolescence. Considering this background evidence based treatment decisions in pediatric psychopharmacology are of utmost importance. Effective psychopharmacotherapy needs to be distinguished from ineffective treatments. The pros and cons of such evidence based treatment approaches ought to be weighted out carefully together with the patients and their families. The aim of this article is to provide a rational and concise foundation for the use of psychopharmacotherapy for clinicians treating children and adolescents as well as to point out the currently best evidence for psychopharmacological treatments of selected disorders in child and adolescent psychiatry.

  7. Meta-analysis of functional neuroimaging studies of emotion perception and experience in schizophrenia

    PubMed Central

    Taylor, Stephan F.; Kang, Jian; Brege, Inga S.; Tso, Ivy F.; Hosanagar, Avinash; Johnson, Timothy D.

    2011-01-01

    Background Neuroimaging studies of emotion in schizophrenia have reported abnormalities in amygdala and other regions, although divergent results and heterogeneous paradigms complicate conclusions from single experiments. To identify more consistent patterns of dysfunction, a meta-analysis of functional imaging studies of emotion was undertaken. Methods Searching Medline and PsycINFO databases up through January of 2011, 88 potential articles were identified, of which 26 met inclusion criteria, comprising 450 patients with schizophrenia and 422 healthy comparison subjects. Contrasts were selected to include emotion perception and emotion experience. Foci from individual studies were subjected to a voxel-wise meta-analysis using multi-level kernel density analysis. Results For emotional experience, comparison subjects showed greater activation in the left occipital pole. For emotional perception, schizophrenia subjects showed reduced activation in bilateral amygdala, visual processing areas, anterior cingulate cortex (ACC), dorsolateral frontal cortex, medial frontal cortex and subcortical structures. Schizophrenia subjects showed greater activation in the cuneus, parietal lobule, precentral gyrus and superior temporal gyrus. Combining across studies and eliminating studies that did not balance on effort and stimulus complexity eliminated most differences in visual processing regions as well as most areas where schizophrenia subjects showed a greater signal. Reduced reactivity of the amygdala appeared primarily in implicit studies of emotion, whereas deficits in ACC activity appeared throughout all contrasts. Conclusions Processing emotional stimuli, schizophrenia patients show reduced activation in areas engaged by emotional stimuli, although in some conditions, schizophrenia patients exhibit increased activation in areas outside those traditionally associated with emotion, possibly representing compensatory processing. PMID:21993193

  8. Neuroimaging for psychotherapy research: Current trends

    PubMed Central

    WEINGARTEN, CAROL P.; STRAUMAN, TIMOTHY J.

    2014-01-01

    Objective This article reviews neuroimaging studies that inform psychotherapy research. An introduction to neuroimaging methods is provided as background for the increasingly sophisticated breadth of methods and findings appearing in psychotherapy research. Method We compiled and assessed a comprehensive list of neuroimaging studies of psychotherapy outcome, along with selected examples of other types of studies that also are relevant to psychotherapy research. We emphasized magnetic resonance imaging (MRI) since it is the dominant neuroimaging modality in psychological research. Results We summarize findings from neuroimaging studies of psychotherapy outcome, including treatment for depression, obsessive-compulsive disorder (OCD), and schizophrenia. Conclusions The increasing use of neuroimaging methods in the study of psychotherapy continues to refine our understanding of both outcome and process. We suggest possible directions for future neuroimaging studies in psychotherapy research. PMID:24527694

  9. A meta-analysis of neuroimaging studies on divergent thinking using activation likelihood estimation.

    PubMed

    Wu, Xin; Yang, Wenjing; Tong, Dandan; Sun, Jiangzhou; Chen, Qunlin; Wei, Dongtao; Zhang, Qinglin; Zhang, Meng; Qiu, Jiang

    2015-07-01

    In this study, an activation likelihood estimation (ALE) meta-analysis was used to conduct a quantitative investigation of neuroimaging studies on divergent thinking. Based on the ALE results, the functional magnetic resonance imaging (fMRI) studies showed that distributed brain regions were more active under divergent thinking tasks (DTTs) than those under control tasks, but a large portion of the brain regions were deactivated. The ALE results indicated that the brain networks of the creative idea generation in DTTs may be composed of the lateral prefrontal cortex, posterior parietal cortex [such as the inferior parietal lobule (BA 40) and precuneus (BA 7)], anterior cingulate cortex (ACC) (BA 32), and several regions in the temporal cortex [such as the left middle temporal gyrus (BA 39), and left fusiform gyrus (BA 37)]. The left dorsolateral prefrontal cortex (BA 46) was related to selecting the loosely and remotely associated concepts and organizing them into creative ideas, whereas the ACC (BA 32) was related to observing and forming distant semantic associations in performing DTTs. The posterior parietal cortex may be involved in the semantic information related to the retrieval and buffering of the formed creative ideas, and several regions in the temporal cortex may be related to the stored long-term memory. In addition, the ALE results of the structural studies showed that divergent thinking was related to the dopaminergic system (e.g., left caudate and claustrum). Based on the ALE results, both fMRI and structural MRI studies could uncover the neural basis of divergent thinking from different aspects (e.g., specific cognitive processing and stable individual difference of cognitive capability).

  10. Communicating Results in Post-Belmont Era Biomonitoring Studies: Lessons from Genetics and Neuroimaging Research

    PubMed Central

    Morello-Frosch, Rachel; Varshavsky, Julia; Liboiron, Max; Brown, Phil; Brody, Julia G.

    2014-01-01

    Background Biomonitoring is a critical tool to assess the effects of chemicals on health, as scientists seek to better characterize life-course exposures from diverse environments. This trend, coupled with increased institutional support for community-engaged environmental health research, challenge established ethical norms related to biomonitoring results communication and data sharing between scientists, study participants, and their wider communities. Methods Through a literature review, participant observation at workshops, and interviews, we examine ethical tensions related to reporting individual data from chemical biomonitoring studies by drawing relevant lessons from the genetics and neuroimaging fields. Results In all three fields ethical debates about whether/how to report-back results to study participants are precipitated by two trends. First, changes in analytical methods have made more data accessible to stakeholders. For biomonitoring, improved techniques enable detection of more chemicals at lower levels, and diverse groups of scientists and health advocates now conduct exposure studies. Similarly, innovations in genetics have catalyzed large-scale projects and broadened the scope of who has access to genetic information. Second, increasing public interest in personal medical information has compelled imaging researchers to address demands by participants to know their personal data, despite uncertainties about their clinical significance. Four ethical arenas relevant to biomonitoring results communication emerged from our review: Tensions between participants’ right-to-know their personal results versus their ability or right-to-act to protect their health; whether and how to report incidental findings; informed consent in biobanking; and open-access data sharing. Conclusion Ethically engaging participants in biomonitoring studies requires consideration of several issues, including scientific uncertainty about health implications and exposure

  11. Statistical inferences under the Null hypothesis: common mistakes and pitfalls in neuroimaging studies

    PubMed Central

    Hupé, Jean-Michel

    2015-01-01

    Published studies using functional and structural MRI include many errors in the way data are analyzed and conclusions reported. This was observed when working on a comprehensive review of the neural bases of synesthesia, but these errors are probably endemic to neuroimaging studies. All studies reviewed had based their conclusions using Null Hypothesis Significance Tests (NHST). NHST have yet been criticized since their inception because they are more appropriate for taking decisions related to a Null hypothesis (like in manufacturing) than for making inferences about behavioral and neuronal processes. Here I focus on a few key problems of NHST related to brain imaging techniques, and explain why or when we should not rely on “significance” tests. I also observed that, often, the ill-posed logic of NHST was even not correctly applied, and describe what I identified as common mistakes or at least problematic practices in published papers, in light of what could be considered as the very basics of statistical inference. MRI statistics also involve much more complex issues than standard statistical inference. Analysis pipelines vary a lot between studies, even for those using the same software, and there is no consensus which pipeline is the best. I propose a synthetic view of the logic behind the possible methodological choices, and warn against the usage and interpretation of two statistical methods popular in brain imaging studies, the false discovery rate (FDR) procedure and permutation tests. I suggest that current models for the analysis of brain imaging data suffer from serious limitations and call for a revision taking into account the “new statistics” (confidence intervals) logic. PMID:25745383

  12. Genetic and Environmental Influences on Neuroimaging Phenotypes: A Meta-Analytical Perspective on Twin Imaging Studies

    PubMed Central

    Blokland, Gabriella A. M.; de Zubicaray, Greig I.; McMahon, Katie L.; Wright, Margaret J.

    2014-01-01

    Because brain structure and function are affected in neurological and psychiatric disorders, it is important to disentangle the sources of variation in these phenotypes. Over the past 15 years, twin studies have found evidence for both genetic and environmental influences on neuroimaging phenotypes, but considerable variation across studies makes it difficult to draw clear conclusions about the relative magnitude of these influences. Here we performed the first meta-analysis of structural MRI data from 48 studies on >1,250 twin pairs, and diffusion tensor imaging data from 10 studies on 444 twin pairs. The proportion of total variance accounted for by genes (A), shared environment (C), and unshared environment (E), was calculated by averaging A, C, and E estimates across studies from independent twin cohorts and weighting by sample size. The results indicated that additive genetic estimates were significantly different from zero for all meta-analyzed phenotypes, with the exception of fractional anisotropy (FA) of the callosal splenium, and cortical thickness (CT) of the uncus, left parahippocampal gyrus, and insula. For many phenotypes there was also a significant influence of C. We now have good estimates of heritability for many regional and lobar CT measures, in addition to the global volumes. Confidence intervals are wide and number of individuals small for many of the other phenotypes. In conclusion, while our meta-analysis shows that imaging measures are strongly influenced by genes, and that novel phenotypes such as CT measures, FA measures, and brain activation measures look especially promising, replication across independent samples and demographic groups is necessary. PMID:22856370

  13. Statistical inferences under the Null hypothesis: common mistakes and pitfalls in neuroimaging studies.

    PubMed

    Hupé, Jean-Michel

    2015-01-01

    Published studies using functional and structural MRI include many errors in the way data are analyzed and conclusions reported. This was observed when working on a comprehensive review of the neural bases of synesthesia, but these errors are probably endemic to neuroimaging studies. All studies reviewed had based their conclusions using Null Hypothesis Significance Tests (NHST). NHST have yet been criticized since their inception because they are more appropriate for taking decisions related to a Null hypothesis (like in manufacturing) than for making inferences about behavioral and neuronal processes. Here I focus on a few key problems of NHST related to brain imaging techniques, and explain why or when we should not rely on "significance" tests. I also observed that, often, the ill-posed logic of NHST was even not correctly applied, and describe what I identified as common mistakes or at least problematic practices in published papers, in light of what could be considered as the very basics of statistical inference. MRI statistics also involve much more complex issues than standard statistical inference. Analysis pipelines vary a lot between studies, even for those using the same software, and there is no consensus which pipeline is the best. I propose a synthetic view of the logic behind the possible methodological choices, and warn against the usage and interpretation of two statistical methods popular in brain imaging studies, the false discovery rate (FDR) procedure and permutation tests. I suggest that current models for the analysis of brain imaging data suffer from serious limitations and call for a revision taking into account the "new statistics" (confidence intervals) logic. PMID:25745383

  14. Sex differences in brain activation to emotional stimuli: a meta-analysis of neuroimaging studies.

    PubMed

    Stevens, Jennifer S; Hamann, Stephan

    2012-06-01

    Substantial sex differences in emotional responses and perception have been reported in previous psychological and psychophysiological studies. For example, women have been found to respond more strongly to negative emotional stimuli, a sex difference that has been linked to an increased risk of depression and anxiety disorders. The extent to which such sex differences are reflected in corresponding differences in regional brain activation remains a largely unresolved issue, however, in part because relatively few neuroimaging studies have addressed this issue. Here, by conducting a quantitative meta-analysis of neuroimaging studies, we were able to substantially increase statistical power to detect sex differences relative to prior studies, by combining emotion studies which explicitly examined sex differences with the much larger number of studies that examined only women or men. We used an activation likelihood estimation approach to characterize sex differences in the likelihood of regional brain activation elicited by emotional stimuli relative to non-emotional stimuli. We examined sex differences separately for negative and positive emotions, in addition to examining all emotions combined. Sex differences varied markedly between negative and positive emotion studies. The majority of sex differences favoring women were observed for negative emotion, whereas the majority of the sex differences favoring men were observed for positive emotion. This valence-specificity was particularly evident for the amygdala. For negative emotion, women exhibited greater activation than men in the left amygdala, as well as in other regions including the left thalamus, hypothalamus, mammillary bodies, left caudate, and medial prefrontal cortex. In contrast, for positive emotion, men exhibited greater activation than women in the left amygdala, as well as greater activation in other regions including the bilateral inferior frontal gyrus and right fusiform gyrus. These meta

  15. Neuroimaging studies of the striatum in cognition Part I: healthy individuals

    PubMed Central

    Provost, Jean-Sebastien; Hanganu, Alexandru; Monchi, Oury

    2015-01-01

    The striatum has traditionally mainly been associated with playing a key role in the modulation of motor functions. Indeed, lesion studies in animals and studies of some neurological conditions in humans have brought further evidence to this idea. However, better methods of investigation have raised concerns about this notion, and it was proposed that the striatum could also be involved in different types of functions including cognitive ones. Although the notion was originally a matter of debate, it is now well-accepted that the caudate nucleus contributes to cognition, while the putamen could be involved in motor functions, and to some extent in cognitive functions as well. With the arrival of modern neuroimaging techniques in the early 1990, knowledge supporting the cognitive aspect of the striatum has greatly increased, and a substantial number of scientific papers were published studying the role of the striatum in healthy individuals. For the first time, it was possible to assess the contribution of specific areas of the brain during the execution of a cognitive task. Neuroanatomical studies have described functional loops involving the striatum and the prefrontal cortex suggesting a specific interaction between these two structures. This review examines the data up to date and provides strong evidence for a specific contribution of the fronto-striatal regions in different cognitive processes, such as set-shifting, self-initiated responses, rule learning, action-contingency, and planning. Finally, a new two-level functional model involving the prefrontal cortex and the dorsal striatum is proposed suggesting an essential role of the dorsal striatum in selecting between competing potential responses or actions, and in resolving a high level of ambiguity. PMID:26500513

  16. DeID – a data sharing tool for neuroimaging studies

    PubMed Central

    Song, Xuebo; Wang, James; Wang, Anlin; Meng, Qingping; Prescott, Christian; Tsu, Loretta; Eckert, Mark A.

    2015-01-01

    Funding institutions and researchers increasingly expect that data will be shared to increase scientific integrity and provide other scientists with the opportunity to use the data with novel methods that may advance understanding in a particular field of study. In practice, sharing human subject data can be complicated because data must be de-identified prior to sharing. Moreover, integrating varied data types collected in a study can be challenging and time consuming. For example, sharing data from structural imaging studies of a complex disorder requires the integration of imaging, demographic and/or behavioral data in a way that no subject identifiers are included in the de-identified dataset and with new subject labels or identification values that cannot be tracked back to the original ones. We have developed a Java program that users can use to remove identifying information in neuroimaging datasets, while still maintaining the association among different data types from the same subject for further studies. This software provides a series of user interaction wizards to allow users to select data variables to be de-identified, implements functions for auditing and validation of de-identified data, and enables the user to share the de-identified data in a single compressed package through various communication protocols, such as FTPS and SFTP. DeID runs with Windows, Linux, and Mac operating systems and its open architecture allows it to be easily adapted to support a broader array of data types, with the goal of facilitating data sharing. DeID can be obtained at http://www.nitrc.org/projects/deid. PMID:26441500

  17. Aspects of cerebral plasticity related to clinical features in acute vestibular neuritis: a "starting point" review from neuroimaging studies.

    PubMed

    Micarelli, A; Chiaravalloti, A; Schillaci, O; Ottaviani, F; Alessandrini, M

    2016-04-01

    Vestibular neuritis (VN) is one of the most common causes of vertigo and is characterised by a sudden unilateral vestibular failure (UVF). Many neuroimaging studies in the last 10 years have focused on brain changes related to sudden vestibular deafferentation as in VN. However, most of these studies, also due to different possibilities across diverse centres, were based on different times of first acquisition from the onset of VN symptoms, neuroimaging techniques, statistical analysis and correlation with otoneurological and psychological findings. In the present review, the authors aim to merge together the similarities and discrepancies across various investigations that have employed neuroimaging techniques and group analysis with the purpose of better understanding about how the brain changes and what characteristic clinical features may relate to each other in the acute phase of VN. Six studies that strictly met inclusion criteria were analysed to assess cortical-subcortical correlates of acute clinical features related to VN. The present review clearly reveals that sudden UVF may induce a wide variety of cortical and subcortical responses - with changes in different sensory modules - as a result of acute plasticity in the central nervous system. PMID:27196070

  18. Light propagation through weakly scattering media: a study of Monte Carlo vs. diffusion theory with application to neuroimaging

    NASA Astrophysics Data System (ADS)

    Ancora, Daniele; Zacharopoulos, Athanasios; Ripoll, Jorge; Zacharakis, Giannis

    2015-07-01

    One of the major challenges within Optical Imaging, photon propagation through clear layers embedded between scattering tissues, can be now efficiently modelled in real-time thanks to the Monte Carlo approach based on GPU. Because of its nature, the photon propagation problem can be very easily parallelized and ran on low cost hardware, avoiding the need for expensive Super Computers. A comparison between Diffusion and MC photon propagation theory is presented in this work with application to neuroimaging, investigating low scattering regions in a mouse-like phantom. Regions such as the Cerebral Spinal Fluid, are currently not taken into account in the classical computational models because of the impossibility to accurately simulate light propagation using fast Diffusive Equation approaches, leading to inaccuracies during the reconstruction process. The goal of the study presented here, is to reduce and further improve the computation accuracy of the reconstructed solution in a highly realistic scenario in the case of neuroimaging in preclinical mouse models.

  19. Looking for Neuroimaging Markers in Frontotemporal Lobar Degeneration Clinical Trials: A Multi-Voxel Pattern Analysis Study in Granulin Disease.

    PubMed

    Premi, Enrico; Cauda, Franco; Costa, Tommaso; Diano, Matteo; Gazzina, Stefano; Gualeni, Vera; Alberici, Antonella; Archetti, Silvana; Magoni, Mauro; Gasparotti, Roberto; Padovani, Alessandro; Borroni, Barbara

    2016-01-01

    In light of future pharmacological interventions, neuroimaging markers able to assess the response to treatment would be crucial. In Granulin (GRN) disease, preclinical data will prompt pharmacological trials in the future. Two main points need to be assessed: (1) to identify target regions in different disease stages and (2) to determine the most accurate functional and structural neuroimaging index to be used. To this aim, we have taken advantage of the multivariate approach of multi-voxel pattern analysis (MVPA) to explore the information of brain activity patterns in a cohort of GRN Thr272fs carriers at different disease stages (14 frontotemporal dementia (FTD) patients and 17 asymptomatic carriers) and a group of 33 healthy controls. We studied structural changes by voxel-based morphometry (VBM), functional connectivity by assessing salience, default mode, fronto-parietal, dorsal attentional, executive networks, and local connectivity by regional homogeneity, amplitude of low frequency fluctuations (ALFF), fractional ALFF (fALFF), degree centrality, and voxel-mirrored homotopic connectivity. In FTD patients with GRN mutation, the most predictive measure was VBM structural analysis, while in asymptomatic carriers the best predictor marker was the local connectivity measure (fALFF). Altogether, all indexes demonstrated fronto-temporo-parietal damage in GRN pathology, with widespread structural damage of fronto-parietal and temporal regions when disease is overt. MVPA could be of aid in identifying the most accurate neuroimaging marker for clinical trials. This approach was able to identify both the target region and the best neuroimaging approach, which would be specific in the different disease stages. Further studies are needed to simultaneously integrate multimodal indexes in a classifier able to trace the disease progression moving from preclinical to clinical stage of the disease.

  20. CNS involvement in OFD1 syndrome: a clinical, molecular, and neuroimaging study

    PubMed Central

    2014-01-01

    Background Oral-facial-digital type 1 syndrome (OFD1; OMIM 311200) belongs to the expanding group of disorders ascribed to ciliary dysfunction. With the aim of contributing to the understanding of the role of primary cilia in the central nervous system (CNS), we performed a thorough characterization of CNS involvement observed in this disorder. Methods A cohort of 117 molecularly diagnosed OFD type I patients was screened for the presence of neurological symptoms and/or cognitive/behavioral abnormalities on the basis of the available information supplied by the collaborating clinicians. Seventy-one cases showing CNS involvement were further investigated through neuroimaging studies and neuropsychological testing. Results Seventeen patients were molecularly diagnosed in the course of this study and five of these represent new mutations never reported before. Among patients displaying neurological symptoms and/or cognitive/behavioral abnormalities, we identified brain structural anomalies in 88.7%, cognitive impairment in 68%, and associated neurological disorders and signs in 53% of cases. The most frequently observed brain structural anomalies included agenesis of the corpus callosum and neuronal migration/organisation disorders as well as intracerebral cysts, porencephaly and cerebellar malformations. Conclusions Our results support recent published findings indicating that CNS involvement in this condition is found in more than 60% of cases. Our findings correlate well with the kind of brain developmental anomalies described in other ciliopathies. Interestingly, we also described specific neuropsychological aspects such as reduced ability in processing verbal information, slow thought process, difficulties in attention and concentration, and notably, long-term memory deficits which may indicate a specific role of OFD1 and/or primary cilia in higher brain functions. PMID:24884629

  1. Functional grouping and cortical–subcortical interactions in emotion: A meta-analysis of neuroimaging studies

    PubMed Central

    Kober, Hedy; Barrett, Lisa Feldman; Joseph, Josh; Bliss-Moreau, Eliza; Lindquist, Kristen; Wager, Tor D.

    2009-01-01

    We performed an updated quantitative meta-analysis of 162 neuroimaging studies of emotion using a novel multi-level kernel-based approach, focusing on locating brain regions consistently activated in emotional tasks and their functional organization into distributed functional groups, independent of semantically defined emotion category labels (e.g., “anger,” “fear”). Such brain-based analyses are critical if our ways of labeling emotions are to be evaluated and revised based on consistency with brain data. Consistent activations were limited to specific cortical sub-regions, including multiple functional areas within medial, orbital, and inferior lateral frontal cortices. Consistent with a wealth of animal literature, multiple subcortical activations were identified, including amygdala, ventral striatum, thalamus, hypothalamus, and periaqueductal gray. We used multivariate parcellation and clustering techniques to identify groups of co-activated brain regions across studies. These analyses identified six distributed functional groups, including medial and lateral frontal groups, two posterior cortical groups, and paralimbic and core limbic/brainstem groups. These functional groups provide information on potential organization of brain regions into large-scale networks. Specific follow-up analyses focused on amygdala, periaqueductal gray (PAG), and hypothalamic (Hy) activations, and identified frontal cortical areas co-activated with these core limbic structures. While multiple areas of frontal cortex co-activated with amygdala sub-regions, a specific region of dorsomedial prefrontal cortex (dmPFC, Brodmann’s Area 9/32) was the only area co-activated with both PAG and Hy. Subsequent mediation analyses were consistent with a pathway from dmPFC through PAG to Hy. These results suggest that medial frontal areas are more closely associated with core limbic activation than their lateral counterparts, and that dmPFC may play a particularly important role in the

  2. Cortical Somatosensory Reorganization in Children with Spastic Cerebral Palsy: A Multimodal Neuroimaging Study

    PubMed Central

    Papadelis, Christos; Ahtam, Banu; Nazarova, Maria; Nimec, Donna; Snyder, Brian; Grant, Patricia Ellen; Okada, Yoshio

    2014-01-01

    Although cerebral palsy (CP) is among the most common causes of physical disability in early childhood, we know little about the functional and structural changes of this disorder in the developing brain. Here, we investigated with three different neuroimaging modalities [magnetoencephalography (MEG), diffusion tensor imaging (DTI), and resting-state fMRI] whether spastic CP is associated with functional and anatomical abnormalities in the sensorimotor network. Ten children participated in the study: four with diplegic CP (DCP), three with hemiplegic CP (HCP), and three typically developing (TD) children. Somatosensory (SS)-evoked fields (SEFs) were recorded in response to pneumatic stimuli applied to digits D1, D3, and D5 of both hands. Several parameters of water diffusion were calculated from DTI between the thalamus and the pre-central and post-central gyri in both hemispheres. The sensorimotor resting-state networks (RSNs) were examined by using an independent component analysis method. Tactile stimulation of the fingers elicited the first prominent cortical response at ~50 ms, in all except one child, localized over the primary SS cortex (S1). In five CP children, abnormal somatotopic organization was observed in the affected (or more affected) hemisphere. Euclidean distances were markedly different between the two hemispheres in the HCP children, and between DCP and TD children for both hemispheres. DTI analysis revealed decreased fractional anisotropy and increased apparent diffusion coefficient for the thalamocortical pathways in the more affected compared to less affected hemisphere in CP children. Resting-state functional MRI results indicated absent and/or abnormal sensorimotor RSNs for children with HCP and DCP consistent with the severity and location of their lesions. Our findings suggest an abnormal SS processing mechanism in the sensorimotor network of children with CP possibly as a result of diminished thalamocortical projections. PMID:25309398

  3. [Functional neuroimaging of addiction].

    PubMed

    Takahashi, Hidehiko

    2015-09-01

    Positron emission tomography studies investigating dopamine release by drug or reward demonstrated blunted dopamine release in relation to addiction to psychostimulants such as cocaine and amphetamine. However, recent studies reported that nicotine and gambling addiction showed opposite results. Several factors such as illness stage or neurotoxicity of substances could be considered for this discrepancy. Behavioral addiction such as gambling disorder is a good target of neuroimaging because it is free from overt neurotoxicity. However, even in gambling disorder, the results of fMRI studies investigating neural response to reward are mixed. Neuroimaging together with taking the various backgrounds of patients into account should contribute not only to a better understanding of the neurobiology of addiction but also to the development of more effective and individually tailored treatment strategies for addiction. PMID:26394506

  4. Psychopharmacology Training and Canadian Counsellors: Are We Getting What We Want and Need?

    ERIC Educational Resources Information Center

    Schaefer, David; Wong-Wylie, Gina

    2008-01-01

    The psychopharmacology training experiences and attitudes of Canadian counsellors were the focus of our national Internet-based survey. This study was part of a larger investigation on Canadian counsellors' attitudes, practices, and training experiences related to clients on antidepressants. Results of the current study indicate Canadian…

  5. [Functional magnetic resonance imaging of psychopharmacological brain effects: an update].

    PubMed

    Braus, D F; Brassen, S; Weimer, E; Tost, H

    2003-02-01

    Functional magnetic resonance imaging (fMRI) is well established for the examination of functional activity in the living brain. The method permits the development of functional activation maps during perceptual, cognitive and emotional efforts with a high temporal and spatial resolution. As of late there has been growing interest in using this technique to investigate regionally specific brain activity following the administration of drugs such as nicotine, cocaine, lorazepam, scopolamine, antipsychotics or antidepressants. Studies in experimental animals investigate signal changes associated with the administration of psychopharmacological substances in different brain areas using a high magnetising field (> 4 Tesla). FMRI-studies in healthy human volunteers and psychiatric patients focus on cerebral activity following acute drug administration (single challenge) and on adaptive effects of the CNS due to long- term medication. Their results provide insights into brain physiology and neuropharmacological mechanisms which are in turn relevant for preclinical pharmacological studies, responder analyses and for the investigation of pathogenetic models in psychiatric diseases. However, with these new opportunities, additional methodological considerations and limitations emerge. Besides the need of controlling motion artefacts, the influence of interfering psychological variables, an exact specification of the experimental design, a standardised analysis for data adjustment and technical limitations have to be considered. This article provides an overview of the underlying model of brain function, present applications, future possibilities and methodological limitations of fMRI for the understanding of human psychopharmacology. PMID:12579470

  6. The posttraumatic stress disorder project in Brazil: neuropsychological, structural and molecular neuroimaging studies in victims of urban violence

    PubMed Central

    Bressan, Rodrigo A; Quarantini, Lucas C; Andreoli, Sérgio B; Araújo, Celia; Breen, Gerome; Guindalini, Camila; Hoexter, Marcelo; Jackowski, Andrea P; Jorge, Miguel R; Lacerda, Acioly LT; Lara, Diogo R; Malta, Stella; Moriyama, Tais S; Quintana, Maria I; Ribeiro, Wagner S; Ruiz, Juliana; Schoedl, Aline F; Shih, Ming C; Figueira, Ivan; Koenen, Karestan C; Mello, Marcelo F; Mari, Jair J

    2009-01-01

    Background Life trauma is highly prevalent in the general population and posttraumatic stress disorder is among the most prevalent psychiatric consequences of trauma exposure. Brazil has a unique environment to conduct translational research about psychological trauma and posttraumatic stress disorder, since urban violence became a Brazilian phenomenon, being particularly related to the rapid population growth of its cities. This research involves three case-control studies: a neuropsychological, a structural neuroimaging and a molecular neuroimaging study, each focusing on different objectives but providing complementary information. First, it aims to examine cognitive functioning of PTSD subjects and its relationships with symptomatology. The second objective is to evaluate neurostructural integrity of orbitofrontal cortex and hippocampus in PTSD subjects. The third aim is to evaluate if patients with PTSD have decreased dopamine transporter density in the basal ganglia as compared to resilient controls subjects. This paper shows the research rationale and design for these three case-control studies. Methods and design Cases and controls will be identified through an epidemiologic survey conducted in the city of São Paulo. Subjects exposed to traumatic life experiences resulting in posttraumatic stress disorder (cases) will be compared to resilient victims of traumatic life experiences without PTSD (controls) aiming to identify biological variables that might protect or predispose to PTSD. In the neuropsychological case-control study, 100 patients with PTSD, will be compared with 100 victims of trauma without posttraumatic stress disorder, age- and sex-matched controls. Similarly, 50 cases and 50 controls will be enrolled for the structural study and 25 cases and 25 controls in the functional neuroimaging study. All individuals from the three studies will complete psychometrics and a structured clinical interview (the Structured Clinical Interview for DSM-IV and

  7. Posttraumatic Stress Disorder in Children and Adolescents: A Review of Psychopharmacological Treatment

    ERIC Educational Resources Information Center

    Huemer, J.; Erhart, F.; Steiner, H.

    2010-01-01

    PTSD in children and adolescents differs from the adult disease. Therapeutic approaches involve both psychotherapy and psychopharmacotherapy. Objectives: The current paper aims at reviewing studies on psychopharmacological treatment of childhood and adolescent PTSD. Additionally, developmental frameworks for PTSD diagnosis and research along with…

  8. Meta-Analysis of Functional Neuroimaging and Cognitive Control Studies in Schizophrenia: Preliminary Elucidation of a Core Dysfunctional Timing Network.

    PubMed

    Alústiza, Irene; Radua, Joaquim; Albajes-Eizagirre, Anton; Domínguez, Manuel; Aubá, Enrique; Ortuño, Felipe

    2016-01-01

    Timing and other cognitive processes demanding cognitive control become interlinked when there is an increase in the level of difficulty or effort required. Both functions are interrelated and share neuroanatomical bases. A previous meta-analysis of neuroimaging studies found that people with schizophrenia had significantly lower activation, relative to normal controls, of most right hemisphere regions of the time circuit. This finding suggests that a pattern of disconnectivity of this circuit, particularly in the supplementary motor area, is a trait of this mental disease. We hypothesize that a dysfunctional temporal/cognitive control network underlies both cognitive and psychiatric symptoms of schizophrenia and that timing dysfunction is at the root of the cognitive deficits observed. The goal of our study was to look, in schizophrenia patients, for brain structures activated both by execution of cognitive tasks requiring increased effort and by performance of time perception tasks. We conducted a signed differential mapping (SDM) meta-analysis of functional neuroimaging studies in schizophrenia patients assessing the brain response to increasing levels of cognitive difficulty. Then, we performed a multimodal meta-analysis to identify common brain regions in the findings of that SDM meta-analysis and our previously-published activation likelihood estimate (ALE) meta-analysis of neuroimaging of time perception in schizophrenia patients. The current study supports the hypothesis that there exists an overlap between neural structures engaged by both timing tasks and non-temporal cognitive tasks of escalating difficulty in schizophrenia. The implication is that a deficit in timing can be considered as a trait marker of the schizophrenia cognitive profile. PMID:26925013

  9. Meta-Analysis of Functional Neuroimaging and Cognitive Control Studies in Schizophrenia: Preliminary Elucidation of a Core Dysfunctional Timing Network

    PubMed Central

    Alústiza, Irene; Radua, Joaquim; Albajes-Eizagirre, Anton; Domínguez, Manuel; Aubá, Enrique; Ortuño, Felipe

    2016-01-01

    Timing and other cognitive processes demanding cognitive control become interlinked when there is an increase in the level of difficulty or effort required. Both functions are interrelated and share neuroanatomical bases. A previous meta-analysis of neuroimaging studies found that people with schizophrenia had significantly lower activation, relative to normal controls, of most right hemisphere regions of the time circuit. This finding suggests that a pattern of disconnectivity of this circuit, particularly in the supplementary motor area, is a trait of this mental disease. We hypothesize that a dysfunctional temporal/cognitive control network underlies both cognitive and psychiatric symptoms of schizophrenia and that timing dysfunction is at the root of the cognitive deficits observed. The goal of our study was to look, in schizophrenia patients, for brain structures activated both by execution of cognitive tasks requiring increased effort and by performance of time perception tasks. We conducted a signed differential mapping (SDM) meta-analysis of functional neuroimaging studies in schizophrenia patients assessing the brain response to increasing levels of cognitive difficulty. Then, we performed a multimodal meta-analysis to identify common brain regions in the findings of that SDM meta-analysis and our previously-published activation likelihood estimate (ALE) meta-analysis of neuroimaging of time perception in schizophrenia patients. The current study supports the hypothesis that there exists an overlap between neural structures engaged by both timing tasks and non-temporal cognitive tasks of escalating difficulty in schizophrenia. The implication is that a deficit in timing can be considered as a trait marker of the schizophrenia cognitive profile. PMID:26925013

  10. Altered Hub Functioning and Compensatory Activations in the Connectome: A Meta-Analysis of Functional Neuroimaging Studies in Schizophrenia

    PubMed Central

    Crossley, Nicolas A.; Mechelli, Andrea; Ginestet, Cedric; Rubinov, Mikail; Bullmore, Edward T.; McGuire, Philip

    2016-01-01

    Background: Functional neuroimaging studies of schizophrenia have identified abnormal activations in many brain regions. In an effort to interpret these findings from a network perspective, we carried out a meta-analysis of this literature, mapping anatomical locations of under- and over-activation to the topology of a normative human functional connectome. Methods: We included 314 task-based functional neuroimaging studies including more than 5000 patients with schizophrenia and over 5000 controls. Coordinates of significant under- or over-activations in patients relative to controls were mapped to nodes of a normative connectome defined by a prior meta-analysis of 1641 functional neuroimaging studies of task-related activation in healthy volunteers. Results: Under-activations and over-activations were reported in a wide diversity of brain regions. Both under- and over-activations were significantly more likely to be located in hub nodes that constitute the “rich club” or core of the normative connectome. In a subset of 121 studies that reported both under- and over-activations in the same patients, we found that, in network terms, these abnormalities were located in close topological proximity to each other. Under-activation in a peripheral node was more frequently associated specifically with over-activation of core nodes than with over-activation of another peripheral node. Conclusions: Although schizophrenia is associated with altered brain functional activation in a wide variety of regions, abnormal responses are concentrated in hubs of the normative connectome. Task-specific under-activation in schizophrenia is accompanied by over-activation of topologically central, less functionally specialized network nodes, which may represent a compensatory response. PMID:26472684

  11. A review of neuroimaging studies of young relatives of individuals with schizophrenia: a developmental perspective from schizotaxia to schizophrenia.

    PubMed

    Thermenos, H W; Keshavan, M S; Juelich, R J; Molokotos, E; Whitfield-Gabrieli, S; Brent, B K; Makris, N; Seidman, L J

    2013-10-01

    In an effort to identify the developing abnormalities preceding psychosis, Dr. Ming T. Tsuang and colleagues at Harvard expanded Meehl's concept of "schizotaxia," and examined brain structure and function in families affected by schizophrenia (SZ). Here, we systematically review genetic (familial) high-risk (HR) studies of SZ using magnetic resonance imaging (MRI), examine how findings inform models of SZ etiology, and suggest directions for future research. Neuroimaging studies of youth at HR for SZ through the age of 30 were identified through a MEDLINE (PubMed) search. There is substantial evidence of gray matter volume abnormalities in youth at HR compared to controls, with an accelerated volume reduction over time in association with symptoms and cognitive deficits. In structural neuroimaging studies, prefrontal cortex (PFC) alterations were the most consistently reported finding in HR. There was also consistent evidence of smaller hippocampal volume. In functional studies, hyperactivity of the right PFC during performance of diverse tasks with common executive demands was consistently reported. The only longitudinal fMRI study to date revealed increasing left middle temporal activity in association with the emergence of psychotic symptoms. There was preliminary evidence of cerebellar and default mode network alterations in association with symptoms. Brain abnormalities in structure, function and neurochemistry are observed in the premorbid period in youth at HR for SZ. Future research should focus on the genetic and environmental contributions to these alterations, determine how early they emerge, and determine whether they can be partially or fully remediated by innovative treatments. PMID:24132894

  12. Predicting the Naturalistic Course of Major Depressive Disorder Using Clinical and Multimodal Neuroimaging Information: A Multivariate Pattern Recognition Study

    PubMed Central

    Schmaal, Lianne; Marquand, Andre F.; Rhebergen, Didi; van Tol, Marie-José; Ruhé, Henricus G.; van der Wee, Nic J.A.; Veltman, Dick J.; Penninx, Brenda W.J.H.

    2015-01-01

    Background A chronic course of major depressive disorder (MDD) is associated with profound alterations in brain volumes and emotional and cognitive processing. However, no neurobiological markers have been identified that prospectively predict MDD course trajectories. This study evaluated the prognostic value of different neuroimaging modalities, clinical characteristics, and their combination to classify MDD course trajectories. Methods One hundred eighteen MDD patients underwent structural and functional magnetic resonance imaging (MRI) (emotional facial expressions and executive functioning) and were clinically followed-up at 2 years. Three MDD trajectories (chronic n = 23, gradual improving n = 36, and fast remission n = 59) were identified based on Life Chart Interview measuring the presence of symptoms each month. Gaussian process classifiers were employed to evaluate prognostic value of neuroimaging data and clinical characteristics (including baseline severity, duration, and comorbidity). Results Chronic patients could be discriminated from patients with more favorable trajectories from neural responses to various emotional faces (up to 73% accuracy) but not from structural MRI and functional MRI related to executive functioning. Chronic patients could also be discriminated from remitted patients based on clinical characteristics (accuracy 69%) but not when age differences between the groups were taken into account. Combining different task contrasts or data sources increased prediction accuracies in some but not all cases. Conclusions Our findings provide evidence that the prediction of naturalistic course of depression over 2 years is improved by considering neuroimaging data especially derived from neural responses to emotional facial expressions. Neural responses to emotional salient faces more accurately predicted outcome than clinical data. PMID:25702259

  13. The NeuroIMAGE study: a prospective phenotypic, cognitive, genetic and MRI study in children with attention-deficit/hyperactivity disorder. Design and descriptives.

    PubMed

    von Rhein, Daniel; Mennes, Maarten; van Ewijk, Hanneke; Groenman, Annabeth P; Zwiers, Marcel P; Oosterlaan, Jaap; Heslenfeld, Dirk; Franke, Barbara; Hoekstra, Pieter J; Faraone, Stephen V; Hartman, Catharina; Buitelaar, Jan

    2015-03-01

    Attention-deficit/hyperactivity disorder (ADHD) is a persistent neuropsychiatric disorder which is associated with impairments on a variety of cognitive measures and abnormalities in structural and functional brain measures. Genetic factors are thought to play an important role in the etiology of ADHD. The NeuroIMAGE study is a follow-up of the Dutch part of the International Multicenter ADHD Genetics (IMAGE) project. It is a multi-site prospective cohort study designed to investigate the course of ADHD, its genetic and environmental determinants, its cognitive and neurobiological underpinnings, and its consequences in adolescence and adulthood. From the original 365 ADHD families and 148 control (CON) IMAGE families, consisting of 506 participants with an ADHD diagnosis, 350 unaffected siblings, and 283 healthy controls, 79 % participated in the NeuroIMAGE follow-up study. Combined with newly recruited participants the NeuroIMAGE study comprehends an assessment of 1,069 children (751 from ADHD families; 318 from CON families) and 848 parents (582 from ADHD families; 266 from CON families). For most families, data for more than one child (82 %) and both parents (82 %) were available. Collected data include a diagnostic interview, behavioural questionnaires, cognitive measures, structural and functional neuroimaging, and genome-wide genetic information. The NeuroIMAGE dataset allows examining the course of ADHD over adolescence into young adulthood, identifying phenotypic, cognitive, and neural mechanisms associated with the persistence versus remission of ADHD, and studying their genetic and environmental underpinnings. The inclusion of siblings of ADHD probands and controls allows modelling of shared familial influences on the ADHD phenotype.

  14. Acute and non-acute effects of cannabis on human memory function: a critical review of neuroimaging studies.

    PubMed

    Bossong, Matthijs G; Jager, Gerry; Bhattacharyya, Sagnik; Allen, Paul

    2014-01-01

    Smoking cannabis produces a diverse range of effects, including impairments in learning and memory. These effects are exerted through action on the endocannabinoid system, which suggests involvement of this system in human cognition. Learning and memory deficits are core symptoms of psychiatric and neurological disorders such as schizophrenia and Alzheimer's disease, and may also be related to endocannabinoid dysfunction in these disorders. However, before new research can focus on potential treatments that work by manipulating the endocannabinoid system, it needs to be elucidated how this system is involved in symptoms of psychiatric disorders. Here we review neuroimaging studies that investigated acute and non-acute effects of cannabis on human learning and memory function, both in adults and in adolescents. Overall, results of these studies show that cannabis use is associated with a pattern of increased activity and a higher level of deactivation in different memory-related areas. This could reflect either increased neural effort ('neurophysiological inefficiency') or a change in strategy to maintain good task performance. However, the interpretation of these findings is significantly hampered by large differences between study populations in cannabis use in terms of frequency, age of onset, and time that subjects were abstinent from cannabis. Future neuroimaging studies should take these limitations into account, and should focus on the potential of cannabinoid compounds for treatment of cognitive symptoms in psychiatric disorders.

  15. Executive and semantic processes in reappraisal of negative stimuli: insights from a meta-analysis of neuroimaging studies

    PubMed Central

    Messina, Irene; Bianco, Simone; Sambin, Marco; Viviani, Roberto

    2015-01-01

    Neuroimaging investigations have identified the neural correlates of reappraisal in executive areas. These findings have been interpreted as evidence for recruitment of controlled processes, at the expense of automatic processes when responding to emotional stimuli. However, activation of semantic areas has also been reported. The aim of the present work was to address the issue of the importance of semantic areas in emotion regulation by comparing recruitment of executive and semantic neural substrates in studies investigating different reappraisal strategies. With this aim, we reviewed neuroimaging studies on reappraisal and we classified them in two main categories: reappraisal of stimuli (RS) and reappraisal via perspective taking (RPT). We applied a coordinate-based meta-analysis to summarize the results of fMRI studies on different reappraisal strategies. Our results showed that reappraisal, when considered regardless of the specific instruction used in the studies, involved both executive and semantic areas of the brain. When considering different reappraisal strategies separately, in contrast, we found areas associated with executive function to be prominently recruited by RS, even if also semantic areas were activated. Instead, in RPT the most important clusters of brain activity were found in parietal and temporal semantic areas, without significant clusters in executive areas. These results indicate that modulation of activity in semantic areas may constitute an important aspect of emotion regulation in reappraisal, suggesting that semantic processes may be more important to understand the mechanism of emotion regulation than previously thought. PMID:26217277

  16. The Limited Role of Expert Guidelines in Teaching Psychopharmacology

    ERIC Educational Resources Information Center

    Salzman, Carl

    2005-01-01

    Objective: To consider the limited usefulness of expert guidelines for teaching psychopharmacology. Method: Potential problems using expert guidelines for teaching psychopharmacology are reviewed. Results: Expert guidelines are an important contribution to the growth of evidence-based psychiatry. As such, they may also be used to teach…

  17. Prescription Privileges, Psychopharmacology and School Psychology: An Overview.

    ERIC Educational Resources Information Center

    Carlson, Cindy; Kubiszyn, Tom

    1994-01-01

    Focuses on psychopharmacology and prescription privileges for psychologists. Summarizes nine major findings from Task Force on Psychopharmacology in the Schools, created to review literature on prescription privileges for psychologists; identify specific issues attendant to use of psychoactive medications with children; and clarify implications…

  18. Teaching the Prescriber's Role: The Psychology of Psychopharmacology

    ERIC Educational Resources Information Center

    Mintz, David L.

    2005-01-01

    Objective: The author examines one aspect of the psychopharmacology curriculum: the psychology of psychopharmacology. Method: Drawing from his experience teaching this subject to trainees at many different levels and from an emerging evidence base suggesting that psychosocial factors in the doctor-patient relationship may be crucial for medication…

  19. Advancing Social Work Curriculum in Psychopharmacology and Medication Management

    ERIC Educational Resources Information Center

    Farmer, Rosemary L.; Bentley, Kia J.; Walsh, Joseph

    2006-01-01

    The authors reviewed current literature and curriculum resources on psychopharmacology and social work. They argue that baccalaureate and master of social work courses need to routinely include more in-depth knowledge on psychopharmacology and provide a more critical social work-focused approach to this content due to the increasing complexity of…

  20. Treatment of Bulimia Nervosa: Psychological and Psychopharmacologic Considerations.

    ERIC Educational Resources Information Center

    Phillips, Elaine L.; Greydanus, Donald E.; Pratt, Helen D.; Patel, Dilip R.

    2003-01-01

    Reviews the current literature on psychological and psychopharmacologic treatments for bulimia nervosa in the adolescent population. Describes the two most researched psychological treatments--cognitive behavior therapy and interpersonal therapy--in terms of treatment protocols and outcome research. Reviews psychopharmacologic treatment, including…

  1. Neuroimaging Endophenotypes in Autism Spectrum Disorder

    PubMed Central

    Mahajan, Rajneesh; Mostofsky, Stewart H.

    2015-01-01

    Autism spectrum disorder (ASD) is a neurodevelopmental disorder that has a strong genetic basis, and is heterogeneous in its etiopathogenesis and clinical presentation. Neuroimaging studies, in concert with neuropathological and clinical research, have been instrumental in delineating trajectories of development in children with ASD. Structural neuroimaging has revealed ASD to be a disorder with general and regional brain enlargement, especially in the frontotemporal cortices, while functional neuroimaging studies have highlighted diminished connectivity, especially between frontal-posterior regions. The diverse and specific neuroimaging findings may represent potential neuroendophenotypes, and may offer opportunities to further understand the etiopathogenesis of ASD, predict treatment response and lead to the development of new therapies. PMID:26234701

  2. Neuroimaging findings in primary insomnia.

    PubMed

    O'Byrne, J N; Berman Rosa, M; Gouin, J-P; Dang-Vu, T T

    2014-10-01

    State-of-the-art neuroimaging techniques have accelerated progress in the study and understanding of sleep in humans. Neuroimaging studies in primary insomnia remain relatively few, considering the important prevalence of this disorder in the general population. This review examines the contribution of functional and structural neuroimaging to our current understanding of primary insomnia. Functional studies during sleep provided support for the hyperarousal theory of insomnia. Functional neuroimaging also revealed abnormalities in cognitive and emotional processing in primary insomnia. Results from structural studies suggest neuroanatomical alterations in primary insomnia, mostly in the hippocampus, anterior cingulate cortex and orbitofrontal cortex. However, these results are not well replicated across studies. A few magnetic resonance spectroscopy studies revealed abnormalities in neurotransmitter concentrations and bioenergetics in primary insomnia. The inconsistencies among neuroimaging findings on insomnia are likely due to clinical heterogeneity, differences in imaging and overall diversity of techniques and designs employed. Larger samples, replication, as well as innovative methodologies are necessary for the progression of this perplexing, yet promising area of research. PMID:25129873

  3. Neuroimaging findings in primary insomnia.

    PubMed

    O'Byrne, J N; Berman Rosa, M; Gouin, J-P; Dang-Vu, T T

    2014-10-01

    State-of-the-art neuroimaging techniques have accelerated progress in the study and understanding of sleep in humans. Neuroimaging studies in primary insomnia remain relatively few, considering the important prevalence of this disorder in the general population. This review examines the contribution of functional and structural neuroimaging to our current understanding of primary insomnia. Functional studies during sleep provided support for the hyperarousal theory of insomnia. Functional neuroimaging also revealed abnormalities in cognitive and emotional processing in primary insomnia. Results from structural studies suggest neuroanatomical alterations in primary insomnia, mostly in the hippocampus, anterior cingulate cortex and orbitofrontal cortex. However, these results are not well replicated across studies. A few magnetic resonance spectroscopy studies revealed abnormalities in neurotransmitter concentrations and bioenergetics in primary insomnia. The inconsistencies among neuroimaging findings on insomnia are likely due to clinical heterogeneity, differences in imaging and overall diversity of techniques and designs employed. Larger samples, replication, as well as innovative methodologies are necessary for the progression of this perplexing, yet promising area of research.

  4. Insights from neuroenergetics into the interpretation of functional neuroimaging: an alternative empirical model for studying the brain's support of behavior

    PubMed Central

    Shulman, Robert G; Hyder, Fahmeed; Rothman, Douglas L

    2014-01-01

    Functional neuroimaging measures quantitative changes in neurophysiological parameters coupled to neuronal activity during observable behavior. These results have usually been interpreted by assuming that mental causation of behavior arises from the simultaneous actions of distinct psychological mechanisms or modules. However, reproducible localization of these modules in the brain using functional magnetic resonance imaging (MRI) and positron emission tomography (PET) imaging has been elusive other than for sensory systems. In this paper, we show that neuroenergetic studies using PET, calibrated functional magnetic resonance imaging (fMRI), 13C magnetic resonance spectroscopy, and electrical recordings do not support the standard approach, which identifies the location of mental modules from changes in brain activity. Of importance in reaching this conclusion is that changes in neuronal activities underlying the fMRI signal are many times smaller than the high ubiquitous, baseline neuronal activity, or energy in resting, awake humans. Furthermore, the incremental signal depends on the baseline activity contradicting theoretical assumptions about linearity and insertion of mental modules. To avoid these problems, while making use of these valuable results, we propose that neuroimaging should be used to identify observable brain activities that are necessary for a person's observable behavior rather than being used to seek hypothesized mental processes. PMID:25160670

  5. Very early onset and greater vulnerability in schizophrenia: A clinical and neuroimaging study

    PubMed Central

    Margari, Francesco; Presicci, Anna; Petruzzelli, Maria Giuseppina; Ventura, Patrizia; Di Cuonzo, Franca; Palma, Michele; Margari, Lucia

    2008-01-01

    Although schizophrenia has been diagnosed in children, this group of disorders has received too little attention in the clinical and research literature. Preliminary data suggest that early onset schizophrenia (EOS) and very early onset schizophrenia (VEOS) tend to have a worse outcome than adult onset schizophrenia, and seem to be related to a greater familial vulnerability, due to genetic, psychosocial, and environmental factors. Recently, advanced neuroimaging techniques have revealed structural and functional brain abnormalities in some cerebral areas. This paper reports on a case diagnosed as VEOS, with premorbid year-long psychopathological history. The patient showed atypical proton magnetic resonance spectroscopy findings, and normal brain and spine computer tomography and brain magnetic resonance images. PMID:19043525

  6. Psychopharmacology of autism spectrum disorders: a selective review.

    PubMed

    Mohiuddin, Sarah; Ghaziuddin, Mohammad

    2013-11-01

    While there is no cure for autism spectrum disorder, psychopharmacologic agents are often used with behavioral and educational approaches to treat its comorbid symptoms of hyperactivity, irritability, and aggression. Studies suggest that at least 50% of persons with autism spectrum disorder receive psychotropic medications during their life span. This selective review examines recent studies about the use of psychotropic medications in persons with autism spectrum disorder. The aim was to focus on randomized controlled trials conducted from 1990 to 2010 on this topic. A comprehensive literature search was performed using PubMed and Cochrane databases. Out of 105 studies identified for the review, only 24 were randomized controlled trials. Thus, despite the common use of these medications in autism spectrum disorder, more controlled studies are needed to determine their long-term efficacy and safety.

  7. A combined neuropsychological and neuroimaging study of topographical and non-verbal memory in semantic dementia.

    PubMed

    Cipolotti, L; Maguire, E A

    2003-01-01

    A combined neuropsychological and neuroimaging investigation was carried out on a patient (O.I.) with semantic dementia who had asymmetrical temporal lobe atrophy, greater on the left. His performance on tests of verbal memory was gravely impaired. Similarly, his visual memory as indexed by recognition of unfamiliar faces was impaired. By contrast, his recognition memory for topographical memoranda (e.g. buildings, landscapes) and ability to find his way around was preserved. In order to identify the neural substrates supporting the preserved recognition of static topographical memoranda, O.I. was scanned using positron emission tomography (PET) during the encoding and recognition of building and landscape stimuli. In common with control subjects, during encoding O.I. activated parahippocampal cortex bilaterally, along with bilateral temporo-parietal, retrosplenial and left frontal cortices. During recognition, both patient and controls activated right parahippocampal, right superior parietal and right frontal cortices. Notably, control subjects, but not O.I., also activated at encoding the precuneus and at recognition the retrosplenial cortex. This allows the conclusion that these two areas while involved may not be necessary for topographical memory. Interestingly, the patient also activated regions that were not evident in control subjects both during encoding and recognition. These additional areas of activation may be necessary in a compensatory role. Overall, these data represent the first reported assessment of the functional integrity of degenerating brain tissue and its contribution to preserved topographical memory. The combination of the neuropsychological and neuroimaging approaches may provide insights into the functional-anatomy of memory while having clinical utility for the assessment of residual brain tissue.

  8. Neuropathological sequelae of Human Immunodeficiency Virus and apathy: A review of neuropsychological and neuroimaging studies.

    PubMed

    McIntosh, Roger C; Rosselli, Monica; Uddin, Lucina Q; Antoni, Michael

    2015-08-01

    Apathy remains a common neuropsychiatric disturbance in the Human Immunodeficiency Virus (HIV-1) despite advances in anti-retroviral treatment (ART). The goal of the current review is to recapitulate findings relating apathy to the deleterious biobehavioral effects of HIV-1 in the post-ART era. Available literatures demonstrate that the emergence of apathy with other neurocognitive and neuropsychiatric symptoms may be attributed to neurotoxic effects of viral proliferation, e.g., aggregative effect of Tat and gp120 on apoptosis, transport and other enzymatic reactions amongst dopaminergic neurons and neuroglia. An assortment of neuroimaging modalities converge on the severity of apathy symptoms associated with the propensity of the virus to replicate within frontal-striatal brain circuits that facilitate emotional processing. Burgeoning research into functional brain connectivity also supports the effects of microvascular and neuro-inflammatory injury linked to aging with HIV-1 on the presentation of neuropsychiatric symptoms. Summarizing these findings, we review domains of HIV-associated neurocognitive and neuropsychiatric impairment linked to apathy in HIV. Taken together, these lines of research suggest that loss of affective, cognitive and behavioral inertia is commensurate with the neuropathology of HIV-1.

  9. Machine learning patterns for neuroimaging-genetic studies in the cloud.

    PubMed

    Da Mota, Benoit; Tudoran, Radu; Costan, Alexandru; Varoquaux, Gaël; Brasche, Goetz; Conrod, Patricia; Lemaitre, Herve; Paus, Tomas; Rietschel, Marcella; Frouin, Vincent; Poline, Jean-Baptiste; Antoniu, Gabriel; Thirion, Bertrand

    2014-01-01

    Brain imaging is a natural intermediate phenotype to understand the link between genetic information and behavior or brain pathologies risk factors. Massive efforts have been made in the last few years to acquire high-dimensional neuroimaging and genetic data on large cohorts of subjects. The statistical analysis of such data is carried out with increasingly sophisticated techniques and represents a great computational challenge. Fortunately, increasing computational power in distributed architectures can be harnessed, if new neuroinformatics infrastructures are designed and training to use these new tools is provided. Combining a MapReduce framework (TomusBLOB) with machine learning algorithms (Scikit-learn library), we design a scalable analysis tool that can deal with non-parametric statistics on high-dimensional data. End-users describe the statistical procedure to perform and can then test the model on their own computers before running the very same code in the cloud at a larger scale. We illustrate the potential of our approach on real data with an experiment showing how the functional signal in subcortical brain regions can be significantly fit with genome-wide genotypes. This experiment demonstrates the scalability and the reliability of our framework in the cloud with a 2 weeks deployment on hundreds of virtual machines.

  10. Machine learning patterns for neuroimaging-genetic studies in the cloud

    PubMed Central

    Da Mota, Benoit; Tudoran, Radu; Costan, Alexandru; Varoquaux, Gaël; Brasche, Goetz; Conrod, Patricia; Lemaitre, Herve; Paus, Tomas; Rietschel, Marcella; Frouin, Vincent; Poline, Jean-Baptiste; Antoniu, Gabriel; Thirion, Bertrand

    2014-01-01

    Brain imaging is a natural intermediate phenotype to understand the link between genetic information and behavior or brain pathologies risk factors. Massive efforts have been made in the last few years to acquire high-dimensional neuroimaging and genetic data on large cohorts of subjects. The statistical analysis of such data is carried out with increasingly sophisticated techniques and represents a great computational challenge. Fortunately, increasing computational power in distributed architectures can be harnessed, if new neuroinformatics infrastructures are designed and training to use these new tools is provided. Combining a MapReduce framework (TomusBLOB) with machine learning algorithms (Scikit-learn library), we design a scalable analysis tool that can deal with non-parametric statistics on high-dimensional data. End-users describe the statistical procedure to perform and can then test the model on their own computers before running the very same code in the cloud at a larger scale. We illustrate the potential of our approach on real data with an experiment showing how the functional signal in subcortical brain regions can be significantly fit with genome-wide genotypes. This experiment demonstrates the scalability and the reliability of our framework in the cloud with a 2 weeks deployment on hundreds of virtual machines. PMID:24782753

  11. Machine learning patterns for neuroimaging-genetic studies in the cloud.

    PubMed

    Da Mota, Benoit; Tudoran, Radu; Costan, Alexandru; Varoquaux, Gaël; Brasche, Goetz; Conrod, Patricia; Lemaitre, Herve; Paus, Tomas; Rietschel, Marcella; Frouin, Vincent; Poline, Jean-Baptiste; Antoniu, Gabriel; Thirion, Bertrand

    2014-01-01

    Brain imaging is a natural intermediate phenotype to understand the link between genetic information and behavior or brain pathologies risk factors. Massive efforts have been made in the last few years to acquire high-dimensional neuroimaging and genetic data on large cohorts of subjects. The statistical analysis of such data is carried out with increasingly sophisticated techniques and represents a great computational challenge. Fortunately, increasing computational power in distributed architectures can be harnessed, if new neuroinformatics infrastructures are designed and training to use these new tools is provided. Combining a MapReduce framework (TomusBLOB) with machine learning algorithms (Scikit-learn library), we design a scalable analysis tool that can deal with non-parametric statistics on high-dimensional data. End-users describe the statistical procedure to perform and can then test the model on their own computers before running the very same code in the cloud at a larger scale. We illustrate the potential of our approach on real data with an experiment showing how the functional signal in subcortical brain regions can be significantly fit with genome-wide genotypes. This experiment demonstrates the scalability and the reliability of our framework in the cloud with a 2 weeks deployment on hundreds of virtual machines. PMID:24782753

  12. Neuropsychological and neuroimaging markers in prediction of cognitive impairment after ischemic stroke: a prospective follow-up study

    PubMed Central

    Mehrabian, Shima; Raycheva, Margarita; Petrova, Neli; Janyan, Armina; Petrova, Mariya; Traykov, Latchezar

    2015-01-01

    Background There are few longitudinal studies with controversial results examining delayed changes in cognition after ischemic stroke and predictive values of neuropsychological and neuroimaging markers. Objective The objectives of this study were to evaluate the delayed changes in cognition in poststroke patients and their relationship to the neuropsychological and neuroimaging markers measured during the acute poststroke phase. Methods Eighty-five first-ever stroke inpatients (mean age 65.6±5.6 years) without previous cognitive complaints were prospectively evaluated with a comprehensive neuropsychological battery at the 5th day and the 1st, 6th, and 12th months. A wide range of clinical, radiological, and neuropsychological variables were examined. Results Our results showed significantly poorer performance on mini–mental state examination, memory, attention/executive functions, and processing speed in patients with stroke in comparison with stroke-free cognitively intact controls. Multiple regression analysis revealed that hippocampal atrophy is the strongest predictor of delayed cognitive impairment. Secondary divided subgroups according to Isaacs Set Test (IST) score showed that patients with IST score ≤28 had different patterns of cognitive and neurological impairment after 1 year. Baseline impairments in attention/executive functions and memory were associated with development of dementia in poststroke patients. Conclusion Executive functioning deficit appears to have a predictive power for cognitive impairment progression. The study suggests that IST as a screening test has a potential to be a reliable and quick tool for poststroke cognitive impairment evaluation and delayed cognitive and neurological outcome. Hippocampal atrophy was the strongest predictor for cognitive impairment outcome, even in poststroke cognitive impairment. The findings may set the stage for better poststroke management. PMID:26527875

  13. Can cognitive models explain brain activation during word and pseudoword reading? A meta-analysis of 36 neuroimaging studies.

    PubMed

    Taylor, J S H; Rastle, Kathleen; Davis, Matthew H

    2013-07-01

    Reading in many alphabetic writing systems depends on both item-specific knowledge used to read irregular words (sew, yacht) and generative spelling-sound knowledge used to read pseudowords (tew, yash). Research into the neural basis of these abilities has been directed largely by cognitive accounts proposed by the dual-route cascaded and triangle models of reading. We develop a framework that enables predictions for neural activity to be derived from cognitive models of reading using 2 principles: (a) the extent to which a model component or brain region is engaged by a stimulus and (b) how much effort is exerted in processing that stimulus. To evaluate the derived predictions, we conducted a meta-analysis of 36 neuroimaging studies of reading using the quantitative activation likelihood estimation technique. Reliable clusters of activity are localized during word versus pseudoword and irregular versus regular word reading and demonstrate a great deal of convergence between the functional organization of the reading system put forward by cognitive models and the neural systems activated during reading tasks. Specifically, left-hemisphere activation clusters are revealed reflecting orthographic analysis (occipitotemporal cortex), lexical and/or semantic processing (anterior fusiform, middle temporal gyrus), spelling-sound conversion (inferior parietal cortex), and phonological output resolution (inferior frontal gyrus). Our framework and results establish that cognitive models of reading are relevant for interpreting neuroimaging studies and that neuroscientific studies can provide data relevant for advancing cognitive models. This article thus provides a firm empirical foundation from which to improve integration between cognitive and neural accounts of the reading process.

  14. Neuroimaging, culture, and forensic psychiatry.

    PubMed

    Aggarwal, Neil K

    2009-01-01

    The spread of neuroimaging technologies around the world has led to diverse practices of forensic psychiatry and the emergence of neuroethics and neurolaw. This article surveys the neuroethics and neurolegal literature on the use of forensic neuroimaging within the courtroom. Next, the related literature within medical anthropology and science and technology studies is reviewed to show how debates about forensic neuroimaging reflect cultural tensions about attitudes regarding the self, mental illness, and medical expertise. Finally, recommendations are offered on how forensic psychiatrists can add to this research, given their professional interface between law and medicine. At stake are the fundamental concerns that surround changing conceptions of the self, sickness, and expectations of medicine. PMID:19535562

  15. Neuroimaging in tuberculous meningitis.

    PubMed

    Garg, Ravindra Kumar; Malhotra, Hardeep Singh; Jain, Amita

    2016-01-01

    Tuberculous meningitis is a serious infection caused by Mycobacterium tuberculosis. Early diagnosis is the key to success of treatment. Neuroimaging plays a crucial role in the early and accurate diagnosis of tuberculous meningitis and its disabling complications. Magnetic resonance imaging is considered superior to computed tomography. Neuroimaging characteristics include leptomeningeal and basal cisternal enhancement, hydrocephalus, periventricular infarcts, and tuberculoma. Partially treated pyogenic meningitis, cryptococcal meningitis, viral encephalitis, carcinomatous, and lymphomatous meningitis may have many similar neuroimaging characteristics, and differentiation from tuberculous meningitis at times on the basis of neuroimaging characteristics becomes difficult. PMID:26954796

  16. Complementary and Alternative Medicine (CAM) Treatments and Pediatric Psychopharmacology

    ERIC Educational Resources Information Center

    Rey, Joseph M.; Walter, Garry; Soh, Nerissa

    2008-01-01

    Children and adolescents often use complementary and alternative medicine (CAM) treatments outside their indications, particularly to lose weight. Some of the herbal remedies and dietary supplements that may of relevance for psychopharmacological practice are discussed with respect to CAM treatments.

  17. Informed consent & ethical issues in paediatric psychopharmacology.

    PubMed

    Malhotra, Savita; Subodh, B N

    2009-01-01

    Issues relating to informed consent and ethics in paediatric psychopharmacology limit research in this population. Children vary in their levels of cognitive development, and presence of psychiatric disorder may further impair their ability to give informed consent. In decisional impairment subjects, various methods used for consent are assent/dissent; inclusion of advance directives; and/or alternative decision-makers. India is emerging as a new market for clinical trials in recent years. Moreover, in India the sociocultural realities are different from those in the western countries making it necessary for professionals to be cautious in conducting drug trials. In this review, issues regarding informed consent in children and adolescent with psychiatric diagnosis are discussed for information, discussion and debate by professionals, parents, society and legal experts to create awareness and to facilitate development of guidelines that are appropriate and applicable to the Indian system.

  18. Psychopharmacology training in clinical psychology: a renewed call for action.

    PubMed

    Julien, Robert M

    2011-04-01

    Knowledge of psychopharmacology is essential for a clinical psychologist to practice his/her profession, regardless of whether one desires to become licensed to prescribe psychoactive medications. This commentary reiterates a call made almost 20 years ago for all practitioners to gain and utilize this knowledge. Without psychopharmacology knowledge, one is extremely limited in the ability to interact with medical prescribers and to optimally serve their patients as a valued member of the health care team.

  19. Neuroimaging in Psychiatry: From Bench to Bedside

    PubMed Central

    Linden, David E. J.; Fallgatter, Andreas J.

    2009-01-01

    This perspective considers the present and the future role of different neuroimaging techniques in the field of psychiatry. After identifying shortcomings of the mainly symptom-focussed diagnostic processes and treatment decisions in modern psychiatry, we suggest topics where neuroimaging methods have the potential to help. These include better understanding of the pathophysiology, improved diagnoses, assistance in therapeutic decisions and the supervision of treatment success by direct assessment of improvement in disease-related brain functions. These different questions are illustrated by examples from neuroimaging studies, with a focus on severe mental and neuropsychiatric illnesses such as schizophrenia and depression. Despite all reservations addressed in the article, we are optimistic that neuroimaging has a huge potential with regard to the above-mentioned questions. We expect that neuroimaging will play an increasing role in the future refinement of the diagnostic process and aid in the development of new therapies in the field of psychiatry. PMID:20087437

  20. Off-Label Prescription of Psychopharmacological Drugs in Child and Adolescent Psychiatry.

    PubMed

    Braüner, Julie Vestergaard; Johansen, Lily Manzello; Roesbjerg, Troels; Pagsberg, Anne Katrine

    2016-10-01

    This study aimed to describe the frequency of off-label prescriptions of psychopharmacological drugs in a child and adolescent psychiatric setting. A cross-sectional study was conducted on November 1, 2014, including all inpatients and outpatients at the Mental Health Centre for Child and Adolescent Psychiatry, Capital Region of Denmark, aged 0 to 17 years receiving medical treatment with antidepressants, antipsychotic agents, benzodiazepines, melatonin and/or attention deficit hyperactivity disorder (ADHD) medication. We included a total of 5555 prescriptions representing 2932 patients. The main findings were that 32.3% of all prescriptions were off-label, and 41.6% of subjects received at least 1 off-label prescription. The most frequent off-label category was low age, 72.2%, meaning that the drug was not approved for the age group of the patient. The off-label rates for each drug class were as follows: melatonin, 100%; antipsychotic agents, 95.6%; benzodiazepines, 72.5%; antidepressants, 51.1%; and ADHD medication, 2.7%. Prescription of 2 or more psychopharmacological drugs per patient was common (31.5%). The group of subjects with 4 or more prescriptions (n = 36) was characterized by a higher frequency of inpatients, older age, and a different distribution of diagnoses. This study found a frequent use of off-label prescriptions when treating children and adolescents with psychopharmacological drugs other than ADHD medication. In addition, prescription of more than 1 psychotropic drug is common. These findings support the need for extending the evidence base for psychopharmacologic treatment in children and adolescents.

  1. Off-Label Prescription of Psychopharmacological Drugs in Child and Adolescent Psychiatry.

    PubMed

    Braüner, Julie Vestergaard; Johansen, Lily Manzello; Roesbjerg, Troels; Pagsberg, Anne Katrine

    2016-10-01

    This study aimed to describe the frequency of off-label prescriptions of psychopharmacological drugs in a child and adolescent psychiatric setting. A cross-sectional study was conducted on November 1, 2014, including all inpatients and outpatients at the Mental Health Centre for Child and Adolescent Psychiatry, Capital Region of Denmark, aged 0 to 17 years receiving medical treatment with antidepressants, antipsychotic agents, benzodiazepines, melatonin and/or attention deficit hyperactivity disorder (ADHD) medication. We included a total of 5555 prescriptions representing 2932 patients. The main findings were that 32.3% of all prescriptions were off-label, and 41.6% of subjects received at least 1 off-label prescription. The most frequent off-label category was low age, 72.2%, meaning that the drug was not approved for the age group of the patient. The off-label rates for each drug class were as follows: melatonin, 100%; antipsychotic agents, 95.6%; benzodiazepines, 72.5%; antidepressants, 51.1%; and ADHD medication, 2.7%. Prescription of 2 or more psychopharmacological drugs per patient was common (31.5%). The group of subjects with 4 or more prescriptions (n = 36) was characterized by a higher frequency of inpatients, older age, and a different distribution of diagnoses. This study found a frequent use of off-label prescriptions when treating children and adolescents with psychopharmacological drugs other than ADHD medication. In addition, prescription of more than 1 psychotropic drug is common. These findings support the need for extending the evidence base for psychopharmacologic treatment in children and adolescents. PMID:27529772

  2. Towards Validation of a New Computerised Test of Goal Neglect: Preliminary Evidence from Clinical and Neuroimaging Pilot Studies

    PubMed Central

    Cullen, Breda; Brennan, David; Manly, Tom; Evans, Jonathan J.

    2016-01-01

    Objective Goal neglect is a significant problem following brain injury, and is a target for rehabilitation. It is not yet known how neural activation might change to reflect rehabilitation gains. We developed a computerised multiple elements test (CMET), suitable for use in neuroimaging paradigms. Design Pilot correlational study and event-related fMRI study. Methods In Study 1, 18 adults with acquired brain injury were assessed using the CMET, other tests of goal neglect (Hotel Test; Modified Six Elements Test) and tests of reasoning. In Study 2, 12 healthy adults underwent fMRI, during which the CMET was administered under two conditions: self-generated switching and experimenter-prompted switching. Results Among the clinical sample, CMET performance was positively correlated with both the Hotel Test (r = 0.675, p = 0.003) and the Modified Six Elements Test (r = 0.568, p = 0.014), but not with other clinical or demographic measures. In the healthy sample, fMRI demonstrated significant activation in rostro-lateral prefrontal cortex in the self-generated condition compared with the prompted condition (peak 40, 44, 4; ZE = 4.25, p(FWEcorr) = 0.026). Conclusions These pilot studies provide preliminary evidence towards the validation of the CMET as a measure of goal neglect. Future studies will aim to further establish its psychometric properties, and determine optimum pre- and post-rehabilitation fMRI paradigms. PMID:26824704

  3. Neuroimaging Biomarkers for Psychosis

    PubMed Central

    Hager, Brandon M.

    2015-01-01

    Background Biomarkers provide clinicians with a predictable model for the diagnosis, treatment and follow-up of medical ailments. Psychiatry has lagged behind other areas of medicine in the identification of biomarkers for clinical diagnosis and treatment. In this review, we investigated the current state of neuroimaging as it pertains to biomarkers for psychosis. Methods We reviewed systematic reviews and meta-analyses of the structural (sMRI), functional (fMRI), diffusion-tensor (DTI), Positron emission tomography (PET) and spectroscopy (MRS) studies of subjects at-risk or those with an established schizophrenic illness. Only articles reporting effect-sizes and confidence intervals were included in an assessment of robustness. Results Out of the identified meta-analyses and systematic reviews, 21 studies met the inclusion criteria for assessment. There were 13 sMRI, 4 PET, 3 MRS, and 1 DTI studies. The search terms included in the current review encompassed familial high risk (FHR), clinical high risk (CHR), First episode (FES), Chronic (CSZ), schizophrenia spectrum disorders (SSD), and healthy controls (HC). Conclusions Currently, few neuroimaging biomarkers can be considered ready for diagnostic use in patients with psychosis. At least in part, this may be related to the challenges inherent in the current symptom-based approach to classifying these disorders. While available studies suggest a possible value of imaging biomarkers for monitoring disease progression, more systematic research is needed. To date, the best value of imaging data in psychoses has been to shed light on questions of disease pathophysiology, especially through the characterization of endophenotypes. PMID:25883891

  4. Resting-state neuroimaging studies: a new way of identifying differences and similarities among the anxiety disorders?

    PubMed

    Peterson, Andrew; Thome, Janine; Frewen, Paul; Lanius, Ruth A

    2014-06-01

    This review examines recent functional neuroimaging research of resting-state regional connectivity between brain regions in anxiety disorders. Studies compiled in the PubMed- National Center for Biotechnology Information database targeting resting-state functional connectivity in anxiety disorders were reviewed. Diagnoses included posttraumatic stress disorder (PTSD), generalized anxiety disorder (GAD), social anxiety disorder (SAD), obsessive-compulsive disorder (OCD), panic disorder (PD), and specific phobia (SP). Alterations to network connectivity were demonstrated in PTSD, GAD, SAD, OCD, and PD in several resting-state investigations. Differences from control subjects were primarily observed in the default mode network within PTSD, SAD, and OCD. Alterations within the salience network were observed primarily in PTSD, GAD, and SAD. Alterations in corticostriatal networks were uniquely observed in OCD. Finally, alterations within somatosensory networks were observed in SAD and PD investigations. Resting-state studies involving SPs as a primary diagnosis (with or without comorbidities) were not generated during the literature search. The emerging use of resting-state paradigms may be an effective method for understanding associations between anxiety disorders. Targeted studies of PD and SPs, meta-analyses of the studies conducted to date, and studies of the impact of specific comorbid presentations, are recommended future research directions.

  5. Inhibitory control in obesity and binge eating disorder: A systematic review and meta-analysis of neurocognitive and neuroimaging studies.

    PubMed

    Lavagnino, Luca; Arnone, Danilo; Cao, Bo; Soares, Jair C; Selvaraj, Sudhakar

    2016-09-01

    The ability to exercise appropriate inhibitory control is critical in the regulation of body weight, but the exact mechanisms are not known. In this systematic review, we identified 37 studies that used specific neuropsychological tasks relevant to inhibitory control performance in obese participants with and without binge eating disorder (BED). We performed a meta-analysis of the studies that used the stop signal task (N=8). We further examined studies on the delay discounting task, the go/no-go task and the Stroop task in a narrative review. We found that inhibitory control is significantly impaired in obese adults and children compared to individuals with body weight within a healthy range (Standardized Mean Difference (SMD): 0.30; CI=0.00, 0.59, p=0.007). The presence of BED in obese individuals did not impact on task performance (SMD: 0.05; CI: -0.22, 0.32, p=0.419). Neuroimaging studies in obesity suggest that lower prefrontal cortex activity affects inhibitory control and BMI. In summary, impairment in inhibitory control is a critical feature associated with obesity and a potential target for clinical interventions. PMID:27381956

  6. Neuroimaging in ophthalmology

    PubMed Central

    Kim, James D.; Hashemi, Nafiseh; Gelman, Rachel; Lee, Andrew G.

    2012-01-01

    In the past three decades, there have been countless advances in imaging modalities that have revolutionized evaluation, management, and treatment of neuro-ophthalmic disorders. Non-invasive approaches for early detection and monitoring of treatments have decreased morbidity and mortality. Understanding of basic methods of imaging techniques and choice of imaging modalities in cases encountered in neuro-ophthalmology clinic is critical for proper evaluation of patients. Two main imaging modalities that are often used are computed tomography (CT) and magnetic resonance imaging (MRI). However, variations of these modalities and appropriate location of imaging must be considered in each clinical scenario. In this article, we review and summarize the best neuroimaging studies for specific neuro-ophthalmic indications and the diagnostic radiographic findings for important clinical entities. PMID:23961025

  7. Neuroimaging evaluation in refractory epilepsy

    PubMed Central

    Granados, Ana M; Orejuela, Juan F

    2015-01-01

    Purpose To describe the application of neuroimaging analysis, compared to neuropsychological tests and video-electroencephalogram, for the evaluation of refractory epilepsy in a reference centre in Cali, Colombia. Methods Between March 2013 and November 2014, 29 patients, 19 men and 10 women, aged 9–65 years and with refractory epilepsy, were assessed by structural and functional magnetic resonance imaging while performing tasks related to language, verbal and non-verbal memory. Also, volumetric evaluation was performed. A 1.5 Tesla magnetic resonance imaging scanner was used in all cases. Results Neuroimaging evaluation identified 13 patients with mesial temporal sclerosis. The remaining patients were classified as: 10 patients with neoplastic masses, two patients with cortical atrophy, two patients with scarring lesions and two patients with non-structural aetiology. Among patients with mesial temporal sclerosis, comparison between techniques for lateralising the epileptogenic foci was made; the κ index between functional magnetic resonance imaging and hippocampi volumetry was κ = 1.00, agreement between neuroimaging and video-electroencephalogram was good (κ = 0.78) and comparison with a neuropsychological test was mild (κ = 0.24). Conclusions Neuroimaging studies allow the assessment of functional and structural damage related to epileptogenic lesions and foci, and are helpful to select surgical treatment, conduct intraoperative neuronavigation techniques, predict surgical deficits and evaluate patient recovery. PMID:26427897

  8. Where Is the Semantic System? A Critical Review and Meta-Analysis of 120 Functional Neuroimaging Studies

    PubMed Central

    Desai, Rutvik H.; Graves, William W.; Conant, Lisa L.

    2009-01-01

    Semantic memory refers to knowledge about people, objects, actions, relations, self, and culture acquired through experience. The neural systems that store and retrieve this information have been studied for many years, but a consensus regarding their identity has not been reached. Using strict inclusion criteria, we analyzed 120 functional neuroimaging studies focusing on semantic processing. Reliable areas of activation in these studies were identified using the activation likelihood estimate (ALE) technique. These activations formed a distinct, left-lateralized network comprised of 7 regions: posterior inferior parietal lobe, middle temporal gyrus, fusiform and parahippocampal gyri, dorsomedial prefrontal cortex, inferior frontal gyrus, ventromedial prefrontal cortex, and posterior cingulate gyrus. Secondary analyses showed specific subregions of this network associated with knowledge of actions, manipulable artifacts, abstract concepts, and concrete concepts. The cortical regions involved in semantic processing can be grouped into 3 broad categories: posterior multimodal and heteromodal association cortex, heteromodal prefrontal cortex, and medial limbic regions. The expansion of these regions in the human relative to the nonhuman primate brain may explain uniquely human capacities to use language productively, plan, solve problems, and create cultural and technological artifacts, all of which depend on the fluid and efficient retrieval and manipulation of semantic knowledge. PMID:19329570

  9. Schizophrenia, neuroimaging and connectomics.

    PubMed

    Fornito, Alex; Zalesky, Andrew; Pantelis, Christos; Bullmore, Edward T

    2012-10-01

    Schizophrenia is frequently characterized as a disorder of brain connectivity. Neuroimaging has played a central role in supporting this view, with nearly two decades of research providing abundant evidence of structural and functional connectivity abnormalities in the disorder. In recent years, our understanding of how schizophrenia affects brain networks has been greatly advanced by attempts to map the complete set of inter-regional interactions comprising the brain's intricate web of connectivity; i.e., the human connectome. Imaging connectomics refers to the use of neuroimaging techniques to generate these maps which, combined with the application of graph theoretic methods, has enabled relatively comprehensive mapping of brain network connectivity and topology in unprecedented detail. Here, we review the application of these techniques to the study of schizophrenia, focusing principally on magnetic resonance imaging (MRI) research, while drawing attention to key methodological issues in the field. The published findings suggest that schizophrenia is associated with a widespread and possibly context-independent functional connectivity deficit, upon which are superimposed more circumscribed, context-dependent alterations associated with transient states of hyper- and/or hypo-connectivity. In some cases, these changes in inter-regional functional coupling dynamics can be related to measures of intra-regional dysfunction. Topological disturbances of functional brain networks in schizophrenia point to reduced local network connectivity and modular structure, as well as increased global integration and network robustness. Some, but not all, of these functional abnormalities appear to have an anatomical basis, though the relationship between the two is complex. By comprehensively mapping connectomic disturbances in patients with schizophrenia across the entire brain, this work has provided important insights into the highly distributed character of neural

  10. Outcome representations, counterfactual comparisons and the human orbitofrontal cortex: implications for neuroimaging studies of decision-making.

    PubMed

    Ursu, Stefan; Carter, Cameron S

    2005-04-01

    Recent research suggests that the primate orbitofrontal cortex (OFC) is critical for representations of outcomes of actions and their subsequent impact on the control of behavior. In parallel, a recent theory of decision-making called decision affect theory (Mellers, Schwartz, and Ritov, Psychological Science, 1997) emphasizes the role of anticipated affective impact of outcomes in guiding choices, and the effects of comparisons with alternative outcomes (i.e., counterfactual effects). In the context of decision affect theory, we present results from two event-related functional MRI experiments consistent with two hypotheses regarding the role of the human OFC in guiding behavior through outcome representation: (1) counterfactual effects are manifested in the human OFC during expectation of outcomes, such that the anticipated affective impact of outcomes is modulated by the nature of the various possible alternative outcomes; (2) a regional specialization exists in the human prefrontal cortex, such that affective impact of potential negative outcomes of actions is represented mainly by the lateral areas of the OFC, while areas situated progressively more medial and dorsal on the ventral and medial PFC are specifically involved in representing the impact of positively valenced outcomes. We also discuss some of the implications that these hypotheses have for neuroimaging studies of reward processing and decision-making, and for studies of neuropsychiatric disorders in which these processes are thought to be disturbed.

  11. Towards a functional neuroanatomy of conscious perception and its modulation by volition: implications of human auditory neuroimaging studies.

    PubMed Central

    Silbersweig, D A; Stern, E

    1998-01-01

    Conscious sensory perception and its modulation by volition are integral to human mental life. Functional neuroimaging techniques provide a direct means of identifying and characterizing in vivo the systems-level patterns of brain activity associated with such mental functions. In a series of positron emission tomography activation experiments, we and our colleagues have examined a range of normal and abnormal auditory states that, when contrasted, provide dissociations relevant to the question of the neural substrates of sensory awareness. These dissociations include sensory awareness in the presence and absence of external sensory stimuli, the transition from sensory unawareness to awareness (or vice versa) in the presence of sensory stimuli, and sensory awareness with and without volition. The auditory states studied include hallucinations, mental imagery, cortical deafness modulated by attention, and hearing modulated by sedation. The results of these studies highlight the distributed nature of the functional neuroanatomy that is sufficient, if not necessary, for sensory awareness. The probable roles of unimodal association (as compared with primary) cortices, heteromodal cortices, limbic/paralimbic regions and subcortical structures (such as the thalamus) are discussed. In addition, interactions between pre- and post-rolandic regions are examined in the context of top-down, volitional modulation of sensory awareness. PMID:9854260

  12. Self-reflection and the brain: a theoretical review and meta-analysis of neuroimaging studies with implications for schizophrenia.

    PubMed

    van der Meer, Lisette; Costafreda, Sergi; Aleman, André; David, Anthony S

    2010-05-01

    Several studies have investigated the neural correlates of self-reflection. In the paradigm most commonly used to address this concept, a subject is presented with trait adjectives or sentences and asked whether they describe him or her. Functional neuroimaging research has revealed a set of regions known as Cortical Midline Structures (CMS) appearing to be critically involved in self-reflection processes. Furthermore, it has been shown that patients suffering damage to the CMS, have difficulties in properly evaluating the problems they encounter and often overestimate their capacities and performance. Building on previous work, a meta-analysis of published fMRI and PET studies on self-reflection was conducted. The results showed that two areas within the medial prefrontal cortex (MPFC) are important in reflective processing, namely the ventral (v) and dorsal (d) MPFC. In this paper a model is proposed in which the vMPFC is responsible for tagging information relevant for 'self', whereas the dMPFC is responsible for evaluation and decision-making processes in self- and other-referential processing. Finally, implications of the model for schizophrenia and lack of insight are noted. PMID:20015455

  13. Robust estimation of group-wise cortical correspondence with an application to macaque and human neuroimaging studies

    PubMed Central

    Lyu, Ilwoo; Kim, Sun H.; Seong, Joon-Kyung; Yoo, Sang W.; Evans, Alan; Shi, Yundi; Sanchez, Mar; Niethammer, Marc; Styner, Martin A.

    2015-01-01

    We present a novel group-wise registration method for cortical correspondence for local cortical thickness analysis in human and non-human primate neuroimaging studies. The proposed method is based on our earlier template based registration that estimates a continuous, smooth deformation field via sulcal curve-constrained registration employing spherical harmonic decomposition of the deformation field. This pairwise registration though results in a well-known template selection bias, which we aim to overcome here via a group-wise approach. We propose the use of an unbiased ensemble entropy minimization following the use of the pairwise registration as an initialization. An individual deformation field is then iteratively updated onto the unbiased average. For the optimization, we use metrics specific for cortical correspondence though all of these are straightforwardly extendable to the generic setting: The first focused on optimizing the correspondence of automatically extracted sulcal landmarks and the second on that of sulcal depth property maps. We further propose a robust entropy metric and a hierarchical optimization by employing spherical harmonic basis orthogonality. We also provide the detailed methodological description of both our earlier work and the proposed method with a set of experiments on a population of human and non-human primate subjects. In the experiment, we have shown that our method achieves superior results on consistency through quantitative and visual comparisons as compared to the existing methods. PMID:26113807

  14. Piracetam interactions with neuroleptics in psychopharmacological tests.

    PubMed

    Bourin, M; Poisson, L; Larousse, C

    1986-01-01

    Two psychopharmacological tests which usually predict neuroleptic activity were conducted after joint administration of piracetam and three neuroleptics (haloperidol, fluphenazine and sulpiride) chosen for their different chemical classes and dopaminergic affinities. In these tests, specific doses of the neuroleptics were used to determine whether piracetam induced potentiation or antagonism of their action. Overall, piracetam increased neuroleptic action regardless of the administration timetable used, but the interaction of fluphenazine differed from that of the other two substances, because piracetam did not modify its action in a specific test of the presynaptic DA-2 dopaminergic receptors. This variation for fluphenazine may be explained by the fact that its pKa value is closer to that of piracetam, thus preventing better bioavailability of the neuroleptic, or its better affinity for DA-1 dopaminergic receptors. Nevertheless, the variation may have been due to a differing affinity for dopaminergic receptors, although this hypothesis is not completely satisfactory because it does not account for differences due to the administration timetable. It is thus suggested that action occurs on nonspecific sites and has the effect of increasing overall neuroleptic bioavailability.

  15. Child psychopharmacology: Is it more similar than different from adult psychopharmacology?

    PubMed

    Sareen, Himanshu; Trivedi, Jitendra Kumar

    2013-07-01

    Despite having a large chunk of human population, Asian countries face shortage of mental health professionals. There is further shortage of doctors dealing with special groups of population like the children, the elderly, and the medically ill. However, in this era of super-specializations, are the basic principles of general psychopharmacology being forgotten? Dealing with child population is different and often more difficult than adult population but are management guidelines for the two populations vastly divergent? A close look at this paints a different picture. Psychotherapies applied in adults and those in children and adolescents are disparate owing to cognitive, social, emotional, and physical immaturation in children and adolescents. But the drugs for the treatment of pediatric psychiatric disorders are mostly similar to those prescribed for adults (case in point -bipolar disorders, obsessive compulsive disorder, schizophrenia). Rather than focusing energy on propagating the differences in assorted subgroups of population, honing of skills regarding intricacies of psychopharmacology is required to be emphasized. Detailed history taking, careful evaluation of the patient, sound diagnostic formulation, and prescribing medications which are tailor made to the patient will all go a long way in ensuring a functional recovery of the patients irrespective of the group they belong to.

  16. Effect of Psychostimulants on Brain Structure and Function in ADHD: A Qualitative Literature Review of MRI-Based Neuroimaging Studies

    PubMed Central

    Spencer, Thomas J.; Brown, Ariel; Seidman, Larry J.; Valera, Eve M.; Makris, Nikos; Lomedico, Alexandra; Faraone, Stephen V.; Biederman, Joseph

    2013-01-01

    Objective To evaluate the impact of therapeutic oral doses of stimulants on the brains of ADHD subjects as measured by MRI-based neuroimaging studies (morphometric, functional, spectroscopy). Data Sources We searched PubMed and ScienceDirect through the end of calendar year 2011 using the keywords: 1) “psychostimulants” or “methylphenidate” or “amphetamine”, and 2) “neuroimaging” or “MRI” or “fMRI”, and 3) “ADHD” or “ADD” or “Attention-Deficit/Hyperactivity Disorder” or “Attention Deficit Hyperactivity Disorder”. Study Selection We included only English language articles with new data that were case or placebo-controlled and examined ADHD subjects on and off psychostimulants (as well as 5 relevant review papers). Data Extraction We combined details of study design and medication effects in each imaging modality. Results We found 29 published studies that met our criteria. These included 6 structural MRI, 20 functional MRI studies and 3 spectroscopy studies. Methods varied widely in terms of design, analytic technique, and regions of the brain investigated. Despite heterogeneity in methods, however, results were consistent. With only a few exceptions, the data on the effect of therapeutic oral doses of stimulant medication suggest attenuation of structural and functional alterations found in unmedicated ADHD subjects relative to findings in Controls. Conclusions Despite the inherent limitations and heterogeneity of the extant MRI literature, our review suggests that therapeutic oral doses of stimulants decrease alterations in brain structure and function in subjects with ADHD relative to unmedicated subjects and Controls. These medication-associated brain effects parallel, and may underlie, the well-established clinical benefits. PMID:24107764

  17. The ethics of psychopharmacological research in legal minors

    PubMed Central

    Tan, Jacinta OA; Koelch, Michael

    2008-01-01

    Research in psychopharmacology for children and adolescents is fraught with ethical problems and tensions. This has practical consequences as it leads to a paucity of the research that is essential to support the treatment of this vulnerable group. In this article, we will discuss some of the ethical issues which are relevant to such research, and explore their implications for both research and standard care. We suggest that finding a way forward requires a willingness to acknowledge and discuss the inherent conflicts between the ethical principles involved. Furthermore, in order to facilitate more, ethically sound psychopharmacology research in children and adolescents, we suggest more ethical analysis, empirical ethics research and ethics input built into psychopharmacological research design. PMID:19063724

  18. Intention, false beliefs, and delusional jealousy: insights into the right hemisphere from neurological patients and neuroimaging studies.

    PubMed

    Ortigue, Stephanie; Bianchi-Demicheli, Francesco

    2011-01-01

    Jealousy sits high atop of a list comprised of the most human emotional experiences, although its nature, rationale, and origin are poorly understood. In the past decade, a series of neurological case reports and neuroimaging findings have been particularly helpful in piecing together jealousy's puzzle. In order to understand and quantify the neurological factors that might be important in jealousy, we reviewed the current literature in this specific field. We made an electronic search, and examined all literature with at least an English abstract, through Mars 2010. The search identified a total of 20 neurological patients, who experienced jealousy in relation with a neurological disorder; and 22 healthy individuals, who experienced jealousy under experimental neuroimaging settings. Most of the clinical cases of reported jealousy after a stroke had delusional-type jealousy. Right hemispheric stroke was the most frequently reported neurological disorder in these patients, although there was a wide range of more diffuse neurological disorders that may be reported to be associated with different other types of jealousy. This is in line with recent neuroimaging data on false beliefs, moral judgments, and intention [mis]understanding. Together the present findings provide physicians and psychologists with a potential for high impact in understanding the neural mechanisms and treatment of jealousy. By combining findings from case reports and neuroimaging data, the present article allows for a novel and unique perspective, and explores new directions into the neurological jealous mind.

  19. Intention, false beliefs, and delusional jealousy: Insights into the right hemisphere from neurological patients and neuroimaging studies

    PubMed Central

    Ortigue, Stephanie; Bianchi-Demicheli, Francesco

    2011-01-01

    Summary Jealousy sits high atop of a list comprised of the most human emotional experiences, although its nature, rationale, and origin are poorly understood. In the past decade, a series of neurological case reports and neuroimaging findings have been particularly helpful in piecing together jealousy’s puzzle. In order to understand and quantify the neurological factors that might be important in jealousy, we reviewed the current literature in this specific field. We made an electronic search, and examined all literature with at least an English abstract, through Mars 2010. The search identified a total of 20 neurological patients, who experienced jealousy in relation with a neurological disorder; and 22 healthy individuals, who experienced jealousy under experimental neuroimaging settings. Most of the clinical cases of reported jealousy after a stroke had delusional-type jealousy. Right hemispheric stroke was the most frequently reported neurological disorder in these patients, although there was a wide range of more diffuse neurological disorders that may be reported to be associated with different other types of jealousy. This is in line with recent neuroimaging data on false beliefs, moral judgments, and intention [mis]understanding. Together the present findings provide physicians and psychologists with a potential for high impact in understanding the neural mechanisms and treatment of jealousy. By combining findings from case reports and neuroimaging data, the present article allows for a novel and unique perspective, and explores new directions into the neurological jealous mind. PMID:21169919

  20. Neural networks involved in adolescent reward processing: An activation likelihood estimation meta-analysis of functional neuroimaging studies.

    PubMed

    Silverman, Merav H; Jedd, Kelly; Luciana, Monica

    2015-11-15

    Behavioral responses to, and the neural processing of, rewards change dramatically during adolescence and may contribute to observed increases in risk-taking during this developmental period. Functional MRI (fMRI) studies suggest differences between adolescents and adults in neural activation during reward processing, but findings are contradictory, and effects have been found in non-predicted directions. The current study uses an activation likelihood estimation (ALE) approach for quantitative meta-analysis of functional neuroimaging studies to: (1) confirm the network of brain regions involved in adolescents' reward processing, (2) identify regions involved in specific stages (anticipation, outcome) and valence (positive, negative) of reward processing, and (3) identify differences in activation likelihood between adolescent and adult reward-related brain activation. Results reveal a subcortical network of brain regions involved in adolescent reward processing similar to that found in adults with major hubs including the ventral and dorsal striatum, insula, and posterior cingulate cortex (PCC). Contrast analyses find that adolescents exhibit greater likelihood of activation in the insula while processing anticipation relative to outcome and greater likelihood of activation in the putamen and amygdala during outcome relative to anticipation. While processing positive compared to negative valence, adolescents show increased likelihood for activation in the posterior cingulate cortex (PCC) and ventral striatum. Contrasting adolescent reward processing with the existing ALE of adult reward processing reveals increased likelihood for activation in limbic, frontolimbic, and striatal regions in adolescents compared with adults. Unlike adolescents, adults also activate executive control regions of the frontal and parietal lobes. These findings support hypothesized elevations in motivated activity during adolescence. PMID:26254587

  1. Neuroimaging of the Philadelphia Neurodevelopmental Cohort

    PubMed Central

    Satterthwaite, Theodore D.; Elliott, Mark A.; Ruparel, Kosha; Loughead, James; Prabhakaran, Karthik; Calkins, Monica E.; Hopson, Ryan; Jackson, Chad; Keefe, Jack; Riley, Marisa; Mensh, Frank D.; Sleiman, Patrick; Verma, Ragini; Davatzikos, Christos; Hakonarson, Hakon; Gur, Ruben C.; Gur, Raquel E.

    2013-01-01

    The Philadelphia Neurodevelopmental Cohort (PNC) is a large-scale, NIMH funded initiative to understand how brain maturation mediates cognitive development and vulnerability to psychiatric illness, and understand how genetics impacts this process. As part of this study, 1,445 adolescents ages 8–21 at enrollment underwent multimodal neuroimaging. Here, we highlight the conceptual basis for the effort, the study design, and measures available in the dataset. We focus on neuroimaging measures obtained, including T1-weighted structural neuroimaging, diffusion tensor imaging, perfusion neuroimaging using arterial spin labeling, functional imaging tasks of working memory and emotion identification, and resting state imaging of functional connectivity. Furthermore, we provide characteristics regarding the final sample acquired. Finally, we describe mechanisms in place for data sharing that will allow the PNC to become a freely available public resource to advance our understanding of normal and pathological brain development. PMID:23921101

  2. Neuroimaging in Alcohol and Drug Dependence

    PubMed Central

    Niciu, Mark J.

    2014-01-01

    Neuroimaging, including PET, MRI, and MRS, is a powerful approach to the study of brain function. This article reviews neuroimaging findings related to alcohol and other drugs of abuse that have been published since 2011. Uses of neuroimaging are to characterize patients to determine who will fare better in treatment and to investigate the reasons underlying the effect on outcomes. Neuroimaging is also used to characterize the acute and chronic effects of substances on the brain and how those effects are related to dependence, relapse, and other drug effects. The data can be used to provide encouraging information for patients, as several studies have shown that long-term abstinence is associated with at least partial normalization of neurological abnormalities. PMID:24678450

  3. Statistical Approaches to Functional Neuroimaging Data

    PubMed Central

    DuBois Bowman, F; Guo, Ying; Derado, Gordana

    2007-01-01

    Synopsis The field of statistics makes valuable contributions to functional neuroimaging research by establishing procedures for the design and conduct of neuroimaging experiements and by providing tools for objectively quantifying and measuring the strength of scientific evidence provided by the data. Two common functional neuroimaging research objecitves include detecting brain regions that reveal task-related alterations in measured brain activity (activations) and identifying highly correlated brain regions that exhibit similar patterns of activity over time (functional connectivity). In this article, we highlight various statistical procedures for analyzing data from activation studies and from functional connectivity studies, focusing on functional magnetic resonance imaging (fMRI) and positron emission tomography (PET) data. We also discuss emerging statistical methods for prediction using fMRI and PET data, which stand to increase the translational significance of functional neuroimaging data to clinical practice. PMID:17983962

  4. Odds and ends in psychopharmacology from the past 10 years.

    PubMed

    Howland, Robert H

    2015-01-01

    Seven topics previously described in this column are revisited. The use of quantitative electroencephalography has been shown in a prospective study to be effective for predicting antidepressant treatment response. A novel antidepressant drug, agomelatine, has generated much controversy, and its development for the U.S. market was discontinued. A long awaited revised system for categorizing the safety of medications during pregnancy and lactation has finally been published by the Food and Drug Administration. Dextromethorphan/quinidine, eslicarbazepine acetate, levomilnacipran, and esketamine are recent examples of drugs that were developed based on the complex concepts of chirality and stereochemistry. Lisdexamfetamine, a stimulant drug, failed to show benefit as an augmentation therapy for the treatment of depression. The combination drug naltrexone/bupropion was finally approved as a therapy for obesity, after its cardiovascular safety was confirmed in a prospective premarketing study. Further development of the glucocorticoid receptor antagonist drug mifepristone as a treatment for psychotic depression was stopped based on a large negative trial, but the drug continues to be investigated for other potential psychiatric indications. These examples illustrate how the field of psychopharmacology continues to evolve.

  5. Odds and ends in psychopharmacology from the past 10 years.

    PubMed

    Howland, Robert H

    2015-01-01

    Seven topics previously described in this column are revisited. The use of quantitative electroencephalography has been shown in a prospective study to be effective for predicting antidepressant treatment response. A novel antidepressant drug, agomelatine, has generated much controversy, and its development for the U.S. market was discontinued. A long awaited revised system for categorizing the safety of medications during pregnancy and lactation has finally been published by the Food and Drug Administration. Dextromethorphan/quinidine, eslicarbazepine acetate, levomilnacipran, and esketamine are recent examples of drugs that were developed based on the complex concepts of chirality and stereochemistry. Lisdexamfetamine, a stimulant drug, failed to show benefit as an augmentation therapy for the treatment of depression. The combination drug naltrexone/bupropion was finally approved as a therapy for obesity, after its cardiovascular safety was confirmed in a prospective premarketing study. Further development of the glucocorticoid receptor antagonist drug mifepristone as a treatment for psychotic depression was stopped based on a large negative trial, but the drug continues to be investigated for other potential psychiatric indications. These examples illustrate how the field of psychopharmacology continues to evolve. PMID:25622272

  6. Sustained Effects of Ecstasy on the Human Brain: A Prospective Neuroimaging Study in Novel Users

    ERIC Educational Resources Information Center

    de Win, Maartje M. L.; Jager, Gerry; Booij, Jan; Reneman, Liesbeth; Schilt, Thelma; Lavini, Christina; Olabarriaga, Silvia D.; den Heeten, Gerard J.; van den Brink, Wim

    2008-01-01

    Previous studies have suggested toxic effects of recreational ecstasy use on the serotonin system of the brain. However, it cannot be excluded that observed differences between users and non-users are the cause rather than the consequence of ecstasy use. As part of the Netherlands XTC Toxicity (NeXT) study, we prospectively assessed sustained…

  7. Gene, Brain, and Behavior Relationships in Fragile X Syndrome: Evidence from Neuroimaging Studies

    ERIC Educational Resources Information Center

    Lightbody, Amy A.; Reiss, Allan L.

    2009-01-01

    Fragile X syndrome (FraX) remains the most common inherited cause of intellectual disability and provides a valuable model for studying gene-brain-behavior relationships. Over the past 15 years, structural and functional magnetic resonance imaging studies have emerged with the goal of better understanding the neural pathways contributing to the…

  8. L1 and L2 processing in the bilingual brain: A meta-analysis of neuroimaging studies.

    PubMed

    Liu, Hengshuang; Cao, Fan

    2016-08-01

    Neuroimaging studies investigating bilingual processes have produced controversial results in determining similarities versus differences between L1 and L2 neural networks. The current meta-analytic study was conducted to examine what factors play a role in the similarities and differences between L1 and L2 networks with a focus on age of acquisition (AOA) and whether the orthographic transparency of L2 is more or less transparent than that of L1. Using activation likelihood estimation (ALE), we found L2 processing involved more additional regions than L1 for late bilinguals in comparison to early bilinguals, suggesting L2 processing is more demanding in late bilinguals. We also provide direct evidence that AOA of L2 influences L1 processing through the findings that early bilinguals had greater activation in the left fusiform gyrus than late bilinguals during L1 processing even when L1 languages were the same in the two groups, presumably due to greater co-activation of orthography in L1 and L2 in early bilinguals. In addition, we found that the same L2 languages evoked different brain activation patterns depending on whether it was more or less transparent than L1 in orthographic transparency. The bilateral auditory cortex and right precentral gyrus were more involved in shallower-than-L1 L2s, suggesting a "sound-out" strategy for a more regular language by involving the phonological regions and sensorimotor regions to a greater degree. In contrast, the left frontal cortex was more involved in the processing of deeper-than-L1 L2s, presumably due to the increased arbitrariness of mapping between orthography and phonology in L2.

  9. L1 and L2 processing in the bilingual brain: A meta-analysis of neuroimaging studies.

    PubMed

    Liu, Hengshuang; Cao, Fan

    2016-08-01

    Neuroimaging studies investigating bilingual processes have produced controversial results in determining similarities versus differences between L1 and L2 neural networks. The current meta-analytic study was conducted to examine what factors play a role in the similarities and differences between L1 and L2 networks with a focus on age of acquisition (AOA) and whether the orthographic transparency of L2 is more or less transparent than that of L1. Using activation likelihood estimation (ALE), we found L2 processing involved more additional regions than L1 for late bilinguals in comparison to early bilinguals, suggesting L2 processing is more demanding in late bilinguals. We also provide direct evidence that AOA of L2 influences L1 processing through the findings that early bilinguals had greater activation in the left fusiform gyrus than late bilinguals during L1 processing even when L1 languages were the same in the two groups, presumably due to greater co-activation of orthography in L1 and L2 in early bilinguals. In addition, we found that the same L2 languages evoked different brain activation patterns depending on whether it was more or less transparent than L1 in orthographic transparency. The bilateral auditory cortex and right precentral gyrus were more involved in shallower-than-L1 L2s, suggesting a "sound-out" strategy for a more regular language by involving the phonological regions and sensorimotor regions to a greater degree. In contrast, the left frontal cortex was more involved in the processing of deeper-than-L1 L2s, presumably due to the increased arbitrariness of mapping between orthography and phonology in L2. PMID:27295606

  10. Brain Functional Effects of Psychopharmacological Treatments in Schizophrenia: A Network-based Functional Perspective Beyond Neurotransmitter Systems.

    PubMed

    De Rossi, Pietro; Chiapponi, Chiara; Spalletta, Gianfranco

    2015-01-01

    Psychopharmacological treatments for schizophrenia have always been a matter of debate and a very important issue in public health given the chronic, relapsing and disabling nature of the disorder. A thorough understanding of the pros and cons of currently available pharmacological treatments for schizophrenia is critical to better capture the features of treatment-refractory clinical pictures and plan the developing of new treatment strategies. This review focuses on brain functional changes induced by antipsychotic drugs as assessed by modern functional neuroimaging techniques (i.e. fMRI, PET, SPECT, MRI spectroscopy). The most important papers on this topic are reviewed in order to draw an ideal map of the main functional changes occurring in the brain during antipsychotic treatment. This supports the hypothesis that a network-based perspective and a functional connectivity approach are needed to fill the currently existing gap of knowledge in the field of psychotropic drugs and their mechanisms of action beyond neurotransmitter systems. PMID:26412063

  11. To dream or not to dream? Relevant data from new neuroimaging and electrophysiological studies.

    PubMed

    Hobson, J A; Pace-Schott, E F; Stickgold, R; Kahn, D

    1998-04-01

    The study of sleep and dreams has enjoyed a major breakthrough with recent findings from brain imaging studies in humans. Several independent groups have shown global deactivation of the brain during non rapid eye movement sleep and a regionally selective reactivation during rapid eye movement sleep. These results are complemented by new brain lesion and electrophysiological recording data to give a detailed picture of the brain dynamics of changes in conscious state. PMID:9635208

  12. Authenticity Anyone? The Enhancement of Emotions via Neuro-Psychopharmacology.

    PubMed

    Kraemer, Felicitas

    2011-04-01

    This article will examine how the notion of emotional authenticity is intertwined with the notions of naturalness and artificiality in the context of the recent debates about 'neuro-enhancement' and 'neuro-psychopharmacology.' In the philosophy of mind, the concept of authenticity plays a key role in the discussion of the emotions. There is a widely held intuition that an artificial means will always lead to an inauthentic result. This article, however, proposes that artificial substances do not necessarily result in inauthentic emotions. The literature provided by the philosophy of mind on this subject usually resorts to thought experiments. On the other hand, the recent literature in applied ethics on 'enhancement' provides good reasons to include real world examples. Such case studies reveal that some psychotropic drugs such as antidepressants actually cause people to undergo experiences of authenticity, making them feel 'like themselves' for the first time in their lives. Beginning with these accounts, this article suggests three non-naturalist standards for emotions: the authenticity standard, the rationality standard, and the coherence standard. It argues that the authenticity standard is not always the only valid one, but that the other two ways of assessing emotions are also valid, and that they can even have repercussions on the felt authenticity of emotions. In conclusion, it sketches some of the normative implications if not ethical intricacies that accompany the enhancement of emotions.

  13. Double-letter processing in surface dyslexia and dysgraphia following a left temporal lesion: A multimodal neuroimaging study.

    PubMed

    Tomasino, Barbara; Marin, Dario; Maieron, Marta; D'Agostini, Serena; Fabbro, Franco; Skrap, Miran; Luzzatti, Claudio

    2015-12-01

    Neuropsychological data about acquired impairments in reading and writing provide a strong basis for the theoretical framework of the dual-route models. The present study explored the functional neuroanatomy of the reading and spelling processing system. We describe the reading and writing performance of patient CF, an Italian native speaker who developed an extremely selective reading and spelling deficit (his spontaneous speech, oral comprehension, repetition and oral picture naming were almost unimpaired) in processing double letters associated with surface dyslexia and dysgraphia, following a tumor in the left temporal lobe. In particular, the majority of CF's errors in spelling were phonologically plausible substitutions, errors concerning letter numerosity of consonants, and syllabic phoneme-to-grapheme conversion (PGC) errors. A similar pattern of impairment also emerged in his reading behavior, with a majority of lexical stress errors (the only possible type of surface reading errors in the Italian language, due the extreme regularity of print-to-sound correspondence). CF's neuropsychological profile was combined with structural neuroimaging data, fiber tracking, and functional maps and compared to that of healthy control participants. We related CF's deficit to a dissociation between impaired ventral/lexical route (as evidenced by a fractional anisotropy - FA decrease along the inferior fronto-occipital fasciculus - IFOF) and relatively preserved dorsal/phonological route (as evidenced by a rather full integrity of the superior longitudinal fasciculus - SLF). In terms of functional processing, the lexical-semantic ventral route network was more activated in controls than in CF, while the network supporting the dorsal route was shared by CF and the control participants. Our results are discussed within the theoretical framework of dual-route models of reading and spelling, emphasize the importance of the IFOF both in lexical reading and spelling, and offer

  14. Double-letter processing in surface dyslexia and dysgraphia following a left temporal lesion: A multimodal neuroimaging study.

    PubMed

    Tomasino, Barbara; Marin, Dario; Maieron, Marta; D'Agostini, Serena; Fabbro, Franco; Skrap, Miran; Luzzatti, Claudio

    2015-12-01

    Neuropsychological data about acquired impairments in reading and writing provide a strong basis for the theoretical framework of the dual-route models. The present study explored the functional neuroanatomy of the reading and spelling processing system. We describe the reading and writing performance of patient CF, an Italian native speaker who developed an extremely selective reading and spelling deficit (his spontaneous speech, oral comprehension, repetition and oral picture naming were almost unimpaired) in processing double letters associated with surface dyslexia and dysgraphia, following a tumor in the left temporal lobe. In particular, the majority of CF's errors in spelling were phonologically plausible substitutions, errors concerning letter numerosity of consonants, and syllabic phoneme-to-grapheme conversion (PGC) errors. A similar pattern of impairment also emerged in his reading behavior, with a majority of lexical stress errors (the only possible type of surface reading errors in the Italian language, due the extreme regularity of print-to-sound correspondence). CF's neuropsychological profile was combined with structural neuroimaging data, fiber tracking, and functional maps and compared to that of healthy control participants. We related CF's deficit to a dissociation between impaired ventral/lexical route (as evidenced by a fractional anisotropy - FA decrease along the inferior fronto-occipital fasciculus - IFOF) and relatively preserved dorsal/phonological route (as evidenced by a rather full integrity of the superior longitudinal fasciculus - SLF). In terms of functional processing, the lexical-semantic ventral route network was more activated in controls than in CF, while the network supporting the dorsal route was shared by CF and the control participants. Our results are discussed within the theoretical framework of dual-route models of reading and spelling, emphasize the importance of the IFOF both in lexical reading and spelling, and offer

  15. The Brain Network for Deductive Reasoning: A Quantitative Meta-Analysis of 28 Neuroimaging Studies

    ERIC Educational Resources Information Center

    Prado, Jerome; Chadha, Angad; Booth, James R.

    2011-01-01

    Over the course of the past decade, contradictory claims have been made regarding the neural bases of deductive reasoning. Researchers have been puzzled by apparent inconsistencies in the literature. Some have even questioned the effectiveness of the methodology used to study the neural bases of deductive reasoning. However, the idea that…

  16. Reading Disorders in Primary Progressive Aphasia: A Behavioral and Neuroimaging Study

    ERIC Educational Resources Information Center

    Brambati, S. M.; Ogar, J.; Neuhaus, J.; Miller, B. L.; Gorno-Tempini, M. L.

    2009-01-01

    Previous neuropsychological studies on acquired dyslexia revealed a double dissociation in reading impairments. Patients with phonological dyslexia have selective difficulty in reading pseudo-words, while those with surface dyslexia misread exception words. This double dissociation in reading abilities has often been reported in brain-damaged…

  17. A Neuroimaging Study of Premotor Lateralization and Cerebellar Involvement in the Production of Phonemes and Syllables

    ERIC Educational Resources Information Center

    Ghosh, Satrajit S.; Tourville, Jason A.; Guenther, Frank H.

    2008-01-01

    Purpose: This study investigated the network of brain regions involved in overt production of vowels, monosyllables, and bisyllables to test hypotheses derived from the Directions Into Velocities of Articulators (DIVA) model of speech production (Guenther, Ghosh, & Tourville, 2006). The DIVA model predicts left lateralized activity in inferior…

  18. Functional neuroimaging study in identical twin pairs discordant for regular cigarette smoking.

    PubMed

    Lessov-Schlaggar, Christina N; Lepore, Rebecca L; Kristjansson, Sean D; Schlaggar, Bradley L; Barnes, Kelly Anne; Petersen, Steven E; Madden, Pamela A F; Heath, Andrew C; Barch, Deanna M

    2013-01-01

    Despite the tremendous public health and financial burden of cigarette smoking, relatively little is understood about brain mechanisms that subserve smoking behavior. This study investigated the effect of lifetime regular smoking on brain processing in a reward guessing task using functional magnetic resonance imaging and a co-twin control study design in monozygotic (MZ) twin pairs that maximally controls for genetic and family background factors. Young adult (24-34 years) MZ female twin pairs (n = 15 pairs), discordant for regular smoking defined using Centers for Disease Control criteria as having smoked ≥100 cigarettes in their lifetime, were recruited from an ongoing genetic epidemiological longitudinal study of substance use and psychopathology. We applied hypothesis-driven region of interest (ROI) and whole-brain analyses to investigate the effect of regular smoking on reward processing. Reduced response to reward and punishment in regular compared with never-regular smokers was seen in hypothesis-driven ROI analysis of bilateral ventral striatum. Whole-brain analysis identified bilateral reward-processing regions that showed activation differences in response to winning or losing money but no effect of regular smoking; and frontal/parietal regions, predominantly in the right hemisphere, that showed robust effect of regular smoking but no effect of winning or losing money. Altogether, using a study design that maximally controls for group differences, we found that regular smoking had modest effects on striatal reward processing regions but robust effects on cognitive control/attentional systems. PMID:22340136

  19. Neural Correlates of Written Emotion Word Processing: A Review of Recent Electrophysiological and Hemodynamic Neuroimaging Studies

    ERIC Educational Resources Information Center

    Citron, Francesca M. M.

    2012-01-01

    A growing body of literature investigating the neural correlates of emotion word processing has emerged in recent years. Written words have been shown to represent a suitable means to study emotion processing and most importantly to address the distinct and interactive contributions of the two dimensions of emotion: valence and arousal. The aim of…

  20. On the "Demystification" of Insight: A Critique of Neuroimaging Studies of Insight

    ERIC Educational Resources Information Center

    Weisberg, Robert W.

    2013-01-01

    Psychologists studying problem solving have, for over 100 years, been interested in the question of whether there are two different modes of solving problems. One mode--problem solving based on analysis--depends on application of past experience to the problem at hand and proceeds incrementally toward solution. The second mode--problem solving…

  1. Functional Neuroimaging Study in Identical Twin Pairs Discordant for Regular Cigarette Smoking

    PubMed Central

    Lessov-Schlaggar, Christina N.; Lepore, Rebecca L.; Kristjansson, Sean D.; Schlaggar, Bradley L.; Barnes, Kelly Anne; Petersen, Steven E.; Madden, Pamela A. F.; Heath, Andrew C.; Barch, Deanna M.

    2012-01-01

    Despite the tremendous public health and financial burden of cigarette smoking, relatively little is understood about brain mechanisms that subserve smoking behavior. This study investigated the effect of lifetime regular smoking on brain processing in a reward guessing task using functional magnetic resonance imaging (fMRI) and a cotwin-control study design in monozygotic (MZ) twin pairs that maximally controls for genetic and family background factors. Young adult (24–34 years) MZ female twin pairs (n=15 pairs), discordant for regular smoking defined using Centers for Disease Control (CDC) criteria as having smoked ≥100 cigarettes lifetime were recruited from an ongoing genetic epidemiological longitudinal study of substance use and psychopathology. We applied hypothesis-driven region of interest and whole brain analyses to investigate the effect of regular smoking on reward processing. Reduced response to reward and punishment in regular compared to never-regular smokers was seen in hypothesis-driven region of interest analysis of bilateral ventral striatum. Whole brain analysis identified bilateral reward-processing regions that showed activation differences in response to winning or losing money but no effect of regular smoking; and frontal/parietal regions, predominantly in the right hemisphere, that showed robust effect of regular smoking but no effect of winning or losing money. Altogether, using a study design that maximally controls for group differences, we found that regular smoking had modest effects on striatal reward processing regions but robust effects on cognitive control/attentional systems. PMID:22340136

  2. A Longitudinal Functional Neuroimaging Study in Medication-Naïve Depression after Antidepressant Treatment

    PubMed Central

    Kawasaki, Shingo; Pu, Shenghong; Iwanami, Akira; Hirano, Jinichi; Nakagome, Kazuyuki; Mimura, Masaru

    2015-01-01

    Recent studies have indicated the potential clinical use of near infrared spectroscopy (NIRS) as a tool in assisting the diagnosis of major depressive disorder (MDD); however, it is still unclear whether NIRS signal changes during cognitive task are state- or trait-dependent, and whether NIRS could be a neural predictor of treatment response. Therefore, we conducted a longitudinal study to explore frontal haemodynamic changes following antidepressant treatment in medication-naïve MDD using 52-channel NIRS. This study included 25 medication-naïve individuals with MDD and 62 healthy controls (HC). We performed NIRS scans before and after antidepressant treatment and measured changes of [oxy-Hb] activation during a verbal fluency task (VFT) following treatment. Individuals with MDD showed significantly decreased [oxy-Hb] values during a VFT compared with HC in the bilateral frontal and temporal cortices at baseline. There were no [oxy-Hb] changes between pre- and post-antidepressant treatment time points in the MDD cohort despite significant improvement in depressive symptoms. There was a significant association between mean [oxy-Hb] values during a VFT at baseline and improvement in depressive symptoms following treatment in the bilateral inferior frontal and middle temporal gyri in MDD. These findings suggest that hypofrontality response to a VFT may represent a potential trait marker for depression rather than a state marker. Moreover, the correlation analysis indicates that the NIRS signals before the initiation of treatment may be a biological marker to predict patient’s clinical response to antidepressant treatment. The present study provides further evidence to support a potential application of NIRS for the diagnosis and treatment of depression. PMID:25786240

  3. Face recognition in schizophrenia disorder: A comprehensive review of behavioral, neuroimaging and neurophysiological studies.

    PubMed

    Bortolon, Catherine; Capdevielle, Delphine; Raffard, Stéphane

    2015-06-01

    Facial emotion processing has been extensively studied in schizophrenia patients while general face processing has received less attention. The already published reviews do not address the current scientific literature in a complete manner. Therefore, here we tried to answer some questions that remain to be clarified, particularly: are the non-emotional aspects of facial processing in fact impaired in schizophrenia patients? At the behavioral level, our key conclusions are that visual perception deficit in schizophrenia patients: are not specific to faces; are most often present when the cognitive (e.g. attention) and perceptual demands of the tasks are important; and seems to worsen with the illness chronification. Although, currently evidence suggests impaired second order configural processing, more studies are necessary to determine whether or not holistic processing is impaired in schizophrenia patients. Neural and neurophysiological evidence suggests impaired earlier levels of visual processing, which might involve the deficits in interaction of the magnocellular and parvocellular pathways impacting on further processing. These deficits seem to be present even before the disorder out-set. Although evidence suggests that this deficit may be not specific to faces, further evidence on this question is necessary, in particularly more ecological studies including context and body processing. PMID:25800172

  4. Alterations of Myelin Content in Parkinson’s Disease: A Cross-Sectional Neuroimaging Study

    PubMed Central

    Sojkova, Jitka; Hurley, Samuel; Kecskemeti, Steven; Okonkwo, Ozioma; Bendlin, Barbara B.; Theisen, Frances; Johnson, Sterling C.; Alexander, Andrew L.; Gallagher, Catherine L.

    2016-01-01

    Alterations to myelin may be a core pathological feature of neurodegenerative diseases. Although white matter microstructural differences have been described in Parkinson's disease (PD), it is unknown whether such differences include alterations of the brain’s myelin content. Thus, the objective of the current study is to measure and compare brain myelin content between PD patients and age-matched controls. In this cross-sectional study, 63 participants from the Longitudinal MRI in Parkinson's Disease study underwent brain MRI, Unified Parkinson's Disease Rating Scale (UPDRS) scoring, and cognitive asessments. Subjects were imaged with the mcDEPSOT (multi-component driven equilibrium single pulse observation of T1 and T2), a multicomponent relaxometry technique that quantifies longitudinal and transverse relaxation rates (R1 and R2, respectively) and the myelin water fraction (VFM), a surrogate for myelin content. A voxel-wise approach was used to compare R1, R2, and VFM measures between PD and control groups, and to evaluate relationships with age as well as disease duration, UPDRS scores, and daily levodopa equivalent dose. PD subjects had higher VFM than controls in frontal and temporal white matter and bilateral thalamus. Greater age was strongly associated with lower VFM in both groups, while an age-by-group interaction suggested a slower rate of VFM decline in the left putamen with aging in PD. Within the PD group, measures of disease severity, including UPDRS, daily levodopa equivalent dose, and disease duration, were observed to be related with myelin content in diffuse brain regions. The age-by-group interaction suggests that either PD or dopaminergic therapies allay observed age-related myelin changes. The relationships between VFM and disease severity measures suggests that VFM may provide a surrogate marker for microstructural changes related to Parkinson’s disease. PMID:27706215

  5. Cortical Brain Development in Schizophrenia: Insights From Neuroimaging Studies in Childhood-Onset Schizophrenia

    PubMed Central

    Gogtay, Nitin

    2008-01-01

    Childhood-onset schizophrenia (COS; defined as onset by age 12 years) is rare, difficult to diagnose, and represents a severe and chronic phenotype of the adult-onset illness. A study of childhood-onset psychoses has been ongoing at the National Institute of Mental Health (NIMH) since 1990, where children with COS and severe atypical psychoses (provisionally labeled “multidimensionally impaired” or MDI by the NIMH team) are studied prospectively along with all first-degree relatives. COS subjects have robust cortical gray matter (GM) loss during adolescence, which appears to be an exaggeration of the normal cortical GM developmental pattern and eventually mimics the pattern seen in adult-onset cases as the children become young adults. These cortical GM changes in COS are diagnostically specific and seemingly unrelated to the effects of medications. Furthermore, the cortical GM loss is also shared by healthy full siblings of COS probands suggesting a genetic influence on the abnormal brain development. PMID:17906336

  6. Prediction error in reinforcement learning: a meta-analysis of neuroimaging studies.

    PubMed

    Garrison, Jane; Erdeniz, Burak; Done, John

    2013-08-01

    Activation likelihood estimation (ALE) meta-analyses were used to examine the neural correlates of prediction error in reinforcement learning. The findings are interpreted in the light of current computational models of learning and action selection. In this context, particular consideration is given to the comparison of activation patterns from studies using instrumental and Pavlovian conditioning, and where reinforcement involved rewarding or punishing feedback. The striatum was the key brain area encoding for prediction error, with activity encompassing dorsal and ventral regions for instrumental and Pavlovian reinforcement alike, a finding which challenges the functional separation of the striatum into a dorsal 'actor' and a ventral 'critic'. Prediction error activity was further observed in diverse areas of predominantly anterior cerebral cortex including medial prefrontal cortex and anterior cingulate cortex. Distinct patterns of prediction error activity were found for studies using rewarding and aversive reinforcers; reward prediction errors were observed primarily in the striatum while aversive prediction errors were found more widely including insula and habenula.

  7. Prediction error in reinforcement learning: a meta-analysis of neuroimaging studies.

    PubMed

    Garrison, Jane; Erdeniz, Burak; Done, John

    2013-08-01

    Activation likelihood estimation (ALE) meta-analyses were used to examine the neural correlates of prediction error in reinforcement learning. The findings are interpreted in the light of current computational models of learning and action selection. In this context, particular consideration is given to the comparison of activation patterns from studies using instrumental and Pavlovian conditioning, and where reinforcement involved rewarding or punishing feedback. The striatum was the key brain area encoding for prediction error, with activity encompassing dorsal and ventral regions for instrumental and Pavlovian reinforcement alike, a finding which challenges the functional separation of the striatum into a dorsal 'actor' and a ventral 'critic'. Prediction error activity was further observed in diverse areas of predominantly anterior cerebral cortex including medial prefrontal cortex and anterior cingulate cortex. Distinct patterns of prediction error activity were found for studies using rewarding and aversive reinforcers; reward prediction errors were observed primarily in the striatum while aversive prediction errors were found more widely including insula and habenula. PMID:23567522

  8. Memory, consciousness and neuroimaging.

    PubMed Central

    Schacter, D L; Buckner, R L; Koutstaal, W

    1998-01-01

    Neuroimaging techniques that allow the assessment of memory performance in healthy human volunteers while simultaneously obtaining measurements of brain activity in vivo may offer new information on the neural correlates of particular forms of memory retrieval and their association with consciousness and intention. We consider evidence from studies with positron emission tomography and functional magnetic resonance imaging indicating that priming, a form of implicit retrieval, is associated with decreased activity in various cortical regions. We also consider evidence concerning the question of whether two components of explicit retrieval--intentional or effortful search and successful conscious recollection--are preferentially associated with increased activity in prefrontal and medial temporal regions, respectively. Last, we consider recent efforts to probe the relation between the phenomenological character of remembering and neural activity. In this instance we broaden our scope to include studies employing event-related potentials and consider evidence concerning the neural correlates of qualitatively different forms of memory, including memory that is specifically associated with a sense of self, and the recollection of particular temporal or perceptual features that might contribute to a rich and vivid experience of the past. PMID:9854258

  9. Proactive Control Strategies for Overt and Covert Go/NoGo Tasks: An Electrical Neuroimaging Study.

    PubMed

    Angelini, Monica; Calbi, Marta; Ferrari, Annachiara; Sbriscia-Fioretti, Beatrice; Franca, Michele; Gallese, Vittorio; Umiltà, Maria Alessandra

    2016-01-01

    Proactive and reactive inhibition are generally intended as mechanisms allowing the withholding or suppression of overt movements. Nonetheless, inhibition could also play a pivotal role during covert actions (i.e., potential motor acts not overtly performed, despite the activation of the motor system), such as Motor Imagery (MI). In a previous EEG study, we analyzed cerebral activities reactively triggered during two cued Go/NoGo tasks, requiring execution or withholding of overt or covert imagined actions, respectively. This study revealed activation of pre-supplementary motor area (pre-SMA) and right inferior frontal gyrus (rIFG), key nodes of the network underpinning reactive inhibition of overt responses in NoGo trials, also during MI enactment, enabling the covert nature of the imagined motor response. Taking into account possible proactive engagement of inhibitory mechanisms by cue signals, for an exhaustive interpretation of these previous findings in the present study we analyzed EEG activities elicited during the preparatory phase of our cued overt and covert Go/NoGo tasks. Our results demonstrate a substantial overlap of cerebral areas activated during proactive recruitment and subsequent reactive implementation of motor inhibition in both overt and covert actions; also, different involvement of pre-SMA and rIFG emerged, in accord with the intended type (covert or overt) of incoming motor responses. During preparation of the overt Go/NoGo task, the cue is encoded in a pragmatic mode, as it primes the possible overt motor response programs in motor and premotor cortex and, through preactivation of a pre-SMA-related decisional mechanism, it triggers a parallel preparation for successful response selection and/or inhibition during the response phase. Conversely, the preparatory strategy for the covert Go/NoGo task is centered on priming of an inhibitory mechanism in rIFG, tuned to the instructed covert modality of motor performance and instantiated during

  10. Proactive Control Strategies for Overt and Covert Go/NoGo Tasks: An Electrical Neuroimaging Study

    PubMed Central

    Angelini, Monica; Calbi, Marta; Ferrari, Annachiara; Sbriscia-Fioretti, Beatrice; Franca, Michele; Gallese, Vittorio; Umiltà, Maria Alessandra

    2016-01-01

    Proactive and reactive inhibition are generally intended as mechanisms allowing the withholding or suppression of overt movements. Nonetheless, inhibition could also play a pivotal role during covert actions (i.e., potential motor acts not overtly performed, despite the activation of the motor system), such as Motor Imagery (MI). In a previous EEG study, we analyzed cerebral activities reactively triggered during two cued Go/NoGo tasks, requiring execution or withholding of overt or covert imagined actions, respectively. This study revealed activation of pre-supplementary motor area (pre-SMA) and right inferior frontal gyrus (rIFG), key nodes of the network underpinning reactive inhibition of overt responses in NoGo trials, also during MI enactment, enabling the covert nature of the imagined motor response. Taking into account possible proactive engagement of inhibitory mechanisms by cue signals, for an exhaustive interpretation of these previous findings in the present study we analyzed EEG activities elicited during the preparatory phase of our cued overt and covert Go/NoGo tasks. Our results demonstrate a substantial overlap of cerebral areas activated during proactive recruitment and subsequent reactive implementation of motor inhibition in both overt and covert actions; also, different involvement of pre-SMA and rIFG emerged, in accord with the intended type (covert or overt) of incoming motor responses. During preparation of the overt Go/NoGo task, the cue is encoded in a pragmatic mode, as it primes the possible overt motor response programs in motor and premotor cortex and, through preactivation of a pre-SMA-related decisional mechanism, it triggers a parallel preparation for successful response selection and/or inhibition during the response phase. Conversely, the preparatory strategy for the covert Go/NoGo task is centered on priming of an inhibitory mechanism in rIFG, tuned to the instructed covert modality of motor performance and instantiated during

  11. A review of neuroimaging studies of race-related prejudice: does amygdala response reflect threat?

    PubMed Central

    Chekroud, Adam M.; Everett, Jim A. C.; Bridge, Holly; Hewstone, Miles

    2014-01-01

    Prejudice is an enduring and pervasive aspect of human cognition. An emergent trend in modern psychology has focused on understanding how cognition is linked to neural function, leading researchers to investigate the neural correlates of prejudice. Research in this area using racial group memberships has quickly highlighted the amygdala as a neural structure of importance. In this article, we offer a critical review of social neuroscientific studies of the amygdala in race-related prejudice. Rather than the dominant interpretation that amygdala activity reflects a racial or outgroup bias per se, we argue that the observed pattern of sensitivity in this literature is best considered in terms of potential threat. More specifically, we argue that negative culturally-learned associations between black males and potential threat better explain the observed pattern of amygdala activity. Finally, we consider future directions for the field and offer specific experiments and predictions to directly address unanswered questions. PMID:24734016

  12. FRIEND Engine Framework: a real time neurofeedback client-server system for neuroimaging studies

    PubMed Central

    Basilio, Rodrigo; Garrido, Griselda J.; Sato, João R.; Hoefle, Sebastian; Melo, Bruno R. P.; Pamplona, Fabricio A.; Zahn, Roland; Moll, Jorge

    2015-01-01

    In this methods article, we present a new implementation of a recently reported FSL-integrated neurofeedback tool, the standalone version of “Functional Real-time Interactive Endogenous Neuromodulation and Decoding” (FRIEND). We will refer to this new implementation as the FRIEND Engine Framework. The framework comprises a client-server cross-platform solution for real time fMRI and fMRI/EEG neurofeedback studies, enabling flexible customization or integration of graphical interfaces, devices, and data processing. This implementation allows a fast setup of novel plug-ins and frontends, which can be shared with the user community at large. The FRIEND Engine Framework is freely distributed for non-commercial, research purposes. PMID:25688193

  13. Psychotic Experiences, Working Memory, and the Developing Brain: A Multimodal Neuroimaging Study.

    PubMed

    Fonville, Leon; Cohen Kadosh, Kathrin; Drakesmith, Mark; Dutt, Anirban; Zammit, Stanley; Mollon, Josephine; Reichenberg, Abraham; Lewis, Glyn; Jones, Derek K; David, Anthony S

    2015-12-01

    Psychotic experiences (PEs) occur in the general population, especially in children and adolescents, and are associated with poor psychosocial outcomes, impaired cognition, and increased risk of transition to psychosis. It is unknown how the presence and persistence of PEs during early adulthood affects cognition and brain function. The current study assessed working memory as well as brain function and structure in 149 individuals, with and without PEs, drawn from a population cohort. Observer-rated PEs were classified as persistent or transient on the basis of longitudinal assessments. Working memory was assessed using the n-back task during fMRI. Dynamic causal modeling (DCM) was used to characterize frontoparietal network configuration and voxel-based morphometry was utilized to examine gray matter. Those with persistent, but not transient, PEs performed worse on the n-back task, compared with controls, yet showed no significant differences in regional brain activation or brain structure. DCM analyses revealed greater emphasis on frontal connectivity within a frontoparietal network in those with PEs compared with controls. We propose that these findings portray an altered configuration of working memory function in the brain, potentially indicative of an adaptive response to atypical development associated with the manifestation of PEs.

  14. Comprehending body language and mimics: an ERP and neuroimaging study on Italian actors and viewers.

    PubMed

    Proverbio, Alice Mado; Calbi, Marta; Manfredi, Mirella; Zani, Alberto

    2014-01-01

    In this study, the neural mechanism subserving the ability to understand people's emotional and mental states by observing their body language (facial expression, body posture and mimics) was investigated in healthy volunteers. ERPs were recorded in 30 Italian University students while they evaluated 280 pictures of highly ecological displays of emotional body language that were acted out by 8 male and female Italian actors. Pictures were briefly flashed and preceded by short verbal descriptions (e.g., "What a bore!") that were incongruent half of the time (e.g., a picture of a very attentive and concentrated person shown after the previous example verbal description). ERP data and source reconstruction indicated that the first recognition of incongruent body language occurred 300 ms post-stimulus. swLORETA performed on the N400 identified the strongest generators of this effect in the right rectal gyrus (BA11) of the ventromedial orbitofrontal cortex, the bilateral uncus (limbic system) and the cingulate cortex, the cortical areas devoted to face and body processing (STS, FFA EBA) and the premotor cortex (BA6), which is involved in action understanding. These results indicate that face and body mimics undergo a prioritized processing that is mostly represented in the affective brain and is rapidly compared with verbal information. This process is likely able to regulate social interactions by providing on-line information about the sincerity and trustfulness of others.

  15. Paradoxical results of adaptive false discovery rate procedures in neuroimaging studies.

    PubMed

    Reiss, Philip T; Schwartzman, Armin; Lu, Feihan; Huang, Lei; Proal, Erika

    2012-12-01

    Adaptive false discovery rate (FDR) procedures, which offer greater power than the original FDR procedure of Benjamini and Hochberg, are often applied to statistical maps of the brain. When a large proportion of the null hypotheses are false, as in the case of widespread effects such as cortical thinning throughout much of the brain, adaptive FDR methods can surprisingly reject more null hypotheses than not accounting for multiple testing at all-i.e., using uncorrected p-values. A straightforward mathematical argument is presented to explain why this can occur with the q-value method of Storey and colleagues, and a simulation study shows that it can also occur, to a lesser extent, with a two-stage FDR procedure due to Benjamini and colleagues. We demonstrate the phenomenon with reference to a published data set documenting cortical thinning in attention deficit/hyperactivity disorder. The paper concludes with recommendations for how to proceed when adaptive FDR results of this kind are encountered in practice.

  16. Structural Neuroimaging of Concomitant Depressive Symptoms in Amnestic Mild Cognitive Impairment: A Pilot Study

    PubMed Central

    Morin, Jean-François; Mouiha, Abderazzak; Pietrantonio, Sandra; Duchesne, Simon; Hudon, Carol

    2012-01-01

    Late-life depression (LLD) and amnestic mild cognitive impairment (aMCI) can both denote prodromal Alzheimer's disease. While the two concepts share common clinical features, differential diagnosis between them is crucial. The objective of this pilot study was to explore differences in terms of the hippocampal (HC) and entorhinal cortex (EC) volume reduction between LLD and aMCI patients with (aMCI/D+ group) or without (aMCI group) depressive symptoms. Six LLD, 6 aMCI, and 6 aMCI/D+ participants were assessed using a structural magnetic resonance imaging protocol. Manual segmentation of HC and EC was carried out. The results of volumetric comparisons suggest that the HC was larger in aMCI/D+ and LLD subjects compared to aMCI participants. The left EC mean volume was slightly lower in aMCI/D+ subjects. Power analyses revealed that 36 participants per group would suffice to confirm these findings. Overall, these pilot findings suggest that aMCI can be distinguished from LLD based on cerebral atrophy measures, and that HC and EC atrophy in aMCI varies according to the presence or absence of depressive symptoms. PMID:23277788

  17. Neuroimaging studies of factors related to exercise: rationale and design of a 9 month trial.

    PubMed

    Herrmann, Stephen D; Martin, Laura E; Breslin, Florence J; Honas, Jeffery J; Willis, Erik A; Lepping, Rebecca J; Gibson, Cheryl A; Befort, Christie A; Lambourne, Kate; Burns, Jeffrey M; Smith, Bryan K; Sullivan, Debra K; Washburn, Richard A; Yeh, Hung-Wen; Donnelly, Joseph E; Savage, Cary R

    2014-01-01

    The prevalence of obesity is high resulting from chronic imbalances between energy intake and expenditure. On the expenditure side, regular exercise is associated with health benefits, including enhanced brain function. The benefits of exercise are not immediate and require persistence to be realized. Brain regions associated with health-related decisions, such as whether or not to exercise or controlling the impulse to engage in immediately rewarding activities (e.g., sedentary behavior), include reward processing and cognitive control regions. A 9 month aerobic exercise study will be conducted in 180 sedentary adults (n = 90 healthy weight [BMI = 18.5 to 26.0 kg/m(2)]; n = 90 obese [BMI = 29.0 to 41.0 kg/m(2)) to examine the brain processes underlying reward processing and impulse control that may affect adherence in a new exercise regimen. The primary aim is to use functional magnetic resonance imaging (fMRI) to examine reward processing and impulse control among participants that adhere (exercise >80% of sessions) and those that do not adhere to a nine-month exercise intervention with secondary analyses comparing sedentary obese and sedentary healthy weight participants. Our results will provide valuable information characterizing brain activation underlying reward processing and impulse control in sedentary obese and healthy weight individuals. In addition, our results may identify brain activation predictors of adherence and success in the exercise program along with measuring the effects of exercise and improved fitness on brain activation.

  18. Intention understanding over T: a neuroimaging study on shared representations and tennis return predictions

    PubMed Central

    Cacioppo, Stephanie; Fontang, Frederic; Patel, Nisa; Decety, Jean; Monteleone, George; Cacioppo, John T.

    2014-01-01

    Studying the way athletes predict actions of their peers during fast-ball sports, such as a tennis, has proved to be a valuable tool for increasing our knowledge of intention understanding. The working model in this area is that the anticipatory representations of others' behaviors require internal predictive models of actions formed from pre-established and shared representations between the observer and the actor. This model also predicts that observers would not be able to read accurately the intentions of a competitor if the competitor were to perform the action without prior knowledge of their intention until moments before the action. To test this hypothesis, we recorded brain activity from 25 male tennis players while they performed a novel behavioral tennis intention inference task, which included two conditions: (i) one condition in which they viewed video clips of a tennis athlete who knew in advance where he was about to act/serve (initially intended serves) and (ii) one condition in which they viewed video clips of that same athlete when he did not know where he was to act/serve until the target was specified after he had tossed the ball into the air to complete his serve (non-initially intended serves). Our results demonstrated that (i) tennis expertise is related to the accuracy in predicting where another server intends to serve when that server knows where he intends to serve before (but not after) he tosses the ball in the air; and (ii) accurate predictions are characterized by the recruitment of both cortical areas within the human mirror neuron system (that is known to be involved in higher-order (top-down) processes of embodied cognition and shared representation) and subcortical areas within brain regions involved in procedural memory (caudate nucleus). Interestingly, inaccurate predictions instead recruit areas known to be involved in low-level (bottom-up) computational processes associated with the sense of agency and self-other distinction

  19. Intention understanding over T: a neuroimaging study on shared representations and tennis return predictions.

    PubMed

    Cacioppo, Stephanie; Fontang, Frederic; Patel, Nisa; Decety, Jean; Monteleone, George; Cacioppo, John T

    2014-01-01

    Studying the way athletes predict actions of their peers during fast-ball sports, such as a tennis, has proved to be a valuable tool for increasing our knowledge of intention understanding. The working model in this area is that the anticipatory representations of others' behaviors require internal predictive models of actions formed from pre-established and shared representations between the observer and the actor. This model also predicts that observers would not be able to read accurately the intentions of a competitor if the competitor were to perform the action without prior knowledge of their intention until moments before the action. To test this hypothesis, we recorded brain activity from 25 male tennis players while they performed a novel behavioral tennis intention inference task, which included two conditions: (i) one condition in which they viewed video clips of a tennis athlete who knew in advance where he was about to act/serve (initially intended serves) and (ii) one condition in which they viewed video clips of that same athlete when he did not know where he was to act/serve until the target was specified after he had tossed the ball into the air to complete his serve (non-initially intended serves). Our results demonstrated that (i) tennis expertise is related to the accuracy in predicting where another server intends to serve when that server knows where he intends to serve before (but not after) he tosses the ball in the air; and (ii) accurate predictions are characterized by the recruitment of both cortical areas within the human mirror neuron system (that is known to be involved in higher-order (top-down) processes of embodied cognition and shared representation) and subcortical areas within brain regions involved in procedural memory (caudate nucleus). Interestingly, inaccurate predictions instead recruit areas known to be involved in low-level (bottom-up) computational processes associated with the sense of agency and self-other distinction

  20. Learning from other people's experience: a neuroimaging study of decisional interactive-learning.

    PubMed

    Canessa, Nicola; Motterlini, Matteo; Alemanno, Federica; Perani, Daniela; Cappa, Stefano F

    2011-03-01

    Decision-making is strongly influenced by the counterfactual anticipation of personal regret and relief, through a learning process involving the ventromedial-prefrontal cortex. We previously reported that observing the regretful outcomes of another's choices reactivates the regret-network. Here we extend those findings by investigating whether this resonant mechanism also underpins interactive-learning from others' previous outcomes. In this functional-Magnetic-Resonance-Imaging study 24 subjects either played a gambling task or observed another player's risky/non-risky choices and resulting outcomes, thus experiencing personal or shared regret/relief for risky/non-risky decisions. Subjects' risk-aptitude in subsequent choices was significantly influenced by both their and the other's previous outcomes. This influence reflected in cerebral regions specifically coding the effect of previously experienced regret/relief, as indexed by the difference between factual and counterfactual outcomes in the last trial, when making a new choice. The subgenual cortex and caudate nucleus tracked the outcomes that increased risk-seeking (relief for a risky choice, and regret for a non-risky choice), while activity in the ventromedial-prefrontal cortex, amygdala and periaqueductal gray-matter reflected those reducing risk-seeking (relief for a non-risky choice, and regret for a risky choice). Crucially, a subset of the involved regions was also activated when subjects chose after observing the other player's outcomes, leading to the same behavioural change as in a first person experience. This resonant neural mechanism at choice may subserve interactive-learning in decision-making. PMID:21126586

  1. Neuroimaging of spine tumors.

    PubMed

    Pinter, Nandor K; Pfiffner, Thomas J; Mechtler, Laszlo L

    2016-01-01

    Intramedullary, intradural/extramedullary, and extradural spine tumors comprise a wide range of neoplasms with an even wider range of clinical symptoms and prognostic features. Magnetic resonance imaging (MRI), commonly used to evaluate the spine in patients presenting with pain, can further characterize lesions that may be encountered on other imaging studies, such as bone scintigraphy or computed tomography (CT). The advantage of the MRI is its multiplane capabilities, superior contrast agent resolution, and flexible protocols that play an important role in assessing tumor location, extent in directing biopsy, in planning proper therapy, and in evaluating therapeutic results. A multimodality approach can be used to fully characterize the lesion and the combination of information obtained from the different modalities usually narrows the diagnostic possibilities significantly. The diagnosis of spinal tumors is based on patient age, topographic features of the tumor, and lesion pattern, as seen at CT and MRI. The shift to high-end imaging incorporating diffusion-weighted imaging, diffusion tensor imaging, magnetic resonance spectroscopy, whole-body short tau inversion recovery, positron emission tomography, intraoperative and high-field MRI as part of the mainstream clinical imaging protocol has provided neurologists, neuro-oncologists, and neurosurgeons a window of opportunity to assess the biologic behavior of spine neoplasms. This chapter reviews neuroimaging of spine tumors, primary and secondary, discussing routine and newer modalities that can reduce the significant morbidity associated with these neoplasms. PMID:27430436

  2. Neuroimaging of cognitive dysfunction and depression in aging retired National Football League players: a cross-sectional study.

    PubMed

    Hart, John; Kraut, Michael A; Womack, Kyle B; Strain, Jeremy; Didehbani, Nyaz; Bartz, Elizabeth; Conover, Heather; Mansinghani, Sethesh; Lu, Hanzhang; Cullum, C Munro

    2013-03-01

    OBJECTIVES To assess cognitive impairment and depression in aging former professional football (National Football League [NFL]) players and to identify neuroimaging correlates of these dysfunctions. DESIGN We compared former NFL players with cognitive impairment and depression, cognitively normal retired players who were not depressed, and matched healthy control subjects. SETTING Research center in the North Texas region of the United States. PATIENTS Cross-sectional sample of former NFL players with and without a history of concussion recruited from the North Texas region and age-, education-, and IQ-matched controls. Thirty-four retired NFL players (mean age, 61.8 years) underwent neurological and neuropsychological assessment. A subset of 26 players also underwent detailed neuroimaging; imaging data in this subset were compared with imaging data acquired in 26 healthy matched controls. MAIN OUTCOME MEASURES Neuropsychological measures, clinical diagnoses of depression, neuroimaging mea-sures of white matter pathology, and a measure of cerebral blood flow. RESULTS Of the 34 former NFL players, 20 were cognitively normal. Four were diagnosed as having a fixed cognitive deficit; 8, mild cognitive impairment; 2, dementia; and 8, depression. Of the subgroup in whom neuroimaging data were acquired, cognitively impaired participants showed the greatest deficits on tests of naming, word finding, and visual/verbal episodic memory. We found significant differences in white matter abnormalities in cognitively impaired and depressed retired players compared with their respective controls. Regional blood flow differences in the cognitively impaired group (left temporal pole, inferior parietal lobule, and superior temporal gyrus) corresponded to regions associated with impaired neurocognitive performance (problems with memory, naming, and word finding). CONCLUSIONS Cognitive deficits and depression appear to be more common in aging former NFL players compared with healthy

  3. Improving the Pedagogy Associated with the Teaching of Psychopharmacology

    ERIC Educational Resources Information Center

    Glick, Ira D.; Salzman, Carl; Cohen, Bruce M.; Klein, Donald F.; Moutier, Christine; Nasrallah, Henry A.; Ongur, Dost; Wang, Po; Zisook, Sidney

    2007-01-01

    Objective: The authors summarize two special sessions focused on the teaching of psychopharmacology at the 2003 and 2004 annual meeting of the American College of Neuropsychopharmacology (ACNP). The focus was on whether "improving the teaching-learning process" in psychiatric residency programs could improve clinical practice. Method: Problems of…

  4. Using Game-Based Learning to Teach Psychopharmacology

    ERIC Educational Resources Information Center

    Scarlet, Janina; Ampolos, Lauren

    2013-01-01

    This article reviews several approaches used to teach psychopharmacology for graduate clinical psychology students. In order to promote engagement and increase student interest, students were broken up into groups and were asked to demonstrate their understanding of the material through a variety of interactive games (i.e., game-based learning, or…

  5. Psychopharmacology: A Guide for Helping Professionals. ERIC Digest.

    ERIC Educational Resources Information Center

    Smith, Robert L.; Garcia, Elda E.

    Certain mental disorders are caused by or accompanied by neurochemical abnormalities. The use of psychotropic medications has dramatically increased over the past two decades in all age groups, particularly with children. Therefore, psychopharmacology, the branch of pharmacology dealing with the psychological effects of drugs, needs to be…

  6. Child Psychopharmacology: How School Psychologists Can Contribute to Effective Outcomes

    ERIC Educational Resources Information Center

    DuPaul, George J.; Carlson, John S.

    2005-01-01

    Psychopharmacological treatments have been used with increased frequency to treat a variety of internalizing and externalizing disorders in children. Given the potential impact that medication has on children's school performance, school psychologists should be involved in helping physicians and families make effective decisions by assisting with…

  7. Teaching a Psychopharmacology Course to Counselors: Justification, Structure, and Methods.

    ERIC Educational Resources Information Center

    Ingersoll, R. Elliot

    2000-01-01

    In the last decade, the use of medication to treat psychological disorders has greatly expanded. In order to work effectively in school and community settings, counselors will need a sophisticated knowledge of psychopharmacology. This article describes the curriculum, structure, resources, and teaching methods suggested for effective instruction…

  8. 75 FR 47309 - Psychopharmacologic Drugs Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-05

    ... HUMAN SERVICES Food and Drug Administration Psychopharmacologic Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug Administration, HHS. ACTION: Notice. This notice announces a forthcoming meeting of a public advisory committee of the Food and Drug Administration (FDA). The meeting will be...

  9. 78 FR 13349 - Psychopharmacologic Drugs Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-27

    ... HUMAN SERVICES Food and Drug Administration Psychopharmacologic Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug Administration, HHS. ACTION: Notice. This notice announces a forthcoming meeting of a public advisory committee of the Food and Drug Administration (FDA). The meeting will be...

  10. 76 FR 65736 - Psychopharmacologic Drugs Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-24

    ... HUMAN SERVICES Food and Drug Administration Psychopharmacologic Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug Administration, HHS. ACTION: Notice. This notice announces a forthcoming meeting of a public advisory committee of the Food and Drug Administration (FDA). The meeting will be...

  11. Psychopharmacology in School-Based Mental Health Services.

    ERIC Educational Resources Information Center

    Del Mundo, Amor S.; Pumariega, Andres J.; Vance, Hubert R.

    1999-01-01

    Discusses issues regarding the use of a pharmacological approach to the treatment of children with serious emotional and mental disorders that interfere with learning. Addresses the current state of psychopharmacological treatment for diagnostic entities and behavioral symptomatology. Discusses the roles of the child, family, and health and…

  12. The cognitive and neural time course of empathy and sympathy: an electrical neuroimaging study on self-other interaction.

    PubMed

    Thirioux, B; Mercier, M R; Blanke, O; Berthoz, A

    2014-05-16

    Although extensively investigated in socio-cognitive neuroscience, empathy is difficult to study. The first difficulty originates in its multifaceted nature. According to the multidimensional model, empathy combines emotional, automatic (simulation), cognitive (mentalizing) and regulatory (executive functions) processes. Substantial functional magnetic resonance imaging (fMRI) data demonstrated that co-activations in the mirror neuron system (MNS) and mentalizing network (MENT) sustain this co-recruitment of so-called first- and second-person-like processes. Because of the poor temporal resolution of fMRI techniques, we currently lack evidence about the precise timing of the MNS-MENT combination. An important challenge is, thus, to disentangle how MNS and MENT dynamically work together along time in empathy. Moreover, the role of the executive functions in the MNS-MENT combination time course is still unknown. Second, empathy - feeling into - is closely related to sympathy - feeling with - and both phenomena are often conflated in experimental studies on intersubjectivity. In this electrical neuroimaging (EEG) pilot-study, we tested whether the egocentered vs. heterocentered visuo-spatial mechanisms respectively associated with sympathy and empathy differentially modulate the dynamic combination of the MNS-MENT activations in their respective neural time course. For that, we employed our newly developed behavioral paradigm assessing the visuo-spatial - but not emotional - features of empathy and sympathy. Using a data-driven approach, we report that empathy and sympathy are underlied by sequential activations in the MNS from the insula to the inferior frontal gyrus (IFG) between 63ms and 424ms. However, at 333-424ms, empathy triggered greater co-activations in the right IFG and dorsolateral prefrontal cortex (dlPFC) (executive functions). Linking together our present and prior (Thirioux et al., 2010) findings from the same dataset, we suggest that this greater

  13. Neuroimaging in epilepsy

    PubMed Central

    Bano, Shahina; Yadav, Sachchida Nand; Chaudhary, Vikas; Garga, Umesh Chandra

    2011-01-01

    Epilepsy is the most common neurological disease worldwide and is second only to stroke in causing neurological morbidity. Neuroimaging plays a very important role in the diagnosis and treatment of patients with epilepsy. This review article highlights the specific role of various imaging modalities in patients with epilepsy, and their practical applications in the management of epileptic patients. PMID:21977082

  14. Food addiction and neuroimaging.

    PubMed

    Zhang, Yi; von Deneen, Karen M; Tian, Jie; Gold, Mark S; Liu, Yijun

    2011-01-01

    Obesity has become a serious epidemic and one of the leading global health problems. However, much of the current debate has been fractious, and etiologies of obesity have been attributed to eating behavior (i.e. fast food consumption), personality, depression, addiction or genetics. One of the interesting new hypotheses for explaining the development of obesity involves a food addiction model, which suggests that food is not eaten as much for survival as pleasure and that hedonic overeating is relevant to both substance-related disorders and eating disorders. Accumulating evidence has shown that there are a number of shared neural and hormonal pathways as well as distinct differences in these pathways that may help researchers discover why certain individuals continue to overeat despite health and other consequences, and becomes more and more obese. Functional neuroimaging studies have further revealed that pleasant smelling, looking, and tasting food has reinforcing characteristics similar to drugs of abuse. Many of the brain changes reported for hedonic eating and obesity are also seen in various types of addictions. Most importantly, overeating and obesity may have an acquired drive similar to drug addiction with respect to motivation and incentive craving. In both cases, the desire and continued satisfaction occur after early and repeated exposure to stimuli. The acquired drive for eating food and relative weakness of the satiety signal would cause an imbalance between the drive and hunger/reward centers in the brain and their regulation. In the current paper, we first provide a summary of literature on food addition from eight different perspectives, and then we proposed a research paradigm that may allow screening of new pharmacological treatment on the basis of functional magnetic resonance imaging (fMRI).

  15. Trends in performance indicators of neuroimaging anatomy research publications: a bibliometric study of major neuroradiology journal output over four decades based on web of science database.

    PubMed

    Wing, Louise; Massoud, Tarik F

    2015-01-01

    Quantitative, qualitative, and innovative application of bibliometric research performance indicators to anatomy and radiology research and education can enhance cross-fertilization between the two disciplines. We aim to use these indicators to identify long-term trends in dissemination of publications in neuroimaging anatomy (including both productivity and citation rates), which has subjectively waned in prestige during recent years. We examined publications over the last 40 years in two neuroradiological journals, AJNR and Neuroradiology, and selected and categorized all neuroimaging anatomy research articles according to theme and type. We studied trends in their citation activity over time, and mathematically analyzed these trends for 1977, 1987, and 1997 publications. We created a novel metric, "citation half-life at 10 years postpublication" (CHL-10), and used this to examine trends in the skew of citation numbers for anatomy articles each year. We identified 367 anatomy articles amongst a total of 18,110 in these journals: 74.2% were original articles, with study of normal anatomy being the commonest theme (46.7%). We recorded a mean of 18.03 citations for each anatomy article, 35% higher than for general neuroradiology articles. Graphs summarizing the rise (upslope) in citation rates after publication revealed similar trends spanning two decades. CHL-10 trends demonstrated that more recently published anatomy articles were likely to take longer to reach peak citation rate. Bibliometric analysis suggests that anatomical research in neuroradiology is not languishing. This novel analytical approach can be applied to other aspects of neuroimaging research, and within other subspecialties in radiology and anatomy, and also to foster anatomical education.

  16. Structural Neuroimaging of Geriatric Depression

    PubMed Central

    Benjamin, Sophiya; Steffens, David C

    2013-01-01

    There is a large literature on the neuroanatomy of late-life depression which continues to grow with the discovery of novel structural imaging techniques along with innovative methods to analyze the images. Such advances have helped identify specific areas as well characteristic lesions in the brain and changes in the chemical composition in these regions that might be important in the pathophysiology of this complex disease. In this article we review the relevant findings by each structural neuroimaging technique. When validated across many studies, such findings can serve as neuroanatomic markers that can help generate rational hypotheses for future studies to further our understanding of geriatric depression. PMID:21536166

  17. Neuroimaging in Dementia

    PubMed Central

    Vitali, Paolo; Migliaccio, Raffaella; Agosta, Federica; Rosen, Howard J.; Geschwind, Michael D.

    2009-01-01

    Although dementia is a clinical diagnosis, neuroimaging often is crucial for proper assessment. Magnetic resonance imaging (MRI) and computed tomography (CT) may identify nondegenerative and potentially treatable causes of dementia. Recent neuroimaging advances, such as the Pittsburgh Compound-B (PIB) ligand for positron emission tomography imaging in Alzheimer’s disease, will improve our ability to differentiate among the neurodegenerative dementias. High-resolution volumetric MRI has increased the capacity to identify the various forms of the frontotemporal lobar degeneration spectrum and some forms of parkinsonism or cerebellar neurodegenerative disorders, such as corticobasal degeneration, progressive supranuclear palsy, multiple system atrophy, and spinocerebellar ataxias. In many cases, the specific pattern of cortical and subcortical abnormalities on MRI has diagnostic utility. Finally, among the new MRI methods, diffusion-weighted MRI can help in the early diagnosis of Creutzfeldt-Jakob disease. Although only clinical assessment can lead to a diagnosis of dementia, neuroimaging is clearly an invaluable tool for the clinician in the differential diagnosis. PMID:18843575

  18. Somatic treatments excluding psychopharmacology in obsessive- compulsive disorder: a review.

    PubMed

    Atmaca, Murad

    2013-06-01

    Somatic treatments other than psychotropic drugs are increasingly used in the patients with obsessive compulsive disorder (OCD), however there has been little systematic review of them. Therefore, the present review deals with a variety of somatic treatment methods excluding psychotropic drugs. A literature search was performed on the PubMed database from the beginning of 1980, to September 2012, for published English, Turkish and French-language articles of somatic treatment approaches (excluding psychopharmacological agents) in the treatment of OCD. The search was carried out by using some terms in detail. Afterwards, the obtained investigations on electroconvusive therapy (ECT), deep brain stimulation (DBS), neurosurgical methods and transcranial magnetic stimulation (TMS) were presented. Although psychopharmacological treatment and psychotherapeutic approaches are primary treatment modalities in the management of OCD, other somatic treatment options seem to be used as alternatives, especially for patients with treatmentresistant OCD. PMID:24032546

  19. Reflections on ethical issues in psychopharmacology: an American perspective.

    PubMed

    Gutheil, Thomas G

    2012-01-01

    Psychopharmacology has revolutionized psychiatric practice but raises a number of ethical issues. This review from an American perspective first describes ethics analyses and attempts to portray the ethical practitioner. Pressures that interfere with appropriate prescribing come from outside the prescriber and from within, including from insurers, other treatment staff and the prescriber's own will to act for the patient. Clinicians also face binds in which alternate choices seem to have merit and leave the prescriber feeling pulled in contradictory directions, frequently related to risk-benefit dilemmas. The ethics of psychopharmacology poses many questions that cannot yet be answered at the current state of the field. Pharmacology also seems to promote extremes of attitudes, such as "All such drugs are poisons" and the like. This review then provides some risk management principles, and concludes that such a review, though not comprehensive, may serve to open questions that are not always considered by clinicians.

  20. Somatic treatments excluding psychopharmacology in obsessive- compulsive disorder: a review.

    PubMed

    Atmaca, Murad

    2013-06-01

    Somatic treatments other than psychotropic drugs are increasingly used in the patients with obsessive compulsive disorder (OCD), however there has been little systematic review of them. Therefore, the present review deals with a variety of somatic treatment methods excluding psychotropic drugs. A literature search was performed on the PubMed database from the beginning of 1980, to September 2012, for published English, Turkish and French-language articles of somatic treatment approaches (excluding psychopharmacological agents) in the treatment of OCD. The search was carried out by using some terms in detail. Afterwards, the obtained investigations on electroconvusive therapy (ECT), deep brain stimulation (DBS), neurosurgical methods and transcranial magnetic stimulation (TMS) were presented. Although psychopharmacological treatment and psychotherapeutic approaches are primary treatment modalities in the management of OCD, other somatic treatment options seem to be used as alternatives, especially for patients with treatmentresistant OCD.

  1. The Kraepelinian dichotomy viewed by neuroimaging.

    PubMed

    d'Albis, Marc-Antoine; Houenou, Josselin

    2015-03-01

    The Kraepelinian dichotomy between schizophrenia (SZ) and bipolar disorder (BD) is being challenged by recent epidemiological and biological studies. We performed a comparative review of neuroimaging features in both conditions at several scales: whole-brain and regional volumes, brain activity, connectivity, and networks. Structural volumetric neuroimaging studies suggest a common pattern of volume decreases, but networks studies reveal a clearer distinction between BD and SZ with an altered connectivity generalized to all brain networks in SZ and restricted to limbic, paralimbic, and interhemispheric networks in BD.

  2. Turner Syndrome: Neuroimaging Findings--Structural and Functional

    ERIC Educational Resources Information Center

    Mullaney, Ronan; Murphy, Declan

    2009-01-01

    Neuroimaging studies of Turner syndrome can advance our understanding of the X chromosome in brain development, and the modulatory influence of endocrine factors. There is increasing evidence from neuroimaging studies that TX individuals have significant differences in the anatomy, function, and metabolism of a number of brain regions; including…

  3. Psychopharmacology of ADHD in pediatrics: current advances and issues

    PubMed Central

    Greydanus, Donald E; Nazeer, Ahsan; Patel, Dilip R

    2009-01-01

    Attention deficit hyperactivity disorder (ADHD) is a neurobehavioral developmental disorder found in 3% to 8% of children and adolescents. An important part of ADHD management is psychopharmacology, which includes stimulants, norepinephrine reuptake inhibitors, alpha-2 agonists, and antidepressants. Medications with the best evidence-based support for ADHD management are the stimulants methylphenidate and amphetamine. A number of newer, long-acting stimulants are now available and a number of new medications are considered that are under current research. PMID:19557112

  4. Brain Morphometry and the Neurobiology of Levodopa-Induced Dyskinesias: Current Knowledge and Future Potential for Translational Pre-Clinical Neuroimaging Studies

    PubMed Central

    Finlay, Clare J.; Duty, Susan; Vernon, Anthony C.

    2014-01-01

    Dopamine replacement therapy in the form of levodopa results in a significant proportion of patients with Parkinson’s disease developing debilitating dyskinesia. This significantly complicates further treatment and negatively impacts patient quality of life. A greater understanding of the neurobiological mechanisms underlying levodopa-induced dyskinesia (LID) is therefore crucial to develop new treatments to prevent or mitigate LID. Such investigations in humans are largely confined to assessment of neurochemical and cerebrovascular blood flow changes using positron emission tomography and functional magnetic resonance imaging. However, recent evidence suggests that LID is associated with specific morphological changes in the frontal cortex and midbrain, detectable by structural MRI and voxel-based morphometry. Current human neuroimaging methods however lack sufficient resolution to reveal the biological mechanism driving these morphological changes at the cellular level. In contrast, there is a wealth of literature from well-established rodent models of LID documenting detailed post-mortem cellular and molecular measurements. The combination therefore of advanced neuroimaging methods and rodent LID models offers an exciting opportunity to bridge these currently disparate areas of research. To highlight this opportunity, in this mini-review, we provide an overview of the current clinical evidence for morphological changes in the brain associated with LID and identify potential cellular mechanisms as suggested from human and animal studies. We then suggest a framework for combining small animal MRI imaging with rodent models of LID, which may provide important mechanistic insights into the neurobiology of LID. PMID:24971074

  5. Theory and method in the quantitative analysis of "impulsive choice" behaviour: implications for psychopharmacology.

    PubMed

    Ho, M Y; Mobini, S; Chiang, T J; Bradshaw, C M; Szabadi, E

    1999-10-01

    Impulsive choice refers to the selection of small immediate gains in preference to larger delayed gains, or the selection of large delayed penalties in preference to smaller immediate penalties. Current theoretical interpretations of impulsive choice are reviewed, and a synthesis of these ideas, the "multiplicative hyperbolic model of choice", is presented. The model assumes that the value of a positive reinforcer increases as a hyperbolic function of its size, and decreases as a hyperbolic function of its delay and the odds against its occurrence. Each hyperbolic function contains a single discounting parameter which quantifies the organism's sensitivity to the variable in question. The hyperbolic discounting functions combine multiplicatively to determine the overall value of the reinforcer. Equivalent functions are postulated to govern the (negative) value of aversive events, the net value of an outcome reflecting the algebraic sum of the positive and negative values. The model gives rise to a quantitative methodology for studying impulsive choice, based on a family of linear indifference (null) equations, which describe performance under conditions of indifference, when the values of the reinforcers are assumed to be equal. This methodology may be used to identify individual differences in sensitivity to the magnitude, delay and probability of reinforcement. The methodology is also suitable for the quantitative evaluation of the effects of some pharmacological interventions on discounting parameters. Recent psychopharmacological studies of impulsive choice are reviewed, and the utility of indifference equations for extending this work, and developing a quantitative psychopharmacology of impulsive choice is discussed.

  6. Neuroimaging of lipid storage disorders.

    PubMed

    Rieger, Deborah; Auerbach, Sarah; Robinson, Paul; Gropman, Andrea

    2013-01-01

    Lipid storage diseases, also known as the lipidoses, are a group of inherited metabolic disorders in which there is lipid accumulation in various cell types, including the central nervous system, because of the deficiency of a variety of enzymes. Over time, excessive storage can cause permanent cellular and tissue damage. The brain is particularly sensitive to lipid storage as the contents of the central nervous system must occupy uniform volume, and any increases in fluids or deposits will lead to pressure changes and interference with normal neurological function. In addition to primary lipid storage diseases, lysosomal storage diseases include the mucolipidoses (in which excessive amounts of lipids and carbohydrates are stored in the cells and tissues) and the mucopolysaccharidoses (in which abnormal glycosylated proteins cannot be broken down because of enzyme deficiency). Neurological dysfunction can be a manifestation of these conditions due to substrate deposition as well. This review will explore the modalities of neuroimaging that may have particular relevance to the study of the lipid storage disorder and their impact on elucidating aspects of brain function. First, the techniques will be reviewed. Next, the neuropathology of a few selected lipid storage disorders will be reviewed and the use of neuroimaging to define disease characteristics discussed in further detail. Examples of studies using these techniques will be discussed in the text.

  7. Advances in neuroimaging research of schizophrenia in China

    PubMed Central

    LIU, Dengtang; XU, Yifeng; JIANG, Kaida

    2014-01-01

    Summary Since Hounsfield’s first report about X-ray computed tomography (CT) in 1972, there has been substantial progress in the application of neuroimaging techniques to study the structure, function, and biochemistry of the brain. This review provides a summary of recent research in structural and functional neuroimaging of schizophrenia in China and four tables describing all of the relevant studies from mainland China. The first research report using neuroimaging techniques in China dates back to 1983, a study that reported encephalatrophy in 30% of individuals with schizophrenia. Functional neuroimaging research in China emerged in the 1990s and has undergone rapid development since. Recently, structural and functional brain networks has become a hot topic among China’s neuroimaging researchers. PMID:25317005

  8. Neuroimaging and plasticity in schizophrenia.

    PubMed

    Meyer-Lindenberg, Andreas; Tost, Heike

    2014-01-01

    Schizophrenia is a frequent and highly heritable brain disorder that typically manifests around or after puberty and has a fluctuating course. Multiple lines of evidence point to a neurodevelopmental origin of the illness and suggest that its (post) pubertal manifestation is related to genetic and environmental risk factors that interfere with the structural and functional reorganization of neural networks at this time. Longitudinal structural neuroimaging studies point to a progressive reduction in gray matter volume in many brain regions in schizophrenia. It has been proposed that these neuroimaging observations reflect an enduring disturbance of experience-dependent synaptic plasticity arising from developmental abnormalities in key neural circuits implicated in schizophrenia, including dorsolateral prefrontal cortex and hippocampal formation. Recent work has identified genetic variants linked to neural plasticity that are associated with changes in these circuits. Furthermore, non-invasive interventions such as transcranial magnetic stimulation have been shown to impact some of these systems-level intermediate phenotypes, suggesting a modifiability of these core pathophysiological processes of schizophrenia that may be exploited by therapy. PMID:23902983

  9. Neuroimaging and plasticity in schizophrenia.

    PubMed

    Meyer-Lindenberg, Andreas; Tost, Heike

    2014-01-01

    Schizophrenia is a frequent and highly heritable brain disorder that typically manifests around or after puberty and has a fluctuating course. Multiple lines of evidence point to a neurodevelopmental origin of the illness and suggest that its (post) pubertal manifestation is related to genetic and environmental risk factors that interfere with the structural and functional reorganization of neural networks at this time. Longitudinal structural neuroimaging studies point to a progressive reduction in gray matter volume in many brain regions in schizophrenia. It has been proposed that these neuroimaging observations reflect an enduring disturbance of experience-dependent synaptic plasticity arising from developmental abnormalities in key neural circuits implicated in schizophrenia, including dorsolateral prefrontal cortex and hippocampal formation. Recent work has identified genetic variants linked to neural plasticity that are associated with changes in these circuits. Furthermore, non-invasive interventions such as transcranial magnetic stimulation have been shown to impact some of these systems-level intermediate phenotypes, suggesting a modifiability of these core pathophysiological processes of schizophrenia that may be exploited by therapy.

  10. Neuroimaging of Cognition

    PubMed Central

    Dolan, R.J.

    2009-01-01

    Neuroimaging, particularly that based upon functional magnetic resonance (fMRI), has become a dominant tool in cognitive neuroscience. This review provides a personal and selective perspective on its past, present, and future. Two trends currently characterize the field that broadly reflect a pursuit of “where”- and “how”-type questions. The latter addresses basic mechanisms related to the expression of task-induced neural activity and is likely to be an increasingly important theme in the future. This trend entails an enhanced symbiosis among investigators pursuing similar questions in fields such as computational and theoretical neuroscience as well as through the detailed analysis of microcircuitry. PMID:18995825

  11. Neurobiological bases of reading comprehension: Insights from neuroimaging studies of word level and text level processing in skilled and impaired readers.

    PubMed

    Landi, Nicole; Frost, Stephen J; Menc, W Einar; Sandak, Rebecca; Pugh, Kenneth R

    2013-04-01

    For accurate reading comprehension, readers must first learn to map letters to their corresponding speech sounds and meaning and then they must string the meanings of many words together to form a representation of the text. Furthermore, readers must master the complexities involved in parsing the relevant syntactic and pragmatic information necessary for accurate interpretation. Failure in this process can occur at multiple levels and cognitive neuroscience has been helpful in identifying the underlying causes of success and failure in reading single words and in reading comprehension. In general, neurobiological studies of skilled reading comprehension indicate a highly overlapping language circuit for single word reading, reading comprehension and listening comprehension with largely quantitative differences in a number of reading and language related areas. This paper reviews relevant research from studies employing neuroimaging techniques to study reading with a focus on the relationship between reading skill, single word reading, and text comprehension.

  12. A Survey of School Psychologists' Knowledge and Training in Child Psychopharmacology

    ERIC Educational Resources Information Center

    Carlson, John S.; Demaray, Michelle Kilpatrick; Hunter-Oehmke, Shana

    2006-01-01

    A national sample of 320 school-based, practicing members of the National Association of School Psychologists provided information on (a) their caseloads receiving medications, (b) types of school psychopharmacology training opportunities available and perceptions of their current training in child psychopharmacology, and (c) information about…

  13. Assessment of Psychopharmacology on the American Board of Psychiatry and Neurology Examinations

    ERIC Educational Resources Information Center

    Juul, Dorthea; Winstead, Daniel K.; Sheiber, Stephen C.

    2005-01-01

    OBJECTIVE: To report the assessment of psychopharmacology on the certification and recertification exams in general psychiatry and in the subspecialties administered by the American Board of Psychiatry and Neurology (ABPN). METHODS: The ABPN's core competencies for psychiatrists were reviewed. The number of items addressing psychopharmacology or…

  14. Survey of Nationally Certified School Psychologists' Roles and Training in Psychopharmacology

    ERIC Educational Resources Information Center

    Shahidullah, Jeffrey D.; Carlson, John S.

    2014-01-01

    A randomly selected group of Nationally Certified School Psychologists (NCSPs; n = 817) were mailed the 42-item "School Psychopharmacology Roles and Training Evaluation" (SPRTE) which inquired about their caseloads, practice roles as proposed by DuPaul and Carlson ([DuPaul, G. J., 2005]), and prior training in psychopharmacology. A…

  15. In search of the trauma memory: a meta-analysis of functional neuroimaging studies of symptom provocation in posttraumatic stress disorder (PTSD).

    PubMed

    Sartory, Gudrun; Cwik, Jan; Knuppertz, Helge; Schürholt, Benjamin; Lebens, Morena; Seitz, Rüdiger J; Schulze, Ralf

    2013-01-01

    Notwithstanding some discrepancy between results from neuroimaging studies of symptom provocation in posttraumatic stress disorder (PTSD), there is broad agreement as to the neural circuit underlying this disorder. It is thought to be characterized by an exaggerated amygdalar and decreased medial prefrontal activation to which the elevated anxiety state and concomitant inadequate emotional regulation are attributed. However, the proposed circuit falls short of accounting for the main symptom, unique among anxiety disorders to PTSD, namely, reexperiencing the precipitating event in the form of recurrent, distressing images and recollections. Owing to the technical demands, neuroimaging studies are usually carried out with small sample sizes. A meta-analysis of their findings is more likely to cast light on the involved cortical areas. Coordinate-based meta-analyses employing ES-SDM (Effect Size Signed Differential Mapping) were carried out on 19 studies with 274 PTSD patients. Thirteen of the studies included 145 trauma-exposed control participants. Comparisons between reactions to trauma-related stimuli and a control condition and group comparison of reactions to the trauma-related stimuli were submitted to meta-analysis. Compared to controls and the neutral condition, PTSD patients showed significant activation of the mid-line retrosplenial cortex and precuneus in response to trauma-related stimuli. These midline areas have been implicated in self-referential processing and salient autobiographical memory. PTSD patients also evidenced hyperactivation of the pregenual/anterior cingulate gyrus and bilateral amygdala to trauma-relevant, compared to neutral, stimuli. Patients showed significantly less activation than controls in sensory association areas such as the bilateral temporal gyri and extrastriate area which may indicate that the patients' attention was diverted from the presented stimuli by being focused on the elicited trauma memory. Being involved in

  16. In Search of the Trauma Memory: A Meta-Analysis of Functional Neuroimaging Studies of Symptom Provocation in Posttraumatic Stress Disorder (PTSD)

    PubMed Central

    Sartory, Gudrun; Cwik, Jan; Knuppertz, Helge; Schürholt, Benjamin; Lebens, Morena; Seitz, Rüdiger J.; Schulze, Ralf

    2013-01-01

    Notwithstanding some discrepancy between results from neuroimaging studies of symptom provocation in posttraumatic stress disorder (PTSD), there is broad agreement as to the neural circuit underlying this disorder. It is thought to be characterized by an exaggerated amygdalar and decreased medial prefrontal activation to which the elevated anxiety state and concomitant inadequate emotional regulation are attributed. However, the proposed circuit falls short of accounting for the main symptom, unique among anxiety disorders to PTSD, namely, reexperiencing the precipitating event in the form of recurrent, distressing images and recollections. Owing to the technical demands, neuroimaging studies are usually carried out with small sample sizes. A meta-analysis of their findings is more likely to cast light on the involved cortical areas. Coordinate-based meta-analyses employing ES-SDM (Effect Size Signed Differential Mapping) were carried out on 19 studies with 274 PTSD patients. Thirteen of the studies included 145 trauma-exposed control participants. Comparisons between reactions to trauma-related stimuli and a control condition and group comparison of reactions to the trauma-related stimuli were submitted to meta-analysis. Compared to controls and the neutral condition, PTSD patients showed significant activation of the mid-line retrosplenial cortex and precuneus in response to trauma-related stimuli. These midline areas have been implicated in self-referential processing and salient autobiographical memory. PTSD patients also evidenced hyperactivation of the pregenual/anterior cingulate gyrus and bilateral amygdala to trauma-relevant, compared to neutral, stimuli. Patients showed significantly less activation than controls in sensory association areas such as the bilateral temporal gyri and extrastriate area which may indicate that the patients’ attention was diverted from the presented stimuli by being focused on the elicited trauma memory. Being involved in

  17. Neuropathology of mild traumatic brain injury: relationship to neuroimaging findings.

    PubMed

    Bigler, Erin D; Maxwell, William L

    2012-06-01

    Neuroimaging identified abnormalities associated with traumatic brain injury (TBI) are but gross indicators that reflect underlying trauma-induced neuropathology at the cellular level. This review examines how cellular pathology relates to neuroimaging findings with the objective of more closely relating how neuroimaging findings reveal underlying neuropathology. Throughout this review an attempt will be made to relate what is directly known from post-mortem microscopic and gross anatomical studies of TBI of all severity levels to the types of lesions and abnormalities observed in contemporary neuroimaging of TBI, with an emphasis on mild traumatic brain injury (mTBI). However, it is impossible to discuss the neuropathology of mTBI without discussing what occurs with more severe injury and viewing pathological changes on some continuum from the mildest to the most severe. Historical milestones in understanding the neuropathology of mTBI are reviewed along with implications for future directions in the examination of neuroimaging and neuropathological correlates of TBI.

  18. Neuroimaging and Fetal Alcohol Spectrum Disorders

    ERIC Educational Resources Information Center

    Norman, Andria L.; Crocker, Nicole; Mattson, Sarah N.; Riley, Edward P.

    2009-01-01

    The detrimental effects of prenatal alcohol exposure on the developing brain include structural brain anomalies as well as cognitive and behavioral deficits. Initial neuroimaging studies of fetal alcohol spectrum disorders (FASD) using magnetic resonance imaging (MRI) confirmed previous autopsy reports of overall reduction in brain volume and…

  19. Stress regulation in the central nervous system: evidence from structural and functional neuroimaging studies in human populations - 2008 Curt Richter Award Winner.

    PubMed

    Pruessner, Jens C; Dedovic, Katarina; Pruessner, Marita; Lord, Catherine; Buss, Claudia; Collins, Louis; Dagher, Alain; Lupien, Sonia J

    2010-01-01

    The metabolic effects of stress are known to have significant health effects in both humans and animals. Most of these effects are mediated by the major stress hormonal axis in the body, the hypothalamic-pituitary-adrenal (HPA) axis. Within the central nervous system (CNS), the hippocampus, the amygdala and the prefrontal cortex as part of the limbic system are believed to play important roles in the regulation of the HPA axis. With the advent of structural and functional neuroimaging techniques, the role of different CNS structures in the regulation of the HPA axis can be investigated more directly. In the current paper, we summarize the findings obtained in our laboratory in the context of stress and HPA axis regulation. Our laboratory has developed and contributed to the development of manual and automated segmentation protocols from structural magnetic resonance imaging (MRI) scans for assessment of hippocampus, amygdala, medial temporal lobe and frontal lobe structures. Employing these protocols, we could show significant age-related changes in HC volumes, which were different between men and women, with pre-menopausal women showing smaller age-related volume decline compared to men. We could recently extent these findings by showing how estrogen therapy after menopause leads to higher volumes in the HC. Investigating possible neurotoxicity effects of steroids, we showed effects of long-term steroid exposure on HC volumes, and investigated variability of HC volumes in relation to HPA axis regulation in young and elderly populations. Here, we were able to follow-up from non-imaging studies showing that subjects low in self-esteem have higher cortisol stress responses, and the HC emerged as the critical link between these variables. Recently, we have made two more important discoveries with regard to HC volume: we could show that HC volume is as variable in young as it is in older adults, in subjects ranging in age from 18 to 80 years. Also, we have linked birth

  20. Stress regulation in the central nervous system: evidence from structural and functional neuroimaging studies in human populations - 2008 Curt Richter Award Winner.

    PubMed

    Pruessner, Jens C; Dedovic, Katarina; Pruessner, Marita; Lord, Catherine; Buss, Claudia; Collins, Louis; Dagher, Alain; Lupien, Sonia J

    2010-01-01

    The metabolic effects of stress are known to have significant health effects in both humans and animals. Most of these effects are mediated by the major stress hormonal axis in the body, the hypothalamic-pituitary-adrenal (HPA) axis. Within the central nervous system (CNS), the hippocampus, the amygdala and the prefrontal cortex as part of the limbic system are believed to play important roles in the regulation of the HPA axis. With the advent of structural and functional neuroimaging techniques, the role of different CNS structures in the regulation of the HPA axis can be investigated more directly. In the current paper, we summarize the findings obtained in our laboratory in the context of stress and HPA axis regulation. Our laboratory has developed and contributed to the development of manual and automated segmentation protocols from structural magnetic resonance imaging (MRI) scans for assessment of hippocampus, amygdala, medial temporal lobe and frontal lobe structures. Employing these protocols, we could show significant age-related changes in HC volumes, which were different between men and women, with pre-menopausal women showing smaller age-related volume decline compared to men. We could recently extent these findings by showing how estrogen therapy after menopause leads to higher volumes in the HC. Investigating possible neurotoxicity effects of steroids, we showed effects of long-term steroid exposure on HC volumes, and investigated variability of HC volumes in relation to HPA axis regulation in young and elderly populations. Here, we were able to follow-up from non-imaging studies showing that subjects low in self-esteem have higher cortisol stress responses, and the HC emerged as the critical link between these variables. Recently, we have made two more important discoveries with regard to HC volume: we could show that HC volume is as variable in young as it is in older adults, in subjects ranging in age from 18 to 80 years. Also, we have linked birth

  1. Systems Biology, Neuroimaging, Neuropsychology, Neuroconnectivity and Traumatic Brain Injury

    PubMed Central

    Bigler, Erin D.

    2016-01-01

    The patient who sustains a traumatic brain injury (TBI) typically undergoes neuroimaging studies, usually in the form of computed tomography (CT) and magnetic resonance imaging (MRI). In most cases the neuroimaging findings are clinically assessed with descriptive statements that provide qualitative information about the presence/absence of visually identifiable abnormalities; though little if any of the potential information in a scan is analyzed in any quantitative manner, except in research settings. Fortunately, major advances have been made, especially during the last decade, in regards to image quantification techniques, especially those that involve automated image analysis methods. This review argues that a systems biology approach to understanding quantitative neuroimaging findings in TBI provides an appropriate framework for better utilizing the information derived from quantitative neuroimaging and its relation with neuropsychological outcome. Different image analysis methods are reviewed in an attempt to integrate quantitative neuroimaging methods with neuropsychological outcome measures and to illustrate how different neuroimaging techniques tap different aspects of TBI-related neuropathology. Likewise, how different neuropathologies may relate to neuropsychological outcome is explored by examining how damage influences brain connectivity and neural networks. Emphasis is placed on the dynamic changes that occur following TBI and how best to capture those pathologies via different neuroimaging methods. However, traditional clinical neuropsychological techniques are not well suited for interpretation based on contemporary and advanced neuroimaging methods and network analyses. Significant improvements need to be made in the cognitive and behavioral assessment of the brain injured individual to better interface with advances in neuroimaging-based network analyses. By viewing both neuroimaging and neuropsychological processes within a systems biology

  2. Systems Biology, Neuroimaging, Neuropsychology, Neuroconnectivity and Traumatic Brain Injury.

    PubMed

    Bigler, Erin D

    2016-01-01

    The patient who sustains a traumatic brain injury (TBI) typically undergoes neuroimaging studies, usually in the form of computed tomography (CT) and magnetic resonance imaging (MRI). In most cases the neuroimaging findings are clinically assessed with descriptive statements that provide qualitative information about the presence/absence of visually identifiable abnormalities; though little if any of the potential information in a scan is analyzed in any quantitative manner, except in research settings. Fortunately, major advances have been made, especially during the last decade, in regards to image quantification techniques, especially those that involve automated image analysis methods. This review argues that a systems biology approach to understanding quantitative neuroimaging findings in TBI provides an appropriate framework for better utilizing the information derived from quantitative neuroimaging and its relation with neuropsychological outcome. Different image analysis methods are reviewed in an attempt to integrate quantitative neuroimaging methods with neuropsychological outcome measures and to illustrate how different neuroimaging techniques tap different aspects of TBI-related neuropathology. Likewise, how different neuropathologies may relate to neuropsychological outcome is explored by examining how damage influences brain connectivity and neural networks. Emphasis is placed on the dynamic changes that occur following TBI and how best to capture those pathologies via different neuroimaging methods. However, traditional clinical neuropsychological techniques are not well suited for interpretation based on contemporary and advanced neuroimaging methods and network analyses. Significant improvements need to be made in the cognitive and behavioral assessment of the brain injured individual to better interface with advances in neuroimaging-based network analyses. By viewing both neuroimaging and neuropsychological processes within a systems biology

  3. Systems Biology, Neuroimaging, Neuropsychology, Neuroconnectivity and Traumatic Brain Injury.

    PubMed

    Bigler, Erin D

    2016-01-01

    The patient who sustains a traumatic brain injury (TBI) typically undergoes neuroimaging studies, usually in the form of computed tomography (CT) and magnetic resonance imaging (MRI). In most cases the neuroimaging findings are clinically assessed with descriptive statements that provide qualitative information about the presence/absence of visually identifiable abnormalities; though little if any of the potential information in a scan is analyzed in any quantitative manner, except in research settings. Fortunately, major advances have been made, especially during the last decade, in regards to image quantification techniques, especially those that involve automated image analysis methods. This review argues that a systems biology approach to understanding quantitative neuroimaging findings in TBI provides an appropriate framework for better utilizing the information derived from quantitative neuroimaging and its relation with neuropsychological outcome. Different image analysis methods are reviewed in an attempt to integrate quantitative neuroimaging methods with neuropsychological outcome measures and to illustrate how different neuroimaging techniques tap different aspects of TBI-related neuropathology. Likewise, how different neuropathologies may relate to neuropsychological outcome is explored by examining how damage influences brain connectivity and neural networks. Emphasis is placed on the dynamic changes that occur following TBI and how best to capture those pathologies via different neuroimaging methods. However, traditional clinical neuropsychological techniques are not well suited for interpretation based on contemporary and advanced neuroimaging methods and network analyses. Significant improvements need to be made in the cognitive and behavioral assessment of the brain injured individual to better interface with advances in neuroimaging-based network analyses. By viewing both neuroimaging and neuropsychological processes within a systems biology

  4. Name that neurotransmitter: using music to teach psychopharmacology concepts.

    PubMed

    Hermanns, Melinda; Lilly, Mary LuAnne; Wilson, Kathy; Russell, Nathan Andrew

    2012-09-01

    The purpose of this article is to discuss the use of music (i.e., two original songs, "Neurotransmitter Twitter" and "Parkinson's Shuffle") to teach aspects of psychopharmacology to students in the course Psychiatric/Mental Health Nursing. Songs were incorporated in both the clinical and classroom settings. This innovative teaching method allowed students the opportunity to revisit the information through multiple exposures of the content for reinforcement and enhancement of student learning in a fun, creative approach. Brain-based research will be discussed, along with the process of development.

  5. Psychopharmacologic interventions for repetitive behaviors in autism spectrum disorders.

    PubMed

    Soorya, Latha; Kiarashi, Jessica; Hollander, Eric

    2008-10-01

    This article provides an overview of psychopharmacological treatments for repetitive behaviors in autism spectrum disorders (ASDs) in the context of current conceptualizations of this understudied core symptom domain. The available literature on the widely used selective serotonin reuptake inhibitors (SSRIs), including fluvoxamine, fluoxetine, citalopram, escitalopram, and sertraline, are reviewed. In addition to SSRIs, research on effects of other pharmacologic interventions such as divalproex sodium, risperidone, and the neuropeptide oxytocin are presented. To date, data are mixed for interventions commonly prescribed in clinical practice and suggest several areas of investigation in advancing research on the medication management of repetitive behaviors.

  6. Psychopharmacology in Medical Practice—The Benefits and the Risks

    PubMed Central

    Sack, Robert L.; Shore, James H.

    1981-01-01

    Psychopharmacology has become a major approach to treatment in primary medical care. However, combined psychiatric and medical illness can give rise to some challenging diagnostic problems. Furthermore, drug treatment of patients with such illnesses can involve important drug-disease interactions and drug-drug interactions. One should keep in mind the issues that arise when an emotionally troubled patient would benefit from a psychotropic drug but a concurrent medical illness complicates this treatment. An awareness of both the medical and psychiatric issues involved may make successful treatment possible. PMID:7269559

  7. Knowledge-guided robust MRI brain extraction for diverse large-scale neuroimaging studies on humans and non-human primates.

    PubMed

    Wang, Yaping; Nie, Jingxin; Yap, Pew-Thian; Li, Gang; Shi, Feng; Geng, Xiujuan; Guo, Lei; Shen, Dinggang

    2014-01-01

    Accurate and robust brain extraction is a critical step in most neuroimaging analysis pipelines. In particular, for the large-scale multi-site neuroimaging studies involving a significant number of subjects with diverse age and diagnostic groups, accurate and robust extraction of the brain automatically and consistently is highly desirable. In this paper, we introduce population-specific probability maps to guide the brain extraction of diverse subject groups, including both healthy and diseased adult human populations, both developing and aging human populations, as well as non-human primates. Specifically, the proposed method combines an atlas-based approach, for coarse skull-stripping, with a deformable-surface-based approach that is guided by local intensity information and population-specific prior information learned from a set of real brain images for more localized refinement. Comprehensive quantitative evaluations were performed on the diverse large-scale populations of ADNI dataset with over 800 subjects (55 ∼ 90 years of age, multi-site, various diagnosis groups), OASIS dataset with over 400 subjects (18 ∼ 96 years of age, wide age range, various diagnosis groups), and NIH pediatrics dataset with 150 subjects (5 ∼ 18 years of age, multi-site, wide age range as a complementary age group to the adult dataset). The results demonstrate that our method consistently yields the best overall results across almost the entire human life span, with only a single set of parameters. To demonstrate its capability to work on non-human primates, the proposed method is further evaluated using a rhesus macaque dataset with 20 subjects. Quantitative comparisons with popularly used state-of-the-art methods, including BET, Two-pass BET, BET-B, BSE, HWA, ROBEX and AFNI, demonstrate that the proposed method performs favorably with superior performance on all testing datasets, indicating its robustness and effectiveness.

  8. Cost of treatment as a placebo effect in psychopharmacology: importance in the context of generic drugs.

    PubMed

    Andrade, Chittaranjan

    2015-04-01

    Nonspecific factors have long been known in both psychotherapy and psychopharmacology. In recent years, 2 studies showed that placebo benefits were lower when the treated subjects were told that the placebo, presented as an active treatment, cost less. One of these studies had assessed motor and other outcomes in Parkinson disease patients; the other had assessed analgesia in paid, healthy volunteers to whom electric shocks were administered. The implication of the finding that lower treatment cost may diminish treatment gains is that patients who receive generic medicines may have lower expectations and may consequently derive less placebo-related benefit. This could be of concern in psychiatric disorders that are characterized by a large placebo response. Although the 2 "placebo cost" studies cannot be easily generalized to clinical and especially psychiatric contexts, clinicans should consider offering reassurance to patients receiving generic drugs that cost, per se, has no bearing on treatment-related benefit.

  9. Neural modeling and functional neuroimaging.

    PubMed

    Horwitz, B; Sporns, O

    1994-01-01

    Two research areas that so far have had little interaction with one another are functional neuroimaging and computational neuroscience. The application of computational models and techniques to the inherently rich data sets generated by "standard" neurophysiological methods has proven useful for interpreting these data sets and for providing predictions and hypotheses for further experiments. We suggest that both theory- and data-driven computational modeling of neuronal systems can help to interpret data generated by functional neuroimaging methods, especially those used with human subjects. In this article, we point out four sets of questions, addressable by computational neuroscientists whose answere would be of value and interest to those who perform functional neuroimaging. The first set consist of determining the neurobiological substrate of the signals measured by functional neuroimaging. The second set concerns developing systems-level models of functional neuroimaging data. The third set of questions involves integrating functional neuroimaging data across modalities, with a particular emphasis on relating electromagnetic with hemodynamic data. The last set asks how one can relate systems-level models to those at the neuronal and neural ensemble levels. We feel that there are ample reasons to link functional neuroimaging and neural modeling, and that combining the results from the two disciplines will result in furthering our understanding of the central nervous system. © 1994 Wiley-Liss, Inc. This Article is a US Goverment work and, as such, is in the public domain in the United State of America.

  10. The EU paediatric regulation: effects on paediatric psychopharmacology in Europe.

    PubMed

    Stoyanova-Beninska, Violeta V; Wohlfarth, Tamar; Isaac, Maria; Kalverdijk, Luuk J; van den Berg, Henk; Gispen-de Wied, Christine

    2011-08-01

    Child and adolescent psychiatry is a relatively young field and the recognition, classification, and treatment of disorders in children and adolescents lag behind those in adults. In recent years there is an increasing awareness of the differences between children and adults in psychopathology and pharmacology. Related to this new paediatric regulations have been introduced. This article reviews the regulatory and legislative measures that were adopted in the EU in 2007 and the subsequent impact of these measures on the field of paediatric psychopharmacology. The consequences of the paediatric regulation in the EU are reflected in several domains: regulatory, research aimed at drug development and clinical practices. In the regulatory domain, the consequences include: new paediatric indications, inclusion of special (class) warnings, specification of dose regimens, and information on safety specific to children and adolescents, and development of new medicinal formulations. The paediatric regulation leads to timely development of paediatric friendly formulations and better quality of the clinical evidence. In clinical practices, an increased awareness of the uniqueness of paediatric pharmacology is emerging among medical professionals, and subsequent improvement of medical care (i.e. correct doses, appropriate formulation, monitoring for expected adverse events). In addition, clinical guidelines will have to be revised more frequently in order to integrate the recently acquired knowledge. The new regulations stimulate transparency and discussions between academia, pharmaceutical industry, and regulators. The purpose is to optimize clinical research and obtain evidence for paediatric psychopharmacology, thereby providing adequate support for treatment.

  11. The myeloarchitectonic studies on the human cerebral cortex of the Vogt-Vogt school, and their significance for the interpretation of functional neuroimaging data.

    PubMed

    Nieuwenhuys, Rudolf

    2013-03-01

    The human cerebral cortex contains numerous myelinated fibres, many of which are concentrated in tangentially organized layers and radially oriented bundles. The spatial organization of these fibres is by no means homogeneous throughout the cortex. Local differences in the thickness and compactness of the fibre layers, and in the length and strength of the radial bundles renders it possible to recognize areas with a different myeloarchitecture. The neuroanatomical subdiscipline aimed at the identification and delineation of such areas is known as myeloarchitectonics. There is another, closely related neuroanatomical subdiscipline, named cytoarchitectonics. The aims and scope of this subdiscipline are the same as those of myeloarchitectonics, viz. parcellation. However, this subdiscipline focuses, as its name implies, on the size, shape and arrangement of the neuronal cell bodies in the cortex, rather than on the myelinated fibres. At the beginning of the twentieth century, two young investigators, Oskar and Cécile Vogt founded a centre for brain research, aimed to be devoted to the study of the (cyto + myelo) architecture of the cerebral cortex. The study of the cytoarchitecture was entrusted to their collaborator Korbinian Brodmann, who gained great fame with the creation of a cytoarchitectonic map of the human cerebral cortex. Here, we focus on the myeloarchitectonic studies on the cerebral cortex of the Vogt-Vogt school, because these studies are nearly forgotten in the present attempts to localize functional activations and to interprete findings in modern neuroimaging studies. Following introductory sections on the principles of myeloarchitectonics, and on the achievements of three myeloarchitectonic pioneers who did not belong to the Vogt-Vogt school, the pertinent literature is reviewed in some detail. These studies allow the conclusion that the human neocortex contains about 185 myeloarchitectonic areas, 70 frontal, 6 insular, 30 parietal, 19 occipital

  12. Neuroimaging schizophrenia: a picture is worth a thousand words, but is it saying anything important?

    PubMed

    Ahmed, Anthony O; Buckley, Peter F; Hanna, Mona

    2013-03-01

    Schizophrenia is characterized by neurostructural and neurofunctional aberrations that have now been demonstrated through neuroimaging research. The article reviews recent studies that have attempted to use neuroimaging to understand the relation between neurological abnormalities and aspects of the phenomenology of schizophrenia. Neuroimaging studies show that neurostructural and neurofunctional abnormalities are present in people with schizophrenia and their close relatives and may represent putative endophenotypes. Neuroimaging phenotypes predict the emergence of psychosis in individuals classified as high-risk. Neuroimaging studies have linked structural and functional abnormalities to symptoms; and progressive structural changes to clinical course and functional outcome. Neuroimaging has successfully indexed the neurotoxic and neuroprotective effects of schizophrenia treatments. Pictures can inform about aspects of the phenomenology of schizophrenia including etiology, onset, symptoms, clinical course, and treatment effects but this assertion is tempered by the scientific and practical limitations of neuroimaging. PMID:23397252

  13. Neuroimaging and Drug Taking in Primates Abbreviated title: Neuroimaging and Drug taking

    PubMed Central

    Murnane, Kevin S.; Howell, Leonard L.

    2011-01-01

    Rationale Neuroimaging techniques have led to significant advances in our understanding of the neurobiology of drug-taking and the treatment of drug addiction in humans. Neuroimaging approaches provide a powerful translational approach that can link findings from humans and laboratory animals. Objective This review describes the utility of neuroimaging toward understanding the neurobiological basis of drug taking, and documents the close concordance that can be achieved among neuroimaging, neurochemical and behavioral endpoints. Results The study of drug interactions with dopamine and serotonin transporters in vivo has identified pharmacological mechanisms of action associated with the abuse liability of stimulants. Neuroimaging has identified the extended limbic system, including the prefrontal cortex and anterior cingulate, as important neuronal circuitry that underlies drug taking. The ability to conduct within-subject, longitudinal assessments of brain chemistry and neuronal function has enhanced our efforts to document long-term changes in dopamine D2 receptors, monoamine transporters, and prefrontal metabolism due to chronic drug exposure. Dysregulation of dopamine function and brain metabolic changes in areas involved in reward circuitry have been linked to drug-taking behavior, cognitive impairment and treatment response. Conclusions Experimental designs employing neuroimaging should consider well-documented determinants of drug taking, including pharmacokinetic considerations, subject history and environmental variables. Methodological issues to consider include limited molecular probes, lack of neurochemical specificity in brain activation studies, and the potential influence of anesthetics in animal studies. Nevertheless, these integrative approaches should have important implications for understanding drug-taking behavior and the treatment of drug addiction. PMID:21360099

  14. Psychopharmacological treatments in persons with dual diagnosis of psychiatric disorders and developmental disabilities

    PubMed Central

    Antochi, R; Stavrakaki, C; Emery, P

    2003-01-01

    People with developmental disabilities are at considerable risk for the development of comorbid psychiatric conditions. Psychopharmacological treatments may have a crucial role in a multidisciplinary and multimodal approach to the management of psychopathology in this population. Psychiatric illnesses that are particularly amenable include mood disorders, anxiety disorders, schizophrenia, and attention deficit hyperactivity disorders (ADHDs) and antidepressants, mood stabilisers, anxiolytics, antipsychotics, and stimulants should be considered, respectively. ADHD may also respond to α2-agonists. Psychotropic agents such as ß-antagonists can target aggressive, self injurious, and stereotypical behaviours and opioid antagonists may be helpful in treating self injurious behaviour and stereotypy. Selective serotonin reuptake inhibitors, newer anticonvulsants, and atypical neuroleptics are preferred when treating psychiatric disorders among people with developmental disabilities. This paper will review the major studies of pharmacological treatment of mental illness in individuals with developmental disabilities. PMID:12697912

  15. Herbal medicine for depression, anxiety and insomnia: a review of psychopharmacology and clinical evidence.

    PubMed

    Sarris, Jerome; Panossian, Alexander; Schweitzer, Isaac; Stough, Con; Scholey, Andrew

    2011-12-01

    Research in the area of herbal psychopharmacology has increased markedly over the past decades. To date however, a comprehensive review of herbal antidepressant, anxiolytic and hypnotic psychopharmacology and applications in depression, anxiety and insomnia has been absent. A search of MEDLINE (PubMed), CINAHL, PsycINFO, and the Cochrane Library databases was conducted (up to February 21st 2011) on commonly used psychotropic herbal medicines. A review of the literature was conducted to ascertain mechanisms of action of these botanicals, in addition to a systematic review of controlled clinical trials for treatment of mood, anxiety and sleep disorders, which are common comorbid psychiatric disorders. Specific emphasis was given to emerging phytomedicines. Analysis of evidence levels was conducted, as were effect sizes (Cohen's d) where data were available. Results provided evidence of a range of neurochemical, endocrinological, and epigenetic effects for 21 individual phytomedicines, which are detailed in this paper. Sixty six controlled studies were located involving eleven phytomedicines. Several of these provide a high level of evidence, such as Hypericum perforatum for major depression, and Piper methysticum for anxiety disorders. Several human clinical trials provide preliminary positive evidence of antidepressant effects (Echium amoenum, Crocus sativus, and Rhodiola rosea) and anxiolytic activity (Matricaria recutita, Ginkgo biloba, Passiflora incanata, E. amoenum, and Scutellaria lateriflora). Caution should however be taken when interpreting the results as many studies have not been replicated. Several herbal medicines with in vitro and in vivo evidence are currently unexplored in human studies, and along with use of emerging genetic technologies "herbomics", are areas of potential future research. PMID:21601431

  16. Pediatric Psychopharmacology for Prepubertal Internalizing Disorders

    ERIC Educational Resources Information Center

    Kubiszyn, Tom; Carlson, John S.; DeHay, Tamara

    2005-01-01

    Evidence-based studies of drug, psychosocial and combined treatments for prepubertal internalizing disorders (depression, obsessive-compulsive disorder [OCD], and non-OCD anxiety) were reviewed. No age effects were found. Although no combined studies met evidence-based criteria, efficacious and possibly efficacious psychosocial and pharmacological…

  17. STRUCTURAL AND CONNECTOMIC NEUROIMAGING FOR THE PERSONALIZED STUDY OF LONGITUDINAL ALTERATIONS IN CORTICAL SHAPE, THICKNESS AND CONNECTIVITY AFTER TRAUMATIC BRAIN INJURY

    PubMed Central

    Irimia, A.; Goh, S.-Y. M.; Torgerson, C. M.; Vespa, P. M.; Van Horn, J. D.

    2014-01-01

    The integration of longitudinal brain structure analysis with neurointensive care strategies continues to be a substantial difficulty facing the traumatic brain injury (TBI) research community. For patient-tailored case analysis, it remains challenging to establish how lesion profile modulates longitudinal changes in cortical structure and connectivity, as well as how these changes lead to behavioral, cognitive and neural dysfunction. Additionally, despite the clinical potential of morphometric and connectomic studies, few analytic tools are available for their study in TBI. Here we review the state of the art in structural and connectomic neuroimaging for the study of TBI and illustrate a set of recently-developed, patient-tailored approaches for the study of TBI-related brain atrophy and alterations in morphometry as well as inter-regional connectivity. The ability of such techniques to quantify how injury modulates longitudinal changes in cortical shape, structure and circuitry is highlighted. Quantitative approaches such as these can be used to assess and monitor the clinical condition and evolution of TBI victims, and can have substantial translational impact, especially when used in conjunction with measures of neuropsychological function. PMID:24844173

  18. Neuroimaging, Genetics and the Treatment of Nicotine Addiction

    PubMed Central

    Ray, Riju; Loughead, James; Wang, Ze; Detre, John; Yang, Edward; Gur, Ruben; Lerman, Caryn

    2008-01-01

    Advances in neuroimaging and genomics provide an unprecedented opportunity to accelerate medication development for nicotine dependence and other addictions. Neuroimaging studies have begun to elucidate the functional neuroanatomy and neurochemistry underlying effects of nicotine and nicotine abstinence. In parallel, genetic studies, including both candidate gene and genome-wide association approaches, are identifying key neurobiological targets and pathways important in addiction to nicotine. To date, only a few neuroimaging studies have explored effects of nicotine or abstinence on brain activity as a function of genotype. Most analyses of genotype are retrospective, resulting in small sample sizes for testing effects of the minor alleles for candidate genes. The purpose of this review is to provide an outline of the work in neuroimaging, genetics, and nicotine dependence, and to explore the potential for increased integration of these approaches to improve nicotine dependence treatment. PMID:18599130

  19. Fetal Alcohol Spectrum Disorders: Recent Neuroimaging Findings.

    PubMed

    Moore, Eileen M; Migliorini, Robyn; Infante, M Alejandra; Riley, Edward P

    2014-09-01

    Since the identification of Fetal Alcohol Syndrome over 40 years ago, much has been learned about the detrimental effects of prenatal alcohol exposure on the developing brain. This review highlights recent neuroimaging studies, within the context of previous work. Structural magnetic resonance imaging has described morphological differences in the brain and their relationships to cognitive deficits and measures of facial dysmorphology. Diffusion tensor imaging has elaborated on the relationship between white matter microstructure and behavior. Atypical neuromaturation across childhood and adolescence has been observed in longitudinal neuroimaging studies. Functional imaging has revealed differences in neural activation patterns underlying sensory processing, cognition and behavioral deficits. A recent functional connectivity analysis demonstrates reductions in global network efficiency. Despite this progress much remains unknown about the impact of prenatal alcohol exposure on the brain, and continued research efforts are essential. PMID:25346882

  20. Post-traumatic stress influences the brain even in the absence of symptoms: A systematic, quantitative meta-analysis of neuroimaging studies.

    PubMed

    Stark, E A; Parsons, C E; Van Hartevelt, T J; Charquero-Ballester, M; McManners, H; Ehlers, A; Stein, A; Kringelbach, M L

    2015-09-01

    Stress affects brain function, and may lead to post-traumatic stress disorder (PTSD). Considerable empirical data for the neurobiology of PTSD has been derived from neuroimaging studies, although findings have proven inconsistent. We used an activation likelihood estimation analysis to explore differences in brain activity between adults with and without PTSD in response to affective stimuli. We separated studies by type of control group: trauma-exposed and trauma-naïve. This revealed distinct patterns of differences in functional activity. Compared to trauma-exposed controls, regions of the basal ganglia were differentially active in PTSD; whereas the comparison with trauma-naïve controls revealed differential involvement in the right anterior insula, precuneus, cingulate and orbitofrontal cortices known to be involved in emotional regulation. Changes in activity in the amygdala and parahippocampal cortex distinguished PTSD from both control groups. Results suggest that trauma has a measurable, enduring effect upon the functional dynamics of the brain, even in individuals who experience trauma but do not develop PTSD. These findings contribute to the understanding of whole-brain network activity following trauma, and its transition to clinical PTSD.

  1. Post-traumatic stress influences the brain even in the absence of symptoms: A systematic, quantitative meta-analysis of neuroimaging studies.

    PubMed

    Stark, E A; Parsons, C E; Van Hartevelt, T J; Charquero-Ballester, M; McManners, H; Ehlers, A; Stein, A; Kringelbach, M L

    2015-09-01

    Stress affects brain function, and may lead to post-traumatic stress disorder (PTSD). Considerable empirical data for the neurobiology of PTSD has been derived from neuroimaging studies, although findings have proven inconsistent. We used an activation likelihood estimation analysis to explore differences in brain activity between adults with and without PTSD in response to affective stimuli. We separated studies by type of control group: trauma-exposed and trauma-naïve. This revealed distinct patterns of differences in functional activity. Compared to trauma-exposed controls, regions of the basal ganglia were differentially active in PTSD; whereas the comparison with trauma-naïve controls revealed differential involvement in the right anterior insula, precuneus, cingulate and orbitofrontal cortices known to be involved in emotional regulation. Changes in activity in the amygdala and parahippocampal cortex distinguished PTSD from both control groups. Results suggest that trauma has a measurable, enduring effect upon the functional dynamics of the brain, even in individuals who experience trauma but do not develop PTSD. These findings contribute to the understanding of whole-brain network activity following trauma, and its transition to clinical PTSD. PMID:26192104

  2. Neuroimaging findings in treatment-resistant schizophrenia: a systematic review

    PubMed Central

    Nakajima, Shinichiro; Takeuchi, Hiroyoshi; Plitman, Eric; Fervaha, Gagan; Gerretsen, Philip; Caravaggio, Fernando; Chung, Jun Ku; Iwata, Yusuke; Remington, Gary; Graff-Guerrero, Ariel

    2015-01-01

    Background Recent developments in neuroimaging have advanced understanding biological mechanisms underlying schizophrenia. However, neuroimaging correlates of treatment-resistant schizophrenia (TRS) and superior effects of clozapine on TRS remain unclear. Methods Systematic search was performed to identify neuroimaging characteristics unique to TRS and ultra-resistant schizophrenia (i.e. clozapine-resistant [URS]), and clozapine's efficacy in TRS using Embase, Medline, and PsychInfo. Search terms included (schizophreni*) and (resistan* OR refractory OR clozapine) and (ASL OR CT OR DTI OR FMRI OR MRI OR MRS OR NIRS OR PET OR SPECT). Results 25 neuroimaging studies have investigated TRS and effects of clozapine. Only 5 studies have compared TRS and non-TRS, collectively providing no replicated neuroimaging finding specific to TRS. Studies comparing TRS and healthy controls suggest hypometabolism in the prefrontal cortex, hypermetabolism in the basal ganglia, and structural anomalies in the corpus callosum contribute to TRS. Clozapine may increase prefrontal hypoactivation in TRS although this was not related to clinical improvement; in contrast, evidence has suggested a link between clozapine efficacy and decreased metabolism in the basal ganglia and thalamus. Conclusion Existing literature does not elucidate neuroimaging correlates specific to TRS or URS, which, if present, might also shed light on clozapine's efficacy in TRS. This said, leads from other lines of investigation, including the glutamatergic system can prove useful in guiding future neuroimaging studies focused on, in particular, the frontocortical-basal ganglia-thalamic circuits. Critical to the success of this work will be precise subtyping of study subjects based on treatment response/nonresponse and the use of multimodal neuroimaging. PMID:25684554

  3. Legal and Ethical Issues in School Psychologists' Participation in Psychopharmacological Interventions with Children.

    ERIC Educational Resources Information Center

    DeMers, Stephen T.

    1994-01-01

    Discusses expanded role for psychologists and school psychologists ranging from increased knowledge about psychopharmacology to collaborative practice with prescribing physician to obtaining limited independent prescription privileges. Explores legal issues associated with such role expansion: credential concerns, malpractice liability, and record…

  4. Clinical psychopharmacology and medical malpractice: the four Ds.

    PubMed

    Preskorn, Sheldon H

    2014-09-01

    The four Ds of medical malpractice are duty, dereliction (negligence or deviation from the standard of care), damages, and direct cause. Each of these four elements must be proved to have been present, based on a preponderance of the evidence, for malpractice to be found. The principles of psychopharmacology and the information in the package insert for a drug often play a central role in deciding whether dereliction and direct cause for damages were or were not applicable in a particular case. The author uses data from two cases in which patients were inadvertently fatally poisoned by medication to illustrate two ways in which such information can affect the outcome. In one case, the clinician should have known that he was giving a toxic dose to the patient, whereas that was not true in the other case.

  5. Pediatric psychopharmacology outside the U.S.A.

    PubMed

    Simeon, J; Utech, C; Simeon, S; Itil, T M

    1974-07-01

    To obtain information on the use of psychotropic drugs children outside the U.S.A., 251 questionnaires were mailed to institutions in 53 countries. Seventy-three responses from 34 countries were analyzed. The percentage of patients receiving drugs under the care of these respondents ranged from 0 to 100% (mean 39%). A total of 56 different drugs were selected for eleven psychiatric disorders. No regional differences were apparent, except for infrequently used drugs. Respondents differed widely in the number of drugs selected and maximum dosages. The most popular drugs used in most disorders were diazepam, thioridazine, chlorpromazine, chlordiazepoxide, imipramine, amitriptyline, haloperidol and methylphenidate. Highest agreements among respondents were for imipramine in enuresis, diazepam in anxiety, chlorpromazine in psychosis and thioridazine in hyperkinesis. The results of this survey illustrate important problems in interpreting cross-cultural data in pediatric psychopharmacology, and recommendations for future research are made.

  6. Sports concussions and aging: a neuroimaging investigation.

    PubMed

    Tremblay, Sebastien; De Beaumont, Louis; Henry, Luke C; Boulanger, Yvan; Evans, Alan C; Bourgouin, Pierre; Poirier, Judes; Théoret, Hugo; Lassonde, Maryse

    2013-05-01

    Recent epidemiological and experimental studies suggest a link between cognitive decline in late adulthood and sports concussions sustained in early adulthood. In order to provide the first in vivo neuroanatomical evidence of this relation, the present study probes the neuroimaging profile of former athletes with concussions in relation to cognition. Former athletes who sustained their last sports concussion >3 decades prior to testing were compared with those with no history of traumatic brain injury. Participants underwent quantitative neuroimaging (optimized voxel-based morphometry [VBM], hippocampal volume, and cortical thickness), proton magnetic resonance spectroscopy ((1)H MRS; medial temporal lobes and prefrontal cortices), and neuropsychological testing, and they were genotyped for APOE polymorphisms. Relative to controls, former athletes with concussions exhibited: 1) Abnormal enlargement of the lateral ventricles, 2) cortical thinning in regions more vulnerable to the aging process, 3) various neurometabolic anomalies found across regions of interest, 4) episodic memory and verbal fluency decline. The cognitive deficits correlated with neuroimaging findings in concussed participants. This study unveiled brain anomalies in otherwise healthy former athletes with concussions and associated those manifestations to the long-term detrimental effects of sports concussion on cognitive function. Findings from this study highlight patterns of decline often associated with abnormal aging.

  7. The Roles of Left Versus Right Anterior Temporal Lobes in Conceptual Knowledge: An ALE Meta-analysis of 97 Functional Neuroimaging Studies

    PubMed Central

    Rice, Grace E.; Lambon Ralph, Matthew A.; Hoffman, Paul

    2015-01-01

    The roles of the right and left anterior temporal lobes (ATLs) in conceptual knowledge are a source of debate between 4 conflicting accounts. Possible ATL specializations include: (1) Processing of verbal versus non-verbal inputs; (2) the involvement of word retrieval; and (3) the social content of the stimuli. Conversely, the “hub-and-spoke” account holds that both ATLs form a bilateral functionally unified system. Using activation likelihood estimation (ALE) to compare the probability of left and right ATL activation, we analyzed 97 functional neuroimaging studies of conceptual knowledge, organized according to the predictions of the three specialized hypotheses. The primary result was that ATL activation was predominately bilateral and highly overlapping for all stimulus types. Secondary to this bilateral representation, there were subtle gradations both between and within the ATLs. Activations were more likely to be left lateralized when the input was a written word or when word retrieval was required. These data are best accommodated by a graded version of the hub-and-spoke account, whereby representation of conceptual knowledge is supported through bilateral yet graded connectivity between the ATLs and various modality-specific sensory, motor, and limbic cortices. PMID:25771223

  8. The Roles of Left Versus Right Anterior Temporal Lobes in Conceptual Knowledge: An ALE Meta-analysis of 97 Functional Neuroimaging Studies.

    PubMed

    Rice, Grace E; Lambon Ralph, Matthew A; Hoffman, Paul

    2015-11-01

    The roles of the right and left anterior temporal lobes (ATLs) in conceptual knowledge are a source of debate between 4 conflicting accounts. Possible ATL specializations include: (1) Processing of verbal versus non-verbal inputs; (2) the involvement of word retrieval; and (3) the social content of the stimuli. Conversely, the "hub-and-spoke" account holds that both ATLs form a bilateral functionally unified system. Using activation likelihood estimation (ALE) to compare the probability of left and right ATL activation, we analyzed 97 functional neuroimaging studies of conceptual knowledge, organized according to the predictions of the three specialized hypotheses. The primary result was that ATL activation was predominately bilateral and highly overlapping for all stimulus types. Secondary to this bilateral representation, there were subtle gradations both between and within the ATLs. Activations were more likely to be left lateralized when the input was a written word or when word retrieval was required. These data are best accommodated by a graded version of the hub-and-spoke account, whereby representation of conceptual knowledge is supported through bilateral yet graded connectivity between the ATLs and various modality-specific sensory, motor, and limbic cortices.

  9. PET neuroimaging studies of [18F]CABS13 in a double transgenic mouse model of Alzheimer’s disease and non-human primates

    PubMed Central

    Liang, Steven H.; Holland, Jason P.; Stephenson, Nickeisha A.; Kassenbrock, Alina; Rotstein, Benjamin H.; Daignault, Cory P.; Lewis, Rebecca; Collier, Lee; Hooker, Jacob M.; Vasdev, Neil

    2016-01-01

    Fluorine-18 labeled 2-fluoro-8-hydroxyquinoline ([18F]CABS13) is a promising positron emission tomography (PET) radiopharmaceutical based on a metal chelator developed to probe the “metal hypothesis of Alzheimer’s disease”. Herein, a practical radiosynthesis of [18F]CABS13 was achieved by radiofluorination followed by deprotection of an O-benzyloxymethyl group. Automated production and formulation of [18F]CABS13 resulted in 19 ± 5% uncorrected radiochemical yield, relative to starting [18F]fluoride, with ≥95% chemical and radiochemical purities, and high specific activity (>2.5 Ci/μmol) within 80 minutes. Temporal PET neuroimaging studies were carried out in female transgenic B6C3- Tg(APPswe,PSEN1dE9)85Dbo/J (APP/PS1) and age-matched wild-type (WT) B6C3F1/J control mice at 3, 7 and 10 months of age. [18F]CABS13 showed an overall higher uptake and retention of radioactivity in the central nervous system of APP/PS1 mice versus WT mice with increasing age. However, PET/magnetic resonance imaging in normal non-human primates revealed that the tracer had low uptake in the brain and rapid formation of a hydrophilic radiometabolite. Identification of more metabolically stable 18F-hydroxyquinolines that can be readily accessed by the radiochemical strategy presented herein is underway. PMID:25776827

  10. Genetic influence of apolipoprotein E4 genotype on hippocampal morphometry: An N = 725 surface-based Alzheimer's disease neuroimaging initiative study.

    PubMed

    Shi, Jie; Leporé, Natasha; Gutman, Boris A; Thompson, Paul M; Baxter, Leslie C; Caselli, Richard J; Wang, Yalin

    2014-08-01

    The apolipoprotein E (APOE) e4 allele is the most prevalent genetic risk factor for Alzheimer's disease (AD). Hippocampal volumes are generally smaller in AD patients carrying the e4 allele compared to e4 noncarriers. Here we examined the effect of APOE e4 on hippocampal morphometry in a large imaging database-the Alzheimer's Disease Neuroimaging Initiative (ADNI). We automatically segmented and constructed hippocampal surfaces from the baseline MR images of 725 subjects with known APOE genotype information including 167 with AD, 354 with mild cognitive impairment (MCI), and 204 normal controls. High-order correspondences between hippocampal surfaces were enforced across subjects with a novel inverse consistent surface fluid registration method. Multivariate statistics consisting of multivariate tensor-based morphometry (mTBM) and radial distance were computed for surface deformation analysis. Using Hotelling's T(2) test, we found significant morphological deformation in APOE e4 carriers relative to noncarriers in the entire cohort as well as in the nondemented (pooled MCI and control) subjects, affecting the left hippocampus more than the right, and this effect was more pronounced in e4 homozygotes than heterozygotes. Our findings are consistent with previous studies that showed e4 carriers exhibit accelerated hippocampal atrophy; we extend these findings to a novel measure of hippocampal morphometry. Hippocampal morphometry has significant potential as an imaging biomarker of early stage AD.

  11. Terminology development towards harmonizing multiple clinical neuroimaging research repositories

    PubMed Central

    Turner, Jessica A.; Pasquerello, Danielle; Turner, Matthew D.; Keator, David B.; Alpert, Kathryn; King, Margaret; Landis, Drew; Calhoun, Vince D.; Potkin, Steven G.; Tallis, Marcelo; Ambite, Jose Luis; Wang, Lei

    2015-01-01

    Data sharing and mediation across disparate neuroimaging repositories requires extensive effort to ensure that the different domains of data types are referred to by commonly agreed upon terms. Within the SchizConnect project, which enables querying across decentralized databases of neuroimaging, clinical, and cognitive data from various studies of schizophrenia, we developed a model for each data domain, identified common usable terms that could be agreed upon across the repositories, and linked them to standard ontological terms where possible. We had the goal of facilitating both the current user experience in querying and future automated computations and reasoning regarding the data. We found that existing terminologies are incomplete for these purposes, even with the history of neuroimaging data sharing in the field; and we provide a model for efforts focused on querying multiple clinical neuroimaging repositories. PMID:26688838

  12. Brave New World versus Island--utopian and dystopian views on psychopharmacology.

    PubMed

    Schermer, M H N

    2007-06-01

    Aldous Huxley's Brave New World is a famous dystopia, frequently called upon in public discussions about new biotechnology. It is less well known that 30 years later Huxley also wrote a utopian novel, called Island. This paper will discuss both novels focussing especially on the role of psychopharmacological substances. If we see fiction as a way of imagining what the world could look like, then what can we learn from Huxley's novels about psychopharmacology and how does that relate to the discussion in the ethical and philosophical literature on this subject? The paper argues that in the current ethical discussion the dystopian vision on psychopharmacology is dominant, but that a comparison between Brave New World and Island shows that a more utopian view is possible as well. This is illustrated by a discussion of the issue of psychopharmacology and authenticity. The second part of the paper draws some further conclusions for the ethical debate on psychopharmacology and human enhancement, by comparing the novels not only with each other, but also with our present reality. It is claimed that the debate should not get stuck in an opposition of dystopian and utopian views, but should address important issues that demand attention in our real world: those of evaluation and governance of enhancing psychopharmacological substances in democratic, pluralistic societies.

  13. Neuropsychiatric deep brain stimulation for translational neuroimaging.

    PubMed

    Höflich, Anna; Savli, Markus; Comasco, Erika; Moser, Ulrike; Novak, Klaus; Kasper, Siegfried; Lanzenberger, Rupert

    2013-10-01

    From a neuroimaging point of view, deep brain stimulation (DBS) in psychiatric disorders represents a unique source of information to probe results gained in functional, structural and molecular neuroimaging studies in vivo. However, the implementation has, up to now, been restricted by the heterogeneity of the data reported in DBS studies. The aim of the present study was therefore to provide a comprehensive and standardized database of currently used DBS targets in selected psychiatric disorders (obsessive-compulsive disorder (OCD), treatment-resistant depression (TRD), Gilles de la Tourette syndrome (GTS)) to enable topological comparisons between neuroimaging results and stimulation areas. A systematic literature research was performed and all peer-reviewed publications until the year 2012 were included. Literature research yielded a total of 84 peer-reviewed studies including about 296 psychiatric patients. The individual stimulation data of 37 of these studies meeting the inclusion criteria which included a total of 202 patients (63 OCD, 89 TRD, 50 GTS) was translated into MNI stereotactic space with respect to AC origin in order to identify key targets. The created database can be used to compare DBS target areas in MNI stereotactic coordinates with: 1) activation patterns in functional brain imaging (fMRI, phfMRI, PET, MET, EEG); 2) brain connectivity data (e.g., MR-based DTI/tractography, functional and effective connectivity); 3) quantitative molecular distribution data (e.g., neuroreceptor PET, post-mortem neuroreceptor mapping); 4) structural data (e.g., VBM for neuroplastic changes). Vice versa, the structural, functional and molecular data may provide a rationale to define new DBS targets and adjust/fine-tune currently used targets in DBS based on this overview in stereotactic coordinates. Furthermore, the availability of DBS data in stereotactic space may facilitate the investigation and interpretation of treatment effects and side effect of DBS by

  14. Practical management of heterogeneous neuroimaging metadata by global neuroimaging data repositories.

    PubMed

    Neu, Scott C; Crawford, Karen L; Toga, Arthur W

    2012-01-01

    Rapidly evolving neuroimaging techniques are producing unprecedented quantities of digital data at the same time that many research studies are evolving into global, multi-disciplinary collaborations between geographically distributed scientists. While networked computers have made it almost trivial to transmit data across long distances, collecting and analyzing this data requires extensive metadata if the data is to be maximally shared. Though it is typically straightforward to encode text and numerical values into files and send content between different locations, it is often difficult to attach context and implicit assumptions to the content. As the number of and geographic separation between data contributors grows to national and global scales, the heterogeneity of the collected metadata increases and conformance to a single standardization becomes implausible. Neuroimaging data repositories must then not only accumulate data but must also consolidate disparate metadata into an integrated view. In this article, using specific examples from our experiences, we demonstrate how standardization alone cannot achieve full integration of neuroimaging data from multiple heterogeneous sources and why a fundamental change in the architecture of neuroimaging data repositories is needed instead. PMID:22470336

  15. Traumatic brain injury, neuroimaging, and neurodegeneration

    PubMed Central

    Bigler, Erin D.

    2012-01-01

    Depending on severity, traumatic brain injury (TBI) induces immediate neuropathological effects that in the mildest form may be transient but as severity increases results in neural damage and degeneration. The first phase of neural degeneration is explainable by the primary acute and secondary neuropathological effects initiated by the injury; however, neuroimaging studies demonstrate a prolonged period of pathological changes that progressively occur even during the chronic phase. This review examines how neuroimaging may be used in TBI to understand (1) the dynamic changes that occur in brain development relevant to understanding the effects of TBI and how these relate to developmental stage when the brain is injured, (2) how TBI interferes with age-typical brain development and the effects of aging thereafter, and (3) how TBI results in greater frontotemporolimbic damage, results in cerebral atrophy, and is more disruptive to white matter neural connectivity. Neuroimaging quantification in TBI demonstrates degenerative effects from brain injury over time. An adverse synergistic influence of TBI with aging may predispose the brain injured individual for the development of neuropsychiatric and neurodegenerative disorders long after surviving the brain injury. PMID:23964217

  16. Traumatic brain injury, neuroimaging, and neurodegeneration.

    PubMed

    Bigler, Erin D

    2013-01-01

    Depending on severity, traumatic brain injury (TBI) induces immediate neuropathological effects that in the mildest form may be transient but as severity increases results in neural damage and degeneration. The first phase of neural degeneration is explainable by the primary acute and secondary neuropathological effects initiated by the injury; however, neuroimaging studies demonstrate a prolonged period of pathological changes that progressively occur even during the chronic phase. This review examines how neuroimaging may be used in TBI to understand (1) the dynamic changes that occur in brain development relevant to understanding the effects of TBI and how these relate to developmental stage when the brain is injured, (2) how TBI interferes with age-typical brain development and the effects of aging thereafter, and (3) how TBI results in greater frontotemporolimbic damage, results in cerebral atrophy, and is more disruptive to white matter neural connectivity. Neuroimaging quantification in TBI demonstrates degenerative effects from brain injury over time. An adverse synergistic influence of TBI with aging may predispose the brain injured individual for the development of neuropsychiatric and neurodegenerative disorders long after surviving the brain injury.

  17. A multimodal approach to investigate biomarkers for psychosis in a clinical setting: the integrative neuroimaging studies in schizophrenia targeting for early intervention and prevention (IN-STEP) project.

    PubMed

    Koike, Shinsuke; Takano, Yosuke; Iwashiro, Norichika; Satomura, Yoshihiro; Suga, Motomu; Nagai, Tatsuya; Natsubori, Tatsunobu; Tada, Mariko; Nishimura, Yukika; Yamasaki, Syudo; Takizawa, Ryu; Yahata, Noriaki; Araki, Tsuyoshi; Yamasue, Hidenori; Kasai, Kiyoto

    2013-01-01

    Longitudinal clinical investigations and biological measurements have determined not only progressive brain volumetric and functional changes especially around the onset of psychosis but also the abnormality of developmental pathways based on gene-environment interaction model. However, these studies have contributed little to clinical decisions on their diagnosis and therapeutic choices because of subtle differences between patients and healthy controls. A multi-modal approach may resolve this limitation and is favorable to explore the pathophysiology of psychosis. The integrative neuroimaging studies for schizophrenia targeting early intervention and prevention (IN-STEP) is a research project aimed at exploring the pathophysiological features of the onset of psychosis and investigating possible predictive biomarkers for the clinical treatment of psychosis. Since 2008, we have adopted blood sampling, neurocognitive batteries, neurophysiological assessment, structural imaging, and functional imaging longitudinally for help-seeking ultra-high-risk (UHR) individuals and patients with first-episode psychosis (FEP). Here, we intend to introduce the IN-STEP research study protocol and present preliminary clinical findings. Thirty-seven UHR individuals and 30 patients with FEP participated in this study. Six months later, there was no difference in objective and subjective scores between the groups, which suggests that young people having symptoms and functional deficits should be cared for regardless of their history of psychosis according to their clinical stages. The rate of transition to psychosis was 7.1%, 8.0%, and 35.3% (at 6, 12, and 24months, respectively). Through this research project, we expect to clarify the pathophysiological features around the onset of psychosis and improve the prognosis of psychosis through clinical application. PMID:23219075

  18. Human Neuroimaging as a “Big Data” Science

    PubMed Central

    Van Horn, John Darrell; Toga, Arthur W.

    2013-01-01

    The maturation of in vivo neuroimaging has lead to incredible quantities of digital information about the human brain. While much is made of the data deluge in science, neuroimaging represents the leading edge of this onslaught of “big data”. A range of neuroimaging databasing approaches has streamlined the transmission, storage, and dissemination of data from such brain imaging studies. Yet few, if any, common solutions exist to support the science of neuroimaging. In this article, we discuss how modern neuroimaging research represents a mutifactorial and broad ranging data challenge, involving the growing size of the data being acquired; sociologial and logistical sharing issues; infrastructural challenges for multi-site, multi-datatype archiving; and the means by which to explore and mine these data. As neuroimaging advances further, e.g. aging, genetics, and age-related disease, new vision is needed to manage and process this information while marshalling of these resources into novel results. Thus, “big data” can become “big” brain science. PMID:24113873

  19. Neuropathologic assessment of participants in two multi-center longitudinal observational studies: the Alzheimer Disease Neuroimaging Initiative (ADNI) and the Dominantly Inherited Alzheimer Network (DIAN).

    PubMed

    Cairns, Nigel J; Perrin, Richard J; Franklin, Erin E; Carter, Deborah; Vincent, Benjamin; Xie, Mingqiang; Bateman, Randall J; Benzinger, Tammie; Friedrichsen, Karl; Brooks, William S; Halliday, Glenda M; McLean, Catriona; Ghetti, Bernardino; Morris, John C

    2015-08-01

    It has been hypothesized that the relatively rare autosomal dominant Alzheimer disease (ADAD) may be a useful model of the more frequent, sporadic, late-onset AD (LOAD). Individuals with ADAD have a predictable age at onset and the biomarker profile of ADAD participants in the preclinical stage may be used to predict disease progression and clinical onset. However, the extent to which the pathogenesis and neuropathology of ADAD overlaps with that of LOAD is equivocal. To address this uncertainty, two multicenter longitudinal observational studies, the Alzheimer Disease Neuroimaging Initiative (ADNI) and the Dominantly Inherited Alzheimer Network (DIAN), leveraged the expertise and resources of the existing Knight Alzheimer Disease Research Center (ADRC) at Washington University School of Medicine, St. Louis, Missouri, USA, to establish a Neuropathology Core (NPC). The ADNI/DIAN-NPC is systematically examining the brains of all participants who come to autopsy at the 59 ADNI sites in the USA and Canada and the 14 DIAN sites in the USA (eight), Australia (three), UK (one) and Germany (two). By 2014, 41 ADNI and 24 DIAN autopsies (involving nine participants and 15 family members) had been performed. The autopsy rate in the ADNI cohort in the most recent year was 93% (total since NPC inception: 70%). In summary, the ADNI/DIAN NPC has implemented a standard protocol for all sites to solicit permission for brain autopsy and to send brain tissue to the NPC for a standardized, uniform and state-of-the-art neuropathologic assessment. The benefit to ADNI and DIAN of the implementation of the NPC is very clear. The NPC provides final "gold standard" neuropathological diagnoses and data against which the antecedent observations and measurements of ADNI and DIAN can be compared.

  20. Brain vs Behavior: An Effect Size Comparison of Neuroimaging and Cognitive Studies of Genetic Risk for Schizophrenia

    PubMed Central

    Rose, Emma Jane; Donohoe, Gary

    2013-01-01

    Genetic variants associated with increased risk for schizophrenia (SZ) are hypothesized to be more penetrant at the level of brain structure and function than at the level of behavior. However, to date the relative sensitivity of imaging vs cognitive measures of these variants has not been quantified. We considered effect sizes associated with cognitive and imaging studies of 9 robust SZ risk genes (DAOA, DISC1, DTNBP1, NRG1, RGS4, NRGN, CACNA1C, TCF4, and ZNF804A) published between January 2005–November 2011. Summary data was used to calculate estimates of effect size for each significant finding. The mean effect size for each study was categorized as small, medium, or large and the relative frequency of each category was compared between modalities and across genes. Random effects meta-analysis was used to consider the impact of experimental methodology on effect size. Imaging studies reported mostly medium or large effects, whereas cognitive investigations commonly reported small effects. Meta-analysis confirmed that imaging studies were associated with larger effects. Effect size estimates were negatively correlated with sample size but did not differ as a function of gene nor imaging modality. These observations support the notion that SZ risk variants show larger effects, and hence greater penetrance, when characterized using indices of brain structure and function than when indexed by cognitive measures. However, it remains to be established whether this holds true for individual risk variants, imaging modalities, or cognitive functions, and how such effects may be mediated by a relationship with sample size and other aspects of experimental variability. PMID:22499782

  1. Brain vs behavior: an effect size comparison of neuroimaging and cognitive studies of genetic risk for schizophrenia.

    PubMed

    Rose, Emma Jane; Donohoe, Gary

    2013-05-01

    Genetic variants associated with increased risk for schizophrenia (SZ) are hypothesized to be more penetrant at the level of brain structure and function than at the level of behavior. However, to date the relative sensitivity of imaging vs cognitive measures of these variants has not been quantified. We considered effect sizes associated with cognitive and imaging studies of 9 robust SZ risk genes (DAOA, DISC1, DTNBP1, NRG1, RGS4, NRGN, CACNA1C, TCF4, and ZNF804A) published between January 2005-November 2011. Summary data was used to calculate estimates of effect size for each significant finding. The mean effect size for each study was categorized as small, medium, or large and the relative frequency of each category was compared between modalities and across genes. Random effects meta-analysis was used to consider the impact of experimental methodology on effect size. Imaging studies reported mostly medium or large effects, whereas cognitive investigations commonly reported small effects. Meta-analysis confirmed that imaging studies were associated with larger effects. Effect size estimates were negatively correlated with sample size but did not differ as a function of gene nor imaging modality. These observations support the notion that SZ risk variants show larger effects, and hence greater penetrance, when characterized using indices of brain structure and function than when indexed by cognitive measures. However, it remains to be established whether this holds true for individual risk variants, imaging modalities, or cognitive functions, and how such effects may be mediated by a relationship with sample size and other aspects of experimental variability. PMID:22499782

  2. The study of social cognition with neuroimaging methods as a means to explore future directions of deficit evaluation in schizophrenia?

    PubMed

    Brunet-Gouet, Eric; Achim, Amélie M; Vistoli, Damien; Passerieux, Christine; Hardy-Baylé, Marie-Christine; Jackson, Philip L

    2011-11-30

    This article discusses the important advances in a recent field of science dealing with the brain processes implicated in understanding social situations and interacting with others. Many behavioral studies on schizophrenia have shown the impairment of these processes and their preferential relation with disorganization and negative syndromes. Brain imaging is a powerful method to identify brain systems participating in these processes in healthy subjects and will be used increasingly to study mental disorders such as schizophrenia. A few preliminary studies have opened this field of research and allowed for the drawing of some limited conclusions. We emphasize the importance of developing an integrated neurocognitive framework to account for the multifaceted nature of social cognition deficits in schizophrenia. Inspired by contemporary models of empathy and social cognition that identify different components such as shared representation, mentalizing, self/other distinction, we show how schizophrenia affects these components at the behavioral and functional levels. We also outline the interest of this model to understand putative abnormalities of contextual integration within the area of mentalization. Finally, we discuss how specialized measures of brain functions during the performance of these precisely defined mental processes might be used as outcome predictors. PMID:21185085

  3. Shared and nonshared neural networks of cognitive and affective theory-of-mind: a neuroimaging study using cartoon picture stories.

    PubMed

    Schlaffke, Lara; Lissek, Silke; Lenz, Melanie; Juckel, Georg; Schultz, Thomas; Tegenthoff, Martin; Schmidt-Wilcke, Tobias; Brüne, Martin

    2015-01-01

    Theory of mind (ToM) refers to the ability to represent one's own and others' cognitive and affective mental states. Recent imaging studies have aimed to disentangle the neural networks involved in cognitive as opposed to affective ToM, based on clinical observations that the two can functionally dissociate. Due to large differences in stimulus material and task complexity findings are, however, inconclusive. Here, we investigated the neural correlates of cognitive and affective ToM in psychologically healthy male participants (n = 39) using functional brain imaging, whereby the same set of stimuli was presented for all conditions (affective, cognitive and control), but associated with different questions prompting either a cognitive or affective ToM inference. Direct contrasts of cognitive versus affective ToM showed that cognitive ToM recruited the precuneus and cuneus, as well as regions in the temporal lobes bilaterally. Affective ToM, in contrast, involved a neural network comprising prefrontal cortical structures, as well as smaller regions in the posterior cingulate cortex and the basal ganglia. Notably, these results were complemented by a multivariate pattern analysis (leave one study subject out), yielding a classifier with an accuracy rate of more than 85% in distinguishing between the two ToM-conditions. The regions contributing most to successful classification corresponded to those found in the univariate analyses. The study contributes to the differentiation of neural patterns involved in the representation of cognitive and affective mental states of others.

  4. Vulnerability for new episodes in recurrent major depressive disorder: protocol for the longitudinal DELTA-neuroimaging cohort study

    PubMed Central

    Mocking, Roel J T; Figueroa, Caroline A; Rive, Maria M; Geugies, Hanneke; Servaas, Michelle N; Assies, Johanna; Koeter, Maarten W J; Vaz, Frédéric M; Wichers, Marieke; van Straalen, Jan P; de Raedt, Rudi; Bockting, Claudi L H; Harmer, Catherine J; Schene, Aart H; Ruhé, Henricus G

    2016-01-01

    Introduction Major depressive disorder (MDD) is widely prevalent and severely disabling, mainly due to its recurrent nature. A better understanding of the mechanisms underlying MDD-recurrence may help to identify high-risk patients and to improve the preventive treatment they need. MDD-recurrence has been considered from various levels of perspective including symptomatology, affective neuropsychology, brain circuitry and endocrinology/metabolism. However, MDD-recurrence understanding is limited, because these perspectives have been studied mainly in isolation, cross-sectionally in depressed patients. Therefore, we aim at improving MDD-recurrence understanding by studying these four selected perspectives in combination and prospectively during remission. Methods and analysis In a cohort design, we will include 60 remitted, unipolar, unmedicated, recurrent MDD-participants (35–65 years) with ≥2 MDD-episodes. At baseline, we will compare the MDD-participants with 40 matched controls. Subsequently, we will follow-up the MDD-participants for 2.5 years while monitoring recurrences. We will invite participants with a recurrence to repeat baseline measurements, together with matched remitted MDD-participants. Measurements include questionnaires, sad mood-induction, lifestyle/diet, 3 T structural (T1-weighted and diffusion tensor imaging) and blood-oxygen-level-dependent functional MRI (fMRI) and MR-spectroscopy. fMRI focusses on resting state, reward/aversive-related learning and emotion regulation. With affective neuropsychological tasks we will test emotional processing. Moreover, we will assess endocrinology (salivary hypothalamic-pituitary-adrenal-axis cortisol and dehydroepiandrosterone-sulfate) and metabolism (metabolomics including polyunsaturated fatty acids), and store blood for, for example, inflammation analyses, genomics and proteomics. Finally, we will perform repeated momentary daily assessments using experience sampling methods at baseline. We

  5. Manganese neurotoxicity: new perspectives from behavioral, neuroimaging, and neuropathological studies in humans and non-human primates

    PubMed Central

    Guilarte, Tomás R.

    2013-01-01

    Manganese (Mn) is an essential metal and has important physiological functions for human health. However, exposure to excess levels of Mn in occupational settings or from environmental sources has been associated with a neurological syndrome comprising cognitive deficits, neuropsychological abnormalities and parkinsonism. Historically, studies on the effects of Mn in humans and experimental animals have been concerned with effects on the basal ganglia and the dopaminergic system as it relates to movement abnormalities. However, emerging studies are beginning to provide significant evidence of Mn effects on cortical structures and cognitive function at lower levels than previously recognized. This review advances new knowledge of putative mechanisms by which exposure to excess levels of Mn alters neurobiological systems and produces neurological deficits not only in the basal ganglia but also in the cerebral cortex. The emerging evidence suggests that working memory is significantly affected by chronic Mn exposure and this may be mediated by alterations in brain structures associated with the working memory network including the caudate nucleus in the striatum, frontal cortex and parietal cortex. Dysregulation of the dopaminergic system may play an important role in both the movement abnormalities as well as the neuropsychiatric and cognitive function deficits that have been described in humans and non-human primates exposed to Mn. PMID:23805100

  6. Counter striking psychosis: Commercial video games as potential treatment in schizophrenia? A systematic review of neuroimaging studies.

    PubMed

    Suenderhauf, Claudia; Walter, Anna; Lenz, Claudia; Lang, Undine E; Borgwardt, Stefan

    2016-09-01

    Schizophrenia is a severe, chronic, and strongly disabling neuropsychiatric disorder, characterized by cognitive decline, positive and negative symptoms. Positive symptoms respond well to antipsychotic medication and psycho-social interventions, in contrast to negative symptoms and neurocognitive impairments. Cognitive deficits have been linked to a poorer outcome and hence specific cognitive remediation therapies have been proposed. Their effectiveness is nowadays approved and neurobiological correlates have been reconfirmed by brain imaging studies. Interestingly, recent MRI work showed that commercial video games modified similar brain areas as these specialized training programs. If gray matter increases and functional brain modulations would translate in better cognitive and every day functioning, commercial video game training could be an enjoyable and economically interesting treatment option for patients with neuropsychiatric disorders. This systematic review summarizes advances in the area with emphasis on imaging studies dealing with brain changes upon video game training and contrasts them to conventional cognitive remediation. Moreover, we discuss potential challenges therapeutic video game development and research would have to face in future treatment of schizophrenia.

  7. Counter striking psychosis: Commercial video games as potential treatment in schizophrenia? A systematic review of neuroimaging studies.

    PubMed

    Suenderhauf, Claudia; Walter, Anna; Lenz, Claudia; Lang, Undine E; Borgwardt, Stefan

    2016-09-01

    Schizophrenia is a severe, chronic, and strongly disabling neuropsychiatric disorder, characterized by cognitive decline, positive and negative symptoms. Positive symptoms respond well to antipsychotic medication and psycho-social interventions, in contrast to negative symptoms and neurocognitive impairments. Cognitive deficits have been linked to a poorer outcome and hence specific cognitive remediation therapies have been proposed. Their effectiveness is nowadays approved and neurobiological correlates have been reconfirmed by brain imaging studies. Interestingly, recent MRI work showed that commercial video games modified similar brain areas as these specialized training programs. If gray matter increases and functional brain modulations would translate in better cognitive and every day functioning, commercial video game training could be an enjoyable and economically interesting treatment option for patients with neuropsychiatric disorders. This systematic review summarizes advances in the area with emphasis on imaging studies dealing with brain changes upon video game training and contrasts them to conventional cognitive remediation. Moreover, we discuss potential challenges therapeutic video game development and research would have to face in future treatment of schizophrenia. PMID:27090742

  8. Where do bright ideas occur in our brain? Meta-analytic evidence from neuroimaging studies of domain-specific creativity

    PubMed Central

    Boccia, Maddalena; Piccardi, Laura; Palermo, Liana; Nori, Raffaella; Palmiero, Massimiliano

    2015-01-01

    Many studies have assessed the neural underpinnings of creativity, failing to find a clear anatomical localization. We aimed to provide evidence for a multi-componential neural system for creativity. We applied a general activation likelihood estimation (ALE) meta-analysis to 45 fMRI studies. Three individual ALE analyses were performed to assess creativity in different cognitive domains (Musical, Verbal, and Visuo-spatial). The general ALE revealed that creativity relies on clusters of activations in the bilateral occipital, parietal, frontal, and temporal lobes. The individual ALE revealed different maximal activation in different domains. Musical creativity yields activations in the bilateral medial frontal gyrus, in the left cingulate gyrus, middle frontal gyrus, and inferior parietal lobule and in the right postcentral and fusiform gyri. Verbal creativity yields activations mainly located in the left hemisphere, in the prefrontal cortex, middle and superior temporal gyri, inferior parietal lobule, postcentral and supramarginal gyri, middle occipital gyrus, and insula. The right inferior frontal gyrus and the lingual gyrus were also activated. Visuo-spatial creativity activates the right middle and inferior frontal gyri, the bilateral thalamus and the left precentral gyrus. This evidence suggests that creativity relies on multi-componential neural networks and that different creativity domains depend on different brain regions. PMID:26322002

  9. LSTGEE: longitudinal analysis of neuroimaging data

    NASA Astrophysics Data System (ADS)

    Li, Yimei; Zhu, Hongtu; Chen, Yasheng; An, Hongyu; Gilmore, John; Lin, Weili; Shen, Dinggang

    2009-02-01

    Longitudinal imaging studies are essential to understanding the neural development of neuropsychiatric disorders, substance use disorders, and normal brain. Using appropriate image processing and statistical tools to analyze the imaging, behavioral, and clinical data is critical for optimally exploring and interpreting the findings from those imaging studies. However, the existing imaging processing and statistical methods for analyzing imaging longitudinal measures are primarily developed for cross-sectional neuroimaging studies. The simple use of these cross-sectional tools to longitudinal imaging studies will significantly decrease the statistical power of longitudinal studies in detecting subtle changes of imaging measures and the causal role of time-dependent covariate in disease process. The main objective of this paper is to develop longitudinal statistics toolbox, called LSTGEE, for the analysis of neuroimaging data from longitudinal studies. We develop generalized estimating equations for jointly modeling imaging measures with behavioral and clinical variables from longitudinal studies. We develop a test procedure based on a score test statistic and a resampling method to test linear hypotheses of unknown parameters, such as associations between brain structure and function and covariates of interest, such as IQ, age, gene, diagnostic groups, and severity of disease. We demonstrate the application of our statistical methods to the detection of the changes of the fractional anisotropy across time in a longitudinal neonate study. Particularly, our results demonstrate that the use of longitudinal statistics can dramatically increase the statistical power in detecting the changes of neuroimaging measures. The proposed approach can be applied to longitudinal data with multiple outcomes and accommodate incomplete and unbalanced data, i.e., subjects with different number of measurements.

  10. Online and Offline Performance Gains Following Motor Imagery Practice: A Comprehensive Review of Behavioral and Neuroimaging Studies

    PubMed Central

    Di Rienzo, Franck; Debarnot, Ursula; Daligault, Sébastien; Saruco, Elodie; Delpuech, Claude; Doyon, Julien; Collet, Christian; Guillot, Aymeric

    2016-01-01

    There is now compelling evidence that motor imagery (MI) promotes motor learning. While MI has been shown to influence the early stages of the learning process, recent data revealed that sleep also contributes to the consolidation of the memory trace. How such “online” and “offline” processes take place and how they interact to impact the neural underpinnings of movements has received little attention. The aim of the present review is twofold: (i) providing an overview of recent applied and fundamental studies investigating the effects of MI practice (MIP) on motor learning; and (ii) detangling applied and fundamental findings in support of a sleep contribution to motor consolidation after MIP. We conclude with an integrative approach of online and offline learning resulting from intense MIP in healthy participants, and underline research avenues in the motor learning/clinical domains. PMID:27445755

  11. Online and Offline Performance Gains Following Motor Imagery Practice: A Comprehensive Review of Behavioral and Neuroimaging Studies.

    PubMed

    Di Rienzo, Franck; Debarnot, Ursula; Daligault, Sébastien; Saruco, Elodie; Delpuech, Claude; Doyon, Julien; Collet, Christian; Guillot, Aymeric

    2016-01-01

    There is now compelling evidence that motor imagery (MI) promotes motor learning. While MI has been shown to influence the early stages of the learning process, recent data revealed that sleep also contributes to the consolidation of the memory trace. How such "online" and "offline" processes take place and how they interact to impact the neural underpinnings of movements has received little attention. The aim of the present review is twofold: (i) providing an overview of recent applied and fundamental studies investigating the effects of MI practice (MIP) on motor learning; and (ii) detangling applied and fundamental findings in support of a sleep contribution to motor consolidation after MIP. We conclude with an integrative approach of online and offline learning resulting from intense MIP in healthy participants, and underline research avenues in the motor learning/clinical domains. PMID:27445755

  12. Episodic memory in former professional football players with a history of concussion: an event-related functional neuroimaging study.

    PubMed

    Ford, Jaclyn H; Giovanello, Kelly S; Guskiewicz, Kevin M

    2013-10-15

    Previous research has demonstrated that sport-related concussions can have short-term effects on cognitive processes, but the long-term consequences are less understood and warrant more research. This study was the first to use event-related functional magnetic resonance imaging (fMRI) to examine long-term differences in neural activity during memory tasks in former athletes who have sustained multiple sport-related concussions. In an event-related fMRI study, former football players reporting multiple sport-related concussions (i.e., three or more) were compared with players who reported fewer than three concussions during a memory paradigm examining item memory (i.e., memory for the particular elements of an event) and relational memory (i.e., memory for the relationships between elements). Behaviorally, we observed that concussion history did not significantly affect behavioral performance, because persons in the low and high concussion groups had equivalent performance on both memory tasks, and in addition, that concussion history was not associated with any behavioral memory measures. Despite demonstrating equivalent behavioral performance, the two groups of former players demonstrated different neural recruitment patterns during relational memory retrieval, suggesting that multiple concussions may be associated with functional inefficiencies in the relational memory network. In addition, the number of previous concussions significantly correlated with functional activity in a number of brain regions, including the medial temporal lobe and inferior parietal lobe. Our results provide important insights in understanding the long-term functional consequences of sustaining multiple sports-related concussions.

  13. Progressive Reduction in Cortical Thickness as Psychosis Develops: A Multisite Longitudinal Neuroimaging Study of Youth at Elevated Clinical Risk

    PubMed Central

    Cannon, Tyrone D.; Chung, Yoonho; He, George; Sun, Daqiang; Jacobson, Aron; van Erp, Theo G. M.; McEwen, Sarah; Addington, Jean; Bearden, Carrie E.; Cadenhead, Kristin; Cornblatt, Barbara; Mathalon, Daniel H.; McGlashan, Thomas; Perkins, Diana; Jeffries, Clark; Seidman, Larry J.; Tsuang, Ming; Walker, Elaine; Woods, Scott W.; Heinssen, Robert

    2014-01-01

    Background Individuals at clinical high-risk (CHR) who progress to fully psychotic symptoms have been observed to show a steeper rate of cortical gray matter reduction compared with those without symptomatic progression and with healthy controls. Whether such changes reflect processes associated with the pathophysiology of schizophrenia or exposure to antipsychotic drugs is unknown. Methods In this multisite study, 274 CHR cases, including 35 who converted to psychosis, and 135 healthy comparison subjects were scanned with MRI at baseline, 12-month follow-up, and/or the point of conversion for those who developed fully psychotic symptoms. Results In a traveling subjects sub-study, we observed excellent reliability for measures of cortical thickness and subcortical volumes. Controlling for multiple comparisons throughout the brain, CHR converters showed a steeper rate of gray matter loss in right superior frontal, middle frontal, and medial orbitofrontal cortical regions, as well as a greater rate of expansion of the third ventricle, compared with CHR non-converters and healthy controls. Differential tissue loss was present among cases who had not received antipsychotic medications during the inter-scan interval and was predicted by baseline levels of an aggregate measure of pro-inflammatory cytokines in plasma. Conclusions These findings demonstrate that the brain changes are not explained by exposure to antipsychotic drugs, but likely play a role in psychosis pathophysiology. Given that the cortical changes were more pronounced among cases with briefer durations of prodromal symptoms, contributing factors may predominantly play a role in acute-onset forms of psychosis. PMID:25034946

  14. A functional neuroimaging study of sound localization: visual cortex activity predicts performance in early-blind individuals.

    PubMed

    Gougoux, Frédéric; Zatorre, Robert J; Lassonde, Maryse; Voss, Patrice; Lepore, Franco

    2005-02-01

    Blind individuals often demonstrate enhanced nonvisual perceptual abilities. However, the neural substrate that underlies this improved performance remains to be fully understood. An earlier behavioral study demonstrated that some early-blind people localize sounds more accurately than sighted controls using monaural cues. In order to investigate the neural basis of these behavioral differences in humans, we carried out functional imaging studies using positron emission tomography and a speaker array that permitted pseudo-free-field presentations within the scanner. During binaural sound localization, a sighted control group showed decreased cerebral blood flow in the occipital lobe, which was not seen in early-blind individuals. During monaural sound localization (one ear plugged), the subgroup of early-blind subjects who were behaviorally superior at sound localization displayed two activation foci in the occipital cortex. This effect was not seen in blind persons who did not have superior monaural sound localization abilities, nor in sighted individuals. The degree of activation of one of these foci was strongly correlated with sound localization accuracy across the entire group of blind subjects. The results show that those blind persons who perform better than sighted persons recruit occipital areas to carry out auditory localization under monaural conditions. We therefore conclude that computations carried out in the occipital cortex specifically underlie the enhanced capacity to use monaural cues. Our findings shed light not only on intermodal compensatory mechanisms, but also on individual differences in these mechanisms and on inhibitory patterns that differ between sighted individuals and those deprived of vision early in life. PMID:15678166

  15. Spatio-temporal dynamics of kind versus hostile intentions in the human brain: An electrical neuroimaging study.

    PubMed

    Wang, Yiwen; Huang, Liang; Zhang, Wei; Zhang, Zhen; Cacioppo, Stephanie

    2015-01-01

    Neuroscience research suggests that inferring neutral intentions of other people recruits a specific brain network within the inferior fronto-parietal action observation network as well as a putative social network including brain areas subserving theory of mind, such as the posterior superior temporal sulcus (pSTS), the temporo-parietal junction (TPJ), and also the anterior cingulate cortex (ACC). Recent studies on harmful intentions have refined this network by showing the specific involvement of the ACC, amygdala, and ventromedial prefrontal cortex (vmPFC) in early stages (within 200 ms) of information processing. However, the functional dynamics for kind intentions within and among these networks remains unclear. To address this question, we measured electrical brain activity from 18 healthy adult participants while they were performing an intention inference task with three different types of intentions: kind, hostile and non-interactive. Electrophysiological results revealed that kind intentions were characterized by significantly larger peak amplitudes of N2 over the frontal sites than those for hostile and non-interactive intentions. On the other hand, there were no significant differences between hostile and non-interactive intentions at N2. The source analysis suggested that the vicinity of the left cingulate gyrus contributed to the N2 effect by subtracting the kindness condition from the non-interactive condition within 250-350 ms. At a later stage (i.e., during the 270-500 ms epoch), the peak amplitude of the P3 over the parietal sites and the right hemisphere was significantly larger for hostile intentions compared to the kind and non-interactive intentions. No significant differences were observed at P3 between kind and non-interactive intentions. The source analysis showed that the vicinity of the left anterior cingulate cortex contributed to the P3 effect by subtracting the hostility condition from the non-interactive condition within 450-550 ms

  16. Amygdala recruitment in schizophrenia in response to aversive emotional material: a meta-analysis of neuroimaging studies.

    PubMed

    Anticevic, Alan; Van Snellenberg, Jared X; Cohen, Rachel E; Repovs, Grega; Dowd, Erin C; Barch, Deanna M

    2012-05-01

    Emotional dysfunction has long been established as a critical clinical feature of schizophrenia. In the past decade, there has been extensive work examining the potential contribution of abnormal amygdala activation to this dysfunction in patients with schizophrenia. A number of studies have demonstrated under-recruitment of the amygdala in response to emotional stimuli, while others have shown intact recruitment of this region. To date, there have been few attempts to synthesize this literature using quantitative criteria or to use a formal meta-analytic approach to examine which variables may moderate the magnitude of between-group differences in amygdala activation in response to aversive emotional stimuli. We conducted a meta-analysis of amygdala activation in patients with schizophrenia, using a bootstrapping approach to investigate: (a) evidence for amygdala under-recruitment in schizophrenia and (b) variables that may moderate the magnitude of between-group differences in amygdala activation. We demonstrate that patients with schizophrenia show statistically significant, but modest, under-recruitment of bilateral amygdala (mean effect size = -0.20 SD). However, present findings indicate that this under-recruitment is dependent on the use of a neutral vs emotion interaction contrast and is not apparent if amygdala activation by patients and controls is evaluated in a negative emotional condition only. PMID:21123853

  17. Amygdala Recruitment in Schizophrenia in Response to Aversive Emotional Material: A Meta-analysis of Neuroimaging Studies

    PubMed Central

    Anticevic, Alan; Van Snellenberg, Jared X.; Cohen, Rachel E.; Repovs, Grega; Dowd, Erin C.; Barch, Deanna M.

    2012-01-01

    Emotional dysfunction has long been established as a critical clinical feature of schizophrenia. In the past decade, there has been extensive work examining the potential contribution of abnormal amygdala activation to this dysfunction in patients with schizophrenia. A number of studies have demonstrated under-recruitment of the amygdala in response to emotional stimuli, while others have shown intact recruitment of this region. To date, there have been few attempts to synthesize this literature using quantitative criteria or to use a formal meta-analytic approach to examine which variables may moderate the magnitude of between-group differences in amygdala activation in response to aversive emotional stimuli. We conducted a meta-analysis of amygdala activation in patients with schizophrenia, using a bootstrapping approach to investigate: (a) evidence for amygdala under-recruitment in schizophrenia and (b) variables that may moderate the magnitude of between-group differences in amygdala activation. We demonstrate that patients with schizophrenia show statistically significant, but modest, under-recruitment of bilateral amygdala (mean effect size = −0.20 SD). However, present findings indicate that this under-recruitment is dependent on the use of a neutral vs emotion interaction contrast and is not apparent if amygdala activation by patients and controls is evaluated in a negative emotional condition only. PMID:21123853

  18. The role of iron in neurodegeneration—Mössbauer spectroscopy, electron microscopy, enzyme-linked immunosorbent assay and neuroimaging studies

    NASA Astrophysics Data System (ADS)

    Galazka-Friedman, Jolanta; Bauminger, Erika R.; Szlachta, Karol; Friedman, Andrzej

    2012-06-01

    The possible role of iron in neurodegeneration was studied by various techniques: electron microscopy, enzyme-linked immunosorbent assay, Mössbauer spectroscopy, atomic absorption, ultrasonography and magnetic resonance imaging. The measurements were made on human tissues extracted from liver and from brain structures involved in diseases of the human brain: substantia nigra (Parkinson’s, PD), hippocampal cortex (Alzheimer’s, AD) and globus pallidus (progressive supranuclear palsy, PSP). The sizes of the iron cores of ferritin, the main iron storage compound in tissues, were found to be smaller in brain than in liver. Brain ferritin has a higher proportion of H to L chains compared to liver. A significant decrease of the concentration of L chains in PD compared to control was found. No increase in the concentration of iron in PD versus control was detected; however, there was an increase of labile iron, which constitutes only 2‰ of brain iron. In AD an increase in the concentration of ferritin was noticed, without a significant increase in iron concentration. In PSP an increase of total iron was observed. Our findings suggest that the mechanisms leading to the death of nerve cells in these three diseases may be different, although all may be related to iron mediated oxidative stress.

  19. Where does brain neural activation in aesthetic responses to visual art occur? Meta-analytic evidence from neuroimaging studies.

    PubMed

    Boccia, M; Barbetti, S; Piccardi, L; Guariglia, C; Ferlazzo, F; Giannini, A M; Zaidel, D W

    2016-01-01

    Here we aimed at finding the neural correlates of the general aspect of visual aesthetic experience (VAE) and those more strictly correlated with the content of the artworks. We applied a general activation likelihood estimation (ALE) meta-analysis to 47 fMRI experiments described in 14 published studies. We also performed four separate ALE analyses in order to identify the neural substrates of reactions to specific categories of artworks, namely portraits, representation of real-world-visual-scenes, abstract paintings, and body sculptures. The general ALE revealed that VAE relies on a bilateral network of areas, and the individual ALE analyses revealed different maximal activation for the artworks' categories as function of their content. Specifically, different content-dependent areas of the ventral visual stream are involved in VAE, but a few additional brain areas are involved as well. Thus, aesthetic-related neural responses to art recruit widely distributed networks in both hemispheres including content-dependent brain areas of the ventral visual stream. Together, the results suggest that aesthetic responses are not independent of sensory, perceptual, and cognitive processes.

  20. Processing of decision-making and social threat in patients with history of suicidal attempt: A neuroimaging replication study.

    PubMed

    Olié, Emilie; Ding, Yang; Le Bars, Emmanuelle; de Champfleur, Nicolas Menjot; Mura, Thibault; Bonafé, Alain; Courtet, Philippe; Jollant, Fabrice

    2015-12-30

    Suicidal vulnerability has been related to impaired value-based decision-making and increased sensitivity to social threat, mediated by the prefrontal cortex. Using functional magnetic resonance imaging, we aimed at replicating these previous findings by measuring brain activation during the Iowa Gambling Task and an emotional faces viewing task. Participants comprised 15 euthymic suicide attempters (history of depression and suicidal behavior) who were compared with 23 euthymic patient controls (history of depression without suicidal history) and 35 healthy controls. The following five model-based regions of interest were investigated: the orbitofrontal cortex (OFC), ventrolateral prefrontal cortex (VLPFC), anterior cingulate cortex (ACC), medial (MPFC) and dorsal prefrontal cortex (DPFC). Suicide attempters relative to patient controls showed (1) increased response to angry vs. neutral faces in the left OFC and the VLPFC, as previously reported; (2) increased response to wins vs. losses in the right OFC, DPFC and ACC; (3) decreased response to risky vs. safe choices in the left DPFC; and (4) decreased response to sad vs. neutral faces in the right ACC. This study links impaired valuation processing (here for signals of social threat, sadness and reward) to prefrontal cortex dysfunction in suicide attempters. These long-term deficits may underlie the impaired decision-making and social difficulties found in suicide attempters. PMID:26483212

  1. Comparison of obese adults with poor versus good sleep quality during a functional neuroimaging delay discounting task: A pilot study.

    PubMed

    Martin, Laura E; Pollack, Lauren; McCune, Ashley; Schulte, Erica; Savage, Cary R; Lundgren, Jennifer D

    2015-10-30

    This study aimed to determine if obese adults with poor versus good sleep quality demonstrate reduced self-regulatory capacity and different patterns of neural activation when making impulsive monetary choices. Six obese, good quality sleepers (M age=44.7 years, M BMI=38.1 kg/m(2)) were compared to 13 obese, poor quality sleepers (M age=42.6, M BMI=39.2 kg/m(2)) on sleep and eating behavior and brain activation in prefrontal and insular regions while engaging in a delay discounting task during functional magnetic resonance imaging (fMRI). Poor quality sleepers demonstrated significantly lower brain activation in the right inferior frontal gyrus, right middle frontal gyrus, and bilateral insula when making immediate and smaller (impulsive) monetary choices compared to the baseline condition. Behaviorally, poor compared to good quality sleepers reported higher scores in the night eating questionnaire. Obese adults with poor sleep quality demonstrate decreased brain activation in multiple regions that regulate cognitive control and interceptive awareness, possibly reducing self-regulatory capacity when making immediately gratifying decisions.

  2. Comparison of Obese Adults with Poor versus Good Sleep Quality during a Functional Neuroimaging Delay Discounting Task: A Pilot Study

    PubMed Central

    Martin, Laura E.; Pollack, Lauren; McCune, Ashley; Schulte, Erica; Savage, Cary R.; Lundgren, Jennifer D.

    2015-01-01

    This study aimed to determine if obese adults with poor versus good sleep quality demonstrate reduced self-regulatory capacity and different patterns of neural activation when making impulsive monetary choices. Six obese, good quality sleepers (M age = 44.7 years, M BMI = 83.1 kg/m2) were compared to 13 obese, poor quality sleepers (M age = 42.6, M BMI = 39.2 kg/m2) on sleep and eating behavior and brain activation in prefrontal and insular regions while engaging in a delay discounting task during functional magnetic resonance imaging (fMRI). Poor quality sleepers demonstrated significantly lower brain activation in the right inferior frontal gyrus, right middle frontal gyrus, and bilateral insula when making immediate and smaller (impulsive) monetary choices compared to the baseline condition. Behaviorally, poor compared to good quality sleepers reported higher scores in the night eating questionnaire. Obese adults with poor sleep quality demonstrate decreased brain activation in multiple regions that regulate cognitive control and interceptive awareness, possibly reducing self-regulatory capacity when making immediately gratifying decisions. PMID:26358975

  3. Where does brain neural activation in aesthetic responses to visual art occur? Meta-analytic evidence from neuroimaging studies.

    PubMed

    Boccia, M; Barbetti, S; Piccardi, L; Guariglia, C; Ferlazzo, F; Giannini, A M; Zaidel, D W

    2016-01-01

    Here we aimed at finding the neural correlates of the general aspect of visual aesthetic experience (VAE) and those more strictly correlated with the content of the artworks. We applied a general activation likelihood estimation (ALE) meta-analysis to 47 fMRI experiments described in 14 published studies. We also performed four separate ALE analyses in order to identify the neural substrates of reactions to specific categories of artworks, namely portraits, representation of real-world-visual-scenes, abstract paintings, and body sculptures. The general ALE revealed that VAE relies on a bilateral network of areas, and the individual ALE analyses revealed different maximal activation for the artworks' categories as function of their content. Specifically, different content-dependent areas of the ventral visual stream are involved in VAE, but a few additional brain areas are involved as well. Thus, aesthetic-related neural responses to art recruit widely distributed networks in both hemispheres including content-dependent brain areas of the ventral visual stream. Together, the results suggest that aesthetic responses are not independent of sensory, perceptual, and cognitive processes. PMID:26619805

  4. Processing of decision-making and social threat in patients with history of suicidal attempt: A neuroimaging replication study.

    PubMed

    Olié, Emilie; Ding, Yang; Le Bars, Emmanuelle; de Champfleur, Nicolas Menjot; Mura, Thibault; Bonafé, Alain; Courtet, Philippe; Jollant, Fabrice

    2015-12-30

    Suicidal vulnerability has been related to impaired value-based decision-making and increased sensitivity to social threat, mediated by the prefrontal cortex. Using functional magnetic resonance imaging, we aimed at replicating these previous findings by measuring brain activation during the Iowa Gambling Task and an emotional faces viewing task. Participants comprised 15 euthymic suicide attempters (history of depression and suicidal behavior) who were compared with 23 euthymic patient controls (history of depression without suicidal history) and 35 healthy controls. The following five model-based regions of interest were investigated: the orbitofrontal cortex (OFC), ventrolateral prefrontal cortex (VLPFC), anterior cingulate cortex (ACC), medial (MPFC) and dorsal prefrontal cortex (DPFC). Suicide attempters relative to patient controls showed (1) increased response to angry vs. neutral faces in the left OFC and the VLPFC, as previously reported; (2) increased response to wins vs. losses in the right OFC, DPFC and ACC; (3) decreased response to risky vs. safe choices in the left DPFC; and (4) decreased response to sad vs. neutral faces in the right ACC. This study links impaired valuation processing (here for signals of social threat, sadness and reward) to prefrontal cortex dysfunction in suicide attempters. These long-term deficits may underlie the impaired decision-making and social difficulties found in suicide attempters.

  5. Effects of cue focality on the neural mechanisms of prospective memory: A meta-analysis of neuroimaging studies

    PubMed Central

    Cona, Giorgia; Bisiacchi, Patrizia Silvia; Sartori, Giuseppe; Scarpazza, Cristina

    2016-01-01

    Remembering to execute pre-defined intentions at the appropriate time in the future is typically referred to as Prospective Memory (PM). Studies of PM showed that distinct cognitive processes underlie the execution of delayed intentions depending on whether the cue associated with such intentions is focal to ongoing activity processing or not (i.e., cue focality). The present activation likelihood estimation (ALE) meta-analysis revealed several differences in brain activity as a function of focality of the PM cue. The retrieval of intention is supported mainly by left anterior prefrontal cortex (Brodmann Area, BA 10) in nonfocal tasks, and by cerebellum and ventral parietal regions in focal tasks. Furthermore, the precuneus showed increased activation during the maintenance phase of intentions compared to the retrieval phase in nonfocal tasks, whereas the inferior parietal lobule showed increased activation during the retrieval of intention compared to maintenance phase in the focal tasks. Finally, the retrieval of intention relies more on the activity in anterior cingulate cortex for nonfocal tasks, and on posterior cingulate cortex for focal tasks. Such focality-related pattern of activations suggests that prospective remembering is mediated mainly by top-down and stimulus-independent processes in nonfocal tasks, whereas by more automatic, bottom-up, processes in focal tasks. PMID:27185531

  6. Impaired Visual Object Processing Across an Occipital- Frontal-Hippocampal Brain Network in Schizophrenia: An integrated neuroimaging study

    PubMed Central

    Sehatpour, Pejman; Dias, Elisa C.; Butler, Pamela D.; Revheim, Nadine; Guilfoyle, David N.; Foxe, John J.; Javitt, Daniel C.

    2013-01-01

    Background Perceptual closure refers to the ability to identify objects with partial information. Deficits in schizophrenia are indexed by impaired generation of the closure-related negativity (NCL) from ventral stream visual cortex (lateral occipital complex, LOC), as part of a network of brain regions that also includes dorsal stream visual regions, prefrontal cortex (PFC) and hippocampus. This study evaluates network-level interactions during perceptual closure in schizophrenia using parallel ERP, fMRI and neuropsychological assessment. Methods ERP were obtained from 24 patients and 20 healthy volunteers in response to fragmented (closeable) and control scrambled (noncloseable) line drawings. fMRI were obtained from 11 patients and 12 controls. Patterns of between group differences for predefined ERP components and fMRI regions of interest were determined using both analysis of variance and structural equation modeling. Global neuropsychological performance was assessed using elements of the WAIS-III, WMS-III and MATRICS batteries. Results Patients showed impaired visual P1 generation, reflecting dorsal stream dysfunction, along with impaired generation of NCL components over PFC and LOC. In fMRI, patients showed impaired activation of dorsal and ventral visual regions, PFC and hippocampus. Impaired activation of dorsal stream visual regions contributed significantly to impaired PFC activation. Impaired PFC activation contributed significantly to impaired activation of hippocampus and LOC. Impaired LOC and hippocampal activation contributed significantly to deficits on WAIS-III Perceptual Organization Index (POI) and other tests of impaired perceptual processing in schizophrenia. Conclusion Schizophrenia is associated with severe activation deficits across a distributed network of sensory and higher order cognitive regions. Deficit in early visual processing within the dorsal visual stream contributes significantly to impaired frontal activation which, in turn

  7. Mechanisms underlying muscle fatigue differ between multiple sclerosis patients and controls: a combined electrophysiological and neuroimaging study.

    PubMed

    Steens, A; Heersema, D J; Maurits, N M; Renken, R J; Zijdewind, I

    2012-02-15

    Increased sense of fatigue is an important and conspicuous symptom in multiple sclerosis (MS). Muscle fatigue is associated with increased sense of fatigue in MS (Steens et al., 2011). The aim of this study was to investigate mechanisms that can explain muscle fatigue in MS patients and controls. We assessed changes in cortical activation (BOLD), voluntary activation (twitch interpolation) and muscle force during a sustained maximal voluntary contraction (MVC) in twenty MS patients and twenty healthy controls. In control participants, individual differences in force decline (mean 65% MVC, 8 SD) during the sustained maximal contraction could be accounted for by differences in maximal voluntary force (R(2): 0.49, p = 0.001); stronger participants presented a larger force decline. The small decline in voluntary activation (mean 7.8%, 11.8 SD) did not contribute significantly to the force decline. During the sustained contraction, the force decline was accompanied by an increase in cortical activation in the main motor areas. In MS patients, the differences in the decline in force (mean 67% MVC, 9 SD) were significantly associated (R(2): 0.51, p = 0.001) with a decline in voluntary activation (mean 20.1%, 20.6 SD) and not with maximal force or decline in rest twitch. The corresponding cortical activation in motor areas showed an increase in the first two intervals of the sustained contraction but declined during the last interval. Our data indicate that muscle fatigue during a sustained contraction in MS patients is associated with changes in the voluntary activation that are not sufficiently compensated by increased cortical activation. Control participants, however, show increased cortical activation to compensate for these fatigue-related changes in voluntary activation and the major cause of force decline is therefore to be found in the periphery (muscles).

  8. Psychopharmacological profile of the selective serotonin reuptake inhibitor, paroxetine: implication of noradrenergic and serotonergic mechanisms.

    PubMed

    Redrobe, J P; Bourin, M; Colombel, M C; Baker, G B

    1998-01-01

    The present study was designed to evaluate the psychopharmacological profile of the selective serotonin reuptake inhibitor paroxetine, and thus assess potential noradrenergic and/or serotonergic activity. Paroxetine dose-dependently increased mobility time in the mouse forced swimming test (8, 16, 32 and 64 mg/kg, i.p.) and reduced spontaneous locomotor activity when administered at a high dose (64 mg/kg, i.p.). Prior administration of 8-hydroxy-2-(di-n-propylamino)tetralin (1 mg/kg, i.p.), (+/-) pindolol (32 mg/kg, i.p.) or 5-methoxy-3-(1,2,3,6-tetrahydro-4-pyridyl)-1H-indole (RU 24969) (1 mg/kg, i.p.) potentiated the antidepressant-like effects of subactive doses of paroxetine (1, 2 and 4 mg/kg, i.p.) in the mouse forced swimming test. These effects were antagonized by prior administration of 1-(2-methoxyphenyl)-4-[-(2-phthalimido)butyl]piperazine) (0.5 mg/kg, i.p.). Complementary studies suggested that RU24969-induced anti-immobility effects were a result of an increase in locomotor activity; other interactions were without increase/decrease in locomotor activity. Acute administration of paroxetine (8, 16, and 32 mg/kg, i.p.) antagonized the hypothermia induced by the D2/D1 receptor agonist, apomorphine (16 mg/kg, s.c.), while repeated treatment with paroxetine (32 mg/kg) attenuated clonidine-induced (0.5 mg/kg, i.p.) hypothermia. Pre-treatment with the serotonergic neurotoxin, para-chlorophenylalanine attenuated the anti-immobility effects of low doses of paroxetine (8 and 16 mg/kg, i.p.) in the forced swimming test, whereas a higher dose of paroxetine remained active (32 mg/kg, i.p.). The results of the present study indicated that paroxetine displayed both noradrenergic-like and serotonergic-like activity in the pre-clinical psychopharmacological tests employed.

  9. Advances in neuroimaging in frontotemporal dementia.

    PubMed

    Gordon, Elizabeth; Rohrer, Jonathan D; Fox, Nick C

    2016-08-01

    Frontotemporal dementia (FTD) is a clinically and neuroanatomically heterogeneous neurodegenerative disorder with multiple underlying genetic and pathological causes. Whilst initial neuroimaging studies highlighted the presence of frontal and temporal lobe atrophy or hypometabolism as the unifying feature in patients with FTD, more detailed studies have revealed diverse patterns across individuals, with variable frontal or temporal predominance, differing degrees of asymmetry, and the involvement of other cortical areas including the insula and cingulate, as well as subcortical structures such as the basal ganglia and thalamus. Recent advances in novel imaging modalities including diffusion tensor imaging, resting-state functional magnetic resonance imaging and molecular positron emission tomography imaging allow the possibility of investigating alterations in structural and functional connectivity and the visualisation of pathological protein deposition. This review will cover the major imaging modalities currently used in research and clinical practice, focusing on the key insights they have provided into FTD, including the onset and evolution of pathological changes and also importantly their utility as biomarkers for disease detection and staging, differential diagnosis and measurement of disease progression. Validating neuroimaging biomarkers that are able to accomplish these tasks will be crucial for the ultimate goal of powering upcoming clinical trials by correctly stratifying patient enrolment and providing sensitive markers for evaluating the effects and efficacy of disease-modifying therapies. This review describes the key insights provided by research into the major neuroimaging modalities currently used in research and clinical practice, including what they tell us about the onset and evolution of FTD and how they may be used as biomarkers for disease detection and staging, differential diagnosis and measurement of disease progression. This article is

  10. Atypical neuroimaging in Wilson's disease.

    PubMed

    Patell, Rushad; Dosi, Rupal; Joshi, Harshal K; Storz, Dennis

    2014-06-06

    Wilson's disease is a rare metabolic disease involving copper metabolism. Neuroimaging plays an important part in evaluation of patients with a neuropsychiatric presentation. We present a case of a 14-year-old girl with atypical confluent white matter disease and cystic degeneration on MRI, with a rapidly progressive course, who succumbed to complications despite treatment with trientine. Wilson's disease should be considered as a differential for leucoencephalopathy in young patients with progressive neurological disease for its early recognition and optimum outcome.

  11. Neuroimaging of Semantic Processing in Schizophrenia: A Parametric Priming Approach

    PubMed Central

    Han, S. Duke; Wible, Cynthia G.

    2009-01-01

    The use of fMRI and other neuroimaging techniques in the study of cognitive language processes in psychiatric and non-psychiatric conditions has led at times to discrepant findings. Many issues complicate the study of language, especially in psychiatric populations. For example, the use of subtractive designs can produce misleading results. We propose and advocate for a semantic priming parametric approach to the study of semantic processing using fMRI methodology. Implications of this parametric approach are discussed in view of current functional neuroimaging research investigating the semantic processing disturbance of schizophrenia. PMID:19765623

  12. Psychopharmacological treatment and course in paranoid personality disorder: a case series.

    PubMed

    Birkeland, Søren F

    2013-09-01

    Little is known about the role of psychopharmacological treatment and course of illness in patients diagnosed with a paranoid personality disorder. This short communication provides a naturalistic study of a psychiatric hospital case series. Fifteen consecutive patients were retrospectively studied. The Clinical Global Impression was rated at first admission, at last psychiatric contact, and after a 6-week observation period with or without antipsychotic treatment. During psychiatric admissions, three patients improved markedly, eight showed only minor changes, and four worsened. In total, seven patients had been administered any antipsychotic medication. The median duration of treatment was 15 weeks (range 4 days-328 weeks). No major adverse effects were noted. Among patients with sixth-week observations available, four had received antipsychotics; they appeared to improve considerably compared with six patients who had not received antipsychotics. Although the findings should be interpreted with caution, they support the notion of the disorder being a relatively chronic condition, although antipsychotics appeared to be safe and possibly had an effect in the short term.

  13. Functional neuroimaging of traumatic brain injury: advances and clinical utility

    PubMed Central

    Irimia, Andrei; Van Horn, John Darrell

    2015-01-01

    Functional deficits due to traumatic brain injury (TBI) can have significant and enduring consequences upon patients’ life quality and expectancy. Although functional neuroimaging is essential for understanding TBI pathophysiology, an insufficient amount of effort has been dedicated to the task of translating functional neuroimaging findings into information with clinical utility. The purpose of this review is to summarize the use of functional neuroimaging techniques – especially functional magnetic resonance imaging, diffusion tensor imaging, positron emission tomography, magnetic resonance spectroscopy, and electroencephalography – for advancing current knowledge of TBI-related brain dysfunction and for improving the rehabilitation of TBI patients. We focus on seven core areas of functional deficits, namely consciousness, motor function, attention, memory, higher cognition, personality, and affect, and, for each of these, we summarize recent findings from neuroimaging studies which have provided substantial insight into brain function changes due to TBI. Recommendations are also provided to aid in setting the direction of future neuroimaging research and for understanding brain function changes after TBI. PMID:26396520

  14. The psychopharmacological treatment of depression in primary care in the Royal Navy.

    PubMed

    Coetzee, R H

    2014-01-01

    Depression is a common mental health condition in the UK Armed Forces. Although psychopharmacology is usually a second line intervention, there is a place for antidepressants in the management of depression in primary care. This article will examine the diagnosis of depression, the indications for starting antidepressants, the choice of anti-depressants and the occupational considerations in the Royal Navy. The aim is to equip General Practitioners (GPs) and General Duties Medical Officers (GDMOs) with the clinical information needed to initiate psychopharmacological treatment for depression where indicated.

  15. [A unique psychopharmacologic profile of adrafinil in mice].

    PubMed

    Rambert, F A; Pessonnier, J; de Sereville, J E; Pointeau, A M; Duteil, J

    1986-01-01

    The following psychopharmacological effects of adrafinil have been observed in mice: increase in locomotor activity (64-256 mg.kg-1), antagonism (16-128 mg.kg-1) of the hypnotic effects of barbitone but not of pentobarbitone, reduction of immobility duration in the forced swimming test (16-256 mg.kg-1); slight antagonism (256 mg.kg-1) of electroshock-induced convulsions; no modification of rectal temperature; no stereotyped or climbing behaviour; no increase in lethality in aggregated mice (LD50 isolated = 1022 mg.kg-1, LD50 aggregated = 859 mg.kg-1); lack of effects on the provisional tests for antidepressants: no interaction with reserpine-, oxotremorine-, or apomorphine-induced hypothermia but potentiation of yohimbine-induced toxicity; lack of peripheral sympathetic effects (no mydriasis, no salivation, no contraction of the pilomotor muscles, no antagonism of reserpine-induced ptosis); lack of peripheral anticholinergic effects (no mydriasis, no antagonism of oxotremorine-induced salivation or lacrimation). As compared to no analeptic, anticholinergic or antidepressant drugs, adrafinil shows a unique behavioural profile in mice defined on the one hand by a specific stimulant activity associated with antidepressant-like effects that do no seem related to a beta-adrenergic mechanism and on the other hand by a lack of dopaminergic effects. Most adrafinil-induced effects (increase in locomotor activity, reduction of immobility duration in the forced swimming test) may correspond to a central alpha 1-adrenergic stimulation, but the unexpected lack of peripheral sympathetic effects remains unexplained. PMID:3713198

  16. The informatics core of the Alzheimer's Disease Neuroimaging Initiative

    PubMed Central

    Toga, Arthur W.; Crawford, Karen L.

    2010-01-01

    The Alzheimer's Diseases Neuroimaging Initiative project has brought together geographically distributed investigators, each collecting data on the progression of Alzheimer's disease. The quantity and diversity of the imaging, clinical, cognitive, biochemical, and genetic data acquired and generated throughout the study necessitated sophisticated informatics systems to organize, manage, and disseminate data and results. We describe, here, a successful and comprehensive system that provides powerful mechanisms for processing, integrating, and disseminating these data not only to support the research needs of the investigators who make up the Alzheimer's Diseases Neuroimaging Initiative cores, but also to provide widespread data access to the greater scientific community for the study of Alzheimer's Disease. PMID:20451873

  17. The Psychopharmacology Algorithm Project at the Harvard South Shore Program: An Algorithm for Generalized Anxiety Disorder.

    PubMed

    Abejuela, Harmony Raylen; Osser, David N

    2016-01-01

    This revision of previous algorithms for the pharmacotherapy of generalized anxiety disorder was developed by the Psychopharmacology Algorithm Project at the Harvard South Shore Program. Algorithms from 1999 and 2010 and associated references were reevaluated. Newer studies and reviews published from 2008-14 were obtained from PubMed and analyzed with a focus on their potential to justify changes in the recommendations. Exceptions to the main algorithm for special patient populations, such as women of childbearing potential, pregnant women, the elderly, and those with common medical and psychiatric comorbidities, were considered. Selective serotonin reuptake inhibitors (SSRIs) are still the basic first-line medication. Early alternatives include duloxetine, buspirone, hydroxyzine, pregabalin, or bupropion, in that order. If response is inadequate, then the second recommendation is to try a different SSRI. Additional alternatives now include benzodiazepines, venlafaxine, kava, and agomelatine. If the response to the second SSRI is unsatisfactory, then the recommendation is to try a serotonin-norepinephrine reuptake inhibitor (SNRI). Other alternatives to SSRIs and SNRIs for treatment-resistant or treatment-intolerant patients include tricyclic antidepressants, second-generation antipsychotics, and valproate. This revision of the GAD algorithm responds to issues raised by new treatments under development (such as pregabalin) and organizes the evidence systematically for practical clinical application. PMID:27384395

  18. [The virtue of that precious balsam...: approach to Don Quixote from the psychopharmacological perspective].

    PubMed

    Lopez-Munoz, F; Garcia-Garcia, P; Alamo, C

    2007-01-01

    The most outstanding novel of the Spanish literature, Don Quixote, represents the source to which the different specialists who intend to deepen their knowledge of the late Renaissance society usually address. This masterpiece of Miguel de Cervantes has been frequently approached from the psychopathological perspective to obtain a psychiatric diagnosis of its main character, Alonso Quijano. Also, other clinical approaches from the traumatological and general therapeutical view (oils, ointments, balms and other pharmacy preparations) have been frequent. We have tackled Don Quixote from the psychopharmacological perspective, a barely explored field. In this work, we intend to study the therapeutical cures used during the Cervantine time for the treatment of insane and mentally disturbed people (sedatives like opium, laxatives like hellebore, tonics, irritants and surgical techniques like bloodlettings and ) and we analyze the limited and unspecific therapies, mainly of herbal origin (balms, purgatives and emetics), which Cervantes reveals to us in his novel. Among them, rhubarb root (Rumex alpinus), seeds of spurge (Euphorbia lathyris), St. John's Wort (Hypericum perforatum), main ingredient of Aparicio's oil, and rosemary (Rosmarinus officinalis), primary component of the famous balsam of Fierabras, should be highlighted. We have also examined the possible scientific influences which might have inspired Cervantes in this field, mainly the works of Juan Huarte de San Juan The examination of men's wits and the one of Andres Laguna Dioscorides' materia medica.

  19. State of the art psychopharmacological treatment options in seasonal affective disorder.

    PubMed

    Yildiz, Mesut; Batmaz, Sedat; Songur, Emrah; Oral, Esat Timuçin

    2016-03-01

    Seasonal affective disorder (SAD) is defined as a subtype of mood disorders in DSM 5, and it is characterized by a seasonal onset. SAD is proposed to be related to the seasonal changes in naturally occurring light, and the use of bright light therapy for depressive symptoms has been shown to reduce them in placebo controlled trials. Cognitive behavioral therapy has also been demonstrated to be effective in SAD. This review article aims to focus on the psychopharmacological treatment options for SAD. According to clinical trial results, first line treatment options seem to be sertraline and fluoxetine, and are well tolerated by the patients. There is some evidence that other antidepressants (e.g. bupropion) might be effective as well. Although clinical trials have shown that some of these antidepressants may be of benefit, a recent review has concluded that there is not enough evidence to support the use of any of these agents for the treatment of SAD yet. Moreover, more studies are still needed to evaluate the effectiveness of other treatment options, e.g., propranolol, melatonin, hypericum, etc. In addition to the above proposed treatments, patients with seasonal depressive symptoms should thoroughly be evaluated for any cues of bipolarity, and their treatment should be planned accordingly.

  20. The Psychopharmacology Algorithm Project at the Harvard South Shore Program: An Algorithm for Generalized Anxiety Disorder.

    PubMed

    Abejuela, Harmony Raylen; Osser, David N

    2016-01-01

    This revision of previous algorithms for the pharmacotherapy of generalized anxiety disorder was developed by the Psychopharmacology Algorithm Project at the Harvard South Shore Program. Algorithms from 1999 and 2010 and associated references were reevaluated. Newer studies and reviews published from 2008-14 were obtained from PubMed and analyzed with a focus on their potential to justify changes in the recommendations. Exceptions to the main algorithm for special patient populations, such as women of childbearing potential, pregnant women, the elderly, and those with common medical and psychiatric comorbidities, were considered. Selective serotonin reuptake inhibitors (SSRIs) are still the basic first-line medication. Early alternatives include duloxetine, buspirone, hydroxyzine, pregabalin, or bupropion, in that order. If response is inadequate, then the second recommendation is to try a different SSRI. Additional alternatives now include benzodiazepines, venlafaxine, kava, and agomelatine. If the response to the second SSRI is unsatisfactory, then the recommendation is to try a serotonin-norepinephrine reuptake inhibitor (SNRI). Other alternatives to SSRIs and SNRIs for treatment-resistant or treatment-intolerant patients include tricyclic antidepressants, second-generation antipsychotics, and valproate. This revision of the GAD algorithm responds to issues raised by new treatments under development (such as pregabalin) and organizes the evidence systematically for practical clinical application.

  1. Neuroimaging: a scanner, colourfully.

    PubMed

    Roiser, Jonathan P; Rees, Geraint

    2012-04-10

    Two recent studies report changes in human brain responses after exposure to psilocybin, the active ingredient of hallucinogenic mushrooms. Psilocybin increased sensory cortex responses during emotional recollection, but decreased resting-state blood flow in prefrontal cortex, with potential implications for treating depression.

  2. Multiple testing for neuroimaging via hidden Markov random field.

    PubMed

    Shu, Hai; Nan, Bin; Koeppe, Robert

    2015-09-01

    Traditional voxel-level multiple testing procedures in neuroimaging, mostly p-value based, often ignore the spatial correlations among neighboring voxels and thus suffer from substantial loss of power. We extend the local-significance-index based procedure originally developed for the hidden Markov chain models, which aims to minimize the false nondiscovery rate subject to a constraint on the false discovery rate, to three-dimensional neuroimaging data using a hidden Markov random field model. A generalized expectation-maximization algorithm for maximizing the penalized likelihood is proposed for estimating the model parameters. Extensive simulations show that the proposed approach is more powerful than conventional false discovery rate procedures. We apply the method to the comparison between mild cognitive impairment, a disease status with increased risk of developing Alzheimer's or another dementia, and normal controls in the FDG-PET imaging study of the Alzheimer's Disease Neuroimaging Initiative.

  3. Multiple testing for neuroimaging via hidden Markov random field.

    PubMed

    Shu, Hai; Nan, Bin; Koeppe, Robert

    2015-09-01

    Traditional voxel-level multiple testing procedures in neuroimaging, mostly p-value based, often ignore the spatial correlations among neighboring voxels and thus suffer from substantial loss of power. We extend the local-significance-index based procedure originally developed for the hidden Markov chain models, which aims to minimize the false nondiscovery rate subject to a constraint on the false discovery rate, to three-dimensional neuroimaging data using a hidden Markov random field model. A generalized expectation-maximization algorithm for maximizing the penalized likelihood is proposed for estimating the model parameters. Extensive simulations show that the proposed approach is more powerful than conventional false discovery rate procedures. We apply the method to the comparison between mild cognitive impairment, a disease status with increased risk of developing Alzheimer's or another dementia, and normal controls in the FDG-PET imaging study of the Alzheimer's Disease Neuroimaging Initiative. PMID:26012881

  4. Type 2 diabetes and cognitive impairment: contributions from neuroimaging.

    PubMed

    Ryan, John P; Fine, David F; Rosano, Caterina

    2014-03-01

    Type 2 diabetes mellitus (T2D) and Alzheimer disease (AD) are major public health burdens associated with aging. As the age of the population rapidly increases, a sheer increase in the incidence of these diseases is expected. Research has identified T2D as a risk factor for cognitive impairment and potentially AD, but the neurobiological pathways that are affected are only beginning to be understood. The rapid advances in neuroimaging in the past decade have added significant understanding to how T2D affects brain structure and function and possibly lead to AD. This article provides a review of studies that have utilized structural and functional neuroimaging to identify neural pathways that link T2D to impaired cognitive performance and potentially AD. A primary focus of this article is the potential for neuroimaging to assist in understanding the mechanistic pathways that may provide translational opportunities for clinical intervention.

  5. Machine learning for neuroimaging with scikit-learn.

    PubMed

    Abraham, Alexandre; Pedregosa, Fabian; Eickenberg, Michael; Gervais, Philippe; Mueller, Andreas; Kossaifi, Jean; Gramfort, Alexandre; Thirion, Bertrand; Varoquaux, Gaël

    2014-01-01

    Statistical machine learning methods are increasingly used for neuroimaging data analysis. Their main virtue is their ability to model high-dimensional datasets, e.g., multivariate analysis of activation images or resting-state time series. Supervised learning is typically used in decoding or encoding settings to relate brain images to behavioral or clinical observations, while unsupervised learning can uncover hidden structures in sets of images (e.g., resting state functional MRI) or find sub-populations in large cohorts. By considering different functional neuroimaging applications, we illustrate how scikit-learn, a Python machine learning library, can be used to perform some key analysis steps. Scikit-learn contains a very large set of statistical learning algorithms, both supervised and unsupervised, and its application to neuroimaging data provides a versatile tool to study the brain. PMID:24600388

  6. Speeding up Permutation Testing in Neuroimaging.

    PubMed

    Hinrichs, Chris; Ithapu, Vamsi K; Sun, Qinyuan; Johnson, Sterling C; Singh, Vikas

    2013-01-01

    Multiple hypothesis testing is a significant problem in nearly all neuroimaging studies. In order to correct for this phenomena, we require a reliable estimate of the Family-Wise Error Rate (FWER). The well known Bonferroni correction method, while simple to implement, is quite conservative, and can substantially under-power a study because it ignores dependencies between test statistics. Permutation testing, on the other hand, is an exact, non-parametric method of estimating the FWER for a given α-threshold, but for acceptably low thresholds the computational burden can be prohibitive. In this paper, we show that permutation testing in fact amounts to populating the columns of a very large matrix P. By analyzing the spectrum of this matrix, under certain conditions, we see that P has a low-rank plus a low-variance residual decomposition which makes it suitable for highly sub-sampled - on the order of 0.5% - matrix completion methods. Based on this observation, we propose a novel permutation testing methodology which offers a large speedup, without sacrificing the fidelity of the estimated FWER. Our evaluations on four different neuroimaging datasets show that a computational speedup factor of roughly 50× can be achieved while recovering the FWER distribution up to very high accuracy. Further, we show that the estimated α-threshold is also recovered faithfully, and is stable. PMID:25309108

  7. The structural neuroimaging of bipolar disorder.

    PubMed

    Emsell, Louise; McDonald, Colm

    2009-01-01

    There is an increasing body of literature fuelled by advances in high-resolution structural MRI acquisition and image processing techniques which implicates subtle neuroanatomical abnormalities in the aetiopathogenesis of bipolar disorder. This account reviews the main findings from structural neuroimaging research into regional brain abnormalities, the impact of genetic liability and mood stabilizing medication on brain structure in bipolar disorder, and the overlapping structural deviations found in the allied disorders of schizophrenia and depression. The manifold challenges extant within neuroimaging research are highlighted with accompanying recommendations for future studies. The most consistent findings include preservation of total cerebral volume with regional grey and white matter structural changes in prefrontal, midline and anterior limbic networks, non-contingent ventriculomegaly and increased rates of white matter hyperintensities, with more pronounced deficits in juveniles suffering from the illness. There is increasing evidence that medication has observable effects on brain structure, whereby lithium status is associated with volumetric increase in the medial temporal lobe and anterior cingulate gyrus. However, research continues to be confounded by the use of highly heterogeneous methodology and clinical populations, in studies employing small scale, low-powered, cross-sectional designs. Future work should investigate larger, clinically homogenous groups of patients and unaffected relatives, combining both categorical and dimensional approaches to illness classification in cross-sectional and longitudinal designs in order to elucidate trait versus state mechanisms, genetic effects and medication/illness progression effects over time. PMID:20374145

  8. Advanced Neuroimaging of Tinnitus.

    PubMed

    Raghavan, Prashant; Steven, Andrew; Rath, Tanya; Gandhi, Dheeraj

    2016-05-01

    Although tinnitus may originate in damage to the peripheral auditory apparatus, its perception and distressing symptomatology are consequences of alterations to auditory, sensory, and limbic neural networks. This has been described in several studies, some using advanced structural MR imaging techniques such as diffusion tensor imaging. An understanding of these complex changes could enable development of targeted treatment. New MR imaging techniques enabling detailed depiction of the labyrinth may be useful when diagnosis of Meniere disease is equivocal. Advances in computed tomography and MR imaging have enabled noninvasive diagnosis of dural arteriovenous fistulae. PMID:27154611

  9. [Schizophrenia, cognition and neuroimaging].

    PubMed

    Kaladjian, A; Fakra, E; Adida, M; Belzeaux, R; Cermolacce, M; Azorin, J-M

    2011-12-01

    Schizophrenia is a complex illness whose mechanisms are still largely unknown. Functional brain imaging, by making the link between psyche and brain, has recently become an indispensable tool to study in vivo the neural bases underlying cognitive dysfunction in this disease. But despite the proliferation of data coming from this approach, the exact impact of functional imaging on our understanding of the disease remains blurry. In general, studies of the brain functioning of patients with schizophrenia found activation abnormalities which vary in nature and localization depending of the cognitive paradigm used. However, it appears that neurofunctional abnormalities observed in patients cannot be reduced to a simple well-localized deficit. It would be rather an alteration of the dynamics of the interactions between different brain regions that underlie the cognitive disturbances encountered in the disease. Functional brain imaging now offers new perspectives to clarify the dynamics of the brain networks, and particularly those involved in high-level cognitive functions, such as cognitive control or social cognition which seem to play a crucial role in the disease. The characterization of these features is an important issue not only to develop new hypotheses on the pathophysiology of the disorder, but also more pragmatically to identify potential therapeutic targets. PMID:22212841

  10. [Schizophrenia, cognition and neuroimaging].

    PubMed

    Kaladjian, A; Fakra, E; Adida, M; Belzeaux, R; Cermolacce, M; Azorin, J-M

    2011-12-01

    Schizophrenia is a complex illness whose mechanisms are still largely unknown. Functional brain imaging, by making the link between psyche and brain, has recently become an indispensable tool to study in vivo the neural bases underlying cognitive dysfunction in this disease. But despite the proliferation of data coming from this approach, the exact impact of functional imaging on our understanding of the disease remains blurry. In general, studies of the brain functioning of patients with schizophrenia found activation abnormalities which vary in nature and localization depending of the cognitive paradigm used. However, it appears that neurofunctional abnormalities observed in patients cannot be reduced to a simple well-localized deficit. It would be rather an alteration of the dynamics of the interactions between different brain regions that underlie the cognitive disturbances encountered in the disease. Functional brain imaging now offers new perspectives to clarify the dynamics of the brain networks, and particularly those involved in high-level cognitive functions, such as cognitive control or social cognition which seem to play a crucial role in the disease. The characterization of these features is an important issue not only to develop new hypotheses on the pathophysiology of the disorder, but also more pragmatically to identify potential therapeutic targets.

  11. Neuroimaging in multiple sclerosis.

    PubMed

    Zivadinov, Robert; Cox, Jennifer L

    2007-01-01

    Conventional magnetic resonance imaging (MRI) has routinely been used to improve the accuracy of multiple sclerosis (MS) diagnosis and prognosis. Metrics derived from conventional MRI are now routinely used to detect therapeutic effects and extend clinical observations. However, conventional MRI measures, such as the use of lesion volume and count of gadolinium-enhancing and T2 lesions, have insufficient sensitivity and specificity to reveal the true degree of pathological changes occurring in MS. They cannot distinguish between inflammation, edema, demyelination, Wallerian degeneration, and axonal loss. In addition, they do not show a reliable correlation with clinical measures of disability and do not provide a complete assessment of therapeutic outcomes. Recent neuropathologic studies of typical chronic MS brains reveal macroscopic demyelination in cortical and deep gray matter (GM) that cannot be detected by currently available MRI techniques. Therefore, there is a pressing need for the development of newer MRI techniques to detect these lesions. Newer metrics of MRI analysis, including T1-weighted hypointense lesions, central nervous system atrophy measures, magnetization transfer imaging, magnetic resonance spectroscopy, and diffusion tensor imaging, are able to capture a more global picture of the range of tissue alterations caused by inflammation and neurodegeneration. At this time, they provide the only proof--albeit indirect--that important occult pathology is occurring in the GM. However, evidence is increasing that these nonconventional MRI measures correlate better with both existing and developing neurological impairment and disability when compared to conventional metrics. PMID:17531854

  12. Neuroimaging Week: A Novel, Engaging, and Effective Curriculum for Teaching Neuroimaging to Junior Psychiatric Residents

    ERIC Educational Resources Information Center

    Downar, Jonathan; Krizova, Adriana; Ghaffar, Omar; Zaretsky, Ari

    2010-01-01

    Objective: Neuroimaging techniques are increasingly important in psychiatric research and clinical practice, but few postgraduate psychiatry programs offer formal training in neuroimaging. To address this need, the authors developed a course to prepare psychiatric residents to use neuroimaging techniques effectively in independent practice.…

  13. The Role of the Pharmaceutical Industry in Teaching Psychopharmacology: A Growing Problem

    ERIC Educational Resources Information Center

    Brodkey, Amy C.

    2005-01-01

    OBJECTIVE: To describe and examine the role of the pharmaceutical industry in the teaching of psychopharmacology to residents and medical students and to make recommendations for changes in curriculum and policy based on these findings. METHODS: Literature reviews and discussions with experts, educators, and trainees. RESULTS: The pharmaceutical…

  14. Psychopharmacologic treatment of dissociative fugue and PTSD in an Ethiopian refugee.

    PubMed

    Liu-Barbaro, Dorothy; Stein, Murray

    2015-07-01

    Despite widespread awareness of their frequent co-occurrence, little is known about treatment of individuals with comorbid posttraumatic stress disorder (PTSD) and dissociative disorders. Patients with dissociative disorders do not respond well to standard exposure therapy, and few psychopharmacologic trials exist. Fluoxetine proved ineffective for depersonalization disorder, but paroxetine showed efficacy in decreasing dissociative symptoms in PTSD patients. PMID:26115334

  15. Psychopharmacology for Children and Adolescents: Commentary on Current Issues and Future Challenges.

    ERIC Educational Resources Information Center

    Kratochwill, Thomas R.

    1994-01-01

    Notes that biological interventions have been relatively neglected within field of school psychology in terms of its professional training, research agendas, and professional relationships with other specialties within psychology. Responds to previous articles in this special miniseries on psychopharmacology with children and adolescents, and…

  16. Comparison of Increasingly Detailed Elicitation Methods for the Assessment of Adverse Events in Pediatric Psychopharmacology.

    ERIC Educational Resources Information Center

    Greenhill, Laurence L.; Vitiello, Benedetto; Fisher, Prudence; Levine, Jerome; Davies, Mark; Abikoff, Howard; Chrisman, Allan K.; Chuang, Shirley; Findling, Robert L.; March, John; Scahill, Lawrence; Walkup, John; Riddle, Mark A.

    2004-01-01

    Objective: To improve the gathering of adverse events (AEs) in pediatric psychopharmacology by examining the value and acceptability of increasingly detailed elicitation methods. Method: Trained clinicians administered the Safety Monitoring Uniform Report Form (SMURF) to 59 parents and outpatients (mean age [+ or -] SD = 11.9 [+ or -] 3.2 years)…

  17. Pediatric Psychopharmacology and Prescription Privileges: Implications and Opportunities for School Psychology.

    ERIC Educational Resources Information Center

    Kubiszyn, Tom

    1994-01-01

    Reviews literature on pediatric psychopharmacology practice, lack of empirical support for efficacy and safety of most psychotropics for pediatric use, and need for further basic and clinical trials research and evaluation. Identifies shortcomings in training and experience that must be addressed if school psychology is to meet demands of three…

  18. Back to the future of psychopharmacology: A perspective on animal models in drug discovery.

    PubMed

    Hendriksen, Hendrikus; Groenink, Lucianne

    2015-07-15

    Psychopharmacology has had some bad publicity lately. Frankly, there have been some major problems along the way in developing new effective drugs for psychiatric disorders. After a prolonged period of high investments but low success rates, big pharmaceutical companies seem to retract their activities in the psychopharmacology field. Yet, the burden of mental disorders is likely to keep on growing in the next decades. In this position paper, we focus on drug development for depression and anxiety disorders, to narrow the scope of the assay. We describe the current situation of the psychopharmacology field, and analyse some of the methods and paradigms that have brought us here, but which should perhaps change to bring us even further. In addition, some of the factors contributing to the current stagnation in psychopharmacology are discussed. Finally, we suggest a number of changes that could lead to a more rational strategy for central nervous system drug development and which may circumvent some of the pitfalls leading to "me too" approaches. Central to the suggested changes, is the notion that mental disorders do not lead to several symptoms, but a network of causally related symptoms convolutes into a mental disorder. We call upon academia to put these changes in the early phases of drug development into effect.

  19. Current Practices and Future Directions in Psychopharmacological Training and Collaboration in School Psychology

    ERIC Educational Resources Information Center

    Sulkowski, Michael L.; Jordan, Cary; Nguyen, Matthew L.

    2009-01-01

    School psychologists frequently examine children who are prescribed psychotropic medications. With advanced training in psychological assessment and professional consultation, school psychologists may play an integral role in assisting with children's psychopharmacological treatment regimens. In this vein, this article discusses various ways for…

  20. The Challenge of Teaching Psychopharmacology in the New Millennium: The Role of Curricula

    ERIC Educational Resources Information Center

    Glick, Ira D.; Zisook, Sidney

    2005-01-01

    Objective: For a variety of pedagogical, political and financial reasons, there are major problems in achieving effective teaching of cutting-edge psychopharmacology for psychiatric residents. This article focuses on ways to improve the teaching/learning process, in part through the use of structured curricula. The authors review 1) attempted…

  1. Mental Health Issues among College Students: Who Gets Referred for Psychopharmacology Evaluation?

    ERIC Educational Resources Information Center

    Kirsch, Daniel J.; Doerfler, Leonard A.; Truong, Debbie

    2015-01-01

    Objective: To describe diagnostic and psychotropic medication prescription characteristics among college students referred by college counseling centers for psychopharmacologic evaluation. Participants: Participants were 540 college students referred by 6 college counseling centers in Massachusetts between November 2005 and May 2011. Methods:…

  2. The Formal Instruction of Psychopharmacology in CACREP-Accredited Counselor Education Programs

    ERIC Educational Resources Information Center

    Sepulveda, Victoria I.

    2011-01-01

    Counseling professionals and researchers have advocated for counselor training in psychopharmacology in order to heighten counselors' awareness of client needs and treatment standards (Ingersoll, 2000; King & Anderson, 2004; Smith & Garcia, 2003). There has been a lack of this training within counselor education graduate programs (Buelow, Hebert,…

  3. Psychopharmacological Treatment Options for Global Child and Adolescent Mental Health: The WHO Essential Medicines Lists

    ERIC Educational Resources Information Center

    Kutcher, Stan; Murphy, Andrea; Gardner, David

    2008-01-01

    The article examines the World Health Organization's Model List of Essential Medicines (EML) and suggests modification for appropriate psychopharmacological treatment of child- and adolescent-onset mental disorders. The EML enlists few of the psychotropic medicines that are useful for the treatment of young people thereby limiting the…

  4. Child and Adolescent Psychopharmacology in the New Millennium: A Workshop for Academia, Industry, and Government

    ERIC Educational Resources Information Center

    Deveaugh-Geiss, Joseph; March, John; Shapiro, Mark; Andreason, Paul J.; Emslie, Graham; Ford, Lisa M.; Greenhill, Laurence; Murphy, Dianne; Prentice, Ernest; Roberts, Rosemary; Silva, Susan; Swanson, James M.; van Zwieten-Boot, Barbara; Vitiello, Benedetto; Wagner, Karen Dineen; Mangum, Barry

    2006-01-01

    Objective: To give academic researchers, government officials, and industry scientists an opportunity to assess the state of pediatric psychopharmacology and identify challenges facing professionals in the field. Method: Increased federal spending and the introduction of pediatric exclusivity led to large increases in pediatric psychopharmacology…

  5. Practical Paediatric Psychopharmacological Prescribing in Autism: The Potential and the Pitfalls.

    ERIC Educational Resources Information Center

    Gringras, Paul

    2000-01-01

    This article discusses the evidence behind two approaches to psychopharmacological management in children with autism: selecting and treating target symptoms or treatment or curing the primary social impairment underlying autism. The effectiveness of stimulants, antidepressants, melatonin, naltrexone, fenfluramine, and secretin is appraised. The…

  6. Guidelines, Algorithms, and Evidence-Based Psychopharmacology Training for Psychiatric Residents

    ERIC Educational Resources Information Center

    Osser, David N.; Patterson, Robert D.; Levitt, James J.

    2005-01-01

    Objective: The authors describe a course of instruction for psychiatry residents that attempts to provide the cognitive and informational tools necessary to make scientifically grounded decision making a routine part of clinical practice. Methods: In weekly meetings over two academic years, the course covers the psychopharmacology of various…

  7. Defensive burying in rodents: ethology, neurobiology and psychopharmacology.

    PubMed

    De Boer, Sietse F; Koolhaas, Jaap M

    2003-02-28

    Defensive burying refers to the typical rodent behavior of displacing bedding material with vigorous treading-like movements of their forepaws and shoveling movements of their heads directed towards a variety of noxious stimuli that pose a near and immediate threat, such as a wall-mounted electrified shock-prod. Since its introduction 25 years ago by Pinel and Treit [J. Comp. Physiol. Psychol. 92 (1978) 708], defensive (shock-prod) burying has been the focus of a considerable amount of research effort delineating the methodology/ethology, psychopharmacology and neurobiology of this robust and species-specific active avoidance or coping response. The present review gives a summary of this research with special reference to the behavioral (face and construct) and pharmacological (predictive) validity of the shock-prod burying test as an animal model for human anxiety. Emphasis is also placed on some recent modifications of the paradigm that may increase its utility and reliability as to individual differences in expressed emotional coping responses and sensitivity to pharmacological treatments. Overall, the behavioral and physiological responses displayed in the shock-prod paradigm are expressions of normal and functionally adaptive coping patterns and the extremes of either active (i.e., burying) or passive (i.e., freezing) forms of responding in this test cannot simply be regarded as inappropriate, maladaptive or pathological. For this reason, the shock-prod paradigm is not an animal model for anxiety disorder or for any other psychiatric disease, but instead possesses a high degree of face and construct validity for normal and functionally adaptive human fear and anxious apprehension. However, the apparent good pharmacological validation (predictive validity) of this test reinforces the view that normal and pathological anxiety involves, at least partly, common neurobiological substrates. Therefore, this paradigm is not only suitable for screening potential

  8. Neuroimaging.

    PubMed

    Pope, Whitney B; Djoukhadar, Ibrahim; Jackson, Alan

    2016-01-01

    Imaging is integral to the management of patients with brain tumors. Conventional structural imaging provides exquisite anatomic detail but remains limited in the evaluation of molecular characteristics of intracranial neoplasms. Quantitative and physiologic biomarkers derived from advanced imaging techniques have been increasingly utilized as problem-solving tools to identify glioma grade and assess response to therapy. This chapter provides a comprehensive overview of the imaging strategies used in the clinical assessment of patients with gliomas and describes how novel imaging biomarkers have the potential to improve patient management. PMID:26948347

  9. Neuroimaging in Psychiatric Pharmacogenetics Research: The Promise and Pitfalls

    PubMed Central

    Falcone, Mary; Smith, Ryan M; Chenoweth, Meghan J; Kumar Bhattacharjee, Abesh; Kelsoe, John R; Tyndale, Rachel F; Lerman, Caryn

    2013-01-01

    The integration of research on neuroimaging and pharmacogenetics holds promise for improving treatment for neuropsychiatric conditions. Neuroimaging may provide a more sensitive early measure of treatment response in genetically defined patient groups, and could facilitate development of novel therapies based on an improved understanding of pathogenic mechanisms underlying pharmacogenetic associations. This review summarizes progress in efforts to incorporate neuroimaging into genetics and treatment research on major psychiatric disorders, such as schizophrenia, major depressive disorder, bipolar disorder, attention-deficit/hyperactivity disorder, and addiction. Methodological challenges include: performing genetic analyses in small study populations used in imaging studies; inclusion of patients with psychiatric comorbidities; and the extensive variability across studies in neuroimaging protocols, neurobehavioral task probes, and analytic strategies. Moreover, few studies use pharmacogenetic designs that permit testing of genotype × drug effects. As a result of these limitations, few findings have been fully replicated. Future studies that pre-screen participants for genetic variants selected a priori based on drug metabolism and targets have the greatest potential to advance the science and practice of psychiatric treatment. PMID:23793356

  10. What's new in neuroimaging methods?

    PubMed Central

    Bandettini, Peter A.

    2009-01-01

    The rapid advancement of neuroimaging methodology and availability has transformed neuroscience research. The answers to many questions that we ask about how the brain is organized depend on the quality of data that we are able to obtain about the locations, dynamics, fluctuations, magnitudes, and types of brain activity and structural changes. In this review, an attempt is made to take a snapshot of the cutting edge of a small component of the very rapidly evolving field of neuroimaging. For each area covered, a brief context is provided along with a summary of a few of the current developments and issues. Then, several outstanding papers, published in the past year or so, are described, providing an example of the directions in which each area is progressing. The areas covered include functional MRI (fMRI), voxel based morphometry (VBM), diffusion tensor imaging (DTI), electroencephalography (EEG), magnetoencephalography (MEG), optical imaging, and positron emission tomography (PET). More detail is included on fMRI, as subsections include: functional MRI interpretation, new functional MRI contrasts, MRI technology, MRI paradigms and processing, and endogenous oscillations in functional MRI. PMID:19338512

  11. Neuroimaging of Freezing of Gait

    PubMed Central

    Fasano, Alfonso; Herman, Talia; Tessitore, Alessandro; Strafella, Antonio P.; Bohnen, Nicolaas I.

    2015-01-01

    Abstract Functional brain imaging techniques appear ideally suited to explore the pathophysiology of freezing of gait (FOG). In the last two decades, techniques based on magnetic resonance or nuclear medicine imaging have found a number of structural changes and functional disconnections between subcortical and cortical regions of the locomotor network in patients with FOG. FOG seems to be related in part to disruptions in the “executive-attention” network along with regional tissue loss including the premotor area, inferior frontal gyrus, precentral gyrus, the parietal and occipital areas involved in visuospatial functions of the right hemisphere. Several subcortical structures have been also involved in the etiology of FOG, principally the caudate nucleus and the locomotor centers in the brainstem. Maladaptive neural compensation may present transiently in the presence of acute conflicting motor, cognitive or emotional stimulus processing, thus causing acute network overload and resulting in episodic impairment of stepping. In this review we will summarize the state of the art of neuroimaging research for FOG. We will also discuss the limitations of current approaches and delineate the next steps of neuroimaging research to unravel the pathophysiology of this mysterious motor phenomenon. PMID:25757831

  12. Seeing responsibility: can neuroimaging teach us anything about moral and legal responsibility?

    PubMed

    Wasserman, David; Johnston, Josephine

    2014-01-01

    As imaging technologies help us understand the structure and function of the brain, providing insight into human capabilities as basic as vision and as complex as memory, and human conditions as impairing as depression and as fraught as psychopathy, some have asked whether they can also help us understand human agency. Specifically, could neuroimaging lead us to reassess the socially significant practice of assigning and taking responsibility? While responsibility itself is not a psychological process open to investigation through neuroimaging, decision-making is. Over the past decade, different researchers and scholars have sought to use neuroimaging (or the results of neuroimaging studies) to investigate what is going on in the brain when we make decisions. The results of this research raise the question whether neuroscience-especially now that it includes neuroimaging-can and should alter our understandings of responsibility and our related practice of holding people responsible. It is this question that we investigate here.

  13. Neuroimaging and the school-based assessment of traumatic brain injury.

    PubMed

    Jantz, Paul B; Bigler, Erin D

    2014-01-01

    Advanced neuroimaging contributes to a greater understanding of brain pathology following a traumatic brain injury (TBI) and has the ability to guide neurorehabilitation decisions. When integrated with the school-based psychoeducational assessment of a child with a TBI, neuroimaging can provide a different perspective when interpreting educational and behavioral variables relevant to school-based neurorehabilitation. School psychologists conducting traditional psychoeducational assessments of children with TBI seldom obtain and integrate neuroimaging, despite its availability. This article presents contextual information on the medical assessment of TBI, major types of neuroimaging, and networks of the brain. A case study illustrates the value of incorporating neuroimaging into the standard school-based psychoeducational evaluations of children with traumatic brain injury. PMID:24473251

  14. Neuroimaging and the school-based assessment of traumatic brain injury.

    PubMed

    Jantz, Paul B; Bigler, Erin D

    2014-01-01

    Advanced neuroimaging contributes to a greater understanding of brain pathology following a traumatic brain injury (TBI) and has the ability to guide neurorehabilitation decisions. When integrated with the school-based psychoeducational assessment of a child with a TBI, neuroimaging can provide a different perspective when interpreting educational and behavioral variables relevant to school-based neurorehabilitation. School psychologists conducting traditional psychoeducational assessments of children with TBI seldom obtain and integrate neuroimaging, despite its availability. This article presents contextual information on the medical assessment of TBI, major types of neuroimaging, and networks of the brain. A case study illustrates the value of incorporating neuroimaging into the standard school-based psychoeducational evaluations of children with traumatic brain injury.

  15. Seeing responsibility: can neuroimaging teach us anything about moral and legal responsibility?

    PubMed

    Wasserman, David; Johnston, Josephine

    2014-01-01

    As imaging technologies help us understand the structure and function of the brain, providing insight into human capabilities as basic as vision and as complex as memory, and human conditions as impairing as depression and as fraught as psychopathy, some have asked whether they can also help us understand human agency. Specifically, could neuroimaging lead us to reassess the socially significant practice of assigning and taking responsibility? While responsibility itself is not a psychological process open to investigation through neuroimaging, decision-making is. Over the past decade, different researchers and scholars have sought to use neuroimaging (or the results of neuroimaging studies) to investigate what is going on in the brain when we make decisions. The results of this research raise the question whether neuroscience-especially now that it includes neuroimaging-can and should alter our understandings of responsibility and our related practice of holding people responsible. It is this question that we investigate here. PMID:24634084

  16. Neuroimaging findings in late-onset schizophrenia and bipolar disorder.

    PubMed

    Hahn, Changtae; Lim, Hyun Kook; Lee, Chang Uk

    2014-03-01

    In recent years, there has been an increasing interest in late-onset mental disorders. Among them, geriatric schizophrenia and bipolar disorder are significant health care risks and major causes of disability. We discussed whether late-onset schizophrenia (LOS) and late-onset bipolar (LOB) disorder can be a separate entity from early-onset schizophrenia (EOS) and early-onset bipolar (EOB) disorder in a subset of late-life schizophrenia or late-life bipolar disorder through neuroimaging studies. A literature search for imaging studies of LOS or LOB was performed in the PubMed database. Search terms used were "(imaging OR MRI OR CT OR SPECT OR DTI OR PET OR fMRI) AND (schizophrenia or bipolar disorder) AND late onset." Articles that were published in English before October 2013 were included. There were a few neuroimaging studies assessing whether LOS and LOB had different disease-specific neural substrates compared with EOS and EOB. These researches mainly observed volumetric differences in specific brain regions, white matter hyperintensities, diffusion tensor imaging, or functional neuroimaging to explore the differences between LOS and LOB and EOS and EOB. The aim of this review was to highlight the neural substrates involved in LOS and LOB through neuroimaging studies. The exploration of neuroanatomical markers may be the key to the understanding of underlying neurobiology in LOS and LOB. PMID:24401535

  17. A Developmental Neuroimaging Investigation of the Change Paradigm

    ERIC Educational Resources Information Center

    Thomas, Laura A.; Hall, Julie M.; Skup, Martha; Jenkins, Sarah E.; Pine, Daniel S.; Leibenluft, Ellen

    2011-01-01

    This neuroimaging study examines the development of cognitive flexibility using the Change task in a sample of youths and adults. The Change task requires subjects to inhibit a prepotent response and substitute an alternative response, and the task incorporates an algorithm that adjusts task difficulty in response to subject performance. Data from…

  18. Renewal of the neurophysiology of language: functional neuroimaging.

    PubMed

    Démonet, Jean-François; Thierry, Guillaume; Cardebat, Dominique

    2005-01-01

    Functional neuroimaging methods have reached maturity. It is now possible to start to build the foundations of a physiology of language. The remarkable number of neuroimaging studies performed so far illustrates the potential of this approach, which complements the classical knowledge accumulated on aphasia. Here we attempt to characterize the impact of the functional neuroimaging revolution on our understanding of language. Although today considered as neuroimaging techniques, we refer less to electroencephalography and magnetoencephalography studies than to positron emission tomography and functional magnetic resonance imaging studies, which deal more directly with the question of localization and functional neuroanatomy. This review is structured in three parts. 1) Because of their rapid evolution, we address technical and methodological issues to provide an overview of current procedures and sketch out future perspectives. 2) We review a set of significant results acquired in normal adults (the core of functional imaging studies) to provide an overview of language mechanisms in the "standard" brain. Single-word processing is considered in relation to input modalities (visual and auditory input), output modalities (speech and written output), and the involvement of "central" semantic processes before sentence processing and nonstandard language (illiteracy, multilingualism, and sensory deficits) are addressed. 3) We address the influence of plasticity on physiological functions in relation to its main contexts of appearance, i.e., development and brain lesions, to show how functional imaging can allow fine-grained approaches to adaptation, the fundamental property of the brain. In closing, we consider future developments for language research using functional imaging.

  19. Neuroimaging for drug addiction and related behaviors

    SciTech Connect

    Parvaz M. A.; Parvaz, M.A.; Alia-Klein, N.; Woicik,P.A.; Volkow, N.D.; Goldstein, R.Z.

    2011-10-01

    In this review, we highlight the role of neuroimaging techniques in studying the emotional and cognitive-behavioral components of the addiction syndrome by focusing on the neural substrates subserving them. The phenomenology of drug addiction can be characterized by a recurrent pattern of subjective experiences that includes drug intoxication, craving, bingeing, and withdrawal with the cycle culminating in a persistent preoccupation with obtaining, consuming, and recovering from the drug. In the past two decades, imaging studies of drug addiction have demonstrated deficits in brain circuits related to reward and impulsivity. The current review focuses on studies employing positron emission tomography (PET), functional magnetic resonance imaging (fMRI), and electroencephalography (EEG) to investigate these behaviors in drug-addicted human populations. We begin with a brief account of drug addiction followed by a technical account of each of these imaging modalities. We then discuss how these techniques have uniquely contributed to a deeper understanding of addictive behaviors.

  20. Neuroimaging for drug addiction and related behaviors

    PubMed Central

    Parvaz, Muhammad A.; Alia-Klein, Nelly; Woicik, Patricia A.; Volkow, Nora D.; Goldstein, Rita Z.

    2012-01-01

    In this review, we highlight the role of neuroimaging techniques in studying the emotional and cognitive-behavioral components of the addiction syndrome by focusing on the neural substrates subserving them. The phenomenology of drug addiction can be characterized by a recurrent pattern of subjective experiences that includes drug intoxication, craving, bingeing, and withdrawal with the cycle culminating in a persistent preoccupation with obtaining, consuming, and recovering from the drug. In the past two decades, imaging studies of drug addiction have demonstrated deficits in brain circuits related to reward and impulsivity. The current review focuses on studies employing positron emission tomography (PET), functional magnetic resonance imaging (fMRI), and electroencephalography (EEG) to investigate these behaviors in drug-addicted human populations. We begin with a brief account of drug addiction followed by a technical account of each of these imaging modalities. We then discuss how these techniques have uniquely contributed to a deeper understanding of addictive behaviors. PMID:22117165

  1. Neuroimaging of Cognitive Load in Instructional Multimedia

    ERIC Educational Resources Information Center

    Whelan, Robert R.

    2007-01-01

    This paper reviews research literature on cognitive load measurement in learning and neuroimaging, and describes a mapping between the main elements of cognitive load theory and findings in functional neuroanatomy. It is argued that these findings may lead to the improved measurement of cognitive load using neuroimaging. The paper describes how…

  2. Neuroimaging and Research into Second Language Acquisition

    ERIC Educational Resources Information Center

    Sabourin, Laura

    2009-01-01

    Neuroimaging techniques are becoming not only more and more sophisticated but are also coming to be increasingly accessible to researchers. One thing that one should take note of is the potential of neuroimaging research within second language acquisition (SLA) to contribute to issues pertaining to the plasticity of the adult brain and to general…

  3. Functional neuroimaging findings in patients with lateral and mesio-lateral temporal lobe epilepsy; FDG-PET and ictal SPECT studies.

    PubMed

    Joo, Eun Yeon; Seo, Dae Won; Hong, Seung-Chyul; Hong, Seung Bong

    2015-05-01

    The differentiation of combined mesial and lateral temporal onset of seizures (mesio-lateral TLE, MLTLE) from lateral TLE (LTLE) is critical to achieve good surgical outcomes. However, the functional neuroimaging features in LTLE patients based on the ictal onset zone utilizing intracranial EEG (iEEG) in a large series have not been investigated. We enrolled patients diagnosed with MLTLE (n = 35) and LTLE (n = 53) based on the site of ictal onset zone from iEEG monitoring. MLTLE is defined when ictal discharges originate from the mesial and lateral temporal cortices independently, whereas seizures of LTLE arise exclusively from the lateral temporal cortex. Compared to patients with LTLE, patients with MLTLE were more likely to have 18F- fluorodeoxyglucose positron emission tomography (FDG-PET) hypometabolism and hyperperfusion on ictal single-photon emission computed tomography (SPECT) restricted to the temporal areas. MLTLE patients had more frequent aura or secondarily generalized seizures than LTLE patients. No significant differences were found in scalp EEG, MRI, and Wada asymmetry between groups. The overall seizure-free rate was good (73.8%, mean follow-up = 9.7 years), which was not different (Engel class I, 74.3% in MLTLE vs. 73.6% in LTLE). Postsurgical memory function was spared in LTLE patients, while visual memory was impaired in MLTLE patients when their mesial temporal structures were sufficiently resected. It suggests that functional neuroimaging (interictal PET and ictal and interictal SPECT) may play a crucial role to differentiate between MLTLE and LTLE. PMID:25794857

  4. Neuroimaging of child abuse: a critical review

    PubMed Central

    Hart, Heledd; Rubia, Katya

    2012-01-01

    Childhood maltreatment is a stressor that can lead to the development of behavior problems and affect brain structure and function. This review summarizes the current evidence for the effects of childhood maltreatment on behavior, cognition and the brain in adults and children. Neuropsychological studies suggest an association between child abuse and deficits in IQ, memory, working memory, attention, response inhibition and emotion discrimination. Structural neuroimaging studies provide evidence for deficits in brain volume, gray and white matter of several regions, most prominently the dorsolateral and ventromedial prefrontal cortex but also hippocampus, amygdala, and corpus callosum (CC). Diffusion tensor imaging (DTI) studies show evidence for deficits in structural interregional connectivity between these areas, suggesting neural network abnormalities. Functional imaging studies support this evidence by reporting atypical activation in the same brain regions during response inhibition, working memory, and emotion processing. There are, however, several limitations of the abuse research literature which are discussed, most prominently the lack of control for co-morbid psychiatric disorders, which make it difficult to disentangle which of the above effects are due to maltreatment, the associated psychiatric conditions or a combination or interaction between both. Overall, the better controlled studies that show a direct correlation between childhood abuse and brain measures suggest that the most prominent deficits associated with early childhood abuse are in the function and structure of lateral and ventromedial fronto-limbic brain areas and networks that mediate behavioral and affect control. Future, large scale multimodal neuroimaging studies in medication-naïve subjects, however, are needed that control for psychiatric co-morbidities in order to elucidate the structural and functional brain sequelae that are associated with early environmental adversity

  5. Diagnostic and therapeutic utility of neuroimaging in depression: an overview

    PubMed Central

    Wise, Toby; Cleare, Anthony J; Herane, Andrés; Young, Allan H; Arnone, Danilo

    2014-01-01

    A growing number of studies have used neuroimaging to further our understanding of how brain structure and function are altered in major depression. More recently, these techniques have begun to show promise for the diagnosis and treatment of depression, both as aids to conventional methods and as methods in their own right. In this review, we describe recent neuroimaging findings in the field that might aid diagnosis and improve treatment accuracy. Overall, major depression is associated with numerous structural and functional differences in neural systems involved in emotion processing and mood regulation. Furthermore, several studies have shown that the structure and function of these systems is changed by pharmacological and psychological treatments of the condition and that these changes in candidate brain regions might predict clinical response. More recently, “machine learning” methods have used neuroimaging data to categorize individual patients according to their diagnostic status and predict treatment response. Despite being mostly limited to group-level comparisons at present, with the introduction of new methods and more naturalistic studies, neuroimaging has the potential to become part of the clinical armamentarium and may improve diagnostic accuracy and inform treatment choice at the patient level. PMID:25187715

  6. Neuroimaging of the Periaqueductal Gray: State of the Field

    PubMed Central

    Linnman, Clas; Moulton, Eric A.; Barmettler, Gabi; Becerra, Lino; Borsook, David

    2011-01-01

    This review and meta-analysis aims at summarizing and integrating the human neuroimaging studies that report periaqueductal gray (PAG) involvement; 250 original manuscripts on human neuroimaging of the PAG were identified. A narrative review and meta-analysis using activation likelihood estimates is included. Behaviors covered include pain and pain modulation, anxiety, bladder and bowel function and autonomic regulation. Methods include structural and functional magnetic resonance imaging, functional connectivity measures, diffusion weighted imaging and positron emission tomography. Human neuroimaging studies in healthy and clinical populations largely confirm the animal literature indicating that the PAG is involved in homeostatic regulation of salient functions such as pain, anxiety and autonomic function. Methodological concerns in the current literature, including resolution constraints, imaging artifacts and imprecise neuroanatomical labeling are discussed, and future directions are proposed. A general conclusion is that PAG neuroimaging is a field with enormous potential to translate animal data onto human behaviors, but with some growing pains that can and need to be addressed in order to add to our understanding of the neurobiology of this key region. PMID:22197740

  7. Uncovering the etiology of conversion disorder: insights from functional neuroimaging.

    PubMed

    Ejareh Dar, Maryam; Kanaan, Richard Aa

    2016-01-01

    Conversion disorder (CD) is a syndrome of neurological symptoms arising without organic cause, arguably in response to emotional stress, but the exact neural substrates of these symptoms and the underlying mechanisms remain poorly understood with the hunt for a biological basis afoot for centuries. In the past 15 years, novel insights have been gained with the advent of functional neuroimaging studies in patients suffering from CDs in both motor and nonmotor domains. This review summarizes recent functional neuroimaging studies including functional magnetic resonance imaging (fMRI), single photon emission computerized tomography (SPECT), and positron emission tomography (PET) to see whether they bring us closer to understanding the etiology of CD. Convergent functional neuroimaging findings suggest alterations in brain circuits that could point to different mechanisms for manifesting functional neurological symptoms, in contrast with feigning or healthy controls. Abnormalities in emotion processing and in emotion-motor processing suggest a diathesis, while differential reactions to certain stressors implicate a specific response to trauma. No comprehensive theory emerges from these clues, and all results remain preliminary, but functional neuroimaging has at least given grounds for hope that a model for CD may soon be found. PMID:26834476

  8. Uncovering the etiology of conversion disorder: insights from functional neuroimaging.

    PubMed

    Ejareh Dar, Maryam; Kanaan, Richard Aa

    2016-01-01

    Conversion disorder (CD) is a syndrome of neurological symptoms arising without organic cause, arguably in response to emotional stress, but the exact neural substrates of these symptoms and the underlying mechanisms remain poorly understood with the hunt for a biological basis afoot for centuries. In the past 15 years, novel insights have been gained with the advent of functional neuroimaging studies in patients suffering from CDs in both motor and nonmotor domains. This review summarizes recent functional neuroimaging studies including functional magnetic resonance imaging (fMRI), single photon emission computerized tomography (SPECT), and positron emission tomography (PET) to see whether they bring us closer to understanding the etiology of CD. Convergent functional neuroimaging findings suggest alterations in brain circuits that could point to different mechanisms for manifesting functional neurological symptoms, in contrast with feigning or healthy controls. Abnormalities in emotion processing and in emotion-motor processing suggest a diathesis, while differential reactions to certain stressors implicate a specific response to trauma. No comprehensive theory emerges from these clues, and all results remain preliminary, but functional neuroimaging has at least given grounds for hope that a model for CD may soon be found.

  9. Uncovering the etiology of conversion disorder: insights from functional neuroimaging

    PubMed Central

    Ejareh dar, Maryam; Kanaan, Richard AA

    2016-01-01

    Conversion disorder (CD) is a syndrome of neurological symptoms arising without organic cause, arguably in response to emotional stress, but the exact neural substrates of these symptoms and the underlying mechanisms remain poorly understood with the hunt for a biological basis afoot for centuries. In the past 15 years, novel insights have been gained with the advent of functional neuroimaging studies in patients suffering from CDs in both motor and nonmotor domains. This review summarizes recent functional neuroimaging studies including functional magnetic resonance imaging (fMRI), single photon emission computerized tomography (SPECT), and positron emission tomography (PET) to see whether they bring us closer to understanding the etiology of CD. Convergent functional neuroimaging findings suggest alterations in brain circuits that could point to different mechanisms for manifesting functional neurological symptoms, in contrast with feigning or healthy controls. Abnormalities in emotion processing and in emotion-motor processing suggest a diathesis, while differential reactions to certain stressors implicate a specific response to trauma. No comprehensive theory emerges from these clues, and all results remain preliminary, but functional neuroimaging has at least given grounds for hope that a model for CD may soon be found. PMID:26834476

  10. The Human Connectome Project's neuroimaging approach.

    PubMed

    Glasser, Matthew F; Smith, Stephen M; Marcus, Daniel S; Andersson, Jesper L R; Auerbach, Edward J; Behrens, Timothy E J; Coalson, Timothy S; Harms, Michael P; Jenkinson, Mark; Moeller, Steen; Robinson, Emma C; Sotiropoulos, Stamatios N; Xu, Junqian; Yacoub, Essa; Ugurbil, Kamil; Van Essen, David C

    2016-08-26

    Noninvasive human neuroimaging has yielded many discoveries about the brain. Numerous methodological advances have also occurred, though inertia has slowed their adoption. This paper presents an integrated approach to data acquisition, analysis and sharing that builds upon recent advances, particularly from the Human Connectome Project (HCP). The 'HCP-style' paradigm has seven core tenets: (i) collect multimodal imaging data from many subjects; (ii) acquire data at high spatial and temporal resolution; (iii) preprocess data to minimize distortions, blurring and temporal artifacts; (iv) represent data using the natural geometry of cortical and subcortical structures; (v) accurately align corresponding brain areas across subjects and studies; (vi) analyze data using neurobiologically accurate brain parcellations; and (vii) share published data via user-friendly databases. We illustrate the HCP-style paradigm using existing HCP data sets and provide guidance for future research. Widespread adoption of this paradigm should accelerate progress in understanding the brain in health and disease. PMID:27571196

  11. The experience of art: insights from neuroimaging.

    PubMed

    Nadal, Marcos

    2013-01-01

    The experience of art is a complex one. It emerges from the interaction of multiple cognitive and affective processes. Neuropsychological and neuroimaging studies are revealing the broadly distributed network of brain regions upon which it relies. This network can be divided into three functional components: (i) prefrontal, parietal, and temporal cortical regions support evaluative judgment, attentional processing, and memory retrieval; (ii) the reward circuit, including cortical, subcortical regions, and some of its regulators, is involved in the generation of pleasurable feelings and emotions, and the valuation and anticipation of reward; and (iii) attentional modulation of activity in low-, mid-, and high-level cortical sensory regions enhances the perceptual processing of certain features, relations, locations, or objects. Understanding how these regions act in concert to produce unique and moving art experiences and determining the impact of personal and cultural meaning and context on this network the biological foundation of the experience of art--remain future challenges.

  12. The experience of art: insights from neuroimaging.

    PubMed

    Nadal, Marcos

    2013-01-01

    The experience of art is a complex one. It emerges from the interaction of multiple cognitive and affective processes. Neuropsychological and neuroimaging studies are revealing the broadly distributed network of brain regions upon which it relies. This network can be divided into three functional components: (i) prefrontal, parietal, and temporal cortical regions support evaluative judgment, attentional processing, and memory retrieval; (ii) the reward circuit, including cortical, subcortical regions, and some of its regulators, is involved in the generation of pleasurable feelings and emotions, and the valuation and anticipation of reward; and (iii) attentional modulation of activity in low-, mid-, and high-level cortical sensory regions enhances the perceptual processing of certain features, relations, locations, or objects. Understanding how these regions act in concert to produce unique and moving art experiences and determining the impact of personal and cultural meaning and context on this network the biological foundation of the experience of art--remain future challenges. PMID:24041322

  13. Neuroimaging characteristics of patients with focal hand dystonia.

    PubMed

    Hinkley, Leighton B N; Webster, Rebecca L; Byl, Nancy N; Nagarajan, Srikantan S

    2009-01-01

    NARRATIVE REVIEW: Advances in structural and functional imaging have provided both scientists and clinicians with information about the neural mechanisms underlying focal hand dystonia (FHd), a motor disorder associated with aberrant posturing and patterns of muscle contraction specific to movements of the hand. Consistent with the hypothesis that FHd is the result of reorganization in cortical fields, studies in neuroimaging have confirmed alterations in the topography and response properties of somatosensory and motor areas of the brain. Noninvasive stimulation of these regions also demonstrates that FHd may be due to reductions in inhibition between competing sensory and motor representations. Compromises in neuroanatomical structure, such as white matter density and gray matter volume, have also been identified through neuroimaging methods. These advances in neuroimaging have provided clinicians with an expanded understanding of the changes in the brain that contribute to FHd. These findings should provide a foundation for the development of retraining paradigms focused on reversing overlapping sensory representations and interactions between brain regions in patients with FHd. Continued collaborations between health professionals who treat FHd and research scientists who examine the brain using neuroimaging tools are imperative for answering difficult questions about patients with specific movement disorders. PMID:19217255

  14. The psychopharmacology algorithm project at the Harvard South Shore Program: an algorithm for acute mania.

    PubMed

    Mohammad, Othman; Osser, David N

    2014-01-01

    This new algorithm for the pharmacotherapy of acute mania was developed by the Psychopharmacology Algorithm Project at the Harvard South Shore Program. The authors conducted a literature search in PubMed and reviewed key studies, other algorithms and guidelines, and their references. Treatments were prioritized considering three main considerations: (1) effectiveness in treating the current episode, (2) preventing potential relapses to depression, and (3) minimizing side effects over the short and long term. The algorithm presupposes that clinicians have made an accurate diagnosis, decided how to manage contributing medical causes (including substance misuse), discontinued antidepressants, and considered the patient's childbearing potential. We propose different algorithms for mixed and nonmixed mania. Patients with mixed mania may be treated first with a second-generation antipsychotic, of which the first choice is quetiapine because of its greater efficacy for depressive symptoms and episodes in bipolar disorder. Valproate and then either lithium or carbamazepine may be added. For nonmixed mania, lithium is the first-line recommendation. A second-generation antipsychotic can be added. Again, quetiapine is favored, but if quetiapine is unacceptable, risperidone is the next choice. Olanzapine is not considered a first-line treatment due to its long-term side effects, but it could be second-line. If the patient, whether mixed or nonmixed, is still refractory to the above medications, then depending on what has already been tried, consider carbamazepine, haloperidol, olanzapine, risperidone, and valproate first tier; aripiprazole, asenapine, and ziprasidone second tier; and clozapine third tier (because of its weaker evidence base and greater side effects). Electroconvulsive therapy may be considered at any point in the algorithm if the patient has a history of positive response or is intolerant of medications.

  15. Visual attention and the neuroimage bias.

    PubMed

    Baker, D A; Schweitzer, N J; Risko, Evan F; Ware, Jillian M

    2013-01-01

    Several highly-cited experiments have presented evidence suggesting that neuroimages may unduly bias laypeople's judgments of scientific research. This finding has been especially worrisome to the legal community in which neuroimage techniques may be used to produce evidence of a person's mental state. However, a more recent body of work that has looked directly at the independent impact of neuroimages on layperson decision-making (both in legal and more general arenas), and has failed to find evidence of bias. To help resolve these conflicting findings, this research uses eye tracking technology to provide a measure of attention to different visual representations of neuroscientific data. Finding an effect of neuroimages on the distribution of attention would provide a potential mechanism for the influence of neuroimages on higher-level decisions. In the present experiment, a sample of laypeople viewed a vignette that briefly described a court case in which the defendant's actions might have been explained by a neurological defect. Accompanying these vignettes was either an MRI image of the defendant's brain, or a bar graph depicting levels of brain activity-two competing visualizations that have been the focus of much of the previous research on the neuroimage bias. We found that, while laypeople differentially attended to neuroimagery relative to the bar graph, this did not translate into differential judgments in a way that would support the idea of a neuroimage bias.

  16. Risk and Determinants of Dementia in Patients with Mild Cognitive Impairment and Brain Subcortical Vascular Changes: A Study of Clinical, Neuroimaging, and Biological Markers—The VMCI-Tuscany Study: Rationale, Design, and Methodology

    PubMed Central

    Poggesi, Anna; Salvadori, Emilia; Pantoni, Leonardo; Pracucci, Giovanni; Cesari, Francesca; Chiti, Alberto; Ciolli, Laura; Cosottini, Mirco; Del Bene, Alessandra; De Stefano, Nicola; Diciotti, Stefano; Dotti, Maria Teresa; Ginestroni, Andrea; Giusti, Betti; Gori, Anna Maria; Nannucci, Serena; Orlandi, Giovanni; Pescini, Francesca; Valenti, Raffaella; Abbate, Rosanna; Federico, Antonio; Mascalchi, Mario; Murri, Luigi; Inzitari, Domenico

    2012-01-01

    Dementia is one of the most disabling conditions. Alzheimer's disease and vascular dementia (VaD) are the most frequent causes. Subcortical VaD is consequent to deep-brain small vessel disease (SVD) and is the most frequent form of VaD. Its pathological hallmarks are ischemic white matter changes and lacunar infarcts. Degenerative and vascular changes often coexist, but mechanisms of interaction are incompletely understood. The term mild cognitive impairment defines a transitional state between normal ageing and dementia. Pre-dementia stages of VaD are also acknowledged (vascular mild cognitive impairment, VMCI). Progression relates mostly to the subcortical VaD type, but determinants of such transition are unknown. Variability of phenotypic expression is not fully explained by severity grade of lesions, as depicted by conventional MRI that is not sensitive to microstructural and metabolic alterations. Advanced neuroimaging techniques seem able to achieve this. Beside hypoperfusion, blood-brain-barrier dysfunction has been also demonstrated in subcortical VaD. The aim of the Vascular Mild Cognitive Impairment Tuscany Study is to expand knowledge about determinants of transition from mild cognitive impairment to dementia in patients with cerebral SVD. This paper summarizes the main aims and methodological aspects of this multicenter, ongoing, observational study enrolling patients affected by VMCI with SVD. PMID:22550606

  17. Commentary: Applications of functional neuroimaging to civil litigation of mild traumatic brain injury.

    PubMed

    Granacher, Robert P

    2008-01-01

    The current definition of mild traumatic brain injury (MTBI) is in flux. Presently, there are at least three working definitions of this disorder in the United States, with no clear consensus. Functional neuroimaging, such as single photon emission computed tomography (SPECT) and positron emission tomography (PET), initially showed promise in their ability to improve the diagnostic credibility of MTBI. Over the past decade, that promise has not been fulfilled and there is a paucity of quality studies or standards for the application of functional neuroimaging to traumatic brain injury, particularly in litigation. The legal profession is ahead of the science in this matter. The emergence of neurolaw is driving a growing use of functional neuroimaging, as a sole imaging modality, used by lawyers in an attempt to prove MTBI at trial. The medical literature on functional neuroimaging and its applications to MTBI is weak scientifically, sparse in quality publications, lacking in well-designed controlled studies, and currently does not meet the complete standards of Daubert v. Merrell Dow Pharmaceuticals, Inc., for introduction of scientific evidence at trial. At the present time, there is a clear lack of clinical correlation between functional neuroimaging of MTBI and behavioral, neuropsychological, or structural neuroimaging deficits. The use of SPECT or PET, without concurrent clinical correlation with structural neuroimaging (CT or MRI), is not recommended to be offered as evidence of MTBI in litigation.

  18. A review of neuroimaging studies of stressor-evoked blood pressure reactivity: Emerging evidence for a brain-body pathway to coronary heart disease risk

    PubMed Central

    Gianaros, Peter J.; Sheu, Lei K.

    2009-01-01

    An individual's tendency to show exaggerated or otherwise dysregulated cardiovascular reactions to acute stressors has long been associated with increased risk for clinical and preclinical endpoints of coronary heart disease (CHD). However, the ‘brain-body’ pathways that link stressor-evoked cardiovascular reactions to CHD risk remain uncertain. This review summarizes emerging neuroimaging research indicating that individual differences in stressor-evoked blood pressure reactivity (a particular form of cardiovascular reactivity) are associated with activation patterns in corticolimbic brain areas that are jointly involved in processing stressors and regulating the cardiovascular system. As supported empirically by activation likelihood estimates derived from a meta-analysis, these corticolimbic areas include divisions of the cingulate cortex, insula, and amygdala—as well as networked cortical and subcortical areas involved in mobilizing hemodynamic and metabolic support for stress-related behavioral responding. Contextually, the research reviewed here illustrates how behavioral medicine and health neuroscience methods can be integrated to help characterize the ‘brain-body’ pathways that mechanistically link stressful experiences with CHD risk. PMID:19410652

  19. Psychopharmacological boundaries of schizophrenia with comorbid cannabis use disorder: a critical review.

    PubMed

    Lazary, Judit

    2012-01-01

    Although cannabis use disorder is strongly related to schizophrenia and treatment of patients with double diagnosis provides serious problem, specific pharmacological, molecular and therapeutical data on this subgroup are poorly available. In this paper we present a critical review on psychopharmacological boundaries of schizophrenia with concurrent cannabis use. The relevant data available in the literature suggest that a weaker compliance, poorer therapy response and higher sensitivity for extrapyramidal side effects are key features of schizophrenia and comorbid cannabis use disorder and represent a clinical challenge. Because of paucity of available research in the field there is not enough evidence to clearly depict the exact psychopharmacological profile of cannabis related schizophrenia. Further investigations are needed to assess phenotypic characteristics of this entity and to tailor effective treatment options accordingly.

  20. Applying the principles of adult learning to the teaching of psychopharmacology: overview and finding the focus.

    PubMed

    Stahl, Stephen M; Davis, Richard L

    2009-04-01

    Medical education in psychopharmacology can be designed according to modern principles of adult learning. The goal is to go beyond merely exposing learners to novel content, to the documentation that learning has occurred and that behaviors have changed, namely the upgrading of skills in clinical practice. The many aspects of this approach to medical education are discussed in overview here. Future installments of "Trends in Psychopharmacology" will periodically deal with specific aspects of the best practices for medical educators outlined here only in brief. This article considers whether the focus of medical education instructors should be the medical content they present, the medical educator that does the presenting, or the learner. The perspective here is that the focus of medical education should be the learner, and that the content should be structured and executed in a manner that facilitates learning instead of inhibiting it.

  1. [The century of the receptor, history of ideas that launched psychopharmacology].

    PubMed

    Serra, Héctor A; Fadel, Daniel O

    2012-01-01

    Nowadays, the term receptor is obvious in psychopharmacology. However, this was not so obvious a century ago. To try to explain how drugs act, European scientists began to develop theories that turned into deeds with the scientific progress. Thus, the receptor concept and their applications in medicine and psychiatry began to gain substance. In this paper we relate the facts that have led to the current knowledge of receptor, the cornerstone of pharmacology.

  2. Roland Kuhn—100th Birthday of an Innovator of Clinical Psychopharmacology

    PubMed Central

    Steinberg, Holger; Himmerich, Hubertus

    2012-01-01

    On the occasion of his 100th birthday this letter is to pay tribute to Swiss psychiatrist and psychopharmacologist Roland Kuhn (1912–2005), who established the antidepressant effects of imipramine starting in 1956. Since until now only monoaminergic-based antidepressants such as this substance found their way into psychopharmacological therapy, one can say that Kuhn established the lead antidepressant substance and has hence fundamentally changed clinical psychiatry and care for the mentally ill.

  3. Teaching all the evidence bases: reintegrating psychodynamic aspects of prescribing into psychopharmacology training.

    PubMed

    Mallo, C Jason; Mintz, David L

    2013-03-01

    The discipline of psychiatry appears poised at the edge of a paradigm shift. Enthusiasm about psychopharmacological treatments and neuroscientific understandings is giving way to a sobering recognition of the limitations of current biologically oriented approaches. Psychiatry training programs have both an opportunity and a responsibility to address the challenges presented by the evidence. Although the average psychiatrist would profess a biopsychosocial ideal, an examination of our practice, journals, and training curricula suggests that we still have a long way to go before we employ a truly integrated model. There is a compelling, though oft-neglected evidence base demonstrating that pharmacologic treatment outcomes are as dependent on psychological and interpersonal factors as on medical ones. In order to maximize our usefulness to patients, psychiatry must embrace more complex and integrated understandings, transcending reductionistic models that promote mind-body splits. This article explores some of the costs of a model that places disproportionate emphasis on a biological framework. Relevant evidence bases are reviewed that demonstrate the utility of emphasizing the psychology of psychopharmacology. Implications for psychiatric training are considered, and suggestions are made for better integrating meaning factors into psychopharmacology education.

  4. Psychopharmacological treatment of neurocognitive deficits in people with schizophrenia: a review of old and new targets.

    PubMed

    Ahmed, Anthony O; Bhat, Ishrat A

    2014-04-01

    Neurocognitive impairments significantly contribute to disability and the overall clinical picture in schizophrenia spectrum disorders. There has therefore been a concerted effort, guided by the discovery of neurotransmitter and synaptic systems in the central nervous system, to develop and test compounds that may ameliorate neurocognitive deficits. The current article summarizes the results of efforts to test neurocognitive-enhancing agents in schizophrenia. Overall, existing clinical trials provide little reason to be enthusiastic about the benefits of psychopharmacological agents at enhancing neurocognition in schizophrenia-a state of affairs that may reflect the inadequacy of single neurotransmitter or receptor models. The etiologic and phenomenological complexity of neurocognitive deficits in schizophrenia may be better served by psychopharmacological agents that (i) target neurotransmitter systems proximal in the causal chain to neurocognitive deficits; (ii) enhance distal survival processes in the central nervous system-neurogenesis, neuronal growth, synaptogenesis, and connectivity; and (iii) counteract the negative effects of aberrant neurodevelopment in schizophrenia, such as neuroinflammation and oxidative stress. Future efforts to develop psychopharmacological agents for neurocognitive impairment in schizophrenia should reflect the knowledge of its complex etiology by addressing aberrations along its causal chain. Clinical trials may benefit methodologically from (i) an appreciation of the phenomenological heterogeneity of neurocognitive deficits in schizophrenia; (ii) a characterization of the predictors of treatment response; and (iii) a recognition of issues of sample size, statistical power, treatment duration, and dosing.

  5. Ethics of neuroimaging after serious brain injury

    PubMed Central

    2014-01-01

    Background Patient outcome after serious brain injury is highly variable. Following a period of coma, some patients recover while others progress into a vegetative state (unresponsive wakefulness syndrome) or minimally conscious state. In both cases, assessment is difficult and misdiagnosis may be as high as 43%. Recent advances in neuroimaging suggest a solution. Both functional magnetic resonance imaging and electroencephalography have been used to detect residual cognitive function in vegetative and minimally conscious patients. Neuroimaging may improve diagnosis and prognostication. These techniques are beginning to be applied to comatose patients soon after injury. Evidence of preserved cognitive function may predict recovery, and this information would help families and health providers. Complex ethical issues arise due to the vulnerability of patients and families, difficulties interpreting negative results, restriction of communication to “yes” or “no” answers, and cost. We seek to investigate ethical issues in the use of neuroimaging in behaviorally nonresponsive patients who have suffered serious brain injury. The objectives of this research are to: (1) create an approach to capacity assessment using neuroimaging; (2) develop an ethics of welfare framework to guide considerations of quality of life; (3) explore the impact of neuroimaging on families; and, (4) analyze the ethics of the use of neuroimaging in comatose patients. Methods/Design Our research program encompasses four projects and uses a mixed methods approach. Project 1 asks whether decision making capacity can be assessed in behaviorally nonresponsive patients. We will specify cognitive functions required for capacity and detail their assessment. Further, we will develop and pilot a series of scenarios and questions suitable for assessing capacity. Project 2 examines the ethics of welfare as a guide for neuroimaging. It grounds an obligation to explore patients’ interests, and we

  6. SchizConnect: Virtual Data Integration in Neuroimaging

    PubMed Central

    Ambite, Jose Luis; Tallis, Marcelo; Alpert, Kathryn; Keator, David B.; King, Margaret; Landis, Drew; Konstantinidis, George; Calhoun, Vince D.; Potkin, Steven G.; Turner, Jessica A.; Wang, Lei

    2015-01-01

    In many scientific domains, including neuroimaging studies, there is a need to obtain increasingly larger cohorts to achieve the desired statistical power for discovery. However, the economics of imaging studies make it unlikely that any single study or consortia can achieve the desired sample sizes. What is needed is an architecture that can easily incorporate additional studies as they become available. We present such architecture based on a virtual data integration approach, where data remains at the original sources, and is retrieved and harmonized in response to user queries. This is in contrast to approaches that move the data to a central warehouse. We implemented our approach in the SchizConnect system that integrates data from three neuroimaging consortia on Schizophrenia: FBIRN's Human Imaging Database (HID), MRN's Collaborative Imaging and Neuroinformatics System (COINS), and the NUSDAST project at XNAT Central. A portal providing harmonized access to these sources is publicly deployed at schizconnect.org. PMID:26688837

  7. Developments in functional neuroimaging techniques

    SciTech Connect

    Aine, C.J.

    1995-03-01

    A recent review of neuroimaging techniques indicates that new developments have primarily occurred in the area of data acquisition hardware/software technology. For example, new pulse sequences on standard clinical imagers and high-powered, rapidly oscillating magnetic field gradients used in echo planar imaging (EPI) have advanced MRI into the functional imaging arena. Significant developments in tomograph design have also been achieved for monitoring the distribution of positron-emitting radioactive tracers in the body (PET). Detector sizes, which pose a limit on spatial resolution, have become smaller (e.g., 3--5 mm wide) and a new emphasis on volumetric imaging has emerged which affords greater sensitivity for determining locations of positron annihilations and permits smaller doses to be utilized. Electromagnetic techniques have also witnessed growth in the ability to acquire data from the whole head simultaneously. EEG techniques have increased their electrode coverage (e.g., 128 channels rather than 16 or 32) and new whole-head systems are now in use for MEG. But the real challenge now is in the design and implementation of more sophisticated analyses to effectively handle the tremendous amount of physiological/anatomical data that can be acquired. Furthermore, such analyses will be necessary for integrating data across techniques in order to provide a truly comprehensive understanding of the functional organization of the human brain.

  8. Neurochemistry of schizophrenia: the contribution of neuroimaging postmortem pathology and neurochemistry in schizophrenia.

    PubMed

    Dean, B

    2012-01-01

    The advent of molecular neuroimaging has greatly impacted on understanding the neurochemical changes occurring in the CNS from subjects with psychiatric disorders, especially schizophrenia. This review focuses on the outcomes from studies using positron emission tomography and single photon emission computer tomography that have measure levels of neurotransmitter receptors and transporters in the CNS from subjects with schizophrenia. One outcome from such studies is the confirmation of a number of findings using postmortem tissue, but in the case of neuroimaging, using drug na�ve and drug free subjects. These findings add weight to the argument that findings from postmortem studies are not an artifact of tissue processing or a simple drug effect. However, there are some important unique findings from studies using neuroimaging studies. These include evidence to suggest that in schizophrenia there are alterations in dopamine synthesis and release, which are not accompanied by an appropriate down-regulation of dopamine D2 receptors. There are also data that would support the notion that decreased levels of serotonin 2A receptors may be an early marker of the onset of schizophrenia. Whilst there is a clear need for on-going development of neuroimaging ligands to expand the number of targets that can be studied and to increase cohort sizes in neuroimaging studies to give power to the analyses of the resulting data, current studies show that existing neuroimaging studies have already extended our understanding of the underlying pathophysiology of psychiatric disorders such as schizophrenia. PMID:23279177

  9. Neuroimaging essentials in essential tremor: A systematic review

    PubMed Central

    Sharifi, Sarvi; Nederveen, Aart J.; Booij, Jan; van Rootselaar, Anne-Fleur

    2014-01-01

    Background Essential tremor is regarded to be a disease of the central nervous system. Neuroimaging is a rapidly growing field with potential benefits to both diagnostics and research. The exact role of imaging techniques with respect to essential tremor in research and clinical practice is not clear. A systematic review of the different imaging techniques in essential tremor is lacking in the literature. Methods We performed a systematic literature search combining the terms essential tremor and familial tremor with the following keywords: imaging, MRI, VBM, DWI, fMRI, PET and SPECT, both in abbreviated form as well as in full form. We summarize and discuss the quality and the external validity of each study and place the results in the context of existing knowledge regarding the pathophysiology of essential tremor. Results A total of 48 neuroimaging studies met our search criteria, roughly divided into 19 structural and 29 functional and metabolic studies. The quality of the studies varied, especially concerning inclusion criteria. Functional imaging studies indicated cerebellar hyperactivity during rest and during tremor. The studies also pointed to the involvement of the thalamus, the inferior olive and the red nucleus. Structural studies showed less consistent results. Discussion and conclusion Neuroimaging techniques in essential tremor give insight into the pathophysiology of essential tremor indicating the involvement of the cerebellum as the most consistent finding. GABAergic dysfunction might be a major premise in the pathophysiological hypotheses. Inconsistencies between studies can be partly explained by the inclusion of heterogeneous patient groups. Improvement of scientific research requires more stringent inclusion criteria and application of advanced analysis techniques. Also, the use of multimodal neuroimaging techniques is a promising development in movement disorders research. Currently, the role of imaging techniques in essential tremor in daily

  10. Genetic imaging consortium for addiction medicine: From neuroimaging to genes.

    PubMed

    Mackey, Scott; Kan, Kees-Jan; Chaarani, Bader; Alia-Klein, Nelly; Batalla, Albert; Brooks, Samantha; Cousijn, Janna; Dagher, Alain; de Ruiter, Michiel; Desrivieres, Sylvane; Feldstein Ewing, Sarah W; Goldstein, Rita Z; Goudriaan, Anna E; Heitzeg, Mary M; Hutchison, Kent; Li, Chiang-Shan R; London, Edythe D; Lorenzetti, Valentina; Luijten, Maartje; Martin-Santos, Rocio; Morales, Angelica M; Paulus, Martin P; Paus, Tomas; Pearlson, Godfrey; Schluter, Renée; Momenan, Reza; Schmaal, Lianne; Schumann, Gunter; Sinha, Rajita; Sjoerds, Zsuzsika; Stein, Dan J; Stein, Elliot A; Solowij, Nadia; Tapert, Susan; Uhlmann, Anne; Veltman, Dick; van Holst, Ruth; Walter, Henrik; Wright, Margaret J; Yucel, Murat; Yurgelun-Todd, Deborah; Hibar, Derrek P; Jahanshad, Neda; Thompson, Paul M; Glahn, David C; Garavan, Hugh; Conrod, Patricia

    2016-01-01

    Since the sample size of a typical neuroimaging study lacks sufficient statistical power to explore unknown genomic associations with brain phenotypes, several international genetic imaging consortia have been organized in recent years to pool data across sites. The challenges and achievements of these consortia are considered here with the goal of leveraging these resources to study addiction. The authors of this review have joined together to form an Addiction working group within the framework of the ENIGMA project, a meta-analytic approach to multisite genetic imaging data. Collectively, the Addiction working group possesses neuroimaging and genomic data obtained from over 10,000 subjects. The deadline for contributing data to the first round of analyses occurred at the beginning of May 2015. The studies performed on this data should significantly impact our understanding of the genetic and neurobiological basis of addiction.

  11. Neuroimaging in Animal Seizure Models with 18FDG-PET

    PubMed Central

    Mirrione, Martine M.; Tsirka, Stella E.

    2011-01-01

    Small animal neuroimaging has become increasingly available to researchers, expanding the breadth of questions studied with these methods. Applying these noninvasive techniques to the open questions underlying epileptogenesis is no exception. A major advantage of small animal neuroimaging is its translational appeal. Studies can be well controlled and manipulated, examining the living brain in the animal before, during, and after the disease onset or disease treatment. The results can also be compared to data collected on human patients. Over the past decade, we and others have explored metabolic patterns in animal models of epilepsy to gain insight into the circuitry underlying development of the disease. In this paper, we provide technical details on how metabolic imaging that uses 2-deoxy-2[18F]fluoro-D-glucose (18FDG) and positron emission tomography (PET) is performed and explain the strengths and limitations of these studies. We will also highlight recent advances toward understanding epileptogenesis through small animal imaging. PMID:22937232

  12. How can neuroimaging facilitate the diagnosis and stratification of patients with psychosis?

    PubMed Central

    Kempton, Matthew J.; McGuire, Philip

    2015-01-01

    Early diagnosis and treatment of patients with psychosis are associated with improved outcome in terms of future functioning, symptoms and treatment response. Identifying neuroimaging biomarkers for illness onset and treatment response would lead to immediate clinical benefits. In this review we discuss if neuroimaging may be utilised to diagnose patients with psychosis, predict those who will develop the illness in those at high risk, and stratify patients. State-of-the-art developments in the field are critically examined including multicentre studies, longitudinal designs, multimodal imaging and machine learning as well as some of the challenges in utilising future neuroimaging biomarkers in clinical trials. As many of these developments are already being applied in neuroimaging studies of Alzheimer׳s disease, we discuss what lessons have been learned from this field and how they may be applied to research in psychosis. PMID:25092428

  13. Neuroimaging correlates of aggression in schizophrenia: an update

    PubMed Central

    Hoptman, Matthew J.; Antonius, Daniel

    2015-01-01

    Purpose of review Aggression in schizophrenia is associated with poor treatment outcomes, hospital admissions, and stigmatization of patients. As such it represents an important public health issue. This article reviews recent neuroimaging studies of aggression in schizophrenia, focusing on PET/single photon emission computed tomography and MRI methods. Recent findings The neuroimaging literature on aggression in schizophrenia is in a period of development. This is attributable in part to the heterogeneous nature and basis of that aggression. Radiological methods have consistently shown reduced activity in frontal and temporal regions. MRI brain volumetric studies have been less consistent, with some studies finding increased volumes of inferior frontal structures, and others finding reduced volumes in aggressive individuals with schizophrenia. Functional MRI studies have also had inconsistent results, with most finding reduced activity in inferior frontal and temporal regions, but some also finding increased activity in other regions. Some studies have made a distinction between types of aggression in schizophrenia in the context of antisocial traits, and this appears to be useful in understanding the neuroimaging literature. Summary Frontal and temporal abnormalities appear to be a consistent feature of aggression in schizophrenia, but their precise nature likely differs because of the heterogeneous nature of that behavior. PMID:21178624

  14. Functional Neuro-Imaging and Post-Traumatic Olfactory Impairment

    PubMed Central

    Roberts, Richard J.; Sheehan, William; Thurber, Steven; Roberts, Mary Ann

    2010-01-01

    Objective: To evaluate via a research literature survey the anterior neurological significance of decreased olfactory functioning following traumatic brain injuries. Materials and Methods: A computer literature review was performed to locate all functional neuro-imaging studies on patients with post-traumatic anosmia and other olfactory deficits. Results: A convergence of findings from nine functional neuro-imaging studies indicating evidence for reduced metabolic activity at rest or relative hypo-perfusion during olfactory activations. Hypo-activation of the prefrontal regions was apparent in all nine post-traumatic samples, with three samples yielding evidence of reduced activity in the temporal regions as well. Conclusions: The practical ramifications include the reasonable hypothesis that a total anosmic head trauma patient likely has frontal lobe involvement. PMID:21716782

  15. Source counting in MEG neuroimaging

    NASA Astrophysics Data System (ADS)

    Lei, Tianhu; Dell, John; Magee, Ralphy; Roberts, Timothy P. L.

    2009-02-01

    Magnetoencephalography (MEG) is a multi-channel, functional imaging technique. It measures the magnetic field produced by the primary electric currents inside the brain via a sensor array composed of a large number of superconducting quantum interference devices. The measurements are then used to estimate the locations, strengths, and orientations of these electric currents. This magnetic source imaging technique encompasses a great variety of signal processing and modeling techniques which include Inverse problem, MUltiple SIgnal Classification (MUSIC), Beamforming (BF), and Independent Component Analysis (ICA) method. A key problem with Inverse problem, MUSIC and ICA methods is that the number of sources must be detected a priori. Although BF method scans the source space on a point-to-point basis, the selection of peaks as sources, however, is finally made by subjective thresholding. In practice expert data analysts often select results based on physiological plausibility. This paper presents an eigenstructure approach for the source number detection in MEG neuroimaging. By sorting eigenvalues of the estimated covariance matrix of the acquired MEG data, the measured data space is partitioned into the signal and noise subspaces. The partition is implemented by utilizing information theoretic criteria. The order of the signal subspace gives an estimate of the number of sources. The approach does not refer to any model or hypothesis, hence, is an entirely data-led operation. It possesses clear physical interpretation and efficient computation procedure. The theoretical derivation of this method and the results obtained by using the real MEG data are included to demonstrates their agreement and the promise of the proposed approach.

  16. Sleep Neuroimaging and Models of Consciousness

    PubMed Central

    Tagliazucchi, Enzo; Behrens, Marion; Laufs, Helmut

    2013-01-01

    Human deep sleep is characterized by reduced sensory activity, responsiveness to stimuli, and conscious awareness. Given its ubiquity and reversible nature, it represents an attractive paradigm to study the neural changes which accompany the loss of consciousness in humans. In particular, the deepest stages of sleep can serve as an empirical test for the predictions of theoretical models relating the phenomenology of consciousness with underlying neural activity. A relatively recent shift of attention from the analysis of evoked responses toward spontaneous (or “resting state”) activity has taken place in the neuroimaging community, together with the development of tools suitable to study distributed functional interactions. In this review we focus on recent functional Magnetic Resonance Imaging (fMRI) studies of spontaneous activity during sleep and their relationship with theoretical models for human consciousness generation, considering the global workspace theory, the information integration theory, and the dynamical core hypothesis. We discuss the venues of research opened by these results, emphasizing the need to extend the analytic methodology in order to obtain a dynamical picture of how functional interactions change over time and how their evolution is modulated during different conscious states. Finally, we discuss the need to experimentally establish absent or reduced conscious content, even when studying the deepest sleep stages. PMID:23717291

  17. Neuroimaging of Fear-Associated Learning.

    PubMed

    Greco, John A; Liberzon, Israel

    2016-01-01

    Fear conditioning has been commonly used as a model of emotional learning in animals and, with the introduction of functional neuroimaging techniques, has proven useful in establishing the neurocircuitry of emotional learning in humans. Studies of fear acquisition suggest that regions such as amygdala, insula, anterior cingulate cortex, and hippocampus play an important role in acquisition of fear, whereas studies of fear extinction suggest that the amygdala is also crucial for safety learning. Extinction retention testing points to the ventromedial prefrontal cortex as an essential region in the recall of the safety trace, and explicit learning of fear and safety associations recruits additional cortical and subcortical regions. Importantly, many of these findings have implications in our understanding of the pathophysiology of psychiatric disease. Recent studies using clinical populations have lent insight into the changes in regional activity in specific disorders, and treatment studies have shown how pharmaceutical and other therapeutic interventions modulate brain activation during emotional learning. Finally, research investigating individual differences in neurotransmitter receptor genotypes has highlighted the contribution of these systems in fear-associated learning.

  18. Neuroimaging supports central pathology in familial dysautonomia.

    PubMed

    Axelrod, Felicia B; Hilz, Max J; Berlin, Dena; Yau, Po Lai; Javier, David; Sweat, Victoria; Bruehl, Hannah; Convit, Antonio

    2010-02-01

    Familial dysautonomia (FD) is a hereditary peripheral and central nervous system disorder with poorly defined central neuropathology. This prospective pilot study aimed to determine if MRI would provide objective parameters of central neuropathology. There were 14 study subjects, seven FD individuals (18.6 +/- 4.2 years, 3 female) and seven controls (19.1 +/- 5.8 years, 3 female). All subjects had standardized brain MRI evaluation including quantitative regional volume measurements, diffusion tensor imaging (DTI) for assessment of white matter (WM) microstructural integrity by calculation of fractional anisotropy (FA), and proton MR spectroscopy ((1)H MRS) to assess neuronal health. The FD patients had significantly decreased FA in optic radiation (p = 0.009) and middle cerebellar peduncle (p = 0.004). Voxel-wise analysis identified both GM and WM microstructural damage among FD subjects as there were nine clusters of WM FA reductions and 16 clusters of GM apparent diffusion coefficient (ADC) elevations. Their WM proportion was significantly decreased (p = 0.003) as was the WM proportion in the frontal region (p = 0.007). (1)H MRS showed no significant abnormalities. The findings of WM abnormalities and decreased optic radiation and middle cerebellar peduncle FA in the FD study group, suggest compromised myelination and WM micro-structural integrity in FD brains. These neuroimaging results are consistent with clinical visual abnormalities and gait disturbance. Furthermore the frontal lobe atrophy is consistent with previously reported neuropsychological deficits. PMID:19705052

  19. [Gambling addiction: insights from neuroscience and neuroimaging].

    PubMed

    Sescousse, Guillaume

    2015-01-01

    Although most people consider gambling as a recreational activity, some individuals lose control over their behavior and enter a spiral of compulsive gambling leading to dramatic consequences. In its most severe form, pathological gambling is considered a behavioral addiction sharing many similarities with substance addiction. A number of neurobiological hypotheses have been investigated in the past ten years, relying mostly on neuroimaging techniques. Similarly to substance addiction, a number of observations indicate a central role for dopamine in pathological gambling. However, the underlying mechanism seems partly different and is still poorly understood. Neuropsychological studies have shown decision-making and behavioral inhibition deficits in pathological gamblers, likely reflecting frontal lobe dysfunction. Finally, functional MRI studies have revealed abnormal reactivity within the brain reward system, including the striatum and ventro-medial prefrontal cortex. These regions are over-activated by gambling cues, and under-activated by monetary gains. However, the scarcity and heterogeneity of brain imaging studies currently hinder the development of a coherent neurobiological model of pathological gambling. Further replications of results and diversification of approaches will be needed in the coming years in order to strengthen our current model. PMID:26340839

  20. Hope and doubt in the promise of neuroimaging: The case of autism spectrum disorder.

    PubMed

    Bertorelli, Thomas Eugene

    2016-09-01

    Although neuroimaging is currently not a component of the diagnostic process for autism spectrum disorders, some scientists hail these technologies for their promise to one day replace behaviorally based psychiatric diagnostic techniques. This article examines how psychiatrists understand the potential use of neuroimaging technologies within the context of clinical practice. Drawing on 10 semi-structured interviews with child and adolescent psychiatrists, I describe the hope and doubt that comprise their discourse of ambivalence. This analysis demonstrates that the uses and meanings of neuroimaging technologies are rearticulated in ongoing debates in the field of psychiatry regarding the role of the biopsychiatric model in the diagnosis and treatment of mental illness. This study highlights issues surrounding the perceived biopsychiatric focus of neuroimaging technologies within clinical practice, concerns regarding misdirected research attention, and the ways in which understandings of future utility mediate perceptions of technological utility. PMID:27474754

  1. Structural Neuroimaging Findings in Mild Traumatic Brain Injury.

    PubMed

    Bigler, Erin D; Abildskov, Tracy J; Goodrich-Hunsaker, Naomi J; Black, Garrett; Christensen, Zachary P; Huff, Trevor; Wood, Dawn-Marie G; Hesselink, John R; Wilde, Elisabeth A; Max, Jeffrey E

    2016-09-01

    Common neuroimaging findings in mild traumatic brain injury (mTBI), including sport-related concussion (SRC), are reviewed based on computed tomography and magnetic resonance imaging (MRI). Common abnormalities radiologically identified on the day of injury, typically a computed tomographic scan, are in the form of contusions, small subarachnoid or intraparenchymal hemorrhages as well as subdural and epidural collections, edema, and skull fractures. Common follow-up neuroimaging findings with MRI include white matter hyperintensities, hypointense signal abnormalities that reflect prior hemorrhage, focal encephalomalacia, presence of atrophy and/or dilated Virchow-Robins perivascular space. The MRI findings from a large pediatric mTBI study show low frequency of positive MRI findings at 6 months postinjury. The review concludes with an examination of some of the advanced MRI-based image analysis methods that can be performed in the patient who has sustained an mTBI. PMID:27482782

  2. Cognitive and emotional processes during dreaming: a neuroimaging view.

    PubMed

    Desseilles, Martin; Dang-Vu, Thien Thanh; Sterpenich, Virginie; Schwartz, Sophie

    2011-12-01

    Dream is a state of consciousness characterized by internally-generated sensory, cognitive and emotional experiences occurring during sleep. Dream reports tend to be particularly abundant, with complex, emotional, and perceptually vivid experiences after awakenings from rapid eye movement (REM) sleep. This is why our current knowledge of the cerebral correlates of dreaming, mainly derives from studies of REM sleep. Neuroimaging results show that REM sleep is characterized by a specific pattern of regional brain activity. We demonstrate that this heterogeneous distribution of brain activity during sleep explains many typical features in dreams. Reciprocally, specific dream characteristics suggest the activation of selective brain regions during sleep. Such an integration of neuroimaging data of human sleep, mental imagery, and the content of dreams is critical for current models of dreaming; it also provides neurobiological support for an implication of sleep and dreaming in some important functions such as emotional regulation.

  3. CATI: A Large Distributed Infrastructure for the Neuroimaging of Cohorts.

    PubMed

    Operto, Grégory; Chupin, Marie; Batrancourt, Bénédicte; Habert, Marie-Odile; Colliot, Olivier; Benali, Habib; Poupon, Cyril; Champseix, Catherine; Delmaire, Christine; Marie, Sullivan; Rivière, Denis; Pélégrini-Issac, Mélanie; Perlbarg, Vincent; Trebossen, Régine; Bottlaender, Michel; Frouin, Vincent; Grigis, Antoine; Orfanos, Dimitri Papadopoulos; Dary, Hugo; Fillon, Ludovic; Azouani, Chabha; Bouyahia, Ali; Fischer, Clara; Edward, Lydie; Bouin, Mathilde; Thoprakarn, Urielle; Li, Jinpeng; Makkaoui, Leila; Poret, Sylvain; Dufouil, Carole; Bouteloup, Vincent; Chételat, Gaël; Dubois, Bruno; Lehéricy, Stéphane; Mangin, Jean-François; Cointepas, Yann

    2016-07-01

    This paper provides an overview of CATI, a platform dedicated to multicenter neuroimaging. Initiated by the French Alzheimer's plan (2008-2012), CATI is a research project called on to provide service to other projects like an industrial partner. Its core mission is to support the neuroimaging of large populations, providing concrete solutions to the increasing complexity involved in such projects by bringing together a service infrastructure, the know-how of its expert academic teams and a large-scale, harmonized network of imaging facilities. CATI aims to make data sharing across studies easier and promotes sharing as much as possible. In the last 4 years, CATI has assisted the clinical community by taking charge of 35 projects so far and has emerged as a recognized actor at the national and international levels.

  4. Structural Neuroimaging Findings in Mild Traumatic Brain Injury.

    PubMed

    Bigler, Erin D; Abildskov, Tracy J; Goodrich-Hunsaker, Naomi J; Black, Garrett; Christensen, Zachary P; Huff, Trevor; Wood, Dawn-Marie G; Hesselink, John R; Wilde, Elisabeth A; Max, Jeffrey E

    2016-09-01

    Common neuroimaging findings in mild traumatic brain injury (mTBI), including sport-related concussion (SRC), are reviewed based on computed tomography and magnetic resonance imaging (MRI). Common abnormalities radiologically identified on the day of injury, typically a computed tomographic scan, are in the form of contusions, small subarachnoid or intraparenchymal hemorrhages as well as subdural and epidural collections, edema, and skull fractures. Common follow-up neuroimaging findings with MRI include white matter hyperintensities, hypointense signal abnormalities that reflect prior hemorrhage, focal encephalomalacia, presence of atrophy and/or dilated Virchow-Robins perivascular space. The MRI findings from a large pediatric mTBI study show low frequency of positive MRI findings at 6 months postinjury. The review concludes with an examination of some of the advanced MRI-based image analysis methods that can be performed in the patient who has sustained an mTBI.

  5. Effects of neuroimaging evidence on mock juror decision making.

    PubMed

    Greene, Edith; Cahill, Brian S

    2012-01-01

    During the penalty phase of capital trials, defendants may introduce mitigating evidence that argues for a punishment "less than death." In the past few years, a novel form of mitigating evidence-brain scans made possible by technological advances in neuroscience-has been proffered by defendants to support claims that brain abnormalities reduce their culpability. This exploratory study assessed the impact of neuroscience evidence on mock jurors' sentencing recommendations and impressions of a capital defendant. Using actual case facts, we manipulated diagnostic evidence presented by the defense (psychosis diagnosis; diagnosis and neuropsychological test results; or diagnosis, test results, and neuroimages) and future dangerousness evidence presented by the prosecution (low or high risk). Recommendations for death sentences were affected by the neuropsychological and neuroimaging evidence: defendants deemed at high risk for future dangerousness were less likely to be sentenced to death when jurors had this evidence than when they did not. Neuropsychological and neuroimaging evidence also had mitigating effects on impressions of the defendant. We describe study limitations and pose questions for further research.

  6. Effects of neuroimaging evidence on mock juror decision making.

    PubMed

    Greene, Edith; Cahill, Brian S

    2012-01-01

    During the penalty phase of capital trials, defendants may introduce mitigating evidence that argues for a punishment "less than death." In the past few years, a novel form of mitigating evidence-brain scans made possible by technological advances in neuroscience-has been proffered by defendants to support claims that brain abnormalities reduce their culpability. This exploratory study assessed the impact of neuroscience evidence on mock jurors' sentencing recommendations and impressions of a capital defendant. Using actual case facts, we manipulated diagnostic evidence presented by the defense (psychosis diagnosis; diagnosis and neuropsychological test results; or diagnosis, test results, and neuroimages) and future dangerousness evidence presented by the prosecution (low or high risk). Recommendations for death sentences were affected by the neuropsychological and neuroimaging evidence: defendants deemed at high risk for future dangerousness were less likely to be sentenced to death when jurors had this evidence than when they did not. Neuropsychological and neuroimaging evidence also had mitigating effects on impressions of the defendant. We describe study limitations and pose questions for further research. PMID:22213023

  7. Neuroimaging Coordination Dynamics in the Sport Sciences

    PubMed Central

    Jantzen, Kelly J.; Oullier, Olivier; Kelso, J.A. Scott

    2008-01-01

    Key methodological issues for designing, analyzing, and interpreting neuroimaging experiments are presented from the perspective of the framework of Coordination Dynamics. To this end, a brief overview of Coordination Dynamics is introduced, including the main concepts of control parameters and collective variables, theoretical modeling, novel experimental paradigms, and cardinal empirical findings. Basic conceptual and methodological issues for the design and implementation of coordination experiments in the context of neuroimaging are discussed. The paper concludes with a presentation of neuroimaging findings central to understanding the neural basis of coordination and addresses their relevance for the sport sciences. The latter include but are not restricted to learning and practice-related issues, the role of mental imagery, and the recovery of function following brain injury. PMID:18602998

  8. Neuroimaging: Technologies at the Interface of Genes, Brain and Behavior

    PubMed Central

    Bigos, Kristin L.; Hariri, Ahmad R.

    2007-01-01

    Synopsis Neuroimaging technologies, because of their unique ability to capture the structural and functional integrity of distributed neural circuitries within individuals, provide a powerful approach to explore the genetic basis of individual differences in complex behaviors and vulnerability to neuropsychiatric illness. Functional magnetic resonance imaging (MRI) studies especially have established important physiological links between genetic polymorphisms and robust differences in information processing within distinct brain regions and circuits that have been linked to the manifestation of various disease states such as Alzheimer’s disease, schizophrenia and depression. Importantly, many of these biological relationships have been revealed in relatively small samples of subjects and in the absence of observable differences at the level of behavior, underscoring the power of a direct assay of brain anatomy and physiology in exploring the functional impact of genetic variation. Through the continued integration of genes, brain and behavior, neuroimaging technologies represent a critical tool in ongoing efforts to understand the neurobiology of normal and pathological behavioral states. Multidisciplinary research capitalizing on such neuroimaging-based integration will contribute to the identification of predictive markers and biological pathways for neuropsychiatric disease vulnerability as well as the generation of novel targets for therapeutic intervention. PMID:17983963

  9. Current Practice in the Referral of Individuals with Suspected Dementia for Neuroimaging by General Practitioners in Ireland and Wales

    PubMed Central

    Ciblis, Aurelia S.; Butler, Marie-Louise; Quinn, Catherine; Clare, Linda; Bokde, Arun L. W.; Mullins, Paul G.; McNulty, Jonathan P.

    2016-01-01

    Objectives While early diagnosis of dementia is important, the question arises whether general practitioners (GPs) should engage in direct referrals. The current study investigated current referral practices for neuroimaging in dementia, access to imaging modalities and investigated related GP training in Ireland and North Wales. Methods A questionnaire was distributed to GPs in the programme regions which included approximately two thirds of all GPs in the Republic of Ireland and all general practitioners in North Wales. A total of 2,093 questionnaires were issued. Results 48.6% of Irish respondents and 24.3% of Welsh respondents directly referred patients with suspected dementia for neuroimaging. Irish GPs reported greater direct access to neuroimaging than their Welsh counterparts. A very small percentage of Irish and Welsh GPs (4.7% and 10% respectively) had received training in neuroimaging and the majority who referred patients for neuroimaging were not aware of any dementia-specific protocols for referrals (93.1% and 95% respectively). Conclusions The benefits of direct GP access to neuroimaging investigations for dementia have yet to be established. Our findings suggest that current GP speciality training in Ireland and Wales is deficient in dementia-specific and neuroimaging training with the concern being that inadequate training will lead to inadequate referrals. Further training would complement guidelines and provide a greater understanding of the role and appropriateness of neuroimaging techniques in the diagnosis of dementia. PMID:27007435

  10. Visual Systems for Interactive Exploration and Mining of Large-Scale Neuroimaging Data Archives

    PubMed Central

    Bowman, Ian; Joshi, Shantanu H.; Van Horn, John D.

    2012-01-01

    While technological advancements in neuroimaging scanner engineering have improved the efficiency of data acquisition, electronic data capture methods will likewise significantly expedite the populating of large-scale neuroimaging databases. As they do and these archives grow in size, a particular challenge lies in examining and interacting with the information that these resources contain through the development of compelling, user-driven approaches for data exploration and mining. In this article, we introduce the informatics visualization for neuroimaging (INVIZIAN) framework for the graphical rendering of, and dynamic interaction with the contents of large-scale neuroimaging data sets. We describe the rationale behind INVIZIAN, detail its development, and demonstrate its usage in examining a collection of over 900 T1-anatomical magnetic resonance imaging (MRI) image volumes from across a diverse set of clinical neuroimaging studies drawn from a leading neuroimaging database. Using a collection of cortical surface metrics and means for examining brain similarity, INVIZIAN graphically displays brain surfaces as points in a coordinate space and enables classification of clusters of neuroanatomically similar MRI images and data mining. As an initial step toward addressing the need for such user-friendly tools, INVIZIAN provides a highly unique means to interact with large quantities of electronic brain imaging archives in ways suitable for hypothesis generation and data mining. PMID:22536181

  11. Visual systems for interactive exploration and mining of large-scale neuroimaging data archives.

    PubMed

    Bowman, Ian; Joshi, Shantanu H; Van Horn, John D

    2012-01-01

    While technological advancements in neuroimaging scanner engineering have improved the efficiency of data acquisition, electronic data capture methods will likewise significantly expedite the populating of large-scale neuroimaging databases. As they do and these archives grow in size, a particular challenge lies in examining and interacting with the information that these resources contain through the development of compelling, user-driven approaches for data exploration and mining. In this article, we introduce the informatics visualization for neuroimaging (INVIZIAN) framework for the graphical rendering of, and dynamic interaction with the contents of large-scale neuroimaging data sets. We describe the rationale behind INVIZIAN, detail its development, and demonstrate its usage in examining a collection of over 900 T1-anatomical magnetic resonance imaging (MRI) image volumes from across a diverse set of clinical neuroimaging studies drawn from a leading neuroimaging database. Using a collection of cortical surface metrics and means for examining brain similarity, INVIZIAN graphically displays brain surfaces as points in a coordinate space and enables classification of clusters of neuroanatomically similar MRI images and data mining. As an initial step toward addressing the need for such user-friendly tools, INVIZIAN provides a highly unique means to interact with large quantities of electronic brain imaging archives in ways suitable for hypothesis generation and data mining.

  12. Model-based neuroimaging for cognitive computing.

    PubMed

    Poznanski, Roman R

    2009-09-01

    The continuity of the mind is suggested to mean the continuous spatiotemporal dynamics arising from the electrochemical signature of the neocortex: (i) globally through volume transmission in the gray matter as fields of neural activity, and (ii) locally through extrasynaptic signaling between fine distal dendrites of cortical neurons. If the continuity of dynamical systems across spatiotemporal scales defines a stream of consciousness then intentional metarepresentations as templates of dynamic continuity allow qualia to be semantically mapped during neuroimaging of specific cognitive tasks. When interfaced with a computer, such model-based neuroimaging requiring new mathematics of the brain will begin to decipher higher cognitive operations not possible with existing brain-machine interfaces.

  13. Attention deficit/hyperactivity disorder and psychopharmacologic treatments in the athlete.

    PubMed

    Conant-Norville, David O; Tofler, Ian R

    2005-10-01

    It is conjectured that attention deficit/hyperactivity disorder (ADHD) symptoms adversely impacting academics, family functioning, social relationships, and vocational performance might also negatively affect athletic and sport performance and enjoyment; this warrants further scientific inquiry. Children, adolescents, and adults participate in organized and impromptu sport activities, both team and individual. With the concern about an epidemic of obesity in the United States, barriers to participation in sport and exercise such as ADHD need to be better understood. This article approaches ADHD in sports by providing a brief introduction to ADHD, first reviewing general clinical findings, then discussing recreational youth sports and psychopharmacological treatment risks and benefits for the elite athlete.

  14. Evidence-based guidelines for treating bipolar disorder: revised third edition Recommendations from the British Association for Psychopharmacology

    PubMed Central

    Goodwin, G.M.; Haddad, P. M.; Ferrier, I.N.; Aronson, J.K.; Barnes, T.R.H.; Cipriani, A.; Coghill, D.R.; Fazel, S.; Geddes, J.R.; Grunze, H.; Holmes, E.A.; Howes, O.; Hudson, S.; Hunt, N.; Jones, I.; Macmillan, I.C.; McAllister-Williams, H.; Miklowitz, D.M.; Morriss, R.; Munafò, M.; Paton, C.; Saharkian, B.J.; Saunders, K.E.A.; Sinclair, J.M.A.; Taylor, D.; Vieta, E.; Young, A.H.

    2016-01-01

    The British Association for Psychopharmacology guidelines specify the scope and targets of treatment for bipolar disorder. The third version is based explicitly on the available evidence and presented, like previous Clinical Practice Guidelines, as recommendations to aid clinical decision making for practitioners: it may also serve as a source of information for patients and carers, and assist audit. The recommendations are presented together with a more detailed review of the corresponding evidence. A consensus meeting, involving experts in bipolar disorder and its treatment, reviewed key areas and considered the strength of evidence and clinical implications. The guidelines were drawn up after extensive feedback from these participants. The best evidence from randomized controlled trials and, where available, observational studies employing quasi-experimental designs was used to evaluate treatment options. The strength of recommendations has been described using the GRADE approach. The guidelines cover the diagnosis of bipolar disorder, clinical management, and strategies for the use of medicines: in short-term treatment of episodes, relapse prevention and stopping treatment. The use of medication is integrated with a coherent approach to psychoeducation and behaviour change. PMID:26979387

  15. Evidence-based guidelines for treating bipolar disorder: Revised third edition recommendations from the British Association for Psychopharmacology.

    PubMed

    Goodwin, G M; Haddad, P M; Ferrier, I N; Aronson, J K; Barnes, Trh; Cipriani, A; Coghill, D R; Fazel, S; Geddes, J R; Grunze, H; Holmes, E A; Howes, O; Hudson, S; Hunt, N; Jones, I; Macmillan, I C; McAllister-Williams, H; Miklowitz, D R; Morriss, R; Munafò, M; Paton, C; Saharkian, B J; Saunders, Kea; Sinclair, Jma; Taylor, D; Vieta, E; Young, A H

    2016-06-01

    The British Association for Psychopharmacology guidelines specify the scope and targets of treatment for bipolar disorder. The third version is based explicitly on the available evidence and presented, like previous Clinical Practice Guidelines, as recommendations to aid clinical decision making for practitioners: it may also serve as a source of information for patients and carers, and assist audit. The recommendations are presented together with a more detailed review of the corresponding evidence. A consensus meeting, involving experts in bipolar disorder and its treatment, reviewed key areas and considered the strength of evidence and clinical implications. The guidelines were drawn up after extensive feedback from these participants. The best evidence from randomized controlled trials and, where available, observational studies employing quasi-experimental designs was used to evaluate treatment options. The strength of recommendations has been described using the GRADE approach. The guidelines cover the diagnosis of bipolar disorder, clinical management, and strategies for the use of medicines in short-term treatment of episodes, relapse prevention and stopping treatment. The use of medication is integrated with a coherent approach to psychoeducation and behaviour change.

  16. The Psychopharmacology of ±3,4 Methylenedioxymethamphetamine and its Role in the Treatment of Posttraumatic Stress Disorder.

    PubMed

    Amoroso, Timothy

    2015-01-01

    Prior to 1985, ±3,4-methylenedioxymethamphetamine (MDMA) was readily used as a psychotherapeutic adjunct. As MDMA became popular in treating various psychiatric illnesses by mental health professionals, the public started to abuse the MDMA-containing recreational drug "ecstasy." This alarmed the DEA, which led to emergency scheduling of MDMA as a Schedule I drug. Due to its scheduling in 1985, human research and clinical use has been limited. The majority of research on MDMA has been focused on the drug's potential harmful effects rather than its possible therapeutic effects. The limitations on retrospective human studies and preclinical animal models of MDMA neurotoxicity are examined in this analysis. New research has shown that MDMA, used as a catalyst in psychotherapy, is effective in treating posttraumatic stress disorder (PTSD). This review also examines the psychopharmacological basis for the efficacy of MDMA-assisted psychotherapy. Specifically, the brain regions involved with both PTSD and those activated by MDMA (i.e., amygdala, anterior cingulate cortex, and hippocampus) are examined. Also, the possible neurochemical mechanisms involved in MDMA's efficacy in treating PTSD are reviewed.

  17. The Psychopharmacology of ±3,4 Methylenedioxymethamphetamine and its Role in the Treatment of Posttraumatic Stress Disorder.

    PubMed

    Amoroso, Timothy

    2015-01-01

    Prior to 1985, ±3,4-methylenedioxymethamphetamine (MDMA) was readily used as a psychotherapeutic adjunct. As MDMA became popular in treating various psychiatric illnesses by mental health professionals, the public started to abuse the MDMA-containing recreational drug "ecstasy." This alarmed the DEA, which led to emergency scheduling of MDMA as a Schedule I drug. Due to its scheduling in 1985, human research and clinical use has been limited. The majority of research on MDMA has been focused on the drug's potential harmful effects rather than its possible therapeutic effects. The limitations on retrospective human studies and preclinical animal models of MDMA neurotoxicity are examined in this analysis. New research has shown that MDMA, used as a catalyst in psychotherapy, is effective in treating posttraumatic stress disorder (PTSD). This review also examines the psychopharmacological basis for the efficacy of MDMA-assisted psychotherapy. Specifically, the brain regions involved with both PTSD and those activated by MDMA (i.e., amygdala, anterior cingulate cortex, and hippocampus) are examined. Also, the possible neurochemical mechanisms involved in MDMA's efficacy in treating PTSD are reviewed. PMID:26579955

  18. [Review of psychopharmacological treatments in adolescents and adults with autistic disorders].

    PubMed

    Baghdadli, A; Gonnier, V; Aussilloux, C

    2002-01-01

    Autism is an early developmental disorder. It leads to severe and durable disturbances. Given this problem, no treatment can be excluded a priori. Thus, many approaches are used to deal with autistic disorders. In France, pharmacological treatments are, for instance, largely and mostly used in adults. In the USA, these treatments concern 50% of persons with autism of any age. Nevertheless, they are rarely based on controlled studies. At the present, however, prescriptions and expected effects appear to be hard to localize. Furthermore, only few controlled studies validate their use. Aim - We offer a review of studies about medical treatments used in adolescents and adults with autism. They are classified in 3 categories: the first (category I) includes drugs used for their neurochemical effects focusing on autistic signs. The second (category II) covers drugs used for treatment of behavioural disorders frequently associated with autism. The third (category III) corresponds to a wide range of drugs or vitamins for wich only few case studies exist reporting irregular positive effects. The main hypothesis of this review is that autism involves a dysfunction of the neuromediation systems. This hypothesis opens new perspectives in the research of medical treatments in autism by focusing on molecules, which are supposed to have an effect on neuromediation systems. Method - Our review is based on studies, which have been published during the past twenty years. For many studies, data are limited to adolescents and adults. So we expanded our review to data available in children. The data bases that we have used are medline and psyclit. Keywords have been chosen according to: pharmacological considerations (psychotropic, psychoactive drugs, psychopharmacology) and clinical symptoms (autism, automutilations, aggressive behavior, and hyperactivity). Hypothesis of a dysfunction in the neuromediation systems in autism - Many studies exist about biochemical abnormalities in

  19. Pediatric psychopharmacological research in the post EU regulation 1901/2006 era.

    PubMed

    Schmäl, Christine; Becker, Katja; Berg, Ruth; Brünger, Michael; Lehmkuhl, Gerd; Oehler, Klaus-Ulrich; Ruppert, Thorsten; Staudter, Claus; Trott, Götz-Erik; Dittmann, Ralf W

    2014-11-01

    Although the use of psychotropic medications in child and adolescent psychiatry in Germany is on the increase, most compounds are in fact prescribed "off-label" because of a lack of regulatory approval in these age groups. In 2007, the European Parliament introduced Regulation 1901/2006 concerning medicinal products in pediatric populations, with a subsequent amendment in the form of Regulation 1902/2006. The main aim of this legislation was to encourage research and clinical trials in children and adolescents, and thus promote the availability of medications with marketing authorization for these age groups. Furthermore, initiatives such as the European 7th Framework Program of the European Union now offer substantial funding for pediatric pharmacological research. At a recent Congress of the German Society for Child and Adolescent Psychiatry and Psychotherapy (DGKJP), experts from the field and the pharmaceutical industry held a symposium with lay representatives in order to discuss attitudes toward, and experience with, pediatric psychopharmacology research in Germany since 2007. Several areas of concern were identified. The present paper derives from that symposium and provides an overview of these opinions, which remain crucial to the field. A wider discussion of how to facilitate psychopharmacological research in Germany in order to optimize the treatment and welfare of children and adolescents with psychiatric disorders is now warranted. PMID:25335522

  20. The psychopharmacology algorithm project at the Harvard South Shore Program: an update on schizophrenia.

    PubMed

    Osser, David N; Roudsari, Mohsen Jalali; Manschreck, Theo

    2013-01-01

    This article is an update of the algorithm for schizophrenia from the Psychopharmacology Algorithm Project at the Harvard South Shore Program. A literature review was conducted focusing on new data since the last published version (1999-2001). The first-line treatment recommendation for new-onset schizophrenia is with amisulpride, aripiprazole, risperidone, or ziprasidone for four to six weeks. In some settings the trial could be shorter, considering that evidence of clear improvement with antipsychotics usually occurs within the first two weeks. If the trial of the first antipsychotic cannot be completed due to intolerance, try another until one of the four is tolerated and given an adequate trial. There should be evidence of bioavailability. If the response to this adequate trial is unsatisfactory, try a second monotherapy. If the response to this second adequate trial is also unsatisfactory, and if at least one of the first two trials was with risperidone, olanzapine, or a first-generation (typical) antipsychotic, then clozapine is recommended for the third trial. If neither trial was with any these three options, a third trial prior to clozapine should occur, using one of those three. If the response to monotherapy with clozapine (with dose adjusted by using plasma levels) is unsatisfactory, consider adding risperidone, lamotrigine, or ECT. Beyond that point, there is little solid evidence to support further psychopharmacological treatment choices, though we do review possible options.